
Chapter 6

Image Compression

JORGE REBAZA

One of the central issues in information technology is the representation of data
by arrays of bits in the most efficient way possible, a never-ending quest for im-
provement in the representation of bits that are smaller, faster and cheaper. This
is exactly the role of data compression: to convert strings of bits into shorter
ones for more economical transmission, storage and processing. Abundant appli-
cations require such compression process: medical imaging, publishing, graphic
arts, digital photography, wire photo transmission, etc.

For the past few years, the Joint Photographic Experts Group (JPEG) has been
working to keep an international compression standard for both, grayscale and
color images. No surprise that a strong mathematical research in this direction
has been going on since then, and it is important to remark that when JPEG
conducted a first selection process in 1988, they reported that a proposal based
on the Discrete Cosine Transform had produced the best picture quality. As a
matter of fact, JPEG is a format for image compression based on the discrete
cosine transform, which is used to reduce the file size of an image as much as
possible without affecting the quality of the image as experienced by the human
sensory system.

In this chapter we present an elegant application of mathematical tools and
concepts (in particular from linear algebra and numerical analysis) to the prob-
lem of image compression, and illustrate how certain theoretical mathematical
results can be effectively used in applications that include the response of our
vision system to changes in the image representation.

285

286 CHAPTER 6. IMAGE COMPRESSION

6.1 Compressing with Discrete Cosine Transform

We will study two main techniques for compressing images. First we introduce
a technique that is currently used for compressing most images available on the
Internet and that uses a square orthogonal matrix of order eight to perform the
corresponding transformation of coordinates (from space to frequency). Later
on, and for completion, we study image compression as an application of the
SVD factorization of a matrix A. Thus, orthogonality is present in both ap-
proaches.

We are interested in the two-dimensional discrete cosine transform, but we start
with its one-dimensional version.

6.1.1 1-d Discrete cosine transform

Through the discrete cosine transform we can combine and apply concepts such
as orthogonality, interpolation, least squares, as well as linear combination of
basis functions in vector spaces. This transform is a very special mathematical
tool that will allow us to separate and order an image into parts of differing
importance, with respect to the image visual quality. We start with the one-
dimensional case.

Definition 6.1 Define the following n × n orthogonal matrix

C =

√

2

n





















1√
2

1√
2

· · · 1√
2

cos π
2n

cos 3π
2n

· · · cos (2n−1)π
2n

cos 2π
2n

cos 6π
2n

· · · cos 2(2n−1)π
2n

...
... · · · ...

cos (n−1)π
2n

cos (n−1)3π

2n
· · · cos (n−1)(2n−1)π

2n





















. (6.1)

Given a vector x = [x0 · · · xn−1]
T , the discrete cosine transform (DCT) of x is

the vector y = [y0 · · · yn−1]
T given by

y = Cx. (6.2)

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 287

Example 6.1.1 For n=8, the matrix C in (6.1) is

























0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.4904 0.4157 0.2778 0.0975 −0.0975 −0.2778 −0.4157 −0.4904
0.4619 0.1913 −0.1913 −0.4619 −0.4619 −0.1913 0.1913 0.4619
0.4157 −0.0975 −0.4904 −0.2778 0.2778 0.4904 0.0975 −0.4157
0.3536 −0.3536 −0.3536 0.3536 0.3536 −0.3536 −0.3536 0.3536
0.2778 −0.4904 0.0975 0.4157 −0.4157 −0.0975 0.4904 −0.2778
0.1913 −0.4619 0.4619 −0.1913 −0.1913 0.4619 −0.4619 0.1913
0.0975 −0.2778 0.4157 −0.4904 0.4904 −0.4157 0.2778 −0.0975

























(6.3)

We can readily verify that this matrix (up to rounding) is in fact orthogonal,
that is, CT C = I. Now define the vector

x = [1 2 − 2 0 1 4 0 − 1]T

Then, the DCT of x is y = Cx, where

y = [1.7678 0.0480 −0.4619 3.8565 −1.0607 −1.4262 −0.1913 −2.3645]T .

Note: Observe the sign pattern in the rows or columns of the matrix C in (6.3).

To appreciate how the DCT will allow us to compress data, we introduce a
theorem that through interpolation of an input vector x, it explicitly arranges
the elements of its DCT y = Cx in order of importance, as coefficients of a
linear combination of (basis) cosine functions.

Theorem 6.2 (DCT Interpolation Theorem) Let C be the matrix in (6.1),
and let x = [x0 · · · xn−1]

T . If y = [y0 · · · yn−1]
T is the DCT of x (y = Cx),

then the function

Pn(t) =
1√
n

y0 +

√

2

n

n−1
∑

k=1

yk cos
k(2t + 1)π

2n
(6.4)

satisfies

Pn(i) = xi, for i = 0, . . . , n − 1.

That is, Pn(t) interpolates the data (0, x0), (1, x1), . . . , (n − 1, xn−1), i.e. Pn(t)
passes through the n points (i, xi).

288 CHAPTER 6. IMAGE COMPRESSION

Proof. From (6.4) we have

Pn(0) = 1√
n
y0 +

√

2
n

n−1
∑

k=1

yk cos kπ
2n

Pn(1) = 1√
n
y0 +

√

2
n

n−1
∑

k=1

yk cos 3kπ
2n

...
...

Pn(n − 1) = 1√
n
y0 +

√

2
n

n−1
∑

k=1

yk cos k(2n−1)π
2n

.

Using orthogonality, y = Cx implies x = CTy. Then, the equations above can
be written as







Pn(0)
...

Pn(n − 1)






= CT







y0
...

yn−1






= CT y = x =







x0
...

xn−1






.

�

Remark 6.3 In terms of linear algebra, the DCT interpolation statement in
(6.4) is nothing else but expressing Pn(t) as a unique linear combination of n
cosine basis functions of increasing frequencies (the first term 1√

n
y0 corresponds

to cosine of zero frequency), weighted by appropriate coefficients. For n = 8,
in Figure 6.1 we plot the cosine basis functions in (6.4) and the corresponding
eight-point basis (denoted with ‘×’) from the rows of the matrix C in Example
6.1.1.

Before we present an example of a one-dimensional DCT interpolation, let us
stress the fact that in the proof of Theorem 6.2 we have exploited the fact that
the matrix C is orthogonal and therefore CTC = I. Thus, from (6.2), we can
take CT y = CTCx = x. That is, we can recover x as

x = CTy, (6.5)

which is known as the (one-dimensional) inverse discrete cosine transform of y.

Now for a moment let us take n = 3. Then, (6.5) is





x0

x1

x2



 =

√

2

3







1√
2

cos π
6 cos 2π

6
1√
2

cos 3π
6 cos 6π

6
1√
2

cos 5π
6 cos 10π

6











y0

y1

y2



 ,

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 289

0 2 4 6 8
−0.5

0

0.5
k = 0

0 2 4 6 8
−0.5

0

0.5
k = 1

0 2 4 6 8
−0.5

0

0.5
k = 2

0 2 4 6 8
−0.5

0

0.5
k = 3

0 2 4 6 8
−0.5

0

0.5
k = 4

0 2 4 6 8
−0.5

0

0.5
k = 5

0 2 4 6 8
−0.5

0

0.5
k = 6

0 2 4 6 8
−0.5

0

0.5
k = 7

Figure 6.1: Cosine basis functions for n = 8

thus, componentwise we have

x0 = 1√
3

y0 +
√

2
3

[

y1 cos π
6 + y2 cos 2π

6

]

,

x1 = 1√
3

y0 +
√

2
3

[

y1 cos 3π
6 + y2 cos 6π

6

]

,

x2 = 1√
3

y0 +
√

2
3

[

y1 cos 5π
6 + y2 cos 10π

6

]

.

(6.6)

These equations (6.6) are nothing else but (6.4) with the interpolation property
Pn(j) = xj, for j = 0, . . . , n − 1. This illustrates a general fact about the
connection between the DCT interpolation (6.4) and the inverse DCT given by
(6.5).

Example 6.1.2 Interpolate the points

(0, 2), (1, 0), (2,−1), (3, 0), (4, 0.25), (5,−1.5), (6,−2)

using the DCT.

In this case we use the DCT matrix (6.1) with n=7, and then for the vector
x = [2 0 − 1 0 0.25 − 1.5 − 2]T we compute (after rounding)

y = Cx = [−0.8504 2.4214 0.0715 1.9751 0.8116 − 0.3764 0.1387]T .

290 CHAPTER 6. IMAGE COMPRESSION

Then, from Theorem 6.2, the function interpolating the seven data points is

P7(t) = 1√
7
(−0.8504) +

√

2
7

[

2.4214 cos (2t+1)π
14 + 0.0715 cos 2(2t+1)π

14

+ 1.9751 cos 3(2t+1)π
14 + 0.8116 cos 4(2t+1)π

14 − 0.3764 cos 5(2t+1)π
14

+ 0.1387 cos 6(2t+1)π
14] .

The interpolant P7(t), which is a combination of the seven cosine basis functions
is shown in Figure 6.2 as a solid curve, where the data points are represented
by stars.

There are a couple of remarks to point out about the interpolation via DCT.
Firstly, the frequencies of the cosine functions in (6.4) are in increasing order,
and the coefficients yk act as weights of these cosine functions. As it will turn
out, the terms with the highest frequencies (the last terms in the expansion) will
be the least important in terms of accuracy of interpolation, so that they can be
safely dropped without substantially altering the final interpolation, resulting
in a saving of terms (and storage).

Secondly, when using the interpolating polynomial Pn(t) in (6.4), the coefficients
yk of the interpolation are easily computed through a matrix-vector multiplica-
tion y = Cx. Finding such coefficients is precisely the difficult part when finding
other interpolating functions (such as Lagrange polynomials, splines, etc.). In
addition, the basis functions are just cosines of increasing frequency. This makes
DCT interpolation very simple and inexpensive to compute.

Finally, a more remarkable fact about DCT interpolation is that we can drop
some of the last terms in the polynomial Pn(t), and the error involved will
be minimum in the sense of least squares. This is exactly our first step into
compression.

Theorem 6.4 DCT Least Squares Approximation. Let C be the matrix
in (6.1). For x = [x0 · · · xn−1]

T , let y be its DCT, that is, y = [y0 · · · yn−1]
T

with y = Cx, and let m be an integer with 1 ≤ m < n. Then, choosing the first
m coefficients y0, . . . , ym−1 to form

Pm(t) =
1√
n

y0 +

√

2

n

m−1
∑

k=1

yk cos
k(2t + 1)π

2n
(6.7)

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 291

minimizes the error
n−1
∑

i=0
(Pm(i) − xi)

2, when approximating the n data points.

Proof. We are trying to find coefficients y0, . . . , ym−1 so that the error in
matching the equations

Pm(i) =
1√
n

y0 +

√

2

n

m−1
∑

k=1

yk cos
k(2i + 1)π

2n
= xi

is minimum. Following the notation in the proof of Theorem 6.2, the last equal-
ity above can be written as

CT
my = x,

where Cm is the matrix formed with the first m rows of C. This means that
the columns of CT

m are orthonormal and therefore I = (CT
m)T CT

m = CmCT
m. The

equation CT
my = x is an overdetermined linear system and therefore we can find

its least squares solution by using the corresponding normal equations. This
gives

CmCT
my = Cmx, or y = Cmx.

Thus, the minimum least square error is obtained by choosing the first m coef-
ficients y0, . . . , ym−1.

�

Example 6.1.3 Consider the data vector x from Example 6.1.2. We perform
DCT least squares approximation by dropping the last two terms of P7(t) to
obtain

P5(t) = 1√
7

(−0.8504) +
√

2
7

[

2.4214 cos (2t+1)π
14 + 0.0715 cos 2(2t+1)π

14

+1.9751 cos 3(2t+1)π
14 + 0.8116 cos 4(2t+1)π

14] .

According to Theorem 6.4, this new function P5(t) (although not an interpolant
anymore) approximates the data points with a minimum error in the sense of
least squares. Figure 6.2 shows P5(t) as a dashed curve.

Thus, the DCT gives not just a more general application of least squares to
problems such as the one studied in linear regression, but more importantly, it
provides with an approximation with terms arranged in a very special fashion.

292 CHAPTER 6. IMAGE COMPRESSION

0 1 2 3 4 5 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

DCT Interpolation
DCT Least Squares

Figure 6.2: Interpolation and least squares using DCT

Remark 6.5 Dropping terms in such a way for another class of interpolating
functions such as Lagrange polynomials or splines would completely alter the
interpolant, resulting in a function that is very far from being an approximation
of the data points. However, we are able to do this with a DCT interpolating
function because the terms are already arranged in order of importance.

Since we are interested in image compression, we need to move to a 2-dimensional
framework. But the above introduction to the one-dimensional DCT has given
us a clear overall idea involved in the process of compressing. Now we just need
to extend everything to two dimensions.

6.1.2 The 2-D discrete cosine transform

We start with the definition of the 2-dimensional version of the DCT, which
is simply speaking the 1-d DCT applied twice. Given an input matrix X, the
DCT is applied to the rows of X, and then the DCT is applied again to the
rows of the resulting matrix. That is, we perform the matrix multiplications
C(CXT)T = C X CT . More formally, we have the following

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 293

Definition 6.6 Let C be the n × n matrix defined in (6.1), and let X be an
arbitrary n × n real matrix. Then, the 2-d DCT of X is defined as

Y = C X CT . (6.8)

Remark 6.7 Recall that the DCT matrix C is orthogonal and square, which im-
plies that C−1 = CT . Thus, the expression in (6.8) is a statement of similarity
of matrices (see (2.63)), or more properly, a change of coordinates.

One of the goals in image processing is to be able to recover the original image
stored in an input matrix X. Here is where again the concept of orthogonality
plays a crucial role. Observe that we can first multiply (6.8) by CT from the
left and then multiply by C from the right to obtain CT Y C = CTC X CTC =
I X I = X. That is, we have

X = CT Y C. (6.9)

The matrix X is then what is known as the 2-d Inverse Discrete Cosine Transform
(IDCT) of the n × n matrix Y .

In a similar way as we did in Section 6.1.1, here we illustrate how the math-
ematical concept of interpolation is related to the IDCT in (6.9), and both in
turn related to the technique of compressing images.

In a general one-dimensional interpolation problem, a function is found so that
its graph is a curve that passes through a given set of points (ti, xi), i =
0, . . . , n−1 in R

2. For the case of 1-dimensional interpolation with DCT studied
above, those points were (i, xi), i = 0, . . . , n − 1. The two-dimensional case is
similar, but now given a set of points (ti, tj , xij), i = 1, . . . , n in R

3, we want to
find a function whose graph is a surface that passes through the given points.
See Figure 6.3. For the particular case of 2-dimensional interpolation with DCT
those points are (i, j, xij), with i, j = 0, . . . , n − 1.

Theorem 6.8 (2-d DCT Interpolation) Let C be the matrix in (6.1), and
let X be any real n×n real matrix. If Y is the 2-d DCT of X, then the function

Pn(s, t) =
2√
n

n−1
∑

k=0

n−1
∑

l=1

yklakal cos
k(2s + 1)π

2n
cos

l(2t + 1)π

2n
(6.10)

294 CHAPTER 6. IMAGE COMPRESSION

i

j

i

x i j

x i

Figure 6.3: 1-D and 2-D interpolation

satisfies Pn(i, j) = xij , for i, j = 0, . . . , n − 1, where

ak =







1/
√

2, k = 0

1, k > 0.

In other words, the function Pn(s, t) interpolates the input data (i, j, xij), for
i, j = 0, 1, . . . , n − 1.

Example 6.1.4 Consider the input data matrix

X =

















1.0 0.8 1.0 1.0 0.8 1.0
1.0 0.5 0.3 0.0 0.5 1.0
1.0 0.3 0.2 0.0 0.3 1.0
1.0 0.2 0.0 0.0 0.2 1.0
1.0 0.3 0.2 0.0 0.3 1.0
1.0 0.8 1.0 1.0 0.8 1.0

















.

We want to perform 2-dimensional interpolation of this data by using the DCT
through Theorem 6.8. We can consider each entry xij of the matrix X as an
assigned value at each grid point (i, j), like in Figure 6.3. First, we compute the
DCT of X, Y = C X CT :

Y =

















3.7500 0.0427 1.4901 −0.1167 0.6010 0.1594
0.1077 0.0106 −0.0354 −0.0289 −0.0911 0.0394
1.2247 −0.0149 −0.9500 0.0408 −0.0866 −0.0558

−0.1500 −0.0183 0.0612 0.0500 0.1061 −0.0683
0.4950 −0.0345 −0.4619 0.0943 0.1000 −0.1288
0.0077 0.0106 −0.0354 −0.0289 0.0503 0.0394

















.

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 295

0

20

40

60

0

20

40

60
−0.5

0

0.5

1

1.5

Figure 6.4: 2-D DCT interpolation of Example 6.1.4

Then, we compute the function P (s, t) as in (6.10):

P6 =
2

6

[

1

2
(3.75) +

1√
2
(0.0427) cos

(2t + 1)π

12
+

1√
2
(1.4901) cos

2(2t + 1)π

12
+

· · · + 1√
2
(0.0503) cos

5(2s + 1)π

16
cos

4(2t + 1)π

16

+
1√
2
(0.0394) cos

5(2s + 1)π

16
cos

5(2t + 1)π

16
] .

This function, which passes through all the points (i, j, xij), is plotted in Figure
6.4

There are several important facts that need to be explained from Theorem 6.8,
and in particular from (6.10). We start by realizing that what we observed
in Section 6.1.1 for the one dimensional case also applies here. Namely, by
recalling the definition of the DCT matrix C in (6.1) and by performing the
matrix multiplication X = CT Y C in (6.8) componentwise, we can easily deduce
that this gives exactly (6.10) with the property Pn(i, j) = xij, establishing the
connection between the IDCT and the Interpolation Theorem 6.8. Once again,

296 CHAPTER 6. IMAGE COMPRESSION

we remark the fact that the coefficients ykl of the interpolation in (6.10) are easily
obtained through matrix multiplication Y = C X CT , that is, by computing the
DCT of the input matrix X.

By Remark 6.7, applying the DCT to an input matrix X amounts to a similarity
transformation, or in other words, the DCT can be understood as a change of
coordinates. In fact, in the applications language (say, image processing), the
DCT is understood as a technique to convert a spatial domain waveform into its
constituent frequency components (represented by a set of coefficients). Thus,
the DCT is a change from spatial to frequency coordinates. It is exactly in the
frequency framework where compression can take place, as we will see in the
next section.

2-d DCT Least Squares Approximation. With the obvious modifications,
Theorem 6.4 still applies here. Namely, we can zero some coefficients corre-
sponding to large frequencies (some of the last few terms in (6.10)) and the
error involved will be minimum in the sense of least squares. As in the 1-d case,
the function obtained is not an interpolant anymore but it approximates the
data points in an optimal way.

Since we are walking our way towards image compression, we are interested
in dropping terms with high frequency. Now, given two distinct terms like
cos(4t) cos(5t) and cos(t) cos(6t), which one has higher frequency, and therefore
should be dropped? We can use the convention that the frequency of the term is
given by the sum of the individual frequencies. Thus, e.g. cos(4t) cos(5t) has a
“total” frequency that is higher than that of cos(t) cos(6t). Then, following the
index notation in (6.10), that is, considering the matrix Y as having elements
ykl, with k, l = 0, 1, . . . n − 1, we want to zero e.g. those elements for which
k + l > m, for a given m < n.

Example 6.1.5 Consider the input data xij from Example 6.1.4, where n = 6.
Out of a total of 36 terms in the interpolation function P6(s, t), first, we zero
a total of 21 by requiring that we keep only those terms for which k + l ≤ 4,
and then we are less demanding and impose k + l ≤ 6 which still eliminates
10 terms. Both least squares approximations are shown in Figure 6.5 Compare
those approximations with the original interpolation of Figure 6.4.

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 297

0

20

40

60

0

20

40

60
−0.5

0

0.5

1

1.5

k + l ≤ 4

0

20

40

60

0

20

40

60
−0.5

0

0.5

1

1.5

k + l ≤ 6

Figure 6.5: 2-d DCT least squares approximation

6.1.3 Image compression and the human visual system

To illustrate the idea of the great need of compressing images, consider a color
picture measuring three by five inches that you shot using your digital camera,
and at a resolution (which defines the quality of the image) of 400 dots per inch
(dpi). The image is 15 in2, and since each square inch has 400× 400=160,000
dots (or pixels), the image will contain a total of 2,400,000 pixels. Now, each
pixel requires 3 bytes of data to store the different colors in the picture. There-
fore, the image would require 7,200,000 bytes, which is about 7 MB of memory.
Thus, storing such digital images without compression would mean using huge
amounts of memory. In addition, these images would require large transfer
times when sent electronically, especially for those with slow connection speeds.
Several compression techniques have been developed to deal with this problem,
all of them with the goal of compressing images to several times less than their
original size, allowing for easier storage and transmission.

There are two main types of data compression: lossless and lossy. In lossless
compression (such in zip and tar files) one is able to regain the original data
after compression so that the quality of the image is not sacrificed; in fact, only
redundant data is removed from the original file. In lossy compression some
of the data is lost during the compression process, resulting in a final image
that is of a lower quality than the original image, but such a loss of quality is
in general not easily perceived by the human eye. Obviously, compression rates

298 CHAPTER 6. IMAGE COMPRESSION

in this case are much higher than those achieved with lossles compression.

Here we mostly discuss lossy compression, in particular the most common form
of image compression, known as JPEG (about 80% of all web images today are
JPEG encoded). A newer and more sophisticated version, JPEG 2000, has been
developed but it is not yet widely used.

A word on the human visual system. The central idea in image processing
is to exploit the unique characteristics of the human visual system in order to
deliver images of optimal quality in color and detail, at a minimum cost. The
human vision is sensitive to the visible portion of the electromagnetic spectrum
we know as light. The incident light is focused on the retina, which contains
photoreceptors called rods and cones. Rods give us the ability to see at very low
light levels, whereas at relatively higher light levels, cones take over. However,
we have fewer cones than rods. This may explain why we can discern fewer
colors than we can discern a larger number of shades of gray.

We will see later that black and white pixels can be represented by a single
number denoting the so called luminance. However colors have three attributes:
brightness, hue and saturation and therefore they cannot be specified by a sin-
gle number. We also know that the human vision has the highest sensitivity
to yellow-green light, the lowest sensitivity to blue light, and red somewhere in
between. In fact, evidence shows that the cones of the human retina can be clas-
sified into three types, with overlapping spectral sensitivities centered at about
700nm (red), 535 nm (green) and 445 nm (blue). See Figure 6.6. According
to the tri-stimulus theory, the color of light entering the human visual system
may be specified by only three numbers associated to three independent color
sources. In optical systems these colors are Red, Green and Blue (RGB).

6.1.4 Basis functions and images

If we consider an input matrix X as an image block of grayscale values (0 -255),
the statements of interpolation (6.10) and that of the IDCT (6.9) tell us that
such image can be written as the unique linear combination of basis functions
given in terms of cosines (and it is possible to visualize such basis functions for
any value of n). We want to start by illustrating the case n = 4.

In the vector space of 4 × 4 real matrices, we have the canonical basis

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 299

Figure 6.6: Visible spectrum

B =























1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, · · · ,









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1























. (6.11)

Thus, any 4 × 4 real matrix A can be expressed as unique linear combination
of the matrices of the basis B. Following the change of coordinates reasoning,
a simple way to obtain and visualize the standard DCT 4× 4 basis functions is
to compute the 2-d DCT of each matrix X in B as Y = C X CT , where C is
the matrix in (6.1), with n = 4, and then display Y as an image, through the
MATLAB commands

Y = C ∗ X ∗ C ′ ;
colormap(gray);
imagesc(Y).

See Figure 6.7, where we show the DCT 4 × 4 basis functions resulting from
these calculations. For illustration, here are the Y matrices in the new basis,
corresponding to the first two X matrices in the basis B above.








0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500
0.2500 0.2500 0.2500 0.2500









,









0.3266 0.1353 −0.1353 −0.3266
0.3266 0.1353 −0.1353 −0.3266
0.3266 0.1353 −0.1353 −0.3266
0.3266 0.1353 −0.1353 −0.3266









.

This means that each of the 16 images in Figure 6.7 is the image display of
the 2-d DCT of each of the corresponding matrices in the basis B. But more
importantly, this means that any 4 × 4 grayscale image block can be obtained

300 CHAPTER 6. IMAGE COMPRESSION

Figure 6.7: DCT 4 × 4 basis images

or expressed as a unique linear combination of the 16 basis functions shown in
Figure 6.7.

Remark 6.9 The MATLAB command imagesc(Y) rescales the entries of Y to
values in the interval [0, 255] and then prints grayscales corresponding to each
entry, where 0 corresponds to black and 255 corresponds to white.

Example 6.1.6 Consider the 4×4 image of Figure 6.8, call it Y . Then, Y can
be uniquely written as the linear combination of the DCT 4 × 4 basis elements
shown in Figure 6.7. More precisely, if we name such basis as {Y0, Y1, . . . , Y15},
then the image can be decomposed as

Y = Y0 + 0.5Y1 − 3Y2 + 4Y3 + 2Y4 − 1.5Y5 − 2.5Y6 − Y7 − Y8 + 4Y9

−3Y10 − 0.5Y11 + 2.5Y12 + 3.5Y13 + 3Y14 − Y15.

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 301

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 6.8: 4 × 4 image Y of Example 6.1.6

Similarly, any other 4 × 4 grayscale image can also be written as a unique
combination of the basis functions Y0, . . . , Y15.

But beyond this illustration, we are mostly interested in 8 × 8 images, because
for image compression, an arbitrary figure will be decomposed into hundreds or
thousands of 8× 8 pixel values. To obtain the DCT 8× 8 basis shown in Figure
6.9, we can proceed in exactly the same way we did to obtain the basis in the
4× 4 case, and any 8× 8 grayscale image will be the unique linear combination
of such 64 basis elements.

Remark 6.10 There are other transforms that can be used in a similar fashion
for the purpose of image compression, like the Haar transform (Exercise 6.17)
or the Hadamard transform (Exercise 6.18), but it has been shown that with the
DCT, the mean square error between the original image and the reconstructed
image decreases fastest as the number of basis images used increases.

6.1.5 Low-pass filtering

We want to start by considering grayscale images, and later on we will generalize
this discussion to color images. Any digital image is composed of pixels, which
can be thought of as small dots on the screen. Consider for instance the image
of Figure 6.10(a), which is a 512×512 array of pixels. Mathematically speaking,
this grayscale image is a 512 × 512 matrix X (the input matrix), where each
entry has a value between 0 and 255, corresponding to how dark or bright the
pixel at the corresponding position should be; the value 0 corresponds to black
and 255 to white. Thus, if we zoom-in the picture enough, we will see only

302 CHAPTER 6. IMAGE COMPRESSION

Figure 6.9: DCT 8 × 8 basis images

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 303

(a) (b)

Figure 6.10: Original image and one 8× 8 block

small boxes of different grayscales, such as the one in Figure 6.10(b), which
corresponds to an area around the the left eye of the person in the picture.

Assume the picture is stored as a JPEG image face.jpg. Then, we can import it
into MATLAB through the command

A=imread(’face.jpg’);

Although the DCT can be applied to the whole matrix A at once, we will
consider this matrix A as composed of several 8 × 8 image blocks, like the one
showed in Figure 6.10 (b), and we will successively apply the DCT to each block.
At the same time, this will allow us to better illustrate how the DCT works on
such matrices. The grayscales of Figure 6.10 (b) are the entries in the matrix

X =

























30 35 30 32 31 17 17 24
20 25 19 17 22 14 10 12
12 15 10 16 20 21 14 7
22 23 17 15 17 25 29 28
84 91 86 45 40 27 33 55
154 160 151 124 115 66 41 58
190 195 198 187 175 111 75 76
194 198 203 205 198 145 116 107

























, (6.12)

which we can be thought of as an input matrix. Before applying the DCT to X,
there is an optional and technical step called level shifting, which changes the

304 CHAPTER 6. IMAGE COMPRESSION

values in the interval [0, 255] to [−128, 127], thus converting them into signed
bytes, centered around zero. This can be achieved by subtracting 128=27 (in
general, we subtract 2n−1, where 2n is the maximum number of gray levels).
The shifted matrix, which we still call X, is

X =

























-98 -93 -98 -96 -97 -111 -111 -104
-108 -103 -109 -111 -106 -114 -118 -116
-116 -113 -118 -112 -108 -107 -114 -121
-106 -105 -111 -113 -111 -103 -99 -100
-44 -37 -42 -83 -88 -101 -95 -73
26 32 23 -4 -13 -62 -87 -70
62 67 70 59 47 -17 -53 -52
66 70 75 77 70 17 -12 -21

























(6.13)

Our first step consists on applying the DCT to the matrix X. This gives (after
rounding):

Y = CXCT =

























−455 148 −35 −16 14 −24 −2 10
−440 −129 45 12 −15 10 −3 −9

179 32 −49 6 16 0 −6 1
27 56 17 −22 5 −12 4 6

−14 −38 21 −4 −6 6 0 0
4 −1 −16 7 4 4 −2 −3
5 2 −4 4 2 −1 −1 −2
4 6 3 −6 −2 0 2 2

























. (6.14)

It is now evident that using X, the DCT has produced a matrix Y such that
its entries around the upper left corner have the largest magnitude, whereas
the ones around the lower right corner have the lowest one. (and this will be
true for any given input matrix X). The entries of the matrix Y are known
as the DCT coefficients. By recalling the discussion about equations (6.9)
and (6.10), that is, the image X can be represented as a combination of cosine
basis functions with the DCT coefficients acting as weights, we observe that
the largest weights are associated with the basis elements with lower frequency
(the upper left corner), and the smallest weights are associated with the basis
elements with higher frequency (lower right corner).

We are at the heart of the DCT action: it has produced a change of coordinates
from the image input signal to the frequency coordinates, and it has arranged
it in increasing order of frequency. In terms of image compression, it is ideal,

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 305

since the human visual system is more sensitive to lower frequencies than to higher
ones. Thus, in terms of human vision, the first terms in (6.10) are far more
important to the last terms. Accordingly, the DCT has therefore given (through
the entries in the upper left corner of Y) more weight to those functions with
lower frequency.

Now we can try our first compression strategy, in a similar way as we did for the
one-dimensional case: drop some terms in the lower right corner of Y (that is,
a few of the last terms in (6.10)) to obtain a new matrix Y and then apply the
IDCT to this new matrix. Of course, we will not obtain the original image but
a compressed one, technically of lower quality, but still for the most part the
difference is not very much perceived by the human eye. This simple technique
is called low-pass filtering.

Thus, suppose we decide to zero the diagonal and the lower triangular part of
Y . Then, this filtering gives

Y =

























−455 148 −35 −16 14 −24 −2 0
−440 −129 45 12 −15 10 0 0

179 32 −49 6 16 0 0 0
27 56 17 −22 0 0 0 0

−14 −38 21 0 0 0 0 0
4 −1 0 0 0 0 0 0
5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























. (6.15)

To reconstruct the (compressed) image, we apply the IDCT to this matrix, that
is we calculate CT Y C and then we add back 128 to each entry to obtain (after
rounding)

X =

























32 34 31 30 27 18 18 26
19 23 21 23 25 17 8 6
10 14 10 11 21 21 13 10
24 30 19 10 17 22 26 34
82 89 75 54 43 32 33 48

153 163 153 131 105 66 46 56
190 198 195 188 166 113 75 78
194 199 199 208 201 150 108 109

























.

Obviously, the compressed image is not exactly the same as the original image
(X 6= X), but the difference between them is not easily perceived by the human

306 CHAPTER 6. IMAGE COMPRESSION

(a) (b)

Figure 6.11: DCT low-pass filtering

eye. Compare Figure 6.10 (b) with Figure 6.11 (b). Even more, these 8×8 image
blocks are just very small pieces of a given actual image. Thus, we can expect
not to notice the small changes in the compressed image even though, as in this
case, we have reduced storage requirements by about 50%. To actually apply
this method to an entire image, we apply the above technique to each 8 × 8
block and then build up the compressed image from the compressed blocks.
Figure 6.11 (a) shows the compressed image, which should be compared with
the original Figure 6.10(a).

Remark 6.11 This low-pass filtering technique is related to the 2-d DCT in-
terpolation and least squares approximation discussed in Section 6.1.2; that is,
the error involved when dropping some of the last DCT coefficients is minimum
in the sense of least squares.

6.1.6 Quantization

The low-pass filtering compression technique presented above is effective but it
sure can be improved. While still trying to zero the DC coefficients associated
with the largest frequencies, now at the same time we want to rescale the re-
maining nonzero coefficients in such a way that fewer bits are necessary for their
storage. Since the lower frequency terms are the most important ones, we would

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 307

like to apply a moderate rescaling to them, while applying a more aggressive
rescaling (if possible down to zero) to the higher frequency terms.

There are several possible methods to perform this nonuniform rescaling, which
in the language of compression is known as quantization. Most of these methods
define a so called quantization matrix Q so that Y is entrywise divided by Q
and then rounded to obtain a new quantized matrix

YQ = round

(

ykl

qkl

)

. (6.16)

Clearly, here an error is introduced due to rounding; this is why this technique
falls into the category of lossy compression. One such quantization matrix Q
can be defined as

qkl = 8s (k + l + 1), 0 ≤ k, l ≤ 7.

That is,

Q = s

























8 16 24 32 40 48 56 64
16 24 32 40 48 56 64 72
24 32 40 48 56 64 72 80
32 40 48 56 64 72 80 88
40 48 56 64 72 80 88 96
48 56 64 72 80 88 96 104
56 64 72 80 88 96 104 112
64 72 80 88 96 104 112 120

























. (6.17)

Thus, for larger values of s more compression will be applied. Observe that
the entries of Q at the upper left corner are small, because we expect to have
large values in the matrix Y at those positions, and entrywise division by Q
and rounding will merely rescale to numbers of smaller magnitude, requiring
therefore smaller bits for storage. At the same time, the elements at the lower
right corner of Q are large, and since we expect to have small values in the
matrix Y at those positions, entrywise division by Q and rounding will set most
of them to zero and the rest will be rescaled to smaller magnitude and require
fewer bits for storage. This is clearly more efficient than low-pass filtering.

The JPEG standard in its Appendix K (“Examples and Guidelines”) recom-
mends quantization matrices that are based on psychovisual thresholding and
derived empirically in experiments with the human visual system, and therefore,
from the practical point of view, are more reliable. For the case of grayscales,
the so called luminance quantization matrix they recommend is

308 CHAPTER 6. IMAGE COMPRESSION

Q = s

























16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

























(6.18)

Now let us apply this luminance quantization to (6.14), first with the parameter
s = 1, by using (6.16). This gives

YQ =

























−28 13 −4 −1 1 −1 0 0
−37 −11 3 1 −1 0 0 0

13 2 −3 0 0 0 0 0
2 3 1 −1 0 0 0 0

−1 −2 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























(6.19)

Compare this matrix YQ with the one in (6.15) form low-pass filtering.

To recover back the (compressed) image, we apply the reverse process; that is,
we first multiply entrywise YQ by Q (this is where an error is introduced) to
obtain a modified Y = QYQ. Then we apply the IDCT to Y : X = CTY C,
and finally we add back 128 to X. In Figure 6.12 we show the images obtained
when using s = 1 and s = 4. For s = 1 the compressed image is quite similar to
the original one in Figure 6.10 (b), while for s = 4, some differences are already
noticeable.

We can now compress the image of Figure 6.10(a) by applying the above process
to each 8 × 8 image block and then reconstruct the image by putting together
the compressed blocks. Figure 6.13 shows the results for s = 1 and s = 4.

As illustration to estimate how much memory in terms of bits we save by ap-
plying luminance quantization, consider an arbitrary 8 × 8 image block, and as
a worst case scenario, assume each entry in Y = CXCT is the number 255, the
largest possible. If we apply quantization through (6.16) and (6.18) to Y , we

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 309

s = 1

2 4 6 8

1

2

3

4

5

6

7

8

s = 4

2 4 6 8

1

2

3

4

5

6

7

8

Figure 6.12: DCT luminance quantization using (6.18)

s = 1 s = 4

Figure 6.13: DCT luminance quantization using (6.18)

310 CHAPTER 6. IMAGE COMPRESSION

obtain the matrix YQ below.

YQ =

























16 23 26 16 11 6 5 4
21 21 18 13 10 4 4 5
18 20 16 11 6 4 4 5
18 15 12 9 5 3 3 4
14 12 7 5 4 2 2 3
11 7 5 4 3 2 2 3
5 4 3 3 2 2 2 3
4 3 3 3 2 3 2 3

























, Bits :

























6 6 6 6 5 4 4 4
6 6 6 5 5 4 4 4
6 6 6 5 4 4 4 4
6 5 5 5 4 3 3 4
5 5 4 4 4 3 3 3
5 4 4 4 3 3 3 3
4 4 3 3 3 3 3 3
4 3 3 3 3 3 3 3

























Since the number r of bits necessary to store a given number n can be estimated
as

r = ⌊log2(n)⌋ + 2,

where the function ⌊x ⌋ is the largest integer less than or equal to x, we have
calculated the bits necessary to represent the entries in YQ, and shown them on
the matrix next to it. Thus, adding up the 64 numbers in the matrix of bits, we
get 266, which is about half the bits necessary to store the original 8× 8 image
without compression.

Thus, for general images, by applying quantization with s = 1, we can save
about 50% of memory storage and still obtain a compressed image that to the
human eye has been perfectly reconstructed. For larger values of the parameter
s, more compression can be applied to the image, resulting in smaller file size
and therefore in more memory saving, but at the same time it also means losing
more quality. Thus, it all depends on the application at hand, or on how much
quality we want to trade off for memory. In any case, the parameter s in (6.18)
allows flexibility and an easy way for testing different compression rates (for
s = 4 the number of total number of bits is 166, which is about 32% of the
original size).

6.1.7 Compression of color images

When we think of matrices, we automatically think of 2-dimensional arrays
of rows and columns, just like the ones we have been working with so far.
However, if we import a color picture into MATLAB, say through the command
A=imread(’face.jpg’), and then check the size of A we observe that such matrix is
3-dimensional, e.g. 512×512×3. This matrix can be understood as three layers

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 311

R

B

G

Figure 6.14: Three dimensional array of a color image

of two-dimensional matrices. In particular, for color images, the three layers
correspond to Red, Green and Blue (RGB) intensities (see Figure 6.14). For
black and white images, each pixel corresponds to a number between 0 and 255
acoording to its grayscale. For color images, each pixel is given three numbers
representing the three color intensities.

Several approaches can be taken to compress color images. The simplest one
would be to treat each color (or layer) independently, that is, compression can
be applied to each color as if we were dealing with grayscale intensities and then
reconstruct the (compressed) image from the superposition of the colors. This
works, but it is not efficient. A second, and very popular approach is the one
outlined by the so called Baseline JPEG. The central idea again comes from the
practical point of view: the human eye is more sensitive to luminance (changes
in brightness) than to chroma (changes in color). This real fact gives a hint:
we should be able to perform higher rates of compression in the chrominance
coordinates and still make it unnoticeable to the human eye. Recall that for
grayscale images we only had luminance.

Therefore, instead of working just with plain colors (RGB), we perform a change
of coordinates to color differences, or chroma (YUV):

Y = 0.299R + 0.587G + 0.114B, U = B − Y, V = R − Y. (6.20)

Remark 6.12 The coefficients of R, G and B in the Y coordinate agree with
the fact that out of the three colors, the human eye is most sensitive to green
and least sensitive to blue, with red somewhere in the middle.

312 CHAPTER 6. IMAGE COMPRESSION

G

R

B

U

V

Chrominance

Luminance
Y

Figure 6.15: Change of coordinates from RGB to Y-UV

Through this change of coordinates, the color image can be represented in
(y, u, v) form. We perform compression in the Y coordinate as if we were work-
ing with grayscale images, that is, we can quantize the data using the luminance
matrix in (6.18). Then, independently we can perform a more aggressive com-
pression in the UV coordinates, by using a less conservative quantization matrix.

JPEG recommends the following Chrominance matrix

Qc = s

























17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

























. (6.21)

The difference between the luminance and chrominance matrices (6.18) and
(6.21) respectively is obvious.

For compression of a color image, we proceed in the following way

• group pixel values for each of the three components into 8 × 8 blocks.

• transform each block X by applying the DCT to it to obtain the DCT
coefficients.

• apply luminance quantization (6.18) to the Y coordinates, and chromi-
nance quantization (6.21) to the U and V coordinates (6.20).

6.1. COMPRESSING WITH DISCRETE COSINE TRANSFORM 313

(a) (b)

Figure 6.16: Original image and 8× 8 block

The DCT coefficients either will be zeroed or reduced in size for storage. The
decompression process is just the reverse algorithm, as explained before, except
that now we also need to go back to the RGB coordinates through the equations

B = U + Y
R = V + Y
G = (Y − 0.299R − 0.114B)/0.587

We are going to apply these ideas to the color image of Figure 6.16 (a); the
8 × 8 block was taken from a part of the lady’s hat. As usual, we load the
image into MATLAB with the command imread, which represents the image in
this case as a 512 × 512 × 3 matrix: 512 rows, 512 columns and (combinations
of) three colors: red, green and blue. Figures 6.17 (a) and (b) show the results
of applying the recommended JPEG luminance and chrominance quantization
matrices for s = 3.

Note. To obtain a similar quality of compressed image for the grayscale case,
we had to take just s = 1 and no higher.

314 CHAPTER 6. IMAGE COMPRESSION

(a) (b)

Figure 6.17: Compressed images with s = 3

6.2 Huffman Coding

A central step in the lossy compression technique described above consists on
applying a quantization matrix of the type (6.18) or (6.21) to the DCT of the
original image matrix X to obtain a matrix Y of quantized coefficients of the
form (6.19). The entries of this matrix Y with a large number of zeros are the
numbers we need to store. But this has to be done in an efficient way. This is
the point where an additional modest amount of compression can be achieved,
but this time it is lossless compression.

Those entries of Y will be stored as binary digits, or bits, that is, as sequences
of 0’s and 1’s. We want to explain how this is done.

The first question to answer is the following: given a general string of symbols,
what is the minimum number of bits needed to code such string? It turns out
that the answer is related to the probability with which each symbol occurs in
the string. Suppose there are n different symbols available, and let pi be the
probability of the occurrence of symbol i in any given string. Then we define
the entropy of the string as

H = −
n
∑

i=1

pi log2(pi). (6.22)

This entropy H tries to quantify the average minimum number of bits per symbol
needed to code the string.

6.2. HUFFMAN CODING 315

Example 6.2.1 Let us find the entropy of the string BDABBCDB. The prob-
abilities of the symbols A,B,C,D are respectively: p1 = 1/8, p2 = 4/8, p3 =
1/8, p4 = 2/8, or expressed as powers of two: p1 = 2−3, p2 = 2−1, p3 =
2−3, p4 = 2−2. Then, the entropy of the string is

H = −
4
∑

i=1

pi log2(pi) =
1

8
(3) +

4

8
(1) +

1

8
(3) +

2

8
(2) =

14

8
= 1.75

Thus, the entropy formula indicates that the minimum number of bits per symbol
needed to code the string BDABBCDB is 1.75.

Taking this as a starting point, several coding techniques have been developed to
code strings of symbols, but it is the Huffman coding the one that comes closer
to achieve this minimum. This process is better explained through a detailed
example.

Suppose we have the following symbols and their corresponding probabilities of
occurrence in a string

Symbol Probability

A 0.35
B 0.25
C 0.14
D 0.11
E 0.11
F 0.04

Then, to code these symbols we proceed as follows:

Building the tree. (See Figure 6.18)

1. We combine two symbols with the lowest probabilities, say E and F, to obtain
the symbol EF with probability 0.15.

2. Now we have five symbols left, A, B, C, D and EF. We combine the two with
lowest probabilities, C and D to obtain the symbol CD with probability 0.25.

3. From the four symbols left A, B, CD and EF we combine two with the lowest
probabilities, say CD and EF to obtain the symbol CDEF with probability 0.40.

4. Now we have three symbols left, A, B and CDEF. We combine the two with
the lowest probabilities, A and B, to obtain the symbol AB with probability
0.60.

316 CHAPTER 6. IMAGE COMPRESSION

0.04

A B C D E F

0.35 0.25 0.11

EFCD

CDEFAB

ABCDEF

0.14 0.11

0.150.25

0.60 0.40

1.0
0 1

10

0 1

0 1 0 1

Figure 6.18: Huffman coding tree

5. Finally, we combine the remaining two symbols AB and CDEF to obtain the
symbol ABCDEF with probability 1.0.

Assigning the codes.

At this step we translate the string of symbols into a bit stream, by first obtain-
ing the Huffman code for each symbol. This is done by arbitrarily assigning a
bit of 0 to a left branch and a bit of 1 to a right branch. Once this is done, we
start at the top of the tree and we read the symbols as:

A=00 C=100 E=110
B=01 D=101 F=111

Now we can translate a string of those symbols into bits. By instance, the string

ACDAACBBEB

is translated as

(00)(100)(101)(00)(00)(100)(01)(01)(110)(01)

This bit stream has length 24 and therefore it uses 24/10=2.4 bits per symbol.

Uniqueness. In step 1 of building the tree we could have also combined the
symbols D and F first. Similarly, in step 3 we could have chosen to combine the
symbols B and EF instead of combining CD and EF. The idea is to combine
arbitrary symbols with the lowest probabilities. By picking different choices we

6.2. HUFFMAN CODING 317

obtain in general different codes for the symbols, which implies that a Huffman
code is not unique. However, the average size will remain the same. For the
example above it will always be 2.4 bits per symbol.

6.2.1 Huffman coding and JPEG

With the basic background introduced above we can now explain how to encode
the DCT coefficients, (the entries of the quantized matrix Y). Recall that we
partition the matrices in 8 × 8 blocks so that in fact we are dealing with 64
DCT coefficients at a time. We also know that the first of these coefficients,
which is known as the DC coefficient, is the most important as it has the largest
weight or magnitude, and that all other 63 coefficients are smaller and decrease
in magnitude as we read the matrix Y toward the lower right corner (in fact the
majority are zeros). These 63 coefficients are known as AC coefficients. Because
of this main difference they are coded separately.

6.2.1.1 Coding the DC coefficients

Since we expect some correlation between neighboring 8 × 8 blocks, instead of
coding individual DC coefficients for each block the strategy is to code their
differences (see Figure 6.19). The larger the correlation, the smaller the differ-
ence. That is, we will code the difference D between the DC coefficients of two
neighboring blocks k and k + 1:

D = (DC)k+1 − (DC)k, k = 1, 2, . . . , (6.23)

where (DC)k is initially set to zero.

The DC coefficient difference D will be represented as two symbols, the first one
for its bit size and the second one for its value D in (6.23). That is,

(

Symbol 1 for

Bit Size

)(

Symbol 2 for

Diff Value D

)

. (6.24)

Here we define the bit size of an integer z as

S =

{

⌊ log2 |z| ⌋ + 1, z 6= 0
0 z = 0.

(6.25)

318 CHAPTER 6. IMAGE COMPRESSION

(

(DC)
k+1(DC)

k

Block
k+1

Block
k

Figure 6.19: DC coefficients of neighboring blocks

Bit Size Code Bit Size Code

0 00 6 1110
1 010 7 11110
2 011 8 111110
3 100 9 1111110
4 101 10 11111110
5 110 11 111111110

Table 6.1: Codes for DC symbol 1

Given a particular DC coefficient difference we first find the bit size S of that
difference through (6.25). Next, to get symbol 1 for S we use Table 6.1, where
the codes shown were obtained by building a tree similar to that in Figure 6.18
(see Exercise 6.27).

Example 6.2.2 Suppose the DC coefficient difference between two neighboring
blocks is D = 9. From (6.25), its bit size is S = 4, and according to Table 6.1,
symbol 1 should be 101.

To obtain symbol 2 in (6.24) we use n bits if the bit size S of the difference is n.
But since there are several integer coefficients (positive and negative) that have
the same size S, they are grouped together by bit size. Then each one in the
group is assigned a unique combination of 0’s and 1’s according to Table 6.2.

6.2. HUFFMAN CODING 319

S Difference Value D Code

0 0

1 -1, 1 0, 1

2 -3, -2, 2, 3 00, 01, 10, 11

3 -7, -6, -5, -4, 4, 5, 6, 7 000, 001, 010, 011, 100, 101, 110, 111

4 -15, -14, . . . , -8, 8, . . . ,14, 15 0000, 0001,. . . ,0111, 1000,. . . ,1110, 1111

5 -31, -30,. . . ,-16, 16,. . . ,30, 31 00000, 00001,. . . ,01111, 10000,. . . ,11110, 11111

6 -63, -62,. . . ,-32, 32,. . . ,62, 63 000000, 0000001,. . . ,011111, 100000,. . . ,111110, 111111

7 -127, -126,. . . ,-64, 64,. . . ,126, 127 0000000, 0000001,. . . ,0111111, 1000000,. . . ,1111110, 1111111

.

.

.

.

.

.

.

.

.

Table 6.2: Codes for DC/AC symbol 2

Example 6.2.3 In Example 6.2.2 we had D = 9, with S = 4. Then, by looking
at Table 6.2 we conclude that symbol 2 is 1001. Thus, from (6.24) the complete
representation of the DC coefficient difference D = 9 is

(101)(1001),

where the parenthesis is only for notational convenience and clarity.

6.2.1.2 Coding the AC coefficients

We know that a great majority of the 63 AC coefficients will likely be zero, as
a result of the quantization process, and it is very likely that a high frequency
coefficient will be zero given that its predecessors are zero. This implies that
there will be runs of zeros in the AC coefficients. We exploit the presence of
these runs of zeros by using a zigzag scanning as illustrated in Figure 6.20 when
reading the coefficients, because this scanning tends to group longer runs of
zeros.

The AC coefficient will be coded as two symbols. We use the first symbol to
represent the pair

(r, S),

where r is the length of a run of zeros, that is, the number of consecutive zero AC
coefficients, and S is the bit size of the next nonzero entry. The corresponding
code for each pair is obtained from Table 6.3. The second symbol represents
the value of the AC coefficient; the corresponding code for this value comes as
before from Table 6.2.

Thus, the representation has the form

(

Symbol 1 for

(r, S)

)

(

Symbol 2 for

AC Value

)

, (6.26)

320 CHAPTER 6. IMAGE COMPRESSION

Figure 6.20: Zigzag pattern for AC coefficients

where as usual, S comes from (6.25).

Example 6.2.4 Suppose we have the following AC coefficients

9, 6, 0, 0, 0, 0,−3.

For the first coefficient 9 we have (r, S) = (0, 4) because it contains no zeros and
because from (6.25) the size of 9 is S = 4. Thus, from Table 6.3 its symbol 1 is
1011. For symbol 2 we conclude from Table 6.2 that the code for 9 is 1001.

Similarly, for the coefficient 6 we have (r, S) = (0, 3), because r = 0 and from
(6.25) the size of 6 is S = 3. Thus, from Table 6.3 symbol 1 is 100. To obtain
symbol 2 we observe from Table 6.2 that the code for 6 is 110.

Next we have four consecutive zeros followed by −3. Then, we have (r, S) =
(4, 2), because the run of zeros has length 4, and the size of −3 is S = 2. Thus,
from Table 6.3 symbol 1 is 1111111000. Finally, we observe from Table 6.2
that the code for −3 is 00.

Thus, the given seven AC coefficients are coded as

(1011)(1001) (100)(110) (1111111000)(00),

where again the parentheses are just for notational convenience and clarity.

Note: In the example above, if −3 was the very last coefficient from the quan-
tized matrix, then the code above must be finished with EOB (end of block),
that is, with (1010). See Table 6.3.

6.2. HUFFMAN CODING 321

(r, S) Code (r, S) Code

(0,1) 00 (5,1) 1111010
(0,2) 01 (5,2) 11111110111
(0,3) 100 (5,3) 1111111110011110
(0,4) 1011 (5,4) 1111111110011111
(0,5) 11010 (5,5) 1111111110100000

...
...

...
...

(1,1) 1100 (6,1) 1111011
(1,2) 11011 (6,2) 111111110110
(1,3) 1111001 (6,3) 1111111110100110
(1,4) 111110110 (6,4) 1111111110100111
(1,5) 11111110110 (6,5) 1111111110101000

...
...

...
...

(2,1) 11100 (7,1) 11111010
(2,2) 11111001 (7,2) 111111110111
(2,3) 1111110111 (7,3) 1111111110101110
(2,4) 111111110100 (7,4) 1111111110101111
(2,5) 1111111110001001 (7,5) 1111111110110000

...
...

...
...

(3,1) 111010 (8,1) 111111000
(3,2) 111110111 (8,2) 111111111000000
(3,3) 111111110101 (8,3) 1111111110110110
(3,4) 1111111110001111 (8,4) 1111111110110111
(3,5) 1111111110010000 (8,5) 1111111110111000

...
...

...
...

(4,1) 111011 (9,1) 111111001
(4,2) 1111111000 (9,2) 1111111110111110
(4,3) 1111111110010110 (9,3) 1111111110111111
(4,4) 1111111110010111 (9,4) 1111111111000000
(4,5) 1111111110011000 (9,5) 1111111111000001

...
...

...
...

EOB 1010

Table 6.3: AC table, symbol 1

322 CHAPTER 6. IMAGE COMPRESSION

6.3 Compression with SVD

In Section 4.3 we introduced a matrix factorization of a general matrix Am×n as
the product of two orthogonal matrices and a diagonal one. This factorization
is expressed as

A = UΣV T , (6.27)

where Um×m and Vn×n are orthogonal matrices and Σm×n is a diagonal matrix
whose diagonal entries σi are known as the singular values of the matrix A.

We learned that this factorization provides with plenty of information about the
matrix A: It gives orthonormal bases for col(A) and row(A), it reveals the rank
of A, it provides with the spectral norm of A, etc. One very important result
was that the factorization (6.27) can be written as

A = σ1u1v
T
1 + · · · + σrurv

T
r , (6.28)

where r is the rank of A and ui, vi represent the i-th columns of the matrices
U and V respectively.

Writing the SVD of a matrix A as the expansion (6.28) allowed us to introduce
low-rank approximations of the matrix A. A rank-k matrix Ak that approxi-
mates A with minimum error in the sense of least squares is given by a truncation
of the expansion (6.28) to k terms. That is,

Ak = σ1u1v
T
1 + · · · + σkukv

T
k , k ≤ r. (6.29)

We have already studied two direct applications of these SVD low-rank approx-
imations, namely in information retrieval (Section 4.5) and simple substitution
cryptograms (Section 4.6). Now we discuss one more application of SVD low-
rank approximations, this time to image compression, of both, gray scale and
color images.

6.3.1 Compressing grayscale images

As remarked before, given a grayscale image, this can be understood as an
m×n matrix X whose entries are values between 0 and 255 indicating different
gray intensities between black (0) and white (255). Let us assume that such
matrix X has rank r. Then, using the notation in (6.28), its SVD factorization
X = UΣV T can be written as

6.3. COMPRESSION WITH SVD 323

X = σ1u1v
T
1 + · · · + σrurv

T
r . (6.30)

One very important fact to remember about this factorization is that the singular
values satisfy the inequalities

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

This means that the importance of the terms in the expansion (6.30) decreases
as more terms are considered, or equivalently, the first terms of the expansion
must contain the most important information about the matrix A. This re-
markable fact about the SVD of X is exactly what we can exploit to achieve
compression: instead of storing the whole expansion (6.30), we can try to store
just a truncation of such expansion to k terms, with k < r, dropping all terms
with coefficients σk+1, . . . , σr.

For a chosen value of k < r, we know from Theorem 4.21 that

Xk = σ1u1v
T
1 + · · · + σkukv

T
k

is an optimal rank-k approximation to X, and therefore we expect that the
compressed image Xk will look very similar to the original one X.

As expected, we have a trade-off between quality and storage savings. The lower
the value of k, the more we save and compress, but at the same time we may
be losing some quality of the compressed image. We want to illustrate this with
an example

Example 6.3.1 Consider again the image in Figure 6.10. We show in Fig-
ure 6.21 this original image along with three different compression rates, corre-
sponding to the rank-k approximations. The original matrix has rank r = 462.
Observe that with k = 95 we already obtain a very good approximation to the
original image. This means that from the 462 terms in (6.30) we can drop
462 − 95 = 367 terms and still obtain a good quality image.

6.3.2 Compressing color images

A very simple approach to compress color images via low-rank SVD approxima-
tions is to treat each color coordinate in (R,G,B) independently. Recall that a
color image is understood as a three-dimensional array (see Figure 6.14). Since

324 CHAPTER 6. IMAGE COMPRESSION

Original image rank:5

rank:50 rank:95

Figure 6.21: Compression with low-rank SVD approximations

6.4. FINAL REMARKS AND FURTHER READING 325

(a) (b)

Figure 6.22: Original image and 8 × 8 block

each layer is a usual two-dimensional matrix, we compute the SVD factorization
of each one of them, and then apply low-rank approximation just the way we
did to grayscale images. The final step is to reconstruct the whole (compressed)
image by putting the three layers back together again.

Example 6.3.2 Consider the color image in Figure 6.22 and one of its 8 × 8
blocks. We want to apply SVD compression to both images by truncating the the
SVD expansion (6.30) on each coordinate of (R,G,B). Each of these layers has
rank r = 1773. With only k = 55 we are able to get a good quality compressed
image. See Figure 6.23.

6.4 Final Remarks and Further Reading

In this section we have studied two different approaches to grayscale and color
image compression. The first and most important one is done via the discrete
cosine transform, which is currently used by JPEG. The second approach is
presented for completion, as an application of the singular value decomposition.

The topic of image compression is discussed on a large list of books and articles.
A great reference on data compression in general is the book by D. Salomon
[49]. The book by K. Thyagarajan [55] offers a detailed discussion on image

326 CHAPTER 6. IMAGE COMPRESSION

original image rank:5

rank:30 rank:55

Figure 6.23: Original image and low-rank approximations

6.4. FINAL REMARKS AND FURTHER READING 327

processing, including applications to digital cinema. A brief and clear exposition
of image and sound compression can also be found in the book by T. Sauer [50].
The reader can always have full access to documents online with detailed and
complete tables for Huffman coding and other information. See for example
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

Although not widely used yet, JPEG2000, based on wavelets, is the latest effort
in achieving even more efficiency when compressing images. However, its time
has not come yet as the standard choice for images in web browsers.

Ultimately, both, JPEG and SVD approaches are excellent and current real-
world applications of linear algebra and numerical analysis, and represent a
very interesting topic to convey to students.

328 CHAPTER 6. IMAGE COMPRESSION

6.5 Exercises

Exercise 6.1 Let C be the orthogonal matrix in (6.1) and define An×n as

A =



















1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1



















.

Show that the columns of CT are unit eigenvectors of A.

Exercise 6.2 Observe the DCT matrix in (6.3) row by row. What pattern do
you see in the signs of the entries, and how is this related to low-high frequencies?

Exercise 6.3 Following Exercise 6.2, make up a matrix C4×4 of positive and
negative 1’s that would follow a pattern similar to that in (6.3). Then normalize
it to make it orthogonal. Apply this transform to the matrix corresponding to a
4 × 4 grayscale image (CXCT).

Exercise 6.4 Prove Theorem 6.8.

Exercise 6.5 Interpolate the following data

(0, 3), (1, 1), (2,−1), (3, 3), (4, 1.5), (5,−0.5), (6,−2)

using the DCT. Plot the data and the interpolating function together.

Exercise 6.6 Consider the data of Exercise 6.5. Apply DCT least squares ap-
proximation by dropping the last two terms of its interpolating polynomial. Plot
both the least squares approximation and the interpolating polynomials as well
as the data points.

6.5. EXERCISES 329

Exercise 6.7 Consider the input data matrix

X =





















−3.50 −1.50 −0.75 −0.70 −0.75 −1.50 −3.50
−3.50 −1.25 −0.65 −0.60 −0.65 −1.25 −3.50
−3.50 −1.50 −1.00 −0.50 −1.00 −1.50 −3.50
−3.50 −1.00 −0.40 0.60 −0.40 −1.00 −3.50
−3.50 −1.25 −0.25 0.10 −0.25 −1.25 −3.50
−3.50 −2.00 −0.25 0.00 −0.25 −2.00 −3.50
−3.50 −3.00 −2.50 −2.00 −2.50 −3.00 −3.50





















.

Find the DCT of X and plot the graph of the interpolating function.

Exercise 6.8 Consider again the data X of Exercise 6.7. By following Example
6.1.5, compute two least squares approximations by requiring that k + l ≤ 4 and
k + l ≤ 6.

Exercise 6.9 Try the following compression technique: given a grayscale im-
age, crop it so that the number of rows and columns is a multiple of 8. Then,
replace each entry of each 8× 8 block with its corresponding average pixel value
in that block. Plot both, the original and the compressed image.

Exercise 6.10 True or False? Any file can be compressed.

Exercise 6.11 Find a scaling function that transforms an arbitrary interval
[a, b] into the interval [0, 255].

Exercise 6.12 Obtain and plot 4-bit (16 variations) and 8-bit (256 variations)
black to white gradients.

Exercise 6.13 Consider the 4 × 4 block image Y of Example 6.1.6. Plot the
original image together with three approximations to it, according to the number
of basis images Yi used: a) i = 0, b) i = 0, 1, 2, 3, c) i = 0, 1, . . . , 8.

Exercise 6.14 Import a grayscale image into MATLAB .

(a) Extract an 8 × 8 block from the image and compress it by using the quanti-
zation matrices (6.17) and (6.18), with s = 3. Compare your results.

(b) Apply the same process to the whole image.

330 CHAPTER 6. IMAGE COMPRESSION

Exercise 6.15 Repeat Exercise 6.14 but now using the following quantization
matrix, for s = 5.

K = s

























5 5 5 5 5 6 6 8
5 5 5 5 5 6 7 8
5 5 5 5 6 7 8 9
5 5 5 6 7 8 9 10
5 5 6 7 8 9 11 12
6 6 7 8 9 11 13 14
6 7 8 9 11 13 15 16
8 8 9 10 12 14 16 19

























.

Exercise 6.16 Denote with X the original image and with Z the compressed
one. If there was no loss in the compression, then Z is identical to X and
the image A = X − Z is a matrix of zeros and therefore black. For the 8 × 8
block of Exercise 6.14, obtain the corresponding matrices A corresponding to
both quantization matrices (6.17) and (6.18), and display their images. Which
one is farther from a black image?

Exercise 6.17 Consider the following orthogonal (Haar) matrix

H =
1√
8

























1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2

























.

Starting with the canonical basis of the vector space of 8 × 8 matrices, obtain
the basis images associated to H, to obtain an image similar to Figure 6.9.

Exercise 6.18 Repeat Exercise 6.17 for the (Hadamard) matrix

H =
1√
8

























1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

























.

6.5. EXERCISES 331

Exercise 6.19 Consider the following 8 × 8 block of pixels values

X =

























154 161 188 197 200 181 134 111
153 155 185 199 199 191 145 108
154 149 176 196 198 194 161 112
160 150 168 190 200 196 173 122
164 157 167 188 201 201 181 130
165 162 168 186 197 195 188 142
173 166 162 181 194 191 191 160
184 171 155 176 197 198 191 176

























.

Compute its DCT transform Y = CXCT and verify that the sums of squares of
the entries in both matrices X and Y are equal. Why is this true?

Exercise 6.20 We know that we can compress an image by filtering out high
frequency terms, retaining only the low frequency ones, which are the most im-
portant to the human eye. Experiment compressing a grayscale image but this
time filtering out the low frequency terms and retaining the high frequency ones.

Exercise 6.21 Suppose you have a color RGB image. Change it to grayscale
by expressing the grayscale intensities as a combination of the three coordinates
R,G and B. Then, compare your result to the one obtained with the MATLAB

command rgb2gray.

Exercise 6.22 By setting x = [R G B]T and z = [Y U V]T , write the
change of coordinates in (6.20) as the transformation

z = Tx + b,

for some matrix T and some vector b.

Exercise 6.23 Import a grayscale image into MATLAB .

(a) Extract an 8×8 block from the image and compress it by individually applying
the luminance quantization matrix (6.18) to each color R, G, B.

(b) Apply the same process to the whole image.

332 CHAPTER 6. IMAGE COMPRESSION

Exercise 6.24 Import a grayscale image into MATLAB .

(a) Extract an 8×8 block from the image and compress it by first changing from
RGB to Y UV coordinates as in (6.20) and then using the luminance quantiza-
tion matrix (6.18) for Y and the chrominance matrix (6.21) for UV .

(b) Apply the same process to the whole image.

Exercise 6.25 Assume we have the following set of symbols: {A,B,C,D,E},
with probabilities: A = 0.25, B = 0.10, C = 0.15, D = 0.15, E = 0.35. Find the
entropy (6.22). According to this entropy, find out the optimal number of bits
needed to code the string DECEEEAA.

Exercise 6.26 Refer to the Huffman tree of Figure 6.18. Build a different
tree for the same symbols, but this time taking different choices, e.g. at step 1
combine D and F instead of E and F. What codes do you get for the symbols A,
B, C, D, E? Next, translate the string ACDAACBBEB into a bit string. How
many bits per symbol are needed?

Exercise 6.27 Construct a Huffman tree that generates the Table 6.1.

Exercise 6.28 Suppose two neighboring 8 × 8 blocks have the DC coefficients
DC4 = 35, DC5 = 42. Find the coding of the difference coefficient D = DC5 −
DC4 as given in (6.24).

Exercise 6.29 From Table 6.2 find the codes for a)12, b)−60.

Exercise 6.30 Suppose we have the following AC coefficients

8,−5, 0, 0, 0, 0, 0, 4.

Translate this into a bit stream following to (6.26).

Exercise 6.31 Consider the following quantized matrix

YQ =

























−35 14 −2 −1 0 0 0 0
−27 −11 3 0 0 0 0 0

12 6 −1 0 0 0 0 0
3 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























.

6.5. EXERCISES 333

Following the zigzag pattern of Figure 6.20, find the Huffman code for all the
quantized coefficients.

Exercise 6.32 Import a grayscale image into MATLAB .

(a) Extract an 8×8 block from the image and apply rank-k SV D approximations
to the corresponding 8×8 matrix for three different values of k. Print the rank-k
images together with the original image in a 4 × 4 figure.

(b) Apply the same process to the whole image.

Exercise 6.33 Use SV D compression on a color image by first individually
compressing each color (RGB) as if you were dealing with grayscale intensities,
and then reconstruct the compressed image from the superposition of the three
colors.

