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An Introduction to Fractal Image Compression
ABSTRACT

This paper gives and introduction on Image Coding based on Fractals and
develops a simple algorithm to be used as a reference design.
The Fractal Coding System described in this project was developed from
the ideas proposed by Arnaud Jacquin in his paper published in IEEE
Trans. “Image Coding Based on Fractal Theory of Iterated Contractive
Image Transformation”
Two implementations of the proposed Fractal Encoding Technique have
been developed. One using an ELF TMS320C31 board from SPOX by
Rahmi Hezar (PhD student at Georgia Institute of Technology) and the
second using MATLAB DSP Simulator by Alex Candela (Field Application
Engineer at Texas Instruments)

1. Introduction
With the advance of the information age the need for mass information storage and fast
communication links grows. Storing images in less memory leads to a direct reduction in
storage cost and faster data transmissions. These facts justify the efforts, of private
companies and universities, on new image compression algorithms.

Images are stored on computers as collections of bits (a bit is a binary unit of information
which can answer “yes” or “no” questions) representing pixels or points forming the
picture elements. Since the human eye can process large amounts of information (some
8 million bits), many pixels are required to store moderate quality images. These bits
provide the “yes” and “no” answers to the 8 million questions that determine the image.

Most data contains some amount of redundancy, which can sometimes be removed for
storage and replaced for recovery, but this redundancy does not lead to high
compression ratios. An image can be changed in many ways that are either not
detectable by the human eye or do not contribute to the degradation of the image.

The standard methods of image compression come in several varieties. The current
most popular method relies on eliminating high frequency components of the signal by
storing only the low frequency components (Discrete Cosine Transform Algorithm). This
method is used on JPEG (still images), MPEG (motion video images), H.261 (Video
Telephony on ISDN lines), and H.263 (Video Telephony on PSTN lines) compression
algorithms.

Fractal Compression was first promoted by M.Barnsley, who founded a company based
on fractal image compression technology but who has not released details of his
scheme. The first public scheme was due to E.Jacobs and R.Boss of the Naval Ocean
Systems Center in San Diego who used regular partitioning and classification of curve
segments in order to compress random fractal curves (such as political boundaries) in



2 Literature Number: BPRA065

two dimensions [BJ], [JBJ]. A doctoral student of Barnsley’s, A. Jacquin, was the first to
publish a similar fractal image compression scheme [J].

2. What is Fractal Image Compression?
Imagine a special type of photocopying machine that reduces the image to be copied by
half and reproduces it three times on the copy (see Figure 1). What happens when we
feed the output of this machine back as input? Figure 2 shows several iterations of this
process on several input images. We can observe that all the copies seem to converge
to the same final image, the one in 2(c). Since the copying machine reduces the input
image, any initial image placed on the copying machine will be reduced to a point as we
repeatedly run the machine; in fact, it is only the position and the orientation of the
copies that determines what the final image looks like.

Input Image Output Image

Feed Back loop

 Figure 1: A copy machine that makes three reduced copies of the input image [Y]

The way the input image is transformed determines the final result when running the
copy machine in a feedback loop. However we must constrain these transformations,
with the limitation that the transformations must be contractive (see contractive box), that
is, a given transformation applied to any two points in the input image must bring them
closer in the copy. This technical condition is quite logical, since if points in the copy
were spread out the final image would have to be of infinite size. Except for this condition
the transformation can have any form.

In practice, choosing transformations of the form
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is sufficient to generate interesting transformations called affine transformations of the
plane. Each can skew, stretch, rotate, scale and translate an input image.
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A common feature of these transformations that run in a loop back mode is that for a
given initial image each image is formed from a transformed (and reduced) copies of
itself, and hence it must have detail at every scale. That is, the images are fractals. This
method of generating fractals is due to John Hutchinson [H], and more information about
the various ways of generating such fractals can be found in books by Barnsley [B] and
Peitgen, Saupe, and Jurgens [P1, P2].

Initial Image First Copy Second Copy Third Copy

 Figure 2: The first three copies generated on the copying machine Figure 1. [Y]

Barnsley suggested that perhaps storing images as collections of transformations could
lead to image compression. His argument went as follows: the image in Figure 3 looks
complicated yet it is generated from only 4 affine transformations.
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 Figure 3: Fractal Fern

Each transformation wi is defined by 6 numbers, ai, bi, ci, di, ei, and fi , see eq(1), which do
not require much memory to store on a computer (4 transformations x 6 numbers /
transformations x 32 bits /number = 768 bits). Storing the image as a collection of pixels,
however required much more memory (at least 65,536 bits for the resolution shown in
Figure 2). So if we wish to store a picture of a fern, then we can do it by storing the
numbers that define the affine transformations and simply generate the fern whenever
we want to see it. Now suppose that we were given any arbitrary image, say a face. If a
small number of affine transformations could generate that face, then it too could be
stored compactly. The trick is finding those numbers.

Contractive Transformations

A transformation w is said to be contractive if for any two points P1, P2, the distance

d(w(P1),w(P2) ) < sd(P1,P2)

for some s < 1, where d = distance. This formula says the application of a contractive
map always brings points closer together (by some factor less than 1).

The Contractive Mapping Fixed Point Theorem

This theorem says something that is intuitively obvious: if a transformation is contractive
then when applied repeatedly starting with any initial point, we converge to a unique fixed
point.

If X is a complete metric space and W: X→X  is contractive, then W has a unique

fixed point W.
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This simple looking theorem tells us how we can expect a collection of transformations to
define an image.

3. Why the name “Fractal”
The image compression scheme describe later can be said to be fractal in several
senses. The scheme will encode an image as a collection of transforms that are very
similar to the copy machine metaphor. Just as the fern has detail at every scale, so does
the image reconstructed from the transforms. The decoded image has no natural size, it
can be decoded at any size. The extra detail needed for decoding at larger sizes is
generated automatically by the encoding transforms. One may wonder if this detail is
“real”; we could decode an image of a person increasing the size with each iteration, and
eventually see skin cells or perhaps atoms. The answer is, of course, no. The detail is
not at all related to the actual detail present when the image was digitized; it is just the
product of the encoding transforms which originally only encoded the large-scale
features. However, in some cases the detail is realistic at low magnifications, and this
can be useful in Security and Medical Imaging applications. Figure 4 shows a detail from
a fractal encoding of “Lena” along with a magnification of the original.

4. How much Compression can Fractal achieve?
The compression ratio for the fractal scheme is hard to measure since the image can be
decoded at any scale. For example, the decoded image in Figure 3 is a portion of a 5.7
to 1 compression of the whole Lena image. It is decoded at 4 times it’s original size, so
the full decoded image contains 16 times as many pixels and hence this compression
ratio is 91.2 to 1. This many seem like cheating, but since the 4-times-later image has
detail at every scale, it really is not.
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 Figure 4: Portion of Lena’s hat decoded at 4 times its encoding size 4(a), and the original
image enlarged 4 times 4(b), showing pixelization [Y]

5. Encoding Images
The previous theorems tells us that transformation W will have a unique fixed point in the
space of all images. That is, whatever image (or set) we start with, we can repeatedly
apply W to it and we will converge to a fixed image.

Suppose we are given an image f that we wish to encode. This means we want to find a
collection of transformations w1 , w2 , ...,wN and want f to be the fixed point of the map W
(see fixed Point Theorem). In other words, we want to partition f into pieces to which we
apply the transformations wi , and get back the original image f.

A typical image of a face, does not contain the type of self-similarity like the fern in
Figure 3. The image does contain other type of self-similarity. Figure 5 shows regions of
Lena identical, and a portion of the reflection of the hat in the mirror is similar to the
original. These distinctions form the kind of self-similarity shown in Figure 3; rather than
having the image be formed by whole copies of the original (under appropriate affine
transformations), here the image will be formed by copies of properly transformed parts
of the original. These transformed parts do not fit together, in general, to form an exact
copy of the original image, and so we must allow some error in our representation of an
image as a set of transformations.
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 Figure 5: Self similar portions of Lena
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6. Proposed Algorithm

6.1 Encoding

The following example suggests how the Fractal Encoding can be done. Suppose that
we are dealing with a 128 x 128 image in which each pixel can be one of 256 levels of
gray. We called this picture Range Image. We then reduce by averaging (down sampling
and lowpass-filtering) the original image to 64 x 64. We called this new image Domain
Image.

We then partitioned both images into blocks 4 x 4 pixels (see Figure 6)

128

128

64

64

4

4

4

4
(i,j) (k,l)

Range Image (k, l ∈ [1,32]) Domain Image (i, j ∈ [1,16]) 

 Figure 6: Partition of Range and Domain

We performed the following affine transformation to each block:

(Di,j) = αDi,j + to (2)
where α = [0,1], α ∈ℜ  and  to ∈ [-255, 255], to ∈ Z.

In this case we are trying to find linear transformations of our Domain Block to arrive to
the best approximation of a given Range Block. Each Domain Block is transformed and
then compared to each Range Block Rk,l . The exact transformation on each domain
block, i.e. the determination of α and to is found minimizing
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where m, n, Ns = 2 or 4 (size of blocks)

Each transformed domain block Γ(Di,j) is compared to each range block Rk,l in order to
find the closest domain block to each range block. This comparison is performed using
the following distortion measure.

d D R D Rl i j k l i jm n k l m n2

2( ( ), ) (( ( ) ( ) ), , ,, , ,Γ Γ= −∑ (6)

Each distortion is stored and the minimum is chosen. The transformed domain block
which is found to be the best approximation for the current range block is assigned to
that range block, i.e. the coordinates of the domain block along with its α and to are
saved into the file describing the transformation. This is what is called the Fractal Code
Book.

Γ( ),Di j best ⇒ Rk l, (7)

6.2 Decoding

The reconstruction process of the original image consists on the applications of the
transformations describe in the fractal code book iteratively to some initial image Ωinit,

until the encoded image is retrieved back. The transformation over the whole initial
image can be described as follows:

Ω1 = η(Ωinit) (8)
Ω2 = η(Ω1)
Ω3 = η(Ω2)
..... = ......
Ωn = η(Ωn-1)
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η can be expressed as two distinct transformations:

η = Γ(Ω)Ψ(Ω) (9)

Γ(Ω) represents the down sampling and lowpass filtering of an image Ω to create a
domain image e.g. reducing a 128x128 image to a 64x64 image as we describe
previously. Ψ(Ω) represents the ensemble of the transformations defined by our
mappings from the domain blocks in the domain image to the range blocks in the range
image as recorded in the fractal. Ωn will converge to a good approximation of Ωorig in
less than 7 iterations.

6.3 Results

We decoded Lena (128x128) using the set-up described in Figure 6. This is performed
using the 2x2, and 4x4 block size and several different reference images (see appendix).
Here is a summary of the results for the first example:

Method I Method II
Block Size 2x2 4x4
No Iterations 6 6
Time to encode 10mn 55s
Time to decode 45s 28s
Size of the code book 16384 bytes 6144 bytes
SNR 27dB 21dB
Peak Error 115 95
Bit Rate 1 byte/pixel 0.375 byte/pixel
Reference Image square square

* Peak Error: Pixel difference between original and decoded image.
* PC used: 386/25MHz, 4Mbyte RAM.

7. Conclusion
The results presented above were obtained using the MATLAB Software Simulator. A
great improvement on the encoding/decoding time can be achieved with the use of real
DSP hardware. Source code, for MATLAB and C31 SPOX Board can be obtained by
contacting the author. Encoding/Decoding results for the SPOX Board are not included in
this paper.

A weakness of the proposed reference design is the use of fixed size blocks for the
range and domain images. There are regions in images that are more difficult to code
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than others (Ex. Lena’s eyes). Therefore, there should be a mechanism to adapt the
block size (Rk,l, Di,j) depending on the error introduced when coding the block.

I believe the most important feature of Fractal Decoding that I discovered on this project
is the high image quality when Zooming IN/OUT on the decoded picture (See Figure 3).
This type of compression can be applied in Medical Imaging, where doctors need to
focus on image details, and in Surveillance Systems, when trying to get a clear picture of
the intruder or the cause of the alarm. This is a clear advantage over the Discrete Cosine
Transform Algorithms such as that used in JPEG or MPEG.
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Appendix - Decoding Results

 2x2 decoding using square
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 Figure 7: "a-f" first 6 decoding iterations with 2x2 decoding using square
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 4x4 decoding using square
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 Figure 8: "a-f" first 6 decoding iterations with 4x4 decoding using square
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 4x4 decoding using fractal fern
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 Figure 9: "a-f" first 6 decoding iterations with 4x4 decoding using fractal fern
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 4x4 decoding using tools
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 Figure 10: "a-f" first 6 decoding iterations with 4x4 decoding using tools


