
1

7: Image Compression

Mark Handley

Image Compression

 GIF (Graphics Interchange Format)

 PNG (Portable Network Graphics)

 JPEG (Join Picture Expert Group)

2

GIF (Graphics Interchange Format)

 Introduced by Compuserv in 1987 (GIF87a)

 Support for multiple images in one file and metadata adding
in 1989 (GIF89a)

 Indexed image format: up to 256 colours per image,
chosen from a variable palette.

One colour index can indicate transparency.

Uses lossless LZW compression of data bytes.

Optional interlacing capability.

LZW (Lempel-Ziv-Welch)

 LZW is a form of dictionary coding (based on LZ78).

Build a dictionary of words in the text to be encoded.

Send index into dictionary instead of word itself.

Example of dictionary encoding:

Uncompressed text:
"I am dumb and because I am dumb, I can't
even tell you that I am dumb.”

Compressed text:
"$1 and because $1, I can't even tell you
that $1. $1=[I am dumb]"

3

LZW Compression
Dictionary starts with one entry for each possible byte value (256 entries).

STRING = get input character
WHILE there are still input characters {
 CHAR = get input character
 IF STRING+CHAR is in dictionary {
 STRING = STRING+CHAR
 } ELSE {
 output the code for STRING
 add STRING+CHAR to dictionary
 STRING = CHAR
 }
}
output the code for STRING

LZW Decompression
Read NEW_CODE
OLD_STRING = translate NEW_CODE from dictionary
output OLD_STRING
WHILE there are still input characters {
 Read NEW_CODE
 STRING = get translation of NEW_CODE from dictionary
 output STRING
 CHAR = first character in STRING
 add OLD_STRING + CHAR to the dictionary
 OLD_STRING = STRING
}

 Nice property is that dictionary does not need to be sent - is
rebuilt automatically at receiver.

 Actually slightly more complex than this - one exception.

4

GIF Uses

 GIF became very popular in the early days of the Web.

Supported by NCSA Mosaic.

Pretty good compression.

Most displays then were indexed rather than truecolor.

 Today it’s still good for diagrams, cartoons, and other non-
photographic images.

Lossless encoding good for sharp edges (doesn’t blur).

GIF Patent Issues

 Compuserv designed GIF without knowing Unisys had a
patent on LZW.

Long after LZW became popular, Unisys started to claim
royalties on GIF implementations.

This prompted efforts to boycott GIF and spurred the
development of PNG.

Original Unisys LZW patents now expired.

5

PNG (Portable Network Graphics)
 Supports truecolor, greyscale, and palette-based (8 bit) colourmaps.
 Uses DEFLATE algorithm:

 As used in gzip
 LZ77 algorithm with Huffman coding.
 Patent free.
 Spec: http://www.ietf.org/rfc/rfc1951.txt

 Combines this with prediction.
 5 different simple prediction algorithms can be used, chosen on a

per-scanline basis.
 Eg: sample-to-left, sample-above, average of s-t-l and s-a, etc.
 DEFLATE only compresses the difference between the prediction

and the actual value.

LZ77

 Unlike LZ78, uses the datastream as the dictionary.

 Keeps a history window of the recently seen data.
Compares current data with history.

A match is encoded as:

Length of match

Position in history.

A non-match is encoded as a literal for “non-match”
followed by the actual sample value.

6

JPEG (Joint Photographic Experts Group)

 Good for compressing photographic images

Gradual changes in colour

 Not good for graphics

Sharp changes in colour.

 Compression ratio of 10:1 achievable without visible loss.

 Uses JFIF file format:

JPEG File Interchange Format

http://www.w3c.org/Graphics/JPEG/jfif3.pdf

JPEG
 Convert RGB (24 bit) data to YUV.

 Typically YUV 4:2:0 used.

 Three “sub-images”, one each for Y, U and V

 U and V sub-images half the size in each dimension as Y

 Divide each image up into 8x8 tiles.

 Convert to frequency space using a two-dimensional DCT

 Quantize the frequency space, using more bits for the lower
frequencies.

 Encode the quantized values using Run-length encoding and
Huffman coding in a zig-zag manner.

7

JPEG Diagram

FDCT Quantizer
Entropy
Encoder

IDCT Quantizer
Entropy
Decoder

RGB->YUV

YUV->RGB

Raster
Image

8x8
block

Quantization
Tables

Huffman
Tables

Encoder

Decoder

JPEG
Compressed
Bitstream

JPEG Example
 Actual values:
 52 55 61 66 70 61 64 73

 64 59 55 90 109 85 69 72

 62 59 68 113 144 104 66 73

 63 58 71 122 154 106 70 69

 67 61 68 104 126 88 68 70

 79 65 60 70 77 68 58 75

 85 71 64 59 55 61 65 83

 87 79 69 68 65 76 78 94

Original 8x8
luminance
block

8

Note DC Coefficient has
lots of power

Very little power in
high frequencies

Subtract 128 from each value to convert to signed

Then apply FDCT:

Giving:
-415 -30 -61 27 56 -20 -2 0

 5 -22 -61 10 13 -7 -8 5

 -47 7 77 -24 -29 10 5 -6

 -49 12 34 -15 -10 6 2 2

 12 -7 -13 -4 -2 2 -3 3

 -8 3 2 -6 -3 1 4 2

 -1 0 0 -3 -1 -3 4 -1

 0 0 -1 -4 -1 0 0 2

DCT Basis Functions
[what each coefficient corresponds to in the image]

Highest
Frequency
Coefficient

DC
Coefficient

9

Better quantization at
low frequencies

Eg round(-415/16) = -26

High frequencies
often quantize to
zero

Coarse quantization
at high frequencies

Quantize using a quantization matrix such as:
 16 11 10 16 24 40 51 61

 12 12 14 19 26 58 60 55

 14 13 16 24 40 57 69 56

 14 17 22 29 51 87 80 62

 18 22 37 56 68 109 103 77

 24 35 55 64 81 104 113 92

 49 64 78 87 103 121 120 101

 72 92 95 98 112 100 103 99

Giving:
 -26 -3 -6 2 2 -1 0 0

 0 -2 -4 1 1 0 0 0

 -3 1 5 -1 -1 0 0 0

 -4 1 2 -1 0 0 0 0

 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

Quantized DCT coefficients:
 -26 -3 -6 2 2 -1 0 0

 0 -2 -4 1 1 0 0 0

 -3 1 5 -1 -1 0 0 0

 -4 1 2 -1 0 0 0 0

 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

Original Image:

Scaled DCT basis functions
that make up the (quantized)
image

10

Order the coefficients in zig-zag order:
 -26 -3 -6 2 2 -1 0 0

 0 -2 -4 1 1 0 0 0

 -3 1 5 -1 -1 0 0 0

 -4 1 2 -1 0 0 0 0

 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

−26, −3, 0, −3, −2, −6, 2, −4, 1, −4, 1, 1, 5, 1, 2, −1, 1, −1, 2, 0, 0, 0,
0, 0, −1, −1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Run-length encode:
−26, −3, 0, −3, −2, −6, 2, −4, 1, −4, {2 x 1}, 5, 1, 2, −1, 1, −1, 2, {5 x
0} , −1, −1, EOB

Huffman code what remains. Encoding is complete.

JPEG Decoding

 Decoding is simply the reverse of encoding.

 Reverse the huffman, RLE encodings.

 Dequantize.

 Apply inverse DCT (IDCT):

 Add 128 to convert back to unsigned.

11

Comparison

Original Image Decompressed Image

JPEG Compression ratio

 Compression ratio depends on how large the values in the
quantization matrix are.

 10:1 achievable without noticeable loss.

 100:1 achievable, but artifacts are noticeable.

12

Edges
in JPEG

Original Decoded

Quantized DCT Basic Functions

