
Colin Bendell, Tim Kadlec, Yoav Weiss,
Guy Podjarny, Nick Doyle & Mike McCall

 High
Performance
 Images
SHRINK, LOAD, AND DELIVER IMAGES FOR SPEED

Compliments of

FAST.
RELIABLE.
SECURE.

FOR MORE ON WEB AND MOBILE PERFORMANCE
VISIT WWW.AKAMAI.COM

PERFORMANCE
DEMANDS
INTELLIGENCE

63% of page weight comes from web images.

RESPONSIVE DESIGN
CHANGING YOUR VIEW ON IMAGES

This Preview Edition of High Performance Images is a work in progress. The
final book is currently scheduled for release in July 2016 and will be available at

oreilly.com and other retailers once it is published.

Colin Bendell, Tim Kadlec, Yoav Weiss, Guy Podjarny,
Nick Doyle, and Mike McCall

High Performance Images
Shrink, Load, and Deliver Images for Speed

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93826-3

[LSI]

High Performance Images
by Colin Bendell, Tim Kadlec, Yoav Weiss, Guy Podjarny, Nick Doyle, and Mike McCall

Copyright © 2015 Akamai Technologies. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High Performance Images, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface. xi

1. The Case for Performance. 1
What about Mobile Apps? 4
Speed Matters 5
Do images impact speed of websites? 6
Lingering Challenges 6

Part I. Image Files and Formats

2. The Theory Behind Digital Images. 11
Digital image basics 12

Sampling 12
Image Data Representation 12
Color spaces 13
Additive vs. Substractive 14
Color profiles 19
Alpha 20
Frequency domain 20

Image Formats 21
Why Image-Specific Compression? 21
Raster vs. vector 22
Lossy vs. Lossless Formats 22
Lossy vs. Lossless Compression 23
Prediction 23
Entropy encoding 23
Relationship with Video Formats 24

iii

Comparing Images 24
Summary 26

3. Lossless Image Formats. 27
GIF (It’s pronounced GIF) 27

Block by block 27
Understanding palettes 29
LZW or the rise and fall of the GIF 29
The PNG file format 30
Understanding the mechanics of the PNG format 30

PNG Signature 30
Chunks 31
Interlacing 33

There can be only one! 35
Summary 35

4. JPEG. 37
History 37
The JPEG Format 38

Containers 38
Markers 38
Color transformations 40
Subsampling 41
Entropy coding 43
DCT 46
Progressive JPEGs 56
Unsupported modes 58

JPEG Optimizations 58
Lossy 58
Lossless 59

MozJPEG 60
Summary 60

5. Browser Specific Formats. 63
WebP 64

WebP Browser Support 64
WebP Details 65
WebP Tools 67

JPEG XR 67
JPEG XR Browser Support 68
JPEG XR Details 68
JPEG XR Tools 69

iv | Table of Contents

JPEG 2000 69
JPEG 2000 Browser Support 69
JPEG 2000 Details 70
JPEG 2000 Tools 72

6. SVG and Vector Images. 75

Part II. Image Loading

7. Browser Image Loading. 79
Referencing Images 79

 tag 80
CSS background-image 81

When Are Images Downloaded 83
Building the Document Object Model (DOM) 83
The Preloader 85
Networking Constraints and Prioritization 87
HTTP/2 prioritization 89
CSSOM and Background Image Download 90
Service Workers and Image Decoding 90

Summary 91

8. Lazy Loading. 93
The Digital Fold 95
Wasteful Image Downloads 95
Why Aren’t browsers dealing with this? 95

Loading Images With JavaScript 96
Deferred Loading 97
Lazy Loading/Images On Demand 98
IntersectionObserver 99

When Are Images Loaded? 100
The Preloader and Images 101

Lazy Loading Variations 104
Browsers without JS 104
LQIP: Low Quality Image Placeholders 105
Critical Images 108

Lazy Loading Summary 109

9. Image Processing. 111
Decoding 111

Measuring 112

Table of Contents | v

How slow can you go? 114
Memory usage 115

GPU Decoding 116
Triggering GPU Decoding 118

Summary 119

10. Image Consolidation (for Network & Cache Efficiencies). 121
The Problem 122

TCP Connections & Parallel Requests 122
Small objects impact on the connection pool 124
Efficient use of the connection 125
Impact on browser cache: metadata and small images 126
Small objects observed 127
A comment about logographic pages 128

Raster Consolidation 130
CSS Spriting 130
Data URIs 135

Vector Image Consolidation 141
Icon Fonts 141
SVG Sprites 147

Summary 152

11. Responsive Images. 155
How it started 155
Early hacks 156
Use cases 157

Fixed dimensions images 157
Variable dimensions images 158
Art direction 159
Art Direction vs Resolution Switching 162
Image formats 162
Avoiding “Download & Hide” 163
Use cases are not mutually exclusive 163

Standard Responsive Images 165
srcset x descriptor 165
srcset w descriptor 166
<picture> 173
Serving Different Image Formats 177

Practical advice 178
To picturefill or not to picturefill, that is the question 178
Intrinsic dimensions 179
Selection Algorithms 179

vi | Table of Contents

Srcset resource selection may change 180
Feature detection 180
currentSrc 181

Client Hints 181
Are Responsive Images “Done”? 181

Background Images 181
Height descriptors 182

Responsive Image File Formats 183
Progressive JPEG 183
JPEG 2000 184
Responsive Image Container 184
FLIF 184

Summary 184

12. Client Hints. 185
Overview 186

Step 1: Initiate the Client-Hints exchange 187
Step 2: Opt-in and subsequent requests 187
Step 3: Informed response 188

Components 188
Viewport-Width 188
DPR: (Density Pixel Ratio) 189
Width 190
Downlink 191
Save-Data 192
Accept-CH 193
Content-DPR 193

Mobile Apps 196
Legacy Support & Device Characteristics 199

Fallback: “Precise Mode” with Device Characteristics + Cookies 199
Fallback: good-enough approach 200
Selecting the right image width 203

Summary 204

13. Image Delivery. 205
Image Dimensions 205
Image Format selection: Accept-negotiation, WebP, JP2000, Jpeg XR 208
Image Quality 211

Quality and Image Byte Size 211
Quality Index and SSIM 213
Selecting SSIM and Quality Use Cases 217
Creating Consensus on Quality Index 218

Table of Contents | vii

Quality Index Conclusion 219
Achieving cache offload: Vary & Cache-Control 220

Informing the client with Vary 221
Middle boxes, Proxies with Cache-Control (and TLS) 222
CDNs and Vary & Cache-Control 223
Near Future: Key 225

Single URL vs Multiple URLs 225
File Storage, Backup and Disaster-Recovery 226

Size on Disk 227
Cost of Metatadata 228

Domain Sharding & HTTP2 230
How do I avoid cache busting and redownloading? 232
How many shards should I use? 233
What should I do for HTTP/2? 233
Best Practices 235

Secure Image Delivery 236
Secure Transport of Images 236
Secure Transformation of Images 237
Secure Transformation: Architecture 239

Summary: Situational Delivery 241

14. Operationalizing Your Image Workflow. 243
Some Use Cases 243

The e-Commerce Site 243
The Social Media Site 244
The News Site 245

Business Logic and Watermarking 246
Hello, Images 247

Getting Started with a Derivative Image Workflow 248
ImageMagick 248
A Simple Derivative Image Workflow Using Bash 256
An Image Build System 259
A Build System Checklist 262

High-Volume, High Performance Images 262
A Dynamic Image Server 263
A Dynamic Image Server Checklist 266

15. Summary. 267
So….what do I do again? 267
Optimize for the mobile experience 268
Optimize for the different “users”: 268
Creating consensus 270

viii | Table of Contents

A. Raster Image Formats. 271

B. Common Tools. 273

C. Evolution of . 277

Table of Contents | ix

Preface

Colin Bendell

It’s hard not to feel hoodwinked when you pick up a book about images. Rest assured,
you will not be let down. Images are everywhere on the web. From user generated
content, to product advertisement, to journalism to security. Creating, design, layout,
processing and delivery of images are no longer the exclusive domain of our creative
teams. Images on the web are everyone’s concern.

This is a book that focuses on the essentials of what you need to deliver high perfor‐
mance images on the internet. This is a very broad topic and covers many domains:
from color theory, image formats, storage and management, operations delivery,
browser and application behavior, responsive web and many topics in between. With
this knowledge we hope that you can glean useful tips, tricks and practical theory that
will help you grow your business as you deliver high performance images.

Who Should Read This Book
We are software developers and wrote this book with developers in mind. Regardless
of your role, if you find yourself responsible for any part of the life cycle of images,
this book will be useful for you. It is intended to go both broad and deep, to give you
background and context while also providing practical advice that will benefit your
business.

What This Book Isn’t
There are a great number of things that this book will not cover. Specifically, it will
avoid topics in the creative process and image editing. It is not about graphic design,
image editing tools and the ways to optimize scratch memory and disk. In fact this
book will likely be a disappointment if you are looking for any discussion around
RAW formats or video editing. Perhaps that is an opportunity for another book.

xi

Navigating This Book
There is a lot of ground to cover when talking about high performance images.
Images are a complex topic and so we have organized the chapters into two major
sections: foundations and loading. In the foundation chapters we cover image theory
and how then how that applies to the different image formats. Each chapter is
designed to stand on its own, so with a little background knowledge you can easily
jump from one section to another.

Why We Wrote This Book
Thinking about images always reminds me of this one fishing trip where I met the
most cantankerous marlin in fresh water lakes of Northern Canada. The catch was so
big that it took nearly 45 minutes of wrestling to bring the fish aboard my canoe. At
times, I wondered if I was going to be dragged to the depths of the lake. It was a
whopping 1.5m long and weighed 35Kg!

Pictures! Or it never happened.

If I were you, I’d be skeptical of my claims. To be honest, I don’t believe what I just
wrote above. I’ve never been fishing in my life! Let alone the fact that Marlin live in
the warmer Pacific Ocean and not the spring fed lakes from the Atlantic Ocean. You
are probably more likely to find a 35Kg beaver than a fish that size.

Images are at the core of storytelling, journalism and advertising. We are good at re-
telling stories, but it can easily change from person to person. Remember the child‐
hood game of telephone where one kid whispers a phrase to the next person around a
circle. The phrase High Performance Images would undoubtedly be transformed to
baby fart fart in a circle of 8yr old boys. But if we include a photograph, then the story
gains fidelity and less likely to change. Images adds credibility to our stories.

The challenge is always the effort to create and communicate imagery. The story
above created an image in your mind using 369 characters. Gzipped that’s 292 Bytes
for a mental image. But that image was just words and not reliable.

xii | Preface

Figure P-1. 292 Bytes to create an image in your minds eye

Figure P-2. In contrast, the photograph is 2.4 MBytes which reveals my fraud (Not me,
not Canada, somewhere warm)

Words can send images fast but are very prone to corruption and is low fidelity. You
probably have questions - in order to get more detail. Yet, unless you know anything
about Marlins, or the geography of Northern Canada, or know anything of my
angling expertise, you won’t really grasp how “fishy” my story sounds. To get that
detail you have to ask questions, questions that take time to send. To get a high qual‐
ity image in your mind, you need more time.

If only there was a more efficient way to communicate images; a way to communicate
with high performance, if you will.

Preface | xiii

1 Bailey and Bailey, 1999 (400 words per minute) and Omoigui, N., He, L., Gupta A., Grudin, J. and Sanocki, E.,
1999 (210 words per minute)

Figure P-3. How much time it takes to communicate image fidelity: graphical, written, &
verbal1

Historically creating images and graphics was hard. Cave paintings require special‐
ized mixtures of substances and are prone to fading and washing away. You certainly
wouldn’t want to waste your efforts creating a cave painting of a cat playing a piano!
Over the last century, photography has certainly become cheaper and less laborious
to produce. Yet, with each advance in image creation we have increased the challenge
of transmission. Just think of the complexity of adding images to a book, prior to
modern software. Printing an image would involve creating plates that would be
inked separately for each color used and then multiple plates pressed on the same
page - very inefficient!

With ubiquitous smartphones equiped with high quality cameras, we can take high
resolution images in mere milliseconds. And yet, despite this ease, it is still challeng‐
ing to send and receive photos. The problem is that our screen displays are high reso‐
lution and with high pixel density ratios; our websites and applications have richer
content; our cameras are capable of taking high quality photographs ; our image
libraries have grown and despite this it feels as though our ISPs and mobile networks
cannot keep up to the insatiable user demands for data.

xiv | Preface

It’s not just images, it is also the interfaces for our applications and websites. These
too are increasingly using graphics and images to aid the user in completing their
work more efficiently and more effectively.

Yet, if we cannot transmit these graphical interfaces efficiently or render them on the
screens with high performance then we are no better off than trying to do a Gopher
search on an old VIC-20. While any reference to dark age computing warms the
depths of my heart, I want to believe our technology has advanced us to be more
effective in our jobs and our ability to transmit images.

This is where we start - no more fish tales. We start with the question of how do we
communicate present images and graphics to a user with high performance. This
book is about high performance images but it is also a story. What is this story? It is
about rasters and vectors; icons graphics and bitmaps. It is the story of an evolving
communication medium. It is also the story of journalism, free speech and com‐
merce. Without high performance images how would we share cultural memes like
the blue & white (or was that gold and black?) dress or share the unsettling reality of
Arab Spring. We need high performance images.

Preface | xv

1 http://www.nngroup.com/articles/photos-as-web-content/

CHAPTER 1

The Case for Performance

Colin Bendell

Images are awesome. Which website would you prefer to navigate? Would you prefer
a text only site or one that has crisp layout and rich eye appealing content to inform
your purchases? Like most people, I’m sure you agree that the rich visual experience
is much preferred. On one condition however: that the rich experience doesn’t get in
your way; that it doesn’t interfere with whatever activity you are doing.

Numerous studies have concluded what we all know instinctively: * more images and
higher quality images lead to higher user engagement and greater conversions. * For‐
rester research has noted 75% increase in user expectations for rich content and
images on websites and applications: users demand images! * eBay notes in their
seller center that listings with larger images (>800px) are 5% more likely to sell. *
Facebook observes 105% higher comments on posts with photos over those without.
* Eyetracking studies done by Nielsen Norman Group also conclude that users will
engage most of their time with relevant images - when given the chance.

Users pay close attention to photos and other images that contain relevant information
but ignore fluffy pictures used to “jazz up” Web pages1.

—Jakob Nielson

Adding graphics and photos in your web or native applications is easy. There are
bountiful tools that help you edit photos and design graphics. It is even easier to
embed these images in your websites and have full confidence that these images will
display, just as you intended.

The volume of images being served to end users is growing at an astonishing rate. At
the time of writing this, Akamai serves over 1,500,000,000,000 (1.5 trillion) images

1

each day to the people on this planet — not including the use of favicon.ico. More
astounding is that both the quantity and size of these images are increasing at an
astonishing rate. If you sit still and stare at your smartphone I’m sure you will almost
be able to see the images grow before your eyes.

Arguably the number of humans on the internet have increased at staggering rate. In
the same time that we have added over 600 million people to the internet and over 1
billion smartphones, the collective web have also doubled the volume of images on an
average web page. In just 3 years, according to HTTP Archive, the average image has
grown from 14 KBytes to 24 KBytes. That’s a whopping 1.4 MBytes per web page.
This average assumes that users visit sites with the same distribution as HTTP Archi‐
ve’s index. The reality is that users visit sites with more images more frequently (par‐
ticularly social media sites). This means that an average visited website likely has a
much higher volume of images.

Only font growth outpaced image growth - both driven by superior layout and
design. Curiously, many of the most common fonts used are icon fonts - images in
disguise.

Figure 1-1. Growth rate Year-Over-Year

2 | Chapter 1: The Case for Performance

Figure 1-2. Images have doubled in size from 2012-2015

Not surprising, Images make up 63% of the average Web page download bytes. Inter‐
estingly this hasn’t changed much as a percentage over time.

Figure 1-3. HttpArchive.org webpage composition (2015)

The Case for Performance | 3

What about Mobile Apps?
So far we’ve talked about the impact of images on Web pages, but what about mobile
and native applications? On the surface, mobile apps, like those on Android and iOS,
appear different. Yet they suffer from the same challenges as the browser and web‐
pages.

Apps can be different from Web sites: Apps pre-position their images by containing
them into the packaged archive like an ipa or apk. On the other hand, the image for‐
mats and image loaders that modern smartphones use are standing on the shoulders
of the same technology that browsers have evolved to use. Even apps that don’t load
over the network are concerned about how quickly they can load and display on the
device.

Many apps are not network aware - like unit converters or offline games. Yet there are
many apps, including news, shopping and social media that do depend on network
access for the rich content like images. In fact, since most of these apps don’t have to
send JavaScript and CSS like their webpage counterparts, the amount of images as a
percentage of traffic is just as much a concern. Consider a recent profiling of the
CNN application. In an average session (reading headlines and one article) you see a
similar breakdown in content types.

Figure 1-4. Content breakdown on the CNN mobile app

4 | Chapter 1: The Case for Performance

Speed Matters
It can’t be said enough: speed matters! Numerous studies have shown the impact of
web page performance to your business. Faster websites increase user engagement,
revenue and can even drive down COGS. Conveniently, WPOstats.com maintains an
up to date repository of these studies and experiments. The bottom line is that the
faster a webpage the more money you’ll make.

Figure 1-5. Case studies and experiments demonstrating the impact of web performance
optimization (WPO) on user experience and business metrics.

Fortunately modern web browsers use preloaders to rapidly discover and download
images (though at a lower priority compared to more important resources). Addi‐
tionally image loading doesn’t block the rendering and interaction of a webpage. Sim‐
ilar techniques are available for native apps as well.

The average internet connection is ever increasing in bandwidth and latency decreas‐
ing. This is good news for loading web pages! The downside is that it isn’t growing as
fast as images or user demand. Even more challenging is that a growing percentage of
web traffic happens over cellular connections. Consider that cellular is ultimately a
shared medium. There is only so much spectrum and you share it with the people

Speed Matters | 5

around you on the same tower. Even as each generation of cellular technology
emerges, the new bandwidth discovered quickly erodes as more people utilize the
new technology. OpenSignal conducted a study in 2014 of the average LTE connec‐
tion in the UK. As you would expect, early adopters of LTE started happy, but within
a year were probably grumpy because every tween was eating away at their precious
bandwidth capacity.

Do images impact speed of websites?
Despite browser optimizations to load images in the background network perfor‐
mance can impact not just the loading of the images proper, but also impact the load‐
ing of the webpage itself. If we removed all images from the top 1,000 websites, these
sites would load 30% faster on average over 3G. I sure hope those images weren’t
important to selling your product. Clearly we don’t want to turn off images and
return to the days of the Lynx browser.

Figure 1-6. Websites without images load 30% faster on average over 3G.

Beautiful images and rich interfaces add value; they are clearly not going away. Fortu‐
nately there are many techniques and methods to improve performance of this rich
content. Before we dive into the options, it is important to understand the scope of
the problem we are charged with solving. To do this we need to step into our wayback
machine.

Lingering Challenges
The following chapters will explore how to balance the highest quality image with
performance. Specifically how to select the right size for the device and for the net‐
work. This is no simple task. We have many formats to choose from with different
techniques to optimize for high performance. Complicating this further is the net‐
work conditions. How do we factor in latency or low bandwidth in our decision of

6 | Chapter 1: The Case for Performance

what to serve a user to give the best experience? And what about our Infrastructure &
Operations teams who have to deal with the complexity of the many images now
stored, processed and included in their Disaster Recovery plan? There are many fac‐
tors to balance to deliver high quality images.

Lingering Challenges | 7

PART I

Image Files and Formats

Colin Bendell

This first part of this book focuses on image core knowledge essential for image load‐
ing. It includes discussion on color theory, image types, formats, and the capabilities.
Unfortunately there isn’t a single solution for digitally encoding images. Understand‐
ing these complexities and the many uses cases is important before addressing image
loading. Depending on your familiarity with these subjects, it might be tempting to
skip over some chapters and jump straight to Part II. Don’t feel bad. These chapters
are intended to be used as reference and help you navigate the complexities of bring‐
ing high quality images to your users.

CHAPTER 2

The Theory Behind Digital Images

Yoav Weiss

Images are an essential part of human history. Film-based photography has made the
creation of images easy — it captures a moment in time by allowing light to go
through a lens and hit film, where an array of minuscule grains of silver-based com‐
pound that change their brightness as a response to light intensity.

With the advent of computers, the digitization of photos soon followed, initially by
scanning printed images to digital formats, then followed by digital cameras proto‐
types.

Eventually, commercial digital cameras started showing up alongside film-based ones,
and ended up replacing them in the public’s eye (and hand). Camera phones also
contributed to that, with most of us now walking around with high resolution digital
cameras in our pockets.

The digital camera was very similar to the film-based one, only they had a matrix of
light sensors replacing the silver grains in capturing light beams. These photosensors
then send electronic signals representing the various colors captured to the camera’s
processor, which stores the final image in memory as a bitmap — a matrix of pixels —
before usually converting it to a more compact image format. This kind of image is
usually referred to as a photographic image, or even more commonly, a photo.

But that’s not the only way to produce digital images. Humans wielding computers
can create images without capturing any light by manipulating graphic creation soft‐
ware, capturing screenshots or many other means. We usually refer to such images as
computer generated images or CGI.

This chapter will discuss digital images and the theoretical foundations behind them.

11

Digital image basics
In order to properly discuss digital images and the various formats throughout this
book, some familiarity with the basic concepts and vocabulary is required.

We will discuss sampling, colors, entropy coding, and the different types of image
compression and formats. If this sounds daunting, fear not. This is essential vocabu‐
lary that we need in order to dig deeper and understand how the different image for‐
mats work.

Sampling
We learned earlier that digital photographic images are created by capturing light and
transforming it into a matrix of pixels. The size of the pixel matrix is what we refer to
when discussing the image’s dimensions — the number of different pixels that com‐
pose it.

If we look at light before it is captured, it is a continuous, analog signal. In contrast, a
captured image of that light is a discrete, digital signal. The process of conversion of
the analog signal to a digital one involves sampling, when the values of the analog sig‐
nal are sampled in regular frequency, producing a discrete set of values.

Our sampling rate is a tradeoff between fidelity to the original analog signal and the
amount of data we need to store and submit. Sampling plays a significant role in
reducing the amount of data digital images contain, enabling their compression. We’ll
expand on that later on.

Figure 2-1. To the left, a continous signal. To the right, a sampled discrete signal.

Image Data Representation
The simplest way to represent an image is by using a bitmap — a matrix as large as
the image’s width and height, where each cell in the matrix represents a single pixel
and can contain its color for a color image or just its brightness for a grayscale image.
Images that are represented using a bitmap (or a variant of a bitmap) are often
referred to as raster images.

12 | Chapter 2: The Theory Behind Digital Images

Figure 2-2. Each part of the image is composed of discrete pixels, each one with its own
color.

But how do we digitally represent a color? To answer that we would need to get famil‐
iar with…

Color spaces
We’ve seen above that a bitmap is a matrix of pixels, and each pixel represents a color.
But how do we represent a color using a numeric value?

In order to dive into that, we’ll need to take a short detour to review color theory
basics. Our eyes are built similarly to the digital camera we discussed earlier, where
the role of photosensitive electronic cells is performed by light sensitive pigmented
biological cells called rods and cones. Rods operate in very low light volumes and are
essential for vision in very dim lighting, but play almost no part in color vision.
Cones on the other hand, operate only when light volumes are sufficient, and are
responsible for color vision.

Humans have three different types of cones, each one responsible for detecting a dif‐
ferent light spectrum, and therefore, for seeing a different color. These three different
colors are considered primary colors: red, green and blue. Our eyes use the colors the
cones detect (and the colors they don’t detect) to create the rest of the color spectrum
that we see.

Digital image basics | 13

One more interesting characteristic of human vision is that its sensitivity to light
changes is not linear across the range of various colors. Our eyes are significantly
more sensitive when light intensity is low (so in darker environments) than they are
when light intensity is high. That means that humans notice changes in darker colors
far more than they notice changes in light colors.

Cameras capture light differently. The intensity of light that they capture is linear to
the amount of photons they get in the color range that they capture. So, light intensity
changes will result in corresponding brightness changes, regardless of the initial
brightness.

That means that if we represent all color data as captured by our cameras using the
same number of bits per pixel, our representation is likely to have too many bits per
pixel for the brighter colors and too few for the darker ones.

A process called Gamma Correction is destined to bridge that gap between linear
color spaces and “perceptually linear” ones, making sure that light changes of the
same magnitude would be equally noticeable by humans, regardless of initial bright‐
ness.

Figure 2-3. A view of winter-time French countryside, Gamma corrected on the left and
without Gamma correction on the right.

Additive vs. Substractive
There are two types of color creation: additive and subtractive. Additive colors are
colors that are created by a light source, such as a screen. When a computer need a
screen’s pixel to represent a different color, it adds the primary color required to the
colors emitted by that pixel. So, the “starting” color is black (absence of light) and
other colors are added until we reach the full spectrum of light, which is white.

Conversely, printed material, paintings and non-light-emitting physical objects get
their colors using a subtractive process. When light from an external source hits these
materials, and only some light wavelengths are reflected back from the material and

14 | Chapter 2: The Theory Behind Digital Images

hit our eyes, creating colors. Therefore, for physical materials, we often use other pri‐
mary subtractive colors, which are then mixed to create the full range of colors. In
that model, the “starting” color is white (the printed page), and each color we add
subtracts light from that, until we reach black when all color is subtracted.

As we can see from the above, there are multiple ways to recreate a sufficient color
range from the values of multiple colors. These various ways are called color spaces.
Let’s describe some of the common ones.

Figure 2-4. Additive colors created by light vs. substractive colors created by pigments.

RGB (Red, Green & Blue)
RGB is one of the most popular color spaces (or color space families). The main rea‐
son for that is that screens, which are additive by nature (they emit light, rather than
reflect light from an external light source), use these three primary pixel colors to cre‐
ate the range of visible colors.

The most commonly used RGB color space is sRGB, which is the standard color
space for the W3C, among others. In many cases, it is assumed to be the color space
used for RGB unless specified otherwise. Its gamut (the range of colors that it can
represent) is more limited than other RGB color spaces, but it is considered a baseline
that all current color screens can produce.

Digital image basics | 15

Figure 2-5. The sRGB gamut.

CMYK (Cyan, Magenta, Yellow & Key)
CMYK is a subtractive color space which is most commonly used for printing. The
“Key” component is simply black. It has a wider gamut than sRGB, so it can show
more colors, especially in the green-blue hues. Instead of having three components
for each pixel as RGB color spaces do, it has four components. The reasons for that
are print-related practicalities. While in theory the black color could be achieved in
the subtractive model by combining cyan, magenta and yellow together, in practice
the outcome black is not “black enough”, long to dry, and too expensive. Since black
printing is quite common, that resulted in a black component being added to the
color space.

YCbCr
YCbCr is actually not a color space on its own, but more of a model that can be used
to represent gamma corrected RGB color spaces. The “Y” stands for gamma correc‐
ted luminance (the brightness of the sum of all colors), “Cb” stands for the chroma
component of the blue color and “Cr” stands for the Chroma component of the red
color.

RGB color spaces can be converted to YCbCr using a fairly simple mathematical for‐
mula.

16 | Chapter 2: The Theory Behind Digital Images

Figure 2-6. Formulas to convert from RGB to YCbCr

One advantage of the YCbCr model over RGB is that enables us to easily separate the
brightness parts of the image data from the color ones. The human eye is more sensi‐
tive to brightness changes than it is to color ones, and the YCbCr color model enables
us to harness that to our advantage when compressing images. We will touch on that
in depth later in the book.

Figure 2-7. Winter-time French countryside. Top to bottom, left to right: Full image, Y
component, Cb component and Cr component.

YCgCo
YCgCo is conceptually very similar to YCbCr, only with different colors. Y still stands
for gamma corrected luminance, but Cg stands for the green chroma components
and Co stands for the orange chroma component.

Digital image basics | 17

YCgCo has a couple of advantages over YCbCr. The RGB⇔YCgCo transformations
are mathematically (and computationally) simpler than RGB⇔YCbCr. On top of
that, YCbCr transformation tends to lose some data due to rounding errors, whereas
the YCgCo transformations do not, since they are “friendlier” to floating point frac‐
tional arithmetic.

Figure 2-8. Formula to convert from RGB to YCgCo. Note the use of powers of 1/2,
which makes this transformation easy to compute and float-friendly.

There are many other color spaces and models, but going over all of them is out of
the scope of this book. The color models above are all we need to know in order to
further discuss images on the web.

Figure 2-9. Winter-time French countryside. Top to bottom, left to right: Full image, Y
component, Cg component and Co component.

18 | Chapter 2: The Theory Behind Digital Images

Bit Depth
Now that we’ve reviewed different color spaces, which can have a different number of
components (three for RGB, four for CMYK) let’s address how precise each of the
components should be.

Color spaces are a continous space, but in practice, we want to be able to define coor‐
dinates in that space. The unit measuring the precision of these coordinates for each
component is called bit depth — it’s the number of bits that you dedicate to each one
of your color components.

What should that bit depth be? Like everything in computer science, the correct
answer is “it depends”.

For most applications, 8 bits per components are enough to represent the colors in a
precise enough manner. In other cases, especially for high fidelity photography, more
bits per components may be used in order to maintain color fidelity as close to the
original as possible.

Color profiles
How does the encoder know which color space we referred to when we wrote down
our pixels? That’s where something called color or ICC (International Color Consor‐
tium) profiles come in.

These profiles can be added to our images as meta data and help the decoder accu‐
rately convert the colors of each pixel in our image to the equivalent colors in the
local display’s “coordinate system”.

In case the color profile is missing, the decoder cannot perform such conversion, and
as a result, its reaction varies. Some browsers will assume that an image with no color
profile is in the sRGB color space and will automatically convert it from that space to
the local display’s color space. At the same time, other browsers will send the image’s
pixels to the screen as they are, effectively assuming that the color profile the images
were encoded in matches the screen’s. That can result in some color distortion, so in
case color fidelity is important, color profiles are essential for cross-browser color
correctness.

On the other hand, adding a color profile can add a non-negligable number of bytes
to your image. A good tradeoff is probably to make sure your images are in the sRGB
color space and add a fairly small sRGB color profile to them.

We will discuss how you can manage and control your images’ color profiles more in
the Operationalizing Your Image Workflow chapter.

Digital image basics | 19

Alpha
We discussed all the possible options we have to represent colors, but we left some‐
thing out. What about the possibility to represent lack of color?

In some cases we want parts of our image to be transparent or translucent, so that our
users will see a non-rectangular image, or otherwise will be able to see through the
image onto its background.

Figure 2-10. An image with an alpha channel over different backgrounds. Note the dif‐
ferent colors of the dice edges.

The representation of the absence of color is called an alpha channel. It can be con‐
sidered as a fourth color, where the zero value means that the other three colors are
fully transparent, and a maximal value means that the other three colors a fully visi‐
ble.

Frequency domain
As we now know, we can break our images into three components: one brightness
component and two color ones. We can think of each one of these components as a
two dimensional function that represents the value of each pixel in the spatial
domain, where the X and Y axis are the height and width of the image, and the func‐
tion’s value is the brightness/color value of each pixel.

20 | Chapter 2: The Theory Behind Digital Images

Figure 2-11. The Y component of an image, plotted as a 2D function

As such, we can apply certain mathemetical transforms on these functions, in order
to convert them from the spatial domain into the frequency domain. A frequency
domain based representation gives us the frequency in which each pixel value is
changing rather than its value. Conversion to the frequency domain can be interest‐
ing, since it enables us to separate high frequency brightness changes from low fre‐
quency changes.

It turns out that another characteristic of human vision is that we notice high fre‐
quency brightness and color changes significantly less than we notice low frequency
ones. If brightness or color is changing significantly from one pixel to the next, and
then back again, our eye will tend to “mush” these neighbouring pixels into a single
area with a overall brightness value that is somewhere in between.

We will expand on how this is done and used when we talk about JPEGs in the JPEG
chapter.

Image Formats
In the following chapters we will discuss the various image formats that are in com‐
mon use today. But before we can dive into the details of each one of the formats, let’s
explore the slightly philosophical question: What is image compression and why it is
needed?

Why Image-Specific Compression?
As you may have guessed, image-compression is a compression technique targeted
specifically at images. While many generic compression techniques exist, such as
gzip, LZW, LZMA, Bzip2 and others, when it comes to raster images, we can often do
better. These generic compression algorithms work by looking for repetitions and
finding better (read: shorter) ways to represent them.

Image Formats | 21

While that works remarkably well for text and some other types of documents, for
most images, that’s not enough. That kind of compression can reduce the number of
used bytes for bitmap images that have a lots of pixels of exactly the same color right
next to one another. While that’s great, most images — especially those representing
real-life photography — don’t exhibit these characteristics.

So, pretty early on, various image compression techniques and related formats began
to form and eventually a few formats were standardized upon. Many of these image
compression techniques use generic compression techniques internally, but do so as
part of a larger scheme that maximizes their benefits.

Raster vs. vector
Raster images vs. vectori based ones present the first fundamental divide in regards to
image formats and compression techniques. The first fundamental divide we would
discuss with regard to image formats and compression techniques is that of raster
images vs. vectorial based images.

As previously mentioned, a raster image is comprised from a rectangular matrix
called a bitmap. Each value in that matrix is representing the color of a certain pixel
that the computer can then copy onto its graphics memory in order for it to be pain‐
ted to the screen.

Unlike raster, vector images don’t contain the colors of individual pixels. Instead, they
contain mathematical instructions that enable the computer to calculate and draw the
image on its own.

While vector images can have many advantages over raster images is various scenar‐
ios, raster images are more widely applicable. They can be used for both computer
generated graphics as well as real life photos, whereas vector images can only be effi‐
ciently used for the former.

Therefore, throughout the book, unless specified otherwise, we will mostly be refer‐
ring to raster images, with the main exception being the SVG and Vector Images
chapter.

Lossy vs. Lossless Formats
Another characteristic that separates the various formats is whether or not they incur
a loss of image information as part of the compression process. Many formats per‐
form various “calculated information loss” in order to reduce the eventual file size.

Quite often that loss in image information (and therefore image precision and fidelity
to the origin) is aiming to reduce information that is hardly noticed by the human
eye, and is based on studies of human vision and its characteristics. Despite that, it’s

22 | Chapter 2: The Theory Behind Digital Images

not unheard of for precision loss to be noticeable, which may be more critical for
some applications than others.

Therefore, there are both lossy and lossless image formats, which can answer those
two different use-cases: image compression while maintaining 100% fidelity to the
original vs. compression that can endure some information loss while gaining com‐
pression ratio.

Lossy vs. Lossless Compression
While the formats themselves can be lossy or lossless, there are various examples
where images can undergo lossy as well as lossless compression, regardless of the tar‐
get format. Metadata that is not relevant to the image’s display (e.g. where the image
was taken, camera type, etc.) can be removed from images resulting in arguably loss‐
less compression even if the target format is lossy. Similarly, image information can
be removed from the image before it is saved as the target format, resulting in lossy
compression of a lossless image format.

One exception to that is that you cannot save an image losslessly in a format that only
has a lossy variant. This is because these formats usually apply some degree of loss as
part of their encoding process, and that cannot be circumvented.

We will further discuss lossless and lossy compression in the Operationalizing Image
Compression chapter.

Prediction
Often, the encoding and decoding processes both include some guess of what a pixel
value is likely to be, based on surrounding pixel values, and then the actual pixel
value is calculated as the offset from the “expected” color. That way we can often rep‐
resent the pixel using smaller, better compressible values.

Entropy encoding
Entropy encoding is very common generic compression technique and is used in
order to give the most frequent symbols the shortest representation, so that the entire
message would be as compact as possible. Entropy coding is often used in image
compression to further compress the data, after the main image specific parts are per‐
formed.

Since entropy encoding requires us to know what the most frequent symbols are,
there are typically two steps to entropy encoding. The first pass on the data gathers
statistics regarding the frequency of words in the data, and a dictionary translating
those words into symbols is created from the frequency data. Then the second pass
on the data is used to translate the words into shorter symbols using the previously
created dictionary.

Image Formats | 23

In some domains, where word frequency is known in advance with a good enough
approximation, the first step is skipped and a ready made frequency-based dictionary
is used instead. The result is potentially slightly larger data stream, but with the
advantage of a single-pass algorithm that is faster and possible to perform on-the-fly.

When compressing content using entropy encoding, the dictionary that was used for
the encoding has to be present in the decoder as well. Sending the dictionary data
adds a “cost” to entropy encoding that somewhat reduces its benefits.

Other types of entropy encoding permit adaptive encoding, where a single pass over
the data is enough. Such encodings count the frequency and assign codes to symbols
as they go, but change the code assigned to each symbol as its frequency changes.

Relationship with Video Formats
One important thing to keep in mind when discussing image formats is that they
share many aspects with video formats. In a way video formats are image formats
with extra capabilities, that enable them to represent intermediary images based upon
previous full images, with relatively low cost. That means that inside every video for‐
mat, there’s also an image format that is used to compress those full images. Many of
the new efforts in the image compression field come from adopting compression
techniques from the video compression world, or by adopting the still image encod‐
ing parts (called I-frame encoding) from video formats and building an image format
based on that (e.g. WebP and BPG, which we will discuss later on).

Comparing Images
Comparing the quality of an image compressed using different settings, different
encoders or different formats is not a trivial task when it comes to lossy compression.
Since the goal of lossy image compression is achieving quality loss, but one that, to
some extent, flies under the radar of most people, any comparison has to take both
the visual quality of the image and its eventual byte size into account.

If you’re trying to compare the quality and size of a single image, you can probably do
that by looking at the image output of different encoding processes and trying to
“rank” the various variants in your head, but that is hardly scalable when you have
many images to compare, and it is impossible to automate.

Turns out, there are multiple algorithms that try to estimate just that. They give vari‐
ous “scores” when comparing the compressed images to their originals, giving you
the opportunity to tune your compression to the visual impact compression would
have on the image, rather than to arbitrary “quality” settings.

PSNR and MSE

24 | Chapter 2: The Theory Behind Digital Images

The Peak Singal-to-Noise Ratio (PSNR) is a metric that estimates the ratio of error
introduced by the compression alogorithm. It often uses Mean-Square-Error (MSE)
in order to do that. In a nutshell, MSE is the average mathematical distance of the
pixels in the compressed image from the original one. PSNR calculates that and uses
the ratio between the maximum possible pixel value to the MSE in order to estimate
the impact of compression on the image.

That method works to estimate divergance from the original, but it’s not necessarily
tied to the impact of that divergence on the user’s perception of the compressed
image. As we’ll see later on, some formats rely on further compressing parts of the
image that are less noticeable by the human eye in order to achieve better compres‐
sion ratios with little perceived quality loss. Unfortunately, PSNR and MSE don’t take
that into account, and therefore may be skewed against such formats and techniques.

SSIM

Structural Similiarity (SSIM) is a metric that tries to take the image’s structure into
account when calculating the errors in the image. It operates under the assumption
that human visual perception is adapted to extract structural information, and there‐
fore deterioration in the structural contents of an image would means that it would
be perceived as a lower quality one.

The algorithm estimates structural changes by comparing the intensity and contrast
changes between pixel blocks in both the original and compressed image. The larger
the intensity and contrast differences are, the more “structural damage” the com‐
pressed image’s pixel blocks have sustained.

The result of the algorithm is an average of those differences, providing a score in the
range of 0 to 1.

When the result is 1 the compressed image is a perfect replica of the original image,
and when it is close to 0, very little structural data have remained.

So when using SSIM for compression tuning, you want to aim at close to 1 values for
“barely noticeable” compression, and lower values, if you’re willing to compromise
image quality for smaller files.

SSIM also has a multi-scale variant (so MS-SSIM), which takes multiple scales of both
images into account when calculating the final score.

There’s also the Stractural Dissimilarity metric (or DSSIM) which is very similar to
SSIM, but has an inverse range, where 0 is the perfect score and 1 means that the
compressed image has no resemblance to the original.

Butterugli

Butteraugli is a recent visual comparison metric from Google, which aims to be even
more accurate than SSIM in predicting perceived image quality. The metric is based

Comparing Images | 25

on various anatomic and physiological observations related to the human eye struc‐
ture.

As a result, the algorithm “supresses” the importance of some colors based on the dif‐
ferences in location and density of different color receptors, calculates frequency
domain image errors (while putting more weight on low frequency errors as they are
more visible than high frequency ones), and then clusters the errors, as multiple
errors in the same area of the image are likely to be more visible than a single one.

It is still early days for that metric, but initial results look promising.

Summary
In this chapter we went through the basic terms and concepts we use when discussing
digital images and the various image formats. In the following chapters we will make
good use of this knowledge by diving in to the details of what each format does and
how it does it.

26 | Chapter 2: The Theory Behind Digital Images

CHAPTER 3

Lossless Image Formats

Tim Kadlec

Earlier in the book, you learned about the difference between lossy and lossless image
formats. Lossy image formats lose image information during their compression pro‐
cess—typically taking advantage of the way we perceive images to shave away unnec‐
essary bytes. Lossless image formats, however, do not have that benefit. Lossless
image formats incur no loss of image information as part of their compression pro‐
cess.

GIF (It’s pronounced GIF)
When it comes to image formats on the web, the Graphic Interchange Format (GIF)
may no longer be the king of castle, but it certainly is its oldest resident. Originally
created in 1987 by CompuServe, the GIF image format was one of the first portable,
non-proprietary image formats. This gave it a distinct advantage over the many pro‐
prietary, platform-specific image formats when it came to gaining support and adop‐
tion on first Usenet, then the World Wide Web.

The GIF format was established at a time of very limited networks and computing
power and many of the decisions on how to structure the format reflect this. Unfortu‐
nately as we’ll see, this does limit both it’s ability to portray rich imagery as well as its
ability to compress.

Block by block
The building blocks of the GIF format are….well, they’re blocks. A GIF file is com‐
posed of a sequence of data blocks, each communicating different types of informa‐
tion. These blocks can be either optional or required.

27

The first two blocks of every GIF file are required, and have a fixed length and for‐
mat.

Header block
First up is the header block. The header takes up 6 bytes and communicates both an
identifier of the format and a version number. If you were to look at the header block
for any given GIF, you would almost certainly see one of the following sequences:

47 49 46 38 39 61

47 49 46 38 37 61

The first three bytes (47, 49, 46) are the GIF’s signature and will always equate to
“GIF”. The last three bytes specify the version of the GIF specification used—either
“89a” (38, 39, 61) or “87a” (38, 37, 61).

The first three bytes of the header block translate to “GIF”. The second three bytes
either translate to “89a” or “87a” depending on the version of the GIF standard the
image is taking advantage of. Generally speaking, image encoders will use the older
“87a” for compatibility reasons unless the image is specifically taking advantage of
some features from the 89a specification (such as animation).

Logical Screen Descriptor
Immediately following the header block is the logical screen descriptor. The logical
screen descriptor is 7 bytes long and tells the decoding application how much room
the image will occupy.

The first values communicate the canvas width and canvas height and can be found in
the first two pairs of bytes. These are legacy values that stem from an apparently belief
that these image viewers may render multiple images in a single GIF, on the same
canvas. Since the only time in practice that a GIF contains multiple images is if it is
animated, most viewers today ignore these values altogether.

By converting the next to a binary number, you get a series of boolean switches to
indicate four distinct pieces of data.

The first bit is the global color table flag. If the bit is 0, there is no global color table
being used in the image. If the bit is one, then a global color table will be included
right after the logical screen descriptor.

GIF’s employ color tables to help index the color for each pixel in an image. The color
table contains the colors in the image, as well as a corresponding index value starting
at zero. So if the first pixel of an image is the color green, then in the color table, the
color green will have a corresponding index value of 0. Now, whenever the image is
being processed and encoded, anytime that color is discovered, it can be represented
by the number zero.

28 | Chapter 3: Lossless Image Formats

GIF’s can feature both a global color table as well as a number of local color tables if
multiple images are being used (typically in animation). While the global color table
is not required, it is almost always included in the image.

The next three bits are the color resolution. The color resolution is used to help deter‐
mine the size of the global color table. The formula for the number of entries in the
global color table is “2 ^ (N+1)” where N is equal to the number indicated by in the
color resolution bits.

Understanding palettes
GIF is a palette-based image format; that is, the colors that the image uses have their
RGB values stored in a palette table. In the case of the GIF format, each table can hold
up to 256 entries. This 256 color limit made a great deal of sense when the GIF format
was established—hardware was far less capable than it is today—however it severly
limits GIF’s ability to display images that contain much detail.

Hacking GIF’s color limit
While GIF’s are restricted to a 256 color palette, it is actually technically possible for
you to save a true color GIF. Because the GIF format allows for multiple image blocks,
and each of those image blocks can have its own 256-color palette, you can techni‐
cally layer thess blocks on top of each other creating a true color image.

However, keep in mind that sometimes things that sound like a good idea really
aren’t. Creating a true color GIF is one of those things. Because of the layering and all
those color palettes, the resulting file will be gigantic. In addition, not all image edi‐
tors even handle mutliple image blocks correctly. Put it all together and creating true
color GIFs is a better answer to a really technical trivia question than it is an actual
approach.

LZW or the rise and fall of the GIF
The GIF format boasted a powerful lossless compression algorithm known as
Lempel-Ziv-Welch, or more commonly, LZW. This algorithm allowed GIF to
improve compression significantly over other lossless formats of the time, while
maintaining similar compression and decompression times. This file savings, paired
with GIF’s interlace option that allowed a rough version of an image to be displayed
before the full image has been transmitted, made GIF a perfect fit for the limited net‐
works and hardware of the web’s early days.

Unfortunately, the same compression algorithm that made it such a great format for
the web also directly led to GIF’s fall from grace. As it turns out, the algorithm had

Understanding palettes | 29

been patented by Unisys. In December of 1994, Unisys and Compuserve announced
that developers of GIF-based software (compression tools, etc) would be required to
pay licensing fees. As you might imagine, this didn’t sit well with developers and the
community at large.

There were many reprecussions of this announcement, but none more notable than
that it lead to the creation of the PNG image format in early 1995.

The PNG file format
Depending on who you ask, PNG either stands for Portable Network Graphics or,
displaying a little bit of recursive humor, PNG not GIF (we programmers have a very
finely tuned sense of humor). The PNG format was the communities response to the
licensing issues that arose around GIF.

The early goal of creating the format was pretty straightforward: create an open alter‐
native to GIF to avoid all the licensing issues. It didn’t take long for everyone involved
to realize that they wouldn’t be able to do this and maintain backwards compatibility
in anyway. While everyone loves a seamless fallback, the advantage was that this
meant the folks creating the PNG format could be more ambitious in their aims—if
they weren’t going to be able to maintain backward compatibility, why not make PNG
better in every possible way. For the most part, it would seem, they succeeded.

Understanding the mechanics of the PNG format
PNG’s are comprised of a PNG signature followed by some number of chunks.

PNG Signature
The PNG signature is an 8 byte identifier that remains identical for every single PNG
image. This identifier also works as a clever way to verify that the PNG file was not
corrupted during transfer (whether over the network or from operating system to
operating system). If the signature is altered in anyway, then the file has been corrup‐
ted somewhere along the line.

For example, the first value in the PNG signature is “137”—a non-ASCII, 8-bit char‐
acter. Because it is a non-ASCII character, it helps to reduce the risk of a PNG file
being mistakently identified as a textfile, and vice versa. Since it is 8-bits, it also pro‐
vides verification that the file was not passed over a 7-bit channel. If it was, the 8th bit
would be dropped and the PNG signature would be altered.

The full list of bytes of the PNG signature can be found below:

30 | Chapter 3: Lossless Image Formats

Table 3-1. PNG Signature Bytes

Decimal Value Interpretation
137 8-bit, non-ASCII character

80 P

78 N

71 G

13 Carriage-return (CR) character

10 Line-feed (LF) character

27 CTRL-Z

10 Line-feed (LF) character

Chunks
Other than the first 8 bytes that the PNG signature occupies, a PNG file is made
entirely of chunks—the building blocks of the PNG format.

Each chunk is comprised of the same set of four components:

1. Length field: The length field takes up 4 bytes and refers to the length of the
chunk’s data field.

2. Type field: The type field takes up 4 bytes and indicates to the decoder what type
of data the chunk contains.

3. Chunk data: The chunk data contains the bytes of data that the chunk is trying to
pass along. This can range anywhere from 0 bytes to 2GB in size.

4. Cyclic Redundancy Code (CRC): The CRC is a 4 byte check value. The decoder
calculates the CRC based on the chunk data and chunk type—the length field is
not used in the calculation. If the calculated CRC value matches the 4-byte CRC
field included in the chunk, the data has not been corrupted.

Cyclic Redundancy Code Algorithm
The actual algorithm used to calculate the CRC makes for pretty dry reading (says the
guy writing about the nuances of PNG compression) but if that’s your cup of tea, you
can find the exact alogrithm online.

Ancillary and Critical Chunks
The type field communicates a decent amount of information about the chunk within
its four little bytes. Each byte has a designated purpose. In addition, each byte has a

Understanding the mechanics of the PNG format | 31

simple boolean value of information that is turned on and off by the capitalization of
the character occupying that byte.

The first byte is the ancillary bit. Just as with blocks in the GIF format, not all chunks
are essential to succesfully display an image. Each chunk can either be critical (upper‐
case) or ancillary (lowercase). A critical chunk is one that is necessary to successfully
display the PNG file. An ancillary chunk is one that is not—instead it’s purpose is to
provide supporting information.

The second byte is the private bit. The private bit informs the decoder if the chunk is
public (uppercase) or private (lowercase). Typically private chunks are used for
application-specific information a company may wish to encode.

The third byte is a reserved bit. Currently this bit doesn’t inform the coder of any‐
thing other than conformance to the current version of PNG which require an upper‐
case value here.

The fourth byte is the safe-to-copy bit. This bit is intended for image editors and tells
the editor whether it can safely copy an unknown ancillary chunk into a new file
(lowercase) or not (uppercase). For example, an ancillary chunk may depend on the
image data in some way. If this is the case, it couldn’t be copied over to a new file in
case any of the critical chunks had been modified, reordered, or new critical chunks
had been added.

The capitalization means that two chunk types that look nearly identical can be very
different. Consider iDATA and IDATA. While they appear similar, the first byte
makes them distinct chunk types. iDATA is an ancillary chunk type—it’s not essential
to properly display the image. IDATA, on the other hand, starts with the first charac‐
ter capitalized indicating that it is a critical chunk type and, therefore, any decoder
should throw an error since it will not be able to display the image.

The PNG specification defines four critical chunk types, three of which are required
for a PNG file to be valid.

Table 3-2. Critical chunks

Chunk type Name Required
IHDR Image header Yes

PLTE Palette No

IDAT Image data Yes

IEND Image trailer Yes

The IHDR chunk is the first chunk in any PNG image and provides details about the
type of image (more on that in a bit); the height and width of the image; the pixel
depth; athe compression and filtering methods; the interlacing method; whether the

32 | Chapter 3: Lossless Image Formats

image has an alpha channel (transparency) as well as whether the image is truecolor,
grayscale or colormapped.

The IDAT chunk contains the compressed pixel data for the given image. Technically,
the IDAT chunk can contain up to 2GB of compressed data. In practice, however,
IDAT chunks rarely reach that size. Instead, they are broken up into several IDAT
chunks. Having smaller IDAT chunks allows the viewer to find the image trailer ear‐
lier. This in turn allows them to know the image is valid so that they can make deci‐
sions about how to handle the display of the image in question.

Imagine an IDAT chunk that is 2GB of data. As we learned early, each chunk has a
CRC that allows the viewer to verify that the data within that chunk is valid and not
corrupted. If the IDAT chunk is a full 2GB, the viewer must wait until that entire 2GB
has been downloaded before it can find the CRC and verify that the image is in tact.
If, instead, that IDAT chunk is split into several smaller chunks, then each chunk can
be verified quickly using its CRC. Not only can this speed things up, but it also helps
to prevent from the awkwardness that arises when a viewer attempts to display an
image only to find too late that the image data is corrupted. As a result, you will more
typically find IDAT chunks ranging from 8 to 32 kilobytes.

The final require chunk is the IEND chunk. IEND is as simple as you can possible get
when it comes to chunks—it contains no data at all. It’s entire purpose is to indicate
that there are no more chunks ni the image.

Pairing these three required chunks—IHDR, IDAT, IEND—with a PNG signature
gives you the simplest PNG file possible. In fact, these three chunks are all you need
to build a truecolor or grayscale PNG file.

However, like its predecessor GIF, PNG’s can also take advantage of color paletes. If a
color-pallette is being used, then the PNG file also needs to include the PLTE (palette)
chunk. The PLTE chunk houses a series of RGB values that may be included in the
image.

Interlacing
Both GIF’s and PNG’s have an interlacing feature that, similar to the progressive JPEG
feature you’ll learn about in the next chapter, enables an image to be rendered quickly
as a low-resolution version, and then with each successive pass after that, be progres‐
sively filled in. This interlacing approach allows the browser to give the user some
sense of the makeup of the image earlier than the typical top-down approach to
iamge rendering.

The GIF approach to interlacing is a one-dimensional scheme; that is, the interlacing
is based on horizontal values only, choosing to focus on a single row at a time. GIF’s
approach to interlacing has four passes. First, every eighth row is displayed. Then,
every eigth row is displayed again—this time offset by four rows from the first pass.

Understanding the mechanics of the PNG format | 33

For example in an image comprised of eight rows of pixels, pass one would display
row one and pass two would display row five.

The third pass displays every fourth row and the fifth and final pass displays every
other row. You can see how each row of an image is displayed using GIF interlacing
in the diagram below.

In contrast, PNG’s interlacing method is a two-dimensional scheme. Instead of ana‐
lyzing a single row at a time, PNG’s interlacing method involves looking at the pixels
within a row.

The first pass involves filling in every eighth pixel—both horizontally and vertically.
The second pass fills in every eighth pixel (again horizontally and vertically) but with
an offset of four pixels to the right. So given an image 8 pixels wide and 8 pixels high,
pass one would fill in the first pixel in the first row, and pass two would fill in the fifth
pixel on the first row.

The third pass fills in the pixels that are four rows below the pixels filled in by the first
two passes. Using the same 8px by 8px image, pass three would fill in the first pixel
on row five as well as the fifth pixel on row five.

The fourth pass displays the pixels that are offset by two columsn to the right of the
first four pixels, and the fifth pass fills in the pixels that fall two rows below each of
the prior displayed pixels.

Pass six fills in all remaining pixels on the odd rows, and the seventh and final pass
fills in all remaining pixels on the even row.

That’s a lot of numbers, and is quite possibly as clear as mud at this point. For those
more visually minded, the following diagram shows which pixels are filled in for each
pass.

While the PNG method of interlacing involves more passes, if you were to assume the
same network conditions and compression levels, an interlaced PNG image would be
on pass four by the time the GIF image had completed it’s first pass. Why? Because
the first pass of GIF interlacing involves 1/8th of the data of the GIF image itself—1 in
every 8 rows—whereas the first pass of PNG interlacing involves only 1/64th of the
data—1 pixel in every 64 pixels (8 horizontally multipled by 8 pixels vertically). The
impact is particularly noticeable on any images with text as the text becomes readable
much more quickly using the PNG approach to interlacing.

Progressive loading, higher-fidelity much earlier than the GIF counterpart—PNG
interlacing sounds great right? Unfortunately it’s not all sunshine and roses. The con‐
sequence of PNG’s approach to interlacing is that it can dramatically increase the file
size because of it’s negative impact on compression.

Remember all those filters we talked about? Because each pass in the PNG interlacing
process has different widths, it’s far simpler to treat each pass as a completely separate

34 | Chapter 3: Lossless Image Formats

image for filtering. The consequence is that the filtering process has less data to work
with, making compression less effective. On top of that, the benefits of progressively
loading images has been debated with no definitive conclusion. When you combine
the severe reduction in compression with the questionable value of interlacing in the
first place, PNG interlacing starts to make a lot less sense. Typical, you’re better off
ignoring interlacing on both PNG’s and GIF’s altogether.

There can be only one!
So given all the information above, here’s the ultimate question: when do you use a
GIF and when do you use a PNG? The answer is to favor PNG’s for all except the
smallest of images. Likewise, if you want to use animation at all, GIF will be the way
to go (though as we’ve seen above, you could argue MP4’s are even better).

Basically, while the GIF format helped pave the way for formats like PNG, it’s time
has come and gone. If you are ever considering putting a GIF in a page, take a step
back and consider if another alternative would work better.

Summary
In this chapter we looked at the two most popular and widely supported lossless
image formats on the web, GIF’s and PNG’s. We looked at how each format is enco‐
ded and compressed, as well as what tweaks we can make to maximize those savings.
Now that you know all about lossless formats, not only can you impress your friends
with your in-depth knowledge of filtering and compression algorithms, but you can
also start to save precious bytes with every image you produce.

In the next chapter, we’ll dig into JPEG’s—the web’s favorite lossy image format—and
learn how to optimize them as much as possible.

There can be only one! | 35

CHAPTER 4

JPEG

Yoav Weiss

JPEGs are the web’s most abundant image file format. According to the HTTP
archive , at the time of this writing, they make up 45% of all image requests, and
about 65% of image traffic. They are good candidates for full color images and digital
photos, making them the go-to image format whenever people want to share impor‐
tant moment in their lives (e.g. what they are having for brunch) over the Internet.
JPEG’s capability of lossily compressing images to save bandwidth (without losing too
much quality in the process) has gained the format worldwide adoption.

History
The need for photographic image compression was clear from the early days of per‐
sonal computing. Multiple proprietary formats were devised in order to achieve that,
but eventually, the need to share these images between users made the case for a stan‐
dard format clear.

Even before the Internet was widespread, corporations shared images with their users
over CD-ROMs with limited storage capacity, and wanted the users to be able to view
these images without installing proprietary software. In the early days of the Internet
(then mostly at 9600 baud speeds) it was apparent that a standard format could not
come soon enough.

A few years earlier, back in 1986, the Joint Photographic Experts Group was formed,
and after 6 years of long debates, published the ITU T.81 standard in 1992. The
group’s acronym was adopted as the popular name of this new format: JPEG.

37

The JPEG Format
The bytestream of files that we call JPEG nowadays (often with extensions such
as .jpg and .jpeg) is not a direct result of a single standard. They are composed of a
container and payload. The payload corresponds to the original T.81 standard (or, to
be more accurate, to a subset of that standard that is supported by browsers), while
the container is defined by other standards entirely, and is used to, well, “contain” the
payload and important metadata about the image that the decoder needs in order to
decode it.

Containers
The T.81 standard actually defined a standard JPEG container called JIF, for JPEG
Interchange Format. But JIF failed to gain traction, mostly because it was overly strict
and failed to provide some information that was required for the decoding process.
Luckily JIF was built with forward compatibility in mind, so it was soon succeeded by
other, backwards compatible, container formats.

There are two commonly used types of JPEG containers today: JFIF and EXIF.

JFIF stands for JPEG File Interchange Format, and is the older and more basic of the
two containers. EXIF stands for Exchangeable Image File Format, and can contain far
more metadata than JFIF, such as the location the image was taken, the camera’s set‐
tings, copyright, and other metadata that might be relevant for humans editing and
manipulating the image, but is not required to display the image in a browser.

Later on we will see how lossless optimization often trims that data in order to reduce
it’s size. What is common to all these container types is their internal structure, which
is somewhat similar.

They are all composed of…

Markers
Each JPEG file, regardless of container, is composed of markers. These markers all
start with the binary character 0xff, where the following character determines the
marker’s type. The JFIF and EXIF parts are contained in “application markers” that
contain segments that are used to contain these container-specific information.
Decoders that weren’t created to interpret or use JFIF or EXIF specific markers, just
ignore them and move on to the next one.

A few markers that are fairly important in the JPEG world:

• SOI - The “Start Of Image” marker represents the start of the JPEG image. It is
always the first marker in the file.

38 | Chapter 4: JPEG

• SOF - “Start Of Frame” represents the start of the frame. With one non-practical
exception, a JPEG file will contain a single frame.

• DHT - “Define Huffman Table” contains the Huffman tables. We’ll discuss them
in detail in the “Entropy Encoding” section.

• DQT - “Define Quantization Table” contains the quantizations tables which we’d
discuss in the “DCT” section.

• SOS - “Start Of Scan” contains the actual image data. We’ll discuss its content
below.

• EOI - “End Of Image” represents the end of the JPEG image, and should always
be the last marker of the file.

• APP - Application markers that enable extensions to the basic JIF format, such as
JFIF and EXIF.

The terms “image”, “frame”, “scan” and “component” can be confusing so let’s clarify
them. Each JPEG is a single “image”, which contains (in all practical cases) a single
“frame”, and a frame can contain one or many “scans”, depending on the encoding
mode, which we’ll discuss below. On top of that, each scan can contain multiple com‐
ponents. Quite the Russian doll.

One thing that is often surprising is that the JPEG’s pixel dimensions can be buried
rather deep inside the bytestream, as part of the Start Of Frame (SOF) marker’s
header. That means that for JPEGs with a lot of data before that marker (notably
EXIF-based JPEGs with a lot of metadata) the information regarding the JPEGs
dimensions may come in pretty late. That can be a problem if you’re processing the
JPEG on-the-fly, and particularly, large chunks of EXIF data can often mean that the
browser knows the image dimensions significantly later than it could have if the
(irrelevant) EXIF data wasn’t there.

The JPEG Format | 39

Figure 4-1. A JPEG with EXIF data

Since browsers use the presence of image dimensions for layout changes in certain
cases, as well as for triggering various internal processing events, the presence of
EXIF metadata in your images can have a significant negative impact on your site’s
performance.

Color transformations
Another key concept about JPEGs is that they convert the input image’s from its ori‐
gin RGB color model to the YCbCr color model, breaking the image into brightness,
blue chroma and red chroma components.

As we discussed in the Digital Image theory chapter, the human eye is more sensitive
to luminance details than it is to details in color components. That means that we can
generally get away with relatively high color component detail loss, while the same is
not always true for the luminance component.

JPEG takes advantage of that and applies different (and often harsher) compression
on the color components of the image.

As we’ve seen, one of the disadvantage of YCbCr vs other, more modern color models
(e.g. YCgCo) is that YCbCr is not binary fraction friendly. Those mathematical opera‐
tions, when carried out by a computer, are bound to lose some precision, and there‐
fore an RGB to YCbCr to RGB conversion is somewhat lossy in practice. That adds to
the lossy aspect of the format.

40 | Chapter 4: JPEG

Subsampling
One of the major ways that compression of the color components is performed is
called subsampling. Sampling, which we’ve learned about in the Digital Images
Theory chapter, is about fitting an analog signal (e.g. a real-life image of continuous
color) into an inherently discrete medium, such as a pixel bitmap, a process which by
definition losses detail and precision.

Subsampling is about losing even more precision during the sampling (or re-
sampling) process, resulting in less detail, entropy, and eventually bytes to send to the
decoder.

When we discuss subsampling in JPEG, we are most often talking about chroma sub‐
sampling: subsampling of the color components. Doing this reduces the color com‐
ponents sampling precision, which is OK since as we said, the human eye tends to be
more forgiving for lost color precision details.

How is subsampling done in JPEG? There are multiple patterns for possible subsam‐
pling in the JPEG standard. In order to understand what these subsampling patterns
mean, let’s start by drawing a 4x2 pixels row of the Cb (blue chroma) component.

Figure 4-2. A 4x2 pixel block

Now as you can see in the 4x2 pixels above, each has a different value. Subsampling
means that we coelesce the colors of some of them into a single intensity value.

The notation given to the various subsampling patterns is J:a:b, where:

• J is the number of pixels in each row. For JPEG that number is often 4. There are
always 2 rows.

• a represents the number of colors used from the first row.
• b represents the number of colors used in the second row.

But just in case you’re dozing off, let’s look at a few examples. Here are a few subsam‐
pling patterns with that notation.

The JPEG Format | 41

Figure 4-3. Various subsampling results of 4x2 pixel block from figure above

If you were paying attention, you may have noticed that the 4:4:4 example is exactly
the same as the original. In fact, 4:4:4 means that for each row of 4 pixels, 4 colors are
picked, so no subsampling is taking place.

Let’s take a look at what other subsampling patterns are doing.

4:4:0 means that color intensity is averaged between every two vertical pixels in the
4x2 block. In 4:2:2 intensity is averaged between two horizontally neighbouring pix‐
els. 4:2:0 averages intensity between the pixels in each 2x2 block inside the 4x2 block.
And finally, 4:1:1 means that intensity is averaged between four vertically neighbour‐
ing pixels.

The above example is tainted to make it clear that we’re talking about chroma sub‐
sampling, but you should note that each pixel in the example only represents the
intensity of one of the color components. That makes it significantly easier to average
the pixel color intensity without losing too much color precision.

Also, as you can notice from the examples above, not all subsampling method are cre‐
ated equal, and some are more likely to be noticeable than others. In practice, most
JPEGs “in the wild” exhibit either 4:4:4 subsampling (so no subsampling at all) or
4:2:0.

We have seen that we lose precision by subsampling, but what do we gain from it?

By getting rid of pixels in the chroma components we effectively reduce the size of
the color component bitmap by half for 4:2:2 and 4:4:0 subsampling and by three
quarters (!) for 4:2:0 and 4:1:1. That drop in pixel count equates to significant bytesize
savings as well as significant memory savings when dealing with the decoded image
in memory. We’ll further discuss these advantages in the “Image processing” chapter.

42 | Chapter 4: JPEG

Figure 4-4. To the left, the original (untainted) Cb component. To the right, the same
component after 4:2:0 subsampling

Entropy coding
As we discussed in the Digital Images Theory chapter, entropy coding is a technique
that replaces datastream symbols with codes, such that common symbols get shorter
codes.

The JPEG standard includes two different options for entropy encoders: Huffman
encoding and arithmetic encoding.

Huffman encoding has been around since 1952, and is based on the idea that once the
frequency of the symbols in the data stream is known, the symbols are sorted by their
frequency using a binary tree. Then each symbol gets assigned with a code that repre‐
sents it, and which cannot be confused with the other codes as part of the decoding
process. That is, no two or more codes, when concatenated, comprise another, longer
code. That fact avoids the need to add length signals for each code, and makes the
decoding process straightforward.

Huffman encoding is widely used and has lots of advantages, but suffers from one
downside: the codes assigned to each symbol are always comprised of an integer

The JPEG Format | 43

number of bits. That means that they cannot reflect with complete accuracy the sym‐
bol frequency, and therefore, leave some compression performance on the table.

Huffman encoding in detail
Let’s sink our teeth into a specific case in order to better understand what that means.
Let’s say we have an alphabet comprised of the letter A, B and C, and their probability
to appear in the stream is the same for all symbols: 1/3.

With Huffman encoding, we would use a tree structure to arrange them so that the
symbols with highest probability are closest to the tree’s root, and then assign symbols
accordingly. Since all symbols have the same probability, we’ll end up with the follow‐
ing tree:

Figure 4-5. A Huffman tree used to code said alphabet.

As we can see from the tree above, A would be assigned the symbol 0, B would be
assigned the symbol 10 and C would be assigned the symbol 11. That means we’re
“spending” more bits than needed on B and C, while “spending” less than required on
A. B and C are subsidizing A, if you will. Huffman encoding is still a huge win, but if
we compare the number of bits it takes us to encode a symbol, we’re not reaching this

44 | Chapter 4: JPEG

theoretical ideal due to this difference between each symbol’s probability and the
number of bits we encode it with.

Arithmetic encoding to the rescue!

Arithmetic encoding is able to encode a symbol using fractions of a bit, solving that
problem and achieving the theoretical encoding ideal. How does arithmetic coding
do that “fractions of a bit” magic? It uses an (extremely long) binary fraction as the
code representing the entire message, where the combination of the fraction’s digits
and the symbols probability enable decoding the message back.

Arithmetic encoding in detail
To illustrate the way that works, the encoding process starts with the current interval
being set to the range between 0 and 1, and with the output binary fraction set to 0.

Each symbol is then assigned a range on the current interval that corresponds with
the probability that it would appear in the data stream. For the current symbol in the
data stream, its lower limit is added to the output, and the current interval is set to the
range of the current symbol. The process then repeats itself until all symbols are enco‐
ded.

Figure 4-6. The process of encoding the message “CAB” in an alphabet comprised of A, B
and C using arithmetic encoding.

The JPEG Format | 45

Unfortunately, when it comes to JPEGs, Huffman encoding is the one that is most
often used, for the simple fact that arithmetic encoding is not supported by most
JPEG decoders, and specifically not supported in any browser. The reason for that
lack of support is that decoding of arithmetic encoding is more expensive than Huff‐
man (and was considered prohibitively expensive in the early days of JPEGs), and
that it was encumbered by patents at the time that JPEG was standardized. Those pat‐
ents are long expired, and computers are way better at floating point arithmetic than
they used to be in 1992, yet support in decoders is still rare, and it would also be prac‐
tically impossible to introduce arithmetic encoding support to browsers without call‐
ing these JPEGs a brand new file format (with it’s own MIME type).

But even if arithmetic encoding is rarely used in JPEGs, it is widely used in other for‐
mats, as we’ll see in the Browser Specific Formats chapter.

While entropy codings can be adaptive, meaning that they don’t need to know the
probabilities of each symbol in advance and can calculate them as they pass the input
data, Huffman in JPEG is not the adaptive variant. That means that often the choice is
between an optimized, customized Huffman table for the JPEG, that has to be calcu‐
lated in two passes over the data, and a standard Huffman table, which only requires
a single pass, but often produces compression results which are not as good as its cus‐
tom, optimized counterpart.

Huffman tables are defined in the DHT marker, and each component of each scan
can use a different Huffman table, which can potentially lead to better entropy encod‐
ing savings.

DCT
In the Digital Images Theory chapter we touched upon conversion of images from
the spatial domain to the frequency domain. The purpose of such a conversion is to
facilitate filtering out high frequency brightness changes that are less visible to the
human eye.

In JPEG, the conversion from the spatial domain to frequency domain and back is
done by mathematical functions called Forward Discrete-Cosine Transform (FDCT)
and Inverse Discrete-Cosine Transform (IDCT). We often refer to both as DCT.

How does DCT work?
DCT takes as its input a mathematical function and figures out a way to represent it
as a sum of known cosine functions. For JPEGs, DCT takes as input the brightness
function of one of the image components.

46 | Chapter 4: JPEG

Figure 4-7. The Y component of an image, plotted as a 2D function

How does DCT do its magic?

DCT defines a set of basis functions: special cosine functions which are orthogonal to
each other.

That means that:

• There’s no way to represent any of the waveforms that these functions create as a
sum of the other functions.

• There’s only one way to represent an arbitrary 1D function (like sound waves or
electrical currents) as the sum of the basis functions, multiplied by scalar coeffi‐
cients.

This allows us to replace any n value vector by the list of n coefficients that can be
applied to the basis functions to recreate the function’s values.

The DCT basis functions are ordered from the lowest frequency one to the left and
up to the highest frequency on to the right.

The JPEG Format | 47

Figure 4-8. The basis functions of 1 dimensional DCT

Each one of the DCT values is a scalar multiplier of one of the basis functions. The
first value, which correlates to the constant function we’ve seen earlier, is called the
DC component, since when discussing electrical currents, that constant function rep‐
resents the Direct Current part. All other values are called the AC components, since
they represent the Alternating Current component.

The reason we’re using electrical terms such as DC and AC is that one dimensional
DCT is often used to represent electrical signals, such as analog audio signal.

Since we’re talking about images, 1D DCT is not very interesting in and of itself, but
we can extend the same concept to two dimensional functions (such as the brightness
function of an image). As our basis functions we can take the 1D DCT 8 basis func‐
tions we’ve seen earlier and multiply them with each other to get 8x8 basis functions.
These functions can then be used in a very similar way to represent any arbitrary set
of 8x8 values as a matrix of 8x8 coefficients of those basis functions.

One small difference image data with regard to audio waves or electrical currents is
that our function’s possible output range is from 0 to 255, rather than having both
positive and negative values. We can compensate for that difference by subtracting
128 from our function’s values.

48 | Chapter 4: JPEG

Figure 4-9. The multiplication of 1D DCT basis functions creates the following 8x8
matrix of 2D basis functions.

As you can see in the upper left corner, the first basis function is of constant value.
That’s the two dimensional equivalent of the DC component we’ve seen in 1D DCT.
The other basis functions, due to the fact they result from multiplying our 1D basis
functions, are of higher frequency the further they are from that top left corner. That
is visualized above by the fact that their brightness values change more frequently.

Let’s take a look at the brightness values of the following 8x8 pixel block:

The JPEG Format | 49

Figure 4-10. A random 8x8 pixel block

240 212 156 108 4 53 126 215
182 21 67 37 182 203 239 243
21 120 116 61 56 22 144 191
136 121 225 123 95 164 196 50
232 89 70 33 58 152 67 192
65 13 28 92 8 0 174 192
70 221 16 92 153 10 67 121
36 98 33 161 128 222 145 152

Since we want to convert it to DCT coefficients, the first step would be to center these
values around 0, by substracting 128 from them. The result is

112 84 28 -20 -124 -75 -2 87
54 -107 -61 -91 54 75 111 115
-107 -8 -12 -67 -72 -106 16 63
8 -7 97 -5 -33 36 68 -78
104 -39 -58 -95 -70 24 -61 64
-63 -115 -100 -36 -120 -128 46 64
-58 93 -112 -36 25 -118 -61 -7
-92 -30 -95 33 0 94 17 24

Applying DCT on the above matrix results in

-109 -114 189 -28 17 8 -20 -7
109 33 115 -22 -30 50 77 79
56 -25 0 3 38 -55 -60 -59
-43 78 154 -24 86 25 8 -11
108 110 -15 49 -58 37 100 -66
-22 176 -42 -121 -66 -25 -108 5
-95 -33 28 -145 -16 60 -22 -37
-51 84 72 -35 46 -124 -12 -39

50 | Chapter 4: JPEG

Now every cell in the above matrix is the scalar coefficient of the basis function of the
corresponding cell. That means that the coefficient in the upper left corner is the
scalar of the constant basis function, and therefore it is our DC component. We can
regard the DC component as the overall brightness/color of all the pixels in the 8x8
block. In fact one of the fastest ways to produce a JPEG thumbnail that’s 1/8 of the
original JPEG is to gather all DC components of that JPEG.

We’ve seen that the coefficient order corresponds with the basis function order, and
also that the basis function frequency gets higher the further we are in the right and
downwards directions of the matrix. That means that if we look at the frequency of
the coefficients in that matrix, we would see that it increases as we get further away
from the top left corner.

Now, when serializing the coefficient matrix it’s a good idea to write the coefficients
from the lowest frequency to the highest. We’ll further talk about the reasons in the
Quantization section, but suffice to say that it would be helpful for compression. We
achieve that kind of serialization by following a zig-zag pattern, which makes sure
that coefficients are added from lowest frequency to the highest one.

Figure 4-11. The zig zag pattern used by JPEG to properly order lower frequency compo‐
nents ahead of higher frequency ones.

Minimal Compression Units
So, we can apply DCT to any 8x8 block of pixel values. How does that apply to JPEG
images that can be of arbitrary dimensions?

The JPEG Format | 51

As part of the DCT process each image is broken up into 8x8 pixel blocks called
MCUs, which stands for Minimal Compression Units. Each MCU undergoes DCT in
an independent manner.

What happens when an image width or height doesn’t perfectly divide by eight? In
such cases (which are quite common) the encoder adds a few extra pixels for pad‐
ding. These pixels are not really visible when the image is decoded, but are present as
part of the image data to make sure that DCT has an 8x8 block.

One of the visible effects of the independent 8x8 block compression is the “blocking”
effect that JPEG images get when being compressed using harsh settings. Since each
MCU gets its own “overall color” the visual switch between MCUs can be jarring and
mark the MCU barriers.

Figure 4-12. Same image with rough compression settings. Note the visible MCU blocki‐
ness.

Quantization
Up until now, we’ve performed DCT, but we didn’t save much info. We replaced rep‐
resenting sixty-four 1 byte integer values with sixty-four 1 byte coefficients. Nothing
to write home about when it comes to data savings.

So, where do the savings come from? They come from a stage called quantization.
This stage takes the above coefficients and divides them by a quantization matrix in
order to reduce their value. That is the lossy part of the JPEG compression, the part
where we discard some image data in order to reduce the overall size.

52 | Chapter 4: JPEG

Figure 4-13. Winter-time French countryside

Let’s take a look at the quantization matrix of the above image:

 3 2 8 8 8 8 8 8
 2 10 8 8 8 8 8 8
10 8 8 8 8 8 8 8
 8 8 8 8 8 8 8 8
 8 8 8 8 8 10 9 8
 8 8 8 8 8 9 12 7
 8 8 8 8 9 12 12 8
 8 8 8 8 10 8 9 8

But that image is the original that was produced by the digital camera, and is quite
large from a bytesize perspective (roughly 380KB). What would happen if we’d com‐
press that JPEG with quality settings of 70 to be 256KB, or roghly 32% smaller?

The JPEG Format | 53

Figure 4-14. Same image as above with a quality settings of 70

And its quantization matrix?

10 7 6 10 14 24 31 37
 7 7 8 11 16 35 36 33
 8 8 10 14 24 34 41 34
 8 10 13 17 31 52 48 37
11 13 22 34 41 65 62 46
14 21 33 38 49 62 68 55
29 38 47 52 62 73 72 61
43 55 57 59 67 60 62 59

As you can see from the above quantization matrices, they have slightly larger values
at the bottom right corner than at the upper left one. As we’ve seen, the bottom right
coefficients represent the higher frequency coefficients. Dividing those by larger val‐
ues means that more high frequency coefficients will finish the quantization phase as
a zero value coefficient. Also, in the q=70 version, since the dividers are almost eight
times larger, a large chunk of the higher frequency coefficients will end up discarded.

But, if we look the two images, the difference between them is not obvious. That’s
part of the magic of quantization. It gets rid of data that we’re not likely to notice any‐
way. Well, up to a point at least.

Compression Levels

Earlier we saw the same image, but compressed to a pulp. Wonder what the quantiza‐
tion matrix on that image looks like?

160 110 100 160 240 255 255 255
120 120 140 190 255 255 255 255
140 130 160 240 255 255 255 255
140 170 220 255 255 255 255 255
180 220 255 255 255 255 255 255

54 | Chapter 4: JPEG

240 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

We can see that almost all frequencies beyond the first 20 are guaranteed to be quan‐
tified to zero (as their corresponding quantization value is 255). And it’s even harsher
in the quantization matrix used for the chroma components:

170 180 240 255 255 255 255 255
180 210 255 255 255 255 255 255
240 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

It is not suprising then that the image showed such blockiness. But what we got in
return to that quality loss is an image that is 27KB or 93% (!!!) smaller than the origi‐
nal. And you could well argue that the result is still recognizable.

Note that the compression level and quality settings of the different JPEG encoders
mean that they pick different quantization matrices to compress the images. Also
worth noting that there’s no standard for what quantization matrices should be
picked and what quality levels actually mean in practice. So a certain quality setting in
one encoder can mean something completely different (and of higher/lower visible
quality) when using a different encoder.

One more thing of note is that encoders can (and often do) define a different quanti‐
zation matrix for different components, so it can apply harsher quantization on the
chroma components (which are less noticeable) than it would apply on the luma
component.

Dropping Zeroes

How does zeroing out the coefficients help us better compress the image data? Since
we are using a zigzag pattern in order to sort the coefficients from lower frequency to
high frequency, having multiple zero values at the end of our coefficient list is very
easy to discard, resulting in great compression. JPEG further takes advantage of the
fact that in many cases zero values tend to gather together, and adds limited form of
Run-Length-Encoding, which discards zeros and simply writes down the number of
preceding zeros before non-zero values. The remaining values after quantization are
also smaller numbers which are more amenable to entropy encoding, since there’s
higher probability that these values are seen multiple times than a random 0-255
brightness value.

Dequantization

The JPEG Format | 55

At the decoder, the reverse process happens. The quantified coefficients are multi‐
plied by the values of the quantization matrix (which is sent to the decoder as part of
the DQT marker) in a process called dequantization, which recontructs an array of
coefficients. The accuracy of these coefficients vs. the coefficients encoded varies
based on the values of the quantization matrix. As we’ve seen, the larger these values
are, the harsher the compression and therefore the further are the coefficients that the
decoder sees from the original ones.

Lossy by nature

It is important to note that the quantization process as well as the YCbCr color trans‐
formations are lossy processes. That means that if we’d take a JPEG and compress it to
the same quality (so, using the same quantization tables) over and over, we will see a
significant quality loss after a while. Each time we encode a JPEG, we lose some qual‐
ity comparing to the original images. That’s something worth bearing in mind when
constructing your image compression workflow.

Progressive JPEGs
Sequential JPEGs are JPEG in which each one of the MCUs is sent in its entirety in a
single scan. Such JPEGs can be decoded as they come, creating a partial image.

Figure 4-15. Image truncated after 60KB of data

Progressive JPEGs on the other hand are JPEGs which MCU data is sent over in mul‐
tiple scans, enabling the decoder to start decoding an approximative image of the
entire JPEG after receiving just one of the scans. Future scans further refine the image
details. That enables (in supporting browsers) to optimize for a first impression of the
user, without compromising on the eventual image quality.

56 | Chapter 4: JPEG

Figure 4-16. Image truncated after 60KB of data using progressive mode

We can see that the image is not perfect, but it is fairly complete.

There are two forms of sending JPEG data progressively: spectral-selection and
successive-approximation. Spectral-selection means that the parts of the MCU data
that are sent first are the low frequency coefficients in their entirety, where higher fre‐
quency coefficients are sent as part of a later scan. Successive-approximation means
that for each coefficient, its first few bits are sent as part of an early scan, while the
rest of its bits are sent at a later scan.

These two methods are not mutually exclusive, and can be combined for ideal pro‐
gressive results. Some coefficients are sent in their entirety, while other are sent over
multiple scans.

One significant advantage of progressive JPEGs is that each scan can have its own
dedicated Huffman table, which means that progressive JPEGs can have higher com‐
pression ratio, as each part of the JPEG can have a highly optimal Huffman table.

It is worth noting that, as the popular saying goes, there’s more than one way to scan a
JPEG. There’s a very large number of combinations for possible scans, differing from
one another in the coefficients that get sent in their entirety, the coefficients that get
sent progressively using successive approximation, as well as which components get
sent first.

This allows us to squeeze some extra compression from JPEGs. Finding the ideal
combination of progressive scans and their relative Huffman compression perfor‐
mance is a non-trivial problem. Fortunately, the search space is not huge, so smart
encoders just brute-force their way to find it. That is the secret of the lossless opti‐
mizations performed by tools like jpegrescan, which are now integrated as part of
MozJPEG (which we’ll soon discuss).

The JPEG Format | 57

Unsupported modes
The JPEG standard includes two more modes, but those are rarely supported by
encoders and decoders, meaning they are rarely of practical use.

Hierarchical mode
Hierarchical operation mode is similar to progressive encoding, but with a significant
difference. Instead of progressively increasing the quality of each MCU with each
scan being decoded, the hierarchical mode enables progressively increasing the spa‐
tial resolution of the image with each scan.

That means that we can provide a low-resolution image and then add data to it to
create a high-resolution image! Here’s how it works — the first scan is a low resolu‐
tion baseline image, while each following scan upsamples the previous scan to create
a prediction basis upon which it builds. This way, each scan other than the first only
sends only the difference required to complete the image to be of full resolution.

Unfortunately, it is not very efficient compared to other JPEG modes. It is also limited
in its utility, since upsampling can only be done by a factor of two.

Lossless mode
The lossless operation mode in JPEG is another rarely supported operation mode. It
is quite different from the other operation modes in the fact that it doesn’t use DCT
to perform its compression, but instead uses neighbouring pixels based prediction
(called Differential Pulse Code Modulation or DPCM) in order to anticipate the value
of each pixel, and encode only the difference between prediction and reality. Since the
difference tends to be a smaller number, it is then more susceptible to entropy coding,
resulting in smaller images compared to the original bitmap (but still significantly
larger than lossy, DCT based JPEGs).

JPEG Optimizations
As we’ve seen in the Digital Images chapter, lossy image formats such as JPEG (ignor‐
ing its irrelevant lossless mode of operation) can undergo both lossy and lossless
types of compression. In this section we’ll explore various optimization techniques
that are often used to reduce the size of JPEG images.

Lossy
As far as lossy optimization, JPEG images can be optimized by undergoing the regu‐
lar DCT based high-frequency reduction, only with more aggressive quantization
tables. Quantization tables with higher numeric values lead to higher loss of high-

58 | Chapter 4: JPEG

frequency brightness changes, resulting in smaller files but with more visible quality
loss.

Therefore a common way to optimize JPEGs is to decompress them and then recom‐
press them with lower “quality” values (which translate into higher numeric values
quantization tables).

Lossless
There are multiple ways to losslessly optimize a JPEG:

• Optimize its Huffman tables for current scans.
• Rescanning it, in order to achieve the ideal combination of progressive JPEG

scans and Huffman tables.
• Remove non-photographic data such as EXIF metadata.

We already discussed the first two when we talked about Huffman tables and progres‐
sive JPEGs, so we’ll expand on the third here.

EXIF metadata is added to JPEGs by most if not all modern digital cameras and by
some photo editing software. It contains information regarding when and where the
image was taken, what were the camera settings, copyright info and more. It may also
contain a thumbnail of the image, so that a preview image can be easily displayed.

However, when delivering images on the web, all that info (perhaps besides copyright
information) is not really relevant. The browser doesn’t need that information and
can display the image just fine without it. Furthermore, the user cannot access that
information unless they explicitly download the image to look for it (and disregard‐
ing very specific and niche use-cases, they would not care about it).

Also, as we saw earlier, that metadata may appears in the JPEG before the information
regarding the JPEG dimensions, which can lead to delays in the time the browser
knows what the image dimension are, and can result in a “bouncy” (or “bouncier”)
layout process.

So, it makes good sense to remove this metadata from web served images. There are
many software utilities that enable you to do that, and we’ll further discuss them in
the Operationalizing Image Compression chapter.

You should note that EXIF data may also contain orientation information which in
some cases can alter the image orientation when displayed in the browser. At least
today, most browsers (with the notable exception of mobile Safari) ignore orientation
information for images that are embedded in the document (either content images or
background images), but they are respecting it when the user navigates directly to the
image. Firefox also respects orientation information when an (experimental) CSS
property called image-orientation indicates that it should.

JPEG Optimizations | 59

Therefore, dropping orientation info can cause user confusion or content breakage in
various scenarios. It is advisable to maintain it intact when processing JPEGs.

MozJPEG
We already mentioned that JPEG has been around for a long while, and JPEG encod‐
ers existed for just as long. As a result, many of them have not been updated with new
features and improvements in recent years. At the same time, various browser-
specific image formats (which we’ll discuss in the next chapter) were sparking interest
in image compression and since their encoders were being written from scratch, they
included more recent algorithms, which presented a non-negligable part of the rea‐
son these formats performed better than JPEG.

Mozilla, reluctant to introduce support for these newer formats, decided to start
improving JPEG’s encoding and bring it up to the current state-of-the-art, so that we
can at least compare the different formats on a level playing field.

Hence they started the MozJPEG project, with the goal of increasing JPEG’s compres‐
sion performance and create smaller, similar quality files compared to other encoders,
without hurting JPEG’s compatibility with all existing browsers. In order to reduce
unnecesary development, and increase compatibility with existing image compres‐
sion workflow, the project is a fork of the libjpeg-turbo project and a drop-in replace‐
ment of it in terms of binary interface.

The project uses various encoding optimizations to achieve improved compression
rates:

• Lossless compression based on ideal progressive scan patterns which produce
smaller files.

• Trellis quantization - An algorithm that enables the encoder to pick better adap‐
ted quantization tables, in order to minimize image distortion for the current
image.

• Quality tuning based on visual metrics, such as SSIM.
• Deringing of black text over white background.
• And more.

Summary
In this chapter we looked into how JPEGs are constructed, which methods they use in
order to achieve their impressive compression ratios, and how can JPEGs be opti‐
mized further.

Practical takeaways of this chapter include:

60 | Chapter 4: JPEG

• Progressive JPEGs can show the full image in lower quality sooner, providing a
better user experience than sequential JPEGs.

• Progressive JPEG can have smaller byte size than sequential ones.
• JPEG encoders’ quality metric is often only an indication of the quantization

table used and its impact on various images may vary greately.
• Lossless optimization such as EXIF removal can have significant implications on

byte size as well as the browser’s ability to calculate the image’s layout as early as
possible.

• Chroma subsampling can significantly reduce the size of JPEG’s color compo‐
nents.

• JPEG’s compression is a lossy process, and each consecutive reencoding results in
some quality loss.

• If you have an image compression workflow that’s producing JPEGs, MozJPEG
should probably be a part of it.

In the next chapter we will see how other, newer image formats are taking similiar
methods further (by incorporating algorithmic knowledge that the compression
industry have accumulated since 1992), to accomplish even better compression ratios.

Summary | 61

CHAPTER 5

Browser Specific Formats

Nick Doyle

While the traditional image formats used on the web, GIF, JPEG, and PNG, have
served us well and will continue to be useful well in to the future, there are a number
of new formats that have been developed that can be particularly useful on the web
today. The most notable and useful of these formats are Google’s WebP, Microsoft’s
JPEG XR, and JPEG 2000. All three of these formats improve on the features of GIF,
JPEG, and PNG while often also improving compression and fidelity.

The biggest improvement these formats all provide to the web is that they all support
lossy compression with full transparency. Traditionally, to have an image on the web
with full transparency, the only option was to use PNG. While this enabled full trans‐
parency it came at the cost of dramatically heavier images because PNG’s compres‐
sion is lossless. Now, with these new formats, it’s possible to get the best of both
worlds: full transparency at a fraction of the byte size.

The second improvement WebP, JPEG XR, and JPEG 2000 provide is smarter and
fancier image compression. We’ve learned a lot about image compression since JPEG
was first introduced in 1992 and these three formats have capitalized on that. While
each of these formats uses a different approach to compression, they often outper‐
form JPEG at comparable fidelity levels for byte savings.

There’s one drawback to these formats though, at least on today’s web. Not all brows‐
ers supports these formats. Actually, for the most part, any of today’s major browsers
will support only one, if any, of these formats. This means that, if you want to use any
of these formats and get their benefits, you’ll need to be smart about how the images
get delivered. If you serve the wrong format to the wrong browser you’ll end up with
a broken image at the added expense of transferring all of those image bytes to the
end user for nothing. Bummer!

63

When these formats are used properly there are substantial byte savings to be had.
Let’s discuss these three new formats in more detail.

WebP
WebP, developed and promoted by Google, was the first browser-specific image for‐
mat to gain any substantial adoption and mindshare from web developers. It’s based
on Google’s VP8 video codec; specifically it wraps VP8’s intra-frame image coding in
a RIFF image container.

Today, there are effectively three different variations of WebP: Basic, Extended, and
Animated. The “basic” variation is very simple. It supports encoding a single lossy
opaque image, much like JPEG. The “extended” variation added support for lossless
compression and, more importantly, full transparency. Finally, “animated” WebP
images are built on top of the “extended” variation and add animation support; this
makes animated WebP images a good replacement for animated GIFs if the browser
has support.

These three variations show that WebP is happy to evolve to improve and add fea‐
tures but it also shows a tricky compatibility landscape. Different versions of different
browsers have varying support for the different variations of WebP.

WebP Browser Support
Browser support for WebP extends primarily to Google / Blink based browsers:
Chrome, Android Browser, and Opera. The support matrix looks like this today:

Table 5-1. WebP browser version support

Basic Extended Animated
Chrome (desktop) >= 17 >= 23 >= 32

Chrome (Android) >= 25 >= 25 >= 32

Chrome (iOS) >= 29 and < 48 >= 29 and < 48 No

Android >= 4.0 >= 4.2 No

Opera (desktop) >= 11.10 >= 12.10 >= 19

Safari No No No

Firefox No No No

Internet Explorer No No No

64 | Chapter 5: Browser Specific Formats

Basic Extended Animated
Edge No No No

WebP support on Chrome for iOS
Chrome for iOS brought dropped WebP support in the transition from UIWebView
to ios 8’s WKWebView. Using WKWebView brought performance and stability.
Unfortunately, WKWebView uses the native Safari rendering engine and does not
allow much in the way of customization. The result is that WebP support in iOS was
dropped in version 48. All versions of Chrome for iOS, however do support JPEG
2000.

Google suggests using the Accept HTTP request header and checking if it contains
image/webp to determine if a server should optionally serve a WebP image to a client.
While this works for many cases, it has problems relating to the evolving nature of
WebP. If a client sends an "Accept: image/webp" header, you can assume it supports
up to the “extended” variation of WebP but it is impossible to know (with the Accept
header alone) if the client supports WebP animation. If new features are added to
WebP (like improved VP9 coding) then this problem compounds and it will be
impossible to determine support by Accept header alone.

Because of this deficiency with the Accept header and because most other browser-
specific formats don’t use the Accept header, this author suggests that the most robust
solution generally is to, unfortunately, parse User-Agent strings to determine image
support in addition to the Accept header. The Accept header is discussed in more
detail in Chapter 13.

WebP Details
The most interesting variation of WebP when talking about optimizing for the web is
the “extended” variation. This variation is important because it supports both lossy
encoding and full transparency. With these two features, WebP becomes a great for‐
mat to replace both JPEG and PNG. You get the byte savings of JPEG (and then
some) and the transparency support previously only available in the byte-heavy PNG
format. The lossless compression modes are useful in many contexts but web perfor‐
mance isn’t particularly one of them. WebP offers good byte savings for it’s lossless
encoding when compared against other lossless encodings but the image weight is
usually impractical for normal web use. The lossless encoding features of WebP are
more interesting and relevant for image archiving purposes.

At it’s core, lossy WebP is encoded very similarly to how JPEG is encoded with some
major important differences. Like in JPEG encoding, the Discreet Cosine Transform

WebP | 65

(DCT) is also used in WebP encoding. Instead of JPEG’s 8x8 pixel blocks, WebP uses
4x4 pixel blocks for performing the DCT. WebP also allows for a variety of zig-zag
patterns to traverse the pixels in a block compared to JPEG’s single zig-zag pattern.
The biggest improvement over JPEG is that WebP will try to predict the pixels in a
block using pixels above and to the left of the block and a number of predetermined
prediction algorithms. Having made a prediction of a particular block, this block can
now be precisely described as a difference from this prediction. While JPEG applies
the DCT to the raw pixels, WebP applies the DCT to this prediction difference.
WebP’s approach means that the coefficients produced by the DCT are generally
much smaller and contain more zeros than JPEG’s approach. This is one of the pri‐
mary compression improvements of WebP over JPEG.

The second major difference WebP has against JPEG is the compression algorithm
used to encode all of these DCT coefficients. JPEG uses Huffman encoding whereas
WebP uses the superior Arithmetic encoding. The JPEG specification allows for
JPEGs to be encoded using Arithmetic encoding but this was never implemented by
anything other than very specialized encoders and decoders. The reason Arithmetic
encoding never caught on with JPEG is because, at the time, there were a number of
patents protecting the algorithm and licensing the technology would have been costly.
Because of this, virtually all JPEGs are encoded using Huffman encoding and chang‐
ing that would involve an almost impossible shift in JPEG compatibility and legacy
JPEG code. By the time WebP hit the scene, patents surrounding Arithmetic encod‐
ing had expired allowing for a fresh start.

WebP isn’t perfect though, there are two important features of JPEG that are missing
with (lossy) WebP. The first missing feature is configurable chroma subsampling. VP8
encoding specifies that a chroma subsampling of 4:2:0 will always be used; this means
that all WebP images are also encoded using 4:2:0 chroma subsampling. For the vast
majority of images this is a great choice and, among other benefits, provides very
sizeable byte savings with minimal visual degradation. There are a number of image
types, though, that don’t lend well to this aggressive chroma subsampling. Images
with hard edges between black or white and solid color often have noticeable artifacts
along these edges. With this chroma subsampling, there’s often a dark ring in the col‐
ored edge that is unacceptable to many people. This is most commonly seen with
solid colored text in images. The inability to configure chroma subsampling in WebP
means that either you have to live with this degradation in these types of images or
you have to use another image format for these images. Thankfully, there’s been
recent work towards improving WebP’s chroma subsampling. The latest version of
the cwebp tool offers a "-pre 4" option that uses a new chroma subsampling algo‐
rithm that dramatically reduces this degradation at the expense of longer image
encoding time.

The second important feature that JPEG has that is missing from WebP is progressive
loading. Instead of loading the image top to bottom, JPEG has the ability to load pro‐

66 | Chapter 5: Browser Specific Formats

gressively starting with an entire low quality image which then progressively
improves in quality as data is received. This ability to show an early full low quality
image is great for the perception of fast loading; it makes people think the image has
loaded much sooner than it really does. This feature is entirely absent from WebP. It
can be argued that WebP images load faster than a comparable JPEG simply because
WebP images are much lighter weight byte-wise. This argument doesn’t necessarily
hold up for large images, though, where it is more important to get a quicker sense of
completeness at the expense of lower fidelity (which will later be improved) than it is
to display the full fidelity final image line by line as the data comes in. The absence of
progressive loading also makes some more interesting optimizations impossible. For
example, with HTTP/2 it is possible to be clever about how image resources are pri‐
oritized and multiplexed. A smart HTTP/2 server might give a higher priority to the
beginning of an image that can be progressively loaded and a lower priority to the
remaining bytes. This allows the low quality portion of the image to load quickly
while also reducing bandwidth contention for other resources. This is, unfortunately,
impossible with WebP.

WebP Tools
The tooling for working with WebP images is pretty good; better than all of the other
tools for working with browser-specific image formats. The two main tools are lib‐
webp and ImageMagick. libwebp is, itself, a C library for encoding and decoding WebP
images but has useful standalone tools bundled with it. These tools are cwebp and
dwebp for encoding and decoding WebP images respectively. If you’re familiar with
cjpeg for creating JPEG images then cwebp will feel very familiar. ImageMagick
actually uses libwebp internally to provide WebP support. If you are already using
ImageMagick for some of your image processing then using it to take advantage of
WebP becomes very convenient.

JPEG XR
JPEG XR is Microsoft’s take on a new image format. The XR stands for extended
range, which was one of the primary goals of the format. JPEG XR allows for higher
bit depths per color channel than JPEG which leads to an extended range of possible
colors that can be represented. While this extended range is the feature prominent in
the format’s name, it isn’t the feature that’s most interesting from a web performance
perspective. Like WebP, the important features of JPEG XR above and beyond JPEG
are improved lossy encoding and transparency support making it a good replacement
for both JPEG and PNG images.

JPEG XR | 67

JPEG XR Browser Support
The only browsers that support JPEG XR today are Microsoft’s browsers, specifically
Internet Explorer 10 and higher and the new Edge browser. While Internet Explorer 9
does support JPEG XR partially, there were rendering bugs that made the format
unusable for most purposes. Internet Explorer 9 would display an unsightly grey bor‐
der around all JPEG XR images; this was fixed in Internet Explorer 10. The support
matrix looks like this today:

Table 5-2. JPEG XR browser version support
Internet Explorer >= 10

Edge Yes

Chrome No

Android No

Opera No

Safari No

Firefox No

Internet Explorer and the Edge browser will send an "Accept: image/jxr" header
with HTTP requests for images. This header could be used by a server to decide if a
JPEG XR image should be served to a client. Unfortunately Internet Explorer 10 and
earlier doesn’t send this header so, in general, it’s more practical to parse User-Agent
strings if you want to cover the widest supported user base.

JPEG XR Details
JPEG XR supports all of the important features of JPEG while improving lossy encod‐
ing byte savings and adding support for full transparency. Unlike WebP, JPEG XR
does support a full range of chroma subsampling options as well as support for pro‐
gressive loading.

A number of new approaches are taken to compress images using JPEG XR, many of
which are designed to enable — but not force — lossless encoding. Firstly, while JPEG
uses YCbCr to describe pixel data, JPEG XR uses a similar but slightly different color‐
space: YCgCo. Just as Cb is blueness and Cr is redness, Cg is greenness and Co is
orangeness. YCgCo accomplishes a lot of the same goals as YCbCr but is able to do so
in a completely lossless way. Secondly, instead of using the Discreet Cosine Transform
like JPEG, JPEG XR uses a modified version called Photo Core Transform (PCT).
PCT is similar to DCT except for the process is entirely lossless as well. All lossiness
in JPEG XR is entirely due to PCT coefficient quantization. A lossless JPEG XR image
is the special case where all quantizations are set to 1 — no quantization. JPEG XR
improves on JPEG by allowing a certain amount of overlapping when working with

68 | Chapter 5: Browser Specific Formats

blocks of pixels. This overlapping helps reduce the blocking effect infamous in low
quality JPEG images.

To improve compression, JPEG XR allows for different PCT coefficient ordering pat‐
terns instead of JPEG’s single zig-zag pattern. JPEG XR also has a certain amount of
block prediction to help reduce the magnitude of the PCT coefficients. Both of these
techniques, if even at just a conceptual level, are mirrored in WebP. JPEG XR does not
mirror WebP with the final entropy encoding though. JPEG XR, like JPEG, still uses
Huffman coding to compress the final PCT coefficient data instead of using the supe‐
rior Arithmetic encoding.

JPEG XR Tools
JPEG XR’s tools are its biggest downfall. They are definitely the most difficult tools to
use of all the browser-specific formats. Microsoft provides software called jxrlib with
bundled tools called JxrEncApp and JxrDecApp to encode and decode JPEG XR
images. The software is very rarely updated and is provided as source code only. Any‐
one who wants to use these tools will have to go through the process of building the
software themselves for their own system.

ImageMagick advertises JPEG XR support but it isn’t actually particularly useful.
ImageMagick only supports lossless encoding so it isn’t useful for web performance.
ImageMagick actually just delegates all encoding and decoding work to the JxrEncApp
and JxrDecApp tools if it’s able to find them. This delegation works sometimes but
seems to work inconsistently. It’s often worth the effort to use the JxrEncApp and
JxrDecApp tools directly even though they are rather difficult to use.

JPEG 2000
JPEG 2000 was developed by the Joint Photographic Experts Group as their follow up
to JPEG. In addition to a completely new way of encoding images, a number of new
features were added to JPEG 2000 that weren’t available in JPEG like lossless encod‐
ing, higher channel bit depths, and full transparency support.

JPEG 2000 Browser Support
Support for JPEG 2000 is available in all of Apple’s recent browsers. Support has been
available in desktop and mobile Safari since version 5. An interesting side effect of
this Safari support is that Chrome for iOS also supports JPEG 2000. This is because
Chrome for iOS is built on top of Safari instead of Blink and means it’s the only
browser that supports more than one browser specific format: JPEG 2000 and WebP.
The support matrix looks like this today:

JPEG 2000 | 69

Table 5-3. JPEG 2000 browser version support
Safari >= 5

Chrome (iOS) Yes

Chrome (non-iOS) No

Internet Explorer No

Edge No

Android No

Opera No

Firefox No

Safari doesn’t send any hints in HTTP headers about what image formats it will
accept. Unlike recent versions of Chrome and Edge, Safari doesn’t send any Accept
header with image requests. This means that the most practical way for a server to
determine whether or not it should send a JPEG 2000 image is by parsing the User-
Agent string.

JPEG 2000 Details
JPEG 2000 maintains all of the important features of JPEG including configuration
options for chroma subsampling and progressive loading which are absent from
WebP. Support for full transparency has been added which, like WebP and JPEG XR,
makes JPEG 2000 another great alternative to JPEG and PNG.

While the feature set of JPEG 2000 is similar to the other browser specific formats,
under the hood it is the most different format as far as encoding of the actual image is
concerned. JPEG 2000 is different because it doesn’t use DCT or any variation of
DCT. Instead, JPEG 2000 uses a Discreet Wavelet Transform (DWT) at the core of its
encoding. Its best to think of DWT as a transform that takes an image and divides it
in to four parts. The first part is the original image at one half the width and one half
the height. The other three parts are all also individually one half the height and one
half the width of the original image but, combined, contain the details necessary to
exactly construct the full size image from the first part. One part has horizontal
details, one part has vertical details, and the last part has diagonal details.

70 | Chapter 5: Browser Specific Formats

Figure 5-1. Original image before Discreet Wavelet Transform

JPEG 2000 | 71

Figure 5-2. Image after Discreet Wavelet Transform (details enhanced for demonstration
purposes)

You can see in Figure 5-2 that the three detail parts are mostly empty and black. This
emptiness allows for a lot of opportunities for compression. To extract even more
sparse details, we can repeat this DWT process recursively on the first newly scaled
image part. After we’ve recursively applied DWT a number of times, the detail parts
are quantized much like DCT coefficients are quantized in JPEG. After quantization,
Arithmetic encoding is used for final compression.

JPEG 2000 Tools
The tools for encoding JPEG 2000 are in the middle of the road as far as ease of use
and features go. The OpenJPEG project provides a C library and the opj_compress
and opj_decompress tools for encoding end decoding images. These tools don’t
abstract the concept of “quality” to a simple 1 to 100 scale like most image encoders,
instead quality is described using compression ratios or PSNR values. The current
release is also missing important features like transparency and chroma subsampling
support although transparency support is available if you build the latest unreleased
version from the project’s source control repository.

72 | Chapter 5: Browser Specific Formats

ImageMagick has decent JPEG 2000 support and, in fact, uses the OpenJPEG C library
behind the scenes. This means that ImageMagick has the same limitations as Open‐
JPEG when working with JPEG 2000 images but provides a simpler interface if you’re
already familiar with ImageMagick.

Finally, Kakadu Software makes a popular full featured JPEG 2000 encoder that peo‐
ple and businesses are able to license for a fee. While features like chroma subsam‐
pling are available, learning how to use the features is difficult. This encoder is also
much faster for encoding.

JPEG 2000 | 73

CHAPTER 6

SVG and Vector Images

outline

• trouble with rastor; what are vector images
• advantages / disadvantages
• pro: scalabilty
• con: pixl perfect caused by scaling
• different vector formats
• AI
• SVG basics:
• viewbox / group / def /etc
• css styling
• basic optimizations (svgo, etc)
• browser support
• broad:
• narrow support: specific attributes
• tools & resources

75

PART II

Image Loading

Colin Bendell

There are many different image formats that can be used, each with different features
and functionality. Using the best format and using the right quality are not just the
responsibility of the creative team since these decisions can also impact the perfor‐
mance of a webpage.

In this second half of the book, we’ll discuss everything that happens after you’ve cre‐
ated and optimized your images. We’ll explain how images are downloaded and ren‐
dered in a browser, show how it affects performance, and discuss techniques to
accelerate this process. We’ll give specific focus to loading images on mobile devices
and cellular networks, as mobile images are especially challenging.

Note that while these techniques are primarily oriented at web pages, many of the
same concepts and technologies can apply to native apps or other types of clients.

CHAPTER 7

Browser Image Loading

Guy Podjarny & Yoav Weiss

Before we discuss image delivery, we should discuss how browsers load images. We’ll
cover several performance best practices as we do so, but this chapter will serve pri‐
marily as a foundation for advice in later chapters.

Referencing Images
The primary two ways a web page can load an image are:

1. An HTML tag
2. A CSS background-image

Each of these techniques will trigger the download and display of an image, but they
each have some important unique characteristics, which we’ll explain next.

It’s worth noting there are several newer ways to load images, focusing on the
“Responsive Images” practice of downloading images right-sized to the current dis‐
play. These include the image-set CSS property, <picture> element and srcset attribute,
all of which will be discussed in the Responsive Images chapter.

JavaScript Image Object
Another often used technique load an image is using the JavaScript new Image() con‐
structor. While this constructor is standardized and widely supported, it’s actually just
another way to create an HTMLImageElement, and is functionally equivalent to docu‐
ment.createElement(“img”).

79

 tag
The simplest way to load an image is to use the HTML tag. This tag requires
only a single src attribute (which points to the image location), and doesn’t even need
to be closed.

Example 7-1. Simple Image Tag

The full image tag supports various other attributes, most notably alt, height and
width. The alt attribute holds a textual description of the image, to be displayed as a
placeholder and used by screen readers and other accessibility tools. The height and
width attributes explicitly indicate the dimensions of the image.

Example 7-2. Full Image Tag

The alt attribute has no real performance impact, though it does affect our ability to
implement alternate image loading techniques, as we’ll see further on.

80 | Chapter 7: Browser Image Loading

The height and width attributes, however, do impact performance. If these attributes
are omitted, the browser would have no way of knowing how much area it should
allocate for the image, until it actually downloads the image file and sees its dimen‐
sions. This browser would reserve some arbitrary (and usually small) space, and once
enough of the image data arrives (i.e. enough for the browser to conclude the images’
dimensions) it would update the layout - also known as reflow. Reflows have compu‐
tational cost and take time, but more importantly, they make for a very poor user
experience, as page parts move around while the user is trying to read them, possibly
being pushed below the visible area. Therefore, an important best practice is to
always specify dimensions in your tag.

Note the width and height of an image can also be specified in the CSS rules of the
page. If you believe that the dimensions of an image have more to do with how it’s
layed out on the page than the image itself, than CSS is a more logical place to state
them. That is especially true in responsive layouts, where the image’s display dimen‐
sions may depend on the current breakpoint and are often relative to its container or
the viewport. On the other hand, if the image is of fixed dimensions and those
dimensions are tied to the actual visual - the contents of the image - then element
attributes may be the way to go.

From a performance perspective, the source of the height and width matters very lit‐
tle. Specifying the dimensions in CSS means the browser won’t see them until it
downloaded and processed all the relevant CSS files, making the attribute path theo‐
retically faster. However, the browser doesn’t perform the initial layout until all CSS
was fully processed anyway, and so in practice, it doesn’t help to know the dimensions
earlier.

We won’t be discussing layout much in this book, but if you’d like to learn more about
how rendering is handled in the browser, check out the “Critical Rendering Path”
article on Web Fundamentals.

CSS background-image
Another prevalent path to load images is the CSS background-image property. This
styling instruction was originally used as a richer alternative to a background color,
but is now used for many different purposes, ranging from rounded corners to logos
to rich photography positioned behind the page’s content.

Example 7-3. Simple Background Image

<style>
#title {
 background-image: url("background.jpg");
 background-size: contain;
 color: white
}

Referencing Images | 81

</style>
<h1 id="title" color="white">Dirty Little Secrets</h1>

Background images are designed, surprise surprise, to be in the background, and
much of their handling assumes they do not hold important content. In reality, how‐
ever, background images often do hold critical content. Examples include tab or sec‐
tion titles, primary navigation icons, visual context for foreground content (e.g. a
map, with foreground landmarks) and more.

In addition, background images are sometimes used for actual foreground imagery.
This is usually done for performance reasons, such as Image Sprites or Responsive
Images, both of which will be explained in detail in later chapters.

The use of background images for core content has various implications, with the pri‐
mary impact being on file structure and accessibility.

File Structure
HTML holds an mix of software and content. The software components are usually
made up of portions of the HTML itself, as well as the majority of JavaScript and CSS
- including the style-related images. The content includes the remaining HTML por‐
tions, as well as most of the text within the HTML, and almost all foreground images.

On most sites, the content pieces change much more frequently than the software
ones. In fact, on many sites the content is queried and constructed in realtime, and
often personalized for the current user. It’s also likely that the content authors - the
people who create and edit the content - are entirely separate from those creating the
software. You probably don’t want your engineers to write your marketing headlines,
nor would you want to allow your journalists to alter your JavaScript.

It’s important, therefore, to maintain a good separation between the content and soft‐
ware. Such separation makes it easier to control who can edit which portions, handle
different update frequencies, etc. This separation can also improve performance, let‐
ting you set different caching instructions for each part (e.g. cache software longer
than content), control loading priority (e.g. prioritize fetching content over software),
and prefetch or defer software components.

Using background images as foreground images (and to a lesser extent as important
background content) gets in the way of this separation. It often leads to mixing
content-related and styling-related CSS rules in the same file, inlining styling instruc‐

82 | Chapter 7: Browser Image Loading

tions into the HTML, and creating content-specific CSS rules which are often hard to
delete later on.

Accessibility When you develop a web page, it’s easy to forget that many users cannot see the
page the way you do. Users who are visually impaired, whether they’re color blind,
short-sighted or completely blind, have to rely on helper tools when interacting with
the web. The two most common tool families are screen readers, which read a page’s
content out loud and allow voice-based actions, and high contrast settings, which
help color blind or short-sighted individuals see the page.

For screen readers to work well, they need to understand the intent behind each page
component. Understanding this intent is much easier when the elements are used for
the declared purpose, for instance using tables only for tabular content (but not for
layout), using headlines for section headings (and not styling), etc.

The use of a background image as content can confuse a screen reader, hindering the
users ability to interact with the page. More specifically, unlike content images back‐
ground images don’t support the “alt” attribute, which screen readers use to articulate
what this image holds. There are ways to communicate a background-image’s intent,
but they are not standardized, and thus much more error prone.

High contrast settings also rely on a meta understanding of the page. Specifically,
high contrast settings may remove background images altogether, going on the
assumption that those images are only aesthetic, and do not include important con‐
tent. Alternatively, such settings may eliminate transparency of images, crippling
cases where the background is an important context for a foreground image (e.g. a
map with landmarks).

While not related to performance, accessibility concerns are a strong reason to try
and avoid using background images as actual page content, let alone as foreground
image replacements.

When Are Images Downloaded
Now that we know how to instruct a browser to download (and display) an image,
let’s discuss when these downloads happen. To do so, we first need to take a slight
detour and understand some core concepts around how browsers process pages and
their resources.

Building the Document Object Model (DOM)
As soon as a browser starts receiving HTML data, it will start parsing it and con‐
structing the Document Object Model (DOM). The DOM is the programatic repre‐

When Are Images Downloaded | 83

sentation of the page - practically everything we see or do on a page results in reading
data from it or making a change to it.

As it builds the DOM, the browser encounters references to external resources, such
as external JavaScript files, links to CSS, and - of course - images. Once discovered,
the browser queues the resource to be downloaded, working within the network con‐
straints we’ll discuss later in this chapter.

While both the DOM and HTML are tree structures, converting the HTML into a
DOM isn’t simple. HTML is a very loose language to begin with, and browsers have
always been very permissive when it comes to malformed HTML. Instead of erring,
browsers automatically apply fixes to the page, making changes such as closing open
tags, moving elements between body and head, and even correcting common typing
mistakes. For instance, most browsers today support loading an image using the non-
standard <image> tag, most often by silently converting to an tag. In general,
browsers are willing to jump through hoops to make pages work, even if their content
is not standard and only resembles well-formed HTML when the lights are dim and
the music is loud.

One especially painful complexity with building the DOM comes from JavaScript. By
design, JS code is able to read and manipulate the DOM, which is the primary means
the make a web page interactive. For synchronous scripts (so <script> tags without
async or defer attributes), that may mean that the script is relying on the current
DOM to be in a particular state.

If the script is appending new nodes to the tree (e.g. using document.body.append
Child()), they are expected to be added in a particular place in the tree. The same
goes for document.write() calls, which add HTML to the HTML parser in the exact
position that the script is in. Since the browser doesn’t want the page to break when
these things happen, it must halt the parser whenever a synchronous script is encoun‐
tered, until the script has finished downloading, parsing and executing. On top of
that, synchronous script execution can be halted on in-flight CSS files, as they may
impact the result of JS execution, e.g. if the script is reading styling information from
the DOM.

84 | Chapter 7: Browser Image Loading

Figure 7-1. Sequential JS downloading in IE7

The waterfall above clearly shows the delay this sequential behavior causes. A very
simple test page holding only 6 scripts (a third of today’s average) and an image, will
be painfully slow on Internet Explorer 7. Why use IE7? Because starting with IE8
(and other browsers released shortly after), browsers stopped being silly, and started
using a preloader.

The Preloader
Nothing can be done to prevent synchronous scripts from blocking the building of
the DOM without breaking pages. Browsers (rightfully) favor functionality over per‐
formance, and will not consider breaking pages just to speed them up. However, what
can be done is to separate parsing from downloading resources - and that’s precisely
what the preloader does.

The preloader, also known as the “Look-Ahead Parser”, the “Speculative Parser” or
the “preparser”, is a second parser inside the browser. Just like the DOM building
parser, it starts digesting the HTML as soon as it arrives, but instead of building a
structure, it just tokenizes the HTML and adds subresource URLs that it encounters
to the download queue. Since the preloader doesn’t provide any of the page’s func‐
tionality, it doesn’t need to stop when it sees a script, and can simply plow along and
discover all the subresources referenced in the HTML.

With this added functionality, the browser can go ahead and download resources
even before it’s ready to process them in full, decoupling download from execution.
In addition, browsers can conceiveably do some processing on these resources, for
instance parsing a JS/CSS file or decoding an image.

As mentioned before, the first preloader was introduced in IE 8, and is possibly the
single biggest web performance improvement we’ve seen in browsers. It’s been further
improved over the years, and now triggers additional actions such as DNS resolu‐
tions, TCP connections, TLS handshakes and more. The visual below shows the evo‐
lution of preloader-triggered downloads on the simple 6-script page from the

When Are Images Downloaded | 85

previous section, going from no preloader in IE 7, through the first generation in IE
8, to the latest iteration in IE 11.

Figure 7-2. Fully sequential JS downloads in IE 7

Figure 7-3. Mostly parallel JS downloads in IE 8

Figure 7-4. Fully parallel JS & Image downloads in IE 11

While awesome, the preloader can sometimes make mistakes. As it runs ahead of the
main parser, it’s forced to make some simplifying assumptions. For instance, when
the preloader sees two consecutive external scripts, it queues both for download right

86 | Chapter 7: Browser Image Loading

away. If it turns out the first script, when executed, navigated away from the page, it
will render the second script’s download unnecessary.

Cases like this happen quite often, for instance with scripts that manipulate or change
pages for A/B Testing purposes, or scripts that employ client side device detection
and redirect to a mobile website. Despite this limitation, browser data indicate that
the preloader is undoubtebly a good way to speed up the web. As long as its predic‐
tive downloads are accurate the vast majority of the time (which they currently seem
to be), we all come out ahead.

For example, consider the following code:

<script>
 document.write("<!--");
</script>

The preloader in this example will skip over the script and start downloading the
image resource, since it would assume that it will be required later on. But, since the
document.write() directive starts an HTML comment, making everything that
comes after it irrelevant, that download would be spurious.

Despite the above example, that’s not a bug, but a conscious design decision. The pre‐
loader is a heuristic optimization, and is there to make the 99% cases faster, even if
some edge cases will be slower as a result.

Networking Constraints and Prioritization
Between the DOM parser and the preloader, browsers can quickly build up a long list
of resources to download. You may think the next step is to simply charge ahead and
download all of those resources in parallel. After all, doing more in parallel leads to
faster results, right?

As usual, it’s not that simple. Downloading all resources at once can easily overwhelm
home routers, servers and create network congestion along the way, as it effectively
disables TCP’s congestion avoidance mechanisms. This in turn can lead to packet loss
- and so to a slower web experience. To reduce that risk, browsers limit the number of
simultaneous connections they open up against a single host and (to a lesser extent)
in total. Most browsers allow no more than 6-8 concurrent connections per host, and
no more than 10-16 parallel connections in total (across all hosts). This browser limit
led to the creation of an optimization technique called Domain Sharding, which we’ll
discuss more in the Chapter 13 chapter.

There are also cases where a parallel download of all resources provides an inferior
user experience. For instance, assume your page has 100 non-progressive images,

When Are Images Downloaded | 87

each 10KB in size, and that your bandwidth is 100 KB/s. If all files are downloaded in
parallel, it will take 10 seconds until all images are downloaded. Until then, no image
will be fully displayed. In contrast, if only 10 images were downloaded in parallel, you
would get 10 new complete images every second. It is often considered a better user
experience to provide the user with some complete content as soon as possible, espe‐
cially considering that there is a good chance that many of the 100 images in our
above example might be outside of the initial viewport.

One last (but definitely not least) reason for not downloading all files in parallel is
that some resources matter more than others. For example, browsers don’t render
anything on a page until all CSS files have been fully downloaded and processed, to
avoid showing unstyled content. Images, on the other hand, don’t block the rendering
of anything but themselves. Therefore, it makes sense to favor the download of CSS
files over those of images when required to make such a decision.

Browsers are constantly faced with such decisions. Given the (self-imposed) connec‐
tion limit and the bandwidth concerns, prioritization often means delaying the
download of certain resources until others are fully fetched. In fact, browsers assign
each resource a priority, taking into account parameters such as the resource type,
whether it’s async, whether its visible, etc.

While resource prioritization is becoming increasingly dynamic, initial priorities are
based on resource type in most cases. For images, that means that their initial priority
is rather low (as other resource types, such as scripts and stylesheets often have a
larger impact on the page). Because of the preloader, when the browser starts down‐
loading images, it is often unaware of their visibility in the initial viewport, their dis‐
play dimensions, etc. Later on, once these extra parameters become known (after the
page’s layout takes place), visible and high prominence resources may get their priori‐
ties upgraded.

It’s worth noting that HTTP/1.1 (and older) don’t have a built-in prioritization mech‐
anism, and so browsers can only prioritize by delaying or blocking entire resource
downloads, which may under-utilize the network. For example, downloading a single
JS file will usually block the download of all images, even if there are available idle
connections, as the browser doesn’t want any low priority resource to contend over
bandwidth with the higher priority script. The newer SPDY and HTTP/2 protocols
provide better prioritization mechanisms.

Incosistent Image Download Handling
As we discussed, when it comes to resource prioritization, images are usually at the
bottom of the pile, since they don’t impact the rest of the page, and yet do take up a
lot of bandwidth. In practical terms, the lower priority means image downloads are
often delayed.

88 | Chapter 7: Browser Image Loading

This manifests differently in different browsers. For instance, as of this writing, while
render-blocking CSS or JS are being downloaded:

1. Firefox will block all image downloads. . Chrome will only allow one image
download at a time (allow no more than one connection to download images or
other non-critical resources) . IE 11 allows any number of image downloads
(until it hits the connection limit)

This inconsistency makes it hard to predict how images will be downloaded, and it’ll
likely increase as browsers switch to more dynamic prioritization. Therefore, this is a
good case for the “Tools, not Rules” principle. Instead of trying to predict when will
your images be downloaded, use tools such as WebPageTest to test your page load
across browsers, and see when they were loaded.

HTTP/2 prioritization
As we’ve seen above, with HTTP/1.1, the browser has very rough control when it
comes to resource prioritization, where its decision is binary: “Should this resource
be requested right now or not?”.

With a newer version of the HTTP protocol, that is no longer the case. HTTP/2 sol‐
ves a lot of networking-related deficiencies that HTTP/1.1 suffered from:

• It can multiplex multiple requests and responses on a single connection.
• It can compress HTTP headers.
• The browser can attach fine grained priority to each request it sends the server.

The last point emphasizes the difference in prioritization from earlier versions of the
protocol. With HTTP/1.1 the browser maintained a queue of resources that it needs
fetching, and maintained priorities of each resource internally. Once a low priority
resource made it to the top of the queue (for lack of higher priority resources that the
browser is aware of), that resource was requested. And once that happened, prioriti‐
zation is out the window. Even if a higher priority resource arrived at the queue a few
miliseconds later, there was no practical way to give it higher network priority that
the resources already requested.

As a result some browsers preferred to hold back on requesting low-priority resour‐
ces until they are sure all high-priority ones already arrived, which led to behavior
such as Chrome limiting image requests until all CSS and Javascript were downloa‐
ded.

With HTTP/2, the browser doesn’t need a request queue at all. It can just send all the
pending requests to the server, each one with its priority and let the server do the
hard work of deciding which resource should be sent down first. The multiplexing

When Are Images Downloaded | 89

capabilities also allow the server to interrupt low-priority responses whenever a
higher-priority response data has become available. The protocol also enables re-
prioritization of requests, e.g. when an image has become visible in the viewport.

So for HTTP/2 enabled sites, when it comes to image priorities, the browser can
actually permit itself to offload the prioritization smarts to the server, and just make
sure that it sends the right priorities.

CSSOM and Background Image Download
In previous sections we talked about the preloader and the fact that it is used by the
browser for early discovery of the resources that would be required later on in the
page. Unfortunately, since the main way to do that is by looking at HTML tokens,
that doesn’t work well for CSS based resources, and in particuler the preloader doesn’t
preload background images in any browser today.

While in theory in some cases background images could have been downloaded
using a mix of CSS tokenization preloading and smart heuristics based on HTML
tokenization, no browser actually does that, and even if they did, such heuristics run a
high risk of triggering spurious downloads due to the cascading nature of CSS.

In practice that means that background images are discovered pretty late in the page’s
loading process, only after all CSS resources finished downloading and style was cal‐
culated. So, if you have a prominent background image, how can you make sure that
it’s discovered in a relatively early stage and loaded as soon as possible?

Up until recently that was only possible using hacks such as including an equivalent
invisible tag in your HTML, or a new Image().src='prominent_bg_img.jpg'
inline script. But nowadays, you can use the shiny new preload directive and include
something like <link rel=preload href='prominent_bg_img.jpg' as=image> in
your markup to tell the browser that it needs to load that resource while treating it as
an image in terms or priority, requests headers, etc.

For coverage of preload is outside of the scope of this book, but if your curious, a
recent article explains it in detail.

Service Workers and Image Decoding
Another recent development in the browser world is the advent of Service Workers.
In short, Service Workers are browser-based network proxies, that you can set up to
intercept and control your site’s entire network traffic. While the use-cases for them
are wide and cover many aspects of page loading process, we will examine a particu‐
ler use case for them: using Service Workers to role your own image format!

We have discussed about the hardships of image format compatibility, the various
browser specific formats and the need to serve specific formats to specific browsers.

90 | Chapter 7: Browser Image Loading

But Service Workers bring another possiblity to that mix: you can now ship Service
Worker based image decoders and serve new and improved image formats only when
native support is in place or when a SW based polyfill is installed. In the latter case,
you can “decorate” the outgoing requests by e.g. extending the Accept header, and
then convert the responses to an image format that the browser recognizes.

For example, we discussed BPG and FLIF as potential upcoming file formats. But, no
browser actually supports these formats which means they are of little practical use
on the Web. Or are they?

With Service Workers, you can convert these formats to either JPEG or BMP in the
browser, saving bytes over the network but still providing the browser with a format
it can properly process and display. And even more, you can do that without any
changes to your HTML or your application logic. SWs run at a lower layer, and per‐
form all the required conversions without requiring your application awareness.

One caveat to that approach is that Javascript decoding implementations are running
a risk of being more costly than the native, highly-optimized image decoders. One
future browser enhancement that can help in that front is better access to low level
image decoding APIs that can speed things up: Browsers could expose an API that
enables decoding of video iframes, and significantly speed up BPG decoding or
expose arithmetic decoding to help out FLIF decoding.

Summary
By now, it is hopefully clear that image loading is not that simple. There are multiple
ways to natively fetch and retrieve an image, and its important that web developers
use the right one for each case. Over the years, browsers have developed sophisticated
logic for deciding when to download different images and how to process them, aim‐
ing to provide the fastest user experience.

This chapter looked at native and standardized ways to load images. Despite the
tried-and-true and fast nature of browsers, there are quite a few image loading deci‐
sions they cannot make unilaterally. In the coming chapters we’ll discuss non-native
ways to load images, newer standards emerging from the mobile web, and web image
performance considerations that are outside the browser’s control.

Summary | 91

CHAPTER 8

Lazy Loading

Guy Podjarny

At the beginning of the book, we’ve discussed the large percentage of requests and
bytes that images account for. Much of that is due to the sheer amount of data needed
to communicate a high resolution visual. However, another significant portion is usu‐
ally wasteful. A huge number of images are in fact never seen by the user, and do
nothing but waste bandwidth and resources.

The one to blame for this waste is the scrollbar. We’re all very familiar with scrolling
down on pages, and today very few pages fully fit on a screen. Only 38% of an average
webpage is immediately visible on a typical desktop screen. Over 80% of image
requests deliver images that are not visible when the page is loaded.

This pattern is even more noticeable on mobile devices, which have smaller screens.
The smaller visible area can hold less content (and fewer images), and yet website
owners often try to serve the same content regardless of viewport. They often do that
while avoiding horizontal scrolling as it provides subpar user experience. Such mobile
pages compensate for the lack of horizontal space with vertical space. In other words
- if they can’t make the page wider, they’ll make it longer… Which increases the por‐
tion of images not immediately visible during load.

While long pages are often the right design and UX decision, images that aren’t
immediately visibile do have a performance cost. They contend with visibile content
for bandwidth and CPU, occupy TCP connections visibile resources may need, and
delay the documentComplete (aka. onload) event, and any interaction related event
handlers that await it. Note that the firing of the onload event also stops the browser’s
progress indicators, such as a progress bar or spinning icon. As a result, a slow load‐
ing invisible image can subtantially delay when the user is told the page is ready for
use.

93

94 | Chapter 8: Lazy Loading

The Digital Fold
The immediately visible area of a page is often referred to as being “Above The Fold”,
adopting a term from the physical newspaper world. Physical newspapers are usually
large in size, and thus folded in two for easy stacking and carrying. The upper half of
the page, the part “Above The Fold”, is immediately visible when someone glances at a
stack of newspapers, while the rest of the page requires an action - unfolding.

Web pages clearly don’t have an actual fold, and browser window sizes differ greatly.
Still, both web and newspaper pages have an area that is immediately visible, and a
part that requires action - be it unfolding or scrolling. As a result, the parts of a web
page that do and do not fit on the screen right away are often referred to as above or
below the fold, respectively.

This analogy doesn’t end with user action, but rather continues into the content itself.
In physical newspapers, the most important stories are featured above the fold, hop‐
ing to grab the consumer’s attention and incite them to buy the paper. On websites,
similarly, the immediately visible area often holds the content most likely to trigger an
action. Be it the hottest news story, a featured product, or a corporation’s key mes‐
sage, the “Above The Fold” area attempts to make the user take action.

The term “The Digital Fold” is a hot conversation topic amongst
web designers, with strong advocates in favor and against using it.
For convenience, if nothing else, we will use the term “The Fold” in
this book.

Wasteful Image Downloads
In most cases, user action includes navigating away from the current page. Since we’re
putting the most important content at the top, it becomes quite likely that users will
click away without ever scrolling down. In fact, we may consider that a success, and
strive to do it more! In addition, since this content prioritization/sorting is common,
users have grown to expect it, and are conditioned to not bother scrolling down all
the way. These two traits create a virtuous/vicious cycle, effectively encouraging peo‐
ple not to scroll.

Users who don’t scroll turn these “Below The Fold” images from a performance hin‐
drance to complete waste. Roughly 50% of users either don’t scroll or barely scroll,
especially on a home page. Combining these numbers with the previous stats about
visibile images, we see that over 40% of image downloads on web pages are wasteful!!!

Why Aren’t browsers dealing with this?
This excessive downloading of images is directly due to the way HTML, and specifi‐
cally the tag, are defined. Once a browser sees an tag, it must download

Lazy Loading | 95

the image file it references. In addition, a part of the onload event definition is that all
resources on the page, including all images, have been loaded. Therefore, browsers
cannot avoid downloading an image the user may not see.

That said, browsers can control the priority and order of the downloaded resource.
Browsers often use this prerogative, for instance, to prioritize downloading JS and
CSS files over images (more on that later in this chapter). Amongst image downloads,
browsers have historically not done much prioritization, treating them all equally.
However, as we mentioned in the preloader conversation, browser prioritization is
becoming increasingly dynamic, and some browsers are starting to give visibile
images a higher priority where possible. This is especially impactful when used in
combination with HTTP2 or SPDY.

Even with such improved prioritization, browsers will still be mandated to download
all images on the page and delay the onload event until they are all complete. Several
attempts were made to provide a standard way to indicate an image should only be
loaded, most notably the attribute and the lazyload attribute in the aban‐
doned Resource Priorities. However, neither has actually made it through so far. If we
want to avoid this waste, the only option we have is to take the loading of images into
our own hands - and that means using JavaScript.

Loading Images With JavaScript
There are several ways to load images with JavaScript, all fairly straightforward. Let’s
start with a very simple example:

Example 8-1. Loading An Image With JavaScript - Simple Case

<script>
document.getElementById("the-book").src = "book.jpg";
</script>

Note that the tag in this example has no src attribute. The will still be
parsed and placed in the DOM, and the layout will still reserve the specified space for
it, but without a src attribute the browser will have no URL to download. Later on, a
script looks up this specific tag, and sets its src attribute. Only now would the browser
download the image, and render it in the alloted space.

This example shows the only true requirements for loading images with JS - omitting
the src attribute, and setting it with a script. However, it will be hard to maintain this
technique for many images, as it splits the image into two separate parts - the
element and the script. To avoid this problem, we can keep the URL on the tag
itself, but use a “data-src” attribute instead.

96 | Chapter 8: Lazy Loading

Example 8-2. Loading Multiple Images With JavaScript

<script>
var images = document.querySelectorAll("img");
for (var i = 0; i < images.length; ++i) {
 var img = images[i];
 // Copy the data-src attribute to the src attribute
 if (!img.src && img.getAttribute("data-src"))
 img.src = img.getAttribute("data-src");
}
</script>

The data- prefix is a standard way in HTML5 for providing metadata in an element,
most often to be consumed by JavaScript. By using it, we again have all the image
information in the tag, and can use a generic script to load them all.

Deferred Loading
Of course, this function is not very useful. We moved from native loading of images
to JS-based loading, but we’re still loading all the images! To improve on that, let’s
improve the logic to only load images that are “above the fold”.

Example 8-3. Load Images With JS, Visibile Images First

// Test if an image is positioned inside the initial viewport
function isAboveTheFold(img) {
 var imgOffset = function(elem) {
 var offset = elem.offsetTop;
 while (elem = elem.offsetParent) {
 offset += elem.offsetTop;
 }
 return offset;
 };
 var viewportHeight = window.innerHeight || document.documentElement.clien
tHeight;
 return ((imgOffset >= 0) && (imgOffset <= viewportHeight));
}

// Load either all or only "Above The Fold" Images
function loadImages(policy) {
 // Iterate all image elements on the page
 var images = document.querySelectorAll("img");
 for (var i = 0; i < images.length; ++i) {
 var img = images[i];
 // Skip below the fold images unless we're loading all
 if (!policy.loadAll && !isAboveTheFold(img))
 continue;

Loading Images With JavaScript | 97

 // Copy the data-src attribute to the src attribute
 if (!img.src && img.getAttribute("data-src"))
 img.src = img.getAttribute("data-src");
 }
}

// Load above the fold images
loadImages({loadAll: false});

// At the load event, load all images
window.addEventListener("load",function() {
 loadImages({loadAll: true});
});

Let’s review the additional code changes we’ve made:

• We added the isAboveTheFold function to test if an image is above the fold.
• We wrapped the image loading in the loadImages function, and added an option

to only load images if they’re above the fold
• We use loadImages to load images above the fold immediately
• At onload, we load all images.

The first three steps create the prioritization we’re looking for, only loading above the
fold images, and keeping lower images from interfering. Once the page is loaded, the
last step triggers, and loads the remaining images, for those users who do scroll
down. Such loading is called “deferred loading”, and is a good way to accelerate the
more important content.

Lazy Loading/Images On Demand
While deferred loading accelerates pages, it doesn’t prevent waste. As we mentioned
before, many users don’t scroll all the way (or at all), and thus many of the images are
never seen. Loading those images later would still not avoid the wasted bandwidth
and battery drainage they incur.

To avoid this waste, we need to change our image loading to be “on demand”, only
loading an image when it comes into view. This technique is often called “Lazy Load‐
ing”, as we only do “the work” (downloading the image) when we absolutely must.
Other common names are “Images On Demand” or “Just-In-Time Images”.

Pure lazy loading will only start the image download when the image comes into
view. However, doing so is likely to impact the user experience, as the user will be
looking at a blank space while the image is actually downloaded and rendered. To
mitigate that, we can try to anticipate user actions, and download the image ahead of
time. For instance, we can load images that are fewer than 200 pixels below the cur‐
rent visibile area, trying to stay ahead of slow user scrolling. A more aggressive pre‐

98 | Chapter 8: Lazy Loading

fetch can improve the user experience, but will also increase the amount of wasted
downloads.

In code, lazy loading requires listening to a variety of events that may change the con‐
tent in view, such as scrolling, resizing, orientation changes and more. It may also
need to track application actions that impact what’s in view, for instance collapsing a
page section. Each time an event fires, we need to re-examine all undisplayed images,
and choose which ones to load.

Lazy loading is a fairly simple concept, but it’s hard to do it well. It’s easy to miss a
change in the visual area, as there are many events to listen on, and browsers imple‐
ment them in subtly different ways. Even when you capture a change event, traversing
all images to determine which is now visibile is hard to do efficiently, especially when
it may be called many times in sequence.

When considering lazy loading, first confirm whether deferred loading would satisfy
your needs. It’s much easier to implement, and is less error prone. If you still want to
do lazy loading, It’s recommended to use an existing JavaScript library. A prominent
example is the lazySizes library, which lazy loads images while playing well with the
various responsive images solutions. (More on that in an upcoming chapter). There
are also automated services that can help get lazy loading working in an optimal way
with minimal effort on your part.

If you still insist on implementing it yourself, remember to err in favor of loading the
image, for instance loading any image whose location you can’t easily determine, and
consider a background “cleanup” loop that will confirm you haven’t missed any
images every second or so.

IntersectionObserver
Traditionaly, lazy loading libraries relied on the browser’s scroll events to know when
the user have scrolled the page, and conclude from that when are certain images
going to get into the viewport, and therefore should be loaded.

However, scroll events handling is very easy to get wrong, resulting in janky scrolling,
which frustrates users. The fact that many different libraries on the page were regis‐
tering scroll events in order to figure out element visibility (resulting in abismal scroll
performance) caused browsers to think about creating dedicated, highly performant
primitives for that purpose.

The result of that effort is the IntersectionObserver API, that permits you to
“observe” the intersection of a certain element with another element or with the view‐
port, and get dedicated callbacks when an element is about to get into the viewport.

Loading Images With JavaScript | 99

You can also define custom distances for “intersections” which permits you to tell the
browser things like “let me know when this element is 75% viewport-height away
from the current viewport”.

As of this writing, the API is only shipped in Chrome, but as more browsers will
adopt it, lazy loading libraries are bound to move to this dedicated, jank-free API.

When Are Images Loaded?
Looking at the loadImages function above, you’ll notice it queries for all the images in
the DOM. We would therefore want to call it only after the DOM is fully constructed,
so after all HTML and synchronous Javascript was delivered and processed. Since no
image will be downloaded until this function is called, this approach can lead to a
substantial delay in when the images are loaded. To mitigate this effect, we can call
the function multiple times at various points in the page, though that in turn would
have a computational cost. Achieving an optimal balance is doable, but hard.

Another approach would be to replace the function call with an event-driven load.
Consider the following:

Example 8-4. Load Visibile Images Using Image Onload Event

<script>
// Load either all or only "Above The Fold" Images
function loadImage(img) {
 // Check if the image has a data-src attribute
 var dataSrc = img.getAttribute("data-src");

 // If the image is above the fold - load it
 if (dataSrc && isAboveTheFold(img)) {
 // Remove the onload handler, so it won't be called again
 img.onload = null;
 // Load the real image
 img.src = dataSrc;
 }
}
</script>
<div class="book-image-container">
 <img src="1px.gif" data-src="book.jpg" alt="A Book"
 onload="loadImage(this)">
</div>

At the bottom, you can see a modified img tag. Instead of omitting the src attribute,
we replaced it with a tiny image file. Once it’s loaded, the loadImage function in the
onload attribute will be called, check if the image is above the fold, and load it if so.

100 | Chapter 8: Lazy Loading

Since loading the new image will unnecessarily trigger the onload event again, we
remove this event before updating the src attribute.

Small Image Overhead
If you are concerned about the delay caused by using the small placeholder image
(1px.gif), don’t be. The first time we download it will indeed add some latency, but if
we serve that image with proper caching headers, the image can then be cached indef‐
initely across the entire site, avoiding future delays. If you still rather avoid the extra
request, you can replace it with an embedded image using a Data URI that looks like
this: ‐
LAAAAAABAAEAQAICRAEAOw==

This event-based loading is a bit more verbose, requiring to set the onload attribute
on every tag, but it solves the previously mentioned delay. The browser will
load the placeholder image as soon as it can, and fire the load event immediately after.

While it helps accelerate the initial load, event-driven image loading doesn’t com‐
pletely eliminate the need to iterate over the images. You’ll still need to listen to the
many events that change what’s in view, such as scrolling and resizing, and then iter‐
ate images to determine if they’re now in view. In addition, any type of JS-based
image loading, including this one, will interfere with the preloader - which will will
talk about next.

The Preloader and Images
As we mentioned in the previous chapter, browsers use the preloader to accelerate
pages. The preloader parses the page ahead of the DOM builder, primarily to identify
and start downloading external resources.

Not surprisingly, many of the resources the preloader finds are images. While it
depends on their prioritization logic, browsers will often start downloading these
images while still busy downloading and processing JS & CSS files. Even images that
are not immediately fetched may be accelerated through early DNS resolution of their
host names, pre-establishing TCP connections to those hosts and more.

When we use JavaScript to load our images, we effectively disable the preloader. Our
JS code, regardless if it’s written as an onload event or a loop, will not run until the
DOM builder has actually reached the element we’re handling. As a result, JS-created
image tags are likely to start download later than native ones.

While this delay is important to consider, it’s not easy to define just how impactful it
will be. Different browsers implement different prioritization schemes, and many will
delay image downloads until JS & CSS files have been processed anyway. As a result,

When Are Images Loaded? | 101

an image may be delayed due to prioritization just as much as due to being hidden
from the preloader, making this whole conversation moot.

To help visualize this, let’s look at the waterfall chart of two simple pages, created
using Steve Souders’s Cuzillion. Both pages hold one JavaScript file and two images,
but in Page 1 the images are loaded natively (an tag), while in Page 2 they are
loaded using JavaScript. To better visualize the effect in the waterfall charts, subre‐
sources take 2 seconds to respond. Let’s first look at the loading of the two pages in IE
11.

Figure 8-1. Page 1 (Native images) in IE

Figure 8-2. Page 2 (JS images) in IE

As is plain to see, the images created using JavaScript start their downloaded only
after the external script completed its download, dramatically delaying its rendering
and also delaying the entire page load. In this case, the delay in loading images using
JavaScript is very clear.

Now let’s look at the two pages on Firefox.

102 | Chapter 8: Lazy Loading

Figure 8-3. Page 1 (Native images) on Firefox

Figure 8-4. Page 2 (JS images) on Firefox

While the pages are the same as before, in this case there is practically no difference
in the load time or order between the JS and native image loading. This is due to Fire‐
fox’s prioritization logic, which defers all image downloads until all JS & CSS files are
fully processed.

Lastly, let’s take a look at how Chrome handles this page.

Figure 8-5. Page 1 (Native images) on Chrome

When Are Images Loaded? | 103

Figure 8-6. Page 2 (JS images) on Chrome

Chrome uses a more nuanced logic, wherein only one connection is allowed to down‐
load images as long as there are still JS & CSS files to fetch. As a result, the first image
on this page is downloaded alongside the JS file, but the second image has to wait,
resulting in slightly improved visuals but a similar total page load time.

While this is a simple page, the same behaviors take place when loading real world
website. The key lessons we can learn are:

1. The preloader makes page loads faster, and hiding images from it (by loading
them with JavaScript) can delay image downloads and slow pages down. This is
most clearly shown in the IE 11 example.

2. Image downloads are often delayed due to prioritization anyway, reducing the
impact of hiding images from the preloader. This was most clearly show in the
Firefox example.

3. Browsers handle image download prioritization very differently, at least in
HTTP/1.1. The only way to really know how browsers would do is to test your
page with performance tools. As Paul Lewis often says, “Tools, not Rules”.

Lazy Loading Variations
The decision between the savings lazy loading offers and the preloader crippling it
causes is a trade-off. Each website is different, and it’s up to you to decide whether it’s
right for your site. In the next sections we’ll discuss several other implications and
variations of lazyloading that can help you make this decision.

Browsers without JS
Loading images with JavaScript requires, obviously, a browser that supports Java‐
Script. Browsers without JS support, or ones where JS has been disabled, will clearly
not run and thus not load these images.

104 | Chapter 8: Lazy Loading

It’s hard to know exactly what portion of users fall into this group. A 2010 study by
Yahoo indicates 1.3% of users used browsers without JS support or with JS turned off.
The study was repeated in 2013 by the gov.uk team, and found that only 0.2% of visi‐
tors actively disabled JS, while 0.9% of visitors had enabled JS, but the script did not
run nevertheless. A 2014 study by WebAIM showed only 2.4% of screen reader users
had JS turned off (mostly on Firefox, presumably using the noscript extension).

The exact stats vary greatly by the specific audience your site caters to. To find your
own number, you can repeat the Yahoo study on your own site, or find that number
in a different way, for instance using Simo Ahava’s guide for using Google Analytics
for this purpose. If you deem the audience big enough to care, you can still partially
support them using the <noscript> element.

As you may know, the <noscript> tag holds content that would only be processed by
the browser if JavaScript is disabled. We can therefore reference the image a second
time inside a <noscript> tag, this time using a simple tag. Here’s an example of
doing just that:

Example 8-5. Lazy Loading With Support For No-JS Browsers

<img src="1px.gif" data-src="book.jpg" alt="A Book"
 onload="loadImage(this)">
<noscript></noscript>

Using <noscript> is simple and has no real downsides, except for the repetition in
your HTML (and maintanance costs that may come with it). Since the increase in
payload size is likely minor (after compression), and since most web pages are gener‐
ated using templates or code anyway (making it easy to add the <noscript> portion), I
would recommend doing so.

Unfortunately, the <noscript> mitigation does not work for users that had their Java‐
Script support enabled, but for some reason (corporate/government firewalls, anti
virus software, poor network, etc) the scripts never fully downloaded and ran. This
scenario cannot currently be fully addressed. Hopefully in the future there would be a
standard way to define a fallback that can address this use case.

LQIP: Low Quality Image Placeholders
As you’ve learned in the Image Compression part of the book, certain image files,
most notably JPEG and WebP, can be made substantially smaller if we reduce their
quality rating. Since such compression drops the least significant visuals first, the sav‐
ings in file size are not linear to the loss in quality, and you can often cut file sizes by
half while only degarding visual quality by 5% or less.

Lazy Loading Variations | 105

If we get even more aggressive, we can often cut our image payload by a factor of 4 or
more, while only suffering a 20% visual degradation. Such degradation will be noticed
by most users, but it should still be clear what the image shows.

Figure 8-7. JPEG Quality 90, File size 66KB

Figure 8-8. JPEG Quality 75, File size 37KB

Figure 8-9. JPEG Quality 40, File size 21KB

106 | Chapter 8: Lazy Loading

Figure 8-10. JPEG Quality 25, File size 16KB

If we make our images that small, the performance impact of downloading “below
the fold” images without seeing them won’t be as big. In fact, it may be small enough
that we’d prefer to use native image loading and the preloader benefits it carries. Once
those low quality images are loaded, we can use JavaScript to swap some of them with
the original high quality images.

This approach is called Low Quality Image Placeholders (LQIP), as the low quality
images are only seen as placeholders. It consistently makes the page usable faster, and
would minimize the need for lazy loading for all but the longest pages (where the
number of images “below the fold” is especially high).

Implementing LQIP is very similar to the implementation of lazy loading, except the
1-pixel placeholders are replaced with the low quality image variant. In addition,
since we don’t want the high resolution images to interfere with the download of
other page assets, we delay their download till after the page is loaded (we can also
choose to lazy load them instead). Here’s an example of an LQIP implementation:

Example 8-6. Low Quality Image Placeholders (LQIP) Code Example

<script>
// Load a placeholder image
function loadImage(img) {
 // Copy the data-src attribute to the src attribute
 var dataSrc = img.getAttribute("data-src");
 if (dataSrc)
 img.src = dataSrc;
}

// Keep a registry of all image elements that need loading
var placeholderImages = [];
function registerPlaceholder(img) {
 // Remove the onload handler, so it won't be called again
 img.onload = null;

 if (isAboveTheFold(img)) {
 // If the image is above the fold, load it right away

Lazy Loading Variations | 107

 loadImage(img);
 } else {
 // Register below-the-fold placeholders for deferred loading
 placeholderImages.push(img);
 }
}

// Replace all placeholder images
function replacePlaceholders() {
 // Load all placeholder images (can be replaced with lazy loading)
 for (var ph in placeholderImages) {
 loadImage(ph);
 }
 placeholderImages.length = 0;
}

// At the load event, replace placeholders with real images
window.addEventListener("load",replacePlaceholders);
</script>
<img src="book-low-res.jpg" data-src="book-high-res.jpg" alt="A Book"
 onload="registerPlaceholder(this)">

Note that LQIP is a trade-off. as it does include showing users a low quality image at
first. On a fast connection, the high resolution image will quickly take its place. On a
slow connection, the low quality visual may linger, but at least the page will be usable
quickly. In my opinion, it’s a good way to get both speed, gained by the low quality
images, and eventual visual perfection.

Critical Images
As you’ve probably noticed, lazy loading is mostly a means to give visible images pri‐
ority over ones outside the current viewport. The techniques we described so far were
all client-side techniques, which helps make them work well across different pages
and viewport sizes. However, we can also try to guess what will be visibile on the
server side, and tune the page accordingly.

Guessing which images will be visibile can be done in two ways - logical and techni‐
cal .

The logical path leverages your knowledge of the application. Does your application
have a big “hero image” a the top of the page? Does a product image always show up
on the top left side? Is your logo always in the top right corner? In many cases, we can
(rather easily) use the design guidelines to guess - rather accurately - which images
will initially be in view.

The technical path implies loading the page in a browser, and seeing which images
were within view. The most direct way to do so is using a headless browser, such as
PhantomJS, in which we can load the page and see which images were loaded. The

108 | Chapter 8: Lazy Loading

generic nature of this path allows it to run on any type of page, but doing it well
requires a fair bit of R&D investment. It also assumes the page’s layout is pretty
straight-forward, and content images are displayed in their HTML order (which is
usually the case).

My advice would be not to try and implement those yourself. But some automated
Front-End Optimization tools or open-source toolkits may provide those in the
future.

When we estimate an image will be immediately visibile, we can change the HTML to
load this image using a simple (and fast) native tag, while loading the others with JS.
The native images will load quickly, thanks to the preloader and the lower bandwidth
contention, while the remaining images will only be loaded if/when they’re needed.

Note that while we’re affecting image download priority, we’re not impacting func‐
tionality. If we thought an image is visibile and it wasn’t, we simply downloaded it
prematurely. If we incorrectly thought it’s hidden, it’ll still be loaded with JS a shortly
after. As a result, don’t try to get it perfectly right from day one. Start by prioritizing
(natively loading) the obviously important images (e.g. hero images, product images),
and gradually tune over time.

Lazy Loading Summary
There’s little doubt that many web images today are needlessly downloaded, introduc‐
ing unnecessary delay to web pages and wasteful load on servers. Lazy loading can
help tune those downloads. However, due to the lack of native browser support, it
requires loading images with JavaScript, which in turn carries other performance
implications. Consider whether lazy loading is worth the tradeoff for you. The longer
and visually rich your web pages, the more likely it will be worthwhile.

If you’ve decided to implement lazy loading, find the images most likely to always be
visibile, and load them natively. For JS image loading, choose between lazy loading,
which will conserve the most bandwidth, and deferred loading, which will provide a
smoother scrolling experience. Lastly, consider using low quality image placeholders
across the board, making the page usable faster without compromising the eventual
look.

Lazy Loading Summary | 109

CHAPTER 9

Image Processing

Tim Kadlec

So far in this book, we’ve spent a lot of time discussing the performance impact of
images in terms of requests and file size—characteristics that primarily impact the
network side of things. However, there’s much more work being done under the hood
by the browser to get an image to be displayed on a screen. These additional steps in
the image loading process can have a significant impact on the processing time and
memory impact of your site.

Decoding
As we saw in chapters two and three, when your graphic editor of choice creates the
image file, it goes through a series of steps collectively called the encoding process.
Consider the general steps included in the JPEG encoding process that we learned
about in chapter 4:

• The graphic editor must covert RGB data to the YCbCr format.
• The graphic editor applies some level of Chroma Subsampling to reduce file size.
• The input is transformed from the color space to the frequency space by a Dis‐

crete Cosine Transformation (DCT) and further optimized using a quantization
matrix.

• The data may further be optimized using Baseline Sequential or Baseline Pro‐
gressive encoding.

• Finally, the data goes through one last lossless compression step called Huffman
encoding.

By the end of this process, the original color data has been transformed into a highly
compressed bitmap. While this outputted format is exactly what we need to save the

111

file efficiently, it’s not what the browser needs. The browser needs that color data—it
needs to know what to actually paint for each pixel on the screen. Specifically, the
browser needs an RGBA (Red, Green, Blue, Alpha) value for each pixel of the image.
To get to that data, the browser needs to walk backwards through these steps and
decode the image.

If we look at the JPEG format again, the decoding process looks something like this:

• The data goes through a Huffman decoding process.
• The result then goes through a Inverse Discrete Cosine Transformatio (IDCT)

and dequantization process to bring the image back from the frequency space to
the color space.

• Chroma Upsampling is applied.
• Finally, the image is converted from the YCbCr format to RGB.

Whenever the browser must draw an image onto the screen, it has to grab this deco‐
ded data before it can draw it to the screen.

Measuring
This decode process is not cheap. The time the browser spends decoding images is
revealed in several sets of developer tools.

Chrome
In Chrome, the image decode time is displayed inside of the Chrome Dev Tools, in
the Timeline tab. If you record the loading of a new page, you can then filter using the
search bar and display just the timings related to Image Decoding.

Figure 9-1. Image Decode Timings Exposed in Chrome Devtools

112 | Chapter 9: Image Processing

For more detail, you can use Chrome’s tracing functionality. Opening chrome://trac‐
ing in your browser will allow you to record a trace of all the work the browser is
doing. The task that holds the decode times is the ImageFrameGenerator:decodeAndS‐
cale task. You can use the filter box to type in ImageDecode and see only the meas‐
urements for that task.

Figure 9-2. Decoding Timing Filtered in chrome://tracing

You can also zoom in on individual decode operations within the charts the tracing
tool creates. Doing so will not only let you see the amount of time spent decoding,
but all the other steps that went into the decode process and how long each of those
took.

Figure 9-3. Zoomed-in View of Decoding Process

Decoding | 113

Both Chrome’s tracing and developer tooling allow you to easily record image decode
times for mobile devices running Chrome as well.

Edge
The developer tools for Microsoft Edge also display the image decode timings inside
of their Performance tab. Whereas the Google DevTools show each individual call to
the decoding process, the Edge tools take the approach of showing you the total time
per image—arguably a more understandable and valuable view of the data.

/todo: sidebar for how to get to the developer tools?

Firefox and Safari
At the time of writing, neither browser offers the ability to analyze image decode tim‐
ings.

How slow can you go?
This decoding process is not cheap. It can occupy the CPU for quite a bit of time,
particularly for lower-powered devices or high-resolution images. Just how slow can
the decode process be? The answer ultimately depends on the complexity and size of
your images, but you can get a decent idea by creating a test page of 10 images or so
at different sizes and see what happens.

The simple test I ran involved using three pages, each of which displayed images at
200px wide. One page served images that were resized to the exact wide they would
be displayed at—200px. A second page used 400px wide images, and the third page
used 1200px wide images. The test was run on a Nexus 5 device, and the differences
were substantial:

Table 9-1. Time spent decoding different sized images

Image Size Decode Time Percentage Increase
200px 30.38ms -

400px 102.77ms +238.3%

1200px 15534.99ms +4952.6%

While the results will undoubtedly vary depending on the different images you use—
as well as the device tested on—the conclusion will be the same: the browser must
spend much more time decoding images as those images get larger in size. Just as
serving appropriately sized images decreases overall page weight, resizing your
images provides a substantial reduction in decode time as well—ensuring your con‐
tent gets rendered to the screen as quickly as possible.

114 | Chapter 9: Image Processing

Memory usage
Resizing images in the browser can also impact battery life and the lifespan of the
device. Ever notice your phone getting warm while browsing an image heavy site?
Much of that is from all the image decoding that the browser is trying to do.

Decoding an image is a fairly involved process that the browser must go through for
each and every image on the site, every time it needs to display it. Let’s say you have a
large hero image at the top of your page. As you scroll down, the image is no longer
visible. When you scroll back up, the browser needs that decoded data again to get
the image back onto your screen.

To avoid the added overhead of having to possibly decode the same image multiple
times, the browser maintains an image memory pool—a preallocated space in mem‐
ory where decoded image data can be stored. Now, when the browser needs to put
that image back on your screen, it doesn’t (necessarily) have to go through the decod‐
ing process again. Instead, it can look in the memory pool to see if the decoded data
for a given image is already available. If it is, it uses that decoded data. If it isn’t, the
browser will go through the process of decoding the image and, eventually, storing
the newly decoded data in that memory pool for later.

This decoded data is much larger in size than the disk size of the original image
downloaded. Remember—a huge part of the encoding process is reducing the final
size of the generated image and the browser has just redone all of that work.

Since we know that the image is represented by an RGBA value for each pixel, we can
figure out exactly how much memory that image is going to take up by multiplying
the height and width of the image by 4 (an RGBA value takes up 4 bytes—one byte
each for Red, Green, Blue and Alpha). The final formula is:

Width x Height x 4

Consider a hero image that is 1024 pixels wide and 300 pixels high. We can plug those
numbers into our formula to find out how much memory it’s taking up once deco‐
ded:

1024 x 300 x 4 = 1,228,800 bytes

While the disk size of the image may not be particularly heavy, the decoded size
stored in memory is a whopping 1.23MB. As of 2015, 25% of all new Android phones
were shipping with only 512MB of RAM. Factor in that the average page today uses
around 30 images or so, and that memory gets eaten up pretty quickly. Generally
speaking, the browser is nearly always going to need to use more memory than it has
access to.

That’s where the image memory pool mentioned earlier comes back into play. A
browser can offer memory back to the operating system for it to reclaim, if needed.

Decoding | 115

What happens is that as you scroll down a page the browser may choose to offer some
of the memory currently being used on images back to the operating system. A great
example would be a large hero image at the top of the page. The further you scroll
down, the less likely the browser is to need that decoded image (and the more mem‐
ory the browser is likely to be using as it decodes images scrolling into view).

At some point, the browser may decide that it’s safe to offer that memory back to the
operating system. If the operating system does indeed reclaim the extra memory, the
browser will discard the decoded data for the image. If you were to now scroll that
image back into view, the browser would once more need to decode that image
because it would no longer be included in the memory pool.

Image pooling is a necessary feature to ensure that the operating system is not crip‐
pled by image heavy pages, particularly on lower-end devices. The trade-off is that
whenever decoded data is evicted from the pool, the already costly process of image
decoding may be duplicated, wasting CPU cycles.

GPU Decoding
Given these constraints—potentially limited memory, cost of decode, and risk of hav‐
ing to decode the same image multiple times it’s in the best interest of the user, the
browser, and you—the developer—to reduce the amount of memory used by as much
as possible.

With this in mind, browsers started to experiment with how they might be able to
reduce the memory impact of images by changing how and where the decoding
occurs. The most significant optimizations involve the JPEG format.

Traditionally, the decoding process has occured on the CPU. Only after the image has
been fully decoded does the CPU pass that decoded data over to the GPU to be ren‐
dered. JPEG’s are saved as YCbCr data which provides an opportunity for reduced
memory usage. Using the YCbCr color space means images are stored using three
channels: one Luma channel and two Chroma channels. If the image is decoded and
stored as YCbCr data instead of RGBA, we move from 4 bytes per pixel to 3 (one each
for Chroma Blue, Chroma Red and Luma). We’re kind of cheating here because we’re
ditching that alpha data entirely. But since JPG’s don’t support alpha transparency, we
can get away with it.

If browsers move the final step in the JPEG decoding process (converting from
YCbCr data to RGBA), they can greatly reduce the memory required to store the
image data.

If we look back at our hero image from earlier, when it was stored as RGBA data it
took up 1.23MB of space:

1024 x 300 x 4 = 1,228,800 bytes

116 | Chapter 9: Image Processing

That same image stored in the YCbCr color space takes up much less room:

1024 x 300 x 3 = 921,600 bytes

Simply by saving the decoded image in a different color space results in a 25% reduc‐
tion in memory usage. It requires the GPU to do a little more work (instead of merely
rendering the image, it must also convert from YCbCr to RGBA) but it reduces bat‐
tery life, memory use, and precious CPU cycles—not a bad trade-off!

The impact in memory reduction becomes even more significant depending on the
level of Chroma Subsampling involved. Brace yourselves: it’s about to get mathy
again.

Let’s revisit the savings in Chroma data for the different levels of subsampling that we
saw in chapter 4:

Table 9-2. Chroma data savings based on subsampling level

Subsampling Level Chroma Data Savings
4:4:4 0%

4:2:2 50%

4:1:1 75%

4:2:0 75%

Armed with these numbers we can come up with a new formula for memory usage
when the browser uses GPU decoding:

(Height x Width x 3) - (Height x Width x Subsample_Level x 2)

First, let me apologize for giving you flashbacks to ninth-grade algebra. It was sadly
unavoidable.

Now, let’s break this down.

The first thing we need to figure out is how much the image would consume in
YCbCr using no compression. As we saw a little earlier, that’s the first part of this for‐
mula:

Height x Width x 3

However, if there is subsampling involved, we aren’t actually using all of those bytes.
If we’re using a 4:2:2 subsampling level, for example, our two Chroma channels aren’t
using 50% of their original data to be precise. So we need to subtract that. That’s the
second part of our formula.

Height x Width x 2 (number of chroma channels) x Subsample_Level

Let’s walk through a few examples using our hero image. If the hero image was saved
using 4:2:2 subsampling, then our subsample level is 50%, or .5. Here’s how we’d use it
in our formula:

GPU Decoding | 117

1 http://calendar.perfplanet.com/2015/why-arent-your-images-using-chroma-subsampling/

(1024 x 300 x 3) - (1024 x 300 x 2 x .5) = 614,400 bytes

If we encoded the same image using 4:2:0 subsampling, our subsample level is 75%
or .75.

(1024 x 300 x 3) - (1024 x 300 x 2 x .75) = 460,800 bytes

You can see that our memory usage really starts to add up the higher the level of sub‐
sampling used, peaking at a hefty 62.5% savings if images are saved using either the
4:1:1 or 4:2:0 subsampling levels.

Table 9-3. Memory usage for a 1024px x 300px image, based on decoding method used

Decode Method Memory Use (in bytes) Memory Savings
CPU (RGBA) 1,228,800 0%

GPU (4:4:4) 921,600 25%

GPU (4:2:2) 614,400 50%

GPU (4:1:1) 460,800 62.5%

GPU (4:2:0) 460,800 62.5%

The memory savings for using a 4:2:0 (or the less common 4:1:1) subsampling level is
huge, particularly when you consider that the average site today is loading 1.4MB of
images and 45% of those are JPEG’s. There’s a lot of room for improvement here.
According to a study of 1 million images that was conducted by Colin Bendell, only
40% of JPEG’s online currently using 4:2:0 subsampling1.

Triggering GPU Decoding
At the time of the writing of this book, Chromium-based browsers, Microsoft Edge,
and Microsoft Internet Explorer 11+ all support GPU decoding. For Edge and Inter‐
net Explorer, GPU decoding is the default process.

Chrome has taken a slightly different approach (for now) and only enables GPU
decoding under certain situations.

1. The meta viewport element is defined and includes “width=device-width”.
2. There are not multiple rasterization threads available.
3. The device is using Android 4.x (and later) or is a Nexus device.

This means that if you’re using responsive design (and using the approaches men‐
tioned in chapter 10), then Chrome on mobile is already taking advantage of GPU
decoding whenever it thinks it’s the best approach available.

118 | Chapter 9: Image Processing

Summary
The browser has to do a lot of work to display an image on your screen. Sizing your
images appropriately, taking advantage of Chroma subsampling on your JPEG files,
and taking advantage of GPU decoding can all help to reduce the impact on both
processing and memory—both very important considerations particularly on mobile
devices.

With a working knowledge of how to optimize each image format as much as possi‐
ble, as well as how to enable the browser to do its job efficiently, it’s now time to put it
all together. How do you apply all of this knowledge into an efficient workflow? In the
next chapter, we’ll explore just that.

Summary | 119

CHAPTER 10

Image Consolidation (for Network & Cache
Efficiencies)

Colin Bendell

If you’ve ever had to move from one home to another, you know that moving day is a
long and grueling day. You quickly realize that you want to minimize the number of
trips from your apartment to the moving truck. If you took one small box each trip,
you’ll spend more time going back and forth than actually loading the moving truck.
Therefore, carrying more boxes in each load will reduce the number of trips back up
the stairs and will bring that much deserved beer that much closer. At the same time,
there is a limit. Good luck trying to carry 8 cartons of books in one load. An extra
trip is better than a broken back.

This is the same challenge with loading images in a browser or app. In order to opti‐
mize the delivery we either need to address either the number of requests or the pay‐
load per request. This is particularly true for small images. A useful technique is to
consolidate images thereby reducing requests and making each request more effec‐
tive. This chapter explores how to bring high performance for the smaller images
using techniques like spriting, webfonts and inlining.

What about HTTP/2?
Many of these solutions for small images have been cultivated in a HTTP/1.1 world.
Some have argued that this is an anti-pattern in an HTTP/2 world. This is not the
case, at worst it will not degrade performance. However there are many reasons why
consolidation is still relevant in a HTTP/2 internet.

• It will be several years before the ubiquitous adoption of HTTP/2. During this
time of transition, older browsers and corporate content filters (Proxies) will
continue to benefit from HTTP/1.1 optimizations

121

• Many images means many requests to the browser cache. This is not free. Each
cache request requires multiple InterProcess-Communication (IPC) calls. Use
consolidation you reduce the number of IPCs

• Consolidation increases cache hit probability. A single image that is used once
will be more likely to be dropped during cache eviction than if it were consolida‐
ted and sharing the cache hit rate of many requests. This also benefits images not
yet referenced but displayed on other pages.

• Consolidation can, in some cases, save total bytes on the network as well as in
browser cache.

The Problem
Just like in our analogy of moving household goods, the browser (and apps) have two
particular problems:

1. Round-Trip-Time: how long does it take from the time the request is sent to the
time the response is received. Using our analogy, how long does it take for the
worker to leave the truck, go up the stairs into your apartment and come back
with a load? Does the worker have to prop open the doors, or are they open
already?

2. Making every trip count: how do we make sure each response contains the most
data? Taking one trip to deliver a single carton containing a lampshade is not
very efficient and delays completing the job.

TCP Connections & Parallel Requests
To understand the impact of the round trip time, let’s start by examining what is hap‐
pening at the TCP/IP layer. For reference, this section is particularly focused on the
problems manifested in HTTP/1.1. The problems of congestion window scaling are
specifically address in the HTTP/2 design.

To review, a typical TCP session starts with a handshake before sending and receiving
data:

122 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

Figure 10-1. syn; syn-ack; ack

The biggest challenge with TCP is latency. Internet Service Providers (ISPs) and cel‐
lular providers have been good at selling internet based on ‘bandwidth’; how many
Mbps your connection could send. What isn’t The dirty little secret that they don’t tell
you is that you can have as much bandwidth as you like, but it will deliver inferior
user experience if you have high latency.

In diagram 1 we see the cost of merely establishing a TCP connection. In this illustra‐
tion having just 50ms of latency means that an unencrypted TCP connection takes
100ms before the browser can send the first HTTP request (300ms before first
HTTPS / TLS request). Increasing the latency to 75ms, this problem inflates to 150ms
and 550ms for HTTP and TLS respectively.

To send a single small image (say 1,200Bytes), you would have the connection over‐
head + 1 packet for a request + 1 packet for a response. This means the total time on
a 50ms latency connection is 400ms for just one packet of data - for just the small
image.

Put another way, we are only 12.5% effectively using our network connection. If we
had to setup a new connection for each image, on a TLS connection only 12.5% of the
total time is transmitting data; 25% on an unencrypted connection.

The Problem | 123

Small objects impact on the connection pool
Fortunately, HTTP/1.1 does provide for connection reuse with persistent connec‐
tions. This way the TCP connection is negotiated once per session and the socket is
reused for multiple requests. (Of course, this assuming the server behaves properly
and respects the Connection:keep-alive header). Despite the persistent connection,
small object delivery can impact the connection pool.

The fatal flaw with HTTP/1.1 is that each image request blocks and delays other
resources from being loaded. Specifically, you are limited to one request and one
response at a time. Any other requests queued on the network interface must wait for
the HTTP response. For this reason multiple connections are usually opened in par‐
allel to prevent head-of-line blocking. A browser (and operating system) imposes lim‐
its on the number of TCP connections. The usual limit imposed is around 6
connections per hostname. (Earlier versions of Android and iOS had lower global
limits - as low as 4.) Not just images are impacted by the connection limit; the limit
affects all resources including APIs, JavaScript and CSS.

While a connection can be reused, it is still subject to congestion windows and TCP
Slow-Start. The situation is aggravated with small images because they won’t saturate
the connection. Each request may be followed by a few packets of response data fol‐
lowed by another request packet. For example, if an image was only 4 packets
(assume \~1,500 Bytes per packet), the cost of latency to send and then receive data
becomes quite high and the effective throughput will be low. We could be sending
more data on the network but we are being forced to pause and wait for the round
trip for each new request.

Using our analogy above, think of having a maximum of 6 workers to move. With
small images you are only loading each worker up with 1 box per trip instead of many
boxes per trip.

Not only are these small images blocking other requests, but they are penalized by the
latency on the connection: more latency compounds the delay of page rendering.

To illustrate this, a single page with 100 images of 3k each. The HTML is very simple
. Each image is the same,
but marked with different version numbers to ensure cache busting. Notice that even
in HTTP/1.1 and HTTP/2 the network connection is never saturated.

124 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

Figure 10-2. Many small images is not able to saturate the TCP connection (HTTP/1.1
unencrypted) - test with 100 3k images on a page.

Figure 10-3. Even with HTTP/2, many small images is not able to saturate the TCP con‐
nection - test with 100 3k images on a page.

Efficient use of the connection
HTTP/2 does improve the situation by effectively increasing the number of parallel
requests. You will incur the cost of a TLS handshake, but will be able to make many
requests on a single connection without the penalty of head-of-line blocking.
Requests and responses occur simultaneously, maximizing the connection through‐
put. Even still, there is a finite capacity of data. Using our analogy of moving, the
doorway still restricts how many boxes can actually be transported from the house to
the truck. If we are transmitting images ahead of critical content, we will still delay
the experience of the waiting user.

Fortunately, the browser (and the protocol) can prioritize requests: Images after
XHR/AJAX, JavaScript and CSS. This is an attempt to minimize the impact of delayed
requests. Increasingly, however, these resources are loaded using JavaScript and other
complex mechanisms making it easier for the PreLoader/Speculative parser to dis‐
cover and queue images but less likely to discover critical JavaScript and XHR calls.
Early CSS request and parsing also will quickly populate the request queue. The net
result is that small images will block resources needed for user interaction.

Take for example, Lottee.com, a South Korean online shopping mall. On the home
page, the images in the network queue delay the loading of other critical CSS and
Javascript resources. Also note in this example, the use of the network bandwidth.

The Problem | 125

Figure 10-4. Lotte.com Request waterfall

Impact on browser cache: metadata and small images
One last challenge with small images is the overhead of maintaining the images in
cache and sending them over the wire. While the actual bytes of the image might be
small, there is always overhead metadata associated with the image that is sent along
with the HTTP response in the form of HTTP headers and browser/device cache.
This may seem to be a trivial issue but when you compound this issue with many
small images, it becomes a larger problem.

There are three areas that this metadata exists: the datacenter, transit, and client. Let
us ignore the cost of maintaining the images at the datacenter for now. In transit to
the client this metadata manifests itself as the HTTP Response Headers being sent to
the client. Once received, this image must be stored and indexed on the users operat‐
ing system for future reference.

Chrome uses block files to store images and other small content that are less than
16KB. This reduces the overhead of sector waste on the filesystem. Each block file
uses different sizes of blocks and are limited to \~64k entries each. A cached entry
will include the hashed key, HTTP Headers, rankings and pointers to payload blocks.
The payload is stored using all the same block sizes which will likely yield at least one
partially filled block.

126 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

Table 10-1. Chrome’s Disk Cache 2 file organization. Each file consists of different cache
block sizes

File Block Size
data_0 36B

data_1 256B

data_2 1K

data_3 4K

Lets assume for a moment that the client has requested a 3.2KB image and has 300B
of HTTP Response Headers. Not a big deal right? This image will be indexed and
stored in one of the cache block files, in this case it will be data_2 and will require 5
blocks —- one for the headers, four for the payload. Thus we have used ~512B for the
cache entry records along with an additional \~100B for the rank and index plus 4K
for the HTTP response. In total we have used 5.6KB of storage for a 3.2KB image.
That 75% increase in file size (2.4KB) is all overhead! Worse yet, the 64,000 entries in
the data_1 block file is reduced by 4 just for a single cached file.

Modern browsers employ a fixed cache pressure to reduce IO overhead. While the
use of data files optimizes the utilization of the cache for small files, the popularity of
similar sized files can create cached entries to be dropped. The Least-Recently-Used
cache is a complex algorithm that takes many factors into account including block
utilization. The risk of having many small images on a page is that it will increase the
probability of some or all of those images being evicted from cache before a repeat
visit from a user.

For example, if you consolidated 10 images into 1 consolidated file and request each
sub-image only one time - you would have effectively increase the cache popularity of
the single consolidate image. As separate images they would have a cache hit of 1
whereas now the consolidated image has a hit of 10. As such the aggregated resource
is less likely to be evicted compared to the many resources.

There is also the impact of Inter-Process-Communication (IPC) in the browser when
making a request from cache or the network. At a high level each tab in a browser has
its own thread, but must communicate via IPC to the browser threads which in turn
dispatch multiple requests over the network or even to fetch resources from cache.
This architecture allows isolation and parallel processing but at the cost of additional
memory. IPC calls are not free and have synchronization overhead. The more we can
reduce IPCs, the more efficient the browser will behave.

Small objects observed
Surprisingly, a large portion of the images downloaded on the web are small images.
Looking at the top 1 million most popular images, 24% of all JPEGs requested by end

The Problem | 127

users are less than 6KB in size. Likewise, 80% of GIFs are less than 6KB and 64% of
PNGs. In aggregate, 44% of images requested by end users are below 6KB; approxi‐
mately 4 packets wide.

Figure 10-5. Histogram of 1 Million JPG, GIF and PNG

As we have already discussed, images make up most of the bytes downloaded on a
webpage. Unfortunately, this byte volume also corresponds to an average of 54
images per page, according to httparchive.org. This is despite over a decade of web
performance optimization education showing the necessity of optimizing for these
small images.

A comment about logographic pages
Unfortunately, HTTP and HTML are biased in favor of English and the Latin based
languages. Logographic based languages have many complexities - from character
encoding to text flows. Many of the early browsers, proxies and web servers had chal‐
lenges differentiating ASCII and Unicode encodings like UTF-8. As a result, many
websites to this day still depend on images for logographic words to ensure styling,

128 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

formatting and aesthetics are preserved across browsers. The result is much higher
volume of images since much of the text content is embedded in images.

What is a Logography?
Logography refers to writing systems where each character represents a word or
phrase. Examples include Chinese characters, Japanese kanji. In contrast, English uses
an alphabet.

Korean is technically an alphabet system but because it is non latin based it has the
same challenges as other asian logogram systems.

For example, compare the number of small images used on rakutan.com compared to
rakutan.co.jp (a popular online retailer in Japan). The majority of this difference is to
address the shortcomings of browser rendering discrepancies and therefore use small
images per words and text.

Figure 10-6. Compare the image bytes required for Rakutan.co.jp (Japan) in contrast to
Rakutan.co.uk (UK). Nearly 6x the number of image bytes

The Problem | 129

Figure 10-7. Most of the images contain Japanese text to solve layout and font issues.

Raster Consolidation
Consolidating techniques focuses on maximizing I/O - whether network or cache -
by using one data stream to represent multiple images. Raster and vector images have
slightly different options (See “Raster vs. vector” on page 22 for more discussion).

CSS Spriting
The most common, and likely the most effective way to reduce the number of small
images is to utilize CSS Sprites. Sprites are a robust technique that have a history
stretching back to the early days of video games. A single image can contain multiple
images that are sliced up and reused throughout the page. Better still: CSS Sprites are
supported by nearly 100% of all browsers.

Using CSS Sprites accomplishes the following goals:

• Combine multiple images into a single image
• 1 HTTP request
• 1 Cache entry
• Reduced file size for combined images

Consider the logos for the most popular browsers. If we included each icon as a sepa‐
rate file they would result in the following bytes downloaded and disk cache size (see
“Impact on browser cache: metadata and small images” on page 126)

Table 10-2. Small icons file byte size and size in cache

Logo Pixels Bytes Browser DiskCache Size
MS Edge 128x128 1.39KB 3.6KB

130 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

Logo Pixels Bytes Browser DiskCache Size
Chrome 128x128 3.34KB 5.6KB

Firefox 128x128 6.55KB 9.6KB

Safari 128x128 5.42KB 9.6KB

Total 16.7KB 28.4KB

In total, these icons occupy 16.7KB. Combining the 4 images into a single image
results in a single 12.8KB image, requiring only 1 IPC and occupying 16.6KB of cache
disk (4 blocks of data_3). Not only is this now HTTP Request, but it also has reduces
the cache footprint to 3.6KB

Creating CSS Sprites
Creating and using CSS sprites is straight forward:

1. Merge images into a single image
2. Create CSS styles that reference the appropriate sprite location
3. Add HTML markup placeholders for the images

Merging Images
You can use your favorite image editor such as GIMP or Photoshop to merge images.
Create a canvas large enough to house all the sprites, copy and paste each image, lay

Raster Consolidation | 131

out the images in a logical order and save. Likely you will save the resulting image as a
PNG (See <<lossless> when to select the right format).

$ convert edge.png chrome.gif firefox.png safari.png -append PNG8:browsers-
sprite.png

Change sprite direction with ImageMagick

Use ImageMagick to create a sprite with -append to append verti‐
cally or +append for horizontally.

Create CSS styles
Once you have the single image created, the next step is to create the appropriate CSS
styles. CSS Sprites use the background-image and background-position properties
to move the image out of the viewable area. These attributes have existed since 1996
in CSS1 and has nearly ubiquitous browser support.

a.icon {
 display:inline-block;
 text-indent: -9999px;
}
.icon {
 background-image: url('/images/browsers-sprite.png[]');
 background-repeat: no-repeat;
 height: 128px;
 width: 128px;
}
.icon-facebook {
 background-position: 0px 0px;
}

.icon-twitter {
 background-position: 0px -128px;
}

.icon-linkedin {
 background-position: 0px -256px;
}

.icon-googleplus {
 background-position: 0px -384px;
}

A quick checklist for the styles:

• Keep track of the relative position (-x, -y) of each sprite on the canvas.
• Specify the width and height of the viewable sprite to avoid visual gaffs.
• Use one style per sprite to avoid overlap.

132 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

• Update all the relative positions if you change the sprite.

HTML Markup
For each location that you will use the sprite you will need a corresponding HTML
element that supports background styling. You’ll have to use a blocking element,
which in most cases means you’ll use a <DIV> or instead of . The HTML
markup is usually the part that grates on most purists because you it requires you to
mix presentation with content. I suggest you go outside, have a good cry, and come
back with your big-kid pants on because this is web, sometimes we have to make the
hard decisions.

<a class="icon icon-edge" href="https://www.microsoft.com/en-ca/windows/
microsoft-edge">
 Microsoft Edge

 Chrome

 Firefox

 Safari

In this example we have made the social media links clickable and while also making
them accessible for anyone using a screen reader.

Automating to avoid image and link rot
Clearly creating sprites by hand isn’t ideal. In fact, the biggest risk to manual creation
of sprites comes in the form of image rot - images that are no longer being used but
still included in the sprite. The worst case is when the same image is included multi‐
ple times but at slightly different sizes.

If you are manually creating the sprite then you will either need to revisit all the old
references, or just blindly add a new image to the bottom of the existing sprite. The
latter is the path of least resistance. Unfortunately this will result in an ever growing
sprite canvas. Consider the pain and suffering of having to refactor all your css after
your CEO discovers that the site is slow because of a 1MB sprite (… not that this has
actually happened to anyone I know.)

Fortunately there are many tools available to help automate the creation and referenc‐
ing of sprites. Usually, the first approach that most attempt is to do a global search
and replace on HTML and CSS files. Don’t do that. It is painful and will be fraught
with problems. You shouldn’t underestimate the creativity of your marketing team.

Raster Consolidation | 133

The better approach is to automate the creation of sprites and CSS styles. Clearly
define the style naming convention with your creative teams. Follow this up by
removing all GIF/PNG/JPG files during your deployment process and monitor for
broken links to find offenders.

Many frameworks now have automated mechanisms to create sprites. If you are start‐
ing from scratch, I would suggest using Sprity. Sprity is very extensible and can plug
into your existing styling frameworks (SCSS/Less) and build automation systems
(grunt/gulp) but can also be plumbed into an existing deployment script.

For example, we can simplify our output with this command line to both create out/
sprite.png and out/browsers.css files:

$ sprity out/ images/*.png -s browsers.css

The Sprity default creates styles prefixed with icon- which, fortuitously, matches our
example above.

Advanced topics
CSS Spriting has been around for a long time and covered extensively in many blog
posts and books. Some of the more advanced topics that should also be considered
include:

• Responsive Sprites - using different icons and images based on viewport width
• Adaptive Sprites - select different icon sets based on DPR
• Rollover and hover - simulating mouse hover effects by switching icons
• Animations - CSS sprites doing video spriting.
• Games and Javascript - make a website feel more like a mobile app

A comprehensive review of the different techniques and usages can be found at
Smashing Magazine’s post The Mystery of CSS Sprites

Drawbacks & Shortcomings
While CSS sprites do provide broad browser support and are well understood, it isn’t
all unicorns and rainbows. There are many rough edges in this technique.

Operationally:

• global sprites v. local sprites - Should you create one global sprite, but have many
of the icons unused in a page, or one per page and have duplication?.

• large sprites need to partitioned - Sprites shouldn’t be larger than 10 packets
(\~40KB). Use a partition partitioning schemes to manage growth.

134 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

• Cache invalidation - any change will cause the sprite to be invalid and render
downstream caches moot. You will certainly need to version your sprites and
force the end user to download the new sprite, even if 90% of the icons haven’t
changed.

• Requires vigilant observations that un-sprited references to small images don’t
creep into the system.

• Chicken and egg: sprite first or style first? Sprites must be created first before cre‐
ative teams can style a page and decide if the sprite is good enough. Iterating on
an icon is burdensome.

Stylistically:

• Images can’t be styled. CSS properties like shadows, coloring, underlining, etc
must be done manually by creating yet another image and sprite.

• Different sizes and layouts also require different image sprite sets
• Animated PNG/GIF/WebP files can’t be included in a sprite (though arguably

they are likely not small images)
• Mixes presentation and content by injecting HTML

Data URIs
Another technique that has its vestiges with CSS Spriting is inlining of images. This
moves images not into a separate consolidated image, but into the referencing docu‐
ment and encoding the binary into base64 text. In this way you can include the
images in the HTML or CSS by using the data: prefix whenever a src attribute or
property is used.

Inlining images with data URIs has benefits because it eliminates the need for yet
another HTTP request and cache entry. The page becomes intrinsically consistent.
No need for versioning. What you sent is what was expected to be rendered.

The structure of a data uri is:

data:[<media type>][;charset=<character set>][;base64],<data>

For images you can ignore the ;charset attribute but be sure to include the ;base64
attribute. For example, the 35-byte universal transparent 1x1 GIF is rendered as:

<img src="
BADs=" />

You can use this in HTML and CSS such as:

<img src="
HElEQVQI12P4//8/w38GIAXDIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg==" alt="Red

Raster Consolidation | 135

dot" />

<style>
 .dot {
 background: url('-
CAYAAACNbyblAAAAHElEQVQI12P4//8/w38GIAX-
DIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg==')
 }
<style>

There are many tools available to generate the base64 output including grunt tasks
like grunt-data-uri. You can also implement this yourself using the base64 com‐
mand in linux or OSX.

Inline SVG using data URI
SVGs can also be used in a data URIs. Of course, you don’t need to base64 the text,
but you will need to URLEncode the string. You can also safely omit translating
spaces (' ') into %20 to get additional readability; the difference after gzip compres‐
sion is negligible.

If you are concerned with getting the smallest 1x1 pixel image, you can use SVG with
a Data URI. This is useful when you want to lazy load images and need the onload
event to fire, or if you need an empty image for art direction.

<picture>
 <source media="(min-width: 600px)" srcset="/browsers.jpg">
 <source media="(max-width: 600px) and (orientation: portrait)"
 srcset="data:image/svg+xml;charset=utf-8,%3Csvg xmlns%3D%22http%3A
%2F%2Fwww.w3.org%2F2000%2Fsvg%22%2F%3E">
</picture>

This is effectively an empty SVG and url decoded is <svg xmlns="http://

www.w3.org/2000/svg"/>. This example combines both common use cases: an
onload event callback as well as a

Considerations
As you would expect, there are caveats to consider when utilizing Data URI.

1. Increased Size The biggest objection to using data URIs is the bloat from base64
encoding the binary. Base64 will increase the raw byte size by \~35%. Fortunately
gzip will reduce the contents between 3-37%. (Using brotli you could get this
down even further.) Overall most images will have no larger net size when trans‐
ferred.
(Though it should be noted that really small images can see some increases in
size because of the headers required).

136 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

Below is again the study of the top million images converted to base64 and then
again base64 with gzip. The locus of the results show a net decrease in byte size
after inlining.

Figure 10-8. Base64 only: Image width vs % increase size from base64

Raster Consolidation | 137

Figure 10-9. Base64 then GZIP: Image width vs % increase from base64|gzip

2. Browser Support Unfortunately DataURIs are an advent of modern browsers.
Prior to IE7 you will need to have a non-inlined version of your CSS that refer‐
ences the images directly. IE8 also has an artificial limit of 32K of encoded URIs.
You can use the Internet Explorer Conditional Comment to add the correct CSS:

<!--[if lte IE 8]>
<style href="ie-noinlining.css />
<![endif]-->

3. Request Blocking The real problem with inlining is that the images have effec‐
tively moved up in priority and the transfer of the image is now blocking the
transfer of other critical resources. As we have previously discussed, images are
generally low priority, by inlining them with data URIs the image has an effective
high priority because it is transferred at the time of the HTML or CSS.

4. Processing time Further complicating the issue is that the decode process takes
additional CPU and Memory. One study by Peter McLachlan at Mobify found
that “…when measuring the performance of hundreds of thousands of mobile
page views, that loading images using a data URI is on average 6x slower than
using a binary source link such as an img tag with an src attribute!”
While this is something that can be optimized over time in modern browsers, the
use of Data URIs can slow the loading and processing of the file. Consider if you
embedded all images in the HTML resulting in an uncompressed doubling, it will
impact the time to compute the DOM or calculate styles.

138 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

5. Caching & CSP Just like sprites, changes to images require caches to be invalida‐
ted. Unlike Spriting, the impact isn’t localized to a single image, it now requires
the encapsulating CSS and HTML to be versioned or invalidated from cache. If
only an icon changes, then the entire page must be re-downloaded.
Likewise, if your site is employing “Content-Security-Policy” (CSP), the base64 or
digest hash will need to be updated. Using inline images creates an ecosystem
change.

Better: Deferred DataURI Stylesheet
If you are concerned about blocking the critical rendering path by inlining images in
the HTML and CSS, another approach is to use an asynchronous CSS stylesheet.

1. Replace CSS background properties to remove the url() reference. You can
replace it with a solid color \#ffffff or even with a 1x1 inline pixel so as not to
minimize the stylesheet differences.

.myclass {
 width: 123px;
 height: 456px;
 background: #ffffff no repeat
}

2. Create a new CSS Stylesheet (we will call images.css) with just the CSS selector
and real background properties that include url('data:images/ ...') inlined
source for the actual content

.myclass {
 background-image: url('data:image/gif;base64, ... ')
}

3. Defer the loading of images.css with the following JavaScript (courtesy of Scott
Jehl’s loadCSS.js):

<script>
 // include loadCSS here...
(function(w){
 "use strict";
 var loadCSS = function(href, media){
 var doc = w.document;
 var ss = doc.createElement("link");
 var refs = (doc.body || doc.getElementsByTagName("head")
[0]).childNodes;
 var ref = refs[refs.length - 1];

 var sheets = doc.styleSheets;
 ss.rel = "stylesheet";
 ss.href = href;

Raster Consolidation | 139

 // temporarily set media to something inapplicable to ensure
it'll fetch without blocking render
 ss.media = "only x";

 var onloadcssdefined = function(cb){
 var resolvedHref = ss.href;
 var i = sheets.length;
 while(i--){
 if(sheets[i].href === resolvedHref){
 return cb();
 }
 }
 setTimeout(function() {
 onloadcssdefined(cb);
 });
 };

 // once loaded, set link's media back to `all` so that the style
sheet applies once it loads
 ss.onloadcssdefined = onloadcssdefined;
 onloadcssdefined(function() {
 ss.media ="all";
 });
 return ss;
 };
 // commonjs
 if(typeof module !== "undefined"){
 module.exports = loadCSS;
 }
 else {
 w.loadCSS = loadCSS;
 }
}(typeof global !== "undefined" ? global : this));

 // load a file
 loadCSS("/images.css");
</script>

<noscript><link href="/images.css" rel="stylesheet"></noscript>

<!--[if lte IE 8]>
<style href="ie-noinlining-images.css />
<![endif]-->

The net result will be a combined CSS with just the inlined images. This combined
CSS is loaded asynchronously (don’t forget to include the legacy fallback for IE 5-8).
All of the inlined images will have two distinct benefits:

• total bytes reduced via gzip to 1-3% less than even the original total bytes

140 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

• images will avoid being manipulated by an intermediate proxies that can recom‐
press images and distort images for mobile users (we will discuss this in the
Chapter 13)

Tools
There are many tools to help create inline images with different approaches.

1. Automated Front-End-Optimization services such as PageSpeed for Apache,
NginX and IIS. Many CDNs also include this as part of their value add delivery.

2. Build into your development workflow. Compass can automate the creation in
your SCSS/SASS stylesheets. Grunt tasks like grunt-data-uri can also examine
existing CSS and transform the content automatically ahead of deployment to
production.

3. Roll your own. You can use the base64 command on most linux systems or use
your the base64() equivalent function in most languages.

Vector Image Consolidation
Using raster graphics for icons and layout styling support is not ideal. This is espe‐
cially true for logographic and non-latin based content (hiragana, katakana, kanji,
zhōngwén, hangul, etc) and also can be problematic for responsive layouts: Either
you are sending down very large raster images and forcing the client to resize down,
or doing the opposite and scaling up small images. Both are undesirable from a per‐
formance and aesthetics perspective. It gets worse if you are trying to align CSS styl‐
ing with these bitmap images. A better solution is to implement these small images in
vector format to allow clean scaling on all resolution of displays.

Icon Fonts
Vector images can be merged into a custom WebFonts creating as an Icon Font. This
approach replaces literal characters with a custom icon or graphic.

There are many downsides to this approach and should be used only in a few situa‐
tions. Particularly: * FOIT - Flash Of Invisible Text (Chrome/Safari/Firefox). Text
styled by webfonts are hidden until the font is loaded. * FOUT - Flash of Unstyled
Text (Internet Explorer/Edge). Text is presented unstyled initially then changed after
the custome font is laoded. * Proxy-Browsers - many browsers, particularly those on
low powered mobile devies, don’t support custom WebFonts. * Accessability - For vis‐
ually impared and dislexic users often override default fonts. Using custom fonts will
make your website look like giberish.

Vector Image Consolidation | 141

However, there WebFonts can make sense in some situations: * Accent or enhance
existing text or icons (there are already many icons presented in unicode including
emojis) * Ligeratures where words are replaced with enhanced text * Logographic
content where standard * Native App WebViews where you can limit which platforms
utilize the WebFonts

Overview
There are two approaches to utilizing webfonts:

• single character replacement: Create new HTML entity &\#charts; with the
image image::images/09-consolidation-chart-icon.png[]. These can be referenced
by decimal position or defined colloquial name. Existing characters can also be
replaced.

• use typographic ligatures: This is essentially the same as a single character but has
some usability benefits which we will go into further detail. Instead of a single
character replacement you can do multiple character replacement so that you can
replace a whole word with an icon. For example, the the word “love” can be
replaced with the “♥"” character. In this way, “I love broccoli” will be rendered “I
♥ broccoli”.

Additionally, Icon Fonts can be styled with CSS just as any other text. This includes
color adjustments, shading, shape, rotation and even font styles like bold and italic.
Adding CSS Styles to font icons provides you with flexibility and eliminates the need
to regenerate from source when applying subtle aesthetic changes.

Creating & Using Icon WebFonts
Assembling an IconFont is fairly straightforward. You can assemble a new icon font
using existing WebFonts or, alternatively, using SVG images as source, define charac‐
ter mapping and convert to the various WebFont formats. The trickier part is ensur‐
ing cross browser support, fallback, and accessibility.

Fortunately you don’t have to build your Icon WebFont from scratch. There are many
font libraries ready for use and many of which can be re-assembled into purpose built
WebFonts. IcoMoo, SymbolSet, Font Squirrel and Pictos are just some of the many
sites that can assemble, create and host icon fonts. (We’ll discuss hosting and perfor‐
mance below.)

If you’re using images for asian characters, this is the best place to start to build a
logographic typeface.

There are many tools for Type Designers and Typographic experts to create custom
WebFonts. This includes FontLab Studio, FontForge and many others. However, cus‐

142 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

tom Icon WebFonts this may involve a lot more complication and not necessarily
scalable for use with your creative teams.

There are also a number of tools that can help to automate the process of creating
WebFonts and avoid the manual design process. Typically these tools start with SVG
images and transform them into the custom font and provide the appropriate charac‐
ter mapping. The typical workflow starts with SVG images, converts to an SVG Font,
which is then converted to the other WebFont formats such as TTF, EOT, WOFF and
WOFF2. Alternatively, there are also grunt and gulp tasks (such as grunt-webfont or
gulp-iconfont) that wrap up these individual steps into a single task making it easier
to automate the process.

WebFonts are monochromatic

It is important to remember that WebFonts are monochromatic.
Color detail represented in SVGs will be lost when embedding in a
font.

To demonstrate this workflow we will use the following libraries:

1. SVG Images >> SVG Font (svgicons2svgfont)
2. SVG Font >> TTF Font (svg2ttf)
3. TTF Font >> EOT Font (ttf2eot)
4. TTF Font >> WOFF (ttf2woff)
5. TTF Font >> WOFF2 (ttf2woff2)

There are a number of other libraries that are also useful to use in this process that we
won’t explore. Specifically I would draw your attention to:

• SVG Optimizer - which reduces the redundant information and helps collapse
the code paths

• TTFAutoHint - which can help improve rendering of fonts, particularly in Win‐
dows, for maximum readability

Using the same browser logos we used when creating the CSS sprite we can combine
them into a webfoot. This time we will start with SVG representations. Our folder /
images contains the following SVGs:

Vector Image Consolidation | 143

Figure 10-10. SVG BrowserIcons

• images/safari.svg
• images/firefox.svg
• images/u0065-edge.svg
• images/u0063,u0063u0068u0072u006fu006du0065-chrome.svg

Invoking the conversion to create the SVG Font (fonts/browsers.svg) is fairly straight
forward. This will create the root font we will use to convert to the other webfoot for‐
mats. It will also the step where the character mapping, ligature creation and collo‐
quial glyph naming occurs. In this example, the filename will also provide hints for
character mapping for the Edge and Chrome logo. The letter e will be replaced with
the Edge logo or the ligature chrome will be replaced with the Chrome logo.

There are many nuances with character mapping. First there is the consideration for
fallback support. If there is a less ideal, but representative existing character already
present in unicode, then overriding this character might be preferred. For example
you might have an hours of operation section with a nice clock image. You can use
the character ⌚ (⌚) and replace it with your nicely styled clock
(image::images/09-consolidation-font-forge.png[])

As previously mentioned, the icons used in web fonts replace mapped characters.
Using existing characters mapping provides a certain level of fallback if the WebFont
failed to load or other operational problem. Of course, if the replaced character is not
related you could be giving your user a very jarring experience.

The unicode spec does provide a Private-User-Area for mapping characters for pri‐
vate use. In theory this provides you a place that only your icons will exist. In prac‐
tice, some platforms utilize this space and potentially cause other visual gaffs. Most
notably was the Emoji mapping in PUA prior to formally being included in the uni‐
code spec (See iOS SoftBank mapping). If you are exclusively using your Icon Font for
Icons and not mixing it in with an existing WebFont, then worrying about PUA over‐
lap is not a concern.

144 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

$ svgicons2svgfont --fontname=browsersfont -s uEA01 -o fonts/browsers.svg
images/*.svg

Likewise converting to TTF, EOT, WOFF, and WOFF2 can be accomplished thusly:

$ svg2ttf fonts/browsers.svg fonts/browsers.ttf
$ ttf2eot fonts/browsers.ttf fonts/browsers.eot
$ ttf2woff fonts/browsers.ttf fonts/browsers.woff
$ ttf2woff2 fonts/browsers.ttf fonts/browsers.woff2

Utilizing the new created WebFont is now as easy as adding the font declaration and
associated html.

chrome

@font-face {
 font-family: 'socialmediafont';
 src: url('browsers.eot'); /* IE9 Compat Modes */
 src: url('browsers.eot?#iefix') format('embedded-opentype'), /* IE6-IE8 */
 url('browsers.woff2') format('woff2'), /* Super Modern Browsers */
 url('browsers.woff') format('woff'), /* Pretty Modern Browsers */
 url('browsers.ttf') format('truetype'), /* Safari, Android, iOS */
 url('browsers.svg#socialmediafont') format('svg'); /* Legacy iOS */
}

.icon {
 font-family: 'browsersfont' !important;

 font-feature-settings: "liga"; /* enable ligatures */
}

.icon-safari:before {
 content: "\ea01";
}
.icon-firefox:before {
 content: "\ea02";
}
.icon-edge:before {
 content: "\65";
}
.icon-chrome:before {
 content: "\63";
}

Since we have created an icon font with only the icons, only a limited number of
characters can be rendered. Any additional text that is caught in the CSS style that is
not defined may render oddly with different browsers. For example, if you had the
text edge only the letter e will display and the following characters may have empty
boxes. Be careful to scope icon fonts appropriately.

Vector Image Consolidation | 145

In this example we have enabled ligatures using the CSS property. However, a more
comprehensive style would include:

.icon {
 font-family: 'browsersfont' !important;

 /* Ligature support */
 letter-spacing: 0;
 -webkit-font-feature-settings: "liga";
 -moz-font-feature-settings: "liga=1";
 -moz-font-feature-settings: "liga";
 -ms-font-feature-settings: "liga" 1;
 -o-font-feature-settings: "liga";
 font-feature-settings: "liga";
}

As previously mentioned, using gulp or grunt tasks can simplify these steps and
combine them into a single action. Both tasks will also generate the necessary CSS
and mapping to further reduce rendering errors.

Compatibility
Unfortunately WebFont support across the browser spectrum is very fragmented.
There isn’t a single universal format that is supported by all browsers. While modern
browsers have rallied around WOFF and WOFF2, older browsers support a myriad of
formats including EOT, TTF and SVG. Worse yet, most proxy browsers including
Opera Mini do not support any WebFonts so fallback is always important.

Figure 10-11. Browser support for @font-face with Web fonts form CanIUse.com
(2016)

Safari support for SVG Fonts
While SVG font container is supported by Safari, modern versions also support
WOFF. It is only early versions of Safari that only supported WebFonts through SVG
fonts. It is relatively safe to omit SVG in your CSS declaration.

Each browser also loads fonts differently resulting in a variety of rendering experien‐
ces for users. Of particular note is the dreaded Flash Of Unstyled Text (FOUT). For

146 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

example, Internet Explorer will display the text in an alternate font until the WebFont
is available. This is ok if you have appropriate fallback characters but will display
empty boxes if using Private-User-Area character mapping.

In contrast, Safari will hide the text until the custom font is available and display only
when after the font is loaded. Finally Chrome and Firefox will wait up to 3 seconds
and use the fallback font, repainting after the font is available. This Flash-of-Invisible-
Text (FOIT) is probably worse from a user experience - especially if they are on a
poor network connection.

Most browsers also load fonts asynchronously with the exception of Internet
Explorer. The result is that the icon images can be displayed later and prolong the
FOUT period while the fonts are loaded. For smaller Icon Fonts, inlining the font
with a Data URI can be more efficient. Unfortunately because of the multiple font
formats you will also need to inline the different font files even if they aren’t being
used.

To work around this, you can use adaptive delivery for your CSS and detect, server
side, the browser and version and deliver a specific CSS file with the appropriate
inlined font file. (For more details, see Chapter 13).

While the hoops to generate font files for vector images might seem arduous, the real
benefit is bringing accessibility for your website and images, as well as a convenient
encapsulation to bring vector images to legacy browsers.

WebFont Good and Bad
While Icon Fonts are a convenient and durable mechanism to consolidate small vec‐
tor images, there are many drawbacks. Most notable is the outright lack of support by
some browsers. Specifically, the lack of support by Proxy Browsers like Opera Mini.
There are also various CSS and rendering nuances in different browsers and operat‐
ing systems that need to be accounted for and tested. This includes CSS tricks like the
need to include !important to avoid browser extension issues and explicit enabling
font smoothing using -webkit-font-smoothing: antialiased and -moz-osx-font-
smoothing: grayscale. Not to mention issues of alignment, spacing and churning.

On the other hand Web Icon Fonts can be good for text, specifically to augment exist‐
ing text (using ligatures) or logographic content.

SVG Sprites
While SVGs are text and highly compressible, they are not immune to the same chal‐
lenges of small image delivery. In fact, SVGs have nearly the same kind of file size
distribution—the majority being less than a single packet wide.

Vector Image Consolidation | 147

If you have vector images (in SVG) you aren’t limited to WebFonts to consolidate.
You can create SVG sprites just as you would with GIF/PNG sprites. Just as you
would with rastar sprites, you would arrange your icons on a canvas in a grid. Most
vector image editors from Adobe Illustrator to PixelImator can make this a quick
task.

For convenience, set SVG viewbox equal to viewport dimensions

When using SVG for sprites, setting the viewport and viewbox to
different values can have odd results. Remember the viewport is the
viewable size (eg: how large your monitor is) and the viewbox is
the portion of the SVG canvas that should be stretched or shrunk
to fit the viewport. For simplicity it it is good to set the viewbox
and viewport of the same dimensions.

For example, for our browser icons we might have an SVG sprite such as:

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="800" height="1080"
 viewBox="0 0 800 1080" >
 <g>
 <path d="..." />
 <!-- graphics arranged in rows and columns -->
 </g>
</svg>

Then, as usual you can reference each icon via CSS background:

.icon-safari {
 width: 20px;
 height: 20px;
 background-image: url('images/chrome.svg');
 background-repeat: no-repeat;
 background-position: -110px -630px;
 position: absolute;
}

This approach makes it easy for your creative team since it is a very familiar process.
Better yet, this approach works in all browsers that support SVG—reaching back to
IE9. Unfortunately, like raster image CSS Sprites, the sprite must be manually main‐
tained, and deprecated icon usage is nearly impossible to track. Without careful
change management processes it is difficult to remove old icons for fear of creating a
negative user experience.

There are other drawbacks. Using SVG has the appeal of custom styling using CSS
and even animations. However, if you are using an SVG in a background-image you
lose this flexibility. If you don’t intend to style the SVG differently on the page,

148 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

use :onhover or any other customization of the image then you could stop here. But
we could do better.

SVG Fragment Identifier Links
Often it’s easier to use a common, colloquial name, instead of remembering the coor‐
dinates on the canvas. Since SVG is XML, most elements can be marked with a Frag‐
ment Identifier or id attribute. For example we could define our icon in a <symbol>
(which won’t be visible until it is displayed):

<svg>
 <symbol id="chrome-logo"> <!-- ... --> </symbol>
</svg>

You can use Fragment Identifiers in SVG many ways. Just like in HTML you can
apply specific CSS styling to different nodes by referencing the id. You can also use it
as a template for repeat use: you can reference the id in a use block multiple times
(For example, drawing leaves on a tree). The identifier link can reference whole other
files or a definition in the same file. The identifier is named at the end of the url after
the hash symbol - just as you would with html fragment identifiers.

<svg viewBox="0 0 100 200">
 <defs>
 <g id="firefox-logo"> <!-- ... --> </g>
 </defs>

 <use xlink:href="#firefox-logo"></use>
 <use xlink:href="images/browsers.svg#edge-logo"></use>
</svg>

In the above example we place two svg images on our canvas - one internally refer‐
enced symbol and another external. For completeness you can see how we reference
both a symbol and a group (<g>). The group is wrapped in a defs block to ensure that
it doesn’t display until referenced. Hiding the fragment isn’t required; it is convenient.
We could always reference the first use of a template. However, it is better practice to
define your templates separately. Doing so also solves a particular bug in some brows‐
ers (noteably Safari) where references must be defined before use d.

Using symbol has the advantage of being able to define the template’s viewbox and
preserveaspectratio. It is also more clearly identified as a template rather than just
another grouping layer.

For SVG spriting, we can use the fragment identifier to reference a specific image in a
single consolidated SVG. This way we can ignore the location on the canvas.

Vector Image Consolidation | 149

It would be tempting to wrap all of our SVGs in <symbol> elements and add the id
attribute. BOOM. Done. Unfortunately we would have two problems: . <symbol> and
<defs> aren’t visible. Externally referencing them in your html or css would likewise
draw nothing since the canvas is empty . Browser support for referencing fragment
identifiers inside an SVG is spotty - but we can work around these issues.

Fragment Identifiers & Viewbox
To use SVG sprites, we need to provide instruction on how to draw the vector on a
canvas. Adding a viewbox attribute provides this detail. Just as we needed to consider
the viewbox in relation to the viewport when we display the entire SVG, we also need
to specify how much of the fragment is displayed so that it can be stretched appropri‐
ately inside the referencing HTML node.

You can define the viewbox a few ways: . Add viewbox in the url as you would a frag‐
ment identifier browsers.svg#svgView(viewBox(0, 0, 256, 256)). Unfortunately
while Firefox, Internet Explorer and Edge get it right, Chrome (until 40) and Safari
have problems with this approach. It is also only slightly better than using the tradi‐
tional CSS approach because you need to maintain the coordinate references. . Use an
inline SVG block with a reference to the fragment identifier.

+

<svg viewBox="0 0 100 200">
 <use xlink:href="images/browsers.svg#safari-logo"></use>
</svg>

+ This is better but it is odd to require an SVG in order to reference an SVG Sprite. .
Define a <view> in the SVG and use that reference. As we mentioned <g> does not
support viewbox, <symbol> is hidden, but a <view> can provide a merge of use cases
and expose a fragment identifier.

<svg>
 <view viewBox="0 0 100 200" id="firefox-logo">
 <!-- ... -->
 </view>
</svg>

+ Now referencing the fragment in your html will behave as you expect and you’ll be
able to style not only the html container, but also the SVG elements inside. The only
remaining challenge is browser support. Again, not all browsers are created equal and
using an with a reference to the SVG + fragment identifier poses problems for
Safari. We can more universally get around this by using an <object> tag instead:

<object data="images/browsers.svg#safari-logo" type="image/svg+xml"/>

150 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

Using this approach will allow you to use both fragment identifiers and consolidate
SVGs to all browsers that support SVG. We still need to support older browsers by
using raster sprites as a fallback.

Other SVG consolidation techniques
There are numerous other SVG techniques for consolidation that have been proposed
that we haven’t covered here. Specifically

• SVG stacks - which layers all the images on top of each other and depends on
CSS styling to hide/reveal the relevant layer. As you have come to expect, there
are nuances to this approach and has challenges in browser support

• CSS Stylesheets with inlined SVG. This is useful for images used only in one style
definition and where you don’t need to style the inner SVG elements. This is
same approach we discussed above in “Data URIs” on page 135. Fallback does
require a parallel stylesheet that is loaded by legacy browsers.

Automating SVG consolidation & fallback
Just as with raster sprites, we can automate the creation to avoid image rot and dupli‐
cation. There are several libraries that can be used with grunt and gulp wrappers. For
example Joschi Kuphal’s svg-sprite makes quick work.

$ svg-sprite --view -D out/ images/*.svg

This will generate a consolidated SVG as we would expect with a <view> wrapper and
a fragment identifier using the filename:

<svg>
 <view viewBox="0 0 100 200" id="browsers-firefox-logo">
 ...
 </view>
</svg>

You can also use this tool if you wanted to generate an SVG that uses conventional
CSS spriting. This will produce a stylesheet with the coordinates on the consolidated
svg.

$ svg-sprite -css --ccss -D out/ images/*.svg

Legacy support is nearly not an issue. However, there are still many users trapped on
devices and browsers with IE <9, Android <5, iOS <7. You can support them a couple
of ways:

1. If you use the CSS style spriting you can use device detection and return different
stylsheets based on the browser support. (Unfortunately you can’t use detection

Vector Image Consolidation | 151

examining the Accepts: header.) In this way you would serve /sprites.css to
most all browsers with the exception where you use a rastar sprited view in /
sprites-raster.css. This would require generating rastar images and spriting
them as well. Wrapper tools like Iconizr can make this easy.

2. If you are using <object>, add a fallback to CSS spriting and use a <div> tag
inside:

<object data="images/browsers.svg#safari-logo" type="image/svg+xml">
 <div style="no-svg icon-safari-logo"/>
</object>

3. Do nothing; let the browser show hide the output. This isn’t a terrible solution
because these legacy browsers are usually running low powered hardware. Dis‐
playing nothing will improve the experience without forcing more overhead.

Summary
Consolidating small graphics, icons and images will improve the user experience.
There are different techniques that can be employed whether the sources are raster or
vector based. Spriting is the most common technique for both because it typically
uses lossless formats for raster images and is fairly well understood by most web
developers. The same approach can be used for SVGs but requires consideration to
what features are needed and browser support. Other techniques such as inling with
data-uris can also be useful but forgo the ability for the sprite to be cached if any of
the surrounding html/css is modified between code releases. Finally, WebFonts can be
used but because of the many shortcomings of the ecosystem support it is generally
advisable to keep the usage targeted to specific use cases.

A few considerations for content that is eligible for consolidation:

• Any file < 1500 Bytes (1 packet).
• 4 or more like files whose total bytes <24KB for raster or <40KB for vector (\~16

packets).
• Consolidated images shouldn’t exceed 48KB (raster) or 80KB (vector)
• Group candidates based on probability to change. Each change will cause the cli‐

ent’s cache to be invalid.

To help select the right consolidation technique try this flow diagram:

• Do you care about really old browsers/devices?
— (y) Do you need a simple solution, or can you handle some complexity?

— (simple) convert everything to a lossless format (png/gif) and use spriting

152 | Chapter 10: Image Consolidation (for Network & Cache Efficiencies)

— (complexity is fine) do you have raster or svg?
— (raster) is the image used in one or many locations?

— (few/one) use inline
— (many) do you need animation? (y) use inlining (may the webperf

gods have mercy on your soul) (n) use spriting
— (vector) are you augmenting text with ligatures or enhancing existing

unicode icons?
— (y)do you need webfonts? no, do you really, really need webfonts?

* use webfonts
— (n) use svg spriting

— (n) Convert raster to svg
— use svg spriting

It is easy to focus all of our attention on the large images that dominate the user’s field
of view; the hero image, the product images, the latest social media posts get most of
our attention. Yet, the presentation of our websites and apps is just as dependent on
the subtle details, the small images. We do this primarily through reducing the num‐
ber of requests, and reducing the overall size of the requests. The odd nuance of high
performance small images is that if we do it right, no one will notice. However, if we
do it incorrectly everyone will notice.

Summary | 153

CHAPTER 11

Responsive Images

Yoav Weiss

There’s no doubt that Responsive Web Design (or RWD for short) had a huge impact
on the way we build web sites nowadays. If you are operating a web site, chances are
that it’s either responsive already, or it will be soon enough. There is no other way to
serve web sites while coping with the diversity of devices your users are using to
access your site, and providing these users a pleasant experience.

But, it’s not all sunshine and rainbows. The issue of responsive images has been a
thorn in RWD’s side for a long while and a huge source of pain for developers when
trying to implement performant responsive web sites.

How it started
Early on, when RWD was coined in Ethan Marcotte’s seminal article, the approach to
images was fairly simple, if not to say naive: Just send the browser the largest possible
image and let it resize it on the client size to match the responsive layout.

While that approach works when testing the simpler use-cases over the local network
or even on a high-speed broadband network, it fails miserably when we take into
account the reason RWD was needed in the first place: mobile devices over cellular
networks. With the above approach we’re sending unnecessarily large images to
mobile devices, often over poor connectivity.

The immediate result of that approach was that RWD got a reputation for being slow,
and it became obvious to many that a responsive web site meant a bloated one.

The web developer community realized that RWD is the only scalable future for
building web sites that can address the myriad of devices out there. At the same time,
it also realized that users cannot afford to download 85MB (!!!) of data on their

155

potentially limited data plans when looking up sunglasses. As a result, the community
decided to take action.

And as often happens on the web, the first course of action was to hack around the
problem.

Early hacks
There were multiple attempts to resolve the responsive images issue using JavaScript
or server side logic. These attempts included:

• Serving images limited to the viewport dimensions based on User-Agent string.
(e.g. sencha.io)

• Serving images limited to the viewport dimensions based on a cookie set by the
web site. (e.g. Adaptive Images)

• Adding the actual src attribute to images via script.
• Overriding the page’s <base href> via script.(example)
• Rewrite the entire page’s HTML via script after modifying the image URLs. (e.g.

mobify.js)
• Serving oversized yet highly compressed images, to avoid retina-related bluri‐

ness. (AKA Compressive Images)

Heroic and fearless as some of these attempts were, it was obvious pretty early on that
all of these approaches are lacking, either in accuracy or performance.

The server-side approach didn’t handle cases where the browser viewport was not
identical to the device’s dimensions (desktop and some tablets) or didn’t work on first
load. At the same time, the client-side methods were adding a non-negligible latency
to the browser’s resource loading process, by adding the images fairly late, and pre‐
venting the browser’s preloader (which we discussed in the Loading Images In Brows‐
ers chapter) from loading them earlier on.

So, the Responsive Image Community Group or RICG was formed to get a native in-
browser solution to this pressing issue, and after a long struggle, managed to get vari‐
ous native solutions to the problem.

But before we dive into the solutions, let’s take a look at the various use-cases that
needed addressing.

156 | Chapter 11: Responsive Images

Use cases
The first step of solving the responsive images problem was to define the various use
cases that developers hit when using images on the web today. The result was a docu‐
ment that covered many different aspects of the problem. Below are the major ones.

Fixed dimensions images
In order to frame that use case, think of a layout that resembles the following:

As you may have noticed, the image in the layouts above remains in the same dimen‐
sions regardless of the layout changes that result from the responsive design, the same
as images in non-responsive designs. So, why would we consider this image “respon‐
sive?”

Use cases | 157

Well, the problem starts when you’re browsing that site over a high-resolution screen,
and notice significant blur.

Retina screens “need” images that are twice (or more) the resolution of traditional
resolution screens. If the image we provide the browser in that case is of lower
dimensions, the browser will upscale the image, resulting in a blurry image.

So, how do we resolve it? The first reaction from web developers was to upgrade their
images, and serve larger images to their entire audience. The problem there is that
they were now serving larger images to all devices, including the ones that have abso‐
lutely no need for images that are twice as large.

For these devices, the result of the larger images was, besides the bandwidth costs and
delay, also increased CPU costs and higher memory consumption, as larger images
had to be decoded and then stored in memory. See Mobile Image Processing chapter
for more details.

Variable dimensions images
This use case is slightly different from the previous one, since it’s tightly related to
responsive web sites. Think of the following layout.

158 | Chapter 11: Responsive Images

In this case, larger viewports need larger images, otherwise the images will be blurry.
But, similiarly to the previous use-case, higher resolution screens also need larger
images. Again, the initial response was to send the largest possible image, but that’s
hardly scalable. In a world with 28 inch high resolution screens, the largest possible
image can be pretty big. That’s not something that you want to send down a mobile
connection to your average user. That case is sometimes referred to as “download &
shrink”: You’re downloading bytes that the user doesn’t necessarily need, burdening
their mobile data plan and slowing down their experience.

Art direction
What happens when your images are materially different in the various responsive
breakpoints? When you want to adapt the images to the different breakpoints so that
they would be clearer in the context of the different layout?

Well, that’s a different use case from what we’ve seen before. A few examples of this
use case are:

Use cases | 159

160 | Chapter 11: Responsive Images

What we see in these examples is that serving the intended images is essential in
order for the user to properly understand the page and have it properly laid out. The

Use cases | 161

different proportions of the images mean that if we were to serve images that don’t fit
the layout, the layout would have been broken.

In a way, this use case is less about “performance optimization” and more about “con‐
tent optimization”. The problem here is not necessarily the image’s quality, as it is
about getting the image’s message accross to users, regardless of viewport restrictions.
With that said, when large parts of the image are being cropped away when served to
mobile devices, that certainly doesn’t help the site’s performance.

Art Direction vs Resolution Switching
The fixed and variable dimensions use cases are often referred to together as “Resolu‐
tion Switching”. The main difference between them and art-direction is an issue of
control. In the resolution switching cases, the issue at hand is a quality issue. We want
the user to get the best experience, where experience is a combination of visual qual‐
ity and speed (and one might claim that the eventual bandwidth costs and battery life
are also part of the experience). These aspects of the user’s experience is not some‐
thing that the web site developer knows in advance, and any attempts by them to pre‐
dict the user’s “context” are bound to fail.

Therefore for the resolution switching case, we want to give the browser the final
word. Our solutions enable the developer to declare multiple resources and enable
the browser to pick the one that best fits the user’s current situation.

On the other hand, for the art-direction case, the issue is an issue of fidelity. If the
browser would show a different image than the one the developer intended, the user
may get a distorted image or a broken layout, hurting their experience as well as their
ability to use the site properly. In this case, the browser doesn’t know more about the
user’s context than the site’s developer when they create the site. So, we want the
browser to be “bound” to obey the developer’s instructions and download the specific
image that they had in mind for particular viewport dimensions or other environ‐
ment contraints.

We need two distinct mechanisms to handle each one of these cases, one where the
control is in the browser’s hands, with the guidance of developers, and another, where
the control is in the developer’s hands.

Image formats
Another use case, which isn’t directly related to responsive images, but is very rele‐
vant to content images in general is that of serving different image formats according
to browser support. Traditionally, the answer to that have been content negotiation:
Have the browser advertise its capabilities using the Accept request header, and then
the server can dynamically serve it the right image.

162 | Chapter 11: Responsive Images

While that approach certainly works (as we will discuss in the Image Delivery chap‐
ter), it doesn’t work for everyone. There are scenarios where the images are served
from a static host (e.g. gh-pages or S3), where you have no control on the server-side
logic, and cannot dynamically adapt the image to the headers the browser advertises.

Avoiding “Download & Hide”
The “Download & Hide” scenario often happens when desktop sites are retro-fitted
to be responsive and some parts of the page are just not needed on mobile.

A common mistake in such a scenario is to hide the unnecessary parts with CSS and
hope for the best. The problem with that approach (as you probably guessed from the
scenario’s name) is that even if the end-user does not see these parts of the page, the
resources they require, and content images in particular, are downloaded nonetheless.

You could think of this scenario as a form of art-direction, where in some viewport
sizes, the required image is a zero-sized one. We’ll later see how to address this use-
case properly.

Use cases are not mutually exclusive
There can be cases where a certain image does not strictly fall into a single use case,
but combines a little bit of both art-direction and resolution switching, depending on
the breakpoint we see it in. For example, consider the following example:

Use cases | 163

Figure 11-1. An image that fits into the variable width use case up to a certain break‐
point, then gets cropped
164 | Chapter 11: Responsive Images

We could also mix the image formats use case here as well to further optimize the
delivery when content-negotiation is not an option.

So when we’re looking into making a certain image responsive, the question that we
should ask ourselves is not “what is the use case this image fits into?” but “what are
the use cases?”

Standard Responsive Images
We detailed out the various use-cases that we need addressing, but how do we do that
in practice? That is exactly what we’ll explore next.

We have seen that the use cases are split into two major cases: art-direction and reso‐
lution switching. Because of the fundemental difference between these two cases, we
also need two different syntax machanisms in order to tackle them.

Since these are new additions to HTML that have made some noise recently, you may
have heard about them: The picture element and the srcset attribute. In general the
picture element is destined to handle the art-direction use case, and srcset is destined
to handle resolution-switching.

With that background in place, we’re ready to dive into the details of each one of the
syntax parts.

srcset x descriptor
So, you have an image of a cat that you want to display on your site, where said image
would have the same dimensions regardless of responsive breakpoints. So, you start
out writing something like:

But, when viewing that work from a retina screen, you notice a visible blur. Each
image pixel is displayed over four physical pixels, and it just doesn’t look sharp. You
want to provide the browser with a 2x image, twice the width and twice the height,
which would get rid of the blurriness, but without sending that over to browsers that
don’t need it. Well, consider the following syntax to do just that:

That is not extremely different than what we’ve seen earlier. All we added is the
srcset attribute, providing the browser an alternative resource to fetch for the same
image. That attribute enables the browser to create a list of available resources, so it
can pick which one to download and display.

As you probably noticed that syntax enables us to tackle the “fixed dimensions” use
case we discussed earlier.

Standard Responsive Images | 165

But what if we wanted to provide multiple alternative resources? Well, srcset is
actually a comma delimited list, so you can provide as many resources as you want!

<img src="cat.jpg" srcset="cat_2x.jpg 2x, cat_2.8x.jpg 2.8x" alt="A

funky cat">

Simple, right? The value of srcset in the example above is a list of the resources for the
browser to choose from. Each resource has a descriptor attached to it, which enables
the browser to know something about this resource to make its job of picking the
right one easier. In this case, the descriptor in question is the “x descriptor”, which
describes the resource’s density. That gives the browser the knowledge to pick the
resource that best fits the user’s screen.

What do I mean by image density? It is the ratio between the image pixels that you
provide the browser and the area (in CSS pixels) that the image is displayed on. Let’s
say you have a 400x400 CSS pixels space to fit an image in and you provide the
browser an 600x600 pixel image to fit that space. That image would be displayed with
a density of 1.5, and would look perfectly sharp on screens with up to similar density,
but not necessarily on screen with higher density.

Now, different browsers may do different things when picking up the best resource,
and they are entitled to do that. The specification is purposefully vague about the
selection process inside srcset, in order to enable browsers to innovate in that space.
Therefore, browsers can take not only the screen density into account, but also the
user’s cache state, network conditions, user preference, etc.

Already today there are differences between browsers regarding which image they
fetch when the screen is not an exact match to any of the resources, or differences
when some of the resources in the list are already in the browser’s cache. These differ‐
ences are likely to increase over time as browsers get smarter about resource down‐
loads, so you should not rely on the browser picking one specific resource over
another.

srcset w descriptor
Now the “fixed dimensions” case is great when this is what you need, but in respon‐
sive designs the “variable dimensions” case is often more common. Your image
changes its size as the viewport changes, either due to the fluid layout that contains it
or due to a breakpoint change that impacted it.

The syntax to achieve that would be:

<img src="cat.jpg" srcset="cat_200w.jpg 200w, cat_400w.jpg 400w"

sizes="100vw" alt="A funky cat">

That’s very similar to what we’ve seen before, but with different descriptors. The “w
descriptor” is there to describe the width of the image, in pixels.

166 | Chapter 11: Responsive Images

And what’s that sizes attribute that I sneaked in there, you ask? Nice catch — I hoped
I could get that by you. Well, it’s there to tell the browser what would be the display
width of the image. The browser needs that in order to figure out which resource it
should download, and it really doesn’t know that at the time that it starts download‐
ing images.

You see, in order to know the dimensions in which images will be displayed, the
browser needs to perform layout, and in order to do that it needs to download all the
CSS that is in your page, process it and calculate which rules apply. Only then it can
calculate the layout of all the elements in the page, and it’s pretty late in the game. To
make things worse, the downloaded image resources can also impact the layout, as
the image’s intrinsic dimensions are used to lay it out in case that neither HTML nor
CSS know better. So, waiting for layout information to decide which image to down‐
load is just not an option.

This is the reason we need the sizes attribute that we can use to tell the browser what
the image dimensions would be. In the above case we told the browser that the
images will be displayed at 100vw or 100% of the viewport width.

Standard Responsive Images | 167

Figure 11-2. An example of an image that takes the full width of the viewport.

100vw is also the image width that the browser would assume when calculating den‐
sity if we didn’t include a sizes attribute at all (even though we probably should
include them, as our markup would be invalid if we wouldn’t).

But often in responsive layouts, images take a smaller chunk of the viewport, and
assuming they are 100% of the viewport width would mean downloading images that
are just too large. For these cases, we can define a different CSS length as the value of
sizes, e.g. 70vw.

168 | Chapter 11: Responsive Images

Figure 11-3. An example of an image that takes only part of the viewport.

See? That wasn’t so hard, was it?

Variable width images often require viewport dependent CSS lengths (e.g. the vw
units), but if we want to, we could satisfy the “fixed dimensions” case by using w
descriptors and setting sizes to a non-viewport-dependent length, e.g. 500px.

In other types of layout it can get more complicated than that. How can we tackle
images that “shrink” inside the page’s responsive breakpoints, but change dimensions
entirely between breakpoints?

Something that looks like:

Standard Responsive Images | 169

170 | Chapter 11: Responsive Images

Standard Responsive Images | 171

Well, we can do that by extending the sizes value beyond the simple CSS length, to
include the various breakpoints. The syntax to do the above would be:

172 | Chapter 11: Responsive Images

<img src="cat.jpg" srcset="cat_200w.jpg 200w, cat_400w.jpg 400w"

sizes="(max-width: 460px) 50vw, (max-width: 1200px) 25vw, 300px" alt="A

funky cat">

How does that work? The browser takes the entire value of the sizes attribute, and
breaks it up into pairs of a media condition and a CSS length. A media condition is
very similar to a media query, only doesn’t specify a media type, and is optional. The
browser goes over the media condition and length pairs, and checks if the media con‐
dition matches or is missing. If so, the CSS length is picked to be the element’s “source
size”. The browser then uses the source size in order to translate all the w descriptors
into internal density values, and then applies the same algorithm that it applies on x
descriptors, so again, takes into account the screen density and other factors when
picking the appropriate resources from srcset.

It’s important to emphasize that sizes is an optimization and even if you define a
rough sizes value (e.g. 100vw), it is still in many cases better than simply sending the
same image to tiny devicess and retina 28 inch displays. But sizes enables you to get
as close as you’d like to the actual display dimensions, and enables the browser to pick
the right image resource accordingly.

<picture>

The above srcset descriptors all assume that all the image resources represent the
“same” image and the image resources are interchangeable, only in differing qualities
and dimensions. While that’s enough to cover the fixed dimensions and variable
dimensions use cases, when it comes to art-direction, we need more control than
that. We need to be able to tell the browser “download this image resource in this par‐
ticular breakpoint” and be fairly confident that it would. Otherwise, layout may break
and our site may become unusable.

So, how do we define the image resources for:

Standard Responsive Images | 173

Figure 11-4. An art direction example

174 | Chapter 11: Responsive Images

How does that work? Well, the important bit to understand is that even though <pic
ture> gets a lot of attention, is still the element that is driving image loading
and display. Among other things, it means that if was missing from the above
example, nothing would have been displayed. So, gets created by the parser,
and then the element checks to see if it has a <picture> parent before it starts loading
an image. If a <picture> parent is present, the element walks that parent’s
<source> children until it reaches itself, and picks the first one that matches as the
source of image resources. In our case, “matches” means that the media query inside
the media attribute matches. If no <source> element matched, would be its
own resource source.

Once a source is picked, its srcset attribute will be used to pick the right resource, in
a similar process to what we’ve seen earlier.

And while we need strict control in order to get art direction right between our
responsive breakpoints, we may also need to be able to mix that with the other use
cases inside the breakpoints.

That can be achieved with syntax like the following:

<picture>
 <source media="(max-width: 600px)" srcset="narrow_viewport_200.jpg 200w, nar
row_viewport_400.jpg 400w">
 <img srcset="wide_viewport_200.jpg 200w, wide_viewport_400.jpg 400w"
alt="probably a cat">
</picture>

Standard Responsive Images | 175

Figure 11-5. An image that fits into the variable width use case up to a certain break‐
point, then gets cropped
176 | Chapter 11: Responsive Images

Another use case we talked about earlier is the “Download and Hide” case. We can
resolve that using <picture> by adding a “spacer GIF” data URI as the source for the
images that are not supposed to be there. The reason this is neccessary is that the
selection algorithm skips a <source> without any srcset attribute. So we need our
<source> to have a valid srcset, only with a meaningless small image.

So, if we want our image to “disappear” at viewports smaller than 600px, we could do:

<picture>
 <source media="(max-width: 600px)" srcset="
BAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7">

</picture>

Serving Different Image Formats
The main reason the RICG came up with <picture> is in order to tackle the art-
direction use-case, but that’s not the only thing it is good for. Serving different image
formats to browsers that support them while having a common-ground image format
as a fallback is another use-case it tackles.

If we look at font, video or audio files, the web platform supports many different for‐
mats and enables client-side fallback for them right from the moment that these
media types were added to the web. Contrary to that, images always lacked such a
client-side fallback mechanism. As stabilized support on the 3 major file for‐
mats before the first browser wars were over, there were no compatibility issues
related to image format support, so no one worked on a mechanism to enable them.
When new file formats such as WebP or JPEG-XR were introduced, the answer to
people trying to use them was content negotiation, and modifying the server’s logic
so that it would return the newly supported types only to browsers that support them.

There was one major compatibility issue related to image formats
between the big browsers at the end of the first browser wars. It was
the matter of PNG alpha channel support, which was lacking in
IE6. Since the MIME type for transparent PNGs was no different
than non-transparent ones, content negotiation did not help there,
and various specific hacks were created to tackle the issue instead,
until IE6’s market share became low enough for this to be a non-
issue.

That is, until Responsive Images became a thing. While the RICG was working on
new markup solutions to load responsive images, it became clear that the same con‐
structs (with slight additions) can be used to create a client-side fallback, and help

Standard Responsive Images | 177

introduce new image formats to browsers that support them, even if you have no
control over the server’s logic.

How can we do that, you ask? By using the type attribute!

<picture>
 <source type="image/webp" srcset="rad_wolf.webp">
 <source type="image/jxr" srcset="rad_wolf.jxr">

</picture>

Here again, the browser will go over the list of <source> elements and pick the first
that matches, only that this time, “matches” means that the type attribute contains a
MIME type the browser supports.

Practical advice
Up until now we talked about the basic syntax, but there are a few further considera‐
tions that you probably want to take into account when addressing responsive images
in your real-life project.

To picturefill or not to picturefill, that is the question
The first question that often comes up when discussing these features is: “do we need
to polyfill it for legacy browsers?” The answer, like many things in computer science,
is “it depends”.

The features were built with an inherent fallback in mind. As must always be
present in the markup, it is sufficient to add an src attribute to it with a fallback
image, and non-supporting browsers would have something to display. In many
cases, that’s good enough.

Until recently browser support for the entire set of responsive images features was not
complete, and therefore if you needed art-direction for example, you had to use a
polyfill, whereas if you needed fixed width resources, you could have gone with a rea‐
sonable fallback instead.

But since then, support was added to all major browsers, and nowadays the only rea‐
son to use a polyfill is if you need to support older browsers, such as IE, and such
support cannot be accomplished with a simple fallback image, since the image is art-
directed.

If you do need to use a polyfill, the official and standard-compliant polyfill would be
picturefill.

178 | Chapter 11: Responsive Images

Intrinsic dimensions
Every image has intrinsic dimensions that are defined by the image file itself and
comprised from the image’s width and height in “physical” pixels. The browser then
takes these intrinsic dimensions into account when it decides how to layout the
image. If there is no HTML or CSS based instructions that tell the browser what the
image’s display dimensions should be, it is the intrinsic dimensions that dictate that.

However, when we’re talking about responsive images, we don’t want them to be dis‐
played according to their “physical” intrinsic dimensions, but according to ones
adjusted to the image’s density. That helps us getting properly dimensioned and sharp
images, rather than oversized blurry ones, e.g. when sending 2x images to the
browser.

How does the browser accomplish that? When picking image resources as part of
srcset’s selection algorithm, the browser calculates the image density. If the image has
an x descriptor, that’s easy. The descriptor’s value is the value of the image’s density. If
the image has a w descriptor, we also need to know which dimensions the image
would be displayed in. As we’ve seen earlier, that’s where the sizes attribute comes
into play. The browser takes the sizes attribute, figures out the CSS length that
applies to the current breakpoint, and uses that and the resource’s w descriptor in
order to conclude the image’s density. The image density is then used by the browser
to compensate and correct the “physical” dimensions when it calculates intrinsic
dimensions.

OK, but why do I think that this long and complicated story is of interest here? Isn’t
that the problem of the people working on the browser implementation?

Well, it has real-life implications because if you give the browser the wrong details,
the outcome may surprise you. I’ve seen many examples where people put in approxi‐
mative w descriptor values or incorrect sizes attribute values while relying on the
image’s intrinsic dimensions, and end up surprised that the image is displayed in the
wrong dimensions.

Point is, if you feed the browser with the wrong data about the images you give it,
you’re likely to have a bad time debugging why your images are too big or too small.
So don’t.

Selection Algorithms
We already talked about the ways that the browser selects the right <source>, the
right sizes length and the image resource in srcset, but it’s worth repeating in order
to avoid confusion.

Practical advice | 179

<source> elements are picked using a “first-match” algorithm. The first <source> ele‐
ment that matches both media and type (where a missing attribute is considered as
matched) is the one that gets picked.

For sizes, it is very similar. The browser goes over the list of media conditions and
CSS length pairs, and picks the first length with a matching media condition, or one
with no media condition as all. This is why we often leave the last length value in
sizes as a standalone value, to be used as a fallback.

srcset on the other hand doesn’t use a “first match” algorithm, so the order doesn’t
matter unless you have resources with the same density. That means that as long as
your descriptors are correct, you don’t need to worry about the order of the resources
inside srcset.

Srcset resource selection may change
srcset was designed so that its selection algorithm can evolve over time to make
smarter decisions about the tradeoff between image quality and download speeds. We
want srcset to be able to respond to many things beyond simple screen density:
browser cache, bandwidth conditions, user preferences, network costs, and other user
conditions. Therefore, and since srcset only covers cases that are not related to art-
direction, the browser has a great deal of liberty when it comes to picking resources.

That’s the reason that you shouldn’t rely on what you think the browser should load
in different conditions when using srcset. That can and will differ between browsers
and between browser versions. As browsers improve and get smarter, your assump‐
tions regarding their behavior will not remain accurate for long. So make no assump‐
tions and let the browser do its thing.

Feature detection
Since the responsive images features were recently introduced to the web platform,
there is a chance that you would need to be able to tell if the current browser your
users are on supports these features or not. The classic use-case for that is when creat‐
ing a polyfill (which you don’t really need to do, as picturefill is well maintained and
fully supports the syntax), but there could be other occasions where you’d find your‐
self trying to figure out browser support for the responsive images features.

For these cases, you can use the presence of HTMLPictureElement in window in order
to detect support for <picture> and use the presence of sizes and srcset in an
HTMLImageElement node in order to figure out if they are supported.

More concretely, here’s how picturefill detects that support:

snippet~ Picturefill’s feature detection. snippet~

180 | Chapter 11: Responsive Images

currentSrc
One more tool you can use when working with responsive images is the currentSrc
property on HTMLImageElement that enables you to see which resource is currently
loaded and displayed on a specific element.

You can use that if e.g. your JS interaction with an art-directed image should differ in
case a different resource was picked.

Client Hints
Up until now, we discussed the various markup solutions we have for delivering
responsive images. But that’s not the only type of solution we have up our metaphori‐
cal sleeves. For some cases, it might be significantly easier to modify a server configu‐
ration that it is to modify HTML. For these cases, content negotiation could be a
better option than markup.

What is content negotiation? I’m glad you asked.

Content negotiation is an HTTP based mechanism in which the client (in our case,
the browser) is sending HTTP headers indicating its support or preference regarding
the content, and the server responds with the desired content. There are multiple
examples for that method in the HTTP protocol, the most prevalent one is the
“Accept-Encoding” request header, to which the server couples a “Content-Encoding”
response header, indicating if gzip or any other encoding method was applied to the
returned response.

In order to get a content negotiation based responsive images solution, a new set of
HTTP request and response headers was created, under the banner of “Client Hints”.

We will discuss those further in Chapter 12.

Are Responsive Images “Done”?
We have definitely made a lot of progress in recent years to tackle the use cases of
responsive images, but everything related to software is rarely “done”. In this section
we will discuss some potential future improvements.

Background Images
At the early days of responsive images, the subject of background images wasn’t con‐
sidered an issue, and the focus went to content images. Afterall, background images
could be controlled using media queries, and on top of that, WebKit based browsers
(so, Safari and Chrome) supported the -webkit-image-set CSS proporty, which ena‐
bles the browser to load based on Device Pixel Ratio (or DPR). That was considered a

Client Hints | 181

handy shortcut to spelling out separate rules based on the resolution or -webkit-
device-pixel-ratio media queries.

So we continued to resolve content images, leaving background images as they were.
Only now, with the hindsight of the solutions for content images, we see the deficien‐
cies that still need to be resolved in background images.

So, let’s take a look at how each one of the use cases can be resolved for background
images.

The fixed width images can be resolved with a fairly simple markup (which resem‐
bles, and in fact inspired) the markup for srcset’s x descriptor):

.fixed-dimensions-image {
 background-image: -webkit-image-set(url(1x.jpg) 1x, url(2x.jpg) 2x);
}

The standard form of that is the unprefixed image-set. Unfortunately, that is not
implemented anywhere at the time of this writing.

The art-direction use case is easy to solve using media queries:

.art-directed-image {
 background-image: url(narrow.jpg);
}
@media screen and (min-width: 800px) {
 .art-directed-image {
 background-image: url(wide.jpg);
 }
}

But, there’s no way today to define a background image that loads an efficient,
variable-width image. One could imagine an extension to image-set that includes
something like the w descriptor srcset has, but that’s not yet specified or imple‐
mented.

Height descriptors
You may have noticed that when discussing the use-cases, the term “variable dimen‐
sions” was used, yet the only resource descriptor we have for this case is the w descrip‐
tor, describing the resource’s width. Images are two dimensional! That’s not fair!

While we were working on the responsive images solutions, we noticed the same
injustice, yet the major use case to tackle was solving width-constrained layouts. We
had significantly less examples for height-constrained layouts, so we preferred to wait
with that use-case until there’s more experience with that “in the wild”.

182 | Chapter 11: Responsive Images

Nevertheless, the processing algorithms takes the future existance of an h descriptor
into account, and ensures that the introduction of such a descriptor will go over
smoothly.

After having the basic set of features out there, with developers using them in pro‐
duction, we now see some demand for height-constrained layouts, mainly for image
galleries. So, hopefully work on that front can continue and h descriptors will eventu‐
ally be part of the srcset.

Responsive Image File Formats
When talking about responsive images, the question “why not solve it using a file for‐
mat?” keeps coming up.

While solving the responsive images problem using a file format is certainly feasible
(at least for some of the use cases), there are some caveats. The browser would have to
download a first chunk of the image in order to know its dimensions and the fitting
byte range for the image dimensions and breakpoints it needs. That would require
coming up with a loading scheme where a few initial bytes are downloaded from all
images in order for the browser to know what ranges need downloading. In HTTP/1,
that will most likely result in performance regressions, as there’s a limit to the number
of resources that can be fetched in parallel. In HTTP/2 that is less of an issue, but
would still be less then ideal for the first images, especially if they don’t end up being
of a responsive format.

With that being said, there have been attempts to create formats that may fit the
“responsive image format” label. Although none of them is of practical value today,
the curious among you may find these attempts interesting.

Progressive JPEG
As we’ve seen earlier in the book, progressive JPEG is, well, progressive. The browser
can decode it as it is being downloaded, and the result is a full image, with its details
filling in as more chunks of image data are downloaded.

Therefore, we could emulate a lower resolution image (or a smaller image) by trun‐
cating a high resolution, large image and scaling it appropriately. Assuming we have
multiple JPEG scans, we could use something like SSIM to determine the appropriate
size and resolution for each one of the scans, and then communicate that information
to the browser (e.g. using special JPEG markers at the start of the file), and have it
download only the scans that it needs.

Such a concept have been experimented with in the past. It seems like something that
might work for the fixed and variable dimensions cases, but not for the art-directions
use case.

Responsive Image File Formats | 183

Additionally, from experimentation, if the images that you’re trying to serve need to
fit both a very small space (e.g. on low-end devices) and a very large one (e.g. retina
28 inch screens), quality will suffer or bytes will be wasted. There’s a limit to the range
of quality that can be communicated using progressive JPEG scans.

JPEG 2000
JPEG 2000 (which we discussed in the Browser Specific Image Formats chapter) is a
progressive format by nature, and therefore, at least in theory, could be an ideal can‐
didate for progressive loading.

Unfortunately, previous experiments there were conducted on that front proved it to
be less promising in practice.

Responsive Image Container
There have also been attempts (by yours truly) to create a Responsive Image Con‐
tainer — an image format agnostic container that would encode the image using dif‐
ferent layers, where the first layer is a thumbnail of the image, and each consecutive
layer adds more information to the image, enabling it to target higher resolution
screen, larger display dimensions, and even crop-based art-direction. The intent
behind creating a container rather than a full-fledged new format was to avoid patent
and political issues often surrounding file formats, likely increasing its chances for
adoption.

FLIF
More recently, a lossless progressive file format named FLIF was introduced. The
name stands for Free Lossless Image Format and it shows very good results when
compared to other lossless formats.

One of its most touted advantages is its progressive nature, which could make it a
candidate for a responsive format. However, it’s still very early days for the format, so
it’s hard to be certain regarding the direction in which it will evolve. It’s lack of a true
lossy mode, makes it less applicable to real-life imagery than other formats.

Summary
In this chapter, we have reviewed the various responsive images use cases and
markup solutions. It is important to remember that while these solutions were con‐
tentious for a long while, they are now supported by all modern browsers, which
means you can safely use them in your markup.

184 | Chapter 11: Responsive Images

CHAPTER 12

Client Hints

Colin Bendell

Responsive Images solves the problem of art direction, variable widths (including
DPR changes) and alternate formats. While this provides a lot of flexibility, following
all the best practices can result in very large amount of boiler plate HTML. (See “2014
Responsive Images HTML Spec” on page 283 to see how this plays out in practice).
This is prone to error and it exposes details on how you generate your images which
can be exploited by bots.

Bots and scrapers can impact your performance and steal your
content

If you are using ?resize=400 to dynamically resize your image, what is to stop a
malicious site from changing the parameters to ?resize=9999 in order to get the
original sized image? This could have implications on your cache effectiveness and
put more stress on your image resize engine. In many situations there are also known
scrapers that steal content in order to create fake CraigsList posts. While we can’t nec‐
essarily stop them, we shouldn’t necessarily help by allowing bots to extract higher
resolution images than what you offer to your own users.

Additionally, Responsive Images doesn’t help to address websites where we can’t con‐
trol the HTML (such as many CMS platforms) or help with native applications who
request images over HTTP but don’t use HTML for the UI.

Client Hints takes Responsive Images to the next level using content negotiation. This
helps separate the delivery from the presentation. Client Hints is an HTTP standard
that uses negotiation between the browser and the server — just as we do for gzip
compression. With gzip compression, the client tells the server that it is smart enough

185

to decompress content (Accept-Encoding: gzip) and the server responds, with com‐
pressed content (Content-Encoding: gzip). For example, the server could decide to
compress CSS, but not gzip WOFF. It’s a nod and a wink between the browser and
server to get bits across the network faster. The web developer and end-user don’t
have to worry about these details - they just know it results in a better user experi‐
ence.

For images it is more complex - what could we negotiating? Academically we know
we want to send a smaller image dimension to a smaller display. The problem is, the
browser doesn’t really know how large an image needs to be until way-too-late in the
render process. With modern pre-loaders and speculative parsers, the network queue
is quickly populated with resources requests long before any layout or styling has
been computed. Bottom line: the browser itself doesn’t know what the best size of
images should be sent.

This its partially true. The browser does know a few things this early in the rendering.
For example, it knows what kinds of image formats it can support, information about
the display (orientation, viewport dimensions, Density-Pixel-Ratio (DPR)), and it
also knows the current network environment. Imagine moving into a new apartment:
you might not immediately know how you will arrange the furniture, but you do
know that your pet elephant just won’t fit in your 500sq ft NY apartment.

This is where Device Characteristics engines can help inform the back-end applica‐
tion server select the best image for the requester. Of course, the device characteristic
databases need to be up-to-date. Even still, a device database only provides to the
generic capabilities of a device such as viewport size. Going beyond the basic capabili‐
ties is critical to more effectively delivering images.

Overview
The object of Client Hints is to enable the client to communicate the current environ‐
ment such that server could tailor the response. At the time of writing, there are 5 key
hints that the client can provide:

• DPR
• Vierport-Width
• Width
• Downlink
• Save-Data

Additionally, there are two (2) headers that the server uses to inform the client about
what it can do and has done with client hints. These headers are:

186 | Chapter 12: Client Hints

• Accept-CH
• Content-DPR

iOS / Android apps need Client Hints too

Client Hints are not only important for Browsers and webpages.
They can also be used with native apps. More on this below.

By default, Client Hints are not transmitted. This if for privacy and other security
concerns. Therefore, the server needs to inform the client that it is capable of utilizing
the Client-Hints. This in turn will result in every subsequent request initiated by the
webpage to also include these hints on the request.

Step 1: Initiate the Client-Hints exchange
To start the exchange, the client would send the Accept-CH header followed by the
Client-Hints that should be sent. Not all the client-hints need to be listed here. For the
sake of comprehensiveness, the example below includes all of the values. There is a
general assumption that the Accept-CH is sent on the apex html request. This doesn’t
necessarily need to be the case and it could be sent on another request. Generally that
doesn’t make sense since you could run into race-conditions where the hints are not
enabled for some images. That said, it may make sense for offline, service-worker
based apps, or single-page-apps with different application contexts.

GET /index.html

...

200 OK
Accept-CH: DPR, Viewport-Width, Width, Downlink, Save-Data

Step 2: Opt-in and subsequent requests
If the browser is aware of Client Hints, from this point on every request related to the
webpage could include the relevant headers - assuming the client opts-in to the
exchange. This includes cross domains. If the page initiates a request to a 3rd party
plugin, the 3rd party plugin can leverage this header. This can be extremely useful for
advertising content - but the onus is on the 1st domain to enable the exchange.

GET /ilovebroccoli.jpg
DRP: 2
Viewport-Width: 320
Width: 600
Save-Date: on
Downlink: 0.384

Overview | 187

The Client-Hints response headers are not limited to images. These headers will be
sent on every request related to the site.

Step 3: Informed response
The final step is to inform the browser what happened - if anything. This includes
returning the actual DPR of the image (in contrast to the DPR requested). In many
ways this is very similar to the use of Content-Type header which indicates what
image format.

As well, it should include Vary and Cache-Control directives to inform the client and
any middle-box proxies and surrogate proxies how to cache and avoid cache colli‐
sions. (Middle box proxies like those found in coffee shops, hotels and airports)
These instructions, while strictly speaking, aren’t required they do make for good
practice. The last thing you would want is to reach into your sock drawer in the
morning only to discover that you have your toddlers socks.

200 OK
Content-Type: image/jpeg
ETag: a824f;dpr0.5;width=150;q=0.5
Content-DPR: 0.5
Vary: DPR
Cache-Control: private, no-transform

We will discuss the use of Vary and Cach-Control headers later in this chapter.

Components
Client hints has a small but important lexicon. There are two groups of HTTP Head‐
ers used: those sent from the browser or client, and those sent from the server.
Viewport-Width, DPR, Width, Downlink, Save-Data are all sent from the browser to
the server. In contrast, Accept-CH and Content-DPR are from the server to the client.

Viewport-Width
The Viewport-Width returns the CSS pixel width of the browsers’ current viewport. If
the browser is fullscreen this will be the width of the display. It might be tempting to
assume then that you can treat Viewport-Width as synonymous with the width in a
device characteristics database. Let me emphasis, this is not the pixel width, but the
CSS width. Further, images inside an iFrame will have a different Viewport-Width
than the parent html. This makes it all the more important to include the appropriate
Vary and Content-DPR headers.

For Client-Hint enabled clients (who have opted in), there should not be a case where
Viewport-Width is unavailable. That is, if the server initiated the interaction with

188 | Chapter 12: Client Hints

Accept-CH: Viewport-Width it can be safe to assume that the browser would return
this on all requests.

Figure 12-1. Client Hints: Viewport-Width

DPR: (Density Pixel Ratio)
As you probably guessed, the DPR client hint header returns the client’s Density-Pixel-
Ration. Multiplying the Viewport-Width by the DPR will return the absolute pixel
width of the display. Likewise, dividing the Width by DPR will provide you the CSS
width of the image container.

Devices with DPR > 1 regularly up-sample images. For this reason your server can
either choose to ignore the DPR when selecting based on Viewport-Width. This can
give the flexibility and the performance gain by adjusting the image delivery based on
the type of image (logo v. product detail), the use case and other environment condi‐
tions like network performance.

Components | 189

Figure 12-2. Client Hints: DPR

Width
In contrast two Viewport-Width, Width reports the container width where the image
will be rendered. And, unlike Viewport-Width, it is reported in absolute pixels
instead of CSS. The challenge to the browser or any client, is how to calculate the
container width at the time of the image request.

Figure 12-3. Client Hints: Width

190 | Chapter 12: Client Hints

If you remember from chapter 7, images in the browser, images are queued in the
network request buffers ahead of rendering on the page. This means that the image
context is largely unknown at the time the request is made to the server. Great, so
why not lazy load the images after the CSS is computed? This too is racy because if
the CSS is using relative positioning the presence of one image might change the
viewable dimensions of another image. It’s really hard for the browser to figure this
out a-priori.

Don’t lament! Responsive Images are here to help. You can help the browser by giving
the browser a hint on the visible context. A Hint-for-a-Hint, if you will. In order for
the Width header to be present you must include the sizes attribute in your
tag. This will give the pre-loader enough context to understand and compute the
Width client hint.

That’s it! By providing the sizes hint the browser has enough context to provide a
Width client hint. The good news is that you don’t have to be absolutely precise and
match all the specific media queries in your css. Of course this would be ideal, but
you can get away with a few generalizations: about “1/3 of the viewable width”. The
browsers rendering engine will take care of the rest and actually lay out the image
properly - despite the sizes hint.

What if your CSS changes dramatically and you didn’t update the sizes? Not to
worry. The client hint does not influence the layout. While the negotiations might be
off, the Stylesheet instructions still hold control. The only possible downside could be
a smaller image in a larger context causing upscaling.

Downlink
The client may also include information regarding the network conditions in the
form of the Downlink. Unfortunately network condition calculations are both difficult
to calculate and there is contention on what the best way to communicate this envi‐
ronmental situation is. Should it be effective bandwidth over the last 5 minutes, 1
minute? The ms latency on the connection?

For this reason, the current version of the Client Hints specification utilizes the
https://w3c.github.io/netinfo/\#downlinkmax-attribute(Network Information) maxi‐
mum downlink speed. This provides the easiest path for implementing using a Ser‐
vice Worker by calling the NetInfo API and using the already existing data.
Alternatively the client application could interrogate the device (if available) and
return the theoretical downlink speed.

For reference here is a common set of values:

Components | 191

Table 12-1. Common set of Downlink values

Network Type Downlink Mbps
GPRS 0.237

EDGE 0.384

UMTS 2

HSPA 3.6

HSDPA 14.3

LTE 100

Ethernet 10

Wifi (802.11g) 54

Unknown +Infinity

As you can expect, the utility value of the downlink is mostly to infer the type of net‐
work conditions the user might be experiencing and being able to distinguish
between an LTE v. EDGE cellular connection and including this in your delivery
decision tree.

Be careful - the value should not be expected to be an int or float. It could be a string
in the form of +Infinity for unknown network conditions.

At the time of writing, this client hint has not been implemented but is still part of the
specification.

Save-Data

Leveraging Save-Data hint can further help the image selection algorithm. If a client
returns Save-Data: on this is an indication that there is a preference to reduce data
usage. There are many reasons this may be desirable such as cost of cellular, available
data caps or even as a proxy for network conditions beyond Downlink.

The Chrome browser has long offered a data saver service for android and iOS ver‐
sions of chrome. This would send image requests through a remote proxy to auto‐
matically transcode the image to other formats and attempt to reduce data. However,
this is not always desirable by the content owners and further does not make any
claims on performance.

Many browsers now have mechanisms to allow the user to opt-into data saving serv‐
ices. For TLS connections this will mean the addition of the Save-Data: on hint. Be
careful not to make the assumption that the absence of this hint should give you per‐
mission to deliver a larger image! At the time of writing, the following browsers sup‐
port this more or less automatically:

192 | Chapter 12: Client Hints

• Chrome 49+ - For mobile, if the user enables the “Data Saver”; For desktop using
the “Data Saver” extension

• Opera 35+ - when “Opera Turbo” is enabled or “Data savings” on Android
browsers.

Accept-CH

As previously mentioned, the Accept-CH header or meta tag is critical when negotiat‐
ing to the browser to opt-into client hints. Of course, there is no requirement that the
client honor this contract. Consider it purely informational. It informs the client that
subsequent content could differ if it were provided client hints.

There are two ways it can be sent: via HTML or HTTP header.

<body>
 <head>
 <title>Client Hints Demo!</title>
 <meta http-equiv="Accept-CH" content="Viewport-Width, DPR, Width">
 </head>
 ...
</body>

or

200 OK
Accept-CH: Viewport-Width, DPR, Width

The easiest way is to add the response header since you could accomplish this at mul‐
tiple layers in your infrastructure without changing your markup. Best practices
would suggest to advertise the Accept-CH header for text/html content. However,
there is no strict rule for this.

For example, you could do this with Apache:

SetEnvIf (mime text/.*) is_html
Header set Accept-CH "Viewport-Width, DPR, Width" env=is_html

Content-DPR
In addition to Vary, Cache-Control and Key headers used for caching, the server can
also send the Content-DPR header. This helps the browser interpret how to render the
image content. This is especially important when relative box models are used in CSS.
Without the Content-DPR the image may result in pushing out the content in the lay‐
out.

A wide image might push content to the left or right if the browser doesn’t have more
specific instructions about the DPR. Likewise, the height of the box might also have
different results.

Components | 193

This is more of an issue if your server decides to reduce the DPR in the interests of
the user experience. For example, if the server identifies that it is currently in a hostile
network conditions and wants to reduce bandwidth further. Instead of just blindly
sending the resized dimensions, this allows the server to communicate this in terms
of DPR, helping the browser to understand how to use this image in the display.

Example 1: Original Image

Example 12-1. Example 1: Original Image fills the width

GET /romenesco-broccoli.jpg
DPR: 1
Viewport-Width: 1280
Width: 600

...

200 OK
Content-Length: 279999
X-Width: 1400

Example 12-2. Example 2: Resized Image smaller than CSS dimensions

GET /romenesco-broccoli.jpg
DPR: 1
Viewport-Width: 1280

194 | Chapter 12: Client Hints

Width: 600

...

200 OK
Content-Length: 13000
X-Width: 300

Example 12-3. Example 2: Include Content-DPR to fit smaller image to CSS box

GET /romenesco-broccoli.jpg
DPR: 1
Viewport-Width: 1280
Width: 600

...

200 OK
Content-Length: 13000
Content-DPR: 0.5
X-Width: 300

Components | 195

Mobile Apps
Browsers aren’t the only ones to need Client Hints. Native Apps (Mobile or Desktop)
can utilize client hints. In fact, any application that uses HTTP for transferring
images could utilize Client Hints.

Many Mobile Apps use WebView components to render html inside the app. Other
apps make API and image requests natively in the app and render the content. This
eliminates the need for CSS and other layout controls since the app knows precisely
how to interpret the content.

196 | Chapter 12: Client Hints

Figure 12-4. CNN app with Images

But apps suffer the same problems with engagement and experiences as websites.
Mobile apps have to deal with the plethora of display dimensions and resolutions.
Just like websites, most mobile apps will use just one size of images for all Android or
iOS users. Mobile apps need responsive images too. Fortunately Client Hints can help
mobile apps improve the user experience here as well.

Unlike a browser, a native app will likely not utilize an apex request — there isn’t a
starting html request to initiate the Accept-CH handshake. However, because you can
control your native app behavior, you can implicitly opt-in and support client hints
on all image requests.

Adding client hints can enable a level of flexibility to your server infrastructure and
move the selection logic from the client to the server. This way you can launch an

Mobile Apps | 197

application with no concern for image resizing. Then later on add this optimization
without having to continually force and wait for customers to update the app.

To add Client Hints to an iOS or Android app it is as simple as adding the hints to the
outgoing http request. Inspecting the UI control will reveal the width of the image
being displayed.

///
/// Add Client Hints to the HTTP request for images to populate the UIImageView.
/// This will interrogate the screen and UIView to determine the hint values.
///
func clientHints(imageUrl: String, targetImage:UIImageView) {

 let nsURL = NSURL(string: imageUrl)
 let config = NSURLSessionConfiguration.defaultSessionConfiguration()
 let screen = UIScreen.mainScreen()

 /// use the main screen for size and scale; UIView frame for
 let viewportWidthPx = screen.bounds.size.width
 let dpr = screen.scale
 let width = targetImage.frame.size.width

 /// convert to CSS Pixels
 let viewportWidth = Int(Double(viewportWidthPx) / Double(dpr))

 config.HTTPAdditionalHeaders = ["Viewport-Width" : viewportWidth]
 config.HTTPAdditionalHeaders = ["DPR" : dpr]
 config.HTTPAdditionalHeaders = ["Width" : width]
 config.HTTPAdditionalHeaders = ["Save-Data" : "on"]

 /// usual NSURLSession to UIImage work from here
 /// Accept-CH likely won't make sense since your app controls the UIView
dimensions
 let session = NSURLSession(configuration: config)

 let task = session.dataTaskWithURL(nsURL) {
 (data, response, error) in
 if !error {
 /// make sure that the image is drawn on screen
 var image:UIImage = UIImage(data: data)
 dispatch_async(dispatch_get_main_queue(), {
 targetImage.image = image
 })
 }
 }

 task.resume()
}

The logic is very similar for Android. This could be taken even further to also include
other information like network conditions.

198 | Chapter 12: Client Hints

Legacy Support & Device Characteristics
Client Hints is a good solution, but what about the other browsers that don’t yet sup‐
port this standard? Currently the adoption is limited to Blink based browsers
(Chrome and Opera). As with any technology there is always a long tail of adoption
that can span many years to bridge the chasm. It is always important to consider the
older browsers.

There are two ways to address the problem of browser support. First is to adopt a
cookie or device characteristics approach. This has the least impact on your code base
but does depend on a few other moving pieces. The other is to use a default “best for
performance” image profile. In this approach your server will utilize a default that
targets your 75th percentile mobile user.

Fallback: “Precise Mode” with Device Characteristics + Cookies
In this approach you would use device characteristics as a proxy equivalent for
Viewport-Width. A device characteristics database uses the User-Agent to look up
information about the browser and hardware the user is utilizing. Usually these data‐
sets will include the device screen pixels as well as the DPR. Using just the device
characteristics would provide you the equivalent information as the viewport-width.

Unfortunately, device detection is limited in many situations. For example, all varia‐
tions of the iPhone use the same User-Agent. You can certainly infer based on ver‐
sions of Safari which version of the iPhone it is not (eg: if the user is using Safari 9, it
is certainly not an iPhone 4 screen dimensions). The implication, however, is that
usually for classes of devices that appear as the same, you will only be able to specify
one dimension set.

To overcome this, you can use client-side javascript and interrogate the browser for a
more accurate Viewport-Width and DPR. Make no mistake - this has all the makings
of a race condition. The challenge is to execute this javascript early, before any image
requests are made by the browser.

For example, using the TeraWurlf device characteristics database, we could set the
initial Viewport-Width with a cookie:

<?php

// only do this logic if the cookie isn't set
if (!isset($_COOKIE["CH"]))
{
 // load and use the wurfl device characteristics database
 require_once("TeraWurfl.php");
 $wurflObj = new TeraWurfl();
 $wurflObj->GetDeviceCapabilitiesFromAgent();

Legacy Support & Device Characteristics | 199

 // determine css, and px width then dpr
 // image_width returns css width of the display; resolution width is the
pixel width.
 // Use width=100 and DPR=1 as a safety if the device capabilities draws a
blank
 $width_css = max($wurflObj->capabilities['display']['max_image_width'],
150);
 $width_px = max($wurflObj->capabilities['display']['resolution_width'],
150);
 $dpr = max(int($display_width / $browser_width), 1);

 setcookie("CH", "Viewport-Width"+$browser_width + ",DPR=" $dpr);
 setcookie("CH-Verify", "1" $dpr);
}
?>

Then compliment the backend logic with client logic to “refine” the fallback cookie
values. This will provide increased resolution for devices that have multiple values for
the same user agent such as the iPhone. It will also act as a safety if the device charac‐
teristics database draws a blank. (It happens to all of us.)

In Javascript we would check for the cookie and update the value with the actual
width and actual DPR.

<html>
<head>
 <script type="application/javascript">
 // place javascript at top of the page to prevent race condition
 // reset the CH (ClientHint) cookie values with actual display width
and pr
 if (document.cookie.match(/(^|;)\s*CH-Verify=/))
 {
 var width = (screen.availWidth || screen.width);
 var dpr = (window.devicePixelRatio || 1);

 document.cookie = 'CH=Viewport-Width=' + width
 + ',DPR=' + dpr
 + ';expires=Fri, 31 Dec 9999 23:59:59 GMT;path=/';
 document.cookie ='CH-Set=; expires=Thu, 01 Jan 1970 00:00:01 GMT;';
 }
 </script>
...

To be clear this approach is a best effort but it will do the job in order to inform your
back end application server how to address non Client Hint supporting browsers.

Fallback: good-enough approach
The other approach, is to instead find a good enough image resolution set. This would
be a best-effort resolution that tips the balance from performance and display toward
the performance side. Client Hints and RWD try to get the best user experience for

200 | Chapter 12: Client Hints

the display. Using a good-enough approach you would select images that are the min‐
imum quality.

Finding “good enough” is a difficult strategy to negotiate with your business. The best
way would be to divide your problem into two: Mobile default and Desktop default.
This would assume that your desktop users are likely on wifi or DSL links. In contrast
your mobile default assumes underpowered display with cellular network.

With these two profiles (mobile & desktop), look at your RUM dataset and look ago
the 75th or even 90th percentile user. What screen resolution, network and
GPU/CPU does the user at the 90th percentile performance have? Use this for your
image budget and help you determine what the best fallback image should be.

Legacy Support & Device Characteristics | 201

Figure 12-5. Example fallback workflow

You can further refine this decision tree by capturing large demographics that have
higher resolution devices but don’t support Client Hints. Just as with option 1, we
would use a device characteristics database to refine the selection. The key difference
is that we don’t expect javascript to run at the client, nor do we set cookies. Our
objective is to be “good enough” without over engineering the solution.

202 | Chapter 12: Client Hints

Selecting the right image width
Now that we have Client Hints negotiated between the user and the server, what
should we do with it? Should we just provide resizes of an image for every possible
width or viewport-width available? Moreover, how do we select the right image -
should we maximize the creative experience or performance?

Providing an image for nearly every resolution is not a viable solution because it
would fragment your caches and put an undue burden on your image processing
engine. With Responsive Images, whether you are using the attribute
or using Client Hints, you want to find the balance of use cases, bucketing the we
need to determine what is the best set of resolution buckets.

Based on our discussion on mobile image processing, we should bucket image widths
more frequently the larger the image. That is, the larger the image the more memory
is used and each pixel x and y will have a linear growth in memory pressure and feel
size. Based on this information the following width buckets are a good starting point
for selection:

• 150x
• 300x
• 600x
• 800x
• 1000x
• 1200x
• 2000x
• 4000x

Once you have defined your bucket widths, it is a straight forward process of image
selection. The general algorithm is to select the nearest image breakpoint based on
the smaller of Width or Viewport-Width. Then layer into the selection the “best
effort” image as default.

image width = Width || Viewport-Width * DPR || Cookie.Viewport-Width *
Cookie.DPR || DefaultWidth

This approach, of course, assumes a design first approach. If the display can handle
the image, send it. If the display is 3 dpr capable, send a 3x image. Unfortunately, as
mobile and laptop displays increase in pixels we will increasingly prefer the higher
resolution images; the problem of image performance will once again be upon us.

Two approaches to address this is to: 1) evaluate the Save-Data client hint and/or 2)
use the Downlink client hint. Using the Save-Data client hint could be as simple as
ignoring the DPR value and use the CSS pixel width for responsive images. This will

Legacy Support & Device Characteristics | 203

effectively send a lower resolution image and depend on the client to up scale the
image.

 if (Save-Data = 'on') then DPR = 1

Customizing the selection based on network conditions is also a useful technique.
Unfortunately, as mentioned above, the Downlink header is not currently imple‐
mented and, if you were to use a ServiceWorker to populate this header on image
requests, it would only report the theoretical maximum. As we are all intimately
aware, just because the little icon indicates we are on LTE, doesn’t mean we have any‐
thing close the theoretical maximum on LTE.

 if (Downlink < 2 then DPR = 1

The other two leavers we have to compliment pixel selection is to leverage the differ‐
ent Image Formats and use dynamic compression based on Network performance to
squeeze more bytes.

Don’t forget to report the Content-DPR: 1 header in the response to inform the client
that you have selected a different DPR than what was requested. Also, be sure to
include the necessary caching headers, which we will discuss more below.

Summary
Client Hints are a great way to support the adaptive delivery of your images. This can
especially help instances where you can’t easily change the source for your html or for
applications which don’t use HTML but would benefit from Responsive Images.

204 | Chapter 12: Client Hints

CHAPTER 13

Image Delivery

Colin Bendell

Optimizing image delivery is just as important as using the right capabilities for each
format and leverage the best practices of the browser. In this chapter we will explore
the practical aspects of leveraging all the best practices and the impact on operations.

Image Dimensions
As we have now discussed multiple times in the chapters on Chapter 9, Chapter 11
and Chapter 12 reducing image dimensions can improve not only the network per‐
formance but also the memory performance. Small images for small devices on slow
networks or low memory is better than using one large image for all situations - desk‐
top and mobile alike.

In the section “Selecting the right image width” on page 203 we discussed allocating
buckets for different viewports. Looking at a sample of one million jpg images we can
examine the impact on filesize to image dimensions. The following compares images
at different breakpoints (assuming at least a 2:1 ratio) against by sizes - broken out by
25th, 50th and 75th percentiles. Of course, every image has its own distribution and
this should be used for illustration only.

205

Figure 13-1. Image Size to Image breakpoints (150-800)

206 | Chapter 13: Image Delivery

Figure 13-2. Image Size to Image breakpoints (1000-4000)

This makes sense - the larger the dimensions, the larger the file, and the longer to
download. On slower links this will also impact the performance of the page. For the
best performance for Responsive Images or Client Hints we should be making many
different dimensions available for our products.

The proposed breakpoints are a good rule of thumb and a good place to start as a
default. Of course, every image might have a different variation based on the com‐
plexity of the image. Jason Grigsby has proposed applying The Performance Budget to
image delivery. To do this you would set a goal of 16 packets (\~24KB) for each
breakpoint. In this way you could reduce the number of breakpoints per image and
better optimize your cache footprint.

Of course, every image could have its own set of breakpoints. This technique is most
ideal for entry pages, campaign sites, and other parts of your app or website that you
can examine with high intensity.

Image Dimensions | 207

1. What are the image breakpoints based on image budgets?

Applying the budget approach to the same million images yields breakpoints that
match the recommended set above. Below represents the median width based in 16
packet increments and generally yielding a standard deviation of about 30%.

Figure 13-3. Image breakpoints CDF in 16 packet (24KB) increments

Image Format selection: Accept-negotiation, WebP,
JP2000, Jpeg XR
As we have already discussed, there are many competing image formats available.
Generally for lossless compression we can make the selection based on features
desired and be comfortable knowing that 99% of all clients have support for GIF or
PNG.

The problem is lossy formats: Jpeg is virtually ubiquitous. In contrast, the advanced
formats - WebP / JPEG 2000 / JPEG XR - are fragmented in support across platforms.
One solution is to utilize Responsive Images’ <picture> element and duplicate your

208 | Chapter 13: Image Delivery

HTML to specify the same image resolutions but with different formats. It is like buy‐
ing one of every size of light bulb, bringing them home, just to figure out which size
fits your particular light receptacle. This is not a scalable solution.

<picture>
 <source type="image/webp"
 srcset="/fido_in_dc_100.webp 100w,
 /fido_in_dc_400.webp 400w,
 /fido_in_dc_800.webp 800w,
 /fido_in_dc_1000.webp 1000w,
 /fido_in_dc_1200.webp 1200w,
 /fido_in_dc_1400.webp 1400w" />
 <source type="image/vnd.ms-photo"
 srcset="/fido_in_dc_100.jxr 100w,
 /fido_in_dc_400.jxr 400w,
 /fido_in_dc_800.jxr 800w,
 /fido_in_dc_1000.jxr 1000w,
 /fido_in_dc_1200.jxr 1200w,
 /fido_in_dc_1400.jxr 1400w" />
 <source type="image/jp2"
 srcset="/fido_in_dc_100.jp2 100w,
 /fido_in_dc_400.jp2 400w,
 /fido_in_dc_800.jp2 800w,
 /fido_in_dc_1000.jp2 1000w,
 /fido_in_dc_1200.jp2 1200w,
 /fido_in_dc_1400.jp2 1400w" />
 <img src="/fido_in_dc_100.jpg"
 srcset="/fido_in_dc_100.jpg 100w,
 /fido_in_dc_400.jpg 400w,
 /fido_in_dc_800.jpg 800w,
 /fido_in_dc_1000.jpg 1000w,
 /fido_in_dc_1200.jpg 1200w,
 /fido_in_dc_1400.jpg 1400w"
 sizes="(min-width: 500px) 33.3vw, 100vw"
 />
</picture>

In the same vein as Client Hints, we can negotiate and detect the supported formats
available by the browser. At least we should be able to using the Accept: request
header.

Back in the annals of HTP/1.1 the Accept header was introduced as a mechanism for
content negotiation. It was envisioned as a way to inform the server what kinds of
media and mime types that the browser would accept. This was to compliment the
other Accept headers such as Accept-Language and Accept-Charset and Accept-
Encoding which focused on negotiating human languages, character encodings and
compression respectively.

While the latter three Accept* headers are still important for proper interpretation of
the page. Unfortunately the Accept header has grown to be mostly irrelevant with

Image Format selection: Accept-negotiation, WebP, JP2000, Jpeg XR | 209

most modern browsers. Most now simply transmit Accept: */* to avoid misinter‐
pretations by servers. As well, the sheer sophistication of a modern browser poses a
very long list of media types that it is capable of handling. To avoid a ridiculously
long and verbose accept lines, most servers all but ignore the Accept header and
browsers have simplified it to the generic wildcard.

In an odd way, */* does make sense. If there is equilibrium in the web develop‐
ment community, then there is very little need to use a different Accept value. The
irrelevance of the Accept header has created an opportunity for browsers to commu‐
nicate new enhancements. In this way, Chrome has uses the Accept for situations
where there is diversification of capabilities. For example, Android and Chrome will
send Accept: image/webp, */* indicating that in addition to the standard content
types, this device can also render WebP images.

Implementing the detection is then pretty straight forward. For example, below offers
a quick rewrite rule to internal rewrite *.jpg to *.webp if the requesting client indi‐
cates support.

<?php
if (strstr($_SERVER['HTTP_ACCEPT'], 'image/webp') !== false) {
 # transform image to webp
 $img->setImageFormat('webp');
}
?>

However, as we cautioned in Table 5-1, the Accept: image/webp can be used as
shorthand to mean specifically WebP extended or WebP animated. However, there is
a small user base (Android 4.0-4.2) where only WebP standard is supported. Like‐
wise, you should be concerned about specific Chrome versions that support Anima‐
ted WebP (Chrome 32+). If in doubt, consult your own user logs to determine how
much traffic is from older Android and Chrome browsers and would be impacted if
you delivered an unsupported WebP advanced or animation formats.

JPEG XR can be detected in very much the same way by looking for Accept: image/
jxr. This applies for IE 8+ and Microsoft Edge.

<?php
if (strstr($_SERVER['HTTP_ACCEPT'], 'image/jxr') !== false) {
 # transform image to jpeg xr
 $img->setImageFormat('jxr');
}
?>

What about JPEG 2000? Alas it doesn’t use the Accept header. This leaves us with
having to resort to device characteristics in order to select the best format based on
the client.

<?php
 $browser = $wurflObj->capabilities['mobile_browser'];

210 | Chapter 13: Image Delivery

 $browser_ver = $wurflObj->capabilities['mobile_browser_version'];
 if ((strstr($browser, 'Safari') != false) && $brwoser_ver >= 6 {
 $picture->setImageFormat('jp2');
 }
 if ((strstr($browser, 'Safari') != false) && $brwoser_ver >= 6 {
 $picture->setImageFormat('jp2');
 }
?>

If you do decide to using device detection to leverage specific image formats (or spe‐
cific features in other formats) you can refer to Appendix A for a list of supported
operating systems and browsers for each format.

Finally, device detection can be accomplished with client side Javascript such as Mod‐
ernizr - detecting WebP (lossy, lossless, alpha, and animated variants!), JPEG-2000,
and JPEG-XR. This is a great option, especially if the images on your site are loaded
lazily, or Javascript harness around image loading. The downside is that this creates a
race condition and the detection only happens after the JavaScript has to loaded. The
result is that either your images are loaded after the Javascript execution, or the first
collection of images area downloaded as JPEG (or other unoptimized format) until
the libraries are loaded.

Image Quality
So far we have explored the opportunities to select the right sized image and the right
format of image. The last dimension we can leverage to optimize the delivery of an
image is quality. This is a tricky subject because the very term “quality” is used as a
pejorative in the creative process. To reduce quality of an image is to make it inferior.
We must resist this association. By increasing the lossy compression (decreasing qual‐
ity) can help improve the user performance in many situations. The tradeoff is bal‐
ancing the comprehensive user experience (is the user able to interact with the page
and accomplish their goals) with localized image experience.

Quality and Image Byte Size
There is a general understanding that by adjusting the quality level in lossy formats
(JPEG, JPEG 2000, JPEG XPR, WebP) there is a commensurate reduction in bytes.
More compression applied, the less bytes. There is also a point of diminishing
returns. Setting compression to 100 doesn’t equate to a pristine lossless image, it will
just result in a large image.

Below we can see the quality graph for the different image formats compared to the
relative byte savings. This does not compare the relatives sizes between formats but
compares the change in bytes within the format. Changing between formats will yield
additional relative byte savings.

Image Quality | 211

This quality graph is based on a sample set of 1000 product detail images and is fairly
representative of a typical quality scale. This also highlights the variances between dif‐
ferent libraries. It also emphasizes that quality does not mean percentage. It is tempt‐
ing to conflate quality index to image quality or even file size.

Figure 13-4. Quality v. Relative Bytes

As you can see, regardless of format, each encoding library can impact the byte size of
an image differently. Specifically that there is a rapid reduction in byte size until we
hit an index of around 40. Also, we can see the distortion of the highest index values
on the scale. If we were to reset the scale and focus on an index of 90 through to 40
we could re-adjust our expectations.

212 | Chapter 13: Image Delivery

Figure 13-5. Quality (90-40) v. Relative Bytes

Nearly universally we can see that reducing the quality index can quickly reduce file
sizes. Most follow a similar shape of curve, but even still there are noticeable differ‐
ences. What we can conclude from here is that we should expect an additional 20%
byte savings by moving from quality 90 to quality 80. And another 20% by moving to
quality 70. From there the gains become smaller but still impressive.

Quality Index and SSIM
But does the quality index of one encoder equal the quality index of another? Can we
just assume that all quality indexes are the same? Using SSIM calculations we can
compare the different encoding libraries and their effects. Can we assume that select‐
ing index 80 in one library is the same as quality 80 in another? Or across formats?

Using the same dataset, we can compare the SSIM values at each index value. Using
the 90th percentile value (conservative) we arrive at the following curves. Let me
emphasis, this is a conservative view and an individual image could well get a lower
SSIM value when run through the different quality indexes. The purposes of this
illustration is to provide general guidance and conclusions and so a 90th percentile
was selected.

Image Quality | 213

Figure 13-6. Quality v. SSIM

Clearly the answer is No. Each encoding library impacts the visual perception differ‐
ently at the same quality index. If you set libjpegturbo to quality 80 you would expect
the same SSIM of a mozjpeg set at quality 65.

Just as before, the top and bottom indexes heavily skew the graph. Zooming in on
index 90 through 40 yields:

214 | Chapter 13: Image Delivery

Figure 13-7. Quality (90-40) v. SSIM

Figure 13-8. Raw Data: Quality v. SSIM

Image Quality | 215

One thing this does not take into account is DPR. That is, there is anecdotal evidence
that suggests that the perception of higher SSIM values goes down based on pixel
density as well as form factor. That is, humans can accept a higher SSIM value when it
is on a smartphone than on a desktop. Research is early and inconclusive on the
impact of visual perception based on display form factor.

I’m sure you, like me, is very frustrated. It is much like creating a family budget with
the expectation of handing down clothes from the eldest to the youngest only to find
out that each child grows at very different rate and won’t fit the clothes. Who knew?

How are we to select a quality index and apply it across the different encoders and
expect the same results? Fortunately for you, I have run the regressions and derived
the following charts to help with our conversions:

Figure 13-9. Quality Index: JPEG (libjpegturbo) v. Other Formats

216 | Chapter 13: Image Delivery

Figure 13-10. Quality Index: JPEG (libjpegturbo) v. Other Formats

Is this a chapter on Image Quality or Image Delivery? Well both. They are tightly
linked. In order for us to select the best image quality to reduce bytes we should also
keep in mind the effective equivalent to the other formats.

There are two large conclusions we should reach that will help us with better deliver‐
ing images:

1. Focus on the desired quality index for your images to maximize SSIM & reduced
file sizes

2. Layer image format and responsive images after the quality index adjustment

Selecting SSIM and Quality Use Cases
You can take this one step further and create use cases for quality.

High: 0.01 SSIM
Medium: 0.03 SSIM
Low: 0.05 SSIM

Image Quality | 217

In this way you could intentionally distort the image to maximize the user experience.
For example, you could use the network client hints to inform the quality use case.
Alternatively you could look at the HTTP socket performance (packet RTT) or
instrument latency detection with ServiceWorkers. In this way you could adjust the
user experience based on the hostility of the network conditions.

This is very similar to what was suggested above in Client Hints. In fact both can be
done at the same time for maximal benefit! Adjust both the image dimensions and
then adjust the quality. There are many possibilities.

Of course there is always a point of diminishing returns. Applying these use cases to a
800B image has little value to the user experience. However if the image is 100 KB
then of course you would want to apply this algorithm. Remember: every packet
counts - especially on poor network situations.

Bottom line: If you can gain a full packet in savings it is probably worth adjusting
image quality. If I were to augment the above chart I would suggest:

High: 0.01 SSIM
Medium: 0.03 SSIM and >4,500 Byte savings (~3 packets)
Low: 0.05 SSIM and >12,000 Bytes savings (~8 packets)

Creating Consensus on Quality Index
One final word about quality. As I mentioned, this topic is often very emotive - espe‐
cially with those in your organization that are the custodians of brand. I’m specifically
talking about your marketing teams. Their job is to ensure that the public good will is
positive toward your brand. You, in contrast are responsible to ensure that the site or
app works for the most number of people. Two sides of the same coin.

In order to bring marketing and your creative teams onboard with adjusting the qual‐
ity index of your images, it is useful to show instead of explaining. For example, it will
help you gain consensus by selecting a set of images and running through the differ‐
ent quality indexes. For example:

218 | Chapter 13: Image Delivery

Figure 13-11. Building consensus on Image Quality

Be sure to do this on your worst case scenario. If you are using mozjpeg as your jpeg
engine then use this to initiate the conversation - don’t use libjpegturbo.

To help you “calibrate” your management on quality index, we have created What‐
QualityShouldIUse.com as an assistant tool. Use this to help create an informed deci‐
sion on what your images would look like. Be sure to run the calibration on multiple
devices (desktop and smartphone). Don’t project these images on an 80inch plasma
screen where your CEO can walk up to it and inspect pixel by pixel.

Consider the contractual obligations of branding when reducing image
quality

Also recognize, that there are likely situations where you don’t want
to reduce the quality index because of marketing or legal obliga‐
tions.

Quality Index Conclusion
When applying changes to the quality index follow these best practices: * Reduce the
quality index based on SSIM values instead of a fixed setting * Apply the equivalent
quality index to other formats * Add network awareness to select a lower quality
index * Use the Client Hint Save-Data: on to select a lower quality index

Image Quality | 219

Figure 13-12. Workflow for selecting the right image quality

Achieving cache offload: Vary & Cache-Control
So far we have explored how to deliver images to account for differences in image
dimensions (responsive images), different image formats, and variations in quality. It
is one thing to select the correct image based on sever side logic but how do we
ensure that it will properly be cached by the browser (so we don’t have to re-
download the image every time) and that middle boxes like transparent proxies or
surrogate proxies (CDNs) are also able to understand your logic. Further, how to we
ensure that there aren’t any adverse SEO impacts (eg: cloaking).

Fortunately the authors of the HTTP spec considered this situation. The Vary header
is intended to be express how the content would Vary from one request to another.
There is also an enhancement proposed specification to help provide increased reso‐
lution with the Key header. The challenge, of course, is to ensure that all the current
consumers (clients and middle boxes) also respect these headers.

220 | Chapter 13: Image Delivery

Informing the client with Vary
The first objective is to inform the end consumer how the content may change with
different requests. For example, if the request were made by a Mobile or a Desktop
user - would the content change? If the user changed the orientation of the display
and have a different Viewport-Width, would the image change?

To answer these questions we would use the Vary header. The value of the header is
not the value used, but the HTTP header used as an input. Some of the values you
could use include Accept-Encoding (when gzip is used), User-Agent or Viewport-
Width. We will discuss the implications of highly variable inputs such as User-Agent
in the next section. For SEO and browsers, the Vary header helps properly inform the
client that the content could change if different inputs were used.

If we used DPR: to select a different image we would expect Vary: DPR in the
response.

GET /broccoli.jpg
DPR: 1.5

...

200 OK
Content-Type: image/jpeg
Vary: DPR

For changes in image dimensions using Client-Hints we could use the following val‐
ues: Viewport-Width, Width, DPR, Downlink or Save-Data. These can also be com‐
bined if you are using both DPR and Width in you calculation you would emit:

Vary: Width, DPR

Changes in format become a bit more complex. For WebP and JPEG XR it is suffi‐
cient to use Vary: Accept. However for JPEG 2000 (Safari/iOS) we had to use device
detection and therefore we should send Vary: User-Agent.

Internet Explorer (all versions) adds an unfortunate wrinkle: Vary will cause a revali‐
dation on every request instead of caching. This is because IE does not cache the
requesting headers and so cannot use them to compute the internal cache key. As a
result each load of the image will, at the very least, result in a new request with a If-
Modified-Since (or If-None-Match) to revalidate. The work around for IE is to drop
the Vary header and mark the content as private with a Cache-Control header.

For internet explorer users only:

GET /broccoli.jpg
User-Agent: ...msie...

200 OK

Achieving cache offload: Vary & Cache-Control | 221

Content-Type: image/jpeg
Cache-Control: private

Changes based on network conditions are likewise a challenge since the variation is
not based on HTTP headers but on network conditions. If we have access to the Down
link client hint header then that would work well in the response. Otherwise we
should treat the variation much like we do for Internet Explorer and use Cache-
Control: private to ensure that both client and middle boxes don’t try to get
involved.

Middle boxes, Proxies with Cache-Control (and TLS)
There are many middle boxes deployed throughout the internet. In hotels, coffee
shops, ISPs and Mobile operators. The goal is to provide an additional layer of cach‐
ing. Of course, these automatic middle boxes have to be conservative. They will only
cache content that is marked as cacheable just as an end user would.

However, it would be problematic if they were to cache a WebP response and send it
to a Safari user. Or a smartphone response and send it to a desktop. It would be one
thing to assume that the proxies and middle boxes all honor the Vary header as the
browser does. Unfortunately they don’t.

Worse yet, many middle boxes controlled by network operators often try and apply
their own image optimizations out of your control. This can be problematic if they do
things like strip the color policy profile or further apply a lower quality index. These
are middle boxes that are out of your control.

There is a clear risk v. benefit with these middle boxes. If you are applying any logic in
delivery selection then you can confuse these middle boxes and inadvertently deliver
an inferior user experience despite your best intention.

To work around this problem you can do two things:

1. Use to TLS as a transport for your images. These middle boxes cannot intercept
TLS connections because it would cause the client to distrust the resigned
response (aka man-in-the-middle attack)

2. Mark the response as private with Cache-Control: private. This will ensure
that these proxies don’t accidentally cache the content and serve it to the wrong
person.

Even if you are not doing selection in resolution or format, it is still good to account
for these middle boxes impacting the delivery of your images. To control your destiny
it is good to also mark the response with Cache-Control: no-transform. This will
indicate that middle boxes shouldn’t further mutate the response and possibly delay
the delivery of your images. Again, using TLS will also accomplish the same goal.

222 | Chapter 13: Image Delivery

CDNs and Vary & Cache-Control
It is useful to remember that the CDN acts on your behalf in the delivery solution and
it is under your control. While you cannot control the cache and lifecycle of images
sent to the end client (or intercepted by ISP proxies), you can control the CDN as you
can your infrastructure.

There are two ways to invoke a CDN when delivering your images: Passive or Active.
In a passive setup, the CDN honors the Vary and Cache-Control headers in the same
way that the client would. Unlike a transparent proxy, a CDN can often also serve
TLS traffic on your behalf with a valid certificate. This makes it all the more impor‐
tant to ensure that you decorate your response with a properly formed Vary header.

The problem with CDNs in a passive mode is that while the possible values for Vary:
DPR might be somewhat limited, the possible values of Vary: User-Agent or Vary:
Accept result in a very fragmented cache. This is the equivalent of a infinite permuta‐
tions and will yield a very low to no cache offload. Some CDNs, like Akamai, will
treat any value of Vary other than Vary: Accept-Encoding as equivalent to no-store.
Be sure to configure the CDN to ignore the Vary header but pass it along to the end
user.

To reiterate: using Vary has value for the end client but will have minimal to no value
at the CDN. The client may have a few possibilities for Vary: Viewport-Width but
the CDN will have thousands upon thousands.

Active CDN configurations extend the decision logic from your origin into the CDN.
In this way you can use device characteristics in the CDN to form the cache key. You
should also be able to extend the cache key with multiple buckets of values to provide
a more succinct cache key.

For example, you could bucket values of Width into 0-100, 100-200, 200-300 to a
rationalized cache key with Width = 100, 200 and 300 respectively. This creates 3
cached versions instead of 300 possible variations.

With an active CDN configuration you will need to ensure that your server side logic
matches the CDN.

Achieving cache offload: Vary & Cache-Control | 223

Figure 13-13. User (Vary: User-Agent) ←- CDN (add isJpeg2000 to cache-key) ←- Origin
(select Jpeg 2000)

In advanced solutions you can move the image selection to the domain of the CDN.
In this way the CDN not only reflects the cache key but also is responsible for making
the image selection and subsequently picking up the correct files from the origin or
passing to an image transformation solution.

224 | Chapter 13: Image Delivery

Figure 13-14. CDN Selects Origin File

Near Future: Key
In the near future there is a proposed standard that may help CDNs and the browser
better understand the cache key partitioning of a response. The IETF httpbis working
group has prosed the use of the Key HTTP response header to describe the secondary
cache key. Key would compliment the Vary header by providing the ranges of values
that would result in the same response.

For example, using Key in a Client Hints informed response could help describe the
various breakpoints for an image.

200 OK
Vary: DPR, Width
Key: DPR;partition=1.5:2.5:4.0
Key: Width;div=320

Single URL vs Multiple URLs
There are many metaphysical debates on whether an application should utilize one
canonical URL for many derivative images or manifest each combination and permu‐
tation as a uniquely accessible URL. There are both philosophical arguments to be
made as well as pragmatic.

Single URL vs Multiple URLs | 225

The Single URL camp usually start with a discussion about “the forms” and quote
Socrates and Plato nine times before breakfast. The argument is to keep a canonical
single url representation exposed in order to ensure simplicity and agility. If you have
one url, which has many derivations from the original, then you can partition or col‐
lapse the responsive image buckets at will without worrying about stale caches or link
rot. A single url allows regular iterations of optimization to find the best performance
for the most number of users.

/images/broccoli.jpg

On the other hand, the advocates for many URLs would argue that using one url for
each permutation avoids the unnecessary complications to address caching and prox‐
ies. (They also would likely claim Socrates was just a hack and scared of shadows.)
Each derivative for responsive images, formats and quality should likewise be mani‐
fested as a unique url. This is in addition to the various use cases such as “search
results”, “product detail”, or “banner ad”.

/images/broccoli-search-400-80.jpg
/images/broccoli-search-400-80.webp
/images/broccoli-search-400-80.jp2
/images/broccoli-search-400-80.jxr
/images/broccoli-search-800-80.jpg
/images/broccoli-search-800-80.webp
/images/broccoli-search-800-80.jp2
/images/broccoli-search-800-80.jxr
...

Clearly there is no single answer. There is a need for both. As user demographics
change, so too will the effectiveness of the image breakpoints, image formats and
quality. For this reason it is good to remain flexible. Yet at the same time there are
classes of content that should be exposed independently. Generally the image use
cases are best served as a unique url. This is both practical for your content creators as
well will likely have positive SEO impact.

Regardless of the approach, all the derivative images will need to be produced at one
of the layers in your architecture. Whether the images are generated and stored in a
file system at the origin or through a cloud based transformation service, all of the
variations must be stored somewhere. The key question is what makes the simplest
operational sense and what has the least impact on the your catalog of images.

File Storage, Backup and Disaster-Recovery
One of the often overlooked aspects of image delivery is the performance (and cost)
of storage, backup and disaster recovery. Content creators and web devs often forget
the cost of infrastructure. Modern storage infrastructure is fast and abundant. How‐
ever this doesn’t preclude operational complexity when dealing with large volume of
images - especially small images (in bytes) that are optimized for delivery.

226 | Chapter 13: Image Delivery

This section is not intended to be exhaustive as there are just as many variables with
efficient storage and backup as there are with image delivery. A good delivery experi‐
ence also requires a balance of the infrastructure requirements. Millions of small
images may not pose a problem in steady state, but in a DR scenario, millions of small
images can create a significant bottleneck which could impact the operation of your
business and be the root cause for a mean time to recovery of 8hrs instead of 30min.

Image delivery should always consider business continuity in the infrastructure plan‐
ning. While we always hope that a datacenter will be resilient through time we know
that nature has a way of throwing a spanner into the works. Then question then is
how quickly can we recover.

Images transferred over the web are predominantly small. At least small in compari‐
son to databases, videos and other key assets an organization needs to preserve for
business continuity. Using the median byte size for various breakpoints (see
Figure 13-1) we can attempt to estimate the impact of these derivative images.

Lets do the math:

100,000 base images
x 4 use cases (search, product details, hero ad ...)
x 8 widths
x 4 image formats (WebP, JPEG XR, JPEG 2000, WebP)
x 3 quality index
= 38.4 million images

Focusing on just the 300x break point and assuming 30% savings for each format and
an additional 20% for each quality and focus on 1 use case:

10,000 base images
x 12.1KB (8.4KB, 8.4KB, 8.4KB)
= 1,200MB + 840MB + 840MB + 840MB
+ 3 quality (12.1KB/9.6/7.2, 8.4/6.7/5)
= 960MB + 672MB + 672MB + 672MB
= 720MB + 504MB + 504MB + 504MB
= 8.93 GB per use case and per breakpoint!

38.4 million images doesn’t sound like much nor does 9GB. But lets look at the two
factors that matter. Size on disk and the cost of metadata.

Size on Disk
Most modern file systems from EXT4 to NTFS use a block size of 4KB. This ensures
that the block size lines up with the physical attributes of the disk. Alignment to phys‐
ical disk matters more with spinning disk than it does for solid state. There is always
inefficiency in filling every block. The assumption is that there will be more com‐
pletely filled block than partially filled blocks.

File Storage, Backup and Disaster-Recovery | 227

In the example above, rounding to the nearest block size adds an additional 25% to
the total storage. That is the 9GB above actually uses 12GB of storage. Fortunately, as
you get larger in file sizes, the impact of size on disk reduces.

Cost of Metatadata
The second issue is the cost of metadata. Every filesystem has some form of metadata
to track the location on disk for a file and the block association for this file. This met‐
adata is usually the root cause for any limits on the number of files per directory. For
example, in ext4, the limit is 64k files. Generally speaking each file and directory on a
file system includes metadata (in ext4 it is an inode) to track the size of the file and
the location on disk as well as its location in the hierarchy.

Different file systems use different allocation but it can be from 2-3.2% of the total
volume of a disk allocated to metadata. Even if you are storing the files in a database,
the database itself will have to track the location with metadata. What can be tuned is
how much metadata.

When ext4 was released a number of tests were conducted by Linux Magazine based
on different file sizes and directory depths. The key hear is that every file written
must also have metadata recorded. It is not just one write for the file, but multiple
writes. This test showed the impact of creating small images and large images with
shallow or deep directory structures.

[linux-mag]:

228 | Chapter 13: Image Delivery

Figure 13-15. Ext4 Metadata writes reduce disk performance: many small files is slower

As you can see, the impact of file size and metadata can be very large. The bottleneck
here is now the filesystem metadata. Fast drives are no longer the bottleneck.

The cost of metadata is the bottleneck for disaster recovery. If we use the same sce‐
nario as we did for the 300x breakpoint and applied it to the eight other break points
we would have a total storage of 2.5TB. Even at 80MB/s the expected time to recovery
would be over 8hrs. In this scenario, your business would be out of commission for
over 8hrs while we recover images.

Consider the impact of your design decisions on your infrastructure. Bottom line:
You may be making decisions that your CFO might not be comfortable with in an
disaster recovery event.

To address this specific problem of many small images and the cost of metadata, Face‐
book has purpose-built an optimized object storage system called Haystack. Haystack
uses an in memory index and designed for single write and many reads while mini‐
mizing the overhead cost of metadata. Replication, election, clustering and other dis‐
tributed or backup functions are outside of the scope of the storage system and
handled by other system logic.

File Storage, Backup and Disaster-Recovery | 229

Domain Sharding & HTTP2
As we discussed in the Chapter 7 chapter, Browsers are limited by the number of con‐
nections. To overcome this, and to improve the throughput for downloading images
(and other small content), many websites use Domain Shardng. The objective of
Domain sharding is to work around TCP slow start, congestion window scaling and
head of line blocking. Normally, by opening up parallel TCP connections, up to 6 per
host, you can effectively saturate the network connection. Domain Sharding takes
this a step further by utilizing multiple hostnames that point to the same infrastruc‐
ture. In this way you can trick out the browser to send even more parallel requests by
opening more sockets.

In the example below, you can see how the browser opens additional socket connec‐
tions with each new domain shard. The impact is a faster completed download and
page render. This is because the network is more fully utilized. (This illustration uses
a 3mbps connection and 200ms of latency to emphasis the impact)

Figure 13-16. 1 Resource domain on a HTTP/1.1 connection

230 | Chapter 13: Image Delivery

Figure 13-17. 2 Resource domain on a HTTP/1.1 connection

Even though TLS has a handshake tax, sharding can also have some benefits. For
example, the same website using 1 or 2 shards as above:

Figure 13-18. 1 Resource domain on a HTTP/1.1 + TLS connection

Domain Sharding & HTTP2 | 231

Figure 13-19. 2 Resource domain on a HTTP/1.1 + TLS connection

Typically this is done by adding a different prefix, or even whole domain, to the
resource request. Requesting http://www.example.com/i-love-broccoli.jpg now
becomes http://imges1.example.com/i-love-broccoli.jpg. These different host‐
names are usually just aliases to the same content. Typically the subdomains would
resolve in DNS to the same IP and depend on the virtual host mapping on the appli‐
cation server to serve the same content.

Using domain shards is straight forward but does have a few implementation details
that should be considered.

How do I avoid cache busting and redownloading?
Two objectives when using sharding: maximize the browser cache, and avoid down‐
loading the same resource twice. However we implement domain sharding, we must
ensure that i-love-broccoli.jpg doesn’t show up using img1.example.com on the
first page but img2.example.com on the second. This would effectively void the
browser cache and force re-downloading the content.

To avoid this, you should partition your images into groups of content. However,
avoid using a counter to switch between shards. Also, it is tempting to use one shard
for CSS and another for JPG. You should avoid this temptation because you don’t
want all the critical resources to be bunched up on a single request queue. Instead,
use a hash or an index to equally distribute filenames between available shards.

232 | Chapter 13: Image Delivery

How many shards should I use?
Selecting the right number of shards is not as clear cut as you would expect. Early
researach suggested 2-4 shards per page - but this was a best practice from 2007 when
browsers only made 2 connections per hostname. Steve Souders has provided the
most recent guidance, suggesting \~20 resources per domain to provide a good bal‐
ance of sharding for performance.

This remains as the best general guidance. However, there are other questions such
as, what is the impact on congestion control and TCP scaling? If each socket is
attempting to maximize the congestion window, but competing with itself this could
result in packet loss and thus decrease overall performance. The size of the resources
also impacts the effectiveness of sharding. Sharding works because many small
resources don’t use more than a few packets to send/recieve. (We discussed this more
in Chapter 10). However, this value can diminish with larger content, many more
resources in parallel, or low handwidth.

What should I do for HTTP/2?
Is Domain sharding an anti-pattern for HTTP/2. The short answer: no. The longer
answer: it could be, if you don’t consider HTTP/2 in your implementation.

HTTP/2 has many advantages, one of which is the ability to have multiple parallel
requests on a single socket connection. In this way we can avoid the HTTP/1.1 head-
of-line blocking problem. Domain sharding is not a needed practice in order to satu‐
rate the network connection. By using a single socket you are also able to scale the
congestion window more quickly and avoid packet loss and retransmission.

In 2015, the IETF finalized HTTP/2 (RFC7540) which is the successor to the
HTTP/1.1 protocol. The expectations of HTTP/2 is that it will: * Substantially and
measurably improve end-user perceived latency in most cases, over HTTP/1.1 using
TCP. * Address the “head of line blocking” problem in HTTP. * Not require multiple
connections to a server to enable parallelism, thus improving its use of TCP, espe‐
cially regarding congestion control. * Retain the semantics of HTTP/1.1, including
(but not limited to) HTTP methods, status codes, URIs, and where appropriate,
header fields.

More specifically, HTTP/2 supports: * HTTP/1.1 and is fully backward compatible *
Multiplexing on a single connection * Header compression * Prioritization of requests
* Server Push

However, there are a number of barriers to HTTP/2 adoption. Aside from the consid‐
eration of adopting TLS (because there aren’t any implementations that can do

Domain Sharding & HTTP2 | 233

HTTP/2 without TLS), there is also the consideration of the user adoption curve.
HTTP/2 requires modern versions of modern browsers. For Native apps it also
requires modern OSes (or client libraries) that can likewise use HTTP/2. Beyond user
adoption there is also the challenge of corporate (and home) content filters who
intentionally decrypt and resign TLS encryption. In some situations it has been
recorded to be as high as 17%. These content filter proxies likely do not use HTTP/2.

Like many other web technologies, we should expect the organic adoption of HTTP/2
to take many years. Consider that between 1998 and 2016, only 10% of users are on
IPv6 reachable networks. Likewise, SNI (Server Name Indicator) support in TLS has
been a standard since 2003 but it wasn’t until 2016 that 95% of TLS web traffic sup‐
ported SNI. (Mostly as a result of the End-of-Life of Windows XP, and Windows
Vista). As of 2016H2, adoption is between 50-75% depending on the demographic or
segmentation. We should expect the long tail of adoption of HTTP/2 to take 3-5 years
before we come close to 100%.

So what should we do in this interim?

Option 1 is to dynamically generate the domain sharding. If the user is connected on
a HTTP/2 connection disable domain sharding. If HTTP/1.1 then utilize multiple
sharing as before. This approach, of course, requires that your local caching infra‐
structure and your CDN be aware of the different rendered outputs and add the
HTTP/2 connection as part of the cache key. Unfortunately there isn’t a correspond‐
ing Vary: header that can properly describe a variation based on the protocol. The
best solution is to use Vary: User-Agent to communicate the variation (as you
would with a RESS design).

Option 2 is to simply ignore the problem. Fortunately most (if not all) HTTP/2
implementations have an optimization to address domain sharding. Specifically, if the
shared domain resolves by DNS to the same IP and the shard is on the same certifi‐
cate (the host name is in the Subject-Alternate-Name list) then the HTTP/2 connec‐
tion will consolidate the sockets. In this way, multiple hosts will use the same HTTP/2
connection and therefore avoid any penalty of sharding. It still remains as a single
connection. The only penalty is the DNS request and 1 packet round-trip to acquire
the certificate.

234 | Chapter 13: Image Delivery

Figure 13-20. HTTP/2 with 2 resource domains

This is the easiest option because it simply means less work. It also allows you to con‐
tinue to use sharding for the laggard adopters. And it is these laggard adopters that
likely need any performance bump you can give them.

Best Practices
You should continue to use multiple domain shards for your website to maximize the
connection throughput. It also helps you avoid images from blocking more critical
resources like CSS and JS.

In preparation for HTTP/2 make sure that you: . use the same DNS - for all of your
shards and primary hostname . use the same cert - add the certs to the SAN fields of
your TLS certificate.

Progressive-Progressive JPEG for best H2 & User Experience
If you have access to the low level inner workings of your HTTP/2 network stack and
are able to adjust the priorities of requests, you should also use round robin to deliver
progressive JPEGs. Instead of sending the bytes for a progressive as fast as possible, a
better solution is to weave the payloads of parallel JPEGs. Using HTTP/2 stream pri‐
oritization to progressively delivery progressive JPEGs for a better user experience.

Domain Sharding & HTTP2 | 235

Secure Image Delivery
Security is everyone’s responsibility. Throughout this chapter we have focused on how
to deliver images to users. Just as important to your brand is the security of your
images. What if your images were tampered? How could your brand be tarnished if a
nefarious agent?

Secure Transport of Images
Up until recently the majority of the web has been delivered unencrypted. As we have
all experienced, there are many locations where this content can be hijacked in an
unencrypted flow. Public Wifi does this intentionally to force you through a Captive‐
Portal before granting access to the internet. ISPs, with good intentions, have notori‐
ously applied higher compression distorting the visual quality of your brand. Using
Cache-Control: no-transform works for some, but not all well behaved image
transformation. But there are also not-so well intentioned transparent proxies that
hijack image requests and replace the content with different advertisements or place‐
holders.

Figure 13-21. Use Cache-Control: no-transform to prevent degraded quality by ISP
proxies

Securing the transport for images is straight forward. Using TLS you can ensure that
the communication from user to server is trusted and that there aren’t any middle
boxes interfering or mutating your content. Moving to HTTP/2 also requires the use
of TLS.

236 | Chapter 13: Image Delivery

Be careful of content hijacking on untrusted WiFi

There have been increasing reports of free Wifi hotspots found at
Hotels, Coffee shops, and Restaurants replacing web content with
alternate advertising. Putting the ethical argument aside - whether
service providers can generate ad revenue from offering free - there
is branding implications for your own web content. Hijacking con‐
tent like this is only possible with unencrypted pages and images.
Moving to TLS prevents man-in-the-middle interception.

Secure Transformation of Images
Securing image delivery is more than just the transport layer. We should also be con‐
cerned about the attack surface of our transformation engines. Whether you are
using an on-premise image transformation engine or an off premise there are many
possible vulnerabilities. Third party and open source libraries are extremely useful
but also can introduce risk to the enterprise if not properly isolated.

An index of Common Vulnerabilities and Exposures (CVE) are maintained by Mitre.
It is critical to keep up-to-date with the latest known exploits on the libraries and
tools used in your image transformation workflow. Isolating and patching should be
part of your regular team cadence.

Secure Image Delivery | 237

Figure 13-22. CVEs reported for ImageMagick and common image libraries

Image exploits and attack vectors common across all image formats
News and blog posts of image exploits is nearly common place. Most image related
attacks leverage a technique called steganography, which involves hiding a message or
exploit code inside the image. No image format is exempt. In 2013, a security
researcher found a backdoor that hid data within Exif headers in JPEG, and Trend
Micro blogged about another, similar attack vector with JPEG. Similar attacks have
used BMPs and PNGs to accomplish their malicious activities.

The main concern for image transformation engines is if a contaminated image
enters for processing and through the decode or mutation process, exploits a vulnera‐
bility. This could leverage a byte alteration from the logic edge case, checksum colli‐
sion or remote code execution. Consider that the famous Jailbreakme exploit that
allowed jailbreaking on iOS 3 used a flaw in the TIFF decoder in iOS. This single flaw
allowed rooting of the entire operating system. Imagine the potential impact on your
images. This vulnerability could impact subsequent images - possibly tagging them
with brand damaging messages. Just because the bytes of the image have left the pro‐
cessor, doesn’t mean that there isn’t residual code left running on the thread. The last
thing you want is all of your product images graffitied with “BUY MORE BROC‐
COLI” without your realizing.

238 | Chapter 13: Image Delivery

Figure 13-23. We want to avoid one image affecting other images on the platform

How could a contaminated image enter your workflow?

• User generated images; compromised at source
• Vendor supplied product images; compromised at source
• In house photography; compromised by malware on the artists laptop

It is easy to consider how a compromised image could enter your workflow. The bet‐
ter question is can you ensure that a compromised image doesn’t impact your ecosys‐
tem. How do you isolate the impact to just that compromised image? How can you
minimize risk and exposure to your image transformation service.

Secure Transformation: Architecture
Whether your image transformation is on premise or with a cloud based SaaS pro‐
vider, you should evaluate the architectural security of the transformation engine.
Ideally, there should be isolation at every level of processing. We want to ensure that
no one compromised image can affect other parallel threads/processes/systems that
are also transforming other images. We also need to ensure that there isn’t any residu‐
als that may impact the next image processed by this specific thread.

A well secured transformation architecture should consider 3 major areas for isola‐
tion:

1. TCP Connection pools (retrieving and storing)

Secure Image Delivery | 239

2. Transformation engine (eg: ImageMagick)
3. Encoding and Decoding shared objects

Figure 13-24. A model for secure image transformation architecture

For example:

• We need to ensure that there is no way that images being sent or received via
TCP (or disk) can impact another thread or process. The initiating worker
should only have access to the stream of bytes for this job.

• The transformation engine, such as ImageMagick, must not be able to store, exe‐
cute or preserve any state between image processing. The worker threads must be
each isolated to indecent scratch areas and restricted to different system libraries.
For example, the transformation engine should not be able to open up new TCP
sockets or leave temporary files or memory state between jobs.

240 | Chapter 13: Image Delivery

• The various encoding and decoding shared objects (eg: libjpegturbo) also needs
to be isolated. Memory state should not be allowed to persist or have access by
parallel threads or other jobs.

This is not an exhaustive list of ways to isolate and segment the architecture. Your
local security team should be able to help you ensure that there is no way that a mali‐
ciously tampered image can have ecological impact on the rest of your valuable assets.
If you are using a cloud solution you should also ensure that the same level of scru‐
tiny can be applied.

Summary: Situational Delivery
Downloading an image is no longer simple. There many variables to consider to
ensure the best performance. In order to deliver the best image we want to:

1. Adjust image dimensions: Provide a set of breakpoints available for an image to
reduce memory on the device and improve delivery performance. Use a general
rule of 16 packets (24k) per breakpoint.

2. Use advanced image formats: Newer formats support additional compression as
well as more features. For mobile environments use WebP and Jpeg2000 for
Android and iOS users respectively.

3. Apply different quality: Reducing the quality index for a format can reduce byte
size. Use DSSIM to find the lowest quality index for an image. Use 3 different
steps of quality for slower network conditions.

In addition to considering the matrix of image delivery options, there are impacts to
infrastructure, operations and security that should be considered. Transforming
images will increase storage footprint and can impact disaster recovery (DR). Finally,
the security of transforming and transformed image is an important and oft over‐
looked aspect of delivery. Delivery requires balance between the user’s situation,
operational complexity and security.

Summary: Situational Delivery | 241

CHAPTER 14

Operationalizing Your Image Workflow

Mike McCall

Now that you know all about what makes a fast, responsive image, let’s figure out how
we can get them into your workflow and onto your site.

If there’s one thing that’s consistent about nearly all imagery that exists on the Inter‐
net, it’s that each image started as something completely inappropriate to display on
the web. We call these images our master images, and they’re the reference image each
derivative image - the image that actually shows up on your site - is generated from.
How one gets from the master to derivative image varies from one site to the next, but
there are often common workflows that exist, usually within certain market verticals.

Some Use Cases
To expand on the concepts of master and derivative images further, let’s dig into a
couple of use cases to see how these master images are created, and how they can
sometimes be a huge (in more than one sense of the word) problem for your high-
performance image workflow.

The e-Commerce Site
Let’s start by imagining an e-commerce site, filled with a catalog of thousands of
products, and each product containing multiple angle shots and color variations. We
can also imagine our fictitious e-commerce site has large hero imagery that serves as
a section heading, and might contain photos of the products being worn or highlight‐
ing sale items.

It’s safe to assume that each and every one of these photographs was taken at a studio,
using a high-end DSLR camera. While the images leaving the studio may be beautiful,
high-resolution photos, they are almost certainly not the images you want on your

243

site. The files can weigh in at tens-to-hundreds of megabytes in size, and they are
often at 300 DPI resolution since the same imagery is often used for both web and
print. Often, these images are processed lightly by the studios themselves before being
sent off to the site’s creative team for further touch-up work. The images leaving the
studio are typically in a non-web format, like Photoshop PSD, Tagged Image File For‐
mat (TIFF), or occasionally RAW format. The output from the studio to the creative
team will usually be well-specified in terms of shot angles, background colors, output
format, and any touch-up work required prior to hand-off to creative.

TIFF and Raw File Formats
While less common than other formats you may be familiar with, TIFF and RAW
files are extremely important in professional photography. TIFF in particular is inter‐
esting, as it fully supports CMYK and is well-suited for high color-depth images. It
also has support for transparency, as well as layers in some cases, so you may find
some high-end photo retouching studios that deal in TIFFs for source imagery.

RAW files are just that - raw. They are basically data straight from the camera’s sensor,
and as such, are never suitable for web delivery. To make matters more complex,
there is no standard for RAW images. In fact, RAW-formatted files are often propriet‐
ary to the camera manufacturer, and in some cases differ from one camera model to
another, so being able to actually read a RAW image could be in some cases more
problem than it’s worth. However, like TIFF, RAW-formatted images may have other
attributes that make them desirable as the source for a master image. If this the case
for you, there will almost certainly be some pre-processing that will need to be done
before using them in your high-performance image workflow.

Once the images are received from the studio and processed by the creative team
using a digital photo editing tool like Photoshop, they are then saved in a format suit‐
able for use on the site itself, like JPEG. At this stage the images are often loaded into
a Digital Asset Manager, or DAM, for cataloging prior to publishing to a Content
Management System for presentation. Once we’ve made it to this point, we have
arrived at the master image, but we still don’t have our derivative images, yet…before
we get there, let’s look at another use case.

The Social Media Site
Another class of website that tends to be extremely image-heavy are social media
sites. These sites are a nice contrast to the e-commerce use case, because the images
on them are almost never shot by professionals, let alone in a studio using a fancy
camera.

Let’s imagine a social media site that allows users to connect with friends and share
photos with them. Since the images for our social media site are user-generated, it’s

244 | Chapter 14: Operationalizing Your Image Workflow

the wild west: Some are coming from digital point-and-shoots, others are taken with
a smartphone, and even others are scans of photographs. Each of these sources could
be problematic for different reasons. The point-and-shoot, depending on vintage,
could output very low quality JPEGs that require sharpening to look good; the smart‐
phone could output JPEGs with sensitive GPS data stored in image metadata; the
scanner could save images as BMPs. And each of these could span a wide range of file
sizes, ranging from tens of kilobytes to tens of megabytes.

Malicious JPEGs!

Like just about anything else on the Internet, you should never
trust user-submitted input. This holds true with user-submitted
images, which could contain malware that could infect your back-
end processing systems, or worse, your end users. We discussed the
importance of security with images in “Secure Image Delivery” on
page 236, and it’s worth reviewing that section to understand the
risks user-generated image content can present to your imaging
workflow.

To get these images from the chaotic state they are in to a master image, we can imag‐
ine a process that runs upon user upload and normalizes the images to a standard set
of dimensions, format, visual quality, and metadata to protect our user’s privacy.

But wait! Due to the non-uniform nature of these images, it’s very likely that the off‐
line process will run unpredictably, since some images can be processed quickly due
to their file size (small) and image format (JPEG), while others will take considerably
longer due to factors like format, file size, and resolution (in terms of pixel density
and dimension), and image metadata. These factors will be covered a little later in
this chapter when we discuss the factors that influence how long it takes to process an
image.

Once our image processor has completed its work of taming the user-generated con‐
tent beast, we have once again arrived at our master image.

The News Site
While both e-commerce and social media sites have always been image-first in terms
of content, news organizations haven’t always been. Now they are moving in that
direction, and one might find that their use cases are a bit different. For one, they
often act as a hybrid of the formal, Photo Shoot→Creative→Upload to DAM we saw
in the e-Commerce example, and the “take a picture with your smartphone” we saw
in the Social Media example. Let’s put ourselves in the hypothetical newsroom of our
news site.

Some Use Cases | 245

While much of our site’s content is going to be text, more and more, news media is
leading stories with large images. For featured content, it’s not uncommon to see
accompanying galleries of high-resolution, beautiful images. This content typically
comes from many different sources: Syndicated content providers; photojournalists
who work for the site; freelance photographers; and social media for “eyes on the
ground” coverage.

To get it on our site, there will definitely need to be an intermediate processing step.
While occasionally less meticulous than an e-commerce store’s creative department
would be in terms of retouching, there is often a very heavy amount of photo editing
in terms of cropping images coming in from the field. In fact, cropping might be the
second-most popular image transformation performed next to resizing, because the
story might require particular focus on specific part of an image to tell the story.

In a news site, since images are often cataloged for possible later use in a story that
might require similar imagery, some sort of centralized DAM is a requirement in
order to facilitate the indexing of images. Once the final, visually-correct version of
the image with all of the relevant cropping has been generated, it, as well as the origi‐
nal image, are then uploaded to the DAM. And again, we have arrived at our master
image.

Business Logic and Watermarking
Before we get to the fun part - making the images that will be displayed on your site -
it’s also worth discussing business logic.

In some cases, business logic for web imagery boils down to ensuring that each image
displayed contains a watermark - usually a company logo - on each image delivered
from the site. While this sounds easy enough, it often comes with pitfalls. For exam‐
ple:

• Do you want the logo to always remain the same size? If so, then you’ll need to
make sure that you apply it after you have resized the master image to the final
dimensions of your derivative image.

• Do you need it to be semi-transparent? Then your image toolchain would ideally
support file formats that have an alpha channel, like GIF and PNG, and your
imaging software would support an operation that alters the opacity of the water‐
mark.

In the next section, we will discuss a method to watermark an image by performing a
composition of two images using some of the great open-source image tools that are
available freely online.

246 | Chapter 14: Operationalizing Your Image Workflow

In addition to watermarking, companies occasionally have a requirement that each
image delivered on the site contains copyright or other information embedded in the
image file’s metadata. While invisible to end users, it can be useful to content produc‐
ers who want to demonstrate ownership of the image. Usually, this data is encoded
into the IPTC (a standard created by the International Press Telecommunications
Council) metadata segment of the file, but it’s not uncommon to also have the data
encoded into the Exif segment of the file. If it’s important for your use case, most
graphics libraries will copy these segments from the master image to any derivative
images, but it’s worth making sure yours does. In some cases, image optimizing soft‐
ware strips out these segments since they often add unseen “bloat” to the image; how‐
ever, this might not be bloat at all for you!

Another important aspect of business logic are the dimensions of the images used on
a site, since there is often a central UX department that sets standards that define
what the site layout will be. Often, a single master image may need to be generated in
a number of different sizes to accommodate the various uses throughout a site. For
example, thumbnail, large, and high-resolution used for a zoomed-in view.

If we were to take each of the use cases described earlier, we can see where each might
need one or many of these types of business logic:

• The e-commerce site almost certainly has a very specific set of sizes each product
image must adhere to, to ensure visual consistency of products when they are
displayed in various contexts - search page, product detail, etc - across the site.

• The social media site will probably want some sort of unobtrusive watermark on
the image to show provenance of the image in the event it’s shared elsewhere on
the internet.

• The news site may have contractual obligations to its freelance photographers
that their images contain copyright information embedded in them.

Now, with some of this business background in mind, let’s make some derivative
images!

Hello, Images
Now that you know what it takes to get a master image into your system and some of
the things you’ll need to keep in mind to ensure your images meet your business
goals, let’s figure out what it takes to get the derivative images created from it. The
steps below are relevant regardless of whether you run an e-commerce, social media,
or news site - in each of those cases, we rarely if ever wanted to deliver our master
image to an end user.

Hello, Images | 247

1 http://www.imagemagick.org/script/binary-releases.php

Getting Started with a Derivative Image Workflow
At its most basic, just about every operating system nowadays comes with an image
viewer that contains basic editing capability which allows one to resize, crop, and
even do minor color and sharpness corrections. Adobe Photoshop is an incredibly
common tool for graphic designers to use for this very purpose, and comes with even
more bells and whistles than the built-in photo editor on your computer. If you have
a lot of time on your hands and a small number of master images to read and a small
number of derivative images to create, then this method might be fine for you. Once
you get past the point of a few dozen master images, it would be wise to move beyond
this laborious work and into a fully-automated workflow.

The easiest workflow you can start out with also has a nice ability to scale quite well
as your image library grows: Simple scripts that orchestrate command-line programs
that read in your master images, and output your derivative images. Let’s dig in and
see how we can take a library of master images, resize them to a small number of pre‐
set sizes, and convert them to some of the new formats supported by browsers.

ImageMagick
Next to Adobe Photoshop, ImageMagick is one of the most well-known image
manipulation software suites, and is also one of the most versatile. It’s an open-
source, Apache-licensed tool that runs on just about every operating system (Win‐
dows, MacOS, Linux, to name a few), has interfaces for just about every
programming language (Python, Ruby, Perl, C/C++, Java, amongst many), and allows
you to do a huge number of transformations on an input image. To cover all of its
capabilities deserves a book of its own, but suffice it to say, it will cover our most
basic use cases of resizing and converting to different image formats quite well.

This chapter will spend a good amount of time diving into Image‐
Magick’s command-line utilities, but a list of tools, both command-
line and GUI, to suit many different image-related use cases can be
found in Appendix B.

To begin, download and install a binary version of ImageMagick from the website 1

appropriate for your operating system. The binaries on the ImageMagick website are
a good starting point, because they offer built-in support for high-performance out‐
put formats like progressive JPEG and WebP, but do have some limitations in that
they don’t support other high-performance formats like JPEG-2000 and JPEG-XR. A
word to the wise: Any time you download binaries from the Internet, it’s worth

248 | Chapter 14: Operationalizing Your Image Workflow

spending some time making sure that what you downloaded is what the developer
uploaded. The ImageMagick site offers a message digest file which allows you to
compare the SHA256 hash of your local file with the one that should exist on the
server. If they don’t match, don’t use it!

Compiling ImageMagick

Support for JPEG-2000 in ImageMagick requires manually compil‐
ing the software. The steps for doing so are covered here. In gen‐
eral, it’s useful to have all of your supporting libraries and binaries
in place before beginning the process. In particular, installing
OpenJPEG for JPEG-2000 support, libwebp for WebP support, and
the JxrDecApp and JxrEncApp located somewhere in your path for
JPEG-XR support would be required at a minimum to add support
for these formats. There are also some optimizations you can make
by compiling ImageMagick with OpenMP to improve paralleliza‐
tion, libjpeg-turbo to speed up JPEG decoding and encoding, and
OpenCL to leverage GPU processing for certain operations. Luck‐
ily, the configure script that comes with ImageMagick is well-
documented and very verbose about its operations, so you can
quickly tell when you’re missing a dependency, or if the script isn’t
able to locate it.

Let’s start by creating a project directory and populating it with some sample master
images. We’ll use this freely-licensed image to start with, since it’s a good representa‐
tion of a high-quality master image we might see in some of the use cases we saw ear‐
lier in this chapter.

$ mkdir -p images/master images/derivative
$ wget "http://bit.ly/hpi-ops-sample" -O images/master/master1.jpg

Now we’re ready to take ImageMagick for a spin. Here, we’ll have ImageMagick read
in our master image using the convert command and change the output format to a
lossless WebP. We’ll also have ImageMagick convert the same image to a PNG, so we
can compare. We’ll then use ImageMagick’s identify command to tell us a little
about the images we created.

$ convert images/master/master1.jpg \
 -define webp:lossless=true images/derivative/master1.webp
$ convert images/master/master1.jpg images/derivative/master1.png

We now have a WebP and PNG version of our master image. Easy, right?

The identify command that ships with ImageMagick is an indispensable tool for
anyone working on images. Without any command-line arguments, it outputs basic
information about an image. Let’s take a look at its output for the PNG:

Hello, Images | 249

$ identify master1.png
master1.png PNG 4000x2670 4000x2670+0+0 8-bit sRGB 22.12MB 0.030u 0:00.030

We can see some useful information, such as its format(PNG), dimensions
(4000x2670), its colorspace and depth (8-bit sRBG), its size (22.12MB), and how long
it took to read the file (0.030u 0:00.030).

Doing the same for our WebP image, we see the following:

$ identify master1.webp
Decoded /var/tmp/magick-62187w4ZOgPPXPHwt. Dimensions: 4000 x 2670 .
 Format: lossy. Now saving...
Saved file /var/tmp/magick-62187MoIDfyfUBubq
master1.webp PAM 4000x2670 4000x2670+0+0 8-bit TrueColor sRGB 42.72MB 0.000u
0:00.000

While largely similar to the output we saw for PNG, one interesting thing about the
output above for the WebP is that ImageMagick doesn’t support extracting this infor‐
mation natively from WebP images, and therefore needs to extract it to a temporary
format which has a significantly larger size in bytes (42.72MB) than the WebP it was
derived from, which was about 6.1MB on disk.

So why do we care about identify? Well, first and foremost, it’s an indispensable tool
when debugging issues with an image, such as corrupt file metadata, or understand‐
ing the actual contents of the image and its metadata segments without opening up a
hex editor. While the output above shows identify at its most basic, there are a huge
number of command-line options available to the identify command, all of which
are worth exploring. One of the most valuable is the -verbose option, which dumps a
large amount of information about an image. Running it on master image, we get a
mouthful of interesting data:

$ identify -verbose images/master/master1.jpg
Image: images/master/master1.jpg
 Format: JPEG (Joint Photographic Experts Group JFIF format)
 Mime type: image/jpeg
 Class: DirectClass
 Geometry: 4000x2670+0+0
 Resolution: 300x300
 Print size: 13.3333x8.9
 Units: PixelsPerInch
 Type: TrueColor
 Endianess: Undefined
 Colorspace: sRGB
 Depth: 8-bit
 Channel depth:
 red: 8-bit
 green: 8-bit
 blue: 8-bit
 Channel statistics:
 Pixels: 10680000

250 | Chapter 14: Operationalizing Your Image Workflow

 Red:
 min: 0 (0)
 max: 255 (1)
 mean: 97.7792 (0.383448)
 standard deviation: 72.505 (0.284333)
 kurtosis: -0.979603
 skewness: 0.609351
 entropy: 0.97042
 Green:
 min: 0 (0)
 max: 255 (1)
 mean: 112.28 (0.440314)
 standard deviation: 66.938 (0.262502)
 kurtosis: -0.934222
 skewness: 0.400476
 entropy: 0.983699
 Blue:
 min: 0 (0)
 max: 255 (1)
 mean: 120.169 (0.471252)
 standard deviation: 64.9808 (0.254827)
 kurtosis: -1.05091
 skewness: 0.0985773
 entropy: 0.985951
 Image statistics:
 Overall:
 min: 0 (0)
 max: 255 (1)
 mean: 110.076 (0.431671)
 standard deviation: 68.2158 (0.267513)
 kurtosis: -0.994197
 skewness: 0.359281
 entropy: 0.980024
 Rendering intent: Perceptual
 Gamma: 0.454545
 Chromaticity:
 red primary: (0.64,0.33)
 green primary: (0.3,0.6)
 blue primary: (0.15,0.06)
 white point: (0.3127,0.329)
 Background color: white
 Border color: srgb(223,223,223)
 Matte color: grey74
 Transparent color: black
 Interlace: None
 Intensity: Undefined
 Compose: Over
 Page geometry: 4000x2670+0+0
 Dispose: Undefined
 Iterations: 0
 Compression: JPEG
 Quality: 96

Hello, Images | 251

 Orientation: Undefined
 Properties:
 date:create: 2016-04-21T10:03:16-04:00
 date:modify: 2015-06-05T17:01:42-04:00
 exif:ApertureValue: 4970854/1000000
 exif:CFAPattern: 2, 0, 2, 0, 0, 1, 1, 2
 exif:Contrast: 0
 exif:Copyright: gowildimages.com
 exif:CustomRendered: 0
 exif:DateTime: 2013:06:20 18:14:25
 exif:DateTimeDigitized: 2013:03:11 09:31:34
 exif:DateTimeOriginal: 2013:03:11 09:31:34
 exif:DigitalZoomRatio: 1/1
 exif:ExifOffset: 484
 exif:ExifVersion: 48, 50, 51, 48
 exif:ExposureBiasValue: 0/6
 exif:ExposureMode: 1
 exif:ExposureProgram: 1
 exif:ExposureTime: 1/500
 exif:FileSource: 3
 exif:Flash: 16
 exif:FNumber: 56/10
 exif:FocalLength: 500/10
 exif:FocalLengthIn35mmFilm: 50
 exif:FocalPlaneResolutionUnit: 4
 exif:FocalPlaneXResolution: 5488689/32768
 exif:FocalPlaneYResolution: 5488689/32768
 exif:GainControl: 0
 exif:GPSInfo: 1140
 exif:GPSLatitude: 27/1, 485473/10000, 0/1
 exif:GPSLatitudeRef: N
 exif:GPSLongitude: 86/1, 433530/10000, 0/1
 exif:GPSLongitudeRef: E
 exif:GPSVersionID: 2, 2, 0, 0
 exif:ImageDescription: A stupa under snow (left) on the trail to Tengboche
 monastery (centre). Mt Everest (8850m) is making
 clouds just left of centre, with Lhotse (8498m)
 partly obscured just to the right. Far right is
 Ama Dablam peak.
 exif:ISOSpeedRatings: 100
 exif:LightSource: 0
 exif:Make: NIKON CORPORATION
 exif:MaxApertureValue: 10/10
 exif:MeteringMode: 5
 exif:Model: NIKON D600
 exif:ResolutionUnit: 2
 exif:Saturation: 0
 exif:SceneCaptureType: 0
 exif:SceneType: 1
 exif:SensingMethod: 2
 exif:Sharpness: 0
 exif:ShutterSpeedValue: 8965784/1000000

252 | Chapter 14: Operationalizing Your Image Workflow

 exif:Software: Adobe Photoshop Lightroom 4.4 (Windows)
 exif:SubjectDistanceRange: 0
 exif:SubSecTimeDigitized: 40
 exif:SubSecTimeOriginal: 40
 exif:thumbnail:Compression: 6
 exif:thumbnail:JPEGInterchangeFormat: 1348
 exif:thumbnail:JPEGInterchangeFormatLength: 19066
 exif:thumbnail:ResolutionUnit: 2
 exif:thumbnail:XResolution: 72/1
 exif:thumbnail:YResolution: 72/1
 exif:WhiteBalance: 0
 exif:XResolution: 300/1
 exif:YResolution: 300/1
 jpeg:colorspace: 2
 jpeg:sampling-factor: 1x1,1x1,1x1
 signature: 23a119d052552e6cc10619e2737aceaf6d455d4382eb057df4740fb6
 unknown: 2
 Profiles:
 Profile-8bim: 19680 bytes
 Profile-exif: 20420 bytes
 Profile-icc: 3144 bytes
 Profile-iptc: 505 bytes
 City[1,90]: 0x00000000: 254700 -%
 unknown[2,0]:
 Keyword[2,25]: Ama Dablam
 Keyword[2,25]: Lhotse
 Keyword[2,25]: Mount Everest
 Keyword[2,25]: Tengboche
 Keyword[2,25]: blue sky
 Keyword[2,25]: clouds
 Keyword[2,25]: forest
 Keyword[2,25]: monastery
 Keyword[2,25]: mountain
 Keyword[2,25]: peak
 Keyword[2,25]: ridge
 Keyword[2,25]: snow
 Keyword[2,25]: stupa
 Keyword[2,25]: summit
 Keyword[2,25]: trail
 Keyword[2,25]: trekking
 Keyword[2,25]: valley
 Created Date[2,55]: 20130311
 Created Time[2,60]: 093134
 unknown[2,62]: 20130311
 unknown[2,63]: 093134
 Copyright String[2,116]: gowildimages.com
 Caption[2,120]: A stupa under snow (left) on the trail to Tengboche
 monastery (centre). Mt Everest (8850m) is making
 clouds just left of centre, with Lhotse (8498m)
 partly obscured just to the right. Far right is
 Ama Dablam peak.
 Profile-xmp: 11162 bytes

Hello, Images | 253

 Artifacts:
 filename: images/master/master1.jpg
 verbose: true
 Tainted: False
 Filesize: 7.676MB
 Number pixels: 10.68M
 Pixels per second: 381.43GB
 User time: 0.000u
 Elapsed time: 0:01.000
 Version: ImageMagick 6.9.3-0 Q16 x86_64 2016-02-10 http://www.imagemagick.org

Many of these fields are self-explanatory and some are wildly esoteric, but there are
number of key fields we want to pay attention to because they provide us with impor‐
tant information that could influence how we optimize or manipulate the images.

Resolution
First, we can see that the master image has a resolution of 300 DPI. This is
important, because while it may be a visually beautiful image suitable for print in
a magazine, it’s certainly too high for publishing on the web, which are often at
most 72 DPI or less. Since 300 DPI images are much more dense, data-wise, than
their 72 DPI brethren, they could take significantly longer to process into a deriv‐
ative image, so be sure to factor that in when building your high performance
image workflow if you have many 300 DPI images in your master image catalog.

Interlace
Looking next at the Interlace field, we can see it is set to None, which means it’s
a baseline JPEG. If the image was a progressive JPEG, which was discussed earlier
in Chapter 4, this value would be set to JPEG.

Quality
Another important field is Quality, which can be somewhat misleading. The
quality of the JPEG is unfortunately not deterministic since it’s not encoded any‐
where in file metadata or anywhere else at creation time, and so tools like iden
tify have to make a best guess by looking at the image’s quantization tables.
They’re generally pretty close to what was input when the image was initially cre‐
ated, but not always. In the case of this image, we can see that the Quality was
determined to be 96. Again, great for print, but almost certainly too high for
delivering over the web, as discussed in Chapter 13.

Properties
Farther down in the output, we see the contents of the Exif metadata within the
Properties field. In the case of our master image, there is a lot of it, containing
information ranging from when and where the photo was taken, the f-stop set‐
tings used for the photo, and even the make and model of the camera. There’s
also a little stowaway - an Exif thumbnail image, which is nearly 19KB in size.
Our image’s Exif segment also contains GPS coordinates of where the photo was

254 | Chapter 14: Operationalizing Your Image Workflow

taken, which as we discussed in our Social Media use case, means that you might
inadvertently leak sensitive data if you didn’t strip it.

Profiles
The Profiles field displays information about the various profiles embedded in
the image. In particular, we can see that our sample file contains a Photoshop-
proprietary 8bim profile that’s nearly 20KB, a 20KB Exif profile, a 3KB ICC color
profile, a 500 byte IPTC profile containing scene, keyword, and copyright data,
and an 11KB XMP embedded into it. Just think - if this image was delivered over
the web, not only would it be sent at too high of a resolution and JPEG encoding
quality, it would also have over 50KB of extra metadata baggage that would be
invisible and largely useless to the casual end user.

A Note About Image Metadata Segments
Some metadata segments are especially important to retain, or at least take into con‐
sideration. Take for example color profiles, which ensure that the image contains
visually-correct colors when displayed on a screen. Color profiles are particularly
important for companies that sell goods that depend on accurate colors, like a cloth‐
ing or paint store. Many companies in these lines of business will tell you that a num‐
ber of online returns happen because the color of the actual item was different than
what was shown online. Unfortunately, some color profiles are rather large, which
lead Facebook to develop its own ICC profile which they call “TinySRGB”, which
weighs in at 524 bytes and is embedded into every photo on the site. More details
about it and Facebook’s rationale for doing it can be found here.

Another metadata segment worth mentioning is the orientation data contained in
Exif. This is where certain manufacturers keep information about the orientation of
the camera when the photo was taken. If you’ve ever noticed an image on the web
that was inexplicably displayed sideways, it might have had its Exif orientation infor‐
mation removed, or in some cases, the browser didn’t correctly support Exif-based
rotation. In fact the browser world is rather torn on the subject - on desktop versions
of Chrome, Safari, Firefox, and Internet Explorer/Edge, Exif orientation data is
ignored when the image wrapped in an HTML tag. If the image URL is on its
own in a tab? In all browsers but IE and Edge, the image is rotated according to Exif.
Only Safari Mobile rotates images when they’re in an tag. How you want to
handle this oddly high level of inconsistency is up to you, but if you think your
images might contain relevant orientation data, like we might see in the Social Media
or News use cases, you may consider automatically rotating the images in your image
workflow, rather than relying on browsers to do the right thing.

So a word to the wise - make sure you don’t get too overzealous when trying to save
bytes on your images!

Hello, Images | 255

A Simple Derivative Image Workflow Using Bash
We’ve covered ImageMagick and two of its utilities, convert and identify. Now
we’re going to put them into action as part of a simple high performance images
workflow.

Let’s start with the project folder structure we laid out earlier:

images
 |-> derivative
 |-> master

Imagine that we had a number of our source images in the master folder, and that we
wanted to convert all of them into three different sizes for our responsive website,
with a progressive JPEG version and a WebP version. We could write a simple bash
script that took convert through its paces to generate our derivative images.

#!/bin/bash

INPUT=images/master/*.jpg
OUTPUT=images/derivative
Q=75

mkdir -p $OUTPUT/{100,300,800}

for f in $INPUT
do
 echo "Processing: $f"
 fn_ext=$(basename "$f")
 fn="${fn_ext%.*}"
 convert $f -resize 100x100 -interlace Plane \
 -quality $Q $OUTPUT/100/$fn.jpg
 convert $f -resize 100x100 \
 -define webp:lossless=false \
 -quality $Q $OUTPUT/100/$fn.webp
 convert $f -resize 300x300 -interlace Plane \
 -quality $Q $OUTPUT/300/$fn.jpg
 convert $f -resize 300x300 \
 -define webp:lossless=false \
 -quality $Q $OUTPUT/300/$fn.webp
 convert $f -resize 800x800 -interlace Plane \
 -quality $Q $OUTPUT/800/$fn.jpg
 convert $f -resize 800x800 \
 -define webp:lossless=false \
 -quality $Q $OUTPUT/800/$fn.webp
done

Let’s examine the output of our script:

images/derivative/100:
56K master1.jpg
2.1K master1.webp

256 | Chapter 14: Operationalizing Your Image Workflow

images/derivative/300:
72K master1.jpg
16K master1.webp

images/derivative/800:
total 600
183K master1.jpg
114K master1.webp

One thing you may notice in the output above is that the JPEGs are much larger than
the equivalent WebP. For example, the 100 pixel version of the image is 56KB in JPEG
format, while only 2.1 KB as a WebP. What gives? As mentioned in the business logic
section, ImageMagick copies over the metadata from the original image. That means
these tiny images have many times more metadata than actual image content! In the
next section, we’ll make sure we strip it out, as we don’t need that extra weight on our
sites for this particular image.

So there we have it - a very simple workflow using ImageMagick and bash. Clearly,
there is a lot of room to improve the script, but it’s a start, and perhaps good enough
to work for sites that have a small number of images. One possible improvement to
this script would be to incorporate business logic into it as we discussed earlier, for
example, by adding a watermark to each image. This is easily done by adding a compo
site command, like so:

convert images/master/master1.jpg -resize 1000x1000 \
 -interlace Plane -quality 75 images/master/logo.gif \
 -gravity NorthWest -geometry 250x250+10 \
 -composite images/derivative/master1_watermark.jpg

The result of this command should look something like this:

Figure 14-1. Image with watermark

Hello, Images | 257

We now have a set of derivative images that meet our responsive website layout
requirements, follow some of the best practices in terms of image format, and meet
our business requirements. Not bad for a few lines of bash.

Now that we’ve created a simple script to generate offline derivatives, it’s time to kick
things up a notch. First, one thing that’s seriously lacking in the example above is that
everything is done serially. Image processing is an extremely computationally-
expensive operation. In this day and age, even the most basic machines have many
CPU cores, so it makes sense that we’d want to leverage all of the horsepower we have
at our fingertips to process our image catalog. One incredibly simple way of adding a
little parallelism is to add a simple function to our script and have it run in parallel by
backgrounding the function, then waiting until all are complete before starting on the
next. At the same time, let’s also give a couple of more output sizes to crunch to
accommodate high-resolution displays.

#!/bin/bash

INPUT=images/master/*.jpg
OUTPUT=images/derivative
Q=75

mkdir -p $OUTPUT/{100,300,800,1000,2000}

process_image() {
 # $1 - input
 # $2 - size
 # $3 - filename

 convert $1 -resize $2x$2 -interlace Plane \
 -quality $Q $OUTPUT/$2/$3.jpg
 convert $1 -resize $2x$2 \
 -define webp:lossless=false \
 -quality $Q $OUTPUT/$2/$3.webp
}

for infile in $INPUT
do
 echo "Processing: $infile"
 fn_ext=$(basename "$infile")
 outfile="${fn_ext%.*}"

 for size in 100 300 800 1000 2000
 do
 process_image $infile $size $outfile &
 done
 wait
done

On my system, that small change improved performance by more than 30% even
while adding two extra sizes - not too bad for a quick and dirty script. While there are

258 | Chapter 14: Operationalizing Your Image Workflow

2 https://www.nodejs.org/
3 http://gruntjs.com/
4 http://gulpjs.com/

clearly improvements that can be made here, the point is that it doesn’t take much to
get a little more performance out of your system. Of course, scripts like this can be
quickly outgrown, which leads us to the concept of build systems.

An Image Build System
As we saw with the simple bash script examples, it’s not difficult to write a bare-bones
system for image processing. However, as many web developers have discovered over
the years, there is a lot of complexity and repetition that comes with creating a site, so
it makes sense to have a system in place that helps assemble all of the pieces into one
coherent build. In fact, the concept of a build system that helps get all of the right
pieces in place is almost as old as software - as old hands in C or C++ development
know, a Makefile is often a source of amazement (and frustration, when it doesn’t
work well) at its ability to orchestrate a number of complex tasks to build a piece of
software.

Some of the most popular systems to do this today in the web development world are
task runners, which are often written in JavaScript and leverage the amazing infra‐
structure behind the Node.js 2 project. The two most popular are Grunt 3 and Gulp 4.
Both of these systems are incredibly simple to use, as well as roughly similar to one
another in function and syntax. It’s worth taking a look at the landscape of these build
systems, and choose the one that works best for you and your project.

Taking the barebones bash system as a reference, it can be translated and improved
using a Gulp task. To get started, you first need to install Node. The instructions to do
so are well-documented on the Node site, and there are installers for just about every
major platform. From there, it should be as simple as invoking npm, Node’s package
manager, to install Gulp:

$ npm install --global gulp-cli
$ npm install --save-dev gulp

At this point, you should have gulp installed on your machine. Now it’s time to get a
couple of plugins that will allow us to resize images, as well as optimize them. Before
you do so, make sure that you have ImageMagick installed, since the gulp-image-
resize plugin uses it to modify the images. If you followed the steps earlier in this
chapter, you should be good to go.

$ npm install --save-dev gulp-image-resize
$ npm install --save-dev gulp-imagemin
$ npm install --save mozjpeg

Hello, Images | 259

$ npm install --save imagemin-mozjpeg
$ npm install --global cwebp-bin
$ npm install --save imagemin-webp
$ npm install --save-dev gulp-pipes

A few interesting bits about the commands above:

First, two of them install binaries (mozjpeg and cwebp-bin) for mozjpeg and WebP
image encoding. As mentioned earlier, there are some security implications to using
binaries from non-trusted sources. However, both of these Node packages build the
files from source, which is good, but much of it is done out of sight from the end user.
It’s up to you to trust that the binaries they create do what you expect them to. If you
don’t want to use them, and if there is a system-wide version of the mozjpeg and
WebP tool sets already available on your machine, then you don’t need to install
either package.

Another thing that might stick out to those not familiar with Node are the different
save commands, particularly --save-dev, --save, and --global. Described most
simply, they are different ways you can manage package dependencies for your
project. The commands listed in above are recommended by the developers of each
package, and so they should be fine defaults to start, but your Gulp workflow might
require them to be different, so take some time to understand the various options
available to you.

Let’s look at our Gulp file, and see what it does.

var gulp = require('gulp');
var imagemin = require('gulp-imagemin');
var mozjpeg = require('imagemin-mozjpeg');
var pipes = require('gulp-pipes');
var resize = require('gulp-image-resize');
var webp = require('imagemin-webp');

gulp.task('highperf_images', function() {

 var sizes = [100, 300, 800, 1000, 2000];
 var stream;

 for (size in sizes) {
 stream = gulp.src('images/master/**/*.{jpg,png,tiff}')
 .pipe(resize({
 width: sizes[size],
 height: sizes[size],
 upscale: false,
 format: 'jpg'
 }))
 .pipe(imagemin({
 use: [mozjpeg({
 quality: 75,
 progressive: true,

260 | Chapter 14: Operationalizing Your Image Workflow

 tune: 'ms-ssim'
 })]
 }))
 .pipe(gulp.dest('images/derivative/' + sizes[size] + '/'))
 .pipe(webp({
 quality: 75
 })())
 .pipe(gulp.dest('images/derivative/' + sizes[size] + '/'))
 }
 return stream;
});

As you can see, there aren’t many more lines of code here than in our simple bash
version of the script. If we look at it line-by-line, however, we can see some subtle but
important differences. For instance, at the beginning of the file, you must reference
the packages that actually do the heavy lifting - remember, Gulp (and the others) are
just task runners, and rely on modules or plugins to do work. Next, we create a Gulp
task. If you’re familiar with JavaScript, this is just a simple JavaScript function that
Gulp knows how to turn into tasks it can perform. Within the task, we create an array
of output sizes, and then loop through each to create derivative images for each mas‐
ter. The nice thing about Gulp is that it has a lot of built-in parallelization, which our
bash solution didn’t without a little work (and even then, it left a lot to be desired), so
each input and output image is processed in parallel, greatly reducing processing time
and keeping all CPUs on the machine nicely busy.

Within the task, the real work is being performed by three different pipes: One to
resize the master images to our desired derivative output size and convert any non-
JPEG master files to JPEG (by default, the resizer will use the input format as the out‐
put); another to optimize the JPEG output using the mozjpeg encoder; and lastly
another to create a WebP version of the file as we’d done with the bash script.

To execute the gulp task, first make sure our Gulp file is saved as gulpfile.js to the
root of your project, so that the images directory is immediately above it. Then, it’s as
simple as:

$ gulp highperf_images
[17:21:13] Using gulpfile ~/Desktop/tmp/book/gulpfile.js
[17:21:13] Starting 'highperf_images'...
[17:21:14] gulp-imagemin: Minified 1 image (saved 55.05 kB - 96.4%)
[17:21:14] gulp-imagemin: Minified 1 image (saved 59.8 kB - 82.4%)
[17:21:14] gulp-imagemin: Minified 1 image (saved 95.83 kB - 52.6%)
[17:21:14] gulp-imagemin: Minified 1 image (saved 120.84 kB - 47.4%)
[17:21:15] gulp-imagemin: Minified 1 image (saved 320.43 kB - 37.8%)
[17:21:16] Finished 'highperf_images' after 2.53 s

With that, we now have a very nice build system to use for create high-performance
images for your site. What next? There are some Gulp plugins which allow one to
only process files that have changed, which could be worth investigating if you fre‐

Hello, Images | 261

quently add new images to your site, since the current task will reprocess every image
each time it’s run. There are also a number of other plugins to imagemin that do
things like optimize PNGs, animated GIFs, and SVGs. You may want to investigate
these if you find that these plugins add value to the images you serve on your site.

A Build System Checklist
A system like this is particularly useful if you:

• Have a small-to-medium image catalog that is fairly static
• Have a small-to-medium number of image transformations that need to be per‐

formed on each image
• Don’t mind writing a little JavaScript to orchestrate your image creation work‐

flow
• Have a business or other requirement that all images are generated in advance:

— There is a manual review process for each image
— The original images are so large (in terms of file size), information density

(300DPI), or leverage a non-standard format (PSD, TIFF, RAW) that it isn’t
cost-effective to transform in any other way

• You’re not yet ready to build and scale a service that can convert images dynami‐
cally

If you have a large number of images on your site, or if the images on your site
change frequently, then it may be worth looking into a dynamic image optimizer.

High-Volume, High Performance Images
In the last couple of sections we’ve discussed using shell-based tools to resize and
optimize images. In general, these methods can scale very nicely to an image library
sized in the order of thousands of master images, and require a very low level of effort
to get started. However, relying only on shell commands and task runners for your
image build system has some pitfalls.

First and foremost, the tools we’ve discussed so far don’t easily scale horizontally - the
larger your image library and number of output images you create, the longer the
tasks will take to run on a single machine. You can certainly speed things up by
adding more CPU, memory, and disk, but there could come a time when you will
outgrow the solution.

Second, there is a lot of hard-coding of attributes like image sizes - what happens if
you want to change them? You’d need to reprocess your entire image library. What
happens if you want to change the encoding quality of your images? You’d need to

262 | Chapter 14: Operationalizing Your Image Workflow

reprocess your entire image library. As the number of master and derivative images
grows, the amount of storage and management overhead grows as well. For example,
if you had to ensure each image had to be copied to every web server in your cluster,
you might quickly run into a huge management nightmare trying to keep everything
in sync. Thus, it makes sense to discuss what it would take to create a dynamic image
server that processes images on-demand.

A Dynamic Image Server
Before we begin this section, it’s worth pointing out that actually implementing a
dynamic image resizing and optimizing server is a large topic to cover, and the design
or code for one would not be possible to cover in a chapter. However, we can discuss
some of the key attributes one should consider when designing and implementing
their own, or choosing one from a third-party.

At a very high level, the typical request flow through a dynamic image server is as
follows:

1. Receive request
2. Parse request parameters
3. Download master image
4. Decode master image
5. Perform transformation
6. Encode derivative image

Let’s break each of these steps down further.

Parsing the Request
Typically, dynamic image servers are invoked via an HTTP-based API. This API is
often based on adding query string parameters, or as a RESTful path-based approach.
For example, it could look something like this for a query string-based API:

http://dynamic.example.com/?w=300&h=300&format=webp&src=http://your

site.com/master.jpg

Or like this for a RESTful API:

http://dynamic.example.com/resize/300x300/format/webp/http://your

site.com/master.jpg

One great thing about a dynamic image server is that you can reference these URLs
directly in your HTML, and only have to manage the master image. From there, your
CDN or caching infrastructure would be responsible for storing and serving the
derivative images. In contrast to the approach outlined in the previous sections where

High-Volume, High Performance Images | 263

all images are created out-of-band once and stored and served from disk, with a
dynamic server, the images are often ephemeral.

System Tuning, Part 1

Depending on the operating system your image server runs on,
there are a number of different kernel and system parameters you
can tune to achieve good performance, since many of the defaults
aren’t always the best for high-throughput servers. When it comes
to the client-facing side of the request, there are a couple of param‐
eters worth tuning:

TCP Initial Congestion Window
This topic was all of the rage back in 2010 after a study from Google showed
that the default window of 4 was too small, and is still relevant today. Most
modern operating systems set their initial congestion window to 10, but there
could be benefit in increasing it even higher than that if you know you have
good upstream connectivity and are connecting to well-connected clients, like a
CDN server. In Linux, this can be set using the ip route change command; in
Windows, you’d need to use the netsh interface tcp set supplemental
command. In both operating systems, similar commands (ip route show for
Linux; netsh interface tcp show supplemental for Windows) can be used
to view the current initial congestion window setting.

TCP Buffers
When writing packets to the network, it may make sense to increase how much
memory you allow the kernel to allocate to doing so. In Linux, this can be done
by increasing the net.core.rmem_max values in /etc/sysctl.conf on most
systems.

Open File Descriptors
On Linux, file descriptors are used for network connections as well as “files” in
the traditional sense. If you expect to have a large number of inbound connec‐
tions to your image server, or if you plan to process a number of files concur‐
rently, you may need to increase the defaults to something high, like, 64,000.
This can be done by updating the fs.file-max value in /etc/sysctl.conf,
and changing /etc/security/limits.conf to have * soft nofile 64000 and
* hard nofile 64000

Fetching the Master Image
Once the request has been received and parsed, the dynamic image server would then
download the master image from the origin web server. There are a number of things
that are worth keeping a mental model of for this step, since it will help you under‐
stand where performance can be improved.

264 | Chapter 14: Operationalizing Your Image Workflow

• The request to fetch the image will nearly always happen over HTTP if the file
isn’t available via a local filesystem, or a remote one that presents locally, like NFS
or SMB. When this happens, latency and bandwidth to the origin web server is
incredibly important, since no work can be done until the master image is down‐
loaded. It is worth spending time ensuring this part of the request happens
quickly and is tuned well, and caching is leveraged as much as possible where rel‐
evant.

• The size of the master image should be taken into consideration. In the begin‐
ning of this chapter, we discussed some of the use cases where we might see large
master images. If your master images are larger than several hundred kilobytes, it
could be worth spending time converting them to a more reasonable size; often it
makes sense to convert them to the largest size you will ever deliver over the web.
This will not only help when downloading the original image, but also when
decoding it for further processing.

Linux Kernel Tuning for a Dynamic Image Server, Part 1

Decoding the Master Image
Next, the dynamic image server will decode the image into memory. It’s worth break‐
ing this down a bit, since some of it isn’t exactly intuitive.

One thing in particular that’s not immediately obvious is that an image’s size in terms
of bytes is not entirely reflective of how large the image will be in memory. Unless
your master images are raw bitmaps (which I hope they aren’t!), they are often com‐
pressed in one way or another. However, the dynamic image server needs to work
with the images on a pixel-by-pixel basis to perform operations like resizing and
chroma sub-sampling, which means it must first expand the image to its full size in
terms of pixels in memory, and then do work on it. The more images worked on
simultaneously, the more memory needed to process the image.

The other part that may not be entirely obvious is that the amount of time spent on
CPU decoding the images can be a scaling factor. Again, something highly com‐
pressed, like a JPEG or WebP, will certainly take longer to decode than a simple for‐
mat like bitmap. So it’s worth keeping these things in mind, especially when it comes
to scaling a service like a dynamic image server.

High-Volume, High Performance Images | 265

5 http://www.libjpeg-turbo.org/

Transform!
When all of the work to decode the image has been completed, the dynamic image
server next needs to perform whichever transformations were requested. Oftentimes,
this work is not particularly CPU-intensive, like resizing (since much of the time is
spent getting the pixel-by-pixel representation of the image), but there are some con‐
volutional effects that could be more intensive to process, thereby affecting scalability
and/or latency of the service.

Encoding the Derivative Image
Finally, once the image is visually correct from a transformation perspective, the last
thing the dynamic image server needs to do is encode and deliver the image. Here
again is a potentially CPU-intensive operation, since many of the new high-
performance encoders are often extremely intensive in their efforts to squeeze every
last byte out of the file. In general, JPEG is one of the fastest formats to encode,
mostly because it has been around for a while and there are good encoders out there,
like libjpeg-turbo 5, which leverage CPU instructions that are optimized for doing
vector operations very quickly. However, some new optimizing encoders, like MozJ‐
PEG, are actually not great candidates for real-time image manipulation, because they
are much slower to encode than libjpeg-turbo. It’s worth benchmarking a few of these
yourself to understand the performance characteristics of each, and how they affect
the scalability of your dynamic image resizing service. In the end, it may be worth
getting slightly more hardware in order to serve and deliver smaller and more opti‐
mized images.

A Dynamic Image Server Checklist

266 | Chapter 14: Operationalizing Your Image Workflow

CHAPTER 15

Summary

Colin Bendell & Tim Kadlec

People love images. We make more images than ever and we share more images than
ever (22,338 uploaded per second between Faceook, Snapchat and Whatsapp). The
increasing amount of imagery available to us is reflected in user expectations for web
sites —- sites are expected to be visually rich and compelling, and effectively using
imagery is a big part of that. Serving these images to the wide variety of devices and
browsers being used, in the most performant way possible, is a big challenge — one
we’ve tried to help steer you through in this book.

Throughout the book we’ve looked at why performance matters online and the huge
role images play in that performance. We’ve discussed the foundational concepts of
digital imagery and how those concepts impact performance and compression. We
looked at both lossless and lossy image formats in detail, looking at the role each
plays and how to shave as many bytes as possible based on the image type.

We looked at how browsers load these images. Far from being purely about file size,
we saw where images fit in the order of resource loading in the browser, as well as the
impact on memory and CPU time. We looked at the challenges presented by respon‐
sive images, and how new standards like <picture>, srcset and client hints can help
you provide the optimal image no matter the situation.

And we looked at how you can start to put all of this knowledge together to create a
plan of attack for your organization that ensures a high level of performance and
security.

So….what do I do again?
If you managed to digest all of this in one read, you’re a cleverer person than I am.
These are important topics, but it’s certainly a lot to digest.

267

There are a lot of variables that are involved in determining the right approach for
you and your organization to take —- there’s no clear formula to follow to lead you to
image nirvana. That being said, here are a few safe starting strategies for you to begin
the process:

Optimize for the mobile experience
1. Use WebP and JPEG2000 Android and Chrome users can benefit from WebP;

iOS and Safari users can benefit from JPEG2000. Both provide superior byte sav‐
ings (and feature capabilities) over JPEG. Finally, for desktop users, use mozJ‐
PEG.

2. When using JPEG/WebP/Jpeg 2000 images, take advantage of chroma sub‐
sampling. Chroma Subsampling not only leads to reduced file sizes, but if you
use 4:2:0 subsampling, it also allows browsers to make clever optimizations to
reduce the impact on memory and CPU drain—important considerations partic‐
ularly in our increasingly mobile world.

3. Send appropriately sized images to the browser. Sending images that are larger
than needed is one of the most common, and most troublesome, mistakes made
online. It makes the browser work harder and costs your users precious time and
bytes. For bonus points, use a break point budget of \~24KB (16 packets) per
breakpoint.

4. Lazyload images We know that users may not scroll very far and many images
“below the fold” may not be seen. Delaying download of these images saves
bandwidth and helps improve the web performance - images are one of the easi‐
est resources for the browser pre-loader to discover and can compete with
dynamically loaded content including javascript and api calls.

Optimize for the different “users”:
There isn’t just one user to consider for high performance images. It might be easy to
assume that only the end consumer requirements need to be optimized. In reality,
there are users each opinions and competing interests for high performance images.
It isn’t just the end user experience that we have to manage.

1. Users want fast, therefore optimize for the least bytes on the network and the
fastest browser rendering
Ideal state: sending the smallest possible size of image for each view port and lay‐
out, using the best image formats, and using all the format specific optimizations.

268 | Chapter 15: Summary

Reality: Users are highly fragmented browser ecosystem, with different device
sizes and variable network conditions which can result in hundreds of permuta‐
tions (if not thousands) for each situation
Action: Create performance budgets using groups of like-sized viewport ranges.
Use the Responsive Images srcset and sizes html5 tags to let the browser pick
the smallest image for the experience.

2. Creative teams care about aesthetics, therefore optimize for the highest quality
possible
Ideal state: high resolution, high dpr, lossless images. A webpage or app should be
pixel perfect if you walk up to a 100” wall mount display.
Reality: the higher the quality creates very large files which will negatively impact
the user experience
Action: Use SSIM to determine the lowest quality index you can use in an image
without the human eye noticing. If lossless is required, utilize newer formats such
as WebP and JPEG2000

3. Web & dev teams want flexibility want to make changes to responsive layouts
and art direction requirements easily without having to force reprocessing of an
image library.
Ideal state: one image that CSS and javascript crops or scales to the necessary
dimensions
Reality: using one size fits all approach will serve the lowest-common-
denominator which will be targeted to the desktop and large monitor experience
Action: Use HTML5 Responsive Images tags to support art direction (<picture>
and <source>) and eliminate the need for client side javascript.

4. Operations, Infrastructure & Security teams want less image files to backup
and are concerned about long running reprocessing jobs. They are also con‐
cerned with how to ensure that transforming images don’t create other security
vulnerabilities.
Ideal state: no images. Or Just one image per product.
Reality: images need to be resized, cropped, watermarked. Unchecked this can
create many TB of data to backup and concerns for security as images are trans‐
formed and manipulated.
Action: Eliminate raster images and use vector (SVG) images wherever possible.
Plan ahead and inform infrastructure of breakpoint requirements - strike a bal‐
ance of storage requirements, DR requirements and breakpoint volume. Finally,
create a secure sandbox for any image transformation service to ensure that opti‐
mizing images doesn’t create an enterprise vulnerability.

Optimize for the different “users”: | 269

Creating consensus
Images are awesome. There is no doubt that high performance images improve usa‐
bility, reputation and brand. There are many strategies and approaches, and opinions
but there is no silver bullet.

The best way to create consensus is to experience, first hand, the pain and the benefit
of high performance images. There are two strategies: . Recreate the experience. Start
with a histogram of performance experience and create a persona why a user is at that
part of the curve. How do these users differ? Is the variation because of mobile hard‐
ware, screen size, cpu/ram, network latency, or bandwidth? Finally, recreate these
user experiences so that stakeholder and management can experience that user.
Either use real hardware so that everyone has an authentic experience, or create side
by side videos of the experience using tools like WebPageTest.org . Visualize the
results: You don’t necessarily have to go to the full length of acquiring hardware and
slowing down browser rendering. You can also show side-by-side comparisons of the
output. Show how different sizes, formats and other optimizations do not degrade the
experience. This will show how the experience is preserved while having improve‐
ments on operations, performance and other metrics.

With these strategies, together, we can make high performance images.

270 | Chapter 15: Summary

APPENDIX A

Raster Image Formats

Nick Doyle & Colin Bendell

There are many formats to chose from, each with various capabilities and support by
different browsers and platforms. As a result selecting the right image can be chal‐
lenging. Use the chart below to help select the ideal set of images to meet your needs.

Figure A-1. Raster Image Formats

271

APPENDIX B

Common Tools

Mike McCall

In Chapter 14 and others, you’ve read a lot about ImageMagick and some of the tools
in the ecosystem. It’s worth taking some time to investigate some other utilities that
could prove useful, if perhaps not quite ready for a large-scale image workflow due to
their interface (GUI) or performance (slow). Since tastes vary, it’s not unusual for two
tools to provide similar functionality, but with slightly different results, so try a few to
see which one suits you best!

PNG Utilities
PNG is one of the formats that sees a lot of attention given to optimizing it. There are
a couple of reasons for this: One, since it’s a lossless format, there aren’t a lot of dials
you can tweak to sacrifice a bit of quality at the expense of fewer bytes. Two, it’s a
relatively straightforward format in terms of implementation, and has a number of
parts of its binary format that aren’t necessary for rendering the image. Lastly, PNG
uses DEFLATE compression for its pixel data, and there have been a couple of
attempts to improve it over the years.

pngcrush (http://pmt.sourceforge.net/pngcrush/)
One of the more well-known PNG optimizers, it attempts to reduce the size of
PNGs by trying a number of different methods of filtering and compressing the
image, as well as removing unneeded metadata.

OptiPNG (http://optipng.sourceforge.net/)
Similar to pngcrush in terms of methodology, but has some performance benefits
over its predecessor in that the trials used when filtering and compressing are
performed in-memory.

273

1 http://optipng.sourceforge.net/pngtech/optipng.html

pngquant (https://pngquant.org/)
A “lossy” PNG optimizer, it leverages quantization algorithms to reduce the
number of colors, and therefore, the perceived quality of the image. This has the
effect of reducing the amount of data in the image, and in turn the number of
bytes.

ZopfliPNG (https://github.com/google/zopfli)
Google has published a few research papers describing their work on better com‐
pression algorithms, and Zopfli is an output of those exercises. One of the more
interesting attributes of Zopfli is that it retained compatibility with DEFLATE
encoding, which means that it can be used to compress PNGs. To highlight this,
as part of the Zopfli source distribution, it includes a command-line tool called
zopflipng that encodes PNGs using Zopfli.

A nice breakdown of what it takes to compress and optimize a PNG, as well as a list
of a few other tools, can be found on the OptiPNG site 1.

JPEG Utilities
Since JPEG is by far the most prevalent image format on the internet, there are a
number of tools that have been built to optimize them in various ways. Many of these
try to do clever things like optimizing the compression algorithms, often taking
wildly different approaches.

cjpeg and jpegtran (part of most JPEG suites, like libjpeg/libjpeg-turbo/MozJPEG)
A swiss-army knife for JPEGs, jpegtran has a number of features that allow one to
do transformations like optimize Huffman tables, convert to progressive JPEG, as
well as make visual changes like cropping, re-scaling, and various forms of rota‐
tion. While usually used for encoding JPEGs, the cjpeg utility has some addi‐
tional command line arguments under the Switches for wizards help heading, like
-qtables and -qslots, which allow one to use a different set of quantization values
for encoding the image and tuning the chrominance and luminance of the out‐
put image. These settings aren’t for the faint of heart, so make sure you read
Chapter 4 closely before tweaking them. Some more details about them can be
found here: http://uw714doc.sco.com/en/jpeg/wizard.txt

jpegrescan (https://github.com/kud/jpegrescan)
Previously a standalone utility, the technique used by it has now been included in
the MozJPEG encoder, which means it’s not only faster, but you can get its bene‐
fits just by running MozJPEG. If you want to go the standalone tool route, JPE‐

274 | Appendix B: Common Tools

Grescan has a number of optimizations it tries to do on the compression settings,
as well as includes options to remove Exif and JFIF metadata.

Adept (https://github.com/technopagan/adept-jpg-compressor)
Described as the “adaptive JPG Compressor”, Adept uses a novel approach to
compression by looking for parts of the image that might be more compressible
than others by leveraging a saliency algorithm to detect where to attempt higher
compression levels.

Animated GIF Utilities
Animated GIFs have taken the web by storm (again!). Unfortunately, many GIF
authoring tools create poorly-optimized images, but there are some tools available to
help you.

gifsicle (http://www.lcdf.org/gifsicle/)
Perhaps the best-known standalone tool for creating and optimizing animated
GIFs, gifsicle can perform a number of different optimizations to animated GIFs.
In particular, it performs a number of color optimizations to reduce file size.

giflossy (https://kornel.ski/lossygif)
Based on gifsicle, giflossy implements lossy LZW compression onto the tool,
which allows for significantly smaller animated GIFs while sacrificing a little
quality.

gifify (https://github.com/vvo/gifify)
In contrast to gifsicle and giflossy, gifify’s authoring tools are focused on creating
optimized animated GIFs from video sources. It leverages giflossy for its opti‐
mizations.

GUI Utilities
For those who feel more comfortable with a GUI than stringing together commands
at the command line, there are a couple of different options out there that can be
quite useful for those who prefer to use their mouse.

ImageOptim
One image utility to rule them all? If you prefer a single GUI tool to numerous
command-line utilities and use a Mac, ImageOptim might be the tool for you. It
brings the best of many of the aforementioned tools to a simple-to-use GUI
interface, and supports PNG, GIF, and JPEG input. Its drag-n-drop interface
makes optimizing images a breeze.

RIOT
Similar to ImageOptim, it too supports optimizing PNG, GIF, and JPEG input.
Unlike ImageOptim, RIOT is a Windows-only tool. The software also has a plu‐

Common Tools | 275

gin architecture allowing its functionality to be extended, as well as can itself be
used as a plugin to popular Windows image tools like IrfanView or the cross-
platform GIMP.

Caesium Image Compressor
A cross-platform tool that optimizes JPEGs and PNGs, Caesium has a nice GUI
to help you process files one at a time or as a batch. Available in a few different
forms including desktop GUI application, command-line utility, and mobile app.

Exif Utilities
Exif is one of the more interesting metadata attributes found in images, since it can
contain valuable information, like copyright and ownership data, as well as add
unnecessary bloat to your images. Exif is supported by both JPEG and TIFF formats.
Here are a couple of utilities that can help you rein in the beast:

jhead
An incredibly easy-to-use tool to manage Exif metadata, it allows you to view the
contents of an image’s Exif segments, as well as perform operations like copying,
adding, and removing. It also supports auto-rotating images based on Exif data,
as well as allow you to copy Exif over when modifying the image using a tool like
ImageMagick.

exiv2
While similar in spirit to jhead, it’s a very powerful tool that comes as both a
standalone utility and a C++ library. If you have a need for advanced Exif manage‐
ment, it’s worth spending some time understanding exiv2 and all it can do for
you.

exiftool
Another Exif management utility that comes as both a command-line tool and a
perl library. Similar to exiv2, it’s an incredibly powerful tool that contains
numerous options to add, view, edit, and delete Exif. It is well-documented with a
number of usage examples to help you add it to your workflow.

276 | Appendix B: Common Tools

APPENDIX C

Evolution of

Colin Bendell

High performance Images is a complex subject partly because of the apparent frag‐
mentation in the browser ecosystem. It is useful to examine the history of images on
the web and specifically the history of the html tag.

1989: Inline images, GIF and patents
Images on the web almost didn’t happen. The tag is nearly ubiquitous in web
development and it is no surprise that nearly all modern application platforms and
documents have followed in the path of the html tag - supporting the same
formats and styles. It wasn’t that images weren’t conceived of when Sir Tim Berners-
Lee. In fact, while he used images and diagrams as part of his memo, proposing
hypertext and the 18 elements, in-line images was not one of the elements or use-
cases. Instead, the purpose of hypertext was to provide text and then link to docu‐
ments. Those documents could be other hypertext files or binary files such as
postscript. It was assumed that the user would navigate to an image and not embed it
into the text.

At the time CERN was using NeXTSTEP so it is not too surprising that PostScript
and Encapsulated PostScript (EPS) were the primary image formats that the first gen‐
eration browsers could render natively in the browser application. This was mostly
because NeXTSTEP provided handy APIs to render this content. Still, the expectation
was that the user would select a hyperlink and the image would load in a separate
window. Images were a hyperlink destination, not part of markup language.

By the time that HTML 2.0 was formalized, the Mosaic browser on Mac had become
immensely popular mostly because of its ability to inline images with the introduc‐
tion of a new element.

277

Figure C-1. WorldWideWeb browser on NeXTSTEP (1990). Images and documents were
opened in a new window

278 | Appendix C: Evolution of

Figure C-2. Mosaic browser with inline images on Mac System 7 (~1992)

While EPS images were convenient for those on NeXTSTEP and Mac, it proved
unpopular for cross platform compatibility. Fueled partly by CompuServe’s market
penetration and the accessibility of documentation for the file format, GIF quickly
became a universal image format on the web. Not only did it yield smaller images, the
images were small enough to be used in web pages served over dialup modems. It was
the right format at the right time. Later, due to GIF patent issues and initial royalty
demands by CompuServe, PNG was developed, but it has taken a long road to
becoming as widely used.

Just as the now infamous, patent claims against GIF started to emerge, the commu‐
nity driven image standards body (Joint Photographic Experts Group) produced a
lossy image format now known as JPEG. We will discuss lossy compression in more
detail in the coming chapters. JPEG had a lot of advantages of GIF such as an
increased number of colors while also producing small file sizes that were amenable
to slow internet connections. With the mainstream availability of SVGA monitors
and cheap video cards that were capable of showing off 65k or more colors, JPEG had

Evolution of | 279

a strong appeal to graphic designers and web developers. JPEG was the right image
format at the right time for a burgeoning web.

1995: HTML 2.0 and
The first HTML standard was completed by the IETF’s HTML working group in early
1994 - corralling all the various proposed tags and different browser implementa‐
tions. (After 1996, the W3C maintained the HTML spec). Even as the first standard
was inked, Netscape continued to innovate with new tags focused on utility of inline
images and performance.

At this point, developers thought of images on the web like this:

<img src="/fido_in_dc.jpg"
 title="Fido goes to Washington" />

Access to the internet was just starting to take off in the US and other parts of the
world. Windows being the dominant operating system for most households also
meant that Netscape quickly became the dominant browser. Likewise, since most
households used dial-up with the newly available 14.4K and 28.8K baud modems,
performance was critical to both Netscape’s success as well as internet adoption.

With Netscape 1.0 introduced the lowsrc attribute. This was later adopted by many of
the other browsers and then later dropped. Lowsrc allowed the browser to download
a very small image (often a gif) and then load the much larger size image. Thus, on a
slow internet connection, the user could interact with the page, have a sense of the
page layout and content without having to wait for the high resolution image.
Unfortunately we discarded this feature, only to run into the same problems again
later, as we will discuss, with RWD and Client Hints. The major downside of lowsrc
was that Netscape would download both, even if it was unnecessary.

At this point in time the savvy web developer would implement images in webpages
like this:

<img src="/fido_in_dc.jpg"
 lowsrc="/dog.gif"
 alt="Fido the dog on the grass in front of the white house" />

2000: Dark Ages of Images: HTML 4.01, CSS and the status
quo
Not much changes in the intervening years. LowSrc attribute is eventually discarded
by the community. Cascading Style Sheets (CSS) and inline styles become the stan‐
dard way to decorate and style images and html. HTML 4.01 is standardized by 2000
as the DotCom era booms and busts.

280 | Appendix C: Evolution of

The average consumer still uses monitors with a resolution of 800x600 and 96 DPI
screens. With all the excitement of DotComs, images didn’t see a lot of obvious evolu‐
tion.

This was the dark ages of images on the web.

Yet, during this time, vector graphics took on several lives that culminated with SVG
(Scalable Vector Graphics). Eventually, through the adoption of Gecko based brows‐
ers, then WebKit based browsers, the SVG 1.1 standard became available to the mass
market. Unfortunately it wasn’t until 2011, with Internet Explorer 9 that SVG was
finally added to the, then, most used browser.

2007: Mobile! Mobile! Mobile!
It is cliché to say this, but the iPhone changed computing. Shortly after 2007 smart‐
phones quickly became more and more prevalent in the hands of the consumers. This
introduced a set of new problems for the web. Namely, smaller displays, touch inter‐
faces, slower hardware, and slower network connections. Not to mention lack of
Flash!

As a result of the constraints of processor power and most notably the lack of Flash,
developers increasingly deployed duplicate websites dedicated to mobile - collo‐
quially known as mDot sites. Instead of forcing the user to pinch and zoom on the
website, users would be redirected to a website that had buttons and text at the right
size for the display. These mobile websites shared a lot of similarities to WAP websites
and in fact many WAP or HTML3.2 websites were retrofitted to serve as the default
mDot. The result was not only a very lightweight website that had very little java‐
script, they often were very light on images. Fortunately Safari was a fully fledged
HTML5 browser and supported all the latest in image formats including SVG.

Mobile web sites have a tight connection with Native apps. The original plan for apps
on the iPhone was to “install” the website on the home screen. This quickly gave way
to developer desire for a native app ecosystem. Despite the differences in underlying
codebase and deployment, apps used many of the same design philosophies as the
web - making api calls and downloading images - to create a rich experience. Because
of this shared history, Mobile apps on Android and iOS treat images in much the
same way. Image handling are core operating system libraries and support all the
same image formats as the web.

Alas. Not much has changed in the ecosystem of images. You were expected to either
use the same images for all of your websites, or regenerate them with a different file‐
name so that you could show a smaller or different orientation of image for smart‐
phones and tablets. Sorry grandma, you’ll still need to get out your glasses this is a
text only world.

Evolution of | 281

2010: Responsive Web Design (RWD), Retina Displays &
Responsive Images
Images became really exciting in the second decade of the new millennium. Ethan
Marcotte famously led the charge with his positional paper on how to create a
Responsive Web. Using CSS (and usually a dash of Javascript), a single websites could
be responsive to the screen layout of the user. That is, a user with a small screen and a
user with a large screen could have a different design of the website but with one code
base. This solved a lot of problems for developers and users alike. First it started the
evolution away from separate mDot websites which confused users and social media
link sharing. More importantly it solved the problem of feature fragmentation
between the mDot, tDot and Desktop sites by unifying the code base.

Mobile users were no longer second class citizens on the web. Beautiful, magnificent
websites with rich images saturated our eyes. Finally!

Too bad I only had 3 bars of 3G cellular signal on a mobile device that was barely
faster than a Pentium 3. RWD focused on design, but not necessarily on performance.
Fortunately much has been written on RWD performance. Guy Podjarny’s Respon‐
sive & Fast (2014) is a good resource on the subject.

Performance of images on mobile devices, specifically RWD but also native apps, can
be addressed in two major ways: 1) send fewer bytes for an image 2) resize the image
dimensions to the displayed size.

Sending resized images isn’t a new idea. It is what we have been doing on the web for
a long time. You would see a smaller thumbnail in the search results when searching
eBay for comically large shoes. Then a larger image when you clicked through to the
product detail. Applying this same technique of the right size for the right context,
Tim Kadlec found that you could save over 72% of the image bytes. That is, if you
were to send a smaller image to a device that had a smaller display, and thus shrunk
the image in the layout, you could make your page faster without the user ever know‐
ing the difference. Notably in this research even desktops benefited from this
approach - images are often not right sized for any display and whatever image is
available is thus sent to desktop and mobile alike.

282 | Appendix C: Evolution of

Figure C-3. Responsive Images can reduce image weight by 72%

Sending the right image for the right display became the topic of Responsive Images.
To accomplish this, was difficult. You either had to leverage Javascript and custom
html attributes or embed your images in CSS and use Media Queries. We will discuss
both these techniques in a later chapter.

2014 Responsive Images HTML Spec
To simplify this process and to unify the approach, the Responsive Images Commu‐
nity Group started proposing an enhancement to the html5 specification. After a
tumultuous couple of years filled with more drama than a high school student’s dat‐
ing life, a unified voice emerged. The group finalized on adding the <picture> ele‐
ment and attribute to improve responsive images in HTML. More on
this in Chapter 11.

Chrome was the first browser to ship native support for <picture> and in 2014 with Firefox following shortly after. Safari and Microsoft Edge hope‐
fully will also adopt these standards by end of 2016. Fortunately for everyone a poly‐
fill by Scott Jehl brings <picture> to all older browsers.

Evolution of | 283

Figure C-4. Browser support for from caniuse.com (2016)

Figure C-5. Browser support for <picture> from caniuse.com (2016)

At this point, your standard RWD website could look something like this (see the dis‐
cussion in the Mobile Image processing chapter for selection of the best image resolu‐
tions):

<script type="text/javascript"
 src="/picturefill-2.1.min.js"></script>

<img src="/fido_in_dc_100.jpg"
 srcset="/fido_in_dc_100.jpg 100w,
 /fido_in_dc_400.jpg 400w,
 /fido_in_dc_800.jpg 800w,
 /fido_in_dc_1000.jpg 1000w,
 /fido_in_dc_1200.jpg 1200w,
 /fido_in_dc_1400.jpg 1400w"
 sizes="(min-width: 500px) 33.3vw, 100vw"
/>

The above solution specifies multiple versions of the same image in different dimen‐
sions specified by the w notation. Additionally you will see the sizes attribute to give
the browser hints.

Or, if you were more adventurous and wanted to support Art Direction - that is,
change the orientation or context of the image based on the form factor of the dis‐
playing device - you could use the new <picture> element this way:

<script type="text/javascript"
 src="/picturefill-2.1.min.js"></script>
<script type="text/javascript">
 // Picture element HTML5 shiv for legacy browsers

284 | Appendix C: Evolution of

 document.createElement("picture");
</script>
<picture>
 <!--[if IE 9]><video style="display: none;"><![endif]-->
 <source media="(max-width: 640px)"
 srcset="/fido_headshot_100.jpg 100w,
 /fido_headshot_200.jpg 200w,
 /fido_headshot_400.jpg 400w
 /fido_headshot_800.jpg 800w,
 /fido_headshot_1000.jpg 1000w" />
 <source media="(max-width: 1024px)"
 srcset="/fido_landscape_800.jpg 800w,
 /fido_landscape_1000.jpg 1000w,
 /fido_landscape_1200.jpg 1200w,
 /fido_landscape_1400.jpg 1400w" />
 <!--[if IE 9]></video><![endif]-->
 <img src="/fido_in_dc_100.jpg"
 srcset="/fido_in_dc_100.jpg 100w,
 /fido_in_dc_400.jpg 400w,
 /fido_in_dc_800.jpg 800w,
 /fido_in_dc_1000.jpg 1000w,
 /fido_in_dc_1200.jpg 1200w,
 /fido_in_dc_1400.jpg 1400w"
 sizes="(min-width: 500px) 33.3vw, 100vw"
 />
</picture>

This is starting to get complex, but you can see the flexibility that <picture> provides
the web designer. This is truly awesome!

Complicating matters, is the introduction of Retina or high pixel density devices.
Apple’s introduction of the Retina display in the iPhone 4 meant that you could dis‐
play even larger, rich quality images on a smaller visual display. For web developers
this would mean that if you sent a larger image and resized it, the browser would now
use the wasted pixels. 1 CSS pixel on a device with a 2x Density Pixel Ratio (DPR)
meant that you had 4 pixels on screen (2x2 or 2 high and 2 wide for every 1 CSS
pixel).

Evolution of | 285

Figure C-6. Pixel Density Ratio: 1 CSS pixel = 4 image pixels (2x DPR) = 9 image pixels
(3x DPR)

Fortunately the specification handles this and lets the browser select the
right size image for the display accounting for even high DPR. In the simple example
above you can see that while the CSS media query specifies a max-size of 640px, the
browser can select image sizes larger than 640.

Of course you will need to generate all these images, maintain them and back them
up. That’s a problem for the Infrastructure & Operations teams! Fortunately for you,
we will cover this in more detail in our image delivery chapter and discuss Image
Transcoders.

New Image Formats
At the same time the Responsive Images html specification Google introduced a new
image format called WebP. This new format not only improved the compression over
standard JPEG but also merged the capabilities that were only available previously in
PNG such as an alpha channel. Support for this new format was quickly introduced
into Chrome and Android providing support for half the smartphone and desktop
user base.

Just as Google was launching WebP in Chrome, Microsoft’s Internet Explorer adop‐
ted the JPEG eXtended Range (JPEG XR) format which functionally accomplished
the same goals as WebP. That is, it provided much smaller image sizes with better
compression and offered some additional features that were not available in standard
JPEG.

In 2013 Apple joined the fray by supporting a slightly older image format, but open
standard JPEG 2000. Safari 7 and iOS 7 both introduced full JPEG 2000 support for
the web and native apps.

286 | Appendix C: Evolution of

Fortunately <picture> also anticipated this use case with the support of <source
type="image/webp">. This allows you to support all the different formats in one dec‐
laration with the elegance of an elephant in a subway.

<script type="text/javascript"
 src="/picturefill-2.1.min.js"></script>
<script type="text/javascript">
 // Picture element HTML5 shiv
 document.createElement("picture");
</script>
<picture>
 <!--[if IE 9]><video style="display: none;"><![endif]-->
 <source type="image/webp"
 srcset="/fido_in_dc_100.webp 100w,
 /fido_in_dc_400.webp 400w,
 /fido_in_dc_800.webp 800w,
 /fido_in_dc_1000.webp 1000w,
 /fido_in_dc_1200.webp 1200w,
 /fido_in_dc_1400.webp 1400w" />
 <source type="image/vnd.ms-photo"
 srcset="/fido_in_dc_100.jxr 100w,
 /fido_in_dc_400.jxr 400w,
 /fido_in_dc_800.jxr 800w,
 /fido_in_dc_1000.jxr 1000w,
 /fido_in_dc_1200.jxr 1200w,
 /fido_in_dc_1400.jxr 1400w" />
 <source type="image/jp2"
 srcset="/fido_in_dc_100.jp2 100w,
 /fido_in_dc_400.jp2 400w,
 /fido_in_dc_800.jp2 800w,
 /fido_in_dc_1000.jp2 1000w,
 /fido_in_dc_1200.jp2 1200w,
 /fido_in_dc_1400.jp2 1400w" />
 <!--[if IE 9]></video><![endif]-->
 <img src="/fido_in_dc_100.jpg"
 srcset="/fido_in_dc_100.jpg 100w,
 /fido_in_dc_400.jpg 400w,
 /fido_in_dc_800.jpg 800w,
 /fido_in_dc_1000.jpg 1000w,
 /fido_in_dc_1200.jpg 1200w,
 /fido_in_dc_1400.jpg 1400w"
 sizes="(min-width: 500px) 33.3vw, 100vw"
 />
</picture>

How glorious! The browser can select the right size image, for the right display, and
even select the right image format.

In order to save the trees, I didn’t extend this example to include Art Direction. I will
let you imagine what that will look like. What used to be a simple tag has
now become a very unwieldy component of your webpages.

Evolution of | 287

2015: Client Hints and Accepts
Fortunately for you, the lowly element doesn’t need to be that onerous in your
Web pages to support all the formats and sizes. A number of techniques have evolved
to help simplify the boilerplate html and improve image delivery. First, the Accept
header can be used to let the server decide which format to deliver the device or
browser. Second, Client Hints allows the browser to indicate the display or resource
size and the pixel density of the device.

Chrome is the first browser to support client hints but it brings us a glimpse of a
future that will look like this:

<img src="/fido_in_dc.jpg"
 sizes="(min-width: 500px) 33.3vw, 100vw"
/>

GET /fido_in_dc.jpg HTTP/1.1
HOST: www.example.com
DPR: 2.0
Width: 160
Viewport-Width: 320

HTTP/1.1 200 OK
Content-DPR: 0.5
Very: DPR

Of course we have many challenges ahead to achieve broad support. There is much
work to be done.

288 | Appendix C: Evolution of

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	What This Book Isn’t
	Navigating This Book
	Why We Wrote This Book

	Chapter 1. The Case for Performance
	Speed Matters

	Part I. Image Files and Formats
	Chapter 2. The Theory Behind Digital Images
	Digital image basics
	Sampling
	Image Data Representation
	Color spaces
	Additive vs. Substractive
	Color profiles

	Image Formats
	Raster vs. vector
	Lossy vs. Lossless Formats
	Lossy vs. Lossless Compression
	Prediction
	Entropy encoding
	Relationship with Video Formats

	Comparing Images
	Summary

	Chapter 3. Lossless Image Formats
	GIF (It’s pronounced GIF)
	Block by block

	Understanding palettes
	LZW or the rise and fall of the GIF
	The PNG file format
	Understanding the mechanics of the PNG format
	PNG Signature
	Chunks
	Interlacing

	There can be only one!
	Summary

	Chapter 4. JPEG
	History
	The JPEG Format
	Containers
	Markers
	Entropy coding
	DCT
	Progressive JPEGs
	Unsupported modes

	JPEG Optimizations
	Lossy
	Lossless

	MozJPEG
	Summary

	Chapter 5. Browser Specific Formats
	WebP
	WebP Browser Support
	WebP Details
	WebP Tools

	JPEG XR
	JPEG XR Browser Support
	JPEG XR Details
	JPEG XR Tools

	JPEG 2000
	JPEG 2000 Browser Support
	JPEG 2000 Details
	JPEG 2000 Tools

	Chapter 6. SVG and Vector Images

	Part II. Image Loading
	Chapter 7. Browser Image Loading
	Referencing Images
	 tag
	CSS background-image

	When Are Images Downloaded
	Building the Document Object Model (DOM)
	The Preloader
	Networking Constraints and Prioritization
	HTTP/2 prioritization
	CSSOM and Background Image Download
	Service Workers and Image Decoding

	Summary

	Chapter 8. Lazy Loading
	Loading Images With JavaScript
	Deferred Loading
	Lazy Loading/Images On Demand
	IntersectionObserver

	When Are Images Loaded?
	The Preloader and Images

	Lazy Loading Variations
	Browsers without JS
	LQIP: Low Quality Image Placeholders
	Critical Images

	Lazy Loading Summary

	Chapter 9. Image Processing
	Decoding
	How slow can you go?
	Memory usage

	GPU Decoding
	Triggering GPU Decoding

	Summary

	Chapter 10. Image Consolidation (for Network & Cache Efficiencies)
	The Problem
	TCP Connections & Parallel Requests
	Small objects impact on the connection pool
	Efficient use of the connection
	Small objects observed
	A comment about logographic pages

	Raster Consolidation
	CSS Spriting
	Data URIs

	Vector Image Consolidation
	Icon Fonts
	SVG Sprites

	Summary

	Chapter 11. Responsive Images
	How it started
	Early hacks
	Use cases
	Art Direction vs Resolution Switching
	Image formats
	Avoiding “Download & Hide”
	Use cases are not mutually exclusive

	Standard Responsive Images
	srcset x descriptor
	srcset w descriptor
	<picture>
	Serving Different Image Formats

	Practical advice
	To picturefill or not to picturefill, that is the question
	Intrinsic dimensions
	Selection Algorithms
	Srcset resource selection may change
	Feature detection
	currentSrc

	Client Hints
	Are Responsive Images “Done”?
	Background Images
	Height descriptors

	Responsive Image File Formats
	Progressive JPEG
	JPEG 2000
	Responsive Image Container
	FLIF

	Summary

	Chapter 12. Client Hints
	Overview
	Step 1: Initiate the Client-Hints exchange
	Step 2: Opt-in and subsequent requests
	Step 3: Informed response

	Components
	Viewport-Width
	Downlink
	Save-Data
	Accept-CH
	Content-DPR

	Legacy Support & Device Characteristics
	Fallback: “Precise Mode” with Device Characteristics + Cookies
	Fallback: good-enough approach
	Selecting the right image width

	Summary

	Chapter 13. Image Delivery
	Image Dimensions
	Image Quality
	Quality and Image Byte Size
	Creating Consensus on Quality Index

	Achieving cache offload: Vary & Cache-Control
	Informing the client with Vary
	Middle boxes, Proxies with Cache-Control (and TLS)
	CDNs and Vary & Cache-Control
	Near Future: Key

	Single URL vs Multiple URLs
	File Storage, Backup and Disaster-Recovery
	Size on Disk
	Cost of Metatadata

	Domain Sharding & HTTP2
	How do I avoid cache busting and redownloading?
	How many shards should I use?
	What should I do for HTTP/2?
	Best Practices

	Secure Image Delivery
	Secure Transformation of Images

	Summary: Situational Delivery

	Chapter 14. Operationalizing Your Image Workflow
	Some Use Cases
	The e-Commerce Site
	The Social Media Site
	The News Site

	Business Logic and Watermarking
	Hello, Images
	Getting Started with a Derivative Image Workflow
	ImageMagick
	A Simple Derivative Image Workflow Using Bash
	An Image Build System
	A Build System Checklist

	High-Volume, High Performance Images
	A Dynamic Image Server
	A Dynamic Image Server Checklist

	Chapter 15. Summary
	So….what do I do again?
	Optimize for the mobile experience
	Optimize for the different “users”:
	Creating consensus

	Appendix B. Common Tools
	Appendix C. Evolution of
	1989: Inline images, GIF and patents
	1995: HTML 2.0 and
	2000: Dark Ages of Images: HTML 4.01, CSS and the status quo
	2007: Mobile! Mobile! Mobile!
	2010: Responsive Web Design (RWD), Retina Displays & Responsive Images
	2015: Client Hints and Accepts

