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Image Compression:
The Mathematics of JPEG 2000

JIN LI

Abstract. We briefly review the mathematics in the coding engine of
JPEG 2000, a state-of-the-art image compression system. We focus in
depth on the transform, entropy coding and bitstream assembler modules.
Our goal is to present a general overview of the mathematics underlying a
state of the art scalable image compression technology.

1. Introduction

Data compression is a process that creates a compact data representation
from a raw data source, usually with an end goal of facilitating storage or trans-
mission. Broadly speaking, compression takes two forms, either lossless or lossy,
depending on whether or not it is possible to reconstruct exactly the original
datastream from its compressed version. For example, a data stream that con-
sists of long runs of 0s and 1s (such as that generated by a black and white
fax) would possibly benefit from simple run-length encoding, a lossless technique
replacing the original datastream by a sequence of counts of the lengths of the
alternating substrings of 0s and 1s. Lossless compression is necessary for situ-
ations in which changing a single bit can have catastrophic effects, such as in
machine code of a computer program.

While it might seem as though we should always demand lossless compres-
sion, there are in fact many venues where exact reproduction is unnecessary. In
particular, media compression, which we define to be the compression of im-
age, audio, or video files, presents an excellent opportunity for lossy techniques.
For example, not one among us would be able to distinguish between two images
which differ in only one of the 229 bits in a typical 1024×1024 color image. Thus
distortion is tolerable in media compression, and it is the content, rather than
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the exact bits, that is of paramount importance. Moroever, the size of the orig-
inal media is usually very large, so that it is essential to achieve a considerably
high compression ratio (defined to be the ratio of the size of the original data
file to the size of its compressed version). This is achieved by taking advantage
of psychophysics (say by ignoring less perceptible details of the media) and by
the use of entropy coding, the exploitation of various information redundancies
that may exist in the source data.

Conventional media compression solutions focus on a static or one-time form
of compression — i.e., the compressed bitstream provides a static representation
of the source data that makes possible a unique reconstruction of the source,
whose characteristics are quantified by a compression ratio determined at the
time of encoding. Implicit in this approach is the notion of a “one shoe fits all”
technique, an outcome that would appear to be variance with the multiplicity
of reconstruction platforms upon which the media will ultimately reside. Often,
different applications may have different requirements for the compression ratio
as well as tolerating various levels of compression distortion. A publishing ap-
plication may require a compression scheme with very little distortion, while a
web application may tolerate relatively large distortion in exchange for smaller
compressed media.

Recently scalable compression has emerged as a category of media compres-
sion algorithms capable of trading between compression ratio and distortion after
generating an initially compressed master bitstream. Subsets of the master then
may be extracted to form particular application bitstreams which may exhibit
a variety of compression ratios. (I.e., working from the master bitstream we
can achieve a range of compressions, with the concomitant ability to reconstruct
coarse to fine scale characteristics.) With scalable compression, compressed me-
dia can be tailored effortlessly for applications with vastly different compression
ratio and quality requirements, a property which is particularly valuable in media
storage and transmission.

In what follows, we restrict our attention to image compression, in particular,
focusing on the JPEG 2000 image compression standard, and thereby illustrate
the mathematical underpinnings of a modern scalable media compression algo-
rithm. The paper is organized as follows. The basic concepts of the scalable
image compression and its applications are discussed in Section 2. JPEG 2000
and its development history are briefly reviewed in Section 3. The transform,
quantization, entropy coding, and bitstream assembler modules are examined
in detail in Sections 4 to 7. Readers interested in further details may refer to
[1; 2; 3].

2. Image Compression

Digital images are used every day. A digital image is essentially a 2D data
array x(i, j), where i and jindex the row and column of the data array, and
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x(i, j)is referred to as a pixel. Gray-scale images assign to each pixel a single
scalar intensity value G, whereas color images traditionally assign to each pixel
a color vector (R,G, B), which represent the intensity of the red, green, and
blue components, respectively. Because it is the content of the digital image
that matters, the underlying 2D data array may undergo big changes while still
conveying the content to the user with little or no perceptible distortion. An
example is shown in Figure 1. On the left the classic image processing test case
Lena is shown as a 512 × 512 grey-scale image. To the right of the original
are several applications, each showing different sorts of compression. The first
application illustrates the use of subsampling in order to fit a smaller image (in
this case 256×256). The second application uses JPEG (the predecessor to JPEG
2000) to compress the image to a bitstream, and then decode the bitstream back
to an image of size 512×512. Although in each case the underlying 2D data array
is changed tremendously, the primary content of the image remains intelligible.

Image (512x512)

Subsample (256x256)Manipulation

Compress (JPEG)

167 123

84 200

2D array of data

ENC

DEC

Figure 1. Souce digital image and compressions.

Each of the applications above results in a reduction in the amount of source
image data. In this paper, we focus our attention on JPEG 2000, which is a
next generation image compression standard. JPEG 2000 distinguishes itself
from older generations of compression standards not only by virtue of its higher
compression ratios, but also by its many new functionalities. The most noticeable
among them is its scalability. From a compressed JPEG 2000 bitstream, it is
possible to extract a subset of the bitstream that decodes to an image of variable
quality and resolution (inversely correlated with its accompanying compression
ratio), and/or variable spatial locality.

Scalable image compression has important applications in image storage and
delivery. Consider the application of digital photography. Presently, digital
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cameras all use non-scalable image compression technologies, mainly JPEG. A
camera with a fixed amount of the memory can accommodate a small number
of high quality, high-resolution images, or a large number of low quality, low-
resolution images. Unfortunately, the image quality and resolution must be
determined before shooting the photos. This leads to the often painful trade-off
between removing old photos to make space for new exciting shots, and shooting
new photos of poorer quality and resolution. Scalable image compression makes
possible the adjustment of image quality and resolution after the photo is shot,
so that instead, the original digital photos always can be shot at the highest
possible quality and resolution, and when the camera memory is filled to capacity,
the compressed bitstream of existing shots may be truncated to smaller size
to leave room for the upcoming shots. This need not be accomplished in a
uniform fashion, with some photos kept with reduced resolution and quality,
while others retain high resolution and quality. By dynamically trading between
the number of images and the image quality, the use of precious camera memory
is apportioned wisely.

Web browsing provides another important application of scalable image com-
pression. As the resolution of digital cameras and digital scanners continues to
increase, high-resolution digital imagery becomes a reality. While it is a plea-
sure to view a high-resolution image, for much of our web viewing we’d trade the
resolution for speed of delivery. In the absence of scalable image compression
technology it is common practice to generate multiple copies of the compressed
bitstream, varying the spatial region, resolution and compression ratio, and put
all copies on a web server in order to accommodate a variety of network situa-
tions. The multiple copies of a fixed media source file can cause data management
headaches and waste valuable server space. Scalable compression techniques al-
low a single scalable master bitstream of the compressed image on the server
to serve all purposes. During image browsing, the user may specify a region
of interest (ROI) with a certain spatial and resolution constraint. The browser
then only downloads a subset of the compressed media bitstream covering the
current ROI, and the download can be performed in a progressive fashion so that
a coarse view of the ROI can be rendered very quickly and then gradually refined
as more and more bits arrive. Therefore, with scalable image compression, it is
possible to browse large images quickly and on demand (see e.g., the Vmedia
project [25]).

3. JPEG 2000

3.1. History. JPEG 2000 is the successor to JPEG. The acronym JPEG stands
for Joint Photographic Experts Group. This is a group of image processing ex-
perts, nominated by national standard bodies and major companies to work to
produce standards for continuous tone image coding. The official title of the
committee is “ISO/IEC JTC1/SC29 Working Group 1”, which often appears in
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the reference document. The JPEG members select a DCT based image com-
pression algorithm in 1988, and while the original JPEG was quite successful,
it became clear in the early 1990s that new wavelet-based image compression
schemes such as CREW (compression with reversible embedded wavelets) [5]
and EZW (embedded zerotree wavelets) [6] were surpassing JPEG in both per-
formance and available features, such as scalability. It was time to begin to
rethink the industry standard in order to incorporate these new mathematical
advances.

Based on industrial demand, the JPEG 2000 research and development effort
was initiated in 1996. A call for technical contributions was issued in March
1997 [17]. The first evaluation was performed in November 1997 in Sydney,
Australia, where twenty-four algorithms were submitted and evaluated. Follow-
ing the evaluation, it was decided to create a JPEG 2000 “verification model”
(VM) which was a reference implementation (in document and in software) of
the working standard. The first VM (VM0) is based on the wavelet/trellis coded
quantization (WTCQ) algorithm submitted by SAIC and the University of Ari-
zona (SAIC/UA) [18]. At the November 1998 meeting, the algorithm EBCOT
(embedded block coding with optimized truncation) was adopted into VM3, and
the entire VM software was re-implemented in an object-oriented manner. The
document describing the basic JPEG 2000 decoder (part I) reached committee
draft (CD) status in December 1999. JPEG 2000 finally became an international
standard (IS) in December 2000.

3.2. JPEG. In order to understand JPEG 2000, it is instructive to revisit the
original JPEG. As illustrated by Figure 2, JPEG is composed of a sequence of
four main modules.

QUAN
RUN-LEVEL

CODING
FINAL

BITSTR

DCT
COMP &

PART

JPEG

Figure 2. Operation flow of JPEG.

The first module (COMP & PART) performs component and tile separation,
whose function is to cut the image into manageable chunks for processing. Tile
separation is simply the separation of the image into spatially non-overlapping
tiles of equal size. Component separation makes possible the decorrelation of
color components. For example, a color image, in which each pixel is nor-
mally represented with three numbers indicating the levels of red, green and
blue (RGB) may be transformed to LCrCb (luminance, chrominance red and
chrominance blue) space.
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After separation, each tile of each component is then processed separately
according to a discrete cosine transform (DCT). This is closely related to the
Fourier transform (see [30], for example). The coefficients are then quantized.
Quantization takes the DCT coefficients (typically some sort of floating point
number) and turns them into an integer. For example, simple rounding is a
form of quantization. In the case of JPEG, we apply rounding plus a mask
which applies a system of weights reflecting various psychoacoustic observations
regarding human processing of images [31]. Finally, the coefficients are subjected
to a form of run-level encoding, where the basic symbol is a run-length of zeros
followed by a non-zero level, the combined symbol is then Huffman encoded.

3.3. Overview of JPEG 2000. Like JPEG, JPEG 2000 standardizes the
decoder and the bitstream syntax. The operation flow of a typical JPEG 2000
encoder is shown in Figure 3.

WAVELET
QUAN &

PART
BITPLANE

CODING

BITSTR

ASSEMBLY

FINAL

BITSTR

COMP &

TILE

COLOR

IMAGE

Y COMP

CR COMP

CB COMP

Figure 3. Flowchart for JPEG 2000.

We again start with a component and tile separation module. After this
preprocessing, we now apply a wavelet transform which yields a sequence of
wavelet coefficients. This is a key difference between JPEG and JPEG 2000
and we explain it in some detail in Section 4. We next quantize the wavelet
coefficients which are then regrouped to facilitate localized spatial and resolution
access, where by “resolution” we mean effectively the “degree” of the wavelet
coefficient, as the wavelet decomposition is thought of as an expansion of the
original data vector in terms of a basis which accounts for finer and finer detail,
or increasing resolution. The degrees of resolution are organized into subbands,
which are divided into non-overlapping rectangular blocks. Three spatially co-
located rectangles (one from each subband at a given resolution level) form a
packet partition. Each packet partition is further divided into code-blocks, each
of which is compressed by a subbitplane coder into an embedded bitstream with
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a rate-distortion curve that records the distortion and rate at the end of each
subbitplane. The embedded bitstream of the code-blocks are assembled into
packets, each of which represents an increment in quality corresponding to one
level of resolution at one spatial location. Collecting packets from all packet
partitions of all resolution level of all tiles and all components, we form a layer
that gives one increment in quality of the entire image at full resolution. The
final JPEG 2000 bitstream may consist of multiple layers.

We summarize the main differences:

(1) Transform module: wavelet versus DCT. JPEG uses 8 × 8 discrete cosine
transform (DCT), while JPEG 2000 uses a wavelet transform with lifting
implementation (see Section 4.1). The wavelet transform provides not only
better energy compaction (thus higher coding gain), but also the resolution
scalability. Because the wavelet coefficients can be separated into different
resolutions, it is feasible to extract a lower resolution image by using only the
necessary wavelet coefficients.

(2) Block partition: spatial domain versus wavelet domain. JPEG partitions
the image into 16 × 16 macroblocks in the space domain, and then applies
the transform, quantization and entropy coding operation on each block sep-
arately. Since blocks are independently encoded, annoying blocking artifacts
becomes noticeable whenever the coding rate is low. On the contrary, JPEG
2000 performs the partition operation in the wavelet domain. Coupled with
the wavelet transform, there is no blocking artifact in JPEG 2000.

(3) Entropy coding module: run-level coefficient coding versus bitplane coding.

JPEG encodes the DCT transform coefficients one by one. The resultant block
bitstream can not be truncated. JPEG 2000 encodes the wavelet coefficients
bitplane by bitplane (i.e., sending all zeroth order bits, then first order, etc.
Details are in Section 4.3). The generated bitstream can be truncated at any
point with graceful quality degradation. It is the bitplane entropy coder in
JPEG 2000 that enables the bitstream scalability.

(4) Rate control: quantization module versus bitstream assembly module. In
JPEG, the compression ratio and the amount of distortion is determined by
the quantization module. In JPEG 2000, the quantization module simply
converts the float coefficient of the wavelet transform module into an integer
coefficient for further entropy coding. The compression ratio and distortion
is determined by the bitstream assembly module. Thus, JPEG 2000 can
manipulate the compressed bitstream, e.g., convert a compressed bitstream
to a bitstream of higher compression ratio, form a new bitstream of lower
resolution, form a new bitstream of a different spatial area, by operating only
on the compressed bitstream and without going through the entropy coding
and transform module. As a result, JPEG 2000 compressed bitstream can be
reshaped (transcoded) very efficiently.
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4. The Wavelet Transform

4.1. Introduction. Most existing high performance image coders in applica-
tions are transform based coders. In the transform coder, the image pixels are
converted from the spatial domain to the transform domain through a linear
orthogonal or bi-orthogonal transform. A good choice of transform accomplishes
a decorrelation of the pixels, while simultaneously providing a representation in
which most of the energy is usually restricted to a few (realtively large) coeffi-
cients. This is the key to achieving an efficient coding (i.e., high compression
ratio). Indeed, since most of the energy rests in a few large transform coeffi-
cients, we may adopt entropy coding schemes, e.g., run-level coding or bitplane
coding schemes, that easily locate those coefficients and encodes them. Because
the transform coefficients are highly decorrelated, the subsequent quantizer and
entropy coder can ignore the correlation among the transform coefficients, and
model them as independent random variables.

The optimal transform (in terms of decorrelation) of an image block can be
derived through the Karhunen–Loeve (K-L) decomposition. Here we model the
pixels as a set of statistically dependent random variables, and the K-L basis is
that which achieves a diagonalization of the (empirically determined) covariance
matrix. This is equivalent to computing the SVD (singular value decomposition)
of the covariance matrix (see [28] for a thorough description). However, the K-L
transform lacks an efficient algorithm, and the transform basis is content depen-
dent (in distinction, the Fourier transform, which uses the sampled exponentials,
is not data dependent).

Popular transforms adopted in image coding include block-based transforms,
such as the DCT, and wavelet transforms. The DCT (used in JPEG) has many
well-known efficient implementations [26], and achieves good energy compaction
as well as coefficient decorrelation. However, the DCT is calculated indepen-
dently in spatially disjoint pixel blocks. Therefore, coding errors (i.e., lossy
compression) can cause discontinuities between blocks, which in turn lead to
annoying blocking artifacts. In contrary, the wavelet transform operates on the
entire image (or a tile of a component in the case of large color image), which
both gives better energy compaction than the DCT, and no post-coding blocking
artifact. Moreover, the wavelet transform decomposes the image into an L-level
dyadic wavelet pyramid. The output of an example 5-level dyadic wavelet pyra-
mid is shown in Figure 4.

There is an obvious recursive structure generated by the following algorithm:
lowpass and highpass filters (explained below, but for the moment, assume that
these are convolution operators) are applied independently to both the rows and
columns of the image. The output of these filters is then organized into four
new 2D arrays of one half the size (in each dimension), yielding a LL (lowpass,
lowpass) block, LH (lowpass, highpass), HL block and HH block. The algorithm
is then applied recursively to the LL block, which is essentially a lower resolution
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128, 129, 125, 64, 65, � TRANSFORM COEFFICIENTS

4123, -12.4, -96.7, 4.5, �

Figure 4. A 5-level dyadic wavelet pyramid.

or smoothed version of the original. This output is organized as in Figure 4, with
the southwest, southeast, and northeast quadrants of the various levels housing
the LH, HH, and HL blocks respectively. We examine their structure as well as
the algorithm in Sections 4.2 and 4.3. By not using the wavelet coefficients at
the finest M levels, we can reconstruct an image that is 2M times smaller in both
the horizontal and vertical directions than the original one. The multiresolution
nature (see [27], for example) of the wavelet transform is ideal for resolution
scalability.

4.2. Wavelet transform by lifting. Wavelets yield a signal representation in
which the low order (or lowpass) coefficients represent the most slowly changing
data while the high order (highpass) coefficients represent more localized changes.
It provides an elegant framework in which both short term anomaly and long
term trend can be analyzed on an equal footing. For the theory of wavelet and
multiresolution analysis, we refer the reader to [7; 8; 9].

We develop the framework of a one-dimensional wavelet transform using the
z-transform formalism. In this setting a given (bi-infinite) discrete signal x[n] is
represented by the Laurent series X(z) in which x[n] is the coefficient of zn. The
z-transform of a FIR filter (finite impulse response, meaning Laurent series with
a finite number of nonzero coefficients, and thus a Laurent polynomial) H(z) is
represented by a Laurent polynomial

H(z) =
q∑

k=p

h(k)z−k of degree |H| = q − p.

Thus the length of a filter is the degree of its associated polynomial plus one. The
sum or difference of two Laurent polynomials is again a Laurent polynomial and
the product of two Laurent polynomials of degree a and b is a Laurent polynomial
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of degree a + b. Exact division is in general not possible, but division with
remainder is possible. This means that for any two nonzero Laurent polynomials
a(z) and b(z), with |a(z)| ≥ |b(z)|, there will always exist a Laurent polynomial
q(z) with |q(z)| = |a(z)| − |b(z)| and a Laurent polynomial r(z) with |r(z)| <

|b(z)| such that

a(z) = b(z)q(z) + r(z).

This division is not necessarily unique. A Laurent polynomial is invertible if and
only if it is of degree zero, i.e., if it is of the form czp.

The original signal X(z) goes through a low and high-pass analysis FIR filter
pair G(z) and H(z). These are simply the independent convolutions of the origi-
nal data sequence against a pair of masks, and constitute perhaps the most basic
example of a filterbank [27]. The resulting pair of outputs are subsampled by a
factor of two. To reconstruct the original signal, the low and high-pass coeffi-
cients γ(z) and λ(z) are upsampled by a factor of two and pass through another
pair of synthesis FIR filters G′(z) and H ′(z). Although IIR (infinite impulse
response) filters can also be used, the infinite response leads to an infinite data
expansion, an undesirable outcome in our finite world. According to filterbank
theory, if the filters satisfy the relations

G(z)G(z−1) + H ′(z)H(z−1) = 2,

G(z)G(−z−1) + H ′(z)H(−z−1) = 0,

the aliasing caused by the subsampling will be cancelled, and the reconstructed
signal Y (z) will be equal to the original. Figure 5 provides an illustration.

2
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ANALYSIS G(z)

HIGH PASS

ANALYSIS H(z)
2

X(z)

LOW PASS

COEFF (z)

HIGH PASS

COEFF (z)

2

2

LOW PASS

SYNTHESIS G�(z)

HIGH PASS

SYNTHESIS H�(z)

Y(z)
+

γ

λ

Figure 5. Convolution implementation of one dimensional wavelet transform.

A wavelet transform implemented in the fashion of Figure 5 with FIR filters is
said to have a convolutional implementation, reflecting the fact that the signal is
convolved with the pair of filters (h, g) that form the filter bank. Note that only
half the samples are kept by the subsampling operator, and the other half of the
filtered samples are thrown away. Clearly this is not efficient, and it would be
better (by a factor of one-half) to do the subsampling before the filtering. This
leads to an alternative implementation of the wavelet transform called lifting
approach. It turns out that all FIR wavelet filters can be factored into lifting
step. We explain the basic idea in what follows. For those interested in a deeper
understanding, we refer to [10; 11; 12].
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The subsampling that is performed at the forward wavelet, and the upsam-
pling that is used in the inverse wavelet transform suggest the utility of a decom-
position of the z-transform of the signal/filter into an even and odd part given
by subsampling the z-transform at the even and odd indices, respectively:

H(z) =
∑

n

h(n)z−n

{
He(z) =

∑
n h(2n)z−n (even part),

Ho(z) =
∑

n h(2n + 1)z−n (odd part).

The odd/even decomposition can be rewritten as

H(z) = He(z2) + z−1Ho(z2) with

{
He(z) = 1

2

(
H(z1/2) + H(−z1/2)

)
,

Ho(z) = 1
2z1/2

(
H(z1/2)−H(−z1/2)

)
.

With this we may rewrite the wavelet filtering and subsampling operation (i.e.,
the lowpass and highpass components, γ(z) and λ(z), respectively) using the
even/odd parts of the signal and filter as

γ(z) = Ge(z)Xe(z) + z−1Go(z)Xo(z),

λ(z) = He(z)Xe(z) + z−1Ho(z)Xo(z),

which can be written in matrix form as
(

γ(z)
λ(z)

)
= P (z)

(
Xe(z)

z−1Xo(z)

)
,

where P (z) is the polyphase matrix

P (z) =
(

Ge(z) Go(z)
He(z) Ho(z)

)
.

X(z)

LOW PASS

COEFF (z)

HIGH PASS

COEFF (z)

Y(z)

SPLIT P(z) P�(z) MERGE

γ

λ

Figure 6. Single stage wavelet filter using polyphase matrices.

The forward wavelet transform now becomes the left part of Figure 6. Note
that with polyphase matrix, we perform the subsampling (split) operation before
the signal is filtered, which is more efficient than the description illustrated by
Figure 5, in which the subsampling is performed after the signal is filtered. We
move on to the inverse wavelet transform. It is not difficult to see that the
odd/even subsampling of the reconstructed signal can be obtained through

(
Ye(z)
zYo(z)

)
= P (z)

(
γ(z)
λ(z)

)
,
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where P ′(z) is a dual polyphase matrix

P ′(z) =
(

G′e(z) G′o(z)
G′e(z) H ′

o(z)

)
.

The wavelet transform is invertible if the two polyphase matrices are inverse
to each other:

P ′(z) = P (z)−1 =
1

Ho(z)Ge(z)−He(z)Go(z)

(
Ho(z) −Go(z)

−He(z) Ge(z)

)
.

If we constrain the determinant of the polyphase matrix to be one, i.e.,
Ho(z)Ge(z) − He(z)Go(z) = 1, then not only are the polyphase matrices in-
vertible, but the inverse filter has a simple relationship to the forward filter:

G′e(z) = Ho(z),

G′o(z) = −He(z),

H ′
e(z) = −Go(z),

H ′
o(z) = G2(z),

which implies that the inverse filter is related to the forward filter by the equa-
tions

G′e(z) = z−1H(−z−1), H ′(z) = −z−1G(−z−1)

The corresponding pair of filters (g, h) is said to be complementary. Figure 6
illustrates the forward and inverse transforms using the polyphase matrices.

With the Laurent polynomial and polyphase matrix, we can factor a wavelet
filter into the lifting steps. Starting with a complementary filter pair (g, h),
assume that the degree of filter g is larger than that of filter h. We seek a new
filter gnew satisfying

g(z) = h9z)t(z2) + gnew(z),

where t(z) is a Laurent polynomial. Both t(z) and gnew(z) can be calculated
through long division [10]. The new filter gnew is complementary to filter h, as
the polyphase matrix satisfies

P (z) =
(

He(z)t(z) + Gnew
e (z) Ho(z)t(z) + Gnew

o (z)
He(z) Ho(z)

)

=
(

1 t(z)
0 1

) (
Gnew

e (z) Gnew
o (z)

He(z) Ho(z)

)
=

(
1 t(z)
0 1

)
P new(z).

Obviously, the determinant of the new polyphase matrix P new(z) also equals
one. By performing the operation iteratively, it is possible to factor the polyphase
matrix into a sequence of lifting steps:

P (z) =
(

K1

K2

) m∏

i=0

((
1 ti(z)
0 1

)(
1 0

si(z) 1

))
.

The resultant lifting wavelet can be shown in Figure 7.
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Figure 7. Multi-stage forward lifting wavelet using polyphase matrices.

Each lifting stage above can be directly inverted. Thus we can invert the
entire wavelet:

P ′(z) = P (z)−1 =
(

1/K1

1/K2

) 0∏

i=m

((
1 0

−si(z) 1

)(
1 −ti(z)
0 1

))
.

We show the inverse lifting wavelet using polyphase matrices in Figure 8,
which should be compared with Figure 7. Only the direction of the data flow
has changed.
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Figure 8. Multi-stage inverse lifting wavelet using polyphase matrices.

4.3. Bi-orthogonal 9-7 wavelet and boundary extension. The default
wavelet filter used in JPEG 2000 is the bi-orthogonal 9-7 wavelet [20]. It is
a 4-stage lifting wavelet, with lifting filters s1(z) = f(a, z), t1(z) = f(b, z),
s2(z) = f(c, z), t0(z) = f(d, z), where f , the dual lifting step, is of the form

f(p, z) = pz−1 + p.

The quantities a, b, c and d are the lifting parameters at each stage.
The next several figures illustrate the filterbank. The input data is indexed

as . . . , x0, x1, . . . , xn, . . . , and the lifting operation is performed from right to
left, stage by stage. At this moment, we assume that the data is of infinite
length, and we will discuss boundary extension later. The input data are first
partitioned into two groups corresponding to even and odd indices. During each
lifting stage, only one of the group is updated. In the first lifting stage, the odd
index data points x1, x3, . . . are updated:

x′2n+1 = x2n+1 + a ∗ (x2n + x2n+2),
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where a and x′2n+1 are respectively the first stage lifting parameter and outcome.
The entire operation corresponds to the filter s1(z) represented in Figure 8. The
circle in Figure 9 illustrates one such operation performed on x1.
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Figure 9. Bi-orthogonal 9-7 wavelet.

The second stage lifting, which corresponds to the filter t1(z) in Figure 8,
updates the data at even indices:

x′′2n = x2n + b ∗ (x′2n−1 + x′2n+1),

where b and x′′2n are the second stage lifting parameter and output. The third
and fourth stage lifting can be performed similarly:

Hn = x′2n+1 + c ∗ (x′′2n + x′′2n+2),

Ln = x′′2n + d ∗ (Hn−1 + Hn),

where Hn and Ln are the resultant high and low-pass coefficients. The value of
the lifting parameters a, b, c, d are shown in Figure 9.

As illustrated in Figure 10, we may invert the dataflow, and derive an inverse
lifting of the 9-7 bi-orthogonal wavelet.

Since the actual data in an image transform is finite in length, boundary ex-
tension is a crucial part of every wavelet decomposition scheme. For a symmetric
odd-tap filter (the bi-orthogonal 9-7 wavelet falls into this category), symmetric
boundary extension can be used. The data are reflected symmetrically along
the boundary, with the boundary points themselves not involved in the reflec-
tion. An example boundary extension with four data points x0, x1, x2 and x3
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Figure 10. Forward and inverse lifting (9-7 bi-orthogonal wavelet).

is shown in Figure 11. Because both the extended data and the lifting struc-
ture are symmetric, all the intermediate and final results of the lifting are also
symmetric with respect to the boundary points. Using this observation, it is
sufficient to double the lifting parameters of the branches that are pointing to-
ward the boundary, as shown in the middle of Figure 11. Thus, the boundary
extension can be performed without additional computational complexity. The
inverse lifting can again be derived by inverting the dataflow, as shown in the
right of Figure 11. Again, the parameters for branches that are pointing toward
the boundary points are doubled.
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4.4. Two-dimensional wavelet transform. To apply a wavelet transform
to an image we need to use a 2D version. In this case it is common to apply
the wavelet transform separately in the horizontal and vertical directions. This
approach is called the separable 2D wavelet transform. It is possible to design
a nonseparable 2D wavelet (see [32], for example), but this generally increases
computational complexity with little additional coding gain. A sample one-
scale separable 2D wavelet transform is shown in Figure 12. The 2D data array
representing the image is first filtered in the horizontal direction, which results in
two subbands: a horizontal low-pass and a horizontal high-pass subband. These
subbands are then passed through a vertical wavelet filter. The image is thus
decomposed into four subbands: LL (low-pass horizontal and vertical filter), LH
(low-pass vertical and high-pass horizontal filter), HL (high-pass vertical and low-
pass horizontal filter) and HH (high-pass horizontal and vertical filter). Since
the wavelet transform is linear, we may switch the order of the horizontal and
vertical filters yet still reach the same effect. By further decomposing subband
LL with another 2D wavelet (and iterating this procedure), we derive a multiscale
dyadic wavelet pyramid. Recall that such a wavelet was illustrated in Figure 4.
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Figure 12. A single scale 2D wavelet transform.

4.5. Line-based lifting. A trick in implementing the 2D wavelet transform is
line-based lifting, which avoids buffering the entire 2D image during the vertical
wavelet lifting operation. The concept can be shown in Figure 13, which is very
similar to Figure 9, except that here each circle represents an entire line (row)
of the image. Instead of performing the lifting stage by stage, as in Figure 9,
line-based lifting computes the vertical low- and high-pass lifting, one line at a
time. The operation can be described as follows:

Step 1: Initialization, phase 1. Three lines of coefficients x0, x1 and x2 are pro-
cessed. Two lines of lifting operations are performed, and intermediate results
x′1 and x′′0 are generated.
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Figure 13. Line-based lifting wavelet (bi-orthogonal 9-7 wavelet).

Step 2: Initialization, phase 2. Two additional lines of coefficients x3 andx4 are
processed. Four lines of lifting operations are performed. The outcomes are
the intermediate results x′3 and x′′4 , and the first line of low and high-pass
coefficients L0 and H0.

Step 3: Repeated processing. During the normal operation, the line based lift-
ing module reads in two lines of coefficients, performs four lines of lifting
operations, and generates one line of low and high-pass coefficients.

Step 4: Flushing. When the bottom of the image is reached, symmetrical bound-
ary extension is performed to correctly generate the final low and high-pass
coefficients.

For the 9-7 bi-orthogonal wavelet, with line-based lifting, only six lines of working
memory are required to perform the 2D lifting operation. By eliminating the
need to buffer the entire image during the vertical wavelet lifting operation, the
cost to implement 2D wavelet transform can be greatly reduced

5. Quantization and Partitioning

After the wavelet transform, all wavelet coefficients are uniformly quantized
according to the rule

wm,n = sign sm,n

⌊ |sm,n|
δ

⌋
,

where sm,n is the transform coefficient, wm,n is the quantization result, δ is the
quantization step size, sign(x) returns the sign of coefficient x, and b c is the
floor function. The effect of quantization is demonstrated in Figure 14.
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Figure 14. Effect of quantization.

The quantization process of JPEG 2000 is very similar to that of a conven-
tional coder such as JPEG. However, the functionality is very different. In a
conventional coder, since the quantization result is losslessly encoded, the quan-
tization process determines the allowable distortion of the transform coefficients.
In JPEG 2000, the quantized coefficients are lossy encoded through an embed-
ded coder, thus additional distortion can be introduced in the entropy coding
steps. Thus, the main functionality of the quantization module is to map the
coefficients from floating representation into integer so that they can be more
efficiently processed by the entropy coding module. The image coding quality is
not determined by the quantization step size δ but by the subsequent bitstream
assembler. The default quantization step size in JPEG 2000 is rather fine, e.g.,
δ = 1

128 .
The quantized coefficients are then partitioned into packets. Each subband is

divided into non-overlapping rectangles of equal size, as described above, this
means three rectangles corresponding to the subbands HL, LH, HH of each
resolution level. The packet partition provides spatial locality as it contains
information needed for decoding image of a certain spatial region at a certain
resolution.

The packets are further divided into non-overlapping rectangular code-blocks,
which are the fundamental entities in the entropy coding operation. By applying
the entropy coder to relatively small code-blocks, the original and working data
of the entire code-blocks can reside in the cache of the CPU during the entropy
coding operation. This greatly improves the encoding and decoding speed. In
JPEG 2000, the default size of a code-block is 64× 64. A sample partition and
code-blocks are shown in Figure 15. We mark the partition with solid thick
lines. The partition contains quantized coefficients at spatial location (128, 128)
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to (255, 255) of the resolution 1 subbands LH, HL and HH. It corresponds to
the resolution 1 enhancement of the image with spatial location (256, 256) to
(511, 511). The partition is further divided into twelve 64 × 64 code-blocks,
which are shown as numbered blocks in Figure 15.

0 1

2 3

8 9

10 11

4 5

6 7

Figure 15. A sample partition and code-blocks.

6. Block Entropy Coding

Following the partitioning, each code-block is then independently encoded
through a subbitplane entropy coder. As shown in Figure 16, the input of the
block entropy coding module is the code-block, which can be represented as a 2D
array of data. The output of the module is a embedded compressed bitstream,
which can be truncated at any point and still be decodable, and a rate-distortion
(R-D) curve (see Figure 16).

It is the responsibility of the block entropy coder to measure both the coding
rate and distortion during the encoding process. The coding rate is derived
directly through the length of the coding bitstream at certain instances, e.g., at
the end of each subbitplane. The coding distortion is obtained by measuring
the distortion between the original coefficient and the reconstructed coefficient
at the same instance.

JPEG 2000 employs a subbitplane entropy coder. In what follows, we examine
three key parts of the coder: the coding order, the context, and the arithmetic
MQ-coder.

6.1. Embedded coding. Assume that each quantized coefficient wm,n is
represented in the binary form as

±b1b2 . . . bn,
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Figure 16. Block entropy coding.

where b1 is the most significant bit (MSB), and bn is the least significant bit
(LSB), and ± represents the sign of the coefficient. It is the job of the entropy
coding module to first convert this array of bits into a single sequence of bi-
nary bits, and then compress this bit sequence with a lossless coder, such as
an arithmetic coder [22]. A bitplane is defined as the group of bits at a given
level of significance. Thus, for each codeblock there is a bitplane consisting of all
MSBs, one of all LSBs, and one for each of the significance levels that occur in
between. By coding the more significant bits of all coefficients first, and coding
the less significant bits later, the resulting compressed bitstream is said to have
the embedding property, reflecting the fact that a bitstream of lower compression
rate can be obtained by simply truncating a higher rate bitstream, so that the
entire output stream has embedded in it bitstreams of lower compression that
still make possible of partial decoding of all coefficients. A sample binary repre-
sentation of the coefficient can be shown in Figure 17. Since representing bits in
a 2D block results in a 3D bit array (the 3rd dimension is bit significance) which
is very difficult to draw, we only show the binary representation of a column of
coefficients as a 2D bit array in Figure 17. However, keep in mind that the true
bit array in a code-block is 3D.

The bits in the bit array are very different, both in their statistical property
and in their contribution to the quality of the decoded code-block. The sign
is obviously different from that of the coefficient bit. The bits at different sig-
nificance level contributes differently to the quality of the decoded code-blocks.
And even within the same bitplane, bits may have different statistical property
and contribution to the quality of decoding. Let bM be a bit in a coefficient x.
If all more significant bits in the same coefficient x are ‘0’s, the coefficient x is
said to be insignificant (because if the bitstream is terminated at this point or
before, coefficient x will be reconstructed to zero), and the current bit bM is to
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Figure 17. Coefficients and binary representation.

be encoded in the mode of significance identification. Otherwise, the coefficient
is said to be significant, and the bit bM is to be encoded in the mode of refine-
ment. Depending on the sign of the coefficient, the coefficient can be positive
significant or negative significant. We distinguish between significance identifi-
cation and refinement bits because the significance identification bit has a very
high probability of being 0, and the refinement bit is usually equally distributed
between 0 and 1. The sign of the coefficient needs to be encoded immediately
after the coefficient turns significant, i.e., a first non-zero bit in the coefficient is
encoded. For the bit array in Figure 17, the significance identification and the
refinement bits are shown with different shades in Figure 18.
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Figure 18. Embedded coding of bit array.
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6.2. Context. It has been pointed out [14; 21] that the statistics of significant
identification bits, refinement bits, and signs can vary tremendously. For exam-
ple, if a quantized coefficientxi,j is of large magnitude, its neighbor coefficients
may be of large magnitude as well. This is because a large coefficient locates an
anomaly (e.g., a sharp edge) in the smooth signal, and such an anomaly usually
causes a cluster of large wavelet coefficients in the neighborhood as well. To
account for such statistical variation, we entropy encode the significant identifi-
cation bits, refinement bits and signs with context, each of which is a number
derived from already coded coefficients in the neighborhood of the current co-
efficient. The bit array that represents the data is thus turned into a sequence
of bit-context pairs, as shown in Figure 19, which is subsequently encoded by a
context adaptive entropy coder. In the bit-context pair, it is the bit information
that is actually encoded. The context associated with the bit is determined from
the already encoded information. It can be derived by the encoder and the de-
coder alike, provided both use the same rule to generate the context. Bits in the
same context are considered to have similar statistical properties, so that the
entropy coder can measure the probability distribution within each context and
efficiently compress the bits.

45 0 0 0

-74 -13 0 0

21 0 4 0

14 0 23 23

0 0 0 0

3 0 4 0

0 3 5 0

0 0 0 0

0 1 -1 0

-4 33 0 -1

0 0 1 0

0 0 0 0

-4 5 0 0

-18 0 0 19

4 0 23 0

-1 0 0 0

Bit: 0  1  1  0  0  0  0  0  0  1  0   0  0  0  0  0  0  0  0  ��

Ctx: 0  0  9  0  0  0  0  0  0  7  10 0  0  0  0  0  0  0  0  ��

Figure 19. Coding bits and contexts. The context is derived from information

from the already coded bits.

In the following, we describe the contexts that are used in the significant
identification, refinement and sign coding of JPEG 2000. For the rational of
the context design, we refer to [2; 19]. Determining the context of significant
identification bit is a two-step process:

Step 1: Neighborhood statistics. For each bit of the coefficient, the number of
significant horizontal, vertical and diagonal neighbors are counted as h,vand
d, as shown in Figure 20.

Step 2: Lookup table. According to the direction of the subband that the co-
efficient is located (LH, HL, HH), the context of the encoding bit is indexed
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LH subband (also LL) HL subband HH subband
(vertically high-pass) (horizontally high-pass) (diagonally high-pass)

h v d context h v d context d h + v context

2 x x 8 x 2 x 8 ≥3 x 8
1 ≥1 x 7 ≥1 1 x 7 2 ≥1 7
1 0 ≥1 6 0 1 ≥1 6 2 0 6
1 0 0 5 0 1 0 5 1 ≥2 5
0 2 x 4 2 0 x 4 1 1 4
0 1 x 3 1 0 x 3 1 0 3
0 0 ≥2 2 0 0 ≥2 2 0 ≥2 2
0 0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0

Table 1. Context for the significance identification coding.

through one of the three tables shown in Table 1. A total of nine context cate-
gories are used for significance identification coding. The table lookup process
reduces the number of contexts and enables probability of the statistics within
each context to be quickly obtained.

v

h

d

CURRENT

Figure 20. Number of significant neighbors: horizontal (h), vertical (v) and

diagonal (d).

To determine the context for sign coding, we calculate a horizontal sign count
hand a vertical sign count v. The sign count takes a value of −1 if both hori-
zontal/vertical coefficients are negative significant; or one coefficient is negative
significant, and the other is insignificant. It takes a value of +1 if both hori-
zontal/vertical coefficients are positive significant; or one coefficient is positive
significant, and the other is insignificant. The value of the sign count is 0 if both
horizontal/vertical coefficients are insignificant; or one coefficient is positive sig-
nificant, and the other is negative significant.

With the horizontal and vertical sign count h and v, an expected sign and a
context for sign coding can then be calculated according to Table 2.

To calculate the context for the refinement bits, we measure if the current
refinement bit is the first bit after significant identification, and if there is any
significant coefficients in the immediate eight neighbors, i.e., h + v + d > 0. The
context for the refinement bit is tabulated in Table 3.
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Sign count
n

H − 1 −1 −1 0 0 0 1 1 1
V − 1 0 1 −1 0 1 −1 0 1

Expected sign − − − − + + + + +
Context 13 12 11 10 9 10 11 12 13

Table 2. Context and the expected sign for sign coding.

Context 14: Current refinement bit is the first bit after significant identifi-
cation and there is no significant coefficient in the eight neighbors.

Context 15: Current refinement bit is the first bit after significant identifica-
tion and there is at least one significant coefficient in the eight neighbors.

Context 16: Current refinement bit is at least two bits away from significant
identification.

Table 3. Context for the refinement bit.

6.3. MQ-coder: context dependent entropy coder. Through the afore-
mentioned process, a data array is turned into a sequence of bit-context pairs, as
shown in Figure 19. All bits associated with the same context are assumed to be
independently and identically distributed. Let the number of contexts be N , and
let there be ni bits in context i, within which the probability of the bits taking
value 1 is pi. Using classic Shannon information theory [15; 16] the entropy of
such a bit-context sequence can be calculated as

H =
N−1∑

i=0

ni

(−p log2 pi − (1− pi) log2(1− pi)
)
. (6–1)

The task of the context entropy coder is thus to convert the sequence of bit-
context pairs into a compact bitstream representation with length as close to the
Shannon limit as possible, as shown in Figure 21. Several coders are available for
such task. The coder used in JPEG 2000 is the MQ-coder. In the following, we
focus the discussion on three key aspects of the MQ-coder: general arithmetic
coding theory, fixed point arithmetic implementation and probability estimation.
For more details, we refer to [22; 23].

MQ-Coder

BITS

CTX
BITSTREAM

Figure 21. Input and output of the MQ-coder.



IMAGE COMPRESSION: THE MATHEMATICS OF JPEG 2000 209

6.3.1. The Elias coder. The basic theory of the MQ-coder can be traced to the
Elias Coder [24], or recursive probability interval subdivision. Let S0S1S2 . . . Sn

be a series of binary bits that is sent to the arithmetic coder. Let Pi be the
probability that the bit Si be 1. We may form a binary representation (the
coding bitstream) of the original bit sequence by the following process:

Step 1: Initialization. Let the initial probability interval be (0, 1). We denote
the current probability interval as (C, C+A), where C is the bottom of the
probability interval, and A is the size of the interval. At the initialization, we
have C = 0 and A = 1.

Step 2: Probability interval subdivision. The binary symbols S0S1S2 . . . Sn are
encoded sequentially. For each symbol Si, the probability interval (C, C+A) is
subdivided into two sub-intervals

(
C, C+A(1−Pi)

)
and

(
C+A(1−Pi), C+A

)
.

Depending on whether the symbol Si is 1, one of the two subintervals is
selected: {

C ← C, A ← A(1− Pi), if Si = 0,
C ← A(1− Pi), A ← APi, if Si = 1.

(6–2)
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Figure 22. Probability interval subdivision.

Step 3: Bitstream output. Let the final coding bitstream be k1k2 . . . km, where m

is the compressed bitstream length. The final bitstream creates an uncertainty
interval where the lower and upper bound can be determined as

Upperbound D = 0.k1k2 · · · km111 . . . ,

Lowerbound B = 0.k1k2 · · · km000 . . . .

As long as the uncertainty interval (B, D) is contained in the probability in-
terval (C,C+A), the coding bitstream uniquely identifies the final probability
interval, and thus uniquely identifies each subdivision in the Elias coding pro-
cess. The entire binary symbol strings S0S1S2 . . . Sn can thus be recovered
from the compressed representation. It can be shown that it is possible to
find a final coding bitstream with length

m ≤ d− log2 Ae+ 1
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to represent the final probability interval (C, C+A). Notice that A is the
probability of the occurrence of the binary strings S0S1S2 . . . Sn, and the
entropy of the original symbol stream can be calculated as

H =
∑

S0S1···Sn

−A log2 A.

The arithmetic coder thus encodes the binary string within 2 bits of its entropy
limit, no matter how long the symbol string is. This is very efficient.

6.3.2. The arithmetic coder: finite precision arithmetic operations. Exact im-
plementation of Elias coding requires infinite precision arithmetic, an unrealistic
assumption in real applications. Using finite precision, the arithmetic coder is
developed from Elias coding. Observing the fact that the coding interval A be-
comes very small after a few operations, we may normalize the coding interval
parameter C and A as

C = 1.5 · [0.k1k2 · · · kL] + 2−L · 1.5 · Cx, A = 2−L · 1.5 ·Ax,

where L is a normalization factor determining the magnitude of the interval A,
while Ax and Cx are fixed-point integers representing values between (0.75, 1.5)
and (0, 1.5), respectively. Bits k1k2. . . km are the output bits that have already
been determined (in reality, certain carryover operations have to be handled
to derive the true output bitstream). By representing the probability interval
with the normalization L and fixed-point integers Ax and Cx, it is possible
to use fixed-point arithmetic and normalization operations for the probability
interval subdivision operation. Moreover, since the value of Ax is close to 1.0,
we may approximate Ax · Pi with Pi, the interval sub-division operation (6–2)
calculated as

Cx = Cx,

Cx = C + Ax − Pi,

Ax = Ax − Pi,

Ax = Pi,

if Si = 0,

if Si = 1,

which can be done quickly without any multiplication. The compression perfor-
mance suffers a little, as the coding interval now has to be approximated with a
fixed-point integer, and Ax · Pi is approximated with Pi. However, experiments
show that the degradation in compression performance is less than three percent,
which is well worth the saving in implementation complexity.

6.3.3. Probability estimation. In the arithmetic coder it is necessary to estimate
the probability Pi for each binary symbol Si to take the value 1. This is where
context comes into play. Within each context, it is assumed that the symbols
are independently identically distributed. We may then estimate the probability
of the symbol within each context through observation of the past behaviors of
symbols in the same context. For example, if we observe ni symbols in context
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i, with oi symbols to be 1, we may estimate the probability that a symbol takes
on the value 1 in context i through Bayesian estimation as

Pi =
oi + 1
ni + 2

.

In the MQ-coder [22], probability estimation is implemented through a state-
transition machine. It may estimate the probability of the context more effi-
ciently, and may take into consideration the non-stationary characteristic of the
symbol string. Nevertheless, the principle is still to estimate the probability
based on past behavior of the symbols in the same context.

6.4. Coding order: subbitplane entropy coder. In JPEG 2000, because
the embedded bitstream of a code-block may be truncated, the coding order,
which is the order that the data array is turned into bit-context pair sequence,
is of paramount importance. A sub-optimal coding order may allow important
information to be lost after the coding bitstream is truncated, and lead to severe
coding distortion. It turns out that the optimal coding order first encodes those
bits with the steepest rate-distortion slope, which is defined as the coding dis-
tortion decrease per bit spent [21]. Just as the statistical properties of the bits
are different in the bit array, their contribution of the coding distortion decrease
per bit is also different.

Consider a bit bi in the i-th most significant bitplane, where there are a total
of n bitplanes. If the bit is a refinement bit, then previous to the coding of
the bit, the uncertainty interval of the coefficient is (A,A+2n−i). After the
refinement bit has been encoded, the coefficient lies either in (A, A+2n−i−1) or
in (A+2n−i, A+2n−i−1). If we further assume that the value of the coefficient is
uniformly distributed in the uncertainty interval, we may calculate the expected
distortion before and after the coding as

Dpre,REF =
∫ A+2n−i

A

(x−A− 2n−i−1)2 dx = 1
12 4n−i,

Dpost,REF = 1
12 4n−i−1.

Since the value of the coefficient is uniformly distributed in the uncertainty
interval, the probability for the refinement bit to take the values 0 and 1 is equal,
thus, the coding rate of the refinement bit is:

RREF = H(bi) = 1 bit. (6–3)

The rate-distortion slope of the refinement bit at the i-th most significant
bitplane is thus:

sREF(i) =
Dprev,REF −Dpost,REF

RREF
=

1
12 4n−i − 1

12 4n−i−1

1
= 4n−i−2 (6–4)

In the same way, we may calculate the expected distortion decrease and coding
rate for a significant identification bit at the i-th most significant bitplane. Before
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the coding of the bit, the uncertainty interval of the coefficient ranges from −2n−i

to 2n−i. After the bit has been encoded, if the coefficient becomes significant,
it lies in (−2n−i, −2n−i−1) or (+2n−i−1, +2n−i) depending on the sign of the
coefficient. If the coefficient is still insignificant, it lies in (−2n−i−1, 2n−i−1). We
note that if the coefficient is still insignificant, the reconstructed coefficient before
and after coding both will be 0, which leads to no distortion decrease (coding
improvement). The coding distortion only decreases if the coefficient becomes
significant. Assuming the probability that the coefficient becomes significant is
p, and the coefficient is uniformly distributed within the significance interval
(−2n−i, −2n−i−1) or (+2n−i−1, +2n−i), we may calculate the expected coding
distortion decrease as

Dprev,SIG −Dpost,SIG = p
9
4

4n−i (6–5)

The entropy of the significant identification bit can be calculated as

RSIG = −(1− p) log2(1− p)− p log2 p + p · 1 = p + H(p),

where H(p) = −(1− p) log2(1− p)− p log2 p is the entropy of the binary symbol
with the probability of 1 being p. In (6–5), we account for the one bit which is
needed to encode the sign of the coefficient if it becomes significant.

We may then derive the expected rate-distortion slope for the significance
identification bit coding as

sSIG(i) =
Dprev,SIG −Dpost,SIG

RSIG
=

9
1 + H(p)/p

4n−i−2

From this and (6–4), we arrive at the following conclusions:

Conclusion 1. The more significant bitplane that the bit is located, the earlier
it should be encoded.

A key observation is, within the same coding category (significance identifi-
cation/refinement), one more significance bitplane translates into 4 times more
contribution in distortion decrease per coding bit spent. Therefore, the code-
block should be encoded bitplane by bitplane.

Conclusion 2. Within the same bitplane, we should first encode the significance
identification bit with a higher probability of significance.

It can be shown that the function H(p)/p increases monotonically as the
probability of significance decreases. As a result, the higher probability of sig-
nificance, the higher contribution of distortion decrease per coding bit spent.

Conclusion 3. Within the same bitplane, the significance identification bit
should be encoded earlier than the refinement bit if the probability of significance
is higher than 0.01.
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It is observed that the insignificant coefficients with no significant coefficients
in its neighborhood usually have a probability of significance below 0.01, while
insignificant coefficients with at least one significant neighbor usually have a
higher probability of significance.

As a result of these three conlusions, the entropy coder in JPEG 2000 en-
codes the code-block bitplane by bitplane, from the most significant bitplane to
the least significant bitplane; and within each bitplane, the bit array is further
ordered into three subbitplanes: the predicted significance (PS), the refinement
(REF) and the predicted insignificance (PN).

Using the data array in Figure 23 as an example, we illustrate the block coding
order of JPEG 2000 with a series of sub-figures in Figure 23. Each sub-figure
shows the coding of one subbitplane. The block coding order of JPEG 2000 is
as follows:

Step 1: The most significant bitplane, the PN subbitplane of b1. (See Fig-
ure 23(a).)

First, the most significant bitplane is examined and encoded. Since at first,
all coefficients are insignificant, all bits in the MSB bitplane belong to the PN
subbitplane. Whenever a 1 bit is encountered (rendering the corresponding
coefficient non-zero) the sign of the coefficient is encoded immediately after-
wards. With the information of those bits that have already been coded and
the signs of the significant coefficients, we may figure out an uncertain range
for each coefficient. The reconstruction value of the coefficient can also be
set, e.g., at the middle of the uncertainty range. The outcome of our sam-
ple bit array after the coding of the most significant bitplane is shown in
Figure 23(a). We show the uncertainty range and the reconstruction value
of each coefficient under columns “value” and “range” in the sub-figure, re-
spectively. As the coding proceeds, the uncertainty range shrinks, and brings
better and better representation to each coefficient.

Step 2: The PS subbitplane of b2. (See Figure 23(b).)
After all bits in the most significant bitplane have been encoded, the coding

proceeds to the PS subbitplane of the second most significant bitplane (b2).
The PS subbitplane consists of bits of the coefficients that are not significant,
but has at least one significant neighbor. The corresponding subbitplane cod-
ing is shown in Figure 23(b). In this example, coefficients w0 and w2 are the
neighbors of the significant coefficient w1, and they are encoded in this pass.
Again, if a 1 bit is encountered, the coefficient becomes significant, and its
sign is encoded right after. The uncertain ranges and reconstruction value of
the coded coefficients are updated according to the newly coded information.

Step 3: The REF subbitplane of b2. (See Figure 23(c).)
The coding then moves to the REF subbitplane, which consists of the

bits of the coefficients that are already significant in the past bitplane. The
significance status of the coefficients is not changed in this pass, and no sign



214 JIN LI

of coefficients is encoded.
Step 4: The PN subbitplane of b2. (See Figure 23(d).)

Finally, the rest of the bits in the bitplane are encoded in the PN subbit-
plane pass, which consists of the bits of the coefficients that are not significant
and have no significant neighbors. Sign is again encoded once a coefficient
turns into significant.

Steps 2, 3, and 4 are repeated for the following bitplanes, with the subbitplane
coding ordered being PS, REF and PN for each bitplane. The block entropy
coding continues until certain criteria, e.g., the desired coding rate or coding
quality has been reached, or all bits in the bit array have been encoded. The
output bitstream has the embedding property. If the bitstream is truncated, the
more significant bits of the coefficients can still be decoded. An estimate of each
coefficient is thus obtained, albeit with a relatively large uncertain range.
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Figure 23. Order of coding: (a) Bitplane b1, subbitplane PN, then bitplane b2,

subbitplanes (b) PS, (c) REF and (d) PN.

7. The Bitstream Assembler

The embedded bitstream of the code-blocks are assembled by the bitstream
assembler module to form the compressed bitstream of the image. As described
in section 6, the block entropy coder not only produces an embedded bitstream
for each code-block i, but also records the coding rate Rk

i and distortion Dk
i
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at the end of each subbitplane, where k is the index of the subbitplane. The
bitstream assembler module determines how much bitstream of each code-block
is put to the final compressed bitstream. It determines a truncation point ni for
each code-block so that the distortion of the entire image is minimized upon a
rate constraint:

min
∑

i

Dnii, with
∑

i

Rnii ≤ B. (7–1)

Since there are a discrete number of truncation points ni, the constraint min-
imization problem of equation (7–1) can be solved by distributing bits first to
the code-blocks with the steepest distortion per rate spent. The process of bit
allocation and assembling can be performed as follows:

Step 1: Initialization. We initialize all truncation points to zero: ni = 0.
Step 2: Incremental bit allocation. For each code block i, the maximum possible

gain of distortion decrease per rate spent is calculated as

Si = max
k>ni

Dni
i −Dk

i

Rk
i −Rni

i

.

We call Si the rate-distortion slope of the code-block i. The code-block
with the steepest rate-distortion slope is selected, and its truncation point is
updated as

nnew
i = argk>ni

(
Dnii−Dki

Rk
i −Rnii

= Si

)
.

A total of R
nnew

i
i − Rni

i bits are sent to the output bitstream. This leads to
a distortion decrease of Dni

i −D
nnew

i
i . It can be easily proved that this is the

maximum distortion decrease achievable for spending R
nnew

i
i −Rni

i bits.
Step 3: Repeat Step 2 until the required coding rate B is reached.

The above optimization procedure does not take into account the last seg-
ment problem, i.e., when the coding bits available is smaller than R

nnew
i

i −Rni
i

bits. However, in practice, usually the last segment is very small (within 100
bytes), so that the residual sub-optimally is not a big concern.

Following exactly the optimization procedure above is computationally complex.
The process can be speeded up by first calculating a convex hull of the R-D slope
of each code-block i, as follows:

Step 1: Set S to the set of all truncation points.
Step 2: Set p to the first truncation point in S.
Step 3: Do until p is the last truncation point in S:

(i) Set k to the next truncation point after p in S.

(ii) Set Sk
i =

Dp
i −Dk

i

Rk
i −Rp

i

.
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(iii) If p is not the first truncation point in S and Sk
i ≥ Sp

i , remove p from S

and move p back one truncation point in S; otherwise, set p = k.

(iv) [End of current iteration. Restart at step 3(i), unless p is the last trun-
cation point in S.]

Once the R-D convex hull is calculated, the optimal R-D optimization becomes
simply the search of a global R-D slope λ, where the truncation point of each
code-block is determined by:

ni = arg max
k

(
Sk

i > λ
)

Putting the truncated bitstream of all code-blocks together, we obtain a com-
pressed bitstream associated with each R-D slope λ. To reach a desired coding
bitrate B, we just search the minimum λ whose associated bitstream satisfies
the rate inequality (7–1). The R-D optimization procedure can be illustrated in
Figure 24.
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Figure 24. Bitstream assembler: for each R-D slope λ, a truncation point can

be found at each code-block. The slope λ should be the minimum slope that

the allocated rate for all code-blocks is smaller than the required coding rate B.

To form a compressed image bitstream with progressive quality improvement
property, so that we may gradually improve the quality of the received im-
age as more and more bitstream arrives, we may design a series of rate points,
B(1), B(2), . . . , B(n). A sample rate point set is 0.0625, 0.125, 0.25, 0.5, 1.0 and
2.0 bpp (bit per pixel). For an image of size 512 × 512, this corresponds to a
compressed bitstream size of 2k, 4k, 8k, 16k, 32k and 64k bytes. First, the global
R-D slope λ(1) for rate point B(1) is calculated. The first set of truncation point
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of each code-block n
(1)
i is thus derived. These bitstream segments of the code-

blocks of one resolution level at one spatial location is grouped into a packet. All
packets that consist of the first segment bitstream form the first layer that rep-
resents the first quality increment of the entire image at full resolution. Then,
we may calculate the second global R-D slope λ(2) corresponding to the rate
point B(2). The second truncation point of each code-block n

(2)
i can be derived,

and the bitstream segment between the first n
(1)
i and the second n

(2)
i truncation

points constitutes the second bitstream segment of the code-blocks. We again
assemble the bitstream of the code-blocks into packets. All packets that consist
of the second segment bitstreams of the code-blocks form the second layer of the
compressed image. The process is repeated until all n layers of bitstream are
formed. The resultant JPEG 2000 compressed bitstream is thus generated and
can be illustrated with Figure 25.
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Figure 25. JPEG 2000 bitstream syntax. SOC = start of image (codestream)

marker; SOT = start of tile marker; SOS = start of scan marker; EOI = end of

image marker.

8. The Performance of JPEG 2000

Finally, we briefly demonstrate the compression performance of JPEG 2000.
We compare JPEG 2000 with the traditional JPEG standard. The test image
is the “Bike” standard image (gray, 2048 × 2560), shown in Figure 26. Three
modes of JPEG 2000 are tested, and are compared against two modes of JPEG.
The JPEG modes are progressive (P-DCT) and sequential (S-DCT) both with
optimized Huffman tables [4]. The JPEG 2000 modes are single layer with the
bi-orthogonal 9-7 wavelet (S-9,7), six layer progressive with the bi-orthogonal 9-7
wavelet (P6-9,7), and 7 layer progressive with the (3,5) wavelet (P7-3,5). The
JPEG 2000 progressive modes have been optimized for 0.0625, 0.125, 0.25, 0.5,
1.0, 2.0 bpp and lossless for the 5× 3 wavelet. The JPEG progressive mode uses
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a combination of spectral refinement and successive approximation. We show
the performance comparison in Figure 27.

Figure 26. Original “Bike” test image.

JPEG 2000 results are significantly better than JPEG results for all modes
and all bit-rates on this image. Typically JPEG 2000 provides only a few dB
improvement from 0.5 to 1.0 bpp but substantial improvement below 0.25 bpp
and above 1.5 bpp. Also, JPEG 2000 achieves scalability at almost no additional
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Figure 27. Performance comparison: JPEG 2000 versus JPEG. From [1], cour-

tesy of the authors, Marcellin et al.

cost. The progressive performance is almost as good as the single layer JPEG
2000 without the progressive capability. The slight difference is due solely to
the increased signaling cost for the additional layers (which changes the packet
headers). It is possible to provide “generic rate scalability” by using upwards of
fifty layers. In this case the “scallops” in the progressive curve disappear, but
the overhead may be slightly increased.
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