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Preface 

The growing demand for interactive multimedia technologies, in various ap- 
plication domains in this era of wireless and Internet communication, necessi- 
tated a number of desirable properties to  be included in image and video com- 
pression algorithms. Accordingly, current and future generation image com- 
pression algorithms should not only demonstrate state-of-the-art performance, 
it should also provide desirable functionalities such as progressive transmission 
in terms of image fidelity as well as resolution, scalability, region-of-interest 
coding, random access, error resilience, handling large-size images of different 
types, etc. Many of these desired functionalities are not easily achievable by 
the current JPEG standard. The algorithms to implement different modes 
of the current JPEG standard are independent from each other. The loss- 
less compression algorithm in current JPEG standard is completely different 
from the lossy compression mode and also the progressive and hierarchical 
modes. JPEG2000 is the new still image compression standard that has been 
developed under the auspices of the International Organization for Standard- 
ization (ISO). The systems architecture of this new standard has been defined 
in such a unified manner that it offers a single unified algorithmic framework 
and a single syntax definition of the code-stream organization so that different 
modes of operations can be handled by the same algorithm and the same syn- 
tax definition offers the aforementioned desirable functionalities. Moreover, 
the JPEG standard was defined in 1980s before the emergence of the Inter- 
net age. Many developments since then have changed the nature of research 

... 
Xl l l  
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and development in multimedia applications and communication arena. The 
JPEG2000 standard takes these new developments into consideration. 

The JPEG2000 algorithm has been developed based on the discrete wavelet 
transform (DWT) technique as opposed to the discrete cosine transform (DCT) 
based current JPEG. The nature of DWT helps to  integrate both the lossless 
and lossy operations into the same algorithmic platform as well as it allows 
one to  perform different kinds of progressive coding and decoding in the same 
algorithmic platform. Also the bit-plane coding of the transformed coeffi- 
cients and the underlying structure of the bitstream syntax is very suitable to 
achieving different progressive operations during both encoding and decoding. 

In this book, we present the basic background in multimedia compression 
techniques and prepare the reader for detailed understanding of the JPEG2000 
standard. We present both the underlying theory and principles behind the al- 
gorithms of the JPEG2000 standard for scalable image compression. We have 
presented some of the open issues that are not explicitly defined in the stan- 
dard. We have shown how the results achieved in different areas in informa- 
tion technology can he applied to  enhance the performance of the JPEG2000 
standard for image compression. We also introduced the VLSI architectures 
and algorithms for implementation of the JPEG2000 standard in hardware. 
The VLSI implementation of JPEG2000 will be an important factor in the 
near future for a number of image processing applications and devices such 
as digital camera, color fax, printer, scanner, etc. We also compile the latest 
publications and results in this book. Throughout the book we have provided 
sufficient examples for easy understanding by the readers. 

The first two chapters provide an 
overview of the principles and theory of data and image compression with 
numerous examples. In Chapter 3, we review the current JPEG still standard 
for image compression, discuss the advantages and disadvantages of current 
JPEG, and the need for the new JPEG2000 standard for still image com- 
pression. We discuss the principles of discrete wavelet transformation and 
its implementation using both the convolution approach and the lifting ap- 
proach in Chapter 4. In this chapter, we discuss the theory of multiresolution 
analysis and also the principles of lifting factorization for efficient implementa- 
tion of discrete wavelet transform. In Chapter 5, we discuss VLSI algorithms 
and architectures for implementation of discrete wavelet transform and re- 
view different architectures for lifting-based implementation. In Chapters 6 
to 8, we concentrate on descriptions of the JPEG2000 building blocks, de- 
tails of the coding algorithms with examples, code-stream organization using 
JPEG2000 syntax, and formation of the compressed file of the JPEG2000 
standard. Chapter 9 is devoted to  the VLSI architectures of the standard 
in great detail, which cannot be found in current books in the marketplace. 
In Chapter 9, we also summarize the latest results and developments in this 
area. Chapter 10 provides a discussion on the JPEG2000 extensions and 
other parts of the standards as of writing this book. Every chapter includes 
sufficient references relevant to the discussion. 

This book consists of 10 chapters. 
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The book may be used either in a graduate-level course as a part of the sub- 
ject of data compression, image compression, and multimedia processing, or 
as a reference book for professionals and researchers. This book is particularly 
useful for the engineers and professionals in industry for easy understanding of 
the subject matter and as an aid in both software and hardware developments 
of their products. 
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Introduction to  Data 
Compression 

1.1 INTRODUCTION 

We have seen the revolution in computer and communication technologies in 
the twentieth century. The telecommunications industry has gone through 
sea-changes from analog to digital networking that enabled today’s very pow- 
erful Internet technology. Transition from the analog to the digital world 
offered many opportunities in every walk of life. Telecommunications, the 
Internet, digital entertainment, and computing in general are becoming part 
of our daily lives. Today we are talking about digital networks, digital rep- 
resentation of images, movies, video, TV, voice, digital library-all because 
digital representation of the signal is more robust than the analog counter- 
part for processing, manipulation, storage, recovery, and transmission over 
long distances, even across the globe through communication networks. In 
recent years, there have been significant advancements in processing of still 
image, video, graphics, speech, and audio signals through digital computers 
in order to accomplish different application challenges. As a result, multime- 
dia information comprising image, video, audio, speech, text, and other data 
types has the potential to become just another data type. Telecommunica- 
tion is no longer a platform for peer-to-peer voice communication between two 
people. Demand for communication of multimedia data through the telecom- 
munications network and accessing the multimedia data through Internet is 
growing explosively. In order to handle this pervasive multimedia data usage, 
it is essential that the data representation and encoding of multimedia data 
be standard across different platforms and applications. Still image and video 
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data comprise a significant portion of the multimedia data and they occupy the 
lion’s share of the communication bandwidth for multimedia communication. 
As a result, development of efficient image compression techniques continues 
to be an important challenge to  us, both in academia and in industry. 

1.2 WHY COMPRESSION? 

Despite the many advantages of digital representation of signals compared 
to the analog counterpart, they need a very large number of bits for storage 
and transmission. For example, a high-quality audio signal requires approx- 
imately 1.5 megabits per second for digital representation and storage. A 
television-quality low-resolution color video of 30 frames per second with each 
frame containing 640 x 480 pixels (24 bits per color pixel) needs more than 
210 megabits per second of storage. As a result, a digitized one-hour color 
movie would require approximately 95 gigabytes of storage. The storage re- 
quirement for upcoming high-definition television (HDTV) of resolution 1280 
x 720 at  60 frames per second is far greater. A digitized one-hour color movie 
of HDTV-quality video will require approximately 560 gigabytes of storage. 
A digitized 14 x 17 square inch radiograph scanned at  70 pm occupies nearly 
45 megabytes of storage. Transmission of these digital signals through limited 
bandwidth communication channels is even a greater challenge and sometimes 
impossible in its raw form. Although the cost of storage has decreased drasti- 
cally over the past decade due to  significant advancement in microelectronics 
and storage technology, the requirement of data storage and data processing 
applications is growing explosively to  outpace this achievement. 

Interestingly enough, most of the sensory signals such as still image, video, 
and voice generally contain significant amounts of superfluous and redundant 
information in their canonical representation as far as the human perceptual 
system is concerned. By human perceptual system, we mean our eyes and 
ears. For example, the neighboring pixels in the smooth region of a natural 
image are very similar and small variation in the values of the neighboring 
pixels are not noticeable to  the human eye. The consecutive frames in a 
stationary or slowly changing scene in a video are very similar and redundant. 
Some audio data beyond the human audible frequency range are useless for 
all practical purposes. This fact tells us that there are data in audic-visual 
signals that cannot be perceived by the human perceptual system. We call 
this perceptual redundancy.  In English text files, common words (e.g., “the”) 
or similar patterns of character strings (e.g., “ze”, “ th”)  are usually used 
repeatedly. It is also observed that the characters in a text file occur in 
a well-documented distribution, with letter e and “space” being the most 
popular. In numeric data files, we often observe runs of similar numbers or 
predictable interdependency among the numbers. We have mentioned only a 
few examples here. There are many such examples of redundancy in digital 
representation in all sorts of data. 
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Data compression is the technique to reduce the redundancies in data repre- 
sentation in order to  decrease data storage requirements and hence communi- 
cation costs. Reducing the storage requirement is equivalent to increasing the 
capacity of the storage medium and hence communication bandwidth. Thus 
the development of efficient compression techniques will continue to  be a de- 
sign challenge for future communication systems and advanced multimedia 
applications. 

1.2.1 Advantages of Data Compression 

The main advantage of compression is that it reduces the data storage require- 
ments. It also offers an attractive approach to reduce the communication cost 
in transmitting high volumes of data over long-haul links via higher effective 
utilization of the available bandwidth in the data links. This significantly aids 
in reducing the cost of communication due to the data rate reduction. Be- 
cause of the data rate reduction, data compression also increases the quality of 
multimedia presentation through limited-bandwidth communication channels. 
Hence the audience can experience rich-quality signals for audio-visual data 
representation. For example, because of the sophisticated compression tech- 
nologies we can receive toll-quality audio at  the other side of the globe through 
the good old telecommunications channels at a much better price compared to 
a decade ago. Because of the significant progress in image compression tech- 
niques, a single 6 MHz broadcast television channel can carry HDTV signals to 
provide better quality audio and video at  much higher rates and enhanced res- 
olution without additional bandwidth requirements. Because of the reduced 
data rate offered by the compression techniques, computer network and In- 
ternet usage is becoming more and more image and graphic friendly, rather 
than being just data- and text-centric phenomena. In short, high-performance 
compression has created new opportunities of creative applications such as dig- 
ital library, digital archiving, videoteleconferencing, telemedicine, and digital 
entertainment, to name a few. 

There are many other secondary advantages in data compression. For 
example, it has great implications in database access. Data compression may 
enhance the database performance because more compressed records can be 
packed in a given buffer space in a traditional computer implementation. 
This potentially increases the probability that a record being searched will 
be found in the main memory. Data security can also be greatly enhanced by 
encrypting the decoding parameters and transmitting them separately from 
the compressed database files to  restrict access of proprietary information. 
An extra level of security can be achieved by making the compression and 
decompression processes totally transparent to unauthorized users. 

The rate of input-output operations in a computing device can be greatly 
increased due to  shorter representation of data. In systems with levels of 
storage hierarchy, data compression in principle makes it possible to store data 
a t  a higher and faster storage level (usually with smaller capacity), thereby 
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reducing the load on the input-output channels. Data compression obviously 
reduces the cost of backup and recovery of data in computer systems by storing 
the backup of large database files in compressed form. 

The advantages of data compression will enable more multimedia applica- 
tions with reduced cost and hence aid its usage by a larger population with 
newer applications in the near future. 

1.2.2 Disadvantages of Data Compression 

Although data compression offers numerous advantages and it  is the most 
sought-after technology in most of the data application areas, it has some 
disadvantages too, depending on the application area and sensitivity of the 
data. For example, the extra overhead incurred by encoding and decoding 
processes is one of the most serious drawbacks of data compression, which 
discourages its usage in some areas (e.g., in many large database applica- 
tions). This extra overhead is usually required in order to  uniquely identify 
or interpret the compressed data. For example, the encoding/decoding tree 
in a Huffman coding [7] type compression scheme is stored in the output file 
in addition to the encoded bitstream. These overheads run opposite to the 
essence of data compression, that of reducing storage requirements. In large 
statistical or scientific databases where changes in the database are not very 
frequent, the decoding process has greater impact on the performance of the 
system than the encoding process. Even if we want to  access and manipulate a 
single record in a large database, it may be necessary to decompress the whole 
database before we can access the desired record. After access and probably 
modification of the data, the database is again compressed to  store. The de- 
lay incurred due to  these compression and decompression processes could be 
prohibitive for many real-time interactive database access requirements unless 
extra care and complexity are added in the data arrangement in the database. 

Data compression generally reduces the reliability of the data records. For 
example, a single bit error in compressed code will cause the decoder to mis- 
interpret all subsequent bits, producing incorrect data. Transmission of very 
sensitive compressed data (e.g., medical information) through a noisy com- 
munication channel (such as wireless media) is risky because the burst errors 
introduced by the noisy channel can destroy the transmitted data. Another 
problem of data compression is the disruption of data properties, since the 
compressed data is different from the original data. For example, sorting and 
searching schemes into the compressed data may be inapplicable as the lexical 
ordering of the original data is no longer preserved in the compressed data. 

In many hardware and systems implementations, the extra complexity 
added by data compression can increase the system’s cost and reduce the 
system’s efficiency, especially in the areas of applications that require very 
low-power VLSI implementation. 
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1.3 INFORMATION THEORY CONCEPTS 

The Mathematical Theory of Communication, which we also call Information 
Theory here, pioneered by Claude E. Shannon in 1948 [l, 2, 3, 41 is consid- 
ered to  be the theoretical foundation of data compression research. Since 
then many data compression techniques have been proposed and applied in 
practice. 

Representation of data is a combination of information and redundancy [l]. 
Information is the portion of data that must be preserved permanently in its 
original form in order to correctly interpret the meaning or purpose of the 
data. However, redundancy is that portion of data that can be removed when 
it is not needed or can be reinserted to interpret the data when needed. Most 
often, the redundancy is reinserted in order to regenerate the original data 
in its original form. Data compression is essentially a redundancy reduction 
technique. The redundancy in data representation is reduced such a way that 
it can be subsequently reinserted to  recover the original data, which is called 
decompression of the data. In the literature, sometimes data compression is 
referred to as coding and similarly decompression is referred to  as decoding. 

Usually development of a data compression scheme can be broadly divided 
into two phases-modeling and coding. In the modeling phase, information 
about redundancy that exists in the data is extracted and described in a 
model. Once we have the description of the model, we can determine how 
the actual data differs from the model and encode the difference in the coding 
phase. Obviously, a data compression algorithm becomes more effective if the 
model is closer to the characteristics of the data generating process, which we 
often call the source. The model can be obtained by empirical observation of 
the statistics of the data generated by the process or the source. In an em- 
pirical sense, any information-generating process can be described as a source 
that emits a sequence of symbols chosen from a finite alphabet. Alphabet is 
the set of all possible symbols generated by the source. For example, we can 
think of this text as being generated by a source with an alphabet containing 
all the ASCII characters. 

1.3.1 

If the symbols produced by the information source are statistically indepen- 
dent to each other, the source is called a discrete memoryless source. A dis- 
crete memoryless source is described by its source alphabet A = { a l ,  UZ, . . . , a N }  

and the associated probabilities of occurrence P = {p(al),p(az), . . . , p ( a i y ) }  
of the symbols a l ,  a z ,  . . . , U N  in the alphabet A.  

The definition of the discrete memoryless source model provides us a very 
powerful concept of quantification of average information content per symbol 
of the source, or entropy of the data. The concept of “entropy” was first 
used by physicists as a thermodynamic parameter to measure the degree of 

Discrete Memoryless Model and Entropy 
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“disorder” or “chaos” in a thermodynamic or molecular system. In a statistical 
sense, we can view this as a measure of degree of “surprise” or “uncertainty.” 
In an intuitive sense, it is reasonable to assume that the appearance of a less 
probable event (symbol) gives us more surprise, and hence we expect that 
it might carry more information. On the contrary, the more probable event 
(symbol) will carry less information because it was more expected. 

With the above intuitive explanation, we can comprehend Shannon’s defini- 
tion of the relation between the source symbol probabilities and corresponding 
codes. The amount of information content, I ( a i ) ,  for a source symbol a,, in 
terms of its associated probability of occurrence p(ai) is 

The base 2 in the logarithm indicates that the information is expressed in 
binary form, or bits. In terms of binary representation of the codes, a symbol 
ai that is expected to occur with probability p ( a i )  is best represented in 
approximately - log, p(ai) bits. As a result, a symbol with higher probability 
of occurrence in a message is coded using a fewer number of bits. 

If we average the amount of information content over all the possible sym- 
bols of the discrete memoryless source, we find the average amount of infor- 
mation content per source symbol from the discrete memoryless source. This 
is expressed as 

N N 

i=l i = I  

This is popularly known as entropy in information theory. Hence entropy is 
the expected length of a binary code over all possible symbols in a discrete 
memoryless source. 

The concept of entropy is very powerful. In “stationary” systems, where 
the probabilities of occurrence of the source symbols are fixed, it provides a 
bound for the compression that can be achieved. This is a very convenient 
measure of the performance of a coding system. Without any knowledge of the 
physical source of data, it is not possible to know the entropy, and the entropy 
is estimated based on the outcome of the source by observing the structure 
of the data as source output. Hence estimation of the entropy depends on 
observation and assumptions about the structure of the source data sequence. 
These assumptions are called the model of the sequence. 

1.3.2 Noiseless Source Coding Theorem 

The Noiseless Source Coding Theorem by Shannon [l] establishes the min- 
imum average code word length per source symbol that can be achieved, 
which in turn provides the upper bound on the achievable compression loss- 
lessly. The Noiseless Source Coding Theorem is also known as Shannon’s first 
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theorem. This is one of the major source coding results in information theory 

If the data generated from a discrete memoryless source A are considered as 
grouped together in blocks on n symbols, to form an n-extended source, then 
the new source A" has Nn possible symbols {ai} ,  with probability P(ai )  = 
P(ai,)P(ai,)...P(ain),i = 1 , 2 , . . . , N  ". By deriving the entropy of the new 
n-extended source, it can be proven that E(A")  = n E ( A ) ,  where E ( A )  is the 
entropy of the original source A.  Let us now consider encoding blocks of n 
source symbols at  a time into binary codewords. For any E > 0, it is possible 
to construct a codeword for the block in such a way that the average number 
of bits per original source symbol, L,  satisfies 

11, 2,31. 

E ( A )  I L < E ( A )  + E 

The left-hand inequality must be satisfied for any uniquely decodable code for 
the block of n source symbols. 

The Noiseless Source Coding Theorem states that any source can be loss- 
lessly encoded with a code whose average number of bits per source symbol 
is arbitrarily close to, but not less than, the source entropy E in bits by 
coding infinitely long extensions of the source. Hence, the noiseless source 
coding theorem provides us the intuitive (statistical) yardstick to measure the 
information emerging from a source. 

1.3.2.1 Example: We consider a discrete memoryless source with alphabet 
A1 = {a ,  p, y,6} and the associated probabilities are p(a) = 0.65, p ( p )  = 
0.20, p(y) = 0.10, p ( 6 )  = 0.05 respectively. The entropy of this source is 
E = -(0.65 log, 0.65 + 0.20 log, 0.20 + O.lOlog, 0.10 + 0.05 log, 0.05), which is 
approximately 1.42 bits/symbol. As a result, a data sequence of length 2000 
symbols can be represented using approximately 2820 bits. 

Knowing something about the structure of the data sequence often helps to 
reduce the entropy estimation of the source. Let us consider that the numeric 
data sequence generated by a source of alphabet A2 = {0 ,1 ,2 ,3}  is D = 
0 1 1 2 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3, as an example. The probability 
of appearance of the symbols in alphabet A, are p ( 0 )  = 0.05, p(1) = 0.10, 
p(2) = 0.20, and p(3) = 0.65 respectively. Hence the estimated entropy of 
the sequence D is E = 1.42 bits per symbol. If we assume that correlation 
exists between two consecutive samples in this data sequence, we can reduce 
this correlation by simply subtracting a sample by its previous sample to 
generate the residual values ~i = si - siWl for each sample si. Based on 
this assumption of the model, the sequence of residuals of the original data 
sequence is D = o I o 1 1 o o o o o o o o -1 o o 1 o o 0, consisting of 
three symbols in a modified alphabet A:! = { - l , l , O } .  The probability of 
occurrence of the symbols in the new alphabet A are P(-1) = 0.05, p(1) = 0.2, 
and p ( 0 )  = 0.75 respectively as computed by the number of occurrence in 
the residual sequence. The estimated entropy of the transformed sequence 



8 INTRODUCTION TO DATA COMPRESSION 

is E = -(0.0510g20.05 + 0.210g~0.2 + 0.7510g20.75) = 0.992 (i.e., 0.992 
bits/symbol). 

The above is a simple example t o  demonstrate that the data sequence can 
be represented with fewer numbers of bits if encoded with a suitable entropy 
encoding technique and hence resulting in data compression. 

1.3.3 Unique Decipherability 

Digital representation of data in binary code form allows us to store it in 
computer memories and to transmit it through communication networks. In 
terms of length of the binary codes, they can be fixed-length as shown in 
column A of Table 1.1 with alphabet {a ,  P , y , b } ,  as an example, where all the 
symbols have been coded using the same number of bits. The binary codes 
could also be variable-length codes as shown in columns B or C of Table 1.1 
in which the symbols have different code lengths. 

Table 1.1 Examples of Variable-Length Codes 

y 10 110 00 
11 111 01 

Consider the string S = acuycyPaG. The binary construction of the string 
S using variable-length codes A, B, and C is as follows: 

CA(S) = 00001000010011 

Cn(S)  = 001100100111 

CC(S) = 000001001. 

Given the binary code CA(S)  = 00001000010011, it is easy to recognize or 
uniquely decode the string S = aayapab because we can divide the binary 
string into nonoverlapping blocks of 2 bits each and we know that two con- 
secutive bits form a symbol as shown in column A. Hence the first two bits 
“00” form the binary code for the symbol a,  the next two bits “00” is sim- 
ilarly mapped to the symbol a ,  the following two bits “10” can be mapped 
to symbol y, and so on. We can also uniquely decipher or decode the binary 
code C B ( S )  = 001100100111 because the first bit (0) represents the symbol a;  
similarly the next bit (0) also represents the symbol a according to the code in 
column B. The following three consecutive bits “110” uniquely represent the 
symbol y. Following this procedure, we can uniquely reconstruct the string 
S = a a y a ~ a b  without any ambiguity. 
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But deciphering the binary code Cc(S)  = 000001001 is ambiguous because 
it has many possibilities-ayypyp, aya6yp, or aaaaapyp to  name a few. 
Hence the code C c ( S )  = 000001001 is not uniquely decipherable using the 
code in column C in Table 1.1. 

It is obvious that the f ixed-length codes are always uniquely decipherable. 
But not all the variable-length codes are uniquely decipherable. The uniquely 
decipherable codes maintain a particular property called the prefix property.  
According to  the prefix property, no codeword in the code-set forms the prefix 
of another distinct codeword [5]. A codeword C = C O C ~ C Z ~ . ~ C ~ - ~  of length k 
is said to be the prefix of another codeword D = dodl...d,-l of length m if 
ci = di for all i = 0 ,1 , .  . . , k - 1 and k l m .  

Note that none of the codes in column A or in column B is a prefix of 
any other code in the corresponding column. The codes formed using either 
column A or column B are uniquely decipherable. On the other hand, binary 
code of a in column C is a prefix of both the binary codes of y and 6. 

Some of the popular variable-length coding techniques are Shannon-Fano 
Coding [ 6 ] ,  Huffman Coding (71, Elias Coding [8], Arithmetic Coding [9], etc. 
It should be noted that the f ixed-length codes can be treated as a special case 
of uniquely decipherable variable-length code. 

1.4 CLASSIFICATION OF COMPRESSION ALGORITHMS 

In an abstract sense, we can describe data compression as a method that 
takes an input data D and generates a shorter representation of the data 
c(D)  with a fewer number of bits compared to  that of D. The reverse process 
is called decompression, which takes the compressed data c (D)  and generates 
or reconstructs the data D’ as shown in Figure 1.1. Sometimes the com-  
pression (coding) and decompression (decoding) systems together are called a 
“CODEC,” as shown in the broken box in Figure 1.1. 

Fig. 1.1 CODEC. 
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The reconstructed data D’ could be identical to  the original data D or it 
could be an approximation of the original data D ,  depending on the recon- 
struction requirements. If the reconstructed data D‘ is an exact replica of the 
original data D ,  we call the algorithm applied to  compress D and decompress 
c ( D )  to be lossless. On the other hand, we say the algorithms are lossy when 
D’ is not an exact replica of D .  Hence as far as the reversibility of the original 
data is concerned, the data compression algorithms can be broadly classified 
in two categories - lossless and lossy . Usually we need to apply lossless 
data compression techniques on text data or scientific data. For example, we 
cannot afford to compress the electronic copy of this text book using a lossy 
compression technique. It is expected that we shall reconstruct the same text 
after the decompression process. A small error in the reconstructed text can 
have a completely different meaning. We do not expect the sentence “You 
should not delete this file” in a text to change to  “You should now delete this 
file” as a result of an error introduced by a lossy compression or decompression 
algorithm. Similarly, if we compress a huge ASCII file containing a program 
written in C language, for example, we expect to get back the same C code 
after decompression because of obvious reasons. The lossy compression tech- 
niques are usually applicable to data where high fidelity of reconstructed data 
is not required for perception by the human perceptual system. Examples 
of such types of data are image, video, graphics, speech, audio, etc. Some 
image compression applications may require the compression scheme to be 
lossless (i.e., each pixel of the decompressed image should be exactly identical 
to the original one). Medical imaging is an example of such an application 
where compressing digital radiographs with a lossy scheme could be a disas- 
ter if it has to make any compromises with the diagnostic accuracy. Similar 
observations are true for astronomical images for galaxies and stars. 

Sometimes we talk about perceptual lossless compression schemes when we 
can compromise with introducing some amount of loss into the reconstructed 
image as long as there is no perceptual difference between the reconstructed 
data and the original data, if the human perceptual system is the ultimate 
judge of the fidelity of the reconstructed data. For example, it is hardly 
noticeable by human eyes if there is any small relative change among the 
neighboring pixel values in a smooth non-edge region in a natural image. 

In this context, we need to  mention that sometimes data compression is 
referred as coding in the literature. The terms noiseless and noisy coding, 
in the literature, usually refer to lossless and lossy compression techniques 
respectively. The term “noise” here is the “error of reconstruction” in the lossy 
compression techniques because the reconstructed data item is not identical 
to the original one. Throughout this book we shall use lossless and lossy 
compression in place of noiseless and noisy coding respectively. 

Data compression schemes could be static or dynamic. In statzc methods, 
the mapping from a set of messages (data or signal) to  the corresponding 
set of compressed codes is always fixed. In dynamic methods, the mapping 
from the set of messages to the set of compressed codes changes over time. A 



A DATA COMPRESSION MODEL 11 

dynamic method is called adaptive if the codes adapt to changes in ensemble 
characteristics over time. For example, if the probabilities of occurrences 
of the symbols from the source are not fixed over time, we can adaptively 
formulate the binary codewords of the symbols, so that the compressed file 
size can adaptively change for better compression efficiency. 

1.5 A DATA COMPRESSION MODEL 

A model of a typical data compression system can be described using the block 
diagram shown in Figure 1.2. A data compression system mainly consists of 
three major steps-removal or reduction in data redundancy, reduction in 
entropy, and entropy encoding. 

Input Data 

1 
Reduction of Data 

Redundancy 

I 

I 
I 

Reduction of Entropy 

Entropy Encoding 

Compressed Data 

Fig. 1.2 A data compression model. 

The redundancy in data may appear in different forms. For example, the 
neighboring pixels in a typical image are very much spatially correlated to  
each other. By correlation we mean that the pixel values are very similar in 
the non-edge smooth regions [lo] in the image. In the case of moving pic- 
tures, the consecutive frames could be almost similar with or without minor 
displacement if the motion is slow. The composition of the words or sen- 
tences in a natural text follows some context model based on the grammar 
being used. Similarly, the records in a typical numeric database may have 
some sort of relationship among the atomic entities that comprise each record 
in the database. There are rhythms and pauses in regular intervals in any 
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natural audio or speech data. These redundancies in data representation can 
be reduced in order to achieve potential compression. 

Removal or reduction in data redundancy is typically achieved by trans- 
forming the original data from one form or representation to another. The 
popular techniques used in the redundancy reduction step are prediction of the 
data samples using some model, transformation of the original data from spa- 
tial domain to  frequency domain such as Discrete Cosine Transform (DCT), 
decomposition of the original data set into different subbands such as Discrete 
Wavelet Transformation (DWT), etc. In principle, this step potentially yields 
more compact representation of the information in the original data set in 
terms of fewer coefficients or equivalent. In case of lossless data compression, 
this step is completely reversible. Transformation of data usually reduces en- 
tropy of the original data by removing the redundancies that appear in the 
known structure of the data sequence. 

The next major step in a lossy data compression system is to further re- 
duce the entropy of the transformed data significantly in order to allocate 
fewer bits for transmission or storage. The reduction in entropy is achieved 
by dropping nonsignificant information in the transformed data based on the 
application criteria. This is a nonreversible process because it is not possible 
to exactly recover the lost data or information using the inverse process. This 
step is applied in lossy data compression schemes and this is usually accom- 
plished by some version of quantization technique. The nature and amount 
of quantization dictate the quality of the reconstructed data. The quantized 
coefficients are then losslessly encoded using some entropy encoding scheme 
to compactly represent the quantized data for storage or transmission. Since 
the entropy of the quantized data is less compared to the original one, it can 
be represented by fewer bits compared to  the original data set, and hence we 
achieve compression. 

The decompression system is just an inverse process. The compressed code 
is first decoded to generate the quantized coefficients. The inverse quantiza- 
tion step is applied on these quantized coefficients to generate the approxima- 
tion of the transformed coefficients. The quantized transformed coefficients 
are then inverse transformed in order to  create the approximate version of the 
original data. If the quantization and inverse quantization steps are absent in 
the codec and the transformation step for redundancy removal is reversible, 
the decompression system produces the exact replica of the original data and 
hence the compression system can be called a lossless compression system. 

1.6 COMPRESSION PERFORMANCE 

Like any other system, metrics of performance of a data compression algo- 
rithm are important criteria for selection of the algorithm. The performance 
measures of data compression algorithms can be looked a t  from different per- 
spectives depending on the application requirements: amount of compression 
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achieved, objective and subjective quality of the reconstructed data, relative 
complexity of the algorithm, speed of execution, etc. We explain some of them 
below. 

1.6.1 

The most popular metric of performance measure of a data compression al- 
gorithm is the compression ratio. It is defined as the ratio of the number of 
bits to represent the original data to the number of bits to represent the com- 
pressed data. Consider an image of size 256 x 256 requiring 65536 bytes of 
storage if each pixel is represented by a single byte. If the compressed version 
of the image can be stored in 4096 bytes, the compression ratio achieved by 
the compression algorithm will be 16:l. 

A variation of the compression ratio is bits per sample. This metric indi- 
cates the average number of bits to represent a single sample of the data (e.g., 
bits per pixel for image coding). If 65536 pixels of an image are compressed 
to  4096 bytes, we can say that the compression algorithm achieved 0.5 bits 
per pixel on the average. Hence the bits per sample can be measured by the 
ratio of the number of bits of a single uncompressed sample to  the compression 
ratio. 

It  should be remembered that the achievable compression ratio using a 
lossless compression scheme is totally input data dependent. If the same 
algorithm is applied in a number of distinct data files, the algorithm will yield 
a different compression ratio in different files. The maximum compression 
ratio and hence the bits per sample that can be achieved losslessly is restricted 
by the entropy of the data file according to  the noiseless source coding theorem 
by Shannon. Sources with less redundancy have more entropy and hence are 
more difficult to achieve compression. For example, it is very difficult to 
achieve any compression in a file consisting of mainly random data. 

Compression Ratio and Bits per Sample 

1.6.2 Quality Metrics 

This metric is not relevant for lossless compression algorithms. The quality 
or fidelity metric is particularly important for lossy compression algorithms 
for video, image, voice, etc., because the reconstructed data differ from the 
original ones and the human perceptual system is the ultimate judge of the 
reconstructed quality. For example, if there is no perceivable difference be- 
tween the reconstructed data and the original ones, the compression algorithm 
can be claimed to  achieve very high quality or high fidelity. The difference 
of the reconstructed data from the original ones is called the distortion. One 
expects to  have higher quality of the reconstructed data, if the distortion is 
lower. Quality measures could be very subjective based on human perception 
or can be objectively defined using mathematical or statistical evaluation. 
Although there is no single universally accepted measure of the quality met- 
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rics, there are different objective and subjective quality metrics in practice to 
evaluate the quality of the compression algorithms. 

1.6.2.1 Often the subjective quality metric is de- 
fined as the mean observers score (MOS). Sometimes, it is also called mean 
opinion score. There are different statistical ways to compute MOS. In one 
of the simplest ways, a statistically significant number of observers are ran- 
domly chosen to evaluate visual quality of the reconstructed images. All the 
images are compressed and decompressed by the same algorithm. Each ob- 
server assigns a numeric score to each reconstructed image based on his or her 
perception of quality of the image, say within a range 1-5 to describe the qual- 
ity of the image-5 being the highest quality and 1 being the worst quality. 
The average of the scores assigned by all the observers to the reconstructed 
images is called the mean observer score (MOS) and it can be considered as 
a viable subjective metric if all the observers evaluate the images under the 
same viewing condition. There are different variations of this approach to 
calculate MOS-absolute comparison, paired comparison, blind evaluation, 
etc. 

The techniques of measurement of the MOS could well be different for 
different perceptual data. The methodology to  evaluate the subjective quality 
of a still image could be entirely different for video or voice data. But MOS 
is computed based on the perceived quality of the reconstructed data by a 
statistically significant number of human observers. 

Subjective Quality Metric 

1.6.2.2 Objective Quality Metric There is no universally accepted measure 
for objective quality of the data compression algorithms. For objective mea- 
sure, the most widely used objective quality metrics are root-mean-squared 
error (RMSE) ,  signal-to-noise ratio ( S N R ) ,  and peak signal-to-noise ratio 
( P S N R ) .  If I is an A4 x N image and is the corresponding reconstructed 
image after compression and decompression, R M S E  is calculated by 

where i , j  refer to  the pixel position in the image. The S N R  in decibel unit 
(dB) is expressed as S N R  = 

(1.4) 
In case of an 8-bit image, the corresponding P S N R  in dB is computed as 
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where 255 is the maximum possible pixel value in 8 bits. 
It should be noted that a lower RMSE (or equivalently, higher S N R  

or P S N R )  does not necessarily always indicate a higher subjective quality. 
These objective error metrics do not always correlate well with the subjective 
quality metrics. There are many cases where the PSNR of a reconstructed 
image can be reasonably high, but the subjective quality is really bad when 
visualized by human eyes. Hence the choice of the objective or subjective met- 
rics to evaluate a compression and decompression algorithm often depends on 
the application criteria. 

Similar objective quality metrics are used for audio and speech signals as 
well. 

1.6.3 Coding Delay 

Coding delay is another performance measure of the compression algorithms 
where interactive encoding and decoding is the requirement (e.g., interactive 
videoteleconferencing, on-line image browsing, real-time voice communication, 
etc.) . The complex compression algorithm might provide a better amount 
of compression, but it could lead to increased coding delay, prohibiting the 
interactive real-time applications. The constraint to  the coding delay often 
forces the compression system designer to use a less sophisticated algorithm 
for the compression system. 

1.6.4 Coding Complexity 

The coding complexity of a compression algorithm is often considered to be a 
performance measure where the computational requirement to implement the 
codec is an important criteria. The computational requirements are usually 
measured in terms of a number of arithmetic operations and memory require- 
ments. Usually, the number of arithmetic operations is described by MOPS 
(millions of operations per second). But in the compression literature, the 
term MIPS (millions of instructions per second) is often used to  measure the 
compression performance in a specific computing engine’s architecture. Espe- 
cially, the implementation of the compression schemes using special-purpose 
DSP (digital signal processor) architectures is common in communication sys- 
tems. In portable systems, this coding complexity is an important criterion 
from the perspective of the low-power hardware implementation. 

1.7 OVERVIEW OF IMAGE COMPRESSION 

The general model of a still image compression framework can be described 
using a block diagram shown in Figure 1.3. 
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Statistical analysis of a typical image indicates that there is a strong corre- 
lation among the neighboring pixels. This causes redundancy of information 
in the image. The redundancy can be greatly removed by decorrelating the 
image with some sort of preprocessing in order to  achieve compression. In gen- 
eral, still image compression techniques rely on two fundamental redundancy 
reduction principles-spatial redundancy reduction and statistical redundancy 
reduction. Spatial redundancy is the similarity of neighboring pixels in an 
image and it is reduced by applying decorrelation techniques such as predic- 
tive coding, transform coding, subband coding, etc. The statistical redundancy 
reduction is popularly known as entropy encoding. The entropy encoding fur- 
ther reduces the redundancy in the decorrelated data by using variable-length 
coding techniques such as Huffman Coding, Arithmetic Coding, etc. These 
entropy encoding techniques allocate the bits in the codewords in such a man- 
ner that the more probably appearing symbols are represented with a smaller 
number of bits compared to the less probably appearing pixels, which aids in 
achieving compression. 

The decorrelation or preprocessing block in Figure 1.3 is the step for re- 
ducing the spatial redundancy of the image pixels due to  strong correlation 
among the neighboring pixels. In lossless coding mode, this decorrelated im- 
age is directly processed by the entropy encoder to encode the decorrelated 
pixels using a variable-length coding technique. In the case of the lossy com- 
pression mode, the decorrelated image is subject to  further preprocessing in 
order to mask or throw away irrelevant information depending on the nature 
of application of the image and its reconstructed quality requirements. This 
process of masking is popularly called quantization process. The decorrelated 
and quantized image pixels then go through the entropy encoding process to 
compactly represent them using variable-length codes to  produce the com- 
pressed image. 

Input Compressed 
Lossless Encoding 

Preprocessing 

4 
Lossy Encoding 

J, 
Additional 

Preprocessing 

Fig. 1.3 A general image compression framework 
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1.8 MULTIMEDIA DATA COMPRESSION STANDARDS 

Multimedia data compression has become an integrated part of today’s digital 
communications systems-digital telephony, facsimile, digital cellular com- 
munication, personal communication systems, videoconferencing, Internet, 
broadcasting, etc. Other applications are voice messaging systems, image 
archival systems, CD-quality audio, digital library, DVD, movie and video 
distribution, graphics, and film industry, to  name a few. New results and re- 
search concepts are emerging every day throughout the world. The number of 
applications will continue to  grow in the days to come. As a result, it is neces- 
sary to define standards for common data compression systems specifications 
to  make them perfectly interoperable in different systems and manufacturable 
platforms. We mention here some of the data compression standards for var- 
ious types of multimedia data-image, video, speech, audio, text, etc. 

1.8.1 Still Image Coding Standard 

The two main international bodies in the image compression area are the In- 
ternational Organization for Standardization (ISO) and International Telecom- 
munication Union- Telecommunications Sector (ITU-T) formerly known as 
CCITT. IS0  deals with information-processing related issues such as image 
storage and retrieval, whereas ITU-T deals with information transmission. 
JPEG (Joint Photographic Expert Group) is the standard jointly developed 
by IS0  and ITU-T in 1992 for still images-for both continuous-tone grayscale 
and color images. JPEG is officially referred as ISO/IEC IS (International 
Standard) 10918-1: Digital Compression and Coding of Continuous-tone Still 
Images and also ITU-T Recommendation T.81. There is a common mis- 
conception among many people that JPEG is a single algorithm for still image 
compression. Actually, the JPEG standard defines four modes of operations 
[13]. They are sequential DCT-based mode, sequential lossless mode, progres- 
sive DCT-based mode, and hierarchical mode. The widely used algorithm 
for image compression in the sequential DCT-based mode of the standard is 
called the baseline JPEG. The current JPEG system is targeted for com- 
pressing still images with bit-rate of 0.25-2 bits per pixel. Working group 1 in 
IS0  is engaged in defining the next-generation still-picture coding standard 
JPEG2000 (171 to achieve lower bit-rates at much higher quality with many 
additional desirable features to meet newer challenges which current JPEG 
does not offer. The core coding system of the JPEG2000 (Part l),  its exten- 
sion (Part 2), Motion JPEG2000 (Part 3),  their conformance testing (Part 
4),  and some of the file formats have already been finalized as international 
standards. As of writing this book, the working group is currently engaged in 
defining some new parts of the standard. 

(also called ITU-T Recommendation T.4 and T.6), developed by the Interna- 
Popular bi-level image compression standards are Group 3 and Group 4 
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tional Telecommunication Union (formerly known as CCITT) in 1980 for fax 
compression, and JBIG, developed by I S 0  in 1994 for black-and-white image 
compression. The working group in IS0  recently defined a new bi-level image 
compression standard called JBIG2, in conjunction with JPEG2000 standard. 

1.8.2 Video Coding Standards 

MPEG (Moving Picture Expert Group) is the standard in IS0  for a digital 
compression system to handle moving pictures (video) and associated audio. 
MPEG-1 (officially known as I S 0  11172) is the first generation of digital com- 
pression standards for video and two-channel stereo audio to achieve bit-rate of 
about 1.5 Mbps (Mega bits per second) for storage in CD-ROMs [ 111. MPEG- 
1 was standardized in 1994. IS0  developed the second-generation standard 
MPEG-2 (officially known as I S 0  13818) in 1995 to  address the requirements 
of the digital compression systems for broadcast-quality video and audio at  
bit-rate of 6-10 Mbps [ la] .  IS0 is now defining the next-generation video cod- 
ing standard MPEG-4 to meet newer challenges of object-based video coding 
suitable for multimedia applications [14]. The MPEG committee is also cur- 
rently working on a new work item called Multimedia Content Description 
Interface, or MPEG-7 [15]. There is a popular misconception that MPEG-7 
will be another new video compression standard. The fact is that MPEG-7 
will not define any new compression algorithm. It deals with the file format 
and metadata description of the compressed video in order to define a stan- 
dard for description of various types of multimedia information coded with 
the standard codecs [15]. Another new work item has recently been initiated 
in the MPEG committee -MPEG-21 Multimedia Framework. The overall vi- 
sion of MPEG-21 as it is described in its statement is “To enable transparent 
and augmented use of multimedia resources across a wide range of networks 
and devices.” The requirements and purpose are still being defined in the 
committee. 

In parallel with ISO, ITU plays the role of defining image sequence compres- 
sion standards for telecommunication applications such as videoteleconferenc- 
ing, etc. H.261 is a standard in ITU developed in 1990 for the video coding 
portion of the videoteleconferencing standard (H.320) to transmit video at  the 
bit-rate of 56 Kbps-2 Mbps through the telecommunication channel. H.263 
is the low bit-rate standard developed in 1995 for video coding to  transmit 
video at  a bit-rate below 28.8 Kbps through the telecommunication channel 
[18]. H.263L is under definition to  meet the newer telecommunication require- 
ments. 

1.8.3 Audio Coding Standard 

The standardization effort for digital audio was initiated in the audio layer 
of the MPEG video coding standard. The MPEG bitstream consists of audio 
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and video signals that are synchronized at  the decoder. MPEG-1 and MPEG- 
2 audio-coding standards are the first international standards in the field of 
high-quality digital audio compression. The MPEG-1 audio coding system 
operates in single-channel or twechannel stereo modes at  sampling frequen- 
cies of 32 KHz, 44.1 KHz, and 48 KHz. The system was specified in three 
layers-I, 11, and III- for different data rates. MPEG-1 Layer I provides 
high quality at  a data-rate of 192 Kbps per channel, while Layer I1 provides 
high quality at  data-rate of 128 Kbps, and Layer I11 provides data-rate of 64 
Kbps. The MPEG-2 Advanced Audio Coding (MPEG-2 AAC) system oper- 
ates a t  sampling frequencies between 8 and 96 KHz and supports up to  48 
audio channels. MPEG-2 AAC is used as the kernel of the MPEG-4 audio 
standard at  data-rates at or above 16 Kbps per channel. MPEG-4 coding of 
audio objects provides different compression tools for natural sounds as well 
as synthesized sound for a wide range of bit rates. Other audio coding tools 
of great interest are Dolby AC-3 [21], Philips DCC [22], etc. MP3 is the term 
that Internet users most often use for searching music. However, MP3 is not 
a new audio coding standard; it is based on the MPEG-1 audio Layer 111. 

1.8.4 Text Compression 

The basic philosophy of text compression differs from the transformation- 
based video, image, speech, and audio compression techniques. Text compres- 
sion is by default a lossless coding [27]. Effective text compression schemes 
are basically dictionary-based coding. This dictionary could be static where a 
fixed dictionary is used to  compress the text, or it could be dynamic in order 
to  dynamically change the dictionary during the encoding and decoding pro- 
cess. The basic idea behind most of the dictionary-based robust lossless text 
compression schemes is to parse the source symbol string into a sequence of 
phrases  or substrings and then generate the compressed codes of these phrases. 
The most popular and widely used text compression schemes belong to  the 
Lempel-Ziv (LZ) family-LZ77 [23], LZ78 [24], LZZZ [26], LZW [25], LZC 
[27], LZWAJ [as], etc. For example LZSS, a variation of LZ77, is the text 
compression engine in zip,  gzip,  pkzip,  and  winzip compression utilities. The 
LZW algorithm, a variant of LZ78, is the core of the h i s  compress  utility. 

Some people in the industry have a misconception that LZ coding tech- 
niques are applied in text compression only and they do not work for com- 
pressing any other multimedia data type. In lossless compression mode, the 
LZ coding techniques have been found to  be effective to  compress different 
kinds of images. For example, the popular image-compression algorithm GIF 
(Graphical Interchange Format) is an implementation of the LZW algorithm 
and very similar to the h i s  compress  utility. GIF is effective to  compress 
computer-generated graphical images and pseudocolor or color-mapped im- 
ages. TIFF (Tag Image File Format) is another industry standard. Some of 
the modes in TIFF have been developed based on LZ coding. This is use- 
ful for compressing dithered binary images ,  which simulate grayscale images 
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through a variation in the density of black dots. The TIFF Revision 6.0 was 
released in 1992 and supports numerous data compression schemes such as 
LZW, CCITT Group 3 and Group 4, and JPEG. 

1.9 SUMMARY 

In this chapter, we introduced readers with the fundamentals of data and im- 
age compression. We discussed why data compression is important and how it 
became an integrated part of today’s multimedia computing and communica- 
tions systems. We discussed some fundamentals including information theory 
such as discrete memoryless model, entropy, noiseless source coding theorem, 
unique decipherability, etc., in order to aid the readers to understand the 
principles behind data compression. We discussed the concepts of classifica- 
tion of compression techniques, performance measures, etc. We also presented 
brief introduction of various international standards for digital compression 
techniques of various multimedia data types-image, video, text, audio, data, 
etc. Different source coding algorithms for data compression, the principles 
of image compression techniques, and details of JPEG and JPEG2000 image 
compression standards will be discussed in the following chapters. 
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2 
Source Coding 

Algorithms 

In this chapter, we present some of the popular source coding algorithms 
used for data compression. From an information theoretic perspective, source 
coding can mean both lossless and lossy compression. However, it is often re- 
served by researchers to  indicate lossless coding only. In the signal processing 
community, the source coding is used to mean source model-based coding. We 
adopt this convention here and by source coding we mean lossless coding only. 
These algorithms can be used directly to compress any data losslessly. De- 
pending on the characteristics of the data, each algorithm may give different 
compression performance. So selection of the particular algorithm will depend 
up characteristics of the data themselves. In lossy image compression mode, 
the source coding algorithms are usually applied in the entropy encoding step 
after transformation and quantization. 

2.1 RUN-LENGTH CODING 

The neighboring pixels in a typical image are highly correlated to each other. 
Often it is observed that the consecutive pixels in a smooth region of an 
image are identical or the variation among the neighboring pixels is very 
small. Appearance of runs of identical values is particularly true for binary 
images where usually the image consists of runs of 0’s or 1’s. Even if the 
consecutive pixels in grayscale or color images are not exactly identical but 
slowly varying, it can often be preprocessed and the consecutive processed 
pixel values become identical. If there is a long run of identical pixels, it 
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is more economical to transmit the length of the run associated with the 
particular pixel value instead of encoding individual pixel values. 

Run-length coding is a simple approach to  source coding when there exists 
a long run of the same data, in a consecutive manner, in a data set. As an 
example, the data d = 5 5 5 5 5 5 5 19 19 19 19 19 19 19 19 19 19 19 19 0 0 0 0 
0 0 0 0 8 23 23 23 23 23 23 contains long runs of 5’s, 19’s, O’s, 23’s, etc. Rather 
than coding each sample in the run individually, the data can be represented 
compactly by simply indicating the value of the sample and the length of its 
run when it appears. In this manner, the data d can be run-length encoded 
as (5 7) (19 12) (0 8) (8 1) (23 6). For ease of understanding, we have shown 
a pair in each parentheses. Here the first value represents the pixel, while the 
second indicates the length of its run. 

In some cases, the appearance of runs of symbols may not be very apparent. 
But the data can possibly be preprocessed in order to aid run-length coding. 
Consider the data d = 26 29 32 35 38 41 44 50 56 62 68 78 88 98 108 118 
116 114 112 110 108 106 104 102 100 98 96. We can simply preprocess this 
data, by taking the sample difference e ( i )  = d ( i )  - d ( i  - l),  to produce the 
processed data t?= 26 3 3 3 3 3 3 6 6 6 6 10 10 10 10 10 -2 -2 -2 -2 -2 
-2 -2 -2 -2 -2 -2. This preprocessed data can now be easily run-length 
encoded as (26 1) (3 6) (6 4) (10 5) (-2 11). A variation of this technique is 
applied in the baseline JPEG standard for still-picture compression [8]. The 
same technique can be applied to numeric databases as well. 

On the other hand, binary (black-and-white) images, such as facsimile, 
usually consist of runs of 0’s or 1’s. As an example, if a segment of a binary 
image is represented as 

d = 0000000001111111111100000000000000011100000000000001001111111111, 

it can be compactly represented as c (d )  = (9, 11, 15, 3, 13, 1, 2, 10) by simply 
listing the lengths of alternate runs of 0’s and 1’s. While the original binary 
data d requires 65 bits for storage, its compact representation c ( d )  requires 32 
bits only under the assumption that each length of run is being represented by 
4 bits. The early facsimile compression standard (CCITT Group 3, CCITT 
Group 4) algorithms were developed based on this principle [3]. 

2.2 HUFFMAN CODING 

From Shannon’s Source Coding Theory ,  we know that a source can be coded 
with an average code length close to  the entropy of the source. In 1952, D. 
A. Huffman [l] invented a coding technique to produce the shortest possible 
average code length given the source symbol set and the associated probability 
of occurrence of the symbols. Codes generated using this coding technique 
are popularly known as H u f f m a n  codes. Huffman coding technique is based 
on the following two observations regarding optimum prefix codes. 
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0 The more frequently occurring symbols can be allocated with shorter 
codewords than the less frequently occurring symbols. 

0 The two least frequently occurring symbols will have codewords of the 
same length, and they differ only in the least significant bit. 

Average length of these codes is close to entropy of the source. 
Let us assume that there are m source symbols {sl, s p ,  . . .  , s,} with as- 

sociated probabilities of occurrence { p l  , p ~ ,  . . . , p m } .  Using these probability 
values, we can generate a set of Huffman codes of the source symbols. The 
Huffman codes can be mapped into a binary tree, popularly known as the 
Huffman tree. We describe the algorithm to generate the Huffman tree and 
hence the Huffman codes of the source symbols below. We show a Huffman 
tree in Figure 2.1. 

1. Produce a set N = { N l ,  N z ,  . . . , N,} of m nodes as leaves of a binary 
tree. Assign a node Ni with the source symbol si, i = 1 ,  2, + .  . , m and 
label the node with the associated probability p i .  

(Example: As shown in Figure 2.1, we start with eight nodes No, N1, 
Nz, N3,  N4, N5, N6, N7 corresponding to  the eight source symbols a ,  6 ,  
c, d,  e,  f ,  g, h,  respectively. Probability of occurrence of each symbol is 
indicated in the associated parentheses.) 

2. Find the two nodes with the two lowest probability symbols from the 
current node set, and produce a new node as a parent of these two 
nodes. 
(Example: From Figure 2.1 we find that the two lowest probability 
symbols g and d are associated with nodes N6 and N3 respectively. The 
new node N8 becomes the parent of N3 and N6.) 

3. Label the probability of this new parent node as the sum of the proba- 
bilities of its two child nodes. 
(Example: The new node NS is now labeled by probability 0.09, which 
is the sum of the probabilities 0.06 and 0.03 of the symbols d and g 
associated with the nodes N3 and N6 respectively.) 

4. Label the branch of one child node of the new parent node as 1 and the 
branch of the other child node as 0. 
(Example: The branch N3 to  N8 is labeled by 1 and the branch N6 to 
N8 is labeled by 0.) 

5. Update the node set by replacing the two child nodes with smallest 
probabilities by the newly generated parent node. If the number of 
nodes remaining in the node set is greater than 1 ,  go to  Step 2.  
(Example: The new node set now contains the nodes NO, N I ,  N z ,  N4, 
N5, N7, N8 and the associated probabilities are 0.30, 0.10, 0.20, 0.09, 
0.07, 0.15, 0.09, respectively. Since there are more than one node in 
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the node set, Steps 2 to  5 are repeated and the nodes Ng, N I O ,  N11, 

N12, N13, N14 are generated in the next six iterations, until the node 
set consists only of N14.) 

6. Traverse the generated binary tree from the root node to each leaf node 
Ni,  i = 1, 2, ’ . .  , m, to produce the codeword of the corresponding 
symbol si, which is a concatenation of the binary labels (0 or 1) of the 
branches from the root to the leaf node. 
(Example: The Huffman code of symbol h is 110, formed by concate- 
nating the binary labels of the branches N14 to N13, N13 to N11 and 

f ig. 2.1 Huffman tree construction for Example 1 

It is needless to mention that any ensemble of binary codes, which can be 
mapped into a binary tree, consists of prefix codes. Hence Huffman code is 
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Symbol Probability 

a 0.30 
b 0.10 
C 0.20 
d 0.06 
e 0.09 
f 0.07 
g 0.03 
h 0.15 

also a prefix code. The Huffman code generation process described above is a 
bottom-up approach, since we perform the code construction process on the 
two symbols with least probabilities. 

Huffman 
Code 
1 0  
0 0 1  
0 1  
11111 
0 0 0  
1 1 1 0  
1 1 1 1 0  
1 1 0  

2.2.0.1 Example 1: Assume the alphabet S = {a ,  b,  c ,  d ,  e l  f ,  g, h }  with 
8 source symbols and their corresponding probabilities are p ( a )  = 0.30, p ( b )  = 
0.10, p ( c )  = 0.20, p ( d )  = 0.06, p ( e )  = 0.09, p(f) = 0.07, p ( g )  = 0.03, and 
p ( h )  = 0.15 respectively. The Huffman tree generated by the Huffman Coding 
algorithm is shown in Figure 2.1 and the corresponding Huffman code table 
is shown in Table 2.1. 

Let us consider a string M of 200 symbols generated from the above source, 
where the numbers of occurrences of a, b, c,  d ,  e l  f ,  g and h in M are 60, 20, 
40, 12, 18, 14, 6 and 30 respectively. Size of the encoded message M using 
the Huffman codes in Table 2.1 will be 550 bits. Here it requires 2.75 bits 
per symbol on the average. On the other hand, the length of the encoded 
message A4 will be 600 bits if it is encoded by a fixed-length code of length 
3 for each of the symbols. This simple example demonstrates how we can 
achieve compression using variable-length coding or source coding techniques. 

Table 2.1 Huffman Code Table 

2.2.1 Limitations of Huffman Coding 

Although Huffman coding is a very efficient entropy coding technique, it has 
several limitations. Huffman code is optimal only if exact probability distri- 
bution of the source symbols is known. It is also clear that each symbol is 
encoded with integer number of bits. We have known from Shannon’s the- 
ory that the optimal length of a binary codeword for a source symbol s from 
a discrete memoryless source is -log,p(s) where p ( s )  is the probability of 
appearance of symbol s. This condition is exactly satisfied when the prob- 
abilities of the source symbols are negative integer powers of two (e.g., 2-l ,  
2-2 , 2-3 , 2-4 , etc.). If the probabilities of the symbols significantly deviates 
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from this ideal condition, encoding of these symbols can result in poor coding 
efficiency. 

Redundancy of a source is defined by the average code length less the 
entropy. I t  can be shown that the redundancy of Huffman codes can be 
bounded by p +  0.086, where p is the probability of the most likely symbol [a ] .  
As a result the redundancy will be very high if the probability of occurrence 
of a symbol is significantly greater compared to the others. 

Huffman coding is not efficient to adapt with the changing source statistics. 
A predefined Huffman code can lead to data expansion when it is applied to  
encode data whose statistical characteristics are significantly different from the 
source statistics used to generate the Huffman code. In image compression 
applications, a Huffman code is developed using a set of typical images in 
practice. As a result, the Huffman coding is not necessarily optimal for a 
particular image unless the code is generated using the statistical distribution 
of that image. 

Another limitation of Huffman coding is that length of the codes of the 
least probable symbol could be very large to store into a single word or basic 
storage unit in a computing system. In the worst-case scenario, if the proba- 
bility distribution of the symbols generates a Huffman tree that is a skewed 
binary tree, the length of the longest two codes will be n - 1 if there are 
n source symbols. For example, consider four source symbols a,  b ,  c and d 
with corresponding probabilities p ( a )  = 0.60, p ( b )  = 0.25, p ( c )  = 0.10, and 
p ( d )  = 0.05 respectively. The Huffman tree for this source will be a skewed 
binary tree and the Huffman codes of a,  b, c and d can be 1, 0 1, 00  1 and 00  0 
respectively. Usually the Huffman codes are stored in a table called the Huff- 
man table. In its simplest form of implementation, usually each entry in the 
table contains a Huffman code. Since the Huffman code is a variable-length 
code, storage of each entry into the code table is usually determined by the 
length of the longest code. For an arbitrarily large code it is a limitation. 

2.2.2 Modified Huffman Coding 

For a large set of source symbols, it is often possible that most of the symbols 
have small probabilities of occurrence and a significantly smaller number of 
symbols are most probable. In this situation, the code length of these least 
probable symbols could be prohibitively high because of their large informa- 
tion content - log, p .  To avoid this, we can consider a reduced set of symbols 
consisting of the most probable symbols and a special symbol ‘*ESCAPE.” 
The Huffman code is generated for this reduced subset of symbols only. We 
can assume that the least probable symbols are all lumped into this ESCAPE 
category. Whenever a symbol in this ESCAPE category needs to be encoded, 
we transmit Huffman code of ESCAPE, followed by extra bits to  identify the 
symbol. If the number of appearance of the symbols in the ESCAPE category 
is significantly small, the increase in average bit rate will be very small while 
the storage requirement for the Huffman Table and the decoding complexity 
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will be substantially reduced. Modified H u f f m a n  Coding has been adopted in 
the CCITT Group 3 International digital facsimile coding standards [3]. 

2.2.2.1 From the set of symbols in Example 1, if the least 
probable symbols d ,  e l  f ,  and g are lumped together into a special ESCAPE 
category, the reduced subset of will be { a ,  b ,  c, h, ESCAPE} and the prob- 
ability distribution of these symbols changes to p ( a )  = 0.30, p ( b )  = 0.10, 
p ( c )  = 0.20, p ( h )  = 0.15, and p(ESCAPE) = 0.25 respectively. Construc- 
tion of the corresponding Huffman tree using this reduced subset of source 
symbols is shown in Figure 2.2. We call this reduced Huffman tree a modified 
H u f f m a n  tree. From the modified Huffman tree, we derive the Huffman code 
table shown in Table 2.2. If we assign fixed-length code identifiers 00, 01, 
10, and 11 for d ,  e l  f, and g respectively, the modzfied H u f f m a n  code can be 
constructed as shown in Table 2.3. 

Example 2: 

a (0.30) 

b (0.10)- 

c (0.20) - 

h (0.15)- 

(0.25) -4 
(0.45) r- 

0 

ESCAPE (0.25) 

I 

(0.55) 

) 

Fig. 2.2 Huffman Tree Construction for the reduced symbols in Example 2. 

The first two bits 1 0  of the codeword for d in Table 2.3 is the Huffman 
code of the special symbol ESCAPE and the last two bits 00  represent 
the identifier for d .  Similarly the other codewords have been defined. It is 
interesting to  note in this example that length of the modified Huffman codes 
for the two least probable symbols d and g is now 4 compared to  the original 
code length 5 of the original Huffman code in Table 2.1. This may not be true 
in other cases. 
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I Code 

Table 2.2 Hiiffman Code for Reduced Alphabet 

a 

ARlTH M ETlC 1 

0.30 I l l  

Reduced 1 Probability I Huffman 1 

Symbol 

a 
b 

h 

d 

f 

C 

e 

LI 

Modified 
Huffman Code 
1 1  
0 1 0  
0 0  
0 1 1  

1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  

Table 2.3 Modified Huffinan Code 

DING 

Arithmetic coding is a variable-length source encoding technique [4]. In 
traditional entropy encoding techniques such as Huffman coding, each input 
symbol in a message is substituted by a specific code specified by an integer 
number of bits. Arithmetic coding deviates from this paradigm. In arithmetic 
coding, a sequence of input symbols is represented by an interval of real num- 
bers between 0.0 and 1.0. The longer the message, the smaller the interval to  
represent the message becomes, as will be evident in the following discussions. 
More probable symbols reduce the interval less than the less probable sym- 
bols and hence add fewer bits in the encoded message. As a result, the coding 
result can reach to  Shannon’s entropy limit for a sufficiently large sequence of 
input symbols as long as the statistics are accurate. 

Arithmetic coding offers superior efficiency and more flexibility compared 
to the popular Huffman coding. It is particularly useful when dealing with 
sources with small alphabets such as binary alphabets and alphabets with 
highly skewed probabilities. Huffman coding cannot achieve any compression 
for a source of binary alphabets. As a result arithmetic coding is highly effi- 
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cient for coding bi-level images. However, arithmetic coding is more compli- 
cated and is intrinsically less error resilient compared to  the Huffman coding. 
The arithmetic coding requires significantly higher computation because of 
the requirement of multiplication to compute the intervals. However, sev- 
eral multiplication-free arithmetic coding techniques have been developed for 
binary image compression [ 5 ,  6, 71. 

2.3.1 Encoding Algorithm 

The arithmetic coding algorithm is explained here with an example. We 
consider a four-symbol alphabet A = { a ,  b, c, d }  with the fixed symbol prob- 
abilities p ( a )  = 0.3, p ( b )  = 0.2, p ( c )  = 0.4, and p ( d )  = 0.1 respectively. The 
symbol probabilities can be expressed in terms of partition of the half-open 
range [O.O, 1.0) as shown in Table 2.4. 

Table 2.4 Probability Model 

d 0.1 

Probability 
[O.O, 0.3) 
[0.3, 0.5) 
[0.5, 0.9) 
[0.9, 1.0) 

The algorithm for arithmetic coding is presented below. In this algorithm, 
we consider N is the length of the message (i.e., total number of symbols in 
the message); F ( i )  is the cumulative probability of ith source symbol as shown 
in Table 2.4. 

Algorithm : Arithmetic Coding 
begin 

L = 0.0; 
H = 1.0; 
F(0)  = 0;  
for ( j  = 1 to N )  { 

i = index of Symbol(j); 
L = L + ( H  - L )  * F ( i  - 1);  
H = L + ( H  - L )  * F ( i ) ;  

} 
output  (V); 

end 

2.3.1.1 We would like to encode a message "c  a c b a d" using the 
above fixed model of probability estimates. At the beginning of both encoding 

Example: 
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and decoding processes, the range for the message is the entire half-open 
interval [O.O, l . O ) ,  which can be partitioned into disjoint subintervals or ranges 
[O.O, 0.3)) [0.3, 0.5), [0.5, 0.9), and [0.9, 1.0) corresponding to the symbols a, 
b, c, and d respectively, as shown by the range R(start) in Figure 2.3 in terms 
of the vertical bar with ticks representing the symbol probabilities stipulated 
by the probability model. As each symbol in the message is processed, the 
range is narrowed down by the encoder as explained in the algorithm. 

1 0 -  
d 

0 9  - 

C 

0.5 

0 

0.3 

a 

0.0 - 

0.560 - 

b 

0.536 . 

a 
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0.57728 . 
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0 577280- 
d 

0.576992 - 
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0 575264 

- 0.574400- 
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0.577078 

0.57699 
R(stan) R(c) R(ca) R(cdc) R(cacb) R(cacba) R(cacbdd 

Fig. 2.3 Arithmetic coding technique: an example. 

Since the first symbol of the message is c, the range is first narrowed down 
to the half-open interval R(c)=[0.5, 0.9). This range is further partitioned 
into exactly the same proportions as the original one, yielding the four half- 
open disjoint intervals [0.5, 0.62), (0.62, 0.70), [0.70, 0.86), and [0.86, 0.9) 
corresponding to a ,  b,  c and d respectively as shown in Figure 2.3. As a result, 
the range is narrowed down to  R(ca)=[0.5, 0.62) when the second symbol a 
in the message is processed. This new range [0.5, 0.62) is now partitioned into 
four disjoint intervals [0.5, 0.536), [0.536, 0.560), [0.560, 0.608), and [0.608, 
0.62). After processing the third symbol, c, the range is accordingly narrowed 
down to R(ca  c)=[0.560, 0.608). This is again partitioned into [0.560, 0.5744)) 
[0.5744, 0.5840), [0.5840, 0.6032), and [0.6032, 0.608) in order to process the 
next symbol in the message. After processing the fourth symbol, b ,  the range 
is now narrowed down to  R(c a cb)=[0.5744, 0.5840). This is again partitioned 
into four intervals [0.5744, 0.57728), [0.57728. 0.57920), [0.57920, 0.58304), 
and [0.58304, 0.584) corresponding to the symbols a, b,  c, and d respectively. 
After processing the fifth symbol, a, the range is now narrowed down to 
R(ca  cba)=[0.5744, 0.57728). This is further partitioned into the disjoint 
intervals [0.5744, 0.575264), [0.575264, 0.575840), [0.575840, 0.576992), and 
[0.576992, 0.57728). The last symbol in the message is d and hence the final 
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range for the message becomes R ( c a  c ba d)=[0.576992, 0.57728). As a result, 
the message “ca  cbad” can be encoded by any number in the range [0.576992, 
0.57728) because it is not necessary for the decoder to know both ends of the 
range produced by the encoder. If we use the midpoint of the interval, the 
encoded value will be 0.577136. Assuming that we choose 0.577, the decoding 
processing is explained below using the same probability model in Figure 2.3 
used in the encoding process. 

2.3.2 Decoding Algorithm 

Both the encoder and the decoder have the same probability model. Initially 
the decoder starts with the range [O.O, 1.0)) which is partitioned into four 
intervals [O.O, 0.3), [0.3, 0.5), [0.5, 0.9), and [0.9, 1.0) corresponding to the 
symbols a ,  b,  c ,  and d in the alphabet. As soon as the decoder receives an 
encoded number 0.577, it can immediately decode that the first symbol of the 
message is c because the number 0.577 belongs to the range [0.5, 0.9) and the 
range is narrowed down to [0.5, 0.9) and partitioned into [0.5, 0.62), [0.62, 
0.70), [0.70, 0.86), and I0.86, 0.9) in a similar fashion as the encoder. Since 
the number 0.577 belongs to  the range [0.5, 0.62), it can immediately decode 
the second symbol to be a. The range is now narrowed down to [0.5, 0.62) 
and partitioned into [0.5, 0.536), [0.536, 0.560), [0.560, 0.608), and [0.608, 
0.62). Since the number 0.577 belongs to  the range [0.560, 0.608), the de- 
coder can decode the third symbol to be c. The range is now narrowed down 
to [0.560, 0.608) and partitioned into the four subintervals [0.560, 0.5744), 
[0.5744, 0.584), [0.584, 0.6032), and [0.6032, 0.608). Since the number 0.577 
belongs in the range [0.5744, 0.584), the decoder deduces that the next sym- 
bol is b and narrows the range down to be [0.5744, 0.584). The range is now 
subdivided into [0.5744, 0.57728), [0.57728. 0.5792), [0.5792, 0.58304), and 
[0.58304, 0.584). Since the number 0.577 belongs within the range I0.5744, 
0.57728), the next symbol decoded is a and the range is narrowed down to 
j0.5744, 0.57728) and partitioned into four subintervals [0.5744, 0.575264), 
[0.575264, 0.575840), [0.575840, 0.576992), and [0.576992, 0.57728). Since 
0.577 belongs to  the range [0.576992, 0.57728), it is very natural that the 
decoder decodes the next symbol to  be d and narrows the range down to 
[0.576992, 0.5770784), [0.5770784, 0.577136), [0.577136, 0.5772512), and [ 
0.5772512, 0.57728) respectively. Hence the decoder could uniquely decode 
the message “c a c b a d” until this step. If the decoder is aware of the length 
of the message, it can stop decoding here. Otherwise, it can continue decod- 
ing the next symbol to be a because 0.577 belongs to  the range [0.576992, 
0.5770784) and so on indefinitely. Hence the decoder faces the problem of de- 
tecting the end of the message in order to  stop. To resolve the ambiguity, we 
can ensure that each message ends with a special terminating symbol known 
to both encoder and decoder. In this example, if we assume that d is the 
special terminating symbol, the decoder will effectively stop after decoding 
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the message “c a c b a d.” Otherwise the length of the original message needs 
to be known to the decoder in order to  stop decoding effectively. 

The arithmetic coding algorithm described above suffers from the following 
limitations. 

0 The encoded value is not unique because any value within the final 
range can be considered as the encoded message. I t  is desirable to  have 
a unique binary code for the encoded message. 

0 The encoding algorithm does not transmit anything until encoding of the 
entire message has been completed. As a result, the decoding algorithm 
cannot start until it has received the complete encoded data. The above 
two limitations can be overcome by using the binary arithmetic coding 
which will be described in the next section. 

0 The precision required to represent the intervals grows with the length 
of the message. A fixed-point arithmetic implementation is desirable, 
which can again be achieved using the binary arithmetic coding by re- 
stricting the intervals using a scaling approach. We can replace the 
initial range [O.O,l.O) with a large range of [0, M A X - V A L U E ) ,  where 
MAX-VALUE is the largest integer number that a computer can han- 
dle. For a 16-bit integer arithmetic, the initial range will be [0, 216 - 1). 
Rather than defining the cumulative probabilities in the range of [0,1), 
we can define cumulative frequencies of the symbols within the range [0, 
216 - 1). This resolves the precision problem. 

0 Use of the multiplications in the encoding and decoding process, in order 
to compute the ranges in every step, may be prohibitive for many real- 
time fast applications. 

0 The algorithm is very sensitive to  transmission errors. A minor change 
in the encoded data could represent a completely different message after 
decoding. 

2.4 BINARY ARITHMETIC CODING 

Binary arithmetic coding is an incremental encoding and decoding process; 
that is, the encoder need not wait till the end of the encoding of the last 
symbol of the message before i t  can output or transmit the encoded data. 
Similarly, the decoder need not wait to  receive all the encoding bits before it 
can start decoding. Also binary arithmetic coding helps to  resolve the issue 
of the precision of the final result that we discussed in arithmetic coding; 
that is, if the number of symbols in the alphabet is large, the intervals of 
individual symbols could be very small, and coding large numbers of symbols 
in data with these small intervals can make the final range too small beyond 
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the allowed precision of a digital computer. The incremental encoding and 
decoding process in binary arithmetic coding resolves this issue. The four 
general observations or rules behind binary arithmetic coding are as follows: 

0 Case 1: If the present range [LOW, H I G H )  entirely belongs to the 
lower half of the interval [O.O, 1.0) (i.e., H I G H  < 0.5), the encoder 
outputs or transmits a binary bit 0 and rescales the range by a factor 2 
as [2 * LOW, 2 * H I G H ) .  

0 Case 2: If the present range [LOW, H I G H )  entirely belongs to  the 
upper half of the interval [O.O, 1.0) (i.e., LOW 2 0.5), the encoder 
outputs or transmits a binary bit 1 and rescales the range by subtracting 
0.5 from both LOW and H I G H  and multiplying the results by a factor 
2 as [2 * (LOW - 0.5), 2 * ( H I G H  - 0.5)). 

0 Case 3: If the present range [LOW, H I G H )  entirely belongs to the 
second and third quarters of the interval [O.O, 1.0) (i.e., LOW 2 0.25 
and H I G H  < 0.75), we keep track of this situation by incrementing 
a special counter SPCL-COUNT and rescale the range by subtracting 
0.25 from both LOW and H I G H  and multiplying the results by a factor 
2 as [2*(LOW-0.25) ,  2 * ( H I G H - 0 . 2 5 ) ) .  Whenever case 1 or 2 arises, 
the encoder checks the value of SPCL-COUNT. If it is greater than 0, 
those many binary 1’s (or 0’s) are output or transmitted after it outputs 
the binary bit 0 (or 1) as described in case 1 (or 2).  After all the binary 
bits are output, the SPCL-COUNT is reset to  count 0. 

0 For any other cases, there is no need to  output or transmit any binary 
bit and also no need to rescale the range. This is a significant part of 
the binary arithmetic coding that leads to low bit rate. 

We describe the binary arithmetic coding algorithm using the same example 
as in the previous section. We consider the same probability model and show 
how we can generate a unique binary code incrementally for the same message 
“ c a c  bad.”  Consider LOW and H I G H  represent the low and high values of 
the present half-open range. The changes in the range and output of the 
binary bits are shown in Figure 2.4. 

We begin with the half-open interval RO= [O.O, 1.0) (i.e., LOW = 0.0 and 
H I G H  = 1.0). The special counter SPCL-COUNT is initialized to count 0. 
The first symbol in the message is c which represents the range R1= [0.5, 0.9) 
shown in Figure 2.4. Since the new range [0.5, 0.9) entirely belongs to  the 
upper half of the interval (0.0, 1.0), we output the binary code 1 and rescale 
the interval to  R2= [O.O, 0.8). Since SPCL-COUNT = 0, no other binary 
bit is output. 

The second symbol in the message is a and the corresponding range is R3 = 
[O.O, 0.24). Since this range entirely belongs to the lower half of the interval 
[O.O, l . O ) ,  we output the binary code 0 and rescale the range to  R4=[0.0, 
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Fig. 2.4 Binary arithmetic coding technique: an example. 

0.48). This again entirely belongs to the lower half of the interval [O.O, 1.0). 
Hence, we output the binary code 0 and rescale the range to  R5 = [O.O, 0.96). 

The third symbol in the message is c and the corresponding range is 
R6 = [0.48, 0.864). This does not require us to  output any binary bit nor 
is the range rescaled. 

The fourth symbol in the message is b and the corresponding range is 
R7= [0.5952, 0.672). Since this range entirely belongs to the upper half of 
the interval [O.O, l . O ) ,  we output the binary code 1 and rescale the range to 
R8= [0.1904, 0.344). The new range now entirely belongs to the lower half 
of the interval [O.O, 1.0). Hence, we output the binary code 0 and rescale the 
range to  R9 = [0.3808, 0.688). Now this range entirely belongs to the second 
and third quarter of the interval [O.O, 1.0) because LOW = 0.3808 > 0.25 
and H I G H  = 0.688 < 0.75. Hence we increment the special counter to  
SPCL-COUNT = 1 and rescale the range to R10=[0.2616, 0.876). 
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The fifth symbol in the message is a and the corresponding range is R11= 
[0.2616, 0.44592) which entirely belongs to the lower half of the interval 
[O.O, 1.0). Hence we output the binary code 0 and rescale the range to  
R12 = [0.5232, 0.89184). Since the value of the special counter is greater than 
0 (SPCL-COUNT = l), we output one more binary bit 1. Now the new 
range R12 = [0.5232, 0.89184) entirely belongs to the upper half of the interval 
[O.O, 1.0). As a result, we output the binary bit 1 and rescale the range to 
R13 = [0.0464, 0.78368). 

As a result we rescale the range to R15 = [0.419904, 0.56736) and output the 
binary bit 1. At this point, we can stop encoding by sending the binary 
representation of any value in the final interval. In this case we can conve- 
niently choose the value 0.5. The binary representation of 0.5 is 0.1000 .... 
Thus, we transmit a 1 followed by as many as 0’s required by the word length 
used in the implementation. Hence the unique binary code for the message 
“cacbad”  is 1001001111000000 .  Itshouldbenotedthatthefirst9bits) 
1 0 0 1 0 0 1 1 1, represent the binary codes generated by the above incremental 
binary arithmetic coding procedure. The last 7 bits, 1 0 0 0 0 0 0, represent 0.5 
chosen from the final range [0.419904, 0.56736), assuming a 16-bit word for 
implementation. 

Let us describe how to decode the binary code 1 0 0  1 0 0  1 1 1 1 0  0 0 0 0 0  
generated using the above incremental encoding process. We do not need 
to  wait for the entire binary code before we can start the decoding process. 
The decoding can be done in incremental fashion as well. To decode the 
first symbol, we need to wait to  receive the number of bits that is enough 
to  represent the shortest interval of the probability model. But to properly 
handle the situation that arises due to  case 3 in the encoder, we need more 
bits to take care of the look-ahead bits. As a result we start with twice the 
number of minimum bits required to represent the shortest interval of the 
probability model. The length of the shortest interval [0.9, 1.0) is 0.1 and the 
condition of minimum number of bits (say k) to represent 0.1 is 2-k < 0.1 or 
k = 4. Hence we start with 8 bits. 

As soon as the first eight bits, 1 0 0 1 0 0 1 1, are available as a codeword 
C ,  we can start decoding. Since C =  1 0 0  1 0 0  1 1 represents the fraction 
0.57421875, we can immediately deduce that that first symbol of the mes- 
sage is c because 0.57421875 belongs in the range R1= [0.5, 0.9) as shown in 
Figure 2.4. Since range R1 entirely belongs to  the upper half of the inter- 
val [O.O, 1.0)) it is scaled to  R2 = [O.O, 0.8). We shift the most-significant bit 
(MSB) 1 of codeword C out and append a new bit at the least significant bit 
(LSB) position of the codeword C to form the new codeword C = 0 0 1 0 0 1 1 1. 

Now the new codeword C = 0 0 1 0  0 1 1 1 represents the fraction 0.15234375, 
which belongs to  the range R3 = [O.O, 0.24) for symbol a and hence the decoded 
symbol is a. Since R3 entirely belongs to  the lower half of the interval [O.O, 
1.0), it is scaled to R4 = [O.O, 0.48). We shift out the MSB 0 of C and append 
a new bit 1 to form the codeword C = 0 1 0 0 1 1 1 1. Still the range R4 entirely 

The last symbol is d and the corresponding range is R14 = [0.709952,0.78368). 
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belongs to the lower half of the interval [O.O, 1.0) and hence R4 is scaled to  
R5 = [O.O, 0.96) and forms the new codeword C = 1 0  0 1 11 1 0  after shifting 
the MSB 0 out and appending a new bit 0 at the LSB. The new codeword 
now represents the fraction 0.61718750 and helongs to  the range R6 = [0.48, 
0.864) for symbol c and hence the symbol c is decoded. 

The range R6 does not entirely belong to  upper half or lower half of the 
interval [O.O, 1.0). It does not entirely belong to  the second and third quarter 
[0.25, 0.75) either. Hence we do not need any scaling of the range. Now 
the fraction represented by the codeword belongs to  the range R7 = (0.5952, 
0.672), which represents the symbol b and hence the symbol b is decoded. 
The new range entirely belongs to  the upper half of the interval [O.O, 1.0) and 
hence it is scaled to R8 = [0.1904, 0.344). Accordingly, we output the MSB 1 
from codeword C and form a new codeword C = 0 0 1 1 1 1 0 0 after appending 
the new bit 0 in the LSB. The range R8 now entirely belongs to  the lower 
half of the interval (0.0, 1.0) and hence it is scaled to  R9= [0.3808, 0.688). 
Accordingly, new codeword is C = 0 1 1 1 1 0 0 0 is formed. 

Now the new range R9 entirely belongs to  the second and third quarter 
[0.25, 0.75) of the interval [O.O, 1.0). Hence we increment the special counter 
to  SPCL-COUNT = 1 and rescale the range to  R10=[0.2616, 0.876). Since 
this range does not need any scaling, we drop SPCL-COUNT = 1 bits 
adjacent to  the MSB of the codeword shown in bold in C = 0 1 1 1 1 0 0 0 to  
form the new codeword C = 0 1 1 1 0 0 0 0. 

The codeword C = 0 1 1 1 0  0 0 0 represents the fraction 0.4375, which be- 
longs to  the range R11= [0.2616, 0.44592) to  represent the symbol a and 
hence the symbol a is now decoded. The range R11 now entirely belongs to  
the lower half of the interval [O.O, 1.0) and hence is scaled to  R12 = [0.5232, 
0.89184) and the new codeword C = 1 1 1 0 0 0 0 0 after shifting the MSB 0 and 
inserting 0 at the LSB. The range R12 now entirely belongs to  the upper half 
of the interval [O.O, 1.0) and hence is scaled further to  R13 = [0.0464, 0.78368) 
and the new codeword is C = 1 1 0 0 0 0 0 0. The codeword C now represents 
the fraction 0.75 which belongs to  the range R14=[0.709952, 0.78368) to  rep- 
resent the symbol d .  Hence the decoded symbol is now d.  We can stop the 
decoding process here because the final symbol is d .  

We can further proceed to  verify the validity of the last codeword and the 
decoding procedure. Since R14 = [0.709952, 0.78368) entirely belongs to  the 
upper half of the interval [O.O, l . O ) ,  it can be scaled further to  R15 = [0.419904, 
0.56736). Accordingly, the codeword can be modified to  C = 1 0 0 0 0 0 0 0. The 
value of this codeword is 0.5, which matches the final value that the encoder 
transmitted during the encoding processing. 

2.4.1 Implementation with Integer Mathematics 

The precision required to  represent the intervals grows with the length of 
the message. If we continue encoding a large number of symbols in the mes- 
sage, the final range may even become smaller than the precision of any com- 
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puter, to define such a range. In binary arithmetic coding, we can replace 
the initial range [0.0,1.0) by [0, M A X - V A L U E ) ,  where M A X - V A L U E  is 
the largest integer number that a computer can handle. For a 16-bit integer, 
M A X - V A L U E  = 216 - 1 = 65535 and hence the initial range will be [0, 
216 - 1). Rather than defining the cumulative probabilities of the symbols in 
the range of [O.O, l . O ) ,  we can define their cumulative frequencies scaled up 
within the range [0, 216 - 1). This resolves the precision problem. 

Since we are going to  do the integer arithmetic, we need to replace the cu- 
mulative probability F ( i )  of the symbol with index i by an integer expression. 
We can replace this by the cumulative frequency Cum-Freyuency(i). Define 
Ni as the number of times the symbol with index i occurs in a sequence of 
length Total-Count. Then Cum_Frequency(i) and F(i)  can be expressed as 

Cum-Freyuency(i) = EL=, Nk 

As a result, the ranges can be updated by the following expressions 

( H I G H -  LOW+l) *Cum-FTequency(i- 1) 
Total-Count LOW = LOW + 

H I G H  - LO W + 1 )  +Cum-Frequency(i)  - 
Total -Count H I G H  = LOW + 1 

If LOW 1 2 the range [LOW,  H I G H )  entirely belongs to the 
upper half of the interval (0, M A X - V A L U E ) .  If H I G H  < M A X - V A L U E + l ,  2 

the range [LOW,  H I G H )  entirely belongs to the lower half of the interval [0, 
M A X - V A L U E ) .  

Details of the integer arithmetic implementation of the binary arithmetic 
algorithm and the source code in C have been presented in [4]. The binary 
arithmetic coding became particularly useful for encoding binary images. Q- 
coder is a popular implementation of an adaptive binary arithmetic coding 
technique for coding bilevel images (i.e., the source symbols are 0 and 1 only) 
without requiring any multiplication [ 5 ] .  The Q-coder approximates the in- 
tervals in such a way that it can avoid the multiplications and adjustment of 
the intervals in successive coding steps. It does not achieve optimum coding 
efficiency, but evidence shows that it can achieve coding efficiency within 2 
to  6% of the ideal results. A variation of this technique called QM-coder 
has been adopted for entropy encoding in a mode of JPEG image compres- 
sion standard [8]. The upcoming JPEG2000 standard uses another variation 
called the MQ-coder, a context-based adaptive arithmetic coder [9]. 

2.4.2 The QM-Coder 

The QM-coder [8] is an enhancement of the Q-coder [ 5 ] .  The QM-coder is the 
adaptive binary arithmetic coding algorithm used in the JBIG (Joint Bi-level 
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Image Processing Group) standard for bi-level image compression. Although 
it follows the same principle of arithmetic coding, QM-coder is designed for 
simplicity and speed. The input symbols to the QM-coder are single bits 
of the bi-level image and it is free from multiplications by approximating 
the computation of intervals by fixed-precision integer arithmetic operations 
(addition, subtraction, and shift operations only). 

The main idea behind the QM-coder is to map the input bits into more 
probable symbol (MPS) and less probable symbol (LPS). This can be explained 
in terms of a black-and-white image. If bits 0 and 1 represent the black and 
white pixels respectively, then in a mostly black region 0 will be mapped to 
MPS and 1 will be mapped to  LPS, whereas in a mostly white region 1 will be 
mapped to  MPS and 0 will be mapped to LPS. Before the next bit is input, the 
QM-coder determines which bit is MPS (the other bit is LPS) and compresses 
this information instead of the input bit directly. During the decoding process, 
the QM-decoder decodes whether the bit just decoded is MPS or LPS and then 
converts this information to actual binary pixel value. Hence the Qhl-coder 
assigns the intervals to the MPS and LPS symbols instead of the 0 or 1 input 
bit. If the probability estimate of LPS is Q, then the probability estimate 
of MPS is (1 - Q )  because there are only two symbols in the alphabet. For 
interval A, the QM-coder divides the interval into two subintervals according 
to the value of Q. The sizes of the subintervals assigned to  LPS and MPS are 
AQ and A ( l  - Q) respectively as shown in Figure 2.5. 

LPS subinterval = Q x A ss Q 

MPS subinterval = (1 - Q) A x A - Q 

0 ll 
fig. 2.5 Subinterval assignment in QM-coder. 

In QM-coder, the value of A is always assumed to  maintain close to 1. As a 
result, the subintervals of LPS and MPS can be approximated to  AQ M Q and 
A ( l  - Q) M A - Q respectively and hence the multiplication is avoided. The 
subinterval of LPS is placed above the subinterval of MPS as shown in Figure 
2.5. Accordingly, the MPS and LPS are assigned the subintervals [0, A - Q) 
and [A - Q,  A) respectively. Actually the value of A is always maintained 
within the range 1.5 > A 2 0.75. Whenever the value of A drops below 
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0.75 during the encoding process, the renormalization is done by repeated 
doubling (shifting left) A until it is greater than or equal to  0.75. Whenever 
we renormalize A,  we need to apply the same renormalization to C as well to 
keep these two parameters in sync. 

We denote the output code stream of the QM-coder by C. Ideally C can be 
any value within the current interval as we explained in the arithmetic coding 
algorithm in the previous section. However, for simplicity of implementation, 
the QM-coder points C at the bottom of the current interval. If the current 
input is MPS (or LPS), C is updated by adding the bottom of the MPS 
(or LPS) subinterval to  the current value of C. Since the bottom of MPS 
subinterval is 0, C actually remains unchanged when MPS is encoded. During 
encoding of LPS, C is updated by adding A- Q to the current value of C since 
A - Q is the bottom of the LPS subinterval as shown in Figure 2.5.  It should 
be noted that the encoder is initialized with the A = 1 at the beginning of the 
encoding process. Hence the encoding algorithm can be described as follows. 

When MPS is encoded: 

begin 
C is unchanged; 

if (C < 0.75) then 

endif; 

A = A - Q ;  

Renormalize A and C; 

end 

When LPS is encoded: 

begin 
C = C +  ( A -  Q);  
A = Q; 
Renormalize A and C ;  

end 

The probability estimation in QM-coder is accomplished by using a pre- 
determined table of Q values. The value of Q of the LPS is updated each 
time a renormalization occurs during the encoding. The table consists of a 
preset ordered list of the Q values. For every renormalization, Q is updated 
by the next lower or next higher Q value in the table, depending on whether 
the renormalization takes place because of encoding of an LPS or MPS during 
the encoding process. An important issue in QM-coder is called the problem 
of interval inversion. This problem happens when the size of the subinterval 
assigned to MPS becomes smaller than the size of the LPS subinterval because 
of the result of approximation of A and C. This problem occurs when LPS 
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actually occurs more frequently than the MPS due to some peculiar character- 
istics of the input bits. As a result, it is possible that the value of Q becomes 
of the order of 0.5 and as a result the size of t,he subinterval assigned to MPS 
can be as small as 0.25. In this situation, the problem is solved by revers- 
ing the assignment of the two subintervals whenever the LPS subinterval is 
greater than the MPS subinterval. This is known as the conditional exchange. 
The term conditional is used due t o  the fact that the subinterval reassignment 
takes place only when the LPS probability occupies more than half of the to- 
tal interval A .  Thus the condition for interval inversion is Q > A - Q .  Since 
Q 5 0.5, we get 0.5 2 Q > A - Q. As a result, both the subintervals Q 
and A - Q are less than 0.75 and this necessitates renormalization of A and 
C. That’s why the conditional exchange is performed only after the encoder 
detects that renormalization is needed. 

1.35 

0.85 

0.75 

0.0 

LPS (A-Q = 0.35) 

Fig. 2.6 
(b) with conditional exchange. 

Subinterval assignment in QM-coder, (a) without Conditional exchange and 

We have demonstrated the situation of a conditional exchange as an exam- 
ple in Figure 2.6. We assume that the current value of A is 1.35, which is less 
than 1.5 as shown in Figure 2.6(a). Assuming that Q = 0.5, the subintervals 
(0.0, 0.85) and [0.85, 1.35) are assigned t o  MPS and LPS respectively as shown 
in Figure 2.6(a). Now if the value of A is changed to A = A - Q = 0.85 in the 
next coding cycle, the symbol orders are inverted and accordingly subinter- 
vals assigned to  LPS and MPS are exchanged as shown in Figure 2.6(b). The 
subintervals assigned to LPS and MPS after conditional exchange are (0.0, 
0.35) and [0.35, 0.85) respectively, as shown in Figure 2.6(b). 
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Incorporating the process of handling the conditional exchange, the encod- 
ing algorithm thus becomes as follows. 

QM-Coder: The Encoding Algorithm 

When MPS is encoded: 

begin 
C is unchanged; 

if (C < 0.75) then 
if ( A  < Q )  then 

C = C + A ;  
A = Q ;  

A = A - Q ;  

endif; 
Renormalize A and C; 

endif; 
end 

When LPS is encoded: 

begin 
A = A - Q ;  
if ( A  2 Q )  then 

C = C + A ;  
A = Q; 

endif; 
Renormalize A and C ;  

end 

2.4.2.1 The QM-Decoder The decoder decodes an MPS or LPS by deter- 
mining which subinterval the value of the code stream belongs to. The QM- 
decoder is just the reverse of the encoder. For simplicity we ignore the condi- 
tional exchange situation here. The matching decoding algorithm is as follows. 

QM-Decoder: The Decoding Algorithm 

begin 
if (C 2 Q )  then 

(MPS is decoded) 
C = C - Q ;  
A = A - Q ;  

else 
(LPS is decoded) 
A = Q ;  

endif; 
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if ( A  < 0.75) then 

endif; 
Renormalize A and C ;  

end. 

Another variation of Q-coder, called the MQ-coder, has been used for adap- 
The details of this tive binary arithmetic coding in JPEG2000 encoding. 

algorithm will be discussed in Section 7.3.3 in Chapter 7. 

2.5 ZIV-LEMPEL CODING 

Dictionary-based coding techniques are often used for data compression. Most 
of the popular text compression algorithms use the dictionary-based coding 
approach. In dictionary coding, groups of consecutive input symbols can 
be replaced by an index into some dictionary. The simplest example is to  
express (or encode) the words “Sunday,” “Monday,” . . . , “Saturday” by the 
indexes 1, 2, . . . , 7. Another dictionary coding that we use every day is 
to replace “January,” “February,” . . . , “December” by 1, 2, . . . , 12. These 
are examples of static dictionary coding because the dictionary is predefined 
and does not change during either the encoding or the decoding process. A 
dynamic dictionary coding, however, builds a dictionary dynamically using 
the same message being encoded or decoded. 

There is a misconception that Ziv-Lempel coding is a single, well-defined 
algorithm. Jacob Ziv and Abraham Lempel described dynamic dictionary en- 
coders, popularly known as LZ77 [lo] and LZ78 [ll], by replacing the phrases 
with a pointer to where they have occurred earlier in the text. Since then many 
other people have developed dynamic dictionary coding algorithms based on 
the work by Ziv and Lempel, resulting in a family of compression algorithms. 
This family is popularly called the Ziv-Lempel coding, abbreviated LZ coding. 
The reversal of the initials in the abbreviation L Z  instead of ZL is a historical 
aberration that people chose to  perpetuate and we follow the same conven- 
tion in this book. LZW (Lempel-Ziv-Welch) [12] is a very popular algorithm 
in the LZ family. This is used in the compress command in Unix operating 
system and many others. 

There is a mistaken impression that the LZ coding works for text compres- 
sion only. In lossless mode, compressing images can be the same as compress- 
ing text. The popular image format, TIFF (Tag Image File Format), 
supports LZ coding. LZ coding techniques are widely used in dithered binary 
images as well. 

2.5.1 The LZ77 Algorithm 

LZ77 is the first form of Ziv-Lempel coding proposed by Ziv and Lempel 
in 1977 [lo]. In this approach, a fixed-size buffer containing a previously 
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... 

encoded character sequence that precedes the current coding position can be 
considered as a dictionary. The encoder matches the input sequence through a 
sliding window as shown in Figure 2.7. The window is divided into two parts: 
a search window that consists of an already encoded character sequence and 
a lookahead buffer that contains the character sequence to  be encoded. 

........... 
b a a b : . - a - - . c - - _ b ]  a a c b c d b c d b c a c . . .  

... a c b a a c b c d b c d b c a c . . .  

Fig. 2.7 LZ77 coding: An example with sliding window. 

To encode the sequence in the lookahead buffer, the search window is 
searched to  find the longest match with a prefix of the lookahead buffer. 
The match can overlap with the lookahead buffer, and obviously cannot be 
the buffer itself. Once the longest match is found, it is coded into a triple 
<offset, length,  C ( c h a r )  >, where o f se t  is the distance of the first character 
of the longest match in the search window from the lookahead buffer, length 
is the length of the match, and C ( c h a r )  is the codeword of the symbol char 
that follows the match in the lookahead buffer. The window is shifted left by 
length + 1 symbols to  begin the next search. 

2.5.1.1 Example-LZ77 Algorithm: Consider the sequence to  be en- 
coded is . . .  b a a b a c b a a c b c d b c d b c a c  . . . .  We assume that the size of the 
search window is 8 and that of the lookahead buffer is 6.  Assume that the 
substring b a a b a c b a in the search window has already been encoded and 
the substring a c b c d b in the lookahead buffer is to be encoded as shown in 
Figure 2.7(a). After searching the search window, we find that the longest 
match found is the substring a c b  of length 3 at distance 4 from the looka- 
head buffer. The character following the prefix a c b in lookahead buffer is c. 
Hence the triple to output is < 4, 3, C(c) >, where C ( c )  is the codeword for 
the character c. Since the match length is 3, we shift the window left by 4 
characters. 
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Now the first character in the lookahead buffer is d as shown in Figure 
2.7(b) and there is no match for d in the search window. Hence we output 
the triple < 0, 0, C(d) > and shift the sliding window by one. 

Now the longest match in the sliding window is the substring b c d b c  as 
shown in Figure 2.7(c). It should be noted that the matching substring starts 
in character position 3 in the search window and overlaps with the first two 
characters k d b c  in the lookahead buffer. Hence we output the triple < 
3, 5 ,  C ( a )  > and shift the sliding window left by 6 characters and continue. 

There are many variations of LZ77 coding. The popular compression soft- 
wares Zip and PKZip both use a variation of the LZ77 coding scheme called 
the LZSS coding scheme [13]. Use of the codeword for an explicit character 
in a triple in LZ77 is wasteful in practice because it could often be included 
as part of the next pointer. This inefficiency has been reduced by the LZSS 
coding scheme simply by adding a flag bit to indicate whether what follows 
the pointer is the codeword of a single character. As a result, we need to send 
only a pair of values corresponding to the offset and the length of the match 
instead of the triple. 

2.5.2 The LZ78 Algorithm 

LZ78 is the other key algorithm in the LZ family proposed by Ziv and Lempel 
in 1978 [Ill. Instead of using the previously encoded sequence of symbols (or 
string) in the sliding window as the implicit dictionary, the LZ78 algorithm 
explicitly builds a dictionary of patterns dynamically at  both the encoder and 
the decoder. The encoder searches this dictionary to find the longest pattern 
that matches with the prefix of the input string and encodes i t  as a pair 
< i, C ( S )  >, where i is the index of the matched pattern in the dictionary 
and C ( S )  is the codeword of the first symbol following the matched portion 
of the input. A new entry is then added in the dictionary. The new entry is 
the matched pattern concatenated by the symbol S .  The codeword C ( S )  is 
usually a Huffman-type variable-length code of the symbol S .  

In order to  achieve further compression, the index i in the output pair can 
be encoded using some Huffman-type variable-length binary encoding in order 
to achieve better compression by exploiting the statistics of the indexes. But 
for the sake of simplicity of explanation, we avoid it here. 

2.5.2.1 Example-LZ78 Encoding: Consider the following sequence: 

S = b a c a b a b b a a b b a b b a a a c b b c  

Initially the dictionary is empty. Since the first input symbol b has no match 
in the dictionary, the encoder outputs the pair < 0, C ( b )  > and inserts the 
first entry b into the dictionary with index 1 as shown in Table 2.5 .  

Similarly, the next input symbol a has no match in the dictionary and 
hence the encoder outputs the pair < 0, C ( a )  > and inserts new entry a at 
index 2 in the dictionary as shown in Table 2.6. 



ZIV-LEMPEL CODlNG 47 

< O,C(a) > 
< O,C(c) > 

Table 2.5 Dictionary After Step 1 

2 a 
3 c 

Encoder 1 
Output I Index I Entry 

< o.C(b) > I 1 I b 

Table 2.6 Dictionary After Step 2 

< O,C(a) > 

Similarly] the next input symbol c has no match in the dictionary and hence 
the encoder outputs the pair < 0, C(c) > and inserts the new entry c at  index 
3 as shown in Table 2.7. 

Table 2.7 Dictionary After Step 3 

Encoder I 
Output 1 Index 1 Entry 

< O,C(b) > I 1 I b 

The next input symbol a matches with entry 2 in the dictionary] but a b 
does not have any match. So the encoder outputs the pair < 2, C(b) > and 
inserts new entry a b at index 4 in the dictionary as shown in Table 2.8. 

Table 2.8 Dictionary After Step 4 

Encoder 

< O,C(a) > 
< O,C(c) > 
< 2 , C ( b )  > 4 a b  
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The next two symbols a b match with entry 4 in the dictionary, but a b b 
does not have any match. So the encoder outputs the pair < 4,  C(b) > and 
inserts a new entry a b b at index 5 in the dictionary as shown in Table 2.9. 

Table 2.9 Dictionary After Step 5 

I Encoder I 
Output I Index I Entry 

< O,C(b)  > I 1 1 b 

Continuing the above procedure, the encoder generates the output pairs 
< 2 ,  C(a)  >, < 1, C(b) >, < 5, C(a)  >, < 6, C(c)  >, and < 7 ,  C(c) > and 
builds the dictionary accordingly. The final dictionary is shown in Table 2.10 
below. 

Table 2.10 Final Dictionary 

Encoder 
ou tpu t  

< O,C(b) > 
< 0 ,  C ( a )  > 
< O,C(c) > 
< 2 , C ( b )  > 
< 4,  C ( b )  > 
< 2 , C ( a )  > 
< l , C ( b )  > 
< 5 ,C(a )  > 
< 6,C(c)  > 
< 7,C(c) > 

Index 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Entry 
b 
a 

a b  
a b b  
a a  
bb  
a b b a  
a a c  
b b c  

C 

As a result, the sequence S = b a c a b a b b a a b b a b b a a a c b b c  is encoded 
as < 0, C(b) >, < 0,  C(a) >, < 0 ,  C(c )  >, < 2, C(b) >, < 4 ,  C(b) >, 
< 2 ,  C(a) >, < 1, C(b) >, < 5, C(a)  >, < 6 ,  C(c) >, < 7 ,  C(c) >. 

2.5.2.2 Example-LZ78 Decoding: We now decode the encoded data 
to  explain how the LZ78 decoding process works. As with the encoder, the 
decoder also dynamically builds the dictionary. This dictionary is the same as 
the one built by the encoder. Initially the dictionary contains nothing. Since 
the first input pair to  the decoder is < 0, C(b) >, the decoder first decodes the 
symbol b from the codeword C(b). Since the decoded index is 0, it outputs 
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the symbol b and inserts the first entry < 1, b > in the dictionary same as 
shown in Table 2.5. 

The next input pair to the decoder is < 0, C ( a )  >. As result, the decoder 
outputs the symbol a and inserts the next entry < 2, a > in the dictionary, 
same as shown in Table 2.6. The following input pair is < 0, C(c)  > and 
hence the decoder outputs the symbol c and inserts the next entry < 3, c > 
in the dictionary, same as shown in Table 2.7. 

The next input pair is < 2, C ( b )  >, which indicates that the new output is 
the pattern for entry 2 in the dictionary concatenated by the decoded symbol 
b. Since entry 2 represents a ,  the output will be a b. A new pattern a b is now 
inserted at  index 4 in the dictionary. 

The following input pair is < 4 ,  C ( b )  >. As a result the decoder outputs 
the string a b b and inserts it in the dictionary in entry 5. The decoder similarly 
reads the next pair < 2, C ( a )  > and generates the output a a and inserts it 
in the dictionary in entry 6. Continuing in the similar fashion, the following 
decoder outputs are b b, a b b a ,  a a c ,  and b b c respectively. The final dictionary 
should also be identical to the one in Table 2.10. Hence the final decoder 
output is b a c a b a b b a a b b a b b a a a c b b c  and it exactly matches with the 
original input sequence. 

There are a number of variations of the LZ78 algorithm. The most popular 
variation of LZ78 is the algorithm by Welch [12], popularly known as LZW 
algorithm. 

2.5.3 The LZW Algorithm 

In the LZ78 encoding algorithm, inclusion of the explicit codeword C ( S )  of 
the symbol S along with the index i in the output < i, C ( S )  > is often very 
wasteful. In LZW algorithm, this inefficiency has been overcome by removing 
the inclusion of C ( S )  and transmitting the index i only. This is accomplished 
by initializing the dictionary with a list of single symbol patterns to include 
all the symbols of the source alphabet. In each step, the index of the longest 
match from the input in the dictionary is output and a new pattern is inserted 
in the dictionary. The new pattern is formed by concatenating the longest 
match with the next character in the input stream. As a result, the last 
symbol (or character) of this new pattern is encoded as the first character of 
the next one. 

2.5.3.1 Example-LZW Encoding: The LZW encoding algorithm is ex- 
plained below with an example to  encode the string b a b a c b a b a b a b c b. 

The dictionary generation is shown in Table 2.11. Initially, the dictionary 
consists of single symbol (or character) patterns a ,  b, and c from the input 
alphabet { a ,  b, c}. The indexes of the patterns in the dictionary are 1, 2, and 
3 respectively. 

After receiving the first character b, the encoder finds the match a t  index 
2 .  But the pattern ba with first two characters does not have a match in 
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Table 2.11 LZW Dictionary 

Index Pattern 

b I : I  c 

I 

Derived as 

initial 

2 S a  
l t b  
4 s c  
3 + b  
4 + b  
8 + a  
5 + c  

the current dictionary. Hence the encoder outputs index 2 to  encode the first 
character b and inserts the new pattern b a  to  index 4 in the dictionary. 

The second input character a has a match in the dictionary to  index 1, but 
a b formed by the second and third characters does not have a match. As a 
result the encoder outputs index 1 to encode a and inserts the new pattern 
a b in the dictionary to  index 5. 

Now the next two characters b a  match with the pattern to index 4,  but 
b a c does not have a match. Hence the encoder outputs index 4 to encode b a 
and inserts the new pattern b a c in the dictionary to index 6. 

The next character c now matches with index 3, but c b does not. Hence 
the encoder outputs index 3 to encode c and inserts c b in the dictionary to 
index 7. 

The next two characters b a  have a match at index 4,  but b a  b does not. 
Hence the encoder outputs the index 4 to encode b a  and inserts the new 
pattern b a b in the dictionary to index 8. 

The next three characters b a b  have a match in the dictionary to index 8, 
but b a  b a  does not. Hence the encoder now outputs the index 8 to encode 
b a b and inserts the new pattern b a b a in the dictionary to  index 9. 

The next two characters a b now match with the pattern at  index 5 in the 
dictionary, but a b c  does not. Hence the encoder outputs index 5 to encode 
n b and inserts the new pattern a b c in the dictionary to index 10. 

The next two characters c b  have a match at  index 7 in the dictionary. 
Hence the encoder outputs the index 7 to  encode c b and stops. 

As a result the output of the encoder is 2 1 4 3 4 8 5 7. 

2.5.3.2 Example-LZW Decoding: In this example, we take the same 
encoder output from the previous example and decode using LZW decoding 
algorithm. The input to the decoder is 2 1 4 3 4 8 5 7. 
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Like the encoder, the decoder starts with the initial dictionary with three 
entries for a ,  b, c with indexes 1, 2, 3. After visiting the first index 2,  the 
decoder outputs the corresponding pattern b from the dictionary. 

The next output is a corresponding to the second input index 1. At this 
point, the decoder inserts a new pattern b a  in the dictionary to  index 4. 
This new pattern b a  is formed by concatenating the first character ( a )  of the 
current output pattern ( a )  at the end of the last output pattern (b ) .  

The next input index is 4,  which corresponds to the pattern ba in the dic- 
tionary. Hence the decoder outputs b a  and inserts the new pattern a b  in the 
dictionary to index 5 .  The new pattern a b is again formed by concatenating 
the first character (b )  of the current output pattern b a  a t  the end of the last 
output pattern a .  

The next input index is 3, which corresponds to c in the current dictionary. 
The decoder hence outputs c and inserts a new pattern b a c in the dictionary 
to  index 6. This pattern b a c  has been formed by concatenating c at the end 
of the previous output or matching pattern b a .  

The next output of the decoder is b a  because of the input index 4. The 
decoder now inserts the new pattern c b in the dictionary to index 7. This 
pattern is again formed by concatenating the first character b of the current 
output ba a t  the end of the previous output c.  At this point, the dictionary 
has only 7 entries, as shown in Table 2.12. So far the decoding process was 
straightforward. 

Table 2.12 LZW Dictionary 

Index Pattern m 
b a c  

7 cb  

Derived as 

initial 

2 + a  
l + b  
4 + c  
3 + b  

The next input to the decoder is index 8. But the dictionary does not have 
any pattern with index 8. This tricky situation arises during decoding if a 
pattern has been encoded using the pattern immediately preceding it during 
the encoding process. As a result, the last character of the pattern is the 
same as the first character in this tricky situation. If we carefully examine 
the encoding steps in the previous example, we find that index 8 corresponds 
to the pattern b a b, which has been encoded using the immediately preceding 
pattern b a .  And we get b a b  by appending the first character b of b a  with 
itself. 
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Hence after the decoder receives the input index 8, it discovers that the 
index and a corresponding pattern does not exist in the current dictionary. It 
also recognizes that this tricky situation will happen because of the scenario 
that we discussed above. Hence the decoder creates the output by concate- 
nating the first character of the previous output with the previous output 
itself. Since the previous output was b a ,  the decoder outputs the b a b  in the 
current decoding step and inserts this new pattern in the dictionary to index 
8. The following input index 5 corresponds to the pattern a b and hence the 
decoder outputs a b and inserts the new pattern b a b a in the dictionary to 
index 9. This pattern b a  b a  is formed by concatenating the first character a 
of the current output a b a t  the end of the previous output b a b. 

The next input index 7 corresponds to the pattern c b. The decoder outputs 
c b and obviously inserts the new pattern a b c in the dictionary and stops. At 
this point the final dictionary is exactly identical to the final dictionary that 
was formed during the encoding process, as shown in Table 2.11 in the previous 
example. 

2.6 SUMMARY 

In this chapter, we presented some of the key source coding algorithms widely 
used in data and image compression. First we described the run-length coding 
scheme with an example. We described the popular Huffman coding scheme 
that is used in various image and data compression techniques. We discussed 
the modified Huffman coding scheme to  enhance its efficiency. Arithmetic 
coding is an alternative approach for an efficient entropy encoding and it 
achieves compression efficiency very close to  the entropy limit. We discussed 
the basic principles of arithmetic coding with an example and the implemen- 
tation issues. We described the binary arithmetic coding with an example. 
Binary arithmetic coding is a key algorithm for bilevel image compression. 
Variations of adaptive implementation of binary arithmetic coding algorithm 
have been adopted in different image compression standards-JBIG, JBIG2, 
JPEG, JPEG2000. We discussed the QM-coder algorithm for implementa- 
tion of an adaptive binary arithmetic coding, which has been adopted in the 
JBIG standard for bilevel image compression and also in a mode of JPEG 
standard. A variation of QM-coder called the MQ-coder is the basis of the 
entropy encoding of the new JPEG2000 standard for still picture compression. 
We also described dictionary-based coding, especially the key algorithms in 
the popular Ziv-Lempel family of algorithms that are mainly used in text 
compression. 
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3 
JPEG: Still Image 

Compression Standard 

3.1 INTRODUCTION 

JPEG is the first international image compression standard for continuous- 
tone still images-both grayscale and color images [l]. JPEG is the acronym 
for Joint Photographic Experts Group. This image compression standard is a 
result of collaborative efforts by the International Telecommunication Union 
(ITU), International Organization for Standardization (ISO), and Interna- 
tional Electrotechnical Commission (IEC). The JPEG standard is officially 
referred to as ISO/IEC IS (International Standard) 10918-1: Digital Com- 
pression and Coding of Continuous-tone Still Images and also ITU-T Rec- 
ommendation T.81. The goal of this standard is to support a variety of 
applications for compression of continuous-tone still images of most image 
sizes in any color space in order to achieve compression performance at  or 
near the state-of-the-art with user-adjustable compression ratios and with 
very good to excellent reconstructed quality. Another goal of this standard 
is that  it would have manageable computational complexity for widespread 
practical implementation. JPEG defines four modes of operations: 

1. Sequential Lossless Mode: Compress the image in a single scan and the 
decoded image is an exact replica of the original image. 

2. Sequential DCT-based Mode: Compress the image in a single scan using 
DCT-based lossy compression technique. As a result, the decoded image 
is not an exact replica, but an approximation of the original image. 

55 
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3. Progressive DCT-based Mode: Compress the image in multiple scans 
and also decompress the image in multiple scans with each successive 
scan producing a better-quality image. 

4. Hierarchical Mode: Compress the image at  multiple resolutions for dis- 
play on different devices. 

The three DCT-based modes (2 ,  3, and 4) in JPEG provide lossy compres- 
sion because precision limitation to digitally compute DCT (and its inverse) 
and the quantization process introduce distortion in the reconstructed image. 
For sequential lossless mode of compression, predictive coding is used instead 
of the DCT-based transformation, and also there is no quantization involved 
in this mode. The hierarchical mode uses extensions of either the DCT-based 
coding or predictive coding techniques. The simplest form of the sequential 
DCT-based JPEG algorithm is called the baseline JPEG algorithm, which 
is based on Huffman coding for entropy encoding. The other form of sequen- 
tial DCT-based JPEG algorithm is based on arithmetic coding for entropy 
encoding. The baseline JPEG algorithm is widely used in practice. We shall 
describe the JPEG lossless algorithm and the baseline JPEG algorithm in 
greater detail in this chapter. 

People often mention Motion JPEG for compression of moving pictures. 
This is not really a standard. Although it is not specifically defined as part 
of the standard, JPEG can be used to  compress image sequence in video 
on the basis that video clips can be considered as a sequence of still image 
frames and each image frame can be compressed independently using the 
JPEG algorithm. This process of image sequence compression is popularly 
known as Motion JPEG in the industry. 

JPEG standard does not specify any inherent file format. It defines only 
the syntax of the compressed bitstream. This caused creation of a number of 
file formats to store the JPEG compressed images such as JFIF (JPEG File 
Interchange Format), JPEG extension to TIFF 6.0, FlashPix, etc. But none 
of them is considered to be an official international standard defined under 
the auspices of an international standards committee. 

3.2 THE JPEG LOSSLESS CODING ALGORITHM 

The lossless JPEG compression is based on the principles of predictive coding. 
Since thc adjacent pixels in a typical image are highly correlated, it is possible 
to extract a great deal of information about a pixel from its neighboring pixel 
values. Predictive coding is a simple method for spatial redundancy reduction. 
In this method, a pixel value is predicted by a set of previously encoded 
adjacent pixels using a suitable prediction model. For an ideal prediction 
model, the predicted value of the pixel can be equal to the actual value. But 
that is not the case in reality. Using an effective prediction model, we can 
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predict the pixel value, which is very close to its actual value and hence error 
of prediction can be very small. 

A practical approach to the prediction model is to  take a linear combination 
of the previously encoded immediate neighboring adjacent pixels. The reason 
for taking the previously encoded pixel values is that the same values will be 
available to the decoder when it decodes the pixels in the same order they 
were encoded by the encoder. The difference between the actual pixel value 
and the predicted value is called the differential or the prediction error value. 
The prediction error is then entropy encoded using a variable-length encoding 
technique to  generate compressed image. This method is popularly known as 
Differential Pulse Code Modulation (DPCM). 

In lossless JPEG algorithm, the value of a pixel in any pixel location in 
the image is first predicted by using one or more of the previously encoded 
adjacent pixels A ,  B ,  and C as shown in Figure 3.l(a) to predict pixel X .  It 
then encodes the difference between the pixel and its predicted value, usually 
called the prediction error or prediction residual, by either Huffman coding or 
arithmetic coding. 

(a) 

Lossless Encoder , ._____.._.. ._..____.~~~..~~~.. 

Predictor Encoder 
Compressed 
Image Datd 

Image Data 
Table 

Specification 

@) 

f ig. 3.1 
mode. 

(a) Thrce-pixel prediction neighborhood. (b) Encoder diagram in lossless 

There are eight possible options for prediction as shown in Table 3.1. The 
No prediction option 0 in Table 3.1 is available only for differential coding in 
the JPEG hierarchical mode. We briefly discuss the essence of the hierarchical 
mode of coding later in this chapter. Options 1 to 3 are one-dimensional 
predictors and options 4 to 7 are two-dimensional predictors. Depending on 
the nature of the image, one predictor may yield better compression results 
compared to any other predictor. However, experimental results for various 
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kinds of images show that on the average their performances are relatively 
close to each other [2]. The chosen option for prediction is indicated in the 
header of the compressed file so that both the encoder and decoder use the 
same function for prediction. 

Table 3.1 Prediction Functions in Lossless JPEG 

I ODtion I Prediction Function I TvDe of Prediction 

No prediction 
X, = A 
X, = B 
x, = c 
Xp = A +  B - C  
X, = A + i(B - C )  
X, = B + f Z(A - C )  

X ,  = ; ( A  + B )  

Differential Coding 
1-D Horizontal Prediction 

1-D Vertical Prediction 
1-D Diagonal Prediction 

2-D Prediction 
2-D Prediction 
2-D Prediction 
2-D Prediction 

In lossless mode, the standard allows precision ( P )  of the input source 
image to be 2 bits to 16 bits wide. Since there is no previously encoded pixel 
known to the encoder when it encodes the very first pixels in the very first 
row of the image, it is handled differently. For a given input precision P and a 
point transform parameter Pt, the predicted value for the first pixel in the first 
line is 2p-pi -1 .  By default, we can assume Pt = 0. For details of the point 
transform parameter, the reader is advised to  consult the JPEG standard [l]. 

For all other pixels (except the first one) in the first line, we use option 1 
for prediction function. Except for the first line, option 2 is used to predict 
the very first pixel in all other lines. For all other pixels, we select one of the 
eight options for the prediction function from Table 3.1. Once a predictor is 
selected, it is used for all other pixels in the block. 

In lossless JPEG standard, the prediction error values are computed mod- 
ulo 216 in order to take consideration of the full precision allowed in this mode. 
These error values are not directly encoded using Huffman codes. They are 
first represented as a pair of symbols (CATEGORY,  MAGNITUDE) .  The 
first symbol CATEGORY represents the category of the error value. The 
second symbol MAGNITUDE represents the variable-length integer (VLI) 
for the prediction error value. The category represents the number of bits 
to encode the MAGNITUDE in terms of VLI. All the possible prediction 
error values modulo 216 and their corresponding categories are shown in Ta- 
ble 3.2. Only the CATEGORY in the symbol pair for each prediction error 
value is Huffman coded. The codeword for the symbol pair (CATEGORY,  
MAGNITUDE)  is formed in two steps. First it assigns the Huffman code 
of the CATEGORY.  This Huffman code is then appended with additional 
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Table 3.2 Categories of Prediction Error Values 

Category 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Prediction Error Value 
0 

-1, $1 
-3, -2, $2, +3 

-7, . . . , -4, +4, . . . , $7 
-15, . . . , -8, $8, . . . , +15 

-31, . . . ,  -16, $16, . . . ,  $31 
-63, . . . , -32, $32, . . . , +63 

-127, . . . ,  -64, $64, . . . ,  +127 
-255, . . . , -128, $128, . . . , $255 
-511, . .  . ,  -256, $256, . . . , +511 

-1023, . . . ,  -512, $512, . . . ,  $1023 
-2047, . . . ,  -1024, $1024, . .  . , +2047 
-4095, . . . ,  -2048, $2048, . .  . ,  $4095 
-8191, . . . , -4096, $4096, . . . , +8191 

-16383, . . . , -8192, $8192, . .  . , $16383 
-32767, . . . , -16384, $16384, . . . , $32767 

+32768 

CATEGORY number of bits to represent the MAGNITUDE in VLI. If 
the prediction error value is positive, the MAGNITUDE is directly binary 
represented by a VLI using CATEGORY number of bits and hence it starts 
with bit 1. If the error value is negative, the VLI is one’s complement of its 
absolute value and hence it starts with bit 0. For example, the prediction er- 
ror value 25 is represented by the pair (5, 25) because the number 25 belongs 
to  category 5 in Table 3.2 and hence 25 is represented by a 5-bit VLI. If the 
Huffman code for category 5 is 011, then the binary codeword for the error 
value 25 will be 01111001. The first three bits correspond to the Huffman 
code 011 for category 5 and the next 5 bits, 11001, is the VLI for 25. Sim- 
ilarly, the prediction error value -25 will be represented as 01100110 where 
the last 5 bits, 00110, is the 1’s complement of 11001 to represent -25, and 
since -25 belongs to the same category 5, the first three bits of the codeword 
corresponds to  the Huffman code of category 5. Use of the category table 
greatly simplifies the Huffman coder. Without this categorization, we would 
need to use a Huffman table with 216 entries for all the 216 possible symbols 
of prediction error values, which definitely complicates the implementation 
of the Huffman coder both in software and hardware, if it is not rendered 
impossible for all practical purposes. 

Detailed information for implementation of the JPEG lossless coding for 
both the Huffman coding mode and the arithmetic coding mode can be found 
in Annex H of the JPEG standard [l]. 



60 JPEG: STILL IMAGE COMPRESSION STANDARD 

3.3 BASELINE JPEG COMPRESSION 

The baseline JPEG compression algorithm is widely used among the four 
modes in JPEG family. This is defined for compression of continuous-tone 
images with 1 to 4 components. Number of components for grayscale im- 
ages is 1, whereas a color image can have up to four color components. The 
baseline JPEG allows only 8-bit samples within each component of the source 
image. An example of a four-component color image is a CMYK (Cyan, Ma- 
genta, Yellow, and Black) image, which is used in many applications such as 
printing, scanning, etc. A color image for display has three color components, 
RGB (Red, Green, and Blue), though. In a typical color image, the spatial in- 
tercomponent correlation between the red, green, and blue color components 
is significant. In order to achieve good compression performance, correlation 
between the color components is first reduced by converting the RGB image 
into a decorrelated color space. In baseline JPEG, a three-color RGB image 
is first transformed into a luminance-chrominance (L-C) color space such as 
YCbCr, YUV, CIELAB, etc. The advantage of converting the image into 
luminance-chrominance color space is that the luminance and chrominance 
components are very much decorrelated between each other. Moreover, the 
chrominance channels contain much redundant information and can easily be 
subsampled without sacrificing any visual quality for the reconstructed image. 

3.3.1 Color Space Conversion 

In this book, we consider color space conversion from RGB to YCbCr and 
vice versa only. There are several ways to convert from RGB to YCbCr color 
space. In this book, we adopt the CCIR (International Radio Consultative 
Committee) Recommendation 601-1. This is the typical method for color 
conversion used in baseline JPEG compression. According to the CCIR 601-1 
Recommendation, the transformation from RGB to  YCbCr is done based on 
the following mathematical expression: 

0.299000 0.587000 0.114000 

0.500000 -0.418688 -0.081312 ) -0.168736 -0.331264 0.500002 ) ( 
Color space conversion from RGB to  YCbCr using the above transformation 
may result in negative numbers for Cb and Cr,  while Y is always positive. In 
order to represent Cb and Cr in unsigned 8-bit integers, they are level shifted 
by adding 128 to each sample followed by rounding and saturating the value 
in the range [0, 2551. Hence the above transformation can be expressed as 

0.29900 0.58700 0.11400 ( z b  ) = ( -0.16874 -0.33126 0.50000) ( !) + ( :&) 
Cr 0.50000 -0.41869 -0.08131 
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in order to produce &bit unsigned integers for each of the components in the 
YCbCr domain. Accordingly, the inverse transformation from YCbCr to  RGB 
is done as 

0.0 1.40210 

) ( i ) - ( i:) (;)=( 1.0 1.77180 0.0 
1.0 -0.34414 -0.71414 

After the color space conversion, most of the spatial information of the 
image is contained in the luminance component (Y). The chrominance com- 
ponents (Cb and Cr) contain mostly redundant color information and we lose 
little information by subsampling these components both horizontally and/or 
vertically. We can subsample the chrominance components by simply throw- 
ing away every other sample in each row and/or in each column if desired. 
If we subsample the redundant chrominance components both horizontally 
and vertically, the amount of data required to  represent the color image is 
reduced to half because the size of each chrominance component (Cb and 
Cr) is one-fourth of the original size. This color format is called the 4:2:0 
color subsampling format. Baseline JPEG also supports 4:2:2 and 4:4:4 color 
formats. Each chrominance component, in 4:2:2 color format, has the same 
vertical resolution as the luminance component, but the horizontal resolution 
is halved by dropping alternate samples in each row. In 4:4:4 format, both 
the chrominance components Cb and Cr have identical vertical and horizontal 
resolution as the luminance component. Hence no subsampling is done in 4:4:4 
format. The subsampling operation to generate in 4:2:0 or 4:2:2 color format 
is the first lossy step. For a grayscale image there is only one component and 
obviously no color transformation is required. 

3.3.2 Source Image Data Arrangement 

In the previous section, we have seen that the dimension of each of the color 
components Y, Cb, and Cr could be different depending on the color sub- 
sampling format. Each color component is divided into 8 x 8 nonoverlapping 
blocks, and we can form what is called a minimum coded unit (MCU) in JPEG 
by selecting one or more data blocks from each of the color components. The 
standard defines the arrangement of the data blocks in interleaved or nonin- 
terleaved scanning order of the color components. In noninterleaved scan, the 
data blocks in each color component are stored and processed separately in 
raster scan order, left-to-right and top-to-bottom. In interleaved order, data 
blocks from all the color components appear in each MCU. Definition of the 
MCUs for 4:4:4, 4:2:2, and 4:2:0 formats of YCbCr images in interleaved scan 
is shown in Figure 3.2. 

Each dot in Figure 3.2 represents a 8 x 8 data block. In 4:4:4 format 
interleaved scan, each MCU consists of a data block from each of the Y, Cb, 
and Cr components as shown in Figure 3.2(a). The order of processing these 
blocks is in the scan order from left to  right and top to bottom. For example, 
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MCUkYO2 YO3 Y12 Y13 ChOl C h l l  CrOl C r l l  (b) 
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(C) 
MCUO=YOO YO1 Y10 Y11 Cboo CrOO 
MCUl=YO2 YO3 Y12 Y13 ChO1 CrOl 

Fig. 3.2 (a) YCbCr 4:4:4, (b) YCbCr 4:2:2, (c) YCbCr 4:2:0 

the first MCU consists of the first data blocks YO0 from the Y component 
followed by the first data blocks CbOO from the Cb component followed by 
CrOO from the Cr component as shown in Figure 3.2(a). The next MCU 
consists of YO1, CbOl and CrOl respectively. After all the MCUs consisting 
of the 8 x 8 data blocks from the first row, as shown in Figure 3.2(a), are 
encoded the second row of 8 x 8 blocks are scanned in the similar fashion. 
This procedure is continued until the last 8 x 8 block in the raster scan is 
encoded. In 4:2:2 format, each MCU consists of a 2 x 2 unit of four data 
blocks from the Y component, a 2 x 1 unit of two data blocks from each 
of the Cb and Cr components, and the corresponding order of processing is 
shown in Figure 3.2(b). In 4:2:0 format, each MCU consists of 2 x 2 units 
of four data blocks from the Y component, one from each of the Cb and Cr 
components, and the corresponding order of processing is shown in Figure 
3.2(c). 

3.3.3 The Baseline Compression Algorithm 

The baseline JPEG algorithm follows the principles of block-based transform 
coding. Block diagram of the baseline JPEG algorithm for a grayscale image 
with a single component is shown in Figure 3.3. For a color image, the same 
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algorithm is applied in each 8 x 8 data block based on the source image data 
arrangement as described in the previous section. 

,_______________________________________. . - - - . . - - - - . . - - - . - - - - . - - - - -~ 
, I  
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, I  8 ,  Zig-zag 
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Quantization Entropy 
Table Table 

Specifications Specifications 

Fig. 3.3 Baseline JPEG: (a) compression, (b) decompression. 

The image component is first divided into non-overlapping 8 x 8 blocks 
in the raster scan order left-to-right and top-to-bottom as shown in Figure 
3.3(a). Each block is then encoded separately by the ENCODER shown in 
the broken box in Figure 3.3(a). The first step is to  level shift each pixel in 
the block to convert into a signed integer by subtracting 128 from each pixel. 
Each level-shifted pixel in the 8 x 8 block is then transformed into frequency 
domain via forward discrete cosine transform (FDCT). The FDCT of an 8 x 
8 block of pixels f(z, y) for (z, y = 0,1, .  . . , 7 )  is defined by: 

DECODER 
,.._...___...___....~..........~.~.~...~~~.~.~~~...~~.....~...~.~... 

Dequantizer IDCT : =  
Zigzag 

re-ordering , 
~ .................................................... 

for u = 0, 1, . . . ,7 and w = 0,1, .  . . , 7 ,  where 

c - -  .__._ . ..' 
I :', I 

b , , 

for k = 0 
1 otherwise. C ( k )  = 

Entropy 
Table 

Specifications 

We discuss discrete cosine transform in further detail in the following section. 

Quantization Image Data 
Table 

Specifications 

3.3.4 Discrete Cosine Transform 

Discrete Cosine Transform (DCT) is the basis for many image and video com- 
pression algorithms, especially the still image compression standard JPEG in 
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lossy mode and the video compression standards MPEG-1, MPEG-2, and 
MPEG-4. Since an image is a two-dimensional signal, the two-dimensional 
DCT is relevant in terms of still image and video compression. The two- 
dimensional DCT can be computed using the one-dimensional DCT horizon- 
tally and then vertically across the signal because DCT is a separable function. 

The one-dimensional forward Discrete Cosine Transform (1-D FDCT) of 
N samples is formulated by 

T(2Z + 1)u 
F ( u )  = y f(.) COS [ 2N ] 

x=o 
N 

for u = 0 ,1 , .  . . , N  - 1, where 

for u = o 
1 otherwise. C(u)  = 

The function f(z) represents the value of the zth sample of the input signal. 
F ( u )  represents a Discrete Cosine Transformed coefficient for u = 0,1,  ' ' , N -  
1. 

The one-dimensional inverse Discrete Cosine Transform (1-D IDCT) is for- 
mulated in a similar fashion as follows, 

T(2. + 1). 
f(.) = Gy C ( u ) F ( u )  COS [ 2N ] 

u=o 

for z = 0,1 , .  . . , N - 1. 
The two-dimensional forward Discrete Cosine Transform (2-D FDCT) of a 

block of A4 x N samples of a two-dimensional signal F ( z ,  y)  is formulated as 

for u = 0 ,1 , ,  . . , N  - 1 and = 0 ,1 , .  . . ,A4 - 1, where 

2- for k = 0 
otherwise. 

C ( k )  = { 1"" 
The function f(z, y) represents the value of the zth sample in the yth row of 

a two-dimensional signal. F ( u ,  w) is a two-dimensional transformed coefficient 
for u = 0 ,1 , .  . . , N - 1 and w = O , l , . .  . ,A4 - 1. 

The above expression for 2-D FDCT is clearly a separable function because 
we can express the formula as follows: 
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As a result we can accomplish the 2-D FDCT of a two-dimensional signal by 
applying 1-D FDCT first row-wise followed by 1-D FDCT column-wise in two 
steps. First, the 1-D FDCT is applied row-wise in all the rows independently 
to  obtain F ( u ,  y), where 

for u = 0 , l  , . . . , N - 1. 

columns of F ( u ,  y) to obtain the result F ( u ,  w), where 
In the second step, the same 1-D FDCT is applied column-wise in all the 

for .u = 0, 1, . . . , M - 1. 
The two-dimensional inverse Discrete Cosine Transform (2-D IDCT) is 

computed in the similar fashion. The 2-D IDCT of F(u,w)  is formulated 
as 

for z = 0,1 , .  . . , N  - 1 and y = 0 ,1 , .  . . , M  - 1. 
The above function is again a separable function similar to what we have 

shown for the 2-D FDCT. As a result, the 2-D IDCT can be computed in 
exactly the opposite way of the 2-D FDCT. The 2-D IDCT is computed in 
two steps: by first applying 1-D IDCT column-wise followed by the 1-D IDCT 
row-wise. After column-wise computation of 1-D IDCT in every column of 
the input signal F ( u , v ) ,  we obtain F ( u ,  y),  where 

1 " ' " ~  l)" 1 y C(v)F(u ,  w) COS F ( u ,  y) = 
u=o 

for v = O , l , .  . . , M  - 1. 

of F ( u ,  y) to  obtain the two-dimensional signal f(z, y), where 
In the second step, the same 1-D IDCT is applied row-wise in all the rows 

for u = O,l , .  . . , N  - 1. 
Computational complexity of the direct implementation of the above 1-D 

DCT algorithm is O ( N 2 ) .  For DCT-based transform coding algorithms, the 
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images are usually divided into 8 x 8 blocks and the 2-D DCT is applied on 
this 8 x 8 block. A brute-force implementation of the 2-D DCT of an 8 x 8 
block without row-wise and column-wise computation requires approximately 
4096 multiply-accumulate operations. 

As we have discussed, the 2-D DCT is a separable function and the com- 
putation can be done in two steps, by applying one-dimensional DCT row- 
wise and then column-wise instead of the direct computation. Every one- 
dimensional FDCT or IDCT requires eight multiplications and seven additions 
for each sample using the direct method. Since there are 64 samples in an 8 x 
8 block, the 2-D DCT will require 64x8 multiplications and 64x7 additions 
in each direction. As a result, it requires 2 x 6 4 ~ 8  = 1024 multiplications and 
896 additions for each 8 x 8 block. Although the computational requirement 
using this method is only 25% of the brute-force method, still the compu- 
tational requirement is very high. Reduction of such a huge computational 
requirement is highly desirable for any practical implementation. 

Since DCT belongs to the family of Discrete Fourier Transform (DFT), 
there are fast DCT algorithms of computational complexity O(Nlog, N )  sim- 
ilar to the Fast Fourier Transform (FFT). There are many fast DCT algo- 
rithms proposed in the literature [5,6,7]. Developers of the DCT-based image 
compression algorithms have explored various techniques to  implement the 8 
x 8 DCT in computationally efficient ways both for software and hardware 
implementation. Lee’s algorithm [S] for fast DCT computation of an 8 x 8 
block requires only 192 multiplications and 464 additions. The fast algorithm 
proposed by Cho and Lee requires only 96 multiplications and 466 additions 
for 8 x 8 DCT computation [7]. There are many other algorithms especially 
suitable for 8 x 8 DCT computation. Each of the fast algorithms has its own 
merits for implementation. 

3.3.5 Coding the D C T  Coefficients 

The transformed 8 x 8 block now consists of 64 DCT Coefficients. The first 
coefficient F(0,O) is the DC component of the block and other 63 coefficients 
are AC components AC,,, = F ( u ,  v) of the block as shown in Figure 3.4. The 
DC component F(0,O) is essentially sum of the 64 pixels in the input 8 x 8 
pixel block multiplied by the scaling factor iC(u )C(v )  = as shown in the 
expression for F (  u, v).  

The next step in the compression process is to quantize the transformed 
coefficients. This step is primarily responsible for losing the information and 
hence introduces distortion in the reconstructed image. That’s why baseline 
JPEG is a lossy compression. Each of the 64 DCT coefficients are uniformly 
quantized. The 64 quantization step-size parameters for uniform quantization 
of the 64 DCT coefficients form an 8 x 8 Quantization Matriz. Each element in 
the quantization matrix is an integer between 1 and 255. Each DCT coefficient 
F ( u ,  v)  is divided by the corresponding quantizer step-size parameter Q(u, v) 
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AC 31 

AC 

Ac 70 A'c 12 71  

f ig. 3.4 DC and AC components of the transformed block. 

in the quantization matrix and rounded to  the nearest integer as 

The standard does not define any fixed quantization matrix. It is prerogative 
of the user's choice to  select a quantization matrix. There are two quantization 
matrices provided in Annex K of the JPEG standard for reference, but not as 
a requirement. These two quantization matrices are shown in Tables 3.3 and 
3.4 respectively. 

Table 3.3 Luminance Quantization Matrix 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

Table 3.3 is the luminance quantization matrix for quantizing the trans- 
formed coefficients of the luminance component of an image. Table 3.4 is the 
chrominance quantization matrix for quantizing the transformed coefficients 
of the chrominance components of the image. These two quantization tables 
have been designed based on the psychovisual experiments by Lohscheller [3] 
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Table 3.4 Chrominance Quantization Matrix 

17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

to determine the visibility thresholds for 2-D basis functions. These tables 
may not be suitable for all kinds of images, but they provide reasonably good 
results for most of the natural images with 8-bit precision for luminance and 
chrominance samples. If the elements in these tables are divided by 2,  we get 
perceptually lossless compression-the reconstructed image is indistinguish- 
able from the original one by human eyes. If the quantization tables are 
designed based on the perceptual masking properties of human eyes, many of 
the small DCT coefficients and mainly high-frequency samples are zeroed out 
to aid significant compression. This is done by using larger quantization step- 
size parameters for higher-frequency AC components as shown in Tables 3.3 
and 3.4. Quality of the reconstructed image and the achieved compression 
can be controlled by a user by selecting a quality factor Q-JPEG to  tune the 
elements in the quantization tables as proposed by the Independent JPEG 
Group and implemented in their software [4]. The value of Q-JPEG may 
vary from 1 to 100. The quantization matrices in Tables 3.3 and 3.4 have 
been set for Q-JPEG = 50. For other Q-JPEG values, each element in both 
the tables is simply scaled by the factor alpha (a )  as defined in [4], where 

50 if 1 5 Q-JPEG 5 50 

if 50 5 Q-JPEG 5 100, 

Q-JPEG 
a =  { 

2 - 

subject to the condition that the minimum value of the scaled quantization 
matrix elements, aQ(u, v) is 1. For the best reconstructed quality, Q-JPEG 
is set to 100. 

After quantization of the DCT coefficients, the quantized DC coefficient 
is encoded by differential encoding. The DC coefficient DC, of the current 
block is subtracted by the DC coefficient 0Ci-I of the previous block and the 
difference D I F F  = DCi - DCi-1 is encoded as shown in Figure 3.5(b). This 
is done to  exploit the spatial correlation between the DC values of the adja- 
cent blocks. Encoding of the AC coefficients is not straightforward. Instead 
of encoding each AC coefficient in the block, only the significant (nonzero) 
coefficients are encoded by an efficient manner such that the runs of zeros 
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fig. 3.5 (a) Zigzag ordering of AC coefficients; (b) differential coding of DC. 

preceding a nonzero value are embedded into the encoding. Usually there are 
few significant low-frequency AC coefficients in the whole 8 x 8 block and 
most of the higher-frequency coefficients are quantized to  0’s. In order t o  
exploit this property, the AC coefficients are ordered in a particular irregular 
order sequence as shown in Figure 3.5(a). This irregular ordering of the AC 
coefficients is called zig-zag ordering. This is done to  keep the low-frequency 
coefficients together and form long runs of 0’s corresponding to  the higher- 
frequency quantized coefficients. This zig-zag sequence is then broken into 
runs of zeros ending in a nonzero value. Before we explain the entropy en- 
coding procedure, let us show the results of level shifting, DCT, quantization, 
and zig-zag ordering with an example 8 x 8 block extracted from a natural 
image. 

Example: A Sample 8 x 8 Data Block 

110 110 118 118 121 126 131 131 
108 111 125 122 120 125 134 135 
106 119 129 127 125 127 138 144 
110 126 130 133 133 131 141 148 
115 116 119 120 122 125 137 139 
115 106 99 110 107 116 130 127 
110 91 82 101 99 104 120 118 
103 76 70 95 92 91 107 106 
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The 8 x 8 Data Block After Level Shifting 

- 18 
- 20 
- 22 
-18 
-13 
-13 
-18 
- 25 

-18 
-17 

-9 
-2 

-12 
-22 
-37 
-52 

-10 -10 -7 
-3 -6 -8 

1 -1 -3 
2 5 5 

-9 -8 -6 
-29 -18 -21 
-46 -27 29 
-58 -33 -36 

-2 3 3 
-3 6 7 
-1 10 16 

3 13 20 
-3 9 11 

-12 2 -1 
-24 -8 -10 
-37 -21 -22 

DCT Coefficients of the Above 8 x 8 Block 

-89.00 
74.14 

-63.65 
3.73 
2.50 
7.52 

-3.40 
-2.26 

-63.47 
-2.90 

3.10 
2.85 
0.57 

0.43 
-1.80 

-0.88 

18.21 -6.85 
-19.93 -21.04 

5.08 14.82 
6.67 8.99 

-4.46 0.52 

0.81 0.28 
1.73 0.23 

-0.63 -0.10 

7.50 
-17.88 

10.12 
-3.38 

3.00 
0.41 

-0.40 
-0.21 

13.45 
-10.81 

9.33 
1.54 

-2.89 
-3.21 
-0.19 
-0.12 

-7.00 0.13 
8.29 5.26 
1.31 -0.62 
1.04 -0.62 

-0.32 1.33 
-2.74 -2.07 
-0.58 -1.09 

1.23 1.61 

Results of DCT Coefficients Quantized by Luminance Quantization Matrix 

- 6 - 6  2 0 0 0 0 0  
6 0 - 1 - 1 - 1 0 0 0  

-5 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

I o o o o o o o o /  
After the DC coefficient is differentially encoded, the AC coefficients are or- 
dered in the zig-zag sequence and the sequence is subsequently broken into 



BASELINE JPEG COMPRESSION 71 

a number of runs of zeros ending in a nonzero Coefficient. The entropy en- 
coding procedure for differentially encoded DC coefficient is identical to the 
entropy encoding of the prediction error values that we explained for lossless 
JPEG. For 8-bit images in baseline JPEG, the DCT coefficients fall in the 
range [-1023, +1023]. Since the DC coefficient is differentially encoded, the 
differential values of DC fall in the range [-2047, $2047). Assuming that the 
DC coefficient of the previous block is -4 as an example, the differential DC 
value of the present block is -2. From Table 3.2, we find that this belongs 
to category 2 and hence -2 is described as (2, 01). If the Huffman code of 
category 2 is 011, then -2 is coded as 01101, where last two bits 01 represent 
the variable-length integer (VLI) code of -2. There are two Huffman tables 
(Table K.3 and K.4) for encoding the DC coefficients in Annex K of the base- 
line JPEG standard for reference. But the user can choose any table and add 
them as part of the header of the compressed file [l]. Table K.3 is supplied 
for coding the luminance DC differences as a reference. Table K.4 is supplied 
for chrominance DC differences. 

After zig-zag ordering of the AC coefficients in the example, the resulting 
sequence is -6 6 -5 0 2 0 -1 0 0 0 0 0 -1 0 0 -1 1 0  0 0 0 0 0 0 0 0 0 0 
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O . T h i s  
sequence of AC coefficients can be mapped into an intermediate sequence of a 
combination of two symbols, symbol1 and symbolz. symbol1 is represented by 
a pair (RUNLENGTH,  CATEGORY),  where RUNLENGTH is the num- 
ber of consecutive zeros preceding the nonzero AC coefficient being encoded 
and CATEGORY is the number of bits to  represent the VLI code of this 
nonzero AC coefficient; symbol2 is a single piece of information designated 
(AMPLITUDE)  that is encoded by the VLI code of the nonzero AC coef- 
ficient. Accordingly, the zig-zag sequence in the example can be compactly 
represented as: 
(0, 3)(-6), (01 3)(6), (0, 3)(-5), (1, 2)(2),  (1, 1)(-1), (5, 1 ) ( - 1 ) 1  (2, 1)(-1), 
(0, 1)(1)1 (0,O). 

The first significant (nonzero) AC coefficient in the zig-zag sequence is 
-6. It is represented as (0, 3)(-6) because it precedes with no run of ze- 
ros (i.e., RUNLENGTH = 0) and the AMPLITUDE = -6 belongs to 
CATEGORY = 3. Similarly, the following two nonzero coefficients 6 and -5 
are represented as (0, 3)(6) and (0, 3)(-5) respectively. The next significant 
coefficient 2 is represented by (1, 2) (2) because it precedes a 0 coefficient (i.e., 
RUNLENGTH = 1) and AMPLITUDE = 2 belongs to  CATEGORY = 2. 
Similarly, the next significant symbol is represented as (1, I)( -1). The follow- 
ing significant coefficient -1 is represented as (5, 1)(-1) because it precedes 
five 0’s (i.e.l RUNLENGTH = 5 )  and AMPLITUDE = -1 belongs to 
CATEGORY = 1. Following the same procedure, the next two nonzero co- 
efficients -1 and 1 are represented by (2, I)(-1) and (0, 1)(1) respectively. 
There are no other nonzero coefficients in the remainder of the zig-zag se- 
quence. It is represented by a special symbol (0,O) to  indicate that the re- 
maining elements in the zig-zag block are all zeros. Each (RUNLENGTH,  
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CATEGORY) pair is encoded using a Huffman code and the corresponding 
A M P L I T U D E  is encoded by the VLI code. 

There are two special symbols in encoding the zig-zag sequence of AC 
coefficients-(0,O) and (15, 0). The first special symbol is ( O , O ) ,  and it is 
referred to as EOB (end-of-block), to indicate that the remaining elements in 
the zig-zag block are zeros, The other special symbol is (15, 0) and it is also 
referred to  as ZRL (zero-run-length) to indicate a run of 16 zeros. Maximum 
length of a run of zeros allowed in baseline JPEG is 16. If there are more than 
16 zeros, then the run is broken into the number of runs of zeros of length 
16. For example, consider 57 zeros before a nonzero coefficient, say -29. This 
will be represented by (15, 0) (15, 0) (15, 0), (9, 5)(-29). The first three (15, 
0) pairs represent 48 zeros and (9, 5)(-29) represents 9 zeros followed by the 
coefficient -29 which belongs to  the category 5. 

The baseline JPEG allows maximum four Huffman tables-two for en- 
coding AC coefficients and two for encoding DC coefficients. In luminance- 
chrominance image data, usually two Huffman tables (one for AC and one 
for DC) are used for encoding luminance data and similarly two for encoding 
chrominance data. The Huffman tables used during the compression pro- 
cess are stored as header information in the compressed image file in order 
to uniquely decode the coefficients during the decompression process. There 
are two Huffman tables (Table K.5 and K.6) for encoding the AC coefficients 
and two others (Table K.3 and K.4) for encoding the DC coefficients in An- 
nex K of the baseline JPEG standard for reference. The users can choose 
any table of their choice and store it as part of the header of the compressed 
file [l]. Tables K.3 and K.5 are recommended for luminance DC differences 
and AC coefficients. Tables K.4 and K.6 are recommended for corresponding 
chrominance channels. 

Let us now allocate the variable-length codes in the last example. The 
codewords for (0, 0), (0, l), (0, 3), (1, l),  (1, 2), (2, l ) ,  and (5, 1) from Table 
K.5 are 1010, 00, 100, 1100, 11011, 11100, and 1111010 respectively. VLI 
codes for the nonzero AC coefficients 1, -1, 2, -5, 6 and -6 are 1, 0, 10, 010, 
110, and 001 respectively. Codeword for the differential DC value is 01101. 
The compressed bitstream for the 8 x 8 block is shown below, and it requires 
only 52 bits as opposed to  512 bits required by the original 8 x 8 block of 
8-bit pixels, 

01101100001100110100010110111011000111101001110000011010 

where the first five bits, 01101, represent the DC coefficient and the other 
47 bits represent the AC Coefficients. Hence, we achieved approximately 1 O : l  
compression using baseline JPEG to  compress the block as shown above. 

3.3.6 Decompression Process in Baseline JPEG 

Decompression is the inverse process to  decode the compressed bit-stream in 
order to properly reconstruct the image. The inverse functions in the de- 
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compression process are obvious and the corresponding block diagram of the 
baseline decompression algorithm is shown in Figure 3.3(b). During the de- 
compression process, the system first parses the header of the compressed 
file in order to  retrieve all the relevant information-image type, number of 
components, format, quantization matrices, and the Huffman tables that were 
used to compress the original image, etc. After parsing the header informa- 
tion, the decompression algorithm is applied on the compressed bitstream as 
shown in Figure 3.3(b). The entropy decoding step in Figure 3.3(b) decodes 
the bitstream of the compressed data using the Huffman tables that were used 
during the compression process. The purpose of this step is to  regenerate the 
zig-zag-ordered sequence of the quantized DCT coefficients. This zig-zag se- 
quence is then reordered by the zig-zag reordering step to create the 8 x 8 
block of quantized DCT coefficients. Each DCT coefficient in the quantized 
block is then dequantized as 

F'(u,")  = Fq(u,v)  x Q(u,"),  

where Q(u,  v) is the quantization step-size parameter from the same quanti- 
zation table that was used during the compression process. After dequanti- 
zation, the DCT coefficients F'(u, w) are inverse transformed to spatial do- 
main data via inverse DCT (IDCT). IDCT of the 8 x 8 block F'(u ,  ") for 
(u, Y = 0,1, .  . . ,7 )  is defined by: 

for 2 = 0,1 , .  . . ,7 and y = O , l , .  . . ,7 .  
After decompression of all the MCUs from the compressed bitstream, the 

image components are reconstructed and stored. For grayscale image, there is 
only one component and no color transformation is required. For color image, 
the reconstructed Y ,  Cb, and Cr components are inverse transformed to  RGB 
color space. We show a picture of the famous "Peppers" image in Figure 
3.6(a). The color version of Figure 3.6 is provided in the color figures page. 
The image is compressed using the baseline JPEG algorithm with quality 
factor Q-JPEG = 75 and the reconstructed image is perceptually almost 
identical to  the original image. This is shown in Figure 3.6(b). When we 
compress the same image with quality factor Q-JPEG = 10, we can see 
prominent artifacts in the image as shown in Figure 3.6(c). The nature of 
artifacts that is caused by lossy JPEG compression/decompression is called 
blocking artifacts. This happens because of the discontinuities created at the 
8 x 8 block boundaries, since the blocks are compressed and decompressed 
independently. The new JPEG2000 standard solves this problem by using 
Discrete Wavelet Transform over the whole image. Figure 3.6(d) shows the 
result of the JPEG2000 standard compressing the image with the same bit- 
rate (0.24 bits per pixel). The details of this new standard will be discussed 
in Chapter 6. 
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Fig. 3.6 (a) Original Pepper image, (b) compressed with baseline JPEG using quality 
factor 75 (1.57 bit/pixcl), (c) compressed with baseline JPEG using quality factor 10 
(0.24 bit/pixel), and (d) compressed with the ncw JPEG2000 standard using the same 
bit rate (0.24 bit/pixel). 
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3.4 PROGRESSIVE DCT-BASED MODE 

One of the major disadvantages of the single scan sequential DCT-based mode 
(baseline JPEG) of compression is that the entire image cannot be rendered 
or viewed until the whole compressed bitstream is received and decoded. This 
is not desirable for many applications such as image browsing applications. In 
image browsing applications, the user is not expected to  wait until the whole 
bitstream is decoded before viewing the entire image. It is desirable to the 
user that one can browse an initial appearance of the image and then choose 
to  continue for finer detail or stop. This is possible in progressive DCT-based 
mode in JPEG. 

In progressive DCT-based mode, the image is coded sequentially in multiple 
scans. Idea of this mode is to  transmit a coarser version of the image in 
the first scan and then progressively improve the reconstructed quality at 
the receiver by transmitting more compressed bits in successive scans. In 
progressive coding mode, the DCT blocks of the entire image are computed 
first before entropy encoding of a block can start. Hence implementation of 
this mode requires the availability of a buffer that can contain all the DCT 
coefficients of the whole image. The entropy encoding method then selectively 
encodes the DCT coefficients and transmits. There are two complementary 
ways to  achieve this partial encoding of the DCT blocks-spectral selection 
and successive approximation. Examples of these two methods have been 
shown in Figure 3.7. 

In the spectral selection mode of progressive coding, all the DCT coeffi- 
cients in an 8 x 8 data block are not encoded in one scan. Instead it encodes 
sets of DCT coefficients starting from lower frequencies and moving progres- 
sively to higher frequencies. For example, we can encode all the DC coefficients 
of all the 8 x 8 DCT blocks in the first scan as shown in Figure 3.7(a). In 
the second scan we can encode and transmit the first three AC coefficients of 
the zig-zag sequence of all the DCT blocks. We can transmit the next three 
AC coefficients in the third scan, and so on. The last three AC coefficients 
can be transmitted in the 21st scan as shown in Figure 3.7(a). The number 
of coefficients in each scan could be different and user selectable. This pro- 
gressive coding scheme is simple to  implement. The result of this method is 
that reconstructed images at the earlier scans are blurred and the image gets 
sharper in the successive scans. 

In successive approximation mode of progressive coding, a certain number 
of most significant bits (say N1) of all the DCT coefficients of all the blocks are 
encoded and transmitted in the first scan. In the second scan, the following 
N2 most significant bits are encoded and transmitted and so on. We show this 
method in Figure 3.7(b) as an example. In this figure, the most significant 
three bits of all the DCT coefficients are encoded and transmitted in the first 
scan. Then we can choose to encode and transmit the next 1 bit of all the 
DCT coefficients in each of the successive scans and continue until the least 
significant bit of all the coefficients is encoded. Usually the successive approx- 
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imation offers better reconstructed quality in the earlier scans compared to 
the spectral selection method. 

Eight DCT-based progressive coding methodologies have been defined in 
JPEG standard [l]. 

3.5 HIERARCHICAL M O D E  

In hierarchical mode, JPEG provides a progressive coding with increasing 
spatial resolution in a number of stages. This is particularly suitable for 
applications where a higher-resolution image is viewed on a lower-resolution 
display device and other similar kinds of applications. The pyramidal mul- 
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tiresolution approach for implementation of the hierarchical mode of coding 
is shown in Figure 3.8. 

Fig. 3.8 Hierarchical rnultiresolution encoding 

In this mode, the original image is filtered and down-sampled by required 
multiples of two for the target resolution and the lower-resolution image is 
encoded using any of the other three JPEG modes. The compressed lower- 
resolution image is then decoded and interpolated for upsampling by the same 
interpolation method that will be used at the decoder. The interpolated image 
is then subtracted from the next-higher-resolution image. The difference is 
then encoded by one of the other three JPEG modes (lossless or lossy). This 
procedure of the hierarchical encoding process is continued until it encodes 
all the resolutions. 

Fourteen different methods for encoding the difference images in the hier- 
archical mode have been explained in greater detail in JPEG standard [I]. 

3.6 SUMMARY 

In this chapter, we described the JPEG standard for still image compression. 
We discussed the details of the algorithm for lossless JPEG. We also discussed 
in great detail the principles and algorithms for the baseline JPEG standard. 
Baseline JPEG is the most widely used algorithm among all different modes in 
the JPEG standard for still image compression. We presented some results of 
baseline JPEG and compared them with the new JPEG2000 standard. The 
features, concepts, and principles behind the algorithms for the JPEG2000 
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standard will be elaborated on in great details in Chapters 6, 7, 8, and 10. 
We also summarized the progressive mode and hierarchical mode of operation 
of the JPEG standard in this chapter with examples. 
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4 
Introduction to  Discrete 

Wavelet Transform 

4.1 INTRODUCTION 

Although the “wavelet” has become very popular and is widely used as a 
versatile signal analysis function, its concepts were hidden in the works of 
mathematicians even more than a century ago. In 1873, Karl Weierstrass 
mathematically described how a family of functions can be constructed by 
superimposing scaled versions of a given basis function [l]. Mathematically a 
“wave” is expressed as a sinusoidal (or oscillating) function of time or space. 
Fourier analysis expands an arbitrary signal in terms of infinite number of 
sinusoidal functions of its harmonics and has been well studied by the signal 
processing community for decades. Fourier representation of signals is known 
to  be very effective in analysis of time-invariant (stationary) periodic signals. 
In contrast to a sinusoidal function, a wavelet is a small wave whose energy 
is concentrated in time. The term wavelet was originally used in the field 
of seismology to describe the disturbances that emanate and proceed out- 
ward from a sharp seismic impulse [2). In 1982, Morlet et al. first described 
how the seismic wavelets could be effectively modelled mathematically [3]. 
In 1984, Grossman and Morlet extended this work to show how an arbitrary 
signal can be analyzed in terms of scaling and translation of a single mother 
wavelet function (basis) [4, 51. Properties of wavelets allow both time and fre- 
quency analysis of signals simultaneously because of the fact that the energy 
of wavelets is concentrated in time and still possesses the wave-like (periodic) 
characteristics. As a result, wavelet representation provides a versatile math- 
ematical tool to  analyze transient , time-variant (nonstationary) signals that 

79 
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may not be statistically predictable especially a t  the region of discontinuities 
- a special feature that is typical of images having discontinuities at  the 
edges. 

In 1989, hfallat proposed the theory of signal analysis based on “mul- 
tiresolution decomposition” of signals using wavelets in time-scale space and 
proposed the popular pyramid algorithm [6 ] .  For historical perspectives of 
wavelets and the underlying mathematical foundation of wavelet transform, 
the reader is referred to  the treatise by Ives Meyer [7]. 

4.2 WAVELET TRANSFORMS 

Wavelets are functions generated from one single function (basis function) 
called the prototype or mother wavelet by dilations (scalings) and translations 
(shifts) in time (frequency) domain. If the mother wavelet is denoted by $ ( t ) ,  
the other wavelets ?+!Ja,b( t )  can be represented as 

where a and b are two arbitrary real numbers. The variables a and b rep- 
resent the parameters for dilations and translations respectively in the time 
axis. From Eq. 4.1, it is obvious that the mother wavelet can be essentially 
represented as 

+ ( t )  = $l ,O(t) .  (4.2) 
For any arbitrary a # 1 and b = 0, we can derive that 

As shown in Eq. 4.3, +a,o(t)  is nothing but a time-scaled (by a )  and 
amplitude-scaled (by m) version of the niother wavelet function $( t )  in 
Eq. 4.2. The parameter a causes contraction of $(t) in the time axis when 
a < 1 and expansion or stretching when a > 1. That’s why the parameter 
a is called the dilatzon (scaling) parameter. For a < 0, the function ? + ! J a , h ( t )  

results in time reversal with dilation. 
Mathematically, we can substitute t in Eq. 4.3 by t -b  to cause a translation 

or shift in the time axis resulting in the wavelet function ?+!Ja,,,(t) as shown in 
Eq. 4.1. The function ?+!Ja ,b( t )  is a shift of qa,O(t)  in right along the time axis 
by an amount b when b > 0 whereas i t  is a shift in left along the time axis by 
an amount b when b < 0. That’s why the variable b represents the translation 
in time (shzft in frequency) domain. 

In Figure 4.1, we have shown an illustration of a mother wavelet and its 
dilations in the time domain with the dilation parameter a = a. For the 
mother wavelet $( t )  shown in Figure 4.l(a), a contraction of the signal in 
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Fig. 4.1 (a) A mother wavelet $ ( t ) ,  (b) $( t /a ) :  0 < a < 1, ( c )  $(t/Q:): Q: > 1. 

the time axis when a < 1 is shown in Figure 4.l(b) and expansion of the 
signal in the time axis when cy > 1 is shown in Figure 4.l(c). Based on this 
definition of wavelets, the wavelet transform (WT) of a function (signal) f ( t )  
is mathematically represented by 

+W 

W ( a , b )  = s_, +a,dt)f( t )  dt  (4.4) 

The inverse transform to reconstruct f ( t )  from W(a ,  b)  is mathematically 
represented by 

where 
I * ( w )  l 2  dw 

+a .=Im 
and Q ( w )  is the Fourier transform of the mother wavelet +(t) .  

If a and b are two continuous (nondiscrete) variables and f ( t )  is also a con- 
tinuous function, W ( a ,  b )  is called the continuous wavelet transform (CWT). 
Hence the CWT maps a one-dimensional function f ( t )  to  a function W(a,  b )  
of two continuous real variables a (dilation) and b (translation). 
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4.2.1 Discrete Wavelet Transforms 

Since the input signal (e.g., a digital image) is processed by a digital computing 
machine, it is prudent to define the discrete version of the wavelet transform. 
Before we define the discrete wavelet transform, it is essential to define the 
wavelets in terms of discrete values of the dilation and translation parameters 
a and b instead of being continuous. There are many ways we can discretize a 
and b and then represent the discrete wavelets accordingly. The most popular 
approach of discretizing a and b is using Eq. 4.6, 

a = a?, b = n b o a r  (4.6) 

where m and n are integers. Substituting a and b in Eq. 4.1 by Eq. 4.6, the 
discrete wavelets can be represented by Eq. 4.7. 

(4.7) 
- 

$m,n(t) = a, m'z$ (aomt  - nbo)  . 

There are many choices to select the values of a0 and bo. We select the 
most common choice here: a0 = 2 and bo = 1; hence, a = 2m and b = 
n2m.  This corresponds to  sampling (discretization) of a and b in such a 
way that the consecutive discrete values of a and b as well as the sampling 
intervals differ by a factor of two. This way of sampling is popularly known 
as dyadic sampling and the corresponding decomposition of the signals is 
called the dyadic decomposition. Using these values, we can represent the 
discrete wavelets as in Eq. 4.8, which constitutes a family of orthonormal 
basis functions. 

$m,n(t) = 2-7n/2$ ( 2 - ~  - n) . (4.8) 
In general, the wavelet coefficients for function f ( t )  are given by 

and hence for dyadic decomposition, the wavelet coefficients can be derived 
accordingly as 

c,,,(f) = 2 - m / 2  / f ( t ) $  (2-mt - n)  dt .  (4.10) 

This allows us to  reconstruct the signal f ( t )  in from the discrete wavelet 
coefficients as 

M M  

(4.11) 
'm=-m n=-m 

The transform shown in Eq. 4.9 is called the wavelet series, which is analo- 
gous to the Fourier series because the input function f ( t )  is still a continuous 
function whereas the transform coefficients are discrete. This is often called 
the discrete t ime wavelet transform (DTWT). For digital signal or image prc- 
cessing applications executed by a digital computer, the input signal f ( t )  
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needs to be discrete in nature because of the digital sampling of the original 
data, which is represented by a finite number of bits. When the input function 
f ( t )  as well as the wavelet parameters a and b are represented in discrete form, 
the transformation is commonly referred to as the discrete wavelet transform 
(DWT) of signal f ( t )  [6, 111. 

The discrete wavelet transform (DWT) became a very versatile signal pro- 
cessing tool after Mallat [6] proposed the multiresolution representation of 
signals based on wavelet decomposition. The method of multiresolution is to 
represent a function (signal) with a collection of coefficients, each of which 
provides information about the position as well as the frequency of the sig- 
nal (function). The advantage of the DWT over Fourier transformation is 
that it performs multiresolution analysis of signals with localization both in 
time and frequency, popularly known as time-frequency localization. As a 
result, the DWT decomposes a digital signal into different subbands so that 
the lower frequency subbands have finer frequency resolution and coarser time 
resolution compared to the higher frequency subbands. The DWT is being in- 
creasingly used for image compression due to the fact that the DWT supports 
features like progressive image transmission (by quality, by resolution), ease 
of compressed image manipulation] region of interest coding, etc. Because 
of these characteristics, the DWT is the basis of the new JPEG2000 image 
compression standard [8]. 

4.2.2 Concept of Multiresolution Analysis 

There were a number of orthonormal wavelet basis functions of the form 
$~ , ,~ ( t )  = 2TrnI2$I ( 2 + Y  - n)  discovered in 1980s. The theory of multires- 
olution analysis presented a systematic approach to generate the wavelets 
[6, 9, 101. The idea of multiresolution analysis is to approximate a function 
f ( t )  at different levels of resolution. 

In multiresolution analysis, we consider two functions: the mother wavelet 
$( t )  and the scaling function $( t ) .  The dilated (scaled) and translated (shifted) 
version of the scaling function is given by $m,n(t) = 2-m/2$(2-mt - n). For 
fixed m, the set of scaling functions $m,n(t) are orthonormal. By the linear 
combinations of the scaling function and its translations we can generate a 
set of functions 

(4.12) 
n 

The set of all such functions generated by linear combination of the set 
{$m,n(t)} is called the span of the set {$m,n(t)}, denoted by Span{$,,,(t)}. 
Now consider V, to be a vector space corresponding to Span{$,,,(t)}. As- 
suming that the resolution increases with decreasing m, these vector spaces 
describe successive approximation vector spaces, . . . c V2 c VI c VO c V-1 c 
V-2 c . . ., each with resolution 2, (i.e., each space V,+, is contained in the 
next resolution space K). In multiresolution analysis, the set of subspaces 
satisfies the following properties: 
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1. V,+l c V,, for all m: This property states that each subspace is con- 
tained in the next resolution subspace. 

2. = L 2 ( R ) :  This property indicates that the union of subspaces is 
dense in the space of square integrable functions L 2 ( R ) ;  R indicates a 
set of real numbers (upward completeness property). 

3. n V ,  = 0 (an empty set): This property is called downward cornplete- 
ness property. 

4. f ( t )  E VO cf f(2-,t) E V,: Dilating a function from resolution space 
Vo by a factor of 2, results in the lower resolution space VTL (scale or 
dilation invariance property). 

5. f ( t )  6 V ,  ++ f ( t  - n)  E VO: Combining this with the scale invariance 
property above, this property states that translating a function in a 
resolution space does not change the resolution (translation invariance 
property). 

6. There exists a set {4(t  - n)  E VO: n is an integer} that forms an or- 
thonormal basis of VO. 

The basic tenet of multiresolution analysis is that whenever the above 
properties are satisfied, there exists an orthonormal wavelet basis +,,n ( t )  = 
2-m/24(2-mt - n)  such that 

(4.13) 

where P3 is the orthogonal projection of $J onto V, . For each m, consider the 
wavelet functions +m,n(t) span a vector space W,. It is clear from Eq. 4.13 
that the wavelet that generates the space W, and the scaling function that 
generates the space V, are not independent. W, is exactly the orthogonal 
complement of V, in V,-1. Thus, any function in V,-l can be expressed 
as the sum of a function in V, and a function in the wavelet space W,. 
Symbolically, we can express this as 

V,-l = v, 69 w,. (4.14) 

Since m is arbitrary, 

Thus, 

Continuing in this fashion, we can establish that 

v, = VTLS-1 @ Wrn+l. (4.15) 

(4.16) Vm-1 = Vm+l CB wm+l CE Wm. 

Vm-1 = Vk CB Wk CE w!$-1 @? Wk-2 @? ' .  ' w, (4.17) 

for any k >. m. 
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Thus, if we have a function that belongs to the space Vm-l (i.e., the func- 
tion can be exactly represented by the scaling function a t  resolution m - l), 
we can decompose it into a sum of functions starting with lower-resolution 
approximation followed by a sequence of functions generated by dilations of 
the wavelet that represent the loss of information in terms of details. Let 
us consider the representation of an image with fewer and fewer pixels at  
successive levels of approximation. The wavelet coefficients can then be con- 
sidered as the additional detail information needed to  go from a coarser to  
a finer approximation. Hence, in each level of decomposition the signal can 
be decomposed into two parts, one is the coarse approximation of the signal 
in the lower resolution and the other is the detail information that was lost 
because of the approximation. The wavelet coefficients derived by Eq. 4.9 
or 4.10, therefore, describe the information (detail) lost when going from an 
approximation of the signal a t  resolution 2nL-1 to  the coarser approximation 
at resolution 2m. 

4.2.3 

It  is clear from the theory of multiresolution analysis in the previous sec- 
tion that multiresolution analysis decomposes a signal into two parts - one 
approximation of the original signal from finer to coarser resolution and the 
other detail information that was lost due to the approximation. This can be 
mathematically represented as 

Implementation by Filters and the Pyramid Algorithm 

(4.18) 
n n 

where fm( t )  denotes the value of input function f ( t )  a t  resolution 2m,  Cm+l,n 

is the detail information, and am+l,n is the coarser approximation of the signal 
a t  resolution 2m+1. The functions, 4m+l,n and +m+l,n are the dilation and 
wavelet basis functions (orthonormal). 

In 1989, Mallat [6] proposed the multiresolution approach for wavelet de- 
composition of signals using a pyramidal filter structure of quadrature mirror 
filter (QMF) pairs. Wavelets developed by Daubechies [9, lo], in terms of 
discrete-time perfect reconstruction filter banks, correspond to  FIR filters. In 
multiresolution analysis, it can be proven that decomposition of signals using 
the discrete wavelet transform can be expressed in terms of FIR filters [6, 101 
and the all the discussions on multiresolution analysis boils down to  the fol- 
lowing algorithm (Eq. 4.19) for computation of the wavelet coefficients for the 
signal f ( t ) .  For details see the original paper by Mallat [6]. 

(4.19) 

where g and h are the high-pass and low-pass filters, gz = (-l)'h-i+l and 
h, = 2'1's  4(z - 2)4(2z) dx. Actually, a,,,(f) are the coefficients charac- 

1 c m , n ( f )  = c k  g2n-k am-l ,k(f)  

a m , n ( f )  = c k  hZn-k  a m - l , k ( f )  
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terizing the projection of the function f ( t )  in the vector subspace V, (i.e., 
approximation of the function in resolution 2 m ) ,  whereas c,,,(f) E W, are 
the wavelet coefficients (detail information) at  resolution 2“’. If the input 
signal f ( t )  is in discrete sampled form, then we can consider these samples 
as the highest order resolution approximation coefficients ao,, ,( f)  E Vo and 
Eq. 4.19 describes the multiresolution subband decomposition algorithm to 
construct a,,,(f) and c,,,(f) a t  level m with a low-pass filter h and high- 
pass filter g from C ~ ~ - . I , ~ ( ~ ) ,  which were generated a t  level m- 1. These filters 
are called the analysis filters. The recursive algorithm to compute DWT in 
different levels using Eq. 4.19 is popularly called Mallat’s Pyramid Algorithm 
[6]. Since the synthesis filters h and g have been derived from the orthonormal 
basis functions q!~ and $J, these filters give exact reconstruction 

n n 

Most of the orthonormal wavelet basis functions have infinitely supported 
$J and accordingly the filters h and g could be with infinitely many taps. 
However, for practical and computationally efficient implementation of the 
DWT for image processing applications, it is desirable to  have finite impulse 
response filters (FIR) with a small number of taps. It is possible to construct 
such filters by relaxing the orthonormality requirements and using biorthogo- 
nal basis functions. It should be noted that the wavelet filters are orthogonal 
when (h’,g’) = (h,g), otherwise it is biorthogonal. In such a case the filters 
(h’ and g’, called the synthesis filters) for reconstruction of the signal can be 
different than the analysis filters ( h  and g) for decomposition of the signals. 
In order to achieve exact reconstruction, we can construct the filters such that 
it satisfies the relationship of the synthesis filter with the analysis filter [ la] 
as shown in Eq. 4.21: 

gk = (-l)nh-n+i 

(4.21) 

If (h’,g’) = (h ,  g ) ,  the wavelet filters are called orthogonal, otherwise they 
are called biorthogonal. The popular (9, 7) wavelet filter adopted in JPEG2000 
is one example of such a biorthogonal filter [8]. The signal is still decomposed 
using Eq. 4.19, but the reconstruction equation is now done using the synthesis 
filters h‘ and g‘ as shown in Eq. 4.22: 

n n 

(4.22) 

Let’s summarize the DWT computation here in terms of simple digital FIR 
filtering. Given the input discrete signal ~ ( n )  (shown as a(0,  n) in Figure 4.2), 
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THREE-LEVEL SIGNAL DECOMPOSITION THREE-LEVEL SIGNAL RECONSTRUCTION 

Fig. 4.2 Three-level multiresolution wavelet decomposition and reconstruction of sig- 
nals using pyramidal filter structure. 

it is filtered parallelly by a low-pass filter ( h )  and a high-pass filter (9) at each 
transform level. The two output streams are then subsampled by simply 
dropping the alternate output samples in each stream to  produce the low- 
pass subband y~ (shown as a (1 ,n )  in Figure 4.2) and high-pass subband YH 
(shown as c (1 ,n)  in Figure 4.2). The above arithmetic computation can be 
expressed as follows: 

TL-1 T H - 1  

yL(n) = c h(i)2(2n - i), yH(n) = c g(i)z(2n - i) (4.23) 
i = O  i=O 

where r~ and TH are the lengths of the low-pass ( h )  and high-pass (9 )  filters 
respectively. Since the low-pass subband a(1 ,n)  is an approximation of the 
input signal, we can apply the above computation again on a(1, n) to  produce 
the subbands a(2, n)  and c(2, n)  and so on. This multiresolution decomposi- 
tion approach is shown in Figure 4.2 for three levels of decomposition. During 
the inverse transform to reconstruct the signal, both a(3 ,n )  and c (3 ,n )  are 
first upsampled by inserting zeros between two samples, and then they are 
filtered by low-pass (h’) and high-pass (9’) filters respectively. These two fil- 
tered output streams are added together to reconstruct a ( 2 , n )  as shown in 
Figure 4.2. The same continues until we reconstruct the original signal a(0, n) .  

4.3 EXTENSION T O  TWO-DIMENSIONAL SIGNALS 

The two-dimensional extension of DWT is essential for transformation of two- 
dimensional signals, such as a digital image. A two-dimensional digital sig- 
nal can be represented by a two-dimensional array X [ M ,  N ]  with M rows 
and N columns, where M and N are nonnegative integers. The simple ap- 
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LH2 

proach for two-dimensional implementation of the DWT is to perform the 
one-dimensional DWT row-wise to produce an intermediate result and then 
perform the same one-dimensional DWT column-wise on this intermediate re- 
sult to produce the final result. This is shown in Figure 4.3(a). This is possible 
because the two-dimensional scaling functions can be expressed as separable 
functions which are the product of two one-dimensional scaling functions such 
as $z(x,y) = $l(z)$l(y). The same is true for the wavelet function $(z,y) as 
well. Applying the one-dimensional transform in each row, we produce two 
subbands in each row. When the low-frequency subbands of all the rows (L) 
are put together, it looks like a thin version (of size M x $) of the input signal 
as shown in Figure 4.3(a). Similarly we put together the high-frequency sub- 
bands of all the rows to  produce the H subband of size M x $, which contains 
mainly the high-frequency information around discontinuities (edges in an im- 
age) in the input signal. Then applying a one-dimensional DWT column-wise 
on these L and H subbands (intermediate result), we produce four subbands 
LL, LH, HL, and HH of size x $ respectively, as shown in Figure 4.3(a). 
LL is a coarser version of the original input signal. LH, HL, and HH are the 
high-frequency subband containing the detail information. It should be noted 
that we could have applied the one-dimensional DWT column-wise first and 
then row-wise to  achieve the same result. To comprehend the idea visually, 
we show a block diagram with a sketch of a house in Figure 4.4 as an example. 

HL2 
HL I 

HH2 

I I 

LH 1 HH I 

(a) First level of decomposition 

LL2 

LH2 

HL2 
HLI 

HH2 

(b) Second level decomposition (c) Third level decomposition 

Fig. 4.3 Row-Column computation of two-dimensional DWT. 

LH 1 HHI 
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Fig. 4.4 Extension of DWT in two-dimensional signals 

We demonstrate the multiresolution decomposition approach in the two- 
dimensional signal in Figures 4.3(b) and (c). After the first level of decom- 
position, it generates four subbands LL1, HL1, LH1, and HH1 as shown in 
Figure 4.3(a). Considering the input signal is an image, the LL1 subband can 
be considered as a 2:1 subsampled (both horizontally and vertically) version 
of the original image. The other three subbands HL1, LH1, and HH1 contain 
higher frequency detail information. These spatially oriented (horizontal, ver- 
tical or diagonal) subbands mostly contain information of local discontinuities 
in the image and the bulk of the energy in each of these three subbands is 
concentrated in the vicinity of areas corresponding to  edge activities in the 
original image. Since LL1 is a coarser approximation of the input, it has sim- 
ilar spatial and statistical characteristics t o  the original image. As a result, 
it can be further decomposed into four subbands LL2, HL2, LH2, and HH2 
as shown in Figure 4.3(b) based on the principle of multiresolution analy- 
sis. Accordingly the image is decomposed into 10 subbands LL3, HL3, LH3, 
HH3, HL2, LH2, HH2, HL1, LH1, and HH1 after three levels of pyramidal 
multiresolution subband decomposition, as shown in Figure 4.3(c). The same 
computation can continue to  further decompose LL3 into higher levels. 
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Fig. 4.5 
(d) after level 3 dccomposition. 

(a) Original BIKE image and subbarids; (b) after level 1, (c) after level 2,  
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We have decomposed one of the ISO/IEC test images (BIKE image) pro- 
vided by the JPEG2000 standard committee as shown in Figure 4.5(a). In 
Figures 4.5(b), (c), and (d), we show the subbands after one, two, and three 
levels of decomposition respectively. The subbands in this figure have been 
normalized to 8 bits for the purpose of display. 

4.4 LIFTING IMPLEMENTATION OF T H E  DISCRETE WAVELET 
TRANSFORM 

The DWT has been traditionally implemented by convolution or FIR filter 
bank structures. The DWT implementation is basically a frame-based as op- 
posed to  the block-based implementation of discrete cosine transforms (DCT) 
or similar transformations. Such an implementation requires both a large 
number of arithmetic computations and a large memory for storage - fea- 
tures that are not desirable for either high-speed or low-power image and 
video processing applications. Recently, a new mathematical formulation for 
wavelet transformation has been proposed by Swelden [13] based on spatial 
construction of the wavelets and a very versatile scheme for its factorization 
has been suggested in [14]. This new approach is called the lifting-based 
wavelet transform, or simply lzfting. The main feature of the lifting-based 
DWT scheme is to break up the high-pass and low-pass wavelet filters into 
a sequence of smaller filters that in turn can be converted into a sequence 
of upper and lower triangular matrices, which will be discussed in the subse- 
quent section. This scheme often requires far fewer computations compared 
to  the convolution-based DWT [13,14], and its computational complexity can 
be reduced up to  50%. It has several other advantages, including “in-place” 
computation of the DWT, integer-to-integer wavelet transform (IWT), sym- 
metric forward and inverse transform, requiring no signal boundary extension, 
etc. As a result, lifting-based hardware implementations provide an efficient 
way to compute wavelet transforms compared to traditional approaches. So 
it comes as no surprise that lifting has been suggested for implementation of 
the DWT in the upcoming JPEG2000 standard [8]. 

In a traditional forward DWT using a filter bank, the input signal (x) is 
filtered separately by a low-pass filter ( h )  and a high-pass filter ( g )  at each 
transform level. The two output streams are then subsampled by simply 
dropping the alternate output samples in each stream to produce the low- 
pass ( y ~ )  and high-pass ( y ~ )  subbands as shown in Figure 4.6. These two 
filters (k , i j )  form the analysis filter bank. The original signal can be recon- 
structed by a synthesis filter bank (h,g) starting from y~ and Y H  as shown 
in Figure 4.6. We have adopted the discussion on lifting from the celebrated 
paper by Daubechies and Sweldens (141. It should also be noted that we 
adopted the notation (h ,  3 )  for the analysis filter and (h ,  g )  as the synthesis 
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filter in this section and onward in this chapter. Given a discrete signal x ( n ) ,  
arithmetic computation of above can be expressed as follows: 

m-1-  T H - ~  

i = O  j=O 

y L ( n )  = 1 h( i )x (2n  - i ) ,  y f f ( n )  = 1 3(i)z(2n - 2 )  (4.24) 

where TL arid TH are the lengths of the low-pass (K) and high-pass ( 3 )  filters 
respectively. During the inverse transform to  reconstruct the signal, both y~ 
and Y H  are first upsampled by inserting zeros between two samples and then 
they are filtered by low-pass (h) and high-pass (9)  filters respectively. These 
two filtered output streams are added together to obtain the reconstructed 
signal (2')  as shown in Figure 4.6. 

Fig. 4.6 Signal analysis and reconstruction in DWT 

4.4.1 

A digital filter h = {. . . , hk-l, hk, . . .} is a linear time-invariant operator 
which can be completely defined by its impulse response {hk E R 1 k E 2).  
These impulse responses (hk) are popularly called filter coeficients. If the 
number of nonzero coefficients in a digital filter is infinite, then the filter is 
called an infinite impulse response (IIR) filter. On the other hand, the number 
of non-zero coefficients hk in a finite impulse response (FIR) is finite. The 
Z-transform of an FIR filter h is expressed as a Laurent polynomial h ( z )  as 
shown in Eq. 4.25, 

Finite Impulse Response Filter and Z-transform 

n 

(4.25) 
i=m 

where m and n are positive integers. The degree of the above Laurent poly- 
nomial is defined as lh(z)I = n - m. Thus the length of the FIR filter h is 
n - m + 1 (i.e., the degree of the associated Laurent polynomial plus one). 

The difference of the Laurent polynomial from an arbitrary polynomial is 
that an arbitrary polynomial can have negative exponents whereas the expo- 
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nents in the Laurent polynomial are always positive. The sum or difference of 
two Laurent polynomials is a Laurent polynomial. The product of two Lau- 
rent polynomials a(.) and b ( z )  is a Laurent polynomial of degree la (z ) l+lb(z )[ .  
Let us assume that b ( z )  # 0 and la(z)l 2 lb(z)I. In general, exact division 
of a ( z )  by b ( z )  is not possible. However, division with remainder is possible 
although this division is not unique. There always exists a quotient q ( z )  and 
a remainder r ( z )  (not necessarily unique) with Iq(z)l = Iu(z)l - lb(z)I and 
Ir(z)I < lb(z)I so that 

a ( z )  = b ( z ) q ( z )  + r ( z ) .  (4.26) 

4.4.2 

The Euclidean algorithm can be used to find the greatest common divisor 
(gcd) of two Laurent polynomials u ( z )  and b(s ) .  If b ( z )  # 0 and la(z)l 2 
lb(z)I, we can state the algorithm as follows. By operations ‘/’ and ‘%’ in the 
algorithm, we mean to find the quotient and remainder of the division. 

Euclidean Algorithm for Laurent Polynomials 

jFrom the above algorithm, it is clear that the greatest common divisor 
(gcd) of a ( z )  and b ( z )  is a,, where n is the smallest integer for which b,(z) = 0. 
The number of iterations by the while loop in the above algorithms is bounded 
by n 5 ln(z)I + 1. From the above algorithm, we can establish that 

(4.27) 
1 [ s:::;:,’ ] = [ ; -q i ( z )  ] [ s:::; ] 

which can be rewritten as 

(4.28) 

Thus, 
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Since a o ( z )  = a(.) and b o ( z )  = b ( z ) ,  we obtain the following factorization 
after iterating the above equation: 

(4.30) 

The above factorization algorithm will be used in Section 4.4.4.3 to show 
how the polyphase matrix for a filter pair can be factorized into lifting se- 
quences. 

4.4.3 

For any practical signal transformation technique from one domain to another, 
the transformation should be reversible. For example, the Fourier transform 
converts a signal from the time domain to the frequency domain. When inverse 
Fourier transform is applied on the signal in frequency domain, the signal is 
converted back to the time domain. Ideally, if there is no additional processing 
or manipulation done in the frequency domain data after the transformation 
(i.e., if there is no loss of data or information at  any form), the reconstructed 
signal after inverse Fourier transform should be an exact replica of the original 
one. The same principle applies for the DWT as well. Hence we need to  choose 
the filter bank for DWT in such a way that perfect reconstruction is achieved. 
For the filter bank in Figure 4.6, the conditions for perfect reconstruction of 
a signal [14] are given by 

Perfect Reconstruction and Polyphase Representation of Filters 

h(a )L( z - ' )  + g ( z ) j ( z - ' )  = 2 

h(z)&(-z- ' )  + g ( z ) s ( - z - ' )  = 0 

where h ( z )  is the 2-transform of the FIR filter h. 

(4.31) 

The polyphase representation of a filter h is expressed as 

h ( z )  = h,(z2) + z- 'h,(z2)  (4.32) 

where he contains the even filter coefficients and h, contains the odd filter co- 
efficients of the FIR filter h. In general by polyphase representation, we mean 
to split a sequence into several subsequences for possible parallel processing 
of the subsequences. From Eq. 4.32, we can intuitively split the filter into two 
smaller filters - one ( h e )  with the even filter coefficients and the other (h,) 
with the odd filter coefficients delayed by a clock cycle, whose Z-transform 
can be expressed as 
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and we can define a polyphase matrix for the filter h as 

(4.33) 

(4.34) 

Based on the discussion above, the polyphase representation of the filters 
g ( z )  , h ( z )  , and S( z )  is expressed as follows: 

(4.35) I g ( z )  = g e ( z 2 )  + z-’go(z2)  

h ( z )  = he( z2 )  + z-1Lo(z2) 

S ( z )  = Se(z2 )  + z -5 jo(z2)  

Based on the above formulation, we can define two polyphase matrices as 
follows: 

Often the polyphase matrix P ( z )  is called the dual of the polyphase matrix 
P ( z ) .  For perfect reconstruction, these two polyphase matrices P ( z )  and P ( z )  
satisfy the following relation in Eq. 4.37, 

P ( z ) P ( z - ’ ) T  = I (4.37) 

where I is the 2 x 2 identitg matrix. Now based on the above formulation, 
the wavelet transform 

for the forward DWT 

in terms of the polyphase matrix can be expressed as 

and 

(4.38) 

(4.39) 

for the inverse DWT. 
If the determinant of the polyphase matrix P ( z )  is unity (i.e., IP(z)I = 

h, (z )g , ( z )  - g e ( z ) h o ( z )  = l), then the matrix P ( z )  is invertible. Hence we 
can apply the Cramer’s rule [14] in Eq. 4.37 as follows: 
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From Eq. 4.36, we find that 

(4.41) 

(4.42) 

h ( z )  = -z-  1 g ( - z - l ) ,  j ( z )  = z-lh(-z-l)  (4.43) 

and hence 
h ( z )  = -z-l j(-z-1),  g(z)  = z-lh(-z-1). (4.44) 

When the determinant of P ( z )  is unity, the synthesis filter pair (h,g) is called 
complementary and so is the analysis filter pair ( h , j ) .  When (h,g)=(h,j) ,  the 
wavelet transformation is called orthogonal; otherwise it is biorthogonal. 

When h ( z )  = h ( z )  = g(z)  = s ( z )  = 1, the DWT simply splits an input 
signal (x = {xk 1 k E 2)) into two subsequences, one with all the odd samples 
(xzi+l) and the other with all the even sequences (x2i). This is called the lazy  
wavelet transform [13]. 

4.4.4 Lifting 

There are two types of lifting. One is called primal lifting and the other is 
called dual lafting. We define these two types of lifting based on the mathe- 
matical formulations shown in the previous section. 

4.4.4.1 Primal Lifting According to  the lifting theorem [14], if the wavelet 
filter pair (h ,  g) is complementary then any other FIR filter gnew that is 
complementary to  h is of the form 

gner"(z)  = g(z)  + h ( z ) s ( z 2 )  (4.45) 

where s ( z 2 )  is a Laurent polynomial. 

Proof: Expanding gnew(z) in polyphase representation, we get 

gnew(z )  = g ( z )  + h(z)s(z2) 
= {ge(z2) + z - ' g0 ( z2 ) }  + { h e ( z 2 )  + Z - ' ~ ~ ( Z ~ ) } S ( Z ' )  (4.46) 
= {g,(z') + he(z')s(z2)} + z-1{g0(z2) + hO(Z2)S(Z2)}. 
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We know that 
h ( z )  = he(z2)  + z-lho(z2). (4.47) 

Hence the new polyphase matrix can be defined as 

(4.48) 

It can be easily verified that the determinant of P e w ( z )  is 1 and hence it 
proves Eq. 4.45. From Eq. 4.37 we know that 

p n e w ( z ) p n e y z - 1 ) T  = I .  (4.49) 

Thus, we can derive that 

1 -1 

= P ( z - ' )  [ - s ( z )  1 ] . (4.50) 

Consequently 

(4.51) 

Hence, the lifting created a new low-pass filter 

P e w ( , )  = h ( z )  - j ( z ) s ( z - Z ) .  (4.52) 

As a result, we have lifted the low-pass subband with the help of the high-pass 
subband. This is called the primal lifting. 

4.4.4.2 Dual Lifting By dual lifting we mean lifting the high-pass subband 
with the help the low-pass subband. If (h ,  g )  is complementary, then any 
other new FIR filter h""" complementary to  g is of the form 

h"eW(2) = h ( z )  + g(z ) t ( z2 )  (4.53) 

where t ( z 2 )  is a Laurent polynomial. Following the similar deduction as pre- 
sented in the primal lifting section, the dual lifting creates a new high-pass 
filter 

j " e w ( z )  = j ( z )  - h ( Z ) t ( 8 ) .  (4.54) 
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4.4.4.3 In this section, we show how a complementary 
filter pair for wavelet transformation can be factorized into lifting steps. 

We can compute the greatest common divisor (gcd)  of h,(z)  and h,(z) by 
applying the Euclidean algorithm as shown in Section 4.4.2. If K is the gcd 
of h,(z) and h,(z) ,  we can express h,(z)  and & ( z )  as follows: 

Lifting Factorization 

(4.55) 

According to the theory of lifting discussed in Section 4.4.4, if ( h ,  tj) is a 
complementary filter pair, then we can always find another complementary 
filter in"" so that the polyphase matrix can be represented as 

We can again rewrite Eq. 4.56 as 

It should be noted that 

and 

(4.58) 

(4.59) 

Applying the rules in Eqs. 4.58 and 4.59 into Eq. 4.57, we can rewrite it as 

We also know from the lifting formulation that we can always construct filter 
tj by lifting t j new  as 

(4.61) 

By combining all of the above formulations, we can conclude that given a 
complementary filter pair (h ,  g ) ,  there always exist Laurent polynomials S,(z) 
and & ( z )  for 1 5 i 5 n and we can factorize the polyphase matrix f-'(z) into a 
finite sequence of alternating upper and lower triangular matrices as follows, 
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where K is a constant and acts as a scaling factor (so is +). In practice, & ( z )  
and & ( z )  are usually of second- or lower-order polynomials, which correspond 
to  usually one- to  three-tap FIR filters. Computing the upper triangular 
matrix is known as pr ima l  l i f t ing,  and this is emphasized in the literature as 
lifting the low-pass subband with the help of the high-pass subband. Similarly, 
computation of the lower triangular matrix is called dual l i f t ing,  which is lifting 
of the high-pass subband with the help of the low-pass subband [13,14]. Often 
these two basic lifting steps are called update and predict as well. The above 
factorization can also be formulated in the following way: 

4.4.4.4 Lifting Algorithm Hence the lifting-based forward wavelet transform 
essentially means first applying the lazy  wavelet transform on the input stream 
(split into even and odd samples), then alternately executing pr ima l  and dual 
lifting steps, and finally scaling the two output streams by & and K respec- 
tively to  produce low-pass and high-pass subbands, as shown in Figure 4.7(a). 
The inverse DWT using lifting can be derived by traversing the above steps in 
the reverse direction, first scaling the low-pass and high-pass subband inputs 
by K and 1/K respectively, and then applying the dual and primal lifting 
steps after reversing the signs of the coefficients in f(z) and S(z),  and finally 
the inverse lazy transform by upscaling the output before merging them into 
a single reconstructed stream as shown in Figure 4.7(b). 

Due to the linearity of the lifting scheme, if the input data are in integer 
format, it is possible to  maintain data in integer format throughout the trans- 
form by introducing a rounding function in the filtering operation. Due to 
this property, the transform is reversible (i.e., lossless) and is called integer  
wavelet  t rans form (IWT) [15, 16, 171. It should be noted that filter coeffi- 
cients need not be integers for IWT. However, if a scaling step is present in 
the factorization, IWT cannot be achieved. It has been proposed in [17] to 
split the scaling step into additional lifting steps to  achieve IWT. 

4.4.4.5 
usedintheJPEG2000standard,with~= (- : ,4 ,3 ,4 , -6)andi j= (-1 2 ’  l , - L )  2 

Hence, 

Example Consider the Le Gall (5,3) spline filter [15] that has been 

h(,) = -1z-2 + +,-I+ ;*o + i, - 6 2 2 ,  

i j ( z )  = - i z - 2  + Z-l - l Z 0 .  
2 
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(a) Forward transform 

n 

I I 

(b) Inverse transform 

Fig. 4.7 Lifting-based forward and inverse DWT. 

From the above equations] we can easily derive that 

i ,(z2) = -1z-2 + 3 - + 2 ,  ho(z2)  = f + 22 1 2  , 
jO(t2) = 1. 9 e ( z 2 )  = -52  s - 2 - 2  2 '  

As a result, the polyphase matrix of this filter bank is 

Also based on conditions of perfect reconstructions of the complementary 
filters as described in Eq. 4.31, we can derive the corresponding synthesis 
filters as follows: 

h ( z )  = -z-%j(-z-1) = & - I +  1 + fz, 
g(z )  = z - l q - z - l )  = +-3  - f * - 2  + iz-l - a - :* 

1 1 3  1 1  and hence h = ( f ,  1, f )  and g = (-%, - 7 ,  2 ,  --z, -3).  
Now based on the lifting scheme for factorization of the polyphase matrix, 

the possible factorization of P ( z )  that leads to a band matrix multiplication 
is 

If the samples are numbered starting from 0, we consider the even terms of 
the output stream as the samples of low-pass subband and similarly the odd 
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, M 2 =  

terms as the samples of high-pass subband. Accordingly, we can interpret 
the above matrices in the time domain as y2i+l = - ? j ( ~ ~ ~  + z2i+2) + 22i+l 

and y2i = i (yz i+l  + y2i+3) + z 2 i  where 0 5 i 5 $ for an input stream z 
of length N and y's are the transformed signal values. Note that the odd 
samples are calculated from even samples and even samples are calculated 
from the updated odd samples. The corresponding matrices M1 and M2 are 
shown below, where a = -f and b = a. The transform of the signal X is 
Y = XM1Mz while the inverse is X = YM2M1: 

- 1 0 0 . .  . . . .  
O l b O  . . . . .  
0 0 1 0 0 . .  . .  
. O b l b O . . .  
. . 0 0 1 0 0 . .  
. . .  O b l b 0 .  
. . . .  0 0 1 0 0  
. . . . .  O b 1 0  

, o . .  . .  . o  0 1 

Mi = 

- 1 a o . . . . . .  
0 1 0 0  . . . . .  
O a l a o  . . . .  
. 0 0 1 0 0 . . .  
. . O a l a O . .  
. . .  0 0 1 0 0 .  
. . . .  O a l a o  
. . . . .  0 0 1 0  
0 . . . . .  0 a l  

, Mz = 

- l o o . . . . . .  
O l b O  . . . . .  
0 0 1 0 0 . .  . .  
. O b l b O . .  . 
. . 0 0 1 0 0 . .  
. . .  O b l b 0 .  
. . . .  0 0 1 0 0  
. . . . .  O b 1 0  
0 . . . . .  0 0 1  

The other wavelet filter bank that has been proposed in JPEG2000 Part 
1 is the (9, 7) filter. The most efficient factorization of the polyphase matrix 
for (9, 7) filter is as follows [14]; 

where a=-1,586134342, b=-0.0529801185, c=0.882911076, d=-0.443506852, 
K=1.149604398. In terms of banded matrix operation, the transform can be 
represented as Y = XM1 M2M3M4, while the inverse transform is represented 
as X = Y M4 Ms M2 MI .  The matrices MI,  M2, M3, and M4 are as follows: 

M3 = 

' l a 0  . . . . . .  
0 1 0 0  . . . . .  
O a l a o  . . . .  
. 0 0 1 0 0 . . .  
. . O a l a O . .  
. . .  0 0 1 0 0 .  
. . . .  O a l a o  
. . . . .  0 0 1 0  

. o . .  . .  . o  a 1 

- 1  c 0 . .  . . . .  
0 1 0 0 . .  . . .  
O C l C O  . . . .  
. 0 0 1 0 0 . . .  
. . O c l c O . .  
. . .  0 0 1 0 0 .  
. . . .  O C l C O  

. . . . .  0 0 1 0  
0 . . . . .  O c l  

, M4 = 

- l o o . . . . . .  
O l d 0  . . . . .  
0 0 1 0 0  . . . .  
. O d l d O . . .  
. . 0 0 1 0 0 . .  
. . .  O d l d 0 .  
. . .  . 0 0 1 0 0  
. . . .  . O d 1 0  
0 . . . . .  0 0 1  
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Most of the practical wavelet filters are decomposed either into 2 or 4 
matrices (primal and dual). For example, each of the filter banks C(13, 7),  
S(13, 7), (2,6), (2, 10) can be decomposed into 2 matrices and (6, 10) can be 
decomposed in 4 matrices, as has been described in detail in [18]. 

4.4.5 

Computation of the lifting-based discrete wavelet transform can be explained 
via a data dependency diagram as shown by a block diagram in Figure 4.8. 
For the DWT requiring four lifting factors, such as the (9, 7) filter, the com- 
putation is done in four stages as shown in Figure 4.8. For the DWT filters 
requiring only two lifting factors, such as the (5, 3) filter, the intermediate 
two stages can simply be bypassed. 

Data Dependency Diagram for Lifting Computation 

Input 

First 
stage 

Second 
stage 

HP output 

LP output 

Fig. 4.8 Data dependency diagram with four lifting factors. 

The results produced in the first stage of the data dependency diagram can 
be stored immediately in the registers containing the odd samples of the input 
data because these odd samples are not used in later stages of computation. 
Similarly the results produced in the second stage can be stored back to  the 
registers allocated to the even samples of input data. Continuing in the same 
way, the high-pass (low-pass) output samples are stored into the registers 
where the odd (even) samples of the input data were originally stored at  the 
beginning of the computation. As a result no extra memory is required at  
any stage. This property of lifting is popularly called “in-place” computation 
in the literature. 
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4.5 W H Y  DO W E  CARE ABOUT LIFTING? 

The idea of lifting-based implementation of discrete wavelet transform is a 
relatively recent development and it is still an active area of research in math- 
ematics and signal processing. The lifting-based DWT has many advantages 
over the convolution-based approach. Some of them are as follows. 

0 Computational eficiency: Usually the Lifting-based DWT requires less 
computation (up to  50%) compared to the convolution-based approach. 
However, the savings depend on the length of the filters. 

0 Memory savings: During the lifting implementation, no extra memory 
buffer is required because of the in-place computation feature of lifting. 
This is particularly suitable for hardware implementation with limited 
available on-chip memory. 

0 Integer-to-integer transform: The lifting-based approach offers integer- 
to-integer transformation suitable for lossless image compression. 

0 No boundary extension: In lossless transformation mode, we can avoid 
the boundary extension (discussed in Section 6.6.1.3 of Chapter 6) of 
the input data because the original input can be exactly reconstructed 
by integer- to-integer lifting transformation. 

0 Parallel processing: From Figure 4.8, i t  is obvious that multiple MAC 
(multiply and accumulate) processors can produce the output samples 
in each stage in parallel. The computation of each MAC processor is of 
the form .(xi + x,+z) + xi+l.  Only sequential part is the order of the 
lifting operations. 

4.6 SUMMARY 

In this chapter we discussed the theoretical foundation of the discrete wavelet 
transform (DWT) both for convolution and lifting-based approaches. We dis- 
cussed the multiresolution analysis feature of the wavelet transform, which 
makes it suitable for its application in image compression. We have dis- 
cussed the pyramid algorithm for implementation of the DWT using the mul- 
tiresolution approach. We have also discussed how the DWT is extended to  
two-dimensional signals as well. The multiresolution analysis-based discrete 
wavelet transform is the foundation of the new JPEG2000 standard. Lifting- 
based implementation of discrete wavelet transform is new and became very 
popular for a number of efficient features in it. We described the underlying 
theory behind the lifting algorithm for DWT and showed how it is imple- 
mented via banded matrix multiplication. We gave examples of the lifting 
factorization for the two default wavelet filter kernels (9, 7) and (5, 3) in the 
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JPEG2000 standard. We discussed the advantages of lifting-based DWT over 
the traditional convolution-based approach. 
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VLSI Architectures f o r  
Discrete Wavelet 

Transforms 
5.1 INTRODUCTION 

Discrete wavelet transform (DWT) is an efficient digital signal processing 
(DSP) tool and has been very successfully used for development of image and 
video compression algorithms [l, 2, 3, 41. DWT has been found to  be a versa- 
tile tool for many other image processing applications such as edge detection, 
object isolation, object detection (5,6], denoising, speckle removal [7,8], image 
editing [9], image fusion [lo], etc. Because of these wide-spread application of 
DWT, development of VLSI algorithms and architectures for efficient hard- 
ware implementation of discrete wavelet transform has been an active area of 
research and development in the VLSI signal processing community for the last 
few years. The JPEG2000 standard for still image compression has been devel- 
oped based on the salient features of discrete wavelet transforms (41. Discrete 
wavelet transform is usually computed on a whole image (or very large tiles 
of images) as opposed to small-size blocks by traditional block-based trans- 
formation techniques such as discrete cosine transform (DCT). As a result, 
discrete wavelet transform is a computationally intensive process and hence 
very slow when computed by a general-purpose computing system, even for 
moderate-size images compared to the traditional block-based transformation 
techniques. Obviously, the memory requirement for its implementation is also 
very high. To make it suitable for real-time image processing applications, it is 
essential to develop special-purpose architectures and custom VLSI chips for 
computation of DWT by exploiting the underlying data parallelism to yield 
high throughput and hence high data rate. We discussed the principles and 
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formulation of discrete wavelet transforms in greater detail in Chapter 4. I11 
this chapter, we only concentrate on some VLSI architectures and algoritlinis 
reported in the literature for implernentation of discrete wavelet transforin. 

The discrete wavelet transform (DWT) essentially decomposes an arbitrarv 
discrete signal x={xo, 5 1 , .  . . , X N - ~ }  into two subbands-a low-pass subband 
a={ao, a l , .  . . , U N - ~ }  and a high-pass subband c={co, cl,. . . , C N - ~ } .  The 
arithmetic computation of this transformation can be represented as 

12 k 

where hi and gi are the low-pass arid high-pass filter coefficients respectively. 
As mathematically shown in Eq. 5.1, the straightforward and traditional ini- 
plernentation of DWT is to  apply two finite impulse response filters (FIR) in 
parallel-one a high-pass filter (9) and the other a low-pass filter (h) .  These 
two filtered outputs are then subsarnpled to  produce two subbands a and c 
as shown in Figure 5.1. This is called the convolution-based approach. The 
signal reconstruction process is just the opposite where the subands are first 
upsampled and then filtered by a corresponding low-pass filter ( h )  and a high- 
pass filter (5 )  to generate 51, and XH respectively. These two outputs (ZL arid 
ZH)  are then added to reconstruct the signal (d), as shown in Figure 5.1. 

Fig. 5.1 Decomposition and rcconstruction of signals in DWT 

The other computationally efficient approach for DWT is to apply the 
lifting-based approach [ll, 12, 13, 141. The main feature of the lifting-based 
discrete wavelet transform is to break up the high-pass and the low-pass 
wavelet filters into a sequence of smaller filters that in turn can be converted 
into a sequence of upper and lower tria.ngular matrices. These upper arid 
lower triangular matrices represent the lifting factors. We described priiici- 
ples behind lifting-based DWT forrnulatiori and its implenientation in greater 
detail in Chapter 4. Many VLSI architectures for implementation of DWT 
using the convolution-based approach have been proposed in the literature 
[15, 16, 17, 18, 19, 20, 21, 22, 23, 241. On the other hand, fewer architec- 
tures for implementation of the lifting-based DWT have been reported i n  the 
literature [ 2 5 ,  26, 27, 28, 29, 30, 31, 32, 33, 34, 35,  36, 37, 381. 



A VLSl ARCHITECTURE FOR THE CONVOLUT/ON APPROACH 109 

In this chapter, we briefly present a VLSI architecture for implementation 
of DWT using the traditional convolution approach. Because of the inher- 
ent advantages of the lifting-based approach over the traditional convolution 
approach for implementation of DWT and its suitability for JPEG2000, we 
emphasize more the lifting architectures for DWT computation and review 
different types of architectures reported in the literature recently. 

5.2 A VLSl ARCHITECTURE FOR T H E  CONVOLUTION APPROACH 

In this section, we describe a semi-systolic architecture for implementation of 
the convolution-based discrete wavelet transform proposed by Acharya and 
Chen [as]. Although the basic principle of the architecture can be applied 
to  implement any symmetric filter, we use the (9, 7) wavelet filter here as an 
example. The (9, 7) filter has been recommended for implementation of DWT 
in the JPEG2000 standard for its lossy mode of image compression. This (9, 
7) filter has 9 low-pass filter coefficients h = { h - 4 ,  h - 3 ,  h - 2 ,  h-1, ho, h l ,  h 2 ,  

h3,  h 4 )  and 7 high-pass filter coefficients g = ( 9 - 2 ,  9-1, go ,  91, g 2 ,  g 3 ,  9 4 ) .  

Output samples of the low-pass subband are as follows: 

a x - 2  = L I X N - ~  + h3Zp1-7 + h 2 X N - 6  h l X N - 5  ~ o X N - ~ +  

h - 1 2 ~ - 3  f h - 2 2 ~ - 2  + h - 3 2 ~ - 1  

U x - 1  = h 4 2 ~ - 6  f h 3 x ~ 1 - 5  4- h 2 2 ~ - 4  f h i X ~ - 3  4- h o X ~ - 2 +  

h - I X N - 1 .  

(5.2) 
Since the low-pass filter coefficients are symmetric (i.e., h - i  = hi), the above 
equations can be rearranged in a regular fashion as shown below, which is 
suitable for mapping them in a systolic-like (semi-systolic) architecture: 
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N Similarly, the high-pass subband samples c,, for n = 0,1 , .  . . , 
pressed as 

- 1 are ex- 

c4 -2  = g4xN-8 f g3xN-7 + g2xN-6 f g1xN-5 + gOxN-4 + g-lXN-3f 

9 - 2 X N - 2  
c4-1 = g4xN-6 + g3xN-5 + g2xN-4 + g1xN-3 f g0xN-2 + g-lxN-1. 

(5.4) 
The (9, 7) filters are perfect reconstruction filters and follow the princi- 

ples of perfect reconstruction as described in Chapter 4. According to  the 
condition for perfect reconstruction, the high-pass filter coefficients in the (9, 
7) biorthogonal spline - filter are - related with - the - synthesis (inverse) filters as 
gi - = (-1)'hl-i and h-i = hi, where h = {h-3, h-2, h-I, ho, h-1, h-2, 
h-3) are the 7 low-pass filter coefficients used for reconstruction of the signal 
during the synthesis (inverse DWT) process. Accordingly, we can exploit the 
symmetry among the filter coefficients as follows: 

. -  - - - - -  

- 
Q-2 = h3 = ~ 4 ,  

9-1 = h2 = g3, 
go = hi = ~ 2 ,  

91 = ho. 

As a result, we can rearrange the ci terms in a regular fashion as shown below: 

Co 

c1 
c2 

= gi(0 4- 0 )  4- 92(0 4- Xo) 4- g3(0 Xi) + ~ ( 0  f 2 2 )  

= 91(0+ 51)  + gz(x0 + x2) + 93(0 + 5 3 )  + g4(0 + x4) 
= g1(0 + X3) + 92(x2 f 2 4 )  + g3(x1 f 25) + g4(XO + 5 6 )  

5.2.1 

The regularity in the expressions for each a, and cz, as presented in Eqs. 5.3 
and 5.5, is very much suitable for mapping them into a systolic-like (semi- 
systolic) algorithm for implementation of a VLSI architecture as proposed by 
Acharya and Chen [23]. The architecture to compute the at's  and cz's is shown 
in Figure 5.2(a). 

Mapping the DWT in a Semi-systolic Architecture 
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Fig. 5.2 
the basic processing element. 

(a) A semi-systolic architecture for computing one-dimensional DWT; (b) 

Functionality of each basic cell or the processing element Ci in the systolic 
array is shown in Figure 5.2(b). Each Ci has two inputs pi  and qi and three 
outputs p i - 1 ,  Xi and Yi. There are two registers in each Ci which contain a 
low-pass filter coefficient h and a high-pass filter coefficient g during the for- 
ward DWT mode as shown in Figure 5.2(b). For example, filter coefficients h2 
and g3 are stored in the two registers in the processing element Cz. Similarly, 
the content of the registers in the processing elements CO, C1, C3, and C, are 
(h4, 0), (h3, g4), ( h l ,  92) and (ho, 91) respectively. Each processing element 
essentially adds the two inputs pi and q i .  The sum p i  + qi is then multiplied 
by the corresponding low-pass filter coefficient h and the high-pass filter coef- 
ficient g to produce the two output samples Xi and Y ,  respectively. The input 
pi is simply passed through to  output p i - 1 .  As a result, the output pi-1 from 
a processing element Ci becomes an input to the adjacent processing element 
Ci-1. Interconnection of the processing elements CO, . . . , C4 is shown in Fig- 
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Clock Cvcle 1 Xn I x1 

ure 5.2(a), where each D represents a delay element. Finally, X O ,  . . , X4 are 
added to  produce an output sample ai and Yl> . . . , Y, are added to  produce 
an output ci. The first three clock cycles are required to  initially fill up the 
systolic array. The outputs ci and ai are obtained alternately at the trail- 
ing edges of the even and odd clock cycles (e.g., co,c1,cz,. . .  are obtained at 
clock cycles 4 ,6 ,8 ,  . . . and ao, al, a ~ ,  . . . are obtained at  clock cycles 5 ,7 ,9 , .  . . 
respectively). As a result, one output is produced in every clock cycle and 
hence the architecture achieves 100% utilization. 

x2 

Table 5.1 
urc 5.2 for the First 8 Clock Cycles 

Output X ,  from Processing Element C, of the DWT Architecture in Fig- 

Table 5.2 Output Y, from Processing Element C, of the DWT Architecture in Fig- 
ure 5.2 for the First 8 Clock Cycles 

Clock Cycle I YO I Yl 
1 0 

In Tables 5.1 and 5.2, we show the outputs X, and Y,  respectively from 
each processing element Ci for the first 8 clock cycles. 

5.2.2 Mapping the Inverse DWT in a Semi-Systolic Architecture 

During the inverse process, reconstruction of the original signal x = {Q, z1, 
. . . , z,+1} from the low-frequency subband a={ao, al, . . . , U N - ~ }  and the 



A VLSl ARCHlTECTURE FOR THE CONVOLUTION APPROACH 113 

high-frequency subband C={CO, c1, . . . , C N - ~ }  by the inverse discrete wavelet 
transform (IDWT) is expressed as 

n n n 

where i jn = ( - l ) n h l - n  and gn = ( - l ) n L 1 - n  has been imposed to  have exact 
reconstruction of the original signal x ={Q, 21, . . . , X N - ~ } ,  that is, the filter 
coefficients 9 and h during the reconstruction process (IDWT) are not exactly 
the same as the filter coefficients g and h in the decomposition process (DWT). 
We can break the reconstruction of the original signal x into two steps. For 
example, we can express the ith sample xi of x as xi = xi1) + x i 2 ) ,  where 

n n 

Again, the even and odd terms of both xj') and x j 2 )  can be separated and 
represented in a regular structure. For example, we can easily express the 
even terms xi;) and x:), for j = 0 , 1 , .  . . , 9 - 1 using the coefficients ij and h 
as 

x p  = koao + L U l ,  X r )  = 3 O c O  f 3 2 c l  + Q4C2, 

p) 2 - - g-ZCO - + 3 0 C l  + g 2 c z  + 3 4 c 3 ,  z(l) 2 = L -2ao + Lou1 + k2a2, 
= xy) = h-2al + Loa2 + k2a3, 4 G-ZCl f QOCZ f 3 2 c 3  + 3 4 c 4 9  
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Implementation of this regular structure of computation for each expres- 
sion zs’  and xg) needs two processing elements as shown in the broken boxes 
I and I1 in Figure 5.3(a). The processing element C, is not used for compu- 
tation of the even terms. The ADDER circuitry adds the outputs from the 
processing elements of the subarrays I and I1 to produce the final output 
samples I C O ,  ~ 2 , .  . . , etc. Similarly, the odd samples I C ~ ~ + ~  and I C ~ ’ + ~  can be 
represented in a regular fashion as, for example, 

(1) 

,p) = L 
Z(l) = k 
p) = L 

1 l(a0 + ai) + &(0 + a2), Zy) = Gi(0 + C i )  + i js(C0 + C2) + &(o + C g ) ,  

3 

5 

l(al + a2) + k3(a0 + a s ) ,  
l(a2 + a3) + k 3 ( a l  + as), 

Z f )  = Gl(0 f c2) + & i ( c 1  + c 3 )  + G S ( c 0  + Cq),  

xf )  = &(o + C3) f g 3 ( C 2  + C4) + GS(C1 f Cg).  

(1) Analyzing the above expressions, it is clear that computation of the x2j+l term 
needs two processing elements and each x2j+l term needs three processing 
elements as shown in Figure 5.3(b). 

(2) 

1 x o  x 2  x q  .... 

I X I  x 3  x 5  ..... 

f ig. 5.3 Semi-systolic architectures for computing IDWT 

The logic of operations of the circuits in Figure 5.3(a) and Figure 5.3(b) 
is similar to the logic of operation of the DWT circuitry that we described 
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in Figure 5.2. Also, the circuits in Figure 5.3(a) and Figure 5.3(b) can be 
merged into a single semi-systolic array by incorporating four multiplexers 
and another extra control signal I2 as shown in Figure 5.4. 

Fig. 5.4 The combined architecture of IDWT 

Table 5.3 
ure 5.4 for the First 8 Clock Cycles 

Output P, from Processing Element C, of the IDWT Architecture in Fig- 

Pn P7 

35co 
35cO 
B S C l  

B 5 C 1  

3 5 C 2  

3 5 C 2  

B5C3 

85(c3 + co) 
B5(c4 + co) 
85(c4 + c1) 

S 5 ( C 5  + c1) 

B5(c5 + c2) 

85(Q + c2) 

h ( C 7  + c3) 

85(c7 + c4) 

h ( C 6  f C 3 )  

P? 

0 
0 

8 3  co 
83 co 
33c1 

83(c1 + CO) 

33 (c2 f C O )  

8 3 ( C 2  + c1) 

33(c3 + c1) 

33(c3 + c2) 

33(c4 + cz)  
33(c4 + c3) 
83(c5 + c3) 
83(c5 + c4) 

83(Q + c5) 

33(c6 + c4) 
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i i2  co 
3 2  co 
3 Z C l  

i i 2 ( c ,  +co) 
iiZ(C2 + co) 
i i z ( c 2  + C l )  

h ( C 3  + C l )  

& ( c 3  + C 2 )  

32 (C4  + C Z )  

!%(c4 + C 3 )  

9 2 ( G  + c3) 
iiZ(C5 + c 4 )  

3 2 ( C 6  + C 4 )  

.62(C6 + C5) 

In IDWT mode, the internal registers in the processing elements Co, C1, 
CZ,  C3, and C4 contain the pair of filter coefficients ( h ~ ,  hg), (ho, hl ) ,  ( 9 4 ,  

&), (32 ,  9 3 ) ,  and (0, 91) respectively. During IDWT mode, the control signal 
I2 is set to 1 and, depending on the clock phase, the inputs are selected by 
the multiplexers as shown in Figure 5.4. The output samples Qo, Q1, Qz, Q3, 
Q4 from the processing elements Co, C1, C2, C3, C4 are added to  produce the 
even samples 20, x2,. . of the reconstructed signal x={Q, XI,. . . , I C N - ~ }  and 
Po, PI, Pz, P3, P4 are added to produce the odd output samples z 1 , ~ 3 , ’  . .  
of the reconstructed signal x. Output samples Pi and QI of the processing 
elements for the first eight clock cycles in IDWT mode are shown in Tables 5.3 
and 5.4 respectively. (H) or (L) in parentheses in the entries in the “Clock 
Cycle” column of Tables 5.3 and 5.4 indicate high or low. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 5.4 
ure 5.4 for the First 8 Clock Cycles 

Output Q1 from Processing Element C, of thc IDWT Architccture in Fig- 

Qi 

0 
Q 2  

i i4  co 
J4cO 

3 4 c 1  

3 4 c l  

d 4 c 2  

3 4 c 2  

3 4  c3 
3 4 ( c 3  + co) 
i i4  ( c 4  + co) 
i i 4 ( c 4  + c1) 
i i 4 ( c 5  + c1) 
3 4 ( c 5  + c 2 )  

i i 4 ( c 7  + c3) 

6 4 ( c 7  + c 4 )  

9 4  (C6 f C2) 

9 4  ( c 6  + C3) 

5.2.3 

As we discussed in the previous section, i t  is clear that  the functional logics of 
the DWT and IDWT mode of operations differ in the way the input data are 
supplied to the processing elements. From Figures 5.2,  5.3, and 5.4, we find 
that five processing elements are enough for computation of both DWT and 
IDWT. Although interconnection of the processing elements for the DWT and 
IDWT mode of operations is not similar, it  is possible to integrate these two 

Unified Architecture for DWT and Inverse DWT 
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functions into a single architecture by adding some multiplexers and using the 
control signals 11 and 12 as shown in Figure 5.5(a). 

DWT mode: 
Input : xi p. = h i  and q - - q+l for i =O,l, 2 , 3  ,....... 

IDWT mode: 

I 1 = l  

I = I  = o  
1 2  

Fig. 5.5 The integrated architecturc for DWT and IDWT 

In DWT mode, we set 11 = 1 2  = 0 and hence X={ZO, 21, . . . Z N  - 1) 
is the external input to all the processing elements. The output terminal 
01 produces the low-pass subband samples a={ao, a l ,  . . . , U N - ~ }  and 0 2  

produces the high-pass subband samples c={co, c1, . . . , c + - ~ }  respectively. 
In IDWT mode, we set 1 1  = 1 2  = 1. As a result, the first two processing 
elements Co and C1 receive external input a={ao, a l ,  . . . and the 
other three processing elements C2, C, and C4 receive the external input 
c={co, c1, . . . , C N - ~ }  selected by the multiplexor between delay elements 
D1 and D2. The input samples in ith clock cycle are a,-l and ci and the 
corresponding output samples are ~ 2 i  (the even samples) and 22i+1 (the odd 
samples) respectively. The odd sample output is obtained via the 01 terminal 
when the clock is low and the even sample output is obtained via 0 2  when the 
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clock is high. This is possible due to the following reason. When Z1=1 and 
l2=0, the architecture performs similarly to the logic in Figure 5.3(b) and 
the odd samples 5 2 j + l  of the reconstructed signal x are computed. When 
II = Z2=1,  the architecture performs similarly to  the logic in Figure 5.3(a) 
and the even samples x2j of the reconstructed signal are computed. 

The convolution-based implementation of discrete wavelet transform has 
been studied extensively in the literature. There are many hardware archi- 
tectures for VLSI implementation of the convolution-based DWT reported in 
the literature in last two decades [15, 16, 17, 18, 19, 20, 21, 22, 23, 241. Devel- 
opment of VLSI architectures for lifting-based DWT is relatively a new area 
of study in both academia and industry. We describe some of the recent such 
architectures reported in the literature in the following sections. 

5.3 VLSI ARCHITECTURES FOR LIFTING-BASED DWT 

We have presented the underlying principles and formulation of the lifting- 
based discrete wavelet transform in Chapter 4. In this section, we present how 
the lifting operations can be mapped into hardware architectures and their 
possible VLSI implementations. 

First 
stage 

Second 
stage 

HP output 

LP output 

H P  

LP 

Fig. 5.6 Data dependency diagram of lifting-based DWT with four lifting factors 

The data dependency of the lifting scheme can be explained via a data- 
flow graph as shown by a block diagram in Figure 5.6. For the DWT filters 
which can be decomposed into four lifting factors (i.e., four lifting steps), 
the computation is done in four stages. These four stages are depicted in 
Figure 5.6. The values of a ,  b ,  c, d ,  and K depend on the selection of the 
DWT filters. Once the DWT filters are chosen, however, they are constant 
throughout the processing. The intermediate results generated in the first 
two stages for the first two lifting steps are stored temporarily and these 
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intermediate results are subsequently processed to produce the high-pass (HP) 
outputs in the third stage followed by the low-pass (LP) outputs in the final 
stage. The popular (9 ,7)  filter is an example of a DWT filter that requires four 
lifting steps with a = -1.586134342, b = -0.05298011854, c = 0.8829110762, 
d = -0.4435068522, and K = 1.149604398. For the DWT filters requiring 
only two factors such as the (5, 3) filter proposed in JPEG2000 standard, the 
intermediate two stages can be simply bypassed. 

Several architectures have been proposed in the literature for implemen- 
tation of the lifting steps in VLSI. These architectures range from highly 
parallel architectures to programmable DSP-based architectures to  folded ar- 
chitectures. We present systematic derivations of some of these architectures 
in the following sections. 

5.3.1 Mapping the Data Dependency Diagram in Pipeline Architectures 

A direct mapping of the data-flow diagram of the lifting steps into a pipelined 
architecture initially was proposed by Liu, Shiau, and Jou [28]. Block diagram 
of this pipeline architecture is shown in Figure 5.7. Several variations and en- 
hancements of this architecture were proposed later for improved performance 
and better hardware efficiency. 

LP 

HP 

Fig. 5.7 Data dependency diagram mapped into a hardware architecture 

The architecture shown in Figure 5.7 is designed with 8 adders (Al-A8), 
4 multipliers (Ml-M4), 6 delay elements (D), and 8 pipeline registers (R). 
There are two input lines in the architecture, one with all the even samples 
( 2 2 i )  and the other with all the odd samples ( z z i + l ) .  There are four pipeline 
stages in the architecture. In the first pipeline stage, the output of adder 
A1 is 2 2 %  + 2 2 i - 2  and the output of A2 is a ( z 2 i  + 2 2 , - 2 )  + z2i-1, which 
represents the first intermediate results in the data dependency diagram for 
lifting as shown in Figure 5.6. In a similar fashion, the outputs of A4 in the 
second pipeline stage represent the second intermediate results. Continuing 
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in this fashion, A6 in the third pipeline stage produces the high-pass output 
samples, whereas A8 produces the low-pass output samples. The cost of 
hardware of this architecture is very high because of requiring 4 multipliers 
and 8 adders. Moreover, for the lifting schemes requiring only two lifting steps, 
such as the (5, 3) filters, the last two pipeline stages need to be bypassed, 
causing hardware utilization to be only 50% or less. Also for a single read 
port memory, the odd and even samples are read serially in alternate clock 
cycles and buffered. This slows down the overall pipelined architecture by 
50% as well. 

A similar pipeline architecture for VLSI implementation of (9, 7) wavelet 
filters was proposed by Jou, Shiau, and Liu in [29] based on a pipeline schedul- 
ing technique adopted by converting the behavioral description of the lifting 
into the corresponding data flow graph (DFG). The resulting datapath is 
similar to Figure 5.7. 

To minimize the hardware inefficiencies described in the above pipeline ar- 
chitecture, several architectural enhancements and design methodologies have 
been proposed in the literature. We describe some of them in the following 
sections. 

5.3.2 

Hardware utilization of the pipeline architecture described in Figure 5.7 is 
50% or less for the wavelet filters with only two lifting factors (e.g., (5, 3) 
filter). The utilization of the pipeline architecture can be further improved by 
carefully folding the last two pipeline stages into the first two pipeline stages, 
as shown in Figure 5.8. 

Enhanced Pipeline Architecture by Folding 

I I I 
I I I mpuc 

Put 

I I I 
I I I 
I I I 
I I I 

Fig. 5.8 A reconfigurable folded architecture [30] 

Since the datapath architecture of the last two pipeline stages of the archi- 
tecture in Figure 5.7 and their data dependency behavior is exactly identical 
to the first two stages, the last two pipeline stages can be folded into the first 
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two. This can be accomplished by appropriately scheduling the necessary data 
for operation in the architecture. This folding architecture was proposed by 
Lian, Chen, Chen, and Chen in [30]. The architecture has two pipeline stages, 
with three pipeline registers, R1, R2, and R3. For the wavelet filters requiring 
computation of four lifting factors, such as the (9, 7) filter, intermediate data 
(R3) after first two lifting steps (phase 1) are folded back to  R1 as shown 
in Figure 5.8 for computation of the last two lifting steps (phase 2). The 
architecture can be reconfigured so that computation of the two phases can 
be interleaved by selecting proper data by the multiplexers. As a result, we 
need two delay registers (D) in each lifting step in order to  properly schedule 
the data for each phase. Based on the phase of interleaved computation, the 
coefficient for multiplier M1 is chosen as either a or c and similarly b or d 
for multiplier M2. As a result, the hardware utilization is always 100%. For 
wavelet filters requiring only two lifting steps, such as (5, 3) type wavelet 
filters, the folding is not required. 

5.3.3 Flipping Architecture 

While conventional lifting-based architectures require fewer arithmetic opera- 
tions compared to the convolution-based approach for DWT, they sometimes 
have long critical paths. For instance, the critical path of the lifting-based 
architecture for the (9, 7) filter is 4T, + 8T, while that of the convolution 
implementation is T, + 2T,. One way of improving this is by pipelining, as 
has been demonstrated in [28, 29, 301. However, this results in the number 
of registers increasing significantly. For instance, to pipeline the lifting-based 
(9, 7) filter such that the critical path is t ,  + T,, six additional registers are 
required. 

Recently Huang, Tseng, and Chen [36] proposed a very efficient way of 
solving the timing accumulation problem. The basic idea is to  remove the 
multiplications along the critical path by scaling the remaining paths by the 
inverse of the multiplier coefficients. Figures 5.9(a)-(c) describes how scaling 
at each level can reduce the multiplications in the critical path. Figure 5.9(d) 
further splits the three input addition nodes into two 2-input adders. The 
critical path is now T, + 5T,. Note that the flipping transformation changes 
the round-off noise considerably. Techniques to  address precision and noise 
problems have also been addressed in [36] .  

5.3.4 

Chang, Lee, Peng, and Lee [31] proposed a programmable architecture to  map 
the data dependency diagram of lifting-based DWT using four 3-input MAC 
(multiply-adder calculator), nine registers, and a register allocation scheme. 
The algorithm consists of two phases as shown in Figure 5.10. We explain 

A Register Allocation Scheme for Lifting 
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l / K I  
high pass low pass high pass low pass 

low pass high pass low uass high pass 

Fig. 5.9 A flipping architecture proposed in 1361; (a) original architecture, (b)-(c) 
scaling the coefficients to  reduce the number of multiplications, (d)  splitting the three- 
input addition nodes to  two-input adders. 
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below the data-flow principle of the architecture in terms of the register allo- 
cation of the nodes in the data dependency diagram as proposed in [31]. 

Phase 1 Phase2 Phase 1 Phase 2 

Input 

First 
stage 

Second 
stage 

HP output 

LP output 

Fig. 5.10 Data-flow and register allocation of the data dependency diagram of lifting. 

€+om the data-flow in Figure 5.10, i t  is obvious that the architecture has 
two phases (Phase 1 and Phase 2 ) .  These two phases operate in alternate 
fashion. The sequential computation and register allocation in phase 1 of the 
data dependency diagram shown in Figure 5.10 are in the following order: 

RO +- ~ 2 i - 1 ;  R2 +- ~ 2 i ;  

R3 +- RO + a(R1+ R2); 
R4 +- R1+ b(R5 + R3); 
R8 +- R5 + c( R6 + R4); 
OUtpUtLp +- R6 + d(R7 + R8); OUtpUtHp +-- R8. 

Similarly, the sequential computation and register allocation in phase 2 of 
the data dependency diagram of lifting are as follows: 

RO +- X Z ~ + I ;  R1 +- ~ 2 i + 2 ;  

R5 +- RO + a(R2 + Rl ) ;  
R6 +- R2 + b(R3 + R5); 
R7 +- R3 + c(R4 + R6); 
OutputLp + R4 + d(R8 + R7); Output,, +-- R7. 

As explained above, two samples are input in each phase and two samples 
(LP and HP) are output at the end of every phase until the end of input 
data. The output samples are also stored into a temporary buffer for usage in 
the vertical filtering for the two-dimensional implementation of lifting-based 
discrete wavelet transform. 
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5.3.5 

According to the multiresolution decomposition principle of DWT, in every 
stage the low-pass subband is further decomposed recursively by applying the 
same analysis filters. The total number of the output samples to be processed 
for an L-level of DWT is 

A Recursive Architecture for Lifting 

< 2 N ,  
N N  
2 4  N +  - + - +. . .+  2L-1 

where N is the number of samples in the input signal. 
Most of the traditional DWT architectures compute the second level of 

decomposition upon completion of the first level of decomposition and so on. 
Hence the ith level of decomposition is performed after completion of the 
(i - l)t” level a t  stage i in recursion. However, the number of samples to be 
processed in each level is always half of the size in the previous level. As a 
result, it is possible to process multiple levels of decomposition simultaneously. 
This is the basic principle of recursive architecture for DWT computation, 
which was first proposed for a convolution-based DWT in [18]. Later the 
same principle was applied to  develop recursive architecture for lifting-based 
DWT by Liao, Cockburn, and Mandal [34, 351. Here computations in higher 
levels of decomposition are initiated as soon as enough intermediate data in 
low-frequency subband are available for computation. The architecture for 
a three-level of decomposition of an input signal using Daubaches-4 DWT 
proposed by Liao et al. is shown in Figure 5.11. However, the same principle 
can be extended to other wavelet filters as well. 

Fig. 5.11 Recursive architecture for lifting. 

The basic circuit elements used in this architecture for arithmetic com- 
putation are delay elements, multipliers and multiply-accumulators (MAC). 
The MAC is designed using a multiplier, an adder, and two shifters. The 
multiplexers M1 and M 2  select the even and odd samples of the input data 
as needed by the lifting scheme. The S1, S2,  and S3 are the control signals 
for data flow of the architecture. For the first level of computation the select 
signal (Sl)  of each multiplexer is set to  0, and it is set to  1 during the second 
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or third level of computation. The switches S2 and S3 select the input data 
for the second and third level of computation. The multiplexer M3 selects the 
delayed samples for each level of decomposition based on the clocked signals 
shown in Figure 5.11. The total time required by this recursive architecture 
to compute an L-level DWT is 

T = N + Td + 2(1 f 2 -I- . . .  4- 2L-1) = N 4- Td + 2L - 2, 

where Td is the circuit delay from input to output. 

5.3.6 

A filter independent DSP-type parallel architecture has been proposed by 
Martina, Masera, Piccinini, and Zamboni in [37]. The architecture consists of 
Nt = maxt{kst, kt,} number of MAC (multiply-accumulate) units, where ksz  
and kt, are length of the primal and dual lifting filters si and ti respectively 
in step i of lifting factorization. The architecture is shown in Figure 5.12. 

A DSP-Type Architecture for Lifting 

Programmabl j""'""l1 

Fig. 5.12 Parallel MAC architecture for lifting. 

The architecture essentially computes the following two streams in each 
lifting step. 

aou t [ j l  = ain[jl - 1 C k  d i n b  - kl.Si[kl + 4 ' 1  

dout [jl = din [ j ]  - iCk  aout li - kl.ti [kl + 21 7 
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where ai, and din  are two input substreams formed by the even and odd sam- 
ples of the original input signal stream z. It is obvious that streams azn and 
bi, are not processed together in this architecture; while one is processed the 
other has to be delayed enough to  guarantee a consistent subtraction at  the 
end of the lifting step. The above architecture is designed to compute nt si- 
multaneous partial convolution products selected by the multiplexer (MUX), 
where nt is the length of filter tap for the lifting step being currently exe- 
cuted in the architecture. After nt clock cycles, the first filtered sample is 
available for rounding operation at  the output of the first MAC1 and subse- 
quent samples are obtained in consecutive clock cycles from the subsequent 
MAC units (MAC2, . . . , MAC,,). The "programmable delay" is a buffer 
that guarantees the subtraction consistency to execute corresponding aout [ j ]  
and dol l t [ j ]  samples at the output. The ROUND unit in Figure 5.12 computes 
the floor function shown in the lifting equations and the SUB unit processes 
the corresponding subtraction operations. The input sample streams (a two- 
dimensional image) are stored into a RAM in four sub-sampled blocks in order 
to properly address the row-wise and column-wise processing of the image for 
2-D lifting DWT implementation. A detailed memory addressing scheme and 
their access patterns have been discussed in great detail in [37]. 

5.3.7 

The architecture proposed by Andra, Chakrabarti, and Acharya [25, 26, 271 
is an example of a highly programmable architecture that can support a large 
set of wavelet filters. These include filters (5,3), (9,7), C(13,7), S(13,7), (2,6), 
(2,10), and (6,lO). In this architecture, each stage of the data dependency 
diagram in Figure 5.6 is assigned to a processor. For wavelet filters requiring 
only two lifting stages (as in the (5, 3) wavelet filter), this maps to a two 
processor architecture. For wavelet filters with four lifting stages (such as the 
(9, 7) wavelet filter), this maps to a four-processor architecture. Figure 5.13 
describes the assignment of computation to processors P1 and P2 for the (5, 
3) wavelet filter. 

The processor architecture consists of adders, multipliers, and shifters that 
are interconnected in a manner that would support the computational struc- 
ture of the specific filter. Figure 5.14 describes the processor architectures for 
computation of the lifting steps. All the lifting steps for DWT and IDWT 
are essentially of the form yi = + z,+~) + xi, where a is a constant 
multiplication factor. For the (5, 3) filter, the multiplication factors in both 
the lifting stages are multiplies of 2 and hence it can be executed by simple 
shift operations. As a result, the processor for computation of ( 5 ,  3) filter 
consists of two adders and a shifter, whereas the processor for computation 
of (9, 7) filter consists of two adders and a multiplier. 

Figure 5.15 describes part of the schedule for the (5, 3) wavelet filter to 
transform a row (or in one dimension). The schedules are generated by map- 
ping the dependency graph onto the resource-constrained architecture. It is 

A Generalized and Highly Programmable Architecture for Lifting 
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P1 

P2 

- 
I 
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Fig. 5.13 Processor assignment for the ( 5 ,  3) wavelet filter. 

Fig. 5.14 Processor architecture for the (5, 3) and (9, 7) filters. 

assumed that the delays of each adder, shifter, and the multiplier are 1, 1, 
and 4 time units respectively. For example, Adder1 of P1 adds the elements 
(xo, x2) in the second cycle and stores the sum in register RA1. The shifter 
reads this sum in the next cycle (third cycle), carries out the required number 
of shifts (one right shift as a = -0.5) and stores the data in register RS. The 
second adder (Adder2) reads the value in RS and subtracts the element x1 
to generate y1 in the next cycle. To process N = 9 data, the P1 processor 
takes four cycles. Adder 1 in P2 processor starts computation in the sixth 
cycle. The gaps in the schedules for P1 and P2 are required to  store the zeroth 
element of each row. 

5.3.8 A Generalized Two-Dimensional Architecture 

Generally, two-dimensional wavelet filters are separable functions. A straight- 
forward approach for two-dimensional implementation is to  first apply the 
one-dimensional DWT row-wise (to produce L and H subbands) and then 
column-wise to produce four subbands LL, LH, HL, and HH in each level of 
decomposition as shown in Figure 4.3(a) in Chapter 4. Obviously, the proces- 
sor utilization is a concern in direct implementation of this approach because 
it requires all the rows in the image be processed before the column-wise pro- 
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Fig. 5.15 Partial schedule for the ( 5 ,  3) filter implementation 

cessing can begin. As a result, it requires a size of memory buffer of the order 
of the image size and hence increase total computation delay. The alterna- 
tive approach to  reduce these inefficiencies is to  begin the column-processing 
as soon as sufficient number of rows have been filtered. The column-wise 
processing is now performed on these available lines to  produce wavelet co- 
efficients row-wise. Similar approach can be adopted for implementation of 
two-dimensional lifting scheme as well. 

The two-dimensional architecture proposed in [27] computes both the for- 
ward and inverse lifting-based DWT in the traditional row-column fashion. 
However, the scheduling of data is done in such a fashion that column- 
processing can start as soon as enough data is available after row-wise pro- 
cessing as explained earlier in order to minimize the computation delay. As 
shown in Figure 5.16, the architecture consists of a TOW module, a column 
module, and two memory modules (MEM1, MEM2). The row module con- 
sists of two processors RP1 and RP2 along with a register file REG1. The 
register file REGl is used to  store the intermediate data between two lifting 
steps computed by RP1 and RP2. Similarly, the column processor consists of 
two processors CP1 and CP2 along with a register file REG2. The register 
files REGl and REG2 were used in between the processors mainly to locally 
store the intermediate results from the lifting steps in order to  avoid access 
of memory for these intermediate data to store and read again. The register 
file REG2 is used to  store the intermediate data between two lifting steps 
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Fig. 5.16 Block diagram of the two-dimensional architecture. 

computed by CP1 and CP2. Internal logic of all the four processors RP1, 
RP2, CP1, CP2 is the same as shown in Figure 5.14. 

When the DWT requires two lifting steps (as in (5, 3) wavelet filters), 
processors RP1 and RP2 read the data from MEMl, perform the computation 
along the rows, and write the data into MEM2. We denote this mode of 
operation of the architecture as 2M architecture mode. Processor CP1 reads 
the data  from MEM2, performs the column-wise DWT along alternate rows, 
and writes the HH and LH subbands into MEM2 and an external memory 
(Ext.MEM). Processor CP2 reads the data from MEM2 and performs the 
column-wise DWT along the rows that CP1 did not work on and writes LL 
subband to  MEMl and HL subband to  Ext.MEM. The data flow is shown in 
Figure 5.17(a). 

Ext Memory 

J 
Ext Memory 

MEM 1 
J 

Column Row 
Module Module 

t I ,  MEM2 

la) 2M filters (b) 4M filters 

Fig. 5.17 Data flow for (a) 2M, (b) 4M architectures. 
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Fig. 5.18 Two-dimensional data-access patterns for the row and column modules for 
the ( 5 , 3 )  filter with N=5 in [27]. 

When the DWT requires four lifting steps (as in (9, 7) wavelet filters), 
we say the architecture is in 4M architecture mode and it operates in two 
passes. In the first pass, the row-wise computation is performed. RP1 and 
RP2 read the data from MEMl, execute the first two lifting stages and write 
the result into MEM2. CP1 and CP2 execute the next two lifting stages, and 
write results t o  MEM2. In the second pass, the transform is computed along 
columns. At the end of the second pass, CP1 writes HH and LH subbands 
to Ext.MEM while CP2 writes LL subband to  MEMl and HL subband to  
Ext.MEM. The data flow is shown in Figure 5.17(b). 

In the 2M Architecture mode, the latency and memory requirements would 
be very large if the column transform is started after completion of the 
transformation of all the rows in the whole two-dimensional block. To over- 
come this, the column processors also need to  compute row-wise. This is 
illustrated in Figure 5.18 for the (5, 3) filter with N = 5. The first pro- 
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cessor RP1 computes the high-pass (odd) elements  yo,^, yo,3, ... along the 
rows, while the second processor RP2 calculates the low-pass (even) elements 
yo,o,  yo,^, yo,4, ..., also along the rows. Here an element yi,j denotes an ele- 
ment in ith row and jth column of the two-dimensional block. The processor 
CP1 calculates the high-pass and low-pass elements z1,0, z1,1, ..., z3 ,o ,  z3,1, ... 
along the odd rows and CP2 calculates the high-pass and low-pass elements 
Z O , ~ ,  z o , ~ ,  . .. , z z , ~ ,  Z Z , ~ ,  . .., z4,0, z4,1, . .. along the even rows as shown in Figure 5.18. 
It should be noted that the processors CP1 and CP2 start their computations 
as soon as the required elements are generated by Rp1 and RP2. Essen- 
tially, the processor RP1 calculates the high-pass values and RP2 calculates 
the low-pass values, along all the rows, whereas CP1 and CP2 calculate both 
high-pass and low-pass values along the odd rows and even rows respectively. 
In Table 5.5, we present a snapshot of the schedule of the data and their com- 
putation in the first 14 clock cycles for the RP1 and RP2 processors. Similarly, 
we present a part of the schedule of the data and their computation for the 
processors CP1 and CP2 in Tables 5.6 and 5.7 respectively. 

In the 4M Architecture mode, all four processors perform either a row trans- 
form or a column transform at any given instant. Specifically, the processors 
RP1 and CP1 compute the high-pass values along the rows in the first pass 
and along the columns in the second pass, whereas processors RP2 and CP2 
compute the low-pass values. 

Table 5.5 Partial Schedule of Processors RP1 and RP2 for the (5,3) Filter. 

The memory modules, MEMl and MEM2, are both dual port with one 
read and one write port, and support two simultaneous accesses per cycle. 
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Cycle Adderl 
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Table 5.6 Partial Schedule of Processor CP1 for the ( 5 ,  3) Filter. 

Shift Adder2 

1 Cycle I Adderl 1 Shift I Adder2 

MEMl  consists of two banks and MEM2 consists of four banks. The multi- 
bank structure increases the memory bandwidth and helps support highly 
pipelined operation. Details of the memory organization and size, register 
file, and schedule for the overall architecture with specific details for each 
constituent filter have been included in [27]. 
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Total time required to transform an N x N block using (5, 3) wavelet filter 
using this architecture is 2[N/2] + 3T, + 2T, + N + 5 + LN/2JN clock cycles, 
where T, is delay of an adder and T, is delay of a shifter. Any other type of 
wavelet filters can be efficiently executed in this architecture as well. Details 
of these filters and their timing for execution in this architecture have been 
presented in [27]. 

5.4 SUMMARY 

In this chapter, we presented VLSI algorithms and architectures for discrete 
wavelet transforms. We described the traditional convolution (filtering) ap- 
proach for computation of discrete wavelet transform and described how a 
systolic architecture can be designed for wavelet filters by exploiting the sym- 
metric relationship of the filter coefficients. Since the lifting-based wavelet 
transform is a development of the late 1990s and is new in the VLSI commu- 
nity, we emphasized more on the VLSI architectures for the lifting-based DWT 
computation in this chapter. Lifting-based DWT has many advantages over 
the traditional convolution-based approach. It requires less memory and com- 
putation for implementation compared to  the convolution-based approach. 
We reviewed and presented the VLSI architectures that have been reported 
very recently for lifting-based DWT. We presented how the data-dependency 
diagram for the lifting computation can be mapped into pipelined architec- 
tures for suitable VLSI implementation, and proposed enhancement of the 
pipeline architectures by applying different schemes reported in the litera- 
ture. We described in greater detail a highly folded VLSI architecture for 
computation of both one-dimensional and two-dimensional transformations. 
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6 
JPEG2000 Standard 

6.1 INTRODUCTION 

JPEG2000 is the new international standard for image compression [l, 2,3]  de- 
veloped jointly by the International Organization for  Standardization (ISO) , 
and the International Electrotechnical Commission (IEC) and also recom- 
mended by International Telecommunications Union (ITU). The activity to- 
ward definition of the image compression standard originally started as early 
as 1982 and finally the JPEG (Joint Photographic Experts Group) was formed 
in 1987. However, JPEG for still image compression [4, 51 became an inter- 
national standard in 1992. The JPEG standard described a family of image 
compression techniques rather than a single compression technique. It pro- 
vides a “tool kit” of compression techniques from which an application can 
choose the elements needed to  meet its requirements. The standard has four 
different modes of operations as described in Chapter 3. Each mode consists 
of a multiple number of options as well, totaling 44 different options or sub- 
modes. A particular option is a restricted form of the sequential Discrete 
Cosine Transform (DCT) based mode in JPEG called the baseline JPEG. 
Market studies show that more than 90% of users use this baseline JPEG and 
hence the rest of the standard was greatly underutilized. Although we call 
JPEG an image compression standard, the standards committee actually de- 
fines the syntax of the compressed bitstream in each mode and the underlying 
decoder to  decompress the bitstream. It is the prerogative of the developers 
to  develop the compression system. The compression system is said to be 
standard compliant if it follows the standard defined bitstream syntax in or- 
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der to uniquely decode it by the standard decoder. From that perspective, 
JPEG (also JPEG2000) is actually a decoding standard. 

Since the definition of the JPEG standard, the technology world and the 
marketplace have gone through a significant transformation because of the ad- 
vent of Internet technology, its massive deployment and usage in every walk 
of life, and significant progress in multimedia and communications technolo- 
gies and their applications. Although JPEG (actually baseline JPEG) has 
been very successful in the marketplace for more than a decade, i t  lacks many 
features desired by interactive multimedia applications, its usage in current 
communications (wired or wireless) environments, and Internet applications 
platforms. A fundamental shift in the image compression approach came af- 
ter the Discrete Wavelet Transform (DWT) became popular [6, 7, 8, 9, lo]. 
Exploiting the interesting features in DWT, many scalable image compres- 
sion algorithms were proposed in the literature [ll ,  12, 13, 14, 15, 16, 171. 
To overcome the inefficiencies in the JPEG [4, 51 standard and serve emerg- 
ing applications areas in this age of mobile and Internet communications, 
the new JPEG2000 standard has been developed based on the principles of 
DWT and currently more developments in this standard are still in progress 
in the ISO/IEC standard committee. It incorporated the latest advances in 
image compression to provide a unified optimized tool to accomplish both 
lossless and lossy compression and decompression using the same algorithm 
and the bitstream syntax. The systems architecture is not only optimized 
for compression efficiency at  even very low bit-rates, it is also optimized for 
scalability and interoperability in networks and noisy mobile environments. 
The JPEG2000 standard will be effective in wide application areas such as 
Internet, digital photography, digital library, image archival, compound docu- 
ments, image databases, color reprography (photocopying, printing, scanning, 
facsimile), graphics, medical imaging, multispectral imaging such as remotely 
sensed imagery, satellite imagery, mobile multimedia communication, 3G cel- 
lular telephony, client-server networking, e-commerce, etc. 

As of writing this book, the JPEG2000 standard has 11 key parts (Part 
7 has been abandoned) as described later. At this point, we are considering 
mainly Part 1 of the JPEG2000 standard [20] in this book. We summarize 
the features and purpose of other parts of the standard in Chapter 10. 

The main drawback of the JPEG2000 standard compared to current JPEG 
is that the coding algorithm is much more complex and the computational 
needs are much higher. Moreover, bit-plane-wise computing may restrict 
good computational performance with a general-purpose computing platform. 
Analysis [l, 271 shows that the JPEG2000 compression is more than 30 times 
complex as compared with current JPEG. As a result, there is a tremendous 
need to develop high-performance architectures and special-purpose custom 
VLSI chips exploiting the underlying data parallelism to speed up the DWT 
and entropy encoding phase of JPEG2000 to make it suitable for real-time 
applications. 
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6.2 WHY JPEG2000? 

The underlying philosophy behind development of the JPEG2000 standard 
was to  compress an image once and decode the compressed bitstream in many 
ways to  meet different applications requirements. The requirements guideline 
[18] of the JPEG2000 standard established some desired features to  be sup- 
ported by the standard in order to enable its usage in different applications 
areas as explained in the previous section. 

Some of the salient features offered by the JPEG2000 standard that are 
effective in vast areas of applications are as follows: 

Superior low bit-rate performance: It offers superior performance in 
terms of visual quality and PSNR (peak signal-to-noise ratio) at very 
low bit-rates (below 0.25 bit/pixel) compared to the baseline JPEG. For 
equivalent visual quality JPEG2000 achieves more compression com- 
pared to  JPEG. This has been demonstrated in Figure 3.6 in Chapter 
3, and its color version is provided in the color figures page. This fea- 
ture is very useful for transmission of compressed images through a 
low-bandwidth transmission channel. 

Continuous tone and bi-level image compression: The JPEG2000 stan- 
dard is capable of compressing and decompressing both the continuous- 
tone (grayscale and color) and bi-level images. The JBIG2 standard was 
defined to  compress the hi-level images and it uses the same MQ-coder 
that is used to entropy encode the wavelet coefficients of the grayscale 
or color image components. 

Large dynamic range of the pixels: The JPEG2000 standard-compliant 
systems can compress and decompress images with various dynamic 
ranges for each color component. Although the desired dynamic range 
for each component in the requirement document is 1 to 16 bits, the 
system is allowed to have a maximum of 38 bits precision based on the 
bitstream syntax. As a matter of fact, JPEG2000 is the only standard 
that can deal with pixels with more than 16 bits precision. This feature 
is particularly suitable both for software and hardware implementers to 
choose the precision requirement for targeted applications. 

Large images and large numbers of image components: The JPEG2000 
standard allows the maximum size of an image to be (232 - 1) x (232 - 1) 
and the maximum number of components in an image to be 214. This 
feature is particularly suitable for satellite imagery and astronomical 
image processing involving multispectral images with a large number of 
components and size. 

Lossless and lossy compression: The single unified compression archi- 
tecture can provide both the lossless and the lossy mode of image com- 
pression. Lossy and lossless decompression are also possible from a 
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single compressed bitstream. The reversible color transform and the re- 
versible wavelet transform (using integer wavelet filter coefficients) make 
the lossless compression possible by the same coding architecture. As a 
result , the same technology is applicable in varying applications areas 
ranging from medical imagery requiring lossless compression to digital 
transmission of images through communication networks. 

Fixed size can be preassigned: The JPEG2000 standard allows users to 
select a desired size of the compressed file. This is possible because of the 
bit-plane coding of the architecture and controlling the bit-rate through 
the rate control. The compression can continue bit-plane by bit-plane 
in all the code-blocks until the desired compressed size is achieved and 
the compression process can terminate. This is a very useful feature 
for restricted-buffer-size hardware implementation as in reprographic 
architectures such as printer, photocopier, scanner, etc. This is also a 
very useful feature to dynamically control the size of the compressed file 
in a limited-bandwidth communications networking environment. 

Progressive transmission by  pixel accuracy and resolution: Using the 
JPEG2000 standard, it is possible to  organize the code-stream in a pro- 
gressive manner in terms of pixel accuracy (i.e., visual quality or SNR) of 
images that allows reconstruction of images with increasing pixel accu- 
racy as more and more compressed bits are received and decoded. This 
is possible by progressively decoding most significant bit-plane to lower 
significant bit-planes until all the bit-planes are reconstructed. The 
code-stream can also be organized as progressive in resolution such that 
the higher-resolution images are generated as more compressed data are 
received and decoded. This is possible by decoding and inverse DWT of 
more and more higher level subbands that were generated by the mul- 
tiresolution decomposition of the image by DWT, as shown in Figure 
4.5 in Chapter 4, during the compression process. These features are 
very effective for real-time browsing of images on the Web, downloading 
or reconstructing the images in a system with limited memory buffer, 
transmission of images through limited-bandwidth channels, decoding 
the images depending on the available resolution of the rendering sys- 
tem, etc. More on the progression order will be discussed in Chapter 
7. 

Region of interest (ROI )  coding: The user may desire certain parts of 
an image that are of greater importance to be encoded with higher 
fidelity compared to the rest of the image. During decompression the 
quality of the image also can be adjusted depending on the degree of 
interest in each region of interest. For example, a medical practitioner 
may find a certain region (or number of regions) in the radiograph to 
he more informative than the other parts. It is then possible to  archive 
the digital radiograph by compressing it such a way that the region of 
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interest is compressed completely losslessly and introducing errors in 
other parts of the image in order to  store it in a desired size of storage. 

Random access and compressed domain processing: By randomly ex- 
tracting the code-blocks from the compressed bitstream, it is possible 
to  manipulate certain areas (or regions of interest) of the image. Some of 
the examples of compressed-domain processing could be cropping, flip- 
ping, rotation, translation, scaling, feature extraction, etc. One might 
want to  replace one object in the image with another, sometimes even 
with a synthetically generated image object. It is possible to extract the 
compressed code-blocks representing the object and replace them with 
compressed code-blocks of the desired object. This feature is very useful 
in many applications areas such as editing, studio, animation, graphics, 
etc. 

a Object-based functionality: Because of random-access and compressed- 
domain processing capabilities in the JPEG2000 standard, we can apply 
different operations and manipulations in different objects in the com- 
pressed domain as explained in the previous item. The objects in an 
image can be defined in terms of a suitable group of code-blocks in the 
image. The information of the location of these code-blocks and corre- 
sponding bitstream are available in the header of the compressed file. 

a Robustness to bat-errors (error resiliency): Robustness to bit-errors is 
highly desirable for transmission of images over noisy communications 
channels. The JPEG2000 standard facilitates this by coding small size 
independent code-blocks and including resynchronization markers in the 
syntax of the compressed bitstream. There are also provisions to  de- 
tect and correct errors within each code-block. This feature makes 
JPEG2000 applicable in emerging third-generation mobile telephony ap- 
plications. 

Sequential buildup capability: The JPEG2000-compliant system can be 
designed to encode an image from top to  bottom in a single sequential 
pass without the need to buffer an entire image, and hence is suitable 
for low-memory on-chip VLSI implementation. The line-based imple- 
mentation of DWT and tiling of the images facilitates this feature. 

a Metadata: The extended file syntax format allows inclusion of metadata 
information to  describe the data (image) into the compressed bitstream. 
For example, the JPX file format, defined in JPEG2000 Part 2: Exten- 
sions, allows any legal ICC (International Color Consortium) profile to 
be embedded in the file. 

rn Image security: Although JPEG2000 does not dictate any particular 
image security mechanism, i t  is possible to  introduce image security 
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features into a JPEG2000-compliant compressed file by inserting water- 
marks, fingerprints, or intellectual property rights information, or apply 
the steganography approach into the desired object or blocks of the im- 
ages by accessing the corresponding compressed code-blocks and recom- 
pressing by introducing these image security features. In the JPEG2000 
standards committee, definition of Part 8 (Secure JPEG2000) of the 
standard is an ongoing activity. Once finalized, Part 8 of the standard 
will guide the issues of image security and their implementation in a 
JPEG2000-compliant system. 

In Figure 6.1, we have demonstrated the results of some of the capabilities 
of the JPEG2000 technology. The color version of Figure 6.1 is provided in the 
color figures page. The input image is a color image with three components (R, 
G,  B) as shown in Figure 6.l(a).  We applied three levels of DWT to decompose 
the image and generate the compressed bitstream with ROI encoding. The 
bitstream was generated by compressing the image losslessly. From the same 
bitstream, we decoded the image progressively until we reconstructed the 
original image as shown by the lossless arrow. While decoding in progressive 
manner, the reconstructed image is visually lossless at  5.2 bits per pixel or 
above as shown in Figure 6.l(b).  In Figure 6.l(c),  we show the random-access 
capability. We have accessed the compressed bits only for the code-blocks 
forming the subregion (or cropped version of the image) and decoded the 
result as shown in Figure 6.l(c). When we decode only one component (in 
this example we decoded G component), we get a grayscale image as shown 
in Figure 6. l (d) .  After decoding the bitstream progressively a t  two levels of 
resolution, we generate a 2: 1 downscaled (horizontally and vertically) version 
of the image as shown in Figure 6.l(e).  After decoding to  1.89 bits per pixel, 
we losslessly reconstructed the ROI portion of the image, but introducing 
artifacts in the rest of the image as shown in Figure 6.l(f) .  As a result, we can 
conclude that an iniage can be compressed once and the compressed bitstream 
can be decoded in many different ways to  suit the desired requirement. 

6.3 PARTS OF THE JPEG2000 S T A N D A R D  

As of writing this book, the standard has 11 parts (because Part 7 has been 
abandoned) with each part adding new features to the core standard in Part 
1. The 11 parts and their features are as follows: 

0 Part 1-Core Coding System [20] is now published as an International 
Standard ISO/IEC 15444-1:2000, and this part specifies the basic feature 
set and code-stream syntax for JPEG2000. 

0 Part 2-Extensions [21] to  Part 1. This part adds a lot more features to 
the core coding system. These extensions are described in greater detail 
in Chapter 10. 
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Fig. 6.1 Example of capabilities of JPEG2000 technology. 
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0 Part 3-Motion JPEG2000 [22] specifies a file format (MJ2) that con- 
tains an image sequence encoded with the JPEG2000 core coding algo- 
rithm for motion video. It is aimed at applications where high-quality 
frame-based compression is desired. 

0 Part 4-Conformance Testing [23] is now published as an International 
Standard (ISO/IEC 15444-4:2002). It specifies compliance-testing pro- 
cedures for encoding/decoding using Part 1 of JPEG2000. 

0 Part 5-Reference Software [24]. In this part, two software source pack- 
ages (using Java and C programming languages) are provided for the 
purpose of testing and validation for JPEG2000 systems implemented 
by the developers. 

0 Part 6-Compound Image File Format [25] specifies another file for- 
mat (JPM) for the purpose of storing compound images. The ITU-T 
T.44jISO 16485 [26] multilayer Mixed Raster Content (MRC) model is 
used to represent a compound image in Part 6 of JPEG2000. 

0 Part 7-This part has been abandoned. 

0 Part 8-Secure JPEG2000 (JPSEC). This part deals with security as- 
pects for JPEG2000 applications such as encryption, watermarking, etc. 

0 Part 9-Interactivity Tools, APIs and Protocols (JPIP). This part de- 
fines an interactive network protocol, and it specifies tools for efficient 
exchange of JPEG2000 images and related metadata. 

0 Part 10-3-D and Floating Point Data (JPSD). This part is developed 
with the concern of three-dimensional data such as 3-D medical image 
reconstruction, as an example. 

0 Part 11-Wireless (JPWL). This part is developed for wireless multi- 
media applications. The main concerns for JPWL are error protection, 
detection, and correction for JPEG2000 in an error-prone wireless envi- 
ronment. 

0 Part 12-IS0 Base Media File Format has a common text with ISO/IEC 
14496-12 for MPEG-4. 

Parts 8 to 11 are still under development as of writing this book. However, 
since Part 12 has a common text with ISO/IEC 14496, it is published as 
ISO/IEC 15444-12:2004. We will have more discussion in Chapter 10 for 
parts beyond Part 1 of JPEG2000. 



Fig. 3.6 (a) Original Pepper image, (b) compressed with baseline JPE;G using quality 
factor 75 (1.57 bit/pixel), (r)  cornpresscd with bascline JPEG iisirig quality factor 10 
(0.24 bit,/pixel), and (d) compressed wit,h the new JPEG2000 standard iising the same 
bit rate (0.24 bit/pixel). 



Fig 6.1 Example of capabilities of JPEG2000 technology. 
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6.4 OVERVIEW OF T H E  JPEG2000 PART 1 ENCODING SYSTEM 

Like other image and video compression standards (JPEG, MPEG-1, MPEG- 
2, MPEG-4), the JPEG2000 standard is also written from the decoder point 
of view. This means that the decoder is specified quite precisely from marker 
segments to bitstream syntax in the JPEG2000 standard document. The de- 
tail of the specification of the decoder is sufficient to  dictate the functionalities 
of the encoder. However, it is very difficult for a beginner to understand the 
standard document. Once the encoder system is well understood, i t  becomes 
easier to  comprehend the decoder system described in the standard docu- 
ment. In this section, we explain the encoder engine for the JPEG2000 Part 1 
standard. The whole compression system is simply divided into three phases. 
We call them (1) image preprocessing, (2) compression, and (3) compressed 
bitstream formation. We explain the functionalities of these three phases in 
the following sections. 

6.5 IMAGE PREPROCESSING 

The image preprocessing phase consists of three optional major functions: first 
tiling, then DC level shifting, followed by the multicomponent transformation. 

6.5.1 Tiling 

The first preprocessing operation is tiling. In this step, the input source 
image is (optionally) partitioned into a number of rectangular nonoverlapping 
blocks if the image is very large. Each of these blocks is called a tile. All the 
tiles have exactly the same dimension except the tiles at the image boundary 
if the dimension of the image is not an integer multiple of the dimension 
of the tiles. The tile sizes can be arbitrary up to the size of the original 
image. For an image with multiple components, each tile also consists of these 
components. For a grayscale image, the tile has a single component. Since 
the tiles are compressed independently, visible artifacts may be created at the 
tile boundaries when it is heavily quantized for very-low-bit-rate compression 
as typical in any block transform coding. Smaller tiles create more boundary 
artifacts and also degrade the compression efficiency compared to the larger 
tiles. Obviously, no tiling offers the best visual quality. On the other hand, if 
the tile size is too large, it requires larger memory buffers for implementation 
either by software or hardware. For VLSI implementation, it requires large 
on-chip memory to buffer large tiles mainly for DWT computation. The 
tile size 256 x 256 or 512 x 512 is found to  be a typical choice for VLSI 
implementation based on the cost, area, and power consideration. With the 
advances in memory technology with more compaction and reducing cost, the 
choice of tile size in the near future will be accordingly larger. 
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6.5.2 DC Level Shifting 

Originally, the pixels in the image are stored in unsigned integers. For mathe- 
matical computation, it is essential to convert the samples into two’s comple- 
ment representation before any transformation or mathematical computation 
starts in the image. The purpose of DC level shifting (optional) is to  ensure 
that the input image samples have a dynamic range that is approximately 
centered around the zero. The DC level shifting is performed on image sam- 
ples that are represented by unsigned integers only. All samples Ii(z,  y) in the 
ith component of the image (or tile) are level shifted by subtracting the same 
quantity 2’:%~-’ to  produce the DC level shifted sample IL(z, y) as follows, 

where S:iz is the precision of image samples signaled in the SIZ (image and tile 
size) marker segment in compressed bitstream. For images whose samples are 
represented by signed integers, such as CT (computed tomography) images, 
the dynamic range is already centered about zero, and no DC level shifting is 
required. 

6.5.3 Multicomponent Transformations 

The multicomponent transform is effective in reducing the correlations (if any) 
amongst the multiple components in a multicomponent image. This results in 
reduction in redundancy and increase in compression performance. Actually, 
the standard does not consider the components as color planes and in that 
sense the standard itself is colorblind. However, it defines an optional mul- 
ticomponent transformation in the first three components only. These first 
three components can be interpreted as three color planes (R, G I  B) for ease of 
understanding. That’s why they are often called multicomponent color trans- 
formation as well. However, they do not necessarily represent Red-Green-Blue 
data of a color image. In general, each component can have different bit-depth 
(precision of each pixel in a component) and different dimension. However, 
the condition of application of multicomponent transform is that the first 
three components should have identical bit-depth and identical dimension as 
well. 

The JPEG2000 Part 1 standard supports two different transformations: (1) 
reversible color transform (RCT), and (2) irreversible color transform (ICT). 
The RCT can be applied for both lossless and lossy compression of images. 
However, ICT is applied only in lossy compression. 

6.5.3.1 Reversible Color Transformation For lossless compression of an im- 
age, only the reversible color transform (RCT) is allowed because the pixels 
can be exactly reconstructed by the inverse RCT. Although it has been defined 
for lossless image compression, the standard allows it for lossy compression as 
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well. In case of lossy compression, the errors are introduced by the transfor- 
mation and/or quantization steps only, not by the RCT. The forward RCT 
and inverse RCT are given by: 

Forward RCT: 

yr = ‘R+24G+B1 1 
U , = B - G  

V , = R - G  

Inverse RCT: 
G = Y, - L 

R=V,+G 

B=U,+G 

J 

6.5.3.2 Irreversible Color Transformation The irreversible color transforma- 
tion (ICT) is applied for lossy compression only because of the error intro- 
duced due to forward and inverse transformation by using noninteger coeffi- 
cients as the weighting parameters in the transformation matrix, as shown in 
Eqs. 6.3 and 6.4. The ICT is the same as the luminance-chrominance color 
transformation used in baseline JPEG. Y is the luminance component of the 
image representing intensity of the pixels (light) and Cb and Cr are the two 
chrominance components representing the color information in each pixel. In 
baseline JPEG, the chrominance components can be subsampled to  reduce 
the amount of data to start with. However, in the JPEG2000 standard, this 
subsampling is not allowed. The forward ICT and inverse ICT are given by: 

Forward ICT: 
0.299000 0.587000 0.114000 [ :b] = [ -0.168736 -0.331264 0.500000] [ 

Cr 0.500000 -0.418688 -0.081312 ] 
Inverse ICT: 

1.0 0.0 1.402000 
1.0 -0.344136 -0.714136 [!I=[ 1.0 1.772000 0.0 

6.6 COMPRESSION 

After the optional preprocessing phase, as described in the previous section, 
the compression phase actually generates the compressed code. The com- 
putational block diagram of the functionalities of the compression system is 
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Fig. 6.2 (a) Block diagram of the JPEG2000 encoder algorithm; (b) dataflow. 

shown in Figure 6.2(a). The data flow of the compression system is shown 
in Figure 6.2(b). As shown in Figure 6.2(b), each preprocessed component is 
independently compressed and transmitted as shown in Figure 6.2(a). 

The compression phase is mainly divided into three sequential steps: (1) 
Discrete Wavelet Transform (DWT), (2) Quantization, and (3) Entropy En- 
coding. After preprocessing, each component is independently analyzed by a 
suitable discrete wavelet transform (DWT). The DWT essentially decomposes 
each component into a number of subbands in different resolution levels. Each 
subband is then independently quantized by a quantization parameter, in case 
of lossy compression. The quantized subbands are then divided into a number 
of smaller code-blocks of equal size, except for the code-blocks a t  the boundary 
of each subband. Typical size of the code-blocks is usually 32 x 32 or 64 x 
64 for better memory handling and is very suitable for VLSI implementation 
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with on-chip memory in the encoder architecture. The standard allows the 
limit of code-block sizes and the restrictions are discussed in Chapter 7. Each 
code-block is then entropy encoded independently to produce compressed bit- 
streams as shown in the dataflow diagram in Figure 6.2(b). We discuss the 
three major functions in the compression phase in the following sections. 

6.6.1 Discrete Wavelet Transformation 

The key difference between current JPEG [4] and JPEG2000 starts with the 
adoption of discrete wavelet transform (DWT) instead of the 8 x 8 block 
based discrete cosine transform (DCT). As we discussed earlier, the DWT 
essentially analyzes a tile (image) component to  decompose it into a number 
of subbands at  different levels of resolution. The two-dimensional DWT is 
performed by applying the one-dimensional DWT row-wise and then column- 
wise in each component as shown in Figure 4.4 in Chapter 4. In the first 
level of decomposition, four subbands LL1, HL1, LH1, and HH1 are created. 
The low-pass subband (LL1) represents a 2:l subsampled in both vertical and 
horizonal directions, a low-resolution version of the original component. As 
explained in the theory of multiresolution analysis in Chapter 4, this is an 
approximation of the original image in subsampled form. The other subbands 
(HL1 , LH1 , HH1) represent a downsampled residual version (error because 
of coarser approximation) of the original image needed for the perfect recon- 
struction of the original image. The LL1 subband can again be analyzed 
to produce four subbands LL2, HL2, LH2, and HH2, and the higher level 
of decomposition can continue in a similar fashion. Typically, we don’t get 
much compression benefit after five levels of decomposition in natural images. 
However, theoretically it can go even further. The maximum number of levels 
of decomposition allowed in Part 1 is 32. In Part 1 of the JPEG2000 stan- 
dard, only power of 2 dyadic decomposition in multiple levels of resolution is 
allowed. 

In Chapter 4 we discussed the theoretical background of the DWT and its 
implementation using both a convolution approach as well as a lifting-based 
approach. The standard supports both the convolution and the lifting-based 
approach for DWT. We also discussed issues of VLSI implementations of the 
DWT for both convolution and lifting-based approaches in Chapter 5. For 
details of DWT and their VLSI implementations, the reader is referred to 
Chapters 4 and 5 respectively. In the rest of this section, we present the two 
default wavelet filter pairs supported by Part 1 of the JPEG2000 standard. 

6.6.1.1 Discrete Wavelet Transforma tion for Lossy Compression For lossy com- 
pression, the default wavelet filter used in the JPEG2000 standard is the 
Daubechies (9, 7) biorthogonal spline filter. By (9, 7) we indicate that the 
analysis filter is formed by a 9-tap low-pass FIR filter and a 7-tap high-pass 
FIR filter. Both filters are symmetric. The analysis filter coefficients (for 
forward transformation) are as follows: 
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0 9-tap low-pass filter: [h-4, h-3, h-2, h-1, ho, hl ,  h2, h3, h4] 

hq = h-4 = +0.026748757410810 
h3 = h-3 = -0.016864118442875 
h2 = h-2 = -0.078223266528988 
hi = h-1 = +0.266864118442872 

ho = f0.602949018236358 

7-tap high-pass filter: [9-3, 9-2, 9-1, go, 91, 92, 931 

g3 = Q-3 = f0.0912717631142495 
g2 = 9-2 = -0.057543526228500 
91 = 9-1 = -0.591271763114247 

go = +1.115087052456994 

For the synthesis filter pair used for inverse transformation, the low-pass 
FIR filter has seven filter coefficients and the high-pass FIR filter has nine 
coefficients. The corresponding synthesis filter coefficients are as follows: 

0 7-tap low-pass filter: [hi,,  hL2, hLl, hb, h i ,  hh, h;] 

hi = hL3 = -0.0912717631142495 
hh = h/2 = -0.057543526228500 
hi = h i l  = +0.591271763114247 

hb = f1.115087052456994 

9-tap high-pass filter: [gL4, gL3, gL2, gL1, 91, g:,  gk, gh, gi] 

Q4 ' = g-4 ' - - t0.026748757410810 
9; = gk3 = t0.016864118442875 
gh = gL2 = -0.078223266528988 

= gY1 = -0.266864118442872 
gh = +0.602949018236358 

For lifting implementation, the (9, 7) wavelet filter pair can be factorized 
into a sequence of primal and dual lifting as explained in Chapter 4. The 
detailed explanation on the principles of lifting factorization of the wavelet 
filters has been presented in Section 4.4.4 in Chapter 4. The most efficient 
factorization of the polyphase matrix for the (9, 7) filter is as follows [lo]:  

where a = -1.586134342, b = -0.05298011854, c = 0.8829110762, d = 
-0.4435068522, K= 1.149604398. 
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6.6.1.2 Reversible Wavelet Transform for Lossless Compression For lossless 
compression, the default wavelet filter used in the JPEG2000 standard is the 
Le Gall (5, 3) spline filter [28]. Although this is the default filter for lossless 
transformation, it can be applied in lossy compression as well. However, 
experimentally it has been observed that the (9, 7) filter produces better 
visual quality and compression efficiency in lossy mode than the (5, 3) filter. 
The analysis filter coefficients for the (5, 3) filter are as follows: 

0 5-tap low-pass filter: [h-2, h-1, ho, hl ,  hz] 

h2 = h-2 = -118 
hi = h-1 = 114 

ho = 314 

0 3-tap high-pass filter: [ g - l ,  go ,  911 

91 = g - 1  = -112 

go = 1 

The corresponding synthesis filter coefficients are as follows: 

0 3-tap low-pass filter: [h:,, hb, hi] 

hi = hyl = 112 

h& = 1 

The effective lifting factorization of the polyphase matrix for the (5, 3) 
filter has been derived in Section 4.4.4 in Chapter 4. This is shown below for 
the sake of completeness: 

6.6.1.3 Boundary Handling Like a convolution, filtering is applied to  the 
input samples by multiplying the filter coefficients with the input samples 
and accumulating the results. Since these filters are not causal, they cause 
discontinuities at the tile boundaries and create visible artifacts at the im- 
age boundaries as well. This introduces the dilemma of what to  do at the 
boundaries. In order to reduce discontinuities in tile boundaries or reduce 
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artifacts a t  image boundaries, the input samples should be first extended 
periodically at both sides of the input boundaries before applying the one- 
dimensional filtering both during row-wise and column-wise computation. By 
symmetrical/mirror extension of the data around the boundaries, one is able 
to  deal with the noncausal nature of the filters and avoid edge effects. The 
number of additional samples needed to extend the boundaries of the input 
data is dependent on filter length. The general idea of period extension of 
the finite-length signal boundaries is explained by the following two examples. 

Example 1: Consider the finite-length input signal A B C D E F G H. For 
an FIR filter of odd length, the signal can be extended periodically as 

F G H G F E D C B A B C D E F G H G F E D C B A B C . . .  

The two underlined sequences demonstrate the symmetry of extension with 
respect to the first sample ( A )  and the last sample (H) of the input signal 
as axis, and hence the boundary samples (A and H) are not included in the 
extension. The overlined sequence is the original input signal. This is called 
“whole-sample” symmetric (WSS) extension. The (9, 7) and (5, 3) filter ker- 
nels in Part 1 of the standard are odd-length filters and the boundary handling 
is done using the whole-sample symmetric extension. 

Example 2: For an FIR filter of even length, the signal can be extended 
periodically as 

. F G H H G F E D C B A A B C D E F G H H G F E D C B A A B C  . . .  

The two underlined sequences demonstrate the mirror symmetry of the input 
signal at both of the boundaries and the overlined sequence is the original 
input signal. This is called “half-sample” symmetric (HSS) extension, in which 
the boundary samples ( A  and H) are also included in the extension because 
of the mirror symmetry. The even-length filters are allowed in the Part 2 
extension of the standard and the boundary handling is accomplished by the 
half-sample symmetric extension. 

6.6.2 Quantization 

After the DWT, all the subbands are quantized in lossy compression mode in 
order to reduce the precision of the subbands to aid in achieving compression. 
Quantization of DWT subbands is one of the main sources of information loss 
in the encoder. Coarser quantization results in more compression and hence 
in reducing the reconstruction fidelity of the image because of greater loss 
of information. Quantization is not performed in case of lossless encoding. 
In Part 1 of the standard, the quantization is performed by uniform scalar 
quantization with dead-zone about the origin. In dead-zone scalar quantizer 
with step-size &,, the width of the dead-zone (i.e., the central quantization 
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bin around the origin) is 2Ab as shown in Figure 6.3. The standard supports 
separate quantization step sizes for each subband. The quantization step 
size (A,) for a subband (b)  is calculated based on the dynamic range of the 
subband values. The formula of uniform scalar quantization with a dead-zone 
is 

where y b ( i , j )  is a DWT coefficient in subband b and & is the quantization 
step size for the subband b. All the resulting qunantized DWT coefficients 
q b ( i ,  j )  are signed integers. 

: -3 j -2 -1 j 0 1 1 2 i 3 1  

Fig. 6.3 Dead-zone quantization about the origin. 

All the computations up to  the quantization step are carried out in two's 
complement form. After the quantization, the quantized DWT coefficients are 
converted into sign-magnitude represented prior to  entropy coding because of 
the inherent characteristics of the entropy encoding process, which will be 
described in greater detail in Chapter 7. 

6.6.3 Region of Interest Coding 

The region of interest (ROI) coding is a unique feature of the JPEG2000 
standard. It allows different regions of an image to be coded with different 
fidelity criteria. These regions can have arbitrary shapes and be disjoint to 
each other. In Figure 6.4, we show an example of ROI coding. We compressed 
the ROI portion of the Zebra image losslessly and introduced losses in the 
non-ROI (background) part of the image. The reconstructed image after 
decompression is shown in Figure 6.4(a). We indicate the ROI by a circle 
around the head of the Zebra in Figure 6.4(a). In Figure 6.4(b), we pictorially 
show the difference between the original image and the reconstructed image 
after ROI coding and decoding. The values of difference of the original and 
the reconstructed pixels in the ROI region (i.e., inside the circle) are all zeros 
(black) and they are nonzero (white) in the non-ROI parts of the image. 
This shows the capability of the JPEG2000 standard in how we can compress 
different regions of an image with different degrees of fidelity. 
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(a) (b) 

Fig. 6.4 
original image and reconstructed image. 

(a) Reconstructed image with circular shape ROI. (b) Difference between 

Fig. 6.5 (a) ROI mask. (b) Scaling of R.01 coefficients 
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The ROI method defined in the JPEG2000 Part 1 standard is called the 
MAXSHIFT method [29]. The MAXSHIFT method is an extension of the 
scaling-based ROI coding method [30]. During ROI coding, a binary mask 
is generated in the wavelet domain for distinction of the ROI from the back- 
ground as shown in Figure 6.5(a). In the scaling-based ROI coding, the bits 
associated with the wavelet coefficients corresponding to an ROI (as indicated 
by the ROI mask) are scaled (shifted) to higher bit-planes than the bits as- 
sociated with the non-ROI portion of the image. This is shown by a block 
diagram in Figure 6.5(b). During the encoding process, the most significant 
ROI bit-planes are encoded and transmitted progressively before encoding 
the bit-planes associated with the non-ROI background region. As a result, 
during the decoding process, the most significant bit-planes of ROI can be 
decoded before the background region progressively in order to produce high 
fidelity in the ROI portions of the image compared to  its background. In this 
method, the encoding can stop at any point and still the ROI portion of the 
reconstructed image will have higher quality than the non-ROI portion. In 
scaling-based ROI, the scaling parameter and the shape information needs to  
be transmitted along with the compressed bitstream. This is used in the Part 
2 extension of the standard. 

In JPEG2000 Part 1, the MAXSHIFT technique is applied instead of the 
more general scaling-based technique. The MAXSHIFT allows arbitrary- 
shaped regions to  be encoded without requiring to  transmit the shape in- 
formation along with the compressed bitstream. As a result, there is no need 
for shape coding or decoding in the MAXSHIFT technique. The basic prin- 
ciple of the MAXSHIFT method is to find the minimum value (Vmin) in the 
ROI and the maximum value in the background (both in wavelet transformed 
domain) and then scale (shift) the wavelet coefficients in ROI in such a man- 
ner that the smallest coefficient in the ROI is always greater than the largest 
coefficient in the background. Then the bit-planes are encoded in the order 
of the most significant bit (MSB) plane first to  the least significant bit (LSB) 
plane last. Figure 6.6 shows an example where the LSB plane of ROI is shifted 
above the MSB plane of the background region. During the decompression 
process, the wavelet coefficients that are larger than Vmin are identified as 
the ROI coefficients without requiring any shape information or the binary 
mask that was used during the encoding process. The ROI coefficients are 
now shifted down relative to Vmin in order to represent it with original bits 
of precision. 

In JPEG2000, due to the sign-magnitude representation of the quantized 
wavelet coefficients required in the bit-plane coding, there is an implementa- 
tion precision for number of bit-planes. Scaling the ROI coefficients up may 
cause an overflow problem when it goes beyond this implementation precision. 
Therefore, instead of shifting ROI up to  higher bit-planes, the coefficients of 
background are downscaled by a specified value s, which is stored in the RGN 
(ReGioN of interest, discussed in Chapter 8) marker segment in the bitstream 
header. The decoder can deduce the shape information based on this shift 
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Fig. 6.6 MAXSHIFT 

value s and magnitude of the coefficients. By choosing an appropriate value 
of s, we can decide how many bit-planes to  truncate in the background in 
order to achieve overall bit-rate without sacrificing the visual quality of the 
ROI. 

6.6.4 Rate Control 

Although the key encoding modules of JPEG2000 such as wavelet transfor- 
mation, quantization, and entropy coding (bit-plane coding and binary arith- 
metic coding) are clearly specified, some implementation issues are left up to 
the prerogative of the individual developers. Rate control is one such open 
issue in JPEG2000 standard. Rate control is a process by which the bit- 
rates (sometimes called coding rates) are allocated in each code-block in each 
subband in order to  achieve the overall target encoding bit-rate for the whole 
image while minimizing the distortion (errors) introduced in the reconstructed 
image due to quantization and truncation of codes to  achieve the desired code 
rate [31]. It can also be treated in another way. Given the allowed distor- 
tion in the MSE (mean square energy) sense, the rate control can dictate the 
optimum encoding rate while achieving the maximum given MSE. 

The JPEG2000 encoder generates a number of independent bitstreams by 
encoding the code-blocks. Accordingly a rate-distortion optimization algo- 
rithm generates the truncation points for these bitstreams in an optimal way 
in order to minimize the distortion according to a target bit rate. After the 
image is completely compressed, the rate-distortion optimization algorithm is 
applied once at  the end using all the rate and rate-distortion slope informa- 
tion of each coding unit. This is the so-called postcompression rate-distortion 
(PCRD) algorithm [32]. 
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There is another simple way to control bit-rate by choosing the quantiza- 
tion step size. The bigger the step size, the lower the rate will be. However, 
this method can apply only to  lossy compression mode, and every time the 
step sizes change, the Tier-1 encoding (discussed in Chapter 7) needs to  be re- 
computed. Since the Tier-1 coding is a very computationally intensive module 
in JPEG2000 standard, this approach of bit-rate control may not be suitable 
for some applications that are computationally constrained. 

However, the bit-rate control is purely an encoder issue, and remains an 
open issue for the JPEG2000 standard. It is up to  the prerogative of the 
developers how they want to accomplish the rate-distortion optimization in a 
computationally efficient way without incurring too much computation and/or 
hardware cost. Detailed discussion on this topic is beyond the scope of this 
book. 

From the hardware implementation perspective, the rate-distortion algo- 
rithm requires a microcontroller to compute the breakpoints using a rate- 
distortion optimization technique and supply these breakpoints to  the entropy 
encoding engine for formation of the compress bitstream. 

6.6.5 Entropy Encoding 

Physically the data are compressed by the entropy encoding of the quantized 
wavelet coefficients in each code-block in each subband. We have devoted a 
complete chapter (Chapter 7) to discussion of entropy encoding. Here we just 
summarize the entropy-encoding scheme at the top level for the sake of com- 
pleteness of this chapter. The entropy coding and generation of compressed 
bitstream in JPEG2000 is divided into two coding steps: Tier-1 and Tier-2 
coding. 

6.6.5.1 Tier-1 Coding In Tier-1 coding, the code-blocks are encoded inde- 
pendently. If the precision of the elements in the code-block is p ,  then the 
code-block is decomposed into p bit-planes and they are encoded from the 
most significant bit-plane to the least significant bit-plane sequentially. Each 
bit-plane is first encoded by a fractional bit-plane coding (BPC) mechanism to 
generate intermediate data in the form of a context and a binary decision value 
for each bit position. In JPEG2000 the embedded block coding with optimized 
truncation (EBCOT) algorithm [32] has been adopted for the BPC. EBCOT 
encodes each bit-plane in three coding passes, with a part of a bit-plane being 
coded in each coding pass without any overlapping with the other two coding 
passes. That is the reason why the BPC is also called fractional bit-plane 
coding. The three coding passes in the order in which they are performed 
on each bit-plane are significant propagation pass, magnitude refinement pass, 
and cleanup pass. The algorithm is very complex and we have devoted a com- 
plete chapter on this with a number of examples to  aid the reader in better 
understanding of the algorithm. The details of these coding passes and the 
EBCOT algorithm are dealt with in Chapter 7. 
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The binary decision values generated by the EBCOT are encoded using 
a variation of binary arithmetic coding (BAC) to generate compressed codes 
for each code-block. The variation of the binary arithmetic coder is a context 
adaptive BAG' called the MQ-coder, which is the same coder used in the JBIG2 
standard to compress bi-level images [33]. The context information generated 
by EBCOT is used to select the estimated probability value from a lookup 
table and this probability value is used by the MQ-coder to  adjust the intervals 
and generate the compressed codes. JPEG2000 standard uses a predefined 
lookup table with 47 entries for only 19 possible different contexts for each 
bit type depending on the coding passes. This facilitates rapid probability 
adaptation in the MQ-coder and produces compact bitstreams. 

The basic principles behind arithmetic coding and binary arithmetic coding 
are given in greater detail in Chapter 2. The working principles and detail 
flowchart (algorithm) for implementation of the MQ-coder are present.ed in 
Chapter 7. 

6.7 TIER-2 CODING AND BITSTREAM FORMATION 

After the compressed bits for each code-block are generated by Tier-1 coding, 
the Tier-2 coding engine efficiently represents the layer and block summary 
information for each code-block. A layer consists of consecutive bit-plane 
coding passes from each code-block in a tile, including all the subbands of all 
the components in the tile. The concept of layer and other constructs used in 
the JPEG2000 standard is discussed with examples in Chapter 7 .  The block 
summary information consists of length of compressed code words of the code- 
block, the most significant magnitude bit-plane at  which any sample in the 
code-block is nonzero, as well as the truncation point between the bitstream 
layers, among others. The decoder receives this information in an encoded 
manner in the form of two tag trees. This encoding helps to represent this 
information in a very compact form without incurring too much overhead in 
the final compressed file. The encoding process is popularly known as Tug 
Tree coding. The details of this Tag Tree coding algorithm with examples 
and further details of the bitstream formation methodology are discussed in 
Chapter 7. 

Details of the code-stream organization and the file format for JPEG2000 
Part 1 are discussed in Chapter 8. 

6.8 SUMMARY 

In this chapter, we presented an overview of the JPEG2000 standard for im- 
age compression. We discussed different salient features of the new JPEG2000 
standard and how they influence vast applications areas. We introduced dif- 
ferent parts of the standard. The core coding system in JPEG2000 has been 
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defined in Part 1 of the standard. We dealt in great length with the underly- 
ing principles and algorithms for the Part 1 core coding system for JPEG2000 
standard. The whole compression system can be divided into three phases- 
image preprocessing, compression, and compressed bitstream formation. In 
this chapter, we first discussed the concepts behind the preprocessing func- 
tionalities, including tiling of the input image, DC level shifting, and mul- 
ticomponent transformation, before the actual compression takes place. We 
discussed the implementation issues of the discrete wavelet transform sup- 
ported by the JPEG2000 Part 1 standard including the symmetric extension 
at  the boundary of the signals both for lossless and lossy compression. The- 
oretical foundation of the discrete wavelet transform and its implementation 
issues were elaborated on earlier in Chapter 4. In lossy compression mode, 
a dead-zone scalar quantization technique is applied on the wavelet coeffi- 
cients. The concept of region of interest coding allows one to encode different 
regions of the input image with different fidelity. We discussed the region 
of interesting coding can be achieved in terms of simply scaling the wavelet 
coefficients, and demonstrated some examples. The entropy coding and the 
generation of compressed bitstream in JPEG2000 are divided into two coding 
steps: Tier-1 and Tier-2 coding. We introduced the Tier-1 coding step in 
entropy encoding based on a fractional bit-plane coding scheme (EBCOT) 
and an adaptive binary arithmetic coding (MQ-coder). The Tier-2 coding 
and the bitstream formation concept was introduced in this chapter. The 
details of the algorithms for both the Tier-1 coding and the Tier-2 coding are 
presented in greater detail in Chapter 7. In Chapter 8, we discuss the actual 
code-stream organization and file format for the JPEG2000 Part 1 standard. 
We introduce other parts of the standard in Chapter 10. 
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7 
Coding Algorithms in 

JPEG2000 

7.1 INTRODUCTION 

As shown in Section 6.6, Figure 6.2(a), after the DWT and quantization, 
the encoding phase in JPEG2000 is divided into two steps-Tier-1 coding 
and Tier-2 coding. In Tier-1 coding, each code-block is entropy encoded 
independently. In Tier-2 coding, the information of the compressed codewords 
generated in the Tier-1 coding step are encoded using a Tag Tree coding 
mechanism, which will be discussed in great detail in this chapter. 

Entropy coding in JPEG2000 [5] is combination of fractional bit-plane cod- 
ing (BPC) [l] and binary arithmetic coding (BAC) [2] as opposed to the clas- 
sical Huffman coding [3] and run-length coding in current JPEG [4]. Com- 
bination of BPC and BAC is known as Tier-1 coding in JPEG2000. In this 
chapter, we will explain this new paradigm of fractional bit-plane coding tech- 
nique and implementation of the MQ-coder for binary arithmetic coding. We 
shall also discuss the Tag Tree coding mechanism used in Tier-2 coding with 
examples. Tag Tree is a particular type of quad-tree data structure, which 
provides the framework for efficiently representing information of the code- 
blocks and their compressed codewords, such as the number of leading-zero 
MSB (most significant bit) planes in a code-block, etc., in the Tier-2 coding 
engine in JPEG2000. 
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7.2 PARTITIONING DATA FOR CODING 

During entropy encoding, each wavelet subband is further divided into a num- 
ber of code-blocks. At this stage all the elements in all the subbands are 
represented in sign and magnitude representation of integers instead of two's 
complement. Dimension of the code-blocks is always a power of 2 with the 
minimum height and width being 4 and maximum height and width being 
1024. Further restriction in dimension of a code-block is that if height of a 
code-block is 2" and width of the code-block 2Y then z + y is limited to be less 
than or equal to 12. Typical choice of code-block size is 64 x 64 or 32 x 32. 
It has been found experimentally that the compression performance degrades 
when the code-block size is chosen below 16 x 16. It should be noted that 
the profile-0 of JPEG2000 Part 1 amendments further restricts the code-block 
size to be either 32 x 32 or 64 x 64. 

During the coding phase, each code-block is decomposed into a number of 
bit-planes. If the precision of the subband is P bits, then each code-block 
in the subband is decomposed into P number of bit-planes. Bit-plane coding 
(BPC) is applied on each bit-plane of the code-blocks to  generate intermediate 
data in the form of a context and a binary decision value. The intermediate 
data is input to the binary arithmetic coding (BAC) step to generate the final 
compressed bitstream. 

7.3 TIER-1 CODING IN JPEG2000 

In JPEG2000, the Embedded Block Coding with Optimized Trunca- 
tion (EBCOT) algorithm by David S. Taubman [I, 71 has been adapted 
to implement the BPC. This algorithm has been built to  exploit the sym- 
metries and redundancies within and across the bit-planes so as to  minimize 
the statistics to be maintained and minimize the coded bitstream that BAC 
would generate. EBCOT encodes each bit-plane in three passes, with a part 
of the bit-plane being coded in each of these passes without any overlapping 
with the other two passes. That is the reason why this bit-plane coding is 
also called fractional bit-plane coding. The three passes in the order they 
are performed on each bit-plane are: 

0 Significance Propagation Pass (SPP): Bit positions that have a 
magnitude of 1 for the first time (i.e., the most significant bit of the 
corresponding sample coefficients) are coded in this pass. 

0 Magnitude Refinement Pass (MRP): Bit positions that have not 
been coded in SPP and that have had magnitude of 1 in previous bit- 
planes (i.e., the current bit is not the most significant bit of the corre- 
sponding sample coefficient) are coded in this pass. 
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0 Cleanup pass (CUP): Bit positions that have not been coded in ei- 
ther of the two earlier passes are coded in this pass. This pass also 
incorporates a form of run-length coding to help in coding a string of 
zeros. 

7.3.1 Fractional Bit-Plane Coding 

In order to  make it easy for readers to understand this complex algorithm, we 
first provide the definition of terms used to describe the algorithm, followed 
by the explanation of four basic coding operations and three coding pusses. 
Then we provide a simple example to illuminate the detailed process of the 
BPC coder. 

7.3.1.1 Definition of Terms 

0 Code-Block (y): A code-block is a two-dimensional array that consists 
of integers (wavelet coefficients with or without quantization). Each 
code-block has width and height that specify its size. Each integer of 
the code-block can be either positive, zero, or negative. Each of the 
elements of a code-block are associated with u,  a’, and q to indicate 
their coded states (see u ,  u’, and q for detailed descriptions). 

0 Sign Array ( x ) :  x is a two-dimensional array representing the signs of 
the elements of a code-block. It has the exact same dimensions as the 
code-block. Each element x[m, n] represents the sign information of the 
corresponding element y[m, n] in the code-block as follows. 

1 if y[m,n] < 0 
xb’nl = { 0 otherwise 

When referenced to x[m,n] during encoding or decoding, m or n may 
be out of range of a code-block, such as m = -1. This will happen 
when we are working on the boundary of the code-block. In those cases, 
x[m, n] is always set to equal zero. 

0 Magnitude Array (w): w is a two-dimensional array of unsigned in- 
tegers. Dimension of this array is exactly the same as the dimension 
of the code-block. Each element of w represents the absolute value of 
the integer a t  the corresponding location in the code-block, that is, 
v[m, n] = Iy[m, n]l, where y[m, n] is the integer element a t  spatial loca- 
tion (m,  n)  in the code-block. The notation wp[m, n] is used to  denote 
the Pth bit of w[m,n]. 

0 Bit-Plane: The magnitude array w can be conceptually viewed as a 
three-dimensional array, with the bit sequence of the integers in the 
third dimension. Each particular order of bits of every element of w 
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constitutes a single bit-plane. We can also view u as a one-dimensional 
array consisting of a number of bit-planes. 
Example: Consider (2, 0) denotes a 2 x 1 array ‘u with only two 
elements. The two bit-planes for this array will be (1, 0) and (0, 0). 
We say one bit-plane is more significant than the other if its bits are more 
significant than those of the other. Not all bit-planes of w are going to be 
coded because a bit sequence may have as many leading zeros as possible 
for a particular nonnegative value. We code only the most significant 
bit-plane containing a t  least one 1 and all the other subsequent less 
significant bit-planes, regardless of whether they have 1 or not. In other 
words, a bit-plane that entirely consists of 0 is ignored unless there is a 
higher significant bit-plane that contains at  least one 1. We call those 
uncoded bit-planes “leading-zero bit-planes.” A nonnegative integer P 
is frequently used to refer to a bit-plane to  be coded. We use up[m, n] 
to represent the bit at spatial location (m,n)  of the bit-plane P of the 
code-block. 

0 Scan Pattern: Scan pattern defines the order of encoding or decoding 
the bit-planes of a code-block. The scan pattern of a code-block can be 
conceptually divided into sections (or stripes), each with four consecu- 
tive rows starting from the first row of a code-block. If the total number 
of rows of a code-block is not a multiple of 4,  all the sections will have 
four consecutive rows except the very last section. The scan starts from 
the first section and down to the last section until all elements of a code- 
block are encoded or decoded. Each section is scanned from the first row 
of the first column. The next location to  be scanned will be the next row 
on the same column. After a column in the section is completely coded, 
start scanning a t  the first row of the next column in the same section. 
Continue the coding process until all columns in a section are coded. 
This same process is then applied to  the next adjacent section until all 
of them are coded. An example of scan pattern for a 5 x 10 code-block 
is shown in Figure 7.1. Figure 7.l(a) shows the regular mode of the 
scan pattern. The JPEG2000 Part 1 also specified another scanning 
mode, vertical causal mode. In vertical causal mode, every section 
(sometimes referred to as stripe), that is, 4 rows by N columns, will be 
considered as a standalone module. In other words, under the vertical 
causal mode, all the information of neighbors from the same code-block 
but different sections will not be used in the current section. Figure 
7.l(b) shows the vertical causal mode for the same example shown in 
Figure 7.l(a).  

State Variables u,  (T’ and 7: Three two-dimensional “binary” arrays, 
u ,  u’,  and q,  are created to indicate the coding states of each element in 
the code-block during the coding process. These arrays have the exact 
the same dimension as the code-block. Initially, each of the elements of 
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Scan pattern with a 5 x 10 code-block: (a) regular mode; (b) vertical causal 

these arrays are set to 0 (i.e., g[m, n] = 0,  d [ m ,  n] = 0,  and q[m, n] = 0,  
for all m and n) .  Once the coding process starts, the values of the two 
variables a[m,n] and u’[m,n] may change to  1 depending on certain 
conditions, but are never changed back to 0 until the entire code-block 
is encoded. On the other hand, the values of q[m, n] are reset to  0 right 
after completion of coding of each bit-plane. Interpretations of these 
three variables are as follows: 

- When u[m, n] = 1, it indicates that the first nonzero bit of u[m, n] 
at row m and column n has been coded; otherwise it is equal to 0. 
When referenced to  u[m,n] during encoding or decoding, m or n 
may be out of range or have an invalid value, such as m = -1. In 
this case, a[m,n] is equal to 0. 

- When d [ m ,  n] = 1, it  indicates that a magnitude refinement coding 
operation (defined in the next section) has been applied to  v[m,n]; 
otherwise, it is equal to zero. 

- When q[m,n] = 1, it indicates that zero coding operation (defined 
in the next section) has been applied to  d’[m,n] in the significant 
propagation pass; otherwise, it is equal to  0. 

0 Preferred Neighborhood: An element y[m,n] in the code-block is 
said to be in a preferred neighborhood if a t  least one of its eight adjacent 
neighbors has u value equal to  1. 
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Zero Coding Tables: There are three zero coding tables for the pur- 
pose of zero coding operations as shown in Tables 7.1-7.3. The context 
information generated in zero coding operation is based on the values 
of the significance states (0) of the eight neighbors of the element being 
encoded. In Figure 7.2, we show the eight neighbors of an element (say 
X) used in these tables to  form the “context.” For example, X is an 
element in the LL subband, and the two horizonal neighbors have sig- 
nificance state value of 1 (i.e., CH = 2). The context value 8 will be 
used as shown in Table 7.1. 

ppEJ 
Fig. 7.2 Neighborhood for zero coding context generation. 

Table 7.1 Zero Coding Context Table for Code-Blocks from LL and LH Subbands 

Note: “x” in the table denotes “do not care.” 

7.3.1.2 Coding Operations There are four possible coding operations used 
in EBCOT to generate the values of context (CX) and decision (D) as 
intermediate data before the BAC. CX is a nonnegative integer while D is a 
binary value, 0 or 1. There are nineteen different context values (0-18) used 
in these four coding operations. The index of the current bit-plane is assumed 
to be P.  Exactly when or where these operations are applied is subject to 
current coding pass, the location of the current element, and the status of the 
state variables. 

Zero Coding (ZC): For zero coding operation, the decision bit D is 
equal to  wp[m, n] and CX is selected from one of the three “zero coding 
context tables” related to the relevant subband (LH, HL or HH) the 
code-block belongs to. There are nine entries in each context table. 



TIER-1 CODING IN JPEG2000 169 

2 2  
1 
0 

Table 7.2 Zero Coding Context Table for Code-Blocks from HL Subbands 

0 2 
0 1 
0 0 

I I I 

1 0 1  0 1  0 1  0 

2 2  
1 
0 

Table 7.3 Zero Coding Context Table for Code-Blocks from HH Subbands 

0 2 
0 1 
0 0 

They are derived using the values of the significance states of the eight 
surrounding neighbors of the current coefficient bit, d [ m ,  n]. As shown 
in the tables, each entry depends on how many and which neighbors of 
up[m,  n] are significant. 

Sign Coding (SC): The D and CX for the sign coding are determined 
by a horizontal reference value H and a vertical reference value V .  Sup- 
pose that the current scan location is (m, n) ;  the values of H and V are 
obtained by the following equations. 

H=min[ l ,max( - l , o [m,n -  11 x ( 1 - 2 x [ m , n -  l ] ) + a [ m , n + l ]  x ( 1 - 2 x [ m , n + l ] ) ) ]  

V = m i n [ l , m a x ( - l , o [ m - l , n ]  x ( 1 - 2 ~ [ m - 1 , n ] ) + u [ m + 1 , n ] x  ( 1 - 2 x [ m + l , n ] ) ) ]  

The reference values of H and V indicate three possible situations as 
follows: 
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1. 0 indicates that both neighbors are insignificant, or both neighbors 

2. 1 indicates that one or both neighbors are significant with positive 

3. -1 indicates that one or both neighbors are significant with nega- 

are significant but have opposite signs. 

sign. 

tive sign. 

The neighbors mean the two adjacent horizontal locations of the current 
scan location for H and the two vertical locations of the current scan 
location for V .  Significant at a location means the value of the state 
variable o at that location is 1 while insignificant means the value of 0 

is 0. 
As shown in Table 7.4, H and V are used together to determine the 
context (CX) and a binary value 2, which in terms is used to calculate 
the value of D as D = 2 @ x[m, n], where @ represents an Exclusive-OR 
operation. 

Table 7.4 Reference Table for Sign Coding 

11 
12 
13 

0 Magnitude Refinement Coding (MRC): For magnitude refinement 
coding, D at position (m, n)  in the Pth bit-plane is simply equal to  the 
bit value wP[m,n]. The value of CX is determined by a’[rn,n] and the 
sum of its eight adjacent values of the state variable 0 is as follows: 

- If d = 1 at the current position, which indicates that it is not the 
first magnitude refinement for this element, then CX = 16. 

- When d = 0 at the current position and the sum of the values of 
o of its eight adjacent neighbors is also 0, then CX = 14. 

- When CT’ = 0 at the current position and the sum of the values of 
0 of its eight adjacent neighbors is greater than 0, then CX = 15. 

In Table 9.5, we summarized the logic for generation of the context 
values (CX) as described above. 
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a“m,n] 

1 

Table 7.5 Reference Table for Magnitude Refinement Coding 

a[m - 1, n] + a [ m + l , n ]  + 
a[m - 1 , n -  11 + a[m - l , n +  11 + cx 
a [ m + l , n - l ]  + a [ m + l , n + l ]  

X 16 
0 
0 

21 15 
0 14 

0 Run-Length Coding (RLC): Unlike the other three coding opera- 
tions, run-length coding may code from one to four consecutive bits in 
the current scan pattern stripe. Exactly how many bits are encoded 
depends on where the first 1 bit (if any) is located in the four consec- 
utive bits. If all of them are O’s, then all four bits are coded. If one 
(or more) of these four bits is 1, then the first 1 in the scan pattern 
and any preceding 0’s in between the current scan location are coded. 
For example, suppose that 0101 are four consecutive bits along the scan 
pattern of a bit-plane. If the current location is a t  the first 0 and we are 
going to apply run-length coding, then the first two bits, 01, are coded 
and the next location will be a t  the second 0. 
A run-length coding operation may generate either one D or three D’s, 
depending on whether the four consecutive bits are all 0’s or not. The 
first D is equal to 0 if all four bits are equal to 0; otherwise it is equal 
to 1. For both cases, CX is equal to  a unique run-length context value 
17. In other words, a (CX, D )  pair with values (17, 0) indicates four 
consecutive 0 bits, and a (CX, D )  pair with values (17, 1) means there 
is at  least one 1 bit in the current scan pattern stripe. 
In the case that at least one of the four bits in the current scan pattern 
is 1, two more D’s are used with a “UNIFORM context value 18 to  
indicate the location of the first 1 bit in the 4-bit scan pattern. Since 
height of the scan pattern is four, a zero-based index with two bits is 
sufficient to indicate the location of the first 1 bit from the top. The 
first and the second D’s with a UNIFORM context represent the most 
significant and the least significant bits of these two bits representing 
the distance. 
Continuing with the example for coding 01, the values of the first and 
the second D’s are 0 and 1, respectively. The corresponding (CX, D )  
pairs will be (18, 0) and (18, 1). 

Table 7.6 shows the summary of all nineteen different contexts used in the 
four different coding operations, and their corresponding initial index values 
for the probability estimation lookup table used in BAC (discussed in next 
section). 
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Table 7.6 Nineteen Different Contexts and Their Initial Index for BAC Probability 
Estimation Lookup Table 

Operation 

Sign Coding 

Magnitude Refinement Coding 

UNIFORM 

Context 
cx 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Initial Index 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 

46 

7.3.1.3 Coding Passes There are three coding passes-significance propaga- 
tion pass (SPP), magnitude refinement puss (MRP), and cleanup puss (CUP). 
Three different coding passes are applied to each bit-plane of a code-block ex- 
cept the first bit-plane (the most significant bit-plane), which is applied only 
with the cleanup pass.’ After each coding pass completes a run of scan pattern 
in the current bit-plane, the next coding pass restarts the scan pattern from 
the beginning. The first bit-plane is only encoded by the cleanup pass. The 
remaining bit-planes are coded in the order of significance propagation pass, 
magnitude refinement pass, and cleanup pass. They are described below. 

0 Cleanup Pass (CUP): CUP applies to every bit-plane of a code-block 
after completion of MRP, except the first bit-plane, which does not need 
the MRP. 
In each position (m, n)  follow in the scan pattern, CUP first checks where 
~ [ m ,  n] and ~ [ m ,  n] are both 0’s. If any one of them is not 0, then proceed 
to the next bit position in the bit-plane. If they are both O’s, then check 

‘Even if we do apply the SPP and MRP to the most significant bit-plane, due to the initial 
condition there will be no bits coded in those two passes. 
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whether to apply run-length coding (RLC) or zero coding (ZC), but not 
both. RLC is applied when all the following three conditions are true: 

1. m is a multiple of four, including m = 0. 
2. 0 = 0 for the four consecutive locations on the same column, start- 

3. 0 = 0 for all the adjacent neighbors of the four consecutive bits in 
ing from current scan position. 

the column. 

If any one of the above conditions is false, then zero coding (ZC) is ap- 
plied to  the current location. Depending on whether run-length coding 
or zero coding is applied in the current location, the number of bits 
coded may vary. The next bit to be coded is the bit after the last coded 
bit. Note that run-length coding should not be applied to the last sec- 
tion with fewer than four rows in a scan pattern because there would 
not be four consecutive bits available in the same column. 
After completion of the run-length coding or zero coding, we need to 
check whether we need to  apply sign coding (SC) before we move on to 
code the next bit. Suppose the last coded position is (i,j). If w p [ i , j ]  = 
1, which indicates this bit is the most significant bit of the current 
sample, the cleanup pass applies sign coding and assigns o value of the 
last coded location to  be 1 (i.e., o[ i , j ]  = 1) right after run-length or 
zero coding is done. Otherwise, no sign coding is needed. 
Continue coding the bits along the scan pattern until all of the bits of 
the bit-plane are coded. After completion of the cleanup pass for a bit- 
plane, reset q[m,n] = 0 for all m and n in the bit-plane before moving 
into the next bit-plane. Figure 7.3 shows the flowchart of the cleanup 
pass we just described. 

0 Significance Propagat ion  Pass (SPP) :  This is the first pass applied 
to every bit-plane of a code-block, except the first bit-plane. Significance 
propagation pass first applies zero coding if the current scan position 
(m,n)  is in a preferred neighborhood and o[m,n] = 0. If zero coding 
cannot be applied, then proceed to the next bit position. If the zero 
coding is applied, ~ ( m ,  n] is set to  1. After zero coding is completed, we 
need to check whether sign coding is needed at the current bit position 
(m, n).  If up[m, n] = 1, then sign coding is applied and we set o[m,n] = 
1. 

Continue coding the bits along the scan pattern until all of the bits of the 
bit-plane are coded. Figure 7.4 shows the flowchart of the significance 
propagation pass. 

0 Magni tude  Refinement Pass ( M R P ) :  This is the second pass ap- 
plied to every bit-plane of a code-block, except the first bit-plane, which 
does not need magnitude refinement pass. 
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Zero Coding Run-Length Coding 

(seta[ i ]~]  = 1) 

Next bit 
(based on fixed scan pattern) 

end of bit plane? 

Fk .  7.3 Flowchart of cleaniin nass 
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- 
Zero Coding 

(set rl [m][n]=l) 

Sign Coding 
(seto[ml[nl= 1) 

- 

Next bit 
(based on flxed scan pattern) 

end of bit plane? 

Fig. 7.4 Flowchart of significance propagation pass. 



176 CODlNG ALGORITHMS IN JPEGZOOO 

Magnitude Refinement 
Coding 

Fig. 7.5 Flowchart of magnitude refinement pass. 

If the state variables a[m, n] = 1 and q[m, n] = 0, then we apply magni- 
tude refinement coding (MRC) to the current scan position (m,n) and 
set d[m,n] = 1. Continue coding the bits along the scan pattern until 
all of the bits of the bit-plane are coded. Figure 7.5  shows the flowchart 
of the magnitude refinement pass. 
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0 Selective binary arithmetic coding-bypass mode: Instead of 
applying the binary arithmetic coding (MQ-coder2) on symbols (the 
contexts and decision bits) generated during all three coding passes, the 
bypass mode allows bypassing MQ-coder for the SPP and MRP after the 
four most significant bit-planes are coded. In other words, only those 
symbols generated in the CUP will be coded with the MQ-coder, and 
raw decision bits and sign bits will be coded during the SPP and MRP, 
if the bypass mode is selected. 

7.3.1.4 JPEG2000 Bit-Plane Coding: Encoder and Decoder Algorithms As 
we discussed earlier, the quantized wavelet coefficients in each subband are 
converted into sign-magnitude represented before the entropy encoding starts. 
For each input code-block, we can first initialize the two-dimensional arrays 
v and x, where the value of v[m,n] is the magnitude and x[m,n] is the sign 
information of the element a t  position (m, n )  in the code-block. The number 
of bit-planes in the code-block to be encoded ( P )  is determined by searching 
the largest value in array v. Initially, all elements in two-dimensional arrays 
cr, cr’, and q are set to  0’s. 

The first bit-plane to be coded is the most significant bit-plane. As men- 
tioned at  the definition of bit-plane, the leading-zero bit-planes consisting 
entirely of zeros are ignored. A more (higher) significant bit-plane is always 
coded before coding a less (lower) significant bit-plane. If P = 0, we don’t 
need to do any coding and the output is empty. If P 2 1, then we apply the 
cleanup pass only to  the first bit-plane. For the remaining bit-planes, we first 
apply the significance propagation pass, then the magnitude refinement pass, 
and then the cleanup pass. Figure 7.6 shows the top-level flowchart of the 
fractional bit-plane coder. 

The procedure of the decoder is essentially the same as for the encoder. For 
the sake of completeness, we also show the encoding and decoding procedures 
via the flowcharts as shown in Figures 7.7 and 7.8 respectively for P 2 1. 

7.3.2 Examples of BPC Encoder 

In this section we present an example detailing all the operations step by step 
and the output generated by encoding a 4 x 4 code-block. 

0 Input of the encoder: An input 4 x 4 code-block is shown below: 

‘The MQ-coder will be discussed in the next section. 
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3 0 0 5  
3 7 2 1  
4 1 2 3  
0 6 0 2  

initial all 
0.1 I[ l=O 

u" I[ l=O 
rl[ I[ l=O 

P = # of bit planes - 1 

start at beginning 

I 
call procedure CUP0 

I 

No 

reset all q[ ][ l=O 
P = P - I  

call procedure SPPO 

4 start at beginning 
of bit-plane P 

Fig. 7.6 Toplevel flowchart of fractional bit-plane coder for P > 0. 

0 The magnitude array (w) is shown below: 

0 The sign array (x) is shown below: 

El3 0 0 0 0  

0 The three bit-planes are shown below as bit-planes of the magnitude 
array u2, wl, and vo respectively: 
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all (sigma')s - 0 
all eta's - 0 

ela - 07 

YBS 

I 

Zero Coding Run-Length 

bd value - 1 9 re 
Sign Coding 

No 

Yes 

+-k all eta's . 0 

I 

Zem Coding 

eta I 1 

bit value - 1 ? + 
(c", bn-plane P? 

Magnnude 

Coding and 
Sgma' - 1 

Next bit 

Fig. 7.7 Flowchart of fractional bit-plane encoder for P > 0 . 
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No 

\ 

all sigma's - 0 
all   sigma')^ - 0 

all e1a.s I 0  

bit value - 1 ? + 
SQn Decoding 

slgma - 1 " 

Zero Decoding 

eta - 1 

bn value - 17 ::::i:::; 
Yes 

-f 
Son Decoding 

slQma - 1 

& Next bit 

begining of 

.::::I::::; sigma ela = 01 - 1 

Magnitude 

Deoding and 
sigma - 1 

dl Next bit 

Fig. 7.8 Flowchart of fractional bit-plane decoder for P > 0. 
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0 0 0 1  1 0 0 0  
0 1 0 0  1 1 1 0  
1 0 0 0  0 0 1 1  
0 1 0 0  0 1 0 1  

1 0 0 1  
1 1 0 1  
0 1 0 1  
0 0 0 0  

0 The coding sequence for the code-block and the output (CX, D )  gener- 
ated are shown here. We show the sequence of coding operations (ZC, 
RLC, SC, or MRC) at bit position (TOW,  column) for the bit-plane P. 
The resulting CX and D are shown after each colon in each step. For 
example, the first operation in the sequence below indicates a run-length 
coding (RLC) applied in CUP at  position (0, 0) in the first bit-plane. 
The output are CX = 17 and D = 1. The (CX, D) pair with (17, 1) 
indicates there is a 1 bit in the current four rows of scanned samples. 
Therefore, two pairs of (CX, D )  are generated with values (18, 1) and 
(18, 0). The two decision bits indicate that the first 1 bit is at the zero- 
based location (10)2 = 2 as shown in first column of w2. A sign coding 
(SC) is followed after the RLC, and since all the state variables have ini- 
tial value zeros, a context 9 and 2 = 0 are selected from Table 7.4. The 
decision bit D = x(0,O) 8 2 = 1 8 0 = 1 is generated as shown in step 
4 of CUP for bit-plane 2 below. After each pass, the temporal contents 
of the state variables g, 7 ,  and o’ in the current bit-plane are also listed. 

CUP for Bit-Plane 2 

1. RLC for (0, 0): CX=17, D=1 
2. RLC for (2, 0): 18, 1 
3. RLC for (2, 0): 18, 0 
4. SC for (2 ,  0) : 9, 1 
5. ZC for ( 3 ,  0) : 3 ,  0 
6. ZC for (0, 1) : 0, 0 
7. ZC for (1, 1) : 1, 1 
8. SC for (1, 1) : 9, 0 
9. ZC for (2 ,  1) : 7, 0 

10. ZC for (3, 1) : 1, 1 
11. SC for (3, 1) : 9, 0 
12. ZC for (0, 2) : 1, 0 
13. ZC for (1, 2) : 5, 0 
14. ZC for (2, 2) : 2, 0 
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0 0 0 1  
0 1 0 0  0 1 0 0  

0 1 0 0  0 1 0 0  
mi - 1  0 0 0 ;  

15. ZC for (3, 2) : 5, 0 
16. RLC for (0, 3): 17, 1 

17. RLC for (0, 3): 18, 0 
18. RLC for (0, 3): 18, 0 
19. SC for (0, 3) : 9, 0 
20. ZC for (1, 3) : 3, 0 
21. ZC for (2, 3) : 0, 0 
22. ZC for (3, 3) : 0, 0 

0 0 0 0  0 0 0 0  
0 0 0 0  0 0 0 0  

0 0 0 0  0 0 0 0  mi 
7J2 0 71 0’ 

SPP for Bit-Plane 1 

23. ZC for (0, 0) : CX=1, D = 1 
24. SC for (0, 0) : 9, 0 
25. ZC for (1, 0) : 7, 1 
26. SC for (1, 0) : 12, 1 
27. ZC for (3, 0) : 7, 0 
28. ZC for (0, 1) : 7, 0 
29. ZC for (2, I )  : 7, 0 
30. ZC for (0, 2) : 6, 0 
31. ZC for (1, 2) : 6, 1 
32. SC for (1, 2) : 12, 0 
33. ZC for (2, 2) : 3, 1 

34. SC for (2, 2) : 10, 1 
35. ZC for (3, 2) : 7, 0 
36. ZC for (1, 3) : 7, 0 
37. ZC for (2, 3) : 6, 1 
38. SC for (2, 3) : 12, 1 
39. ZC for (3, 3) : 3, 1 

40. SC for (3, 3) : 10, 0 
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1 0 0 0  1 0 0 1  1 1 1 0  
1 1 1 0  1 1 1 0  1 0 1 1  
0 0 1 1  1 0 1 1  
0 1 0 1  0 1 0 1  rn] 

V1 CJ 17 (7' 

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

0 0 0 1  
0 1 0 0  
1 0 0 0  
0 1 0 0  

MRP for Bit-Plane 1 

0 0 1 1  
0 1 0 1  

41. MRC for (2, 0): CX=15, D=O 

42. MRC for (1, 1): 15, 1 
43. MRC for (3, 1): 14, 1 
44. MRC for (0, 3): 14, 0 

1 0 0 0  
1 1 1 0  

0 1 0 1  

1 0 0 1  
1 1 1 0  
1 0 1 1  

1 1 1 0  
1 0 1 1  
0 1 1 1  
1 0 1 1  

CUP for Bit-Plane 1 

(Note: This pass does not generate any CX or D.) 

V 1  CJ 17 (7' 

m 0 1 0 1  

SPP for Bit-Plane 0 

45. ZC for (3, 0) : CX=7, D= 0 
46. ZC for (0, 1) : 7, 0 
47. ZC for (2, 1) : 8, 1 

48. SC for (2, 1) : 11, 0 
49. ZC for (0, 2) : 7, 0 
50. ZC for (3,  2) : 8, 0 

m 0 1 0 0  
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r l o o l  
1 1 1 1  
1 1 1 1  m- 0 0 0 0  0 1 0 1  

51. ZC for (1, 3) : 7, 1 
52. SC for (1, 3) : 13, 0 

0 1 1 0  0 0 0 1  
0 0 0 1  0 1 0 0  
0 1 0 0  1 0 0 0  
1 0 1 0  0 1 0 0  

VO U 77 U /  

1 0 0 1  0 1 1 0  

1 1 1 1  0 1 0 0  
1 0 1 0  

1 0 0 1  
1 1 0 1  1 1 1 1  0 0 0 1  
0 1 0 1  
0 0 0 0  0 1 0 1  

1 0 0 1  

1 0 1 1  .la 0 1 0 1  

MRP for Bit-Plane 0 

53. MRC for (0, 0): CX=15, D= 1 
54. MRC for (1, 0): 15, 1 
55. MRC for (2 ,  0): 16, 0 
56. MRC for (1, 1): 16, 1 
57. MRC for (3, 1): 16, 0 
58. MRC for (1, 2): 15, 0 
59. MRC for (2, 2): 15, 0 
60. MRC for (0, 3): 16, 1 
61. MRC for (2 ,  3): 15, 1 
62. MRC for (3, 3): 15, 0 

rnl.:;:: 
0 1 0 1  1 1 1 1  
0 0 0 0  0 1 0 1  

VO U 77 6’ 

~~~1 0 1 0 0  1 0 1 1  
1 0 1 0  0 1 0 1  

CUP for Bit-Plane 0 
(Note: This pass does not generate any CX or D.) 

VO U rl U’ 



TIER-1 CODING IN JPEGZOOO 185 

7.3.3 Binary Arithmetic Coding-MQ-Coder 

As explained in the previous section, the fractional bit-plane coding (EBCOT) 
produces a sequence of symbols, pairs of context and decision (CX, D), in each 
coding pass. The context-based adaptive binary arithmetic MQ-coder that is 
used in JBIG2 [6] is adapted in JPEG2000 standard to  encode these symbols. 
The probability values (Qe) and probability estimation/mapping process are 
provided by the standard as a lookup table with four fields (or four functions), 
which is defined in Table 7.7. We discussed the principles of arithmetic cod- 
ing, binary arithmetic coding (BAC), and the implementation procedure of 
an adaptive version of BAC (the QM-coder, used in JPEG) in Chapter 2. In 
JPEG2000, the binary arithmetic coder is called the MQ-coder, which is a 
variation of the QM-coder. Here we present the implementation’procedures 
of the MQ-coder based on the informative materials provided by the stan- 
dard. Besides the probability table, the Qe-table (Table 7.7), we need two 
more lookup tables, I(CX) and MPS(CX). This is because there could be 19 
different contexts generated by the bit-plane coder, and we need to keep track 
of the state and the index of the Qe-table for each context. The I(CX) is used 
to  keep track of the index of the Qe-table and the initial values are provided 
by the standard (as shown in Table 7.6). The MPS(CX) specifies the sense 
(0 or 1) of the more probable symbol of context CX, and all MPS(CX) are 
initialized with value zero. Table 7.7 can be viewed as four lookup tables, 
Qe(I( CX)), NMPS(I( CX)), NLPS( I( CX)), and SWITCH( I( CX)) respectively. 
The I(CX) is the current index for the context CX. The Qe(I(CX)) provides 
the probability value, NMPS(I(CX))/NLPS(I(CX)) indicates the next index 
for a MPS/LPS renormalization, and SWITCH(I(CX)) is a flag used to  indi- 
cate whether a change of the sense of MPS(CX) is needed. The same tables 
and initial values will be used in both encoder and decoder. We will see more 
details on how these variables are used in following implementation subsec- 
tions. 

7.3.3.1 Implementation of the MQ-Encoder Implementation of the MQ-encoder 
requires two 32-bit registers (A and C ) .  We show the structures of registers A 
and C in Table 7.8. Register A is the interval register and contains the value 
of current interval as required in the MQ-encoder, while register C is the code 
register containing the partial codeword at  any stage of encoding. Register A 
is initialized with the value 0x00008000, which indicates the beginning proba- 
bility interval, and register C is initialized with 0x00000000, which means no 
codeword been generated yet. 

The top-level flowchart for MQ-encoder is shown in Figure 7.9. Depending 
on the value of the decision bit (D) and the value of more probable symbol 
of context (MPS(CX)), either the “CodeMPS” or the “CodeLPS” procedure 
is executed. After all the symbols have been processed, a “FLUSH register” 
procedure is executed to stuff register C with as many 1 bits as possible before 
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Table 7.7 BAC Qe-value and Probability Estimation Lookup Table 
Index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

Qe NMPS NLPS SWITCH 
0x5601 1 1 

0x3401 
0x1801 
OxOACl 
0x0521 
0x0221 
0x5601 
0x5401 
0x4801 
0x3801 
0x3001 
0x240 1 
OxlCO1 
0x1601 
0x5601 
0x5401 
0x5101 
0x480 1 
0x3801 
0x3401 
0x3001 
0x2801 
0x2401 
0x2201 
OxlCO1 
0x1801 
0x1601 
0x1401 
0x1201 
0x1101 
OxOAC 1 
oxo9c1 
Ox08A1 
0x0521 
0x044 1 
Ox02A1 
0x0221 
0x0141 
ox0111 
0x0085 
0x0049 
0x0025 
0x0015 
0x0009 
0x0005 
0x0001 
0x5601 

2 
3 
4 
5 

38 
7 
8 
9 
10 
11 
12 
13 
29 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
45 
46 

1 

6 
9 
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C 
(Code Register) 

Table 7.8 BAC Encoder Register Structures 

0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx 

32-Bit Register 1 MSB LSB 

A 
(Current Interval Value) 

0000 0000 0000 0000 aaaa aaaa aaaa aaaa 

Note: 
0 “a” represents fractional bits in the  A register. 
0 “x” represents fractional bits in the C register. 
0 “s” represents space bits, which provides constraints on carryover 
0 “b” represents bits for ByteOut. 
0 “c” represents the carry bit. 

sending out the final bytes as compressed codewords. The pseudocodes of the 
underlying procedures of the MQ-coder algorithm are described as follows. 

0 Initialization(): The “Initialization” procedure initializes the registers 
and variables for the MQ-encoder. The variable B is the byte pointed 
to by the compressed data buffer pointer BP. The BPST is the pointer 
that points to  the position where the first byte is going to  be placed. 
C T  is a counter for counting the number of shifts applied on registers A 
and C. 

I n i t i a l i z a t i o n  (1 
c 

A = 0x00008000; 
c = 0x00000000; 
BP = BPST - 1; 
CT = 12; 
if ( B == OxFF CT = 13; 
reset I(CX) and MPS(CX) with t h e i r  i n i t i a l  values .  

0 CodeMPSO: The “CodeMPS” procedure basically adds the proba- 
bility value of the current context, qe = Qe(I(CX)), t o  the C register, 
and adjusts the interval A t o  A - qe (as explained in the description 
of QM-coder algorithm in Section 2.4.2 in Chapter 2). Depending on 
the new subinterval for the MPS, the MPS/LPS conditional exchange 
may occur, and both registers A and C are renormalized. The variable 
NMPS(I(CX)) chooses the next index for the current context CX. 
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Encoder 

1 
Initialization il 

Read (CX, D) pair 

U CodeLPS u 
L 

[I FLUSH register il 

Fig. 7.9 BAC encoder flowchart. 

CodeMPS () 

A = A - qe; /* new subinterval for MPS */ 

if ( A < 0x8000 ) {  
if ( A < qe ) 

else 

/* condition exchange */ 
A = qe; 

C = C + qe; 
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/* choose next index for MPS */  
I (CX) = NMPS(1 (CX) ; 

call RenormalizationENCo ; 
1 
else 

C = C + qe; 
1 

CodeLPSO: The “CodeLPS” procedure first adjusts the interval A 
to A - qe, where qe = Qe(I(CX)). If the value of the new subinterval 
for MPS is larger than qe, then A is adjusted to qe and register C 
remains unchanged; otherwise C is adjusted to C + qe. Depending 
on the index of the context (I(CX)), the sense of MPS for CX (i.e., 
MPS(CX)) may change if the SWITCH flag for the index I(CX) is 1 as 
shown in Table 7.7. The “renormalization” procedure is always applied 
in CodeLPS(). The variable NLPS(I(CX)) chooses the next index for 
the current context CX. 

CodeLPS () 

< 
qe = Qe(I(CX>>; 
A = A - qe; /* new subinterval for MPS */ 

if ( A >= qe ) 

else /* conditional exchange */ 
A = qe; 

C = C + qe; 

/* C is left unchanged */ 

if ( switch(I(CX)) == 1 
/* change the sense of MPS(CX) */ 
MPS(CX) = 1 - MPS(CX); 

/* choose next index for LPS */ 
I (CX) = NLPS (I (CX) 1 ; 
call RenormalizationENC() ; 

1 

RenormalizationENC(): The RenormalizationENC() function is al- 
ways applied after coding the LPS, and also whenever the interval value 
in register A becomes less than 0x8000 after coding MPS. The normal- 
ization process is executed to ensure that interval A is always above 
0x8000 by repeatedly left-shifting both the A and C register 1 bit at 
a time until A is greater than or equal to  0x8000 (as discussed in the 
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QM-coder section in Chapter a ) ,  and calls the “ByteOut()” procedure 
to output compressed data, if necessary. 

RenormalizationENCO 
c 

do 

A = A << 1; /*  left shift 1 bit */ 
c = c << 1; / *  left shift 1 bit */ 
CT = CT -1; 
if ( CT == 0 ) call ByteOutO; 

> while ( A < 0x8000 
3 

0 Byteout(): The “ByteOut” procedure is the one a that actually out- 
puts the compressed data one byte a t  a time. I t  contains necessary 
procedures (bitstuffingo or no-bitStuffing0) to limit carry propaga- 
tion into completed bytes, and bit-stuffing after a OxFF byte. 

Byt eOut () 
c 

if ( B == OxFF ) call bit-Stuffingo; 
elsee 

if ( C < 0x08000000 ) 

else { 

/* no carry bit */ 
call no-bit-Stuffingo; 

B = B + 1; 
if ( B == OxFF )I 

/* add carry bit to B */ 

C = C & Ox07FFFFFF; 
call bit-Stuff ingo ; 

> 
else 

call no-bit-Stuff ingo ; 
3 

> 
3 

0 bit-Stuffingo: The carry bit c and the upper 7 ByteOut bits bs (as 
shown in Table 7.8) are moved into the byte B. 

bit-Stuff ingo 
c 

BP = BP + 1; /* output B */ 
B = C >> 20; /* ”cbbb bbbb” bits of C */ 



TIER-1 CODlNG IN JPEG2000 191 

C = C & OxOOOFFFFF; 
CT = 7; 

0 no-bit-Stuffingo: The 8 ByteOut 
moved into the byte B. 

bits bs (as shown in Table 7.8) are 

no-bit-Stuff ing0 

BP = BP + 1; /*  output B */ 
B = C >> 19; /* “bbb bbbb b” bits of C */ 
C = C & Ox0007FFFF; 
CT = 8; 

3 

0 FLUSHregisterO: After encoding all the symbols for each code-block 
generated by EBCOT, the “FLUSHregister” procedure is executed to 
stuff the register C with as many 1 bits as possible before i t  outputs the 
final bytes as compressed codewords. 

FLUSHregisterO 
c 

TempC = C + A ;  
C = C I 0~0000FFFF; 
if ( C >= TempC) C = C - 0x00008000; 

C = C << CT; 
call ByteOut 0 ; 
C = C << CT; 
call ByteOut 0 ; 

if ( B == OxFF) 

else 
discard B; 

BP = BP + 1; /* output B */ 
3 

7.3.3.2 Implementation of MQ-Decoder MQ-decoder requires three 16-bit 
registers Chigh, Clow, and A. Structures of these three registers are defined 
Table 7.9. Registers Chigh and Clow together can be considered as one 
32-bit register C. During decoding, the new data is inserted into the upper 8 
bits (b bits as shown in Table 7.9) of the Clow register one byte at a time. 
Register A is initialized with value 0x8000, as in the encoder. 
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I A 

Table 7.9 BAC Decoder Register Structures 

aaaa aaaa aaaa aaaa 

The top-level flowchart for the MQ-decoder is shown in Figure 7.10. The 
pseudocode underlying procedures for implementation of the MQ-decoder al- 
gorithm is as follows. 

0 InitializationDEC(): The first input compressed byte will be put into 
the lower 8 bits position of the register Chigh, and then a new byte is 
read in using ByteIn() procedure. In order to align the C register with 
the starting value of A, it is left-shifted 7 bits and the shift counter CT 
is adjusted accordingly. 

I n i t  i a l i z a t  ionDEC (1 
c 

/* BP is poin t ing  t o  t h e  f i r s t  compressed byte  */ 
/* B is t h e  byte pointed t o  by t h e  poin te r  BP */ 
BP = BPST; 
C = B << 16; 

c a l l  By te Ino  ; 

c = c << 7; 
CT = CT - 7;  
A = 0x8000; 
r e s e t  ItCX) and MPS(CX) with t h e i r  i n i t i a l  values .  

3 

0 ByteIn(): The “ByteIn” procedure reads one byte of the compressed 
bitstream every time it is called, and compensates for any stuff bits 
following the OxFF byte that was inserted in the encoding process. If a 
OxFF byte is found with the next byte bigger than OXSF, 1 bits are fed 
to the decoder. 

ByteIn() 
c 
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[ ~ Encoder 1 

i Initialization DEC 

Read CX 

A = A - Qe(I(CX)) 

N 

RenormalizationDEC 
A < 0x8000 

D = MPS(CX) 

RenormalizationDEC 

23 return D 

Fig. 7.10 BAC decoder flowchart. 
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i f  ( B == OxFF >{ 
/* B 1  is t h e  byte  pointed t o  by BP+1 */ 
i f  ( B 1  > Ox8F >{ 

/* feed '1' b i t s  t o  t h e  decoder */ 
C = C + OxFF00; 
CT = 8 ;  

e l s e  { 
BP = BP + 1; 
C = C + ( B < < 9 > ;  
CT = 7; 

> 
1 
e l s e  { 

BP = BP + 1; 
C = C + ( B < < 8 > ;  
CT = 8 ;  

> 

0 LPS-EXCHANGEO: Based on the LPS subinterval value Qe(I(CX)) 
and the MPS subinterval value A, a conditional exchange may or may 
not occur. In either case, the new subinterval A will be updated with 
Qe(I(CX)). The decision bit D will be decoded according to  the condi- 
tion. 

LPS-EXCHANGE (1 
c 

i f  ( A < qe(I(CX>) >{ /* condi t iona l  exchange */ 
A = qe(I(CX>>; 
D = MPS(CX> ; 
I(CX) = NMPS(I(CX)>; 

> 
e l s e  { 

A = qe(I(CX>>; 
D = 1 - MPS(CX> ; 
i f  ( SWITCH(I(CX)) == 1 MPS(CX) = 1 - MPS(CX); 
I (cx> = NLPS (I  (CX) > ; 

r e tu rn  D;  
3 

0 MPS-EXCHANGE(): Similar to the LPSEXCHANGEO procedure, 
a conditional exchange may occur depending on the values of A and 
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Qe(I(CX)). The decision bit D will be decoded according to the condi- 
tion. However, the MPS subinterval value A will not be updated inside 
the MPSEXCHANGEO procedure. 

MPS-EXCHANGE () 
c 

if ( A < Qe(I(CX)) )( /*  conditional exchange */ 
D = 1 - MPS(CX) ; 
if ( SWITCH(I(CX)) == 1 MPS(CX) = 1 - MPS(CX); 
I (CX) = NLPS (I (CX) ) ; 

1 
else C 

D = MPS(CX) ; 
I (CX) = NMPS (I (CX) ) ; 

3 

return D; 
3 

RenormalizationDEC(): As shown in Figure 7.10, a decoder renor- 
malization procedure is needed after calling either MPXEXCHANGEO 
or LPS-EXCHANGE(). The counter CT keeps track of the number of 
compressed bits remaining in the Clow section of the C register. If CT  
is down to zero, a new compressed byte will be brought in using the 
ByteIn() procedure. 

Renormalizat ionDEC 0 
c 

do 
c 

if ( CT == 0 1 call ByteInO; 
A = A << I ;  
c = c << 1; 
CT = CT - 1; 

} while ( A < 0x8000 
} 

7.4 TIER-2 CODING IN JPEG2000 

In JPEG2000 standard [ 5 ] ,  the Tier-2 coding engine is responsible for effi- 
ciently representing layer and block summary information for each code-block, 
including: 

0 The bitstream layers to which the code-block contributes the compressed 
codewords; this is also known as the “inclusion information.” 



196 CODING ALGORITHMS IN JPEG2000 

0 The length of these codewords. 

0 The most significant magnitude bit-plane at  which any sample in the 
code-block is nonzero, also known as the zero bit-planes information. 

0 The truncation points between the bitstream layers, that is, the number 
of coding passes information. 

This information is known to the encoder. The decoder receives this in- 
formation in an encoded format, which combines two Tag Trees (one for the 
inclusion information and the other for the zero bit-planes information) in the 
encoding procedure. 

Tag Tree is a particular type of quad-tree data structure, which provides 
the framework for efficiently representing information in the Tier-2 coding 
engine of JPEG2000. Size of the header included in the compressed file in the 
JPEG2000 standard is much larger than in the JPEG standard and contains 
lots of important information. The Tag Tree coding mechanism helps in rep- 
resenting the layer and block summary information for each code-block to  be 
included in the header of the compressed file. In this section, we first discuss 
the basic Tag Tree compression technique. Then we discuss the bitstream for- 
mation methodology and how the Tag Trees are integrated in Tier-2 coding 
in detail. 

7.4.1 Basic Tag Tree Coding 

7.4.1.1 
array of nonnegative integers in a hierarchical way. Consider the two-dimensional 
array of integers of dimension 6 x 3 in Figure 7.11(a) as an example. Fig- 
ures 7.11(b)-(d) are the reduced resolution levels of these two-dimensional 
arrays. The elements in an array at  level n are formed by selecting the min- 
imum of each 2 x2 subarray (other than the boundary elements) from the 
two-dimensional array at  level n + 1 as shown in Figure 7.11. For example, 
the elements in the array in level 2 (Figure 7.11(b)) are generated from the 
array in level 3 (Figure 7.11(a)) as follows. 

Basic Data Structure A Tag Tree is a way to represent a two-dimensional 

q2(0,0) = min{q3(0,0), q3(1,0), 43(0, I ) ,  Q3(1,1)) = 1, 

42(2,0) = min{q3(4,0), 4 3 ( 5 , 0 ) ,  q3(4, I ) ,  43(5,1)) = 2, 
q2(0,1) = min{q3(0,2), q3(1,2)) = 2, 
42(1,1) = min{q3(2,2), q3(3,2)) = 2, 
92(2,1) = min{q3(4,2), 43(5,2)) = 1. 

qz(1,o) = min{q3(2,0), q3(3,0), 43(2, I ) ,  q3(3,1)) = 1, 

Similarly, the elements in the array in level 1 (Figure 7.11(c)) are generated 
from the array in level 2 (Figure 7.11(b)) as follows. 

q1(0,0) = min{q2(010), q2(110), qz(0,  I ) ,  42(1,1)) = 1, 
q1(1,0) = min{c?(2,0), q2(2,1)) = 1 
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and 
qo(1 ,O)  = min{q1(0,0), q1(1,0)) = 1. 

Figure 7.12 is a compact representation of Figure 7.11 into a quad-tree data 
structure. The leaf nodes contain elements from the original two-dimensional 
array (Figure 7.11(a)), and the internal nodes represent the elements of the 
reduced dimension arrays in different levels Figures 7.11 (b)-(d)). The nota- 
tion, qi(z,y),  is the value at the node that is the (x + l)th from the left and 
(y + l)th from the top of the two-dimensional array] a t  the ith level. Level 0 
is the lowest level; it contains only the root node. This quad-tree-like data 
structure is the basic data structure for Tag Tree coding. 

7.4.1.2 Basic Coding Procedure The coding procedure for a Tag Tree is very 
simple. Each node is encoded as d number of 0’s followed by a 1, where d 
is the difference between the current node and its parent node. For the root 
node, the parent node is assumed to  be a 0 value node. However, nodes at 
higher levels cannot be encoded until their parent nodes at lower levels are 
entirely encoded. The first row of the table in Figure 7.13 shows part of the 
bitstream generated for the example in Figure 7.11, and the second row in 
the table shows the corresponding encoded node(s). For example, the code for 
the number at q3(0,0) would be 01111. The first two bits (01) imply that the 
value of the root node at qo(0 ,O)  is 1. The third bit (1) implies that the value 
at node ql(0,O) is also 1. The forth bit (1) implies that the value at  node 
q2(0,0) is also 1. And the final bit (1) implies that the value at the target 
node q3(0, 0) is also 1. To encode the next node q3(1,0), the code would be 
001. Since all the parent nodes of q3 (1 0) have already been encoded (while 
encoding q3(O10) in the previous step), the first two bits (00) imply that the 
difference between the current node, q3(0, 0), and its parent node, qz(0,O) is 
2. This process continues for the entire two-dimensional array in raster scan 
order (left to right and top to bottom). 

7.4.2 Bitstream Formation 

Before we discuss how Tag Tree encoding can be used to encode the packet 
header information, we need to  explain some terminology about bitstream 
formation and the progression order defined in JPEG2000. 

7.4.2.1 Definition of Terms 

Packet - compressed data representing a component, specific tile, layer, 
resolution level, and precinct. 

Layer - The coded data (bitstream) of each code-block is distributed across 
one or more layers in the code-stream. Each layer consists of some 
number of consecutive bit-plane coding passes from each code-block in 
the tile, including all subbands of all components for that tile. 
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I (b) Level 2 - internal nodes q2(x,y) 
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(c) Level 1 - internal nodes q ,(x,y) 
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(d) Level 0 - root node q,,(x,y) 

Fig. 7.11 
2000 FCD Vl.O). 

Example of a tag tree data structure (example used in ITU-T Rec. T.8000, 
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root W e  

O1 -@EL 

7 

;A; 
f;g. 7.12 Quad-tree structure for the example in Figure 7.11. 

fig. 7.13 Bitstream generated for the same example in Figures 7.11 and 7.12 
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Resolution - partition of DWT subbands in one tile. 

There are ( N L  +l) resolutions for N L  levels DWT decomposition 
r = 0 : LL(NL) subband only 
r = 1 : HL(NL), LH(NL), HH(NL) 

r = N L  : HL1, LH1, HH1 

Precinct - partition in each resolution (formed in DWT domain). Power 
of 2 in size (line up with code-block size boundary). Don’t cause block 
(tile) artifacts. Figure 7.14 shows an example for a precinct from a 
two-level DWT with three resolutions. 

r=O r = l  r = 2  

.... ...... ..... 

A code-block 

fig. 7.14 A precinct from a two-level DWT with three resolutions. 

Component - A color image may have several components from a specified 
color space. A component is a two-dimensional array of samples from 
an image. 

7.4.2.2 Progression Order The standard allows five different progression or- 
ders, which are specified in the coding style default (COD) markers unless 
otherwise overridden by the progression order default (POD) marker. The 
COD and POD markers will be discussed in the next chapter. Five different 
possible progression orders defined by the standard are listed below. 

1. Layer-resolution-component-position progressive 

2. Resolution-layer-component-position progressive 
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3. Resolution-position-component-layer progressive 

4. Position-component-resolution-layer progressive 

5. Component-position-resolution-layer progressive 

The standard has the layer-resolution-component-position progressive or- 
der as the default order. 

Figure 7.15(a) shows an example of a single-component image applied with 
two-level DWT decomposition and partitioned into 16 code-blocks. For the 
sake of discussion and simplicity, as shown in Figure 7.15(b), we assume all 
code-blocks (CB1-CB16) have four bit-planes (BP4 denotes the MSB plane); 
the letters S, M ,  and C stand for the bitstream generated during signifi- 
cance propagation pass, magnitude refinement pass, and cleanup pass, re- 
spectively. Conceptually, the bottom-nested dash-line boxes stand for progres- 
sive in terms of resolution where the bitstreams generated from the lowest- 
resolution code-block (CB1) were sent out first, followed by the bitstreams 
generated from resolution 1 (CB2, CB3, and CB4), and then the bitstreams 
generated from resolution 2 (CB5-CB16). The progressive in terms of quality 
can be done by first sending out all the bitstreams generated from all the 
code-blocks for the MSB plane (BP4), followed by the bitstreams generated 
from all the code-blocks for the next bit-plane (BP2), and so on (as shown in 
Figure 7.15(b) with nested solid-line boxes). On the other hand, in order to  
meet a certain bandwidth or target file size with the highest resolution, we 
can even send out the bitstreams that are corresponding to  the shading area 
as shown in Figure 7.15(b). 

7.4.3 Packet Header Information Coding 

All the compressed bitstreams from a specific tile, layer, resolution, compo- 
nent, and precinct are stored in a contiguous segment called a packet. The 
packet header information appears in the bitstream immediately preceding the 
packet data, unless one of the PPM (main packed packet header marker) or 
PPT (tile-part packed packet header) marker segments has been used. Both 
the packet header information and packet data are constructed based on the 
order of contribution from the LL, HL, LH, and HH subbands. The packet 
header contains the following information: 

0 Zero-length packet, which is encoded using one bit; the value 0 de- 
notes a zerelength packet, and the value 1 indicates a nonzero-length 
packet. 

0 Inclusion information, which is encoded with a separate Tag Tree. 
The value in this Tag Tree is the number of the layer (a  zero-based 
index) in which the code-block is first included. 
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(bitstream with highest resolution & target fde size) 
k (progressive in terms of quality) 

Fig. 7.15 (a) A two-level DWT with 16 code-blocks. (b) Bitstream formations. (Note: 
the letters S, M, arid C in (b) stand for the bitst,ream generated during significance 
propagation pass, magnitude refinement pass, and cleanup pass, respectively.) 
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1 

0 Number of (leading) zero bit-planes, which is used to  identify the ac- 
tual number of bit-planes for coefficients from the code-block. A second 
Tag Tree is used to  encode this information. 

0 

0 Number of coding passes for each code-block in this packet. This 
number is encoded using the codewords shown in Table 7.10. 

0 Length (in bytes) of the bitstream from a given code-block, which is 
encoded either in a single-codeword segment or a multiple-codeword 
segment . 3  

The codewords (as shown in Table 7.10) for the number of coding passes 
for each code-block are variable-length codes. The number 37 through 164 
has a 9-bit 1111 11111 as prefix followed by 7 bits as the offset from 37. The 
number 6 through 36 has a 4-bit 1111 as prefix followed by 5 bits as the offset 
from 6. 

Table 7.10 Codewords for the Number of Coding Passes 

1110 
1111 0000 0-1111 1111 0 

1111 11111 0000 000-1111 11111 1111 111 
6-36 

37-164 

The single-codeword segment is used to encode the number of bytes con- 
tributed to  a packet by a code-block. The number of bits needed to  represent 
the length of bytes can be derived using 

bits = LBlocks + Llog;!(number of coding passes)J ,  

where LBlocks is a code-block-wise state variable with initial value three. 
k 

The value of LBlocks can be increased if there are k 1’s (i.e., ‘~1111 .... J?) 
followed by a bit 0 (this is also known as the code-block length indicator); 
the value of LBlocks is increased by k. If k = 0, then the bit 0 is used as 
a delimiter, which means no increase for the value of LBlocks. There is no 
restriction on number of bits used to represent the code length in the packet. 

3This is the case when a termination occurs between coding passes that are included in the 
packet. 
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The Tier-2 coding procedure for a packet representing a specific layer, com- 
ponent, resolution, and precinct of the tile can be summarized as follows: 

encode one bit for zero or nonzero length packet. (‘1’ indicates 
a nonzero packet, and ‘ 0 ’  means a zero-length packet.) 

for each subbands (in the order of LL or HL, LH, and HH) 

for all code-blocks in this subband (in raster order) 
/* code-block included bits */ 
if [code-block is not previously included] 

encode with a Tag Tree 
else 

encode one bit (bit ‘1’ means included in this layer, 
bit ‘ 0 ’  otherwise) 

if [code-block included] /*  i.e. # of coding passes > 0 */ 

if [this is the first instance of a code-block1 
encode zero-bit-plane information with a second Tag Tree 

encode # of coding passes using variable length codeword 

encode code-block length indicator (k ’1’s + ’ 0 ’ )  

length of code-block contribution 
> 

7.4.3.1 Examples In order to illuminate how Tier-2 coding works, we com- 
pressed a small single-component, 80 x 60 image with code-block size 32 x 32, 
two-level DWT, three resolutions, single layer, and no tile partition. There are 
a total of three packets, with index 0, 1 and 2. The size of the cornpressed file 
is 3,202 bytes. We also set an EPH (end-of-packet) marker, so we can clearly 
see the boundary of a packet header (from SOP to EPH) in the compressed 
bitstream. 

FF 4F (SOC) 0 0 

FF 51 (SIZ) 0 3 
00 29 00 00 00 00 00 50 00 00 00 3C 00 00 00 00 00 
00 00 00 00 00 00 50 00 00 00 3C 00 00 00 00 00 00 
00 00 00 01 07 01 01 
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FF 5C (QCD) Q 45 
00 11 42 57 86 48 03 48 03 48 45 4F D2 4F D2 4F 
61 

FF 52 (COD) Q 64 
00 OC 06 02 00 00 01 03 03 00 00 00 

FF 90 (SOT) 0 78 
00 OA 00 00 00 00 OC 32 00 01 

FF 93 (SOD) 0 90 

FF 91 (SOP) Q 92, Packet sequence number = 0 
00 04 00 00 C7 DF A 6  EO 

FF 92 (EPH) @ 102 

. . . . . . . . 

FF 91 (SOP) Q 415, Packet sequence number = 1 

00 04 00 01 C7 D9 70 47 D9 76 C7 DB 66 00 

FF 92 (EPH) @ 431 

FF 91 (SOP) @ 1098, Packet sequence number = 2 

00 04 00 02 E3 F6 F4 A9 3E 7B OE 3F 6F 4D 93 E7 
B2 67 FO E9 12 3E 7A 88 

FF 92 (EPH) 0 1124 

. . . . . . . . 

FF D9 (EOC) Q 3200 
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The first packet header with sequence index number 0 contains information 
only for the LL2 subbands; it starts at byte 92 with start-of-packet marker 
(SOP) FF 91, and can be decoded as follows: 

FF 91 ==> SOP marker ( s t a r t  at  byte  92) 
00 04 ==> 4 bytes  length  f o r  marker segment, excluding t h e  marker 
00 00 ==> packet sequence number = 0 

c7 DF A6 EO 
(1)(1)(00 01)(11 1101 111)(1 10)(10 0110 1110 0000 
0 1  2 3 4 5 

LL2 with 1 x 1 code-block 

Tag Tree 1 Tag Tree 2 # of Coding Pass Length 
Inclusion Zero-Bit-Plane (bytes) 

101 131 
0: “1” means nonzero packet; 

1: “1” inclusion bit, Tag Tree 1 decode, layer # = 0; 

2: “0001” Tag Tree 2 decode, # of zero bit-planes = 3; 

3: “111101111” decode # of coding passes with Table 7.10; 6 + 15 = 21; 

4: “110” has 2 indicators; LBlock = 3 + 2 = 5; decode length, 5 + [log2211 = 

9; 

5:  “1 0011 0111” = (01 37)h = 311 (bytes). 

The second packet header with sequence index number 1 contains information 
for three different subbands, HL2, LH2, and HH2, and can be decoded as 
follows: 

FF 91 ==> SOP marker (start at  byte  415) 
00 04 ==> 4 bytes  length  f o r  marker segment, excluding t h e  marker 
00 01 ==> packet sequence number = 1 

c7 D9 70 47 
(1) (1) (00 01) (11 1101 100) (1 0) (111 0000 0) (1) (00 01) (11 
0 1  2 3 4 5 6 7  
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D9 76 c7 DB 
1101 100)(1 0)(111 0110 1)(1)(00 01)(11 1101 101)(1 

8 9 10 11 12 13 14 

66 00 
0)(110 0110 o>ooo 0000 

15 

HL2 with 1 x 1 code-block 

Tag Tree 1 Tag Tree 2 # of Coding Pass 
Inclusion Zero-Bit-Plane 

101 131 El 
0: “1” means nonzero packet; 

1: “1” inclusion bit, Tag Tree 1 decode, layer # = 0; 

2: “0001” Tag Tree 2 decode, # of zero bit-planes = 3; 

3: “111101100” decode # of coding passes with Table 7.10; 6 + 12 = 18; 

4: “10” has 1 indicator; LBlock = 3 + 1 = 4; decode length, 4 +  LlogzlSJ = 8; 

5 :  “1110 0000” = (EO)h = 224 (bytes); 

LH2 with 1 x 1 code-block 

Tag Tree 1 Tag Tree 2 # of Coding Pass Length 
Inclusion Zero-Bit-Plane (bytes) 

6: “1” inclusion bit, Tag Tree 1 decode, layer # = 0; 

7: “0001” Tag Tree 2 decode, # of zero bit-planes = 3; 

8: “111101100” decode # of coding passes with Table 7.10; 6 + 12 = 18; 

9: “10” has 1 indicator; LBlock = 3 + 1 = 4; decode length, 4+ Llogz18J = 8; 

10: “1110 1101” = (ED)h = 237 (bytes); 

HH2 with 1 x 1 code-block 

Tag Tree 1 Tag Tree 2 # of Coding Pass 
Inclusion Zero-Bit-Plane 

m 131 m 
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11: “1” inclusion bit, Tag Tree 1 decode, layer # = 0; 

12: “0001” Tag Tree 2 decode, # of zero bit-planes = 3; 

13: “111101101” decode # of coding passes with Table 7.10; 6 + 13 = 

14: “10” has 1 indicator; LBlock = 3 + 1 = 4; decode length, 4+ Llog219 

15: “1100 1100” = (CC)h = 204 (bytes). 

19; 

= 8; 

The third packet header with sequence index number 2 contains information 
for the last three subbands, HL1, LH1, and HH1, and can be decoded as 
follows: 

FF 91 ==> SOP marker (start at byte 1098) 
00 04 ==> 4 bytes length for marker segment, excluding the marker 
00 02 ==> packet sequence number = 2 

E3 F6 F4 A9 

0 1 2  3 4 5 6 7 8 
(1) (1) (1) (0 001) (1) (1111 0110 1) (111 0) (100 1010 100) (1) 

3E 7B OE 3F 
(001) (1 1110 0111) (10) (11 0000 1) (1) (1) (0 001) (1) (1111 
9 10 11 12 13 14 15 16 17 

6F 4D 93 E7 
0110 1)(111 0)(100 1101 100)(1) (001)(1 1110 0111) 

18 19 20 21 22 

B2 67 FO E9 
(10) (11 0010 0) (1) (1) (0 01) (1) (1 1111 0000) (1110) (1001 
23 24 25 26 27 28 29 30 

12 3E 7A 88 
0001 00)  (1) ( 0  001) (1 1110 0111) (10) (10 1000 1 ) O O O  
31 32 33 34 35 36 

HL1 with 2 x 1 code-block 
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Tag Tree 1 Tag Tree 2 # of Coding Pass Length 
Inclusion Zero-Bit-Plane (bytes) 

0: “1” means nonzero packet; 

1: (Inclusion) Tag Tree 1 decode; upper-level node qo(0,O) need decode first; 
“1” qo(0,O) = 0; 

2: “1” q1(0,0) = 0; 

3: (Zero bit-plane) Tag Tree 2 decode; upper-level node zo(0,O) need decode 
first; “0001” zO(0,O) = 3; 

4: “1” Z I ( 0 , O )  = 3; 

5:  “111101101” decode # of coding passes with Table 7.10; 6 + 13 = 19; 

6: “1110” has 3 indicators; LBloclc = 3 + 3 = 6; decode length, 6+ llogz19J = 
10; 

7: “10 0101 0100” = (02 54)tL = 596 (bytes); 

8: “1” (Inclusion) q l (1 ,O)  = 0; 

9: “001” Zl(0,O) = Z o ( 0 , O )  + 1 + 1 = 5; 

10: “111100111” decode # of coding passes with Table 7.10; 6 + 7 = 13; 

11: “10” has 1 indicator; LBlock = 3 + 1 = 4; decode length, 4+[log2131 = 7; 

12: “110 0001” = (61)h = 97 (bytes); 

LH1 with 2 x 1 code-block 

Tag Tree 1 Tag Tree 2 # of Coding Pass Length 
Inclusion Zero-Bit-Plane (bytes) 
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13: (Inclusion) Tag Tree 1 decode; upper-level node qo(0,O) need decode first; 
“I” qo(0,O) = 0; 

14: “1” qI(0,O) = 0; 

15: (Zero bit-plane) Tag Tree 2 decode; upper-level node zo(0,O) need decode 
first; “0001” zO(0,O) = 3; 

16: “1” ~l(0,O) = 3; 

17: “111101101” decode # of coding passes with Table 7.10; 6 + 13 = 19; 

18: “1110” has 3 indicators; LBlock = 3 + 3 = 6; decode length, 6 + 
L1og219] = 10; 

19: “10 0110 1100” = (02 6C)h = 620 (bytes); 

20: “1” (Inclusion) ql(1,O) = 0; 

21: “001” ZI(0,O) = zo(0,O) + 1 + 1 = 5; 

22: “111100111” decode # of coding passes with Table 7.10; 6 + 7 = 13; 

23: “10” has 1 indicator; LBlock = 3 + 1 = 4; decode length, 4+ jlogz13] = 7; 

24: “110 0100” = (64)h = 100 (bytes); 

HH1 with 2 x 1 code-block 

Tag Tree 1 Tag Tree 2 # of Coding Pass Length 
Inclusion Zero-Bit-Plane (bytes 1 

25: (Inclusion) Tag Tree 1 decode; upper-level node q O ( 0 , O )  need decode first; 
“1” Q ” ( 0 , O )  = 0; 

26: “1” qi(0,O) = 0;  

27: (Zero bit-plane) Tag Tree 2 decode; upper-level node zo(0,O) need decode 
first; “001” zo(0,O) = 2; 

28: “1” z ~ ( O ,  0) = 2; 

29: “111110000” decode # of coding passes with Table 7.10; 6 + 16 = 22; 
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30: “1110” has 3 indicators; LBlock = 3 + 3 = 6; decode length, 6+ [log2221 = 

31: “10 0100 0100” = (02 44)h = 580 (bytes); 

32: “1” (Inclusion) 41 (1 , 0) = 0; 

10; 

33: “0001” Z l ( 0 , O )  = zo(0,O) + 1 + 1 + 1 = 5; 

34: “111100111” decode # of coding passes with Table 7.10; 6 + 7 = 13; 

35: “10” has 1 indicator; LBlock = 3 + 1 = 4; decode length, 4+ [log2131 = 7; 

36: “101 0001” = (51)h  = 81 (bytes). 

7.5 SUMMARY 

In this chapter, we dealt with the fractional bit-plane coding (EBCOT) and 
the MQ-coder for implementation of the adaptive binary arithmetic coding 
scheme proposed in JPEG2000 standard. We described the terminology and 
their underlying concepts behind these algorithms. The EBCOT has three 
coding passes and four coding operations. We discussed in great detail the 
concepts behind these coding operations and how they are used in each coding 
pass in order to encode the bit-planes of the DWT coefficients. We took an 
example and showed how to generate the context and decision information by 
the EBCOT algorithm. This context and decision pair is then used by the 
MQ-coder to  generate compressed codewords. We described the flowcharts for 
all the modules in both the EBCOT and the MQ-coder algorithms and their 
implementation issues. We discussed the Tier-2 encoding scheme using the 
Tag Tree coding mechanism. We discussed the basic definitions for the Tag 
Tree with an example and showed how the two-dimensional integer arrays 
can be mapped into a Tag Tree. This Tag Tree encoding is the basis for 
encoding the code-block and layer information in the compressed file header. 
We compressed a small component of size 80 x 60, generated the code-block 
information, and displayed the results as an example. We also showed the 
different progression orders achievable by the JPEG2000 standard in order 
to  influence different areas of applications. In summary, we detailed entropy 
encoding (Tier-1 and Tier-2 encoding) in this chapter. 
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8.1 INTRODUCTION 

Like any other image and video coding standards, JPEG2000 also defines 
syntax and rules to  organize the compressed bitstream so that the compressed 
bitstream can be uniquely decoded by any system compliant to the standard. 
The file format of the compressed file needs to strictly follow the guidelines 
provided by the standard in order to  be compliant with the standard. The 
JPEG2000 Part 1 standard defines an optional file format, called JP2, that 
any system compliant with the standard may choose to support. 

In this chapter, we describe the basic code-stream organization (syntax and 
rules) and file format for the JPEG2000 Part 1 standard only. The syntax 
provides all the information that an application needs for decompression of 
the JPEG2000 code-stream. The file format for JPEG2000 Part 1 can be 
considered as a wrapper that applications may choose to  adapt to contain 
JPEG2000 compressed code-stream. 

8.2 SYNTAX AND CODE-STREAM RULES 

Marker segments are used to  indicate the characteristics of the image (such 
as image size, number of components in the image, the chosen tile size, etc.) 
and mark the code-stream. The markers and marker segments describe vari- 
ous features that are present in the compressed file and define the parameters 
used to compress the image (such as size of the code-block, precinct, quantiza- 

213 
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tion step-size, wavelet kernels used for transformation, number of resolution, 
type of multicomponent transform, ROI parameters, and others). A marker 
segment includes a marker and associated marker parameters. On the other 
hand, headers of the compressed file are a collection of markers and marker 
segments. There are two types of headers in the JPEG2000 code-stream. 

1. The main header: The main header is inserted at the beginning of 
code-stream and is used to  delimit the code-stream as well as provide 
general information about the compressed file. 

2. The tile-part header: The tile-part header is inserted a t  the beginning 
of the compressed bitstream of each tile-part and is used to delimit a 
particular tile-part and provides general information about a tile. 

Every marker in the code-stream is two bytes long. The first byte is always 
OxFF, and the second byte can have any value between Ox01 and OxFE. In the 
JPEG2000 Part 1 standard, six types of marker segments have been defined. 

Delimiting marker segments: The delimiting marker segments are used 

Fixed information marker segments: The fixed information marker seg- 
ments contain information about the image. The only fixed information 
maker defined in JPEG2000 Part 1 is the image and tile size (SIZ) 
marker, which is required in the main header. 

to delimit the headers and the data. 

Functional marker segments: The functional marker segments are used 
to  describe the coding functions used; for example, the coding style 
default(C0D) marker segment is used to  describe the coding style in- 
formation that is used as default for compressing all components of an 
image or a tile. 

Bitstream marker segments: The bitstream marker segments are used 
for error resilience. These markers are found in the bitstream, not as 
part of the main or a tile-part header. 

Pointer marker segments: The pointer marker segments point to specific 
offsets in the bitstream. These markers are optional, and they provide 
either a length information or a pointer into the bitstream. 

Informational marker segments: The informational marker segments 
provide additional information about the image; for example, comments 
can be put into the main or tile-part headers with a comment and ex- 
tension (CME) marker segment. 

The first two bytes after the marker should be an unsigned big-endian 
integer value, such as Lmar shown in Figure 8.1, which denotes the total 
length of the marker segment excluding the two bytes of the marker itself. 
The length of marker parameters could range from 1, 2, 4 bytes to  variable 
length. Figure 8.1 shows a sample description of a marker segment. 
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MAR Lmar A B C D 

I 16-bit parameter I 

length of marker segment 

16-bit name of the marker 

v 
run of n parameters 

Fig. 8.1 Sample marker segment description 

8.2.1 Basic Rules 

The following seven rules are provided in Annex A of the JPEG2000 Part 1 
standard [2]. Any JPEG2000 compliance codec system needs to follow these 
rules. 

1. All the markers and the marker segments and hence the headers are 
multiples of 8 bits (one byte). Further, if the number of bits in the 
bitstream data between the headers is not an integer multiple of 8, then 
the bitstream is padded so that it is a multiple of 8 bits. In other words, 
zero-padding (padded with 0 bits) will apply when the last (before the 
next header) compressed byte contains less than 8 bits. 

2. All the markers and the marker segments within a tile-part header are 
applicable (or valid) only to  the tile to  which they belong. Different 
tiles may use the same markers with different parameters as specified in 
their own tile-part header. 

3. All the markers and the marker segments in the main header are appli- 
cable to  the whole image unless they are overridden by a marker segment 
in the tile-part header. 

4. The “delimiting” marker segments and the “fixed information” marker 
segments must appear at the specific points in the code-stream. For 
example, the start of code-stream (SOC) marker must appear as the 
first marker in the main header. 

5. The marker segments shall correctly describe the image as represented 
by the code-stream. If any alteration is applied to the code-stream, the 
marker segments shall be updated. 

6. All parameter values in the marker segments are big-endian (i.e., the 
most significant byte first). 

7. All markers between OxFF30 and OxFF3F have no marker parameters. 
They are reserved by the standard without marker parameter definition 
in order to  enable backward compatibility and future extensions. 
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8.2.2 

Figure 8.1 shows an example of the marker segment description. The first two 
bytes are represented by a three-letter abbreviation of the marker segments, 
and the next two bytes (Lmar) specify the total length of the marker segment 
excluding the two bytes of the marker itself. Table 8.1 shows the marker names 
and code values of marker segments. The detail information and syntax for all 
the markers and marker segments can be found in Annex A of the JPEG2000 
Part 1. 

Markers and Marker Segments Definitions 

Table 8.1 Marker Segments: Marker Name and Value 

Packet length, tile-part header 

Comment and extension 

8.2.3 Headers Definition 

The main header as indicated in Figure 8.2 consists of segments known as 
main header marker segments. Some of the markers are essentially presented 
and some may or may not be presented. For example, the SOC and SIZ 
must be specified as the first and second marker segments in the main header. 
However, a PLT (packet-length) marker is not allowed to appear in the main 
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Main 
header 

i requirednsthefirsImarker 

required 

I _ - - - - - _  
: 4- - optional marker($ Tile-part ; : 

header(1) : : 
I - - -  7 - - -  

tile-part bitstream 

..... 

end of code-slream marker 

Fig. 8.2 Code-stream organization 
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header and it is an optional marker in tile-part header. Table 8.2 provides an 
overview of these marker segments. 

Table 8.2 Main Header Marker Segments 

The tile-part header as indicated in Figure 8.2 consists of segments 
known as tile-part header marker segments. Some of the markers are es- 
sentially presented and some may or may not be presented in the tile-part 
header. Table 8.3 provides an overview of these marker segments. 

8.3 FILE FORMAT FOR JPEG2000 PART 1: JP2 FORMAT 

As shown in Figure 8.2, from SOC (start-of-code-stream) to  EOC (end-of- 
code-stream), the code-stream of JPEG2000 is entirely self-contained. All the 
image components can be decompressed based on the syntax and code-stream 
rules discussed in the previous section. However, Annex I of the JPEG2000 
standard Part 1 [2] defines an optional file format, JP2 format, that can be 
used to  contain JPEG2000 compressed image data. For the purpose of file 
identification, the file extension “jp2” or “.JP2” should be used for traditional 
file systems. As on Macintosh file systems, the type code “jp2 ” should be 
used for JP2 files. 

The fundamental building block of the JP2 file format is called a box, 
which is used to  encapsulate the JPEG2000 code-stream or other pieces of 
information, such as image properties, intellectual property rights, vendor- 
specific information, and so forth. Figure 8.3 shows the definition of a box. 
A box may contain four fields. The first field, LBox, specifies the length of 
the box, which includes all the fields of the box and the value is stored as a 
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Table 8.3 Tile-Part Header Marker Segments 

Optional and no more than 

Optional and no more than 

32-bit big-endian unsigned integer. If a value 0 is specified in the LBox field, 
this box is the last box in the file. If a value 1 is specified in the LBox field, 
the actual length of the box is specified in the third optional field, XLBox, 
as a 64-bit big-endian unsigned integer. The second field, TBox, specifies the 
type of data stored in the last field, DBox. The size of the DBox field varies 
depending on the box type. 

32 bits 32 bits (64 bits) varies - 

Fig. 8.3 JP2 box definition 
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8.3.1 File Format Organization 

A JP2 file is organized as a contiguous sequence of boxes. Some boxes are 
required, and some of those boxes are optional as determined by the com- 
pressed file creator. Figure 8.4 shows a conceptual structure of a JP2 file with 
required boxes only. The JP2 Signature box should be the first box in the 
file and should be immediately followed by the Profile box. The JP2 Header 
box is a superbox that may contain other boxes, such as the Image Header 
box and Color Specification box. The Contiguous Code-stream box should 
not appear before the JP2 Header box. Other optional boxes may be found 
in a JP2 file without a particular order. However, all data should be in the 
box format: no other data should be found in a JP2 file. 

JP2 File 

JP2 Signature Box 

JP2 Header Box 

I Image Header Box I 
Color Specification Box 

Contiguous Code-stream Box 

Fig. 8.4 A JP2 file structurc with required boxes only 

8.3.2 JP2 Required Boxes 

In this section, we provide detailed descriptions of only the JP2 required 
boxes. The detailed descriptions of optional boxes can be found in Annex I 
of the JPEG2000 standard Part 1 [2] document. Table 8.4 shows the name 
and type of required JP2 boxes. Figure 8.5 shows the binary structure of the 
required boxes. The first 64 bits of each box contain two fields (LBox and 
TBox) based on the length and type of the box. The details are described as 
follows. 
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Name 
JP2 Signature box 
Profile box 
JP2 Header box 
Image Header box 
Color Specification box 
Contiguous Code-stream box 

Type (TBox field in the box) 
’jP\032\032’ (6A 50 1A 1A)h 
’prfl’ (70 72 66 6c)h 
’jp2h’ (6A 70 32 68)h 
’ihdr’ (69 68 64 72)h 
’colr’ (63 6F 6C 72)h 
’ip2c’ (6A 70 32 63)h 

Note: 
JP2 Header box is a superbox. 
\nnn represents the value of a single byte character, where the three digits (nnn) 
specify the octal value of the byte. 

JP2 Signature box: JP2 Signature box is the box that uniquely identifies 
the file as a JP2 file, and it  should be the first box in the file. This box 
should have a fixed-length of a 12-byte string, which should have the 
value: (00 00 00 OC 6A 50 1A 1A OD OA 87 0A)h. 

Profile box: The Profile box should immediately follow the JP2 Signature 
box. The type of this box, which is the TBox field, should be ’prfl’ = 
(70 72 66 6C)h, and the DBox field should contain the brand (BR) and 
N compatibility list (CLi, where 0 5 a 5 N - 1) information. Both the 
BR and CLi fields are encoded as a four byte string of ASCII characters. 
For a JP2 file, the BR must equal ‘jp2\040’ = (6A 70 32 20)h and must 
have at least one CLi with the value ‘jp2\040’. The number of CLi 
fields, N, is determined by the length of this box. 

JP2 Header box: The JP2 Header box is a superbox that contains several 
boxes. There should be an Image Header box and at  least one Color 
Specification box within the JP2 Header box. The type of the box is 
‘jp2h’ = (6A 70 32 68)h, and should appear after the JP2 Signature box 
but before the Contiguous Code-stream box. 

Image Header box: The Image Header box contains fixed-length (24 bytes) 
generic information about the image, such as height, width, and number 
of components. The type of the box should be ’ihdr’ = (69 68 64 72)h, 
and the DBox field is broken into eight subfields as described in Table 
8.5. 

Color Specification box: The Color Specification box specifies the color 
space to the entirely decompressed image components. The type of the 
box should be ’colr’ = (63 6F 6C 72)h, and the DBox field contains up 
to five fields as described in Table 8.6. 
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I l l  I l l  

I l l  I l l  
(00 00 00 OC)h (6A 50 1A 

I l l  
(OD OA 87 OA) 

I I I h  

I l l  I l l  I l l  
LBox (70 72 66 6C) (6A 70 32 20) 

I l l  I l l  I l l  

'jp2h' Image Header 
box 

I l l  

I l l  
CLO ... 

Color Specification 
box 

I l l  I l l  
Lnox (6A 70 32 68) 

I l l  I l l  
ihdr 

L - - -bMs2 - _ - I 

I l l  I l l  I I I l l  I l l  
(0000 00 18) (69 68 64 72) (01 00) NC HEIGHT WIDTH BPC 

'jp2c' 

C UnkC IPR 

Fig. 8.5 JP2 requircd boxes definition 

I l l  I l l  I I I l l  

Contiguous Code-stream box: This box contains a valid and complete 
JPEG2000 code-stream, and the type of the box is 'j2pc' = (6A 70 32 
63)h. 

I l l  

I l l  I l l  
LBox (63 6F 6C 72) 

I l l  I l l  
EnumCS I PROFILE 

.......................... _ J _ - L -  J _ _ t  : 
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Field Name Description Size (bytes) 
METH Specification method 1 

PREC Precedence 1 
APPROX Color space approximation 1 
EnumCs Enumerated color space 4 (METH=l)  

0 (METH=2)  
PROFILE ICC profile [3] varies 

Table 8.5 Format of the Contents of the Image Header Box 

Value 
1 - Enumerated 
2 - Restricted ICC profile 
0 
0 
0 - (2”2 - 1) 

nonexistent 
varies 

(16/17 for  aRGB/grayacale 141) 

8.4 EXAMPLE 

In this section, we provide an example of JPEG2000 compressed code-stream 
with JP2 format. The image used for this example is a 24-bit RGB (three- 
component) image with width and height equal to  40 x 30 = (28)h x (1E)h. 
As we can see, all six required boxes are present in the JP2 file and two optional 
boxes (Resolution box and Capture Resolution box) are also included just for 
reference. The JP2 box always starts with a 4-byte box length followed by a 
4-byte box type. For example, the Resolution box has 26 bytes as indicated 
by the first 4 bytes of the box in this example, followed by a 4-byte box type, 
’res ’ = (72 65 73 20)h. This box also is a superbox, which contains a Capture 
Resolution box with 18 bytes. The total length of this Resolution box is equal 
to  4 + 4 + 18 = 26 bytes. The zero box length of the Contiguous Code- 
stream box indicates that this box is the last box in the file. The (FF 4F)h 
marks the start of code-stream (SOC marker), and the (FF D9)h marks the 
end of the code-stream (EOC marker). There is only one tile-part of a tile 
in this compressed code-stream, as shown in the last byte of the SOT marker 
segment. The image size, 40 x 30 = (28)h x (lE)h,  can be found in either 
Image Header box or SIZ marker segment. 
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00 00 00 OC 
6A 50 1A 1A OD OA 87 OA 

=> JP2 Signature box (12 bytes) 

00 00 00 14 => Profile box (20 bytes) 
70 72 66 6C 6A 70 32 20 
00 00 00 00 6A 70 32 20 

00 00 00 47 
6A 70 32 68 

=> JP2 Header box (73 bytes) 

00 00 00 18 ==>> Image Header box (24 bytes) 
69 68 64 72 01 00 00 03 
00 00 00 1E 00 00 00 28 
07 07 00 00 

00 00 00 OF ==>> Color Specification box (15 bytes) 
63 6F 6C 72 01 00 00 00 00 00 10 

00 00 00 1A ==>> Resolution box (26 bytes) 
72 65 73 20 

00 00 00 12 ===>>> Capture Resolution box (18 bytes) 
72 65 73 63 00 48 00 FE 00 48 00 FE 04 04 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

00 00 00 00 
6A 70 32 63 

==> Contiguous Code-stream box (last box) 

FF 4F (SOC) ---> Start of Code-stream 

FF 51 (SIZ) 
00 2F 00 00 00 00 00 28 00 00 00 1E 00 00 00 00 
00 00 00 00 00 00 00 28 00 00 00 1E 00 00 00 00 
00 00 00 00 00 03 07 01 01 07 01 01 07 01 01 

FF 5C (QCD) 
00 OD 40 40 48 48 50 48 48 50 48 48 50 

FF 52 (COD) 
00 OC 00 00 00 01 01 03 04 04 00 01 
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FF 64 (CME) 
00 OC 00 01 41 56 4C 54 5F 31 31 34 

FF 90 (SOT) 
00 OA 00 00 00 00 09 49 00 01 

FF 93 (SOD) ---> S t a r t  of t i l e - p a r t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FF D 9  (EOC) ---> End of Code-stream 

8.5 SUMMARY 

In this chapter, we presented a brief summary of the JPEG2000 code-stream 
organization and the JP2 file format. The basic descriptions of markers, 
marker segments, and header and code-stream rules were introduced in this 
chapter. Also the concept of using box for the JP2 file format were reviewed 
in brief. We demonstrated a simple example to illuminate the code-stream 
organization syntax and the structure of a JP2 file. 
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VLSI Architectures for 
JPEG200O 

9.1 INTRODUCTION 

JPEG2000 [l, 21 is a very versatile image compression standard with multipur- 
pose capabilities and features achievable by a single unified system based on 
the salient features of the discrete wavelet transform and the scalable entropy 
encoding (bit-plane-wise) adopted in the standard. It not only offers superior 
compression performance, the scalable nature of the underlying algorithms 
of the JPEG2000 standard makes i t  perfectly suitable to  achieve resolution 
scalability and picture fidelity scalability features essential in today’s diverse 
imaging and multimedia applications. All these features in JPEG2000 stan- 
dard can be achieved through a single syntax definition of the code-stream 
organization of the compressed file. Although some of these properties can be 
attained by the JPEG standard, they cannot be attained by a single unified 
algorithm and a single syntax definition of the code-stream organization of the 
compressed file. We discussed the core algorithms for the JPEG2000 standard 
in Chapters 6-8. We also presented different features of the JPEG2000 stan- 
dard and their influence in the vast area of applications in this age of Internet 
and multimedia communication in Chapter 6. 

All the rich features of JPEG2000 are achieved at the expense of tremen- 
dous computational and memory cost for implementation of the underlying 
algorithms in JPEG2000, which makes it difficult for its potential applica- 
tion in many real-time imaging and multimedia applications. Computational 
analysis [3] shows that the computational requirement for JPEG2000 com- 
pression algorithm is more than 30 times as great compared to  the current 
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baseline JPEG encoder, and the computational requirement of the decoder is 
almost 10 times that of the baseline JPEG decoder when it is implemented 
in a highly optimized manner in a general-purpose computing platform. As a 
result, there is a tremendous need to develop high-performance architectures 
and special-purpose custom VLSI chips exploiting the underlying data par- 
allelism to speed up the DWT and entropy encoding phase of JPEG2000 to 
make it suitable for real-time applications. 

To our knowledge, only a handful of papers have been published in t.he 
literature with full description of an overall JPEG2000 architecture suitable 
for VLSI implementation. In this chapter, we present an architecture for 
overall implementation of the JPEG2000 encoder and decoder proposed by 
Andra, Chakrabarti, and Acharya [4, 51 in greater detail. We also present a 
summary of other works that have been published in the literature in relation 
to different components of JPEG2000, mainly EBCOT and MQ-coder. 

9.2 A JPEG2000 ARCHITECTURE FOR VLSI IMPLEMENTATION 

A global architecture for implementation of JPEG2000 encoder proposed by 
Andra, Chakrabarti, and Acharya [4, 51 is shown in Figure 9.1. Key compo- 
nents of the architecture are as follows. 

tile - 

Fig. 9.1 A top-level architecture for the JPEG2000 encoder. 

DWT computation module: We devoted a complete chapter (Chap- 
ter 5) on VLSI algorithms and architectures for computation of dis- 
crete wavelet transform (DWT). We discussed the methodologies of 
convolution-based architectures and lifting-based architectures in Chap- 
ter 5. In the context of the JPEG2000 standard, the lifting-based ar- 
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chitecture is more suitable compared to the convolution-based architec- 
ture because of the inherent features of lifting-based implementation of 
DWT, such as reduced number of computations both for (9 ,7)  and (5, 3) 
filter banks, in-place computation leading to reduced memory require- 
ments] scope of parallel processing, etc., as described in Chapter 4. 
The DWT computation module in Figure 9.1 computes the multilevel 
wavelet decomposition of the input image tile. In each level of decom- 
position, the DWT module produces four subbands (LL, HL, LH, and 
HH). The subband LL is input back to  the DWT modules for the next 
level of decomposition. The other three subbands are input to  the subse- 
quent phases of the architecture for entropy encoding. In Chapter 5, we 
have described the concept behind the architecture of the DWT module 
[5, 6, 7, 81 that has been adopted in this overall architecture for the 
JPEG2000 encoder. 

0 Data format  module  (DF): The data format modules first quan- 
tize each input sample in each subband by the quatization parameter 
supplied by a global controller module. For lossless compression, the 
quantization parameter is 1. Each quantized sample (integer) is repre- 
sented in a 16-bit word. After quanitation, each DF module converts 
the two’s complement representation of each quantized sample to sign- 
magnitude representation required by the EBCOT algorithm executed 
by the BPC modules. The DF module then decomposes the subband 
into a number of code-blocks and stores them in a special local mem- 
ory (SM). The data format module also determines the most significant 
bit-plane of each code-block. The most significant bit-plane is the first 
bit-plane that contains at least one 1 bit. 
There are three DF modules in the architecture. DF1 processes the 
samples from the HL subband, and DF2 and DF3 process the samples 
from the LH and HH subbands respectively and store the processed data 
into the special local subband memory (SM). 

0 Subband memory  module  (SM): A special subband memory mod- 
ule (SM) (51 has been used in this architecture such that the memory 
structure can handle word-in-bit-out format combined with the stripe 
structure in order to efficiently handle the input data by the BPC coder. 
The stripe structure for the bit-plane scan pattern has been described 
in Figure 7.1 in Chapter 7. Structure of the subband memory SM is 
depicted in Figure 9.2. There are 32 x 8 rows and each row is made 
of 64 bits. Each b& represents the bit value in row R and column C 

in the p th  bit-plane of the code-block. In this structure, each column 
(stripe) of the scan pattern is grouped together and each row consists of 
16 such columns. Hence 32 columns (each four-row stripe) are stored in 
two consecutive rows in SM. In this fashion, a 32 x 32 size code-block 
is represented by 128 rows each with 64 bits in the subband memory 
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module. The concept can be extended to  any size of code-block. A 
code-block of size M x N can be represented by x N rows each with 
64 bits. 

Fig. 9.2 
the bit a t  location ( R ,  C) in the pth bit-plane of the code-block. 

Structure of the subband memory for a 32 x 32 code-block; bL,C represcnts 

Bit-plane coder (BPC) module: Each BPC module essentially exe- 
cutes the EBCOT algorithm. The EBCOT algorithm has been described 
in Chapter 7. The input to  the BPC module is read from the SM module, 
which consists of both the sign bit and the bit-planes of the code-block. 
Output of the BPC module is a sequence of 5-bit context and 1-bit data 
pair (CD, D) temporarily stored in an internal buffer (CXD) before they 
are encoded by the QM-coder (BAC) in the subsequent pipeline stage 
of the architecture. In this JPEG2000 encoder architecture, three BPC 
modules are engaged to encode the code-blocks from the three subbands 
HL, LH, and HH as shown in Figure 9.1. However, multiple BPC mod- 
ules can be engaged to process multiple code-blocks from each subband 
to exploit the data parallelism because the encodings of the code-blocks 
are independent from each other and hence speed up the architecture at 
the cost of additional hardware resources. We describe the logic behind 
each BPC module in greater detail in Section 9.3. 

Context and Data (CXD) module: The CXD buffer is a FIFO 
with a read port and a write port so that the BPC module can write 
the 6-bit data (5 bits for context and 1 bit for data) in the FIFO and 
BAC can read the 6-bit data from the FIFO in parallel. The size of the 
FIFO should be large enough in order to manage the speed difference 
between the BPC and BAC in the pipeline. The control circuit (global 
controller) manages the pointers of the FIFO for both the read and write 
operations. 
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0 Binary arithmetic coding (BAC) module: Each BAC module ex- 
ecutes the MQ-encoding scheme to encode the data bit of the context- 
data pair read from the CXD FIFO. The MQ-encoding algorithm and 
its implementation has been described in Chapter 7. An architecture 
for the MQ-coder is presented later in Section 9.4. 

0 Global controller: The global controller generates all the necessary 
control signals to  enable all the modules in the architecture including 
loading the image tiles, reading and writing the subband memory, con- 
trolling the pointers to  access the CXD FIFO, generating the control 
signals for the BPC and BAC encoders, and loading the Q-table for the 
BAC module. It is also used to handle the rate-control and generation 
of the final code-stream and the header of the compressed file. The Tag 
Tree coding and organization of the compressed code can be done by 
either a local microcontroller available in the chip or the host processor 
controlling the chip. 

9.3 VLSl ARCHITECTURES FOR EBCOT 

The block diagram of the VLSI architecture for the EBCOT encoder developed 
by Andra, Chakrabarti, and Acharya (4 ,5 ,9]  is shown in Figure 9.3. Following 
are the key building blocks of this architecture. 

index J lYW 

X l  

memory read and wnle  upnals 

fig. 9.3 VLSI architecture for the EBCOT encoder. 
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100 
101 
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1. Three separate blocks of combinational logic circuits generate the con- 
text and data pairs (cz, d )  for the ZC, MRC, and SC operations. Details 
of their logic of operations are further discussed in Section 9.3.1. 

2. Five different special-purpose shift registers (a-reg, 17-reg, a’-reg, v-reg, 
and X-reg) process the state variables a, q, a’, u, and x as described in 
the EBCOT algorithm. The sizes of shift registers t o  hold a, q, a’, v, 
and x state variables are 15, 8, 8, 4, and 12 bits respectively, as shown in 
Figure 9.3. The working principles of these registers are further details 
in Section 9.3.2. 

3. The local memory modules a MEM, 17 MEM, and Q’ MEM, each of size 
32 x 4 bits, are used to load and store the three state variables 0, 7 ,  and 
a’ respectively. These three memories are updated in every pass by the 
corresponding Q, 7 ,  a’ registers. The magnitude (v) and sign (x) bits 
are read from the subband memory (SM) bit-plane by bit-plane. All the 
memories have a single read and write port as shown in Figure 9.3. 

4. The context and data multiplexer selects the right context (cx) and the 
corresponding data bit ( d )  generated by the ZC, MRC, and SC logic 
circuits and also the RLC logic, which is hard-coded. The possible 
context values from the RLC logic output are either 17 or 18 as explained 
in Chapter 7. The data bit ( d )  is chosen from the v, sign data x, hard 
coded RLC data bits ( O , l ) ,  or the zero-index ZI(MSB, LSB) bits (00-11, 
because the run-length could be 0, 1, 2, or 3). The multiplexer (mux) 
is controlled by a 3-bit control signal (cntrl,,). Based on the particular 
coding pass (CUP, SPP, MRP) executed, the controller generates the 
control signals cntrl,,. The contexts and data for different cntrl,, are 
shown in Figure 9.4. 

17 0 
17 1 
18 ZI[MSB] 
18 ZI[LSB] 

I cntrl,, I Context 1 Data I 
010 sign bit 
011 MC 

5 .  The controller is basically a state-machine that generates control signals 
to control the sh$ registers (a-reg, 17-reg, a’-reg, v-reg, and X-reg) and 
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the context and data multiplexer (mux). The controller generates the 
read and write signals for the local memory modules a-MEM, Q-MEM, 
a'-MEM. The controller also generates the control signal to  control the 
counter that keeps track of the number of stripes processed and also the 
particular coding pass being executed. Further details of the function 
of the controller is presented in Section 9.3.3. 

9.3.1 Combinational Logic Blocks 

Tables 7.1 - 7.6 in Chapter 7 provide the basis of generation of 5-bit context 
(CX) for each of the coding operations. These contexts can be generated by 
combinational logic circuits for each of the coding operations as originally 
explained in [9, lo]. We presented a simplified form of the logic functions 
suitable to  develop these combinational logic circuits below. 

Zero coding (ZC) context block: The ZC context block generates 
the relevant contexts (as presented in Tables 7.1 - 7.3) based on the 
status of the significance states of the eight neighbors (a.00, 001, ( ~ 0 2 ,  

a10, 012, azo,az1, andazz) of the current bit position X as shown in 
Figure 9.5. 

Fig. 9.5 Neighborhood for zero coding context generation. 

We present here the logic functions for generation of the 5-bit context 
cx[4 : 01 by zero coding the LL and LH subbands. The same method- 
ology is applied to  generate the contexts for the HL and HH subbands 
as well. The logic functions for the bit cz( i ) ,  for i = 0 to  4 ,  of context 
cx[4 : 01 are as follows. The output data bit from the ZC context block 
is the magnitude bit at position X, 
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where + is the logical OR operation, A is the logical AND operation, 
and Z represents the NOT of a logic variable z and 

H = 010 + 012 

v = 001 + g-21 

D = 0 0 0  + no2 + 020  + 0 2 2  

ph = 010 A Ti2 + 8 1 0  A 0 1 2  

f', = 001 A 8 2 1  + 8 0 1  A 0 2 1  

p d  = 000 A 0 0 2  + 0 2 0  A 0 2 2  (000 0 0 2 )  A (020  f 0 2 2 ) .  

0 Sign coding (SC) context block: As explained in Section 7.3.1 in 
Chapter 7, context and data are determined by a horizontal reference 
value H (also called contribution of the horizontal neighbors) and a 
vertical reference value V (contribution of the vertical neighbors) by the 
sign coding algorithm. The context table for the sign coding is shown 
in Table 7.4. Let us assume that contributions of 0, +1 and -1 by the 
horizontal and vertical neighbors are expressed as hco, hc+l,  hc-1 and 
WCO, wc+1, wc-1 respectively. The contributions can be computed based 
on the status of the significance states of the horizontal neighbors (ale, 
012) and vertical neighbors (001, 0 2 ~ )  and the corresponding sign states 
(xlo, ~ 1 2 ,  xol, ~ 2 1 )  from the x memory block, using the following logic 
equations. 

and 

hc+l = 010 A 0 1 2  A A + 510 A 012 A + 010 A 8 1 2  A Xi0 

he-i =a10 A 5 2  A Xi0 A X i 2  + 810 A 012 A X i 2  + 010 A 8 1 2  A Xi0 
hco = hc+i A hc-1. 

Accordingly the logic functions for the context bits cz(i) ,  for i = 0 to  
4, based on the above values are as follows. 

0 Magnitude refinement coding (MRC) context block: The con- 
text table for magnitude refinement coding is shown in Table 7.5. The 
inputs to  the MRC context block are dm,n (value 1 indicates that it 
is not the first magnitude refinement for the current element) and the 
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2 
3 
4 

significance status of the eight neighbors (000 ,  001, 0 0 2 ,  010, 0 1 2 ,  0 2 0 ,  

021 ,  0 2 2 )  of the bit being encoded. Accordingly the logic functions for 
the context bits cz( i ) ,  for i = 0 to 4, are as follows. 

1 5  9 
6 10 
7 11 
8 12 

4 4 )  = O/m,n 

4 3 )  = O’m,n 

cz(2) = O/m,n  

cz( 1) = &,, 

- 
- 

cz(0) = 7m,n A nh00d0. 

0 Run-length coding (RLC) contexts: There are two possible con- 
texts in RLC. It is executed at the beginning of each stripe only when 
the RLC condition is satisfied (i.e., significance status of all the neigh- 
bors of all the four bits in the stripe are all 0’s). The detailed coding 
mechanism was discussed in Chapter 7. In [5, lo],  the RLC context 
generation methodology is hard-coded. 

0 0 Register: Register 0 contains 3 stripes each time from the a-MEM 
The stripes from Figure 9.6 in vertical causal mode have memory. 

9.3.2 Functionality of the Registers 

There are five different special-purpose shift registers (0-reg, 77-reg, 0’-reg, w- 
reg, and X-reg) of varying sizes to process the state variables (T, 77, d ,  w,  and x 
as described in the EBCOT algorithm (see Figure 9.3). All these registers are 
capable of l-bit left shift. For initialization and run-length coding, register 
(T is also capable of 5-bit left shift and the x register is also capable of 4-bit 
left shift. The 0, q ,  and 0’ registers have an “update” position where a 1 is 
written to  set the corresponding state variable when applicable. Data from 
the relevant memory are written into 4 least significant bit positions in the 
registers. But data can be read from different positions of the registers and 
written into the memory. The registers are read and written at the end of 
coding of each stripe. 

In Figure 9.6, we show the coding order of a 4 x 3 code-block as an example. 
Let us assume that the bit in position 5 is being currently coded to  explain 
the functionality of the registers below. 
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been mapped in the o register in a particular fashion as shown in Fig- 
ure 9.7(a). The 0’s preceding 1, 5, and 9 indicate that they represent 
bits outside the boundary (the last row in the previous scan) and their 
values are assumed to  be all 0’s. When bit position 5 is encoded, these 
three 0’s along with 1, 2, 6, 10, and 9 form the 8 neighbors as shown in 
Figure 9.7(a). 

To memory 0 From memorye7 
1 1 2 1 3 1 4 1 5 1 6 1 7 1 8  

Update q/u’ 

Fig. 9.7 (a) D rcgistcr, (b) 77 (also D’) register, (c) x register. 

During initialization, the register is reset and the first stripe is loaded 
from o-MEM and shifted by 5 bits and then the same is repeated with 
the second and third stripes. This results in proper data alignment. For 
termination, no data are read while coding the last stripe. The ‘hpdate” 
bit is set during the shift to  change the CT of a particular bit. There are 
two zero detectors connected to the output of the o register. The first 
zero detector detects whether u of the 8 neighbors are all 0’s in order 
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to determine whether a bit is coded in SPP (indicated by the “nhoodO” 
signal in Figure 9.3). The second zero detector detects whether CJ of all 
the elements in all 3 stripes are all 0’s in order to  indicate that the RLC 
condition is satisfied (the RLCX signal in Figure 9.3). When the RLC 
condition is satisfied in CUP and the stripe consists of all Ok, then no 
further coding is required and the data are shifted left by 5 bits. 

0 d and 17 Registers: Registers CJ’ and 77 are identical and shown in Fig- 
ure 9.7(b). The data from the v-MEM (or d-MEM) memory are written 
to  the 4 least significant bit positions 8, 7, 6, 5 ,  as shown in Figure 9.7(b) 
and the updated data are read from the 4 most significant bit positions 
to write back to  q-MEM (or d-MEM) memory. The “update” position 
is the bit position 4 shown in Figure 9.7(b). 

0 x Register: The x register has 12 bits as shown in Figure 9.7(c). It is 
loaded with 4 bits at a time for each stripe from the subband memory 
SM (x) as shown in Figure 9.3 and shifted by 4 bits left in order to load 
the next stripe and continue to fill up 1 2  bit positions for three stripes. 
The data arrangement and the boundary conditions for the x register are 
similar to  the CJ register. But when a neighbor is insignificant, the sign of 
the neighbor does not play a role in forming the context. This property 
helps to  have 12 bits, unlike the special arrangement required in the 0 
register. The function of x register during initialization, termination, 
and RLC coding is the same as for the CJ register except the data are 
shifted by 4 bits instead of the 5-bit shift needed in the CJ register. 

0 w Register: This is a simple 4-bit register without any special func- 
tionalities. A zero detector is attached to  the output to  generate the 
“AllUs” signal, which helps to  determine what path the RLC primitive 
takes in the CUP. Also a 4-bit to 2-bit encoder is present to  generate 
the ZI (zero-index) of the position of the first 1 bit in the stripe (with 
first position encoded as 00 and fourth position encoded as 11) for the 
RLC. 

9.3.3 

The control signals in the EBCOT architecture are generated by a state ma- 
chine comprising of 24 states [9, lo].  The state machine is divided into five 
phases: initialization phase, ZC and SC control phase, MRC control phase, 
RLC control phase, and termination phase, as discussed below. 

0 Initialization Phase: The initialization phase is enabled at  the begin- 
ning of encoding each bit-plane. State transitions of the initialization 
phase are depicted in Figure 9.8. During this phase it sets the pointers 
to load the DWT coefficients of the code-blocks to the subband memory 
SM (w and x) at  state 0 if the first bit-plane is encoded. All the regis- 
ters and memory address pointers are reset a t  state 1. The first stripe 

Control Mechanism for the EBCOT Architecture 
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I ,  

is loaded into the a and x registers in state 2 from the a-MEM and 
subband memory SM (x). However, the a memory is not accessed in 
the first bit-plane because none of the bit positions are significant yet. 
The a register is shifted left by 5 bits and the x register is shifted left by 
4 bits in state 3 (indicated by Ishift in Figure 9.8) in order to align the 
data as described in the functionalities of these registers in the previous 
section. Based on the coding pass indicated by the counter, the state 
machine goes either to state 4 for significance propagation pass (SPP), 
state 12 for magnitude refinement pass (MRP),  or state 16 for cleanup 
pass (CUP). 

Fill the u and x MEMs 
from the Ext. MEM P 

Fig. 9.8 Initial phase for the EBCOT encoder. 

ZC and SC control phase: State transitions of the ZC and SC control 
phase are shown in Figure 9.9. The a, x, and v registers are loaded from 
the a-MEM, X-MEM, and subband memory SM (v) in state 4 as shown 
in the state transition diagram in Figure 9.9. If either the coding pass 
is SPP and a = 0 and nhoodO # 0 (i.e., at least one a of the eight 
neighbors is l ) ,  or the coding pass is CUP and = 0 and 77 = 0, or 
the RLC condition is satisfied and at  least one bit in the stripe is 1 
(i.e.) RLC-cb = l), then it generates the control signal cntrl,, = 001 in 
state 6 in order to output the corresponding ZC context and data (v) 
as listed in the control signal table in Figure 9.4; otherwise it goes to  
state 5 without any coding. If the SPP condition is satisfied and the bit 
becomes significant (i.e., v = l), then the control signal c o n t ~ 1 , ~  = 010 
is generated in state 7 in order to  output the SC contest and the sign 
bit of the element in the current bit position as indicated in the table 
in Figure 9.4 and a and 77 are set in state 9. If v = 0, then only 77 is 
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set in state 8. In either of these states (5 ,  8, 9),  the registers are shifted 
left by 1 bit and the counter is incremented. The counter keeps track 
of the coding position in the stripe (end-of-row signal). If the counter 
indicates end-of-row, it goes to  state 10 to  begin the termination phase; 
otherwise the coding continues in either state 6 or state 5 depending 
on the status of the coding pass and the state variables as shown in 
Figure 9.9. 

cntrl-u=001 0 
I bit = 1 

Shinreg, @ 
count-up 

If pass = SPP 
o =Oand 
nhoodO /= 0 

Fig. 9.9 ZC and SC phase. 

0 MRC control phase: The state transition diagram for the MRC con- 
trol phase is shown in Figure 9.10. This phase is executed during the 
magnitude refinement pass (MRP). In state 12 of this phase, the u, q ,  
u’, and v registers are loaded from the u MEM, q MEM, u’ MEM, and v 
SM. If CJ = 1 and q = 0 (MRP condition), then the control signal cntr1,x 
= 011 in state 14 in order to  output the corresponding MC context and 
output data bit (v) as listed in table in Figure 9.4 and the u’ is set in 
subsequent state 15; otherwise it goes to state 5 without generating any 
output or encoding the data. In either state (5  or 15) ,  the registers are 
shifted and the counter is incremented. If the counter indicates end-of- 
row, it  goes to state 10 to  begin the termination phase; otherwise the 
coding continues in either state 14 or state 5 depending on the status of 
the coding pass and the state variables as shown in Figure 9.10. 

0 RLC control phase: State transition of the RLC control phase is 
shown in Figure 9.11. This phase is executed during the cleanup pass 
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a = l a n d  

q = o  i 

f 
Shirt registers, 

count-up 

end of row = 0 c end of row = 1 

f ig .  9.10 MRC phase. 

(CUP) and only when the first bit of the stripe is encoded. In state 16, 
the o, 7 ,  x, and v registers are loaded from o MEM, 7 MEM, SM x, and 
v respectively. If (T = 1 or q = 1 for the first bit in the stripe, it goes 
to  state 5 without encoding the bit. If (T = 0 and 77 = 0 for the first bit 
in the stripe, then the RLC condition is checked. If the RLC condition 
is not satisfied then it goes to  state 6 to execute the ZC phase. If the 
RLC condition is satisfied and all the bits in the stripe are 0’s (indicated 
by AllOs = l) ,  then it goes to  state 17 and generates the control signal 
cntrlcx = 100 in order to  output context = 17 and data = 0 as suggested 
in the control signal table in Figure 9.4. It then shifts the o register by 
5 bits and the x register by 4 bits as indicated by the Ishifl operation in 
Figure 9.11 and goes to  state 11 in the termination phase. On the other 
hand if there is a 1 in the stripe (i.e., AllOs = 0), then it goes to state 18 
and generates the control signal cntrl,, = 101 in order to  output context 
= 17 and data = 1 and then goes to  state 19. In state 19, it generates 
the control signal cntrl,, = 110 in order to  output context = 18 and the 
first bit of the 2-bit zero-index (MSB[ZI]) and then goes to state 20. In 
state 20, i t  generates the control signal cntrlo = 111 in order to output 
context = 18 and the other bit of the zero-index (LSB[ZI]) and sets the 
RLC-cb signal to 1. RLC-cb = 1 indicates that ZC and SC are applied 
on the rest of the bits in the stripe. Based on the value of the 2-bit 
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zero-index (ZI), the registers are shifted and the counter is incremented 
as shown in Figure 9.11, and then it goes to  state 7 for execution of the 
SC phase. 

RLC-c = 0 

Shlft registers 
count-up 

AllOx = I 

cntr-cx = 100 
Ishifr 0, X 
count-coi-up 

cntr-cx = I10 

cnt-cx = I I I 
RLC-cb = 1 h 
00 01 10 11 

Fig. 9.11 RLC phase. 

Termination phase: The state transition diagram for the termination 
phase is depicted in Figure 9.12. When the counter indicates the end-of- 
row signal at the end of each stripe, the termination phase is computed. 
The 0 register is shifted left by 1 bit in state 10. In state 11, the RLC-cb 
signal is set to  0. In state 11, the data in the registers are written back 
the appropriate memory depending on the coding pass. If coding pass 
is SPP, the contents from register 0 and register 77 are written back to  
0 MEM and 77 MEM. On the other hand, content of the register c’ is 
written back to  0’ MEM if the coding pass is a MRP, whereas content 
of the register 0 is written back to  (T MEM if the coding pass is CUP. 
The state machine goes to state stop (we may consider it state 13) after 
completion of encoding the last bit-plane of the code-block. If it is the 
end of a block but not the last bit-plane, the state machine goes to  state 
0 if the current pass is CUP and goes to  state 1 otherwise (MRP or 
SPP) in order to start the next coding pass in the current bit-plane. If 
end of the block is not reached, the state machine goes to  either state 4 
if current coding pass is SPP or state 12 if current coding pass is MRP 
or state 16 if current coding pass is CUP as shown in Figure 9.12. 
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@ shift d reg 

RLC-cb = 0; write (0, q)if pass = SPP 
write (0 ’) if pass = MRP 
write (0) if pass = cup 

end of block = 1 
bp = 0 

NS = 4 if pass = SPP, 
12 if pass = MRP, 
16 if pass = CUP 

pass = CUP 

b 

Fig. 9.12 Termination phase of the EBCOT encoder 

9.4 VLSl ARCHITECTURE FOR BINARY ARITHMETIC CODING: 
MQ-CODER 

The block diagram of the VLSI architecture proposed by Andra, Chakrabarti, 
and Acharya [4,5] is shown in Figure 9.13. The MQ-coder algorithm described 
in Section 7.3.3 in Chapter 7 has been directly mapped into this architecture. 
The key building blocks of this architecture are as follows. 

0 Update logic: The update logic has two components:(l) an informa- 
tion table ( i n f o  table) ,  and ( 2 )  a combinational logic circuit. 

- The info table essentially consists of 19 entries for all the possible 
contexts (0 - 18) generated by the EBCOT encoder during the bit- 
plane coding. Each entry consists of the MPS (1 bit) and an index 
(6 bits) to the Q-table representing the probability estimation of 
the MPS symbol. The info table is initialized with the 19 initial 
index values corresponding to  the 19 different contexts shown in 
Table 7.6 in Chapter 7. The input to  the info table is a 5-bit 
context (CX) and the output is the Q-index to  address the Q-table 



VLSl ARCHITECTURE FOR BINARY ARITHMETIC CODING: MQ-CODER 243 

memory read and write signals 

ii Q index(() 

I I I I I  
I 24 ACk I - -  I I I  I I 

I I I I  I I 

-- - I C rer(32) I I I “‘La ‘ I ’  
I I I I I  I 

f ig.  9.13 MQ-encoder architecture, 

in order t o  read the precomputed probability estimation (qe)  from 
the Q-table. 

- The combinational logic circuit in the update logic module is en- 
gaged to  update the Info table by generating the new Q-index based 
on the present Q-index, sense of MPS, and the input symbol (1 bit 
data output by EBCOT). If a renormalization step is executed 
during either the MPS or LPS coding, the info table is updated 
with the new Q-index and the MPS sense based on the principle 
described in Chapter 7. 

0 Registers: 

- Register A :  Value of the interval at point of coding is actually 
contained in register A .  This is a 16-bit shift register capable of 
shifting left by 1 bit. The most significant bit A[15] of register A 
is used by the controller to  determine whether the renormalization 
step needs to  be performed. When the adder performs the subtract 
operations during LPS or MPC coding, it stores the results A - qe 
back to  register A (see “CodeLPS()” and “CodeMPS()” in the 
MQ-coder algorithm in Chapter 7). 

- Register C: This is a 32-bit shift register representing the code 
at  any point of coding. The register is capable of shifting left by 
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1 bit. When the adder performs the addition operation, it stores 
the result C + qe back to the C register (see “CodeLPS()” and 
“CodeMPS()” in the MQ-coder algorithm in Chapter 7). The 28th 
bit of the C register (C[27]) is used by the controller to  determine 
whether a carry needs to  be added to the B register as shown in 
the “ByteOut()” routine in the MQ-coder section in Chapter 7. 

- R e g i s t e r  B :  This is a special-purpose 8-bit register. The com- 
pressed bitstream is actually output from the B register as shown 
in the ‘Byteout()’ routine in the MQ-coder algorithm. There is a 
detector built with this register to determine whether all the bits 
of the register are 1’s. If all the bits of the B register are 1, then 
the bit-stuffing operation is initiated by the controller. 

- Reg i s t e r  Q:  This is just a 16-bit register to hold the probability 
estimation qe obtained by accessing the Q-table based on the Q- 
index supplied by the update logic circuitry from the info table.  

0 Adder: The adder computes the basic arithmetic steps of the MQ- 
coder algorithm. It is capable of addition (C+qe), subtraction ( A  - q e ) ,  
and comparison (A - qe < q e )  required in the MQ-coder algorithm. 
Since size of the registers C, A, and Q are 32 bits, 16 bits, and 16 bits 
respectively, the adder needs to  be capable of computing 32-bit integer 
arithmetic operations. 

Control circuit: The control circuit generates control signals for all the 
registers and the tables. I t  is nothing but a state machine to  generate 
the control signals during execution of the MQ-coder algorithm. The 
working principle of the state machine is similar to  the controller in the 
EBCOT architecture. We avoid detailed discussion of the state machine 
here. The counter inputs the control circuit to  control the B register to 
output the compressed bitstream. The counter is initialized by 12. As 
soon as the counter becomes 0 during the encoding process, the content 
of register B is output as the compressed bitstream and a new byte of 
data is loaded to B from register C. 

0 Q-table: The Q-table consists of 47 entries of Qe values as shown in 
Table 7.7. The Q-table is addressed by the 6-bit Q-index. Depending on 
the Q-index, the corresponding Qe entry (probability estimation value 
ye) is read from the table and loaded into the 16-bit register Q, which 
is used by the adder to  add it with C or subtract from A as shown in 
the “CodeLPS()” or “CodeMPS()” routines. 
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9.5 DECODER ARCHITECTURE FOR JPEG2000 

The tope-level architecture for the JPEG2000 decoder is shown in Figure 9.14. 
The architecture is similar to the encoder architecture shown in Figure 9.1 
with data flow in the reverse direction. 

Fig. 9.14 A top-level architecture for the JPEG2000 decoder 

The bitstream parsing module parses the compressed file to generate the 
code-stream. The code-stream is decoded by the three MQ-decoders (BAC1, 
BAC2, BAC3) in order to generate the context and data pairs corresponding 
to  each subband. The MQ-decoder architecture is very similar to the encoder 
architecture with few minor changes. The code byte in the MQ-decoder is 
loaded into the B register and the decoder decodes it using the MQ-decoding 
algorithm. The basics of the modules of the decoder are functionally similar 
to  the encoder. After the context and data are generated by the MQ-decoder, 
they are stored in the CXD buffers (CXD bufferl, CXD buffer2, and CXD 
buffer3). The EBCOT decoders decodes the context and data to  generate the 
bit-planes of the code-blocks. The EBCOT decoder algorithm is essentially 
the same as the encoder algorithm with small and obvious changes in w and 
x memories and registers. For example, in the EBCOT decoder the data 
from w (value) and x (sign) are written into the subband memory instead 
of reading from it. We leave the details of the EBCOT architecture as an 
exercise for the reader. The data formatter circuits (DF1, DF2 and DF3) 
convert these sign-magnitude values of the code-blocks into two’s complement 
representation in order to  be used by the inverse discrete wavelet transform 
(IDWT) architecture. The IDWT architecture generates the image tiles. 
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9.6 SUMMARY OF OTHER ARCHITECTURES FOR JPEG2000 

There are only a few other papers published in the literature discussing the 
VLSI architectures for the critical components in the JPEG2000 encoder and 
decoder, as of writing this book. The JPEG2000 algorithm is very intensive 
both in computation and in memory requirements. I t  is evident from the dis- 
cussions in previous sections that the entropy encoding part of the JPEG2000 
algorithm consumes a significant portion (more than 50%) of the total clock 
cycles required to  compress an image. The bit-plane coding (EBCOT) con- 
sumes the highest computation time because of bit-wise processing in every 
bit-plane of the code-blocks. In EBCOT processing, an N-bit element in a 
code-block is converted into N individual samples of 1 bit to  be encoded. The 
memory organization of these bit-planes and access of the bits becomes very 
tricky in software implementation in a general-purpose computer or a digital 
signal processor (DSP) type media architecture. Special-purpose memory and 
register architectures have been proposed by Andra, Acharya and Chakrabarti 
[9, 51 in order to efficiently access the bit-planes of the code-blocks and en- 
code each bit in each bit-plane. We have discussed this architecture in greater 
detail in previous sections in this chapter. 

Because of the bit-wise processing inherent in the EBCOT algorithm and 
the MQ-coder, the entropy encoding part of the JPEG2000 standard is very 
difficult to be optimized on a general-purpose computing platform or media 
processor. As a result, special-purpose custom VLSI architecture is partic- 
ularly suitable for optimization of the entropy encoder for JPEG2000 im- 
plementation. Most of the architectures in the literature have focused on 
designing the EBCOT architecture to reduce the number of clock cycles and 
on-chip memory requirements [11, 12, 13, 141. We summarize the features of 
these architectures below. 

9.6.1 Pass-Parallel Architecture for EBCOT 

Chiang, Lin, and Hsieh [ll] proposed a novel architecture for implementation 
of EBCOT in which the three coding passes of bit-plane coding process are 
merged into a single pass in order to improve overall systems performance. In 
this architecture, the authors proposed an efficient pass-parallel context mod- 
eling scheme in order to reduce the number of memory-access and clock-cycle 
requirements to  implement EBCOT in hardware. The pass-parallel context 
modeling scheme processes the three coding passes of the same bit-plane in 
parallel by modifying the original bit-plane coding algorithm in a clever way 
by introducing two significance state variables g o  and ~1 rather than single 
significance state variable 0 in the original EBCOT algorithm. 

In this algorithm, the coding operation in cleanup pass (CUP) is delayed 
by one stripe from the other two coding passes: significance propagation pass 
(SPP) and magnitude refinement pass (MRP). In the pass-parallel coding 
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process, one of the two significance state variables ao[m,n] and al[m,n] at 
location [m, n] is toggled to  1 while this sample becomes significant in SPP and 
CUP respectively. Both the significant state variables are set to  1 immediately 
after the first magnitude refinement coding (MRC) is applied for this sample. 
Also the task of the magnitude refinement state variable a’ is replaced by 
XOR (Exclusive OR) operation of the (TO and 01 

d [ m ,  n] = ao[m, n] @ 01 [m, n] (9.1) 

where @ is the XOR operation. As a result, the on-chip memory requirement 
doesn’t increase because of introduction of two significance state variables. 
The correct significant states of the samples within the context window are 
computed as follows. 

For samples belonging to  SPP, the significance state of a visited sample 
at location [m, n] is equal to ao[rn,n] and the significance state of the 
sample that has not been visited is 

anot = n o  [m, .I v a1 [m, .I (9.2) 

where V is the binary OR operation. 

For samples belonging to the magnitude refinement pass (MRP), the 
significance state of the visited sample at location [m, n] is equal to 
a ~ ( m , n ] .  The significance state of the sample at  location [m, n] that 
has not been visited is determined by 

anot = ao[m, 4 v a1 [m, 4 v vP[m, .I (9.3) 

where vP[m, n] is the magnitude of the data bit a t  location [m, n] in pth 
bit-plane of the code-block to  be encoded. This is possible because a 
sample at location [m, n] becomes significant if and only if its magnitude 
bit wP[m,n] is 1 for the first time. 

For samples belonging to the cleanup pass (CUP), the significance states 
of all neighbors are determined by Eq. 9.2. 

Because of the pass-parallel context modeling, one MQ-coder module can 
be used in the JPEG2000 encoder architecture instead of three by switching 
the right context and data bits into the MQ-coder module [ll]. Based on 
this pass-parallel coding of the bit-planes and single-pass switching arithmetic 
encoder, overall systems performance of a JPEG2000 architecture in terms of 
computation time can be improved by more than 25% [ll]. 

9.6.2 Memory-Saving Architecture for EBCOT 

Hsiao, Lin, Lee, and Jen [12] proposed an efficient high-speed memory savings 
architecture for implementation of the embedded bit-plane coding to  improve 
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the overall systems performance of a JPEG2000 encoder. In this architec- 
ture, mainly three speedup strategies have been applied in order to  accelerate 
the context formation module in the EBCOT engine. They are pixel skip- 
ping, magnitude refinement parallelization, and group-of-columns skipping. 
Based on these speedup strategies, the on-chip memory for implementation of 
EBCOT can be reduced by approximately 20% [12]. 

The renormalizat ion step in the MQ-coder has been enhanced in the code- 
string register to improve the clock rate of the MQ-coder implementation in 
[12]. Adopting these speedup strategies for both bit-plane coding and the MQ- 
coder, overall systems performance of the JPEG2000 encoder can be enhanced 
by reducing the clock cycles and memory requirements. 

9.6.3 Computationally Efficient EBCOT Architecture by Skipping 

Lian, Chen, Chen, and Chen [14] recently proposed a very efficient hardware 
architecture for implementation of the EBCOT algorithm. Because of the 
characteristics of the fractional bit-plane coding by the EBCOT algorithm, 
distribution of the number of bits coded in three coding passes in EBCOT 
vary greatly from bit-plane to bit-plane. In the most significant bit-plane 
of the coding blocks all the samples are insignificant and only the cleanup 
pass(CUP) is executed. In the lower significant bit-planes, more and more bits 
are process by the the magni tude  ref inement  pass  (MRP), whereas the number 
of bits processed by CUP keeps on decreasing. The number of bits encoded 
by the significant propagation pass  (SPP) increases a t  the beginning in first 
few bit-planes and then it decreases in lower significant bit-planes because 
the number of samples became significant in the previous bit-planes keeps 
on growing and the samples are encoded by the MRP in the following bit- 
planes. This skewed nature of distribution of the number of samples encoded 
in each coding pass has been exploited to develop an efficient architecture. 
As a result, experimentally it has been shown that sometimes it even reduces 
the number of clock cycles by almost 60% compared to the straightforward 
implementation of the EBCOT architecture. 

In this architecture, the clocking requirements are reduced by applying two 
speedup techniques called simple-skipping (SS) and group-of-columns skipping 
(GOCS) to generate the context information. The basic principle of both the 
methods is to  skip the samples not belonging to  a particular coding pass in 
order to avoid any computation. In each coding pass, it identifies the need- 
to-be-coded (NBC) samples so that the bits can be simply skipped. In the SS 
method only n cycles are spent to encode the NBC bits if there are only n 
NBC samples in a stripe. Since each stripe contains 4 samples, 4 - n clock 
cycles can be saved by skipping 4 - n bits which are not NBC. If a stripe does 
not contain any NBC, only one clock cycle is spent to check the condition 
only. The GOCS method is to  skip a group of columns all together, if there 
are no NBC samples in the group of stripes (columns). The GOCS method 
can be applied in both MRP and CUP. The number of NBC samples in each 
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group are marked in the SPP. There is a special memory in the architecture 
called the GOC memory to indicate the status of the samples in the group 
of stripes. The best number of columns in a group has been found to be 8 
based on experimentation to  study the performance of the GOCS method. If 
a group of stripes contains no NBC samples, the GOC memory is marked by 
a bit 0, otherwise it is marked by 1. While coding in MRP and CUP, the 
contents of the GOCS memory are checked. If the value is 0 for the currently 
coding GOC, all the stripes of the group can be skipped all together. As a 
result, only one clock cycle is required to  check this condition and results in 
saving 31 clock cycles because a group of 8 stripes contain 32 samples. 

An extreme case of skipping is called pass skipping. If the samples become 
significant in an earlier bit-plane, it is possible that all samples are encoded 
in SPP and MRP resulting in skipping the whole bit-plane for CUP. It is also 
possible that all samples in the lower bit-planes belong to  MRP and none 
of them to SPP and CUP and hence skipping both the passes for the whole 
bit-plane all together. Although the occurrences of these cases are very small, 
it significantly speeds up the bit-coding when they happen. 

9.7 SUMMARY 

In this chapter, we presented in a VLSI architecture for the JPEG2000 encoder 
[4, 51. We also presented the underlying details of the EBCOT architecture 
including its key building blocks and control mechanism. We presented the 
MQ-coder architecture for binary arithmetic coding. We also briefly pre- 
sented the JPEG2000 decoder architecture, which is architecturally similar 
to  the encoder architecture with the data flow just in reverse direction with 
minor changes in the control mechanism and registers. There are not many ar- 
chitectures for the JPEG2000 standard algorithms available in the literature. 
Since entropy coding of JPEG2000 is the most computationally intensive, few 
researchers have focused on optimizing the EBCOT architecture in order to 
reduce clock cycle and memory requirements. We have reviewed the architec- 
tures in this chapter. Some preliminary commercial products for JPEG2000 
architecture have been reported in the marketplace [15, 16, 17, 181. However, 
detailed information of these architectures have not been published. Detailed 
review of the VLSI architectures for lifting-based discrete wavelet transform 
suitable for JPEG2000 was presented in Chapter 5. 
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I0  
Beyond Part 1 of 

JPEG2000 Standard 

10.1 I NTR 0 D UCTl ON 

In this book, we mainly focused on the algorithms and VLSI implementation 
of the key modules in the JPEG2000 Part 1 standard. Part 1 is the core 
coding system of the JPEG2000 standard [I], which was published in 2000 
as an international standard. We have dealt with the underlying algorithms, 
syntax of the compressed bitstream, and file format pertinent to  Part 1 of the 
JPEG2000 standard in great detail in Chapters 6-8. 

There are five more parts (Parts 2-6) that were completed or nearly com- 
pleted by the standards committee as of writing this book [2, 3, 4,  5, 61. We 
introduce these parts in this chapter in the following sections. Part 7 was pro- 
posed but has been abandoned lately. There are five more parts (Parts 8-12) 
currently under development as of writing this book [7, 91. In this chapter, 
we give a quick introduction to these parts as well. 

10.2 PART 2: EXTENSIONS 

Numerous elements described in Part 1 have been further extended in Part 2 
of the JPEG2000 standard (21. These extensions have been described in An- 
nex A to Annex M of the JPEG2000 Part 2 standard document [2]. In order 
to  accommodate all the changes (extensions) from the Part 1 standard, new 
relevant marker segments have been introduced in JPEG2000 Part 2 Annex 
A with extensions of existing marker segments in Part 1. These new extended 
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markers still follow the same syntactic rules as the syntax in JPEG2000 Part 1 
[l] for code-stream organization explained in Chapter 8. Some of the key fea- 
tures adopted in the JPEG2000 Part 2 standard are discussed in the following 
sections. 

10.2.1 Variable DC Offset 

Annex B of Part 2 describes an extension that allows variable DC offset (for 
DC level shifting) prior to multicomponent transformations during encoding 
and after the inverse multicomponent transformations during decoding. In 
conjunction with a new marker segment DCO (DC offset) as described in An- 
nex A of Part 2 ,  users can select an arbitrary offset (integer or floating-point) 
for DC level shifting at  the encoding time and pass the offset information via 
the DCO marker. 

10.2.2 Variable Scalar Quantization Offsets 

This extension allows users to select smaller or larger dead-zones for scalar 
quantization of their choice of applications. The visual appearance of low- 
level textures may be improved with different dead-zone scalar quantization 
step sizes. Accordingly, the variable quantization step-size can be represented 
as 2 ( l  - <)A, where ( E [-1,+1) is a real number and can vary subband to 
subband, component to component, and tile to tile. Clearly, the value of ( in 
Part 1 is 0. The extended versions of QCD and/or QCC marker segments 
are used to carry this information of < in the code-stream so that the decoder 
can parse the selected quantization step size from these marker segments in 
order to decode the compressed file uniquely. The presence of these extended 
marker segments (i.e., < > 0) is indicated by the first bit of the capability Rsiz 
parameter (Rsizl = 1) in the SIZ marker segment. 

10.2.3 Trellis-Coded Quantization 

The special case of the Trellis Coding algorithm [lo], trellis-coded quantization 
(TCQ) [I l l ,  is provided as an alternative to the dead-zone scalar quantization 
in JPEG2000 Part 2. The TCQ algorithm is actually a spatial-varying scalar 
quantization technique [ll]. One of four scalar quantization factors is chosen 
for each wavelet coefficient. No additional marker segment is used to  irnple- 
ment the TCQ for quantization in Part 2. If the TCQ is chosen, it is signaled 
by the second bit of the capability Rsiz  parameter (Rsizz = 1) in the SIZ 
marker segment. 

Detailed discussion of the principles behind the Trellis-coded quantization 
algorithm is out of scope for this book. For Trellis Coding algorithm and the 
particular version of TCQ used in JPEG2000 Part 2, the reader is referred to 
[lo,  111 and Annex D of the Part 2 standard [2]. 
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10.2.4 Visual Masking 

The visual masking extension provides improvement of image quality over 
areas like texture regions with low-intensity range in an image, and robustness 
against variations of image complexity for a given fixed bit rate. As shown in 
Figure 10.1, a “point-wise extended nonlinearity” module is inserted between 
the forward wavelet transformation and quantization modules at the encoder, 
and a “masking compensation” module is added after the dequantization, 
prior to the inverse wavelet transformation. 

..................... 
;;;i;;:;i;;.’! rq ; ; 

(Q) -1 
+-! Masking ;- Inverse +-i extended ;+- , . ,> 

:compensation: DWT a 
4 

DWT i nonlinearity j 
...................... ...................... 

* Encoder Decoder * 

Fig. 10.1 Visual masking extension 

The quality improvement of visual masking (point-wise extended nonlin- 
earity) is achieved in two steps. The first step, self-contrast masking, applies 
a point-wise power function to  the original wavelet coefficients xi with a nor- 
malized unit DC gain. That is, 

yi = sign(xi)lxil” 

where a E [0,1] is a real number. A typical value of ct is 0.7 as suggested in 
Part 2, Annex E. The second step, neighborhood masking, normalizes yi by a 
neighborhood weighting factor wi, which is a function of the magnitudes of 
the neighboring pixels, that is, 

z .  - - Y i  = sign(zi)/xila 
wi W i  

1 -  

As described in Part 2, Annex E, the following weighting function for ex- 
tended nonlinearity is adopted in the standard, 

wi = 1 + (a  C IikI’)/I$iI 
k E  n e i g h b o r h o o d  

where I$il denotes the size of the neighborhood, a is a constant with value of 
(10000/2bit-depth-1)8, bitdepth is the bit depth of the image component, i k  is 
the quantized neighboring coefficients, and ,8 also assumes a value between 0 
and 1. The size of the neighborhood and the parameter ,L? are used to  control 
the degree of neighborhood masking. A new marker segment VMS (Visual 
MaSking) is used to embed these control parameters for all tile-components in 
the code-stream. The presence of the VMS marker segment is signaled in the 
compressed file via the third bit of the capability Rsiz parameter ( b i z 3  = 1 )  
of the SIZ marker segment. 
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The inverse extended nonlinearity, masking compensation, is done based 
on the following equation, 

z2 = sign(z,)[lz,l(l+ ( a  C I~~ I ’ ) / I~ ” ) I ’ ’~  
kEnrrghborhood 

where z1 is the dequantized wavelet coefficients. 

10.2.5 Arbitrary Wavelet Decomposition 

Instead of symmetrical dyadic wavelet subband decomposition, that is, fil- 
tering and downsampling by a factor of two in both horizontal and vertical 
directions as described in Part 1 of the standard, an extension is defined 
in Annex F of JPEG2000 Part 2 standard that allows arbitrary (more gen- 
eral, not necessarily dyadic) wavelet subband decomposition. Various wavelet 
subbands can be obtained through combination of vertical and/or horizon- 
tal filtering and decimation. As described in Part 1, the orientation of each 
subband is denoted by a two-letter code, where the first letter indicates hor- 
izontal filtering and the second letter indicates vertical filtering. There are 
three possible letters, H,  L, and X, that can be used to  denote a subband in 
this extended mode of arbitrary decomposition. The letter H (or L )  implies 
that high-pass (or low-pass) filtering followed by a downsampling of factor 
two was applied. The letter X indicates no vertical or horizontal filtering and 
decimation was applied. Figure 10.2 shows an example of extended 3-level 
wavelet decompositions. For example, the 2XH subband was obtained at  the 
second level of decomposition by a high-pass filtering in the vertical direction 
(column-wise) with downsampling, and no horizontal filtering and decimation 
was applied 

Fig. 10.2 Extended 3-level wavelet subband decompositions. 

The key purpose for this extension is to provide the capability of fine tun- 
ing the compression performance by providing control over the decorrelation 
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process. Two new marker segments, DFS (down-sampling factor styles) and 
ADS (arbitrary decomposition styles), along with two extended marker seg- 
ments (COD and COC) are introduced in the Part 2 standard for the need of 
arbitrary decomposition. The application of this extension is signaled in the 
compressed file via the fifth bit of the capability Rsiz parameter (RsZZ~ = 1) 
in the SIZ marker segment. 

10.2.6 Arbitrary Wavelet Transformation 

As discussed in Chapter 6, Part 1 of JPEG2000 specified only two filters for 
discrete wavelet transform: the (9, 7) filter pair for irreversible transform and 
the (5, 3) filter pair for reversible transform. Extensions in Part 2 of the 
standard also allow employment of the user-defined arbitrary wavelet filters. 
In order to  specify all the parameters for arbitrary wavelet filter kernels, a 
new marker segment, ATK (arbitrary transformation kernels), is introduced 
to  carry information such as 

0 Filter category based on boundary extension policy (as explained in 
Section 6.6.1.3); that is, whole-sample symmetric (WSS), half-sample 
symmetric (HSS), or arbitrary filters 

0 Transformation type, reversible or irreversible 

0 Number of lifting steps, numerical type of lifting step coefficients (integer 
or real), and other lifting-related information 

The detailed descriptions for the arbitrary wavelet transformation can be 
found in Annex A and G of the JPEG2000 Part 2 standard document 121. 
The application of this extension is signaled in the compressed file via the 
sixth bit of the capability Rsiz parameter (Rsizs  = 1) in the SIZ marker 
segment. 

10.2.7 Single Sample Overlap Discrete Wavelet Transformation 

As shown in Figure 6.2 in Chapter 6, the discrete wavelet transformation 
is applied to each tile-component independently. This tile-component-based 
processing provides convenience in terms of memory efficiency for both soft- 
ware and hardware implementation. If resources are available, we can even 
process tiles in parallel. However, if the size of the tile-component is too small, 
the resulting reconstructed image can have noticeable blocking artifacts a t  the 
tile boundaries. To avoid strong artifacts at the tile boundaries, JPEG2000 
Part 2 provides extensions that allow single sample overlap (SSO)  block-based 
discrete wavelet transform. In order to further improve the decompressed im- 
age quality, a tile can be partitioned into cells for wavelet transformation. 
So there are two types of SSO blocks, tile-based and cell-based. Figure 10.3 
shows an example of overlapping tiles. The dashed lines show the tile grid, 
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and the SSO block contains one extra row a t  the bottom and one extra col- 
umn at  the right of the current tile. The extended marker segments, SIZ, 
COD, and COC,  are used to embed these SSO overlapping parameters into 
the code-stream. 

The application of overlapped block-based DWT is signaled in the com- 
pressed file via the fourth bit of the capability Rsiz parameter (Rsizq = 1) in 
the SIZ marker segment. 

I I I 
I I I 
I I I 

- - - - - - - - - - - - - - - - -  
I I I 

fig. 10.3 Overlapping tiles. 

10.2.8 Multiple Component Transforms 

As discussed in Section 6.5 .3 ,  there are only two multi-component transforms, 
reversible color transform (RCT) and irreversible color transform (ICT), de- 
fined in JPEG2000 Part 1. These transforms can be applied on only the first 
three components of an image. The key purpose of these transforms is to  
exploit the intercomponent correlation in a standard color (RGB) image. By 
applying the RCT or ICT, the RGB image is transformed into a different 
color space and the components are decorrelated to  reduce the intercompo- 
nent redundancies that might be present in the image. In JPEG2000 Part 
2, the idea of multicomponent transform has been extended for images that 
have more components, such as multiple component medical images. In Part 
2 extension, the components can be grouped together arbitrarily as compo- 
nent collections and a new marker segment, multiple component collection 
(MCC), is defined to describe the collection of input components, the col- 
lection of output intermediate components, and other associated information. 
Figure 10.4 shows an example of a seven-component image with three com- 
ponent collections. 

There are three types of decorrelation transform presented in this extension: 
linear block transforms, dependency transforms, and wavelet-based transforms. 
For each component collection, one may apply any of the three decorrelation 
transforms. In some cases, more than one transform may be applied sequen- 
tially on the same component collection. The most powerful feature of this 
multiple-component point transform extension is that i t  is a unified framework 
with the ability to accommodate different decorrelation techniques. 
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Fig. 10.4 A seven-component image with three “componcnt collections.” 

Three more new marker segments are defined to  accommodate these exten- 
sions in JPEG2000 Part 2. The component bit depth (CBD) marker segment 
is used to defined the bit depth of reconstructed image components. The 
multiple component transformation (MCT) marker segment is used to  define 
the multiple component transformation matrices. The multiple component 
intermediate collection (MIC) marker segment is used to describe the input 
intermediate component collections, the output reconstructed image compo- 
nent collections, and the matrices for a multiple component dependency trans- 
form. When wavelet-based decorrelation is used, the ATK and ADS marker 
segments (as mentioned in Sections 10.2.6 and 10.2.5) are used t o  specify the 
wavelet transform kernel and arbitrary decomposition used in constructing 
the component collection. Presence of one of these extensions of multicom- 
ponent decorrelation transformation in the compressed file is signaled by the 
seventh bit of the capability Rsiz parameter ( R s i z ~  = 1) in the SIZ marker 
segment. 

10.2.9 Nonlinear Transformations 

In an image capturing system, such as a video system, gamma correction 
is usually applied a t  the camera. Gamma correction is a non-linear point 
transformation, which is usually used for precompensating the nonlinearity 
of a display device (such as CRT-cathode-ray tube, or LCD-liquid crystal 
display). It also increases the compression efficiency because the human eye 
is known to have a logarithmic response to  light very similar to the char- 
acteristics of gamma correction. A gamma function contains two functional 
segments: a linear function, which is used to minimize the effect of sensor 
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noise in the dark (near black) regions of the image, and a power function with 
exponent of gamma for pixels with large magnitude in the image. Figure 10.5 
shows a forward gamma nonlinear function defined by ITU-R Rec. 709 (for 
HDTV)[13] that might be used by a JPEG2000 encoder. The actual function 
is given as follows: 

4.5R R 5 0.018 
“Og = { 1.099R’/2.2 - 0.099 0.018 < R, 

where R is the input value (normalized between 0.0 and 1.0) and R’ is the 
gamma-corrected value, and gamma is equal to 1/2.2 S 0.45. For most practi- 
cal implementations, a lookup table (LUT) is used to approximate the actual 
nonlinear function. 

R’ 

R 

fig. 10.5 Rec. 709 gamma correction function. 

For more information about gamma correction and digital video, the reader 
is referred to the book by Charle A. Poynton [12]. 

This extension provides the ability of embedding the information about any 
nonlinear transformation applied a t  the encoding time into the code-stream. 
So a decoder can use i t  to map the reconstructed values back to  their proper 
range after entropy decode processes and (if any) inverse multiple-component 
transformations. A new marker segment , nonlinearity point transformation 
(NLT), is used to describe the gamma function or a lookup table (LUT) for 
the function representing the nonlinearity. 
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10.2.10 Region of Interest Extension 

We discussed ROI coding in great detail in Section 6.6.3. The MAXSHIFT 
algorithm for ROI coding [14] used in JPEG2000 Part 1 is simple to imple- 
ment. In MAXSHIFT algorithm, no mask (a bit map describing the location 
of region of interest) information needs to  be embedded in the code-stream. 
This is accomplished by choosing a scaling value in such a way that the small- 
est nonzero ROI coefficient is larger than the largest background coefficient. 
However, only one scaling value can be specified in the original RGN marker 
segment even though there are multiple regions of interest. The technical 
details of both the algorithms have been presented in Section 6.6.3. 

The ROI extension as described in JPEG2000 Part 2 Annex K uses the 
general scaling-based method [15], which allows multiple regions of interest 
with different scaling values. The extension also specified how to generate the 
mask in the wavelet domain. The extended region of interest marker segment 
RGN is used to  specify the locations, shifts (scaling values), and type of 
ROI in the code-stream. Specifically, the location and size information of 
multiple rectangular and/or elliptical regions of interest can be specified in 
the extended RGN marker segment. 

10.2.11 File Format Extension and Metadata Definitions 

An extended optional file format, called JPX, is included in JPEG2000 Part 
2 that applications can choose to contain the JPEG2000 bitstream. The JPX 
is an extension of the JP2 file format defined in Part 1 of JPEG2000. We 
discussed the structure of JP2 file format in great detail in Section 8.3. The 
Part 2 extension adds more capabilities to JP2. For example, JPX adds a 
specification of a binary container for both image and metadata. It can in- 
dicate image properties such as the tone-scale or color space of the image 
inside the file format. JPX also provides mechanisms for combining multiple 
code-streams (JP2 style images as an example) into a single file, and allows to  
include metadata elements in files. Metadata is additional information that 
is associated with the image, such as how the image was created/captured, 
patient information for a medical image (as an example), etc. The com- 
plete specification for this extension and metadata definitions are provided in 
JPEG2000 Part 2 Annex L and Annex M [2]. 

10.3 PART 3: MOTION JPEG2000 

Part 3 of JPEG2000 standard (called Motion JPEG2000) [3] specifies a file 
format called MJ2 or MJP2 and also the instructions for how to use images 
encoded with JPEG2000 Part 1 core coding codec for motion sequences. There 
is no new coding methodology defined in Part 3 of the JPEG2000 standard. 
All images in a Motion JPEG2000 file are compressed frame by frame using 
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fig. 10.6 A Motion JPEG2000 movie with multiple trucks. 

JPEG2000 Part 1 codec without any interframe coding. The MJ2 format 
is designed to  contain not just one or more JPEG2000 image sequences but 
also other information such as audio annotations and streaming requirements. 
The overall presentation of Motion JPEG2000 is called a movie. As shown in 
Figure 10.6, a movie is a collection of tracks. Each track is a timed sequence 
of media data, called samples. Samples are numbered in sequence based 
on timed unit. There are many different kind of tracks, but the three most 
important tracks are video track, audio track, and hint track. They are used 
for two different purposes. The video and audio tracks are used to  contain 
media data. The purpose of a hint track is t o  carry instructions for packing 
one or more tracks for a streaming protocol. 

Similar to  the J P 2  file format discussed in Section 8.3, the fundamental 
building block of the MJ2 file format is called a box. All the data are con- 
tained in structure boxes, and no data are outside the box structure. Basi- 
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Fig. 10.7 File structure (boxes) of a Motion JPEG2000 movie with one track. 

cally, Part 3 of the JPEG2000 standard is nothing but definitions of boxes 
and guidelines for how to use them. There are 30 boxes defined in this file 
format. Figure 10.7 shows an example of the box structure for a MJ2 file 
with one track. Part 3 also provides guidelines for how to  use the JPEG2000 
codec with frequency weighting in order to improve the subjective quality of 
reconstructed image sequence. Motion JPEG2000 has a very wide range of 
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applications such as digital still cameras with video capture capability, remote 
surveillance, etc., where a high-quality frame-based approach is desired. 

10.4 PART 4: CONFORMANCE TESTING 

JPEG2000 Part 4 [4] defines the conformance testing for JPEG2000 Part 
1 [l]. The standard specifies three procedures: decoder compliance testing 
procedure, encoder compliance testing procedure, and JP2 file format reader 
compliance testing procedure. The whole testing procedures are based on two 
profiles and three compliance classes (Cclass). The two profiles (profi le 
0 and profile 1) defined in “JPEG2000 Part 1, Amendment 1 Code Stream 
Restrictions” , are used for compliance testing. Testing an arbitrary code- 
stream (which requires unlimited resources) is out of the scope of conformance 
testing. A profile provides limitations on compression parameters such as tile 
size, LL subband resolution, subsampling factor, marker locations, and others. 
So a decoder can define its capabilities for the bitstream within a profile. The 
three compliance classes (Cclass 0, Cclass 1, and Cclass 2) define different 
levels of image-quality guarantees for a decoder. The compliance level for 
an imp lemen ta t ion  u n d e r  t e s t  (IUT) should be reported based on profile x 
Cclass y. The decoder and encoder compliance test procedures are as follows. 

0 Decoder compliance test procedure: The decoder compliance test 
procedure can be summarized as follows: First, decode all the test code- 
streams using the decoder under test (the test code-streams are supplied 
by the standard). Second, compare decoded images with the reference 
image; if all the errors are within the defined tolerance (based on the 
error metrics provided in the standard), then the decoder under test is 
reported as profile x Cclass  y compliant. 

0 Encoder compliance test procedure: The encoder compliance test 
procedure can be summarized as follows: First, encode all the selected 
test images with different compression parameters using the encoder 
under test. Second, if the reference decoder can fully decode all the 
encoded code-stream, then the encoder under test passes the compliance 
test. 

A compliant JP2 file format reader must be able to decode the code-stream 
within the JP2 file. In addition, if the decoded components are not all at  the 
same resolution, the reader should be able to  upsample them into the same 
resolution and convert to full resolution sRGB [17] color space from the source 
color space. A set of test JP2 files and reference images are provided in the 
Part 4 standard. The test procedure just simply decodes the test file and 
compares with the corresponding reference images. If the differences of all 
the test files are within the defined tolerances, the JP2 file format reader is 
compliant with the standard. 
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The Part 4 compliance test files include bare code-stream, JP2 files, ref- 
erence decoded images, and description files for the test data. The reference 
decoder is defined in JPEG2000 Part 5: Reference Software [5], which we will 
review in the next section. However, it should he noted, it is explicitly stated 
in Part 4 of the JPEG2000 standard document that compliance testing does 
not include acceptance testing, performance testing, or robustness testing. 

10.5 PART 5: REFERENCE SOFTWARE 

As stated in JPEG2000 Part 5 [5], this standard is informative only. It con- 
sists of software source packages and short descriptions about the reference 
software. There are two software packages included in the standard, Jasper 
and 552000. Jasper is a C programming language [18, 191 based implemen- 
tation of the JPEG2000 Part 1 codec; more information can be found at  
http: //www.ece.uvic.ca/Nmdadams/jasper/. J 52000 is a JavaTM im- 
plementation of JPEG2000 Part 1 codec. More information about 552000 can 
he found at the 552000 project home web page at http://jj2000.epfl.ch/. 
The details of the software architecture and usage are beyond the scope of this 
book. The official JPEG2000 software and test data are available at web page 
ht tp: // www. jpeg.org/software/ for further information and downloads. 

10.6 PART 6: COMPOUND IMAGE FILE FORMAT 

Part 6 of JPEG2000 [6] defines a file format JPM based on the same file 
format architecture used in JPEG2000 Parts 1 and 2. The JPM file format 
reuses many boxes that were defined in Part 1 for JP2 file format and Part 2 
for JPX file format. The key purpose of JPM file format is to  store compound 
images that may contain multiple continuous and bi-level images. The ITU-T 
T.441ISO 16485 [20] multilayer mzxed raster content (MRC) model is used to 
represent a compound image in Part 6 of JPEG2000 standard. Compound 
images are very useful for document image processing. A document can be 
represented by a compound image with one or more pages, and each page 
may contain multiple objects. It should be noted that under the JPM file 
format, an object may be compressed using a compression method other than 
JPEG2000. For example, a bi-level image object such as a scanned fax image 
can be compressed using JBIG2 [all. 

10.7 OTHER PARTS (7-12) 

Part 7 of JPEG2000 was proposed and has been abandoned. So we avoid 
discussing Part 7 in this book. There are four more parts currently under 
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development in the JPEG2000 standards committee as of writing this book. 
Part 12 is already published [8]. The purpose of these parts are as follows. 

0 Part 8-secure JPEG2000 (JPSEC): Part 8 deals with security- 
related issues for JPEG2000 applications such as encryption, watermark- 
ing, source authentication. 

0 Part 9-interactivity tools, APIs, and protocols (JPIP): Part 
9 is being developed as an interactive network protocol, and it specifies 
tools for efficient exchange of JPEG2000 images and related metadata. 

0 Part 10-3-D and floating point data (JP3D): Part 10 is being 
developed with the concern of three-dimensional data. It will be very 
useful for applications such as 3-D medical image reconstruction and 
other areas requiring 3-D imagery and floating point operations. 

0 Part 11-wireless (JPWL): Part 11 is being developed for wireless 
multimedia applications. The main concerns for JPWL are error protec- 
tion, detection, and correction for JPEG2000 in an error-prone wireless 
environment. 

0 Part 12-IS0 base media file format: Part 12 has a text in common 
with ISO/IEC 14496-12 for MPEG-4, and is already published (2004- 
02-01). 

10.8 SUMMARY 

As of writing this book, there are 11 parts in JPEG2000 standard (Part 7 has 
been abandoned). Part 1 of the JPEG2000 standard was dealt with in great 
detail in Chapters 6 to  8. In this chapter, we introduced the reader to  Parts 
2 to 12 of the JPEG2000 standard. The Part 2 extension offers some addi- 
tional capabilities and features over Part 1 of the JPEG2000 standard. We 
discussed these capabilities and resulting marker segments to accommodate 
these extensions in this chapter. Part 3 of the JPEG2000 is called the Mo- 
tion JPEG2000 standard. Part 3 specifies a file format (MJ2) that contains 
image sequence encoded with JPEG2000 core coding algorithm for motion 
video. Part 4 of JPEG2000 standard specifies compliance testing procedures 
for encoding/decoding using Part 1 of JPEG2000. In Part 5 ,  two software 
source packages (using Java and C programming languages) are available for 
the purpose of testing and validation for JPEG2000 systems implemented by 
the developers. Part 6 of the JPEG2000 standard specifies compound image 
file format (JPM) for storing compound images. Part 8 of the standard deals 
with security aspects for JPEG2000 applications such as encryption] water- 
marking, etc. Part 9 defines an interactive network protocol, and specifies 
tools for efficient exchange of JPEG2000 images and related metadata. Part 
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10 is being defined to  deal with the three dimensional image data. Part  11 
deals with the issues related to  error protection, detection, and correction for 
JPEG2000 for its usage in an error-prone wireless environment. Part  12 deals 
with I S 0  base media file format, which has a text in common with MPEG-4 
standard for video compression. 
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