


 
Preface 

This book provides a working guide to the Open Source Computer Vision Library (OpenCV) and also 
provides a general background to the field of computer vision sufficient to use OpenCV effectively. 

Purpose 
Computer vision is a rapidly growing field, partly as a result of both cheaper and more capable cameras, 
partly because of affordable processing power, and partly because vision algorithms are starting to mature. 
OpenCV itself has played a role in the growth of computer vision by enabling thousands of people to do 
more productive work in vision. With its focus on real-time vision, OpenCV helps students and 
professionals efficiently implement projects and jump-start research by providing them with a computer 
vision and machine learning infrastructure that was previously available only in a few mature research labs. 
The purpose of this text is to: 

• Better document OpenCV—detail what function calling conventions really mean and how to use them 
correctly. 

• Rapidly give the reader an intuitive understanding of how the vision algorithms work. 

• Give the reader some sense of what algorithm to use and when to use it. 
• Give the reader a boost in implementing computer vision and machine learning algorithms by 

providing many working coded examples to start from. 

• Provide intuitions about how to fix some of the more advanced routines when something goes wrong. 

Simply put, this is the text the authors wished we had in school and the coding reference book we wished 
we had at work. 

This book documents a tool kit, OpenCV, that allows the reader to do interesting and fun things rapidly in 
computer vision. It gives an intuitive understanding as to how the algorithms work, which serves to guide 
the reader in designing and debugging vision applications and also to make the formal descriptions of 
computer vision and machine learning algorithms in other texts easier to comprehend and remember. 

After all, it is easier to understand complex algorithms and their associated math when you start with an 
intuitive grasp of how those algorithms work. 

Who This Book Is For 
This book contains descriptions, working coded examples, and explanations of the computer vision tools 
contained in the OpenCV library. As such, it should be helpful to many different kinds of users. 



Professionals 

For those practicing professionals who need to rapidly implement computer vision systems, the sample 
code provides a quick framework with which to start. Our descriptions of the intuitions behind the 
algorithms can quickly teach or remind the reader how they work. 

Students 

As we said, this is the text we wish had back in school. The intuitive explanations, detailed 
documentation, and sample code will allow you to boot up faster in computer vision, work on more 
interesting class projects, and ultimately contribute new research to the field. 

Teachers 

Computer vision is a fast-moving field. We’ve found it effective to have the students rapidly cover an 
accessible text while the instructor fills in formal exposition where needed and supplements with 
current papers or guest lectures from experts. The students can meanwhile start class projects earlier 
and attempt more ambitious tasks. 

Hobbyists 

Computer vision is fun, here’s how to hack it. 

We have a strong focus on giving readers enough intuition, documentation, and working code to enable 
rapid implementation of real-time vision applications. 

What This Book Is Not 
This book is not a formal text. We do go into mathematical detail at various points,1 but it is all in the 
service of developing deeper intuitions behind the algorithms or to clarify the implications of any 
assumptions built into those algorithms. We have not attempted a formal mathematical exposition here and 
might even incur some wrath along the way from those who do write formal expositions. 

This book is not for theoreticians because it has more of an “applied” nature. The book will certainly be of 
general help, but is not aimed at any of the specialized niches in computer vision (e.g., medical imaging or 
remote sensing analysis). 

That said, it is the belief of the authors that having read the explanations here first, a student will not only 
learn the theory better but remember it longer. Therefore, this book would make a good adjunct text to a 
theoretical course and would be a great text for an introductory or project-centric course. 

About the Programs in This Book 
All the program examples in this book are based on OpenCV version 2.5. The code should definitely work 
under Linux or Windows and probably under OS-X, too. Source code for the examples in the book can be 
fetched from this book’s website (http://www.oreilly.com/catalog/9780596516130). OpenCV can be loaded 
from its source forge site (http://sourceforge.net/projects/opencvlibrary). 

OpenCV is under ongoing development, with official releases occurring once or twice a year. To keep up to 
date with the developments of the library, and for pointers to where to get the very latest updates and 
versions, you can visit OpenCV.org, the library’s official website. 

Prerequisites 
For the most part, readers need only know how to program in C and perhaps some C++. Many of the math 
sections are optional and are labeled as such. The mathematics involves simple algebra and basic matrix 

                                                             
1 Always with a warning to more casual users that they may skip such sections. 



algebra, and it assumes some familiarity with solution methods to least-squares optimization problems as 
well as some basic knowledge of Gaussian distributions, Bayes’ law, and derivatives of simple functions. 

The math is in support of developing intuition for the algorithms. The reader may skip the math and the 
algorithm descriptions, using only the function definitions and code examples to get vision applications up 
and running. 

How This Book Is Best Used 
This text need not be read in order. It can serve as a kind of user manual: look up the function when you 
need it; read the function’s description if you want the gist of how it works “under the hood”. The intent of 
this book is more tutorial, however. It gives you a basic understanding of computer vision along with 
details of how and when to use selected algorithms. 

This book was written to allow its use as an adjunct or as a primary textbook for an undergraduate or 
graduate course in computer vision. The basic strategy with this method is for students to read the book for 
a rapid overview and then supplement that reading with more formal sections in other textbooks and with 
papers in the field. There are exercises at the end of each chapter to help test the student’s knowledge and 
to develop further intuitions. 

You could approach this text in any of the following ways. 

Grab Bag 

Go through Chapter 1–Chapter 3 in the first sitting, then just hit the appropriate chapters or sections as 
you need them. This book does not have to be read in sequence, except for Chapter 11 and Chapter 12 
(Calibration and Stereo). 

Good Progress 

Read just two chapters a week until you’ve covered Chapter 1–Chapter 12 in six weeks (Chapter 13 is 
a special case, as discussed shortly). Start on projects and dive into details on selected areas in the 
field, using additional texts and papers as appropriate. 

The Sprint 

Just cruise through the book as fast as your comprehension allows, covering Chapter 1–Chapter 12. 
Then get started on projects and go into details on selected areas in the field using additional texts and 
papers. This is probably the choice for professionals, but it might also suit a more advanced computer 
vision course. 

Chapter 13 is a long chapter that gives a general background to machine learning in addition to details 
behind the machine learning algorithms implemented in OpenCV and how to use them. Of course, machine 
learning is integral to object recognition and a big part of computer vision, but it’s a field worthy of its own 
book. Professionals should find this text a suitable launching point for further explorations of the 
literature—or for just getting down to business with the code in that part of the library. This chapter should 
probably be considered optional for a typical computer vision class. 

This is how the authors like to teach computer vision: Sprint through the course content at a level where the 
students get the gist of how things work; then get students started on meaningful class projects while the 
instructor supplies depth and formal rigor in selected areas by drawing from other texts or papers in the 
field. This same method works for quarter, semester, or two-term classes. Students can get quickly up and 
running with a general understanding of their vision task and working code to match. As they begin more 
challenging and time-consuming projects, the instructor helps them develop and debug complex systems. 
For longer courses, the projects themselves can become instructional in terms of project management. 
Build up working systems first; refine them with more knowledge, detail, and research later. The goal in 
such courses is for each project to aim at being worthy of a conference publication and with a few project 
papers being published subsequent to further (postcourse) work. 



Conventions Used in This Book 
The following typographical conventions are used in this book: 

Italic 

Indicates new terms, URLs, email addresses, filenames, file extensions, path names, directories, and 
Unix utilities. 

Constant width 

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes, 
namespaces, methods, modules, properties, parameters, values, objects, events, event handlers, 
XMLtags, HTMLtags, the contents of files, or the output from commands. 

Constant width bold 

Shows commands or other text that could be typed literally by the user. Also used for emphasis in code 
samples. 

Constant width italic 

Shows text that should be replaced with user-supplied values. 

[…] 

Indicates a reference to the bibliography. The standard bibliographic form we adopt in this book is the 
use of the last name of the first author of a paper, followed by a two digit representation of the year of 
publication. Thus the paper “Self-supervised monocular road detection in desert terrain,” authored by  
“H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski” in 2006, would be cited as: 
“[Dahlkamp06]”. 

This icon signifies a tip, suggestion, or general note. 

This icon indicates a warning or caution. 

Using Code Examples 
OpenCV is free for commercial or research use, and we have the same policy on the code examples in the 
book. Use them at will for homework, for research, or for commercial products. We would very much 
appreciate referencing this book when you do, but it is not required. Other than how it helped with your 
homework projects (which is best kept a secret), we would like to hear how you are using computer vision 
for academic research, teaching courses, and in commercial products when you do use OpenCV to help 
you. Again, not required, but you are always invited to drop us a line. 

Safari® Books Online 
When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the 
book is available online through the O’Reilly Network Safari Bookshelf. 

Safari offers a solution that’s better than e-books. It’s virtual library that lets you easily search thousands of 
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the 
most accurate, current information. Try it for free at http://safari.oreilly.com. 

We’d Like to Hear from You 
Please address comments and questions concerning this book to the publisher: 



O’Reilly Media, Inc. 

1005 Gravenstein Highway North 

Sebastopol, CA 95472 

800-998-9938 (in the United States or Canada) 

707-829-0515 (international or local) 

707-829-0104 (fax) 

We have a web page for this book, where we list examples and any plans for future editions. You can 
access this information at: 

http://www.oreilly.com/catalog/9780596516130/ 

You can also send messages electronically. To be put on the mailing list or request a catalog, send an email 
to: 

info@oreilly.com 

To comment on the book, send an email to: 

bookquestions@oreilly.com 

For more information about our books, conferences, Resource Centers, and the O’Reilly Network, see our 
website at: 

http://www.oreilly.com 
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1 
Overview 

What Is OpenCV? 
OpenCV [OpenCV] is an open source (see http://opensource.org) computer vision library available from 
http://opencv.org. The library is written in C and C++1 and runs under Linux, Windows, Mac OS X, iOS, 
and Android. Interfaces are available for Python, Java, Ruby, Matlab, and other languages. 

OpenCV was designed for computational efficiency with a strong focus on real-time applications: 
optimizations were made at all levels, from algorithms to multicore and CPU instructions. For example, 
OpenCV supports optimizations for SSE, MMX, AVX, NEON, OpenMP, and TBB. If you desire further 
optimization on Intel architectures [Intel] for basic image processing, you can buy Intel’s Integrated 
Performance Primitives (IPP) libraries [IPP], which consist of low-level optimized routines in many 
different algorithmic areas. OpenCV automatically uses the appropriate instructions from IPP at runtime. 
The GPU module also provides CUDA-accelerated versions of many routines (for Nvidia GPUs) and 
OpenCL-optimized ones (for generic GPUs). 

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure that helps people build 
fairly sophisticated vision applications quickly. The OpenCV library contains over 500 functions that span 
many areas, including factory product inspection, medical imaging, security, user interface, camera 
calibration, stereo vision, and robotics. Because computer vision and machine learning often go hand-in-
hand, OpenCV also contains a full, general-purpose Machine Learning Library (MLL). This sub-library is 
focused on statistical pattern recognition and clustering. The MLL is highly useful for the vision tasks that 
are at the core of OpenCV’s mission, but it is general enough to be used for any machine learning problem. 

Who Uses OpenCV? 
Most computer scientists and practical programmers are aware of some facet of the role that computer 
vision plays. But few people are aware of all the ways in which computer vision is used. For example, most 
people are somewhat aware of its use in surveillance, and many also know that it is increasingly being used 
for images and video on the Web. A few have seen some use of computer vision in game interfaces. Yet 
few people realize that most aerial and street-map images (such as in Google’s Street View) make heavy 
use of camera calibration and image stitching techniques. Some are aware of niche applications in safety 
monitoring, unmanned aerial vehicles, or biomedical analysis. But few are aware how pervasive machine 
vision has become in manufacturing: virtually everything that is mass-produced has been automatically 
inspected at some point using computer vision. 
                                                             
1 The legacy C interface is still supported, and will remain so for the foreseeable future. 



The BSD [BSD] open source license for OpenCV has been structured such that you can build a commercial 
product using all or part of OpenCV. You are under no obligation to open-source your product or to return 
improvements to the public domain, though we hope you will. In part because of these liberal licensing 
terms, there is a large user community that includes people from major companies (Google, IBM, Intel, 
Microsoft, Nvidia, SONY, and Siemens, to name only a few) and research centers (such as Stanford, MIT, 
CMU, Cambridge, Georgia Tech and INRIA). OpenCV is also present on the web for users at 
http://opencv.org, a website that hosts documentation, developer information, and other community 
resources including links to compiled binaries for various platforms. For vision developers, code, 
development notes and links to GitHub are at http://code.opencv.org. User questions are answered at 
http://answers.opencv.org/questions/ but there is still the original Yahoo groups user forum at 
http://groups.yahoo.com/group/OpenCV; it has almost 50,000 members. OpenCV is popular around the 
world, with large user communities in China, Japan, Russia, Europe, and Israel. OpenCV has a Facebook 
page at https://www.facebook.com/opencvlibrary.  

Since its alpha release in January 1999, OpenCV has been used in many applications, products, and 
research efforts. These applications include stitching images together in satellite and web maps, image scan 
alignment, medical image noise reduction, object analysis, security and intrusion detection systems, 
automatic monitoring and safety systems, manufacturing inspection systems, camera calibration, military 
applications, and unmanned aerial, ground, and underwater vehicles. It has even been used in sound and 
music recognition, where vision recognition techniques are applied to sound spectrogram images. OpenCV 
was a key part of the vision system in the robot from Stanford, “Stanley”, which won the $2M DARPA 
Grand Challenge desert robot race [Thrun06], and continues to play an important part in other many 
robotics challenges. 

What Is Computer Vision? 
Computer vision2 is the transformation of data from 2D/3D stills or videos into either a decision or a new 
representation. All such transformations are done for achieving some particular goal. The input data may 
include some contextual information such as “the camera is mounted in a car” or “laser range finder 
indicates an object is 1 meter away”. The decision might be “there is a person in this scene” or “there are 
14 tumor cells on this slide”. A new representation might mean turning a color image into a grayscale 
image or removing camera motion from an image sequence. 

Because we are such visual creatures, it is easy to be fooled into thinking that computer vision tasks are 
easy. How hard can it be to find, say, a car when you are staring at it in an image? Your initial intuitions 
can be quite misleading. The human brain divides the vision signal into many channels that stream different 
pieces of information into your brain. Your brain has an attention system that identifies, in a task-dependent 
way, important parts of an image to examine while suppressing examination of other areas. There is 
massive feedback in the visual stream that is, as yet, little understood. There are widespread associative 
inputs from muscle control sensors and all of the other senses that allow the brain to draw on cross-
associations made from years of living in the world. The feedback loops in the brain go back to all stages of 
processing including the hardware sensors themselves (the eyes), which mechanically control lighting via 
the iris and tune the reception on the surface of the retina. 

In a machine vision system, however, a computer receives a grid of numbers from the camera or from disk, 
and, in most cases, that’s it. For the most part, there’s no built-in pattern recognition, no automatic control 
of focus and aperture, no cross-associations with years of experience. For the most part, vision systems are 
still fairly naïve. Figure 1-1 shows a picture of an automobile. In that picture we see a side mirror on the 
driver’s side of the car. What the computer “sees” is just a grid of numbers. Any given number within that 
grid has a rather large noise component and so by itself gives us little information, but this grid of numbers 
is all the computer “sees”. Our task then becomes to turn this noisy grid of numbers into the perception: 
“side mirror”. Figure 1-2 gives some more insight into why computer vision is so hard. 
                                                             
2 Computer vision is a vast field. This book will give you a basic grounding in the field, but we also recommend texts 
by Szeliski [Szeliski2011] for a good overview of practical computer vision algorithms, and Hartley [Hartley06] for 
how 3D vision really works. 



 
Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers 

In fact, the problem, as we have posed it thus far, is worse than hard; it is formally impossible to solve. 
Given a two-dimensional (2D) view of a 3D world, there is no unique way to reconstruct the 3D signal. 
Formally, such an ill-posed problem has no unique or definitive solution. The same 2D image could 
represent any of an infinite combination of 3D scenes, even if the data were perfect. However, as already 
mentioned, the data is corrupted by noise and distortions. Such corruption stems from variations in the 
world (weather, lighting, reflections, movements), imperfections in the lens and mechanical setup, finite 
integration time on the sensor (motion blur), electrical noise and compression artifacts after image capture. 
Given these daunting challenges, how can we make any progress? 

 
Figure 1-2: The ill-posed nature of vision: the 2D appearance of objects can change 

radically with viewpoints 

In the design of a practical system, additional contextual knowledge can often be used to work around the 
limitations imposed on us by visual sensors. Consider the example of a mobile robot that must find and 
pick up staplers in a building. The robot might use the facts that a desk is an object found inside offices and 
that staplers are mostly found on desks. This gives an implicit size reference; staplers must be able to fit on 
desks. It also helps to eliminate falsely “recognizing” staplers in impossible places (e.g., on the ceiling or a 
window). The robot can safely ignore a 200-foot advertising blimp shaped like a stapler because the blimp 



lacks the prerequisite wood-grained background of a desk. In contrast, with tasks such as image retrieval, 
all stapler images in a database may be of real staplers and so large sizes and other unusual configurations 
may have been implicitly precluded by the assumptions of those who took the photographs. That is, the 
photographer perhaps took pictures only of real, normal-sized staplers. Also, when taking pictures, people 
tend to center objects and put them in characteristic orientations. Thus, there is often quite a bit of 
unintentional implicit information within photos taken by people. 

Contextual information can also be modeled explicitly with machine learning techniques. Hidden variables 
such as size, orientation to gravity, and so on can then be correlated with their values in a labeled training 
set. Alternatively, one may attempt to measure hidden bias variables by using additional sensors. The use of 
a laser range finder to measure depth allows us to accurately infer the size of an object. 

The next problem facing computer vision is noise. We typically deal with noise by using statistical 
methods. For example, it may be impossible to detect an edge in an image merely by comparing a point to 
its immediate neighbors. But if we look at the statistics over a local region, edge detection becomes much 
easier. A real edge should appear as a string of such immediate neighbor responses over a local region, 
each of whose orientation is consistent with its neighbors. It is also possible to compensate for noise by 
taking statistics over time. Still, other techniques account for noise or distortions by building explicit 
models learned directly from the available data. For example, because lens distortions are well understood, 
one need only learn the parameters for a simple polynomial model in order to describe—and thus correct 
almost completely—such distortions. 

The actions or decisions that computer vision attempts to make based on camera data are performed in the 
context of a specific purpose or task. We may want to remove noise or damage from an image so that our 
security system will issue an alert if someone tries to climb a fence or because we need a monitoring 
system that counts how many people cross through an area in an amusement park. Vision software for 
robots that wander through office buildings will employ different strategies than vision software for 
stationary security cameras because the two systems have significantly different contexts and objectives. 
As a general rule: the more constrained a computer vision context is, the more we can rely on those 
constraints to simplify the problem and the more reliable our final solution will be. 

OpenCV is aimed at providing the basic tools needed to solve computer vision problems. In some cases, 
high-level functionalities in the library will be sufficient to solve the more complex problems in computer 
vision. Even when this is not the case, the basic components in the library are complete enough to enable 
creation of a complete solution of your own to almost any computer vision problem. In the latter case, there 
are some tried-and-true methods of using the library; all of them start with solving the problem using as 
many available library components as possible. Typically, after you’ve developed this first-draft solution, 
you can see where the solution has weaknesses and then fix those weaknesses using your own code and 
cleverness (better known as “solve the problem you actually have, not the one you imagine”). You can then 
use your draft solution as a benchmark to assess the improvements you have made. From that point, 
whatever weaknesses remain can be tackled by exploiting the context of the larger system in which your 
problem solution is embedded, or by setting out to improve some component of the system with your own 
novel contributions. 

The Origin of OpenCV 
OpenCV grew out of an Intel Research initiative to advance CPU-intensive applications. Toward this end, 
Intel launched many projects including real-time ray tracing and 3D display walls. One of the authors 
(Gary) working for Intel at that time was visiting universities and noticed that some top university groups, 
such as the MIT Media Lab, had well-developed and internally open computer vision infrastructures—code 
that was passed from student to student and that gave each new student a valuable head start in developing 
his or her own vision application. Instead of reinventing the basic functions from scratch, a new student 
could begin by building on top of what came before. 



Thus, OpenCV was conceived as a way to make computer vision infrastructure universally available. With 
the aid of Intel’s Performance Library Team,3 OpenCV started with a core of implemented code and 
algorithmic specifications being sent to members of Intel’s Russian library team. This is the “where” of 
OpenCV: it started in Intel’s research lab with collaboration from the Software Performance Libraries 
group together with implementation and optimization expertise in Russia. 

Chief among the Russian team members was Vadim Pisarevsky, who managed, coded, and optimized much 
of OpenCV and who is still at the center of much of the OpenCV effort. Along with him, Victor Eruhimov 
helped develop the early infrastructure, and Valery Kuriakin managed the Russian lab and greatly 
supported the effort. There were several goals for OpenCV at the outset: 

• Advance vision research by providing not only open but also optimized code for basic vision 
infrastructure. No more reinventing the wheel. 

• Disseminate vision knowledge by providing a common infrastructure that developers could build on, 
so that code would be more readily readable and transferable. 

• Advance vision-based commercial applications by making portable, performance-optimized code 
available for free—with a license that did not require commercial applications to be open or free 
themselves. 

Those goals constitute the “why” of OpenCV. Enabling computer vision applications would increase the 
need for fast processors. Driving upgrades to faster processors would generate more income for Intel than 
selling some extra software. Perhaps that is why this open and free code arose from a hardware vendor 
rather than a software company. Sometimes, there is more room to be innovative at software within a 
hardware company. 

In any open source effort, it is important to reach a critical mass at which the project becomes self-
sustaining. There have now been around seven million downloads of OpenCV, and this number is growing 
by hundreds of thousands every month4. The user group now approaches 50,000 members. OpenCV 
receives many user contributions, and central development has long since moved outside of Intel.5 
OpenCV’s past timeline is shown in Figure 1-3. Along the way, OpenCV was affected by the dot-com 
boom and bust and also by numerous changes of management and direction. During these fluctuations, 
there were times when OpenCV had no one at Intel working on it at all. However, with the advent of 
multicore processors and the many new applications of computer vision, OpenCV’s value began to rise. 
Similarly, rapid growth in the field of robotics has driven much use and development of the library. After 
becoming an open source library, OpenCV spent several years under active development at Willow Garage 
and Itseez, and now is supported by the OpenCV foundation at http//opencv.org. Today, OpenCV is 
actively being developed by the OpenCV.org foundation, Google supports on order of 15 interns a year in 
the Google Summer of Code program6, and Intel is back actively supporting development. For more 
information on the future of OpenCV, see Chapter 14. 

 

                                                             
3 Shinn Lee was of key help as was Stewart Taylor. 
4 It is noteworthy, that at the time of the publication of “Learning OpenCV” in 2006, this rate was 26,000 per month. 
Seven years later, the download rate has grown to over 160,000 downloads per month. 
5 As of this writing, Itseez (http://itseez.com/) is the primary maintainer of OpenCV 
6 Google Summer of Code https://developers.google.com/open-source/soc/  



 
Figure 1-3: OpenCV timeline 

Who Owns OpenCV? 
Although Intel started OpenCV, the library is and always was intended to promote commercial and 
research use. It is therefore open and free, and the code itself may be used or embedded (in whole or in 
part) in other applications, whether commercial or research. It does not force your application code to be 
open or free. It does not require that you return improvements back to the library—but we hope that you 
will.  

Downloading and Installing OpenCV 
The main OpenCV site is at http://opencv.org, from which you can download the complete source code for 
the latest release, as well as many recent releases. The downloads themselves are found at the downloads 
page: http://opencv.org/downloads.html. However, if you want the very most up-to-date version it is always 
found on GitHub at https://github.com/Itseez/opencv, where the active development branch is stored. The 
computer vision developer’s site (with links to the above) is at http://code.opencv.org/. 

Installation 
In modern times, OpenCV uses Git as its development version control system, and CMake to build7. In 
many cases, you will not need to worry about building, as compiled libraries exist for supported 
environments.  However, as you become a more advanced user, you will inevitably want to be able to 
recompile the libraries with specific options tailored to your application and environment. On the tutorial 
pages at http://docs.opencv.org/doc/tutorials/tutorials.html under “introduction to OpenCV”, there are 
descriptions of how to set up OpenCV to work with a number of combinations of operating systems and 
development tools. 

                                                             
7 In olden times, OpenCV developers used Subversion for version control and automake to build. Those days, however, 
are long gone. 



Windows 

At the page: http://opencv.org/downloads.html, you will see a link to download the latest version of 
OpenCV for Windows.  This link will download an executable file which you can run, and which will 
install OpenCV, register DirectShow filters, and perform various post-installation procedures. You are now 
almost ready to start using OpenCV.8  

The one additional detail is that you will want to add is an OPENCV_DIR environment variable to make it 
easier to tell your compiler where to find the OpenCV binaries. You can set this by going to a command 
prompt and typing9: 

setx -m OPENCV_DIR D:\OpenCV\Build\x86\vc10 

If you built the library to link statically, this is all you will need.  If you built the library to link 
dynamically, then you will also need to tell your system where to find the library binary. To do this, simply 
add %OPENCV_DIR%\bin to your library path. (For example, in Windows 7, right-click on your 
Computer icon, select Properties, and then click on Advanced System Settings. Finally select Environment 
Variables and add the OpenCV binary path to the Path variable.) 

To add the commercial IPP performance optimizations to Windows, obtain and install IPP from the Intel 
site (http://www.intel.com/software/products/ipp/index.htm); use version 5.1 or later. Make sure the 
appropriate binary folder (e.g., c:/program files/intel/ipp/5.1/ia64/bin) is in the system path. IPP should 
now be automatically detected by OpenCV and loaded at runtime (more on this in Chapter 3). 

Linux 

Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing to the large variety of 
versions of GCC and GLIBC in different distributions (SuSE, Debian, Ubuntu, etc.). In many cases 
however, your distribution will include OpenCV. If your distribution doesn’t offer OpenCV, you will have 
to build it from sources. As with the Windows installation, you can start at the 
http://opencv.org/downloads.html page, but in this case the link will send you to Sourceforge10, where you 
can select the tarball for the current OpenCV source code bundle. 

To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers. You’ll also need 
pkgconfig, libpng, libjpeg, libtiff, and libjasper with development files (i.e., the versions with -dev at the 
end of their package names). You’ll need Python 2.6 or later with headers installed (developer package). 
You will also need libavcodec and the other libav* libraries (including headers) from ffmpeg 1.0 or later . 

Download ffmpeg from http://ffmpeg.mplayerhq.hu/download.html.11 The ffmpeg program has a lesser 
general public license (LGPL). To use it with non-GPL software (such as OpenCV), build and use a shared 
ffmpg library: 

$> ./configure --enable-shared 
$> make 
$> sudo make install 

You will end up with: /usr/local/lib/libavcodec.so.*, /usr/local/lib/libavformat.so.*, 
/usr/local/lib/libavutil.so.*, and include files under various /usr/local/include/libav*. 

To build OpenCV once it is downloaded:12 

                                                             
8 It is important to know that, although the Windows distribution contains binary libraries for release builds, it does not 
contain the debug builds of these libraries. It is therefore likely that, before developing with OpenCV, you will want to 
open the solution file and build these libraries for yourself. 
9 Of course, the exact path will vary depending on your installation, for example if you are installing on an ia64 
machine, then the path will not include “x86”, but rather “ia64”. 
10 OpenCV has all of its many builds and versions available from Sourceforge. See links at 
http://opencv.org/downloads.html  
11 You can check out ffmpeg by: svn checkout svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg. 



$> mkdir build && cd build 
$> cmake .. && make 
$> sudo make install 
$> sudo ldconfig 

After installation is complete, the default installation path is /usr/local/lib/ and /usr/local/include/opencv2/. 
Hence you need to add /usr/local/lib/ to /etc/ld.so.conf (and run ldconfig afterwards) or add it to the 
LD_LIBRARY_PATH environment variable; then you are done. 

To actually build the library, you will need to go unpack the .tgz file and go into the created source 
directory, and do the following: 

mkdir release 
cd release 
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local .. 
make 
sudo make install 

The first and second commands create a new subdirectory and move you into it. The third command tells 
CMake how to configure your build. The example options we give are probably the right ones to get you 
started, but other options allow you to enable various options, determine what examples are built, python 
support, CUDA GPU support, etc. The last two commands actually build the library and install the results 
into the proper places. 

To add the commercial IPP performance optimizations to Linux, install IPP as described previously. Let’s 
assume it was installed in /opt/intel/ipp/5.1/ia32/. Add <your install_path>/bin/ and <your 
install_path>/bin/linux32 LD_LIBRARY_PATH in your initialization script (.bashrc or similar): 

LD_LIBRARY_PATH=/opt/intel/ipp/5.1/ia32/bin:/opt/intel/ipp/5.1 
/ia32/bin/linux32:$LD_LIBRARY_PATH 
export LD_LIBRARY_PATH 

Alternatively, you can add <your install_path>/bin and <your install_path>/bin/linux32, one per line, to 
/etc/ld.so.conf and then run ldconfig as root (or use sudo). 

That’s it. Now OpenCV should be able to locate IPP shared libraries and make use of them on Linux. See 
…/opencv/INSTALL for more details. 

MacOS X 

As of this writing, full functionality on MacOS X is a priority but there are still some limitations (e.g., 
writing AVIs); these limitations are described in …/opencv/INSTALL. 

The requirements and building instructions are similar to the Linux case, with the following exceptions: 

• By default, Carbon is used instead of GTK+. 
• By default, QuickTime is used instead of ffmpeg. 

• pkg-config is optional (it is used explicitly only in the samples/c/build_all.sh script). 

• RPM and ldconfig are not supported by default. Use configure+make+sudo make install to 
build and install OpenCV, update DYLD_LIBRARY_PATH (unless ./configure --
prefix=/usr is used). 

For full functionality, you should install libpng, libtiff, libjpeg and libjasper from darwinports and/or fink 
and make them available to ./configure (see ./configure --help). Then: 

sudo port selfupdate 
sudo port install opencv 

                                                                                                                                                                                     
12 To build OpenCV using Red Hat Package Managers (RPMs), use rpmbuild –ta OpenCV-x.y.z.tar.gz 
(for RPM 4.x or later), or rpm –ta OpenCV-x.y.z.tar.gz (for earlier versions of RPM), where OpenCV-
x.y.z.tar.gz should be put in /usr/src/redhat/SOURCES/ or a similar directory. Then install OpenCV using rpm -i 
OpenCV-x.y.z.*.rpm. 



Notes on Building with CMake 

The modern OpenCV library relies on CMake in its build system. This has the advantage of making the 
platform much easier to work with in a cross-platform environment.  Whether you are using the command 
line version of CMake on Linux (or on Windows using a command line environment such as Cygwin), or 
using a visual interface to CMake such as cmake-gui, you can build OpenCV in just about any environment 
in the same way. 

If you are not already familiar with CMake, the essential concept behind CMake is to allow the developers 
to specify all of the information needed for compilation in a platform independent way (files called 
CMakeLists.txt files), which CMake then converts to the platform dependent files used in your environment 
(e.g., makefiles on Unix and projects or workspaces in the Windows visual environment). 

When you use CMake, you can supply additional options which tell CMake how to proceed in the 
generation of the build files.  For example, it is CMake which you tell if you want a debug or release library 
or if you do or do not want to include a feature like the Intel Performance Primitives (IPP).   An example 
CMake command line invocation, which we encountered earlier, might be: 

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local .. 

The last argument ‘..’ is actually a directory specification, which tells CMake where the root of the source 
directory to build is. In this case it is set to ‘..’ (the directory above) because it is conventional in OpenCV 
to actually do the build in a subdirectory of the OpenCV root.  

In this case, the –D option is used to set environment variables which CMake will use to determine what to 
put in your build files. These environment variables might be essentially enumerated values (such as 
RELEASE or DEBUG for CMAKE_BUILD_TYPE), or they might be strings (such as ‘/usr/local’ for 
CMAKE_INSTALL_PREFIX).  Below is a partial list13 containing many of the common options that you 
are likely to want. 

Table 1-1: Basic CMake options you will probably need. 

Option   Definition Accepted Values 

CMAKE_BUILD_TYPE Controls release vs. debug build RELEASE or DEBUG 

CMAKE_INSTALL_PREFIX  Where to put installed library Path, e.g. /usr/local 

CMAKE_VERBOSE Lots of extra information from CMake ON or OFF 

 

Table 1-2: Options which introduce features into the library. All of these can be either ON or OFF. 

Option  Definition Default 

WITH_1394 Use libdc1394 ON 

WITH_CUDA CUDA support, requires toolkit OFF 

WITH_EIGEN2 Use Eigen library for linear algebra ON 

WITH_FFMPEG Use ffmpeg for video I/O ON 

                                                             
13 You are probably wondering: “why not a complete list?” The reason is simply that the available options fluctuate 
with the passage of time. The ones we list here are some of the more important ones however which are likely to stay 
intact into the foreseeable future. 



WITH_OPENGL enable wrappers for OpenGL objects in 
the core module and the function: 
cv::setOpenGLDrawCallback()   

OFF 

WITH_GSTREAMER Include Gstreamer support ON 

WITH_GTK Include GTK support ON 

WITH_IPP Intel Performance Primitives14 OFF 

WITH_JASPER JPEG 2000 support for imread() ON 

WITH_JPEG JPEG support for imread() ON 

WITH_MIKTEX PDF documentation on Windows OFF 

WITH_OPEN_EXR EXR support for imread() ON 

WITH_OPENCL OpenCL support (similar to CUDA) OFF 

WITH_OPENNI Support for Kinect cameras OFF 

WITH_PNG PNG support for loading ON 

WITH_QT Qt based Highgui functions OFF 

WITH_QUICKTIME Use Quicktime for video I/O (instead of 
QTKit – Mac only) 

OFF 

WITH_TBB Intel Thread Building Blocks OFF 

WITH_TIFF TIFF support for imread() ON 

WITH_UNICAP Use Unicap library, provides I/O 
support for cameras using this standard. 

OFF 

WITH_V4L Video for Linux support ON 

WITH_VIDEOINPUT Use alternate library for video I/O 
(Windows only) 

OFF 

WITH_XIMEA Support for Ximea cameras OFF 

WITH_XINE Enable Xine multimedia library for 
video 

OFF 

ENABLE_SOLUTION_FOLDERS Categorize binaries inside directories in 
Solution Explorer 

OFF 

                                                             
14 Associated with the WITH_IPP option, there is also the IPP_PATH option. The IPP_PATH can be set to any normal 
path name and indicates where the IPP libraries should be found. However, it should not be necessary if you have these 
libraries in the “usual” place for your platform. 



 

Table 1.3: Options passed by CMake to the compiler. 

Option  Definition Default 

ENABLE_SSE Enable Streaming SIMD (SSE) instructions ON 

ENABLE_SSE2  Enable Intel SSE 2 instructions ON 

ENABLE_SSE3  Enable Intel SSE 3 instructions OFF 

ENABLE_SSSE3 Enable Supplemental SSE 3 instructions OFF 

ENABLE_SSE41 Enable Intel SSE 4.1 instructions OFF 

ENABLE_SSE42 Enable Intel SSE 4.1 instructions OFF 

USE_O3 Enable high optimization (i.e. –o3) ON 

USE_OMIT_FRAME_POINTER Enable omit frame pointer (i.e. –fomit-
frame-pointer) 

ON 

 

Table 1-4: ‘Build’ options control exactly what gets created at compile time. All of these can be either ON or 
OFF. In most all cases the default is OFF. 

Option Definition Default 

BUILD_DOCS Generate OpenCV documentation OFF 

BUILD_EXAMPLES Generate example code OFF 

BUILD_JAVA_SUPPORT Create Java OpenCV libraries OFF 

BUILD_PYTHON_SUPPORT Deprecated (use 
BUILD_NEW_PYTHON_SUPPORT) 

OFF 

BUILD_NEW_PYTHON_SUPPORT Create Python OpenCV libraries ON 

BUILD_PACKAGE Create zip archive with OpenCV sources OFF 

BUILD_SHARED_LIBS Build OpenCV as dynamic library (default is 
static) 

ON 

BUILD_TESTS Build test programs for each OpenCV 
module 

ON 

BUILD_PERF_TESTS Build available function performance tests OFF 



 

Table 1-5: 'Install' options determine what compiled executables get placed in your binaries area. 

INSTALL_C_EXAMPLES  Install the C and C++ examples in 
the “usual” place for binaries 

OFF 

INSTALL_PYTHON_EXAMPLES  Install the Python examples in the 
“usual” place for binaries 

OFF 

Not listed in these tables are additional variables which can be set to indicate the locations of various 
libraries (e.g., libjasper, etc.) in such case as they are not in their default locations. For more information on 
these more obscure options, a visit to the online documentation at http://opencv.org is recommended. 

Getting the Latest OpenCV via Git 
OpenCV is under active development, and bugs are often fixed rapidly when reports contain accurate 
descriptions and code that demonstrates the bug. However, official major OpenCV releases only occur two 
to four times a year. If you are seriously developing a project or product, you will probably want code fixes 
and updates as soon as they become available. To do this, you will need to access OpenCV’s Git repository 
on Github. 

This isn’t the place for a tutorial in Git usage. If you’ve worked with other open source projects then you’re 
probably familiar with it already. If you haven’t, check out Version Control with Git by Jon Loeliger 
(O’Reilly). A command-line Git client is available for Linux, OS X, and most UNIX-like systems. For 
Windows users, we recommend TortoiseGit (http://code.google.com/p/tortoisegit/). 

On Windows, if you want the latest OpenCV from the Git repository then you’ll need to clone the OpenCV 
repository on https://github.com/Itseez/opencv.git. 

On Linux and Mac, you can just use the following command: 
git clone https://github.com/Itseez/opencv.git  

More OpenCV Documentation 
The primary documentation for OpenCV is the HTML documentation available at: http//opencv.org. In 
addition to this, there are extensive tutorials on many subjects at 
http://docs.opencv.org/doc/tutorials/tutorials.html, and an OpenCV Wiki (currently located at 
http://code.opencv.org/projects/opencv/wiki). 

Online Documentation and the Wiki 
As briefly mentioned earlier, there is extensive documentation as well as a wiki available at 
http://opencv.org. The documentation there is divided into several major components:  

• Reference (http://docs.opencv.org/): This section contains the functions, their arguments, and 
some information on how to use them. 

• Tutorials (http://docs.opencv.org/doc/tutorials/tutorials.html): There is a large collection of 
tutorials, these tell you how to accomplish various things.  There are tutorials for basic subjects, 
like how to install OpenCV or create OpenCV projects on various platforms, and more advanced 
topics like background subtraction of object detection. 

• Quick Start (http://opencv.org/quickstart.html): This is really a tightly curated subset of the 
tutorials, containing just ones that help you get up and running on specific platforms. 



• Cheat Sheet (http://docs.opencv.org/trunk/opencv_cheatsheet.pdf): This is actually a single .pdf 
file which contains a truly excellent compressed reference to almost the entire library. Thank 
Vadim Pisarevsky for this excellent reference as you pin these two beautiful pages to your cubicle 
wall. 

• Wiki (http://code.opencv.org/projects/opencv/wiki): The wiki contains everything you could 
possible want and more. This is where the roadmap can be found, as well as news, open issues, 
bugs tracking, and countless deeper topics like how to become a contributor to OpenCV. 

• Q&A (http://answers.opencv.org/questions): This is a vast archive of literally thousands of 
questions people have asked, and answered.  You can go there to ask questions of the OpenCV 
community, or to help others by answering their questions. 

All of these are accessible under the “Documentation” button on the OpenCV.org homepage.  Of all of 
those great resources, one warrants a little more discussion here, which is the Reference. The reference is 
divided into several sections, each of which pertains to what is called a module in the library. The exact 
module list has evolved over time, but the modules are the primary organizational structure in the library.  
Every function in the library is part of one module. Here are the current modules: 

• core: The “core” is the section of the library which contains all of the basic object types and their 
basic operations. 

• imgproc: The image processing module contains basic transformations on images, including filters 
and similar convolutional operators. 

• highgui: This HighGUI module contains user interface functions which can be used to display 
images or take simple user input. It can be thought of as a very light weight window UI toolkit. 

• video: The video library contains the functions you need to read and write video streams. 

• calib3d: This module contains implementations of algorithms you will need to calibrate single 
cameras as well as stereo or multi-camera arrays. 

• features2d: The features2d module contains algorithms for detecting, describing, and matching 
keypoint features. 

• objdetect: This module contains algorithms for detecting specific objects, such as faces or 
pedestrians. You can train the detectors to detect other objects as well. 

• ml: The Machine Learning Library is actually an entire library in itself, and contains a wide array 
of machine learning algorithms implemented in such as way as to work with the natural data 
structures of OpenCV. 

• flann: FLANN stands for “Fast Library for Approximate Nearest Neighbors”. This library contains 
methods you will not likely use directly, but which are used by other functions in other modules 
for doing nearest neighbor searches in large data sets. 

• gpu: The GPU library contains implementations of most of the rest of the library functions 
optimized for operation on CUDA GPUs. There are also some functions which are only 
implemented for GPU operation. Some of these provide excellent results but require 
computational resources sufficiently high that implementation on non-GPU hardware would 
provide little utility. 

• photo: This is a relatively new module which contains tools useful for computational photography. 

• stitching: This entire module implements a sophisticated image stitching pipeline. This is new 
functionality in the library but, like the ‘photo’ module is a place where future growth is expected. 

• nonfree: OpenCV contains some implementations of algorithms which are patented or are 
otherwise burdened by some usage restrictions (e.g., the SIFT algorithm). Those algorithms are 
segregated off to their own module, so that you will know that you will need to do some kind of 
special work in order to use them in a commercial product. 



• contrib: This module contains new things that have yet to be blessed into the whole of the library. 

• legacy: This module contains old things that have yet to be banished from the library altogether. 

• ocl: The OCL module is a newer module, which could be considered analogous to the GPU 
module, except that it relies on OpenCL, a Khronos standard for open parallel computing. Though 
less featured than the GPU module at this time, the OCL module aims to provide implementations 
which can run on any GPU or other device supporting OpenCL. (This is in contrast to the GPU 
module which explicitly makes use of the Nvidia CUDA toolkit and so will only work on Nvidia 
GPU devices.)  

Despite the ever-increasing quality of this online documentation, one task which is not within their scope is 
to provide a proper understanding of the algorithms implemented or of the exact meaning of the parameters 
these algorithms require. This book aims to provide this information, as well as a more in depth 
understanding of all of the basic building blocks of the library. 

Exercises 
1. Download and install the latest release of OpenCV. Compile it in debug and release mode. 
2. Download and build the latest trunk version of OpenCV using Git. 
3. Describe at least three ambiguous aspects of converting 3D inputs into a 2D representation. How 

would you overcome these ambiguities? 
4. What shapes can a rectangle take when you look at in with perspective distortion (that is, when you 

look at it in the real world)? 
5. Describe how you might start processing the image in Figure 1-1 to identify the mirror on the car? 
6. How might you tell the difference between a edges in an image created by: 

a) A shadow? 
b) Paint on a surface? 
c) Two sides of a brick? 
d) The side of an object and the background? 

 



2 
Introduction to OpenCV 2.x 

Include files 
After installing the OpenCV library and setting up our programming environment, our next task is to make 
something interesting happen with code. In order to do this, we’ll have to discuss header files. Fortunately, 
the headers reflect the new, modular structure of OpenCV introduced in Chapter 1. The main header file of 
interest is …/include/opencv2/opencv.hpp. This header file just calls the header files for each OpenCV 
module: 

#include "opencv2/core/core_c.h" 

Old C data structures and arithmetic routines. 

#include "opencv2/core/core.hpp" 

New C++ data structures and arithmetic routines. 

#include "opencv2/flann/miniflann.hpp" 

Approximate nearest neighbor matching functions. (Mostly for internal use) 

#include "opencv2/imgproc/imgproc_c.h" 

Old C image processing functions. 

#include "opencv2/imgproc/imgproc.hpp" 

New C++ image processing functions.  

#include "opencv2/video/photo.hpp"  

Algorithms specific to handling and restoring photographs.  

#include "opencv2/video/video.hpp" 

Video tracking and background segmentation routines. 

#include "opencv2/features2d/features2d.hpp" 

Two-dimensional feature tracking support. 

#include "opencv2/objdetect/objdetect.hpp" 

Cascade face detector; latent SVM; HoG; planar patch detector. 



#include "opencv2/calib3d/calib3d.hpp" 

Calibration and stereo. 

#include "opencv2/ml/ml.hpp" 

Machine learning: clustering, pattern recognition. 

#include "opencv2/highgui/highgui_c.h" 

Old C image display, sliders, mouse interaction, I/O. 

#include "opencv2/highgui/highgui.hpp" 

New C++ image display, sliders, buttons, mouse, I/O. 

#include "opencv2/contrib/contrib.hpp"  

User-contributed code: flesh detection, fuzzy mean-shift tracking, spin images, self-similar features. 
 
You may use the include file opencv.hpp to include any and every possible OpenCV function but, since it 
includes everything, it will cause compile time to be slower.  If you are only using, say, image processing 
functions, compile time will be faster if you only include opencv2/imgproc/imgproc.hpp. These include 
files are located on disk under the …/modules directory. For example, imgproc.hpp is located at 
…/modules/imgproc/include/opencv2/imgproc/imgproc.hpp. Similarly, the sources for the functions 
themselves are located under their corresponding src directory. For example, cv::Canny() in the 
imgproc module is located in …/modules/improc/src/canny.cpp. 
 
With the above include files, we can start our first C++ OpenCV program. 

Legacy code such as the older blob tracking, hmm face detection, condensation tracker, 
and eigen objects can be included using opencv2/legacy/legacy.hpp, which is located in 
…/modules/legacy/include/opencv2/legacy/legacy.hpp. 

First Program—Display a Picture 
OpenCV provides utilities for reading from a wide array of image file types, as well as from video and 
cameras. These utilities are part of a toolkit called HighGUI, which is included in the OpenCV package. On 
the http://opencv.org site, you can go to the tutorial pages off of the documentation links at 
http://docs.opencv.org/doc/tutorials/tutorials.html to see tutorials on various aspects of using OpenCV. 

In the tutorial section, the “introduction to OpenCV” tutorial explains how to set up OpenCV for 
various combinations of operating systems and development tools. 

We will use an example from the “highgui module” to create a simple program that opens an image and 
displays it on the screen (Example 2-1). 

Example 2-1: A simple OpenCV program that loads an image from disk and displays it on the screen 

#include <opencv2/opencv.hpp> //Include file for every supported OpenCV function 
 
int main( int argc, char** argv ) { 
  cv::Mat img = cv::imread(argv[1],-1); 
  if( img.empty() ) return -1; 
  cv::namedWindow( "Example1", cv::WINDOW_AUTOSIZE ); 
  cv::imshow( "Example1", img ); 
  cv::waitKey( 0 ); 
  cv::destroyWindow( "Example1" ); 
} 

Note that OpenCV functions live within a namespace called cv.  To call OpenCV functions, you must 
explicitly tell the compiler that you are talking about the cv namespace by prepending cv:: to each function 



call. To get out of this bookkeeping chore, we can employ the using namespace cv; directive as 
shown in Example 2-21. This tells the compiler to assume that functions might belong to that namespace. 
Note also the difference in include files between Example 2-1 and Example 2-2; in the former, we used the 
general include opencv.hpp, whereas in the latter, we used only the necessary include file to improve 
compile time. 

Example 2-2: Same as Example 2-1 but employing the “using namespace” directive. For faster compile, we 
use only the needed header file, not the generic opencv.hpp. 

#include "opencv2/highgui/highgui.hpp" 
 
using namespace cv; 
 
int main( int argc, char** argv ) { 
  Mat img = imread( argv[1], -1 ); 
  if( img.empty() ) return -1; 
  namedWindow( "Example2", WINDOW_AUTOSIZE ); 
  imshow( "Example2", img ); 
  waitKey( 0 ); 
  destroyWindow( "Example2" ); 
} 

When compiled and run from the command line with a single argument, Example 2-1 loads an image into 
memory and displays it on the screen. It then waits until the user presses a key, at which time it closes the 
window and exits. Let’s go through the program line by line and take a moment to understand what each 
command is doing. 

cv::Mat img = cv::imread( argv[1], -1 ); 

This line loads the image.2 The function cv::imread() is a high-level routine that determines the file 
format to be loaded based on the file name; it also automatically allocates the memory needed for the image 
data structure. Note that cv::imread() can read a wide variety of image formats, including BMP, DIB, 
JPEG, JPE, PNG, PBM, PGM, PPM, SR, RAS, and TIFF. A cv::Mat structure is returned. This structure 
is the OpenCV construct with which you will deal the most. OpenCV uses this structure to handle all kinds 
of images: single-channel, multichannel, integer-valued, floating-point-valued, and so on.  The line 
immediately following 

if( img.empty() ) return -1; 

checks to see if an image was in fact read. Another high-level function, cv::namedWindow(), opens a 
window on the screen that can contain and display an image. 

cv::namedWindow( "Example2", cv::WINDOW_AUTOSIZE ); 

This function, provided by the HighGUI library, also assigns a name to the window (in this case, 
"Example2"). Future HighGUI calls that interact with this window will refer to it by this name. 

The second argument to cv::namedWindow() defines window properties. It may be set either to 0 (the 
default value) or to cv::WINDOW_AUTOSIZE. In the former case, the size of the window will be the 
same regardless of the image size, and the image will be scaled to fit within the window. In the latter case, 
the window will expand or contract automatically when an image is loaded so as to accommodate the 
image’s true size but may be resized by the user. 
                                                             
1 Of course, once you do this, you risk conflicting names with other potential namespaces. If the function foo() 
exists, say, in the cv and std namespaces, you must specify which function you are talking about using either 
cv::foo() or std::foo() as you intend. In this book, other than in our specific example of Example 2-2, we 
will use the explicit form cv:: for objects in the OpenCV namespace, as this is generally considered to be better 
programming style.   
2 A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional error 
message for the user. We will abbreviate such necessities in this book and assume that the reader is cultured enough to 
understand the importance of error-handling code. 



cv::imshow( "Example2", img ); 

Whenever we have an image in a cv::Mat structure, we can display it in an existing window with 
cv::imshow().3 On the call to cv::imshow(), the window will be redrawn with the appropriate 
image in it, and the window will resize itself as appropriate if it was created using the 
cv::WINDOW_AUTOSIZE flag. 

cv::waitKey( 0 ); 

The cv::waitKey() function asks the program to stop and wait for a keystroke. If a positive argument 
is given, the program will wait for that number of milliseconds and then continue even if nothing is 
pressed. If the argument is set to 0 or to a negative number, the program will wait indefinitely for a key-
press. This function has another very important role: It handles any windowing events, such as creating 
windows and drawing their content. So it must be used after cv::imshow() in order to display that 
image. 

With cv::Mat, images are automatically deallocated when they go out of scope, similar to the STL-style 
container classes. This automatic deallocation is controlled by an internal reference counter. For the most 
part, this means we no longer need to worry about the allocation and deallocation of images, which relieves 
the programmer from much of the tedious bookkeeping that the OpenCV 1.0 IplImage imposed. 

cv::destroyWindow( "Example2" ); 

Finally, we can destroy the window itself. The function cv::destroyWindow() will close the window 
and deallocate any associated memory usage. For short programs, we will skip this step. For longer, 
complex programs, the programmer should make sure to tidy up the windows before they go out of scope 
to avoid memory leaks. 

Our next task will be to construct a very simple—almost as simple as this one—program to read in and 
display a video file. After that, we will start to tinker a little more with the actual images. 

Second Program—Video 
Playing a video with OpenCV is almost as easy as displaying a single picture. The only new issue we face 
is that we need some kind of loop to read each frame in sequence; we may also need some way to get out of 
that loop if the movie is too boring. See Example 2-3. 

Example 2-3: A simple OpenCV program for playing a video file from disk. In this example we only use 
specific module headers, rather than just opencv.hpp. This speeds up compilation, and so is sometimes 

preferable. 

#include "opencv2/highgui/highgui.hpp" 
#include "opencv2/imgproc/imgproc.hpp" 
 
int main( int argc, char** argv ) {  
  cv::namedWindow( "Example3", cv::WINDOW_AUTOSIZE ); 
  cv::VideoCapture cap; 
  cap.open( string(argv[1]) ); 
  cv::Mat frame; 
  while( 1 ) { 
   cap >> frame;  
 if( !frame.data ) break;             // Ran out of film 
    cv::imshow( "Example3", frame ); 
    if( cv::waitKey(33) >= 0 ) break; 
  } 
  return 0; 
} 
 

                                                             
3 In the case where there is no window in existence at the time you call imshow(), one will be created for you with 
the name you specified in the imshow() call. This window can still be destroyed as usual with destroyWindow(). 



Here we begin the function main() with the usual creation of a named window (in this case, named 
“Example3”). The video capture object cv::VideoCapture is then instantiated. This object can 
open and close video files of as many types as ffmpeg supports.   

cap.open(string(argv[1])); 
cv::Mat frame; 

The capture object is given a string containing the path and filename of the video to be opened. Once 
opened, the capture object will contain all of the information about the video file being read, including state 
information. When created in this way, the cv::VideoCapture object is initialized to the beginning of 
the video. In the program, cv::Mat frame instantiates a data object to hold video frames. 

cap >> frame;  
if( !frame.data ) break; 
cv::imshow( "Example3", frame ); 

Once inside of the while() loop, the video file is read frame by frame from the capture object stream. 
The program checks to see if data was actually read from the video file (if(!frame.data)) and quits if 
not. If a video frame is successfully read in, it is displayed using cv::imshow(). 

if( cv::waitKey(33) >= 0 ) break; 

Once we have displayed the frame, we then wait for 33 ms4. If the user hits a key during that time then we 
will exit the read loop. Otherwise, 33 ms will pass and we will just execute the loop again. On exit, all the 
allocated data is automatically released when they go out of scope. 

Moving Around 
Now it’s time to tinker around, enhance our toy programs, and explore a little more of the available 
functionality. The first thing we might notice about the video player of Example 2-3 is that it has no way to 
move around quickly within the video. Our next task will be to add a slider trackbar, which will give us this 
ability.  For more control, we will also allow the user to single step the video by pressing the ‘s’ key, to go 
into run mode by pressing the ‘r’ key,  and whenever the user jumps to a new location in the video with the 
slider bar, we pause there in single step mode.  

The HighGUI toolkit provides a number of simple instruments for working with images and video beyond 
the simple display functions we have just demonstrated. One especially useful mechanism is the trackbar, 
which enables us to jump easily from one part of a video to another. To create a trackbar, we call 
cv::createTrackbar() and indicate which window we would like the trackbar to appear in. In order 
to obtain the desired functionality, we need a callback that will perform the relocation. Example 2-4 gives 
the details. 

Example 2-4: Program to add a trackbar slider to the basic viewer window for moving around within the 
video file 

#include "opencv2/highgui/highgui.hpp" 
#include "opencv2/imgproc/imgproc.hpp" 
#include <iostream> 
#include <fstream> 
 
using namespace std; 
 
int g_slider_position = 0; 
int g_run = 1, g_dontset = 0; //start out in single step mode 
cv::VideoCapture g_cap; 

                                                             
4 You can wait any amount of time you like. In this case, we are simply assuming that it is correct to play the video at 
30 frames per second and allow user input to interrupt between each frame (thus we pause for input 33 ms between 
each frame). In practice, it is better to check the cv::VideoCapture structure in order to determine the actual 
frame rate of the video (more on this in Chapter 4).  



 
void onTrackbarSlide( int pos, void *) { 
  g_cap.set( cv::CAP_PROP_POS_FRAMES, pos ); 
  if( !g_dontset ) 
    g_run = 1; 
  g_dontset = 0; 
} 
 
int main( int argc, char** argv ) { 
  cv::namedWindow( "Example2_4", cv::WINDOW_AUTOSIZE ); 
  g_cap.open( string(argv[1]) ); 
  int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT); 
  int tmpw   = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH); 
  int tmph   = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT); 
  cout << "Video has " << frames << " frames of dimensions("  
       << tmpw << ", " << tmph << ")." << endl; 
  cv::createTrackbar("Position", "Example2_4", &g_slider_position, frames, 
                 onTrackbarSlide); 
  cv::Mat frame; 
  while(1) { 
    if( g_run != 0 ) { 
      g_cap >> frame; if(!frame.data) break; 
      int current_pos = (int)g_cap.get(cv::CAP_PROP_POS_FRAMES); 
      g_dontset = 1; 
      cv::setTrackbarPos("Position", "Example2_4", current_pos); 
      cv::imshow( "Example2_4", frame ); 
      g_run-=1; 
    } 
    char c = (char) cv::waitKey(10); 
    if(c == 's') // single step 
      {g_run = 1; cout << "Single step, run = " << g_run << endl;} 
    if(c == 'r') // run mode 
      {g_run = -1; cout << "Run mode, run = " << g_run <<endl;} 
    if( c == 27 ) 
      break; 
  } 
  return(0); 
} 
 

In essence, the strategy is to add a global variable to represent the trackbar position and then add a callback 
that updates this variable and relocates the read position in the video. One call creates the trackbar and 
attaches the callback, and we are off and running.5 Let’s look at the details starting with the global 
variables. 

int g_slider_position = 0; 
int g_run = 1, g_dontset = 0;      // start out in single step mode 
VideoCapture g_cap; 

First we define a global variable, g_slider_position, to keep the trackbar slider position state. The 
callback will need access to the capture object g_cap, so we promote that to a global variable as well. 
Because we are considerate developers and like our code to be readable and easy to understand, we adopt 
the convention of adding a leading g_ to any global variable. We also instantiate another global variable, 
g_run, which displays new frames as long it is different from zero. A positive number tells how many 
frames are displayed before stopping; a negative number means the system runs in continuous video mode.  

To avoid confusion, when the user clicks on the trackbar to jump to a new location in the video, we’ll leave 
the video paused there in the single step state by setting g_run = 1. This, however, brings up a subtle 
problem: as the video advances, we’d like the slider trackbar position in the display window to advance 
according to our location in the video. We do this by having the main program call the trackbar callback 
                                                             
5 Note that some AVI and mpeg encodings do not allow you to move backward in the video. 



function to update the slider position each time we get a new video frame. However, we don’t want these 
programmatic calls to the trackbar callback to put us into single step mode. To avoid this, we introduce a 
final global variable, g_dontset to allow us to update trackbar position without triggering single state 
mode.   

void onTrackbarSlide(int pos, void *) { 
  g_cap.set(cv::CAP_PROP_POS_FRAMES, pos); 
  if(!g_dontset) 
    g_run = 1; 
  g_dontset = 0; 
} 

Now we define a callback routine to be used when the user pokes the trackbar. This routine will be passed a 
32-bit integer, pos, which will be the new trackbar position. Inside this callback, we use the new requested 
position in cv::g_cap.set() to actually advance the video playback to the new position.  The if 
statement just sets the program to go into single step mode after the next new frame comes in, but only if 
the callback was triggered by a user click, not if the callback was called from the main function (which sets 
g_dontset). 

The call to cv::g_cap.set() is one we will see often in the future, along with its counterpart 
cv::g_cap.get(). These routines allow us to configure (or query in the latter case) various properties 
of the cv::VideoCapture object. In this case, we pass the argument 
cv::CAP_PROP_POS_FRAMES, which indicates that we would like to set the read position in units of 
frames.6   

  int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT); 
  int tmpw   = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH); 
  int tmph   = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT); 
  cout << "Video has " << frames << " frames of dimensions("  
       << tmpw << ", " << tmph << ")." << endl; 

The core of the main program is the same as in Example 2-3, so we’ll focus on what we’ve added. The first 
difference after opening the video is that we use cv::g_cap.get() to determine the number of frames 
in the video and the width and height of the video images. These numbers are printed out. We’ll need the 
number of frames in the video to calibrate the slider (in the next step). 

  createTrackbar("Position", "Example2_4", &g_slider_position, frames, 
                 onTrackbarSlide); 

Next we create the trackbar itself. The function cv::createTrackbar() allows us to give the trackbar 
a label7 (in this case, Position) and to specify a window to put the trackbar in. We then provide a 
variable that will be bound to the trackbar, the maximum value of the trackbar (the number of frames in the 
video), and a callback (or NULL if we don’t want one) for when the slider is moved.  

    if( g_run != 0 ) { 
      g_cap >> frame; if(!frame.data) break; 
      int current_pos = (int)g_cap.get(cv::CAP_PROP_POS_FRAMES); 
      g_dontset = 1; 
      cv::setTrackbarPos("Position", "Example2_4", current_pos); 
      cv::imshow( "Example2_4", frame ); 
      g_run-=1; 
    } 

                                                             
6 Because HighGUI is highly civilized, when a new video position is requested, it will automatically handle such issues 
as the possibility that the frame we have requested is not a key-frame; it will start at the previous key-frame and fast 
forward up to the requested frame without us having to fuss with such details. 
7 Because HighGUI is a lightweight, easy-to-use toolkit, cv::createTrackbar() does not distinguish between 
the name of the trackbar and the label that actually appears on the screen next to the trackbar. You may already have 
noticed that cv::namedWindow() likewise does not distinguish between the name of the window and the label that 
appears on the window in the GUI. 



In the while loop, in addition to reading and displaying the video frame, we also get our current position in 
the video, set the g_dontset so that the next trackbar callback will not put us into single step mode, and 
then invoke the trackbar callback to update the position of the slider displayed to the user. The global 
g_run is decremented, which has the effect of either keeping us in single step mode or of letting the video 
run depending on its prior state set by user interaction via keyboard, as we’ll see next. 

    char c = (char) cv::waitKey(10); 
    if(c == 's') // single step 
      {g_run = 1; cout << "Single step, run = " << g_run << endl;} 
    if(c == 'r') // run mode 
      {g_run = -1; cout << "Run mode, run = " << g_run <<endl;} 
    if( c == 27 ) 
      break; 

At the bottom of the while loop, we look for keyboard input from the user.  If ‘s’ has been pressed, we go 
into single step mode (g_run is set to 1 which allows reading of a single frame above). If ‘r’ is pressed, we 
go into continuous video mode (g_run is set to -1 and further decrementing leaves it negative for any 
conceivable sized video). Finally, if ESC is pressed, the program will terminate. Note again, for short 
programs, we’ve omitted the step of cleaning up the window storage using cv::destroyWindow(). 

A Simple Transformation 
Great! Now you can use OpenCV to create your own video player, which will not be much different from 
countless video players out there already. But we are interested in computer vision, and we want to do 
some of that. Many basic vision tasks involve the application of filters to a video stream. We will modify 
the program we already have to do a simple operation on every frame of the video as it plays. 

One particularly simple operation is the smoothing of an image, which effectively reduces the information 
content of the image by convolving it with a Gaussian or other similar kernel function. OpenCV makes 
such convolutions exceptionally easy to do. We can start by creating a new window called "Example4-
out", where we can display the results of the processing. Then, after we have called 
cv::showImage() to display the newly captured frame in the input window, we can compute and 
display the smoothed image in the output window. See Example 2-5. 

Example 2-5: Loading and then smoothing an image before it is displayed on the screen 

#include <opencv2/opencv.hpp> 
 
void example2_5( cv::Mat & image ) { 
  // Create some windows to show the input 
  // and output images in. 
  // 
  cv::namedWindow( "Example2_5-in", cv::WINDOW_AUTOSIZE ); 
  cv::namedWindow( "Example2_5-out", cv::WINDOW_AUTOSIZE ); 
    
  // Create a window to show our input image 
  // 
  cv::imshow( "Example2_5-in", image ); 
     
  // Create an image to hold the smoothed output 
  cv::Mat out; 
     
  // Do the smoothing 
  //  Could use GaussianBlur(), blur(), medianBlur() or bilateralFilter(). 
  cv::GaussianBlur( image, out, cv::Size(5,5), 3, 3); 
  cv::GaussianBlur(   out, out, cv::Size(5,5), 3, 3); 
     
  // Show the smoothed image in the output window 
  // 
  cv::imshow( "Example2_5-out", out ); 



 
  // Wait for the user to hit a key, windows will self destruct 
  // 
  cv::waitKey( 0 ); 
} 

The first call to cv::showImage() is no different than in our previous example. In the next call, we 
allocate another image structure. Next, the C++ object cv::Mat makes life simpler for us; we just 
instantiate an output matrix “out” and it will automatically resize/reallocate and deallocate itself as 
necessary as it is used. To make this point clear, we use it in two consecutive calls to 
cv::GaussianBlur(). In the first call, the input images is blurred by a 5 × 5 Gaussian convolution 
filter and written to out. The size of the Gaussian kernel should always be given as odd numbers since the 
Gaussian kernel (specified here by cv::Size(5,5)) is computed at the center pixel in that area. In the 
next call to cv::GaussianBlur(), out is used as both the input and output since temporary storage is 
assigned for us in this case.  The resulting double-blurred image is displayed and the routine then waits for 
any user keyboard input before terminating and cleaning up allocated data as it goes out of scope. 

A Not-So-Simple Transformation 
That was pretty good, and we are learning to do more interesting things. In Example 2-5, we used Gaussian 
blurring for no particular purpose. We will now use a function that uses Gaussian blurring to downsample it 
by a factor of 2 [Rosenfeld80]. If we downsample the image several times, we form a scale space, or image 
pyramid that is commonly used in computer vision to handle the changing scales in which a scene or object 
is observed.  

For those who know some signal processing and the Nyquist-Shannon Sampling Theorem [Shannon49], 
when you downsample a signal (in this case, create an image where we are sampling every other pixel), it is 
equivalent to convolving with a series of delta functions (think of these as “spikes”). Such sampling 
introduces high frequencies into the resulting signal (image). To avoid this, we want to first run a high-pass 
filter over the signal first to band limit its frequencies so that they are all below the sampling frequency.  In 
OpenCV, this Gaussian blurring and downsampling is accomplished by the function cv::pyrDown(). 
We use this very useful function in Example 2-6. 

Example 2-6: Using cv::pyrDown() to create a new image that is half the width and height of the input 
image 

#include <opencv2/opencv.hpp> 
 
int main( int argc, char** argv ) { 
  cv::Mat img = cv::imread( argv[1] ),img2; 
  cv::namedWindow( "Example1", cv::WINDOW_AUTOSIZE ); 
  cv::namedWindow( "Example2", cv::WINDOW_AUTOSIZE ); 
  cv::imshow( "Example1", img ); 
  cv::pyrDown( img, img2); 
  cv::imshow( "Example2", img2 ); 
  cv::waitKey(0); 
  return 0; 
}; 

Let’s now look at a similar but slightly more involved example involving the Canny edge detector 
[Canny86] cv::Canny() (see Example 2-7). In this case, the edge detector generates an image that is the full 
size of the input image but needs only a single-channel image to write to and so we convert to a gray scale, 
single-channel image first using cv::cvtColor() with the flag to convert blue, green, red images to gray 
scale: cv::BGR2GRAY. 

Example 2-7: The Canny edge detector writes its output to a single-channel (grayscale) image 

#include <opencv2/opencv.hpp> 
 
int main( int argc, char** argv ) { 



 cv::Mat img_rgb = cv::imread( argv[1] ); 
 cv::Mat img_gry, img_cny; 
 cv::cvtColor( img_rgb, img_gry, cv::BGR2GRAY); 
 cv::namedWindow( "Example Gray", cv::WINDOW_AUTOSIZE ); 
 cv::namedWindow( "Example Canny", cv::WINDOW_AUTOSIZE ); 
 cv::imshow( "Example Gray", img_gry ); 
 cv::Canny( img_gry, img_cny, 10, 100, 3, true ); 
 cv::imshow( "Example Canny", img_cny ); 
 cv::waitKey(0); 
} 

This allows us to string together various operators quite easily. For example, if we wanted to shrink the 
image twice and then look for lines that were present in the twice-reduced image, we could proceed as in 
Example 2-8. 

Example 2-8: Combining the pyramid down operator (twice) and the Canny subroutine in a simple image 
pipeline 

cv::cvtColor( img_rgb, img_gry, cv::BGR2GRAY ); 
cv::pyrDown( img_gry, img_pyr ); 
cv::pyrDown( img_pyr, img_pyr2 ); 
cv::Canny( img_pyr2, img_cny, 10, 100, 3, true ); 
// do whatever with 'img_cny' 
// 
... 

In Example 2-9, we show a simple way to read and write pixel values from Example 2-8. 
Example 2-9: Getting and setting pixels in Example 2-8 

  int x = 16, y = 32; 
  cv::Vec3b intensity = img_rgb.at< cv::Vec3b >(y, x); 
  uchar blue  = intensity.val[0]; // We could write img_rgb.at< cv::Vec3b >(x,y)[0] 
  uchar green = intensity.val[1]; 
  uchar red   = intensity.val[2]; 
  std::cout << "At (x,y) = (" << x << ", " << y << 
            "): (blue, green, red) = (" << 
            (unsigned int)blue << 
            ", " << (unsigned int)green << ", " << 
            (unsigned int)red << ")" << std::endl; 
 
  std::cout << "Gray pixel there is: " <<  
               (unsigned int)img_gry.at<uchar>(x, y) << std::endl; 
 
  x /= 4; y /= 4; 
  std::cout << "Pyramid2 pixel there is: " << 
               (unsigned int)img_pyr2.at<uchar>(x, y) << std::endl; 
 
  img_cny.at<uchar>(x, y) = 128; // Set the Canny pixel there to 128 

Input from a Camera 
Vision can mean many things in the world of computers. In some cases, we are analyzing still frames 
loaded from elsewhere. In other cases, we are analyzing video that is being read from disk. In still other 
cases, we want to work with real-time data streaming in from some kind of camera device. 

OpenCV—more specifically, the HighGUI portion of the OpenCV library—provides us with an easy way 
to handle this situation. The method is analogous to how we read videos from disk since the 
cv::VideoCapture object works the same for files on disk or from camera. For the former, you give it 
a path/filename, and for the latter, you give it a camera ID number (typically “0” if only one camera is 
connected to the system).  The default value is –1, which means “just pick one”; naturally, this also works 



quite well when there is only one camera to pick (see Chapter 4 for more details). Camera capture from file 
or from camera is demonstrated in Example 2-10. 

Example 2-10: The same object can load videos from a camera or a file 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
int main( int argc, char** argv ) {  
  cv::namedWindow( "Example2_10", cv::WINDOW_AUTOSIZE ); 
  cv::VideoCapture cap; 
  if (argc==1) { 
   cap.open(0);           // open the default camera 
  } else { 
    cap.open(argv[1]); 
  } 
  if( !cap.isOpened() ) {  // check if we succeeded 
    std::cerr << "Couldn't open capture." << std::endl; 
    return -1; 
  } 
  // The rest of program proceeds as in Example 2-3 
  …   

In Example 2-10, if a filename is supplied, it opens that file just like in Example 2-3, and if no filename is 
given, it attempts to open camera zero (0).  We have added a check that something actually opened that 
will report an error if not. 

Writing to an AVI File 
In many applications, we will want to record streaming input or even disparate captured images to an 
output video stream, and OpenCV provides a straightforward method for doing this. Just as we are able to 
create a capture device that allows us to grab frames one at a time from a video stream, we are able to 
create a writer device that allows us to place frames one by one into a video file. The object that allows us 
to do this is cv::VideoWriter. 

Once this call has been made, we may stream each frame to the cv::VideoWriter object, and finally 
call its cv::VideoWriter.release() method when we are done. Just to make things more 
interesting, Example 2-11 describes a program that opens a video file, reads the contents, converts them to 
a log-polar format (something like what your eye actually sees, as described in Chapter 6), and writes out 
the log-polar image to a new video file. 

Example 2-11: A complete program to read in a color video and write out the log-polar transformed video 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
int main( int argc, char* argv[] ) { 
  cv::namedWindow( "Example2_10", cv::WINDOW_AUTOSIZE ); 
  cv::namedWindow( "Log_Polar", cv::WINDOW_AUTOSIZE ); 
  cv::VideoCapture capture; 
  double fps = capture.get( cv::CAP_PROP_FPS ); 
  cv::Size size( 
    (int)capture.get( cv::CAP_PROP_FRAME_WIDTH ), 
    (int)capture.get( cv::CAP_PROP_FRAME_HEIGHT ) 
  ); 
  cv::VideoWriter writer; 
  writer.open( argv[2], CV_FOURCC('M','J','P','G'), fps, size ); 
  cv::Mat logpolar_frame(size,CV::U8C3), bgr_frame; 
  for(;;) { 
    capture >> bgr_frame; 
    if( bgr_frame.empty() ) break; // end if done 



    cv::imshow( "Example2_10", bgr_frame ); 
    cv::logPolar(  
      bgr_frame,                      // Input color frame 
      logpolar_frame,                 // Output log-polar frame 
      cv::Point2f(                    // Centerpoint for log-polar transformation 
        bgr_frame.cols/2,             //  x 
        bgr_frame.rows/2              //  y 
      ), 
      40,                             // Magnitude (scale parameter) 
      cv::WARP_FILL_OUTLIERS          // Fill outliers with ‘zero’ 
    ); 
    cv::imshow( "Log_Polar", logpolar_frame ); 
    writer << logpolar_frame; 
    char c = cv::waitKey(10); 
    if( c == 27 ) break;        // allow the user to break out 
  } 
  capture.release(); 
} 

Looking over this program reveals mostly familiar elements. We open one video and read some properties 
(frames per second, image width and height) that we’ll need to open a file for the cv::VideoWriter 
object. We then read the video frame by frame from the cv::VideoReader object, convert the frame to 
log-polar format, and write the log-polar frames to this new video file one at a time until there are none left 
or until the user quits by pressing ESC. Then we close up. 

The call to cv::VideoWriter object contains several parameters that we should understand. The first is 
just the filename for the new file. The second is the video codec with which the video stream will be 
compressed. There are countless such codecs in circulation, but whichever codec you choose must be 
available on your machine (codecs are installed separately from OpenCV). In our case, we choose the 
relatively popular MJPG codec; this is indicated to OpenCV by using the macro CV_FOURCC(), which 
takes four characters as arguments. These characters constitute the “four-character code” of the codec, and 
every codec has such a code. The four-character code for motion jpeg is “MJPG,” so we specify that as 
CV_FOURCC('M','J','P','G'). The next two arguments are the replay frame rate and the size of 
the images we will be using. In our case, we set these to the values we got from the original (color) video. 

Summary 
Before moving on to the next chapter, we should take a moment to take stock of where we are and look 
ahead to what is coming. We have seen that the OpenCV API provides us with a variety of easy-to-use 
tools for reading and writing still images and videos from and to files along with capturing video from 
cameras. We have also seen that the library contains primitive functions for manipulating these images. 
What we have not yet seen are the powerful elements of the library, which allow for more sophisticated 
manipulation of the entire set of abstract data types that are important to practical vision problem solving. 

In the next few chapters, we will delve more deeply into the basics and come to understand in greater detail 
both the interface-related functions and the image data types. We will investigate the primitive image 
manipulation operators and, later, some much more advanced ones. Thereafter, we will be ready to explore 
the many specialized services that the API provides for tasks as diverse as camera calibration, tracking, and 
recognition. Ready? Let’s go! 

Exercises 
Download and install OpenCV if you have not already done so. Systematically go through the directory 
structure. Note in particular the docs directory, where you can load index.htm, which further links to the 
main documentation of the library. Further explore the main areas of the library. The core module contains 
the basic data structures and algorithms, imgproc contains the image processing and vision algorithms, ml 



includes algorithms for machine learning and clustering, and highgui contains the I/O functions. Check out 
the …/samples/cpp directory, where many useful examples are stored. 

1. Using the install and build instructions in this book or on the website http://opencv.org, build the 
library in both the debug and the release versions. This may take some time, but you will need the 
resulting library and dll files. Make sure you set the cmake file to build the samples …/opencv/samples/ 
directory. 

2. Go to where you built the …/opencv/samples/ directory (the authors build in 
…/trunk/eclipse_build/bin) and look for lkdemo.c (this is an example motion tracking program). Attach 
a camera to your system and run the code. With the display window selected, type “r” to initialize 
tracking. You can add points by clicking on video positions with the mouse. You can also switch to 
watching only the points (and not the image) by typing “n.” Typing “n” again will toggle between 
“night” and “day” views. 

3. Use the capture and store code in Example 2-11 together with the cv::PyrDown() code of Example 
2-6 to create a program that reads from a camera and stores down-sampled color images to disk. 

4. Modify the code in Exercise 3 and combine it with the window display code in Example 2-2 to display 
the frames as they are processed. 

5. Modify the program of Exercise 4 with a slider control from Example 2-4 so that the user can 
dynamically vary the pyramid downsampling reduction level by factors of between 2 and 8. You may 
skip writing this to disk, but you should display the results. 



3 
Getting to Know OpenCV 

OpenCV Data Types 
OpenCV has many data types, which are designed to make the representation and handling of important 
concepts of computer vision relatively easy and intuitive. At the same time, many algorithm developers 
require a set of relatively powerful primitives that can be generalized or extended for their particular needs. 
OpenCV attempts to address both of these needs through the use of templates for fundamental data types, 
and specializations of those templates that make everyday operations easier.  

From an organizational perspective, it is convenient to divide the data types into three major categories. 
First, the basic data types are those that are assembled directly from C++ primitives (int, float, etc.). 
These types include simple vectors and matrices, as well as representations of simple geometric concepts 
like points, rectangles, sizes, and the like. The second category contains helper objects. These objects 
represent more abstract concepts such as the garbage collecting pointer class, range objects used for slicing, 
and abstractions such as termination criteria. The third category is what might be called large array types. 
These are objects whose fundamental purpose is to contain arrays or other assemblies of primitives or, 
more often, the basic data types mentioned first. The star example of this latter group is the cv::Mat 
class, which is used to represent arbitrary-dimensional arrays containing arbitrary basic elements. Objects 
such as images are specialized uses of the cv::Mat class but, unlike in earlier versions of OpenCV (i.e., 
before version 2.1), such specific use does not require a different class or type. In addition to cv::Mat, 
this category contains related objects such as the sparse matrix cv::SparseMat class, which is more 
naturally suited to non-dense data such as histograms. 

In addition to these types, OpenCV also makes heavy use of the Standard Template Library (STL) [STL]. 
This vector class is particularly relied on by OpenCV, and many OpenCV library functions now have 
vector template objects in their argument lists. We will not cover STL in this book, other than as necessary 
to explain relevant functionality. If you are already comfortable with STL, many of the template 
mechanisms used “under the hood” in OpenCV will be familiar to you. 

Overview of the Basic Types 
The most straightforward of the basic data types is the template class cv::Vec<>. cv::Vec<> is a 
container class for primitives,1 which we will refer to as “the fixed vector classes.” Why not just use 

                                                             
1 Actually, this is an oversimplification that we will clear up a little later in the chapter. In fact, cv::Vec<> is a vector 
container for anything, and uses templating to create this functionality. As a result, cv::Vec<> can contain other 
 



standard template library classes? The key difference is that the fixed vector classes are classes intended for 
small vectors whose dimensions are known at compile time. This allows for efficient code. What “small” 
means in practice is that if you have more than just a few elements, you are probably using the wrong class. 
(In fact, as of version 2.2, this number cannot exceed nine in any case). We will look shortly at the 
cv::Mat class, which is the right way to handle big arrays of any number of dimensions, but for now, 
think of the fixed vector classes as being handy and speedy for little guys.  

Even though cv::Vec<> is a template, you will not tend to see or use it in that form most of the time. 
Instead, there are aliases (typedef’s) for common instantiations of the cv::Vec<> template. They have 
names like cv::Vec2i, cv::Vec3i, or cv::Vec4d (for a two-element integer vector, a three-element 
integer vector, or a four-element double-precision floating-point vector, respectively). In general, anything 
of the form cv::Vec{2,3,4,6}{b,s,i,f,d} is valid for any combination of two to six dimensions2 and the 
five data types.  

In addition to the fixed vector class, there are also “fixed matrix classes.” They are associated with the 
template cv::Matx<>. Just like the fixed vector classes, cv::Matx<> is not intended to be used for 
large arrays, but rather is designed for the handling of certain specific small matrix operations. In computer 
vision, there are a lot of 2-by-2 or 3-by-3 matrices running around, and a few 4-by-4, which are used for 
various transformations and the like. cv::Matx<> is designed to hold these sorts of objects. As with 
cv::Vec<>, cv::Matx<> is normally accessed through aliases of the form 
cv::Matx{1,2,3,4,6}{1,2,3,4,6}{f,d}. It is important to notice that with the fixed matrix classes (like 
the fixed vector classes, but unlike cv::Mat, which we will come to shortly), the dimensionality of the 
fixed matrix classes must be known at compile time. Of course, it is precisely this knowledge that makes it 
possible to make operations with the fixed matrix classes highly efficient. 

Closely related to the fixed vector classes are the point classes. The point classes are containers for two or 
three values of one of the primitive types. The point classes are derived from their own template, so they 
are not directly descended from the fixed vector classes, but they can be cast to and from them. The main 
difference between the point classes and the fixed vector classes is that their members are accessed by 
named variables (mypoint.x, mypoint.y, etc.) rather than by a vector index (myvec[0], 
myvec[1], etc.). As with cv::Vec<>, the point classes are typically invoked using aliases for the 
instantiation of an appropriate template. Those aliases have names like cv::Point2i, cv::Point2f, 
or cv::Point2d, or cv::Point3i, cv::Point3f, or cv::Point3d. 

The class cv::Scalar is essentially a four-dimensional point. As with the point classes, cv::Scalar 
is actually associated with a template that can generate an arbitrary four-component vector, but the 
keyword cv::Scalar specifically is aliased to a four-component vector with double-precision 
components. Unlike the point classes, the elements of a cv::Scalar object are accessed with an integer 
index, the same as cv::Vec<>. This is because cv::Scalar is directly derived from an instantiation of 
cv::Vec<> (specifically, from cv::Vec<double,4>). 

Next on our tour are cv::Size and cv::Rect. As with the point classes, these two are derived from 
their own templates. cv::Size is mainly distinguished by having data members width and height 
rather than x and y, while cv::Rect has all four. The class cv::Size is actually an alias for 
cv::Size2i, which is itself an alias of a more general template in the case of width and height being 
integers. For floating-point values of width and height, use the alias cv::Size2f. Similarly, 
cv::Rect is an alias for the integer form of rectangle. There is also a class to represent a rectangle that is 
not axis-aligned. It is called cv::RotatedRect and contains a cv::Point2f called center, a 
cv::Size2f called size, and one additional float called angle.  

                                                                                                                                                                                     
class objects, either from OpenCV or elsewhere. In most usages, however, cv::Vec is used as a container for C 
primitive types like int or float. 
2 Except five, for some reason five is not an option. 



Basic Types: Getting Down to Details 
Each of the basic types is actually a relatively complicated object, supporting its own interface functions, 
overloaded operators, and the like. In this section, we will take a somewhat more encyclopedic look at what 
each type offers, and how some of the otherwise similar appearing types differ from one another.  

As we go over these classes, we will try to hit on the high points of their interfaces, but not get into every 
gory detail. Instead, we will provide examples that should convey what you can and can’t do with these 
objects. For the lowest-level details, you should consult …/opencv2/core/core.hpp. 

The Point Classes 

Of the OpenCV basic types, the point classes are probably the simplest. As we mentioned earlier, these are 
implemented based on a template structure, such that there can be points of any type: integer, floating-
point, and so on. There are actually two such templates, one for two-dimensional and one for three-
dimensional points. The big advantage of the point classes is that they are simple and have very little 
overhead. Natively, they do not have a lot of operations defined on them, but they can be cast to somewhat 
more generalized types, such as the fixed vector classes or the fixed matrix classes (discussed later), when 
needed. 

In most programs, the point classes are instantiated using aliases that take forms like cv::Point2i or 
cv::Point3f, with the last letter indicating the desired primitive from which the point is to be 
constructed. (Here, b is an unsigned character, s is a short integer, i is a 32-bit integer, f is a 32-bit 
floating-point number, and d is a 64-bit floating-point number.)  

Table 3-1 is the (relatively short) list of functions natively supported by the point classes. It is important to 
note that there are several  important operations that are supported, but they are supported indirectly 
through implicit casting to the fixed vector classes (see below). These operations notably contain all of the 
vector and singleton3 overloaded algebraic operators and comparison operators. 

Table 3-1: Operations supported directly by the point classes 

Operation Examples 

Default constructors 
cv::Point2i p(); 

cv::Point3f p();  

Copy constructor cv::Point3f p2( p1 ); 

Value constructors 
cv::Point2i p( x0, x1 );              

cv::Point3d p( x0, x1, x2 );              

Cast to the fixed vector 
classes (cv::Vec3f) p; 

Member access 
p.x; p.y; // and for three-dimensional  

          // point classes:  p.z                    

Dot product float x = p1.dot( p2 ) 

Double-precision dot double x = p1.ddot( p2 ) 

                                                             
3 You might have expected us to use the word “scalar” here, but we avoided doing so because cv::Scalar is an 
existing class in the library. As you will see shortly, a cv::Scalar in OpenCV is (somewhat confusingly) an array of 
four numbers, approximately equivalent to a cv::Vec with four elements!  In this context, the word “singleton” can 
be understood to mean “a single object of whatever type the vector is an array of.” 



product 

Cross product 
p1.cross( p2 ) // (for three-dimensional point  

               // classes only) 

Query if point p is inside of 
rectangle r 

p.inside( r )  // (for two-dimensional point  

               // classes only) 

These types can be cast to and from the old C interface types CvPoint and CvPoint2D32f. In the case 
in which a floating-point-valued instance of one of the point classes is cast to CvPoint, the values will 
automatically be rounded. 

class cv::Scalar 

The class cv::Scalar is really a four-dimensional point class. Like the others, it is actually associated 
with a template class, but the alias for accessing it returns an instantiation of that template in which all of 
the members are double-precision floating-point numbers. The cv::Scalar class also has some special 
member functions associated with uses of four-component vectors in computer vision. 

Table 3-2: Operations supported directly by class cv::Scalar 

Operation Example 

Default constructors cv::Scalar s(); 

Copy constructor cv::Scalar s2( s1 ); 

Value constructors 
cv::Scalar s( x0 );  

cv::Scalar s( x0, x1, x2, x3 );              

Element-wise 
multiplication s1.mul( s2 ); 

(Quaternion) conjugation s.conj();   // (returns cv::Scalar(s0,-s1,-s2,-s2)) 

(Quaternion) real test s.isReal(); // (returns true iff s1==s2==s3==0) 

You will notice that for cv::Scalar, the operation “cast to the fixed vector classes” does not appear in 
Table 3-2 (as it did in the case of the point classes). This is because, unlike the point classes, 
cv::Scalar inherits directly from an instantiation of the fixed vector class template. As a result, it 
inherits all of the vector algebra operations, member access functions (i.e., operator[]), and other 
properties from the fixed vector classes. We will get to that class later, but for now, just keep in mind that 
cv::Scalar is shorthand for a four-dimensional double-precision vector that has a few special member 
functions attached that are useful for various kinds of four-vectors. 

The class cv::Scalar can be freely cast to and from the old C interface CvScalar type. 

The Size Classes 

The size classes are, in practice, similar to the corresponding point classes, and can be cast to and from 
them. The primary difference between the two is that the point class’ data members are named x and y, 
while the corresponding data members in the size classes are named width and height. The three 
aliases for the size classes are cv::Size, cv::Size2i, and cv::Size2f. The first two of these are 
equivalent and imply integer size, while the last is for 32-bit floating-point sizes. As with the point classes, 
the size classes can be cast to and from the corresponding old-style OpenCV classes (in this case, CvSize 
and CvSize2D32f). 

Table 3-3: Operations supported directly by the size classes 



Operation Example 

Default constructors 

cv::Size sz(); 

cv::Size2i sz(); 

cv::Point2f sz(); 

Copy constructor cv::Size sz2( sz1 ); 

Value constructors cv::Size2f sz( w, h );              

Member access sz.width; sz.height;                    

Compute area sz.area(); 

Unlike the point classes, the size classes do not support casting to the fixed vector classes. This means that 
the size classes have more restricted utility. On the other hand, the point classes and the fixed vector classes 
can be cast to the size classes without any problem.  

class cv::Rect 

The rectangle classes include the members x and y of the point class (representing the upper-left corner of 
the rectangle) and the members width and height of the size class (representing the extent of the 
rectangle). The rectangle classes, however, do not inherit from the point or size classes, and so in general 
they do not inherit operators from them.  

Table 3-4: Operations supported directly by class cv::Rect* 

Operation Example 

Default constructors cv::Rect r(); 

Copy constructor cv::Rect r2( r1 ); 

Value constructors cv::Rect( x, y, w, h );             

Construct from origin and 
size cv::Rect( p, sz ); 

Construct from two corners cv::Rect( p1, p2 ); 

Member access r.x; r.y; r.width; r.height; 

Compute area r.area(); 

Extract upper-left corner r.tl(); 

Extract lower-right corner r.lr; 

Determine if point p is inside 
of rectangle r r.contains( p ); 

Cast operators and copy constructors exist to allow cv::Rect to be computed from or cast to the old-
style cv::CvRect type as well. cv::Rect is actually an alias for a rectangle template instantiated with 
integer members. 

The class cv::Rect also supports a variety of overloaded operators that can be used for the computation 
of various geometrical properties of two rectangles or a rectangle and another object. 



Table 3-5. Overloaded operators that take objects of type cv::Rect 

Operation Example 

Intersection of rectangles r1 
and r2 

cv::Rect r3 = r1 & r2; 

r1 &= r2; 

Minimum area rectangle 
containing rectangles r1 and 
r2 

cv::Rect r3 = r1 | r2; 

r1 |= r2; 

Translate rectangle r by an 
amount x 

cv::Rect rx = r + v; // v is a cv::Point2i 

r += v; 

Enlarge a rectangle r by an 
amount given by size s 

cv::Rect rs = r + s; // s is a cv::Point2i 

r += s; 

Compare rectangles r1 and r2 
for exact equality bool eq = (r1 == r2); 

Compare rectangles r1 and r2 
for inequality bool ne = (r1 != r2); 

class cv::RotatedRect 

The cv::RotatedRect class is one of the few classes in the C++ OpenCV interface that is not a 
template underneath. It is a container, which holds a cv::Point2f called center, a cv::Size2f 
called size, and one additional float called angle, with the latter representing the rotation of the 
rectangle around center. One very important difference between cv::RotatedRect and cv::Rect 
is the convention that a cv::RotatedRect is located in “space” relative to its center, while the 
cv::Rect is located relative to its upper-left corner. 

Table 3-6: Operations supported directly by class cv::RotatedRect 

Operation Example 

Default constructors cv::RotatedRect rr(); 

Copy constructor cv::RotatedRect rr2( rr1 ); 

Construct from two corners cv::RotatedRect( p1, p2 ); 

Value constructors; takes a 
point, a size, and an angle cv::RotatedRect rr( p, sz, theta ) ;             

Member access rr.center; rr.size; rr.angle; 

Return a list of the corners rr.points( pts[4] ); 

The Fixed Matrix Classes 

The fixed matrix classes are for matrices whose dimensions are known at compile time (hence “fixed”). As 
a result, all memory for their data is allocated on the stack, which means that they allocate and clean up 
quickly. Operations on them are fast and there are specially optimized implementations for small matrices 
(2-by-2, 3-by-3, etc.). The fixed matrix classes are also central to many of the other basic types in the C++ 
interface to OpenCV. The fixed vector class derives from the fixed matrix classes and other classes either 
derive from the fixed vector class (like cv::Scalar), or they rely on casting to the fixed vector class for 
many important operations. As usual, the fixed matrix classes are really a template. The template is called 



cv::Matx<>, but individual matrices are usually allocated using aliases. The basic form of such an alias 
is cv::Matx{1,2,…}{1,2,…}{f,d}, where the numbers can be any number from one to six, and the 
trailing letter has the same meaning as with the previous types.4  

In general, you should use the fixed matrix classes when you are representing something that is really a 
matrix with which you are going to do matrix algebra. If your object is really a big data array, like an 
image, or a huge list of points or something like that, the fixed matrix classes are not the correct solution; 
you should be using cv::Mat (which we will get to shortly). Fixed matrix classes are for small matrices 
where you know the size at compile time: (e.g., a camera matrix). 

Table 3-7: Operations supported by class cv::Matx 

Operation Example 

Default constructor cv::Matx33f m33f(); cv::Matx43d m43d(); 

Copy constructor cv::Matx22d m22d( n22d ); 

Value constructors cv::Matx21f m(x0,x1); cv::Matx44d 
m(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15);         

Matrix of identical 
elements m33f = cv::Matx33f::all( x ); 

Matrix of zeros m23d = cv::Matx23d::zeros(); 

Matrix of ones m16f = cv::Matx16f::ones(); 

Create a unit matrix m33f = cv::Matx33f::eye(); 

Create a matrix that 
can hold the 
diagonal of another 

m31f = cv::Matx33f::diag(); // create a matrix of  

                            // size 3-by-1 of floats 

Create a matrix 
with uniformly 
distributed entries 

m33f = cv::Matx33f::randu( min, max ); 

Create a matrix 
with normally 
distributed entries 

m33f = cv::Matx33f::nrandn( mean, variance ); 

Member access 
m( i, j ), m( i ); // one argument for  

                   // one-dimensional matrices only                

Matrix algebra m1 = m0; m0 * m1; m0 + m1; m0 – m1; 

Singleton algebra m * a; a * m; m / a; 

Comparison m1 == m2; m1 != m2; 

Dot product m1.dot( m2 );  // (sum of element-wise  

                                                             
4 At the time of writing, the relevant header file called core.hpp does not actually contain every possible combination of 
these integers. For example, there is no 1-by-1 matrix alias, nor is there a 5-by-5. This may or may not change in later 
releases, but you will pretty much never want the missing ones anyway. If you really do want one of the odd ones, you 
can just instantiate the template yourself (e.g., cv::Matx<5,5,float>). 



               // multiplications, precision of m) 

Dot product 
m1.ddot( m2 ); // (sum of element-wise multiplications, 

               // double precision) 

Reshape a matrix m91f = m33f.reshape<9,1>(); 

Cast operators m44f = (Matx44f) m44d 

Extract i,j-th 
algebraic minor m44f.get_minor( i, j ); 

Extract row i m14f = m44f.row( i ); 

Extract column j m41f = m44f.col( j ); 

Extract matrix 
diagonal 

m41f = m44f.diag(); 

Compute transpose  n44f = m44f.t(); 

Invert matrix 
n44f = m44f.inv( method ); // (default method is  

                           // cv::DECOMP_LU) 

Solve linear system 

m31f = m33f.solve( rhs31f, method ) 

m32f = m33f.solve<2>( rhs32f, method ); // (template  

               // form5; default method is DECOMP_LU)  

Per-element 
multiplication 

m1.mul( m2 ); 

Note that many of the fixed matrix functions are static relative to the class (i.e., you access them directly as 
members of the class rather than as members of a particular object). For example, if you would like to 
construct a 3-by-3 identity matrix, you have a handy class function for it: cv::Mat33f::eye(). Note 
that, in this example, eye() does not need any arguments because it is a member of the class, and the class 
is already a specialization of the cv::Matx<> template to 3-by-3. 

The Fixed Vector Classes  

The fixed vector classes are derived from the fixed matrix classes. They are really just convenience 
functions for cv::Matx<>. In the proper sense of C++ inheritance, it is correct to say that the fixed vector 
template cv::Vec<> is a cv::Matx<> whose number of columns is one. The readily available aliases 
for specific instantiations of cv::Vec<> are of the form cv::Vec{2,3,4,6}{b,s,w,i,f,d}, where the 
last character has the usual meanings (with the addition of w, which indicates an unsigned short). 

Table 3-8: Operations supported by class cv::Vec 

Operation Example 

Default constructor Vec2s v2s(); Vec6f v6f();        // etc… 

                                                             
5 The template form is used when the right hand side of the implied matrix equation has multiple columns.  In this case, 
we are essentially solving for ‘k’ different systems at once.  This value of ‘k’ must be supplied as the template 
argument to solve<>().  It will also determine the number of columns in the result matrix. 



Copy constructor Vec3f u3f( v3f ); 

Value constructors Vec2f v2f(x0,x1); Vec6d v6d(x0,x1,x2,x3,x4,x5);               

Member access 
v4f[ i ]; v3w( j ); // (operator() and operator[]  

                    // both work) 

Vector cross-product v3f.cross( u3f ); 

The primary conveniences of the fixed vector classes are the ability to access elements with a single 
ordinal, and a few specific additional functions that would not make sense for a general matrix (e.g., cross 
product). We can see this in Table 3-8 by the relatively small number of novel methods added to the large 
number of methods inherited from the fixed matrix classes. 

The Complex Number Classes  

One more class type should be included in the basic types: the complex number classes. The OpenCV 
complex number classes are not identical to, but are compatible with, and can be cast to and from, the 
classes associated with the STL complex number class template complex<>. The most substantial 
difference between the OpenCV and STL complex number classes is in member access. In the STL classes, 
the real and imaginary parts are accessed through the member functions real() and imag(), while in 
the OpenCV class, they are directly accessible as (public) member variables re and im. 

Table 3-9: Operations supported by the OpenCV complex number classes 

Operation Example 

Default constructor cv::Complexf z1; cv::Complexd z2; 

Copy constructor cv::Complexf z2( z1 ); 

Value constructors cv::Complexd z1(re0); cv::Complexd(re0,im1) ;              

Copy constructor cv::Complexf u2f( v2f ); 

Member access z1.re; z1.im; 

Complex conjugate z2 = z1.conj(); 

Like many basic types, the complex classes are aliases for underlying templates. cv::Complexf and 
cv::Complexd are aliases for single- and double-precision complex floating point numbers, 
respectively. 

Helper Objects 
In addition to the basic types and the big containers (which we will get to in the next section), there is a 
family of helper objects, which are important for controlling various algorithms (such as termination 
criteria) or for doing various operations on the containers (such as “ranges” or “slices”). There is also one 
very important object, the “smart” pointer object cv::Ptr. Looking into cv::Ptr, we will examine the 
garbage collecting system, which is integral to the C++ interface to OpenCV. This system allows us to not 
have to worry about the details of allocation and deallocation of objects in the manner that was once so 
onerous in the earlier C-based OpenCV interface (i.e., before version 2.1). 



class cv::TermCriteria 

Many algorithms require a stopping condition to know when to quit. Generally, stopping criteria take the 
form of either some finite number of iterations that are allowed (called COUNT or MAX_ITER) or some 
kind of error parameter that basically says “if you are this close, you can quit” (called EPS—short for 
“epsilon,” everyone’s favorite tiny number). In many cases, it is desirable to have both of these at once, so 
that if the algorithm never gets “close enough,” then it will still quit at some point. 

cv::TermCriteria objects encapsulate one, the other, or both of the stopping criteria so that they can 
be passed conveniently to an OpenCV algorithm function. They have three member variables, type, 
maxCount, and epsilon, which can be set directly (they are public) or, more often, are just set by the 
constructor with the form TermCriteria( int type, int maxCount, double epsilon ). 
The variable type is set to one of the following values: cv::TermCriteria::COUNT or 
TermCriteria::EPS. You can also “or” (i.e., |) the two together. The value 
cv::TermCriteria::COUNT is a synonym for cv::TermCriteria::MAX_ITER, so you can use 
that if you prefer. If the termination criterion includes cv::TermCriteria::COUNT, then you are 
telling the algorithm to terminate after maxCount iterations. If the termination criterion includes 
cv::TermCriteria::EPS, then you are telling the algorithm to terminate after some metric associated 
with the algorithm’s convergence falls below epsilon6 The type argument has to be set accordingly for 
maxCount or epsilon to be used. 

class cv::Range 

The cv::Range class is used to specify a continuous sequence of integers. cv::Range objects have two 
elements, start and end, which—similar to cv::TermCriteria—are often set with the constructor 
cv::Range( int start, int end ). Ranges are inclusive of their start value, but not inclusive of 
their end value, so cv::Range rng( 0, 4 ) includes the values 0, 1, 2, 3, but not 4. 

Using size(), one can find the number of elements in a range. From the above, rng.size() would be 
equal to 4. There is also a member empty() that tests if a range has no elements. Finally, 
cv::Range::all() can be used anywhere a range is required to indicate whatever range the consumer 
has available. 

The cv::Ptr template, and Garbage Collection 101 

One very useful object type in C++ is a “smart” pointer.7 This pointer allows us to create a reference to a 
thing, and then pass that around. You can create more references to that thing, and then all of those 
references will be counted. As references go out of scope, the reference count for the smart pointer is 
decremented. Once all of the references (instances of the pointer) are gone, the “thing” will automatically 
be cleaned up (deallocated). The programmer doesn’t have to do this bookkeeping anymore. 

The way this all works is as follows: first, you define an instance of the pointer template for the class object 
that you want to “wrap.” You do this with a call like cv::Ptr<Matx33f> p( new cv::Matx33f 
). The constructor for the template object takes a pointer to the object to be pointed to. Once you do this, 
you have your smart pointer p, which is a sort of pointer-like object that you can pass around and use just 
like a normal pointer (i.e., it supports operators such as operator*() and operator->()). Once you 
have p, you can create other objects of the same type without passing them a pointer to a new object.  For 
example, you could create: Ptr<Mat33f> q, and when you assign the value of p to q, somewhere 
behind the scenes, the “smart” action of the smart pointer comes into play. You see, just like a usual 
pointer, there is still only one actual cv::Mat33f object out there that p and q both point to. The 

                                                             
6 The exact termination criteria are clearly algorithm dependent, but the documentation will always be clear how a 
particular algorithm interprets epsilon. 
7 If you are familiar with some of the more recent additions to the C++ standard, you will recognize a similarity 
between the OpenCV cv::Ptr<> template and the smart_ptr<> template. Similarly, there is a smart pointer 
shared_ptr<> in the Boost library. Ultimately, they all function more or less the same. 



difference is that both p and q know that they are each one of two pointers. Should p disappear (such as by 
falling out of scope), q knows that it is the only remaining reference to the original matrix. If q should then 
disappear and its destructor is called (implicitly), q will know that is the last one left, and that it should 
deallocate the original matrix. You can think of this like the last person out of a building being responsible 
for turning out the lights and locking the door (and in this case, burning the building to the ground as well). 

The cv::Ptr<> template class supports several additional functions in its interface related to the 
reference counting functionality of the smart pointer. Specifically, the functions addref() and 
release() increment and decrement the internal reference counter of the pointer. These are relatively 
dangerous functions to use, but are available in case you need to micromanage the reference counters 
yourself.  

There is also a function empty(), which can be used to determine if a smart pointer is pointing to an 
object that has been deallocated. This could happen if you called release() on the object one or more 
times. In this case, you would still have a smart pointer around, but the object pointed to might already 
have been destroyed. There is a second application of empty(), which is to determine if the internal 
object pointer inside of the smart pointer object happens to be NULL for some other reason. This might 
occur if you assigned the smart pointer by calling a function that might just return NULL in the first place 
(cvLoadImage(),fopen(), etc.)

8
 

The final member of Ptr<> that you will want to know about is delete_obj(). This is a function that 
gets called automatically when the reference count gets to zero. By default, this function is defined but does 
nothing. It is there so that you can overload it in the case of instantiation of cv::Ptr<>, which points to a 
class that requires some specific operation in order to clean up the class to which it points. For example, 
let’s say that you are working with an old-style (pre-version 2.1) IplImage.9 In the old days, you might, 
for example, have called cvLoadImage() to load that image from disk. In the C interface, that would 
have looked like:  

IplImage* img_p = cvLoadImage( … ); 

The modern version of this (while still using IplImage, rather than cv::Mat, which we are still 
working our way up to) would look like:  

Ptr<IplImage> img_p = cvLoadImage( “an_image” ); 

or (if you prefer): 
Ptr<IplImage> img_p( cvLoadImage(“an_image” ) ); 

Now you can use img_p in exactly the same way as a pointer (which is to say, for readers experienced 
with the pre-version 2.1 interface, “exactly as you would have back then”). Conveniently, this particular 
template instantiation is actually already defined for you somewhere in the vast sea of header files that 
make up OpenCV. If you were to go search it out, you would find the following template function defined:  

template<> inline void cv::Ptr<IplImage>::delete_obj() { 
    cvReleaseImage(&obj);  
} 

(The variable obj is the name of the class member variable inside of Ptr<> that actually holds the pointer 
to the allocated object.) As a result of this definition, you will not need to deallocate the IplImage* 
pointer you got from cvLoadImage(). Instead, it will be automatically deallocated for you when img_p 
falls out of scope. 
                                                             
8 For the purposes of this example, we will make reference to IplImage and cvLoadImage(), both constructs 
from the ancient pre-version 2.1 interface that are now deprecated. We won’t really cover them in detail in this book, 
but all you need to know for this example is that IplImage is the old data structure for images, and 
cvLoadImage() was the old function to get an image from disk and return a pointer to the resulting image structure. 
9 This example might seem a bit artificial, but in fact, if you have a large body of pre-v2.1 code you are trying to 
modernize, you will likely find yourself doing an operation like this quite often. 



This example was a somewhat special (though highly relevant) situation, in that the case of a smart pointer 
to IplImage is sufficiently salient that it was defined for you by the library. In a somewhat more typical 
case, when the clean-up function does not exist for what you want, you will have to define it yourself. 
Consider the example of creating a file handle using a smart pointer to FILE.10 In this case, we define our 
own overloaded version of delete_obj() for the cv::Ptr<FILE> template: 

template<> inline void cv::Ptr<FILE>::delete_obj() { 
    fclose(obj);  
} 

Then you could go ahead and use that pointer to open a file, do whatever with it, and later, just let the 
pointer fall out of scope (at which time the file handle would automatically be closed for you): 

{ 
  Ptr<FILE> f(fopen("myfile.txt", "r")); 
  if(f.empty()) 
    throw …;  // Throw an exception, we will get to this later on… 
  fprintf(f, …); 
  … 
}   

At the final brace, f falls out of scope, the internal reference count in f goes to zero, delete_obj() is 
called by f’s destructor, and (thus) fclose() is called on the file handle pointer (stored in obj). 

A tip for gurus: a serious programmer might worry that the incrementing and 
decrementing of the reference count might not be sufficiently atomic for the Ptr<> 
template to be safe in multithreaded applications. This, however, is not the case, and 
Ptr<> is thread safe. Similarly, the other reference counting objects in OpenCV are all 
thread-safe in this same sense. 

class cv::Exception and Exception Handling  

OpenCV uses exceptions to handle errors. OpenCV defines its own exception type cv::Exception, 
which is derived from the STL exception class std::exception. Really, this exception type has 
nothing special about it, other than being in the cv:: namespace and so distinguishable from other objects 
that are also derived from std::exception.  

The type cv::Exception has members code, err, func, file, and line, which are (respectively) 
a numerical error code, a string indicating the nature of the error that generated the exception, the name of 
the function in which the error occurred, the file in which the error occurred, and an integer indicating the 
line on which the error occurred in that file. err, func, and file are all STL strings.  

There are several built-in macros for generating exceptions yourself. CV_Error( errorcode, 
description ) will generate and throw an exception with a fixed text description. CV_Error_( 
errorcode, printf_fmt_str, [printf-args] ) works the same, but allows you to replace 
the fixed description with a printf-like format string and arguments. Finally, there is CV_Assert( 
condition ) and CV_DbgAssert( condition ). Both will test your condition and throw an 
exception if the condition is not met. The latter version, however, will only operate in debug builds. These 
macros are the strongly preferred method of throwing exceptions, as they will automatically take care of the 
fields func, file, and line for you. 

The cv::DataType<> Template  

When OpenCV library functions need to communicate the concept of a particular data type, they do so by 
creating an object of type cv::DataType<>. cv::DataType<> itself is a template, and so the actual 
objects passed around are specializations of this template. This is an example of what in C++ are generally 
called traits. This allows the cv::DataType<> object to both contain runtime information about the 

                                                             
10 In this case, by FILE we mean struct FILE, as defined in the C standard library. 



type, as well as to contain typedef statements in its own definition that allow it to refer to the same type 
at compile time. 

This might sound a bit confusing, and it is, but that is an inevitable consequence of trying to mix runtime 
information and compile-time information in C++.11 An example will help clarify. 

The template class definition for DataType is the following: 
template<typename _Tp> class DataType 
{ 
  typedef _Tp        value_type; 
  typedef value_type work_type;  
  typedef value_type channel_type; 
  typedef value_type vec_type; 
 
  enum {  
    generic_type = 1,  
    depth        = -1,  
    channels     = 1,  
    fmt          = 0, 
    type         = CV_MAKETYPE(depth, channels)  
  }; 
}; 

Let’s try to understand what this means, and then follow it with an example. First, we can see that 
cv::DataType<> is a template, and expects to be specialized to a class called _Tp. It then has four 
typedef statements that allow the type of the cv::DataType<>, as well as some other related types, 
to be extracted from the cv::DataType<> instantiated object at compile time. In the template definition, 
these are all the same, but we will see in our example of a specialization of the template that they do not 
have to be (and often should not be). The next section is an enum that contains several components.12 
These are the generic_type, the depth, the number of channels, the format fmt, and the type. 
To see what all of these things mean, we’ll look at two example specializations of cv::DataType<>, 
from core.hpp. The first is the cv::DataType<> definition for float: 

template<> class DataType<float> 
{ 
public: 
  typedef float      value_type; 
  typedef value_type work_type; 
  typedef value_type channel_type; 
  typedef value_type vec_type; 
 
  enum {  
    generic_type = 0,  
    depth        = DataDepth<channel_type>::value,  
    channels     = 1, 
    fmt          = DataDepth<channel_type>::fmt, 
    type         = CV_MAKETYPE(depth, channels)  
  }; 
}; 

The first thing to notice is that this is a definition for a C++ built-in type. It is useful to have such 
definitions for the built-in types, but we can also make them for more complicated objects. In this case, the 
value_type is of course float, and the work_type, channel_type, and vec_type are all the 
same. We will see more clearly what these are for in the next example. For the constants in the enum, this 

                                                             
11 You don’t have this sort of problem in languages (e.g., Python) that support variable introspection and have an 
intrinsic runtime concept of data types. 
12 If this construct is awkward to you, remember that you can always assign integer values to the “options” in an enum 
declaration. In effect, this is a way of stashing a bunch of integer constants that will be fixed at compile time. 



example will do just fine. The first variable generic_type is set to 0, as it is zero for all types defined in 
core.hpp. The depth variable is the data type identifier used by OpenCV. For example, 
cv::DataDepth<float>::value resolves to the constant cv::F32. The entry channels is one 
because float is just a single number; we will see an alternative to this in the next example. The variable 
fmt gives a single character representation of the format. In this case, 
cv::DataDepth<float>::fmt resolves to f. The last entry is type, which is a representation 
similar to depth, but which includes the number of channels (in this case, one). 
CV_MAKETYPE(cv::F32,1) resolves to cv::F32C1. 

The important thing about DataType<>, however, is to communicate the nature of more complicated 
constructs. This is essential, for example, for allowing algorithms to be implemented in a manner that is 
agnostic to the incoming data type (i.e., algorithms that use introspection to determine how to proceed with 
incoming data). 

Consider the example of an instantiation of cv::DataType<> for a cv::Rect<> (itself containing an 
as yet unspecialized type _Tp): 

template<typename _Tp> class DataType<Rect_<_Tp> > 
{ 
public: 
  typedef Rect_<_Tp>                               value_type; 
  typedef Rect_<typename DataType<_Tp>::work_type> work_type; 
  typedef _Tp                                      channel_type;  
  typedef Vec<channel_type, channels>              vec_type; 
 
  enum {  
    generic_type = 0,  
    depth        = DataDepth<channel_type>::value,  
    channels     = 4, 
    fmt          = ((channels-1)<<8) + DataDepth<channel_type>::fmt, 
    type         = CV_MAKETYPE(depth, channels)  
  }; 
}; 

This is a much more complicated example. First, notice that cv::Rect itself does not appear. You will 
recall that earlier we mentioned that cv::Rect was actually an alias for a template, and that template is 
called cv::Rect_<>. So this template could be specialized as cv::DataType<Rect> or, for 
example, cv::DataType< Rect_<float> >. For the case cv::DataType<Rect>, we recall that 
all of the elements are integers, so if we consider that case, all of the instantiations of the template 
parameter _Tp resolve to int. We can see that the value_type is just the compile-time name of the 
thing that the cv::DataType<> is describing (namely Rect). The work_type, however, is defined to 
be the work_type of cv::DataType<int> (which, not surprisingly is int). What we see is that the 
work_type is telling us what kind of variables the cv::DataType<> is made of (i.e., what we “do 
work” on). The channel type is also int. This means that if we want to represent this variable as a 
multichannel object, it should be represented as some number of int objects. Finally, just as 
channel_type tells us how to represent this cv::DataType<> as a multichannel object, vec_type 
tells us how to represent it as an object of type cv::Vec<>. The alias 
cv::DataType<Rect>::vec_type will resolve to cv::Vec<int,4>. Moving on to the runtime 
constants: generic_type is again 0, depth is CV::S32, channels is 4 (because there are actually 
four values, the same reason the vec_type instantiated to a cv::Vec<> of size 4), fmt resolves to 
0x3069 (since i is 0x69), and type resolves to cv::S32C4. 

class InputArray and class OutputArray  

Many OpenCV functions take arrays as arguments and return arrays as return values, but in OpenCV, there 
are many kinds of arrays. We have already seen that OpenCV supports some small array types 
(cv::Scalar, cv::Vec, cv::Matx), and STL’s std::vector<> in addition to the large array 
types in the next section (cv::Mat and cv::SparseMat). In order to keep the interface from becoming 
onerously complicated (and repetitive), OpenCV defines the types cv::InputArray and 



cv::OutputArray. In effect, these types mean “any of the above” with respect to the many array forms 
supported by the library. There is even a cv::InputOutputArray, specifying an array for in place 
computation.  

The primary difference between cv::InputArray and cv::OutputArray is that the former is 
assumed to be const (i.e., read only). You will typically see these two types used in the definitions of 
library routines. You will not tend to use them yourself, but when being introduced to library functions, 
their presence means that you can use any array type, including a single cv::Scalar, and the result 
should be what you expect. 

Related to cv::InputArray is the special function cv::noArray() that returns 
cv::InputArray. The returned object can be passed to any input requiring cv::InputArray to 
indicate that this input is not being used. 

Large Array Types 
Finally, our journey brings us to the large array types. Chief among these is cv::Mat, which could be 
considered the epicenter of the entire C++ implementation of the OpenCV library. The overwhelming 
majority of functions in the OpenCV library are members of the cv::Mat class or take a cv::Mat as an 
argument or return cv::Mat as a return value.  

If you are familiar with the C interface (pre-version 2.1 implementation) of the OpenCV 
library, you will remember the data types IplImage and CvMat. You might also recall 
CvArr. In the C++ implementation, these are all gone, replaced with cv::Mat. This 
means no more dubious casting of void* pointers in function arguments, and in general 
a tremendous enhancement in the cleanliness of the library internally. 

The cv::Mat class is used to represent dense arrays of any number of dimensions. In this context, dense 
means that for every entry in the array, there is a data value stored in memory corresponding to that entry, 
even if that entry is zero. Most images, for example, are stored as dense arrays. The alternative would be a 
sparse array. In the case of a sparse array, only nonzero entries are typically stored. This can result in a 
great savings of storage space if many of the entries are in fact zero, but can be very wasteful if the array is 
relatively dense. A common case for using a sparse array rather than a dense array would be a histogram. 
For many histograms, most of the entries are zero, and storing all those zeros is not necessary. For the case 
of sparse arrays, OpenCV has the alternative data structure cv::SparseMat. 

class cv::Mat: N-Dimensional Dense Arrays  

The class cv::Mat can be used for arrays of any number of dimensions. The data is stored in the array in 
what can be thought of as an n-dimensional analog of “raster scan order.” This means that in a one-
dimensional array, the elements are sequential. In a two-dimensional array, the data is organized into rows, 
and each row appears one after the other. For three-dimensional arrays, each plane is filled out row by row, 
and then the planes are packed one after the other. 

Each matrix contains an element signaling the contents of the array called flags, an element that indicates 
the number of dimensions called dims, two elements that indicate the number of rows and columns called 
rows and cols (these are not valid for dims>2), a pointer to where the array data is stored called data, 
and a reference counter analogous to the reference counter used by cv::Ptr<> called refcount. This 
latter member allows cv::Mat to behave very much like a smart pointer for the data contained in data. 
The memory layout in data is described by the array step[]. The data array is laid out such that the 

address of an element whose indices are given by 
  
i0 ,†ii ,†…,iNd−1( )  is: 

 

  
& mtxi0 ,i1,…,†iNd −1Nd
( ) = mtx.data + mtx.step 0⎡⎣ ⎤⎦* i0 + mtx.step 1⎡⎣ ⎤⎦* i1 +…+ mtx.step Nd −1⎡⎣ ⎤⎦* iNd−1

 



In the simple case of a two-dimensional array, this reduces to: 

 
  
& mtxi, j( ) = mtx.data + mtx.step 0⎡⎣ ⎤⎦* i + mtx.step 1⎡⎣ ⎤⎦* j  

The data itself contained in cv::Mat is not required to be simple primitives. Each element of the data in a 
cv::Mat can itself be either a single number, or multiple numbers. In the case of multiple numbers, this is 
what the library refers to as a multichannel array. In fact, an n-dimensional array and an (n-1)-dimensional 
multichannel array are actually very similar objects, but because of the frequency of occasions in which it 
is useful to be able to think of an array as a vector valued array, the library contains special provisions for 
such structures.13 

One reason why this distinction is made is because of memory access. By definition, an element of an array 
is the part that may be vector-valued. For example, an array might be said to be a two-dimensional three-
channel array of 32-bit floats; in this case, the element of the array is the three 32-bit floats with a size of 12 
bytes. When laid out in memory, rows of an array may not be absolutely sequential; there may be small 
gaps that buffer each row before the next. The difference between an  n -dimensional single-channel array 
and an 

 
n −1( ) -dimensional multichannel array is that this padding will always occur at the end of full 

rows (i.e., the channels in an element will always be sequential).  

Creating an Array  

An array can be created simply by instantiating a variable of type cv::Mat. An array created in this 
manner has no size and no data type. It can, however, later be asked to allocate data by using a member 
function such as create(). One variation of create() takes as arguments a number of rows, a number 
of columns, and a type, and configures the array to represent a two-dimensional object. The type of an array 
determines what kind of elements it has. Valid types in this context specify both the fundamental type of 
element as well as the number of channels. All such types are defined in the library header, and have the 
form cv::{U8,S16,U16,S32,F32,F64}C{1,2,3}.14 For example, cv::F32C3 would imply a 32-bit 
floating-point three-channel array. 

You can also specify these things when you first allocate the matrix if you prefer. There are many 
constructors for cv::Mat, one of which takes the same arguments as create() (and an optional fourth 
argument with which to initialize all of the elements in your new array).  

cv::Mat m; 
m.create( 3, 10, cv::F32C3 );        // 3 rows, 10 columns of 3-channel 32-bit floats 
m.setTo( cv::Scalar( 1.0f, 0.0f, 1.0f ) );   // 1st channel is 1.0, 2nd 0.0, 3rd 1.0 

is equivalent to  
cv::Mat m( 3, 10, cv::F32C3, cv::Scalar( 1.0f, 0.0f, 1.0f ) ); 

It is important to understand that the data in an array is not attached rigidly to the array object. The 
cv::Mat object is really a header for a data area, which—in principle—is an entirely separate thing. For 
example, it is possible to assign one matrix n to another matrix m (i.e., m=n). In this case, the data pointer 
inside of m will be changed to point to the same data as n. The data pointed to previously by the data 

                                                             
13 Pre-2.1 OpenCV array types had an explicit element IplImage::nChannels, which indicated the number of 
channels. Because of the more general way in which such concepts are captured in the cv::Mat object, this 
information is no longer directly stored in a class variable. Rather, it is returned by a member function 
cv::channels(). 
14 OpenCV allows for arrays with more than three channels, but to construct one of these, you will have to call one of 
the functions cv::{U8,S16,U16,S32,F32,F64}C(). These functions take a single argument, which is the number of 
channels. So cv::U8C(3) is equivalent to cv::U8C3, but since there is no macro for cv::U8C7, to get this you 
would have to call cv::U8C(7). 



element of m (if any) will be deallocated15. At the same time, the reference counter for the data area that 
they both now share will be incremented. Last, but not least, the members of m that characterize the data in 
m (such as rows, cols, and flags) will be updated to accurately describe the data now pointed to by 
data in m. This all results in a very convenient behavior, in which arrays can be assigned to one another, 
and the work necessary to do this is done automatically behind the scenes to give the correct result. 

The following is a complete list of the constructors available for cv::Mat. The list appears rather 
unwieldy, but in fact you will only use a small fraction of these most of the time. Having said that, when 
you need one of the more obscure ones, you will probably find that you are glad it is there. 

Table 3-10: cv::Mat constructors that do not copy data 

Constructor Description 

cv::Mat(); Default constructor 

cv::Mat( int rows, int cols, int type ); Two-dimensional arrays by type 

cv::Mat( int rows, int cols, int type, 

     const Scalar& s ); 
Two-dimensional arrays by type with 
initialization value 

cv::Mat( int rows, int cols, int type, 

     void* data, size_t step=AUTO_STEP ); 
Two-dimensional arrays by type with 
preexisting data 

cv::Mat( cv::Size sz, int type ); Two-dimensional arrays by type (size in 
sz) 

cv::Mat( cv::Size sz,  

     int type, const Scalar& s ); 

Two-dimensional arrays by type with 
initializtion value (size in sz) 

cv::Mat( cv::Size sz, int type, 

     void* data, size_t step=AUTO_STEP ); 

Two-dimensional arrays by type with 
preexisting data (size in sz) 

cv::Mat( int ndims, const int* sizes, 

     int type ); 
Multidimensional arrays by type  

cv::Mat( int ndims, const int* sizes, 

     int type, const Scalar& s ); 

Multidimensional arrays by type with 
initialization value 

cv::Mat( int ndims, const int* sizes, 

     int type,  

     void* data, size_t step=AUTO_STEP ); 

Multidimensional arrays by type with 
preexisting data 

Table 3-10 lists the basic constructors for the cv::Mat object. Other than the default constructor, these 
fall into three basic categories: those that take a number of rows and a number of columns to create a two-
dimensional array, those that use a cv::Size object to create a two-dimensional array, and those that 
construct  n -dimensional arrays and require you to specify the number of dimensions and pass in an array 
of integers specifying the size of each of the dimensions. 

                                                             
15 Technically, it will only be deallocated if m was the last cv::Mat around which pointed to that particular data. 



In addition, some of these allow you to initialize the data, either by providing a cv::Scalar (in which 
case, the entire array will be initialized to that value), or by providing a pointer to an appropriate data block 
that can be used by the array. In this latter case, you are essentially just creating a header to the existing 
data (i.e., no data is copied; the data member is set to point to the data indicated by the data argument). 

Table 3-11: cv::Mat constructors that copy data from other cv::Mat’s 

Constructor Description 

cv::Mat( const Mat& mat ); Copy constructor 

cv::Mat( const Mat& mat, 

     const cv::Range& rows,  

     const cv::Range& cols ); 

Copy constructor that copies only a 
subset of rows and columns 

cv::Mat( const Mat& mat, 

     const cv::Rect& roi ); 

Copy constructor that copies only a 
subset of rows and columns specified by a 
region of interest 

cv::Mat( const Mat& mat, 

     const cv::Range* ranges ); 

Generalized region of interest copy 
constructor that uses an array of ranges to 
select from an n-dimensional array 

cv::Mat( const cv::MatExpr& expr ); 
Copy constructor that initializes m with 
the result of an algebraic expression of 
other matrices 

The copy constructors (Table 3-11) show how to create an array from another array. In addition to the basic 
copy constructor, there are three methods for constructing an array from a sub-region of an existing array 
and one constructor that initializes the new matrix using the result of some matrix expression. 

The sub-region (also known as “region of interest”) constructors come in three flavors: one that takes a 
range of rows and a range of columns (this works only on a two-dimensional matrix), one that uses a 
cv::Rect to specify a rectangular sub-region (also works only on a two-dimensional matrix), and a final 
one that takes an array of ranges. In this latter case, the number of valid ranges pointed to by the pointer 
argument ranges is required to be equal to the number of dimensions of the array mat. It is this third 
option that you must use if mat is a multidimensional array with ndim greater than 2.  

Table 3-12: cv::Mat constructors for pre-version 2.1 data types 

Constructor Description 

cv::Mat( const CvMat* old,  

     bool copyData=false ); 

Constructor for m that creates m from an 
old-style CvMat, with optional data copy 

cv::Mat( const IplImage* old,  

     bool copyData=false ); 

Constructor for m that creates m from an 
old-style IplImage, with optional data 
copy 

If you are modernizing or maintaining pre-version 2.1 code that still contains the C-style data structures, 
you may want to create a new C++-style cv::Mat structure from an existing CvMat or IplImage 
structure. In this case, you have two options. You can construct a header on the existing data (by setting 
copyData to false) or you can set copyData to true (in which case, new memory will be allocated for m 
and all of the data from old will be copied into m). 



These objects do a lot more for you than you might realize at first. In particular, they 
allow for expressions that mix the C++ and C data-types by functioning as implicit 
constructors for the C++ data types on demand. Thus, it is possible to simply use a 
pointer to one of the C structures wherever a cv::Mat is expected and have a 
reasonable expectation that things will work out correctly. (This is why the copyData 
member defaults to false.) 

In addition to these constructors, there are corresponding cast operators that will convert 
a cv::Mat into CvMat or IplImage on demand. These also do not copy data. 

Table 3-13: cv::Mat template constructors 

Constructor Description 

cv::Mat( const cv::Vec<T,n>& vec,  

     bool copyData=true ); 

Construct a one-dimensional array of type 
T and size n from a cv::Vec of the 
same type 

cv::Mat( 

     const cv::Matx<T,m,n>& vec,  

     bool copyData=true ); 

Construct a two-dimensional array of type 
T and size m-by-n from a cv::Matx of 
the same type 

cv::Mat( const std::vector<T>& vec, 

     bool copyData=true ); 

Construct an one-dimensional array of 
type T from an STL vector containing 
elements of the same type 

The last set of constructors is the template constructors. These constructors are template not because they 
construct a template form of cv::Mat, but because they construct an instance of cv::Mat from 
something that is itself template. These constructors allow either an arbitrary cv::Vec<> or 
cv::Matx<> to be used to create a cv::Mat array of corresponding dimension and type, or to use an 
STL vector<> object of arbitrary type to construct an array of that same type. 

Table 3-14: static functions that create cv::Mat 

Function Description 

cv::Mat::zeros( rows, cols, type ); 
Create a cv::Mat of size rows-by-
cols, which is full of zeros, with type 
type (cv::F32, etc.) 

cv::Mat::ones( rows, cols, type ); 
Create a cv::Mat of size rows-by-
cols, which is full of ones, with type 
type (cv::F32, etc.) 

cv::Mat::eye( rows, cols, type ); 
Create a cv::Mat of size rows-by-
cols, which is an identity matrix, with 
type type (cv::F32, etc.) 



The class cv::Mat also provides a number of static member functions to create certain kinds of 
commonly used arrays. These include functions like zeros(), ones(), and eye(), which construct a 
matrix full of zeros, a matrix full of ones, or an identity matrix, respectively.16 

Accessing Array Elements Individually   

There are several ways to access a matrix, which are designed to be convenient in different contexts. In 
recent versions of OpenCV, however, a great deal of effort has been invested to make them all comparably, 
if not identically, efficient. The two primary options for accessing individual elements are to access them 
by location, or to access them through iteration. 

The basic means of direct access is the (template) member function at<>()17. There are many variations 
of this function that take different arguments for arrays of different numbers of dimensions. The way this 
function works is that you specialize the at<>() template to the type of data that the matrix contains, then 
access that element using the row and column locations of the data you want. Here is a simple example: 

cv::Mat m = cv::Mat::eye( 10, 10, 32FC1 ); 
printf( 
  “Element (3,3) is %f\n”,  
  m.at<float>(3,3) //(row, col) 
); 

For a multichannel array, the analogous example would look like this: 
cv::Mat m = cv::Mat::eye( 10, 10, 32FC2 ); 
printf( 
  “Element (3,3) is (%f,%f)\n”,  
  m.at<cv::Vec2f>(3,3)[0], 
  m.at<cv::Vec2f>(3,3)[1] 
); 

Note that when you want to specify a template function like at<>() to operate on a multichannel array, 
the best way to do this is to use a cv::Vec<> object (either a premade alias or the template form).  

Similar to the vector case, you can create an array made of a more sophisticated type, such as complex 
numbers:  

cv::Mat m = cv::Mat::eye( 10, 10, cv::DataType<cv::Complexf>::type ); 
printf( 
  “Element (3,3) is %f + i%f\n”,  
  m.at<cv::Complexf>(3,3).re,  
  m.at<cv::Complexf>(3,3).im,  
); 

It is also worth noting the use of the cv::DataType<> template here. The matrix constructor requires a 
runtime value that is a variable of type int that happens to take on some “magic” values that the 
constructor understands. By contrast, cv::Complexf is an actual object type, a purely compile-time 
construct. The need to generate one of these representations (runtime) from the other (compile time) is 
precisely why the cv::DataType<> template exists. Table 3-15 lists the available variations of the 
at<>() template. 

Table 3-15: Variations of the at<>() accessor function 

Example Description 

M.at<int>( i ); Element i from integer array M 

 

                                                             
16 In the case of cv::Mat::eye() and cv::Mat::ones(), if the array created is multi-channel, only the first 
channel will be set 1.0 while the other channels will be 0.0. 
17 For two channels, the order is (row, col),  at<>(row, col). 



M.at<float>( i, j ); Element ( i, j ) (row, col) from float 
array M 

M.at<int>( pt ); 
Element at location (pt.x, pt.y) in 
integer matrix M 

M.at<float>( i, j, k ); Element at location ( i, j, k ) in 
three-dimensional float array M 

M.at<uchar>( idx ); 
Element at n-dimensional location 
indicated by idx[] in array M of 
unsigned characters 

 

To access a two-dimensional array, you can also extract a C-style pointer to a specific row of the array. 
This is done with the ptr<>() template member function of cv::Mat. (Recall that the data in the array 
is contiguous by row, thus accessing a specific column in this way would not make sense; we will see the 
right way to do that shortly.) As with at<>(), ptr<>() is a template function instantiated with a type 
name. It takes an integer argument indicating the row you wish a pointer to. The function returns a pointer 
to the primitive type of which the array is constructed (i.e., if the array type is F32C3, the return value will 
be of type float*). Thus, given a three-channel matrix mtx of type float, the construction 
mtx.ptr<Vec3f>(3) would return a pointer to the first (floating-point) channel of the first element in 
row 3 of mtx. This is generally the fastest way to access elements of an array,18 because once you have the 
pointer, you are right down there with the data.  

There are thus two ways to get a pointer to the data in a matrix mtx. One way is to go 
about it with the ptr<>() member function. The other is to directly use the member 
pointer data, and to use the member array step[] to compute addresses. The latter 
option is similar to what one tended to do in the C interface, but is generally no longer 
preferred over access methods such as at<>(), ptr<>(), and the iterators. Having 
said this, direct address computation may still be most efficient, particularly when dealing 
with arrays of dimension greater than two. 

There is one last important point to keep in mind about C-style pointer access. If you want to access 
everything in an array, you will likely iterate one row at a time, because the rows may or may not be 
packed continuously in the array. However, there is a member function isContinuous() that will tell 
you if the members are continuously packed. If they are, you can just grab the pointer to the very first 
element of the first row and cruise through the entire array as it if were a giant one-dimensional array.  

The other form of sequential access is to use the iterator mechanism built into cv::Mat. This mechanism 
is based on, and works more or less identically to, the analogous mechanism provided by the STL 
containers. The basic idea is that OpenCV provides a pair of iterator templates, one for const and one for 
non-const arrays. These iterators are named cv::MatIterator<> and 
cv::MatConstIterator<>, respectively. The cv::Mat methods begin() and end() return 
objects of this type. This method of iteration is convenient because the iterators are smart enough to handle 
the continuous packing as well as the non-continuous packing cases automatically, as well as handling any 
number of dimensions in the array.  

                                                             
18 The difference in performance between using at<>() and direct pointer access depends on compiler optimization. 
Access through at<>() will tend to be comparable to (though slightly slower than) direct pointer access in code with 
a good optimizer, but may be more than order of magnitude slower if that optimizer is turned off (e.g., when you do a 
debug build). Access through iterators is almost always slower than either of these. In almost all cases, however, using 
built-in OpenCV functions will be faster than any loop you write regardless of the direct access methods described 
here, so avoid that kind of construct wherever possible.  



Each iterator must be declared and specified to the type of object from which the array is constructed. Here 
is a simple example of the iterators being used to compute the “longest” element in a three-dimensional 
array of three-channel elements (a three-dimensional vector field): 

int sz[3] = { 4, 4, 4 }; 
cv::Mat m( 3, sz, cv::F32C3 );  // A three-dimensional array of size 4-by-4-by-4 
cv::randu( m, -1.0f, 1.0f );   // fill with random numbers from -1.0 to 1.0   
 
float max = 0.0f;              // minimum possible value of L2 norm 
cv::MatConstIterator<cv::Vec3f> it = m.begin(); 
while( it != m.end() ) { 
  len2 = (*it)[0]*(*it)[0]+(*it)[1]*(*it)[1]+(*it)[2]*(*it)[2]; 
  if( len2 > max ) max = len2; 
  it++; 
} 

Iterator-based access is typically used when doing operations over an entire array, or element-wise across 
multiple arrays. Consider the case of adding two arrays, or of converting an array from the RGB color 
space to the HSV color space. In such cases, the same exact operation will be done at every pixel location.  

The N-ary Array Iterator: NAryMatIterator 

There is another form of iteration which, though it does not handle discontinuities in the packing of the 
arrays in the manner of cv::MatIterator<>, allows us to handle iteration over many arrays at once. 
This iterator is called cv::NAryMatIterator, and requires only that all of the arrays that are being 
iterated over be of the same geometry (number of dimensions and extent in each dimension). 

Instead of returning single elements of the arrays being iterated over, the  N -ary iterator operates by 
returning chunks of those arrays, called planes.  A plane is a portion (typically one- or two-dimensional 
slice) of the input array in which the data is guaranteed to be contiguous in memory.19 This is how 
discontinuity is handled; you are given the contiguous chunks one by one.  For each such plane, you can 
either operate on it using array operations, or iterate trivially over it yourself. (In this case, “trivially” 
means to iterate over it in a way which does not need to check for discontinuities inside of the chunk.) 

The concept of the plane is entirely separate from the concept of multiple arrays being iterated over 
simultaneously. Consider the following code example, in which we will sum just a single multidimensional 
array plane by plane: 

  const int n_mat_size = 5; 
  const int n_mat_sz[] = { n_mat_size, n_mat_size, n_mat_size }; 
  cv::Mat n_mat( 3, n_mat_sz, cv::F32C1 ); 
 
  cv::RNG rng; 
  rng.fill( n_mat, cv::RNG::UNIFORM, 0.f, 1.f ); 
   
  const cv::Mat* arrays[] = { &n_mat, 0 }; 
  cv::Mat my_planes[1]; 
  cv::NAryMatIterator it( arrays, my_planes ); 

At this point, you have your  N -ary iterator. Continuing our example, we will compute the sum of m0 and 
m1, and place the result in m2. We will do this plane by plane, however:  

// On each iteration, it.planes[i] will be the current plane of the 
// i-th array from ‘arrays’. 
// 
 
  float s = 0.f;                               // Total sum over all planes 
  int   n = 0;                                 // Total number of planes 

                                                             
19 In fact the dimensionality of the “plane” is not limited to 2; it can be larger. What is always the case is that the planes 
will be contiguous in memory. 



  for (int p = 0; p < it.nplanes; p++, ++it) { 
    s += cv::sum(it.planes[0])[0];            
    n++;                                      
  }    

In this example, we first create the three-dimensional array n_mat and fill it with 125 random floating 
point numbers between 0.0 and 1.0.  To initialize the cv::NAryMatIterator object, we need to 
have two things. First, we need a C-style array containing pointers to all of the cv::Mat’s we wish to 
iterate over (in this example, there is just one). This array must always be terminated with a 0 or NULL. 
Next, we need another C-style array of cv::Mat’s that can be used to refer to the individual planes as we 
iterate over them (in this case, there is also just one). 

Once we have created the N-ary iterator, we can iterate over it.  Recall that this iteration is over the planes 
that make up the arrays we gave to the iterator. The number of planes (the same for each array, because 
they have the same geometry) will always be given by it.nplanes.  The N-ary iterator contains a C-
style array called planes that holds headers for the current plane in each input array.  In our example, 
there is only one array being iterated over, so we need only refer to it.planes[0] (the current plane in 
the one and only array).  In this example, we then call cv::sum() on each plane and accumulate the final 
result. 

To see the real utility of the  N -ary iterator, consider a slightly expanded version of this example in which 
there are two arrays we would like to sum over: 

  const int n_mat_size = 5; 
  const int n_mat_sz[] = { n_mat_size, n_mat_size, n_mat_size }; 
  cv::Mat n_mat0( 3, n_mat_sz, cv::F32C1 ); 
  cv::Mat n_mat1( 3, n_mat_sz, cv::F32C1 ); 
 
  cv::RNG rng;  
  rng.fill( n_mat0, cv::RNG::UNIFORM, 0.f, 1.f ); 
  rng.fill( n_mat1, cv::RNG::UNIFORM, 0.f, 1.f ); 
   
  const cv::Mat* arrays[] = { &n_mat0, &n_mat1, 0 }; 
  cv::Mat my_planes[2]; 
  cv::NAryMatIterator it( arrays, my_planes ); 
 
  float s = 0.f;                    // Total sum over all planes in both arrays 
  int   n = 0;                      // Total number of planes 
  for(int p = 0; p < it.nplanes; p++, ++it) { 
    s += cv::sum(it.planes[0])[0];            
    s += cv::sum(it.planes[1])[0];            
    n++;                                      
  }    

In this second example, you can see that the C-style array called arrays is given pointers to both input 
arrays, and two matrices are supplied in the my_planes array.  When it is time to iterate over the planes, 
at each step, planes[0] contains a plane in n_mat0 and planes[1] contains the corresponding plane 
in n_mat1.  In this simple example, we just sum the two planes and add them to our accumulator.  In an 
only slightly extended case, we could use element-wise addition to sum these two planes and place the 
result into the corresponding plane in a third array. 

Not shown in the example, but also important, is the member it.size, which indicates the size of each 
plane. The size reported is the number of elements in the plane, so it does not include a factor for the 
number of channels. In our previous example, if it.nplanes was four, then it.size would have been 
sixteen: 

/////////// compute dst[*] = pow(src1[*], src2[*]) ////////////// 
const Mat* arrays[] = { src1, src2, dst, 0 }; 
float* ptrs[3]; 
 
NAryMatIterator it(arrays, (uchar**)ptrs); 
for( size_t i = 0; i < it.nplanes; i++, ++it ) 



{ 
      for( size_t j = 0; j < it.size; j++ ) 
      { 
             ptrs[2][j] = std::pow(ptrs[0][j], ptrs[1][j]); 
      } 

} 

Accessing Array Elements by Block  

In the previous section, we saw ways to access individual elements of an array, either singularly or by 
iterating sequentially through them all. Another common situation that arises is when you need to access a 
subset of an array as another array. This might be to select out a row or a column, or any sub-region of the 
original array. 

There are many methods that do this for us in one way or another; all of them are member functions of the 
cv::Mat class and return a subsection of the array on which they are called. The simplest of these 
methods are row() and col(), which take a single integer and return the indicated row or column of the 
array whose member we are calling. Clearly these make sense only for a two-dimensional array; we will 
get to the more complicated case momentarily. 

When you use m.row() or m.col() (for some array m), or any of the other functions we are about to 
discuss, it is important to understand that the data in m is not copied to the new arrays. Consider an 
expression like m2 = m.row(3). This expression means to create a new array header m2, and to arrange 
its data pointer, step array, and so on, such that it will access the data in row 3 in m. If you modify the 
data in m2, you will be modifying the data in m. Later, we will visit the copyTo() method, which actually 
will copy data. The main advantage of the way this is handled in OpenCV is that the amount of time 
required to create a new array that accesses part of an existing array is not only very small, but also 
independent of the size of either the old or the new array. 

Closely related to row() and col() are rowRange() and colRange(). These functions do 
essentially the same thing as their simpler cousins, except that they will extract an array with multiple 
contiguous rows (or columns). Both functions can be called in one of two ways, either by specifying an 
integer start and end row (or column), or by passing a cv::Range object that indicates the desired rows 
(or columns). In the case of the two-integer method, the range is inclusive of the start index but exclusive of 
the end index (you may recall that cv::Range uses a similar convention).  

The member function diag() works the same as row() or col(), except that the array returned from 
m.diag() references the diagonal elements of a matrix. m.diag() expects an integer argument that 
indicates which diagonal is to be extracted. If that argument is zero, then it will be the main diagonal. If it is 
positive, it will be offset from the main diagonal by that distance in the upper half of the array. If it is 
negative, then it will be from the lower half of the array. 

The last way to extract a sub-matrix is with operator(). Using this operator, you can pass either a pair 
of ranges (a cv::Range for rows and a cv::Range for columns) or a cv::Rect to specify the region 
you want. This is the only method of access that will allow you to extract a sub-volume from a higher-
dimensional array. In this case, a pointer to a C-style array of ranges is expected and that array must have 
as many elements as the number of dimensions of the array. 

Table 3-16: Block access methods of cv::Mat 

Example Description 

m.row( i ); Array corresponding to row i of m 

m.col( j ); Array corresponding to column j of m 

m.rowRange( i0, i1 ); Array corresponding to rows i0 through 
i1-1 of matrix m 

 



m.rowRange( cv::Range( i0, i1 ) ); Array corresponding to rows i0 through 
i1-1 of matrix m 

m.colRange( j0, j1 ); Array corresponding to columns j0 
through j1-1 of matrix m 

m.colRange( cv::Range( j0, j1 ) ); Array corresponding to columns j0 
through j1-1 of matrix m 

m.diag( d ); Array corresponding to the d-offset 
diagonal of matrix m 

m( cv::Range(i0,i1), cv::Range(j0,j1) ); 
Array corresponding to the subrectangle 
of matrix m with one corner at i0, j0 and 
the opposite corner at (i1-1, j1-1) 

m( cv::Rect(i0,i1,w,h) ); 
Array corresponding to the subrectangle 
of matrix m with one corner at i0, j0 and 
the opposite corner at (i0+w-1, j0+h-1) 

m( ranges ); 

Array extracted from m corresponding to 
the subvolume that is the intersection of 
the ranges given by ranges[0]-
ranges[ndim-1] 

 

Matrix Expressions: Algebra and cv::Mat 

One of the things enabled by the move to C++ in version 2.1 is the overloading of operators and the ability 
to create algebraic expressions consisting of matrix arrays20 and singletons. The primary advantage of this 
is code clarity, as many operations can be combined into one expression that is both more compact and 
often more meaningful. 

In the background, many important features of OpenCV’s array class are being used to make these 
operations work. For example, matrix headers are created automatically as needed and workspace data 
areas are allocated (only) as required. When no longer needed, data areas are deallocated invisibly and 
automatically. The result of the computation is finally placed in the destination array by operator=(). 
However, one important distinction, is that this form of operator=() is not assigning a cv::Mat or a 
cv::Mat (as it might appear), but rather a cv::MatExpr (the expression itself21) to a cv::Mat. This 
distinction is important because data is always copied into the result (left-hand side) array. Recall that 
though m2=m1 is legal, it means something slightly different. In this first case, m2 would be another 
reference to the data in m1. By contrast, m2=m1+m0 means something different again. Because m1+m0 is a 

                                                             
20 For clarity, we use the word “array” when referring to a general object of type cv::Mat, and use the word “matrix” 
for those situations in which the manner in which the array is being used indicates that it is representing a mathematical 
object that would be called a matrix. The distinction is a purely semantic one, and not manifest in the actual design of 
OpenCV. 
21 The underlying machinery of cv::MatExpr is more detail than we need, but you can think of 
cv::MatExpr as being a symbolic representation of the algebraic form of the right-hand side. The great 
advantage of cv::MatExpr is that when it is time to evaluate an expression, it is often clear that some 
operations can be removed or simplified without evaluation (such as computing the transpose of the 
transpose of a matrix, adding zero, or multiplying a matrix by its own inverse). 



matrix expression, it will be evaluated and a pointer to the results will be assigned in m2. The results will 
reside in a newly allocated data area.22 

Table 3-17 lists examples of the algebraic operations available. Note that in addition to simple algebra, 
there are comparison operators, operators for constructing matrices (such as cv::Mat::eye(), which 
we encountered earlier), and higher level operations for computing transposes and inversions. The key idea 
here is that you should be able to take the sorts of relatively nontrivial matrix expressions that occur when 
doing computer vision and express them on a single line in a clear and concise way. 

Table 3-17: Operations available for matrix expressions 

Example Description 

m0 + m1, m0 – m1; Addition or subtraction of matrices 

m0 + s; m0 – s; s + m0, s – m1; Addition or subtraction between a matrix 
and a singleton 

-m0; Negation of a matrix 

s * m0; m0 * s; Scaling of a matrix by a singleton 

m0.mul( m1 ); m0/m1; Per element multiplication of m0 and m1, 
per-element division of m0 by m1 

m0 * m1; Matrix multiplication of m0 and m1 

m0.inv( method ); Matrix inversion of m0 (default value of 
method is DECOMP_LU) 

m0.t(); Matrix transpose of m0 (no copy is done) 

m0>m1; m0>=m1; m0==m1; m0<=m1; m0<m1; 
Per element comparison, returns uchar 
matrix with elements 0 or 255 

m0&m1; m0|m1; m0^m1; ~m0; 

 m0&s; s&m0; m0|s; s|m0; m0^s; s^m0; 
Bitwise logical operators between 
matrices or matrix and a singleton 

min(m0,m1); max(m0,m1); min(m0,s); 

 min(s,m0); max(m0,s); max(s,m0); 

Per element minimum and maximum 
between two matrices or a matrix and a 
singleton 

cv::abs( m0 ); Per element absolute value of m0 

m0.cross( m1 ); m0.dot( m1 ); 
Vector cross and dot product (vector 
cross product is only defined for 3-by-1 
matrices) 

cv::Mat::eye( Nr, Nc, type );  Class static matrix initializers that return 

                                                             
22 If you are a real expert, this will not surprise you. Clearly a temporary array must be created to store the result of 
m1+m0. Then m2 really is just another reference, but it is another reference to that temporary array. When 
operator+() exits, its reference to the temporary array is discarded, but the reference count is not zero. m2 is left 
holding the one and only reference to that array. 



 cv::Mat::zeros( Nr, Nc, type );  

 cv::Mat::ones( Nr, Nc, type ); 

fixed Nr-by-Nc matrices of type type 

The matrix inversion operator inv() is actually a frontend to a variety of algorithms for matrix inversion. 
There are currently three options. The first option is cv::DECOMP_LU, which means LU decomposition, 
and which works for any nonsingular matrix. The second is cv::DECOMP_CHOLESKY, which solves the 
inversion by Cholesky decomposition. Cholesky decomposition only works for symmetric, positive definite 
matrices, but is much faster than LU decomposition for large matrices. The last option is 
cv::DECOMP_SVD, which solves the inversion by singular value decomposition. SVD is the only 
workable option for matrices that are singular or not even squares (the pseudo-inverse is then computed). 

Not included in Table 3-17 are all of the functions like cv::norm(), cv::mean(), cv::sum(), and 
so on (some of which we have not gotten to yet, but you can probably guess what they do) that convert 
matrices to other matrices or to scalars. Any such object can still be used in a matrix expression. 

Saturation Casting  

In OpenCV, you will often do operations that risk overflowing or underflowing the available values in the 
destination of some computation. This is particularly common when one is doing operations on unsigned 
types that involve subtraction, but it can happen anywhere. To deal with this problem, OpenCV relies on a 
construct called saturation casting. 

What this means is that OpenCV arithmetic and other operations that act on arrays will check for 
underflows and overflows automatically; in these cases, the library functions will replace the resulting 
value of an operation with the lowest or highest available value, respectively. Note that this is not what C 
language operations normally and natively do. 

You may want to implement this particular behavior in your own functions as well. OpenCV provides some 
handy templated casting operators to make this easy for you. These are implemented as a template function 
called cv::saturate_cast<>(), which allows you to specify the type to which you would like to 
cast the argument. Here is an example: 

uchar& Vxy = m0.at<uchar>( y, x ); 
Vxy = cv::saturate_cast<uchar>((Vxy-128)*2 + 128);} 

In this example code, the variable Vxy is first assigned to be a reference to an element of an 8-bit array m0. 
This array then has 128 subtracted from it, multiply that by two (scale that up), and add 128 (so the result is 
twice as far from 128 as the original). The usual C arithmetic rules would assign Vxy-128 to a (32-bit) 
signed integer; followed by integer multiplication by 2 and integer addition of 128. Notice, however, that 
if the original value of Vxy were (for example) 10, then Vxy-128 would be -118. The value of the 
expression would then be -108. This number will not fit into the 8-bit unsigned variable Vxy. This is 
where cv::saturation_cast<uchar>() comes to the rescue. It takes the value of -108 and, 
recognizing that it is too low for an unsigned char, converts it to 0. 

More Things an Array Can Do  

At this point, we have touched on most of the members of the cv::Mat class. Of course, there are a few 
things that were missed, as they did not fall into any specific category that was discussed so far. In this 
section we will review the leftovers that you will need in your daily life of OpenCV programming. 

Table 3-18: More class member functions of cv::Mat 

Example Description 

m1 = m0.clone(); Make a complete copy of m0, copying all data elements as 
well; cloned array will be continuous 

m0.copyTo( m1 ); Copy contents of m0 onto m1, reallocating m1 if necessary 
(equivalent to m1=m0.clone()) 



m0.copyTo( m1, mask ); As m0.copyTo(m1) except only entries indicated in the 
array mask are copied 

m0.convertTo(  

   m1, type, scale, offset  

); 

Convert elements of m0 to type (i.eg., cv::F32) and 
write to m1 after scaling by scale (default 1.0) and adding 
offset (default 0.0) 

m0.assignTo( m1, type ); internal use only (resembles convertTo) 

m0.setTo( s, mask ); Set all entries in m0 to singleton value s; if mask is 
present, only set those value corresponding to nonzero 
elements in mask 

m0.reshape( chan, rows ); Changes effective shape of a two-dimensional matrix; 
chan or rows may be zero, which implies “no change”; 
data is not copied 

m0.push_back( s ); Extend a M-by-1 matrix and insert the singleton s at the end 

m0.push_back( m1 ); Extend an M-by-N by K rows and copy m1 into that rows; 
m1 must be K-by-N 

m0.pop_back( n ); Remove n rows from the end of an M-by-N (default value 
of n is one)23 

m0.locateROI( size, offset ); Write whole size of m0 to cv::Size size; if m0 is a 
“view” of a larger matrix, write location of starting corner 
to Point& offset 

m0.adjustROI( t, b, l, r ); Increase the size of a view by t pixels above, b pixels 
below, l pixels to the left, and r pixels to the right 

m0.total(); Compute the total number of array elements (does not 
include channels) 

m0.isContinuous(); Return true only if the rows in m0 are packed without 
space between them in memory 

m0.elemSize(); Return the size of the elements of m0 in bytes (eE.g., a 
three-channel float matrix would return 12 bytes)  

m0.elemSize1(); Return the size of the subelements of m0 in bytes (eE.g., a 
three-channel float matrix would return 4 bytes) 

m0.type(); Return a valid type identifier for the elements of m0 (e.g., 
cv::F32C3) 

m0.depth(); Return a valid type identifier for the individial channels of 

                                                             
23 Many implementations of “pop” functionality return the popped element.  This one does not; its return type is void. 



m0 (e.g., cv::F32) 

m0.channels(); Return the number of channels in the elements of m0. 

m0.size(); Return the size of the m0 as a cv::Size object. 

m0.empty(); Return true only if the array has no elements (i.e., 
m0.total==0 or m0.data==NULL) 

class cv::SparseMat: Sparse Arrays  

The class cv::SparseMat is used when an array is likely to be very large compared to the number of 
nonzero entries. This situation often arises in linear algebra with sparse matrices, but it also comes up when 
one wishes to represent data, particularly histograms, in higher-dimensional arrays, since most of space will 
be empty. A sparse representation only stores data that is actually present and so can save a great deal of 
memory. In practice, many sparse objects would be too huge to represent at all in a dense format. The 
disadvantage of sparse representations is that computation with them is slower (on a per-element basis). 
This last point is important, in that computation with sparse matrices is not categorically slower, as there 
can be a great economy in knowing in advance that many operations need not be done at all.  

The OpenCV sparse matrix class cv::SparseMat functions analogously to the dense matrix class 
cv::Mat in most ways. It is defined similarly, supports most of the same operations, and can contain the 
same data types. Internally, the way data is organized is quite different. While cv::Mat uses a data array 
closely related to a C data array (one in which the data is sequentially packed and addresses are directly 
computable from the indices of the element), cv::SparseMat uses a hash table to store just the nonzero 
elements.24 That hash table is maintained automatically, so when the number of (nonzero) elements in the 
array becomes too large for efficient look-up, the table grows automatically. 

Accessing Sparse Array Elements 

The most important difference between sparse and dense arrays is how elements are accessed. Sparse 
arrays provide four different access mechanisms: cv::SparseMat::ptr(), 
cv::SparseMat::ref(), cv::SparseMat::value(), and cv::SparseMat::find(). 

The cv::SparseMat::ptr() method has several variations, the simplest of which has the template:  
uchar* cv::SparseMat::ptr( int i0, bool createMissing, size_t* hashval=0 ) 

This particular version is for accessing a one-dimensional array. The first argument i0 is the index of the 
requested element. The next argument createMissing indicates whether the element should be created 
if it is not already present in the array. When cv::SparseMat::ptr() is called, it will return a pointer 
to the element if that element is already defined in the array, but NULL if that element is not defined. 
However, if the createMissing argument is true, however, that element will be created and a valid 
non-NULL pointer will be returned to that new element. To understand the final argument hashval, it is 
necessary to recall that the underlying data representation of a cv::SparseMat is as a hash table. 
Looking up objects in a hash table requires two steps: the first being the computation of the hash key (in 
this case, from the indices), and the second being the searching of a list associated with that key. Normally, 
that list will be short (ideally only one element), so the primary computational cost in a lookup is the 
computation of the hash key. If this key has already been computed (as with 
cv::SparseMat::hash(), which will be covered in the next section), then time can be saved by not 
recomputing it. In the case of cv::SparseMat::ptr(), if the argument hashval is left with its 
default argument of NULL, the hash key will be computed. If, however, a key is provided, it will be used. 

                                                             
24 Actually, zero elements may be stored, if those elements have become zero as a result of computation on the array. If 
you want to clean up such elements, you must do so yourself. This is the function of the method 
SparseMat::erase(), which we will visit shortly. 



There are also variations of cv::SparseMat::ptr() that allow for two or three indices, as well as a 
version whose first argument is a pointer to an array of integers (i.e., const int* idx), which is 
required to have the same number of entries as the dimension of the array being accessed. 

In all cases, the function cv::SparseMat::ptr() returns a pointer to an unsigned character (i.e., 
uchar*), which will typically need to be recast to the correct type for the array. 

The accessor template function SparseMat::ref<>() is used to return a reference to a particular 
element of the array. This function, like SparseMat::ptr(), can take one, two, or three indices, or a 
pointer to an array of indices, and also supports an optional pointer to the hash value to use in the lookup. 
Because it is a template function, you must specify the type of object being referenced. So, for example, if 
your array were of type cv::F32, then you might call SparseMat::ref<>() like this: 

a_sparse_mat.ref<float>( i0, i1 ) += 1.0f; 

The template method cv::SparseMat::value<>() is identical to SparseMat::ref<>(), except 
that it returns the value and not a reference to the value. As such, this method is itself a “const method.”25 

The final accessor function is cv::SparseMat::find<>(), which works similarly to 
cv::SparseMat::ref<>() and cv::SparseMat::value<>(), but returns a pointer to the 
requested object. Unlike cv::SparseMat::ptr(), however, this pointer is of the type specified by the 
template instantiation of cv::SparseMat::find<>(), and so does not need to be recast. For purposes 
of code clarity, cv::SparseMat::find<>() is preferred over cv::SparseMat::ptr() 
wherever possible. cv::SparseMat::find<>(), however, is a const method, and returns a const 
pointer, so the two are not always interchangeable.  

In addition to direct access through the four functions just outlined, it is also possible to access the elements 
of a sparse matrix through iterators. As with the dense array types, the iterators are normally templated. The 
templated iterators are cv::SparseMatIterator_<> and cv::SparseMatConstIterator_<>, 
together with their corresponding cv::SparseMat::begin<>() and cv::SparseMat::end<>() 
routines. (The const forms of the begin() and end() routines return the const iterators.) There are 
also non-template iterators cv::SparseMatIterator and cv::SparseMatConstIterator, 
which are returned by the non-template SparseMat::begin() and SparseMat::end() routines. 

Here is an example in which we print out all of the nonzero elements of a sparse array: 
// Create a 10x10 sparse matrix with a few nonzero elements 
//  
int size[] = {10,10}; 
cv::SparseMat sm( 2, size, cv::F32 ); 
for( int i=0; i<10; i++ ) { // Fill the array 
  int idx[2]; 
  idx[0] = size[0] * rand(); 
  idx[1] = size[1] * rand(); 
  sm.ref<float>( idx ) += 1.0f; 
} 
 
// Print out the nonzero elements 
// 
cv::SparseMatConstIterator_<float> it     = sm.begin<float>(); 
cv::SparseMatConstIterator_<float> it_end = sm.end<float>(); 
 
for(; it != it_end; ++it) { 
  const cv::SparseMat::Node* node = it.node(); 
  printf(" (%3d,%3d) %f\n", node->idx[0], node->idx[1], *it ); 

                                                             
25 For those of you not familiar with “const correctness,””, this means that the method is declared in its prototype 
such that the this pointer passed to SparseMat::value<>() is guaranteed to be a constant pointer, and thus 
SparseMat::value<>() can be called on const objects, while functions like SparseMat::ref<>() cannot. 
The next function SparseMat::find<>() is also a const function. 



} 

In this example, we also slipped in the method node(), which is defined for the iterators. node() 
returns a pointer to the internal data node in the sparse matrix that is indicated by the iterator. The returned 
object of type cv::SparseMat::Node has the following definition: 

struct Node 
{ 
  size_t hashval; 
  size_t next; 
  int idx[cv::MAX_DIM]; 
}; 

This structure contains both the index of the associated element (note that element idx is of type int[]), 
as well as the hash value associated with that node (element hashval is the same hash value as can be 
used with SparseMat::ptr(), SparseMat::ref(), SparseMat::value(), and 
SparseMat::find().) 

Functions Unique to Sparse Arrays 

As stated earlier, sparse matrices support many of the same operations as dense matrices. In addition, there 
are several methods that are unique to sparse matrices. These are listed in Table 3-19, and include the 
functions mentioned in the previous sections. 

Table 3-19: Additional class member functions of cv::SparseMat 

Example Description 

cv::SparseMat sm(); Create a sparse matrix without initialization 

cv::SparseMat sm( 3, sz, cv::F32 ); Create a three-dimensional sparse matrix with 
dimensions given by the array sz of type float 

cv::SparseMat sm( sm0 ); Create a new sparse matrix which is a copy of 
existing sparse matrix sm0 

cv::SparseMat( m0, try1d ); 

Create a sparse matrix from an existing dense 
matrix m0; if the bool try1d is true, convert m0 
to a one-dimensional sparse matrix if the dense 
matrix was N-by-1 or 1-by-N 

cv::SparseMat( &old_sparse_mat ); 
Create a new sparse matrix from a pointer to a pre-
version 2.1 C-style sparse matrix of type 
CvSparseMat  

CvSparseMat* old_sm = 

   (cv::SparseMat*) sm; 

Cast operator creates a pointer to a pre-version 2.1 
C-style sparse matrix; that CvSparseMat object 
is created and all data is copied into it, then its 
pointer is returned 

size_t n = sm.nzcount(); Return the number of nonzero elements in sm 

size_t h = sm.hash( i0 ); 

size_t h = sm.hash( i0, i1 ); 

size_t h = sm.hash( i0, i1, i2 ); 

size_t h = sm.hash( idx ); 

Return the hash value for element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element 
indicated by the array of integers idx in an n-
dimensional sparse matrix 



sm.ref<float>( i0 )         = f0; 

sm.ref<float>( i0, i1 )     = f0; 

sm.ref<float>( i0, i1, i2 ) = f0; 

sm.ref<float>( idx )        = f0; 

Assign the value f0 to element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element 
indicated by the array of integers idx in an n-
dimensional sparse matrix 

f0 = sm.value<float>( i0 ); 

f0 = sm.value<float>( i0, i1 ); 

f0 = sm.value<float>( i0, i1, i2 ); 

f0 = sm.value<float>( idx ); 

Assign the value to f0 from element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element 
indicated by the array of integers idx in an n-
dimensional sparse matrix 

p0 = sm.find<float>( i0 ); 

p0 = sm.find<float>( i0, i1 ); 

p0 = sm.find<float>( i0, i1, i2 ); 

p0 = sm.find<float>( idx ); 

Assign to p0 the address of element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element 
indicated by the array of integers idx in an n-
dimensional sparse matrix 

sm.erase( i0, &hashval ); 

sm.erase( i0, i1, &hashval ); 

sm.erase( idx, &hashval ); 

 

Remove the element i0, i1 in a two-dimensional 
sparse matrix, i0, i1, i2 in a three-dimensional 
sparse matrix, or the element indicated by the array 
of integers idx in an n-dimensional sparse matrix. 
If hashval is not NULL, use the provided value 
instead of computing it 

cv::SparseMatIterator<float> it  

  = sm.begin<float>(); 

Create a sparse matrix iterator it and point it at 
the first value of the floating-point array sm 

cv::SparseMatIterator<uchar> it_end  

  = sm.end<uchar>(); 

Create a sparse matrix iterator it_end and 
initialize it to the value succeeding the final value 
in the byte array sm 

The Template Structure 
Thus far in this chapter, we have regularly eluded to the existence of template forms for almost all of the 
basic types. In fact, most programmers can get quite far into OpenCV without ever digging down into the 
templates. However, knowing how to use the templates directly can be of great help in getting things done. 
In this section, we will look at how that all works. If your C++ programming skills are not entirely up to 
par, you can probably just skim or skip over this section entirely.  

OpenCV version 2.1 and later is built on a template meta-programming style similar to STL, Boost, and 
similar libraries. This sort of library design can be extremely powerful, both in terms of the quality and 
speed of the final code, as well as the flexibility it allows the developer. In particular, template structures of 
the kind used in OpenCV allow for algorithms to be implemented in an abstracted way that does not 
specifically rely on the primitive types that are native to C++ or even native to OpenCV.  

As an example, consider the cv::Point class. When you instantiate an object of type cv::Point, you 
are actually instantiating a template object of type cv::Point_<int>. (Note the trailing underscore—
this is the general convention in the library used to indicate a template.) This template could have been 
instantiated with a different type than int, obviously. In fact, it could have been instantiated with any type 



that supports the same basic set of operators as int (i.e., addition, subtraction, multiplication, etc.). For 
example, OpenCV provides a type cv::Complex that you could have used. You also could have used the 
STL complex type std::complex, which has nothing to do with OpenCV at all. The same is true for 
some other types of your own construction. This same concept generalizes to other type templates such as 
cv::Scalar_<> and cv::Rect_<>, as well as cv::Matx_<> and cv::Vec_<>.  

cv::Mat_<> and cv::SparseMat_<> Are a Little Bit Different 

This concept also generalizes to cv::Mat_<> and cv::SparseMat_<>, but in a somewhat nontrivial 
way. When you use cv::Point2i, recall that this is nothing more or less than an alias (typedef) for 
cv::Point_<int>. In the case of the template cv::Mat and cv::Mat_<>, their relationship is not 
so simple. Recall that cv::Mat already has the capability of representing essentially any type, but that this 
is done at construction time by explicitly specifying the base type. In the case of cv::Mat_<>, the 
instantiated template is actually derived from the cv::Mat class, and in effect specializes that class. This 
simplifies access and other member functions that would otherwise need to be templated.  

This is worth reiterating. The purpose of using the template forms cv::Mat_<> and 
cv::SparseMat_<> are so you don’t have to use the template forms of their member functions. 
Consider this example, where we have a matrix defined by: 

  cv::Mat m( 10, 10, cv::F32C2 ); 

Individual element accesses to this matrix would need to specify the type of the matrix, as in the following: 
  m.at< Vec2f >( i0, i1 ) = cv::Vec2f( x, y ); 

Alternatively, if you had defined the matrix m using the template class, you could use at() without 
specialization, or even just use operator(): 

  cv::Mat_<Vec2f> m( 10, 10 ); 
  m.at( i0, i1 ) = cv::Vec2f( x, y ); 
  // or… 
  m( i0, i1 ) = cv::Vec2f( x, y ); 

There is a great deal of simplification in your code that results from using these template definitions and 
because if this, it is the preferred way to code.  

These two ways of declaring a matrix and their associated .at methods are equivalent in 
efficiency. The second method is more “correct” because it allows the compiler to detect 
type mismatches when m is passed into a function that requires a certain type of matrix. If 

cv::Mat m(10, 10, cv::F32C2 ); 

is passed into  
void foo((cv::Mat_<char> *)myMat); 

failure would occur during runtime in perhaps nonobvious ways. If you instead used 
cv::Mat_<Vec2f> m( 10, 10 ); 

failure would be detected at compile time. 

Template forms can be used to create template functions that operate on an array of a particular type. 
Consider our example from the previous section, where we created a small sparse matrix and then printed 
out its nonzero elements. We might try writing a function to achieve this as follows: 

void print_matrix( const cv::SparseMat* sm ) { 
 
  cv::SparseMatConstIterator_<float> it     = sm.begin<float>(); 
  cv::SparseMatConstIterator_<float> it_end = sm.end<float>(); 
 
  for(; it != it_end; ++it) { 
    const cv::SparseMat::Node* node = it.node(); 
    printf(" (%3d,%3d) %f\n", node->idx[0], node->idx[1], *it ); 



  } 
} 

Though this function would compile and work when it is passed a two-dimensional matrix of type 
cv::F32, it would fail when a matrix of unexpected type was passed in. Let’s look at how we could make 
this function more general. 

The first thing we would want to address is the issue of the underlying data type. We could explicitly use 
the cv::SparseMat_<float> template, but it would be better still to make the function a template 
function. We would also need to get rid of the use of printf(), as it makes an explicit assumption that 
*it is a float. A better function might look like this:  

template <class T> void print_matrix( const cv::SparseMat_<T>* sm ) { 
 
  cv::SparseMatConstIterator_<T> it     = sm->begin(); 
  cv::SparseMatConstIterator_<T> it_end = sm->end(); 
 
  for(; it != it_end; ++it) { 
    const typename cv::SparseMat_<T>::Node* node = it.node(); 
    cout <<”( “ <<node->idx[0] <<”, “ <<node->idx[1] 
      <<” ) = “ <<*it <<endl; 
  } 
} 
 
void calling_function1( void ) { 
  … 
  cv::SparseMat_<float> sm( ndim, size ); 
  … 
  print_matrix<float>( &sm ); 
} 
 
void calling_function2( void ) { 
  … 
  cv::SparseMat sm( ndim, size, cv::F32 ); 
  … 
  print_matrix<float>( (cv::SparseMat_<float>*) &sm ); 
} 

It is worth picking apart these changes. First though, before looking at changes, notice that the template for 
our function takes a pointer of type const cv::SparseMat_<t>*, a pointer to a sparse matrix 
template object. There is a good reason to use a pointer and not a reference here, because the caller may 
have a cv::Mat object (as is done in calling_function2()) and not a cv::Mat_<> template 
object (as used in calling_function1()). The cv::Mat can be dereferenced and then explicitly 
cast to a pointer to the sparse matrix template object type. 

In the templated prototype, we have promoted the function to a template of class T, and now expect a 
cv::SparseMat_<T>* pointer as argument. In the next two lines, we declare our iterators using the 
template type, but begin() and end() no longer have templated instantiations. The reason for this is 
that sm is now an instantiated template, and because of that explicit instantiation, sm “knows” what sort of 
matrix it is, and thus specialization of begin() and end() is unnecessary. The declaration of the Node 
is similarly changed so that the Node we are using is explicitly taken from the cv::SparseMat_<T> 
instantiated template class.26 Finally, we change the printf() statement to use stream output to cout. 
This has the advantage that the printing is now agnostic to the type of *it. 

                                                             
26 The appearance of the typename keyword here is probably somewhat mysterious to most readers. It is a result of 
the dependent scoping rules in C++. If you should forget it, however, most modern compilers (e.g., g++) will throw you 
a friendly message reminding you to add it. 



Array Operators 
As we have seen so far in this chapter, there are many basic operations on arrays that are now handled by 
member functions of the array classes. In addition to those, however, there are many more operations that 
are most naturally represented as “friend” functions that either take array types as arguments, have array 
types as return values, or both. The functions, together with their arguments, will be covered in more detail 
after the table. For a shortcut, it is best to download the cheat sheet at 
http://docs.opencv.org/trunk/opencv_cheatsheet.pdf. 

Table 3-20: Basic matrix and image operators 

Function Description 

cv::abs()  Absolute value of all elements in an array 

cv::absdiff()   Absolute value of differences between two arrays 

cv::add()  Element-wise addition of two arrays 

cv::addWeighted()       Element-wise weighted addition of two arrays (alpha blending) 

cv::bitwise_and() Element-wise bit-level AND of two arrays 

cv::bitwise_not() Element-wise bit-level NOT of two arrays 

cv::bitwise_or() Element-wise bit-level OR of two arrays 

cv::bitwise_xor() Element-wise bit-level XOR of two arrays 

cv::calcCovarMatrix() Compute covariance of a set of n-dimensional vectors 

cv::cartToPolar() Compute angle and magnitude from a two-dimensional vector 
field 

cv::checkRange() Check array for invalid values 

cv::compare()                Apply selected comparison operator to all elements in two arrays 

cv::completeSymm()                Symmetrize matrix by copying elements from one half to the other 

cv::convertScaleAbs()  Scale array, take absolute value, then convert to 8-bit unsigned 

cv::countNonZero()                Count nonzero elements in an array 

cv::arrToMat() Converts pre-version 2.1 array types to cv::Mat 

cv::dct() Compute discrete cosine transform of array 

cv::determinant() Compute determinant of a square matrix 

cv::dft()                Compute discrete Fourier transform of array 

cv::divide() Element-wise division of one array by another 

cv::eigen() Compute eigenvalues and eigenvectors of a square matrix 



cv::exp() Element-wise exponentiation of array 

cv::extractImageCOI() Extract single channel from pre-version 2.1 array type 

cv::flip() Flip an array about a selected axis 

cv::gemm() Generalized matrix multiplication 

cv::getConvertElem() Get a single pixel type conversion function 

cv::getConvertScaleElem()                Get a single pixel type conversion and scale function 

cv::idct() Compute inverse discrete cosine transform of array 

cv::idft()  Compute inverse discrete Fourier transform of array 

cv::inRange() Test if elements of an array are within values of two other arrays 

cv::invert() Invert a square matrix 

cv::log() Element-wise natural log of array 

cv::magnitude() Compute magnitudes from a  two-dimensional vector field 

cv::LUT() Converts array to indices of a look-up table 

cv::Mahalanobis() Compute Mahalanobis distance between two vectors 

cv::max() Compute element-wise maxima between two arrays 

cv::mean() Compute the average of the array elements 

cv::meanStdDev() Compute the average and standard deviation of the array elements 

cv::merge() Merge several single-channel arrays into one multichannel arrays 

cv::min() Compute element-wise minima between two arrays 

cv::minMaxLoc() Find minimum and maximum values in an array 

cv::mixChannels() Shuffle channels from input arrays to output arrays 

cv::mulSpectrums() Compute element-wise multiplication of two Fourier spectra 

cv::multiply() Element-wise multiplication of two arrays 

cv::mulTransposed() Calculate matrix product of one array  

cv::norm() Compute normalized correlations between two arrays 

cv::normalize() Normalize elements in an array to some value 

cv::perspectiveTransform()            Perform perspective matrix transform of a list of vectors 



cv::phase() Compute orientations from a two-dimensional vector field 

cv::polarToCart()   Compute two-dimensional vector field from angles and 
magnitudes 

cv::pow()  Raise every element of an array to a given power 

cv::randu()  Fill a given array with uniformly distributed random numbers 

cv::randn()  Fill a given array with normally distributed random numbers 

cv::randShuffle()  Randomly shuffle array elements 

cv::reduce() Reduce a two-dimensional array to a vector by a given operation 

cv::repeat() Tile the contents of one array into another 

cv::saturate_cast<>()  Template function for guarding against overflow  

cv::scaleAdd() Element-wise sum of two arrays with optional scaling of the first 

cv::setIdentity() Set all elements of an array to 1 for the diagonal and 0 otherwise 

cv::solve() Solve a system of linear equations 

cv::solveCubic() Find the (only) real roots of a cubic equation  

cv::solvePoly() Find the complex roots of a polynomial equation 

cv::sort() Sort elements in either the rows or columns in an array 

cv::sortIdx() Same as cv::sort() except array is unmodified and indices are 
returned 

cv::split() Split a multichannel array into multiple single-channel arrays 

cv::sqrt() Compute element-wise square root of an array 

cv::subtract() Element-wise subtraction of one array from another 

cv::sum() Sum all elements of an array 

cv::theRNG() Return a random number generator 

cv::trace()  Compute the trace of an array 

cv::transform() Apply matrix transformation on every element of an array 

cv::transpose() Transpose all elements of an array across the diagonal 

In these functions, some general rules are followed. To the extent that any exceptions exist, they are noted 
in the function descriptions. Because one or more of these rules applies to just about every function 
described in this section, they are listed here for convenience: 

Saturation 

Outputs of calculations are saturation casted to the type of the output array. 



Output 

The output array will be created with cv::Mat::create() if its type and size do not match the 
inputs. 

Scalars 

Many functions such as cv::add() allow for addition of two arrays or an array and a scalar. Where 
the prototypes make the option clear, the result of providing a scalar argument is the same as if a 
second array had been provided with the same scalar value in every element. 

Masks 

Whenever a mask argument is present for a function, the output will only be computed for those 
elements where the mask value corresponding to that element in the output array is nonzero. 

dtype 

Many arithmetic and similar functions do not require the types of the input arrays to be the same, and 
even if they are the same, the output array may be of a different type than the inputs. In these cases, the 
output array must have its depth explicitly specified. This is done with the dtype argument. When 
present, dtype can be set to any of the basic types (cv::F32 etc.) and the result array will be of that 
type. If the input arrays have the same type, then dtype can be set to its default value of -1, and the 
resulting type will be the same as the types of the input arrays. 

In Place Operation 

Unless otherwise specified, any operation with both an array input and an array output that are of the 
same size and type can use the same array for both (i.e., it is allowable to write the output on top of an 
input). 

Multichannel 

For those operations that do not naturally make use of multiple channels, if given multichannel 
arguments, each channel is processed separately. 

cv::abs() 

cv::MatExpr cv::abs( cv::InputArray src ); 
cv::MatExpr cv::abs( const cv::MatExpr& src                  // Matrix expresion 
); 

These functions compute the absolute value of an array or of some expression of arrays. The most common 
usage computes the absolute value of every element in an array. Because cv::abs() can take a matrix 
expression, it is able to recognize certain special cases and handle them appropriately. In fact, calls to 
cv::abs() are actually converted to calls to cv::absDiff() or other functions, and handled by those 
functions. In particular, the following special cases are implemented: 

• m2 = cv::abs( m0 - m1 ) is converted to cv::absDiff( m0, m1, m2 ) 

• m2 = cv::abs( m0 ) is converted to m2 = cv::absDiff( m0, 
cv::Scalar::all(0), m2 )  

• m2 = cv::Mat_<Vec<uchar,n> >( cv::abs( alpha*m0 + beta ) ) (for alpha, 
beta real numbers) is converted to cv::convertScaleAbs( m0, m2, alpha, beta ) 

The third case might seem obscure, but this is just the case of computing a scale and offset (either of which 
could be trivial) to an n-channel array. This is typical of what one might do when computing a contrast 
correction for an image, for example. 

In the cases that are implemented by cv::absDiff(), the result array will have the same size and type 
as the input array. In the case implemented by cv::convertScaleAbs(), however, the result type of 
the return array will always be cv::U8.  



cv::absdiff() 

void cv::absdiff( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst                     // Result array  
) 

 
  
dsti = saturate † src1i − src2i( )  

Given two arrays, cv::absdiff() computes the difference between each pair of corresponding 
elements in those arrays, and places the absolute value of that difference into the corresponding element of 
the destination array.  

cv::add()  

void cv::add( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
  cv::InputArray  mask  = cv::noArray(),  // Optional mask, compute only where nonzero 
  int             dtype = -1              // Output type for result array 
)   

 
  
dsti = saturate †src1i + src2i( ) 

cv::add() is a simple addition function: it adds all of the elements in src1 to the corresponding 
elements in src2 and puts the results in dst.  

For simple cases, the same result can be achieved with the matrix operation: 

dst = src1 + src2; 

Accumulation is also supported: 
 dst += src1;  

cv::addWeighted()  

void cv::addWeighted( 
  cv::InputArray  src1,                   // First input array  
  double          alpha,                  // Weight for first input array 
  cv::InputArray  src2,                   // Second input array  
  double          beta,                   // Weight for second input array  
  double          gamma,                  // Offset added to weighted sum 
  cv::OutputArray dst,                    // Result array  
  int             dtype = -1              // Output type for result array 
) 

The function cv::addWeighted() is similar to cvAdd() except that the result written to dst is 
computed according to the following formula: 

 
  
dsti = saturate †src1i *αα†+ src2i *ββ†+ γ( ) †src1i *αα†+ src2i *ββ†+ γ( ).  

The two source images, src1 and src2 may be of any pixel type as long as both are of the same type. 
They may also have any number of channels (grayscale, color, etc.), as long as they agree.  

This function can be used to implement alpha blending [Smith79; Porter84]; that is, it can be used to blend 
one image with another. In this case, the parameter alpha is the blending strength of src1, and beta is 
the blending strength of src2. You can convert to the standard alpha blend equation by choosing α 
between 0 and 1, setting  β = 1−α , and setting γ  to 0; this yields: 



 
  
dsti = saturate †src1i *αα†+ src2i * 1−α†( ) 1−α†( )( ) †src1i *αα†+ src2i * 1−αα†( )( ).  

However, cv::addWeighted() gives us a little more flexibility—both in how we weight the blended 
images and in the additional parameter γ, which allows for an additive offset to the resulting destination 
image. For the general form, you will probably want to keep alpha and beta at 0 or above, and their sum 
at no more than 1; gamma may be set depending on average or max image value to scale the pixels up. A 
program showing the use of alpha blending is shown in Example 3-1. 

Example 3-1. Complete program to alpha blend the ROI starting at 
 
0,0( )  in src2 with the ROI starting at 

  
x, y( )  in src1 

// alphablend <imageA> <image B> <x> <y> <width> <height> alpha> <beta> 
// 
#include <cv.h> 
#include <highgui.h> 
 
int main(int argc, char** argv) { 
 
  cv::Mat src1 = cv::imread(argv[1],1); 
  cv::Mat src2 = cv::imread(argv[2],1); 
 
  if( argc==9 && !src1.empty() && !src2.empty() ) { 
 
    int    x     = atoi(argv[3]); 
    int    y     = atoi(argv[4]); 
    int    w     = atoi(argv[5]); 
    int    h     = atoi(argv[6]); 
    double alpha = (double)atof(argv[7]); 
    double beta  = (double)atof(argv[8]); 
 
    cv::Mat roi1( src1, cv::Rect(x,y,w,h) ); 
    cv::Mat roi2( src2, cv::Rect(0,0,w,h) ); 
 
    cv::addWeighted( roi1, alpha, roi2, beta, 0.0, roi1 ); 
 
    cv::namedWindow( "Alpha Blend", 1 ); 
    cv::imshow( "Alpha Blend", src2 ); 
    cv::waitKey( 0 ); 
  } 
 
  return 0; 
} 

The code in Example 3-1 takes two source images: the primary one (src1) and the one to blend (src2). It 
reads in a rectangle ROI for src1 and applies an ROI of the same size to src2, but located at the origin. It 
reads in alpha and beta levels but sets gamma to 0. Alpha blending is applied using 
cv::addWeighted(), and the results are put into src1 and displayed. Example output is shown in 
Figure 3-1, where the face of a child is blended onto a cat. Note that the code took the same ROI as in the 
ROI addition example in Figure 3-1. This time we used the ROI as the target blending region. 



 

Figure 3-1: The face of a child is alpha blended onto the face of a cat 

cv::bitwise_and() 

void cv::bitwise_and( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
  cv::InputArray  mask  = cv::noArray(),  // Optional mask, compute only where nonzero 
) 

   dsti = src1i ∧ src2i  

cv::bitwise_and() is a per-element bitwise conjunction operation. For every element in src1, the 
bitwise AND is computed with the corresponding element in src2 and put into the corresponding element 
of dst. 

If you are not using a mask, the same result can be achieved with the matrix operation: 
dst = src1 & src2; 

cv::bitwise_not() 

void cv::bitwise_not( 
  cv::InputArray  src,                    // Input array  
  cv::OutputArray dst,                    // Result array  
  cv::InputArray  mask  = cv::noArray(),  // Optional mask, compute only where nonzero 
  
) 

   dsti =∼ src1i  

cv::bitwise_not() is a per-element bitwise inversion operation. For every element in src1 the 
logical inversion is computed and placed into the corresponding element of dst. 

If you are not using a mask, the same result can be achieved with the matrix operation: 

dst = !src1; 



cv::bitwise_or() 

void cv::bitwise_and( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
  cv::InputArray  mask  = cv::noArray(),  // Optional mask, compute only where nonzero 
) 

   dsti = src1i ∨ src2i  

   dsti = src1i ∨ sc  

cv::bitwise_or() is a per-element bitwise disjunction operation. For every element in src1, the 
bitwise OR is computed with the corresponding element in src2 and put into the corresponding element of 
dst. 

If you are not using a mask, the same result can be achieved with the matrix operation: 

dst = src1 | src2; 

cv::bitwise_xor() 

void cv::bitwise_and( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
  cv::InputArray  mask  = cv::noArray(),  // Optional mask, compute only where nonzero 
) 

   dsti = src1i ⊕ src2i  

    dsti = src1i!sc  

cv::bitwise_and() is a per-element bitwise “exclusive or” operation. For every element in src1, the 
bitwise XOR is computed with the corresponding element in src2 and put into the corresponding element 
of dst. 

If you are not using a mask, the same result can be achieved with the matrix operation: 

dst = src1 ^ src2; 

cv::calcCovarMatrix() 

void cv::calcCovarMatrix( 
  const cv::Mat* samples,                // C-array of n-by-1 or 1-by-n matrices 
  int            nsamples,               // number of matrices pointed to by ‘samples’ 
  cv::Mat&       covar,                  // reference to return array for covariance 
  cv::Mat&       mean,                   // reference to return array for mean 
  int            flags,                  // special variations, see Table 3-21 
  int            ctype = cv::F64          // output matrix type for covar 
); 
 
void cv::calcCovarMatrix( 
  cv::InputArray samples,                // n-by-m matrix, use ‘flags’ for which is which 
  cv::Mat&       covar,                  // reference to return array for covariance 
  cv::Mat&       mean,                   // reference to return array for mean 
  int            flags,                  // special variations, see Table 3-21 
  int            ctype = cv::F64          // output matrix type for covar 
); 

Given any number of vectors, cv::calcCovarMatrix() will compute the mean and covariance 
matrix for the Gaussian approximation to the distribution of those points. This can be used in many ways, 



of course, and OpenCV has some additional flags that will help in particular contexts (see Table 3-21). 
These flags may be combined by the standard use of the Boolean OR operator. 

Table 3-21: Possible components of flags argument to cv::calcCovarMatrix() 

Flag in flags argument Meaning 
cv::COVAR_NORMAL  Compute mean and covariance 
cv::COVAR_SCRAMBLED  Fast PCA “scrambled” covariance 
cv::COVAR_USE_AVERAGE                    Use mean as input instead of computing it 
cv::COVAR_SCALE   Rescale output covariance matrix 
cv::COVAR_ROWS   Use rows of samples for input vectors 
cv::COVAR_COLS   Use columns of samples for input vectors 

There are two basic calling conventions for cv::calcCovarMatrix(). In the first, a pointer to an 
array of cv::Mat objects is passed along with nsamples, the number of matrices in that array. In this 
case, the arrays may be n-by-1 or 1-by-n. The second calling convention is to pass a single array that is n-
by-m. In this case, either the flag cv::COVAR_ROWS should be supplied, to indicate that there are n (row) 
vectors of length m, or cv::COVAR_COLS should be supplied, to indicate that there are m (column) 
vectors of length n. 

The results will be placed in covar in all cases, but the exact meaning of avg depends on the flag values 
(see Table 3-21). 

The flags cv::COVAR_NORMAL and cv::COVAR_SCRAMBLED are mutually exclusive; you should use 
one or the other but not both. In the case of cv::COVAR_NORMAL, the function will simply compute the 
mean and covariance of the points provided: 

  

Thus the normal covariance   Σ normal
2  is computed from the  m  vectors of length  n , where  vn  is defined as 

the  nth  element of the average vector:  v . The resulting covariance matrix is an  n -by- n  matrix. The 
factor  z  is an optional scale factor; it will be set to 1 unless the cv::COVAR_SCALE flag is used. 

In the case of cv::COVAR_SCRAMBLED, cv::calcCovarMatrix() will compute the following: 

  

This matrix is not the usual covariance matrix (note the location of the transpose operator). This matrix is 
computed from the same m vectors of length n, but the resulting scrambled covariance matrix is an m-by-m 
matrix. This matrix is used in some specific algorithms such as fast PCA for very large vectors (as in the 
eigenfaces technique for face recognition). 

The flag cv::COVAR_USE_AVG is used when the mean of the input vectors is already known. In this 
case, the argument avg is used as an input rather than an output, which reduces computation time. 

Finally, the flag cv::COVAR_SCALE is used to apply a uniform scale to the covariance matrix calculated. 
This is the factor z in the preceding equations. When used in conjunction with the cv::COVAR_NORMAL 
flag, the applied scale factor will be   1/ m  (or, equivalently, 1.0/nsamples). If instead 
cv::COVAR_SCRAMBLED is used, then the value of z will be   1/ n  (the inverse of the length of the 
vectors). 

The input and output arrays to cv::calcCovarMatrix() should all be of the same floating-point type. 
The size of the resulting matrix covar will be either  n -by- n  or  m -by- m  depending on whether the 
standard or scrambled covariance is being computed. It should be noted that when using the cv::Mat* 
form, the “vectors” input in samples do not actually have to be one-dimensional; they can be two-
dimensional objects (e.g., images) as well. 



cv::cartToPolar() 

void cv::cartToPolar( 
  cv::InputArray  x, 
  cv::InputArray  y, 
  cv::OutputArray magnitude, 
  cv::OutputArray angle, 
  bool            angleInDegrees = false 
); 

   magnitudei = † xi
2 + yi

2  

 
  
anglei = atan2 yi ,†xi( )  

This function cv::cartToPolar() takes two input arrays x and y, which are taken to be the  x  and  y  
components of a vector field (note that this is not a single two-channel array, but two separate arrays). The 
arrays x and y must be of the same size. cv::cartToPolar() then computes the polar representation 
of each of those vectors. The magnitude of each vector is placed into the corresponding location in 
magnitude, and the orientation of each vector is placed into the corresponding location in angle. The 
returned angles are in radians unless the Boolean variable angleInDegrees is set to true. 

cv::checkRange() 

bool cv::checkRange( 
  cv::InputArray src, 
  bool           quiet  = true, 
  Point*     pos    = 0,            // if non-Null, location of first outlier 
  double         minVal = -DBL_MAX,     // Lower check bound (inclusive) 
  double         maxVal =  DBL_MAX      // Upper check bound (exclusive) 
); 

This function cv::checkRange() tests every element of the input array src and determines if that 
element is in a given range. The range is set by minVal and maxVal, but any NaN or inf value is also 
considered out of range. If an out-of-range value is found, an exception will be thrown unless quiet is set 
to true, in which case the return value of cv::checkRange() will be true if all values are in range 
and false if any value is out of range. If the pointer pos is not NULL, then the location of the first outlier 
will be stored in pos. 

cv::compare() 

bool cv::compare( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
  int             cmpop                   // Comparison operator, see Table 3-22 
) 

This function makes element-wise comparisons between corresponding pixels in two arrays, src1 and 
src2, and places the results in the image dst. cv::compare() takes as its last argument a comparison 
operator, which may be any of the types listed in Table 3-22. In each case, the result dst will be an 8-bit 
array where pixels that match are marked with 255 and mismatches are set to 0. 

Table 3-22 Values of cmpop used by cv::compare() and the resulting comparison 
operation performed 

Value of cmp_op Comparison 
cv::CMP_EQ                    (src1i == src2i)  
cv::CMP_GT                    (src1i  > src2i)  
cv::CMP_GE                    (src1i >= src2i)  



cv::CMP_LT                    (src1i  < src2i)  
cv::CMP_LE                    (src1i <= src2i)  
cv::CMP_NE                    (src1i != src2i)  

All the listed comparisons are done with the same functions; you just pass in the appropriate argument to 
indicate what you would like done.  

These comparison functions are useful, for example, in background subtraction to create a mask of the 
changed pixels (e.g., from a security camera) such that only novel information is pulled out of the image. 

These same results can be achieved with the matrix operations: 
dst = src1 == src2; 

dst = src1  > src2; 

dst = src1 >= src2; 

dst = src1  < src2; 

dst = src1 <= src2; 

dst = src1 != src2; 

cv::completeSymm() 

bool cv::completeSymm(  
  cv::InputArray mtx,  
  bool           lowerToUpper = false  
) 

   
!mtxij = mtx ji!†i > j!      (lowerToUpper = false) 

   
!mtxij = mtx ji!† j > i!      (lowerToUpper = false) 

Given a matrix (an array of dimension two) mtx, cv::completeSymm() symmetrizes the matrix by 
copying.27 Specifically, all of the elements from the lower triangle are copied to their transpose position on 
the upper triangle of the matrix. The diagonal elements of the mtx are left unchanged. If the flag 
lowerToUpper is set to true, then the elements from the upper triangle are copied into the lower 
triangle instead. 

cv::convertScaleAbs() 

void cv::convertScaleAbs( 
  cv::InputArray  src,                    // Input array  
  cv::OutputArray dst,                    // Result array  
  double          alpha = 1.0,            // Multiplicative scale factor 
  double          beta  = 0.0             // Additive offset factor 
); 

 
  
dsti = saturateuchar α *srci + β( )  

The cv::convertScaleAbs() function is actually several functions rolled into one; it will perform 
four operations in sequence. The first operation is to rescale the source image by the factor alpha, the 
second is to offset by (add) the factor beta, the third is to compute the absolute value of that sum, and the 
fourth operation is to cast that result (with saturation) to unsigned char (8-bit). 

                                                             
27 Mathematically inclined readers will realize that there are other symmetrizing processes for matrices that are more 
“natural” than this operation, but this particular operation is useful in its own right, for example to complete a matrix 
when only half of it was computed, and so is exposed in the library. 



When you simply pass the default values (alpha = 1.0 or beta = 0.0), you need not have 
performance fears; OpenCV is smart enough to recognize these cases and not waste processor time on 
useless operations.  

A similar result can be achieved, with somewhat greater generality using matrix algebra: 
Mat_<uchar> B = saturate_cast<uchar>(  
  cv::abs( src * alpha + beta )  
) 

This method will also generalize to types other than uchar: 

Mat_<unsigned short> B = saturate_cast<unsigned short>(  
  cv::abs( src * alpha + beta )  
) 

cv::countNonZero() 

int cv::countNonZero(              // Return number of non-zero elements in mtx 
  cv::InputArray mtx,              // Input array 
); 

 

  
count =

mtxi≠0
∑ 1 

cv::countNonZero() returns the number of nonzero pixels in the array mtx. 

cv::cvarrToMat() 

cv::Mat cv::cvarrToMat( 
  const CvArr* src,              // Input array: CvMat, IplImage, or CvMatND 
  bool         copyData = false, // if false just make new header, else copy data 
  bool         allowND  = true,  // if true, and possible, convert CvMatND to Mat 
  int          coiMode  = 0      // if 0: error if COI set, if 1: ignore COI 
); 

cv::cvarrToMat() is used when you have an “old-style” (pre-version 2.1) image or matrix type and 
you want to convert it to a “new-style” (version 2.1 or later, which uses C++) cv::Mat object. By default, 
only the header for the new array is constructed without copying the data. Instead, the data pointers in the 
new header point to the existing data array (so do not deallocate it while the cv::Mat header is in use). If 
you want the data copied, just set copyData to true, and then you can freely do away with the original 
data object. 

cv::cvarrToMat() can also take CvMatND structures, but it cannot handle all cases. The key 
requirement for the conversion is that the matrix should be continuous, or at least it should be representable 
as a sequence of continuous matrices. Specifically, A.dim[i].size*A.dim.step[i] should be 
equal to A.dim.step[i-1] for all i, or at worst all but one. If allowND is set to true (default), 
cv::cvarrToMat() will attempt the conversion when it encounters a CvMatND structure, and throw an 
exception if that conversion is not possible (the condition above). If allowND is set to false, then an 
exception will be thrown whenever a CvMatND structure is encountered. 

Because the concept of COI28 is handled differently in the post-version 2.1 library (which is to say, it no 
longer exists), COI has to be handled during the conversion. If the argument coiMode is 0, then an 
exception will be thrown when src contains an active COI. If coiMode is nonzero, then no error will be 
reported, and instead a cv::Mat header, which corresponds to the entire image, will be returned, ignoring 

                                                             
28 “COI” is an old concept from the pre-v2 library which meant “Channel of interest”.  In the old IplImage class, this 
COI was analogous to ROI (Region of interest), and could be set to cause certain functions to act only on the indicated 
channel. 



the COI. (If you want to handle COI properly, you will have to check yourself if the image has the COI set, 
and if so, use cv::extractImageCOI() to create a header for just that channel.) 

Most of the time, this function is used to help migrate old-style code to the new. In such 
case, you will probably need to both convert old CvArr* style structures to cv::Mat, 
as well as the reverse operation. The reverse operation is done using cast operators. If, for 
example, you have a matrix you defined as cv::Mat A, you can convert that to an 
IplImage* pointer simply with: 
 

Mat A( 640, 480, cv::U8C3 ); 
IplImage img = A; // casting is implicit in assignment 

 

cv::dct() 

void cv::dct( 
  cv::InputArray  src,                    // Input array 
  cv::OutputArray dst,                    // Result array  
  int             flags,                  // for inverse transform or row-by-row 
); 

This function performs both the discrete cosine transform and the inverse transform depending on the 
flags argument. The source array src must be either one- or two-dimensional, and the size should be an 
even number (you can pad the array if necessary). The result array dst will have the same type and size as 
src. The argument flags is a bit-field and can be set to one or both of DCT_INVERSE or DCT_ROWS. If 
DCT_INVERSE is set, then the inverse transform is done instead of the forward transform. If the flag 
DCT_ROWS is set, then a two-dimensional n-by-m input is treated as n distinct one-dimensional vectors of 
length m. In this case, each such vector will be transformed independently. 

The performance of cv::dct() depends strongly on the exact size of the arrays passed 
to it, and this relationship is not monotonic. There are just some sizes that work better 
than others. It is recommended that when passing an array to cv::dct(), you should 
first determine the most optimal size that is larger than your array, and extend your array 
to that size. OpenCV provides a convenient routine to compute such values for you, 
called cv::getOptimalDFTSize(). 

As implemented, the discrete cosine transform of a vector of length n is computed using 
the discrete Fourier transform (cv::dft()) on a vector of length n/2. This means that 
to get the optimal size for a call to cv::dct(), you should compute it like this: 

size_t optimal_dct_size = 2 * getOptimalDFTSize( (N+1) / 2 ); 

This function (and discrete transforms in general) is covered in much greater detail in Chapter 6, General 
Image Transforms. In that section, we will discuss the details of how to pack and unpack the input and 
output, as well as information on when and why you might want to use the discrete cosine transform. 

cv::dft() 

void cv::dft( 
  cv::InputArray  src,                    // Input array 
  cv::OutputArray dst,                    // Result array  
  int             flags       = 0,        // for inverse transform or row-by-row, etc. 
  int             nonzeroRows = 0         // assume only this many entries are nonzero 
); 

This function performs both the discrete Fourier transform as well as the inverse transform (depending on 
the flags argument). The source array src must be either one- or two--dimensional. The result array 
dst will have the same type and size as src. The argument flags is a bit-field and can be set to one or 
more of DFT_INVERSE, DFT_ROWS, DFT_SCALE, DFT_COMPLEX_OUTPUT, or 
DFT_REAL_OUTPUT. If DFT_INVERSE is set, then the inverse transform is done. If the flag DFT_ROWS 
is set, then a two-dimensional  n -by- m  input is treated as  n  distinct one-dimensional vectors of length  m  



and each such vector will be transformed independently. The flag DFT_SCALE normalizes the results by 
the number of elements in the array. This is normally done for DFT_INVERSE, as it guarantees that the 
inverse of the inverse will have the correct normalization. 

The flags DFT_COMPLEX_OUTPUT and DFT_REAL_OUTPUT are useful because when the Fourier 
transform of a real array is computed, the result will have a complex-conjugate symmetry. So, even though 
the result is complex, the number of array elements that result will be equal to the number of elements in 
the real input array rather than double that number. Such a packing is the default behavior of cv::dft(). 
To force the output to be in complex form, set the flag DFT_COMPLEX_OUTPUT. In the case of the 
inverse transform, the input is (in general) complex, and the output will be as well. However, if the input 
array (to the inverse transform) has complex-conjugate symmetry (for example, if it was itself the result of 
a Fourier transform of a real array), then the inverse transform will be a real array. If you know this to be 
the case, and you would like the result array represented as a real array (and so use half the amount of 
memory), you can set the DFT_REAL_OUTPUT flag. (Note that if you do set this flag, cv::dft() does 
not check that the input array has the necessary symmetry, it simply assumes that it does.) 

The last parameter to cv::dft() is nonzeroRows. This defaults to 0, but if set to any nonzero value, 
will cause cv::dft() to assume that only the first nonzeroRows of the input array are actually 
meaningful. (If DFT_INVERSE is set, then it is only the first nonzeroRows of the output array that are 
assumed to be nonzero.)  This flag is particularly handy when computing cross-correlations of convolutions 
using cv::dft(). 

Like the performance of cv::dct(), cv::dft() depends strongly on the exact size 
of the arrays passed to it, and this relationship is not monotonic. There are just some sizes 
that work better than others. It is recommended that when passing an array to 
cv::dft(), you should first determine the most optimal size larger than your array, 
and extend your array to that size. OpenCV provides a convenient routine to compute 
such values for you, called cv::getOptimalDFTSize(). 

Again, this function (and discrete transforms in general) is covered in much greater detail in Chapter 6, 
General Image Transforms. In that section, we will discuss the details of how to pack and unpack the input 
and output, as well as information on when and why you might want to use the discrete Fourier transform. 

cv::cvtColor() 

void cv::cvtColor( 
  cv::InputArray  src,                    // Input array 
  cv::OutputArray dst,                    // Result array  
  int             code,                   // color mapping code, see Table 3-23 
  int             dstCn = 0               // channels in output (0 for ‘automatic’) 
); 

cv::cvtColor() is used to convert from one color space (number of channels) to another [Wharton71] 
while retaining the same data type. The input array src can be an 8-bit array, a 16-bit unsigned array, or a 
32-bit floating-point array. The output array dst will have the same size and depth as the input array. The 
conversion operation to be done is specified by the code argument, with possible values shown in Table 3-
23.29  The final parameter dstCn is the desired number of channels in the destination image. If the default 
value (of 0) is given, then the number of channels is determined by the number of channels in src and the 
conversion code. 

Table 3-23: Conversions available by means of cv::cvtColor() 

Conversion code Meaning 

                                                             
29 Long-time users of IPL should note that the function cvCvtColor() ignores the colorModel and 
channelSeq fields of the IplImage header. The conversions are done exactly as implied by the code argument. 



cv::BGR2RGB 
cv::RGB2BGR 
cv::RGBA2BGRA 
cv::BGRA2RGBA 

Convert between RGB and BGR color spaces (with 
or without alpha channel) 

cv::RGB2RGBA 
cv::BGR2BGRA 

Add alpha channel to RGB or BGR image 

cv::RGBA2RGB 
cv::BGRA2BGR 

Remove alpha channel from RGB or BGR image 

cv::RGB2BGRA 
cv::RGBA2BGR 
cv::BGRA2RGB 
cv::BGR2RGBA 

Convert RGB to BGR color spaces while adding or 
removing alpha channel 

cv::RGB2GRAY 
cv::BGR2GRAY 

Convert RGB or BGR color spaces to grayscale 

cv::GRAY2RGB 
cv::GRAY2BGR 
cv::RGBA2GRAY 
cv::BGRA2GRAY 

Convert grayscale to RGB or BGR color spaces 
(optionally removing alpha channel in the process) 

cv::GRAY2RGBA 
cv::GRAY2BGRA 

Convert grayscale to RGB or BGR color spaces and 
add alpha channel 

cv::RGB2BGR565 
cv::BGR2BGR565 
cv::BGR5652RGB 
cv::BGR5652BGR 
cv::RGBA2BGR565 
cv::BGRA2BGR565 
cv::BGR5652RGBA 
cv::BGR5652BGRA 

Convert from RGB or BGR color space to BGR565 
color representation with optional addition or 
removal of alpha channel (16-bit images) 

cv::GRAY2BGR565 
cv::BGR5652GRAY 

Convert grayscale to BGR565 color representation 
or vice versa (16-bit images) 

cv::RGB2BGR555 
cv::BGR2BGR555 
cv::BGR5552RGB 
cv::BGR5552BGR 
cv::RGBA2BGR555 
cv::BGRA2BGR555 
cv::BGR5552RGBA 
cv::BGR5552BGRA 

Convert from RGB or BGR color space to BGR555 
color representation with optional addition or 
removal of alpha channel (16-bit images) 

cv::GRAY2BGR555 
cv::BGR5552GRAY 

Convert grayscale to BGR555 color representation 
or vice versa (16-bit images) 

cv::RGB2XYZ 
cv::BGR2XYZ 
cv::XYZ2RGB 
cv::XYZ2BGR 

Convert RGB or BGR image to CIE XYZ 
representation or vice versa (Rec 709 with D65 
white point) 

cv::RGB2YCrCb 
cv::BGR2YCrCb 
cv::YCrCb2RGB 
cv::YCrCb2BGR 

Convert RGB or BGR image to luma-chroma (aka 
YCC) color representation or vice versa 

cv::RGB2HSV 
cv::BGR2HSV 
cv::HSV2RGB 
cv::HSV2BGR 

Convert RGB or BGR image to HSV (hue 
saturation value) color representation or vice versa 



cv::RGB2HLS 
cv::BGR2HLS 
cv::HLS2RGB 
cv::HLS2BGR 

Convert RGB or BGR image to HLS (hue lightness 
saturation) color representation or vice versa 

cv::RGB2Lab 
cv::BGR2Lab 
cv::Lab2RGB 
cv::Lab2BGR 

Convert RGB or BGR image to CIE Lab color 
representation or vice versa 

cv::RGB2Luv 
cv::BGR2Luv 
cv::Luv2RGB 
cv::Luv2BGR 

Convert RGB or BGR image to CIE Luv color 
representation or vice versa 

cv::BayerBG2RGB 
cv::BayerGB2RGB 
cv::BayerRG2RGB 
cv::BayerGR2RGB 
cv::BayerBG2BGR 
cv::BayerGB2BGR 
cv::BayerRG2BGR 
cv::BayerGR2BGR 

Convert from Bayer pattern (single-channel) to 
RGB or BGR image 

We will not go into the details of these conversions nor the subtleties of some of the representations 
(particularly the Bayer and the CIE color spaces) here. Instead, we will just note that OpenCV contains 
tools to convert to and from these various color spaces, which are of importance to various classes of users. 

The color-space conversions all use the conventions: 8-bit images are in the range 0 to 255, 16-bit images 
are in the range 0 to 65536, and floating-point numbers are in the range 0.0 to 1.0. When grayscale 
images are converted to color images, all components of the resulting image are taken to be equal; but for 
the reverse transformation (e.g., RGB or BGR to grayscale), the gray value is computed using the 
perceptually weighted formula: 

 
  
Y = 0.299( )R + 0.587( )G + 0.114( )B  

In the case of HSV or HLS representations, hue is normally represented as a value from 0 to 360.30 This can 
cause trouble in 8-bit representations and so, when converting to HSV, the hue is divided by 2 when the 
output image is an 8-bit image. 

cv::determinant() 

double cv::determinant( 
  cv::InputArray mat 
); 

 
  
d = det mat( ) 

cv::determinant() computes the determinant of a square array. The array must be of one of the 
floating-point data types and must be single-channel. If the matrix is small, then the determinant is directly 
computed by the standard formula. For large matrices, this is not efficient and so the determinant is 
computed by Gaussian elimination. 

It is worth noting that if you know that a matrix has a symmetric and positive 
determinant, you can use the trick of solving via singular value decomposition (SVD). 
For more information, see the upcoming section on cv::SVD(), but the trick is to set 

                                                             
30 Excluding 360, of course. 



both U and V to NULL and then just take the products of the matrix W to obtain the 
determinant. 

cv::divide() 

void cv::divide( 
  cv::InputArray  src1,                  // First input array (numerators) 
  cv::InputArray  src2,                  // Second input array (denominators) 
  cv::OutputArray dst,                   // Results array (scale*src1/src2) 
  double          scale = 1.0,           // Multiplicative scale factor 
  int             dtype = -1             // Data type for dst, -1 to get from src2 
) 
 
void cv::divide(  
  double          scale,                 // Numerator for all divisions 
  cv::InputArray  src2,                  // Input array (denominators)  
  cv::OutputArray dst,                   // Results array (scale/src2)  
  int             dtype = -1             // Data type for dst, -1 to get from src2 
) 

 
  
dsti = saturate scale*†src1i / src2i( ) 

 
  
dsti = saturate scale / src2i( )  

cv::divide() is a simple division function; it divides all of the elements in src1 by the corresponding 
elements in src2 and puts the results in dst.  

cv::eigen() 

bool cv::eigen( 
  cv::InputArray  src, 
  cv::OutputArray eigenvalues,  
  int             lowindex     = -1, 
  int             highindex    = -1 
);  
  
bool cv::eigen( 
  cv::InputArray  src, 
  cv::OutputArray eigenvalues, 
  cv::OutputArray eigenvectors,  
  int             lowindex     = -1, 
  int             highindex    = -1 
); 

Given a symmetric matrix mat, cv::eigen() will compute the eigenvectors and eigenvalues of that 
matrix. The matrix must be of one of the floating-point types. The results array eigenvalues will 
contain the eigenvalues of mat in descending order. If the array eigenvectors was provided, the 
eigenvectors will be stored as the rows of that array in the same order as the corresponding eigenvalues in 
eigenvalues. The additional parameters lowindex and highindex allow you to request only some 
of the eigenvalues to be computed (both must be used together). For example, if lowindex=0 and 
highindex=1, then only the largest two eigenvectors will be computed. Regardless of the number of 
eigenvalues (and eigenvectors) requested, the result arrays will be of the same size (the requested values 
will always appear in the initial rows). 



Similar to cv::det() (described previously), if the matrix in question is symmetric 
and positive definite,31 then it is better to use SVD to find the eigenvalues and 
eigenvectors of mat. 

cv::exp() 

void cv::exp( 
  cv::InputArray  src, 
  cv::OutputArray dst 
);   

  dsti = esrci  

cv::exp() exponentiates all of the elements in src1 and puts the results in dst. 

cv::extractImageCOI() 

bool cv::extractImageCOI( 
  cv::InputArray  mat, 
  cv::OutputArray dst, 
  int             coi = -1 
);   

The function cv::extractImageCOI() extracts the indicated COI from a legacy-style (pre-version 
2.1) array, such as an IplImage or CvMat given by src and puts the result in dst. If the argument coi 
is provided, then that particular COI will be extracted. If not, then the COI field in src will be checked to 
determine which channel to extract. 

This method here specifically works with legacy arrays. If you need to extract a single 
channel from a modern cv::Mat object, use cv::mixChannels() or 
cv::split(). 

cv::flip() 

void cv::flip( 
  cv::InputArray  src,                    // Input array  
  cv::OutputArray dst,                    // Results array, size and type of ‘src’  
  int             flipCode = 0            // >0: y-flip, 0: x-flip, <0: both 
); 

This function flips an image around the  x -axis, the  y -axis, or both. By default, flipCode is set to 0, 
which flips around the x-axis. 

If flipCode is set greater than zero (e.g., +1), the image will be flipped around the  y -axis, and if set to a 
negative value (e.g., –1), the image will be flipped about both axes. 

When doing video processing on Win32 systems, you will find yourself using this function often to switch 
between image formats with their origins at the upper-left and lower-left of the image. 

cv::gemm() 

void cv::gemm( 
  cv::InputArray  src1,                   // First input array 
  cv::InputArray  src2,                   // Second input array 
  double          alpha,                  // Weight for ‘src1’ * ‘src2’ product 
  cv::InputArray  src3,                   // Third (offset) input array 
  double          beta,                   // Weight for ‘src3’ array 
  cv::OutputArray dst,                    // Results array 
  int             flags = 0               // Use to transpose source arrays 

                                                             
31 This is, for example, always the case for covariance matrices. See cvCalcCovarMatrixSee 
cv::calcCovarMatrixcvCalcCovarMatrix(). 



); 

Generalized matrix multiplication (GEMM) in OpenCV is performed by cv::gemm(), which performs 
matrix multiplication, multiplication by a transpose, scaled multiplication, and so on. In its most general 
form, cv::gemm() computes the following: 

 
    D = †α!op src1( )*†op src2( ) + †β!op src3( )  

where src1, src2, and src3 are matrices, α  and β  are numerical coefficients, and op() is an 
optional transposition of the matrix enclosed. The transpositions are controlled by the optional argument 
flags, which may be 0 or any combination (by means of Boolean OR) of cv::GEMM_1_T, 
cv::GEMM_2_T, and cv::GEMM_3_T (with each flag indicating a transposition of the corresponding 
matrix). 

All matrices must be of the appropriate size for the (matrix) multiplication, and all should be of floating-
point types. The cv::gemm() function also supports two-channel matrices that will be treated as two 
components of a single complex number. 

A similar result can be achieved using the matrix algebra operators. For example: 
 cv::gemm(src1,src2,alpha,src3,bets,dst,cv::GEMM_1_T|cv::GEMM_3_T) 

would be equivalent to: 
 dst = alpha * src1.T() * src2 + beta * src3.T() 

cv::getConvertElem() and cv::getConvertScaleElem() 
cv::convertData cv::getConvertElem(       // Returns a conversion function (below) 
  int fromType,                           // Input pixel type (e.g., cv::U8)                         
  int toType                              // Output pixel type (e.g., cv::F32)  
 
); 
cv::convertScaleData cv::getConvertScaleElem(  // Returns a conversion function  
  int fromType,                           // Input pixel type (e.g., cv::U8)                         
  int toType                              // Output pixel type (e.g., cv::F32) 
); 
 
// Conversion functions are of these forms: 
// 
typedef void (*ConvertData)(  
  const void* from,                       // Pointer to the input pixel location        
  void*       to,                         // Pointer to the result pixel location        
  int         cn                          // number of channels 
); 
typedef void (*ConvertScaleData)(  
  const void* from,                       // Pointer to the input pixel location        
  void*       to,                         // Pointer to the result pixel location        
  int         cn,                         // number of channels 
  double      alpha,                      // scale factor  
  double      beta                        // offset factor 
); 

The functions cv::getConvertElem() and cv::getConvertScaleElem() return function 
pointers to the functions that are used for specific type conversions in OpenCV. The function returned by 
cv::getConvertElem() is defined (via typedef) to the type cv::ConvertData, which can be 
passed a pointer to two data areas and a number of “channels.” The number of channels is given by the 
argument cn of the conversion function, which is really the number of contiguous-in-memory objects of 
fromType to convert. This means that if you wanted, you could convert an entire (contiguous in memory) 
array by simply setting the number of channels equal to the total number of elements in the array. 



Both cv::getConvertElem() and cv::getConvertScaleElem() take as arguments two 
types: fromType and toType. These types are specified using the integer constants (cv::F32, etc.). 

In the case of cv::getConvertScaleElem(), the returned function takes two additional arguments, 
alpha and beta. These values are used by the converter function to rescale (alpha) and offset (beta) 
the input value before conversion to the desired type. 

cv::idct() 

void cv::idct( 
  cv::InputArray  src,                    // Input array 
  cv::OutputArray dst,                    // Result array  
  int             flags,                  // for row-by-row 
); 

cv::idct() is just a convenient shorthand for the inverse discrete cosine transform. A call to 
cv::idct() is exactly equivalent to a call to cv::dct() with the arguments: 

cv::dct( src, dst, flags | cv::DCT_INVERSE ); 

cv::idft() 

void cv::idft( 
  cv::InputArray  src,                    // Input array 
  cv::OutputArray dst,                    // Result array  
  int             flags       = 0,        // for row-by-row, etc. 
  int             nonzeroRows = 0         // assume only this many entries are nonzero 
); 

cv::idft() is just a convenient shorthand for the inverse discrete Fourier transform. A call to 
cv::idft() is exactly equivalent to a call to cv::dft() with the arguments: 

cv::dft( src, dst, flags | cv::DCT_INVERSE, outputRows ); 

It is noteworthy that neither cv::dft() nor cv::idft() scales the output by 
default. So you will probably want to call cv::idft() with the cv::DFT_SCALE 
argument, that way, the  transform and its “inverse” will be true inverse operations. 

cv::inRange()  

void cv::inRange( 
  cv::InputArray  src,                    // Input Array         
  cv::InputArray  upperb,                 // Array of upper bounds (inclusive) 
  cv::InputArray  lowerb,                 // Array of lower bounds (inclusive) 
  cv::OutputArray dst                     // Result array, cv::U8C1 type 
);     

  dsti = lowerbi ≤ srci ≤ upperbi  

When applied to a one-dimensional array, each element of src is checked against the corresponding 
elements of upperb and lowerb. The corresponding element of dst is set to 255 if the element in src 
is between the values given by upperb and lowerb;; otherwise, it is set to 0. 

However, in the case of multichannel arrays for src, upperb, and lowerb, however, the output is still a 
single channel. The output value for element i will be set to 255 if and only if the values for the 
corresponding entry in src all lay inside of the intervals implied for the corresponding channel in upperb 
and lowerb. In this sense, upperb and lowerb define an  n -dimensional hypercube for each pixel and 
the corresponding value in dst is only set to true (255) if the pixel in src lies inside that hypercube.  

cv::invert() 

double cv::invert(                        // Return 0 if ‘src’ is singular 
  cv::InputArray  src,                    // Input Array, m-by-n         
  cv::OutputArray dst                     // Result array, n-by-m 
  int             method = cv::DECOMP_LU  // Method for computing (pseudo) inverse  



); 

cv::invert() inverts the matrix in src and places the result in dst. The input array must be a 
floating-point type, and the result array will be of the same type. Because cv::invert() includes the 
possibility of computing pseudo-inverses, the input array need not be square. If the input array is  n -by- m , 
then the result array will be  m -by- n . This function supports several methods of computing the inverse 
matrix (see Table 3-24), but the default is Gaussian elimination. The return value depends on the method 
used. 

Table 3-24: Possible values of method argument to cv::invert() 

Value of method argument Meaning 
cv::DECOMP_LU                    Gaussian elimination (LU decomposition) 
cv::DECOMP_SVD                    Singular value decomposition (SVD) 
cv::DECOMP_CHOLESKY                    Only for symmetric positive matrices 

In the case of Gaussian elimination (cv::DECOMP_LU), the determinant of src is returned when the 
function is complete. If the determinant is 0, inversion failed and the array dst is set to 0s. 

In the case of cv::DECOMP_SVD, the return value is the inverse condition number for the matrix (the 
ratio of the smallest to the largest eigenvalues). If the matrix src is singular, then cv::invert() in 
SVD mode will compute the pseudo-inverse. The other two methods (LU and Cholesky decomposition) 
require the source matrix to be square, nonsingular and positive. 

cv::log() 

void cv::log( 
  cv::InputArray  src, 
  cv::OutputArray dst 
);   

 

  
dsti =

log srci srci ≠ 0

−C else

⎧
⎨
⎪

⎩⎪
 

cv::log() computes the natural log of the elements in src1 and puts the results in dst. Source pixels 
that are less than or equal to zero are marked with destination pixels set to a large negative value.  

cv::LUT() 

void cv::LUT( 
  cv::InputArray  src,  
  cv::InputArray  lut, 
  cv::OutputArray dst 
); 

 
  
dsti = lut srci( ) 

The function cv::LUT() performs a “lookup table transform” on the input in src. cv::LUT() requires 
the source array src to be 8-bit index values. The lut array holds the lookup table. This lookup table 
array should have exactly 256 elements, and may have either a single channel or, in the case of a 
multichannel src array, the same number of channels as the source array. The function cv::LUT() then 
fills the destination array dst with values taken from the lookup table lut using the corresponding value 
from src as an index into that table. 

In the case where the values in src are signed 8-bit numbers, they are automatically offset by +128 so that 
their range will index the lookup table in a meaningful way. If the lookup table is multichannel (and the 
indices are as well), then the value in src is used as a multidimensional index into lut, and the result 
array dst will be single channel. If lut is one-dimensional, then the result array will be multichannel, 



with each channel being separately computed from the corresponding index from src and the one-
dimensional lookup table. 

cv::magnitude() 

void cv::magnitude( 
  cv::InputArray  x,  
  cv::InputArray  y, 
  cv::OutputArray dst 
); 

   dsti = xi
2 + yi

2  

cv::magnitude() essentially computes the radial part of a Cartesian-to-polar conversion on a two-
dimensional vector field. In the case of cv::magnitude(), this vector field is expected to be in the 
form of two separate single channel arrays. These two input array should have the same size. (If you have a 
single two-channel array, cv::split() will give you separate channels.)  Each element in dst is 
computed from the corresponding elements of x and y as the Euclidian norm of the two (i.e., the square 
root of the sum of the squares of the corresponding values). 

cv::Mahalanobis() 

cv::Size cv::mahalanobis( 
    cv::InputArray  vec1, 
    cv::InputArray  vec2, 
    cv::OutputArray icovar 
); 

cvMahalanobis() computes the value: 

 
   
rmahalonobis =

!x −
!
µ( )T

Σ −1 !x −
!
µ( )  

The Mahalanobis distance is defined as the vector distance measured between a point and the center of a 
Gaussian distribution; it is computed using the inverse covariance of that distribution as a metric. See 
Figure 3-2. Intuitively, this is analogous to the z-score in basic statistics, where the distance from the center 
of a distribution is measured in units of the variance of that distribution. The Mahalanobis distance is just a 
multivariable generalization of the same idea. 

 



Figure 3-2: A distribution of points in two dimensions with superimposed ellipsoids representing 
Mahalanobis distances of 1.0, 2.0, and 3.0 from the distribution’s mean 

The vector vec1 is presumed to be the point x, and the vector vec2 is taken to be the distribution’s 
mean.32 That matrix icovar is the inverse covariance. 

This covariance matrix will usually have been computed with 
cv::calcCovarMatrix() (described previously) and then inverted with 
cv::invert(). It is good programming practice to use the cv::DECOMP_SVD 
method for this inversion because someday you will encounter a distribution for which 
one of the eigenvalues is 0! 

cv::max() 

cv::MatExpr cv::max(  
const cv::Mat& src1,                    // First input Array   
const cv::Mat& src2                     // Second input array  

); 
MatExpr cv::max(                          // Return a matrix expression, not a matrix 
  const cv::Mat&  src1,                   // First input array (first position)              
  double          value                   // Scalar in second position 
); 
MatExpr cv::max(                          // Return a matrix expression, not a matrix 
  double          value,                  // Scalar in first position 
  const cv::Mat&  src1                    // Input Array (second position) 
); 
 
void cv::max(  
  cv::InputArray  src1,                   // First input Array  
  cv::InputArray  src2,                   // Second input Array  
  cv::OutputArray dst                     // Result array 
); 
void cv::max(  
  const Mat&      src1,                   // First input Array 
  const Mat&      src2,                   // Second input Array 
  Mat&            dst                     // Result array 
); 
void cv::max(  
  const Mat&      src1,                   // Input Array 
  double          value,                  // Scalar input 
  Mat&            dst                     // Result array 
); 

 
  
dsti = max †src1,i ,†src2,i( ) 

cv::max() computes the maximum value of each corresponding pair of pixels in the arrays src1 and 
src2. It has two basic forms: those that return a matrix expression and those that compute a result and put 
it someplace you have indicated. In the three-argument form, in the case where one of the operands is a 
cv::Scalar, comparison with a multichannel array is done on a per-channel basis with the appropriate 
component of the cv::Scalar. 

cv::mean() 

cv::Scalar cv::mean( 
  cv::InputArray  src, 

                                                             
32 Actually, the Mahalanobis distance is more generally defined as the distance between any two vectors; in any case, 
the vector vec2 is subtracted from the vector vec1. Neither is there any fundamental connection between mat in 
cvMahalanobiscv::Mahalanobis() and the inverse covariance; any metric can be imposed here as 
appropriate. 



  cv::InputArray  mask = cv::noArray(),   // Optional mask, compute only where nonzero 
); 

 

  
N = †

i,†maski≠0
∑ 1  

 

  
meanc = † 1

N i,†maski≠0
∑ srci  

The function cv::mean() computes average value of all of the pixels in the input array src that are not 
masked out. The result is computed on a per-channel basis if src is multichannel. 

cv::meanStdDev() 

void cv::meanStdDev( 
  cv::InputArray  src, 
  cv::OutputArray mean, 
  cv::OutputArray stddev, 
  cv::InputArray  mask = cv::noArray(),   // Optional mask, compute only where nonzero  
 
); 

 

  
N = †

i,†maski≠0
∑ 1  

 

  
meanc = † 1

N i,†maski≠0
∑ srci  

 

  
stddevc = †

i,†mask≠0
∑ srcc,i − meanc( )2

 

The function cv::meanStdDev() computes the average value of the pixels in the input array src not 
masked out, as well as their standard deviation. The mean and standard deviation are computed on a per-
channel basis if src is multichannel. 

It is important to know that the standard deviation computed here is not the same as the 
covariance matrix. In fact, the standard deviation computed here is only the diagonal 
elements of the full covariance matrix. If you want to compute the full covariance matrix, 
you will have to use cv::calcCovarMatrix(). 

cv::merge() 

void cv::merge(  
  const cv::Mat*  mv,                   // C-style array of arrays 
  size_t          count,                // Number of arrays pointed to by ‘mv’ 
  cv::OutputArray dst                   // Result array, contains all channels in ‘mv’  
); 
void merge( 
  const vector<cv::Mat>& mv,            // STL-style array of arrays 
  cv::OutputArray dst                   // Result array, contains all channels in ‘mv’  
); 

cv::merge() is the inverse operation of cv::split(). The arrays contained in mv are combined into 
the output array dst. In the case in which mv is a pointer to a C-style array of cv::Mat objects, the 
additional size parameter count must also be supplied. 



cv::min()  

cv::MatExpr cv::min(                      // Return a matrix expression, not a matrix 
  const cv::Mat&  src1,                   // First input array                  
  const cv::Mat&  src2                    // Second input array  
); 
MatExpr cv::min(                          // Return a matrix expression, not a matrix 
  const cv::Mat&  src1,                   // First input array (first position)              
  double          value                   // Scalar in second position 
); 
MatExpr cv::min(                          // Return a matrix expression, not a matrix 
  double          value,                  // Scalar in first position 
  const cv::Mat&  src1                    // Input Array (second position) 
); 
 
void cv::min(  
  cv::InputArray  src1,                   // First input Array  
  cv::InputArray  src2,                   // Second input Array  
  cv::OutputArray dst                     // Result array 
); 
void cv::min(  
  const Mat&      src1,                   // First input Array 
  const Mat&      src2,                   // Second input Array 
  Mat&            dst                     // Result array 
); 
void cv::min(  
  const Mat&      src1,                   // Input Array 
  double          value,                  // Scalar input 
  Mat&            dst                     // Result array 
); 

 
  
dsti = min †src1,i ,†src2,i( ) 

cv::min() computes the minimum value of each corresponding pair of pixels in the arrays src1 and 
src2 (or one source matrix and a single value). Note that the variants of cv::min() that return a value 
or return a matrix expression that can then be manipulated by OpenCV’s matrix expression machinery.  

In the three-argument form, in the case where one of the operands is a cv::Scalar, comparison with a 
multichannel array is done on a per-channel basis with the appropriate component of the cv::Scalar. 

cv::minMaxIdx() 

void cv::minMaxLoc( 
  cv::InputArray src,                     // Input array, 1-dimensional only 
  double*        minVal,                  // min value goes here (in not NULL)  
  double*        maxVal,                  // min value goes here (in not NULL)  
  cv::Point*     minLoc,                  // location of min goes here (if not NULL) 
  cv::Point*     maxLoc,                  // location of max goes here (if not NULL) 
  cv::InputArray mask = cv::noArray()     // search only non-zero values (if not NULL) 
 
void cv::minMaxLoc( 
  const SparseMat& src,                   // Input sparse array 
  double*        minVal,                  // min value goes here (in not NULL)  
  double*        maxVal,                  // min value goes here (in not NULL)  
  cv::Point*     minIdx,                  // C-style array, indices of min location 
  cv::Point*     maxIdx,                  // C-style array, indices of min location 
); 

This routine finds the minimal and maximal values in the array src and (optionally) returns their locations. 
The computed minimum and maximum values are placed in minVal and maxVal. Optionally, the 
locations of those extrema can also be returned, but only if the src array is two-dimensional. These 
locations will be written to the addresses given by minLoc and maxLoc (provided that these arguments 



are non-NULL). Because these locations are of type cv::Point, this form of the function should only be 
used on two-dimensional arrays (i.e., matrices or images). 
 

cv::minMaxLoc() 

void cv::minMaxLoc( 
  cv::InputArray src,                     // Input array 
  double*        minVal,                  // min value goes here (in not NULL)  
  double*        maxVal,                  // min value goes here (in not NULL)  
  cv::Point*     minLoc,                  // location of min goes here (if not NULL) 
  cv::Point*     maxLoc,                  // location of max goes here (if not NULL) 
  cv::InputArray mask = cv::noArray()     // search only non-zero values (if present) 
 
void cv::minMaxLoc( 
  const SparseMat& src,                   // Input sparse array 
  double*        minVal,                  // min value goes here (in not NULL)  
  double*        maxVal,                  // min value goes here (in not NULL)  
  cv::Point*     minIdx,                  // C-style array, indices of min location 
  cv::Point*     maxIdx,                  // C-style array, indices of min location 
); 

This routine finds the minimal and maximal values in the array src and (optionally) returns their locations. 
The computed minimum and maximum values are placed in minVal and maxVal. Optionally, the 
locations of those extrema can also be returned, but only if the src array is two-dimensional. These 
locations will be written to the addresses given by minLoc and maxLoc (provided that these arguments 
are non-NULL). Because these locations are of type cv::Point, this form of the function should only be 
used on two-dimensional arrays (i.e., matrices or images). 

cv::minMaxLoc() can also be called with a cv::SparseMat for the src array. In this case, the 
array can be of any number of dimensions and the minimum and maximum will be computed and their 
location returned. In this case, the locations of the extrema will be returned and placed in the C-style arrays 
minIdx and maxIdx. Both of those arrays, if provided, should have the same number of elements as the 
number of dimensions in the src array. In the case of cv::SparseMat, the minimum and maximum are 
only computed for what are generally referred to as nonzero elements in the source code. However, it is 
important to note that this terminology is slightly misleading, as what is really meant is: elements that exist 
in the sparse matrix representation in memory. In fact, there may, as a result of how the sparse matrix came 
into being and what has been done with it in the past, be elements that exist and are also zero. Such 
elements will be included in the computation of the minimum and maximum. 

When working with multichannel arrays, there are several options. Natively, cv::minMaxLoc() does 
not support multichannel input. Primarily this is because this operation is ambiguous.  

If you want the minimum and maximum across all channels, you can use 
cv::reshape() to reshape the multichannel array into one giant single-channel array. 
If you would like the minimum and maximum for each channel separately, you can use 
cv::split() or cv::mixChannels() to separate the channels out and analyze 
them separately. 

In both forms of cv::minMaxLoc, the arguments for the minimum or maximum value or location may 
be set to NULL, which turns off the computation for that argument. 

cv::mixChannels() 

void cv::mixChannels(  
  const cv::Mat*         srcv,            // C-style array of matrices 
  int                    nsrc,            // Number of elements in ‘srcv’ 
  cv::Mat*               dstv,            // C-style array of target matrices 
  int                    ndst,            // Number of elements in ‘dstv’ 
  const int*             fromTo,          // C-style array of pairs, …from,to… 
  size_t                 n_pairs          // Number of pairs in ‘fromTo’ 



); 
 
void cv::mixChannels(  
  const vector<cv::Mat>& srcv,            // STL-style vector of matrices 
  vector<cv::Mat>&       dstv,            // STL-style vector of target matrices 
  const int*             fromTo,          // C-style array of pairs, …from,to… 
  size_t                 n_pairs          // Number of pairs in ‘fromTo’ 
);   

There are many operations in OpenCV that are special cases of the general problem of rearranging channels 
from one or more images in the input, and sorting them into particular channels in one or more images in 
the output. Functions like cv::split(), cv::merge(), and (at least some cases of) 
cv::cvtColor() all make use of such functionality. Those methods do what they need to do by calling 
the much more general cv::mixChannels(). This function allows you to supply multiple arrays, each 
with potentially multiple channels, for the input, and the same for the output, and to map the channels from 
the input arrays into the channels in the output arrays in any manner you choose. 

The input and output arrays can either be specified as C-style arrays of cv::Mat objects with an 
accompanying integer indicating the number of cv::Mats, or as an STL vector<> of cv::Mat 
objects. Output arrays must be pre-allocated with their size and number of dimensions matching those of 
the input arrays. 

 
Figure 3-3: A single four-channel RGBA image is converted to one BGR and one Alpha-only image. 

The mapping is controlled by the C-style integer array fromTo. This array can contain any number of 
integer pairs in sequence, with each pair indicating with its first value the source channel and with its 
second value the destination channel to which that should be copied. The channels are sequentially 
numbered starting at zero for the first image, then through the second image, and so on. (Figure 3-3). The 
total number of pairs is supplied by the argument n_pairs. 

Unlike most other functions in the post-version 2.1 library, cv::mixChannels() 
does not allocate the output arrays. They must be pre-allocated and have the same size 
and dimensionality as the input arrays. 



cv::mulSpectrums() 

doublevoid cv::mulSpectrums(               
    cv::InputArray  arr1,                 // First input array 
    cv::InputArray  arr2,                 // Second input array, same size as ‘arr1’ 
    cv::OutputArray dst,                  // Result array, same size as ‘arr1’ 
    int             flags,                // used to indicate that rows are independent 
    bool            conj  = false         // If true, conjugate arr2 first  
);   

In many operations involving spectra (i.e., the results from cv::dft() or cv::idft()), one wishes to 
do a per-element multiplication that respects the packing of the spectra (real arrays), or their nature as 
complex variables. (See the description of cv::dft() for more details.)  The input arrays may be one- or 
two-dimensional, with the second the same size and type as the first. If the input array is two-dimensional, 
it may either be taken to be a true two-dimensional spectrum, or an array of one-dimensional spectra (one 
per row). In the latter case, flags should be set to cv::DFT_ROWS; otherwise it can be set to 0. 

When the two arrays are complex, they are simply multiplied on an element-wise basis, but 
cv::mulSpectrums() provides an option to conjugate the second array elements before multiplication. 
For example, you would use this option to perform correlation (using the Fourier transform), but for 
convolution, you would use conj=false.  

cv::multiply() 

void cv::multiply( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array 
  cv::OutputArray dst,                    // Result array  
  double          scale = 1.0,            // overall scale factor 
  int             dtype = -1              // Output type for result array  
); 

 
  
dsti = saturate scale*†src1i *src2i( ) 

cv::multiply() is a simple multiplication function; it multiplies the elements in src1 by the 
corresponding elements in src2 and puts the results in dst.  

cv::mulTransposed() 

void cv::mulTransposed( 
  cv::InputArray  src1,                   // Input matrix  
  cv::OutputArray dst,                    // Result array  
  bool            aTa,                    // If true, transpose then multiply 
  cv::InputArray  delta = cv::noArray(),  // subtract from ‘src1’ before multiplication 
  double          scale = 1.0,            // overall scale factor  
  int             dtype = -1              // Output type for result array  
 
) 

 

  

dst =
scale* src − delta( )T

src − delta( ) aTa = true

scale* src − delta( ) src − delta( )T
aTa = false

⎧

⎨
⎪

⎩
⎪

 

cv::mulTransposed() is used to compute the product of a matrix and its own transpose—useful, for 
example, in computing covariance. The matrix src should be two-dimensional and single-channel, but 
unlike cv::GEMM(), it is not restricted to the floating-point types. The result matrix will be the same type 
as the source matrix unless specified otherwise by dtype. If dtype is not negative (default), it should be 
either cv::F32 or cv::F64; the output array dst will then be of the indicated type. 

If a second input matrix delta is provided, that matrix will be subtracted from src before the 
multiplication. If no matrix is provided (i.e., delta=cv::noArray()), then no subtraction is done. The 



array delta need not be the same size as src; if delta is smaller than src, delta is repeated (also 
called tiling, see cv::repeat()) in order to produce an array whose size matches the size of src. The 
argument scale is applied to the matrix after the multiplication is done. Finally, the argument aTa is used 
to select either the multiplication in which the transposed version of src is multiplied from the left 
(aTa=true) or from the right (aTa=false). 

cv::norm() 

double cv::norm(                          // Return computed norm in double precision 
  cv::InputArray src1,                    // Input matrix  
  int            normType = cv::NORM_L2,  // Type of norm to compute 
  cv::InputArray mask     = cv::noArray() // include only non-zero values (if present) 
); 
double cv::norm(                          // Return computed norm of difference       
  cv::InputArray src1,                    // Input matrix 
  cv::InputArray src2,                    // Second input matrix 
  int            normType = cv::NORM_L2,  // Type of norm to compute 
  cv::InputArray mask     = cv::noArray() // include only non-zero values (if present) 
); 
double cv::norm( 
  const cv::SparseMat& src,               // Input sparse matrix  
  int                  normType = cv::NORM_L2, // Type of norm to compute 
); 

   
src1∞,L1,L2  

   
src1− src2∞,L1,L2  

This function is used to compute the norm of an array (see Table 3-25) or a variety of distance norms 
(Table 3-26) between two arrays if two arrays are provided (see Table 3-26). The norm of a 
cv::SparseMat can also be computed, in which case zero-entries are ignored in the computation of the 
norm.  

Table 3-25: Norm computed by cv:norm() for different values of normType when arr2=NULL 

normType Result 
 cv::NORM_INF                     

  
src1∞ = maxi abs src1i( )  

 cv::NORM_L1                    
 

  
src1L1 =

i
∑abs src1i( )  

 cv::NORM_L2                    
 

  
src1L2 =

i
∑src1i

2

i
∑src1i

2  

If the second array argument src2 is non-NULL, then the norm computed is a difference norm—that is, 
something like the distance between the two arrays.33 In the first three cases (shown in Table 3-26) the 
norm is absolute; in the latter three cases it is rescaled by the magnitude of the second array src2. 

Table 3-26: Norm computed by cv::norm() for different values of normType when arr2 is non-NULL 

normType Result 
cv::NORM_INF                     

  
src1− src2∞ = maxi abs src1i − src2i( )  

                                                             
33 At least in the case of the L2 norm, there is an intuitive interpretation of the difference norm as a Euclidean distance 
in a space of dimension equal to the number of pixels in the images. 



cv::NORM_L1                    
 

  
src1− src2L1 =

i
∑abs src1i − src2i( )  

cv::NORM_L2                    
 

  
src1− src2L2 =

i
∑ src1i − src2i( )2

 

cv::NORM_RELATIVE_INF  

 
  

src1− src2∞

src2∞

 

cv::NORM_RELATIVE_L1  
 

  

src1− src2L1

src2L1

 

cv::NORM_RELATIVE_L2  
 

  

src1− src2L2

src2L2

 

In all cases, src1 and src2 must have the same size and number of channels. When there is more than 
one channel, the norm is computed over all of the channels together (i.e., the sums in Table  and Table 3-26 
are not only over x and y but also over the channels). 

cv::normalize() 

void cv::normalize( 
  cv::InputArray  src1,                   // Input matrix  
  cv::OutputArray dst,                    // Result matrix 
  double          alpha    = 1,           // first parameter (see Table 3-27) 
  double          beta     = 0,           // second parameter (see Table 3-27) 
  int             normType = cv::NORM_L2, // Type of norm to compute 
  int             dtype = -1              // Output type for result array  
  cv::InputArray  mask     = cv::noArray()// include only non-zero values (if present) 
); 
void cv::normalize( 
  const cv::SparseMat& src,               // Input sparse matrix 
  cv::SparseMat&       dst,               // Result sparse matrix 
  double               alpha    = 1,      // first parameter (see Table 3-27)  
  int                  normType = cv::NORM_L2, // Type of norm to compute 
); 

   
dst∞,L1,L2 =α  

 
  
min dst( ) =α ,††††max dst( ) = β  

As with so many OpenCV functions, cv::normalize() does more than it might at first appear. 
Depending on the value of normType, image src is normalized or otherwise mapped into a particular 
range in dst. The array dst will be the same size as src, and will have the same data type, unless the 
rtype argument is used. Optionally, rtype can be set to one of the OpenCV fundamental types 
(cv::F32, etc.) and the output array will be of that type. The exact meaning of this operation is dependent 
on the normType argument. The possible values of normType are shown in Table 3-27.  

Table 3-27: Possible values of normType argument to cv::normalize() 

norm_type Result 
cv::NORM_INF                     

  
dst∞ = maxi abs dsti( ) =α  



cv::NORM_L1                    
 

  
dstL1 =

i
∑abs dsti( ) =α  

cv::NORM_L2                    
 

  
dstL2 =

i
∑dsti

2 =
i
∑dsti

2 =α  

cv::NORM_MINMAX                    Map into range [α , β ] 

In the case of the infinity norm, the array src is rescaled such that the magnitude of the absolute value of 
the largest entry is equal to alpha. In the case of the L1 or L2 norm, the array is rescaled so that the norm 
equals the value of alpha. If normType is set to cv::MINMAX, then the values of the array are rescaled 
and translated so that they are linearly mapped into the interval between alpha and beta (inclusive). 

As before, if mask is non-NULL then only those pixels corresponding to nonzero values of the mask image 
will contribute to the computation of the norm—and only those pixels will be altered by 
cv::normalize(). Note that if the operation dtype=cv::MINMAX is used, the source array may not 
be cv::SparseMat. The reason for this is that the cv::MIN_MAX operation can apply an overall offset, 
and this would affect the sparsity of the array (specifically, a sparse array would become non-sparse as all 
of the zero elements became non-zero as a result of this operation). 

cv::perspectiveTransform() 

void cv::perspectiveTransform( 
  cv::InputArray  src,                    // Input array, 2 or 3 channels 
  cv::OutputArray dst,                    // Result array, size, type, as src1 
  cv::InputArray  mtx                     // 3-by-3 or 4-by-4 transoform matrix 
); 
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The cv::perspectiveTransform() function performs a plane-plane projective transform of a list of 
points (not pixels). The input array should be a two- or three-channel array, and the matrix mtx should be 
3-by-3 or 4-by-4, respectively, in the two cases. cv::perspectiveTransform() thus transforms 
each element of src by first regarding it as a vector of length src.channels() + 1, with the 
additional dimension (the projective dimension) set initially to 1.0. This is also known as homogeneous 
coordinates. Each extended vector is then multiplied by mtx and the result is rescaled by the value of the 
(new) projective coordinate34 (which is then thrown away as it is always 1.0 after this operation). 

Note again that this routine is for transforming a list of points, not an image as such. If 
you want to apply a perspective transform to an image, you are actually asking not to 

                                                             
34 Technically, it is possible that after multiplying by mtx, the value of w’ will be zero, corresponding to points 
projected to infinity. In this case, rather than dividing by zero, a value of 0 is assigned to the ratio. 



transform the individual pixels, but rather to move them from one place in the image to 
another. This is the job of cv::warpPerspective().  

If you want to solve the inverse problem to find the most probable perspective 
transformation given many pairs of corresponding points, use 
cv::getPerspectiveTransform() or cv::findHomography(). 

cv::phase() 

void cv::phase( 
  cv::InputArray  x,                      // Input array of x-components 
  cv::InputArray  y,                      // Input array of y-components 
  cv::OutputArray dst,                    // Output array of angles (radians) 
); 

 
  
dsti = atan2 yi,†xi( )† 

cv::phase() computes the azimuthal (angle) part of a Cartesian-to-polar conversion on a two-
dimensional vector field. This vector field is expected to be in the form of two separate single--channel 
arrays. These two input arrays should, of course, be of the same size. (If you happen to have a single two-- 
channel array, a quick call to cv::split() will do just what you need.)  Each element in dst is then 
computed from the corresponding elements of x and y as the arctangent of the ratio of the two. 

cv::polarToCart() 

void cv::polarToCart( 
  cv::InputArray  magnitude,              // Input array of magnitudes 
  cv::InputArray  angle,                  // Input array of angles 
  cv::OutputArray x,                      // Output array of x-components 
  cv::OutputArray y,                      // Output array of y-components 
  bool            angleInDegrees = false  // degrees (if true) radians (if false) 
); 

 
  
xi = magnitudei*cos anglei( ) 

 
  
yi = magnitudei*sin anglei( )  

cv::polarToCart() computes a vector field in Cartesian 
  

x,† y( )  coordinates from polar 

coordinates. The input is in two arrays, magnitude and angle, of the same size and type, specifying the 
magnitude and angle of the field at every point. The output is similarly two arrays that will be of the same 
size and type as the inputs, and which will contain the x and y projections of the vector at each point. The 
additional flag angleInDegrees will cause the angle array to be interpreted as angles in degrees, rather 
than in radians. 

cv::pow() 

void cv::pow( 
  cv::InputArray  src,                    // Input array  
  double          p,                      // power for exponentiation  
  cv::OutputArray dst                     // Result array 
); 

 

  

dsti =
srci

p p ∈Z

srci

p
else

⎧
⎨
⎪
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The function cv::pow() computes the element-wise exponentiation of an array by a given power p. In 
the case in which p is an integer, the power is computed directly. For non-integer p, the absolute value of 



the source value is computed first, and then raised to the power p (so only real values are returned). For 

some special values of p, such as integer values, or
 
†± 1

2 , special algorithms are used resulting in faster 

computation. 

cv::randu() 

template<typename _Tp> _Tp randu();       // Return random number of specific type  
 
void cv::randu( 
  cv::InputOutArray mtx,                  // All values will be randomized 
  cv::InputArray    low,                  // minimum, 1-by-1 (Nc=1,4), or 1-by-4 (Nc=1) 
  cv::InputArray    high                  // maximum, 1-by-1 (Nc=1,4), or 1-by-4 (Nc=1) 
); 

 
  
mtxi ∈ lowi ,†highi⎡⎣ ) 

There are two ways to call cv::randu(). The first method is to call the template form of randu<>(), 
which will return a random value of the appropriate type. Random numbers generated in this way are 
uniformly distributed35 in the range from zero to the maximum value available for that type (for integers), 
and in the interval from 0.0 to 1.0 (not inclusive of 1.0) for floating-point types.  This template form 
generates only single numbers36. 

The second way to call cv::randu() is to provide a matrix mtx that  you wish to have filled with 
values, and two additional arrays that  specify the minimum and maximum values for the range from which 
you would like a random number drawn for each particular array element.  These two additional values, 
low and high, should be 1-by-1 with 1 or 4 channels, or 1-by-4 with a single channel; they may also be of 
type cv::Scalar.  In any case, they are not the size of mtx, but rather the size of individual entries in 
mtx. 

 

The array mtx is both an input and an output, in the sense that you must allocate the matrix so that 
cv::randu() will know the number of random values you need, and how they are to be arranged in 
terms of rows, columns, and channels. 

cv::randn() 

void cv::randn( 
  cv::InputOutArray mtx,                  // All values will be randomized 
  cv::InputArray    mean,                 // means, array is in channel-space  
  cv::InputArray    stddev                // standard deviations, channel-space 
); 

 
  
mtxi ~ N meani ,†stddevi( )  

The function cv::randn() fills a matrix mtx with random normally distributed values37. The 
parameters from which these values are drawn are taken from two additional arrays (mean and stddev) 
that specify the mean and standard deviation for the distribution from which you would like a random 
number drawn for each particular array element. 

                                                             
35 Uniform distribution random numbers are generated using the Multiply-With-Carry algorithm [G. Marsaglia]. 
36 In particular, this means that if you call the template form with a vector argument, such as: cv::randu<Vec4f>, 
the return value, though it will be of vector type, will be all zeros except for the first element. 
37 Gaussian-distribution random numbers are generated using the Ziggurat algorithm [G. Marsaglia, W. W. 
Tsang]. 



As with the array form of cv::randu(), every element of mtx is computed separately, and the arrays 
mean and stddev are in the channel-space for individual entries of mtx.  Thus, if mtx were four 
channels, then mean and stddev would be 1-by-4 or 1-by-1 with 4 channels (or equivalently of type 
cv::Scalar).38 

cv::randShuffle() 

void cv::randShuffle( 
  cv::InputOutArray mtx,                  // All values will be shuffled 
  double            iterFactor = 1,       // Number of times to repeat shuffle 
  cv::RNG*          rng        = NULL     // your own generator, if you like 
); 

cv::randShuffle() attempts to randomize the entries in a one-dimensional array by selecting random 
pairs of elements and interchanging their position. The number of such swaps is equal to the size of the 
array mtx multiplied by the optional factor iterFactor. Optionally, a random number generator can be 
supplied (for more on this, see “Random Number Generator (cv::RNG)”). If none is supplied, the default 
random number generator theRNG() will be used automatically. 

cv::reduce() 

void cv::reduce( 
  cv::InputArray  src,                    // Input array, n-by-m must be 2-dimensional 
  cv::OutputArray vec,                    // Output array, 1-by-m or n-by-1 
  int             dim,                    // Reduction direction (1) to row, (0) to col 
  int             reduceOp = cv::REDUCE_SUM,  // Reduce operation (see Table 3-)  
  int             dtype = -1              // Output type for result array  
); 

Reduction is the systematic transformation of the input matrix src into a vector vec by applying some 
combination rule reduceOp on each row (or column) and its neighbor until only one row (or column) 
remains (see Table 3-28).39 The argument dim controls how the reduction is done, as summarized in Table 
3-29. 

Table 3-28: Argument reduceOp in cv::reduce() selects the reduction operator 

Value of op Result 
 cv::REDUCE_SUM  Compute sum across vectors 
 cv::REDUCE_AVG  Compute average across vectors 
 cv::REDUCE_MAX  Compute maximum across vectors 
 cv::REDUCE_MIN  Compute minimum across vectors 

Table 3-29: Argument dim in cv::reduce() controls the direction of the reduction 

Value of dim Result 
1                    Collapse to a single row 
0                    Collapse to a single column 

cv::reduce() supports multichannel arrays of any type. Using dtype, you can specify an alternative 
type for dst.  

                                                             
38 Note that stddev is not a square matrix; correlated number generation is not supported by cv::randn(). 
39 Purists will note that averaging is not technically a proper fold in the sense implied here. OpenCV has a more 
practical view of reductions and so includes this useful operation in cvReduce. 



Using the dtype argument to specify a higher-precision format for dst is particularly 
important for cv::REDUCE_SUM and cv::REDUCE_AVG, where overflows and 
summation problems are possible. 

cv::repeat() 

void cv::repeat( 
  cv::InputArray  src,                    // Input 2-dimensional array 
  int             nx,                     // Copies in x-direction 
  int             ny,                     // Copies in y-direction 
  cv::OutputArray dst                     // Resukt array 
); 
cv::Mat cv::repeat(                       // Return result array 
  cv::InputArray  src,                    // Input 2-dimensional array 
  int             nx,                     // Copies in x-direction 
  int             ny                      // Copies in y-direction 
); 

   
dsti, j = srci%src.rows,† j%src.cols †  

This function copies the contents of src into dst, repeating as many times as necessary to fill dst. In 
particular, dst can be of any size relative to src. It may be larger or smaller, and it need not have an 
integer relationship between any of its dimensions and the corresponding dimensions of src. 

cv::repeat() has two calling conventions. The first is the old-style convention, in which the output 
array is passed as a reference to cv::repeat(). The second actually creates and returns a cv::Mat, 
and is much more convenient when working with matrix expressions. 

cv::scaleAdd() 

void cv::scaleAdd( 
  cv::InputArray  src1,                   // First input array  
  double          scale,                  // Scale factor applied to first array 
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
); 

   dsti = scale*src1i + src2i  

cv::scaleAdd() is used to compute the sum of two arrays src1 and src2 with a scale factor scale 
applied to the first before the sum is done. The results are placed in the array dst. 

The same result can be achieved with the matrix algebra operation: 
dst = scale * src1 + src2; 

cv::setIdentity() 

void cv::setIdentity(  
  cv::InputOutputArray dst,               // Array to reset values            
  const cv::Scalar&    value = cv::Scalar(1.0)  // Value to apply to diagonal elems 
); 

 

  
dsti, j =

value i = j
0 else

⎧
⎨
⎪

⎩⎪
 

cv::setIdentity() sets all elements of the array to 0 except for elements whose row and column are 
equal; those elements are set to 1 (or to value if provided). cv::setIdentity() supports all data 
types and does not require the array to be square. 



This can also be done using the eye() member function of the cv::Mat class. The use 
of eye() is often more convenient when one is working with matrix expressions. 

Mat A( 3, 3, cv::F32 ); 
cv::setIdentity( A, s ); 
C = A + B; 

For some other arrays B and C, and some scalar s, this is equivalent to: 

          C = s * cv::Mat::eye( 3, 3, cv::F32 ) + B; 

cv::solve() 

int cv::solve( 
  cv::InputArray  lhs,                    // Left-hand side of system, n-by-n 
  cv::InputArray  rhs,                    // Right-hand side of system, n-by-1   
  cv::OutputArray dst,                    // Results array, will be n-by-1  
  int             method = cv::DECOMP_LU  // Method for solver 
); 

The function cv::solve() provides a fast way to solve linear systems based on cv::invert(). It 
computes the solution to 

    C = argmin X † A!X − B  

where A is a square matrix given by lhs, B is the vector rhs, and C is the solution computed by 
cv::solve() for the best vector X it could find. That best vector X is returned in dst. The actual 
method used to solve this system is determined by the value of the method argument (Table 3-30). Only 
floating-point data types are supported. The function returns an integer value where a nonzero return 
indicates that it could find a solution. 

Table 3-30: Possible values of method argument to cv::solve() 

Value of method argument Meaning 
cv::DECOMP_LU                    Gaussian elimination (LU decomposition) 
cv::DECOMP_SVD                    Singular value decomposition (SVD) 
cv::DECOMP_CHOLESKY                    For symmetric positive matrices 
cv::DECOMP_EIG                    Eigenvalue decomposition, symmetric matrices only 
cv::DECOMP_QR                    QR Factorization 
cv::DECOMP_NORMAL                    Optional additional flag, indicates that the normal 

equations are to be solved instead) 

The methods cv::DECOMP_LU and cv::DECOMP_CHOLESKY cannot be used on singular matrices. If a 
singular src1 is provided, both methods will exit and return 0 (a 1 will be returned if src1 is 
nonsingular). cv::solve() can be used to solve over-determined linear systems using either QR 
decomposition (cv::DECOMP_QR) or singular value decomposition (cv::DECOMP_SVD) methods to 
find the least-squares solution for the given system of equations. Both of these methods can be used in case 
the matrix src1 is singular. 

Though the first five arguments in Table 3-30 are mutually exclusive, the last option 
cv::DECOMP_NORMAL may be combined with any of the first five (e.g., by logical-or: cv_DECOMP_LU 
| cv::DECOMP_NORMAL). If provided, then cv::solve() will attempt to solve the normal equations: 

   src1T!src1!dst = src1T!src2  instead of the usual system    src1!dst = src2 . 

cv::solveCubic() 

int cv::solveCubic( 
  cv::InputArray  coeffs, 
  cv::InputArray  roots 



); 

Given a cubic polynomial in the form of a three- or four-element vector coeffs, cv::solveCubic() 
will compute the real roots of that polynomial. If coeffs has four elements, the roots of the following 
polynomial are computed: 

   coeffs0x3 + coeffs1x
2 + coeffs2x + coeffs3 = 0  

If coeffs has only three elements, the roots of the following polynomial are computed: 

   x
3 + coeffs0x2 + coeffs1x + coeffs2 = 0  

The results are stored in the array roots, which will have either one or three elements, depending on how 
may real roots the polynomial has. 

A word of warning about cv::solveCubic() and cv::solvePoly(): the order 
of the coefficients in the seemingly analogous input arrays coeffs is opposite in the 
two routines. In cv::solveCubic(), the highest order coefficients come first, while 
in cv::solvePoly() the highest order coefficients come last. 

cv::solvePoly() 

int cv::solvePoly ( 
  cv::InputArray  coeffs, 
  cv::OutputArray roots                   // n complex roots (2-channels) 
  int             maxIters = 300          // maximum iterations for solver 
); 

Given a polynomial of any order in the form of a vector of coefficients coeffs, cv::solvePoly() 
will attempt to compute the roots of that polynomial. Given the array of coefficients coeffs, the roots of 
the following polynomial are computed: 

    coeffsnxn + coeffsn−1x
n−1 +!+ coeffs1x + coeffs0 = 0.  

These roots are not guaranteed to be real. For an order-n polynomial (i.e., coeffs having   n+1  
elements), there will be  n  roots. As a result, the array roots will be returned in a two-channel (real, 
imaginary) matrix of doubles.   

cv::sort() 

void cv::sort( 
  cv::InputArray  src, 
  cv::InputArray  dst, 
  int             flags 
); 

The OpenCV sort function is used for two-dimensional arrays. Only single-channel source arrays are 
supported. You should not think of this like sorting rows or columns in a spreadsheet; cv::sort() sorts 
every row or column separately. The result of the sort operation will be a new array dst, which is of the 
same size and type as the source array. 

Sorting can be done on every row or on every column by supplying either the cv::SORT_EVERY_ROW or 
cv::SORT_EVERY_COLUMN flag. Sort can be in ascending or descending order, which is indicated by 
the cv::SORT_ASCENDING or cv::SORT_DESCENDING flags respectively. One flag from each of the 
two groups is required. 

cv::sortIdx() 

void cv::sortIdx( 
  cv::InputArray  src, 
  cv::InputArray  dst, 
  int             flags 



); 

Similar to cv::sort(), cv::sortIdx()is used only for single-channel two-dimensional arrays. 
cv::sortIdx() sorts every row or column separately. The result of the sort operation is a new array 
dst of the same size as the source array, but which contains the integer indices of the sorted elements. For 
example, given an array A, a call to cv::sortIdx( A, B, cv::SORT_EVERY_ROW | 
cv::SORT_DESCENDING ) would produce:  

A = 

 

0.0 0.1 0.2
1.0 1.1 1.2
2.0 2.1 2.2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 B = 

 

2 1 0
2 1 0
2 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

In this toy case, every row was previously ordered from lowest to highest and sorting has indicated that this 
should be reversed.  

cv::split() 

void cv::split( 
  const cv::Mat&   mtx, 
  cv::Mat*         mv 
); 
void cv::split( 
  const cv::Mat&   mtx, 
  vector<Mat>&     mv                     // STL-style vector of n 1-channel cv::Mat’s 
); 

The function cv::split() is a special, simpler case of cv::mixChannels(). cv::split() 
separates the channels in a multichannel array into multiple single-channel arrays. There are two ways for 
doing this: in the first, you supply a pointer to a C-style array of pointers to cv::Mat objects that 
cv::split() will use for the results of the split operation. In the second option, you supply an STL 
vector full of cv::Mat objects. If you use the C-style array, you need to make sure that the number of 
cv::Mat objects available is (at least) equal to the number of channels in mtx. If you use the STL vector 
form, cv::split() will handle the allocation of the result arrays for you.  

cv::sqrt() 

void cv::sqrt( 
  cv::InputArray  src, 
  cv::InputArray  dst 
); 

As a special case of cv::pow(), cv::sqrt() will compute the element-wise square root of an array. 
Multiple channels are processed separately.  

There is such thing as a square root of a matrix, i.e., a matrix  B  whose relationship with 
some matrix  A  is that   BB = A.  If  A  is square and positive definite, then if  B  exists, 
it is unique. 

If  A  can be diagonalized, then there is a matrix  V  (made from the eigenvectors of  A  

as columns) such that  † A† =VDV −1 , where  D  is a diagonal matrix. The square root of 

a diagonal matrix  D  is just the square roots of the elements of  † D . So to compute   A
1

2

, we simply use the matrix  V  and get: 

   A
1

2 =VD
1

2V −1  

Math fans can easily verify that this expression is correct by explicitly squaring it: 



 
  

A
1

2⎛
⎝

⎞
⎠

2

= VD
1

2V −1⎛
⎝

⎞
⎠ VD

1
2V −1⎛

⎝
⎞
⎠ =VD

1
2V −1VD

1
2V −1 =VDV −1 = A  

In code, this would look something like40: 
void matrix_square_root( const cv::Mat& A, cv::Mat& sqrtA ) { 
  cv::Mat U, V, Vi, E; 
  cv::eigen( A, E, U ); 
  V = U.T(); 
  cv::transpose( V, Vi ); // inverse of the orthogonal V 
  cv::sqrt(E, E); // assume that A is positively-defined, 
otherwise its square root is complex-valued 
  sqrtA = V * Mat::diag(E) * Vi; 
} 

cv::subtract()  

void cv::subtract( 
  cv::InputArray  src1,                   // First input array  
  cv::InputArray  src2,                   // Second input array  
  cv::OutputArray dst,                    // Result array  
  cv::InputArray  mask  = cv::noArray(),  // Optional mask, compute only where nonzero 
  int             dtype = -1              // Output type for result array 
)   

 
  
dsti = saturate †src1i − src2i( ) 

cv::subtract() is a simple subtraction function: it subtracts all of the elements in src2 from the 
corresponding elements in src1 and puts the results in dst.  

For simple cases the same result can be achieved with the matrix operation: 
dst = src1 - src2; 

Accumulation is also supported: 
 dst -= src1;  

cv::sum() 

cv::Scalar cv::sum( 
  cv::InputArray  arr 
); 

 

  
sumc =

i, j
∑arrci, j  

cv::sum() sums all of the pixels in each of the channels of the array arr. The return value is of type 
cv::Scalar, so cv::sum() can accommodate multichannel arrays, but only up to four channels. The 
sum for each channel is placed in the corresponding component of the cv::scalar return value. 

cv::trace() 

cv::Scalar cv::trace( 
  cv::InputArray  mat 

                                                             
40 Here “something like” means that if you were really writing a responsible piece of code, you would do a lot of 
checking to make sure that the matrix you were handed was in fact what you thought it was (i.e., square). You would 
also probably want to check the return values of cv::eigen() and cv::invert() and think more carefully about 
the actual methods used for the decomposition and inversion, make sure the eigenvalues are positive before blindly 
calling sqrt() on them.  



); 

 
  
Tr mat( )c

=
i
∑matci,i  

The trace of a matrix is the sum of all of the diagonal elements. The trace in OpenCV is implemented on 
top of cv::diag(), so it does not require the array passed in to be square. Multichannel arrays are 
supported, but the trace is computed as a scalar so each component of the scalar will be the sum over each 
corresponding channel for up to four channels. 

cv::transform() 

void cv::transform( 
  cv::InputArray  src, 
  cv::OutputArray dst, 
  cv::InputArray  mtx 
); 

 
  
dstc,i, j =

′c
∑mtxc, ′c src ′c i, j  

The function cv::transform() can be used to compute arbitrary linear image transforms. It treats a 
multichannel input array src as a collection of vectors in what you could think of as “channel space.” 
Those vectors are then each multiplied by the “small” matrix mtx, to affect a transformation in this channel 
space.  

The matrix mtx must have as many rows as there are channels in src, or that number plus one. In the 
second case, the channel space vectors in src are automatically extended by one and the value 1.0 is 
assigned to the extended element. 

The exact meaning of this transformation depends on what you are using the different 
channels for. If you are using the channels as color channels, then this transformation can 
be thought of as a linear color space transformation. (Transformation between RGB and 
YUV color spaces is an example of such a transformation. If you are using the channels 
to represent the 

  
x, y( )  or 

  
x, y, z( )  coordinates of points, then these transformations can 

be thought of as rotations (or other geometrical transformations) of those points.  

cv::transpose() 

void cv::transpose( 
  cv::InputArray  src,                    // Input array, 2-dimensional, n-by-m 
  cv::OutputArray dst,                    // Result array, 2-dimensional, m-by-n 
); 

cv::transpose() copies every element of src into the location in dst indicated by reversing the row 
and column indices. This function does support multichannel arrays; however, if you are using multiple 
channels to represent complex numbers, remember that cv::transpose() does not perform complex 
conjugation. 

This same result can be achieved with the matrix member function cv::Mat::t(). 
The member function has the advantage that it can be used in matrix expressions like: 

A = B + B.t(); 

Utility Functions 
There are several operations provided by OpenCV that operate on single values (integers or floating-point 
numbers). These functions either serve some special function, or are fast implementations of particular 



things that come up often enough in vision processing to justify implementing in a custom way for 
OpenCV. 

Table 3-31 Utility and System Functions 

Function Description 

cv::alignPtr() Align pointer to given number of bytes 

cv::alignSize() Align buffer size to given number of bytes 

cv::allocate() Allocate a C-style array of objects 

cvCeil()41  Round float number x to nearest integer not smaller than x 

cv::cubeRoot()                Compute the cube root of a number 

cv::CV_Assert() Throw an exception if a given condition is not true 

CV_Error() Macro to build a cv::Exception (from a fixed string) and throw 
it 

CV_Error_() Macro to build a cv::Exception (from a formatted string) and 
throw it 

cv::deallocate() Deallocate a C-style array of objects 

cv::error() Indicate an error and throw an exception 

cv::fastAtan2()                Calculate two-dimensional angle of a vector in degrees 

cv::fastFree() Deallocate a memory buffer 

cv::fastMalloc() Allocate an aligned memory buffer 

cvFloor()41 Round float number x to nearest integer not larger than  x 

cv::format() Create an STL string using sprinf-like formatting 

cv::getCPUTickCount() Get tick count from internal CPU timer 

cv::getNumThreads() Count number of threads currently used by OpenCV 

cv::getOptimalDFTSize()                Compute the best size for an array that you plan to pass to 
cv::DFT() 

cv::getThreadNum() Get index of the current thread 

cv::getTickCount() Get tick count from generic source 

cv::getTickFrequency() Get number or ticks per second (see cv::getTickCount()) 

                                                             
41 This function has something of a legacy interface.  It is a C definition, not C++ (see core …/types_c.h) where it is 
defined as an inline function.  There are several others with a similar interface. 



cvIsInf()41 Check if a floating-point number x is infinity 

cvIsNaN()41 Check if a floating-point number x is “Not a Number” 

cvRound()  Round float number x to the nearest integer 

cv::setNumThreads() Set number of threads used by OpenCV 

cv::setUseOptimized() Enables or disables the use of optimized code (SSE2, etc.) 

cv::useOptimized() Indicates status of optimized code enabling (see 
cv::setUseOptimized()) 

cv::alignPtr() 

template<T> T* cv::alignPtr(              // Return aligned pointer of type T* 
  T*  ptr,                                // pointer, unaligned 
  int n   = sizeof(T)                     // align to block size, a power of 2 
); 

Given a pointer of any type, this function computes an aligned pointer of the same type according to the 
following computation: 

(T*)(((size_t)ptr + n+1) & -n) 

On some architectures, it is not even possible to read a multi-byte object from an address 
that is not evenly divisible by the size of the object (i.e.,.,, by 4 for a 32-bit integer). On 
architectures such as x86, this is handled for you automatically by the CPU by using 
multiple reads and assembling your value from those reads at the cost of a substantial 
penalty in performance. 

cv::alignSize() 

size_t cv::alignSize(                     // minimum size >=’sz’ divisible by ‘n’ 
  size_t sz,                              // size of buffer 
  int n   = sizeof(T)                     // align to block size, a power of 2 
); 

Given a number n (typically a return value from sizeof()), and a size for a buffer sz, 
cv::alignSize() computes the size that this buffer should be in order to contain an integer number of 
objects of size n, i.e., the minimum number that is greater or equal to sz yet divisible by n. The following 
formula is used:  

(sz + n-1) & -n 

cv::allocate() 

template<T> T* cv::allocate(              // Return pointer to allocated buffer 
  size_t sz                               // size of buffer, multiples of sizeof(T) 
);  

The function cv::allocate() functions similarly to the array form of new, in that it allocates a C-style 
array of n objects of type T, calls the default constructor for each object, and returns a pointer to the first 
object in the array.  

cv::deallocate() 

template<T> void cv::deallocate( 
  T*     ptr,                             // Pointer to buffer to free 
  size_t sz                               // size of buffer, multiples of sizeof(T) 
); 



The function cv::deallocate() functions similarly to the array form of delete, in that it 
deallocates a C-style array of n objects of type T, and calls the destructor for each object. 
cv::deallocate() is used to deallocate objects allocated with cv::allocate(). The number of 
elements n passed to cv::deallocate() must be the same as the number of objects originally 
allocated with cv::allocate(). 

cv::fastAtan2() 

float cv::fastAtan2(                      // Return value is 32-bit float 
  float y,                                // y input value (32-bit float) 
  float x                                 // x input value (32-bit float) 
); 

This function computes the arctangent of an x,y pair and returns the angle from the origin to the indicated 
point. The result is reported in degrees ranging from 0.0 to 360.0, inclusive of 0.0 but not inclusive of 
360.0. 

cvCeil() 

int cvCeil(                               // Return the smallest int >= x 
  float x                                 // input value (32-bit float) 
); 

Given a floating-point number x, cvCeil() computes the smallest integer not smaller than x. If the input 
value is outside of the range representable by a 32-bit integer, the result is undefined. 

cv::cubeRoot()  

float cv::cubeRoot(                       // Return value is 32-bit float 
  float x                                 // input value (32-bit float) 
); 

This function computes the cubed root of the argument x. Negative values of x are handled correctly (i.e., 
the return value is negative). 

cv::CV_Assert() and CV_DbgAssert() 

// example 
CV_Assert( x!=0 ) 

CV_Assert() is a macro that will test the expression passed to it and, if that expression evaluates to 
False (or 0), it will throw an exception. The CV_Assert() macro is always tested. Alternatively, you 
can use CV_DbgAssert(), which will only be tested in debug compilations. 

cv::CV_Error() and CV_Error_() 

// example 
CV_Error( ecode, estring )  
CV_Error_( ecode, fmt, ... ) 

The macro CV_Error() allows you to pass in an error code ecode and a fixed C-style character string 
estring, which it then packages up into a cv::Exception and passes that to cv::error() to be 
handled. The variant macro CV_Error_() is used if you need to construct the message string on the fly. 
CV_Error_() accepts the same ecode as CV_Error(), but then expects a sprintf() style 
format string followed by a variable number of arguments as would be expected by sprintf(). 

cv::error()  

void cv::error( 
  const cv::Exception& ex                 // Exception to be thrown 
); 

This function is mostly called from CV_Error() and CV_Error_(). If your code is compiled in a non-
debug build, it will throw the exception ex. If your code is compiled in a debug build, it will deliberately 
provoke a memory access violation so that the execution stack and all of the parameters will be available 
for whatever debugger you are running. 



You will probably not call cv::error() directly, but rather rely on the macros CV_Error() and 
CV_Error_() to throw the error for you. These macros take the information you want displayed in the 
exception and package it up for you and pass the resulting exception to cv::error().  

cv::fastFree()  

void cv::fastFree( 
  void* ptr                               // Pointer to buffer to be freed 
); 

This routine deallocates buffers that were allocated with cv::fastMalloc() (covered next). 

cv::fastMalloc()  

void* cv::fastMalloc(                     // Pointer to allocated buffer 
  size_t size                             // Size of buffer to allocate 
); 

cv::FastMalloc() works just like the malloc() you are familiar with, except that it is often faster, 
and it does buffer size alignment for you. This means that if the buffer size passed is more than 16 bytes, 
the returned buffer will be aligned to a 16 byte boundary. 

cvFloor()  

int cvFloor(                              // Return the largest int <= x 
  float x                                 // input value (32-bit float) 
}; 

Given a floating-point number x, cv::Floor() computes the largest integer not larger than x. If the 
input value is outside of the range representable by a 32-bit integer, the result is undefined. 

cv::format()  

string cv::format(                        // Return STL-string 
  const char* fmt,                        // formatting string, as sprintf() 
  ...                                     // vargs, as sprintf() 
); 

This function is essentially the same as sprintf() from the standard library, but rather than requiring a 
character buffer from the caller, it constructs an STL string object and returns that. It is particularly handy 
for formatting error messages for the Exception() constructor (which expects STL strings as 
argument). 

cv::getCPUTickCount() 

int64 cv::getCPUTickCount( void );        // long int CPU for tick count 

This function reports the number of CPU ticks on those architectures that have such a construct (including, 
but not limited to, x86 architectures). It is important to know, however, that the return value of this function 
can be very difficult to interpret on many architectures. In particular, because on a multi-core system a 
thread can be put to sleep on one core and wake up on another, the difference between the results to two 
subsequent calls to cv::getCPUTickCount() can be misleading, even completely meaningless. 
Therefore, unless you are certain you know what you are doing, it is best to use cv::getTickCount() 
for timing measurements.42 This function is best for tasks like initializing random number generators. 

cv::getNumThreads() 

int cv::getNumThreads( void );            // number of threads allocated to OpenCV    

Return the current number of threads being used by OpenCV. 

                                                             
42 Of course, if you really do know what you are doing, then there is no more accurate way to get detailed timing 
information than from the CPU timers themselves. 



cv::getOptimalDFTSize()                

int cv::getOptimalDFTSize( int n );       // best size array to use for dft, >= n 

When making calls to cv::dft(), the algorithm used by OpenCV to compute the transform is extremely 
sensitive to the size of the array passed to cv::dft(). The preferred sizes do obey a rule for their 
generation, but that rule is sufficiently complicated that it is (at best) an annoyance to compute the correct 
size to which to pad your array every time. The function cv::getOptimalDFTSize() takes as 
argument the size of the array you would have passed to cv::dft(), and returns the size of the array you 
should pass to cv::dft(). The usage of this information is to just create a larger array into which you 
can copy your data and pad out the rest with zeros. 

cv::getThreadNum() 

int cv::getThreadNum( void );             // int, id of this particular thread 

If your OpenCV library was compiled with OpenMP support, it will return the index (starting from zero) of 
the currently executing thread. 

cv::getTickCount() 

int64 cv::getTickCount( void );           // long int CPU for tick count 

This function returns a tick count relative to some architecture-dependent time. The rate of ticks is also 
architecture and operating system dependent, however; the time per tick can be computed by 
cv::getTickFrequency() (reviewed next).below). This function is preferable to 
cv::getCPUTickCount() for most timing applications, as it is not affected by low-level issues such 
as which core your thread is running on and automatic throttling of CPU frequency (which most modern 
processors do for power management reasons). 

cv::getTickFrequency() 

double cv::getTickFrequency( void );      // Tick frequency in seconds as 64-bit 

When using cv::getTickCount() for timing analysis, the exact meaning of a tick is, in general, 
architecture dependent. The function cv::getTickFrequency() computes the conversion between 
clock time (i.e., seconds) and abstract “ticks.””.  

Thus to compute the time required for some specific thing to happen (such as a function 
to execute), one need only call cv::getTickCount() before and after the function 
call, subtract the results, and divide by the value of cv::getTickFrequency(). 

cvIsInf() 

int cvIsInf( double x );              // return 1 if x is IEEE754 “infinity”          

The return value of cvIsInf() is one if x is plus or minus infinity and zero otherwise. The infinity test is 
the test implied by the IEEE754 standard. 

cvIsNaN() 

int cvIsNan( double x );              // return 1 if x is IEEE754 “Not a number”  

The return value of cvIsNaN() is one if x is “not a number” and zero otherwise. The NaN test is the test 
implied by the IEEE754 standard. 

cvRound()  

int cvRound( double x );              // Return integer nearest to ‘x’ 

Given a floating-point number x, cvRound() computes the integer closest to x. If the input value is 
outside of the range representable by a 32-bit integer, the result is undefined. 

cv::setNumThreads() 

void cv::setNumThreads( int nthreads );   // Set number of threads OpenCV can use 



When OpenCV is compiled with OpenMP support, this function sets the number of threads that OpenCV 
will use in parallel OpenMP regions. The default value for the number of threads is the number of logical 
cores on the CPU (i.e., if we have four cores each with two hyper-threads, there will be eight threads by 
default). If nthreads is set to 0, the number of threads will be returned to this default value. 

cv::setUseOptimized() 

void cv::setUseOptimized( bool on_off );  // If false, turn off optimized routines 

Though early versions of OpenCV relied on outside libraries (such as IPP, the Intel Performance Primitives 
library) for access to high performance optimizations such as SSE2 instructions, later versions have 
increasingly moved to containing that code in the OpenCV itself. By default the use of these optimized 
routines is enabled, unless you specifically disabled it when you built your installation of the library. 
However, you can turn the use of these optimizations on and off at any time with 
cv::setUseOptimized(). 

The test of the global flag for optimizations usage is done at a relatively high level inside 
of the OpenCV library functions. The implication of this is that you should not call 
cv::setUseOptimized() while any other routines might be running (on any 
threads). You should make sure to call this routine when you can be certain you know 
what is and what is not running, preferably from the very top level of your application. 

cv::useOptimized() 

bool cv::useOptimized( void );            // return true if optimizations are enabled 

At any time, you can check the state of the global flag, which enables the use of high performance 
optimizations (see cv::setUseOptimized()) by calling cv::useOptimized(). True will be 
returned only if these optimizations are currently enabled; otherwise, this function will return False. 

Objects That Do Stuff 
As the OpenCV library has evolved, it has become increasingly common to introduce new objects which 
encapsulate functionality that is too complicated to be associated with a single function and which, if 
implemented as a set of functions, would cause the overall function space of the library to become too 
cluttered. 

As a result, new functionality is often represented by an associated new object type, which can be thought 
of as a “machine” that does whatever this function is. Most of these machines have an overloaded 
operator(), which officially makes them function objects or functors. If you are not familiar with this 
programming idiom, the important idea is that unlike “normal” functions, function objects are created, and 
can maintain state information inside them. As a result, they can be set up with whatever data or 
configuration they need, and they are “asked” to perform services through either common member 
functions, or by calling them as functions (usually via the overloaded operator()43). 

Principal Component Analysis (cv::PCA) 
Principal component analysis is the process of analyzing a distribution in many dimensions and extracting 
from that distribution the particular subset of dimensions that carry the most information. The dimensions 
computed by PCA are not necessarily the basis dimensions in which the distribution was originally 
specified. Indeed, one of the most important aspects of PCA is the ability to generate a new basis in which 

                                                             
43 Here the word “usually” means “usually when people program function objects,” but does not turn out to mean 
“usually” for the OpenCV library. There is a competing convention in the OpenCV library which uses the overloaded 
operator() to load the configuration, and a named member to provide the fundamental service of the object. This 
convention is substantially less canonical in general, but quite common in the OpenCV library. 



the axes of the new basis can be ordered by their importance44. These basis vectors will turn out to be the 
eigenvectors of the covariance matrix for the distribution as a whole, and the corresponding eigenvalues 
will tell us about the extent of the distribution in that dimension. 

We are now in a position to explain why PCA is handled by one of these function objects. Given a 
distribution once, the PCA object can compute and retain this new basis. The big advantage of the new 
basis is that the basis vectors that correspond to the large eigenvalues carry most of the information about 
the objects in the distribution. Thus, without losing much accuracy, we can throw away the less informative 
dimensions. This dimension reduction is called a KLT Transform.45 Once you have loaded a sample 
distribution and the principal components are computed, you might want to use that information to do 
various things, such as applying the KLT transform to new vectors. By making the PCA functionality a 
function object, it can “remember” what it needs to know about the distribution you gave it, and thereafter 
use that information to provide the “service” of transforming new vectors on demand. 

 
Figure 3-4. (a) Input data is characterized by a Gaussian approximation; (b) the data is projected into the 
space implied by the eigenvectors of the covariance of that approximation; (c)the data is projected by the 

KLT projection to a space defined only by the most “useful” of the eigenvectors; superimposed: a new data 
point (white diamond) is projected to the reduced dimension space by cv::PCA::project(); that same 

point is brought back to the original space (black diamond) by cv::PCA::backProject() 

cv::PCA::PCA() 

PCA::PCA(); 

                                                             
44 You might be thinking to yourself “hey, this sounds like machine learning, what is it doing in this chapter?”  This is 
not a bad question. In modern computer vision, machine learning is becoming increasingly intrinsic to an ever -growing 
list of algorithms. For this reason, component capabilities, such as PCA and SVD, are increasingly considered 
“building blocks.” 
45 KLT stands for “Karhunen-Loeve Transform,””, so that phrase “KLT Transformation” is a bit of a malapropism. It is 
however at least as often said one way as the other.  



PCA::PCA( 
  cv::InputArray data,                    // Data, as rows or cols in 2d array 
  cv::InputArray mean,                    // average, if known, 1-by-n or n-by-1 
  int            flags,                   // Are vectors rows or cols of ‘data’ 
  int            maxComponents = 0        // Max dimensions to retain 
);  

The PCA object has a default constructor, cv::PCA(), which simply builds the PCA object and 
initializes the empty structure. The second form executes the default construction, then immediately 
proceeds to pass its arguments to PCA::operator()() (discussed next). 

cv::PCA::operator()() 

PCA::operator()( 
  cv::InputArray data,                    // Data, as rows or cols in 2d array 
  cv::InputArray mean,                    // average, if known, 1-by-n or n-by-1 
  int            flags,                   // Are vectors rows or cols of ‘data’ 
  int            maxComponents = 0        // Max dimensions to retain 
);  

The overloaded operator()() for PCA builds the model of the distribution inside of the PCA object. 
The argument data is an array containing all of the samples that constitute the distribution. Optionally, 
mean, a second array that contains the mean value in each dimension, can be supplied. (mean can either be 
 n -by-1 or 1-by- n .) The data can be arranged as an  n -by- D  (n rows of samples each of  D  dimensions) 
or  D -by- n  array ( n  columns of samples each of  D  dimensions). The argument flags is currently 
used only to specify the arrangement of the data in data and mean. In particular, flags can be set either 
to cv::PCA_DATA_AS_ROW or cv::PCA_DATA_AS_COL, to indicate that either data is n-by- D  and 
mean is  n -by- l  or data is  D -by- n  and mean is  l -by- n  respectively. The final argument 
maxComponents specifies the maximum number of components (dimensions) that PCA should retain. 
By default, all of the components are retained. 

Any subsequent call to cv::PCA::operator()() will overwrite the internal 
representations of the eigenvectors and eigenvalues, so you can recycle a PCA object 
whenever you need to (i.e., you don’t have to reallocate a new one for each new 
distribution you want to handle if you no longer need the information about the previous 
distribution). 

cv::PCA::project() 

cv::Mat PCA::project(                     // Return results, as a 2d matrix 
  cv::InputArray  vec                     // points to project, rows or cols, 2d 
) const; 
 
void PCA::project( 
  cv::InputArray  vec                     // points to project, rows or cols, 2d 
  cv::OutputArray result                  // Result of projection, reduced space 
) const;  

Once you have loaded your reference distribution with cv::PCA::operator()(), you can start asking 
the PCA object to do useful things for you like compute the KLT projection of some set of vectors onto the 
basis vectors computed by the principal component analysis. The function cv::PCA::project() has 
two forms, the first returns a matrix containing the results of the projections, while the second writes the 
results to a matrix you provide. The advantage of the first form is that you can use it in matrix expressions. 

The argument vec contains the input vectors. vecvec is required to have the same number of dimensions 
and the same “orientation” as the data array that was passed to PCA when the distribution was first 
analyzed (i.e., if your data was columns when you called cv::PCA::operator()(), vec should also 
have the data arranged into columns). 



The returned array will have the same number of objects as vec with the same orientation, but the 
dimensionality of each object will be whatever was passed to maxComponents when the PCA object was 
first configured with cv::PCA::operator()(). 

cv::PCA::backProject() 

cv::Mat PCA::backProject(                 // Return results, as a 2d matrix 
  cv::InputArray  vec                     // Result of projection, reduced space 
} const; 
 
void PCA::backProject( 
  cv::InputArray  vec                     // Result of projection, reduced space 
  cv::OutputArray result                  // “reconstructed” vectors, full dimension 
) const;  

The cv::PCA::backProject() function performs the reverse operation of 
cv::PCA::project(), with the analogous restrictions on the input and output arrays. The argument 
vec contains the input vectors, which this time are from the projected space. They will have the same 
number of dimensions as you specified with maxComponents when you configured the PCA object and 
the same “orientation” as the data array that was passed to PCA when the distribution was first analyzed 
(i.e., if your data was columns when you called cv::PCA::operator(), vec should also have the data 
arranged into columns). 

The returned array will have the same number of objects as vec with the same orientation, but the 
dimensionality of each object will be the dimensionality of the original data you gave to the PCA object 
when the PCA object was first configured with cv::PCA::operator()()).  

If you did not retain all of the dimensions when you configured the PCA object in the 
beginning, the result of back projecting vectors, which are themselves projections of 
some vector   

!x  from the original data space, will not be equal to   
!x . Of course, the 

difference should be small, even if the number of components retained was much smaller 
than the original dimension of   †

!
x , as this is the very point of using PCA in the first 

place. 

Singular Value Decomposition (cv::SVD) 
The class cv::SVD is similar to cv::PCA above in that it is the same kind of function object. Its purpose, 
however, is quite different. The singular value decomposition is essentially a tool for working with non-
square, ill-conditioned, or otherwise poorly-behaved matrices such those encountered when solving under-
determined linear systems. 

Mathematically, the singular value decomposition (SVD) is the decomposition of an  m -by- n  matrix A 
into the form: 

   A =U!W!V T  

where W is a diagonal matrix and U and V are  m -by- n  and  n -by- n  (unitary) matrices. Of course, the 
matrix W is also an  m -by- n  matrix, so here “diagonal” means that any element whose row and column 
numbers are not equal is necessarily 0.  

cv::SVD() 

SVD::SVD(); 
SVD::SVD( 
  cv::InputArray A,                       // Linear system, array to be decomposed 
  int            flags = 0                // what to construct, can A can scratch 
);  



The SVD object has a default constructor, cv::SVD(), which simply builds the SVD object and 
initializes the empty structure. The second form basically executes the default construction, then 
immediately proceeds to pass its arguments to cv::SVD::operator()() (discussed next). 

cv::SVD::operator()() 

SVD::& SVD::operator() ( 
  cv::InputArray A,                       // Linear system, array to be decomposed 
  int            flags = 0                // what to construct, can A be scratch 
);  

The operator cv::SVD::operator()() passes to the cv::SVD object the matrix to be decomposed. 
The matrix A, as described earlier, is decomposed into a matrix U, a matrix V (actually the transpose of V, 
which we will call Vt), and a set of singular values (which are the diagonal elements of the matrix W). 

The flags can be any one of cv::SVD::MODIFY_A, cv::SVD::NO_UV, or cv::SVD::FULL_UV. 
The latter two are mutually exclusive, but either can be combined with the first. The flag 
cv::SVD::MODIFY_A indicates that it is OK to modify the matrix A when computing. This speeds up 
computation a bit and saves some memory. It is more important when the input matrix is already very 
large. The flag cv::SVD::NO_UV tells cv::SVD to not explicitly compute the matrices U and Vt, while 
the flag cv::SVD::FULL_UV indicates that not only would you like U and Vt computed, but that you 
would like them to be represented as full size square orthogonal matrices. 

cv::SVD::compute() 

void SVD::compute( 
  cv::InputArray  A,                      // Linear system, array to be decomposed 
  cv::OutputArray W,                      // Output array ‘W’, singular values 
  cv::OurputArray U,                      // Output array ‘U’, left singular vectors 
  cv::OutputArray Vt,                     // Output array ‘Vt’, right singular vectors 
  int             flags = 0               // what to construct, and if A can be scratch 
);  

This function is an alternative to using cv::SVD::operator()() to decompose the matrix A. The 
primary difference is that the matrices W, U, and Vt are stored in the user-supplied arrays, rather than 
being kept internally. The flags supported are exactly those supported by cv::SVD::operator()(). 

cv::SVD::solveZ() 

void SVD::solveZ( 
  cv::InputArray  A,                      // Linear system, array to be decomposed 
  cv::OutputArray z                       // One possible solution (unit length) 
);  

      †
!z = †argmin !x:!x=1A"!x  

Given an under-determined (singular) linear system, cv::SVD::solveZ() will (attempt to) find a unit 
length solution of     A!

"x = 0  and place the solution in the array y. Because the linear system is singular, 
however, it may have no solution, or it may have an infinite family of solutions. cv::SVD::solveZ() 
will find a solution, if one exists. If no solution exists, then the return value   

!y  will be a vector that 
minimizes    † A!"x , even if this is not, in fact, zero. 

cv::SVD::backSubst() 

void SVD::backSubst( 
  cv::InputArray  b,                      // Right-hand side of linear system 
  cv::OutputArray x                       // Found solution to linear system 
);  
 
void SVD::backSubst( 
  cv::InputArray  W,                      // Output array ‘W’, singular values 
  cv::InputArray  U,                      // Output array ‘U’, left singular vectors 



  cv::InputArray  Vt,                     // Output array ‘Vt’, right singular vectors 
  cv::InputArray  b,                      // Right hand side of linear system 
  cv::OutputArray x                       // Found solution to linear system 
);  

Assuming that the matrix A has been previously passed to the cv::SVD object (and thus decomposed into 
U, W, and Vt), the first form of cv::SVD::backSubst() attempts to solve the system :  

   
UWV T( )!"x =

"
b . 

The second form does the same thing, but expects the matrices W, U, and Vt to be passed to it as 
arguments. The actual method of computing dst is to evaluate the following expression: 

 
    x†
! "!

=Vt
T#diag W( )−1

#U T#b†
! "!

~ A−1#b†
! "!

.  

This method produces a pseudo-solution for an over-determined system, which is the best solution in the 
sense of minimizing the least-squares error.46 Of course, it will also exactly solve a correctly determined 
linear system. 

In practice, it is relatively rare that you would want to use cv::SVD::backSubst() 
directly. This is because you can do precisely the same thing by calling cv::solve() 
and passing the cv::DECOMP_SVD method flag—which is a lot easier. It is only in the 
less common case in which you need to solve many different systems with the same left-
hand side (x) that you would be better off calling cv::SVD::backSubst() directly. 
(As opposed to solving the same system many times with different righthand sides (b), 
which you might just as well do with cv::solve(). 

Random Number Generator (cv::RNG) 
The random number generator object RNG holds the state of a pseudorandom sequence that generates 
random numbers. The benefit of doing things this way is that you can conveniently maintain multiple 
streams of pseudorandom numbers.  

When programming large systems, it is a good programming practice to use separate 
random number streams in different modules of the code. In this way, the removal of one 
module does not change the behavior of the streams in the other modules. 

Once created, the random number generator provides the “service” of generating random numbers on 
demand, drawn from either a uniform or a Gaussian distribution. The generator uses the Multiply with 
Carry algorithm (G. Marsaglia) for uniform distributions and the Ziggurat algorithm (G. Marsaglia and W. 
W. Tsang) for the generation of numbers from a Gaussian distribution. 

cv::theRNG() 

cv::RNG& theRNG( void );                  // Return a random number generator  

The function cv::theRNG() returns the default random number generator for the thread from which it 
was called. OpenCV automatically creates one instance of cv::RNG for each thread in execution. This is 
the same random number generator that is implicitly accessed by functions like cv::randu() or 
cv::randn(). Those functions are convenient and just as quick if you want a single number, or to 
initialize an array, but if you have a loop of your own that needs to generate a lot of random numbers, you 
are better off grabbing a reference to a random number generator (in this case, the default generator, but 

                                                             
46 The object 𝑑𝑖𝑎𝑔 𝑾 !𝟏 is a matrix whose diagonal elements 𝜆!∗  are defined in terms of the diagonal elements 𝜆!   of 𝑾 
by 𝜆!∗ = 𝜆!!! for  𝜆! ≥ 𝜀. This value ε is the singularity threshold, a very small number that is typically proportional to 
the sum of the diagonal elements of 𝑾 (i.e.,  𝜀! 𝜆!! ). 



you could use your own instead) and using RNG::operator T() to get your random numbers (more on 
that operator follows). 

cv::RNG() 

cv::RNG::RNG( void ); 
cv::RNG::RNG( uint64 state );             // create using the seed ‘state’  

You can create an RNG object with either the default constructor, or you can pass it a 64-bit unsigned 
integer that it will use as the seed of the random number sequence. If you call the default constructor (or 
pass 0 to the second variation) the generator will initialize with a standardized value.47 

cv::RNG::operator T() 

cv::RNG::operator uchar(); 
cv::RNG::operator schar(); 
cv::RNG::operator ushort(); 
cv::RNG::operator short int(); 
cv::RNG::operator int(); 
cv::RNG::operator unsigned(); 
cv::RNG::operator float(); 
cv::RNG::operator double(); 

This is really a set of different methods that return a new random number from cv::RNG of some specific 
type. Each of these is an overloaded cast operator, so in effect you cast the RNG object to whatever type 
you want: 

Example 3-2: Using the default random number generator we generate a pair of integers and a pair of 
floating-point numbers; the style of the cast operation is up to you, this example shows both the int(x) 

and the (int)x forms 

cv::RNG rng = cv::theRNG(); 
cout << ”An integer:      “ << (int)rng   << endl; 
cout << ”Another integer: “ << int(rng)   << endl; 
cout << ”A float:         “ << (float)rng << endl; 
cout << ”Another float:   “ << float(rng) << endl; 

When integer types are generated, they will be generated across the entire range of available values (using 
the MWC algorithm described earlier and thus uniformly). When floating-point types are generated, they 
will always be in the range from the interval [0.0, 1.0).48 

cv::RNG::operator() 

unsigned int cv::RNG::operator()();       // Return random value from 0-UINT_MAX 
unsigned int cv::RNG::operator()( unsigned int N );  // Return value from 0-(N-1) 

When generating integer random numbers, the overloaded operator()() allows a convenient way to 
just grab another one. In essence, calling my_rng() is equivalent to calling (unsigned int)my_rng. 
The somewhat more interesting form of cv::RNG::operator()() takes an integer argument N. This 
form returns a random unsigned integer modulo N (using the MWC algorithm described earlier and thus 
uniformly). Thus, the range of integers returned by my_rng( N ) is then the range of integers from 0 to 
N-1. 

cv::RNG::uniform() 

int        cv::RNG::uniform( int a,    int b    );       // Return value from a-(b-1)  

                                                             
47 This “standard value” is not zero because, for that value, many random number generators, including the ones used 
by RNG, will return nothing but zeros thereafter. Currently, this standard value is  2!" − 1. 
48 In case this notation is not familiar, the designation of an interval using square brackets, [], ‘[‘ indicates that this limit 
is inclusive, and the designation using parentheses, (), ‘(‘ indicates that this limit is noninclusiveinclusive. Thus the 
notation [0.0,1.0) means an interval from 0.0 to 1.0 inclusive of 0.0 but not inclusive of 1.0. 



float  cv::RNG::uniform( float a,  float b  );       // Return value in range [a,b)  
double cv::RNG::uniform( double a, double b );       // Return value in range [a,b)  

This function allows you to generate a random number uniformly (using the MWC algorithm) in the 
interval [a, b). 

It is important to note that the C++ compiler does not consider the return value of a 
function when determining which of multiple similar forms to use, only the arguments. 
As a result, if you call: float x = my_rng.uniform(0,1) you are going to get 
0.f, because 0 and 1 are integers and the only integer in the interval [0, 1) is 0. If you 
want a floating-point number, you should use something like 
my_rng.uniform(0.f,1.f), and for a double, use my_rng.uniform(0.,1.). 
Of course, explicit casting of the arguments also works. 

cv::RNG::gaussian() 

double  cv::RNG::gaussian( double sigma ); // Gaussian number, zero mean, std-dev=’sigma’ 

This function allows you to generate a random number from a zero-mean Gaussian distribution (using the 
Ziggurat algorithm) with standard deviation sigma. 

cv::RNG::fill() 

void  cv::RNG::fill(  
  InputOutputArray mat,                   // Input array, values will be overwritten 
  int              distType,              // Type of distribution (Gaussian or uniform) 
  InputArray       a,                     // min (uniform) or mean (Gaussian) 
  InputArray       b                      // max (uniform) or std-deviation (Gaussian) 
 ); 

The cv::RNG::fill() algorithm fills a matrix mat of up to four channels with random numbers drawn 
from a specific distribution. That distribution is selected by the distType argument, which can be either 
cv::RNG::UNIFORM or cv::RNG::NORMAL. In the case of the uniform distribution, each element of 

mat will be filled with a random value generated from the interval
  
†matc,i ∈ ac ,bc⎡⎣ ) . In the case of the 

Gaussian (cv::RNG::NORMAL) distribution, each element is generated from a distribution with mean 

taken from a and standard deviation taken from b:
  
†matc,i ∈N ac ,bc( ) . It is important to note that the 

arrays a and b are not of the dimension of mat, they are  nc -by-1 or 1-by- nc  where  nc  is the number of 
channels in mat (i.e., there is not a separate distribution for each element of mat, a and b specify one 
distribution, not one distribution for every element of mat.) 

If you have a multichannel array, then you can generate individual entries in “channel-
space” from a multivariate distribution simply by giving the appropriate mean and 
standard deviation for each channel in the input arrays a and b. This distribution, 
however, will be drawn from a distribution with only zero entries in the off-diagonal 
elements of its covariance matrix. (This is because each element is generated completely 
independently of the others.) If you need to draw from a more general distribution, the 
easiest method is to generate zero-mean values using an identity covariance matrix with 
cv::RNG::fill(), and then transform (translate and rotate) back to your original 
basis using cv::transform().  

Summary 
In this chapter, we introduced some frequently encountered basic data structures. In particular, we looked at 
the all-important OpenCV array structure cv::Mat, which can contain matrices, images, and 
multidimensional arrays.  



Exercises 
In the following exercises, you may need to refer to the manual at http://docs.opencv.org/ . 

1. Find and open …/opencv/modules/core/include/opencv2/core/core.hpp. Read through and find the 
many conversion helper functions. 
a) Choose a negative floating-point number. Take its absolute value, round it, and then take its 

ceiling and floor.49 
b) Generate some random numbers. 
c) Create a floating-point cv::Point2f and convert it to an integer cv::Point2i. 

d) Convert a cv::Point2i to a CvPoint2f. 

2. This exercise will accustom you to the idea of many functions taking matrix types. Create a two-
dimensional matrix with three channels of type byte with data size 100-by-100. Set all the values to 0. 
a) Draw a circle in the matrix using the cv::circle() function: 

void circle(  
  cv::Mat&          img,                  // Image to be drawn on 
  cv::Point         center,               // Location of circle center 
  int               radius,               // Radius of circle 
  const cv::Scalar& color,                // Color, RGB form 
  int               thickness = 1,        // Thickness of line  
  int               lineType  = 8,        // Connectedness, 4 or 8 
  int               shift     = 0         // Bits of radius to treat as fraction 
); 

b) Display this image using methods described in Chapter 2. 
1. Create a two-dimensional matrix with three channels of type byte with data size 100-by-100, and set 

all the values to 0. Use the element access member: m.at<cv::Vec3f> to point to the middle 
(“green”) channel. Draw a green rectangle between (20, 5) and (40, 20). 

2. Create a three-channel RGB image of size 100-by-100. Clear it. Use pointer arithmetic to draw a green 
square between (20, 5) and (40, 20). 

3. Practice using the block access methods (Table 3-16). Create a 210-by-210 single-channel byte image 
and zero it. Within the image, build a pyramid of increasing values using the submatrix constructor and 
the cv::Range object. That is: the outer border should be 0, the next inner border should be 20, the 
next inner border should be 40, and so on until the final innermost square is set to value 200; all 
borders should be 10 pixels wide. Display the image. 

4. Use multiple image objects for one image. Load an image that is at least 100-by-100. Create two 
additional image objects using the first object and the submatrix constructor. Create the new images 
with width at 20 and the height at 30, but with their origins located at pixel at (5, 10) and (50, 60), 
respectively. Logically invert the two images using the ‘not’ logical inversion operator. Display the 
loaded image, which should have two inverted rectangles within the larger image. 

5. Add an CV_DbgAssert( condition ) to the code of question 4 that will be triggered by a 
condition in the program. Build the code in debug, run it and see the assert being triggered. Now build 
it in release mode and see that the condition is not triggered. 

6. Create a mask using cv::compare(). Load a real image. Use cv::split() to split the image 
into red, green, and blue images. 
a) Find and display the green image. 
b) Clone this green plane image twice (call these clone1 and clone2). 

                                                             
49 Remember that cvFloor() and cvCeil() are legacy functions and are found in 
…/opencv/modules/core/include/opencv2/core/types_c.h. 



c) Find the green plane’s minimum and maximum value. 
d) Set clone1’s values to thresh = (unsigned char)((maximum - minimum)/2.0). 
e) Set clone2 to 0 and use cv::compare(green_image, clone1, clone2, 

cv::CMP_GE). Now clone2 will have a mask of where the value exceeds thresh in the green 
image. 

f) Finally, compute the value:  green_image = green_image - thresh/2 and display the 
results. (Bonus: assign this value to green_image only where clone2 is non-zero.) 



 

 

4 
Graphical User Interface 

HighGUI: Portable Graphics Toolkit 
The OpenCV functions that allow us to interact with the operating system, the filesystem1, and hardware 
such as cameras are collected into a sub-library called HighGUI (which stands for “high-level graphical 
user interface”). HighGUI allows us to open windows, to display images, to read and write graphics-related 
files (both images and video), and to handle simple mouse, pointer, and keyboard events. We can also use it 
to create other useful doodads—like sliders, for example—and then add them to our windows. If you are a 
GUI guru in your window environment of choice, then you might find that much of what HighGUI offers is 
redundant. Yet, even so, you might find that the benefit of cross-platform portability is itself a tempting 
morsel. 

From our initial perspective, the HighGUI library in OpenCV can be divided into three parts: the hardware 
part, the filesystem part, and the GUI part. We will take a moment to overview what is in each part before 
we really dive in. 

The hardware part is primarily concerned with the operation of cameras. In most operating systems, 
interaction with a camera is a tedious and painful task. HighGUI allows an easy way to query a camera and 
retrieve its latest image. It hides all of the nasty stuff, and that keeps us happy. 

The filesystem part is concerned primarily with loading and saving images. One nice feature of the library 
is that it allows us to read video using the same methods we would use to read a camera. We can therefore 
abstract ourselves away from the particular device we’re using and get on with writing interesting code. In 
a similar spirit, HighGUI provides us with a (relatively) universal pair of functions to load and save still 
images. These functions simply rely on the filename extension and automatically handle all of the decoding 
or encoding that is necessary. 

The third part of HighGUI is the window system (or GUI). The library provides some simple functions that 
allow us to open a window and throw an image into that window. It also allows us to register and respond 
to mouse and keyboard events on that window. These features are most useful when trying to get off of the 
ground with a simple application. Tossing in some slider bars, we find ourselves able to prototype a 
surprising variety of applications using only the HighGUI library. If we want to link to Qt, we can even get 
a little more functionality.2 

                                                             
1 Some lower level file system operations are located in the core module as well. 
2 This is Qt the cross-platform widget toolkit. We will talk more about how this works later in this chapter. 



 

 

As we proceed in this chapter, we will not treat these three segments separately; rather, we will start with 
some functions of highest immediate utility and work our way to the subtler points thereafter. In this way, 
you will learn what you need to get going as soon as possible.  

At the end of the chapter, we will consider additional functions that will allow us to mark up images by 
drawing lines or other shapes on them. These functions are primarily provided for debugging and validating 
code, but will turn out to be broadly useful. Finally, we will look at more advanced data persistence for 
OpenCV data types that will allow us to store and reload additional data types other than just images. 

Working with Image Files 
OpenCV provides special functions for the loading and saving of images that deal, either directly or 
implicitly, with the complexities associated with compression and decompression of that image data. These 
functions are different from the more universal XML/YML-based functions discussed in the previous 
chapter in several respects. The primary distinction is that because these functions are designed for actual 
images, as opposed to general arrays of data, they rely heavily on existing backends for compression and 
decompression, handling all of the common file formats, each in the manner required by that file type. 
Most of these compression and decompression schemes have been developed with the idea that it is 
possible to lose some information without degrading the visual experience of the image. Clearly such lossy 
compression schemes are not a good idea for arrays of nonimage data. Less obviously, artifacts introduced 
by lossy compressions schemes can also cause headaches for computer vision algorithms as well. In many 
cases, algorithms will find and respond to compression artifacts that are completely invisible to us humans. 

The key difference to remember is that the loading and saving functions we will discuss here are really an 
interface to the resources for handling image files that are already present in your operating system or its 
available libraries. The XML/YML data persistence mentioned here is entirely intrinsic to OpenCV. 

Loading and Saving Images 
The most common tasks we will need to accomplish are the loading and the saving of files from disk. The 
easiest way to do this is with the high-level functions cv::imread() and cv::imwrite(). These 
functions handle the complete task of decompression and compression as well as the actual interaction with 
the filesystem. 

Reading Files with cv::imread() 

Obviously the first thing to do is to learn how to get an image out of the filesystem and into our program. 
The function that does this is cv::imread(): 

cv::Mat cv::imread( 
  const string& filename,                        // Input filename 
  int           flags   = cv::LOAD_IMAGE_COLOR   // Flags set how to interpret file 
); 

When opening an image, cv::imread() does not look at the file extension. Instead, cv::imread() 
analyzes the first few bytes of the file (aka its signature or “magic sequence”) and determines the 
appropriate codec using that. The second argument flags can be set to one of several values. By default, 
flags is set to cv::IMREAD_COLOR. This value indicates that images are to be loaded as three-channel 
images with 8 bits per channel. In this case, even if the image is actually grayscale in the file, the resulting 
image in memory will still have three channels, with all of the channels containing identical information. 
Alternatively, if flags is set to cv::IMREAD_GRAYSCALE, the image will be loaded as grayscale, 
regardless of the number of channels in the file. The final option is to set flags to 



 

 

cv::IMREAD_ANYCOLOR. In this case, the image will be loaded “as is,” with the result being three-
channel if the file is color, and one-channel if the file is grayscale.3  

In addition to the color-related flags, cv::imread() supports the flag cv::IMREAD_ANYDEPTH, 
which indicates that if an input image channels have more than 8 bits, that it should be loaded without 
conversion (i.e., the allocated array will be of the type indicated in the file.) 

Table 4-1: Parameters accepted by cv::imread() 

Parameter ID Meaning Default 

 cv::IMREAD_COLOR Always load to three-
channel array. 

 yes 

 cv::IMREAD_GRAYSCALE 
Always load to single-
channel array. 

 no 

 cv::IMREAD_ANYCOLOR Channels as indicated by 
file (up to three).           

 no 

 cv::IMREAD_ANYDEPTH 
Allow loading of more 
than 8-bit depth. 

 no 

 cv::IMREAD_UNCHANGED 
Equivalent to combining: 
cv::LOAD_IMAGE_ANYCOLOR |  
cv::LOAD_IMAGE_UNCHANGED  

 no 

cv::imread() does not give a runtime error when it fails to load an image; it simply returns an empty 
cv::Mat (i.e., empty()==true).   

Writing Files with cv::imwrite() 

The obvious complementary function to cv::imread() is cv::imwrite(), which takes three 
arguments: 

int cv::imwrite( 
  const string&      filename,            // Input filename 
  cv::InputArray     image,               // Image to write to file 
  const vector<int>& params  = vector<int>() // (Optional) for parameterized formats 
); 

The first argument gives the filename, whose extension is used to determine the format in which the file 
will be stored. The second argument is the image to be stored. The third argument is used for parameters 
that are accepted by the particular file type being used for the write operation. The params argument 
expects an STL vector of integers, with those integers being a sequence of parameter IDs followed by the 
value to be assigned to that parameter (i.e., alternating between the parameter ID and the parameter value). 
For the parameter IDs, there are aliases provided by OpenCV, as listed in Table 4-2. 

Table 4-2: Parameters accepted by cv::imwrite() 

Parameter ID Meaning Range Default 

cv::IMWRITE_JPG_QUALITY JPEG quality  0–100  95 

                                                             
3 At the time of writing, “as is” does not support the loading of a fourth channel for those file types that support alpha 
channels. In this case, the fourth channel will currently just be ignored and the file will be treated as if it had only three 
channels.  



 

 

 
cv::IMWRITE_PNG_COMPRESSION 

PNG compression 
(higher values 
mean more 
compression) 

 0-9  3 

cv::IMWRITE_PXM_BINARY 
Use binary format 
for PPM, PGM, or 
PBM files             

 0 or 1  1 

The cv::imwrite() function will store only 8-bit single- or three-channel images for most file formats. 
Backends for flexible image formats like PNG, TIFF, or JPEG 2000 allow storing 16-bit or even float 
formats and some allow four-channel images (BGR plus alpha) as well. The return value will be 1 if the 
save was successful and should be 0 if the save was not.4   

A Note about Codecs 
Remember, however, that cv::imwrite() is intended for images, and relies heavily on software 
libraries intended for handling image file types. These libraries are generically referred to as codecs (“co-
mpression and dec-ompression librarie-s”). Your operating system will likely have many codecs available, 
with (at least) one being available for each of the different common file types. 

OpenCV comes with the codecs you will need for some file formats (JPEG, PNG, and TIFF), and on 
Microsoft Windows as well as on Apple Mac OS X, these should be available on installation. On Linux and 
other Unix-like operating systems, OpenCV will try to use codecs supplied with the OS image. In this case, 
you will need to ensure you have installed the relevant packages with their development files (i.e., install 
libjpeg-dev in addition to libjpeg on Linux). 

In Apple’s Mac OS X, it is also possible to use the native image readers from Mac OS X. 
If you do this, however, you should be aware that Mac OS X has an embedded native 
color management, and so the colors that appear in the loaded file may be different than 
if you had used the codecs included with the OpenCV package. This is a good example of 
how the reliance on external elements by cv::imread() and cv::imwrite() can 
have important and sometimes unexpected consequences.  

Compression and Decompression 
As already mentioned, the cv::imread() and cv::imwrite functions are high-level tools that handle 
a number of separate things necessary to ultimately get your image written to or read from the disk. In 
practice, it is often useful to be able to handle some of those subcomponents individually and, in particular, 
to be able to compress or decompress an image in memory (using the codecs we just reviewed). 

Compressing Files with cv::imencode() 

Images can be compressed directly from OpenCV’s array types. In this case, the result will not be an array 
type, but rather a simple character buffer. This should not be surprising, as the resulting object is now in 
some format that is meaningful only to the codec that compressed it, and will (by construction) not be the 
same size as the original image. 

void cv::imencode( 
  const string&      ext,                 // Extension specifies codec 
  cv::InputArray     img,                 // Image to be encoded 
  vector<uchar>&     buf,                 // Encoded file bytes go here 
  const vector<int>& params  = vector<int>() // (Optional) for parameterized formats 

                                                             
4 The reason we say “should” is that, in some OS environments, it is possible to issue save commands that will actually 
cause the operating system to throw an exception. Normally, however, a zero value will be returned to indicate failure. 



 

 

); 

The first argument to cv::imencode() is the file extension ext, represented as a string, which is 
associated with the desired compression. Of course, no file is actually written, but the extension is not only 
an intuitive way to refer to the desired format, it is the actual key used by most operating systems to index 
the available codecs. The next argument img is the image to be compressed, and the argument following 
that buf is the character array into which the compressed image will be placed. The final argument 
params is used to specify any parameters which may be required (or desired) for the specific compression 
codec to be used. The possible values for params are those listed earlier in Table 4-2 in the 
cv::imwrite(). 

Uncompressing Files with cv::imdecode() 
cv::Mat cv::imdecode( 
  cv::InputArray buf,                     // Encoded file bytes are here 
  int            flags = cv::LOAD_IMAGE_COLOR // Flags set how to interpret file 
); 

Just as cv::imencode() allows us to compress an image into a character buffer, cv::imdecode() 
allows us to decompress from a character buffer into an image array. cv::imdecode() takes just two 
arguments, the first being the buffer5 buf and the second being the flags arguments, which takes the 
same options as the flags used by cv::imread() (see Table 4-1). As was the case with 
cv::imread(), cv::imdecode() does not need a file extension (as cv::imencode() did) 
because it can deduce the correct codec to use from the first bytes of the compressed image in the buffer. 

Just as cv::imread() returns an empty (cv::Mat::empty()==true) array if it cannot read the file 
it is given, cv::imdecode() returns an empty array if the buffer it is given is empty, contains invalid or 
unusable data, and so on. 

Working with Video 
When working with video, we must consider several functions, including (of course) how to read and write 
video files. You will also probably find yourself thinking shortly thereafter about how to actually play back 
such files on the screen—either for debugging, or as the final output of our program; we’ll get to that next, 

Reading Video with the cv::VideoCapture Object 
The first thing we need is the cv::VideoCapture object. This is another one of those “objects that do 
stuff” we encountered in the previous chapter. This object contains the information needed for reading 
frames from a camera or video file. Depending on the source, we use one of three different calls to create a 
cv::VideoCapture object: 

cv::VideoCapture::VideoCapture( 
  const string&      filename,            // Input filename 
); 
cv::VideoCapture::VideoCapture(  
  int device                              // Video Capture device id 
); 
cv::VideoCapture::VideoCapture(); 

In the case of the first constructor, we can simply give a filename for a video file (.MPG, .AVI, etc.) and 
OpenCV will open the file and prepare to read it. If the open is successful and we are able to start reading 
frames, the member function cv::VideoCapture::isOpen() will return true. 

                                                             
5 You should not be surprised that the input buf is not type vector<int>&, as it was with cv::imencode(). 
Recall that the type cv::InputArray covers many possibilities and vector<> is one of them. 



 

 

A lot of people don’t always check these sorts of things, thinking that nothing will go wrong. Don’t do that 
here. The returned value of cv::VideoCapture::isOpen() will be false if for some reason the 
file could not be opened (e.g., if the file does not exist), but that is not the only possible cause. The 
constructed object will also not be ready to be used if the codec with which the video is compressed is not 
known. As with the image codecs, you will need to have the appropriate library already residing on your 
computer in order to successfully read the video file. This is why it is always important for your code to 
check the return value of cv::VideoCapture::isOpen(), because even if it works on one machine 
(where the needed codec DLL or shared library is available), it might not work on another machine (where 
that codec is missing). Once we have an open cv::VideoCapture object, we can begin reading frames 
and do a number of other things. But before we get into that, let’s take a look at how to capture images 
from a camera. 

The variant of cv::VideoCapture::VideoCapture() that takes an integer device argument 
works very much like the string version we just discussed, except without the headache from the 
codecs.6 In this case, we give an identifier that indicates a camera we would like to access and how we 
expect the operating system to talk to that camera. For the camera, this is just an identification number that 
is zero (0) when we only have one camera and increments upward when there are multiple cameras on the 
same system. The other part of the identifier is called the domain of the camera and indicates (in essence) 
what type of camera we have. The domain can be any of the predefined constants shown in Table 4-3. 

Table 4-3: Camera “domain” indicates where HighGUI should look for your camera 

Camera capture constant Numerical value 
 cv::CAP_ANY                0 
 cv::CAP_MIL                100 
 cv::CAP_VFW                200 
 cv::CAP_V4L                200 
 cv::CAP_V4L2                200 
 cv::CAP_FIREWIRE                300 
 cv::CAP_IEEE1394                300 
 cv::CAP_DC1394                300 
 cv::CAP_CMU1394                300 
 cv::CAP_QT 500 
 cv::CAP_DSHOW 700 
 cv::CAP_PVAPI 800 
 cv::CAP_OPENNI 900 
 cv::CAP_ANDROID 1000 
…  

When we construct the device argument for cv::VideoCapture::VideoCapture(), we pass in 
an identifier that is just the sum of the domain index and the camera index. For example: 

cv::VideoCapture capture( cv::CAP_FIREWIRE ); 

In this example, cv::VideoCapture::VideoCapture() will attempt to open the first (i.e., number-
zero) FireWire camera. In most cases, the domain is unnecessary when we have only one camera; it is 
sufficient to use cv::CAP_ANY (which is conveniently equal to 0, so we don’t even have to type that in). 
One last useful hint before we move on: on some platforms, you can pass -1 to 

                                                             
6 Of course, to be completely fair, we should probably confess that the headache caused by different codecs has been 
replaced by the analogous headache of determining which cameras are (or are not) supported on our system. 



 

 

cv::VideoCapture::VideoCapture(), which will cause OpenCV to open a window that allows 
you to select the desired camera. 

Your last option is to create the capture object without providing any information about what is to be 
opened. 

cv::VideoCapture cap(); 
cap.open( “my_video.avi” ); 

In this case, the capture object will be there, but not ready for use until you explicitly open the source you 
want to read from. This is done with the cv::VideoCapture::open() method which, like the 
cv::VideoCapture constructor, can take either an STL string or a device ID as arguments. In either 
case, cv::VideoCapture::open() will have exactly the same effect as calling the 
cv::VideoCapture constructor with the same argument. 

Reading Frames with cv::VideoCapture::read() 
bool cv::VideoCapture::read( 
  cv::Mat& image                          // Image into which to read data 
); 

Once you have a cv::VideoCapture object, you can start reading frames. The easiest way to do this is 
to call cv::VideoCapture::read(), which will simply go to the open file represented by 
cv::VideoCapture and get the next frame, inserting that frame into the provided array image. This 
action will automatically “advance” the video capture object such that a subsequent call to 
cv::VideoCapture::read() will return the next frame, and so on. 

If the read was not successful (e.g., if you have reached the end of your file), then this function call will 
return false (otherwise it will return true). Similarly, the array object you supplied to the function will 
also be empty. 

Reading Frames with cv::VideoCapture::operator>>() 
cv::VideoCapture& cv::VideoCapture::operator>>( 
  cv::Mat& image                          // Image into which to read data 
); 

In addition to using the read method of cv::VideoCapture, you can use the overloaded function 
cv::VideoCapture::operator>>() (i.e., the “stream read” operator) to read the next frame from 
your video capture object. In this case, cv::VideoCapture::operator>>() behaves exactly the 
same as cv::VideoCapture::read(), except that because it is a stream operator, it returns a 
reference to the original cv::VideoCapture::read() object, whether or not it succeeded. In this 
case, you must check that the return array is not empty.  

Reading Frames with cv::VideoCapture::grab() and cv::VideoCapture::retrieve() 

Instead of taking images one at a time from your camera or video source and decoding them as you read 
them, it is possible to break this process down into a grab phase, which is a little more than a memory 
copy, and a retrieve phase, which handles the actual decoding of the grabbed data. 

bool cv::VideoCapture::grab( void ); 
bool cv::VideoCapture::retrieve( 
  cv::Mat& image,                         // Image into which to read data 
  int      channel = 0                    // Used for multihead devices 
); 

The cv::VideoCapture::grab() function copies the currently available image to an internal buffer 
that is invisible to the user. Why would you want OpenCV to put the frame somewhere you can’t access it? 
The answer is that this grabbed frame is unprocessed, and grab() is designed simply to get it onto the 
computer (typically from a camera) as quickly as possible.  

There are many reasons to grab and retrieve separately rather than together as would be 
the case in calling cv::VideoCapture::read(). The most common situation 



 

 

arises when there are multiple cameras (e.g., with stereo imaging). In this case, it is 
important to have frames that are separated in time by the minimum amount possible 
(ideally they would be simultaneous for stereo imaging). Therefore, it makes the most 
sense to first grab all the frames and then come back and decode them after you have 
them all safely in your buffers.  

As was the case with cv::VideoCapture::read(), cv::VideoCapture::grab()returns 
true only if the grab was successful. 

Once you have grabbed your frame, you can call cv::VideoCapture::retrieve(), which handles 
the decoding and the allocation and copying necessary to return the frame to you as a cv::Mat array. The 
function cv::VideoCapture::retrieve() functions analogously to 
cv::VideoCapture::read(), except that it operates from the internal buffer to which 
cv::VideoCapture::grab() copies frames. The other important difference between 
cv::VideoCapture::read() and cv::VideoCapture::retrieve() is the additional 
argument channel. The channel argument is used when the device being accessed natively has 
multiple “heads” (i.e., multiple imagers). This is typically the case for devices designed specifically to be 
stereo imagers, as well as slightly more exotic devices such as the Kinect.7 In these cases, the value of 
channel will indicate which image from the device is to be retrieved. In these cases, you would call 
cv::VideoCapture::grab() just once and then call cv::VideoCapture::retrieve() as 
many times as needed to retrieve all of the images in the camera (each time with a different value for 
channel). 

Camera Properties: cv::VideoCapture::get() and cv::VideoCapture::set() 

Video files contain not only the video frames themselves, but also important metadata, which can be 
essential for handling the files correctly. When a video file is opened, that information is copied into the 
cv::VideoCapture object’s internal data area. It is very common to want to read that information from 
the cv::VideoCapture object, and sometimes also useful to write to that data area ourselves. The 
cv::VideoCapture::get() and cv::VideoCapture::set() functions allow us to perform 
these two operations: 

double cv::VideoCapture::get( 
  int    propid                           // Property identifier (see Table 4-4) 
); 
 
bool cv::VideoCapture::set( 
  int    propid                           // Property identifier (see Table 4-4) 
  double value                            // Value to which to set the property 
); 

The routine cv::VideoCapture::get() accepts any of the property IDs shown in Table 4-48. 

Table 4-4: Video capture properties used by cv::VideoCapture::get() and cv::VideoCapture::set() 

Video capture property Camera 
Only 

Meaning 

cv::CAP_PROP_POS_MSEC   Current position in video file (milliseconds) or video 

                                                             
7 The currently supported multihead cameras are Kinect and Videre; others may be added later. 
8 It should be understood that not all of the properties recognized by OpenCV will be recognized or handled 
by the “backend” behind the capture. For example, the capture mechanisms operating behind the scenes on 
Android, Firewire on Linux (via dc1394), Quicktime, or a Kinect (via OpenNI) are all going to be very 
different, and not all of them will offer all of the services implied by this long list of options. Expect this 
list to grow as well, as new system types make new options possible. 

 



 

 

capture timestamp 
cv::CAP_PROP_POS_FRAMES                   Zero-based index of next frame 
 
cv::CAP_PROP_POS_AVI_RATIO                  

 Relative position in the video (range is 0.0 to 1.0) 

cv::CAP_PROP_FRAME_WIDTH                   Width of frames in the video 
cv::CAP_PROP_FRAME_HEIGHT                   Height of frames in the video 
cv::CAP_PROP_FPS   Frame rate at which the video was recorded 
cv::CAP_PROP_FOURCC   Four character code indicating codec 
cv::CAP_PROP_FRAME_COUNT                   Total number of frames in a video file 
cv::CAP_PROP_FORMAT  Format of the Mat objects returned (e.g., CV::U8C3) 
cv::CAP_PROP_MODE  Indicates capture mode, values are specific to video 

backend being used (i.e., DC1394, etc.) 
cv::CAP_PROP_BRIGHTNESS ü Brightness setting for camera (when supported) 
cv::CAP_PROP_CONTRAST ü Contrast setting for camera (when supported) 
cv::CAP_PROP_SATURATION ü Saturation setting for camera (when supported) 
cv::CAP_PROP_HUE ü Hue setting for camera (when supported) 
cv::CAP_PROP_GAIN ü Gain setting for camera (when supported) 
cv::CAP_PROP_EXPOSURE ü Exposure setting for camera (when supported) 
cv::CAP_PROP_CONVERT_RGB ü If nonzero, captured images will be converted to 

have three channels 
cv::CAP_PROP_WHITE_BALANCE ü White balance setting for camera (when supported) 
cv::CAP_PROP_RECTIFICATION ü Rectification flag for stereo cameras (DC1394-2.x 

only) 

Most of these properties are self-explanatory. POS_MSEC is the current position in a video file, measured 
in milliseconds. POS_FRAME is the current position in frame number. POS_AVI_RATIO is the position 
given as a number between 0.0 and 1.0. (This is actually quite useful when you want to position a 
trackbar to allow folks to navigate around your video.) FRAME_WIDTH and FRAME_HEIGHT are the 
dimensions of the individual frames of the video to be read (or to be captured at the camera’s current 
settings). FPS is specific to video files and indicates the number of frames per second at which the video 
was captured; you will need to know this if you want to play back your video and have it come out at the 
right speed. FOURCC is the four-character code for the compression codec to be used for the video you are 
currently reading (more on these shortly). FRAME_COUNT should be the total number of frames in the 
video, but this figure is not entirely reliable. 

All of these values are returned as type double, which is perfectly reasonable except for the case of 
FOURCC (FourCC) [FourCC85]. Here you will have to recast the result in order to interpret it, as shown in 
Example 4-1. 

Example 4-1. Unpacking a four-character code to identify a video codec 

cv::VideoCapture cap( "my_video.avi" ); 
double           f      = cap.get( cv::CAP_PROP_FOURCC ); 
char*            fourcc = (char*) (&f); 

 

For each of these video capture properties, there is a corresponding cv::VideoCapture::set() 
function that will attempt to set the property. These are not all meaningful things to do; for example, you 
should not be setting the FOURCC of a video you are currently reading. Attempting to move around the 
video by setting one of the position properties will sometimes work, but only for some video codecs (we’ll 
have more to say about video codecs in the next section). 



 

 

Writing Video with the cv::VideoWriter Object 
The other thing we might want to do with video is writing it out to disk. OpenCV makes this easy; it is 
essentially the same as reading video but with a few extra details. 

Just as we did with the cv::VideoCapture device for reading, we must first create a 
cv::VideoWriter device before we can write out our video. The video writer has two constructors; 
one is a simple default constructor that just creates an uninitialized video object that we will have to open 
later, and the other has all of the arguments necessary to actually set up the writer. 

cv::VideoWriter::VideoWriter( 
  const string& filename,                 // Input filename 
  int           fourcc,                   // codec, use CV_FOUR_CC() macro 
  double        fps,                      // Frame rate (storred in output file) 
  cv::Size      frame_size,               // Size of individual images 
  bool          is_color  = true          // if false, you can pass gray frames   
); 

You will notice that the video writer requires a few extra arguments relative to the video reader. In addition 
to the filename, we have to tell the writer what codec to use, what the frame rate is, and how big the frames 
will be. Optionally, we can tell OpenCV that the frames are already in color (i.e., three-channel). If you set 
isColor to false, you can pass grayscale frames and the video writer will handle them correctly. 

As with the video reader, you can also create the video writer with a default constructor, and then configure 
the writer with the cv::VideoWriter::open() method, which takes the same arguments as the full 
constructor. 

cv::VideoWriter out(); 
out.open(  
  "my_video.mpg", 
  CV_FOUR_CC(‘D’,’I’,’V’,’X’),  // MPEG-4 codec 
  30.0,                         // fps 
  cv::Size( 640, 480 ), 
  true                          // expect only color frames 
); 

Here, the codec is indicated by its four-character code. (For those of you who are not experts in 
compression codecs, they all have a unique four-character identifier associated with them). In this case, the 
int that is named fourcc in the argument list for cv::VideoWriter::VideoWriter() is 
actually the four characters of the fourcc packed together. Since this comes up relatively often, OpenCV 
provides a convenient macro CV_FOURCC(c0,c1,c2,c3) that will do the bit packing for you. 

Once you have given your video writer all the information it needs to set itself up, it is always a good idea 
to ask it if it is ready to go. This is done with the cv::VideoWriter::isOpened() method, which 
will return true if you are good to go. If it returns false, this could mean that you don’t have write 
permission to the directory for the file you indicated, or (most often) that the codec you specified is not 
available. 

The codecs available to you will depend on your operating system installation and the 
additional libraries you have installed. For portable code, it is especially important to be 
able to gracefully handle the case in which the desired codec is not available on any 
particular machine. 

Writing Frames with cv::VideoWriter::write() 

Once you have verified that your video writer is ready to write, you can write frames by simply passing 
your array to the writer: 

cv::VideoWriter::write( 
  const Mat& image                        // Image to write as next frame 
); 



 

 

This image must have the same size as the size you gave to the writer when you configured it in the first 
place. If you told the writer that the frames would be in color, this must also be a three-channel image. If 
you indicated to the writer (via isColor) that the images is just one channel, you should supply a single-
channel (grayscale) image. 

Writing Frames with cv::VideoWriter::operator<<() 

The video writer also supports the idiom of the overloaded output stream operator (operator<<()). In 
this case, once you have your video writer open, you can write images to the video stream in the same 
manner you would write to cout or a file ofstream object: 

my_video_writer << my_frame; 

Working with Windows 
The HighGUI toolkit provides some rudimentary built-in features for creating windows, displaying images 
in those windows, and for making some user interaction possible with those windows. The native OpenCV 
graphical user interface (GUI) functions have been part of the library for a very long time, and have the 
advantage of being stable, portable,9 and very easy to use.  

On the other hand, the native GUI features have the disadvantage of being not particularly complete. As a 
result, there has been an effort to modernize the GUI portion of HighGUI, and to add a number of useful 
new features. This was done by converting from “native” interfaces to the use of Qt. Qt is a cross-platform 
toolkit, and so new features can be implemented only once in the library, rather than once each for each of 
the native platforms. Needless to say, this has the result of making development of the Qt interface more 
attractive, and so it does more stuff, and will probably grow in the future, leaving the features of the native 
interface to become static legacy code. 

In this section, we will first take a look at the native functions, and then move on to look at the differences, 
and particularly the new features, offered by the Qt-based interface. 

HighGUI Native Graphical User Interface 
This section describes the core interface functions that are part of OpenCV and require no external toolkit 
support. Some of them, when you are using the Qt backend, will also behave somewhat differently or have 
some additional options, but we will put those details off until the next section. 

The native HighGUI user input tools support only two basic interactions. Specifically, mouse clicks on the 
image area can be responded to, and a simple track bar can be added. These basic functions are usually 
sufficient for basic mock-ups and debugging, but hardly ideal for end-user facing applications. For that, 
you will (at least) want to use the Qt-based interface or some other UI toolkit. 

The main advantages of the native tools are that they are fast and easy to use, and don’t require you to 
install any additional libraries.  

Creating a Window with cv::namedWindow() 

First, we want to be able to create a window and show an image on the screen using HighGUI. The 
function that does the first part for us is cv::namedWindow(). The function expects a name for the new 
window and one flag. The name appears at the top of the window, and the name is also used as a handle for 

                                                             
9 They are “portable” because they make use of native window GUI tools on various platforms. This means X11 on 
Linux, Cocoa on MacOSX, and the raw Win32 API on Microsoft Windows machines. However, this portability only 
extends to those platforms for which there is an implementation in the library. There exist platforms on which OpenCV 
can be used for which there are no available implementations of the HighGUI library (e.g., Android). 



 

 

the window that can be passed to other HighGUI functions.10 The flag argument indicates if the window 
should autosize itself to fit an image we put into it. Here is the full prototype: 

int cv::namedWindow( 
  const string&  name,                    // Handle used to identify window 
  int            flags = 0                // Used to tell window to autosize 
); 

For now, the only valid options available for flags are to set it to 0 (it’s the default value), which 
indicates that users are to be able (and required) to resize the window, or to set it to 
cv::WINDOW_AUTOSIZE.11 If cv::WINDOW_AUTOSIZE is set, then HighGUI resizes the window to 
fit automatically whenever a new image is loaded, but users cannot resize the window. 

Once we create a window, we usually want to put something inside it. But before we do that, let’s see how 
to get rid of the window when it is no longer needed. For this, we use cv::destroyWindow(), a 
function whose only argument is a string: the name given to the window when it was created.  

int cv::destroyWindow( 
  const string&  name,                    // Handle used to identify window 
); 

Drawing an Image with cv::imshow() 

Now we are ready for what we really want to do, and that is to load an image and to put it into the window 
where we can view it and appreciate its profundity. We do this via one simple function, cv::imshow(): 

void cv::imshow( 
  const string&  name,                    // Handle used to identify window 
  cv::InputArray image                    // Image to display in window 
); 

The first argument is the name of the window within which we intend to draw. The second argument is the 
image to be drawn. 

Updating a Window and cv::waitKey() 

The function cv::waitKey() has two functions. The first is the one from which it derives its name, 
which is to wait for some specified (possibly indefinite) amount of time for a key-press on the keyboard, 
and to return that key value when it is received. cv::waitKey() accepts a key-press from any open 
OpenCV window (but will not function if no such window exists). 

int cv::waitKey( 
  int delay = 0                           // Milliseconds until giving up (0=’never’) 
); 

cv::waitKey() takes a single argument delay, which is the amount of time (in milliseconds) which it 
will wait for a key-press before returning automatically. If the delay is set to 0, cv::waitKey() will 
wait indefinitely for a key-press. If no key-press comes before delay milliseconds has passed, 
cv::waitKey() will return –1. 

The second, less obvious function of cv::waitKey() is that it provides an opportunity for any open 
OpenCV window to be updated. This means that if you do not call cv::waitKey(), your image may 

                                                             
10 In OpenCV, windows are referenced by name instead of by some unfriendly (and invariably OS-dependent) 
“handle.” Conversion between handles and names happens under the hood of HighGUI, so you needn’t worry about it. 
11 Later in this chapter, we will look at the (optional) Qt-based backend for HighGUI. If you are using that backend, 
there are more options available for cv::namedWindow() as well as other functions. 



 

 

never be drawn in your window, or your window may behave strangely (and badly) when moved, resized, 
or uncovered.12  

An Example Displaying an Image 

Let’s now put together a simple program that will display an image on the screen. We can read a filename 
from the command line, create a window, and put our image in the window in 15 lines (including 
comments!). This program will display our image as long as we want to sit and appreciate it, and then exit 
when the ESC-key (ASCII value of 27) is pressed. 

Example 4-2. A simple example of creating a window and displaying an image in that window 

int main( int argc, char** argv ) { 
 
  // Create a named window with the name of the file 
  cv::namedWindow( argv[1], 1 ); 
 
  // Load the image from the given filename 
  cv::Mat = cv::imread( argv[1] ); 
 
  // Show the image in the named window 
  cv::imshow( argv[1], img ); 
 
  // Idle until the user hits the "Esc" key 
  while( true ) { 
    if( cv::waitKey( 100 ) == 27 ) break; 
  } 
 
  // Clean up and don't be piggies 
  cv::destroyWindow( argv[1] ); 
 
  exit(0); 
} 

For convenience, we have used the filename as the window name. This is nice because OpenCV 
automatically puts the window name at the top of the window, so we can tell which file we are viewing (see 
Figure 4-1). Easy as cake. 

                                                             
12 What this sentence really means is that cv::waitKey() is the only function in HighGUI that can fetch and handle 
events. This means that if it is not called periodically, no normal event processing will take place. As a corollary to this, 
if HighGUI is being used within an environment that takes care of event processing, then you may not need to call 
cv::waitKey(). 



 

 

 
Figure 4-1: A simple image displayed with cv::imshow() 

Before we move on, there are a few other window-related functions you ought to know about. They are: 
void cv::moveWindow( const char* name, int x, int y ); 
void cv::destroyAllWindows( void ); 
int  cv::startWindowThread( void ); 

cv::moveWindow() simply moves a window on the screen so that its upper-left corner is positioned at 
x,y. cv::destroyAllWindows() is a useful cleanup function that closes all of the windows and de-
allocates the associated memory. 

On Linux and MacOS, cv::startWindowThread() tries to start a thread that updates the window 
automatically and handles resizing and so forth. A return value of 0 indicates that no thread could be 
started—for example, because there is no support for this feature in the version of OpenCV that you are 
using. Note that, if you do not start a separate window thread, OpenCV can react to user interface actions 
only when it is explicitly given time to do so (this happens when your program invokes 
cv::waitKey()). 

Mouse Events 

Now that we can display an image to a user, we might also want to allow the user to interact with the image 
we have created. Since we are working in a window environment and since we already learned how to 
capture single keystrokes with cv::waitKey(), the next logical thing to consider is how to “listen to” 
and respond to mouse events. 

Unlike keyboard events, mouse events are handled by a more typical callback mechanism. This means that, 
to enable response to mouse clicks, we must first write a callback routine that OpenCV can call whenever a 
mouse event occurs. Once we have done that, we must register the callback with OpenCV, thereby 
informing OpenCV that this is the correct function to use whenever the user does something with the 
mouse over a particular window. 

Let’s start with the callback. For those of you who are a little rusty on your event-driven program lingo, the 
callback can be any function that takes the correct set of arguments and returns the correct type. Here, we 
must be able to tell the function to be used as a callback exactly what kind of event occurred and where it 
occurred. The function must also be told if the user was pressing such keys as Shift or Alt when the mouse 
event occurred. A pointer to such a function is called a cv::MouseCallback. Here is the exact 
prototype that your callback function must match: 

void your_mouse_callback( 
  int   event,                            // Event type (see Table 4-5) 
  int   x,                                // x-location of mouse event 
  int   y,                                // y-location of mouse event 
  int   flags,                            // More details on event (see Table 4-6) 



 

 

  void* param                             // Parameters from cv::setMouseCallback() 
); 

Now, whenever your function is called, OpenCV will fill in the arguments with their appropriate values. 
The first argument, called the event, will have one of the values shown in Table 4-5. 

Table 4-5: Mouse event types 

Event Numerical value 
 cv::EVENT_MOUSEMOVE  0 
 cv::EVENT_LBUTTONDOWN  1 
 cv::EVENT_RBUTTONDOWN  2 
 cv::EVENT_MBUTTONDOWN  3 
 cv::EVENT_LBUTTONUP  4 
 cv::EVENT_RBUTTONUP  5 
 cv::EVENT_MBUTTONUP  6 
 cv::EVENT_LBUTTONDBLCLK                  7 
 cv::EVENT_RBUTTONDBLCLK                  8 
 cv::EVENT_MBUTTONDBLCLK                  9 

 

The second and third arguments will be set to the x and y coordinates of the mouse event. It is worth noting 
that these coordinates represent the pixel coordinates in the image independent of the size of the window.13 

The fourth argument, called flags, is a bit field in which individual bits indicate special conditions 
present at the time of the event. For example, cv::EVENT_FLAG_SHIFTKEY has a numerical value of 
16 (i.e., the fifth bit, or 1<<4) and so, if we wanted to test whether the shift key were down, we could 
simply compute the bitwise AND of flags & cv::EVENT_FLAG_SHIFTKEY. Table 4-6 shows a 
complete list of the flags. 

Table 4-6: Mouse event flags 

Flag Numerical value 
 cv::EVENT_FLAG_LBUTTON                  1 
 cv::EVENT_FLAG_RBUTTON                  2 
 cv::EVENT_FLAG_MBUTTON                  4 
 cv::EVENT_FLAG_CTRLKEY                  8 
 cv::EVENT_FLAG_SHIFTKEY                  16 
 cv::EVENT_FLAG_ALTKEY  32 

The final argument is a void pointer that can be used to have OpenCV pass additional information in the 
form of a pointer to whatever kind of structure you need.14 

                                                             
13 In general, this is not the same as the pixel coordinates of the event that would be returned by the OS. This is because 
OpenCV is concerned with telling you where in the image the event happened, not in the window (to which the OS 
typically references mouse event coordinates). 
14 A common situation in which you will want to use the param argument is when the callback itself is a static member 
function of a class. In this case, you will probably find yourself wanting to pass the this pointer and so indicate which 
class object instance the callback is intended to affect. 



 

 

Next, we need the function that registers the callback. That function is called 
cv::setMouseCallback(), and it requires three arguments. 

void cv::setMouseCallback( 
  const string&     windowName,           // Handle used to identify window 
  cv::MouseCallback on_mouse,             // Callback function 
  void*             param     = NULL      // Additional parameters for callback fn. 
); 

The first argument is the name of the window to which the callback will be attached. Only events in that 
particular window will trigger this specific callback. The second argument is your callback function. 
Finally, the third param argument allows us to specify the param information that should be given to the 
callback whenever it is executed. This is, of course, the same param we were just discussing with the 
callback prototype. 

In Example 4-3, we write a small program to draw boxes on the screen with the mouse. The function 
my_mouse_callback() responds to mouse events, and it uses the event to determine what to do when 
it is called. 

Example 4-3. Toy program for using a mouse to draw boxes on the screen 

#include <opencv2/opencv.hpp> 
 
// Define our callback which we will install for 
// mouse events 
// 
void my_mouse_callback( 
   int event, int x, int y, int flags, void* param  
); 
  
Rect box; 
bool drawing_box = false; 
  
// A litte subroutine to draw a box onto an image 
// 
void draw_box( cv::Mat& img, cv::Rect box ) { 
  cv::rectangle( 
    img,  
    box.tl(), 
    box.br(), 
    cv::Scalar(0x00,0x00,0xff)    /* red */ 
  ); 
} 
  
void help() { 
  std::cout << "Call: ./ch4_ex4_1\n" << 
    " shows how to use a mouse to draw regions in an image." << std::endl; 
} 
 
int main( int argc, char** argv ) { 
 
  help(); 
  box = cv::Rect(-1,-1,0,0); 
  cv::Mat image(200, 200, CV::U8C3), temp; 
  image.copyTo(temp); 
   
  box   = cv::Rect(-1,-1,0,0); 
  image = cv::Scalar::all(0); 
   
  cv::namedWindow( "Box Example" ); 
  
  // Here is the crucial moment where we actually install 
  // the callback. Note that we set the value of ‘params’ to 



 

 

  // be the image we are working with so that the callback 
  // will have the image to edit. 
  // 
  cv::setMouseCallback(  
    "Box Example",  
    my_mouse_callback,  
    (void*)&image  
  ); 
  
  // The main program loop. Here we copy the working image 
  // to the temp image, and if the user is drawing, then 
  // put the currently contemplated box onto that temp image. 
  // Display the temp image, and wait 15ms for a keystroke, 
  // then repeat. 
  // 
  for(;;) { 
  
 image.copyTo(temp); 
    if( drawing_box ) draw_box( temp, box );  
    cv::imshow( "Box Example", temp ); 
  
    if( cv::waitKey( 15 ) == 27 ) break; 
  } 
  
  return 0; 
} 
  
// This is our mouse callback. If the user 
// presses the left button, we start a box. 
// when the user releases that button, then we 
// add the box to the current image. When the 
// mouse is dragged (with the button down) we  
// resize the box. 
// 
void my_mouse_callback( 
   int event, int x, int y, int flags, void* param  
) { 
  
  cv::Mat& image = *(cv::Mat*) param; 
 
  switch( event ) { 
    case cv::EVENT_MOUSEMOVE: { 
      if( drawing_box ) { 
        box.width  = x-box.x; 
        box.height = y-box.y; 
      } 
    } 
    break; 
    case cv::EVENT_LBUTTONDOWN: { 
      drawing_box = true; 
      box = cv::Rect( x, y, 0, 0 ); 
    } 
    break;    
    case cv::EVENT_LBUTTONUP: { 
      drawing_box = false;  
      if( box.width < 0  ) {  
        box.x += box.width;   
        box.width *= -1;  
      } 
      if( box.height < 0 ) {  
        box.y += box.height;  
        box.height *= -1;  
      } 



 

 

      draw_box( image, box ); 
    } 
    break;    
  } 
} 

Sliders, Trackbars, and Switches 

HighGUI provides a convenient slider element. In HighGUI, sliders are called trackbars. This is because 
their original (historical) intent was for selecting a particular frame in the playback of a video. Of course, 
once added to HighGUI, people began to use trackbars for all of the usual things one might do with a slider 
as well as many unusual ones (we’ll discuss some of these in the next section, “No Buttons”). 

As with the parent window, the slider is given a unique name (in the form of a character string) and is 
thereafter always referred to by that name. The HighGUI routine for creating a trackbar is: 

int cv::createTrackbar( 
  const string&        trackbarName,      // Handle used to identify trackbar, label 
  const string&        windowName,        // Handle used to identify window 
  int*                 value,             // Slider position gets put here 
  int                  count,             // Total counts for slider at far right 
  cv::TrackbarCallback onChange    = NULL,// Callback function (optional) 
  void*                param       = NULL // Additional parameters for callback fn. 
); 

The first two arguments are the name for the trackbar itself and the name of the parent window to which the 
trackbar will be attached. When the trackbar is created, it is added to either the top or the bottom of the 
parent window;15 it will not occlude any image that is already in the window, rather it will make the 
window slightly bigger. The name of the trackbar will appear as a “label” for the trackbar. As with the 
location of the trackbar itself, the exact location of this label depends on the operating system, but most 
often it is immediately to the left. 

 
Figure 4-2: A simple application displaying an image; this window has two trackbars attached named 

"Trackbar0" and "Trackbar1" 
                                                             
15 Whether it is added to the top or bottom depends on the operating system, but it will always appear in the same place 
on any given platform. 



 

 

The next two arguments are value, a pointer to an integer that will be set automatically to the value to 
which the slider has been moved, and count, a numerical value for the maximum value of the slider. 

The last argument is a pointer to a callback function that will be automatically called whenever the slider is 
moved. This is exactly analogous to the callback for mouse events. If used, the callback function must have 
the form specified by cv::TrackbarCallback, which means that it must match the following 
prototype: 

void your_trackbar_callback(  
  int   pos,                              // Trackbar slider position 
  void* param = NULL                      // Parameters from cv::setTrackbarCallback() 
); 

This callback is not actually required, so if you don’t want a callback, then you can simply set this value to 
NULL. Without a callback, the only effect of the user moving the slider will be the value of *value being 
updated when the slider is moved. (Of course, if you don’t have a callback, you will be responsible for 
polling this value if you are going to respond to it being changed.) 

The final argument to cv::createTrackbar() is params, which can be any pointer. This pointer 
will be passed to your callback as its params argument whenever the callback is executed. This is very 
helpful, among other things, for allowing you to handle trackbar events without having to introduce global 
variables. 

Finally, here are two more routines that will allow you to programmatically read or set the value of a 
trackbar just by using its name: 

int cv::getTrackbarPos( 
  const string& trackbarName,             // Handle used to identify trackbar, label 
  const string& windowName,               // Handle used to identify window 
); 
 
void cv::setTrackbarPos( 
  const string& trackbarName,             // Handle used to identify trackbar, label 
  const string& windowName,               // Handle used to identify window 
  int   pos                               // Trackbar slider position 
); 

These functions allow you to read or set the value of a trackbar from anywhere in your program. 

No Buttons 

Unfortunately, the native interface in HighGUI does not provide any explicit support for buttons. It is thus 
common practice, among the particularly lazy,16 to instead use sliders with only two positions. Another 
option that occurs often in the OpenCV samples in …/opencv/samples/c/ is to use keyboard shortcuts 
instead of buttons (see, e.g., the floodfill demo in the OpenCV source-code bundle). 

Switches are just sliders (trackbars) that have only two positions, “on” (1) and “off” (0) (i.e., count has 
been set to 1). You can see how this is an easy way to obtain the functionality of a button using only the 
available trackbar tools. Depending on exactly how you want the switch to behave, you can use the trackbar 
callback to automatically reset the button back to 0 (as in Example 4-4; this is something like the standard 
behavior of most GUI “buttons”) or to automatically set other switches to 0 (which gives the effect of a 
“radio button”). 

                                                             
16 For the less lazy, the common practice was to compose the image you are displaying with a “control panel” you have 
drawn and then use the mouse event callback to test for the mouse’s location when the event occurs. When the (x, y) 
location is within the area of a button you have drawn on your control panel, the callback is set to perform the button 
action. In this way, all “buttons” are internal to the mouse event callback routine associated with the parent window. 
Really however, if you need this kind of functionality now, it is probably just best to use the Qt backend. 



 

 

Example 4-4. Using a trackbar to create a “switch” that the user can turn on and off; this program plays a 
video, and uses the switch to create a pause functionality 

// An example program in which the user can draw boxes on the screen. 
// 
#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
// 
// Using a trackbar to create a "switch" that the user can turn on and off. 
// We make this value global so everyone can see it. 
// 
int g_switch_value = 1; 
void switch_off_function() { cout << "Pause\n"; }; //YOU COULD DO MORE WITH THESE FUNCTIONS 
void switch_on_function()  { cout << "Run\n"; };  
 
// This will be the callback that we give to the trackbar. 
// 
void switch_callback( int position, void* ) { 
  if( position == 0 ) { 
    switch_off_function(); 
  } else { 
    switch_on_function(); 
  } 
} 
 
void help() { 
 cout << "Call: my.avi" << endl; 
 cout << "Shows putting a pause button in a video." << endl; 
} 
 
int main( int argc, char** argv ) { 
 
  cv::Mat frame; // To hold movie images 
  cv::VideoCapture g_capture; 
  help(); 
  if( argc < 2 || !g_capture.open( argv[1] ) ){ 
    cout << "Failed to open " << argv[1] << " video file\n" << endl; 
    return -1; 
  } 
 
  // Name the main window 
  // 
  cv::namedWindow( "Example", 1 ); 
  
  // Create the trackbar. We give it a name, 
  // and tell it the name of the parent window. 
  // 
  cv::createTrackbar( 
    "Switch", 
    "Example", 
    &g_switch_value, 
    1, 
    switch_callback 
  ); 
  
  // This will just cause OpenCV to idle until  
  // someone hits the "Escape" key. 
  // 
  for(;;) { 
   if( g_switch_value ) { 



 

 

    g_capture >> frame; 
    if( frame.empty() ) break; 
    cv::imshow( "Example", frame); 
   } 
   if( cv::waitKey(10)==27 ) break; 
  } 
   
  return 0; 
} 

You can see that this will turn on and off just like a light switch. In our example, whenever the trackbar 
“switch” is set to 0, the callback executes the function switch_off_function(), and whenever it is 
switched on, the switch_on_function() is called. 

Working with the Qt Backend 
As we described earlier, the trend in the development of the HighGUI portion of OpenCV is to rely 
increasingly on a separate library for GUI functionality. This makes sense, as it is not OpenCV’s purpose to 
reinvent that particular wheel, and there are plenty of great GUI toolkits out there that are well maintained 
and which evolve and adapt to the changing times under their own development teams. 

From the perspective of the OpenCV library, there is a great advantage to using such an outside toolkit. 
Functionality is gained, and at the same time, development time is reduced (which would otherwise be 
taken away from the core goal of the library).  

However, an important clarification is that using HighGUI with the Qt backend is not the same as using Qt 
directly (we will explore this possibility briefly at the end of this chapter). The HighGUI interface is still 
the HighGUI interface; it simply uses Qt behind the scenes in place of the various native libraries. One side 
effect of this is that it is not that convenient to extend the Qt interface. If you want more than HighGUI 
gives you, you are still pretty stuck with writing your own window layer. On the bright side, the Qt 
interface gives you a lot more to work with, and so perhaps you will not find that extra level of complexity 
necessary as often. 

Getting Started 

If you have built your OpenCV installation with Qt support on,17 opening a window will automatically open 
a window with two new features. These are the Toolbar and the Status Bar (see Figure 4-3). These objects 
come up complete, with all of the contents you see in the figure. In particular, the Toolbar contains buttons 
which will allow you to pan (the first four arrow buttons), zoom (the next four buttons), save the current 
image (the ninth button), and a final button which can be used to pop up a properties window (more on this 
last one a little later). 

                                                             
17 This means that when you configured the build with cmake, you used the –D WITH_QT=ON option. 



 

 

 
Figure 4-3: This image is displayed with the Qt interface enabled; it shows the Toolbar, the Status Bar, and 

a text Overlay (in this case, containing the name of the image) 

The lower Status Bar in Figure 4-3 contains information about what is under your mouse at any given 
moment. The x-y location is displayed, as well as the RGB value of the pixel currently pointed at. 

All of this you get “for free” just for compiling your code with the Qt interface enabled. If you have 
compiled with Qt and you do not want these decorations, then you can simply add the cv::GUI_NORMAL 
flag when you call cv::namedWindow() and they will disappear.18 

The Actions Menu 

As you can see, when you create the window with cv::GUI_EXTENDED, you will see a range of buttons 
in the Toolbar. An alternative to the toolbar, which will always be available whether you use 
cv::GUI_EXTENDED or not, is the pop-up menu. This pop-up menu contains the same options as the 
toolbar and can be made to appear at any time by right-clicking on the image. 

                                                             
18 There is also a flag CV_GUI_EXTENDED, which (in theory) creates these decorations, but its numerical value is 
0x00, so it is the default behavior anyhow. 



 

 

 
Figure 4-4. Here the Qt extended UI window is shown with the pop-up menu, which provides the same 

options as the Toolbar (along with an explanation of the buttons and their keyboard shortcuts) 

The Text Overlay 

Another option provided by the Qt GUI is the ability to put a short-lived banner across the top of the image 
you are displaying. This banner is called the Overlay, and appears with a shaded box around it for easy 
reading. This is an exceptionally handy feature if you just want to throw some simple information like the 
frame number or frame rate on a video, or a filename of the image you are looking at. You can display an 
overlay on any window, even if you are using cv::GUI_NORMAL. 

int cv::displayOverlay( 
  const string& name,                     // Handle used to identify window 
  const string& text,                     // Text you want to display 
  int           delay                     // Milliseconds to show text (0=’forever’) 
); 

The function cv::displayOverlay() takes three arguments. The first is the name of the window you 
want the overlay to appear on. The second argument is whatever text you would like to appear in the 
window. One word of warning here, the text has a fixed size, so if you try to cram too much stuff in there, it 
will just overflow.19 By default, the text is always center justified. The third and final argument, delay, is 
the amount of time (in milliseconds) that the overlay will stay in place. If delay is set to 0, then the 
overlay will stay in place indefinitely (or at least until you write over it with another call to 
cv::displayOverlay()). In general, if you call cv::displayOverlay() before the delay timer 
for a previous call is expired, the previous text is removed and replaced with the new text, and the timer is 
reset to the new delay value regardless of what is left in the timer before the new call. 

Writing Your Own Text into the Status Bar 

In addition to the Overlay, you can also write text into the Status Bar. By default, the Status Bar contains 
information about the pixel over which your mouse pointer is located (if any). You can see in Figure 4-3 
                                                             
19 You can, however, insert new lines. So, for example, if you were to give the text string “Hello\nWorld”, then 
the word “Hello” would appear on the first (top) line, and the word “World” would appear on a second line right below 
“Hello.” 



 

 

that the status bar contains an x-y location and the RGB color value of the pixel that was under the pointer 
when the figure was made. You can replace this text with your own text with the 
cv::displayStatusBar() method: 

int cv::displayStatusBar( 
  const string& name,                     // Handle used to identify window 
  const string& text,                     // Text you want to display 
  int           delay                     // Milliseconds to show text (0=’forever’) 
); 

Unlike cv::displayOverlay(), cv::displayStatusBar() can only be used on windows that 
were created with the cv::GUI_EXTENDED flag (i.e., ones that have a Status Bar in the first place). 
When the delay timer is expired (if you didn’t set it to 0), then the default x-y and RGB text will re-
appear in the Status Bar. 

The Control Panel 

You may have noticed in the earlier figures that there is a last button on the Toolbar, corresponding to a last 
option (which is “darkened” in Figure 4-4) on the pop-up menu which we have not really discussed yet. 
This option opens up an entirely new window called the Control Panel. The control panel is a convenient 
place to put trackbars and buttons (the Qt GUI does support buttons) that you don’t want in your face all of 
the time. It is important to remember, however, that there is just one Control Panel per application, and you 
do not really create it, you just configure it. 

 
Figure 4-5: In this image, we have added two trackbars to the main window; we also show the Control 

Panel with three pushbuttons, a trackbar, two radio buttons, and a checkbox 

The Control Panel will not be available unless some trackbars or buttons have been assigned to it (more on 
how to do this momentarily). If it is available, then the Control Panel can be made to appear by pressing the 
“Display Properties Window” button on the Toolbar (the one on the far right), the identical button on the 
Action Menu, or pressing Ctrl+P while your mouse is over any window. 

Trackbars Revisited 

In the previous section on the HighGUI native interface, we saw that it was possible to add trackbars to 
windows. The trackbars in 4 were created using the same cv::createTrackbar() command we saw 



 

 

earlier. The only real difference between the trackbars in the figure, and the ones we created earlier, is that 
they are prettier (compare with the trackbars using the non-Qt interface in Figure 4-2). 

The important new concept in the Qt interface, however, is that we can also create trackbars in the Control 
Panel. This is done simply by creating the trackbar as you normally would, but by specifying an empty 
string as the window name to which the trackbar is to be attached.  

int contrast = 128; 
cv::createTrackbar( "Contrast:", "", &contrast, 255, on_change_contrast ); 

For example, this fragment would create a trackbar in the Control Panel that would be labeled “Contrast:”, 
and whose value would start out at 128, with a maximum value of 255. Whenever the slider is adjusted, 
the callback on_change_contrast() will be called. 

Creating Buttons with cv::createButton() 

One of the most helpful new capabilities provided by the Qt interface is the ability to create buttons. This 
includes normal push-buttons, radio style (mutually exclusive) buttons, and checkboxes. All buttons created 
are always located in the Control Panel. 

All three styles of buttons are created with the same method: 
int cv::createButton( 
  const string&      buttonName,          // Handle used to identify trackbar, label 
  cv::ButtonCallback onChange     = NULL, // Callback for button event 
  void*              params,              // (Optional) parameters for button event 
  int                buttonType   = cv::PUSH_BUTTON,  // PUSH_BUTTON or RADIOBOX 
  int                initialState = 0     // Start state of the button 
); 

The button expects a name buttonName that will appear on or next to the button. If you like, you can 
neglect this and simply provide an empty string, in which case the button name will be automatically 
generated in a serialized manner (e.g., “button 0,” “button 1,” etc.).  The second argument onChange is a 
callback that will be called whenever the button is pressed. The prototype for such a callback must match 
the declaration for cv::ButtonCallback, which is: 

void your_button_callback( 
  int   state,                            // Identifies button event type 
  void* params                            // Paramaters from cv::createButton() 
);  

When your callback is called as a result of someone pressing a button, it will be given the value state, 
which is derived from what just happened to the button. The pointer param that you gave to 
cv::createButton() will also be passed to your callback, filling its param argument.  

The buttonType argument can take one of three values: cv::PUSH_BUTTON, cv::RADIOBOX, or 
cv::CHECKBOX. The first corresponds to your standard button—you press it, it calls your callback. In the 
case of the checkbox, the value will be 1 or 0 depending on whether the box was checked or unchecked. 
The same is true for a radio button, except that when you click a radio button, the callback is called both for 
the button you just clicked, and for the button that is now unclicked (as a result of the mutex nature of radio 
buttons). All buttons in the same row (see button bars below) are assumed to be part of the same mutex 
group.  

When buttons are created, they are automatically organized into button bars. A button bar is a group of 
buttons that occupies a “row” in the Control Panel. Consider the following code, which generated the 
Control Panel you see in Figure 4-5. 

  cv::namedWindow( "Image", cv::GUI_EXPANDED ); 
  cv::displayOverlay( "Image", file_name, 0 ); 
  cv::createTrackbar( "Trackbar0", "Image", &mybar0, 255 ); 
  cv::createTrackbar( "Trackbar1", "Image", &mybar1, 255 ); 
 
  cv::createButton( "", NULL, NULL, cv::PUSH_BUTTON ); 
  cv::createButton( "", NULL, NULL, cv::PUSH_BUTTON ); 



 

 

  cv::createButton( "", NULL, NULL, cv::PUSH_BUTTON ); 
  cv::createTrackbar( "Trackbar2", "", &mybar1, 255 ); 
  cv::createButton( "Button3", NULL, NULL, cv::RADIOBOX, 1 ); 
  cv::createButton( "Button4", NULL, NULL, cv::RADIOBOX, 0 ); 
  cv::createButton( "Button5", NULL, NULL, cv::CHECKBOX, 0 ); 

You will notice that Trackbar0 and Trackbar1 are created in the window called “Image,” while Trackbar2 
is created in an unnamed window (the Control Panel). The first three cv::createButton() calls are 
not given a name for the button, and you can see in Figure 4-5 the automatically assigned names are placed 
onto the buttons. You will also notice in Figure 4-5 that the first three buttons are in one row, while the 
second group of three is on another. This is because of the trackbar. 

Buttons are created one after another, each to the right of its predecessor, until (unless) a trackbar is 
created. Because a trackbar consumes an entire row, it is given its own row below the buttons. If more 
buttons are created, they will appear on a new row thereafter.20 

Text and Fonts 

Just as the Qt interface allowed for much prettier trackbars and other elements, Qt also allows for much 
prettier and more versatile text. To write text using the Qt interface, you must first create a CvFont 
object,21 which you then use whenever you want to put some text on the screen. Fonts are created using the 
cv::fontQt() function: 

CvFont fontQt(                            // Return OpenCV font characerization struct 
  const string& fontName,                 // e.g., “Times” 
  int           pointSize,                // Size of font, using “point” system. 
  cv::Scalar    color    = cv::Scalar::all(0), // BGR color as a scalar (no alpha) 
  int           weight   = cv::FONT_NORMAL,    // Font weights, 1-100 or see Table 4-7 
  int           spacing  = 0              // Space between individual characters 
);    

The first argument to cv::fontQt() is the system font name. This might be something like “Times.”  If 
your system does not have an available font with this name, then a default font will be chosen for you. The 
second argument pointSize is the size of the font (i.e., 12=”12 point”, 14=”14 point”, etc.)  You may 
set this to 0, in which case a default font size (typically 12 point) will be selected for you. 

The argument color can be set to any cv::Scalar and will set the color in which the font is drawn; the 
default value is black. weight can take one of several pre-defined values, or any integer you like between 
1 and 100. The pre-defined aliases and their values are shown in Table 4-7. 

Table 4-7: Pre-defined aliases for Qt-font weight and their associated values 

Camera capture constan Numerical value 
 cv::FONT_LIGHT                25 
 cv::FONT_NORMAL 50 
 cv::FONT_DEMIBOLD 63 
 cv::FONT_BOLD 75 
 cv::FONT_BLACK 87 

The final argument is spacing, which controls the spacing between individual characters. It can be negative 
or positive. 

                                                             
20 Unfortunately, there is no “carriage return” for button placement. 
21 You will notice that the name of this object is CvFont rather than what you might expect: cv::Font. This is a 
legacy to the old pre-C++ interface. CvFont is a struct, and is not in the cv:: namespace. 



 

 

Once you have your font, you can put text on an image (and thus on the screen)22 with cv::addText(). 
void cv::addText( 
  cv::Mat&      image,                    // Image onto which to write 
  const string& text,                     // Text to write 
  cv::Point     location,                 // Location of lower-left corner of text 
  CvFont*       font                      // OpenCV font characerization struct 
); 

The arguments to cv::addText() are just what you would expect, the image to write on, the text to 
write, where to write it, and the font to use—with the latter being a font you defined using 
cv::fontQt. The location argument corresponds to the lower-left corner of the first character in text 
(or, more precisely, the beginning of the baseline for that character). 

Setting and Getting Window Properties 

Many of the state properties of a window set at creation are queryable, and many of those can be changed 
(set) even after the window’s creation. 

void   cv::setWindowProperty( 
  const string& name,                     // Handle used to identify window 
  int           prop_id,                  // Identifies window property (see Table 4-8) 
  double        prop_value                // Value to which to set property 
); 
 
double cv::getWindowProperty( 
  const string& name,                     // Handle used to identify window 
  int           prop_id                   // Identifies window property (see Table 4-8) 
); 

To get a window property, you need only call cv::getWindowProperty() and supply the name of 
the window and the property ID (prop_id argument) of the property you are interested in (see Table 4-8). 

Table 4-8: Gettable and settable window properties 

Property name Description 

cv::WIND_PROP_FULL_SIZE  Set to either cv::WINDOW_FULLSCREEN for full 
screen window, or to cv::WINDOW_NORMAL for 
regular window. 

cv::WIND_PROP_AUTOSIZE Set to either cv::WINDOW_AUTOSIZE to have the 
window automatically size to the displayed image, or 
cv::WINDOW_NORMAL to have the image size to 
the window. 

 
cv::WIND_PROP_ASPECTRATIO 

Set to either cv::WINDOW_FREERATIO to allow the 
window to have any aspect ratio (as a result of user 
resizing) or cv::WINDOW_KEEPRATIO to only allow 
user resizing to affect absolute size (and not aspect 
ratio). 

                                                             
22 It is important to notice here that cv::addText() is somewhat unlike all of the rest of the functions in the Qt 
interface (though not inconsistent with the behavior of its non-Qt analog cv::putText()). Specifically, 
cv::addText() does not put text in or on a window, but rather in an image. This means that you are actually 
changing the pixel values of the image—which is different than what would happen if, for example, you were to use 
cv::displayOverlay(). 



 

 

Saving and Recovering Window State 

The Qt interface also allows the state of windows to be saved and restored. This can be very convenient, as 
it includes not only the location and size of your windows, but also the state of all of the trackbars and 
buttons. The interface state is saved with the cv::saveWindowParameters() function, which takes a 
single argument indicating the window to be saved: 

void cv::saveWindowParameters( 
  const string& name                      // Handle used to identify window 
); 

Once the state of the window is saved, it can be restored with the complementary 
cv::loadWindowParameters() function: 

void cv::loadWindowParameters( 
  const string& name                      // Handle used to identify window 
); 

The real magic here is that the load command will work correctly even if you have quit and restarted your 
program. The nature of how this is done is not important to us here, but one detail you should know is that 
the state information, wherever it is saved, is saved under a key that is constructed from the executable 
name. So if you should change the name of the executable (though you can change its location), the state 
will not restore. 



 

 

Interacting with OpenGL 
On many contexts, it is very useful to be able to use OpenGL to render synthetic images and display them 
on top of camera of other processed images. The HighGUI and Qt GUI’s provide a convenient way to use 
OpenGL to perform that rendering right on top of the whatever image you are already showing.23 This can 
be extremely effective for visualizing and debugging robotic or augmented-reality applications, or 
anywhere in which you are trying to generate a three-dimensional model from your image and want to see 
the resulting model visualized on top of the original incoming image. 

 
Figure 4-6. Here OpenGL is used to render a cube on top of our previous image 

The basic concept is very simple; you create a callback that is an OpenGL draw function, and register it 
with the interface. From there, OpenCV takes care of the rest. The callback is then called every time the 
window is drawn (which includes whenever you call cv::imshow(), as you would with successive 
frames of a video stream). Your callback should match the prototype for cv::OpenGLCallback(), 
which means that it should be something like the following: 

void your_opengl_callback( 
  void* params             // (Optional) Parameters from cv::createOpenGLCallback() 
);  

Once you have your callback, you can configure the OpenGL interface with 
cv::setOpenGlDrawCallback(): 

void cv::setOpenGlDrawCallback( 
  const string&      windowName,          // Handle used to identify window 
  cv::OpenGLCallback callback,            // OpenGL callback routine 
  void*              params    = NULL     // (Optional) parameters for callback 
);  

As you can see, there is not much one needs to really set things up. In addition to specifying the name of 
the window on which the drawing will be done and supplying the callback function, you have a third 

                                                             
23 By way of reminder, in order to use these commands, you will need to have built OpenCV with the cmake flag –D 
WITH_OPENGL=ON. 



 

 

argument params, which allows you to specify a pointer that will be passed to callback whenever it is 
called.  

It is probably worth calling out here explicitly that none of this sets up the camera, 
lighting, or other aspects of your OpenGL activities. Internally there is a wrapper around 
your OpenGL callback that will set up the projection matrix using a call to 
gluPerspective(). If you want anything different (which you almost certainly will), 
you will have to clear and configure the projection matrix at the beginning of your 
callback.  

In Figure 4-6, we have taken a simple example code from the OpenCV documentation which draws a cube 
in OpenGL, but we have replaced the fixed rotation angles in that cube with variables (rotx and roty) 
which we have made the values of the two sliders in our earlier examples. Now the user can rotate the cube 
with the sliders while enjoying the beautiful scenery behind. 

Example 4-5: Slightly modified code from the OpenCV documentation that draws a cube every frame; this 
modified version uses the global variables rotx and roty that are connected to the sliders in Figure 4-6 

void on_opengl( void* param ) 
{ 
  glMatrixModel( GL_MODELVIEW ); 
  glLoadIdentity(); 
 
  glTranslated( 0.0, 0.0, -1.0 ); 
 
  glRotatef( rotx, 1, 0, 0 ); 
  glRotatef( roty, 0, 1, 0 ); 
  glRotatef( 0, 0, 0, 1 ); 
 
  static const int coords[6][4][3] = { 
    { { +1, -1, -1 }, { -1, -1, -1 }, { -1, +1, -1 }, { +1, +1, -1 } }, 
    { { +1, +1, -1 }, { -1, +1, -1 }, { -1, +1, +1 }, { +1, +1, +1 } }, 
    { { +1, -1, +1 }, { +1, -1, -1 }, { +1, +1, -1 }, { +1, +1, +1 } }, 
    { { -1, -1, -1 }, { -1, -1, +1 }, { -1, +1, +1 }, { -1, +1, -1 } }, 
    { { +1, -1, +1 }, { -1, -1, +1 }, { -1, -1, -1 }, { +1, -1, -1 } }, 
    { { -1, -1, +1 }, { +1, -1, +1 }, { +1, +1, +1 }, { -1, +1, +1 } } 
  }; 
 
  for (int i = 0; i < 6; ++i) { 
    glColor3ub( i*20, 100+i*10, i*42 ); 
    glBegin(GL_QUADS); 
    for (int j = 0; j < 4; ++j) { 
      glVertex3d(0.2 * coords[i][j][0], 0.2 * coords[i][j][1], 0.2 * coords[i][j][2]); 
    } 
    glEnd(); 
  } 
} 

As was mentioned above, whenever you call cv::imshow(), a call will be generated to your OpenGL 
callback. You can also induce a call directly to that callback by calling cv::updateWindow().24 

Integrating OpenCV with Full GUI Toolkits 
Even OpenCV’s built-in Qt interface is still just a handy way of accomplishing some simple tasks that 
come up often while developing code or exploring algorithms. When it comes time to actually build an end 
                                                             
24 You will really use cv::updateWindow() only when you are using OpenGL. The utility of 
cv::updateWindow() is precisely that it induces an OpenGL draw event (and thus calls your callback which you 
would have set up with cv::setOpenGLDrawCallback()). 



 

 

user facing application, neither the native UI nor the Qt-based interface are going to do it. In this section, 
we will (very) briefly explore some of the issues and techniques for working with OpenCV and two 
existing toolkits: wxWidgets and Qt.  

Clearly there are countless UI toolkits out there, and we would not want to waste time digging into each of 
them. Having said that, it is useful to explore how to handle the issues which will arise if you want to use 
OpenCV with a more fully featured toolkit. 

The primary issue is how to convert OpenCV images to the form that the toolkit expects for graphics, and 
to know which widget or component in the toolkit is going to do that display work for you. From there, you 
don’t need much else that is specific to OpenCV. Notably, you will not need or want the features of the UI 
toolkits we have covered in this chapter. 

An Example of OpenCV and Qt 

Here we will show an example of using the actual Qt toolkit to write a program that reads a video file and 
displays it on the screen. There are several subtleties, some of which have to do with how one uses Qt, and 
others to do with OpenCV. Of course, we will focus on the latter, but it is worth taking a moment to notice 
how the former affect our current goal. 

Below is the top-level code for our example; it just creates a Qt application and adds our QMoviePlayer 
widget. Everything interesting will happen inside that object. 

Example 4-6. An example program ch4_qt.cpp, which takes a single argument indicating a video file; that 
video file will be replayed inside of a Qt object which we will define, called QMoviePlayer 

#include <QApplication> 
#include <QLabel> 
#include <QMoviePlayer.hpp> 
int main( int argc, char* argv[] ) { 
 
  QApplication app( argc, argv ); 
 
  QMoviePlayer mp; 
  mp.open( argv[1] ); 
  mp.show(); 
 
  return app.exec(); 
} 

The interesting stuff is in the QMoviePlayer object. Let’s take a look at the header file which defines 
that object: 

4-6 cont. The QMoviePlayer object header file QMoviePlayer.hpp 
#include "ui_QMoviePlayer.h" 
#include <opencv2/opencv.hpp> 
#include <string> 
 
using namespace std; 
 
class QMoviePlayer : public QWidget { 
   
  Q_OBJECT; 
 
  public: 
  QMoviePlayer( QWidget *parent = NULL ); 
  virtual ~QMoviePlayer() {;} 
 
  bool open( string file ); 
 
  private: 
  Ui::QMoviePlayer  ui; 
  cv::VideoCapture m_cap; 



 

 

 
  QImage  m_qt_img; 
  cv::Mat m_cv_img; 
  QTimer* m_timer; 
 
  void paintEvent( QPaintEvent* q ); 
  void _copyImage( void ); 
 
  public slots: 
  void nextFrame(); 
 
}; 

There is a lot going on here. The first thing that happens is the inclusion of the file ui_QMoviePlayer.h. 
This file was automatically generated by the Qt Designer. What matters here is that it is just a QWidget 
that contains nothing but a QFrame called frame. The member ui::QMoviePlayer is that interface 
object which is defined in ui_QMoviePlayer.h.  

In this file, there is also a QImage called m_qt_img and a cv::Mat called m_cv_img. These will 
contain the Qt and OpenCV representations of the image we are getting from our video. Finally, there is a 
QTimer, which is what will take the place of cv::waitKey(), allowing us to replay the video frames at 
the correct rate. The remaining functions will become clear as we look at their actual definitions in 
QMoviePlayer.cpp. 

4-6 cont. The QMoviePlayer object source file: QMoviePlayer.cpp 
#include "QMoviePlayer.hpp" 
#include <QTimer> 
#include <QPainter> 
 
QMoviePlayer::QMoviePlayer( QWidget *parent )  
 : QWidget( parent ) 
{ 
  ui.setupUi( this ); 
} 

The top-level constructor for QMoviePlayer just calls the setup function, which was automatically built 
for us for the UI member. 

4-6 cont. Open. 
bool QMoviePlayer::open( string file ) { 
 
  if( !m_cap.open( file ) ) return false; 
 
  // If we opened the file, set up everything now: 
  // 
  m_cap.read( m_cv_img ); 
  m_qt_img = QImage(  
    QSize( m_cv_img.cols, m_cv_img.rows ),  
    QImage::Format_RGB888  
  ); 
  ui.frame->setMinimumSize( m_qt_img.width(), m_qt_img.height() ); 
  ui.frame->setMaximumSize( m_qt_img.width(), m_qt_img.height() ); 
  _copyImage(); 
 
  m_timer = new QTimer( this ); 
  connect( 
    m_timer, 
    SIGNAL( timeout() ), 
    this, 
    SLOT( nextFrame() ) 
  ); 
  m_timer->start( 1000. / m_cap.get( cv::CAP_PROP_FPS ) ); 



 

 

 
  return true; 
 
} 

When an open() call is made on the QMoviePlayer, several things have to happen. The first is that the 
cv::VideoCapture member object m_cap needs to be opened. If that fails, we just return. Next we 
read the first frame into our OpenCV image member m_cv_img. Once we have this, we can set up the Qt 
image object m_qt_img, giving it the same size as the OpenCV image. Next we resize the frame object in 
the UI element to be the same size as the incoming images as well. 

We will look at the call to QMoviePlayer::_copyImage() in a moment; this is going to handle the 
very important process of converting the image we have already captured into m_cv_img onto the Qt 
image m_qt_img, which we are actually going to have Qt paint onto the screen for us. 

The last thing we do in QMoviePlayer::open() is to set up a QTimer which, when it “goes off,” will 
call the function QMoviePlayer::nextFrame() (which will, not surprisingly, get the next frame). 
The call to m_timer->start() is how we both start the timer running, and indicate that it should go off 
at the correct rate implied by cv::CAP_PROP_FPS (i.e., 1,000 milliseconds divided by the frame rate). 

4-6 cont. cv::Mat to QImage. 
void QMoviePlayer::_copyImage( void ) { 
 
  // Copy the image data into the Qt QImage 
  // 
  cv::Mat cv_header_to_qt_image( 
    cv::Size(  
      m_qt_img.width(), 
      m_qt_img.height() 
    ), 
    cv::U8C3, 
    m_qt_img.bits() 
  ); 
  cv::cvtColor( m_cv_img, cv_header_to_qt_image, cv::BGR2RGB ); 
} 

The function QMoviePlayer::_copyImage() is responsible for copying the image from the buffer 
m_cv_img into the Qt image buffer m_qt_img. The way we do this shows off a nice feature of the 
cv::Mat object. We first define a cv::Mat object called cv_hreader_to_qt_image. When we 
define that object, we actually tell it what area to use for its data area, and hand it the data area for the Qt 
QImage object m_qt_img.bits(). We then call cv::cvtColor to do the copying, which handles 
the subtlety that OpenCV prefers BGR ordering, while Qt prefers RGB. 

4-6 cont. nextFrame. 
void QMoviePlayer::nextFrame() { 
   
  // Nothing to do if capture object is not open 
  // 
  if( !m_cap.isOpened() ) return; 
 
  m_cap.read( m_cv_img ); 
  _copyImage(); 
 
  this->update(); 
} 

The QMoviePlayer::nextFrame() function actually handles the reading of subsequent frames. 
Recall that this routine is called whenever the QTimer expires. It reads the new image into the OpenCV 
buffer, calls QMoviePlayer::_copyImage() to copy it into the Qt buffer, and then makes an update 
call on the QWidget that this is all part of (so that Qt knows that something has changed). 



 

 

4-6 cont. paintEvent. 
void QMoviePlayer::paintEvent( QPaintEvent* e ) { 
   
  QPainter painter( this ); 
  painter.drawImage( QPoint( ui.frame->x(), ui.frame->y()), m_qt_img ); 
 
} 

Last, but not least, is the function QMoviePlayer::paintEvent(). This is the function that is called 
by Qt whenever it is necessary to actually draw the QMoviePlayer widget. This function just creates a 
QPainter and tells it to draw the current Qt image m_qt_img (starting at the corner of the screen). 

An Example of OpenCV and wxWidgets 

In this example, we will use a different cross-platform toolkit, wxWidgets. The wxWidgets toolkit is 
similar in many ways to Qt in terms of its GUI components, but of course, it is in the details that things 
tend to become difficult. As with the Qt example, we will have one top-level file that basically puts 
everything in place and a code and header file pair that define an object which encapsulates our example 
task of playing a video. This time our object will be called WxMoviePlayer, and we will build it based 
on the UI classes provided by wxWidgets. 

 Example 4-7: An example program ch4_wx.cpp, which takes a single argument indicating a video file; 
that video file will be replayed inside of a wxWidgets object which we will define called WxMoviePlayer 

#include "wx/wx.h" 
#include "WxMoviePlayer.hpp" 
 
// Application class, the top level object in wxWidgets 
// 
class MyApp : public wxApp { 
  public:  
    virtual bool OnInit(); 
}; 
 
// Behind the scenes stuff to create a main() function and attach MyApp 
// 
DECLARE_APP( MyApp ); 
IMPLEMENT_APP( MyApp ); 
 
// When MyApp is initialized, do these things. 
// 
bool MyApp::OnInit() { 
 
  wxFrame* frame = new wxFrame( NULL, wxID_ANY, wxT("ch4_wx") ); 
  frame->Show( true ); 
  WxMoviePlayer* mp = new WxMoviePlayer( 
    frame, 
    wxPoint( -1, -1 ), 
    wxSize( 640, 480 ) 
  ); 
  mp->open( wxString(argv[1]) ); 
  mp->Show( true ); 
 
  return true; 
 
} 

The structure here is a little more complicated in appearance than with the Qt example, but the content is 
very similar. The first thing we do is create a class definition for our application, which we derive from the 
library class wxApp. The only thing different about our class is that it will overload the 
MyApp::OnInit() function with our own content. After declaring class MyApp,  we call two 
macros DECLARE_APP() and IMPLEMENT_APP(). In short, these are creating the main() function, 



 

 

and installing an instance of MyApp as “the application.”  The last thing we do in our main program is to 
actually fill out the function MyApp::OnInit(). This is going to get called when our program starts: 
this functions largely as the equivalant to main() from our point of view. This function creates the 
window (called a “frame” in wxWidgets), and an instance of our WxMoviePlayer object in that frame. It 
then calls the open method on the WxMoviePlayer and hands it the name of the movie file we want to 
open. 

Of course, all of the interesting stuff is happening inside of the WxMoviePlayer object. Here is the header 
file for that object: 

The WxMoviePlayer object header file WxMoviePlayer.hpp 
#include "opencv2/opencv.hpp" 
 
#include "wx/wx.h" 
#include <string> 
 
#define TIMER_ID 0 
 
using namespace std; 
 
class WxMoviePlayer : public wxWindow { 
 
  public: 
    WxMoviePlayer( 
      wxWindow*      parent,  
      const wxPoint& pos, 
      const wxSize&  size 
    ); 
    virtual ~WxMoviePlayer() {}; 
    bool open( wxString file ); 
 
  private:  
 
    cv::VideoCapture m_cap; 
    cv::Mat          m_cv_img; 
    wxImage          m_wx_img; 
    wxBitmap         m_wx_bmp; 
    wxTimer*         m_timer; 
    wxWindow*        m_parent; 
 
    void _copyImage( void ); 
 
    void OnPaint( wxPaintEvent& e ); 
    void OnTimer( wxTimerEvent& e ); 
    void OnKey(   wxKeyEvent&   e ); 
 
  protected: 
    DECLARE_EVENT_TABLE(); 
}; 

The important things to notice in the above declaration are the following. The WxMoviePlayer object is 
derived from wxWindow, which is the generic class used by wxWidgets for just about anything that will be 
visible on the screen. We have three event-handling methods OnPaint(), onTimer(), and OnKey(). 
These will handle drawing, getting a new image from the video, and closing the file with the ESC key, 
respectively. Finally, you will notice that there is an object of type wxImage and an object of type 
wxBitmap, in addition to the OpenCV cv:Mat type image. In wxWidgets, bitmaps (which are operating 
system dependant) are distinguished from “images” (which are device independent representations of 
image data). The exact role of these two will be clear shortly as we look at the code file 
WxMoviePlayer.cpp. 

The WxMoviePlayer object source file WxMoviePlayer.cpp 



 

 

#include "WxMoviePlayer.hpp" 
 
BEGIN_EVENT_TABLE( WxMoviePlayer, wxWindow ) 
  EVT_PAINT( WxMoviePlayer::OnPaint ) 
  EVT_TIMER( TIMER_ID, WxMoviePlayer::OnTimer ) 
  EVT_CHAR( WxMoviePlayer::OnKey ) 
END_EVENT_TABLE() 

The first thing we do is to set up the callbacks that will be associated with individual events. This is done 
by macros provided by the wxWidgets framework.25 

WxMoviePlayer::WxMoviePlayer( 
  wxWindow*      parent, 
  const wxPoint& pos, 
  const wxSize&  size 
) : wxWindow( parent, -1, pos, size, wxSIMPLE_BORDER ) { 
  m_timer         = NULL; 
  m_parent        = parent; 
} 

When the movie player is created, its timer element is NULL (we will set that up when we actually have a 
video open). We do take note of the parent of the player, however. (In this case, that parent will be the 
wxFrame we created to put it in.) We will need to know who the parent frame is when it comes time to 
closing the application in response to the ESC key. 

void WxMoviePlayer::OnPaint( wxPaintEvent& event ) { 
  wxPaintDC dc( this ); 
 
  if( !dc.Ok() ) return; 
 
  int x,y,w,h; 
  dc.BeginDrawing(); 
    dc.GetClippingBox( &x, &y, &w, &h ); 
    dc.DrawBitmap( m_wx_bmp, x, y ); 
  dc.EndDrawing(); 
 
  return; 
} 

The WxMoviePlayer::OnPaint() routine is called whenever the window needs to be repainted on 
screen. You will notice that when we execute WxMoviePlayer::OnPaint(), the information we need 
to actually do the painting is assumed to be in m_wx_bpm, the wxBitmap object. Because the wxBitmap 
is the system dependant representation, it is already prepared to be copied to the screen. The next two 
methods, WxMoviePlayer::_copyImage()and WxMoviePlayer::open() will show how it 
got created in the first place. 

void WxMoviePlayer::_copyImage( void ) { 
  m_wx_bmp = wxBitmap( m_wx_img ); 
 
  Refresh( FALSE ); // indicate that the object is dirty 
  Update(); 
} 
  

                                                             
25 The astute reader will notice that the keyboard event is “hooked up” to the WxMoviePlayer widget and not to the 
top-level application or the frame (as was the case for the Qt example, and is the case for HighGUI). There are various 
ways to accomplish this, but wxWidgets really prefers your keyboard events to be bound locally to visible objects in 
your UI, rather than globally. Since this is a simple example, we chose to just do the easiest thing and bind the 
keyboard events directly to the movie player. 



 

 

The WxMoviePlayer::_copyImage() method is what is going to get called whenever a new image 
is read from the cv::VideoCapture object. It does not appear to do much, but actually a lot is going on 
in its short body. First and foremost is the construction of the wxBitmap m_wx_bmp from the wxImage 
m_wx_img. The constructor is handling the conversion from the abstract representation used by wxImage 
(which, we will see, looks very much like the representation used by OpenCV) to the device and system 
specific representation used by your particular machine. Once that copy is done, a call to Refresh() 
indicates that the widget is “dirty” and needs redrawing, and the subsequent call to Update() actually 
indicates that the time for that redrawing is now. 

bool WxMoviePlayer::open( wxString file ) { 
  if( !m_cap.open( std::string( file.mb_str() ) )) { 
    return false; 
  } 
 
  // If we opened the file, set up everything now: 
  // 
  m_cap.read( m_cv_img ); 
 
  m_wx_img = wxImage(  
    m_cv_img.cols, 
    m_cv_img.rows, 
    m_cv_img.data, 
    TRUE  // static data, do not free on delete() 
  ); 
 
  _copyImage(); 
 
  m_timer = new wxTimer( this, TIMER_ID ); 
  m_timer->Start( 1000. / m_cap.get( cv::CAP_PROP_FPS ) ); 
 
  return true; 
} 

The WxMoviePlayer::open() method also does several important things. The first is to actually open 
the cv::VideoCapture object, but there is a lot more to be done. Next, an image is read off of the 
player, and it is used to create a wxImage object which “points at” the OpenCV cv::Mat image. This is 
the opposite philosophy to the one we used in the Qt example: in this case, it turns out to be a little more 
convenient to create the cv::Mat first and have it own the data, and the GUI toolkit’s image object 
second and have it be just a header to that existing data. Next, we call 
WxMoviePlayer::_copyImage(), and that function converts the OpenCV image m_cv_img into 
the native bitmap for us. 

Finally, we create a wxTimer object and tell it to wake us up every few milliseconds—with that number 
being computed from the FPS reported by the cv::VideoCapture object. Whenever that timer expires, 
a wxTimerEvent is generated and passed to WxMoviePlayer::OnTimer(), which you will recall 
to be the handler of such events. 

void WxMoviePlayer::OnTimer( wxTimerEvent& event ) {  
  if( !m_cap.isOpened() ) return; 
  m_cap.read( m_cv_img ); 
  cv::cvtColor( m_cv_img, m_cv_img, cv::BGR2RGB ); 
  _copyImage(); 
} 

That handler does not do too much; primarily it just iterates the reading of a new frame from the video and 
the conversion of that frame from BGR to RGB for display, and then calls our 
WxMoviePlayer::_copyImage(), which makes the next bitmap for us. 

void WxMoviePlayer::OnKey( wxKeyEvent& e ) { 
  if( e.GetKeyCode() == WXK_ESCAPE ) m_parent->Close(); 
} 



 

 

Finally, we have our handler for any key-presses. It simply checks to see if that key was the Escape key, 
and if so, closes the program. It is worth noting that we do not close the WxMoviePlayer object, but rather 
the parent frame. Closing the frame is the same as closing the window any other way; it shuts down the 
application. 

An Example of OpenCV and the Windows Template Library 

In this example, we will use the native windows GUI API.26 The Windows Template Library, WTL, is a 
very thin C++ wrapper around the raw Win32 API. WTL applications are structured similarly to MFC, in 
that there is an application/document-view structure. For the purposes of this sample, we will start by 
running the WTL Application Wizard from within Visual Studio, and creating a new “SDI Application” 
and under “User Interface Features” ensuring “Use a View Window” is selected (it should be, by default). 

 
Figure 4-7: The WTL Application Wizard 

The exact file names generated will depend on the name you give your project. For this example, the 
project is named OpenCVTest, and we will mostly be working in the COpenCVTestView class. 

Example 4-8: An example header file for our custom View class 

class COpenCVTestView : public CWindowImpl<COpenCVTestView> { 
 
public: 
  DECLARE_WND_CLASS(NULL) 
 
  bool OpenFile(std::string file); 
  void _copyImage(); 
 
 
  BOOL PreTranslateMessage(MSG* pMsg); 
 
  BEGIN_MSG_MAP(COpenCVTestView) 
    MESSAGE_HANDLER(WM_ERASEBKGND, OnEraseBkgnd) 
    MESSAGE_HANDLER(WM_PAINT, OnPaint) 

                                                             
26 Special thanks to Sam Leventer, who is the original author of this WTL example code. 



 

 

    MESSAGE_HANDLER(WM_TIMER, OnTimer) 
  END_MSG_MAP() 
 
// Handler prototypes (uncomment arguments if needed): 
// LRESULT MessageHandler( 
//    UINT    /*uMsg*/,  
//    WPARAM  /*wParam*/,  
//    LPARAM  /*lParam*/,  
//    BOOL&   /*bHandled*/ 
//  ); 
// LRESULT CommandHandler( 
//    WORD    /*wNotifyCode*/,  
//    WORD    /*wID*/,  
//    HWND    /*hWndCtl*/,  
//    BOOL&   /*bHandled*/ 
//  ); 
// LRESULT NotifyHandler( 
//    int     /*idCtrl*/,  
//    LPNMHDR /*pnmh*/,  
//    BOOL&   /*bHandled*/ 
//  ); 
 
  LRESULT OnPaint( 
    UINT    /*uMsg*/,  
    WPARAM  /*wParam*/,  
    LPARAM  /*lParam*/,  
    BOOL&   /*bHandled*/ 
  ); 
  LRESULT OnTimer( 
    UINT    /*uMsg*/,  
    WPARAM  /*wParam*/,  
    LPARAM  /*lParam*/,  
    BOOL&   /*bHandled*/ 
  ); 
  LRESULT OnEraseBkgnd( 
    UINT    /*uMsg*/,  
    WPARAM  /*wParam*/,  
    LPARAM  /*lParam*/,  
    BOOL&   /*bHandled*/ 
  ); 
 
private: 
  cv::VideoCapture m_cap; 
  cv::Mat          m_cv_img; 
 
  RGBTRIPLE*       m_bitmapBits; 
}; 

The structure here is very similar to the preceding wx example. The only change outside of the view code is 
for the Open menu item handler, which will be in your CMainFrame class. It will need to call into the 
view class to open the video: 

 
LRESULT CMainFrame::OnFileOpen( 
  WORD /*wNotifyCode*/,  
  WORD /*wID*/,  
  HWND /*hWndCtl*/,  
  BOOL& /*bHandled*/ 
) { 
    WTL::CFileDialog dlg(TRUE); 
  if (IDOK == dlg.DoModal(m_hWnd)) { 
    m_view.OpenFile(dlg.m_szFileName); 
  } 



 

 

  return 0; 
} 
 
bool COpenCVTestView::OpenFile(std::string file) { 
 
  if( !m_cap.open( file ) ) return false; 
 
  // If we opened the file, set up everything now: 
  // 
  m_cap.read( m_cv_img ); 
 
  // could create a DIBSection here, but lets just allocate memory for the raw bits 
  m_bitmapBits = new RGBTRIPLE[m_cv_img.cols * m_cv_img.rows]; 
 
  _copyImage(); 
 
  SetTimer(0, 1000.0f / m_cap.get( cv::CAP_PROP_FPS ) ); 
 
  return true; 
} 
 
 
void COpenCVTestView::_copyImage() { 
 
  // Copy the image data into the bitmap 
  // 
  cv::Mat cv_header_to_qt_image( 
    cv::Size( 
      m_cv_img.cols, 
      m_cv_img.rows 
    ), 
    CV::U8C3, 
    m_bitmapBits 
  ); 
  cv::cvtColor( m_cv_img, cv_header_to_qt_image, cv::BGR2RGB ); 
} 
 
LRESULT COpenCVTestView::OnPaint( 
  UINT   /*uMsg*/,  
  WPARAM /*wParam*/,  
  LPARAM /*lParam*/,  
  BOOL&  /*bHandled*/ 
) { 
  CPaintDC dc(m_hWnd); 
 
  WTL::CRect rect; 
  GetClientRect(&rect); 
 
  if( m_cap.isOpened() ) { 
    BITMAPINFO bmi = {0}; 
    bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader); 
    bmi.bmiHeader.biCompression = BI_RGB; 
    bmi.bmiHeader.biWidth = m_cv_img.cols;  
    // note that bitmaps default to bottom-up, use negative height to  
    // represent top-down 
    bmi.bmiHeader.biHeight = m_cv_img.rows * -1;     
 
    bmi.bmiHeader.biPlanes = 1; 
    bmi.bmiHeader.biBitCount = 24;  // 32 if you use RGBQUADs for the bits 
 
    dc.StretchDIBits( 
      0,                     0,  
      rect.Width(),          rect.Height(),  



 

 

      0,                     0,  
      bmi.bmiHeader.biWidth, abs(bmi.bmiHeader.biHeight),  
      m_bitmapBits,  
      &bmi,  
      DIB_RGB_COLORS,  
      SRCCOPY 
    ); 
  } else { 
    dc.FillRect(rect, COLOR_WINDOW); 
  } 
 
  return 0; 
} 
 
LRESULT COpenCVTestView::OnTimer( 
  UINT   /*uMsg*/,  
  WPARAM /*wParam*/,  
  LPARAM /*lParam*/,  
  BOOL&  /*bHandled*/ 
) { 
  // Nothing to do if capture object is not open 
  // 
  if( !m_cap.isOpened() ) return 0; 
 
  m_cap.read( m_cv_img ); 
  _copyImage(); 
 
  Invalidate(); 
 
  return 0; 
} 
 
LRESULT COpenCVTestView::OnEraseBkgnd( 
  UINT   /*uMsg*/,  
  WPARAM /*wParam*/,  
  LPARAM /*lParam*/,  
  BOOL&  /*bHandled*/ 
) { 
  // since we completely paint our window in the OnPaint handler, use  
  // an empty background handler 
  return 0; 
} 

This code illustrates how to use bitmap-based drawing in a C++ application under Windows. This method 
is simpler, but less efficient than using DirectShow to handle the video stream. 

If you are using the .NET Runtime (either through C#, VB.NET or Managed C++), then 
you may want to look into a package that completely wraps OpenCV, such as Emgu 
(http://emgu.com).  

Drawing Things 
We often want to draw some kind of picture, or to draw something on top of an image obtained from 
somewhere else. Toward this end, OpenCV provides a menagerie of functions that will allow us to make 
lines, squares, circles, and the like. 

The drawing functions available will work with images of any depth, but most of them only affect the first 
three channels—defaulting to only the first channel in the case of single-channel images. Most of the 
drawing functions support a color, a thickness, what is called a “line type” (which really means whether or 
not to anti-alias lines), and subpixel alignment of objects. 



 

 

When specifying colors, the convention is to use the cv::Scalar object, even though only the first three 
values are used most of the time. (It is sometimes convenient to be able to use the fourth value in a 
cv::Scalar to represent an alpha-channel, but the drawing functions do not currently support alpha 
blending.)  Also, by convention, OpenCV uses BGR ordering27 for converting multichannel images to color 
renderings (this is what is used by the draw functions imshow(), which actually paints images onto your 
screen for viewing). Of course, you don’t have to use this convention, and it might not be ideal if you are 
using data from some other library with OpenCV headers on top of it. In any case, the core functions of the 
library are always agnostic to any “meaning” you might assign to a channel. 

Line Art and Filled Polygons 
Functions that draw lines of one kind or another (segments, circles, rectangles, etc.) will usually accept a 
thickness and lineType parameter. Both are integers, but the only accepted values for the latter are 
4, 8, or cv::AA. thickness will be the thickness of the line measured in pixels. For circles, rectangles, 
and all of the other closed shapes, the thickness argument can also be set to cv::FILL (which is an 
alias for −1). In that case, the result is that the drawn figure will be filled in the same color as the edges. 
The lineType argument indicates whether the lines should be “4-connected,” “8-connected,” or anti-
aliased. For the first two, the Bresenham algorithm is used, while for the anti-aliased lines, Gaussian 
filtering is used. Wide lines are always drawn with rounded ends.  

 
Figure 4-8: The same line as it would be rendered using the 4-connected (a), 8-connected (b), and anti-

aliased (c) line types 

For the drawing algorithms, endpoints (lines), center-points (circles), corners (rectangles), and so on are 
typically specified as integers. However, these algorithms support subpixel alignment, through the shift 
argument. Where shift is available, it is interpreted as the number of bits in the integer arguments to treat 
as fractional bits. For example, if you say you want a circle centered at (5, 5), but set shift to 1, then the 
circle will be drawn at (2.5, 2.5). The effect of this will typically be quite subtle, and depend on the line 
type used. The effect is most noticeable for anti-aliased lines. 

Table 4-9:Drawing Functions 

Function Description 

cv::circle() Draw a simple circle 

                                                             
27 There is a slightly confusing point here, which is mostly due to legacy in origin. That is that the macro 
CV_RGB(r,g,b) produces a cv::Scalar s with value s.val[] = { b, g, r, 0 }. This is as it should 
be, as general OpenCV functions only know what is red, green, or blue by the order, and the ordering convention for 
image data is BGR as stated in the text. 



 

 

cv::clipLine() Determine if a line is inside a given box 

cv::ellipse() Draw an ellipse, which may be tilted or an elliptical arc 

cv::ellipse2Poly()  Compute a polygon approximation to an elliptical arc 

cv::fillConvexPoly()                Fast algorithm for drawing filled versions of simple polygons 

cv::fillPoly() General algorithm for drawing filled versions of arbitrary polygons 

cv::line() Draw a simple line 

cv::rectangle()                Draw a simple rectangle 

cv::polyLines() Draw multiple polygonal curves 

cv::circle() 
void circle(  
  cv::Mat&          img,                  // Image to be drawn on 
  cv::Point         center,               // Location of circle center 
  int               radius,               // Radius of circle 
  const cv::Scalar& color,                // Color, RGB form 
  int               thickness = 1,        // Thickness of line  
  int               lineType  = 8,        // Connectedness, 4 or 8 
  int               shift     = 0         // Bits of radius to treat as fraction 
); 

The first argument to cv::circle() is just your image img. Next, are the center, a two-dimensional 
point, and the radius. The remaining arguments are the standard color, thickness, lineType, and 
shift. The shift is applied to both the radius and the center location. 

cv::clipLine() 
bool clipLine(                            // True if any part of line in ‘imgRect’ 
  cv::Rect          imgRect,              // Rectangle to clip to 
  cv::Point&        pt1,                  // First end-point of line, overwritten 
  cv::Point&        pt2                   // Second end-point of line, overwritten 
);  
 
bool clipLine(                            // True if any part of line in image size 
  cv::Size          imgSize,              // Size of image, implies rectangle at 0,0 
  cv::Point&        pt1,                  // First end-point of line, overwritten 
  cv::Point&        pt2                   // Second end-point of line, overwritten 
); 

This function is used to determine if a line, specified by the two points pt1 and pt2 lies inside of a 
rectangular boundary. In the first version, a cv::Rect is supplied and the line is compared to that 
rectangle. cv::clipLine() will return False only if the line is entirely outside of the specified 
rectangular region. The second version is the same, except that it takes a cv::Size argument. Calling this 
second version is equivalent to calling the first version with a rectangle whose (𝑥, 𝑦) location is (0, 0). 

cv::ellipse() 
bool ellipse( 
  cv::Mat&               img,             // Image to be drawn on 
  cv::Point              center,          // Location of ellipse center 
  cv::Size               axes,            // Length of major and minor axes 
  double                 angle,           // Tilt angle of major axis 
  double                 startAngle,      // Start angle for arc drawing 
  double                 endAngle,        // End angle for arc drawing 



 

 

  const cv::Scalar&      color,           // Color, BGR form 
  int                    thickness = 1,   // Thickness of line  
  int                    lineType  = 8,   // Connectedness, 4 or 8 
  int                    shift     = 0    // Bits of radius to treat as fraction 
); 
 
bool ellipse( 
  cv::Mat&               img,             // Image to be drawn on 
  const cv::RotatedRect& rect,            // Rotated rectangle bounds ellipse  
  const cv::Scalar&      color,           // Color, BGR form 
  int                    thickness = 1,   // Thickness of line  
  int                    lineType  = 8,   // Connectedness, 4 or 8 
  int                    shift     = 0    // Bits of radius to treat as fraction 
); 

The cv::ellipse() function is very similar to the cv::circle() function, with the primary 
difference being the axes argument, which is of type cv::Size. In this case, the height and width 
arguments represent the length of the ellipse’s major and minor axes. The angle is the angle (in degrees) 
of the major axis, which is measured counterclockwise from horizontal (i.e., from the x-axis). Similarly, the 
startAngle and endAngle indicate (also in degrees) the angle for the arc to start and for it to finish. 
Thus, for a complete ellipse, you must set these values to 0 and 360, respectively. 

 

 
Figure 4-8: An elliptical arc specified by the major and minor axes with tilt angle (left); a similar ellipse 

specified using a cv::RotatedRect (right). 

The alternate way to specify the drawing of an ellipse is to use a bounding box. In this case, the argument 
box of type cv::RotatedRect completely specifies both the size and the orientation of the ellipse. 
Both methods of specifying an ellipse are illustrated in Figure 4-8. 

cv::ellipse2Poly() 
void ellipse2Poly( 
  cv::Point              center,          // Location of ellipse center 
  cv::Size               axes,            // Length of major and minor axes 
  double                 angle,           // Tilt angle of major axis 
  double                 startAngle,      // Start angle for arc drawing 
  double                 endAngle,        // End angle for arc drawing 
  int                    delta,           // Angle between sequential vertices 
  vector<cv::Point>&     pts              // Result, STL-vector of points 
); 



 

 

The cv::ellipse2Poly() function is used by cv::ellipse() internally to compute elliptical 
arcs, but you can call it yourself as well. Given information about an elliptical arc (center, axes, 
angle, startAngle, and endAngle—all as defined in cv::ellipse()) and a parameter delta, 
which specifies the angle between subsequent points you want to sample, cv::ellipse2Poly() 
computes a sequence of points that form a polygonal approximation to the elliptical arc you specified. The 
computed points are returned in the vector<> pts. 

cv::fillConvexPoly() 
void fillConvexPoly( 
  cv::Mat&          img,                  // Image to be drawn on 
  const cv::Point*  pts,                  // C-style array of points 
  int               npts,                 // Number of points in ‘pts’ 
  const cv::Scalar& color,                // Color, BGR form  
  int               lineType  = 8,        // Connectedness, 4 or 8 
  int               shift     = 0         // Bits of radius to treat as fraction 
); 

This function draws a filled polygon. It is much faster than cv::fillPoly() because it uses a much 
simpler algorithm. This algorithm, however, will not work correctly if the polygon you pass to it has self-
intersections.28 The points in pts are treated as sequential, and a segment from the last point in pts and 
the first point is implied (i.e., the polygon is assumed to be closed). 

cv::fillPoly() 
void fillPoly( 
  cv::Mat&          img,                  // Image to be drawn on 
  const cv::Point*  pts,                  // C-style array of arrays of points 
  int               npts,                 // Number of points in ‘pts[i]’ 
  int               ncontours,            // Number of arrays in ‘pts’ 
  const cv::Scalar& color,                // Color, BGR form  
  int               lineType = 8,         // Connectedness, 4 or 8 
  int               shift    = 0,         // Bits of radius to treat as fraction 
  cv::Point         offset   = Point()    // Uniform offset applied to all points 
); 

This function draws any number of filled polygons. Unlike cv::fillConvexPoly(), it can handle 
polygons with self-intersections. The argument ncontours specifies how many different polygon 
contours there will be, and the argument npts is a C-style array that indicates how many points there are 
in each contour (i.e., npts[i] indicates how many points there are in polygon i). pts is a C-style array 
of C-style arrays containing all of the points in those polygons (i.e., pts[i][j] contains the 𝑗!! point in 
the 𝑖!! polygon.)  cv::fillPoly() also has one additional argument offset, which is a pixel offset 
that will be applied to all vertex locations when the polygons are drawn. The polygons are assumed to be 
closed (i.e., a segment from the last element of pts[i][] to the first element will be assumed).  

cv::line() 
void line( 
  cv::Mat&          img,                  // Image to be drawn on 
  cv::Point         pt1,                  // First end-point of line 
  cv::Point         pt2                   // Second end-point of line 
  const cv::Scalar& color,                // Color, BGR form  
  int               lineType = 8,         // Connectedness, 4 or 8 
  int               shift    = 0          // Bits of radius to treat as fraction 
); 

                                                             
28 The algorithm use by cv::fillComvexPolyfillConvexPoly() is actually somewhat more general than 
implied here. It will correctly draw any polygon whose contour intersects every horizontal line at most twice (though it 
is allowed for the top or bottom of the polygon to be flat with respect to the horizontal). Such a polygon is said to be 
“monotone with respect to the horizontal.” 



 

 

The function cv::line() draws a straight line from pt1 to pt2 in the image img. Lines are 
automatically clipped by the image boundaries. 

cv::rectangle() 
void rectangle( 
  cv::Mat&          img,                  // Image to be drawn on 
  cv::Point         pt1,                  // First corner of rectangle 
  cv::Point         pt2                   // Opposite corner of rectangle 
  const cv::Scalar& color,                // Color, BGR form  
  int               lineType = 8,         // Connectedness, 4 or 8 
  int               shift    = 0          // Bits of radius to treat as fraction 
); 
 
void rectangle( 
  cv::Mat&          img,                  // Image to be drawn on 
  cv::Rect          r,                    // Rectangle to draw 
  const cv::Scalar& color,                // Color, BGR form  
  int               lineType = 8,         // Connectedness, 4 or 8 
  int               shift    = 0          // Bits of radius to treat as fraction 
); 

The function cv::rectangle() draws a rectangle with corners pt1 to pt2 in the image img. An 
alternate form of cv::rectangle() allows the rectangle’s location and size to be specified by a single 
cv::Rect argument r. 

cv::polyLines() 
void polyLines( 
  cv::Mat&          img,                  // Image to be drawn on 
  const cv::Point*  pts,                  // C-style array of arrays of points 
  int               npts,                 // Number of points in ‘pts[i]’ 
  int               ncontours,            // Number of arrays in ‘pts’ 
  bool              isClosed,             // If true, connect last and first points 
  const cv::Scalar& color,                // Color, BGR form  
  int               lineType = 8,         // Connectedness, 4 or 8 
  int               shift    = 0          // Bits of radius to treat as fraction 
); 

This function draws any number of unfilled polygons. It can handle general polygons including polygons 
with self-intersections. The argument ncontours specifies how many different polygon contours there 
will be, and the argument npts is a C-style array that indicates how many points there are in each contour 
(i.e., npts[i] indicates how many points there are in polygon i). pts is a C-style array of C-style arrays 
containing all of the points in those polygons (i.e., pts[i][j] contains the 𝑗!! point in the 𝑖!! polygon.)  
Polygons are not assumed to be closed. If the argument isClosed is true, then a segment from the last 
element of pts[i][] to the first element will be assumed. Otherwise the contour is taken to be an open 
contour containing only npts[i]-1 segments between the npts[i] points listed.  

cv::LineIterator() 

The cv::LineIterator object is an iterator that is used to get each pixel of a raster line in sequence. It 
is another one of those “objects that do stuff.” The constructor for the line iterator takes the two endpoints 
for the line as well as a line type specifier and an additional Boolean that indicates which direction the line 
should be traversed. 

LineIterator::LineIterator( 
  cv::Mat&          img,                  // Image to be drawn on 
  cv::Point         pt1,                  // First end-point of line 
  cv::Point         pt2                   // Second end-point of line 
  int               lineType = 8,         // Connectedness, 4 or 8 
  bool              leftToRight = false   // If true, always start steps on the left 
); 



 

 

Once initialized, the number of pixels in the line is stored in the member integer 
cv::LineIterator::count. The overloaded dereferencing operator 
cv::LineIterator::operator*() returns a pointer of type uchar*, which points to the 
“current” pixel. The current pixel starts at one end of the line, and is incremented by means of the 
overloaded increment operator cv::LineIterator::operator++(). The actual traversal is done 
according to the Bresenham algorithm mentioned earlier. 

The purpose of the cv::LineIterator is to make it possible for you to take some specific action on 
each pixel along the line. This is particularly handy when creating special effects such as switching the 
color of a pixel from black to white and white to black (i.e., an XOR operation on a binary image). 

When accessing an individual “pixel,” remember that this pixel may have one or many channels and it 
might be any kind of image depth. The return value from the dereferencing operator is always uchar*, so 
you are responsible for casting that pointer to the correct type. For example, if your image were a three-
channel image of 32-bit floating-point numbers, and your iterator were called iter, then you would want 
to cast the return (pointer) value of the dereferencing operator like this: (Vec3f*)*iter. 

The style of the overloaded dereferencing operator 
cv::LineIterator::operator*() is slightly different than what you are 
probably used to from libraries like STL. The difference is that the return value from the 
iterator is itself a pointer, so the iterator itself behaves not like a pointer, but like a pointer 
to a pointer. 

Fonts and Text 
One additional form of drawing is to draw text. Of course, text creates its own set of complexities, but—as 
always with this sort of thing—OpenCV is more concerned with providing a simple “down and dirty” 
solution that will work for simple cases than a robust, complex solution (which would be redundant anyway 
given the capabilities of other libraries). 

Table 4-10: Text drawing functions 

Function Description 

cv::putText() Draw the specified text in an image 

cv::getTextSize() Determine the width and height of a text string 

cv::putText() 
void cv::putText( 
  cv::Mat&      img,                      // Image to be drawn on 
  const string& text,                     // String to write (often from cv::format) 
  cv::Point     origin,                   // Upper-left corner of text box 
  int           fontFace,                 // Font to use (e.g., cv::FONT_HERSHEY_PLAIN) 
  double        fontScale,                // Scale of font (not “point”, but multiple) 
  cv::Scalar    color,                    // Color, RGB form 
  int           thickness = 1,            // Thickness of line  
  int           lineType  = 8,            // Connectedness, 4 or 8 
  bool          bottomLeftOrigin = false  // If true, measure ‘origin’ from lower left 
); 

OpenCV has one main routine, called cv::putText() that just throws some text onto an image. The 
text indicated by text is printed with its upper-left corner of the text box at origin and in the color 
indicated by color, unless the bottomLeftOrigin flag is true, in which case the lower-left corner 
of the text box is located at origin. The font used is selected by the fontFace argument, which can be 
any of those listed in Error! Reference source not found.. 



 

 

Table 4-11: Available fonts (all are variations of Hershey) 

Identifier Description 
cv::FONT_HERSHEY_SIMPLEX                  Normal size sans-serif 
cv::FONT_HERSHEY_PLAIN                  Small size sans-serif 
cv::FONT_HERSHEY_DUPLEX                  Normal size sans-serif, more complex than 

cv::FONT_HERSHEY_SIMPLEX 
cv::FONT_HERSHEY_COMPLEX                  Normal size serif, more complex than 

cv::FONT_HERSHEY_DUPLEX 
cv::FONT_HERSHEY_TRIPLEX                  Normal size serif, more complex than 

cv::FONT_HERSHEY_COMPLEX 
cv::FONT_HERSHEY_COMPLEX_SMALL                  Smaller version of 

cv::FONT_HERSHEY_COMPLEX 
cv::FONT_HERSHEY_SCRIPT_SIMPLEX                  Handwriting style 
cv::FONT_HERSHEY_SCRIPT_COMPLEX                  More complex variant of 

cv::FONT_HERSHEY_SCRIPT_SIMPLEX 

Any of the font names listed in Error! Reference source not found. can also be combined (with an OR 
operator) with cv::FONT_HERSHEY_ITALIC to render the indicated font in italics. Each font has a 
“natural” size. When fontScale is not 1.0, then the font size is scaled by this number before drawing. 

 

 
Figure 4-9: The eight fonts of Table 4-11, with the origin of each line separated from the vertical by 30 

pixels 

cv::getTextSize() 
cv::Size cv::getTextSize( 
  const string& text, 
  cv::Point     origin, 
  int           fontFace, 
  double        fontScale, 
  int           thickness, 
  int*          baseLine 
); 

The function cv::getTextSize() answers the question of how big some text would be if you were to 
draw it (with some set of parameters), without actually drawing it on an image. The only novel argument to 



 

 

cv::getTextSize() is baseLine, which is actually an output parameter. baseLine is the y-
coordinate of the text baseline relative to the bottom-most point in the text.29  

Data Persistence 
OpenCV provides a mechanism for serializing and de-serializing its various data types to and from disk in 
either YAML or XML format, which can load and store any number of OpenCV data objects (including 
basic types like int, float, etc.) in a single file. There functions are separate from the special functions 
we saw earlier in the chapter that handle the more specialized situation of loading and saving image files 
and video data. In this section, we will focus on general object persistence: reading and writing matrices, 
OpenCV structures, configuration, and log files. 

The basic mechanism for reading and writing files is the cv::FileStorage object. This object 
essentially represents a file on disk, but does so in a manner that makes accessing the data represented in 
the file easy and natural. 

Writing to a cv::FileStorage 
FileStorage::FileStorage(); 
FileStorage::FileStorage( string fileName, int flag ); 

The cv::FileStorage object is a representation of an XML or YML data file. You can create it and 
pass a file name to the constructor, or you can just create an unopened storage object with the default 
constructor and open the file later with cv::FileStorage::open() where the flag argument 
should be either cv::FileStorage::WRITE or cv::FileStorage::APPEND. 

FileStorage::open( string fileName, int flag ); 

Once you have opened the file you want to write to, you can write using the operator 
cv::FileStorage::operator<<() in the same manner you might write to stdout with an STL 
stream. Internally, however, there is quite a bit more going on when you write in this manner.  

Data inside of the cv::FileStorage is stored in one of two forms, either as a “mapping” (i.e., key-
value pairs) or a “sequence” (which is a series of unnamed entries). At the top level, the data you write to 
the file storage is all a mapping, and inside of that mapping you can place other mappings or sequences, 
and mappings or sequences inside of those as deep as you like. 

myFileStorage << ”someInteger” << 27;                    // save an integer 
myFileStorage << ”anArray” << cv::Mat::eye(3,3,CV::F32);  // save an array 

To create a sequence entry, you first provide the string name for the entry, and then the entry itself. The 
entry can be a number (integer, float, etc.), a string, or any OpenCV data type.  

If you would like to create a new mapping or sequence you can do so with the special characters “{“ (for a 
mapping) or “[“ (for a sequence). Once you have started the mapping or sequence, you can add new 
elements and then finally close the mapping or sequence with “}” or “]” (respectively). 

myFileStorage << ”theCat” << ”{“; 
myFileStorage << ”fur” << ”gray” << "eyes” << ”green” << ”weightLbs” << 16; 
myFileStorage << ”}”; 

Once you have created a mapping, you enter each element with a name and the data following, just as you 
did for the top-level mapping. If you create a sequence, you simply enter the new data one item after 
another until you close the sequence. 

myFileStorage << ”theTeam” << ”[“; 

                                                             
29 The “baseline” is the line on which the bottoms of characters such as a and b are aligned. Characters such 
as y and g hang below the baseline.  

 



 

 

myFileStorage << ”eddie” << ”tom” << ”scott”; 
myFileStorage << ”]”; 

Once you are completely done writing, you close the file with the cv::FileStorage::release() 
member function. 

Here is an explicit code sample from the OpenCV documentation: 
#include "opencv2/opencv.hpp" 
#include <time.h> 
 
int main(int, char** argv) 
{ 
    cv::FileStorage fs("test.yml", cv::FileStorage::WRITE); 
 
    fs << "frameCount" << 5; 
    time_t rawtime; time(&rawtime); 
    fs << "calibrationDate" << asctime(localtime(&rawtime)); 
    cv::Mat cameraMatrix = ( 
      cv::Mat_<double>(3,3)  
      << 1000, 0, 320, 0, 1000, 240, 0, 0, 1 
    ); 
    cv::Mat distCoeffs = ( 
      cv::Mat_<double>(5,1)  
      << 0.1, 0.01, -0.001, 0, 0 
    ); 
    fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs; 
    fs << "features" << "["; 
    for( int i = 0; i < 3; i++ ) 
    { 
        int x = rand() % 640; 
        int y = rand() % 480; 
        uchar lbp = rand() % 256; 
 
        fs << "{:" << "x" << x << "y" << y << "lbp" << "[:"; 
        for( int j = 0; j < 8; j++ ) 
            fs << ((lbp >> j) & 1); 
        fs << "]" << "}"; 
    } 
    fs << "]"; 
    fs.release(); 
    return 0; 
} 

The result of running this program would be a YML file with the following contents: 
%YAML:1.0 
frameCount: 5 
calibrationDate: "Fri Jun 17 14:09:29 2011\n" 
cameraMatrix: !!opencv-matrix 
   rows: 3 
   cols: 3 
   dt: d 
   data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ] 
distCoeffs: !!opencv-matrix 
   rows: 5 
   cols: 1 
   dt: d 
   data: [ 1.0000000000000001e-01, 1.0000000000000000e-02, 
       -1.0000000000000000e-03, 0., 0. ] 
features: 
   - { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] } 
   - { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] } 
   - { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] } 



 

 

In the example code, you will notice that sometimes all of the data in a mapping or sequence is stored on a 
single line and other times it is stored with one element per line. This is not an automatic formatting 
behavior. Instead, it is created by a variant of the mapping and sequence creation strings: “{:” and “:}” 
mappings, and “[:” and “:]” for sequences. This feature is only meaningful for YML output; if the output 
file is XML, this nuance is ignored and the mapping or sequence is stored as it would have been without the 
variant.  

Reading from a cv::FileStorage 
FileStorage::FileStorage( string fileName, int flag ); 

The cv::FileStorage can be opened for reading the same way it is opened for writing, except that the 
flag argument should be set to cv::FileStorage::READ. As with writing, you can also create an 
unopened file storage object with the default constructor and open it later with 
cv::FileStorage::open(). 

FileStorage::open( string fileName, int flag ); 

Once the file has been opened, the data can be read with either the overloaded array operator 
cv::FileStorage::operator[]() or with the iterator cv::FileNodeIterator. Once you 
are completely done reading, you then close the file with the cv::FileStorage::release() 
member function. 

To read from a mapping, the cv::FileStorage::operator[]() is passed the string key associated 
with the desired object. To read from a sequence, the same operator can be called with an integer argument 
instead. The return value of this operator is not the desired object, however; it is an object of type 
cv::FileNode, which represents the value that goes with the given key in an abstract form. 

cv::FileNode 

Once you have a cv::FileNode object, you can do one of several things with it. If it represents an 
object (or a number or a string) you can just load it into a variable of the appropriate type with the 
overloaded extraction operator cv::FileNode::operator>>(). 

cv::Mat anArray; 
myFileStorage[“calibrationMatrix”] >> anArray; 

The cv::FileNode object also supports direct casting to any of the basic data types. 
int aNumber; 
myFileStorage[“someInteger”] >> aNumber; 

is equivalent to: 
int aNumber; 
aNumber = (int)myFileStorage[“someInteger”]; 

As mentioned earlier, there is also an iterator for moving through file nodes that can be used as well. Given 
a cv::FileNode object, the member functions cv::FileNode::begin() and 
cv::FileNode::end() have their usual interpretations as providing the first and “after last” iterator 
for either a mapping or a sequence. The iterator, on dereferencing with the usual overloaded dereferencing 
operator cv::FileNodeIterator::operator*(), will return another cv::FileNode object. 
Such iterators support the usual incrementing and decrementing operators. If the iterator was iterating 
through a mapping, then the returned cv::FileNode object will have a name that can be retrieved with 
cv::FileNode::name(). 

Table 4-12: Member functions of cv::FileNode 

Example Description 

cv::FileNode fn() File node object default constructor 



 

 

cv::FileNode fn1( fn0 ) File node object copy constructor, creates a node fn1 from a 
node fn0 

cv::FileNode fn1( fs, node ) 
File node constructor that creates a C++ style 
cv::FileNode object from a C-style CvFileStorage* 
pointer fs and a C-style CvFileNode* pointer node 

fn[ (string)key ] 

fn[ (char*)key ] 
STL string or C-string accessor for named child (of mapping 
node), converts key to the appropriate child node 

fn[ (int)id ] Accessor for numbered child (of sequence node), converts ID 
to the appropriate child node 

fn.type()  Returns node type enum  

fn.empty()                Determine if node is empty 

fn.isNone() Determine if node has value “None” 

fn.isSeq() Determine if node is a sequence 

fn.isMap() Determine if node is a mapping 

fn.isInt() 

fn.isReal() 

fn.isString() 

Determine if node is an integer, a floating-point number, or a 
string (respectively) 

fn.name() Return nodes name if node is a child of a mapping 

size_t sz=fn.size() Return size of node (in bytes) 

(int)fn 

(float)fn 

(double)fn 

(string)fn 

Extract the value from a node containing an integer, 32-bit 
float, 64-bit float, or string (respectively) 

Of the methods in Table 4-12, one requires special clarification: cv::FileNode::type(). The 
returned value is an enumerated type defined in the class cv::FileNode. The possible values are given 
in Table 4-13.  

Table 4-13: Possible return values for cv::FileNode::type() 

Example Description 

cv::FileNode::NONE      = 0 Node is of type “None” 

cv::FileNode::INT       = 1 Node contains an integer 



 

 

cv::FileNode::REAL      = 2 

cv::FileNode::FLOAT     = 2 
Node contains a floating-point number30 

cv::FileNode::STR       = 3 

cv::FileNode::STRING    = 3 
Node contains a string 

cv::FileNode::REF       = 4 Node contains a reference (i.e., a compound object) 

cv::FileNode::SEQ       = 5 Node is itself a sequence of other nodes 

cv::FileNode::MAP       = 6 Node is itself a mapping of other nodes 

cv::FileNode::FLOW      = 8 Node is a Compact representation of a sequence or mapping  

cv::FileNode::USER      = 16 Registered object (e.g., a Matrix) 

cv::FileNode::EMPTY     = 32 Node has no value assigned to it 

cv::FileNode::NAMED     = 64 Node is a child of a mapping (i.e., it has a name) 

It is worth noting that the last four enum values are powers of two starting at 8. This is because a node may 
have any or all of these properties in addition to one of the first eight listed types. 

The following code example (also from the OpenCV documentation) shows how we could read the file we 
wrote previously: 

cv::FileStorage fs2("test.yml", cv::FileStorage::READ); 
 
// first method: use (type) operator on FileNode. 
int frameCount = (int)fs2["frameCount"]; 
 
std::string date; 
// second method: use cv::FileNode::operator >> 
fs2["calibrationDate"] >> date; 
 
cv::Mat cameraMatrix2, distCoeffs2; 
fs2["cameraMatrix"] >> cameraMatrix2; 
fs2["distCoeffs"] >> distCoeffs2; 
 
cout << "frameCount: " << frameCount << endl 
     << "calibration date: " << date << endl 
     << "camera matrix: " << cameraMatrix2 << endl 
     << "distortion coeffs: " << distCoeffs2 << endl; 
 
cv::FileNode features = fs2["features"]; 
cv::FileNodeIterator it = features.begin(), it_end = features.end(); 
int idx = 0; 
std::vector<uchar> lbpval; 
 
// iterate through a sequence using FileNodeIterator 
for( ; it != it_end; ++it, idx++ ) 

                                                             
30 Note that the floating-point types are not distinguished. This is a somewhat subtle point. Recall that XML and YML 
are ASCII text file formats. As a result, all floating-point numbers are of no specific precision until cast to an internal 
machine variable type. So, at the time of parsing, all floating-point numbers are represented only as an abstract 
floating-point type. 



 

 

{ 
    cout << "feature #" << idx << ": "; 
    cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: ("; 
    // you can also easily read numerical arrays using FileNode >> std::vector operator. 
    (*it)["lbp"] >> lbpval; 
    for( int i = 0; i < (int)lbpval.size(); i++ ) 
        cout << " " << (int)lbpval[i]; 
    cout << ")" << endl; 
} 
fs.release(); 

Summary 
We have seen that OpenCV provides a number of ways to bring computer vision programs to the screen. 
The native HighGUI tools are convenient and easy to use, but not so great for functionality or final polish.  

For a little more capability, the Qt-based HighGUI tools add buttons and some nice gadgets for 
manipulating your image on the screen—which is very helpful for debugging, parameter tuning, and for 
studying the subtle effects of changes in your program. Because those methods lack extensibility and are 
likely unsuitable for the production of professional applications, we went on to look at a few examples of 
how you might combine OpenCV with existing fully featured GUI toolkits.  

We then touched on some other important functions you will need for manipulating arrays in basic ways 
and went on to drawing functions. Finally, we reviewed how OpenCV can store and retrieve objects from 
files. 

Exercises 
1. This chapter completes our introduction to basic I/O programming and data structures in OpenCV. The 

following exercises build on this knowledge and create useful utilities for later use. 
a) Create a program that (1) reads frames from a video, (2) turns the result to grayscale, and (3) 

performs Canny edge detection on the image. Display all three stages of processing in three 
different windows, with each window appropriately named for its function. 

b) Display all three stages of processing in one image. 
Hint: Create another image of the same height but three times the width as the video frame. Copy the images 
into this, either by using pointers or (more cleverly) by creating three new cv::Mat objects that reference into 
the beginning of, to one-third, and to two-thirds of the way into, the image data and then copying directly into 
these (i.e. with the copyTo() function). 

c) Write appropriate text labels describing the processing in each of the three slots. 
2. Create a program that reads in and displays an image. When the user’s mouse clicks on the image, read 

in the corresponding pixel (blue, green, red) values and write those values as text to the screen at the 
mouse location. 
a) For the program of Exercise 1b, display the mouse coordinates of the individual image when 

clicking anywhere within the three-image display. 
3. Create a program that reads in and displays an image. 

a) Allow the user to select a rectangular region in the image by drawing a rectangle with the mouse 
button held down, and highlight the region when the mouse button is released. Be careful to save 
an image copy in memory so that your drawing into the image does not destroy the original values 
there. The next mouse click should start the process all over again from the original image. 

b) In a separate window, use the drawing functions to draw a graph in blue, green, and red for how 
many pixels of each value were found in the selected box. This is the color histogram of that color 
region. The x-axis should be eight bins that represent pixel values falling within the ranges 0–31, 



 

 

32–63,…, 223–255. The y-axis should be counts of the number of pixels that were found in that 
bin range. Do this for each color channel, BGR. 

4. Make an application that reads and displays a video and is controlled by sliders. One slider will control 
the position within the video from start to end in 10 increments; another binary slider should control 
pause/unpause. Label both sliders appropriately. 
a) Do this using the built in HighGUI native toolkit functions. 
b) Do this using the Qt Backend. 

5. Create your own simple paint program. 
a) Write a program that creates an image, sets it to 0, and then displays it. Allow the user to draw 

lines, circles, ellipses, and polygons on the image using the left mouse button. Create an eraser 
function when the right mouse button is held down. 

b) Allow “logical drawing” by allowing the user to set a slider setting to AND, OR, and XOR. That 
is, if the setting is AND then the drawing will appear only when it crosses pixels greater than 0 
(and so on for the other logical functions). 

6. Write a program that creates an image, sets it to 0, and then displays it. Hitting Enter should fix the 
label at the spot it was typed. 
a) When the user clicks on a location, he or she can type in a label there.  
b) Enable Backspace during editing and provide for an abort key.  

7. Perspective transform. 
a) Write a program that reads in an image and uses the numbers 1–9 on the keypad to control a 

perspective transformation matrix (refer to our discussion of the cv::warpPerspective() in 
the Dense Perspective Transform section of Chapter 6). Tapping any number should increment the 
corresponding cell in the perspective transform matrix; tapping with the Shift key depressed 
should decrement the number associated with that cell (stopping at 0). Each time a number is 
changed, display the results in two images: the raw image and the transformed image. 

b) Add functionality to zoom in or out. 
c) Add functionality to rotate the image. 

8. Face fun. Go to the …/samples/cpp/ directory and build the facedetect.cpp code. Draw a skull image 
(or find one on the Web) and store it to disk. Modify the facedetect program to load in the image of the 
skull. 
a) When a face rectangle is detected, draw the skull in that rectangle. 
Hint: cv::convertImage() can convert the size of the image, or you could look up the 
cv::resize() function. One may then set the ROI to the rectangle and use copyTo() to copy the 
properly resized image there. 

a) Add a slider with 10 settings corresponding to 0.0 to 1.0. Use this slider to alpha blend the skull 
over the face rectangle using the cv::addWeighted() function. 

9. Image stabilization. Go to the .../samples/cpp/ directory and build the lkdemo.cpp code (this code does 
motion tracking, also known as optical flow). Create and display a video image in a much larger 
window image. Move the camera slightly but use the optical flow vectors to display the image in the 
same place within the larger window. This is a rudimentary image stabilization technique. 

10. Create a structure of an integer, a cv::Point2i and a cv::Rect; call it my_struct. 

a) Write two functions: 
void write_my_struct(  
  cv::FileStorage* fs,  
  const char*      name,  
  my_struct*       ms 
);  

and:  



 

 

void read_my_struct(  
  cv::FileStorage* fs,  
  CvFileNode*      ms_node,  
  my_struct*       ms 
); 

Use them to write and read my_struct. 

b) Write and read an array of 10 my_struct structures. 

 



 

 

5 
Filters and Convolution 

Overview 
At this point, we have all of the basics at our disposal. We understand the structure of the library as well as 
the basic data structures it uses to represent images. We understand the HighGUI interface and can actually 
run a program and display our results on the screen. Now that we understand these primitive methods 
required to manipulate image structures, we are ready to learn some more sophisticated operations. 

We will now move on to higher-level methods that treat the images as images, and not just as arrays of 
colored (or grayscale) values. When we say “image processing,” we mean just that: using higher-level 
operators that are defined on image structures in order to accomplish tasks whose meaning is naturally 
defined in the context of graphical, visual images. 

Before We Begin 
There are a couple of important concepts we will need throughout this chapter, so it is worth taking a 
moment to review these ideas before we dig into the specific image processing functions that make up the 
bulk of this chapter. We will need to learn two main concepts: first, we’ll need to understand filters (also 
called kernels) and how they are handled in OpenCV. Next, we’ll take a look at how boundaries are 
handled, and what happens when OpenCV needs to compute something that is a function of the area around 
a pixel if that area spills off of the edge of the image.  

Filters, Kernels, and Convolution 
Most of the functions we will discuss in this chapter are special cases of a general concept called image 
filtering. A filter is any algorithm that starts with some image 𝐼(𝑥, 𝑦) and computes a new image 𝐼’(𝑥, 𝑦) by 
computing for each pixel location 𝑥, 𝑦 in 𝐼’ some function of the pixels in 𝐼 that are in some area around 
that point. The template that defines both this area’s shape, as well as how the elements of that area are 
combined, is called a filter or a kernel.1 In this chapter, many of the important kernels we encounter will be 

                                                             
1 These two terms can be considered essentially interchangeable for our purposes. The signal processing community 
typically prefers the word filter, while the mathematical community tends to prefer kernel. 



 

 

linear kernels. This means that the value assigned to point 𝑥, 𝑦 in 𝐼’ can be expressed as a weighted sum of 
the points around (and usually including) 𝑥, 𝑦 in 𝐼2. If you like equations, this can be written as: 

𝐼! 𝑥, 𝑦 = 𝑘!,! ∙ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)
!,!∈!"#$"%

. 

This basically says that for some kernel of whatever size (e.g., 5-by-5), we should sum over the area of the 
kernel, and for each pair 𝑖, 𝑗 (representing one point in the kernel), we should add a contribution equal to 
some value  𝑘!,! multiplied by the value of the pixel in I that is offset from 𝑥, 𝑦 by 𝑖, 𝑗. The size of the array 
𝑘!,! is called the support of the kernel.3  Any filter which can be expressed in this way (i.e., with a linear 
kernel) is also known as convolutions. 

It is often convenient (and more intuitive) to represent the kernel graphically as an array of the values 
of  𝑘!,! (Figure 5-1). We will typically use this representation throughout the book when it is necessary to 
represent a kernel. 

 

1 1 1 1 1     1 1 1 1 1          1 4 7 4 1 
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Figure 5-1: (a) A 5-by-5 box kernel; (b) a normalized 5-by-5 box kernel; (c) a 3-by-3 Sobel “x-derivative” 
kernel; and (d) a 5-by-5 normalized Gaussian kernel; in each case, the “anchor” is represented in bold. 

Anchor Points 

Each kernel shown in Figure 5-1 has one value depicted in bold. This is the anchor point of the kernel. This 
indicates how the kernel is to be aligned with the source image. For example, in Figure 5-1 (d), the number 
41 appears in bold. This means that in the summation used to compute  𝐼’(𝑥, 𝑦), it is 𝐼(𝑥, 𝑦) that is 
multiplied by 41/273 (and similarly, the terms corresponding to 𝐼(𝑥 − 1, 𝑦) and 𝐼(𝑥 + 1, 𝑦) are multiplied by 
26/273). 

Border Extrapolation and Boundary Conditions 
Something that will come up with some frequency as we look at how images are processed in OpenCV is 
the issue of how borders are handled. Unlike some other image handling libraries,4 the filtering operations 
in OpenCV (e.g., cv::blur(), cv::erode(), cv::dilate(), etc.) produce output images of the 
same size as the input. To achieve that result, OpenCV creates “virtual” pixels outside of the image at the 
borders. You can see this would be necessary for operation like cv::blur(), which is going to take all 
of the pixels in a neighborhood of some point and average them to determine a new value for that point. 
How could a meaningful result be computed for an edge pixel that does not have the correct number of 
neighbors? In fact, it will turn out that in the absence of any clearly “right” way of handling this, we will 
often find ourselves explicitly asserting how this issue is to be resolved in any given context. 

                                                             
2 An example of a nonlinear kernel that comes up relatively often is the median filter, which replaces the pixel at 𝑥, 𝑦 
with the median value inside of the kernel area. 
3 For technical purists, the “support” of the kernel actually consists of only the nonzero portion of the kernel array. 
4 E.g., MATLAB. 



 

 

Making Borders Yourself 

Most of the library functions you will use will create these virtual pixels for you. In that context, you will 
only need to tell the particular function how you would like those pixels created.5 Just the same, in order to 
know what the options you have mean, it is best to take a look at the function that allows you to explicitly 
create “padded” images that use one method or another.  

The function that does this is cv::copyMakeBorder(). Given an image you want to pad out, and a 
second image that is somewhat larger, you can ask cv::copyMakeBorder() to fill all of the pixels in 
the larger image in one way or another. 

void cv::copyMakeBorder( 
  cv::InputArray    src,                       // Input Image 
  cv::OutputArray   dst,                       // Result image 
  int               top,                       // Top side padding (pixels) 
  int               bottom,                    // Bottom side padding (pixels) 
  int               left,                      // Left side padding (pixels) 
  int               right,                     // Right side padding (pixels) 
  int               borderType,                // Pixel extrapolation method 
  const cv::Scalar& value = cv::Scalar()       // Used for constant borders  
); 

The first two arguments to cv::copyMakeBorder() are the smaller source image and the larger 
destination image. The next four arguments specify how many pixels of padding are to be added to the 
source image on the top, bottom, left, and right edges. The next argument borderType actually 
tells cv::copyMakeBorder() how to determine the correct values to assign to the padded pixels (as 
shown in Figure 5-2). 

 
Figure 5-2: The same image is shown padded using each of the six different borderType options 

available to cv::copyMakeBorder() (the “NO BORDER” image in the upper-left is the original for 
comparison) 

To understand what each option does in detail, it is useful to consider an extremely zoomed in section at the 
edge of each image (Figure 5-3). 

                                                             
5 Actually, the pixels are usually not even really created, but rather they are just “effectively created” by the generation 
of the correct boundary conditions in the evaluation of the particular function in question. 



 

 

 
Figure 5-3:. An extreme zoom in at the left side of each image; for each case, the actual pixel values are 

shown, as well as a schematic representation; the vertical dotted line in the schematic represents the edge of 
the original image 

As you can see by inspecting the figures, some of the available options are quite different. The first option, 
a constant border cv::BORDER_CONSTANT sets all of the pixels in the border region to some fixed 
value. This value is set by the value argument to cv::copyMakeBorder(). (In Figure 5-2 and Figure 
5-3, this value happens to be cv::Scalar(0,0,0)) The next option is to wrap around 
cv::BORDER_WRAP, assigning each pixel that is a distance 𝑛 off of the edge of the image the value of the 
pixel that is a distance 𝑛 in from the opposite edge. The replicate option cv::BORDER_REPLICATE 
assigns every pixel off of the edge the same value as the pixel on that edge. Finally, there are two slightly 
different forms of reflection available: cv::BORDER_REFLECT and cv::BORDER_REFLECT_101. 
The first assigns each pixel that is a distance n off of the edge of the image the value of the pixel that is a 
distance 𝑛 in from that same edge. In contrast, cv::BORDER_REFLECT_101 assigns each pixel that is a 
distance 𝑛 off of the edge of the image the value of the pixel that is a distance 𝑛 + 1 in from that same edge 
(with the result that the very edge pixel is not replicated). In most cases, cv::BORDER_REFLECT_101 is 
the default behavior for OpenCV methods. The value of cv::BORDER_DEFAULT resolves to 
cv::BORDER_REFLECT_101. Table 5-1 summarizes these options. 

Table 5-1: borderType options available to cv::copyMakeBorder(), as well as many other 
functions that need to implicitly create boundary conditions 

Border Type Effect 
cv::BORDER_CONSTANT Extend pixels by using a supplied (constant) value 
cv::BORDER_WRAP Extend pixels by replicating from opposite side 
cv::BORDER_REPLICATE Extend pixels by copying edge pixel 
cv::BORDER_REFLECT Extend pixels by reflection 
cv::BORDER_REFLECT_101 Extend pixels by reflection, edge pixel is not “doubled” 
cv::BORDER_DEFAULT Alias for cv::BORDER_REFLECT_101 

 



 

 

Manual Extrapolation 

On some occasions, you will want to compute the location of the reference pixel to which a particular off-
the-edge pixel is referred. For example, given an image of width 𝑤 and height ℎ, you might want to know 
what pixel in that image is being used to assign a value to virtual pixel (w + dx, h + dy). Though this 
operation is essentially extrapolation, the function that computes such a result for you is (somewhat 
confusingly) called cv::borderInterpolate(): 

int cv::borderInterpolate(             // Returns coordinate of “donor” pixel 
  int p,                               // 0-based coordinate of extrapolated pixel 
  int len,                             // Length of array (on relevant axis)   
  int borderType                       // Pixel extrapolation method 
);       

The function cv::borderInterpolate() computes the extrapolation for one dimension at a time. It 
takes a coordinate p, a length len (which is the actual size of the image in the associated direction), and a 
borderType value. So, for example, you could compute the value of a particular pixel in an image under 
a mixed set of boundary conditions, using BORDER_REFLECT_101 in one dimension, and 
BORDER_WRAP in another: 

float val = img.at<float>( 
  cv::borderInterpolate( 100, img.rows, BORDER_REFLECT_101 ), 
  cv::borderInterpolate(  -5, img.cols, BORDER_WRAP ) 
); 

This function is typically used internally to OpenCV, for example inside of cv::copyMakeBorder or 
the cv::FilterEngine class (more on that later), but it can come in handy in your own algorithms as 
well. The possible values for borderType are exactly the same as those used by 
cv::copyMakeBorder. Throughout this chapter, we will encounter functions that take a borderType 
argument; in all of those cases, they take the same list of argument. 

Threshold Operations 
Frequently we have done many layers of processing steps and want either to make a final decision about 
the pixels in an image or to categorically reject those pixels below or above some value while keeping the 
others. The OpenCV function cv::threshold() accomplishes these tasks (see survey [Sezgin04]). The 
basic idea is that an array is given, along with a threshold, and then something happens to every element of 
the array depending on whether it is below or above the threshold. If you like, you can think of threshold as 
a very simple convolution operation that uses a 1-by-1 kernel and performs one of several nonlinear 
operations on that one pixel:6 

double cv::threshold( 
  cv::InputArray    src,                       // Input Image 
  cv::OutputArray   dst,                       // Result image 
  double            thresh,                    // Threshold value 
  double            maxValue,                  // Max value for upward operations 
  int               thresholdType              // Threshold type to use (see Example 5-2) 
); 

As shown in Table 5-2, each threshold type corresponds to a particular comparison operation between the 
i!" source pixel (srci) and the threshold thresh. Depending on the relationship between the source pixel 
and the threshold, the destination pixel dsti may be set to 0, the srci, or the given maximum value 
maxValue. 

                                                             
6 The utility of this point of view will become clearer as we proceed through this chapter, and look at other more 
complex convolutions. Many useful operations in computer vision can be expressed as a sequence of common 
convolutions, and more often than not, the last one of those convolutions is a threshold operation. 



 

 

Table 5-2: thresholdType options for cv::threshold() 

Threshold type Operation 
cv::THRESH_BINARY  DST! = SRC! > THRESH     ?   MAXVALUE ∶ 0 
cv::THRESH_BINARY_INV  DST! = SRC! > THRESH     ?   0 ∶ MAXVALUE 
cv::THRESH_TRUNC                DST! = SRC! > THRESH     ?   THRESH ∶ SRC! 
cv::THRESH_TOZERO  DST! = SRC! > THRESH     ?   SRC! ∶ 0 
cv::THRESH_TOZERO_INV  DST! = SRC! > THRESH     ?   0 ∶ SRC! 

  

Figure 5-4 should help to clarify the exact implications of each of the available values for 
thresholdType, the thresholding operation. 

 



 

 

  

Figure 5-4: Results of varying the threshold type in cv::threshold(); the horizontal line through each 
chart represents a particular threshold level applied to the top chart and its effect for each of the five types 

of threshold operations below 

Let’s look at a simple example. In Example 5-1, we sum all three channels of an image and then clip the 
result at 100. 

Example 5-1: Example code making use of cv::threshold() 

#include <opencv2/opencv.hpp> 
#include <iostream> 
using namespace std; 
 
void sum_rgb( const cv::Mat& src, cv::Mat& dst ) { 
   
  // Split image onto the color planes.  
  vector< cv::Mat> planes;  
  cv::split(src, planes); 
   
  cv::Mat b = planes[0], g = planes[1], r = planes[2], s; 
 
  // Add equally weighted rgb values. 
  cv::addWeighted( r, 1./3., g, 1./3., 0.0, s ); 
  cv::addWeighted( s, 1., b, 1./3., 0.0, s ); 
 
  // Truncate values above 100. 
  cv::threshold( s, dst, 100, 100, cv::THRESH_TRUNC ); 
} 
 
void help() 
{ 
 cout << "Call: ./ch5_ex5_2 faceScene.jpg" << endl; 
 cout << "Shows use of alpha blending (addWeighted) and threshold" << endl; 
} 
 
int main(int argc, char** argv) 



 

 

{ 
 help(); 
 if(argc < 2) { cout << "specify input image" << endl; return -1; } 
 
 // Load the image from the given file name. 
 cv::Mat src = cv::imread( argv[1] ), dst; 
 if( src.empty() ) { cout << "can not load " << argv[1] << endl; return -1; } 
 sum_rgb( src, dst); 
 
 // Create a named window with the name of the file and 
 // show the image in the window 
 cv::imshow( argv[1], dst ); 
 
 // Idle until the user hits any key. 
 cv::waitKey(0); 
 
 return 0; 
} 

Some important ideas are shown here. One thing is that we don’t want to add directly into an 8-bit array 
(with the idea of normalizing next) because the higher bits will overflow. Instead, we use equally weighted 
addition of the three color channels (cv::addWeighted()); then the sum is truncated to saturate at the 
value of 100 for the return. Had we used a floating-point temporary image for s in Example 5-1, we could 
have substituted the code shown in Example 5-2 instead. Note that cv::accumulate() can accumulate 
8-bit integer image types into a floating-point image. 

Example 5-2: Alternative method to combine and threshold image planes 

void sum_rgb( const cv::Mat& src, cv::Mat& dst ) { 
 
  // Split image onto the color planes. 
  vector<cv::Mat> planes; 
  cv::split( src, planes ); 
  
  cv::Mat b = planes[0], g = planes[1], r = planes[2]; 
   
  // Accumulate separate planes, combine and threshold 
  cv::Mat s = cv::Mat::zeros( b.size(), cv::F32 ); 
  cv::accumulate( b, s ); 
  cv::accumulate( g, s ); 
  cv::accumulate( r, s ); 
  
  // Truncate values above 100 and rescale into dst 
  cv::threshold( s, s, 100, 100, cv::THRESH_TRUNC ); 
  s.convertTo(dst, b.type()); 
} 

Otsu’s Algorithm 
It is also possible to have cv::threshold() attempt to determine the optimal value of the threshold for 
you. This is done by passing the special value cv::THRESH_OTSU as the value of thresh. 

Briefly, Otsu’s algorithm is to consider all possible thresholds, and to compute the variance 𝜎!! for each of 
the two classes of pixels (i.e., the class below the threshold and the class above it). Otsu’s algorithm 
minimizes:  

𝜎!! ≡ 𝑤! 𝑡 ∙ 𝜎!! + 𝑤! 𝑡 ∙ 𝜎!!, 

where 𝑤! 𝑡  and 𝑤! 𝑡  are the relative weights for the two classes given by the relative (normalized) 
number of pixels in each class (that is, their probability) and 𝜎!! and 𝜎!! are the variances in each class. 
Some thought (think of an image with 2 colors) will convince you that minimizing the variance over both 



 

 

classes is the same as maximizing the variance between the two classes. Because an exhaustive search of 
the space of possible thresholds is required, this is not a particularly fast process. 

Adaptive Threshold 
There is a modified threshold technique in which the threshold level is itself variable (across the image). In 
OpenCV, this method is implemented in the cv::adaptiveThreshold() [Jain86] function: 

void cv::adaptiveThreshold( 
  cv::InputArray    src,                       // Input Image 
  cv::OutputArray   dst,                       // Result image 
  double            maxValue,                  // Max value for upward operations 
  int               adaptiveMethod,            // Method to weight pixels in block by  
  int               thresholdType              // Threshold type to use (see Example 5-2) 
  int               blockSize,                 // Block size 
  double            C                          // Constant to offset sum over block by  
); 

cv::adaptiveThreshold() allows for two different adaptive threshold types depending on the 
settings of adaptiveMethod. In both cases, the adaptive threshold T(x, y) is set on a pixel-by-pixel 
basis by computing a weighted average of the b-by-b region around each pixel location minus a constant, 
where 𝑏 is given by blockSize and the constant is given by C. If the method is set to 
cv::ADAPTIVE_THRESH_MEAN_C, then all pixels in the area are weighted equally. If it is set to 
cv::ADAPTIVE_THRESH_GAUSSIAN_C, then the pixels in the region around (𝑥, 𝑦) are weighted 
according to a Gaussian function of their distance from that center point. 

Finally, the parameter thresholdType is the same as for cv::threshold() shown in Table 5-2. 

The adaptive threshold technique is useful when there are strong illumination or reflectance gradients that 
you need to threshold relative to the general intensity gradient. This function handles only single-channel 8-
bit or floating-point images, and it requires that the source and destination images be distinct. 

Example 5-3 shows source code for comparing cv::adaptiveThreshold() and 

cv::threshold().   



 

 

Figure 5-5 illustrates the result of processing an image that has a strong lighting gradient across it with both 
functions. The lower-left portion of the figure shows the result of using a single global threshold as in 
cv::threshold(); the lower-right portion shows the result of adaptive local threshold using 
cv::adaptiveThreshold().  We see that we get the whole checkerboard via adaptive threshold, a 
result that is impossible to achieve when using a single threshold. Note the calling-convention comments at 
the top of the code in Example 5-3; the parameters used for Figure 5-5 were: 

./adaptThresh 15 1 1 71 15 ../Data/cal3-L.bmp 

  

Figure 5-5: Binary threshold versus adaptive binary threshold: the input image (top) was turned into a 
Boolean image using a global threshold (lower-left) and an adaptive threshold (lower-right); raw image 

courtesy of Kurt Konolige 

Example 5-3: Threshold versus adaptive threshold 

#include <iostream> 
 
using namespace std; 
 
int main( int argc, char** argv ) 
{ 
  if(argc != 7) { cout << 
   "Usage: ch5_ex5_3 fixed_threshold invert(0=off|1=on) " 
   "adaptive_type(0=mean|1=gaussian) block_size offset image\n" 
   "Example: ch5_ex5_3 100 1 0 15 10 fruits.jpg\n"; return -1; } 
 
  // Command line 
  double fixed_threshold = (double)atof(argv[1]); 
  int threshold_type  = atoi(argv[2]) ? cv::THRESH_BINARY : cv::THRESH_BINARY_INV; 
  int adaptive_method = atoi(argv[3]) ? cv::ADAPTIVE_THRESH_MEAN_C  
                                      : cv::ADAPTIVE_THRESH_GAUSSIAN_C; 
  int block_size = atoi(argv[4]); 
  double offset = (double)atof(argv[5]); 
  cv::Mat Igray = cv::imread(argv[6], cv::LOAD_IMAGE_GRAYSCALE); 
 
  // Read in gray image 



 

 

  if( Igray.empty() ){ cout << "Can not load " << argv[6] << endl; return -1; } 
 
  // Declare the output images 
  cv::Mat It, Iat; 
 
  // Thresholds 
  cv::threshold( 
    Igray, 
    It, 
    fixed_threshold, 
    255, 
    threshold_type); 
  cv::adaptiveThreshold( 
    Igray,  
    Iat,  
    255,  
    adaptive_method, 
    threshold_type,  
    block_size,  
    offset 
  ); 
 
  // Show the results 
  cv::imshow("Raw",Igray); 
  cv::imshow("Threshold",It); 
  cv::imshow("Adaptive Threshold",Iat); 
  cv::waitKey(0); 
  return 0; 
} 

Smoothing 

 

Figure 5-6: Gaussian blur on 1D pixel array 

Smoothing, also called blurring, is a simple and frequently used image processing operation. There are 
many reasons for smoothing, but it is often done to reduce noise or camera artifacts. Smoothing is also 
important when we wish to reduce the resolution of an image in a principled way (we will discuss this in 
more detail in the “Image Pyramids” section of this chapter). 

OpenCV offers five different smoothing operations, each with its own associated library function, which 
each accomplish slightly different kinds of smoothing.  



 

 

The src and dst arguments in all of these functions are the usual source and destination arrays. After 
that, each smoothing operation has parameters that are specific to the associated operation. Of these, the 
only common parameter is the last, borderType. This argument tells the smoothing operation how to 
handle pixels at the edge of the image. 

Simple Blur and the Box Filter 

 

Figure 5-7: Image smoothing by block averaging: on the left are the input images; on the right, the output 
images 

void cv::blur( 
  cv::InputArray  src,                         // Input Image 
  cv::OutputArray dst,                         // Result image 
  cv::Size        ksize,                       // Kernel size    
  cv::Point       anchor     = cv::Point(-1,-1),  // Location of anchor point 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
);  

The simple blur operation is provided by cv::blur(). Each pixel in the output is the simple mean of all 
of the pixels in a window, usually called a kernel, around the corresponding pixel in the input. The size of 
this window is specified by the argument ksize. The argument anchor can be used to specify how the 
kernel is aligned with the pixel being computed. By default, the value of anchor is cv::Point(-1,-
1), which indicates that the kernel should be centered relative to the filter. In the case of multichannel 
images, each channel will be computed separately. 
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Figure 5-8: A 5-by-5 blur filter, also called a normalized box filter. 



 

 

The simple blur is a specialized version of the box filter. A box filter is any filter that has a rectangular 
profile and for which the values 𝑘!,! are all equal. In most cases, 𝑘!,! = 1 for all 𝑖, 𝑗, or 𝑘!,! = 1

𝐴, where 𝐴 is 
the area of the filter. The latter case is called a normalized box filter. 

void cv::boxFilter( 
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  int             ddepth,              // Pixel depth of output image (e.g., cv::U8) 
  cv::Size        ksize,               // Kernel size    
  cv::Point       anchor     = cv::Point(-1,-1),  // Location of anchor point 
  bool            normalize  = true,              // If true, divide by box area 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
);  

The OpenCV function cv::boxFilter() is the somewhat more general form of which cv::blur() 
is essentially a special case. The main difference between cv::boxFilter() and cv::blur() is that 
the former can be run in an un-normalized mode (normalize = false), and that the depth of the 
output image dst can be controlled. (In the case of cv::blur(), the depth of dst will always equal the 
depth of src.) If the value of ddepth is set to -1, then the destination image will have the same depth as 
the source; otherwise, you can use any of the usual aliases (e.g., cv::F32).  

Median Filter 

 

Figure 5-9: Image blurring by taking the median of surrounding pixels 



 

 

The median filter [Bardyn84] replaces each pixel by the median or “middle-valued” pixel (as opposed to 
the mean pixel) in a rectangular neighborhood around the center pixel.7 Results of median filtering are 

shown in  

Figure 5-9. Simple blurring by averaging can be sensitive to noisy images, especially images with large 
isolated outlier values (sometimes called “shot noise”). Large differences in even a small number of points 
can cause a noticeable movement in the average value. Median filtering is able to ignore the outliers by 
selecting the middle points, though at a cost in speed. 

void cv::medianBlur( 
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  cv::Size        ksize                // Kernel size    
); 

The arguments to cv::medianBlur are essentially the same as with previous filters, the source array 
src, the destination array dst, and the kernel size ksize. For cv::medianBlur(), the anchor point 
is always assumed to be at the center of the kernel.  

                                                             
7 Note that the median filter is an example of a nonlinear kernel, which cannot be represented in the pictorial style 
shown in Figure 5-1. 



 

 

Gaussian Filter 

 

Figure 5-10: Gaussian filtering (blurring) 

The next smoothing filter, the Gaussian filter, is probably the most useful. Gaussian filtering is done by 
convolving each point in the input array with a Gaussian kernel and then summing to produce the output 
array: 

void cv::GaussianBlur( 
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  cv::Size        ksize,               // Kernel size    
  double          sigmaX,              // Gaussian half-width in x-direction 
  double          sigmaY      = 0.0,   // Gaussian half-width in y-direction 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

For the Gaussian blur (Figure 5-11), the parameter ksize gives the width and height of the filter window. 
The next parameter indicates the sigma value (half width at half max) of the Gaussian kernel in the x-
dimension. The fourth parameter similarly indicates the sigma value in the y-dimension. If you specify only 
the x value, and set the y value to zero (its default value), then the y and x values will be taken to be equal. 
If you set them both to zero, then the Gaussian’s parameters will be automatically determined from the 
window size using the following formulae: 

𝜎! =
𝑛! − 1
2

∙ 0.30 + 0.80, 𝑛! = 𝑘𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ − 1, 

𝜎! =
𝑛! − 1
2

∙ 0.30 + 0.80, 𝑛! = 𝑘𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡 − 1. 

Finally, cv::GaussianBlur() takes the usual borderType argument. 
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Figure 5-11: An example Gaussian kernel. Here ksize=(5,3), sigmaX=1, and sigmaY=0.5 

Gaussian smoothing is faster than one might expect. Because convolution by Gaussians is linearly 
combinable, we may separate the convolution along the x and the y axis converting the operation from 



 

 

being n2 in an n-by-n kernel size to being 2n for each pixel. The OpenCV implementation of Gaussian 
smoothing also provides even higher performance for several common kernels. 3-by-3, 5-by-5, and 7-by-7 
with the “standard” sigma (i.e., sigmaX = 0.0) give better performance than other kernels. Gaussian 
blur supports single- or three-channel images in either 8-bit or 32-bit floating-point formats, and it can be 
done in place. Results of Gaussian blurring are shown in Figure 5-10. 

Bilateral Filter 

 

Figure 5-12: Results of bilateral smoothing 

void cv::bilateralFilter( 
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  int             d,                   // Pixel neighborhood size (max distance) 
  double          sigmaColor,          // Width parameter for color weighting function  
  double          sigmaSpace,          // Width parameter for spatial weighting function 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

The fifth and final form of smoothing supported by OpenCV is called bilateral filtering [Tomasi98], an 
example of which is shown in Figure 5-12. Bilateral filtering is one operation from a somewhat larger class 
of image analysis operators known as edge-preserving smoothing. Bilateral filtering is most easily 
understood when contrasted to Gaussian smoothing. A typical motivation for Gaussian smoothing is that 
pixels in a real image should vary slowly over space and thus be correlated to their neighbors, whereas 
random noise can be expected to vary greatly from one pixel to the next (i.e., noise is not spatially 
correlated). It is in this sense that Gaussian smoothing reduces noise while preserving signal. 
Unfortunately, this method breaks down near edges, where you do expect pixels to be uncorrelated with 
their neighbors across the edge. As a result, Gaussian smoothing blurs away edges. At the cost of what is 
unfortunately substantially more processing time, bilateral filtering provides a means of smoothing an 
image without smoothing away the edges. 

Like Gaussian smoothing, bilateral filtering constructs a weighted average of each pixel and its neighboring 
components. The weighting has two components, the first of which is the same weighting used by Gaussian 
smoothing. The second component is also a Gaussian weighting but is based not on the spatial distance 
from the center pixel but rather on the difference in intensity8 from the center pixel.9 When intensities are 

                                                             
8 In the case of multichannel (i.e., color) images, the difference in intensity is replaced with a weighted sum over colors. 
This weighting is chosen to enforce a Euclidean distance in the CIE Lab color space. 



 

 

close, the intensity weighting is nearly 1.0 and we get Gaussian smoothing, but when there are large 
differences in intensity, the weight is nearly zero and almost no averaging is done, keeping high-contrast 
edges sharp. The effect of this filter is typically to turn an image into what appears to be a watercolor 
painting of the same scene.10 This can be useful as an aid to segmenting the image. 

Bilateral filtering takes three parameters (other than the source and destination). The first is the diameter d 
of the pixel neighborhood that is considered when filtering. The second is the width of the Gaussian kernel 
used in the color domain called sigmaColor, which is analogous to the sigma parameters in the Gaussian 
filter. The third is the width of the Gaussian kernel in the spatial domain called sigmaSpace. The larger 
this second parameter, the broader the range of intensities (or colors) that will be included in the smoothing 
(and thus the more extreme a discontinuity must be in order to be preserved). 

The filter size has a strong effect (as you might expect) on the speed of the algorithm. Typical values are 
less than or equal to five for video processing, but might be as high as nine for non-real-time applications. 
As an alternative to specifying d explicitly, it can be set to -1, in which case, it will be automatically 
computed from sigmaSpace. 

In practice, small values (e.g., 10) give a very light, but noticeable effect, while large 
values (e.g., 150) have a very strong effect and tend to render the image into a somewhat 
“cartoonish” appearance.  

Derivatives and Gradients 
One of the most basic and important convolutions is the computation of derivatives (or approximations to 
them). There are many ways to do this, but only a few are well suited to a given situation. 

The Sobel Derivative 
In general, the most common operator used to represent differentiation is the Sobel derivative [Sobel68] 
operator (see Figure 5-13 and Figure 5-14). Sobel operators exist for any order of derivative as well as for 
mixed partial derivatives (e.g., 𝜕!/𝜕𝑥𝜕𝑦). 

                                                                                                                                                                                     
9 Technically, the use of Gaussian distribution functions is not a necessary feature of bilateral filtering. The 
implementation in OpenCV uses Gaussian weighting even though the method allows many possible weighting 
functions. 
10 This effect is particularly pronounced after multiple iterations of bilateral filtering. 



 

 

 
Figure 5-13: The effect of the Sobel operator when used to approximate a first derivative in the x-

dimension. 

void cv::Sobel(  
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  int             ddepth,              // Pixel depth of output image (e.g., cv::U8) 
  int             xorder,              // order of corresponding derivative in x 
  int             yorder,              // order of corresponding derivative in y 
  cv::Size        ksize = 3,           // Kernel size    
  double          scale = 1,           // Scale applied before assignment to dst 
  double          delta = 0,           // Offset applied before assignment to dst 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

Here, src and dst are your image input and output. The argument ddepth allows you to select the depth 
(type) of the generated output (e.g., cv::F32). As a good example of how to use ddepth, if src is an 8-
bit image, then the dst should have a depth of at least cv::S16 to avoid overflow. xorder and 
yorder are the orders of the derivative. Typically, you’ll use 0, 1, or at most 2; a 0 value indicates no 
derivative in that direction.11 The ksize parameter should be odd and is the width (and the height) of the 
filter used. Currently, aperture sizes up to 31 are supported.12 The scale factor and delta are applied to 
the derivative before storing in dst. This can be useful when you want to actually visualize a derivative in 
an 8-bit image you can show on the screen: 

𝑑𝑠𝑡! = 𝑠𝑐𝑎𝑙𝑒 ∙ 𝑘!,! ∗ 𝐼 𝑥 + 𝑖, 𝑦 + 𝑗
!,!"#$%&!!"#$"%

+ 𝑑𝑒𝑙𝑡𝑎. 

The borderType argument functions exactly as described for other convolution operations. 

Sobel computations are fast for the same reason Gaussian blurring is fast: the kernel can be separated and 
so, rather than a 2D x,y convolution over the area of the kernel, we reduce to a 1D x convolution combined 
with a 1D y convolution (see the exercises below). 

                                                             
11 Either xorder or yorder must be nonzero. 
12 In practice, it really only makes sense to set the kernel size to 3 or greater.  If you set ksize to 1, then the kernel 
size will automatically be adjusted up to 3. 



 

 

 

 
Figure 5-14: The effect of the Sobel operator when used to approximate a first derivative in the y-

dimension. 

Sobel derivatives have the nice property that they can be defined for kernels of any size, and those kernels 
can be constructed quickly and iteratively. Up to the limit of not spanning key image structures, larger 
kernels give a better approximation to the derivative because they span more area and are thus less sensitive 
to noise. 

To understand this more exactly, we must realize that a Sobel derivative is not really a derivative as it is 
defined on a discrete space. What the Sobel operator actually represents is a fit to a polynomial. That is, the 
Sobel derivative of second order in the x-direction is not really a second derivative; it is a local fit to a 
parabolic function. This explains why one might want to use a larger kernel: that larger kernel is computing 
the fit over a larger number of pixels. 

Scharr Filter 
In fact, there are many ways to approximate a derivative in the case of a discrete grid. The downside of the 
approximation used for the Sobel operator is that it is less accurate for small kernels. For large kernels, 
where more points are used in the approximation, this problem is less significant. This inaccuracy does not 
show up directly for the x and y filters used in cv::Sobel(), because they are exactly aligned with the 
x- and y-axes. The difficulty arises when you want to make image measurements that are approximations of 



 

 

directional derivatives (i.e., direction of the image gradient by using the arctangent of the 𝑦/𝑥 filter 
responses)13. 

To put this in context, a concrete example of where you may want image measurements of this kind would 
be in the process of collecting shape information from an object by assembling a histogram of gradient 
angles around the object. Such a histogram is the basis on which many common shape classifiers are 
trained and operated. In this case, inaccurate measures of gradient angle will decrease the recognition 
performance of the classifier because the data to be learned will vary depending on the rotation of the 
object. 

For a 3-by-3 Sobel filter, the inaccuracies are more apparent the further the gradient angle is from 
horizontal or vertical. OpenCV addresses this inaccuracy for small (but fast) 3-by-3 Sobel derivative filters 
by a somewhat obscure use of the special ksize value cv::SCHARR in the cv::Sobel() function. 
The Scharr filter is just as fast but more accurate than the Sobel filter, so it should always be used if you 
want to make image measurements using a 3-by-3 filter. The filter coefficients for the Scharr filter are 
shown in Figure 5-15 [Scharr00]. 
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 A)        B)  
Figure 5-15: The 3-by-3 Scharr filter using flag cv::SCHARR 

The Laplacian 
The OpenCV Laplacian function (first used in vision by Marr [Marr82]) implements a discrete 
approximation to the Laplacian operator14: 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑓 =   
𝜕!𝑓
𝜕𝑥!

+
𝜕!𝑓
𝜕𝑦!

 

Because the Laplacian operator can be defined in terms of second derivatives, you might well suppose that 
the discrete implementation works something like the second-order Sobel derivative. Indeed it does, and in 
fact, the OpenCV implementation of the Laplacian operator uses the Sobel operators directly in its 
computation: 

void cv::Laplacian(   
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  int             ddepth,              // Pixel depth of output image (e.g., cv::U8) 
  cv::Size        ksize = 3,           // Kernel size    
  double          scale = 1,           // Scale applied before assignment to dst 
  double          delta = 0,           // Offset applied before assignment to dst 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

The cv::Laplacian() function takes the same arguments as the cv::Sobel() function, with the 
exception that the orders of the derivatives are not needed. This aperture ksize is precisely the same as 
the aperture appearing in the Sobel derivatives and, in effect, gives the size of the region over which the 
pixels are sampled in the computation of the second derivatives. In the actual implementation, for ksize 
anything other than 1, the Laplacian is computed directly from the sum of the corresponding Sobel 

                                                             
13 As you might recall, there are functions cv::cartToPolar() and cv::polarToCart() that implement 
exactly this transformation. If you find yourself wanting to call cv::cartToPolar() on a pair of 𝑥- and y-
derivative images, you should probably be using CV_SCHARR to compute those images. 
14 Note that the Laplacian operator is distinct from the Laplacian pyramid, which we will discuss in Chapter 6. 



 

 

operators. In the special case of ksize=1, the Laplacian is computed by convolution with the following 
single kernel: 

0 1 0 

1 -4 1 

0 1 0 

   
Figure 5-16. The single kernel used by cv::Laplacian() when ksize=1 

 
Figure 5-17: Laplace transform (upper right) of the racecar image: zooming in on the tire (circled in white) 

and considering only the x-dimension, we show a (qualitative) representation of the brightness as well as 
the first and second derivatives (lower three cells); the 0s in the second derivative correspond to edges, and 

the 0 corresponding to a large first derivative is a strong edge 

The Laplace operator can be used in a variety of contexts. A common application is to detect “blobs.” 
Recall that the form of the Laplacian operator is a sum of second derivatives along the x-axis and y-axis. 
This means that a single point or any small blob (smaller than the aperture) that is surrounded by higher 
values will tend to maximize this function. Conversely, a point or small blob that is surrounded by lower 
values will tend to maximize the negative of this function. 

With this in mind, the Laplace operator can also be used as a kind of edge detector. To see how this is done, 
consider the first derivative of a function, which will (of course) be large wherever the function is changing 
rapidly. Equally important, it will grow rapidly as we approach an edge-like discontinuity and shrink 
rapidly as we move past the discontinuity. Hence, the derivative will be at a local maximum somewhere 
within this range. Therefore, we can look to the 0s of the second derivative for locations of such local 
maxima. Got that? Edges in the original image will be 0s of the Laplacian. Unfortunately, both substantial 
and less meaningful edges will be 0s of the Laplacian, but this is not a problem because we can simply 
filter out those pixels that also have larger values of the first (Sobel) derivative. Figure 5-17 shows an 
example of using a Laplacian on an image together with details of the first and second derivatives and their 
zero crossings. 



 

 

Image Morphology 

 

Figure 5-18: Summary results for all morphology operators 

OpenCV provides a fast, convenient interface for doing morphological transformations [Serra83] on an 
image. Image morphology is its own topic, and over the years, especially in the early days of computer 
vision, a great number of morphological operations were developed. Most were developed for one specific 
purpose or another, and some of those found broader utility over the years. Essentially, all morphology 
operations are based on just two primitive operations. We will start with those, and then move on to the 
more complex operations, each of which is typically defined in terms of its simpler predecessors. 

Dilation and Erosion 

 

Figure 5-19: Morphological dilation: take the maximum under a square kernel 

The basic morphological transformations are called dilation and erosion, and they arise in a wide variety of 
contexts such as removing noise, isolating individual elements, and joining disparate elements in an image. 
More sophisticated morphology operations, based on these two basic operations, can also be used to find 
intensity peaks (or holes) in an image and to define a particular form of image gradient. 



 

 

 

Figure 5-20: Results of the dilation, or “max,” operator: bright regions are expanded and often joined 

Dilation is a convolution of some image with a kernel in which any given pixel is replaced with the local 
maximum of all of the pixel values covered by the kernel. As we mentioned earlier, this is an example of a 
nonlinear operation, so the kernel cannot be expressed in the form shown in Figure 5-1. Most often, the 

kernel used for Dilation is a “solid” square kernel, or sometimes a disk, with the anchor point at the center. 
The effect of dilation is to cause filled15 regions within an image to grow as diagrammed in 

 

Figure 5-19. 

                                                             
15 Here the term “filled” actually means those pixels whose value is nonzero. You could read this as “bright,” since the 
local maximum actually takes the pixel with the highest intensity value under the template (kernel). It is worth 
mentioning that the diagrams that appear in this chapter to illustrate morphological operators are in this sense inverted 
relative to what would happen on your screen (because books write with dark ink on light paper instead of light pixels 
on a dark screen). 



 

 

Erosion is the converse operation. The action of the erosion operator is equivalent to computing a local 
minimum over the area of the kernel.16 Erosion is diagrammed in 

 

Figure 5-21. 

Image morphology is often done on Boolean17 images that result from a threshold 
operation. However, because dilation is just a max operator and erosion is just a min 
operator, morphology may be used on intensity images as well. 

In general, whereas dilation expands a bright region 𝐴, erosion (

 

Figure 5-21) reduces such a bright region. Moreover, dilation will tend to fill concavities and erosion will 
tend to remove protrusions. Of course, the exact result will depend on the kernel, but these statements are 
generally true so long as the kernel is both convex and filled. 

In OpenCV, we effect these transformations using the cv::erode() and cv::dilate() functions: 
void cv::erode( 
  cv::InputArray    src,               // Input Image 
  cv::OutputArray   dst,               // Result image 
  cv::InputArray    element,           // Structuring element, can be cv::Mat()    
  cv::Point         anchor     = cv::Point(-1,-1),  // Location of anchor point 
  int               iterations = 1,                 // Number of times to apply 
  int               borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
  const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()  

                                                             
16 To be precise, the pixel in the destination image is set to the value equal to the minimal value of the pixels under the 
kernel in the source image. 
17 It should be noted that OpenCV does not actually have a Boolean image data type. The minimum size representation 
is 8-bit characters. Those functions which interpret an image as Boolean do so by classifying all pixels as either zero 
(“False” or 0) or nonzero (“True” or 1). 



 

 

); 

 

Figure 5-21: Morphological erosion: take the minimum under a square kernel 

void cv::dilate( 
  cv::InputArray    src,               // Input Image 
  cv::OutputArray   dst,               // Result image 
  cv::InputArray    element,           // Structuring element, can be cv::Mat()    
  cv::Point         anchor     = cv::Point(-1,-1),  // Location of anchor point 
  int               iterations = 1,                 // Number of times to apply 
  int               borderType = cv::BORDER_CONSTANT // Border extrapolation to use 
  const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()  
); 

Both cv::erode() and cv::dilate() take a source and destination image, and both support “in 
place” calls (in which the source and destination are the same image). The third argument is the kernel, to 
which you may pass an uninitialized array cv::Mat(), which will cause it to default to using a 3-by-3 
kernel with the anchor at its center (we will discuss how to create your own kernels later). The fourth 
argument is the number of iterations. If not set to the default value of 1, the operation will be applied 
multiple times during the single call to the function. The borderType argument is the usual border type, 
and the borderValue is the value that will be used for off-the-edge pixels when the borderType is 
set to cv::BORDER_CONSTANT.  

The results of an erode operation on a sample image are shown in 

 



 

 

Figure 5-22 and those of a dilation operation on the same image are shown in 

 

Figure 5-20. The erode operation is often used to eliminate “speckle” noise in an image. The idea here is 
that the speckles are eroded to nothing while larger regions that contain visually significant content are not 
affected. The dilate operation is often used when attempting to find connected components (i.e., large 
discrete regions of similar pixel color or intensity). The utility of dilation arises because in many cases a 
large region might otherwise be broken apart into multiple components as a result of noise, shadows, or 
some other similar effect. A small dilation will cause such components to “melt” together into one. 

To recap: when OpenCV processes the cv::erode() function, what happens beneath the hood is that 
the value of some point p is set to the minimum value of all of the points covered by the kernel when 
aligned at p; for the dilation operator, the equation is the same except that max is considered rather than 
min: 

 

Figure 5-22: Results of the erosion, or “min,” operator: bright regions are isolated and shrunk 

𝑒𝑟𝑜𝑑𝑒 𝑥, 𝑦 = min
!,! ∈!"#$"%

𝑠𝑟𝑐 𝑥 + 𝑖, 𝑦 + 𝑗  

𝑑𝑖𝑙𝑎𝑡𝑒 𝑥, 𝑦 = max
(!,!)∈!"#$"%

𝑠𝑟𝑐(𝑥 + 𝑖, 𝑦 + 𝑗) 

You might be wondering why we need a complicated formula when the earlier heuristic description was 
perfectly sufficient. Some users actually prefer such formulas but, more importantly, the formulas capture 



 

 

some generality that isn’t apparent in the qualitative description. Observe that if the image is not Boolean, 
then the min and max operators play a less trivial role. Take another look at 

 

Figure 5-22 and  

Figure 5-20, which show the erosion and dilation operators applied to two real images. 

The General Morphology Function 
When working with Boolean images and image masks, the basic erode and dilate operations are usually 
sufficient. When working with grayscale or color images, however, a number of additional operations are 
often helpful. Several of the more useful operations can be handled by the multipurpose 
cv::morphologyEx() function. 

void cv::morphologyEx( 
  cv::InputArray    src,               // Input Image 
  cv::OutputArray   dst,               // Result image 
  int               op,                // Morphology operator to use e.g. cv::MOP_OPEN 
  cv::InputArray    element,           // Structuring element, can be cv::Mat()    
  cv::Point         anchor     = cv::Point(-1,-1),  // Location of anchor point 
  int               iterations = 1,                 // Number of times to apply 
  int               borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
  const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()  
 



 

 

); 

In addition to the arguments that we saw with the cv::dilate() and cv::erode() functions, 
cv::morphologyEx() has one new—and very important—parameter. This new argument, called op, 
is the specific operation to be done; the possible values of this argument are listed on Table 5-3. 

Table 5-3: cv::morphologyEx() operation options 

Value of operation Morphological operator Requires temp image? 
cv::MOP_OPEN                  Opening No 
cv::MOP_CLOSE                  Closing No 
cv::MOP_GRADIENT  Morphological gradient Always 
cv::MOP_TOPHAT                  Top Hat For in-place only (src = 

dst) 
cv::MOP_BLACKHAT  Black Hat For in-place only (src = 

dst) 

Opening and closing 

 
Figure 5-23: Morphological opening applied to a simple Boolean image. 

The first two operations, opening and closing, are actually simple combinations of the erosion and dilation 
operators. In the case of opening, we erode first and then dilate (Figure 5-23). Opening is often used to 
count regions in a Boolean image. For example, if we have thresholded an image of cells on a microscope 
slide, we might use opening to separate out cells that are near each other before counting the regions.  

 
Figure 5-24: Morphological closing applied to a simple Boolean image. 

In the case of closing, we dilate first and then erode (Figure 5-24). Closing is used in most of the more 
sophisticated connected-component algorithms to reduce unwanted or noise-driven segments. For 
connected components, usually an erosion or closing operation is performed first to eliminate elements that 



 

 

arise purely from noise and then an opening operation is used to connect nearby large regions. (Notice that, 
although the end result of using open or close is similar to using erode or dilate, these new operations tend 
to preserve the area of connected regions more accurately.) 

 

 

Figure 5-25: Morphological opening operation applied to a (one-dimensional) non-Boolean image: the 
upward outliers are eliminated as a result 

 

 

Figure 5-26: Morphological closing operation applied to a (one-dimensional) non-Boolean image: the 
downward outliers are eliminated as a result 

When used on non-Boolean images, the most prominent effect of closing is to eliminate lone outliers that are 
are lower in value than their neighbors, whereas the effect of opening is to eliminate lone outliers that are 

higher than their neighbors. Results of using the opening operator are shown in 

 

Figure 5-25, and of the closing operator in  

 

Figure 5-26. 



 

 

 

Figure 5-27: Results of morphological opening on an image: small bright regions are removed, and the 
remaining bright regions are isolated but retain their size 

One last note on the opening and closing operators concerns how the iterations argument is 
interpreted. You might expect that asking for two iterations of closing would yield something like dilate-

erode-dilate-erode. It turns out that this would not be particularly useful. What you usually want (and what 
you get) is dilate-dilate-erode-erode. In this way, not only the single outliers but also neighboring pairs of 

outliers will disappear. Figure 5-23 (c) and  

 

Figure 5-26 (c) illustrate the effect of calling open and close (respectively) with an iteration count of two. 

 

Figure 5-28: Results of morphological closing on an image: bright regions are joined but retain their basic 
size 



 

 

Morphological gradient 

 
Figure 5-29: Morphological gradient applied to a simple Boolean image. 

Our next available operator is the morphological gradient. For this one, it is probably easier to start with a 
formula and then figure out what it means: 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑟𝑐 =   𝑑𝑖𝑙𝑎𝑡𝑒 𝑠𝑟𝑐 – 𝑒𝑟𝑜𝑑𝑒 𝑠𝑟𝑐 .  

As we can see in Figure 5-29, the effect of subtracting the eroded (slightly reduced) image from the dilated 
(slightly enlarged) image is to leave behind a representation of the edges of objects in the original image.  

 

Figure 5-30: Morphological gradient applied to (one-dimensional) non-Boolean image: as expected, the 
operator has its highest values where the grayscale image is changing most rapidly. 

With a grayscale image (  

Figure 5-30), we see that the value of the operator is telling us something about how fast the image 
brightness is changing; this is why the name “morphological gradient” is justified. Morphological gradient 
is often used when we want to isolate the perimeters of bright regions so we can treat them as whole objects 
(or as whole parts of objects). The complete perimeter of a region tends to be found because a contracted 



 

 

version is subtracted from an expanded version of the region, leaving a complete perimeter edge. This 
differs from calculating a gradient, which is much less likely to work around the full perimeter of an object. 

 

Figure 5-31: Results of the morphological gradient operator: bright perimeter edges are identified 

Top Hat and Black Hat 

 
Figure 5-32: The Top Hat (left) and Black Hat (right) morphology operators 

The last two operators are called Top Hat and Black Hat [Meyer78]. These operators are used to isolate 
patches that are, respectively, brighter or dimmer than their immediate neighbors. You would use these 
when trying to isolate parts of an object that exhibit brightness changes relative only to the object to which 
they are attached. This often occurs with microscope images of organisms or cells, for example. Both 
operations are defined in terms of the more primitive operators, as follows: 

𝑇𝑜𝑝𝐻𝑎𝑡 𝑠𝑟𝑐 =   𝑠𝑟𝑐– 𝑜𝑝𝑒𝑛 𝑠𝑟𝑐 ,  

𝐵𝑙𝑎𝑐𝑘𝐻𝑎𝑡 𝑠𝑟𝑐 =   𝑐𝑙𝑜𝑠𝑒 𝑠𝑟𝑐 – 𝑠𝑟𝑐.  

 



 

 

 

Figure 5-33: Results of morphological Top Hat operation: bright local peaks are isolated 

As you can see, the Top Hat operator subtracts the opened form of A from A. Recall that the effect of the 
open operation was to exaggerate small cracks or local drops. Thus, subtracting 𝑜𝑝𝑒𝑛(𝐴) from 𝐴 should 
reveal areas that are lighter than the surrounding region of 𝐴, relative to the size of the kernel (see Figure 5-
33); conversely, the Black Hat operator reveals areas that are darker than the surrounding region of 𝐴 
(Figure 5-34). Summary results for all the morphological operators discussed in this chapter are assembled 
in Figure 5-18.18 

 

Figure 5-34: Results of morphological Black Hat operation: dark holes are isolated 

Making Your Own Kernel 
In the morphological operations we have looked at so far, the kernels considered were always square and 3-
by-3. If you need something a little more general than that, OpenCV allows you to create your own kernel. 

                                                             
18 Both of these operations (Top Hat and Black Hat) make more sense in grayscale morphology, where the structuring 
element is a matrix of real numbers (not just a Boolean mask) and the matrix is added to the current pixel neighborhood 
before taking a minimum or maximum. Unfortunately, this is not yet implemented in OpenCV. 



 

 

In the case of morphology, the kernel is often called a structuring element, so the routine that allows you to 
create your own morphology kernels is called cv::getStructuringElement(). 

In fact, you can just create any array you like and use it as a structuring element in functions like 
cv::dilate(), cv::erode(), or cv::morphologyEx(), but this is often more work than is 
necessary. Often what you need is a nonsquare kernel of an otherwise common shape. This is what 
cv::getStructuringElement() is for: 

cv::Mat cv::getStructuringElement( 
  int       shape,                     // Element shape, e.g. cv::MORPH_RECT  
  cv::Size  ksize,                     // Size of structuring element (should be odd)  
  cv::Point anchor = cv::Point(-1,-1)  // Location of anchor point 
); 

The first argument shape controls which basic shape will be used to create the element (Table 5-4), while 
ksize and anchor specify the size of the element and the location of the anchor point, respectively. As 
usual, if the anchor argument is left with its default value of cv::Point(-1,-1), then 
cv::getStructuringElement() will take this to mean that the anchor should automatically be 
placed at the center of the element. 

Table 5-4 cv::getStructuringElement() element shapes 

Value of shape Element Description 
cv::MORPH_RECT                  Rectangular  𝐸!,! = 1,∀𝑖, 𝑗 
cv::MORPH_ELLIPSE                  Elliptic  Ellipse with axes ksize.width and 

ksize.height. 
cv::MORPH_CROSS  Cross-shaped  𝐸!,! = 1, iff 𝑖 == 𝑎𝑛𝑐ℎ𝑜𝑟. 𝑦 or 𝑗 == 𝑎𝑛𝑐ℎ𝑜𝑟. 𝑥 

Of the options for shape shown in Table 5-4, the last is there only for legacy 
compatibility. In the old C API (v1.x), there was a separate structure used for the purpose 
of expressing convolution kernels. There is no need to use this functionality now, as you 
can simply pass any cv::Mat to the morphological operators as a structuring element if 
you need something more complicated than the basic shape-based elements created by 
cv::getStructuringElement(). 

Convolution with an Arbitrary Linear Filter 
In the functions we have seen so far, the basic mechanics of the convolution were happening deep down 
below the level of the OpenCV API. We took some time to understand the basics of convolution, then we 
went on to look at a long list of functions that implemented different kinds of useful convolutions. In 
essentially every case, there was a kernel that was implied by the function we chose, and we just passed 
that function a little extra information that parameterized that particular filter type. For linear filters, 
however, it is possible to just provide the entire kernel and let OpenCV handle the convolution for us. 

From an abstract point of view, this is very straightforward: we just need a function that takes an array 
argument to describe the kernel and we are done. At a practical level, there is an important subtlety that 
strongly affects performance. That subtlety is that some kernels are separable, and others are not.  
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Figure 5-35: The Sobel kernel (a) is separable; it can be expressed as two one-dimensional convolutions (b 
and c); (d) is an example of a non-separable kernel 

A separable kernel is one that can be thought of as two one-dimensional kernels, the application of which is 
done by first convolving with the 𝑥-kernel and then with the 𝑦-kernel. The benefit of this decomposition is 
that the computational cost of a kernel convolution is approximately the image area multiplied by the 
kernel area19. This means that convolving your image of area 𝐴 by an 𝑛-by-𝑛 kernel takes time proportional 
to 𝐴𝑛!, while convolving your image once by an 𝑛-by-1 kernel and then by a 1-by-𝑛 kernel takes time 
proportional to 𝐴𝑛 + 𝐴𝑛 = 2𝐴𝑛. For even n as small as 3 there is a benefit, and the benefit grows with 𝑛. 

Applying a general filter with cv::filter2D() 

Given that the number of operations required for an image convolution, at least at first glance20, seems to be 
the number of pixels in the image multiplied by the number of pixels in the kernel, this can be a lot of 
computation and so is not something you want to do with some for loop and a lot of pointer de-
referencing. In situations like this, it is better to let OpenCV do the work for you and take advantage of the 
internal optimizations. The OpenCV way to do this is with cv::filter2D(): 

cv::filter2D( 
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  int             ddepth,              // Pixel depth of output image (e.g., cv::U8)  
  cv::InputArray  kernel,              // Your own kernel 
  cv::Point       anchor     = cv::Point(-1,-1),  // Location of anchor point 
  double          delta = 0,                      // Offset before assignment to dst 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

Here we create an array of the appropriate size, fill it with the coefficients of our linear filter, and then pass 
it together with the source and destination images into cv::filter2D(). As usual, we can specify the 
depth of the resulting image with ddepth, the anchor point for the filter with anchor, and the border 
extrapolation method with borderType. The kernel can be of even size if its anchor point is defined; 
otherwise, it should be of odd size. If you want an overall offset applied to the result after application of the 
linear filter, you can use the argument delta. 

Applying a general separable filter with cv::sepFilter2D 

In the case where your kernel is separable, you will get the best performance from OpenCV by expressing 
it in its separated form and passing those one-dimensional kernels to OpenCV (e.g., passing the kernels 
shown in Figure 5-35b and Figure 5-35c instead of the one shown in Figure 5-35a.) The OpenCV function 
cv::sepFilter2D() is like cv::filter2D(), except that it expects these two one-dimensional 
kernels instead of one two-dimensional kernel. 

cv::sepFilter2D( 
  cv::InputArray  src,                 // Input Image 
  cv::OutputArray dst,                 // Result image 
  int             ddepth,              // Pixel depth of output image (e.g., cv::U8)  
  cv::InputArray  rowKernel,           // 1-by-N row Kernel 
  cv::InputArray  columnKernel,        // M-by-1 column kernel 
  cv::Point       anchor     = cv::Point(-1,-1),  // Location of anchor point 

                                                             
19 This statement is only exactly true for convolution in the spatial domain, which is how OpenCV handles only small 
kernels. 
20 We say “at first glance” because it is also possible to perform convolutions in the frequency domain. In this case, for 
an n-by-n image and an 𝑚-by-𝑚 kernel with  𝑛   ≫ 𝑚, the computational time will be proportional to 𝑛! log n  and 
not to the  𝑛!𝑚! that is expected for computations in the spatial domain. Because the frequency domain computation is 
independent of the size of the kernel, it is more efficient for large kernels. OpenCV automatically decides whether to do 
the convolution in the frequency domain based on the size of the kernel. 



 

 

  double          delta      = 0,                 // Offset before assignment to dst 
  int             borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

All the arguments of cv::sepFilter2D() are the same as those of cv::filter2D(), with the 
exception of the replacement of the kernel argument with the rowKernel and columnKernel 
arguments. The latter two are expected to be 𝑛!-by-1 and 1-by-𝑛! arrays (with 𝑛! not necessarily equal to 
𝑛!). 

The Filter Architecture 
Almost all of the functions described in this chapter are based on a unified Filter Architecture. The Filter 
Architecture is a class system that allows you (or the OpenCV developers) to create a new filter and 
automatically reuse all of the things that every filter has in common (the convolution steps, handling of the 
borders, etc.)  

The Big Picture 
The process of doing convolutions is complex because these are always very computationally intensive 
operations. As a result, there is a great benefit to doing things very efficiently. On the other hand, writing 
very efficient code is often very difficult to do in a modular way. As a result, OpenCV has an entire 
architecture for handling just this problem. This architecture begins at the top with high-level operations 
like cv::blur(). This function takes your image, smoothes it, and gives it back. Sounds simple, but this 
is actually the result of many different layers operating together. When you want to do your own thing, you 
will have to figure out exactly which level you want to tinker with. Tinker at too high a level, and you 
won’t have the control you need. Tinker at too low a level, and you will find yourself reinventing every sort 
of wheel before you are done. To get the most out of OpenCV’s filter architecture, it is important to keep 
the big picture in mind. 

The big picture is best understood by working through an example. The “top” layer of the filter architecture 
is a collection of high-level service routines, like cv::blur() mentioned above. Inside of 
cv::blur(), however, your image is given to an object called a filter engine. The filter engine is a class 
that handles all of the general aspects of applying a filter kernel to your image, like iterating over the 
image, operating on each segment of the image, and handling boundary conditions. As the filter engine 
moves through the image, it will pass chunks of the image down to the next level that contains the actual 
filters. These filters, called base filters in OpenCV, do the actual work of computing individual destination 
image pixels from small windows of the source image and the kernel. At the very bottom of this hierarchy 
are the kernel builders. These are routines that actually compute individual kernels from some specific set 
of parameters (i.e., the variance of the Gaussian used in the cv::blur() code). 

Filter Engines 
You can use the Filter Engine layer to implement your own basic filters. The filters you implement need 
not be linear filters as was the case with cv::filter2D(). For performance reasons, you may also want 
to create composite filters, which—though they may accomplish something similar or identical to some 
sequence of filters provided for you by OpenCV—will run much faster. This is because combining the 
operations at a local level will mean that your data will stay in the processor cache, get handled, and get 
sent back to main memory, in just one transaction (as opposed to one for each filter you used in the 
composition). 

The Basics of How Filter Engines Work 
The basic objects that are used to represent filters in two dimensions are all derived from the 
cv::BaseFilter class. This class essentially defines the kernel operation. For linear kernels, this can 



 

 

be thought of as the kernel weights. For nonlinear kernels, in principle, this could be just about any function 
that maps the weights in the kernel support area to a single number that is the result of the filter. 

The object responsible for applying a filter is a cv::FilterEngine. The cv::FilterEngine class 
is one of those “classes that do things.” When you want to use a cv::BaseFilter-derived kernel 
object, you have to create a cv::FilterEngine object to do the work, and pass it a pointer to your 
cv::BaseFilter object when you create it. 

The cv::FilterEngine Class 

The filter engine class is both a container for the base filters, as well as a device for actually applying the 
filter to an image. When constructed, the filter engine constructor will require either a two-dimensional 
filter (non-separable case) or two one-dimensional filters (separable case). In addition, you will have to tell 
it what kinds of images it will operate on, what kind it will return, and what data type to use for its 
intermediate buffer (more on that in a moment). The way the borders are handled is also a property of the 
filter engine, as it is responsible for the action of the more atomic filter object it contains on the images 
provided to the engine. Here is the constructor for the cv::FilterEngine class: 

cv::FilterEngine( 
  const cv::Ptr< cv::BaseFilter>&       _filter2D, 
  const cv::Ptr< cv::BaseRowFilter>&    _rowFilter, 
  const cv::Ptr< cv::BaseColumnFilter>& _columnFilter, 
  int                                   srcType,  
  int                                   dstType,  
  int                                   bufType, 
  int                                   _rowBorderType    = cv::BORDER_REPLICATE, 
  int                                   _columnBorderType = -1, 
  const Scalar&                         _borderValue      = cv::Scalar()  
); 

The first three arguments are used to pass the base filter to the filter engine. We will cover the details of 
how to make those shortly. What is important at the moment is that you will only use either the first option, 
_filter2D, or the next two, _rowFilter and _columnFilter. If you are using _filter2D, then 
you should pass cv::Mat() (empty matrix constructor) to _rowFilter and _columnFilter; 
conversely if you wish to use _rowFilter and _columnFilter, you should pass cv::Mat() to 
_filter2D. 

The next three arguments, srcType, dstType, and bufType should all be depth types (e.g., cv::F32 
etc.) All data passed to the filter engine must be of type srcType. All final returned data will be of type 
dstType. The buffer type bufType must be the same as the source type for non-separable filters. In the 
case of separable filters, the row filter will be processed first, and its output will be written to a buffer of 
type bufType. The column filter will then be applied on that buffer and the results written to the output 
area, which will be of the destination type. Thus the row filter must be one that takes arrays of type 
srcType and returns bufType, while the column filter must take arrays of type bufType and return 
arrays of type dstType.  

Row and column borders can be handled differently by the filter engine if you like, by passing different 
values to _rowBorderType and _columnBorderType. If you wish, you may pass -1 (the default 
value) to _columnBorderType to make it the same as the row border type. The border value 
_borderValue is only used for cv::BORDERTYPE_CONSTANT, in which case extrapolated pixels 
will have value _borderValue. 

You may create a filter engine with the constructor described above, or you may create a filter engine using 
the default constructor cv::FilterEngine(), and then initialize the engine with its init() method: 

cv::FilterEngine::init( 
  const cv::Ptr< cv::BaseFilter>&       _filter2D, 
  const cv::Ptr< cv::BaseRowFilter>&    _rowFilter, 
  const cv::Ptr< cv::BaseColumnFilter>& _columnFilter, 
  int                                   srcType,  



 

 

  int                                   dstType,  
  int                                   bufType, 
  int                                   _rowBorderType    = cv::BORDER_REPLICATE, 
  int                                   _columnBorderType = -1, 
  const Scalar&                         _borderValue      = cv::Scalar()  
); 

Once you have the filter engine, there are several methods that allow you to use the engine to actually do a 
convolution. They are the methods called cv::FilterEngine::start(), 
cv::FilterEngine::proceed(), and cv::FilterEngine::apply(). The start() 
methods initializes convolution for processing pixels in a set region of the source image, though it does not 
actually process the pixels. The proceed() method does the processing of pixels in that section of the 
image after start() or a previous call to proceed(). The apply() method is essentially a higher-
level call that processes the entire image at once. 

virtual int cv::FilterEngine::start(   // Return starting y-position in source image 
  cv::Size        wholeSize,           // Size of entire source image 
  Rect            roi,                 // Region of interest inside of source image 
  int             maxBufRows = -1      // Leave this at -1, or see text below 
); 
virtual int cv::FilterEngine::start(   // Return starting y-position in source image 
  const cv::Mat&  src,                 // Source image 
  const cv::Rect& srcRoi     = cv::Rect(0,0,-1,-1), // Region of interest in source  
  bool            isolated   = false,  // if true, use edge extrapolation 
  int             maxBufRows = -1      // Leave this at -1, or see text below 
); 

Both forms of cv::FilterEngine::start() support a region of interest, typically abbreviated ROI. 
This is the portion of the incoming source image that will be acted on by the filter engine. The first form of 
start() requires to be told both the size of the image that is going to be processed, called wholeSize, and 
the size and location of the ROI, which are together in the cv::Rect called roi. The argument 
maxBufRows should be left at its default value of -1.21 

The second form is the one you will probably use most often; it takes the source image (and computes the 
equivalent of wholeSize from that), the region of interest, and a new argument called isolated. The 
parameter isolated deals with the way off-the-edge pixels are treated for an ROI that is smaller than the 
entire image. If isolated is true, those pixels will be extrapolated the same as would be off-the-edge 
pixels of the image as a whole. If isolated is false, however, off-the-edge pixels will not be 
extrapolated. Instead they will be taken from the image outside of the ROI. 
cv::FilterEngine::start() returns an integer indicating the y-position in the image at which 
processing should begin (as computed from the ROI). 

Once you have called cv::FilterEngine::start(), you can begin processing your data with 
cv::FilterEngine::proceed(). 
                                                             
21 This parameter is the size of internal ring buffer used for filtering and affects only the processing speed. As 
maxBufRows increases from the minimal value (i.e., kernel_aperture_height), the speed will increase until, 
after a certain value, it will decrease because of the less efficient cache use. The measured difference in speed should be 
quite small, but you can play with it if filter performance is critical to your application. 
In the case of non-separable filters with large apertures however, keep in mind that the function cv::filter2D() 
checks the aperture size and, if it's large enough (~11-by-11 or larger), it uses the fast DFT-based algorithm. This 
method filters each pixel in ~𝑂(𝑙𝑜𝑔  𝑛) time (i.e. time almost does not depend on the aperture size). By contrast, 
FilterEngine always uses the direct algorithm that takes  𝑂(𝑛!) operations for each pixel (in the case of an 𝑛-by-𝑛 
filter). In other words, if you want the highest performance in linear non-separable filtering operations, where aperture 
size is sufficiently large, it's better to use cv::filter2D(), rather than to use FilterEngine and try to tune 
maxBufRows. 

Thank Vadim Pisarevsky for this important insight.  



 

 

virtual int cv::FilterEngine::proceed( // Returns the number of produced rows 
  const uchar* src,                    // Points into source image 
  int          srcStep,                // Source image step size 
  int          srcCount,               // Number of row steps to process 
  uchar*       dst,                    // Points into destination image 
  int          dstStep                 // Destination image step size 
); 

When called, cv::FilterEngine::proceed() requires to be passed some detailed bookkeeping 
information. The first argument src is the location in memory of the current row being operated on. This 
means, for example, that the first time you call cv::FilterEngine::proceed(), you will need to 
compute src from the y-value returned to you by cv::FilterEngine::start(). You will also 
have to pass the step size from the source image as srcStep. The argument srcCount is the number or 
row steps you would like to process in this call to cv::FilterEngine::proceed(). Finally, you 
must give the data pointer and step size for the area to which the results of the filter will be written. These 
two arguments are dst and dstStep, respectively. The way in which both 
cv::FilterEngine::start() and cv::FilterEngine::proceed() are used is best 
understood by example. Below is an example from the OpenCV source code, which is a (slightly 
simplified) implementation of the Laplace operator: 

Example 5-4: An example implementation of a Laplace operator using the cv::FilterEngine() class 

void laplace_f( 
  const cv::Mat& src,                  // Input image 
  cv::Mat&       dst                   // Result image 
) { 
  CV_Assert( src.type() == cv::F32 ); 
  dst.create( src.size(), src.type() ); 
 
  // get the derivative and smooth kernels for d2I/dx2 
  // for d2I/dy2 use the same kernels, just swapped 
  cv::Mat kd, ks; 
  cv::getSobelKernels( kd, ks, 2, 0, ksize, false, ktype ); 
 
  // process 10 source rows at once 
  int DELTA = std::min(10, src.rows); 
  cv::Ptr< cv::FilterEngine> Fxx = cv::createSeparableLinearFilter( 
    src.type(), 
    dst.type(),  
    kd, ks,  
    Point(-1,-1),  
    0,  
    borderType, borderType,  
    Scalar()  
  ); 
  cv::Ptr< cv::FilterEngine> Fyy = cv::createSeparableLinearFilter( 
    src.type(), 
    dst.type(),  
    ks, kd,  
    Point(-1,-1),  
    0,  
    borderType, borderType,  
    Scalar()  
  ); 
 
  int y = Fxx->start(src), dsty = 0, dy = 0; 
  Fyy->start(src); 
  const uchar* sptr = src.data + y*src.step; 
 
  // allocate the buffers for the spatial image derivatives; 
  // the buffers need to have more than DELTA rows, because at the 
  // last iteration the output may take max(kd.rows-1,ks.rows-1) 



 

 

  // rows more than the input. 
  cv::Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() ); 
  cv::Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() ); 
 
  // inside the loop always pass DELTA rows to the filter 
  // (note that the "proceed" method takes care of possibe overflow, since 
  // it was given the actual image height in the "start" method) 
  // on output you can get: 
  //  * < DELTA rows (initial buffer accumulation stage) 
  //  * = DELTA rows (settled state in the middle) 
  //  * > DELTA rows (when the input image is over, generate 
  //                  "virtual" rows using the border mode and filter them) 
  // this variable number of output rows is dy 
  // dsty is the current output row 
  // sptr is the pointer to the first input row in the portion to process 
  // 
  for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy ) 
  { 
    Fxx->proceed(  
      sptr,  
      (int) src.step,  
      DELTA, 
      Ixx.data,  
      (int) Ixx.step  
    ); 
    dy = Fyy->proceed(  
      sptr,  
      (int) src.step,  
      DELTA,  
      Iyy.data,  
      (int) Iyy.step  
    ); 
    if( dy > 0 ) 
    { 
      Mat dstripe = dst.rowRange( dsty, dsty + dy ); 
      add( Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe ); 
    } 
  } 
} 

We will cover shortly how functions like cv::createSeparableLinearFilter() work, but what 
is important here is that these functions just return instances of classes derived from the 
cv::FilterEngine base class. Also, notice how the start() and proceed() methods are used. As 
you can see, the implementation laplace_f() loops through the incoming image in chunks of size 
DELTA and processes each chunk before moving on. 

Now that you know how to use start() and proceed(), you might wonder why it is worth the effort. 
In fact, the next method we will look at called cv::FilterEngine::apply() just does the whole 
thing in one go.22 The reason is performance. If you have several things you want to do, like applying the 
two kernels (or more!) in sequence in our example, it is much better to do everything you want to do to a 
bit of data and then write it out to the destination image. In this way, you can keep all of the working data 
in processor cache and your filter will run much faster.  

If this kind of performance detail is not critical to your application, you can simply tell a filter engine to just 
go through an entire image and output the result. This is done with the 
cv::FilterEngine::apply() method. 

                                                             
22 One additional consequence of this is that when apply() calls start(), it always passes maxBufRows the 
default value of -1. 



 

 

virtual void apply( 
  const cv::Mat&  src,                 // Input image 
  cv::Mat&        dst                  // Result image 
  const cv::Rect& srcRoi   = cv::Rect(0,0,-1,-1), // Region of interest to he processed 
  cv::Point       dstOffs  = cv::Point(0,0),      // Offset to write to in destination image 
  bool            isolated   = false,             // if true, use edge extrapolation 
); 

Internally, cv::FilterEngine::apply() just wraps up a call to 
cv::FilterEngine::start() and then one big call to cv::FilterEngine::proceed(), 
which then goes through the entire image. The only new detail is the argument dstOffs, which is the 
destination offset. The destination offset is a point that indicates where in the destination image to write the 
result of the processed ROI. If left at its default value of cv::Point(0,0), then the result data will be 
written into the upper-left corner of the destination image. Otherwise, it will be offset appropriately. This is 
particularly useful when you wish to process some ROI in the source image and write the results to the 
corresponding location in the destination image. 

Filter Engine Builders 
OpenCV contains built in functions that will create filter engines for you. It is worth taking a moment to 
appreciate what this really means. Creating a filter engine means both creating the filters that the engine 
will apply (i.e., a box filter of a Gaussian filter, etc.), as well as actually implementing the start(), 
proceed(), and apply() methods of that filter for you. Each of the library routines we will discuss in 
this section creates an object of a different type, but all of these objects are derived from 
cv::FilterEngine, and so inherit the interface we discussed in the previous section, as well as 
provide the implementation of that interface. 

For each of these cv::FilterEngine factories, there is also a corresponding higher-level routine we 
have already encountered, which (unbeknownst to you) creates the appropriate engine, applies it to your 
image, and cleans it up, returning you only the result of that computation. For example, 
cv::boxFilter() is really just a higher-level wrapper around cv::createBoxFilter() and the 
subsequent application of the created filter to your image.23 

You will notice that all of these routines return cv::Ptr<cv::FilterEngine>. It is probably worth 
taking a moment to appreciate what this means. Notice first that this is a good example of where OpenCV 
uses its smart pointer construct cv::Ptr<>. This way you will not have to deallocate the filter engine you 
create. You can pass the smart pointer around, do what you need to with it, and trust that at the end of 
whatever you are doing, when there are no more references to the engine around, the engine itself will be 
deallocated. It is also worth noting that smart pointer, just like the traditional pointer, can be a base class 
pointer, and can be used to operate on derived class objects. Thus, just because all of these filter builders 
return a (smart) pointer of type cv::FilterEngine, it is not correct to conclude that they return objects 
of type cv::FilterEngine. Exactly on the contrary, these functions all return their own specific filter 
engine types that are all derived from cv::FilterEngine. 

cv::createBoxFilter() 

You can directly create a box filter using cv::createBoxFilter(): 

cv::Ptr<cv::FilterEngine> cv::createBoxFilter( 
  int       srcType,                   // Source image type (e.g., cv::U8)  
  int       dstType,                   // Destination image type (e.g., cv::U8) 
  cv::Size  ksize,                     // Kernel size    
  cv::Point anchor     = cv::Point(-1,-1),  // Location of anchor point 
  bool      normalize  = true,              // If true, divide by box area 

                                                             
23 Actually, cv::boxFilter() does not literally call cv::createBoxFilter() explicitly, but it essentially 
implements the latter’s functionality internally before calling the further subroutines shared by both routines. 



 

 

  int       borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

As you might have expected, the arguments to cv::createBoxFilter() are essentially the same as 
those for cv::boxFilter(), with the exception that instead of providing the source and destination 
images, only the types of those images are required to define the filter. The ksize and anchor 
arguments define the size of the kernel and the (optional) anchor point as with cv::boxFilter, and the 
filter can be normalized or not by setting the normalize argument to true or false. The borderType 
argument has the usual effect. 

cv::createDerivFilter() 

You can create a derivative filter using cv::createBoxFilter(): 

cv::Ptr<cv::FilterEngine> cv::createDerivFilter( 
  int srcType,                         // Source image type (e.g., cv::U8)  
  int dstType,                         // Destination image type (e.g., cv::U8)  
  int dx,                              // order of corresponding derivative in x 
  int dy,                              // order of corresponding derivative in y 
  int ksize,                           // Kernel size    
  int borderType = cv::BORDER_DEFAULT  // Border extrapolation to use 
);  

The arguments to cv::createDerivFilter() are essentially the same as those for cv::Sobel(), 
with the exception that instead of providing the source and destination images, only the types of those 
images are required to define the filter. The dx and dy arguments define the order of the derivative to be 
approximated, and ksize gives the size of the kernel to be used24. The borderType argument has the 
usual effect. 

cv::createGaussianFilter() 

You can directly create a Gaussian filter using cv::createGaussianFilter(): 

cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( 
  int      type,                       // Source and destination type (e.g., cv::U8) 
  cv::Size ksize,                      // Kernel size    
  double   sigmaX,                     // Gaussian half-width in x-direction 
  double   sigmaY      = 0.0,          // Gaussian half-width in y-direction 
  int      borderType = cv::BORDER_DEFAULT // Border extrapolation to use 
); 

As you might expect by now, the arguments to cv::createGaussianFilter() are essentially the 
same as those for cv::GaussianBlur(). In this case, however, there is only one type argument for 
the source and destination; this filter requires both to be of the same type25. sigmaX and sigmaY indicate 
the variance of the Gaussian in the 𝑥- and 𝑦-direction respectively, with sigmaY being optional (if set to 
zero sigmaY will be equal to sigmaX). The borderType argument has the usual effect. 

cv::createLinearFilter() 

You can directly create a general linear filter using cv::createLinearFilter(): 
cv::Ptr<cv::FilterEngine> cv::createLinearFilter( 
  int               srcType,           // Source image type (e.g., cv::U8)  
  int               dstType,           // Destination image type (e.g., cv::U8)  
  cv::InputArray    kernel,            // Your own kernel 

                                                             
24 Note that the ksize argument for cv::createDerivFilter() is an integer, while the ksize argument for 
cv::createBoxFilter() was of type cv::Size. This is natural because the kernel of a derivative filter will 
always be square. 
25 If you need to work around this, you can call cv::getGaussianKernel() directly, and then 
cv::createSeparableLinearFilter(). (We will get to both of those functions shortly.) 



 

 

  cv::Point         anchor     = cv::Point(-1,-1),  // Location of anchor point 
  double            delta = 0,                      // Offset before assignment to dst  
  int               rowBorderType    = cv::BORDER_DEFAULT, // Row extrapolation  
  int               columnBorderType = -1,                 // Column extrapolation  
  const cv::Scalar& borderValue      = cv::Scalar()        // Value for constant borders 
); 

If you have your own linear kernel, you can have OpenCV make it into a filter engine for you with 
cv::createLinearFilter(); this is the filter engine analog of cv::filter2D(). This function 
should only be used when you have a non-separable kernel, as you will get much better performance from 
cv::createSeparableLinearFilter() if your kernel is separable. The arguments are the source 
type, srcType, and destination type, dstType, for the input and output images, the kernel you want 
to use, an optional anchor point (the default is to use the center of your kernel), an optional offset 
delta, and the border extrapolation parameters. Unlike most of the other similar functions, 
cv::createLinearFilter() allows you to specify the border extrapolation method for the vertical, 
rowBorderType, and the horizontal, columnBorderType, separately. If you omit the latter (or set it 
to -1) it will default to being the same as the former. The final borderValue argument is used to define 
the off-the-edge pixel values when either rowBorderType or columnBorderType is set to cv:: 
BORDER_CONSTANT. 

cv::createMorphologyFilter() 

You can create a filter which implements the morphological operations using 
cv::createMorphologyFilter(): 

cv::Ptr<cv::FilterEngine> cv::createMorphologyFilter( 
  int               op,  
  int               type,  
  cv::InputArray    element,  
  cv::Point         anchor           = cv::Point(-1,-1),   // Location of anchor point 
  int               rowBorderType    = cv::BORDER_DEFAULT, // Row extrapolation  
  int               columnBorderType = -1,                 // Column extrapolation  
  const cv::Scalar& borderValue      = cv::Scalar()        // Value for constant borders 
) 

By now you know the pattern. The arguments to cv::createMorphologyFilter() are essentially 
the same as those for cv::morphologyEx(). The op argument must be one of the operations from 
Table 5-3, and the type is the type of the source and destination images, which must be the same. The 
element is your structuring element and the optional anchor lets you locate the anchor point somewhere 
other than the (default) center of your structuring element. rowBorderType and columBorderType 
let you specify the vertical and horizontal border extrapolation methods, and borderValue is the 
constant used in the case that one of the extrapolation methods is cv::BORDER_CONSTANT. 

cv::createSeparableLinearFilter() 

In the case of a separable linear kernel, you can directly create a filter using 
cv::createSeparableLinearFilter(): 

cv::Ptr<cv::FilterEngine> cv::createSeparableLinearFilter( 
  int srcType,                         // Source image type (e.g., cv::U8)  
  int dstType,                         // Destination image type (e.g., cv::U8)  
  cv::InputArray    rowKernel,         // 1-by-N row Kernel 
  cv::InputArray    columnKernel,      // M-by-1 column kernel 
  cv::Point         anchor           = cv::Point(-1,-1),   // Location of anchor point 
  double            delta            = 0,                  // Offset before dst 
  int               rowBorderType    = cv::BORDER_DEFAULT, // Row extrapolation  
  int               columnBorderType = -1,                 // Column extrapolation  
  const cv::Scalar& borderValue      = cv::Scalar()        // Value for constant borders 
); 

The cv::createSeparableLinearFilter() function is the filter engine analog of the 
cv::sepFilter2D() function. It requires the source type, srcType, and the destination type, 



 

 

dstType. The row and column kernels are each specified separately with rowKernel and 
columnKernel. anchor, delta, and the border extrapolation arguments all have their usual meanings. 

Base Filters 
The filter builders we looked at in the last section created the low-level filter object you needed for you, 
and then wrapped it up in a cv::FilterEngine object that you could then use. Of course, if you were 
always going to rely on these functions, it would not have been necessary to learn so much about how the 
filter engine itself actually works or gets constructed.  

The real reason to use this is when you are going to create your own filter entirely, and then use that to 
build a filter engine that does your own special thing. 

In this section, we will look at how you create a low-level filter object of your own. Because separability 
plays such an important role in the performance of filters, and because you would not be making your own 
base-level filters if you were not concerned about performance, the base filter classes are divided into the 
non-separable cv::BaseFilter class, and the two classes used for separable filters, 
cv::BaseRowFilter and cv::BaseColumnFilter. 

The cv::BaseFilter Class 

Down at the bottom of the image filtering class hierarchy lives cv::BaseFilter. It implements the 
actual operator that combines some kernel with the appropriate window of an input image to compute the 
corresponding output image pixel. This mapping need not be linear at all, and can be any general function 
of the input image pixels and the kernel pixels. The only restriction is that this function must be computable 
on a row-by-row basis26.  

The definition of the cv::BaseFilter class looks like the following: 
class cv::BaseFilter { 
 
public: 
 
  virtual ~BaseFilter(); 
 
  // To be overriden by the user. 
  // 
  // runs a filtering operation on the set of rows, 
  // "dstcount + ksize.height - 1" rows on input, 
  // "dstcount" rows on output, 
  // each input row has "(width + ksize.width-1)*cn" elements 
  // each output row has "width*cn" elements. 
  // the filtered rows are written into "dst" buffer. 
  // 
  virtual void operator() ( 
    const uchar** src,  
    uchar* dst,  
    int dststep, 
    int dstcount,  
    int width,  
    int cn 
  ) = 0; 
 
  // resets the filter state (may be needed for IIR filters) 
  // 

                                                             
26 This means that the function 𝐹, which maps the pixels 𝑥!,!  of the image and the values {𝑘!,!} of the kernel may 
contain terms which are functions of multiple values of 𝑗—the column index—but may not contain terms which are 
functions of multiple values of 𝑖—the row index. 



 

 

  virtual void reset(); 
 
  Size ksize; 
  Point anchor; 
}; 

As you can see, the method operator() is declared pure virtual, and of course this means that you 
cannot (directly) instantiate objects of type cv::BaseFilter. This should not surprise you, however; 
the intent is for you to be able to derive your own base filter objects off of cv::BaseFilter, and to 
implement the operator() and reset() functions yourself as appropriate for your own needs. 

The cv::BaseFilter::operator() is called by the filter engine (into which you have installed 
your base filter), so the filter engine is going to supply all of the arguments. The src and dst pointers will 
point to the source and destination data respectively, but they will point into those images at the proper 
place. The src pointer actually points to an array of pointers, each of which points to one of the rows that 
you will need to process the kernel (given by the ksize member variable). Similarly, the dst pointer 
points to the row in which the destination pixels are located. At the time when the call to 
cv::BaseFilter::operator() is made, these pointers will be “aligned,” in the sense that the dst 
points to the first pixel you will be computing, and the pointers in src point to the first pixels you will 
need for the kernel you have. All of this was set up for you by the filter engine. At this level, you do not 
need to worry about boundary conditions either, as the src pointers actually point to a place where the 
necessary boundary values are already computed. dststep is the step size you will need in order to 
increment the dst pointer to compute other destination values, while dstcount is the total number of 
destination values you will need to compute. width and cn are the width of the image rows to be 
processed and the number of channels respectively. 

The cv::BaseFilter::reset() method is only used in cases where the filter maintains an internal 
state. The method is automatically called before any new image is processed27.  

Once you have created your base filter, you can construct a filter engine to run it with the 
cv::FilterEngine() constructor and you are ready for business. 

The cv::BaseRowFilter and cv::BaseColumnFilter Classes 

As we saw when we looked at cv::FilterEngine, it can be given either a single non-separable base 
filter, or a pair of base filters corresponding to the row and column portions of a separable filter. The 
cv::BaseRowFilter and cv::BaseColumnFilter classes are how we implement those 
components of separable filters. Here are the class definitions for these two (virtual base) classes. 

class cv::BaseRowFilter { 
 
public: 
  virtual ~BaseRowFilter(); 
 
  // To be overriden by the user. 
  // 
  // runs filtering operation on the single input row 
  // of "width" element, each element is has "cn" channels. 
  // the filtered row is written into "dst" buffer. 
  // 
  virtual void operator()( 
    const uchar* src,  
    uchar* dst, 
    int width,  
    int cn 
  ) = 0; 

                                                             
27 As an example of where the reset method might be used, the current implementation of the box filter uses a sliding 
sum buffer, which needs to be cleared before each new call. 



 

 

 
  int ksize, anchor; 
}; 
 
class cv::BaseColumnFilter { 
 
public: 
  virtual ~BaseColumnFilter(); 
 
  // To be overriden by the user. 
  // 
  // runs a filtering operation on the set of rows, 
  // "dstcount + ksize - 1" rows on input, 
  // "dstcount" rows on output, 
  // each input and output row has "width" elements 
  // the filtered rows are written into "dst" buffer. 
  // 
  virtual void operator()( 
    const uchar** src,  
    uchar* dst,  
    int dststep, 
    int dstcount,  
    int width 
  ) = 0; 
 
  // resets the filter state (may be needed for IIR filters) 
  // 
  virtual void reset(); 
 
  int ksize, anchor; 
}; 

The cv::BaseRowFilter class is the simplest because row data is sequential in memory, and so there 
is a little less bookkeeping. The associated cv::BaseRowFilter::operator() inherits this relative 
simplicity. The arguments are just the pointers to the source and destination rows, the width of the rows, 
and the number of channels, cn. As with cv::BaseFilter::operator(), the source and destination 
pointers are of type uchar*, and so it will be your responsibility to cast them to the correct type.  

The cv::BaseColumnFilter class needs to handle the non-sequential nature of the required data. As a 
result, there are the additional arguments dststep and dstcount, which the row filter did not require28. 
These have the same meaning as they did for the cv::BaseFilter() class. 

Base Filter Builders 
There will be times when you want to build your own filter engine, but will want to use existing filters to 
build it. In these cases, it is not necessary to go and re-implement the low-level filters you want. Instead, 
you can ask OpenCV to just give you the base filter object it normally uses for a particular task.  

getLinearFilter(), getLinearRowFilter(), and getLinearColumnFilter() 
cv::Ptr<cv::BaseFilter> cv::getLinearFilter( // Return filter object 
  int            srcType,              // Source image type (e.g., cv::U8)  
  int            dstType,              // Destination image type (e.g., cv::U8)  
  cv::InputArray kernel,               // Your own kernel 
  cv::Point      anchor = cv::Point(-1,-1),  // Location of anchor point 
  double         delta  = 0,                 // Offset before assignment to dst  
  int            bits   = 0                  // For fixed precision integer kernels 

                                                             
28 You will also notice that the number of channels is not present. This is because it is, in effect, now absorbed into 
dststep. 



 

 

); 
 
cv::Ptr<cv::BaseColumnFilter> cv::getLinearColumnFilter( // Return filter object  
  int            bufType,              // Buffer image type (e.g., cv::U8) 
  int            dstType,              // Destination image type (e.g., cv::U8)  
  cv::InputArray columnKernel,         // M-by-1 column kernel 
  int            anchor,               // 1-d Location of anchor point 
  int            symmetryType,         // See Table 5-5 
  double         delta  = 0,           // Offset before assignment to dst  
  int            bits   = 0            // For fixed precision integer kernels 
); 
 
cv::Ptr<cv::BaseRowFilter> cv::getLinearRowFilter(      // Return filter object 
  int            srcType,              // Source image type (e.g., cv::U8)  
  int            bufType,              // Buffer image type (e.g., cv::U8)  
  cv::InputArray rowKernel,            // 1-by-N row Kernel 
  int            anchor,               // 1-d Location of anchor point 
  int            symmetryType,         // See Table 5-5 
; 

The function cv::getLinearFilter() returns a (smart) pointer to a cv::BaseFilter-derived 
object that implements a general two-dimensional non-separable linear filter based on the kernel (and 
anchor point) you provide. You can provide an optional output offset delta, which will be applied after 
your kernel and before the result is written to the destination array. The last argument, bits, is used when 
your kernel is an integer matrix, but you want to use it to represent fixed (but nonzero) precision numbers. 

The cv::getLinearRowFilter() and cv::getLinearColumnFilter() functions return 
(smart) pointers to cv::BaseRowFilter and cv::BaseColumnFilter objects, respectively. The 
one additional argument that is interesting in these two is the symmetryType argument. The symmetry 
type may be any of the options shown in Table 5-5, including combinations of the types where meaningful 
(e.g., a kernel might be both smooth and symmetrical, in which case symmetryType would be 
cv::KERNEL_SMOOTH | cv::KERNEL_SYMMETRICAL). 

Table 5-5: Filter kernel symmetry types 

Kernel Symmetry Meaning 
 cv::KERNEL_GENERAL                  Generic type, means no special 

symmetries. 
 cv::KERNEL_SYMMETRICAL                  Kernel is symmetrical and anchor 

is at the center. 
 cv::KERNEL_ASYMMETRICAL                  Kernel is asymmetrical and 

anchor is at the center. 
 cv::KERNEL_SMOOTH                  Kernel is greater than or equal to 

zero everywhere and normalized. 
 cv::KERNEL_INTEGER                  All kernel elements are integers. 

You should make sure that what you indicate to be the symmetry properties of your kernel are in fact 
correct. The benefit of this information is that it can lead to a much faster operation of the filter. 
Alternatively, you can ask OpenCV to automatically inspect your kernel for you, by calling the function 
cv::getKernelType( cv::InputArray kernel, cv::Point anchor ), which will 
determine the kernel type for you. This is not really the best way to do things if you can compute the 
answer yourself at coding time—because of the runtime required to inspect the kernel—but can be handy if 
the kernel itself is being dynamically generated at runtime.  



 

 

getMorphologyFilter(),  getMorphologyRowFilter(), and 
getMorphologyColumnFilter() 

These functions are the analogs of the linear filter generators above, only for morphological filters. As with 
the linear filters, there is a function for creating a non-separable two-dimensional filter, and two methods 
for creating the two one-dimensional filter types needed to define a separable kernel: 

cv::Ptr<cv::BaseFilter> cv::getMorphologyFilter( 
  int            op,                   // Morphology operator to use e.g. cv::MOP_OPEN 
  int            type,                 // Source and destination type (e.g., cv::U8)  
  cv::InputArray element,              // Structuring element    
  cv::Point      anchor = cv::Point(-1,-1),  // Location of anchor point 
); 
 
cv::Ptr<cv::BaseRowFilter> cv::getMorphologyRowFilter( 
  int            op,                   // Morphology operator to use e.g. cv::MOP_OPEN 
  int            type,                 // Source and destination type (e.g., cv::U8) 
  int            esize,                // Element size (width) 
  int            anchor = -1           // 1-d Location of anchor point 
); 
 
cv::Ptr<cv::BaseColumnFilter> cv::getMorphologyColumnFilter( 
  int            op,                   // Morphology operator to use e.g. cv::MOP_OPEN 
  int            type,                 // Source and destination type (e.g., cv::U8) 
  int            esize,                // Element size (height) 
  int            anchor = -1           // 1-d Location of anchor point 
); 

The first function, cv::getMorphologyFilter(), which is used for non-separable kernels expects a 
morphological operator type op (from Table 5-3), the input and output image type given by type, a 
structuring element and an optional anchor point. 

The row and column filter constructors require the same arguments, except that the element size, esize, is 
just an integer that indicates the extent of the row (or column) dimension of the kernel. Similarly, the 
anchor point, anchor, is an integer that, as usual, can be set to -1 to indicate that the center point of the 
kernel is to be used. 

Kernel Builders 
At this point, you have found your way to the absolute bottom of the food chain: the OpenCV filter stack. 
High-level functions call filter engines. Filter engines call base filter generators. Base filter generators go to 
the kernel builders to get the actual arrays that represent individual kernels. The two kernel builders that 
you may want to access yourself are cv::getDerivKernel(), which constructs the Sobel and Scharr 
kernels, and cv::getGaussianKernel(), which constructs Gaussian kernels. 

cv::getDerivKernel() 

The actual kernel array for a derivative filter is generated by cv::getDerivKernel().   

void cv::getDerivKernels( 
  cv::OutputArray kx,  
  cv::OutputArray ky,  
  int             dx,                  // order of corresponding derivative in x 
  int             dy,                  // order of corresponding derivative in y 
  int             ksize,               // Kernel size    
  bool            normalize = true,    // If true, divide by box area 
  int             ktype     = cv::F32   // Type for filter coefficients 
); 

The result of cv::getDerivKernel() is placed in the kx and ky array arguments. You might recall 
that the derivative type kernels (Sobel and Scharr) are separable kernels. For this reason, you will get back 
two arrays, one that is 1-by-ksize (row coefficients, kx) and another that is ksize-by-1 (column 



 

 

coefficients, ky). These are computed from the x- and y-derivative orders dx and dy. The derivative 
kernels are always square, so the size argument ksize is an integer. ksize can be any of 1, 3, 5, 7, or 
cv::SCHARR. The normalize argument tells cv::getDerivKernels() if it should normalize the 
kernel elements “correctly.”  For situations where you are operating on floating point images, there is no 
reason not to set normalize to true, but when you are doing operations on integer arrays, it is often more 
sensible to not normalize the arrays until some later point in your processing, so that you will not throw 
away precision that you will later need29. The final argument ktype indicates the type of the filter 
coefficients (or equivalently the type of the arrays kx and ky). The value of ktype can be either 
cv::F32 or cv::F64. 

cv::getGaussianKernel() 

The actual kernel array for a Gaussian filter is generated by cv::getGaussianKernel(). 

cv::Mat cv::getGaussianKernel( 
  int             ksize,               // Kernel size    
  double          sigmaX,              // Gaussian half-width 
  int             ktype     = cv::F32   // Type for filter coefficients 
); 

As with the derivative kernel, the Gaussian kernel is separable. For this reason 
cv::getGaussianKernel() computes only a ksize-by-1 array of coefficients. The value of ksize 
can be any odd positive number. The argument sigma sets the standard deviation of the approximated 
Gaussian distribution. The coefficients are computed from sigma according to the following function: 

𝑘! = 𝛼 ∙ 𝑒
! !! !"#$%!! ! !

!! !  

That is, the coefficient alpha is computed such that the filter overall is normalized. sigma may be set to -
1, in which case the value of sigma will be automatically computed from the size ksize.30 

  

The Filter Architecture up Close (Advanced) 
An architecture as nuanced as the filter architecture in OpenCV is something like an automobile. You can 
choose to not understand it, and hope it works right (in which case, you could pretty much have skipped 
this entire section of the chapter), you can understand it at a user level, and be content that this will help 
you not do terribly unwise things that bite you later (like knowing that the oil does, in fact, have to be 
changed every few thousand miles), or you can really get down and understand the thing, with the mindset 
of maintaining it, modifying it, and bending it to your will. This above section of the chapter was mainly 
for that kind of intermediate users, who want to understand and use wisely, but maybe not seriously get 
down into it. This little subsection, however, is for the benefit of those of you who really want to go do 
some work yourself in the filter architecture. 

To this end, let’s consider a simple high-level call to cv::boxFilter(). This call will manage to use 
just about every nasty detail of the architecture before it is done. Example 5-5 shows what really happens 
when you call cv::boxFilter() and supply it with a source array, a destination array, and the kernel 
parameters.  

Example 5-5: A detailed walk-through of the operation of a high-level filter function: cv::boxFilter() 

cv::boxFilter calls cv::createBoxFilter, and passes the kernel parameters.  

                                                             
29 If you are, in fact, going to do this, you will find yourself needing that normalization coefficient at some point. The 
normalization coefficient you will need is: 2!"#$%∗!!!"!!"!!. 
30 In this case, 𝜎 = 0.3 ∙ !"#$%!!

!
− 1 + 0.8. 



 

 

cv::createBoxFilter calls cv::getRowSumFilter() and gives it type information and 

kernel parameters 

cv::getRowSumFilter uses the type information to call the template RowSum<>() 

constructor 

RowSum<> constructor returns a type-specific object derived from 

BaseRowFilter. class cv::RowSum<> implements operator() for row summation. 

cv::getRowSumFilter returns the cv::RowSum<> object 

cv::createBoxFilter calls cv::getColumnSumFilter() and gives it type information and 

kernel parameters 

cv::getColumnSumFilter uses the type information to call the template 

ColumnSum<>() constructor 

ColumnSum<>() constructor returns a type-specific object derived from 

BaseColumnFilter. class cv::ColumnSum<> implements operator() for column 

summation. 

cv::getColumnSumFilter returns the cv::ColumnSum<> object 

cv::createBoxFilter creates a new cv::FilterEngine object, and passes it the 

cv::RowSum<> and cv::ColumnSum<> filter objects. 

cv::createBoxFilter returns a pointer to the new cv::FilterEngine object 

cv::boxFilter() calls the apply method on the new cv::FilterEngine object it was given. 

The source and destination images given to cv::boxFilter are passed to the apply() 

method. (note that apply() would accept an ROI, but in this context one is not 

generated). 

The (generic) cv::FilterEngine::apply() method calls the (generic) 

cv::FilterEngine::start() method. It supplies the source image and any source image 

ROI. 

If an ROI was passed in, that is recorded in a cv::FilterEngine member variable. 

cv::FilterEngine::start() does some book-keeping that has to do with whether or 

not the source image is actually a subwindow of a larger image, we’ll ignore this 

for now. 

cv::FilterEngine::start() calls another (different) cv::FilterEngine::start() 

method. It passes this start() method the size of the “true” source image (i.e., 

if source is a view on some parent, this is the parent), and the location of the 

source ROI relative to that parent image. 

This cv::FilterEngine::start() allocates the internal ‘rows’ buffer of the 

FilterEngine. This is a vector of N char* pointers, where N is set either by 

the maxBufRows argument to apply (which nobody ever uses) or the kernel 

height. 

cv::FilterEngine::start() handles the borders 

cv::FilterEngine::start() computes the first source row that will be used in 

the computation of all results. Similarly, cv::FilterEngine::start() computes 

the last source row that will be used in the computation of all results. These 

are stored in in a cv::FilterEngine member variable 

cv::FilterEngine::start() calls the reset() member of the columnFilter member 

(which is the cv::ColumnSum object constructed above). 



 

 

cv::FilterEngine::start() (somewhat unnecessarily) returns the computed start 

source row.  

The first cv::FilterEngine::start() method returns the computed first row, but 

adjusted into the “coordinates” of the parent view (if the source image is 

actually a view on a larger array.) 

The cv::FilterEngine::apply() method computes the destination pointer for the first 

destination pixel. This is just the data area for the source image offset by the 

“true” start row multiplied by the source step. 

The cv::FilterEngine::apply() method computes the total number of rows that will be 

analyzed (using the difference of the two row value member variables computed earlier 

by cv::FilterEngine::start()). 

The cv::FilterEngine::apply() method computes the address of the first pixel in the 

destination image to be computed. 

cv::FilterEngine::apply() method calls the (generic) cv::FilterEngine::proceed() 

method, passing it the locations of the first source pixel, the first destination 

pixel, the source step, the destination step, the total number of rows to be “used” to 

compute all destination pixels. 

For each destination pixel, cv::FilterEngine proceed() calls the member operator() 

of the rowFilter member of the cv::FilterEngine (our cv::RowSum<> object), passing 

it the source pointer, the destination pointer, and the width of the given to 

apply (which in this case is null) or the width of the image. 

cv::RowSum<>::operator() then computes a sum across ‘width’ source pixels 

accumulating them into the indicated destination pixel. All subsequent 

destination pixels in the row are then computed from that. 

For each destination pixel, proceed() calls the member operator() of the 

cv::columnFilter member of the cv::FilterEngine (our cv::ColumnSum<> object), 

passing it an array of source pointers corresponding to the relevant rows of the 

source image, a pointer to the destination pixel, the destination step, the number 

of columns that will be summed, and the width of the image (or of any ROI that was 

given to the filter when it was constructed). 

The cv::ColumnSum<>::operator() then computes the sum across count columns and 
accumulates the result in the destination pixel. Compute the sum for width 

pixels. 

cv::FilterEngine::proceed() returns 

cv::FilterEngine::apply() returns 

cv::boxFilter() returns 

In words, this is what happens. At the top level, the user calls cv::boxFilter(), and gives it a source 
and destination image and the size of the kernel. cv::boxFilter(), however, is really just a pretty thin 
wrapper; its purpose is to create a cv::FilterEngine that will handle the box filtering process. In 
order to do this, however, it will need the actual base filter objects. Because the box filter is a separable 
filter, two base filter objects are required, one for the horizontal (rows) and one for the vertical (columns).  

To create a base filter object, cv::boxFilter() will use the cv::getRowSumFilter() and 
cv::getColumnSumFilter() methods31. What these do is they instantiate and return template base 
                                                             
31 It is worth mentioning here that these latter two functions are not officially part of the OpenCV API; they are below 
the API functions. This means that you should probably not be calling them yourself, as they are not guaranteed to 
 



 

 

filters called cv::RowSum<> and cv::ColumnSum<>. These objects are templates because each filter 
needs to know what types are being used for the source and destination images in order to implement their 
functionality in the most efficient way possible. Recall that it is the operator() members of these 
objects that do the low-level work (which we will get to momentarily). 

The cv::getRowSumFilter() and cv::getColumnSumFilter() methods return cv::Ptr<> 
smart pointers to the base filters, which are then passed to the cv::FilterEngine constructor. The 
constructed filter engine is then returned to cv::boxFilter() in the form of another cv::Ptr<> 
smart pointer. Once this pointer to the box filter engine is returned, cv::boxFilter() then just calls 
the apply() method of the filter engine. Of course, a lot gets done inside of this method. 

The cv::FilterEngine::apply() method takes as argument the source and destination images. It 
would also accept a region of interest (ROI), but none is generated in this context (so the default “whole 
image” is assumed). This apply() method is a generic member of cv::FilterEngine, in the sense 
that it is not overloaded in any way. The filter engine object is not a derived object, but the generic base 
class element. This is the way the architecture is designed; you should not have to overload 
cv::FilterEngine. (This is in contrast to the base filters, which are interfaces only and always need to 
be overloaded.) 

The cv::FilterEngine::apply() then calls cv::FilterEngine::start(). There is some 
opportunity for confusion here, because there are two start() methods associated with 
cv::FilterEnging(). The first start method takes the source image and the source ROI (and some 
other stuff) as arguments. It is responsible for some minor checking and housekeeping, and then it calls the 
second start() method. The main piece of housekeeping it does is to resolve the possibility that the 
source image is actually a view32 on a larger array, which has implications for the isolated argument, 
for example. Once this is done, the second start() method can be called, and given the parent array 
(i.e., if the current source is a view of some other array, it is that other larger array that is passed), and a 
corrected ROI (which is the given ROI converted to the coordinates of the larger parent array). The second 
start() routine now does some real work. 

The main responsibility of this start() method is to set up all of the data structures that are going to be 
needed for the base filters to operate. This is more effort than it might sound like, because the base filters 
will not be made aware of things like the boundary type, or if they are in an ROI. They will just be handed 
data to chew on and they will spit out results. In order to achieve this, there will have to be areas for “off 
the edge” pixels to be placed alongside the real image pixel values so that the base filters will not have to 
be aware of the difference. This data goes in a filter engine member variable called rows which is an array 
of char* pointers, one for each row of scratch space that will be needed (these actually form a circular 
buffer so that data only needs to be copied in once, and can then be used until it is no longer needed). 
start() is also responsible for computing the (integer ordinal for the) first and last rows that will be 
used. Again, these are the first and last row of the image in our case, because there is no ROI, but generally, 
if start() were not being called from inside of cv::boxFilter(), we might have gotten one from 
cv::FilterEngine::apply() or directly by whomever else might have called 
cv::FilterEngine::start(). A final responsibility that cv::FilterEngine::start() has 
is to call the reset() method on the base column filter. (We will understand why shortly when we get 
into the base column filter’s internal details.) The starting row (in parent image coordinates) is then 
returned to the first start() function, which in turn returns it to cv::FilterEngine::apply() in 
coordinates local to the source image. 

                                                                                                                                                                                     
remain in existence or have stable interfaces in future versions of the library. There will be several things in this current 
exposition which are of this kind. 
32 Recall that a ‘view’ refers to the case in which you have a cv::Mat A, and then generate a second cv::Mat B 
with a function like cv::Mat::getSubRect(). In this case B does not have its own data, it has a pointer to the 
data area in A and offsets and strides which make accesses to B appear as if B were a separate array. 



 

 

Next, cv::FilterEngine::apply() calls cv::FilterEngine::proceed(), and passes it the 
source image data, the source image step, the destination image data,  the destination step, and the number 
of rows from the source image that will be required to compute all destination pixels. It is important not to 
miss here that, in fact, there is a lot more information provided to proceed(), because when start() 
was running, it was computing various things that it stored in member variables of the filter engine (like 
those scratch buffers for the data rows). The source data and destination data areas given to proceed() 
are the location of the first data needed for actual computation of a required destination pixel. This is a little 
subtle, because all of the implications of ROIs are handled in cv::FilterEngine::apply() before 
calling proceed(). These pointers are not just pointers to the data in the images, they are pointers to the 
beginning or the relevant data. 

cv::FilterEngine::proceed() is essentially a big for loop over all of the desired destination 
pixels. It actually handles them on a row by row basis. It counts through the destination rows, handles 
actual copy of data into the buffers (the ones that start() allocated for us), as well as updates the 
circular buffer, and calls the base filters once the data areas are ready. First it calls the operator() 
member of the base row filter for any given destination pixel, then it calls the operator() member of 
the base column filter for those pixels. (At least, that is what it does in this example. If the filter engine 
were a non-separable filter, then obviously it would just make a single call to the operator() member of 
the installed two-dimensional filter.) 

Inside of the base row filter, which in our example is cv::RowSum<>, each pixel in the destination row is 
computed as a sum over the neighboring pixels. The first such destination pixel is a straight sum. All 
subsequent pixels are computed from the previous pixel, by subtracting the one contributing pixel that is 
now out of the window and adding the one pixel that has just entered the window. Inside of the base 
column filter cv::ColumnSum<>, the summation over vertical columns (of the results from the row filter 
summation) is performed. One important difference between the row and column sum filters is that the 
column filters need to maintain some internal state—this is to enable a similar trick to what the row filter 
uses for summing, except that the row filter is given an entire row at a time, while the column filter needs 
to be called many times in order to complete an entire column.  

This call to cv::FilterEngine::proceed() finishes up all of its work and returns. 
cv::FilterEngine::apply() returns, and then cv::boxFilter() returns. At this point, the 
results of your computation are sitting in your destination array and you are all done. 

For each destination pixel, cv::FilterEngine proceed() calls the member operator() 

of the rowFilter member of the cv::FilterEngine (our cv::RowSum<> object), passing 

it the source pointer, the destination pointer, and the width of the given to 

apply (which in this case is null) or the width of the image. 

cv::RowSum<>::operator() then computes a sum across ‘width’ source pixels 

accumulating them into the indicated destination pixel. All subsequent 

destination pixels in the row are then computed from that. 

For each destination pixel, proceed() calls the member operator() of the 

cv::columnFilter member of the cv::FilterEngine (our cv::ColumnSum<> object), 

passing it an array of source pointers corresponding to the relevant rows of the 

source image, a pointer to the destination pixel, the destination step, the number 

of columns that will be summed, and the ‘width’ of the image (or of any ROI that 

was given to the filter when it was constructed). 

The cv::ColumnSum<>::operator() then computes the sum across ‘count’ columns 
and accumulates the result in the destination pixel. Compute the sum for 

‘width’ pixels. 



 

 

Summary 
In this chapter, we learned about general image convolution, including the importance of how boundaries 
are handled in convolutions. We learned about image kernels, and the difference between linear and 
nonlinear kernels. 

We learned how OpenCV implements a number of common image filters, and learned what those filters do 
to different kinds of input data.  

Finally, we learned how OpenCV actually implements the functions that do convolutions. We saw how the 
general filter architecture is designed, and learned how we could make our own components for that 
architecture and thus how to “micromanage” the process to tune custom filters for speed. 

Exercises 
1. Load an image of an interesting or sufficiently “rich” scene. Using cv::threshold(), set the 

threshold to 128. Use each setting type in Table 5-5 on the image and display the results. You should 
familiarize yourself with thresholding functions because they will prove quite useful. 
a) Repeat the exercise but use cv::adaptiveThreshold() instead. Set param1=5. 

b) Repeat part a using param1=0 and then param1=-5.  

2. Load an image with interesting textures. Smooth the image in several ways using cv::smooth() 
with smoothtype=cv::GAUSSIAN. 

a) Use a symmetric 3-by-3, 5-by-5, 9-by-9 and 11-by-11 smoothing window size and display the 
results. 

b) Are the output results nearly the same by smoothing the image twice with a 5-by-5 Gaussian filter 
as when you smooth once with two 11-by-11 filters? Why or why not? 

3. Display the filter, creating a 100-by-100 single-channel image. Clear it and set the center pixel equal to 
255. 
a) Smooth this image with a 5-by-5 Gaussian filter and display the results. What did you find? 
b) Do this again but now with a 9-by-9 Gaussian filter. 
c) What does it look like if you start over and smooth the image twice with the 5-by-5 filter? 

Compare this with the 9-by-9 results. Are they nearly the same? Why or why not? 
4. Load an interesting image. Again, blur it with cv::smooth() using a Gaussian filter. 

a) Set param1=param2=9. Try several settings of param3 (e.g., 1, 4, and 6). Display the results. 

b) This time, set param1=param2=0 before setting param3 to 1, 4, and 6. Display the results. 
Are they different? Why? 

c) Again use param1=param2=0 but now set param3=1 and param4=9. Smooth the picture 
and display the results. 

d) Repeat part c but with param3=9 and param4=1. Display the results. 

e) Now smooth the image once with the settings of part c and once with the settings of part d. 
Display the results. 

f) Compare the results in part e with smoothings that use param3=param4=9 and 
param3=param4=0 (i.e., a 9-by-9 filter). Are the results the same? Why or why not? 

5. Create a low-variance random image (use a random number call such that the numbers don’t differ by 
much more than 3 and most numbers are near 0). Load the image into a drawing program such as 
PowerPoint and then draw a wheel of lines meeting at a single point. Use bilateral filtering on the 
resulting image and explain the results. 

6. In a drawing program such as PowerPoint, draw a series of concentric circles forming a bull’s-eye. 



 

 

a) Make a series of lines going into the bull’s-eye. Save the image. 
b) Using a 3-by-3 aperture size, take and display the first-order x- and y-derivatives of your picture. 

Then increase the aperture size to 5-by-5, 9-by-9, and 13-by-13. Describe the results. 
7. Create a new image that is just a 45 degree line, white on black. For a given series of aperture sizes, we 

will take the image’s first-order x-derivative (𝑑𝑥) and first-order y-derivative (𝑑𝑦). We will then take 
measurements of this line as follows. The (𝑑𝑥) and (𝑑𝑦) images constitute the gradient of the input 
image. The magnitude at location 𝑖, 𝑗  is 𝑚𝑎𝑔 𝑖, 𝑗 = 𝑑𝑥! 𝑖, 𝑗 + 𝑑𝑦! 𝑖, 𝑗  and the angle 
is  Θ 𝑖, 𝑗 = 𝑎𝑡𝑎𝑛2(𝑑𝑦 𝑖, 𝑗 ,𝑑𝑥 𝑖, 𝑗 ). Scan across the image and find places where the magnitude is at 
or near maximum. Record the angle at these places. Average the angles and report that as the measured 
line angle. 
a) Do this for a 3-by-3 aperture Sobel filter. 
b) Do this for a 5-by-5 filter. 
c) Do this for a 9-by-9 filter. 
d) Do the results change? If so, why? 

8. Find and load a picture of a face where the face is frontal, has eyes open, and takes up most or all of 
the image area. Write code to find the pupils of the eyes. 

A Laplacian “likes” a bright central point surrounded by dark. Pupils are just the opposite. Invert and 
convolve with a sufficiently large Laplacian. 

9. Use a camera to take two pictures of the same scene while moving the camera as little as possible. 
Load these images into the computer as src1 and src1. 

a) Take the absolute value of src1 minus src1 (subtract the images); call it diff12 and display. 
If this were done perfectly, diff12 would be black. Why isn’t it? 

b) Create cleandiff by using cv::erode() and then cv::dilate() on diff12. Display 
the results. 

c) Create dirtydiff by using cv::dilate() and then cv::erode() on diff12 and then 
display. 

d) Explain the difference between cleandiff and dirtydiff. 

10. Take a picture of a scene. Then, without moving the camera, put a coffee cup in the scene and take a 
second picture. Load these images and convert both to 8-bit grayscale images. 
a) Take the absolute value of their difference. Display the result, which should look like a noisy 

mask of a coffee mug. 
b) Do a binary threshold of the resulting image using a level that preserves most of the coffee mug 

but removes some of the noise. Display the result. The “on” values should be set to 255. 

c) Do a cv::MOP_OPEN on the image to further clean up noise. 

11. Create a clean mask from noise. After completing exercise 10, continue by keeping only the largest 
remaining shape in the image. Set a pointer to the upper-left of the image and then traverse the image. 
When you find a pixel of value 255 (“on”), store the location and then flood fill (Chapter 6, 
cv::floodFill()) it using a value of 100. Read the connected component returned from flood fill 
and record the area of filled region. If there is another larger region in the image, then flood fill the 
smaller region using a value of 0 and delete its recorded area. If the new region is larger than the 
previous region, then flood fill the previous region using the value 0 and delete its location. Finally, fill 
the remaining largest region with 255. Display the results. We now have a single, solid mask for the 
coffee mug. 

12. For this exercise, use the mask created in exercise 10 or create another mask of your own (perhaps by 
drawing a digital picture, or simply use a square). Load an outdoor scene. Now use this mask with 
copyTo(), to copy an image of a mug into the scene. 

13. Load an image of a scene and convert it to grayscale. 
a) Run the morphological Top Hat operation on your image and display the results. 



 

 

b) Convert the resulting image into an 8-bit mask. 
c) Copy a grayscale value into the original image where the Top Hat mask (from b) is nonzero. 

Display the results. 
14. Use cv::filter2D() to create a filter that detects only 60 degree lines in an image. Display the 

results on a sufficiently interesting image scene. 
15. Refer to the Sobel derivative filter shown in Figure 5-15. Make a kernel of this figure and convolve an 

image with it. Then, make two kernels of the separable parts. Take the image again, and convolve with 
first the x and then the y kernels. Subtract these two images to convince yourself that the separable 
operation produces the exact same result. 

16. Separable kernels. Create a 3-by-3 Gaussian kernel using rows [(1/16, 2/16, 1/16), (2/16, 4/16, 2/16), 
(1/16, 2/16, 1/16)] and with anchor point in the middle. 
a) Run this kernel on an image and display the results. 
b) Now create two one-dimensional kernels with anchors in the center: one going “across” (1/4, 2/4, 

1/4), and one going down (1/4, 2/4, 1/4). Load the same original image and use 
cv::filter2D() to convolve the image twice, once with the first 1D kernel and once with the 
second 1D kernel. Describe the results. 

c) Describe the order of complexity (number of operations) for the kernel in part a) and for the 
kernels in part b). The difference is the advantage of being able to use separable kernels and the 
entire Gaussian class of filters—or any linearly decomposable filter that is separable, since 
convolution is a linear operation. 

17. Can you make a separable kernel from the filter shown in Figure 5-15? If so, show what it looks like. 



6 
General Image Transforms 

Overview 
In the previous chapter, we covered the class of image transformations that can be understood specifically 
in terms of convolution. Of course, there are a lot of useful operations that cannot be expressed in this way 
(i.e., as a little window scanning over the image doing one thing or another). In general, transformations 
that can be expressed as convolutions are local, meaning that even though they may change the entire 
image, the effect on any particular pixel is determined by only a small number of pixels around that one. 
The transforms we will look in this chapter generally will not have this property.  

Some very useful image transforms are very simple, and you will use them all of the time—resize for 
example. Others are somewhat more special purpose. In many cases, the image transforms we will look at 
in this chapter have the purpose of converting an image into some entirely different representation. This 
different representation will usually still be an array of values, but those values might be quite different in 
meaning than the intensity values in the input image. An example of this would be the frequency 
representation resulting from a Fourier transform. In a few cases, the result of the transformation will be 
something like a list of components, as would be the case for the Hough Line Transform. 

There are a number of useful transforms that arise repeatedly in computer vision. OpenCV provides 
complete implementations of some of the more common ones as well as building blocks to help you 
implement your own transformations. 

Stretch, Shrink, Warp, and Rotate 
The simplest image transforms we will encounter are those that resize an image, either to make it larger or 
smaller. These operations are a little less trivial than you might think, because resizing immediately implies 
questions about how pixels are interpolated (for enlargement) or merged (for reduction). 

Uniform Resize 
We often encounter an image of some size that we would like to convert to an image of some other size. 
We may want to upsize (zoom in) or downsize (zoom out) the image; both of these tasks are accomplished 
by the same function. 

cv::resize() 

The cv::resize() function handles all of our resizing needs. We provide our input image, and the size 
we would like it be converted to, and it will generate a new image of exactly the desired size. 



void cv::resize( 
  cv::InputArray  src,                         // Input Image 
  cv::OutputArray dst,                         // Result image 
  cv::Size        dsize,                       // New Size 
  double          fx            = 0,           // x-rescale 
  double          fy            = 0,           // y-rescale 
  int             interpolation = cv::INTER_LINEAR // interpolation method 
); 

We can specify the size of the output image in two ways. One way is to use absolute sizing; in this case, the 
dsize argument directly sets the size we would like the result image dst to be. The other option is to use 
relative sizing; in this case, we set dsize to cv::Size(0,0), and instead set fx and fy to the scale 
factors we would like to apply to the x- and y-axes respectively.1 The last argument is the 
interpolation method, which defaults to linear interpolation. The other available options are shown in 
Table 6-1. 

Table 6-1: cv::resize() interpolation options 

Interpolation Meaning 
 cv::INTER_NEAREST                Nearest neighbor 
 cv::INTER_LINEAR                Bilinear 
 cv::INTER_AREA                Pixel area re-sampling 
 cv::INTER_CUBIC                 Bicubic interpolation 
 cv::INTER_LANCZOS4                 Lanczos interpolation over 8-

by-8 neighborhood. 

Interpolation is an important issue here. Pixels in the source image sit on an integer grid; for example, we 
can refer to a pixel at location (20, 17). When these integer locations are mapped to a new image, there can 
be gaps—either because the integer source pixel locations are mapped to float locations in the destination 
image and must be rounded to the nearest integer pixel location, or because there are some locations to 
which no pixels at all are mapped (think about doubling the image size by stretching it; then every other 
destination pixel would be left blank). These problems are generally referred to as forward projection 
problems. To deal with such rounding problems and destination gaps, we actually solve the problem 
backwards: we step through each pixel of the destination image and ask, “Which pixels in the source are 
needed to fill in this destination pixel?” These source pixels will almost always be on fractional pixel 
locations, so we must interpolate the source pixels to derive the correct value for our destination value. The 
default method is bilinear interpolation, but you may choose other methods (as shown in Table 6-1). 

The easiest approach is to take the resized pixel’s value from its closest pixel in the source image; this is 
the effect of choosing the interpolation value cv::INTER_NEAREST. Alternatively, we can 
linearly weight the 2-by-2 surrounding source pixel values according to how close they are to the 
destination pixel, which is what cv::INTER_LINEAR does. We can also virtually place the new resized 
pixel over the old pixels and then average the covered pixel values, as done with cv::INTER_AREA.2 For 
yet smoother interpolation, we have the option of fitting a cubic spline between the 4-by-4 surrounding 
pixels in the source image and then reading off the corresponding destination value from the fitted spline; 
this is the result of choosing the cv::INTER_CUBIC interpolation method. Finally, we have the Lanczos 
interpolation, which is similar to the cubic method, but uses information from an 8-by-8 area around the 
pixel.3 

                                                             
1 Either dsize must be cv::Size(0,0) or fx and fy must both be zero. 
2 At least that’s what happens when cv::resize() shrinks an image. When it expands an image, 
cv::INTER_AREA amounts to the same thing as cv::INTER_NEAREST. 
3 The subtleties of the Lanczos filter are beyond the scope of this book, but this filter is commonly used in processing 
digital images because it has the effect of increasing the perceived sharpness of the image. 



It is important to notice the difference between cv::resize() and the similarly 
named cv::Mat::resize() member function of the cv::Mat class. 
cv::resize() creates a new image, of a different size, over which the original pixels 
are mapped. The cv::Mat::resize() member function resizes the image whose 
member you are calling, and it crops that image to the new size. Pixels are not 
interpolated (or extrapolated) in the case of cv::Mat::resize(). 

Image Pyramids 
Image pyramids [Adelson84] are heavily used in a wide variety of vision applications. An image pyramid is 
a collection of images—all arising from a single original image—that are successively downsampled until 
some desired stopping point is reached. (Of course, this stopping point could be a single-pixel image!) 

There are two kinds of image pyramids that arise often in the literature and in applications: the Gaussian 
[Rosenfeld80] and Laplacian [Burt83] pyramids [Adelson84]. The Gaussian pyramid is used to 
downsample images, and the Laplacian pyramid (to be discussed shortly) is required when we want to 
reconstruct an upsampled image from an image lower in the pyramid. 

cv::pyrDown() 

Normally, we produce layer (𝑖 + 1) in the Gaussian pyramid (we denote this layer 𝐺!!!) from layer 𝐺i of 
the pyramid, by first convolving 𝐺i with a Gaussian kernel and then removing every even-numbered row 
and column. Of course, in this case, it follows immediately that each image is exactly one-quarter the area 
of its predecessor. Iterating this process on the input image 𝐺! produces the entire pyramid. OpenCV 
provides us with a method for generating each pyramid stage from its predecessor: 

void cv::pyrDown( 
  cv::InputArray  src,                         // Input Image 
  cv::OutputArray dst,                         // Result image 
  const cv::Size& dstsize = cv::Size()         // Output image size 
); 

The cv::pyrDown() method will do exactly this for us if we leave the destination size argument 
dstsize set to its default value of cv::Size(). To be even a little more specific, the default size of the 
output image is ( (src.cols+1)/2, (src.rows+1)/2 ).4 Alternatively, we can supply a 
dstsize, which will indicate the size we would like for the output image; dstsize, however, must 
obey some very strict constraints. Specifically: 

𝑑𝑠𝑡𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ   ∗ 2 − 𝑠𝑟𝑐. 𝑐𝑜𝑙𝑠   ≤ 2 

𝑑𝑠𝑡𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡   ∗ 2 − 𝑠𝑟𝑐. 𝑟𝑜𝑤𝑠   ≤ 2 

This restriction means that the destination image is very close to half the size of the source image. The use 
of the dstsize argument is only for handling somewhat esoteric cases in which very tight control is 
needed on how the pyramid is constructed. 

cv::buildPyramid() 

It is a relatively common situation that you have an image, and wish to build a sequence of new images that 
are each downscaled from their predecessor. The function cv::buildPyramid() creates such a stack 
of images for you in a single call. 

void cv::buildPyramid( 
  cv::InputArray          src,                 // Input Image 
  cv::OutputArrayOfArrays dst,                 // Output Images from pyramid 
  int                     maxlevel             // Number of pyramid levels 
); 

                                                             
4 The +1s are there to make sure odd sized images are handled correctly. They have no effect if the image was even 
sized to begin with. 



The argument src is the source image. The argument dst is of a somewhat unusual looking type 
cv::OutputArrayOfArrays, but you can think of this as just being an STL vector<> or objects of 
type cv::OutputArray. The most common example of this would be vector<cv::Mat>. The 
argument maxlevel indicates how many pyramid levels are to be constructed. 

 
Figure 6-1: An image pyramid generated with maxlevel=3 (left); two pyramids interleaved together to 
create a 2 pyramid (right) 

The argument maxlevel is any integer greater than or equal to zero, and indicates the number of 
pyramid images to be generated. When cv::buildPyramid() runs, it will return a vector in dst that 
is of length maxlevel+1. The first entry in dst will be identical to src. The second will be half as 
large (i.e., as would result from calling cv::pyrDown()). The third will be half the size of the second, 
and so on (left-hand panel of Figure 6-1). 

In practice, one often wants a pyramid with a finer logarithmic scaling than factors of 
two. One way to achieve this is to simply call cv::resize() yourself as many times 
as needed for whatever scale factor you want to use—but this can be quite slow. An 
alternative (for some common scale factors) is to call cv::resize() only once for 
each interleaved set of images you want, and then call cv::buildPyramid() on each 
of those resized “bases.”  You can then interleave these results together for one large 
finer-grained pyramid. Figure 6-1 (right) shows an example in which two pyramids are 
generated. The original image is first rescaled by a factor of   2, and then 
cv::buildPyramid() is called on that one image to make a second pyramid of four 
intermediate images. Once combined with the original pyramid, the result is a finer 
pyramid with scale factor of 2 across the entire pyramid. 

cv::pyrUp() 

Similarly, we can convert an existing image to an image that is twice as large in each direction by the 
following analogous (but not inverse!) operation: 

void cv::pyrUp( 
  cv::InputArray  src,                         // Input Image 
  cv::OutputArray dst,                         // Result image 
  const cv::Size& dstsize = cv::Size()         // Output image size 
); 

In this case, the image is first upsized to twice the original in each dimension, with the new (even) rows 
filled with 0s. Thereafter, a convolution is performed with the Gaussian filter5 to approximate the values of 
the “missing” pixels. 

                                                             
5 This filter is also normalized to four, rather than to one. This is appropriate because the inserted rows have 0s in all of 
their pixels before the convolution. (Normally, the sum of  Gaussian kernel elements would be 1, but in case of 2x 



Analogous to cv::PyrDown(), if dstsize is set to its default value of cv::Size(), the resulting 
image will be exactly twice the size (in each dimension) as src. Again, we can supply a dstsize that 
will indicate the size we would like for the output image dstsize, but it must again obey some very strict 
constraints. Specifically: 

𝑑𝑠𝑡𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ ∗ 2 − 𝑠𝑟𝑐. 𝑐𝑜𝑙𝑠   ≤ (𝑑𝑠𝑡𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ  %  2)    

𝑑𝑠𝑡𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡   ∗ 2 − 𝑠𝑟𝑐. 𝑟𝑜𝑤𝑠   ≤ (𝑑𝑠𝑡𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡  %  2) 

This restriction means that the destination image is very close to double the size of the source image. As 
before, the use of the dstsize argument is only for handling somewhat esoteric cases in which very tight 
control is needed on how the pyramid is constructed. 

The Laplacian Pyramid 

We noted previously that the operator cv::pyrUp() is not the inverse of cv::pyrDown(). This 
should be evident because cv::pyrDown() is an operator that loses information. In order to restore the 
original (higher-resolution) image, we would require access to the information that was discarded by the 
downsampling. This data forms the Laplacian pyramid. The 𝑖!! layer of the Laplacian pyramid is defined 
by the relation: 

𝐿! = 𝐺! − 𝑈𝑃(𝐺!!!)⨂ℊ!!! 

Here the operator 𝑈𝑃() upsizes by mapping each pixel in location (x, y) in the original image to pixel 
(2𝑥 + 1,2𝑦 + 1) in the destination image; the ⨂ symbol denotes convolution; and ℊ!!! is a 5-by-5 
Gaussian kernel. Of course, 𝑈𝑃(𝐺!!!)⨂ℊ!!! is the definition of the cv::pyrUp() operator provided by 
OpenCV. Hence, we can use OpenCV to compute the Laplacian operator directly as: 

𝐿! = 𝐺! − 𝑝𝑦𝑟𝑈𝑝(𝐺!!!) 

The Gaussian and Laplacian pyramids are shown diagrammatically in Table 6-2, which also shows the 
inverse process for recovering the original image from the sub-images. Note how the Laplacian is really an 
approximation that uses the difference of Gaussians, as revealed in the preceding equation and diagrammed 
in the figure. 

  

Figure 6-2: The Gaussian pyramid and its inverse, the Laplacian pyramid 

                                                                                                                                                                                     
pyramid up-sampling—in the 2D case—all the kernel elements are multiplied by 4 to recover the average brightness 
after inserting zero rows and columns.) 



Nonuniform Mappings 
In this section, we turn to geometric manipulations of images, i.e., those transformations that have their 
origin at the intersection of three-dimensional geometry and projective geometry.6 Such manipulations 
include both uniform and nonuniform resizing (the latter is known as warping). There are many reasons to 
perform these operations: for example, warping and rotating an image so that it can be superimposed on a 
wall in an existing scene, or artificially enlarging a set of training images used for object recognition. 7 The 
functions that can stretch, shrink, warp, and/or rotate an image are called geometric transforms (for an early 
exposition, see [Semple79]). For planar areas, there are two flavors of geometric transforms: transforms 
that use a 2-by-3 matrix, which are called affine transforms; and transforms based on a 3-by-3 matrix, 
which are called perspective transforms or homographies. You can think of the latter transformation as a 
method for computing the way in which a plane in three dimensions is perceived by a particular observer, 
who might not be looking straight on at that plane. 

An affine transformation is any transformation that can be expressed in the form of a matrix multiplication 
followed by a vector addition. In OpenCV, the standard style of representing such a transformation is as a 
2-by-3 matrix. We define: 

𝐴 ≡
𝑎!! 𝑎!"
𝑎!" 𝑎!!         𝐵 ≡   

𝑏!
𝑏!

     𝑇 ≡ 𝐴 𝐵      𝑋 ≡
𝑥
𝑦        𝑋! ≡

𝑥
𝑦
1

 

It is easily seen that the effect of the affine transformation 𝐴   ·   𝑋   +   𝐵 is exactly equivalent to extending 
the vector 𝑋 into the vector 𝑋´ and simply left-multiplying 𝑋´ by 𝑇. 

Affine transformations can be visualized as follows. Any parallelogram 𝐴𝐵𝐶𝐷 in a plane can be mapped to 
any other parallelogram 𝐴’𝐵’𝐶’𝐷’  by some affine transformation. If the areas of these parallelograms are 
nonzero, then the implied affine transformation is defined uniquely by (three vertices of) the two 
parallelograms. If you like, you can think of an affine transformation as drawing your image into a big 
rubber sheet and then deforming the sheet by pushing or pulling8 on the corners to make different kinds of 
parallelograms. 

 
Figure 6-3: Affine and perspective transformations 

                                                             
6 We will cover these transformations in detail here, and will return to them in Chapter 11 when we discuss how they 
can be used in the context of three-dimensional vision techniques. 
7 This activity might seem a bit dodgy; after all, wouldn’t it be better to just use a recognition method that’s invariant to 
local affine distortions? Nonetheless, this method has a long history and is quite useful in practice. 
8 One can even pull in such a manner as to invert the parallelogram. 



 

When we have multiple images that we know to be slightly different views of the same object, we might 
want to compute the actual transforms that relate the different views. In this case, affine transformations are 
often used to model the views because, having fewer parameters, they are easier to solve for. The downside 
is that true perspective distortions can only be modeled by a homography,9 so affine transforms yield a 
representation that cannot accommodate all possible relationships between the views. On the other hand, 
for small changes in viewpoint the resulting distortion is affine, so in some circumstances, an affine 
transformation may be sufficient. 

Affine transforms can convert rectangles to parallelograms. They can squash the shape but must keep the 
sides parallel; they can rotate it and/or scale it. Perspective transformations offer more flexibility; a 
perspective transform can turn a rectangle into a trapezoid or any general quadrilateral. Of course, since 
parallelograms are also trapezoids, affine transformations are a subset of perspective transformations. 
Figure 6-3 shows examples of various affine and perspective transformations. 

Affine Transformation 
There are two situations that arise when working with affine transformations. In the first case, we have an 
image (or a region of interest) we’d like to transform; in the second case, we have a list of points for which 
we’d like to compute the result of a transformation. Each of these cases if very similar in concept, but quite 
different in terms of practical implementation. As a result, OpenCV has two different functions for these 
situations. 

cv::warpAffine(), Dense affine transformations 

In the first case, the obvious input and output formats are images, and the implicit requirement is that the 
warping assumes the pixels are a dense representation of the underlying image. This means that image 
warping must necessarily handle interpolations so that the output images are smooth and look natural. The 
affine transformation function provided by OpenCV for dense transformations is cv::warpAffine(): 

void cv::warpAffine( 
  cv::InputArray    src,                       // Input Image 
  cv::OutputArray   dst,                       // Result image 
  cv::InputArray    M,                         // 2-by-3 transformation matrix 
  cv::Size          dsize,                     // Destination image size 
  int               flags       = cv::INTER_LINEAR,    // Interpolation, and inverse 
  int               borderMode  = cv::BORDER_CONSTANT, // Pixel extrapolation method 
  const cv::Scalar& borderValue = cv::Scalar() // Used for constant borders 
); 

Here src and dst are your source and destination arrays. The input M is the 2-by-3 matrix we introduced 
earlier that quantifies the desired transformation. Each element in the destination array is computed from 
the element of the source array at the location given by: 

𝑑𝑠𝑡 𝑥, 𝑦 = 𝑠𝑟𝑐 𝑀!!𝑥 +𝑀!"𝑦 +𝑀!",𝑀!"𝑥 +𝑀!!𝑦 +𝑀!"  

In general, however, the location indicated by the right-hand side of this equation will not be an integer 
pixel. In this case, it is necessary to use interpolation to find an appropriate value for 𝑑𝑠𝑡(𝑥, 𝑦). The next 
argument, flags, selects the interpolation method. The available interpolation methods are those in Table 
6-1, the same as cv::resize(), plus one additional option, cv::WARP_INVERSE_MAP (which may 
be added with the usual Boolean OR). This option is a convenience that allows for inverse warping from 
dst to src instead of from src to dst. The final two arguments are for border extrapolation, and have 
the same meaning as similar arguments in image convolutions (See Chapter 5). 

                                                             
9 “Homography” is the mathematical term for mapping points on one surface to points on another. In this sense, it is a 
more general term than used here. In the context of computer vision, homography almost always refers to mapping 
between points on two image planes that correspond to the same location on a planar object in the real world. It can be 
shown that such a mapping is representable by a single 3-by-3 orthogonal matrix (more on this in Chapter 11). 



cv::getAffineTransform(), Computing an Affine Map Matrix 

OpenCV provides two functions to help you generate the map matrix M. The first is used when you already 
have two images that you know to be related by an affine transformation or that you’d like to approximate 
in that way: 

cv::Mat cv::getAffineTransform(              // Return 2-by-3 matrix 
  const cv::Point2f* src,                    // Coordinates three of vertices 
  const cv::Point2f* dst                     // Target coordinates three of vertices 
); 

Here src and dst are arrays containing three two-dimensional (𝑥, 𝑦) points. The return value is an array 
that is the affine transform computed from those points.  

The src and dst in cv::getAffineTransform() are just arrays of three points10 defining two 
parallelograms. The simplest way to define an affine transform is thus to set src to three corners in the 
source image—for example, the upper- and lower-left together with the upper-right of the source image. 
The mapping from the source to destination image is then entirely defined by specifying dst, the locations 
to which these three points will be mapped in that destination image. Once the mapping of these three 
independent corners (which, in effect, specify a “representative” parallelogram) is established, all the other 
points can be warped accordingly. 

Example 6-1 shows some code that uses these functions. In the example, we obtain the 
cv::warpAffine() matrix parameters by first constructing two three-component arrays of points (the 
corners of our representative parallelogram) and then convert that to the actual transformation matrix using 
cv::getAffineTransform(). We then do an affine warp followed by a rotation of the image. For 
our array of representative points in the source image, called srcTri[], we take the three points: 
(0,0), (0,height-1), and (width-1,0). We then specify the locations to which these points will 
be mapped in the corresponding array dstTri[]. 

Example 6-1: An affine transformation 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
int main(int argc, char** argv) { 
 
  if(argc != 2) {  
    cout << "Warp affine\nUsage: ch6_ex6_2 <imagename>\n" << endl;  
    return -1; 
  } 
    
  cv::Mat src = cv::imread(argv[1],1); 
  if( src.empty() ) { cout << "Can not load " << argv[1] << endl; return -1; }  
    
  cv::Point3f srcTri[] = { 
     cv::Point2f(0,0),           // src Top left 
     cv::Point2f(src.cols-1, 0), // src Top right 
     cv::Point2f(0, src.rows-1)  // src Bottom left 
  }; 
    
  cv::Point2f dstTri[] = { 
     cv::Point2f(src.cols*0.f,   src.rows*0.33f), // dst Top left 
     cv::Point2f(src.cols*0.85f, src.rows*0.25f), // dst Top right 
     cv::Point2f(src.cols*0.15f, src.rows*0.7f)   // dst Bottom left 
  };  
    

                                                             
10 We need just three points because, for an affine transformation, we are only representing a parallelogram. We will 
need four points to represent a general trapezoid when we address perspective transformations. 



  // COMPUTE AFFINE MATRIX 
  //   
  cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri); 
  cv::Mat dst, dst2; 
  cv::warpAffine( 
    src,  
    dst,    
    warp_mat, 
    src.size(), 
    cv::INTER_LINEAR,  
    cv::BORDER_CONSTANT,  
    cv::Scalar() 
  ); 
  for( int i = 0; i < 3; ++i ) 
    cv::circle(dst, dstTri[i], 5, cv::Scalar(255, 0, 255), -1, cv::AA); 
    
  cv::imshow("Affine Transform Test", dst); 
  cv::waitKey(); 
    
  for(int frame=0;;++frame) { 
    // COMPUTE ROTATION MATRIX 
    cv::Point2f center(src.cols*0.5f, src.rows*0.5f);  
    double angle = frame*3 % 360, scale = (cos((angle - 60)* cv::PI/180) + 1.05)*0.8; 
       
    cv::Mat rot_mat = cv::getRotationMatrix2D(center, angle, scale); 
 
    cv::warpAffine( 
      src,  
      dst,  
      rot_mat,  
      src.size(), 
      cv::INTER_LINEAR,  
      cv::BORDER_CONSTANT,  
      cv::Scalar() 
    ); 
    cv::imshow("Rotated Image", dst); 
    if(cv::waitKey(30) >= 0 ) 
      break; 
  } 
  return 0; 
}  

The second way to compute the map matrix M is to use cv::getRotationMatrix2D(), which 
computes the map matrix for a rotation around some arbitrary point, combined with an optional rescaling. 
This is just one possible kind of affine transformation, but it represents an important subset that has an 
alternative (and more intuitive) representation that’s easier to work with in your head: 

cv::Mat cv::getRotationMatrix2D(               // Return 2-by-3 matrix 
  cv::Point2f  center                          // Center of rotation  
  double       angle,                          // Angle of rotation 
  double       scale                           // Rescale after rotation 
); 

The first argument, center, is the center point of the rotation. The next two arguments give the 
magnitude of the rotation and the overall rescaling. The function returns the map matrix M, which (as 
always) is a 2-by-3 matrix of floating-point numbers). 

If we define 𝛼 = scale ∗ cos(angle) and  𝛽 = scale ∗ sin(angle), then this function computes the matrix M 
to be: 

 



𝛼 𝛽 1 − 𝛼 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟! − 𝛽 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟!
−𝛽 𝛼 𝛽 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟! − 1 − 𝛼 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟!

 

You can combine these methods of setting the map_matrix to obtain, for example, an image that is 
rotated, scaled, and warped. 

cv::transform() for Sparse Affine Transformations  

We have explained that cv::warpAffine() is the right way to handle dense mappings. For sparse 
mappings (i.e., mappings of lists of individual points), it is best to use cv::transform(). You will 
recall from Chapter 3 that the transform method has the following prototype: 

void cv::transform( 
  cv::InputArray  src,                         // Input N-by-1 array (Ds channele) 
  cv::OutputArray dst,                         // Output N-by-1 array (Dd channels) 
  cv::InputArray  mtx                          // Transfor matrux (Ds-by-Dd) 
); 

In general, src is an 𝑁-by-1 array with 𝐷! channels, where 𝑁 is the number of points to be transformed 
and 𝐷! is the dimension of those source points. The output array dst will be the same size but may have a 
different number of channels, 𝐷!. The transformation matrix mtx is a 𝐷!-by-𝐷! matrix that is then applied 
to every element of src, after which the results are placed into dst. 

Note that cv::transform() acts on the channel indices of every point in an array. 
For the current problem, we assume that the array is essentially a large vector (𝑁-by-1 or 
1-by-𝑁) of these multichannel objects. The important thing to remember is that the index 
that the transformation matrix is relative to is the channel index, not the “vector” index of 
the large array.  

In the case of transformations that are simple rotations, our transformation matrix mtx will be a 2-by-2 
matrix only, and it can be applied directly to the two-channel indices of src. In fact this is true for 
rotations, stretch, and warp as well in some simple cases. Usually, however, to do a general affine 
transformation, including translations and rotations about arbitrary centers, and so on, it is necessary to 
extend the number of channels in src to three, so that the action of the more usual 2-by-3 affine 
transformation matrix is defined. In this case, all of the third-channel entries must be set to 1.0 (i.e., the 
points must be supplied in homogeneous coordinates). Of course, the output array will still be a two-
channel array. 

cv::invertAffineTransform(), Inverting an Affine Transformation  

Given an affine transformation represented as a 2-by-3 matrix, it is often desirable to be able to compute 
the inverse transformation, which will “put back” all of the transformed points to where they came from. 
This is done with cv::invertAffineTransform(): 

void cv::invertAffineTransform( 
  cv::InputArray  M,                           // Input 2-by-3 matrix 
  cv::OutputArray iM                           // Output also a 2-by-3 matrix 
); 

This function takes a 2-by-3 array M and returns another 2-by-3 array iM that inverts M. Note that 
cv::invertAffineTransform() does not actually act on any image, it just supplies the inverse 
transform. Once you have iM, you can use it as you would have used M, with either cv::warpAffine() 
or cv::transform(). 

Perspective Transformation 
To gain the greater flexibility offered by perspective transforms (homographies), we need a new function 
that will allow us to express this broader class of transformations. First we remark that, even though a 
perspective projection is specified completely by a single matrix, the projection is not actually a linear 



transformation. This is because the transformation requires division by the final dimension (usually 𝑍; see 
Chapter 11) and thus loses a dimension in the process. 

As with affine transformations, image operations (dense transformations) are handled by different functions 
than transformations on point sets (sparse transformations). 

cv::warpPerspective(), Dense perspective transform 

The dense perspective transform uses an OpenCV function that is analogous to the one provided for dense 
affine transformations. Specifically, cv::warpPerspective() has all of the same arguments as 
cv::warpAffine(), except with the small, but crucial, distinction that the map matrix must now be 3-
by-3. 

void cv::warpPerspective( 
  cv::InputArray    src,                       // Input Image 
  cv::OutputArray   dst,                       // Result image 
  cv::InputArray    M,                         // 3-by-3 transformation matrix 
  cv::Size          dsize,                     // Destination image size 
  int               flags       = cv::INTER_LINEAR,    // Interpolation, and inverse 
  int               borderMode  = cv::BORDER_CONSTANT, // Pixel extrapolation method 
  const cv::Scalar& borderValue = cv::Scalar() // Used for constant borders 
); 

Each element in the destination array is computed from the element of the source array at the location given 
by: 

𝑑𝑠𝑡 𝑥, 𝑦 = 𝑠𝑟𝑐
𝑀!!𝑥 +𝑀!"𝑦 +𝑀!"

𝑀!"𝑥 +𝑀!"𝑦 +𝑀!!
,
𝑀!"𝑥 +𝑀!!𝑦 +𝑀!"

𝑀!"𝑥 +𝑀!"𝑦 +𝑀!!
 

As with the affine transformation, the location indicated by the right side of this equation will not 
(generally) be an integer location. Again the flags argument is used to select the desired interpolation 
method, and has the same possible values as the corresponding argument to cv::warpAffine(). 

cv::getPerspectiveTransform(), Computing the perspective map matrix 

As with the affine transformation, for filling the map_matrix in the preceding code we have a 
convenience function that can compute the transformation matrix from a list of point correspondences: 

cv::Mat cv::getPerspectiveTransform(           // Return 3-by-3 matrix 
  const cv::Point2f* src,                      // Coordinates of four vertices 
  const cv::Point2f* dst                       // Target coordinates of four vertices 
); 

The src and dst argument are now arrays of four (not three) points, so we can independently control how 
the corners of (typically) a rectangle in src are mapped to (generally) some rhombus in dst. Our 
transformation is completely defined by the specified destinations of the four source points. As mentioned 
earlier, for perspective transformations, the return value will be a 3-by-3 array; see Example 6-2 for sample 
code. Other than the 3-by-3 matrix and the shift from three to four control points, the perspective 
transformation is otherwise exactly analogous to the affine transformation we already introduced. 

Example 6-2: Code for perspective transformation 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
int main(int argc, char** argv) { 
 
  if(argc != 2) {  
    cout << "Perspective Warp\nUsage: ch6_ex6_3 <imagename>\n" << endl;  
    return -1; 
  } 
     



  Mat src = cv::imread(argv[1],1); 
  if( src.empty() ) { cout << "Can not load " << argv[1] << endl; return -1; }  
     
  cv::Point2f srcQuad[] = { 
    cv::Point2f(0,          0),          // src Top left 
    cv::Point2f(src.cols-1, 0),          // src Top right 
    cv::Point2f(src.cols-1, src.rows-1), // src Bottom right 
    cv::Point2f(0,          src.rows-1)  // src Bottom left 
  }; 
     
  cv::Point2f dstQuad[] = { 
    cv::Point2f(src.cols*0.05f, src.rows*0.33f), 
    cv::Point2f(src.cols*0.9f,  src.rows*0.25f), 
    cv::Point2f(src.cols*0.8f,  src.rows*0.9f), 
    cv::Point2f(src.cols*0.2f,  src.rows*0.7f) 
  }; 
     
  // COMPUTE PERSPECTIVE MATRIX   
  cv::Mat warp_mat = cv::getPerspectiveTransform(srcQuad, dstQuad); 
  cv::Mat dst; 
  cv::warpPerspective(src, dst, warp_mat, src.size(), cv::INTER_LINEAR,  
                      cv::BORDER_CONSTANT, cv::Scalar()); 
  for( int i = 0; i < 4; i++ ) 
    cv::circle(dst, dstQuad[i], 5, cv::Scalar(255, 0, 255), -1, cv::AA); 
     
  cv::imshow("Perspective Transform Test", dst); 
  cv::waitKey(); 
  return 0; 
} 

 

cv::perspectiveTransform(), Sparse perspective transformations 

There is a special function, cv::perspectiveTransform(), that performs perspective 
transformations on lists of points. Because cv::transform() is limited to linear operations, it does not 
conveniently handle perspective transforms. This is because such transformations require division by the 
third coordinate of the homogeneous representation  (𝑥   =   𝑓   ∗ 𝑋/𝑍, 𝑦   =   𝑓   ∗ 𝑌/𝑍). The special function 
cv::perspectiveTransform() takes care of this for us: 

void cv::perspectiveTransform( 
  cv::InputArray  src,                       // Input N-by-1 array (2 or 3 channele) 
  cv::OutputArray dst,                       // Output N-by-1 array (2 or 3 channels) 
  cv::InputArray  mtx                        // Transfor matrux (3-by-3 or 4-by-4) 
); 

As usual, the src and dst arguments are, respectively, the array of source points to be transformed and 
the array of destination points resulting from the transformation. These arrays should be two- or three-
channel arrays. The matrix mat can be either a 3-by-3 or a 4-by-4 matrix. If it is 3-by-3, then the projection 
is from two dimensions to two; if the matrix is 4-by-4, then the projection is from three dimensions to three. 

In the current context, we are transforming a set of points in an image to another set of points in an image, 
which sounds like a mapping from two dimensions to two dimensions. This is not exactly correct, however, 
because the perspective transformation is actually mapping points on a two-dimensional plane embedded in 
a three-dimensional space back down to a (different) two-dimensional subspace. Think of this as being just 
what a camera does (we will return to this topic in greater detail when discussing cameras in later chapters). 
The camera takes points in three dimensions and maps them to the two dimensions of the camera imager. 
This is essentially what is meant when the source points are taken to be in “homogeneous coordinates.” We 
are adding a dimension to those points by introducing the 𝑍 dimension and then setting all of the 𝑍 values 
to 1. The projective transformation is then projecting back out of that space onto the two-dimensional space 
of our output. This is a rather long-winded way of explaining why, when mapping points in one image to 
points in another, you will need a 3-by-3 matrix. 



Outputs of the code in Example 6-1 and Example 6-2 are shown in Figure 6-4 for affine and perspective 
transformations. In these examples, we transform actual images; you can compare these with the simple 
diagrams of Figure 6-3.  

 

 
Figure 6-4: Perspective and affine mapping of an image 

General Remappings 
The affine and perspective transformations we have seen so far are actually specific cases of a more general 
process. Under the hood, those two both have the same basic behavior. They take pixels from one place in 
the source image and map them to another place in the destination image. In fact, there are other useful 
operations that have the same structure. In this section, we will look at another few transformations of this 
kind, and then look at how OpenCV makes it possible to implement your own general mapping 
transformations. 

Polar Mappings 
In Chapter 3, we briefly encountered two functions, cv::cartToPolar() and 
cv::polarToCart(), which could be used to convert arrays of points in an 𝑥-𝑦 Cartesian 
representation to (or from) arrays of points in an 𝑟-𝜃 polar representation.  

There is a slight style inconsistency here between the polar mapping functions and the 
perspective and affine transformation functions. The polar mapping functions expect 
pairs of single-channel arrays, rather than double-channel arrays as their way of 
representing two-dimensional vectors. This difference has its origin in the way the two 
functions are traditionally used, rather than any intrinsic difference between what they are 
doing. 



The functions cv::cartToPolar() and cv::polarToCart() are employed by more complex 
routines such as cv::logPolar() (described later) but are also useful in their own right. 

cv::cartToPolar(), Converting from Cartesian to Polar Coordinates 

For the case of mapping from Cartesian coordinates to polar coordinates, we have the function 
cv::cartToPolar(): 

void cv::cartToPolar( 
  cv::InputArray  x,                           // Input single channel x-array  
  cv::InputArray  y,                           // Input single channel y-array 
  cv::OutputArray magnitude,                   // Output single channel mag-array 
  cv::OutputArray angle,                       // Output single channel angle-array 
  bool            angleInDegrees = false       // Set true for degrees, else radians 
); 

The first two arguments x, and y, are single-channel arrays. Conceptually, what is being represented here is 
not just a list of points, but a vector field11—with the x-component of the vector field at any given point 
being represented by the value of the array x at that point, and the y-component of the vector field at any 
given point being represented by the value of the array y at that point. Similarly, the result of this function 
appears in the arrays magnitude and angle, with each point in magnitude representing the length of 
the vector at that point in x and y, and each point in angle representing the orientation of that vector. The 
angles recorded in angle will, by default, be in radians, i.e.,  [0, 2𝜋). If the argument angleInDegrees 
is set to true, however, then the angles array will be recorded in degrees [0, 360). 

As an example of where you might use this function, suppose you have already taken the x- and y-
derivatives of an image, either by using cv::Sobel() or by using convolution functions via 
cv::DFT() or cv::filter2D(). If you stored the x-derivatives in an image dx_img and the y-
derivatives in dy_img, you could now create an edge-angle recognition histogram. That is, you could then 
collect all the angles provided the magnitude or strength of the edge pixel is above some desired threshold. 
To calculate this, we would first create two new destination images (and call them img_mag and 
img_angle, for example) for the directional derivatives and then use the function cvCartToPolar( 
dx_img, dy_img, img_mag, img_angle, 1 ). We would then fill a histogram from 
img_angle as long as the corresponding “pixel” in img_mag is above our desired threshold. 

In Chapter 13, we will discuss image recognition and image features. This process is 
actually the basis of how an important image feature used in object recognition, called 
HOG (histogram of oriented gradients), is calculated. 

cv::polarToCart(), Converting from Polar to Cartesian Coordinates 

The function cv::cartToPolar() performs the reverse mapping from polar coordinates to Cartesian 
coordinates. 

void cv::polarToCart( 
  cv::InputArray  magnitude,                   // Output single channel mag-array 
  cv::InputArray  angle,                       // Output single channel angle-array 
  cv::OutputArray x,                           // Input single channel x-array  
  cv::OutputArray y,                           // Input single channel y-array 
  bool            angleInDegrees = false       // Set true for degrees, else radians 
); 

The inverse operation is also often useful, allowing us to convert from polar back to Cartesian coordinates. 
It takes essentially the same arguments as cv::cartToPolar(), with the exception that magnitude 
and angle are now inputs, and x and y are now the results. 

                                                             
11 If you are not familiar with the concept of a vector field, it is sufficient for our purposes to just think of this as a two 
component vector associated with every point in “image.” 



LogPolar 
For two-dimensional images, the log-polar transform [Schwartz80] is a change from Cartesian to log-polar 
coordinates:  (𝑥, 𝑦)⟷ 𝑟𝑒!", where 𝑟 = 𝑥! + 𝑦! and  𝜃 = 𝑎𝑡𝑎𝑛2 𝑦, 𝑥 . Next, to separate out the polar 
coordinates into a (𝜌, 𝜃) space that is relative to some center point (𝑥𝑐, 𝑦𝑐); we take the log so that 
𝜌 = log  ( (𝑥 − 𝑥!)! + (𝑦 − 𝑦!)!) and  𝜃 = 𝑎𝑡𝑎𝑛2 𝑦 − 𝑦! , 𝑥 − 𝑥! . For image purposes—when we need to 
“fit” the interesting stuff into the available image memory—we typically apply a scaling factor 𝑚 to  𝜌. 
Figure 6-5 shows a square object on the left and its encoding in log-polar space. 

 
Figure 6-5: The log-polar transform maps (𝑥, 𝑦) into (𝑙𝑜𝑔(𝑟), 𝜃). Here, a square is displayed in the log-
polar coordinate system 

The next question is, of course, “Why bother?” The log-polar transform takes its inspiration from the 
human visual system. Your eye has a small but dense center of photoreceptors in its center (the fovea), and 
the density of receptors falls off rapidly (exponentially) from there. Try staring at a spot on the wall and 
holding your finger at arm’s length in your line of sight. Then, keep staring at the spot and move your 
finger slowly away; note how the detail rapidly decreases as the image of your finger moves away from 
your fovea. This structure also has certain nice mathematical properties (beyond the scope of this book) that 
concern preserving the angles of line intersections. 

More important for us is that the log-polar transform can be used to create two-dimensional invariant 
representations of object views by shifting the transformed image’s center of mass to a fixed point in the 

log-polar plane; see   



Figure 6-6. On the left are three shapes that we want to recognize as “square.” The problem is, they look 
very different. One is much larger than the others and another is rotated. The log-polar transform appears 

on the right in   

Figure 6-6. Observe that size differences in the (𝑥, 𝑦) plane are converted to shifts along the log  (𝑟) axis of 
the log-polar plane and that the rotation differences are converted to shifts along the 𝜃-axis in the log-polar 
plane. If we take the transformed center of each transformed square in the log-polar plane and then re-
center that point to a certain fixed position, then all the squares will show up identically in the log-polar 
plane. This yields a type of invariance to two-dimensional rotation and scaling.12 

  

Figure 6-6: Log-polar transform of rotated and scaled squares: size goes to a shift on the 𝑙𝑜𝑔 𝑟  axis and 
rotation to a shift on the 𝜃-axis 

cv::logPolar() 

The OpenCV function for a log-polar transform is cv::logPolar(): 

void cv::logPolar( 
  cv::InputArray  src,                           // Input image 
  cv::OutputArray dst,                           // Output image 
  cv::Point2f     center,                        // Center of transform 
  double          m,                             // Scale factor 
  int             flags = cv::INTER_LINEAR       
                        | cv::WARP_FILL_OUTLIERS // interpolation and fill modes 
); 

                                                             
12 In Chapter 13, we‘ll learn about recognition. For now, simply note that it wouldn‘t be a good idea to derive a log-
polar transform for a whole object because such transforms are quite sensitive to the exact location of their center 
points. What is more likely to work for object recognition is to detect a collection of key points (such as corners or blob 
locations) around an object, truncate the extent of such views, and then use the centers of those key points as log-polar 
centers. These local log-polar transforms could then be used to create local features that are (partially) scale- and 
rotation-invariant and that can be associated with a visual object. 



The src and dst are the usual input and output images. The parameter center is the center point 
(𝑥! , 𝑦!) of the log-polar transform; m is the scale factor, which should be set so that the features of interest 
dominate the available image area. The flags parameter allows for different interpolation methods. The 
interpolation methods are the same set of standard interpolations available in OpenCV (Table 6-1). The 
interpolation methods can be combined with either or both of the flags cv::WARP_FILL_OUTLIERS (to 
fill points that would otherwise be undefined) or cv::WARP_INVERSE_MAP (to compute the reverse 
mapping from log-polar to Cartesian coordinates). 

Sample log-polar coding is given in Example 6-4, which demonstrates the forward and backward (inverse) 
log-polar transform. The results on a photographic image are shown in Figure 6-7. 

 
Figure 6-7: Log-polar example on an elk with transform centered at the white circle on the left; the output 
is on the right 

Example 6-3: Log-polar transform example 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
int main(int argc, char** argv) { 
 
  if(argc != 3) {  
    cout << "LogPolar\nUsage: ch6_ex6_4 <imagename> <M value>\n” 
      <<”<M value>~30 is usually good enough\n";  
    return -1;  
  } 
     
  cv::Mat src = cv::imread(argv[1],1); 
     
  if( src.empty() ) { cout << "Can not load " << argv[1] << endl; return -1; }  
     
  double M = atof(argv[2]); 
  cv::Mat dst(src.size(), src.type()), src2(src.size(), src.type()); 
     
  cv::logPolar(  
    src,   
    dst,  
    cv::Point2f(src.cols*0.5f, src.rows*0.5f), 
    M,   
    cv::INTER_LINEAR | cv::WARP_FILL_OUTLIERS  
  ); 
  cv::logPolar(  
    dst,  
    src2,  
    cv::Point2f(src.cols*0.5f, src.rows*0.5f), 
    M,  



    cv::INTER_LINEAR | cv::WARP_INVERSE_MAP  
  ); 
  cv::imshow( "log-polar", dst ); 
  cv::imshow( "inverse log-polar", src2 ); 
  cv::waitKey(); 
  return 0; 
} 

Arbitrary Mappings 
We sometimes want to accomplish interpolation programmatically; that is, we’d like to apply some known 
algorithm that will determine the mapping. In other cases, however, we’d like to do this mapping ourselves. 
Before diving into some methods that will compute (and apply) these mappings for us, let’s take a moment 
to look at the function responsible for applying the mappings that these other methods rely upon.  

One common use of cv::remap() is to rectify (correct distortions in) calibrated and stereo images. We 
will see functions in Chapters 11 and 12 that convert calculated camera distortions and alignments into 
mapx and mapy parameters.  

The OpenCV function we want is called cv:remap(): 

cv::remap(), General Image Remapping 
void cv::remap(  
  cv::InputArray    src,                        // Input image  
  cv::OutputArray   dst,                        // Output image 
  cv::InputArray    map1,                       // target x-location for src pixels 
  cv::InputArray    map2,                       // target y-location for src pixels 
  int               interpolation = cv::INTER_LINEAR,    // Interpolation, and inverse 
  int               borderMode    = cv::BORDER_CONSTANT, // Pixel extrapolation method 
  const cv::Scalar& borderValue   = cv::Scalar()         // Used for constant borders 
); 

The first two arguments of cv::remap() are the source and destination images, respectively. The next 
two arguments, map1 and map2, indicate where any particular pixel is to be relocated. This is how you 
specify your own general mapping. These should be the same size as the source and destination images, 
and must be one of the following data types: cv::S16C2, cv::F32C1, or cv::F32C2. Non-integer 
mappings are allowed: cv::remap() will do the interpolation calculations for you automatically.  

The next argument, interpolation, contains flags that tell cv::remap() exactly how that 
interpolation is to be done. Any one of the values listed in Table 6-1 will work – except for 
cv::INTER_AREA, which is not implemented for cv::remap().  

Discrete Fourier Transform 
For any set of values that are indexed by a discrete (integer) parameter, it is possible to define a discrete 
Fourier transform (DFT)13 in a manner analogous to the Fourier transform of a continuous function. For 𝑁 
complex numbers 𝑥!, 𝑥!, 𝑥!,… , 𝑥!!!, the one-dimensional DFT is defined by the following formula (where 
𝑖 = −1): 

𝑔! = 𝑓!𝑒
!!!"! !"

!!!

!!!

 

                                                             
13 Joseph Fourier [Fourier] was the first to find that some functions can be decomposed into an infinite series of other 
functions, and doing so became a field known as Fourier analysis. Some key text on methods of decomposing functions 
into their Fourier series are Morse for physics [Morse53] and Papoulis in general [Papoulis62]. The fast Fourier 
transform was invented by Cooley and Tukey in 1965 [Cooley65] though Carl Gauss worked out the key steps as early 
as 1805 [Johnson84]. Early use in computer vision is described by Ballard and Brown [Ballard82]. 



A similar transform can be defined for a two-dimensional array of numbers (of course higher-dimensional 
analogues exist also): 

𝑔!!,!! = 𝑓!!,!!𝑒
!!!"! (!!!!!!!!!)

!!!!

!!!!

!!!!

!!!!

 

In general, one might expect that the computation of the 𝑁 different terms 𝑔𝑘 would require 𝑂(𝑁2) 
operations. In fact, there are several fast Fourier transform (FFT) algorithms capable of computing these 
values in 𝑂(𝑁  log  𝑁) time.  

cv::dft(), the Discrete Fourier Transform 

The OpenCV function cv::dft() implements one such FFT algorithm. The function cv::dft() can 
compute FFTs for one- and two-dimensional arrays of inputs. In the latter case, the two-dimensional 
transform can be computed or, if desired, only the one-dimensional transforms of each individual row can 
be computed (this operation is much faster than calling cv::dft() several times): 

void cv::dft( 
  cv::InputArray    src,                        // Input array (real or complex)  
  cv::OutputArray   dst,                        // Output array 
  int               flags       = 0,            // for inverse, or other variations 
  int               nonzeroRows = 0             // number of rows to not ignore 
); 

The input array must be of floating-point type and may be single- or double-channel. In the single-channel 
case, the entries are assumed to be real numbers and the output will be packed in a special space-saving 
format called CCS or Complex Conjugate Symmetrical.14 If the source and channel are two-channel 
matrices or images, then the two channels will be interpreted as the real and imaginary components of the 
input data. In this case, there will be no special packing of the results, and some space will be wasted with a 
lot of 0s in both the input and output arrays.15 

The special packing of result values that is used with single-channel CCS output is as follows. 

For a one-dimensional array: 

𝑅𝑒  𝑌! 𝑅𝑒  𝑌! 𝐼𝑚  𝑌! 𝑅𝑒  𝑌! 𝐼𝑚  𝑌! ⋯ 𝑅𝑒  𝑌 !
!!!

 𝐼𝑚  𝑌 !
!!!

 𝑅𝑒  𝑌 !
!

 

For a two-dimensional array: 

𝑅𝑒  𝑌!! 𝑅𝑒  𝑌!" 𝐼𝑚  𝑌!" 𝑅𝑒  𝑌!" 𝐼𝑚  𝑌!" ⋯ 𝑅𝑒  𝑌
!,!!! !!

 𝐼𝑚  𝑌
!,!!! !!

 𝑅𝑒  𝑌
!,!!!

 

𝑅𝑒  𝑌!" 𝑅𝑒  𝑌!! 𝐼𝑚  𝑌!! 𝑅𝑒  𝑌!" 𝐼𝑚  𝑌!" ⋯ 𝑅𝑒  𝑌
!,!!! !!

 𝐼𝑚  𝑌
!,!!! !!

 𝑅𝑒  𝑌
!,!!!

 

𝑅𝑒  𝑌!" 𝑅𝑒  𝑌!" 𝐼𝑚  𝑌!" 𝑅𝑒  𝑌!! 𝐼𝑚  𝑌!! ⋯ 𝑅𝑒  𝑌
!,!!! !!

 𝐼𝑚  𝑌
!,!!! !!

 𝑅𝑒  𝑌
!,!!!

 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑅𝑒  𝑌!!
! !!,!

 𝑅𝑒  𝑌!!!!,! 𝐼𝑚  𝑌!!!!,! 𝑅𝑒  𝑌!!!!,! 𝐼𝑚  𝑌!!!!,! ⋯ 𝑅𝑒  𝑌
!!!!,

!!
! !!

 𝐼𝑚  𝑌
!!!!,

!!
! !!

 𝑅𝑒  𝑌
!!!!,

!!
!

 

                                                             
14 As a result of this compact representation, the size of the output array for a single-channel image is the same as the 
size of the input array because the elements that are provably zero are omitted. In the case of the two-channel 
(complex) array, the output size will, of course, also be equal to the input size. 
15 When using this method, you must be sure to explicitly set the imaginary components to 0 in the two-channel 
representation. An easy way to do this is to create a matrix full of 0s using cv::Mat::zeros() for the imaginary 
part and then to call cv::merge() with a real-valued matrix to form a temporary complex array on which to run 
cv::dft() (possibly in-place). This procedure will result in full-size, unpacked, complex matrix of the spectrum. 



𝐼𝑚  𝑌!!
! !!,!

 𝑅𝑒  𝑌!!!!,! 𝐼𝑚  𝑌!!!!,! 𝑅𝑒  𝑌!!!!,! 𝐼𝑚  𝑌!!!!,! ⋯ 𝑅𝑒  𝑌
!!!!,

!!
! !!

 𝐼𝑚  𝑌
!!!!,

!!
! !!

 𝑅𝑒  𝑌
!!!!,

!!
!

 

𝑅𝑒  𝑌!!
! ,!

 𝑅𝑒  𝑌!!!!,! 𝐼𝑚  𝑌!!!!,! 𝑅𝑒  𝑌!!!!,! 𝐼𝑚  𝑌!!!!,! ⋯ 𝑅𝑒  𝑌
!!!!,

!!
! !!

 𝐼𝑚  𝑌
!!!!,

!!
! !!

 𝑅𝑒  𝑌
!!!!,

!!
!

 

It is worth taking a moment to look closely at the indices of these arrays. Certain values in the array are 
guaranteed to be 0 (more accurately, certain values of 𝑓𝑘 are guaranteed to be real). It should also be noted 
that the last row listed in the table will be present only if 𝑁! is even and that the last column will be present 
only if 𝑁! is even. In the case of the two-dimensional array being treated as 𝑁! separate one-dimensional 
arrays rather than a full two-dimensional transform (we’ll take a look at how to do this), all of the result 
rows will be analogous to the single row listed for the output of the one-dimensional array. 

The third argument, called flags, indicates exactly what operation is to be done. As usual, flags is 
treated as a bit array, so you can combine any flags you need with Boolean OR. The transformation we 
started with is known as a forward transform and is selected by default. The inverse transform16 is defined 
in exactly the same way except for a change of sign in the exponential and a scale factor. To perform the 
inverse transform without the scale factor, use the flag cv::DFT_INVERSE. The flag for the scale factor 
is cv::DFT_SCALE, which results in all of the output being scaled by a factor of 𝑁!! (or 𝑁!𝑁!

!!
 for a 

two-dimensional transform). This scaling is necessary if the sequential application of the forward transform 
and the inverse transform is to bring us back to where we started. Because one often wants to combine 
cv::DFT_INVERSE with cv::DFT_SCALE, there are several shorthand notations for this kind of 
operation. In addition to just combining the two operations, you can use cv::DFT_INV_SCALE (or 
cv::DFT_INVERSE_SCALE if you’re not into that brevity thing). The last flag you may want to have 
handy is cv::DFT_ROWS, which allows you to tell cv::dft() to treat a two-dimensional array as a 
collection of one-dimensional arrays that should each be transformed separately as if they were 𝑁!  distinct 
vectors of length 𝑁!. This can significantly reduce overhead when doing many transformations at a time. 
By using cv::DFT_ROWS it is also possible to implement three-dimensional (and higher) DFT. 

Though the default behavior of the forward transform is to produce results in CCS format (which results in 
an output array exactly the same size as the input array), you can explicitly ask OpenCV to not do this with 
the flag cv::DFT_COMPLEX_OUTPUT. The result will be the full complex array (with all of the zeros in 
it). Conversely, when performing an inverse transformation on a complex array, the result is normally also 
a complex array. If the source array had complex conjugate symmetry,17 you can ask OpenCV to produce a 
purely real array (which will be smaller than the input array) by passing the cv::DFT_REAL_OUTPUT 
flag.  

In order to understand the last argument, nonzero_rows, we must digress for a moment to explain that 
in general, DFT algorithms strongly prefer input vectors of some lengths over input vectors of other 
lengths; similarly for arrays of some sizes over arrays of other sizes. In most DFT algorithms, the preferred 
sizes are powers of 2 (i.e., 2! for some integer 𝑛). In the case of the algorithm used by OpenCV, the 
preference is that the vector lengths, or array dimensions, be 2!3!5!, for some integers 𝑝, 𝑞, and 𝑟. Hence 
the usual procedure is to create a somewhat larger array and then to copy your array into that somewhat 
roomier zero-padded array. For convenience, there is a handy utility function, 
cv::getOptimalDFTSize(), which takes the (integer) length of your vector and returns the first 
equal or larger size that can be expressed in the form given (i.e., 2!3!5!). Despite the need for this 
padding, it is possible to indicate to cv::dft() that you really do not care about the transform of those 
rows that you had to add down below your actual data (or, if you are doing an inverse transform, which 

                                                             
16 With the inverse transform, the input is packed in the special format described previously. This makes sense because, 
if we first called the forward DFT and then ran the inverse DFT on the results, we would expect to wind up with the 
original data—that is, of course, if we remember to use the cv::DFT_SCALE flag! 
17 This is not to say that it is in CCS format, only that it possesses the symmetry, as it would if (for example) it was the 
result of a forward transform of a purely real array in the first place. Also, take note that you are telling OpenCV that 
the input array has this symmetry—it will trust you. It does not actually check to verify that this symmetry is present. 



rows in the result you do not care about). In either case, you can use nonzero_rows to indicate how 
many rows contain meaningful data. This will provide some savings in computation time. 

cv::idft(), the Inverse Discrete Fourier Transform 

As we saw earlier, the function cv::dft() can be made to implement not only the discrete Fourier 
transform, but also the inverse operation (with the provision of the correct flags argument). It is often 
preferable, if only for code readability, to have a separate function that does this inverse operation by 
default. 

void cv::idft( 
  cv::InputArray  src,                          // Input array (real or complex) 
  cv::OutputArray dst,                          // Output array 
  int             flags       = 0,              // for variations 
  int             nonzeroRows = 0               // number of rows to not ignore 
); 

Calling cv::idft() is exactly equivalent to calling cv::dft() with the cv::DFT_INVERSE flag 
(in addition to whatever flags you supply to cv::idft(), of course.) 

cv::mulSpectrums(), Spectrum Multiplication 

In many applications that involve computing DFTs, one must also compute the per-element multiplication 
of the two resulting spectra. Because such results are complex numbers, typically packed in their special 
high-density CCS format, it would be tedious to unpack them and handle the multiplication via the “usual” 
matrix operations. Fortunately, OpenCV provides the handy cv::mulSpectrums() routine, which 
performs exactly this function for us: 

void cv::mulSpectrums( 
  cv::InputArray  src1,                         // First input array (ccs or complex) 
  cv::InputArray  src2,                         // Second input array (ccs or complex) 
  cv::OutputArray dst,                          // Result array                 
  int             flags,                        // for row-by-row computation 
  bool            conj = false                  // true to conjugate src2 
); 

Note that the first two arguments are arrays, which may be either CCS packed single-channel spectra or 
two-channel complex spectra (as you would get from calls to cv::dft()). The third argument is the 
destination array, which will be of the same size and type as the source arrays. The final argument, conj, 
tells cv::mulSpectrums() exactly what you want done. In particular, it may be set to false for 
implementing the above pair multiplication or set to true if the element from the first array is to be 
multiplied by the complex conjugate of the corresponding element of the second array18.  

Convolution Using Discrete Fourier Transforms 

It is possible to greatly increase the speed of a convolution by using DFT via the convolution theorem 
[Titchmarsh26] that relates convolution in the spatial domain to multiplication in the Fourier domain 
[Morse53; Bracewell65; Arfken85].19 To accomplish this, one first computes the Fourier transform of the 
image and then the Fourier transform of the convolution filter. Once this is done, the convolution can be 
performed in the transform space in linear time with respect to the number of pixels in the image. It is 
worthwhile to look at the source code for computing such a convolution, as it will also provide us with 
many good examples of using cv::dft(). The code is shown in Example 6-4, which is taken directly 
from the OpenCV reference. 

                                                             
18 The primary usage of this argument is the implementation of a correlation in Fourier space. It turns out that the only 
difference between convolution (which we will discuss in the next section), and correlation, is the conjugation of the 
second array in the spectrum multiplication. 
19 Recall that OpenCV’s DFT algorithm implements the FFT whenever the data size makes the FFT faster. 



Example 6-4: Use of cv::dft() and cv::idft() to accelerate the computation of convolutions 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
int main(int argc, char** argv) { 
   
  if(argc != 2) {  
    cout << "Fourier Transform\nUsage: ch6_ex6_5 <imagename>" << endl;  
    return -1;  
  } 
     
  cv::Mat A = cv::imread(argv[1],0); 
     
  if( A.empty() ) { cout << "Can not load " << argv[1] << endl; return -1; }  
     
  cv::Size patchSize( 100, 100 ); 
  cv::Point topleft( A.cols/2, A.rows/2 ); 
  cv::Rect roi( topleft.x, topleft.y, patchSize.width, patchSize.height ); 
  cv::Mat B = A( roi ); 
     
  int dft_M = cv::getOptimalDFTSize( A.rows+B.rows-1 ); 
  int dft_N = cv::getOptimalDFTSize( A.cols+B.cols-1 ); 
 
  cv::Mat dft_A = cv::Mat::zeros( dft_M, dft_N, cv::F32 ); 
  cv::Mat dft_B = cv::Mat::zeros( dft_M, dft_N, cv::F32 ); 
     
  cv::Mat dft_A_part = dft_A( Rect(0, 0, A.cols,A.rows) ); 
  cv::Mat dft_B_part = dft_B( Rect(0, 0, B.cols,B.rows) );  
 
  A.convertTo( dft_A_part, dft_A_part.type(), 1, -mean(A)[0] ); 
  B.convertTo( dft_B_part, dft_B_part.type(), 1, -mean(B)[0] ); 
     
  cv::dft( dft_A, dft_A, 0, A.rows ); 
  cv::dft( dft_B, dft_B, 0, B.rows ); 
     
  // set the last parameter to false to compute convolution instead of correlation 
  cv::mulSpectrums( dft_A, dft_B, dft_A, 0, true ); 
  cv::idft( dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1 ); 
     
  cv::Mat corr = dft_A( Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1) ); 
  cv::normalize( corr, corr, 0, 1, NORM_MINMAX, corr.type() ); 
  cv::pow( corr, 3., corr ); 
     
  cv::B ^= cv::Scalar::all( 255 ); 
 
  cv::imshow( "Image", A ); 
  cv::imshow( "Correlation", corr ); 
  cv::waitKey(); 
  return 0; 
} 

In Example 6-4, we can see that the input arrays are first created and then initialized. Next, two new arrays 
are created whose dimensions are optimal for the DFT algorithm. The original arrays are copied into these 
new arrays and the transforms are then computed. Finally, the spectra are multiplied together and the 
inverse transform is applied to the product. The transforms are the slowest20 part of this operation; an 𝑁-by-

                                                             
20 By “slowest” we mean “asymptotically slowest”—in other words, that this portion of the algorithm takes the most 
time for very large 𝑁. This is an important distinction. In practice, as we saw in the earlier section on convolutions, it is 



  𝑁 image takes 𝑂(𝑁!  log  𝑁) time and so the entire process is also completed in that time (assuming that 
𝑁 > 𝑀 for an 𝑀-by-𝑀 convolution kernel). This time is much faster than 𝑂(𝑁!𝑀!), the non-DFT 
convolution time required by the more naïve method. 

cv::dct(), the Discrete Cosine Transform 

For real-valued data, it is often sufficient to compute what is, in effect, only half of the discrete Fourier 
transform. The discrete cosine transform (DCT) [Ahmed74; Jain77] is defined analogously to the full DFT 
by the following formula: 

𝑐! =
1
𝑁

!
!
𝑥! +

2
𝑁

!
!
𝑥! cos (𝑘 +

1
2
)
𝑛
𝑁
𝜋

!!!

!!!

 

Of course, there is a similar transform for higher dimensions. Note that, by convention, the normalization 
factor is applied to both the cosine transform and its inverse (which is not the convention for the discrete 
Fourier transform).  

The basic ideas of the DFT apply also to the DCT, but now all the coefficients are real-valued. Astute 
readers might object that the cosine transform is being applied to a vector that is not a manifestly even 
function. However, with cv::dct(), the algorithm simply treats the vector as if it were extended to 
negative indices in a mirrored manner. 

The actual OpenCV call is: 
void cv::dct( 
  cv::InputArray  src,                          // Input array (even size) 
  cv::OutputArray dst,                          // Output array 
  int             flags       = 0               // for row-by-row or inverse 
); 

The cv::dct() function expects arguments like those for cv::dft() except that, because the results 
are real-valued, there is no need for any special packing of the result array (or of the input array in the case 
of an inverse transform). Unlike cv::dft(), however, the input array must have an even number of 
elements (you can pad the last element with a zero if necessary to achieve this). The flags argument can 
be set to cv::DCT_INVERSE to generate the inverse transformation, and either may be combined with 
cv::DCT_ROWS with the same effect as with cv::dft(). Because of the different normalization 
convention, both the forward and inverse cosine transforms always contain their respective contribution to 
the overall normalization of the transform; hence there is no analog to cv::DFT_SCALE for 
cv::dct(). 

As with cv::dft(), there is a strong dependence of performance on array size. In fact, deep down, the 
implementation of cv::dct() actually calls cv::dft() on an array exactly half the size of your input 
array. For this reason, the optimal size of an array to pass to cv::dct() is exactly double the size of the 
optimal array you would pass to cv::dft(). Putting everything together, the best way to get an optimal 
size for cv::dct() is to compute: 

size_t optimal_dct_size = 2 * cv::getOptimalDFTSize( (N+1)/2 ); 

where N is the actual size of your data that you want to transform. 

cv::idct(), the Inverse Discrete Cosine Transform 

Just as with cv::idft() and cv::dft(), cv::dct() can be asked to compute the inverse cosine 
transform using the flags argument. As before, code readability is often improved with the use of a 
separate function that does this inverse operation by default. 

void cv::idct( 
  cv::InputArray  src,                          // Input array 

                                                                                                                                                                                     
not always optimal to pay the overhead for conversion to Fourier space. In general, when convolving with a small 
kernel it will not be worth the trouble to make this transformation. 



  cv::OutputArray dst,                          // Output array  
  int             flags = 0,                    // for row-by-row computation 
); 

Calling cv::idct() is exactly equivalent to calling cv::dct() with the cv::DCT_INVERSE flag 
(in addition to any other flags you supply to cv::idct()). 

Integral Images 
OpenCV allows you to calculate an integral image easily with the appropriately named 
cv::integral() function. An integral image [Viola04] is a data structure that allows rapid summing 
of sub-regions21. Such summations are useful in many applications; a notable one is the computation of 
Haar wavelets, which are used in face detection and similar algorithms. 

There are three variations of the integral image that are supported by OpenCV. They are the sum, the 
square-sum, and the tilted-sum. 

A standard integral image sum has the form: 

𝑠𝑢𝑚 𝑥, 𝑦 = 𝑖𝑚𝑎𝑔𝑒 𝑥′, 𝑦′
!!!!!!!!

 

The square-sum image is the sum of squares: 

𝑠𝑢𝑚!"#$%& 𝑥, 𝑦 = 𝑖𝑚𝑎𝑔𝑒 𝑥′, 𝑦′ !

!!!!!!!!

 

The tilted-sum is like the sum except that it is for the image rotated by 45 degrees: 

𝑠𝑢𝑚!"#!$% 𝑥, 𝑦 =    𝑖𝑚𝑎𝑔𝑒 𝑥′, 𝑦′
!"#(!!!!)!!!!!!

 

Using these integral images, one may calculate sums, means, and standard deviations over arbitrary upright 
or “tilted” rectangular regions of the image. As a simple example, to sum over a simple rectangular region 
described by the corner points (𝑥!, 𝑦!)  and (𝑥!, 𝑦!), where 𝑥! > 𝑥!  and 𝑦! > 𝑦!, we’d compute: 

 

𝑖𝑚𝑎𝑔𝑒 𝑥, 𝑦
!!!!<!!!!!!<!!

= [𝑠𝑢𝑚 𝑥!, 𝑦! − 𝑠𝑢𝑚 𝑥!, 𝑦! − 𝑠𝑢𝑚 𝑥!, 𝑦! + 𝑠𝑢𝑚 𝑥!, 𝑦! ] 

 

In this way, it is possible to do fast blurring, approximate gradients, compute means and standard 
deviations, and perform fast block correlations even for variable window sizes. 

                                                             
21 The citation above is the best for more details on the method, but it was actually introduced in computer vision in 
2001 in a paper Robust Real-time Object Detection by the same authors. The method was previously used as early as 
1984 in computer graphics, where the integral image is known as a Summed Area Table. 



To make this all a little more clear, consider the 7-by-5 image shown in 

  
Figure 6-8; the region is shown as a bar chart in which the height associated with the pixels represents the 
brightness of those pixel values. The same information is shown in Figure 6-9, numerically on the left and 
in integral form on the right. Integral images 𝐼! are computed by going across rows, proceeding row by row 
using the previously computed integral image values together with the current raw image 𝐼 pixel value 
𝐼(𝑥, 𝑦) to calculate the next integral image value as follows: 

𝐼! 𝑥, 𝑦 = [𝐼 𝑥, 𝑦 − 𝐼 𝑥 − 1, 𝑦 − 𝐼 𝑥, 𝑦 − 1 + 𝐼 𝑥 − 1, 𝑦 − 1 ] 

  

Figure 6-8: Simple 7-by-5 image shown as a bar chart with x, y, and height equal to pixel value 

The last term is subtracted off because this value is double-counted when adding the second and third 
terms. You can verify that this works by testing some values in Figure 6-9. 



When using the integral image to compute a region, we can see by Figure 6-9 that, in order to compute the 
central rectangular area bounded by the 20s in the original image, we’d calculate 398  –   9  –   10   +   1   =
  380. Thus, a rectangle of any size can be computed using four measurements (resulting in 𝑂(1) 
computational complexity). 

  



1 2 5 1 2  0 0 0 0 0 0 

2 20 50 20 5  0 1 3 8 9 11 

5 50 100 50 2  0 3 25 80 101 108 

2 20 50 20 1  0 8 80 235 306 315 

1 5 25 1 2  0 10 102 307 398 408 

5 2 25 2 5  0 11 108 338 430 442 

2 1 5 2 1  0 16 115 370 464 481 

      0 18 118 378 474 492 

Figure 6-9: The 7-by-5 image of   

Figure 6-8 shown numerically at left (with the origin assumed to be the upper-left ) and converted to an (8-
by-6) integral image at right 

cv::integral(), for Standard Summation Integral 

The different forms of integral are (somewhat confusingly) distinguished in the C++ API only by their 
arguments. The form that computes the basic sum has only three. 

void cv::integral( 
  cv::InputArray  image,                        // Input array 
  cv::OutputArray sum,                          // Output sum results 
  int             sdepth = -1                   // Depth for results (e.g., cv::F32) 
); 

The first and second are the input and result images. If the input image is of size 𝑊-by-  𝐻, then the output 
image will be of size (𝑊 + 1)-by-(𝐻 + 1).22  The third argument sdepth specifies the desired depth of 
the sum (destination) image. sdepth can be any of cv::S32, cv::F32, or cv::F64.23  

                                                             
22 This allows for the rows of zeros which are implied by the fact that summing zero terms results in a sum of zero. 
23 It is worth noting that even though sum and tilted_sum allow 32-bit float as output for input images of 32-bit 
float type, it is recommended to use 64-bit float, particularly for larger images. After all, a modern large image can be 
many millions of pixels.  



cv::integral(), for Squared Summation Integral 

The squared sum is computed with the same function as the regular sum, except that the provision of an 
additional output argument for the squared sum. 

void cv::integral( 
  cv::InputArray  image,                        // Input array 
  cv::OutputArray sum,                          // Output sum results 
  cv::OutputArray sqsum,                        // Output sum of squares results 
  int             sdepth = -1                   // Depth for results (e.g., cv::F32) 
); 

The cv::OutputArray argument sqsum indicates to cv::integral() that the square sum should 
be computed in addition to the regular sum. As before, sdepth specifies the desired depth of the resulting 
images. sdepth can be any of cv::S32, cv::F32, or cv::F64. 

cv::integral(), for Standard Summation Integral 

Similar to the squared sum, the tilted sum integral is essentially the same function, with an additional 
argument for the additional result. 

void cv::integral( 
  cv::InputArray  image,                        // Input array 
  cv::OutputArray sum,                          // Output sum results 
  cv::OutputArray sqsum,                        // Output sum of squares results 
  cv::OutputArray tilted,                       // Output tilted sum results 
  int             sdepth = -1                   // Depth for results (e.g., cv::F32) 
); 

The additional cv::OutputArray argument tilted is computed by this form of cv::integral(), 
in addition to the other sums, thus all of the other arguments are the same.  

The Canny Edge Detector 
Though it is possible to expose edges in images with simple filters such as the Laplace filter, it is possible 
to improve on this method substantially. The simple Laplace filter method was refined by J. Canny in 1986 
into what is now commonly called the Canny edge detector [Canny86]. One of the differences between the 
Canny algorithm and the simpler, Laplace-based algorithm in the previous chapter is that, in the Canny 
algorithm, the first derivatives are computed in 𝑥 and 𝑦 and then combined into four directional derivatives. 
The points where these directional derivatives are local maxima are then candidates for assembling into 
edges. 

 

 



Figure 6-10: Results of Canny edge detection for two different images when the high and low thresholds are 
set to 50 and 10, respectively. 

However, the most significant new dimension to the Canny algorithm is that it tries to assemble the 
individual edge candidate pixels into contours.24 These contours are formed by applying a hysteresis 
threshold to the pixels. This means that there are two thresholds, an upper and a lower. If a pixel has a 
gradient larger than the upper threshold, then it is accepted as an edge pixel; if a pixel is below the lower 
threshold, it is rejected. If the pixel’s gradient is between the thresholds, then it will be accepted only if it is 
connected to a pixel that is above the high threshold. Canny recommended a ratio of high:low threshold 

between 2:1 and 3:1.  

Figure 6-10 and  

Figure 6-11 show the results of applying cv::Canny() to a test pattern and a photograph using high:low 
hysteresis threshold ratios of 5:1 and 3:2, respectively. 

                                                             
24 We’ll have much more to say about contours later. As you await those revelations, keep in mind that the 
cv::Canny() routine does not actually return objects of a contour type; we will have to build those from the output 
of cv::Canny() if we want them by using cv::findContours(). Everything you ever wanted to know about 
contours will be covered in Chapter 8. 



 

Figure 6-11: Results of Canny edge detection for two different images when the high and low thresholds are 
set to 150 and 100, respectively 

cv::Canny() 

The OpenCV implementation of the Canny edge detection algorithm converts an input image into an “edge 
image”. 

void cv::Canny( 
  cv::InputArray  image,                        // Input single channel image 
  cv::OutputArray edges,                        // Output edge image 
  double          threshold1,                   // “lower” threshold 
  double          threshold2,                   // “upper” threshold 
  int             apertureSize = 3,             // Sobel aperture 
  bool            L2gradient   = false          // true for more accurate L2-norm 
); 

The cv::Canny() function expects an input image, which must be single-channel, and an output image, 
which will also be grayscale (but which will actually be a Boolean image). The next two arguments are the 
low and high thresholds. The next to last argument apertureSize is the aperture used by the Sobel 
derivative operators that are called inside of the implementation of cv::Canny(). The final argument 
L2gradient is used to select between computing the gradient “correctly” using the proper 𝐿!-norm, or if 
a faster less accurate 𝐿!-norm based method should be used. If the argument L2gradient is set to true, 
the more accurate form is used: 

𝑔𝑟𝑎𝑑 𝑥, 𝑦 !! =
𝑑𝐼
𝑑𝑥

!

+
𝑑𝐼
𝑑𝑦

!

 

If L2gradient is set to false, the faster form is used: 

𝑔𝑟𝑎𝑑 𝑥, 𝑦 !! =
𝑑𝐼
𝑑𝑥

+
𝑑𝐼
𝑑𝑦

 

Line Segment Detection 
In a great number of practical image processing applications, it is useful to be able to find either the 
dominant line segments, or all of the lines in an image. In particular, straight lines often provide valuable 
clues about perspective and the structure of objects. OpenCV provides several different algorithms which 
address this problem in different ways, each with their own distinct strengths and weaknesses. 



The Hough transform25 is a method for finding lines, circles, or other simple forms in an image. The 
original Hough transform was a line transform, which is a relatively fast way of searching a binary image 
for straight lines. The transform can be further generalized to cases other than just simple lines (we will 
return to this in the next section). 

In addition to the Hough Line Transform, another more recent algorithm called LSD (for Line Segment 
Detector) provides a fast technique which is, in general, more robust than the Hough Line Transform. 

Hough Line Transform 
The basic theory of the Hough line transform is that any point in a binary image could be part of some set 
of possible lines. If we parameterize each line by, for example, a slope 𝑎 and an intercept 𝑏, then a point in 
the original image is transformed to a locus of points in the (𝑎, 𝑏) plane corresponding to all of the lines 

passing through that point (see  

Figure 6-12). If we convert every nonzero pixel in the input image into such a set of points in the output 
image and sum over all such contributions, then lines that appear in the input (i.e., (𝑥, 𝑦) plane) image will 
appear as local maxima in the output (i.e., (𝑎, 𝑏) plane) image. Because we are summing the contributions 
from each point, the (𝑎, 𝑏) plane is commonly called the accumulator plane. 

 

                                                             
25 Hough developed the transform for use in physics experiments [Hough59]; its use in vision was introduced by Duda 
and Hart [Duda72]. 



Figure 6-12: The Hough line transform finds many lines in each image; some of the lines found are 
expected, but others may not be. 

It might occur to you that the slope-intercept form is not really the best way to represent all of the lines 
passing through a point (because of the considerably different density of lines as a function of the slope, 
and the related fact that the interval of possible slopes goes from –∞ to +∞). It is for this reason that the 
actual parameterization of the transform image used in numerical computation is somewhat different. The 
preferred parameterization represents each line as a point in polar coordinates (𝜌, 𝜃), with the implied line 
being the line passing through the indicated point but perpendicular to the radial from the origin to that 

point (see  

Figure 6-13). The equation for such a line is: 

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 

The OpenCV Hough transform algorithm does not make this computation explicit to the user. Instead, it 
simply returns the local maxima in the (𝜌, 𝜃) plane. However, you will need to understand this process in 
order to understand the arguments to the OpenCV Hough line transform function. 

 

Figure 6-13: A point 𝑥!, 𝑦!   in the image plane (a) implies many lines each parameterized by a different 𝜌 
and 𝜃 (b); these lines in the 𝜌, 𝜃  plane, which taken together form a curve of characteristic shape (c). 

OpenCV supports three different kinds of Hough line transform: the standard Hough transform (SHT) 
[Duda72], the multiscale Hough transform (MHT), and the progressive probabilistic Hough transform 
(PPHT).26 The SHT is the algorithm we just looked at. The MHT algorithm is a slight refinement that gives 
                                                             
26 The “probabilistic Hough transform” (PHT) was introduced by Kiryati, Eldar, and Bruckshtein in 1991 [Kiryati91]; 
the PPHT was introduced by Matas, Galambosy, and Kittler in 1999 [Matas99]. 



more accurate values for the matched lines. The PPHT is a variation of this algorithm that, among other 
things, computes an extent for individual lines in addition to the orientation (as shown in 

  
Figure 6-14). It is “probabilistic” because, rather than accumulating every possible point in the accumulator 
plane, it accumulates only a fraction of them. The idea is that if the peak is going to be high enough 
anyhow, then hitting it only a fraction of the time will be enough to find it; the result of this conjecture can 
be a substantial reduction in computation time.  

cv::HoughLines(), the Standard and Multi-scale Hough Transforms 

The standard and multi-scale Hough transforms are both implemented in a single function: 
cv::HoughLines() – with the distinction being in the use (or nonuse) of two optional parameters. 

void cv::HoughLines( 
  cv::InputArray  image,                        // Input single channel image 
  cv::OutputArray lines,                        // N-by-1 2-channel array 
  double          rho,                          // rho resolution (pixels) 
  double          theta,                        // theta resolution (radians) 
  int             threshold,                    // Unnormalized accumulator threshold 
  double          srn      = 0,                 // rho refinement (for MHT) 
  double          stn      = 0                  // theta refinement (for MHT) 
); 

The first argument is the input image. It must be an 8-bit image, but the input is treated as binary 
information (i.e., all nonzero pixels are considered to be equivalent). The second argument is the place 
where the found lines will be stored. It will be an 𝑁-by-1 two-channel array of floating point type (the 
number of columns 𝑁, will be the number of lines returned).27 The two channels will contain the 𝜌 and 𝜃 
values for each found line. 

The next two arguments, rho and theta, set the resolution desired for the lines (i.e., the resolution of the 
accumulator plane). The units of rho are pixels and the units of theta are radians; thus, the accumulator 
plane can be thought of as a two-dimensional histogram with cells of dimension rho pixels by theta 
radians. The threshold value is the value in the accumulator plane that must be reached for the 
algorithm to report a line. This last argument is a bit tricky in practice; it is not normalized, so you should 
expect to scale it up with the image size for SHT. Remember that this argument is, in effect, indicating the 
number of points (in the edge image) that must support the line for the line to be returned. 

                                                             
27 As usual, depending on the object type you pass to lines, this could be either a 1-by-𝑁 array with two channels, or 
if you like, a std::vector<> with 𝑁 entries, with each of those entries being of type Vec2f. 



  

Figure 6-14: The Canny edge detector (param1=50, param2=150) is run first, with the results shown in 
gray, and the progressive probabilistic Hough transform (param1=50, param2=10) is run next, with the 
results overlaid in white; you can see that the strong lines are generally picked up by the Hough transform 

The parameters srn and stn are not used by the standard Hough transform; they control an extension of 
the SHT algorithm called the multi-scale Hough transform (MHT). For MHT, these two parameters 
indicate higher resolutions to which the parameters for the lines should be computed. MHT first computes 
the locations of the lines to the accuracy given by the rho and theta parameters and then goes on to 
refine those results by a factor of srn and stn, respectively (i.e., the final resolution in rho is rho 
divided by srn and the final resolution in theta is theta divided by stn). Leaving these parameters 
set to zero causes the SHT algorithm to be run. 

cv::HoughLinesP(), the Progressive Probabilistic Hough Transform 
void cv::HoughLinesP( 
  cv::InputArray  image,                        // Input single channel image 
  cv::OutputArray lines,                        // N-by-1 4-channel array 
  double          rho,                          // rho resolution (pixels) 
  double          theta,                        // theta resolution (radians) 
  int             threshold,                    // Un-normalized accumulator threshold 
  double          minLineLength = 0,            // required line length 
  double          maxLineGap    = 0             // required line separation 
); 

The cv::HoughLinesP() function works very much like cv::HoughLines(), with two important 
differences. The first is that the lines argument will be a four-channel array (or a vector of objects all of 
type Vec4i). The four channels will be the x!, y!  and x!, y!  (in that order), the x, y  locations of the 
two endpoints of the found line segment. The second important difference is the meaning of the two 
parameters. For the PPHT, the minLineLength and maxLineGap arguments set the minimum length 
of a line segment that will be returned, and the separation between collinear segments required for the 
algorithm not to join them into a single longer segment.  

Line Segment Detection (LSD): cv::LineSegmentDetector 
The LSD algorithm, originally developed by Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel 
Morel, and Gregory Randall [vonGioi10][vonGioi12], is a linear time line segment finding algorithm. The 
LSD algorithm works by first analyzing the image in a local way and determining what kind of line might 
be supported by the pixels in these small patches. The patches are then agglomerated into larger hypotheses 
which are then validated before being accepted. 



 
Figure 6-15: Beginning with an image (a), the LSD algorithm first computes the local level line field (b). 
Level lines associated with weak gradients are rejected (c). Line support regions are associated with 
rectangles (d) whose width W is the approximate width of the line. In some cases, the widths are reduced to 
produce lines with lower NFA scores (e). The final resulting lines are shown here on top of the original 
image (f). 

The local procedure is based on what is called a level line (or, collectively across the entire image, the level 
line field Figure 6-15b). The level line field is computed by first computing the gradient of the image at 
every point, the level lines are perpendicular to those local gradients.  

Once the level line field has been computed, connected regions can be generated which contain level lines 
of the same or similar orientation (i.e. within some tolerance  𝜏). This is a very powerful idea, because it 
does not require the level lines to be associated with equally strong gradients28. In this way, aliasing effects 
can be naturally accounted for, as even in an aliased line, the orientation of the local level lines will be 
approximately parallel.  

Collectively, the regions containing similar level lines are called line support regions. A rectangle is fit to 
each such line support region; this rectangle represents a hypothesis for a line  Figure 6-15d. 

The LSD algorithm does not double count individual level lines. To avoid doing so, the level lines are first 
sorted based on the magnitudes of their associated gradients, on the assumption that the strongest gradients 
go with the most important lines. The line support regions are then constructed by building out from those 
strong gradient points in descending order of their strength. Because an exact ordering is not necessary for 
this process, the gradient magnitudes are instead binned into 𝑁!"#$ different bins in between zero and the 
largest observed gradient. The advantage of this pseudo-ordering is that it takes 𝑂(𝑁) time, rather than 
𝑂(𝑁 log𝑁) time (as would be expected of a full sorting). 

Once the rectangle hypotheses have been formed, each can be tested; if a large number of the points 
contained are consistent with the hypothesis, then a line segment has probably been found. If, on the other 
hand, this bounding rectangle contains many points which are not part of the original line support region, 
the proposed segment is probably not real.  

The actual test is based on what is called the number of false alarms (NFA) for a particular rectangle. The 
NFA is a function of the total number of pixels in the rectangle 𝑛 as well as the number of aligned pixels in 
that rectangle  𝑘. Conceptually, the NFA is the number of rectangles we would expect to find in a random 

                                                             
28 It is however, common practice to exclude level lines whose associated gradient is below some threshold (as shown 
in Figure 6-15c). 



image with similar significance to the hypothesis rectangle (i.e. similar 𝑛 and  𝑘)29. Rectangle hypotheses 
are rejected if their NFA is below some threshold: 𝑁𝐹𝐴!,! 𝑛, 𝑘 < 𝜖. Optionally, a refinement pass can 
attempt to tune the rectangle hypotheses to minimize their NFA Figure 6-15e. 

Using the cv::lineSegmentDetector Object 

The LSD algorithm is implemented in OpenCV using the more contemporary style in which features of the 
library are implemented as objects which hold their various parameters and thereafter provide an 
algorithmic service by means of their member functions. The object which implements the LSD algorithm 
is called cv::lineSegmentDetector. The following function creates one of these objects and returns 
you a cv::Ptr<> to it: 

cv::Ptr<LineSegmentDetector> cv::createLineSegmentDetector( 
int    refine      = cv::LSD_REFINE_STD,  
double scale       = 0.8,  
double sigma_scale = 0.6,  
double quant       = 2.0,  
double ang_th      = 22.5,  
double log_eps     = 0,  
double density_th  = 0.7,  
int    n_bins      = 1024 

); 

You should first notice that every argument to this function has a default value. This is not an accident. 
These values were determined by the designers of the LSD algorithm to be broadly optimal. As a result, 
you are unlikely to want to change them. For experts (and the experimentally minded) however, we 
describe them here. 

The first argument is refine, which controls how the algorithm will attempt to refine (though not 
necessarily reduce) its initial findings to the best final output. The three refinement options are to do 
nothing (cv::LSD_REFINE_NONE), to attempt to break long arcs into multiple shorted but straighter 
segments (cv::LSD_REFINE_STD), and to both do arc decomposition as well as automatic parameter 
tuning, which should give better results at the expense of longer runtime (cv::LSD_REFINE_ADV).  

The second argument is the scale argument. Any incoming image to the LSD algorithm is automatically 
rescaled in both dimensions by this factor. The utility of this is that, just as with human perception, lines 
which are apparent at large scales will often be invisible when the image is viewed at high resolution; 
similarly, at reduced resolution, lines in fine details will be lost. 

As part of the reduction produced by scale, the image is first convolved with a Gaussian kernel. The size 
of this kernel is specified by sigma_scale; the size in pixels is actually the ratio of sigma_scale 
divided by scale. The default sigma value of 0.8 along with the default value for sigma_scale of 
0.6 are chosen to give good results even in images with substantial aliasing effects on lines, without 
substantially altering the return from what would be expected at full scale.  

The argument quant is a bound on the possible error in the gradient value due to quantization effects. It is 
used to determine which gradients are too small to use for the computation of level lines. This value would 
naturally be 1.0 (because the pixel values are integer values), but it has been found empirically that one 
gets better results by doubling this to 2.0 (the default).  

The ang_th argument sets the angular tolerance within which level lines can be considered to have the 
same orientation as their bounding rectangle. The default value for this parameter is 22.5 (degrees). 

The log_eps argument is only used with advanced refinement (cv::LSD_REFINE_ADV). In this case, 
it is used to set the log of the cutoff on the number of false alarms (NFA). This is the (log of the) parameter 
                                                             
29 We are hand waving away some math here. The actual concept of significance is based on the probability of 
generating a similar rectangle on a noise image. As such, “similar 𝑛 and  𝑘” means “those 𝑛 and  𝑘 which would give a 
similar probability”, which in fact means that they give the same value for 𝐵 𝑛, 𝑘, 𝑝 =

𝑛
𝑗

!
!!! 𝑝! 1 − 𝑝 !!!. (Here 

𝑝 = 𝜏/𝜋.) 



𝜖 we encountered earlier. The default value for log  (𝜖) is 0, which corresponds to one false alarm (per 
image). You can set this to -1 or -2 to prune out some of the more marginal lines. 

The next argument, density_th is straight forward; it is simply the fraction of aligned points in a 
particular rectangle required for that rectangle to be considered. The default for this parameter is 0.7.  

The final argument, n_bins, is the number of bins in the pseudo-ordering of the gradient modulus. The 
default number of bins is 1024. 

Once you have constructed your cv::lineSegmentDetector argument, you can use it to perform 
detections on images: 

void cv::LineSegmentDetector::detect( 
const InputArray image,  
cv::OutputArray  lines,  
cv::OutputArray  width = cv::noArray(),  
cv::OutputArray  prec  = cv::noArray(),  
cv::OutputArray  nfa   = cv::noArray() 

); 

The input image should be a grayscale image (cv::U8C1). From this image, the resulting lines will be 
computed and returned. The lines output array will be filled with cv::Vec4i objects, each of which 
will contain the x and y location of the point at one end of the line followed by the x and y location of the 
point at the other end. 

The optional parameters width, prec, and nfa return the widths, precisions, and NFA’s of each of the 
found lines. Each of these will be a single column array with the same number of rows as lines. The 
width is the transverse width of the associated rectangle, and thus an approximation of the width of the 
line. The precision (angular tolerance) is initially set to  𝜏/𝜋, and so starts out proportional to ang_th. 
However, the LSD algorithm will attempt to reduce both the width and the precision if doing so will 
improve the NFA.30 The final NFA’s associated with each line can be returned in the array nfa, but only 
when advanced refinement (cv::LSD_REFINE_ADV) is used. The values in nfa are the negative log of 
the NFA for that rectangle (e.g. +1 corresponds to an NFA of 0.1). 

Once you have your lines, there is a convenient method for drawing them on top of your image:  
void cv::LineSegmentDetector::drawSegments( 
cv::InputOutputArray image,  
cv::InputArray       lines 

);  

Given an image, and the lines you computed with cv::LineSegmentDetector::detect(), an 
image is produced by adding the lines on top of image (in red if image is in color). 

If you should have two sets of lines, you can also compare them using the method 
cv::LineSegmentDetector::compareSegments(), which has the following prototype: 

int cv::LineSegmentDetector::compareSegments( 
const cv::Size&      size,  
cv::InputArray       lines1,  
cv::InputArray       lines2,  
cv::InputOutputArray image = noArray() 

); 

In order to use the comparison method, you must provide size, which is the size of the original image you 
found the two sets of lines in (they must come from an image of the same size). You can then provide two 
sets of lines: lines1 and lines2, in the same format (array of cv::Vec4i) that you them from the 
detector. If you provide an image array, the line segment detector will draw both sets of lines (one in blue, 

                                                             
30 If you think about a line without a smooth edge, reducing the width of the rectangle might well reduce the area of the 
rectangle much faster than it reduces the number of aligned points. In a similar idea, reducing the precision will reduce 
the number of aligned points, but may reduce the number of false alarms even faster. 



the other in red) on your image. Even if you do not supply an image for visualization, the return value of 
the segment comparison method tells you how many pixels were not matching in the two line images (i.e. a 
return value of 0 corresponds to a perfect match). 

The Circle Detection 
Algorithms such as the Hough Transform can be generalized to other contexts as well. One particularly 
useful example is circle detection which, as we will see, employs a very similar mechanism to the Hough 
Line Transform to find circles in an image.  

Hough Circle Transform 
The Hough circle transform [Kimme75] (see 

 
Figure 6-16) works in a manner roughly analogous to the Hough line transforms just described. The reason 
it is only “roughly” is that—if one were to try doing the exactly analogous thing—the accumulator plane 
would have to be replaced with an accumulator volume with three dimensions: one for 𝑥 and one for 𝑦 (the 
location of the circle center), and another for the circle radius 𝑟. This would mean far greater memory 
requirements and much slower speed. The implementation of the circle transform in OpenCV avoids this 
problem by using a somewhat more tricky method called the Hough gradient method. 

The Hough gradient method works as follows. First, the image is passed through an edge detection phase 
(in this case, cv::Canny()). Next, for every nonzero point in the edge image, the local gradient is 
considered (the gradient is computed by first computing the first-order Sobel x- and y-derivatives via 
cv::Sobel()). Using this gradient, every point along the line indicated by this slope—from a specified 
minimum to a specified maximum distance—is incremented in the accumulator. At the same time, the 
location of every one of these nonzero pixels in the edge image is noted. The candidate centers are then 
selected from those points in this (two-dimensional) accumulator that are both above some given threshold 
and larger than all of their immediate neighbors. These candidate centers are sorted in descending order of 
their accumulator values, so that the centers with the most supporting pixels appear first. Next, for each 
center, all of the nonzero pixels (recall that this list was built earlier) are considered. These pixels are sorted 
according to their distance from the center. Working out from the smallest distances to the maximum 
radius, a single radius is selected that is best supported by the nonzero pixels. A center is kept if it has 
sufficient support from the nonzero pixels in the edge image and if it is a sufficient distance from any 
previously selected center. 

This implementation enables the algorithm to run much faster and, perhaps more importantly, helps 
overcome the problem of the otherwise sparse population of a three-dimensional accumulator, which would 



lead to a lot of noise and render the results unstable. On the other hand, this algorithm has several 
shortcomings that you should be aware of. 

 

Figure 6-16: The Hough circle transform finds some of the circles in the test pattern and (correctly) finds 
none in the photograph 

First, the use of the Sobel derivatives to compute the local gradient—and the attendant assumption that this 
can be considered equivalent to a local tangent—is not a numerically stable proposition. It might be true 
“most of the time,” but you should expect this to generate some noise in the output. 

Second, the entire set of nonzero pixels in the edge image is considered for every candidate center; hence, 
if you make the accumulator threshold too low, the algorithm will take a long time to run. Third, because 
only one circle is selected for every center, if there are concentric circles then you will get only one of 
them. 

Finally, because centers are considered in ascending order of their associated accumulator value and 
because new centers are not kept if they are too close to previously accepted centers, there is a bias toward 
keeping the larger circles when multiple circles are concentric or approximately concentric. (It is only a 
“bias” because of the noise arising from the Sobel derivatives; in a smooth image at infinite resolution, it 
would be a certainty.) 

cv::HoughCircles(), the Hough Circle Transform 

The Hough circle transform function cv::HoughCircles() has similar arguments to the line 
transform. 

void cv::HoughCircles( 
  cv::InputArray  image,                        // Input single channel image 
  cv::OutputArray circles,                      // N-by-1 3-channel or vector of Vec3f 
  int             method,                       // Always cv::HOUGH_GRADIENT 
  double          dp,                           // Accumulator resolution (ratio) 
  double          minDist,                      // Required separation (between lines) 
  double          param1    = 100,              // Upper Canny threshold 
  double          param2    = 100,              // Un-normalized accumulator threshold 
  int             minRadius = 0,                // Smallest radius to consider 
  int             maxRadius = 0                 // Largest radius to consider 
); 

The input image is again an 8-bit image. One significant difference between cv::HoughCircles() 
and cv::HoughLines() is that the latter requires a binary image. The cv::HoughCircles() 



function will internally (automatically) call cv::Sobel()31 for you, so you can provide a more general 
grayscale image. 

The result array circles will be either a matrix-array or a vector, depending on what you pass to 
cv::HoughCircles(). If a matrix is used, it will be a one-dimensional array of type cv::F32C3; the 
three channels will be used to encode the location of the circle and its radius. If a vector is used, it must be 
of type std::vector<Vec3f>. The method argument must always be set to 
cv::HOUGH_GRADIENT. 

The parameter dp is the resolution of the accumulator image used. This parameter allows us to create an 
accumulator of a lower resolution than the input image. It makes sense to do this because there is no reason 
to expect the circles that exist in the image to fall naturally into the same number of bins as the width or 
height of the image itself. If dp is set to 1 then the resolutions will be the same; if set to a larger number 
(e.g., 2), then the accumulator resolution will be smaller by that factor (in this case, half). The value of dp 
cannot be less than 1. 

The parameter minDist is the minimum distance that must exist between two circles in order for the 
algorithm to consider them distinct circles. 

For the (currently required) case of the method being set to cv::HOUGH_GRADIENT, the next two 
arguments, param1 and param2, are the edge (Canny) threshold and the accumulator threshold, 
respectively. You may recall that the Canny edge detector actually takes two different thresholds itself. 
When cv::Canny() is called internally, the first (higher) threshold is set to the value of param1 passed 
into cv::HoughCircles(), and the second (lower) threshold is set to exactly half that value. The 
parameter param2 is the one used to threshold the accumulator and is exactly analogous to the 
threshold argument of cv::HoughLines(). 

The final two parameters are the minimum and maximum radius of circles that can be found. This means 
that these are the radii of circles for which the accumulator has a representation. Example 6-5 shows an 
example program using cv::HoughCircles(). 

Example 6-5: Using cv::HoughCircles() to return a sequence of circles found in a grayscale image 

#include <opencv2/opencv.hpp> 
#include <iostream> 
#include <math.h> 
 
using namespace cv; 
using namespace std; 
 
int main(int argc, char** argv) { 
 
  if(argc != 2) {  
    cout << "Hough Circle detect\nUsage: ch6_ex6_1 <imagename>\n" << endl;  
    return -1;  
  } 
     
  cv::Mat src = cv::imread(argv[1], 1), image; 
  if( src.empty() ) { cout << "Can not load " << argv[1] << endl; return -1; } 
  cv::cvtColor(src, image, cv::BGR2GRAY);   
   
  cv::GaussianBlur(image, image, Size(5,5), 0, 0); 
   
  vector<cv::Vec3f> circles; 
  cv::HoughCircles(image, circles, cv::HOUGH_GRADIENT, 2, image.cols/10); 
     
  for( size_t i = 0; i < circles.size(); ++i ) { 
    cv::circle( 

                                                             
31 The function cv::Sobel(), not cv::Canny(), is called internally. The reason is that cv::HoughCircles() 
needs to estimate the orientation of a gradient at each pixel, and this is difficult to do with binary edge map. 



      src,  
      cv::Point(cvRound(circles[i][0]), cvRound(circles[i][1])), 
      cvRound(circles[i][2]),  
      cv::Scalar(0,0,255),  
      2,  
      cv::AA 
    ); 
  } 
  cv::imshow( "Hough Circles", src); 
  cv::waitKey(0); 
  return 0;   
} 

It is worth reflecting momentarily on the fact that, no matter what tricks we employ, there is no getting 
around the requirement that circles be described by three degrees of freedom (𝑥, 𝑦, and 𝑟), in contrast to 
only two degrees of freedom (𝜌 and 𝜃) for lines. The result will invariably be that any circle-finding 
algorithm requires more memory and computation time than the line-finding algorithms we looked at 
previously. With this in mind, it’s a good idea to bound the radius parameter as tightly as circumstances 
allow in order to keep these costs under control.32 The Hough transform was extended to arbitrary shapes 
by Ballard in 1981 [Ballard81] basically by considering objects as collections of gradient edges. 

Distance Transformation 
The distance transform of an image is defined as a new image in which every output pixel is set to a value 
equal to the distance to the nearest zero pixel in the input image—according to some specific distance 
metric. It should be immediately obvious that the typical input to a distance transform should be some kind 
of edge image. In most applications the input to the distance transform is an output of an edge detector such 
as the Canny edge detector that has been inverted (so that the edges have value zero and the non-edges are 
nonzero). 

There are two methods available to compute the distance transform. The first method uses a mask that is 
typically a 3-by-3 or 5-by-5 array. Each point in the array defines the “distance” to be associated with a 
point in that particular position relative to the center of the mask. Larger distances are built up (and thus 
approximated) as sequences of “moves” defined by the entries in the mask. This means that using a larger 
mask will yield more accurate distances. When using this method, given a specific distance metric, the 
appropriate mask is automatically selected from a set known to OpenCV. This is the “original” method 
developed by Borgefors (1986) [Borgefors86]. The second method computes exact distances, and is due to 
Felzenszwalb [Felzenszwalb04]. Both methods run in time linear in the total number of pixels, but the 
exact algorithm is still slower. 

                                                             
32 Although cv::HoughCircles() catches centers of the circles quite well, it sometimes fails to find the correct 
radius. Therefore, in an application where only a center must be found (or where some different technique can be used 
to find the actual radius), the radius returned by cv::HoughCircles() can be ignored. 



  

Figure 6-17: First a Canny edge detector was run with param1=100 and param2=200; then the 
distance transform was run with the output scaled by a factor of 5 to increase visibility 

The distance metric can be any of several different types, including the classic L2 (Cartesian) distance 
metric. 

cv::distanceTransform(), for Unlabeled Distance Transform 

When calling the OpenCV distance transform function, the output image will be a 32-bit floating-point 
image (i.e., cv::F32). 

void cv::distanceTransform( 
  cv::InputArray  src,                         // Input Image 
  cv::OutputArray dst,                         // Result image 
  int             distanceType,                // Distance metric to use 
  int             maskSize                     // Mask to use (3, 5, or see below) 
); 

cv::distanceTransform() has some additional parameters. The first is distanceType, which 
indicates the distance metric to be used. Your choices here are cv::DIST_C, cv::DIST_L1 and 
cv::DIST_L2. These methods compute the distance to the nearest zero based on integer steps along a 
grid. The difference between the methods is that cv::DIST_C is the distance when the steps are counted 
on a 4-connected grid (i.e., diagonal moves are not allowed), and cv::DIST_L1 gives the number of 
steps on an 8-connected grid (i.e., diagonal moves are allowed). When distanceType is set to 
cv::DIST_L2, cv::distanceTransform() attempts to compute the exact Euclidian distances. 

After the distance type is the maskSize, which may be 3, 5, or  cv::DIST_MASK_PRECISE. In the 
case of 3 or 5, this argument indicates that a 3-by-3 or 5-by-5 mask should be used with the Borgefors 
method. If you are using cv::DIST_L1 or cv::DIST_C, you can always use a 3-by-3 mask and you 
will get exact results. If you are using cv::DIST_L2, the Borgefors method is always approximate, and 
using the larger 5-by-5 mask will result in a better approximation to the 𝐿! distance, at the cost of a slightly 
slower computation. Alternatively, cv::DIST_MASK_PRECISE can be used to indicate the 
Felzenszwalb algorithm (when used with cv::DIST_L2).  

cv::distanceTransform(), for Labeled Distance Transform 

It is also possible to ask the distance transform algorithm to not only calculate the distances, but to also 
report which object that minimum distance is to. These “objects” are called connected components. We will 
have a lot more to say about connected components in Chapter 8, but for now, you can think of them as 
exactly what they sound like; they are structures made of continuously connected groups of zeros in the 
source image. 



void cv::distanceTransform( 
  cv::InputArray  src,                         // Input Image 
  cv::OutputArray dst,                         // Result image 
  cv::OutputArray labels,                      // Output connected componet id’s 
  int             distanceType,                // Distance metric to use 
  int             maskSize,                    // Mask to use (3, 5, or see below) 
  int             labelType = cv::DIST_LABEL_CCOMP  // How to label 
); 

If a labels array is provided, then as a result of running cv::distanceTransform() it will be of 
the same size as dst. In this case, the computation of connected components will be done automatically, 
and the label associated with the nearest33 such component will be placed in each pixel of labels. 

If you are wondering how to differentiate labels, consider that for any pixel that is zero in 
src, then the corresponding distance must also be zero. In addition to this, the label for 
that pixel must be the label of the connected component it is part of. As a result, if you 
want to know what label was given to any particular zero pixel, you need only look up 
that pixel in labels. 

The argument labelType can be set either to cv::DIST_LABEL_CCOMP or 
cv::DIST_LABEL_PIXEL.  In the former case, the function automatically finds connected components 
of zero pixels in the input image and gives each one a unique label.  In the latter case, all zero pixels are 
given distinct labels. 

Histogram Equalization 
Cameras and image sensors must usually deal not only with the contrast in a scene but also with the image 
sensors’ exposure to the resulting light in that scene. In a standard camera, the shutter and lens aperture 
settings juggle between exposing the sensors to too much or too little light. Often the range of contrasts is 
too much for the sensors to deal with; hence, there is a trade-off between capturing the dark areas (e.g., 
shadows), which requires a longer exposure time, and the bright areas, which require shorter exposure to 
avoid saturating “whiteouts.” 

  

Figure 6-18: The image on the left has poor contrast, as is confirmed by the histogram of its intensity values 
on the right 

After the picture has been taken, there’s nothing we can do about what the sensor recorded; however, we 
can still take what’s there and try to expand the dynamic range of the image to increase its contrast. The 

                                                             
33 The output “labels” array will basically be the discrete Voronoi diagram. 



most commonly used technique for this is histogram equalization.34 35 In 

  
Figure 6-18 we can see that the image on the left is poor because there’s not much variation of the range of 
values. This is evident from the histogram of its intensity values on the right. Because we are dealing with 
an 8-bit image, its intensity values can range from 0 to 255, but the histogram shows that the actual 
intensity values are all clustered near the middle of the available range. Histogram equalization is a method 
for stretching this range out. 

 
Figure 6-19: Result of cumulative distribution function (left) computed for a Gaussian distribution (right) 

The underlying math behind histogram equalization involves mapping one distribution (the given 
histogram of intensity values) to another distribution (a wider and, ideally, uniform distribution of intensity 
values). That is, we want to spread out the y-values of the original distribution as evenly as possible in the 
new distribution. It turns out that there is a good answer to the problem of spreading out distribution values: 
the remapping function should be the cumulative distribution function. An example of the cumulative 
density function is shown in Error! Reference source not found. for the somewhat idealized case of a 
distribution that was originally pure Gaussian. However, cumulative density can be applied to any 
distribution; it is just the running sum of the original distribution from its negative to its positive bounds. 

                                                             
34 If you are wondering why histogram equalization is not in the chapter on histograms (Chapter 7), the reason is that 
histogram equalization makes no explicit use of any histogram data types. Although histograms are used internally, the 
function (from the user’s perspective) requires no histograms at all. 
35 Histogram equalization is an old mathematical technique; its use in image processing is described in various 
textbooks [Jain86; Russ02; Acharya05], conference papers [Schwarz78], and even in biological vision [Laughlin81]. 



 

Figure 6-20: Using the cumulative density function to equalize a Gaussian distribution 

We may use the cumulative distribution function to remap the original distribution to an equally spread 

distribution (see  

Figure 6-20) simply by looking up each y-value in the original distribution and seeing where it should go in 
the equalized distribution. 

 

For continuous distributions the result will be an exact equalization, but for digitized/discrete distributions 
the results may be far from uniform. 



Applying this equalization process to 

  

Figure 6-18 yields the equalized intensity distribution histogram and resulting image in Error! Reference 
source not found..  

 

Figure 6-21: Histogram equalized results: the spectrum has been spread out 

cv::equalizeHist(), Contrast Equalization 

OpenCV wraps this whole process up in one neat function. 
void cv::equalizeHist( 
  const cv::InputArray  src,                   // Input Image 
  cv::OutputArray dst                          // Result image 
); 

In cv::equalizeHist(), the source src must be a single-channel, 8-bit image. The destination image 
dst will be the same. For color images you will have to separate the channels and process them one by 
one. 

Segmentation 
The topic of image segmentation is a large one, which we have touched on in several places already, and 
will return to in more sophisticated contexts later in the book as well. Here, we will focus on several 
methods of the library that specifically implement techniques that are either segmentation methods in 
themselves, or primitives that will be used later by more sophisticated tactics. It should be noted that at this 
time, there is no general “magic” solution for image segmentation, and it remains a very active area in 



computer vision research. Despite this, many good techniques have been developed that are reliable at least 
in some specific domain, and in practice can yield very good results. 

Flood Fill 
Flood fill [Heckbert00; Shaw04; Vandevenne04] is an extremely useful function that is often used to mark 
or isolate portions of an image for further processing or analysis. Flood fill can also be used to derive, from 
an input image, masks that can be used for subsequent routines to speed or restrict processing to only those 
pixels indicated by the mask. The function cv::floodFill() itself takes an optional mask that can be 
further used to control where filling is done (e.g., when doing multiple fills of the same image). 

In OpenCV, flood fill is a more general version of the sort of fill functionality that you probably already 
associate with typical computer painting programs. For both, a seed point is selected from an image and 
then all similar neighboring points are colored with a uniform color. The difference is that the neighboring 
pixels need not all be identical in color.36 The result of a flood fill operation will always be a single 
contiguous region. The cv::floodFill() function will color a neighboring pixel either if it is within a 
specified range (loDiff to upDiff) of the current pixel or if (depending on the settings of flags) the 
neighboring pixel is within a specified range of the original seed value.  

The cv::floodFill() function will color a neighboring pixel if it is within a specified range (loDiff 
to upDiff) of either the current pixel or if (depending on the settings of flags) the neighboring pixel is 
within a specified range of the original seed value. Flood filling can also be constrained by an optional 
mask argument. There are two different prototypes for the cv::floodFill() routine, one that accepts 
an explicit mask parameter, and one that does not. 

int cv::floodFill( 
  cv::InputOutputArray image,                  // Input image, 1 or 3 channels 
  cv::Point            seed,                   // Start point for flood 
  cv::Scalar           newVal,                 // Value for painted pixels 
  cv::Rect*            rect,                   // Output bounds painted domain 
  cv::Scalar           lowDiff  = cv::Scalar(),// Maximum down color distance 
  cv::Scalar           highDiff = cv::Scalar(),// Maximum up color distance 
  int                  flags                   // Local vs. global, and mask-only    
); 
 
int cv::floodFill( 
  cv::InputOutputArray image,                  // Input w-by-h image, 1 or 3 channels 
  cv::InputOutputArray mask,                   // Singl-channel 8-bit, w+2-by-h+2 
  cv::Point            seed,                   // Start point for flood 
  cv::Scalar           newVal,                 // Value for painted pixels 
  cv::Rect*            rect,                   // Output bounds painted domain 
  cv::Scalar           lowDiff  = cv::Scalar(),// Maximum down color distance 
  cv::Scalar           highDiff = cv::Scalar(),// Maximum up color distance 
  int                  flags                   // Local vs. global, and mask-only    
); 

The parameter image is the input image, which can be 8-bit or a floating-point type, and must either have 
one or three channels. In general, this image array will be modified by cv::floodFill(). The flood 
fill process begins at the location seed. The seed will be set to value newVal, as will all subsequent 
pixels colored by the algorithm. A pixel will be colorized if its intensity is not less than a colorized 
neighbor’s intensity minus loDiff and not greater than the colorized neighbor’s intensity plus upDiff. 
If the flags argument includes cv::FLOODFILL_FIXED_RANGE, then a pixel will be compared to the 
original seed point rather than to its neighbors. Generally, the flags argument controls the connectivity of 
the fill, what the fill is relative to, whether we are filling only a mask, and what values are used to fill the 

                                                             
36 Users of contemporary painting and drawing programs should note that most of them now employ a filling algorithm 
very much like cv::floodFill(). 



mask. Our first example of flood fill is shown in 

 
Figure 6-22. 

The argument mask indicates a mask that can function both as input to cv::floodFill() (in which 
case, it constrains the regions that can be filled) and as output from cv::floodFill() (in which case, it 
will indicate the regions that actually were filled). mask must be a single-channel 8-bit image whose size is 
exactly two pixels larger in width and height than the source image37.  

In the sense that mask is an input to cv::floodFill(), the algorithm will not flood across nonzero 
pixels in the mask. As a result you should zero it before use if you don’t want masking to block the 
flooding operation.  

When the mask is present, it will also be used as an output. When the algorithm runs, every “filled” pixel 
will be set to a nonzero value in the mask. You have the option of adding the value 
cv::FLOODFILL_MASK_ONLY to flags (using the usual Boolean OR operator). In this case, the input 
image will not be modified at all. Instead, only mask will be modified. 

 

                                                             
37 This is done to make processing easier and faster for the internal algorithm. Note that since the mask is larger than 
the original image, pixel (𝑥, 𝑦) in image corresponds to pixel (𝑥 + 1, 𝑦 + 1) in mask. This is, however, an excellent 
opportunity to use cv::Mat::getSubRect(). 



Figure 6-22: Results of flood fill (top image is filled with gray, bottom image with white) from the dark 
circle located just off center in both images; in this case, the upDiff and loDiff parameters were each 
set to 7.0 

If the flood-fill mask is used, then the mask pixels corresponding to the repainted image 
pixels are set to 1. Don’t be confused if you fill the mask and see nothing but black upon 
display; the filled values are there, but the mask image needs to be rescaled if you want to 
display it in a way you can actually see it on the screen. After all, the difference between 
0 and 1 is pretty small on an intensity scale of 0 to 255. 

Two possible values for flags have already been mentioned: cv::FLOODFILL_FIXED_RANGE and 
cv::FLOODFILL_MASK_ONLY. In addition to these, you can also add the numerical values 4 or 8.38  In 
this case, you are specifying whether the flood fill algorithm should consider the pixel array to be four-
connected or eight-connected. In the former case, a four-connected array is one in which pixels are only 
connected to their four nearest neighbors (left, right, above, and below). In the latter eight-connected case, 
pixels are considered to be connected to diagonally neighboring pixels as well. 

It’s time to clarify the flags argument, which is tricky because it has three parts. The low 8 bits (0–7) can 
be set to 4 or 8. This controls the connectivity considered by the filling algorithm. If set to 4, only 
horizontal and vertical neighbors to the current pixel are considered in the filling process; if set to 8, flood 
fill will additionally include diagonal neighbors. The high 8 bits (16–23) can be set with the flags 
cv::FLOODFILL_FIXED_RANGE (fill relative to the seed point pixel value; otherwise, fill relative to 
the neighbor’s value), and/or cv::FLOODFILL_MASK_ONLY (fill the mask location instead of the source 
image location). Obviously, you must supply an appropriate mask if cv::FLOODFILL_MASK_ONLY is 
set. The middle bits (8–15) of flags can be set to the value with which you want the mask to be filled. If 
the middle bits of flags are 0s, the mask will be filled with 1s. All these flags may be linked together via 
OR. For example, if you want an 8-way connectivity fill, filling only a fixed range, filling the mask not the 
image, and filling using a value of 47, then the parameter to pass in would be: 

flags = 8 
      | cv::FLOODFILL_MASK_ONLY 
      | cv::FLOODFILL_FIXED_RANGE 
      | (47<<8); 

 

                                                             
38 The text here reads “add,” but recall that flags is really a bit-field argument. Conveniently, however, 4 and 8 are 
single bits. So you can use “add” or “OR,” whichever you prefer (e.g., flags = 8 | 
cv::FLOODFILL_MASK_ONLY). 



Figure 6-22 shows flood fill in action on a sample image. Using cv::FLOODFILL_FIXED_RANGE with 
a wide range resulted in most of the image being filled (starting at the center). We should note that 
newVal, loDiff, and upDiff are prototyped as type cv::Scalar so they can be set for three 
channels at once. For example, loDiff = cv::Scalar(20,30,40) will set lo_iff thresholds of 
20 for red, 30 for green, and 40 for blue. 

 

Figure 6-23: Results of flood fill (top image is filled with gray, bottom image with white) from the dark 
circle located just off center in both images; in this case, flood fill was done with a fixed range and with a 
high and low difference of 25.0 

Watershed Algorithm 
In many practical contexts, we would like to segment an image but do not have the benefit of a separate 
background image. One technique that is often effective in this context is the watershed algorithm 
[Meyer92]. This algorithm converts lines in an image into “mountains” and uniform regions into “valleys” 
that can be used to help segment objects. The watershed algorithm first takes the gradient of the intensity 
image; this has the effect of forming valleys or basins (the low points) where there is no texture and of 
forming mountains or ranges (high ridges corresponding to edges) where there are dominant lines in the 
image. It then successively floods basins starting from user-specified (or algorithm-specified) points until 
these regions meet. Regions that merge across the marks so generated are segmented as belonging together 
as the image “fills up.” In this way, the basins connected to the marker point become “owned” by that 
marker. We then segment the image into the corresponding marked regions. 

More specifically, the watershed algorithm allows a user (or another algorithm!) to mark parts of an object 
or background that are known to be part of the object or background. The user or algorithm can draw a 
simple line that effectively tells the watershed algorithm to “group points like these together.” The 
watershed algorithm then segments the image by allowing marked regions to “own” the edge-defined 



valleys in the gradient image that are connected with the segments. 

 
Figure 6-24 clarifies this process. 

The function specification of the watershed segmentation algorithm is: 
void cv::watershed( 
  cv::InputArray image,                       // Input 8-bit, 3 channels 
  cv::InputOutputArray markers                // I/O 32-bit float, single channel 
); 

Here, image must be an 8-bit, 3-channel (color) image and markers is a single-channel integer 
(cv::S32) image of the same (𝑥, 𝑦) dimensions. On input, the value of markers is 0 except where the 
user (or an algorithm) has indicated by using positive numbers that some regions belong together. For 

example, in the left panel of  

Figure 6-24, the orange might have been marked with a 1, the lemon with a 2, the lime with 3, the upper 
background with 4, and so on.  

After the algorithm has run, all of the former zero value pixels in markers will be set to one of the given 
markers (i.e., all of the pixels of the orange are hoped to come out with a 1 on them, the pixels of the lemon 
with a 2, etc.), except the boundary pixels between regions, which will be set to -1. 

 
Figure 6-24 (right) shows an example of such a segmentation. 



 

Figure 6-24: Watershed algorithm: after a user has marked objects that belong together (left), the algorithm 
then merges the marked area into segments (right) 

One small word of warning is in order here. It is tempting to think that all regions will be 
separated by pixels with marker value -1 at their boundaries. This is not actually the 
case, however. Notably, if two neighboring pixels were input originally with nonzero but 
distinct values, they will remain touching and not separated by a -1 pixel on output. 

Grabcuts  
The Grabcuts algorithm, introduced by Rother, Kolmogorov, and Blake [Rother04], extends the Graphcuts 
algorithm [Boykov01] for use in user-directed image segmentation.  The grabcuts algorithm is capable of 
obtaining excellent segmentations, often with no more than a bounding rectangle around the foreground 
object to be segmented. 

This Graphcuts algorithm uses user-labeled foreground and background regions to establish distribution 
histograms for those two classes of image regions.  It then combines the assertion that unlabeled foreground 
or background should conform to similar distributions, with the idea that these regions should tend to be 
smooth and connected (i.e., a bunch of blobs).  These assertions are combined into an energy functional 
which gives a low energy (i.e., cost) to solutions which conform to these assertions and a high energy to 
solutions which violate them.  The final result is obtained by minimizing this energy function39.   

The Grabcuts algorithm extends Graphcuts in several important ways.  The first is that it replaces the 
histogram models with a Gaussian mixture model, enabling the algorithm to work on color images.  In 
addition, it solves the energy functional minimization problem in an iterative manner, which provides better 
overall results, and allows much greater flexibility in the labeling provided by the user.  Notably, this latter 
point allows even one-sided labelings which identify either background or foreground pixels (while 
Graphcuts required both). 

The implementation in OpenCV allows the caller to either just provide a rectangle around the object to be 
segmented, in which case the pixels “under” the rectangle’s boundary are taken to be background and no 
foreground is specified.  Alternatively, the caller can specify an overall mask in which pixels are 
categorized as being either definitely foreground, definitely background, probably foreground, and 
probably background.  In this case, the definite regions will be used to classify the other regions, with the 
latter being classified into the definite categories by the algorithm. 

The OpenCV implementation of Grabcuts is implemented by the cv::Grabcuts() function: 
void cv::grabCut( 
  cv::InputArray       img,  
  cv::InputOutputArray mask,  
  cv::Rect             rect,  

                                                             
39 This minimization is a non-trivial problem. In practice it is performed using a technique called Mincut, which is how 
both the Graphcuts and Grabcuts algorithms get their respective names. 



  cv::InputOutputArray bgdModel,   
  cv::InputOutputArray fgdModel,  
  int                  iterCount,  
  int                  mode     = cv::GC_EVAL  
); 

Given an input image img, the resulting labeling will be computed by cv::grabCut() and placed in the 
output array mask.  This mask array can also be used as an input.  This is determined by the mode 
variable.  If mode contains the flag cv::GC_INIT_WITH_MASK40, then the values currently in mask 
when it is called will be used to initialize the labeling of the image. The mask is expected to be a single 
channel image of cv::U8 type in which every value is one of the following enumerations: 

 

 

 

 

The argument rect is only used when you are not using mask initialization.  When the mode contains the 
flag cv::GC_INIT_WITH_RECT, the entire region outside of the provided rectangle is taken to be 
“definitely background”, while the rest is automatically set to “probably foreground”. 

The next two arrays are essentially temporary buffers.  When you first call cv::grabCut(), they can be 
empty arrays.  However, if for some reason you should run the Grabcuts algorithm for some number of 
iterations and then want to restart the algorithm for more iterations (possibly after allowing a user to 
provide additional “definite” pixels to guide the algorithm) you will need to pass in the same (unmodified) 
buffers that were filled by the previous run (in addition to using the mask you got back from the previous 
run as input for the next run). 

The Grabcuts algorithm essentially runs the Graphcuts algorithm some number of times.  Between each  
such run, the mixture models are recomputed.  The itercount argument determines how many such 
iterations will be applied.  Typical values for itercount are 10 or 12, though the number required may 
depend on the size and nature of the image being processed. 

Mean-Shift Segmentation 
Mean-shift segmentation finds the peaks of color distributions over space [Comaniciu99]. It is related to the 
“Mean Shift Algorithm,” which we will discuss in Chapter 10, when we discuss tracking and motion. The 
main difference between the two is that the former looks at spatial distributions of color (and is thus related 
to our current topic of segmentation), while the latter tracks those distributions through time in successive 

                                                             
40 Actually, you do not need to explicitly provide the cv::GC_INIT_WITH_MASK flag, because mask initialization is 
the default behavior.  So as long as you do not provide the cv::GC_INIT_WITH_RECT flag, you will get mask 
initialization.  However, this is not implemented as a default argument, but rather a default in the procedural logic of 
the function, and is therefore not guaranteed to remain unchanged in future releases of the library.  It is best to either 
use the cv::GC_INIT_WITH_MASK flag or the cv::GC_INIT_WITH_RECT flag explicitly, both for future 
proofing, and for general clarity. 

Enumerated value Numerical value Meaning 

cv::GC_BGD 0 Background (definitely) 

cv::GC_FGD 1 Foreground (definitely) 

cv::PR_GC_BGD 2 Probably Background 

cv::PR_GC_FGD 3 Probably Foreground 



frames. The function that does this segmentation based on the color distribution peaks is 
cv::pyrMeanShiftFiltering(). 

Given a set of multidimensional data points whose dimensions are (𝑥, 𝑦, 𝐼!"#$ , 𝐼!"##$, 𝐼!"#), mean shift can 
find the highest density “clumps” of data in this space by scanning a window over the space. Notice, 
however, that the spatial variables (𝑥, 𝑦) can have very different ranges from the color magnitude ranges 
(𝐼!"#$ , 𝐼!"##$, 𝐼!"#). Therefore, mean shift needs to allow for different window radii in different dimensions. 
In this case we should have one radius for the spatial variables (spatialRadius) and one radius for the 
color magnitudes (colorRadius). As mean-shift windows move, all the points traversed by the windows 
that converge at a peak in the data become connected to or “owned” by that peak. This ownership, radiating 
out from the densest peaks, forms the segmentation of the image. The segmentation is actually done over a 
scale pyramid (cv::pyrUp(), cv::pyrDown()), as described in Chapter 5, so that color clusters at a 
high level in the pyramid (shrunken image) have their boundaries refined at lower pyramid levels in the 
pyramid.  

The output of the mean-shift segmentation algorithm is a new image that has been “posterized,” meaning 
that the fine texture is removed and the gradients in color are mostly flattened. Such images can then be 
further segmented using whatever algorithm is appropriate for your needs (e.g., cv::Canny() combined 
with cv::findContours(), if in fact a contour segmentation is what you ultimately want). 

The function prototype for cv::pyrMeanShiftFiltering() looks like this: 
void cv::pyrMeanShiftFiltering( 
  cv::InputArray   src,                       // 8-bit, 3-channel image 
  cv::OutputArray  dst,                       // 8-bit, 3-channels, same size as src 
  cv::double       sp,                        // spatial window radius 
  cv::double       sr,                        // color window radius 
  int              maxLevel = 1,              // max pyramid level 
  cv::TermCriteria termcrit = TermCriteria( 
    cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,  
    5,  
    1 
  )   
); 

In cv::pyrMeanShiftFiltering() we have an input image src and an output image dst. Both 
must be 8-bit, three-channel color images of the same width and height. The spatialRadius and 
colorRadius define how the mean-shift algorithm averages color and space together to form a 
segmentation. For a 640-by-480 color image, it works well to set spatialRadius equal to 2 and 
colorRadius equal to 40. The next parameter of this algorithm is max_level, which describes how 
many levels of scale pyramid you want used for segmentation. A max_level of 2 or 3 works well for a 
640-by-480 color image. 

The final parameter is cv::TermCriteria, which we have seen in some previous algorithms. 
cv::TermCriteria is used for all iterative algorithms in OpenCV. The mean-shift segmentation 
function comes with good defaults if you just want to leave this parameter blank. Otherwise, 
cv::TermCriteria has the following constructor: 

cv::TermCriteria( 
    int    type;       // cv::TermCriteria::MAX_ITER, cv::TermCriteria::EPS, or both 
    int    max_iter,   // maximum iterations when cv::TermCriteria::MAX_ITER is used  
    double epsilon     // convergence value when cv::TermCriteria::EPS is used 
); 

Typically, we just use the cv::TermCriteria() constructor inline to generate the 
cv::TermCriteria object that we need. The first argument is either 
cv::TermCriteria::MAX_ITER or cv::TermCriteria::EPS, which tells the algorithm that 
we want to terminate either after some fixed number of iterations or when the convergence metric reaches 
some small value, respectively. The next two arguments set the values at which these criteria should 
terminate the algorithm. The reason we have both options is because we can set the type to 



cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS to stop when either limit is 
reached. The parameter max_iter limits the number of iterations if 
cv::TermCriteria::MAX_ITER is set, whereas epsilon sets the error limit if 
cv::TermCriteria::EPS is set. Of course the exact meaning of epsilon depends on the algorithm. 

 

Figure 6-25 shows an example of mean-shift segmentation using the following values: 
cv::pyrMeanShiftFiltering( src, dst, 20, 40, 2); 

 

 

Figure 6-25: Mean-shift segmentation over scale using cv::pyrMeanShiftFiltering() with 
parameters max_level=2, spatialRadius=20, and colorRadius=40; similar areas now have 
similar values and so can be treated as super pixels, which can speed up subsequent processing 
significantly 

Image Repair  
Images are often corrupted by noise. There may be dust or water spots on the lens, scratches on the older 
images, or parts of an image that were vandalized. Inpainting [Telea04] is a method for removing such 
damage by taking the color and texture at the border of the damaged area and propagating and mixing it 

inside the damaged area. See  

Figure 6-26 for an application that involves the removal of writing from an image. 



Inpainting  
Inpainting works provided the damaged area is not too “thick” and enough of the original texture and color 
remains around the boundaries of the damage. 

 
Figure 6-27 shows what happens when the damaged area is too large. 

 

Figure 6-26: Inpainting: an image damaged by overwritten text (left) is restored by inpainting (right) 

The prototype for cv::inpaint() is 
void cv::inpaint( 
  cv::InputArray  src,                         // Input Image: 8-bit, 1 or 3 channels 
  cv::InputArray  inpaintMask,                 // 8-bit, 1 channel. Inpaint non-zeros 
  cv::OutputArray dst,                         // Result image 
  double          inpaintRadius,               // Range to consider around pixel 
  int             flags                        // Select NS or TELEA 
);  

 

 

Figure 6-27: Inpainting cannot magically restore textures that are completely removed: the navel of the 
orange has been completely blotted out (left); inpainting fills it back in with mostly orangelike texture 
(right) 



Here src is an 8-bit single-channel grayscale image or a three-channel color image to be repaired, and 
inpaintMask is an 8-bit single-channel image of the same size as src in which the damaged areas (e.g., 

the writing seen in the left panel of  

Figure 6-26) have been marked by nonzero pixels; all other pixels are set to 0 in inpaintMask. The 
output image will be written to dst, which must have the same size and number of channels as src. The 
inpaintRadius is the area around each inpainted pixel that will be factored into the resulting output 

color of that pixel. As in  

Figure 6-27, interior pixels within a thick enough inpainted region may take their color entirely from other 
inpainted pixels closer to the boundaries. Almost always, one uses a small radius such as 3 because too 
large a radius will result in a noticeable blur. Finally, the flags parameter allows you to experiment with 
two different methods of inpainting: cv::INPAINT_NS (Navier-Stokes method), and 
cv::INPAINT_TELEA (A. Telea’s method). 

Denoising  
Another important problem that arises is the problem of noise in the image.  In many applications, the most 
important source of noise is low-light conditions.  In low light, the gain on the imager must be increased 
and the result is that noise is also amplified.  The character of this kind of noise is typically random isolated 
pixels which appear either too bright or too dark, but discoloration is also possible in color images. 

The denoising algorithm implemented in OpenCV is called Fast Non-local Means Denoising (FNLMD), 
and is based on work by Antoni Buades, Bartomeu Coll, and Jean-Michel Morel [Buades05]. While simple 
denoising algorithms essentially rely on averaging individual pixels with their neighbors, the central 
concept of FNLMD is to look for similar pixels elsewhere in the image, and average the among those.  In 
this context a pixel is considered to be a similar pixel not because it is similar in color or intensity, but 
because it is similar in environment.  The key logic here is that many images contain repetitive structures, 
and so even if your pixel is corrupted by noise, there will be many other pixels similar to it which are not. 

The identification of similar pixels proceeds based on a window  𝐵(𝑝, 𝑠), centered on pixel 𝑝 and of size  𝑠.  
Given such a window around the point we wish to update, we can compare that window with an analogous 
window around some other pixel  𝑞.  We define the square-distance between 𝐵(𝑝, 𝑠) and 𝐵(𝑞, 𝑠) to be: 

𝑑! 𝐵 𝑝, 𝑠 ,𝐵 𝑞, 𝑠 =
1
3𝑠!

𝐼! 𝑝 + 𝑗 − 𝐼! 𝑞 + 𝑗
!

!"#(!,!)

!

!!!
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where 𝑐 is the color index, 𝐼!(𝑝)  is the intensity of the image in channel 𝑐 at point  𝑝, and the summation 
over 𝑗 is over the elements of the patch.   From this square-distance, a weight can be assigned to every other 
pixel relative to the pixel currently being updated.  This weight is given by the formula: 

𝑤 𝑝, 𝑞 = 𝑒!
!"# !!!!!!,!.!

!! . 

In this weight function, 𝜎 is the standard deviation expected in the noise (in intensity units), and ℎ is a 
generic filtering parameter which determines how quickly patches will become irrelevant as their square-
distance grows from the patch we are updating. In general, increasing the value of ℎ will increase the noise 
removed but at the expense of some of the image detail.  Decreasing the value if ℎ will preserve detail, but 
also more of the noise. 

Typically, there is a decreasing return in considering patches very far away (in pixel units) from the pixel 
being updated, as the number of such patches increases quadratically with the distance allowed.  For this 
reason, a search window is defined and only patches in the search window contribute to the update. The 
update of the current pixel is then given by a simple weighted average of all other pixels in the search 
window using the given exponentially decaying weight function41.  It is for this reason that the algorithm is 
called “non-local”; the patches which contribute to the repair of a given pixel are only loosely correlated to 
the location of the pixel being recomputed. 

The OpenCV implementation of FNLMD has several different functions in it, each of which applies to 
slightly different circumstances. 

Basic FNLMD with cv::fastNlMeansDenoising() 
void cv::fastNlMeansDenoising( 
  cv::InputArray         src,                    // Input image 
  cv::OutputArray        dst,                    // Output image 
  float                  h                  = 3, // Weight decay parameter 
  int                    templateWindowSize = 7, // Size of patches used in comparison 
  int                    searchWindowSize   = 21 // Max distance to patch considered 
); 

The first of these four functions, cv::fastNlMeansDenoising(), implements the algorithm as 
described exactly.  The result array dst is computed from the input array src using a patch area of 
templateWindowSize, a decay parameter of h, and patches inside of searchWindowSize distance 
are considered. The image may be 1, 2, or 3 channel, but must be or type cv::U8.42  Table 6-2 lists some 
values, provided from the authors of the algorithm, which can be used to help set the decay parameter,  ℎ. 

Table 6-2: Recommended values for cv::fastNlMeansDenoising() for grayscale images. 

Noise: 𝝈 Patch Size: 𝒔 Search Window Decay Parameter: 𝒉 

0 < 𝜎 ≤ 15 3 x 3 21 x 21 0.40 ∙ 𝜎 

15 < 𝜎 ≤ 30 5 x 5 21 x 21 0.40 ∙ 𝜎 

30 < 𝜎 ≤ 45 7 x 7 35 x 35 0.35 ∙ 𝜎 

45 < 𝜎 ≤ 75 9 x 9 35 x 35 0.35 ∙ 𝜎 

                                                             
41 There is one subtlety here, which is that the weight of the contribution of the pixel p in its own recalculation would 
be  𝑤 𝑝, 𝑝 = 𝑒! = 1. In general this results in too high a weight relative to other similar pixels and very little change 
occurs in the value at  𝑝. For this reason, the weight at p is normally chosen to be the maximum of the weights of the 
pixels within the area  𝐵(𝑝, 𝑠). 
42 Note that though this image allows for multiple channels, it is not the best way to handle color images.  For color 
images, it is better to use cv::fastNlMeansDenoisingColored(). 



75 < 𝜎 ≤ 100 11 x 11 35 x 35 0.30 ∙ 𝜎 

FNLMD on Color Images with cv::fastNlMeansDenoisingColored()  
void cv::fastNlMeansDenoisingColored( 
  cv::InputArray         src,                    // Input image 
  cv::OutputArray        dst,                    // Output image 
  float                  h                  = 3, // Weight decay parameter 
  float                  hColor             = 3, // Weight decay parameter for color  
  int                    templateWindowSize = 7, // Size of patches used in comparison 
  int                    searchWindowSize   = 21 // Max distance to patch considered 
); 

The second variation of the FNLMD algorithm is used for color images. It accepts only images of type 
cv::U8C3.  Though it would be possible in principle to apply the algorithm more or less directly to an 
RGB image, in practice it is better to convert the image to a different color space for the computation.  The 
function cv::fastNlMeansDenoisingColored() first converts the image to the LAB color space, 
then applies the FNLMD algorithm, then converts the result back to RGB.    The primary advantage of 
doing this is that in color there are, in effect, three decay parameters. In an RGB representation however it 
would be unlikely that you would want to set any of them to different values.  In the LAB space however, it 
is natural to assign a different decay parameter to the luminosity component than to the color components. 
The function cv::fastNlMeansDenoisingColored() allows you to do just that.  The parameter h 
is used for the luminosity decay parameter, while the new parameter hColor is used for the color 
channels.  In general the value of hColor will be quite a bit smaller than h.  In most contexts, 10 is a 
suitable value. 

Table 6-3: Recommended values for cv::fastNlMeansDenoising() for color images. 

Noise: 𝝈 Patch Size: 𝒔 Search Window Decay Parameter: 𝒉 

0 < 𝜎 ≤ 25 3 x 3 21 x 21 0.55 ∙ 𝜎 

25 < 𝜎 ≤ 55 5 x 5 35 x 35 0.40 ∙ 𝜎 

55 < 𝜎 ≤ 100 7 x 7 35 x 35 0.35 ∙ 𝜎 

FNLMD on Video with cv::fastNlMeansDenoisingMulti() and 
cv::fastNlMeansDenoisingColoredMulti()  

void cv::fastNlMeansDenoisingMulti( 
  cv::InputArrayOfArrays srcImgs,                // Sequence of several images 
  cv::OutputArray        dst,                    // Output image 
  int                    imgToDenoiseIndex,      // Index of image from srcImgs to denoise 
  int                    temporalWindowSize,     // Number of images to use in denoising (odd) 
  float                  h                  = 3, // Weight decay parameter 
  int                    templateWindowSize = 7, // Size of patches used for comparison 
  int                    searchWindowSize   = 21 // Maximum distance to patch considered 
); 
void cv::fastNlMeansDenoisingColoredMulti( 
  cv::InputArrayOfArrays srcImgs,                // Sequence of several images 
  cv::OutputArray        dst,                    // Output image 
  int                    imgToDenoiseIndex,      // Index of image from srcImgs to denoise 
  int                    temporalWindowSize,     // Number of images to use in denoising (odd) 
  float                  h                  = 3, // Weight decay parameter 
  float                  hColor             = 3, // Weight decay parameter for color dimensions 
  int                    templateWindowSize = 7, // Size of patches used for comparison 
  int                    searchWindowSize   = 21 // Maximum distance to patch considered 
); 



The third and fourth variations are used for sequential images, such as those which might be captured from 
video.  In the case of sequential images, it is natural to imagine that other frames than just the current one 
might contain useful information for denoising a pixel.  In most applications the noise will not be constant 
between images, while the signal will likely be similar or even identical.  The functions 
cv::fastNlMeansDenoisingMulti() and 
cv::fastNlMeansDenoisingColoredMulti() expect an array of images, srcImgs, rather than 
a single image.  Additionally, they must be told which image in the sequence is actually to be denoised; this 
is done with the parameter imgToDenoiseIndex.  Finally, a temporal window must be provided which 
indicates the number of images from the sequence to be used in the denoising.  This parameter must be odd, 
and the implied window is always centered on imgToDenoiseIndex. (Thus, if you were to set 
imgToDenoiseIndex to 4, and temporalWindowSize to 5, the images which would be used in the 
denoising would be 2, 3, 4, 5, and 6.) 

Summary 
In this chapter, we learned a variety of methods that can be used to transform images.  These 
transformations included scale transformations, as well as affine and perspective transformations.  We 
learned how to remap vector functions from Cartesian to polar representations as well as how to perform 
discrete Fourier transformations.  Finally, we learned how to perform edge transformations, including both 
low-level routines to extract edges on a pixel-by-pixel level, as well as higher-level routines which would 
integrate those edges into contours. 

What all of these functions have in common is their conversion of one image into another through a global 
operation on the entire image. 

Exercises 
1. In this exercise, we learn to experiment with parameters by setting good lowThresh and 

highThresh values in cv::Canny(). Load an image with suitably interesting line structures. 
We’ll use three different high:low threshold settings of 1.5:1, 2.75:1, and 4:1. 
a) Report what you see with a high setting of less than 50. 

b) Report what you see with high settings between 50 and 100. 

c) Report what you see with high settings between 100 and 150. 

d) Report what you see with high settings between 150 and 200. 

e) Report what you see with high settings between 200 and 250. 

f) Summarize your results and explain what happens as best you can. 
2. Load an image containing clear lines and circles such as a side view of a bicycle. Use the Hough line 

and Hough circle calls and see how they respond to your image. 
3. Can you think of a way to use the Hough transform to identify any kind of shape with a distinct 

perimeter? Explain how. 
4. Get a product or print out a 1D barcode (having a series of parallel vertical lines in a row) from the 

web. Use the Line Segment Detector algorithm to create a 1D barcode detector. 
5. Look at the diagrams of how the log-polar function transforms a square into a wavy line. 

a) Draw the log-polar results if the log-polar center point were sitting on one of the corners of the 
square. 

b) What would a circle look like in a log-polar transform if the center point were inside the circle and 
close to the edge? 

c) Draw what the transform would look like if the center point were sitting just outside of the circle. 



6. A log-polar transform takes shapes of different rotations and sizes into a space where these correspond 
to shifts in the 𝜃-axis and log  (𝑟) axis. The Fourier transform is translation invariant. How can we use 
these facts to force shapes of different sizes and rotations to automatically give equivalent 
representations in the log-polar domain? 

7. Draw separate pictures of large, small, large rotated, and small rotated squares. Take the log-polar 
transform of these each separately. Code up a two-dimensional shifter that takes the center point in the 
resulting log-polar domain and shifts the shapes to be as identical as possible. 

8. Take the Fourier transform of a small Gaussian distribution and the Fourier transform of an image. 
Multiply them and take the inverse Fourier transform of the results. What have you achieved? As the 
filters get bigger, you will find that working in the Fourier space is much faster than in the normal 
space. 

9. Load an interesting image, convert it to grayscale, and then take an integral image of it. Now find 
vertical and horizontal edges in the image by using the properties of an integral image. 
Use long skinny rectangles; subtract and add them in place. 

10. A good computer vision programming interview question is to code up an integral image. Let’s do 
that: 

• Write a routine that takes an image and returns an integral image. 
• Write a routine that takes an image and returns a 45 degree rotated integral image. 

• Can you write an integral image for 22.5 degree rotated images? If so, how? 
11. Explain how you could use the distance transform to automatically align a known shape with a test 

shape when the scale is known and held fixed. How would this be done over multiple scales? 
12. Practice histogram equalization on images that you load in, and report the results. 
13. Load an image, take a perspective transform, and then rotate it. Can this transform be done in one step? 

In the 2005 DARPA Grand Challenge robot race, the authors on the Stanford team used a kind of color 
clustering algorithm to separate road from non-road. The colors were sampled from a laser-defined 
trapezoid of road patch in front of the car. Other colors in the scene that were close in color to this 
patch—and whose connected component connected to the original trapezoid—were labeled as road. 
See Figure 6-28, where the watershed algorithm was used to segment the road after using a trapezoid 
mark inside the road and an inverted “U” mark outside the road. Suppose we could automatically 
generate these marks. What could go wrong with this method of segmenting the road? 
Hint: Look carefully at Figure 6-28 and then consider that we are trying to extend the road trapezoid by using 
things that look like what’s in the trapezoid. 

 

Figure 6-28: Using the watershed algorithm to identify a road: markers are put in the original image (left), 
and the algorithm yields the segmented road (right) 

14. In-painting works pretty well for the repair of writing over textured regions. What would happen if the 
writing obscured a real object edge in a picture? Try it. 

15. How well does inpainting work at fixing up writing drawn over a mean-shift segmented image? Try it 
for various settings and show the results. 

16. Take an image and add noise to it in the following ways: 



• Randomly add uniform noise of successively higher ranges. Run the function 
cv::fastNlMeansDenoisingColored() on it. Report the results. 

• Do the same, but use Gaussian noise instead. 

• Do the same, but add shot noise. Change the value of every “𝑁!!” pixel. For example, every 
1000th pixel, 500th, 100th, 50th, and 10th. 



7 
Histograms and Matching 

In the course of analyzing images, objects, and video information, we frequently want to represent what we 
are looking at as a histogram. Histograms can be used to represent such diverse things as the color 
distribution of an object, an edge gradient template of an object [Freeman95], and the distribution of 
probabilities representing our current hypothesis about an object’s location. Figure 7-1 shows the use of 
histograms for rapid gesture recognition. Edge gradients were collected from “up,” “right,” “left,” “stop” 
and “OK” hand gestures. A webcam was then set up to watch a person who used these gestures to control 
web videos. In each frame, color interest regions were detected from the incoming video; then edge 
gradient directions were computed around these interest regions, and these directions were collected into 
orientation bins within a histogram. The histograms were then matched against the gesture models to 
recognize the gesture. The vertical bars in Figure 7-1 show the match levels of the different gestures. The 
gray horizontal line represents the threshold for acceptance of the “winning” vertical bar corresponding to a 
gesture model. 

Histograms find uses in many computer vision applications. Histograms are used to detect scene transitions 
in videos by marking when the edge and color statistics markedly change from frame to frame. They are 
used to identify interest points in images by assigning each interest point a “tag” consisting of histograms 
of nearby features. Histograms of edges, colors, corners, and so on form a general feature type that is 
passed to classifiers for object recognition. Sequences of color or edge histograms are used to identify 
whether videos have been copied on the web, where scenes change in a movie, in image retrieval from 
massive databases, and the list goes on. Histograms are one of the classic tools of computer vision. 

Histograms are simply collected counts of the underlying data organized into a set of predefined bins. They 
can be populated by counts of features computed from the data, such as gradient magnitudes and directions, 
color, or just about any other characteristic. In any case, they are used to obtain a statistical picture of the 
underlying distribution of data. The histogram usually has fewer dimensions than the source data. Figure 7-
2 depicts a typical situation. The figure shows a two-dimensional distribution of points (upper-left); we 
impose a grid (upper-right) and count the data points in each grid cell, yielding a one-dimensional 
histogram (lower-right). Because the raw data points can represent just about anything, the histogram is a 
handy way of representing whatever it is that you have learned from your image. 



 
Figure 7-1: Local histograms of gradient orientations are used to find the hand and its gesture; here the 
“winning” gesture (longest vertical bar) is a correct recognition of “L” (move left) 

Histograms that represent continuous distributions do so by quantizing the points into each grid cell.1 This 
is where problems can arise, as shown in Figure 7-3. If the grid is too wide (upper-left), then the output is 
too coarse and we lose the structure of the distribution. If the grid is too narrow (upper-right), then there is 
not enough averaging to represent the distribution accurately and we get small, “spiky” cells. 

 

Figure 7-2: Typical histogram example: starting with a cloud of points (upper-left), a counting grid is 
imposed (upper-right) that yields a one-dimensional histogram of point counts (lower-right) 

OpenCV has a data type for representing histograms. The histogram data structure is capable of 
representing histograms in one or many dimensions, and it contains all the data necessary to track bins of 
both uniform and non-uniform sizes. And, as you might expect, it comes equipped with a variety of useful 
functions that allow us to easily perform common operations on our histograms. 

                                                             
1 This is also true of histograms representing information that falls naturally into discrete groups when the histogram 
uses fewer bins than the natural description would suggest or require. An example of this is representing 8-bit intensity 
values in a 10-bin histogram: each bin would then combine the points associated with approximately 25 different 
intensities, (erroneously) treating them all as equivalent. 



 

Figure 7-3: A histogram’s accuracy depends on its grid size: a grid that is too wide yields too coarse 
quantization in the histogram values (left); a grid that is too small yields “spiky” and singleton results from 
too small samples (right).  

Histogram Representation in OpenCV 
Histograms are represented in OpenCV as arrays, using the same array structures as are used for other 
data.2 This means that you can use cv::Mat, if you have a one- or two-dimensional array (with the array 
being 𝑁-by-1 or 1-by-𝑁 in the former case), vector<> types, or sparse matrices. Of course, the 
interpretation of the array is different, even if the underlying code is identical. For an n-dimensional array, 
the interpretation is an n-dimensional array of histogram bins, in which the value for any particular element 
represents the number of counts in that particular bin. This distinction is important in the sense that bins, 
being just indices into an array of some dimensionality, are simple integers. The identity of the bin, i.e., 
what it represents, is separate from the bin’s integer index. Whenever you are working with histograms, 
you will find yourself needing to handle the conversion between measured values and histogram bin 
indices. Many OpenCV functions will do this task, or some part of this task, for you. 

When working with higher-dimensional histograms, often most of the entries in that histogram are zero. 
The cv::SparseMat class is very good for representing such cases. In fact, histograms are the primary 
reason for the existence of the cv::SparseMat class. Most functions that work on dense arrays will also 
work on sparse arrays, but we will touch on a few important exceptions in the next section. 

cv::calcHist(), Creating a Histogram from Data 

The function cv::calcHist() computes the bin values for a histogram from one or more arrays of 
data. Recall that the dimensions of the histogram are not related to the dimensionality of the input arrays, or 
their size, but rather to their number. Each dimension of the histogram represents counting (and binning) 
across all pixels values in one of the channels of one of the input arrays. You are not required to use every 
channel in every image, however; you can pick whatever subset you would like of the channels of the 
arrays passed to cv::calcHist(). 

                                                             
2 This is a substantial change in the C++ API relative to the C API. In the latter, there is a specific structure called a 
CvHistogram for representing histogram data. The elimination of this structure in the C++ interface creates a much 
simpler more unified library. 



void cv::calcHist( 
  const cv::Mat*  images,            // C-style array of images, 8U or 32F 
  int             nimages,           // number of images in ‘images’ array 
  const int*      channels,          // C-style list of int’s identifying channels 
  cv::InputArray  mask,              // pixels in ‘images’ count iff ‘mask’ nonzero 
  cv::OutputArray hist,              // output histogram array 
  int             dims,              // histogram dimensionality < cv::MAX_DIMS (32) 
  const int*      histSize,          // C-style array, histogram sizes in each dim 
  const float**   ranges,            // C-style array of ‘dims’ pairs set bin sizes 
  bool            uniform    = true, // true for uniform binning 
  bool            accumulate = false // if true, add to ‘hist’ rather than replacing 
); 
                          
void cv::calcHist(  
  const cv::Mat*  images,            // C-style array of images, 8U or 32F 
  int             nimages,           // number of images in ‘images’ array 
  const int*      channels,          // C-style list of int’s identifying channels 
  cv::InputArray  mask,              // pixels in ‘images’ count iff ‘mask’ nonzero 
  cv::SparseMat&  hist,              // output histogram (sparse) array 
  int             dims,              // histogram dimensionality < cv::MAX_DIMS (32) 
  const int*      histSize,          // C-style array, histogram sizes in each dim 
  const float**   ranges,            // C-style array of ‘dims’ pairs set bin sizes 
  bool            uniform    = true, // true for uniform binning 
  bool            accumulate = false // if true, add to ‘hist’ rather than replacing 
); 

There are three forms of the cv::calcHist() function, two of which use “old-fashioned” C-style 
arrays, while the third uses the now preferred STL vector template type arguments. The primary distinction 
between the first two is whether the computed results are to be organized into a dense or a sparse array. 

The first arguments are the array data, with images being either a pointer to a C-style list of arrays or the 
more modern cv::InputArrayOfArrays. In either case, the role of images is to contain one or 
more arrays from which the histogram will be constructed. All of these arrays must be the same size, but 
each can have any number of channels. These arrays may be 8-bit integers or of 32-bit floating point type, 
but the type of all of the arrays must match. In the case of the C-style array input, the additional argument 
narrays indicates the number of arrays pointed to by images. The argument channels indicates 
which channels to consider when creating the histogram. Once again, channels may be a C-style array or 
an STL vector of integers. These integers identify which channels from the input arrays are to be used for 
the output histogram. The channels are numbered sequentially, so the first 𝑁!

!  channels in images[0] 
are numbered zero through  𝑁!

! − 1, while the next 𝑁!
!  channels in images[1] are numbered 𝑁!

!  
through  𝑁!

! + 𝑁!
! − 1, and so on. Of course, the number of entries in channels is equal to the number 

of dimensions of the histogram you are creating. 

The array mask is an optional mask which, if present, will be used to select which pixels of the arrays in 
images will contribute to the histogram. mask must be an 8-bit array and the same size as the input 
arrays. Any pixel in images corresponding to a nonzero pixel in mask will be counted. If you do not wish 
to use a mask, you can pass cv::noArray() instead. 

The argument hist is the output histogram you would like to fill. The argument dims is the number of 
dimensions that histogram will have. Recall that dims is also the number of entries in the channels 
array, indicating how each dimension is to be computed. The argument histSize may be a C-style array 
or an STL style vector of integers and indicates the number of bins that should be allocated in each 
dimension of hist. The number of entries in histSize must also be equal to dims. 



 
Figure 7-4: The ranges argument may be either a C-style array of arrays, or a single STL style vector of 
floating point numbers. In the case of a uniform histogram, only the minimum and maximum bin edges must 
be supplied. For a non-uniform histogram, the lower edge of each bin in each dimension must be supplied, 
as well as the maximum value.  

While histSize indicates the number of bins in each dimension, ranges indicates the values that 
correspond to each bin in each dimension. ranges also can be a C-style array or an STL vector. In the C-
style array case, each entry ranges[i] is another array and the length of ranges must be equal to dims. 
In this case, entry ranges[i] indicates the bin structure of the corresponding 𝑖!! dimension. How 
ranges[i] is interpreted depends on the value of the argument uniform. If uniform is true, then 
all of the bins in the 𝑖!!  dimension are of the same size, and all that is needed is to specify the (inclusive) 
lower bound of the lowest bin and the (non-inclusive) upper bound of the highest bin (e.g., ranges[i] = 
{0,100.0}). If, on the other hand, uniform is false, then if there are 𝑁! bins in the 𝑖!! dimension, 
there must be 𝑁! + 1 entries in ranges[i]. Thus, the 𝑗!! entry will be interpreted as the (inclusive) lower 
bound of bin j and the (non-inclusive) upper bound of bin  (𝑗 − 1). In the case in which ranges is of type 
vector<float>, the entries having the same meaning as the C-style array values, but here they are 
“flattened” into one single-level array (i.e., for the uniform case, there are just two entries in ranges per 
histogram dimension and they are in the order of the dimensions, while for the non-uniform case, there will 
be  𝑁! + 1 entries per dimension, and they are again all in the order of the dimensions). 

The final argument accumulate is used to tell OpenCV that the array hist is not to be deleted, 
reallocated, or otherwise set to zero before adding new counts from the arrays in images. 

Basic Manipulations with Histograms 
Even though the data structure for the histogram is the same as the data structure used for matrices and 
image arrays, this particular interpretation of the data structure invites new operations on these arrays that 
accomplish tasks specific to histograms. In this section, we will touch on some simple operations that are 
specific to histograms, as well as review how some important histogram manipulations can be performed 
with array operations we have already discussed in prior chapters. 



Histogram Normalization 

When dealing with a histogram, we first need to accumulate information into its various bins. Once we 
have done this, however, it is often desirable to work with the histogram in normalized form, so that 
individual bins will represent the fraction of the total number of events assigned to the entire histogram. In 
the C++ API, this can be accomplished simply using the array algebra operators and operations: 

cv::Mat normalized = my_hist / my_hist.Sum(); 

or: 
my_hist /= my_hist.Sum() 

Histogram Threshold 

It is also common that you wish to threshold a histogram, and (for example) throw away all bins whose 
entries contain less than some minimum number of counts. Like normalization, this operation can be 
accomplished without the use of any particular special histogram routine. Instead, you can use the standard 
array threshold function: 

cv::threshold( 
  my_hist,                // input histogram 
  my_thresholded_hist,               // result with all values<threshold set to zero 
  threshold,                         // cutoff value 
  0,                    // value does not matter in this case 
  cv::THRESH_TOZERO                  // threshold type 
); 

Finding the Most Populated Bin  

In some cases, you would like to find the bins that are above some threshold, and throw away the others. In 
other cases, you would like to simply find the one bin that has the most weight in it. This is particularly 
common when the histogram is being used to represent a probability distribution. In this case, the function 
cv::minMaxLoc() will give you what you want. 

In the case of a two-dimensional array, you can use the cv::InputArray form of 
cv::minMaxLoc(): 

void cv::minMaxLoc( 
  cv::InputArray src,                   // Input array 
  double*        minVal,                // fill with minimum value (if not NULL) 
  double*        maxVal = 0,            // fill with maximum value (if not NULL) 
  cv::Point*     minLoc = 0,            // fill with minimum location (if not NULL) 
  cv::Point*     maxLoc = 0,            // fill with maximum location (if not NULL)  
  cv::InputArray mask   = cv::noArray() // ignore points for which mask is zero 
); 

The arguments minVal and maxVal are pointers to locations you provide for cv::minMaxLoc() to 
store the minimum and maximum values that have been identified. Similarly, minLoc and maxLoc are 
pointers to variables (of type cv::Point, in this case) where the actual locations of the minimum and 
maximum can be stored. If you do not want one or more of these four results to be computed, you can 
simply pass NULL for that (pointer) variable and that information will not be computed:  

double    max_val; 
cv::Point max_pt; 
 
cv::minMaxLoc( 
  my_hist,    // input histogram 
  NULL,  // don’t care about the min value 
  &max_val,   // place to put the maximum value 
  NULL,       // don’t care about the location of the min value 
  &max_pt     // place to put the maximum value location (a cv::Point) 
); 



In this example, though, the histogram would need to be two-dimensional.3 If your histogram is of sparse 
array type, then there is no problem. Recall that there is an alternate form of cv::minMaxLoc()for 
sparse arrays: 

void cv::minMaxLoc( 
  const cv::SparseMat& src,                   // Input (sparse) array 
  double*              minVal,                // fill minimum value (if not NULL) 
  double*              maxVal = 0,            // fill maximum value (if not NULL) 
  cv::Point*           minLoc = 0,            // fill minimum location (if not NULL) 
  cv::Point*           maxLoc = 0,            // fill maximum location (if not NULL)  
  cv::InputArray       mask   = cv::noArray() // ignore points if mask is zero 
); 

It should be noted that this form of cv::minMaxLoc() actually differs from the previous form in several 
ways. In addition to taking a sparse matrix as the source, it also takes type int* for the minIdx and 
maxIdx variables instead of cv::Point* for the analogous minLoc and maxLoc variables. This is 
because the sparse matrix form of cv::minMaxLoc() supports arrays of any dimensionality. Therefore, 
you need to allocate the location variables yourself and make sure that they have the correct amount of 
space available for the n-dimensional index associated with a point in the (n-dimensional) sparse 
histogram: 

double maxval; 
int*   max_pt = new int[ my_hist.dims() ]; 
 
cv::minMaxLoc( 
  my_hist,                 // input sparse histogram 
  NULL,               // don’t care about the min value 
  &max_val,                // place to put the maximum value 
  NULL,                    // don’t care about the location of the min value 
  &max_pt                  // place to put the maximum value location (a cv::Point) 
); 

It turns out that if you want to find the minimum or maximum of an n-dimensional array that is not sparse, 
you need to use another function. This function works essentially the same as cv::minMaxLoc(), and 
has a similar name, but is not quite the same creature: 

void cv::minMaxIdx( 
  cv::InputArray src,  
  double*        minVal,                // will put minimum value (if not NULL) 
  double*        maxVal = 0,            // will put maximum value (if not NULL) 
  int*           minLoc = 0,            // will put min location indices (if not NULL) 
  int*           maxLoc = 0,            // will put max location indices (if not NULL)  
  cv::InputArray mask   = cv::noArray() // ignore points if mask is zero 
); 

In this case, the arguments have the same meanings as the corresponding arguments in the two forms of 
cv::minMaxLoc(). You must allocate minIdx and maxIdx to C-style arrays of the correct size 
yourself (as before). One word of warning is in order here, however. If the input array src is one 
dimensional, you should allocate minIdx and maxIdx to be of dimension two. The reason for this is that 
cv::minMaxIdx() treats a one-dimensional array as a two-dimensional array internally. As a result, if 
the maximum is found at position 𝑘, the return value for maxIdx will be (k,0) for a single-column 
matrix and (0,k) for a single-row matrix. 

Comparing Two Histograms 
Yet another indispensable tool for working with histograms, first introduced by Swain and Ballard 
[Swain91] and further generalized by Schiele and Crowley [Schiele96], is the ability to compare two 

                                                             
3 If you have a one-dimensional vector<> array, you can just use cv::Mat( vec ).reshape(1) to make it a 
𝑁-by-1 array in two dimensions. 



histograms in terms of some specific criteria for similarity. The function cv::compareHist() does just 
this. 

double cv::compareHist( 
  cv::InputArray       H1,        // First histogram to be compared 
  cv::InputArray       H2,        // Second histogram to be compared 
  int                  method     // method for the comparison (see options below) 
); 
 
double cv::compareHist( 
  const cv::SparseMat& H1,        // First histogram to be compared 
  const cv::SparseMat& H2,        // Second histogram to be compared 
  int                  method     // method for the comparison (see options below) 
); 

The first two arguments are the histograms to be compared, which should be of the same size. The third 
argument is where we select our desired distance metric. The four available options are as follows.  

Correlation (method = cv::COMP_CORREL) 

The first comparison is based on statistical correlation; it implements the Pearson Correlation Coefficient, 
and is typically appropriate when 𝐻! and 𝐻! can be interpreted as probability distributions. 

𝑑!"##$% 𝐻!,𝐻! =
𝐻!!(𝑖) ∙ 𝐻!!(𝑖)!

𝐻!!
!(𝑖) ∙ 𝐻!!

!(𝑖)!!

 

Here, 𝐻!! 𝑖 = 𝐻! 𝑖 − 𝑁!! ℎ!(𝑗)!  and 𝑁 is equal to the number of bins in the histogram. 

For correlation, a high score represents a better match than a low score. A perfect match is 1 and a 
maximal mismatch is –1; a value of 0 indicates no correlation (random association). 

Chi-square (method = cv::COMP_CHISQR) 

For chi-square,4 distance metric is based on the chi-squared test statistic, which is a test as to whether or 
not two distributions are in fact correlated. 

𝑑!!!!!"#$%& 𝐻!,𝐻! =
𝐻! 𝑖 − 𝐻! 𝑖

!

𝐻! 𝑖 + 𝐻! 𝑖!

 

For this test, a low score represents a better match than a high score. A perfect match is 0 and a total 
mismatch is unbounded (depending on the size of the histogram). 

Intersection (method = cv::COMP_INTERSECT) 

The histogram intersection method is based on a simple intersection of the two histograms.  This means 
that it ask, in effect, what do these two have in common, and sums over all of the bins of the histograms. 

𝑑!"#$%&$'#!(" 𝐻!,𝐻! = min  (𝐻! 𝑖 ,𝐻! 𝑖
!

) 

For this metric, high scores indicate good matches and low scores indicate bad matches. If both histograms 
are normalized to 1.0, then a perfect match is 1.0 and a total mismatch is 0.0. 

Bhattacharyya distance (method = cv::COMP_BHATTACHARYYA) 

The last option, called the Bhattacharyya distance [Bhattacharyya43], is also a measure of overlap of two 
distributions. 

                                                             
4 The chi-square test was invented by Karl Pearson [Pearson] who founded the field of mathematical statistics. 



𝑑!"##$% 𝐻!,𝐻! = 1 −
𝐻! 𝑖 ∙ 𝐻! 𝑖!

𝐻!(𝑖)! 𝐻!(𝑖)!
 

In this case, low scores indicate good matches and high scores indicate bad matches. A perfect match is 
0.0 and a total mismatch is a 1.0. 

With cv::COMP_BHATTACHARYYA, a special factor in the code is used to normalize the input 
histograms. In general, however, you should normalize histograms before comparing them, because 
concepts like histogram intersection make little sense (even if allowed) without normalization. 

The simple case depicted in Figure 7-5 should help clarify matters using about the simplest case 
imaginable: a one-dimensional histogram with only two bins. The model histogram has a 1.0 value in the 
left bin and a 0.0 value in the right bin. The last three rows show the comparison histograms and the 
values generated for them by the various metrics (the EMD metric will be explained shortly). 

 

Figure 7-5: Histogram matching measures 

Figure 7-5 provides a quick reference for the behavior of different matching types. Close inspection of 
these matching algorithms in the figure will reveal a disconcerting observation. If histogram bins shift by 
just one slot, as with the chart’s first and third comparison histograms, then all these matching methods 
(except EMD) yield a maximal mismatch even though these two histograms have a similar “shape.” The 
rightmost column in Figure 7-5 reports values returned by EMD, a type of distance measure. In comparing 
the third to the model histogram, the EMD measure quantifies the situation precisely: the third histogram 
has moved to the right by one unit. We shall explore this measure further in the “Earth Mover’s Distance” 
section to follow. 

In the authors’ experience, intersection works well for quick-and-dirty matching and chi-square or 
Bhattacharyya work best for slower but more accurate matches. The EMD measure gives the most intuitive 
matches but is much slower. 

Histogram Usage Examples 
It’s probably time for some helpful examples. The program in Example 7-1 (adapted from the OpenCV 
code bundle) shows how we can use some of the functions just discussed. This program computes a hue-
saturation histogram from an incoming image and then draws that histogram as an illuminated grid. 



Example 7-1: Histogram computation and display 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
int main( int argc, char** argv ){ 
 
  if(argc != 2) {  
    cout << "Computer Color Histogram\nUsage: ch7_ex7_1 <imagename>" << endl;  
    return -1;  
  } 
  cv::Mat src = cv::imread(argv[1],1); 
 
  if( src.empty() ) { cout << "Can not load " << argv[1] << endl; return -1; }  
 
  // Compute the HSV image, and decompose it into separate planes. 
  // 
  cv::Mat hsv;  
  cv::cvtColor(src, hsv, cv::BGR2HSV); 
 
  float h_ranges[]      = {0, 180}; // hue is [0, 180] 
  float s_ranges[]      = {0, 255}; 
  const float* ranges[] = {h_ranges, s_ranges}; 
  int histSize[]        = {20, 2}, ch[] = {0, 1}; 
 
  cv::Mat hist; 
 
  // Compute the histogram 
  cv::calcHist(&hsv, 1, ch, cv::noArray(), hist, 2, histSize, ranges, true); 
  cv::normalize(hist, hist, 0, 255, cv::NORM_MINMAX); 
 
  int scale = 10; 
  cv::Mat hist_img(histSize[0]*scale, histSize[1]*scale, CV::U8C3); 
 
  // Draw our histogram. 
  for( int h = 0; h < histSize[0]; h++ ) { 
    for( int s = 0; s < histSize[1]; s++ ){ 
      float hval = hist.at<float>(h, s); 
      cv::rectangle( 
        hist_img,  
        cv::Rect(h*scale,s*scale,scale,scale), 
        cv::Scalar::all(hval),  
        -1 
      ); 
    } 
  } 
 
  cv::imshow("image", src); 
  cv::imshow("H-S histogram", hist_img); 
  cv::waitKey(); 
  return 0; 
} 

In this example, we have spent a fair amount of time preparing the arguments for cv::calcHist(), 
which is not uncommon.  

In many practical applications, it is useful to consider the color histograms associated with human skin 
tone. By way of example, we have histograms taken from a human hand under various lighting conditions 
in Figure 7-6. The left column shows images of a hand in an indoor environment, a shaded outdoor 
environment, and a sunlit outdoor environment. In the middle column are the blue, green, and red (BGR) 
histograms corresponding to the observed flesh tone of the hand. In the right column are the corresponding 



HSV histograms, where the vertical axis is 𝑉 (value), the radius is 𝑆 (saturation) and the angle is 𝐻 (hue). 
Notice that indoors is the darkest, outdoors in shadow in is a bit brighter, and outdoors in the sun is the 
brightest. Note also that the colors shift around somewhat as a result of the changing color of the 
illuminating light. 

 

Figure 7-6: Histogram of flesh colors under indoor (upper-left), shadowed outdoor (middle left), and direct 
sun outdoor (lower-left) lighting conditions; the middle and right-hand columns display the associated BGR 
and HSV histograms, respectively 

As a test of histogram comparison, we could take a portion of one palm (e.g., the top half of the indoor 
palm), and compare the histogram representation of the colors in that image either with the histogram 
representation of the colors in the remainder of that image or with the histogram representations of the 
other two hand images. To make a lower dimensional comparison, we use only hue (𝐻) and saturation (𝑆) 
from an HSV color space.  

Table 7-1: Histogram comparison, via four matching methods, of palm-flesh colors in upper half of indoor 
palm with listed variant palm-flesh color.  We used 30 bins for hue, and 32 for saturation. For reference, 
the expected score for a perfect match is provided in the first row. 

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA 
(Perfect Match) (1.0) (0.0) (1.0) (0.0) 
Indoor lower half 0.96 0.14 0.82 0.2 
Outdoor shade 0.09 1.57 0.13 0.8 
Outdoor sun –0.0 1.98 0.01 0.99 

To put this experiment into practice (see code later in Example 7-2), we take three images of a hand under 
different lighting conditions (Figure 7-6). First we construct a histogram from the hand portion of the top 
image (the dark one), which we will use as our reference. We then compare that histogram to a histogram 
taken from the hand in the bottom half of that same image, and then to the hands that appear in the next two 
(whole) images. The first image is an indoor image, the latter two are outdoors. Using 30 bins for hue and 
32 for saturation, the matching results are shown in Table 7-1, in which several things are apparent. First, 
the distance metrics even with the lower half of the same indoor image are hardly perfect. Second, some of 
the distance metrics return a small number when the distance is small, and a larger number when it is high, 
while other metrics do the opposite. This is as we should have expected from the simple analysis of the 
matching measures shown in Figure 7-5. The recognition results in Example 7-1 are not good however 
because, referencing Figure 7-6, we can see that the distribution in H-S space shifts location, especially in 



saturation and so, with fine grain bins, the bins will shift (similar to the last row of Figure 7-5). When we 
use only 2 bins for saturation and 20 for hue, we get better results as shown in Table 7-2. 

Table 7-2: Histogram comparison, same images as Table 7-1, but 2 bins for saturation, 20 for hue. 

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA 
(Perfect Match) (1.0) (0.0) (1.0) (0.0) 
Indoor lower half 0.99 0.06 0.93 0.08 
Outdoor shade 0.43 19.12 0.41 0.56 
Outdoor sun 0.7 147.36 0.98 0.55 

 

Some More Complicated Stuff 
Everything we’ve discussed so far was reasonably basic. Each of the functions provided for a relatively 
obvious need. Collectively, they form a good foundation for much of what you might want to do with 
histograms in the context of computer vision (and probably in other contexts as well). At this point we want 
to look at some more complicated routines available within OpenCV that are extremely useful in certain 
applications. These routines include a more sophisticated method of comparing two histograms as well as 
tools for computing and/or visualizing which portions of an image contribute to a given portion of a 
histogram. 

Earth Mover’s Distance 
We saw earlier that lighting changes can cause significant shifts in color values (see 

 
Figure 7-6), although such shifts tend not to change the shape of the histogram of color values, but shift the 
color value locations and thus cause the histogram-matching schemes we’ve learned about to fail. The 
difficulty with histogram match measures is that they can return a large difference in the case where two 
histograms are similarly shaped, but only displaced relative to one another. It is often desirable to have a 
distance measure that performs like a match, but is less sensitive to such displacements. Earth mover’s 
distance (EMD) [Rubner00] is such a metric; it essentially measures how much work it would take to 
“shovel” one histogram shape into another, including moving part (or all) of the histogram to a new 
location. It works in any number of dimensions. 



Return again to Figure 7-5; we see the “earth shoveling” nature of EMD’s distance measure in the right-
most column. An exact match is a distance of 0.0. Half a match is half a “shovel full,” the amount it 
would take to spread half of the left histogram into the next slot. Finally, moving the entire histogram one 
step to the right would require an entire unit of distance (i.e., to change the model histogram into the 
“totally mismatched” histogram). 

The EMD algorithm itself is quite general; it allows users to set their own distance metric or their own cost-
of-moving matrix. One can record where the histogram “material” flowed from one histogram to another, 
and one can employ nonlinear distance metrics derived from prior information about the data. The EMD 
function in OpenCV is cv::EMD(): 

float cv::EMD( 
  cv::InputArray  signature1,             // size1-by-(dims+1) float array 
  cv::InputArray  signature2,             // size2-by-(dims+1) float array 
  int             distType,               // distance type (e.g., ‘cv::DIST_L1’) 
  cv::InputArray  cost       = noArray(), // size1-by-size2 array (for cv::DIST_USER) 
  float*          lowerBound = 0,         // input/output low bound on sig. distance 
  cv::OutputArray flow       = noArray()  // output, size1-by-size2, from sig1 to sig2 
); 

Although we’re applying the EMD to histograms, the interface prefers that we talk to it in terms of what the 
algorithm calls signatures for the first two array parameters. These signatures are arrays that are always of 
type float and consist of rows containing the histogram bin count followed by its coordinates. For the 

one-dimensional histogram of  

Figure 7-5, the signatures (listed array rows) for the left-hand column of histograms (skipping the model) 
would be as follows: top, [[1, 0], [0, 1]]; middle, [[0.5, 0], [0.5, 1]]; bottom, [[0, 0], [1, 1]]. If we had a bin 
in a three-dimensional histogram with a bin count of 537 at (x, y, z) index (7, 43, 11), then the 
signature row for that bin would be [537, 7, 43, 11]. This is how we perform the necessary step of 
converting histograms into signatures. (We will go through this in a little more detail in Example 7-2.) 

The parameter distType should be any of: Manhattan distance (cv::DIST_L1), Euclidean distance 
(cv::DIST_L2), Checkerboard Distance (cv::DIST_C), or a user-defined distance metric 
(cv::DIST_USER). In the case of the user-defined distance metric, the user supplies this information in 
the form of a (pre-calculated) cost matrix via the cost argument. (In this case, cost is an n1-by-n2 matrix, 
with n1 and n2 the sizes of signature1 and signature2, respectively.) 

The argument lowerBound has two functions (one as input, the other as output). As a return value, it is a 
lower bound on the distance between the centers of mass of the two histograms. In order for this lower 



bound to be computed, one of the standard distance metrics must be in use (i.e., not cv::DIST_USER), 
and the total weights of the two signatures must be the same (as would be the case for normalized 
histograms). If you supply a lower-bound argument, you must also initialize that variable to a meaningful 
value. This value is used as the lower bound on separations for which the EMD will be computed at all.5 Of 
course, if you want the EMD computed no matter what the distance is, you can always initialize 
lowerBound to zero. 

The next argument, flow, is an optional 𝑛!-by-𝑛! matrix that can be used to record the flow of mass from 
the 𝑖!! point of signature1 to the 𝑗!! point of signature2. In essence, this tells you how the mass 
was rearranged to give the computed total EMD. 

As an example, suppose we have two histograms, hist1 and hist2, which we want to convert into two 
signatures, sig1 and sig2. Just to make things more difficult, let’s suppose that these are two-
dimensional histograms (as in the preceding code examples) of dimension h_bins by s_bins. Example 
7-2 shows how to convert these two histograms into two signatures. 

Example 7-2: Creating signatures from histograms for EMD; note that this code is the source of the data in 
Table 7-1, in which the hand histogram is compared in different lighting conditions 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
void help(){ 
  cout << "\nCall is:\n"  
  << "./ch7_ex7_3_expanded modelImage0 testImage1 testImage2 badImage3\n\n"  
  << "for example: " 
  << "  ./ch7_ex7_3_expanded HandIndoorColor.jpg HandOutdoorColor.jpg " 
  << "HandOutdoorSunColor.jpg fruits.jpg\n"  
  << "\n"; 
} 
 
// Compare 3 images’ histograms  
// 
int main( int argc, char** argv ) { 
 
  if( argc != 5 ) { help(); return -1; } 
 
  vector<cv::Mat> src(5); 
  cv::Mat         tmp; 
  int             i; 
 
  tmp = cv::imread(argv[1], 1); 
  if(tmp.empty() ) { 
    cerr << "Error on reading image 1," << argv[1] << "\n" << endl; 
    help(); 
    return(-1); 
  } 
 
  // Parse the first image into two image halves divided halfway on y 
  // 
  cv::Size size  = tmp.size(); 
  int width      = size.width; 
  int height     = size.height; 

                                                             
5 This is important because it is typically possible to compute the lower bound for a pair of histograms much more 
quickly than the actual EMD. As a result, in many practical cases, if the EMD is above some bound, you probably do 
not care about the actual value of the EMD, only that it is “too big” (i.e., the things you are comparing are “not 
similar”). In this case, it is quite helpful to have cv::EMD() exit once it is known that the EMD value will be big 
enough that you do not care for the exact value. 



  int halfheight = height >> 1; 
  cout << "Getting size [[" << tmp.cols << "] [" << tmp.rows << "]]\n" << endl; 
  cout << "Got size (w,h): (" << size.width << "," << size.height << ")" << endl; 
 
  src[0] = cv::Mat(cv::Size(width,halfheight), CV::U8C3); 
  src[1] = cv::Mat(cv::Size(width,halfheight), CV::U8C3); 
 
  // Divide the first image into top and bottom halfs into src[0] and src[1] 
  // 
  cv::Mat_<cv::Vec3b>::iterator tmpit = tmp.begin<cv::Vec3b>(); 
 
  // top half 
  cv::Mat_<cv::Vec3b>::iterator s0it = src[0].begin<cv::Vec3b>(); 
  for(i = 0; i < width*halfheight; ++i, ++tmpit, ++s0it) *s0it = *tmpit; 
 
  // Bottom half 
  cv::Mat_<cv::Vec3b>::iterator s1it = src[1].begin<cv::Vec3b>(); 
  for(i = 0; i < width*halfheight; ++i, ++tmpit, ++s1it) *s1it = *tmpit; 
 
  // Load the other three images 
  // 
  for(i = 2; i<5; ++i){ 
    src[i] = cv::imread(argv[i], 1); 
    if(src[i].empty()) { 
      cerr << "Error on reading image " << i << ": " << argv[i] << "\n" << endl; 
      help(); 
      return(-1); 
    } 
  } 
 
  // Compute the HSV image, and decompose it into separate planes. 
  // 
  vector<cv::Mat> hsv(5), hist(5), hist_img(5); 
  int          h_bins      = 8; 
  int          s_bins      = 8; 
  int          hist_size[] = { h_bins, s_bins }, ch[] = {0, 1}; 
  float        h_ranges[]  = { 0, 180 };     // hue range is [0,180] 
  float        s_ranges[]  = { 0, 255 }; 
  const float* ranges[]    = { h_ranges, s_ranges }; 
  int          scale       = 10; 
 
  for(i = 0; i<5; ++i) { 
    cv::cvtColor( src[i], hsv[i], cv::BGR2HSV ); 
    cv::calcHist( &hsv[i], 1, ch, noArray(), hist[i], 2, hist_size, ranges, true ); 
    cv::normalize( hist[i], hist[i], 0, 255, cv::NORM_MINMAX ); 
    hist_img[i] = cv::Mat::zeros( hist_size[0]*scale, hist_size[1]*scale, CV::U8C3 ); 
 
    // Draw our histogram For the 5 images 
    // 
    for( int h = 0; h < hist_size[0]; h++ ) 
      for( int s = 0; s < hist_size[1]; s++ ){ 
        float hval = hist[i].at<float>(h, s); 
        cv::rectangle( 
          hist_img[i],  
          cv::Rect(h*scale, s*scale, scale, scale), 
          cv::Scalar::all(hval),  
          -1 
        ); 
      } 
  } 
 
  // Display 
  cv::namedWindow( "Source0", 1 );cv::imshow( "Source0", src[0] ); 



  cv::namedWindow( "HS Histogram0", 1 );cv::imshow( "HS Histogram0", hist_img[0] ); 
 
  cv::namedWindow( "Source1", 1 );cv::imshow( "Source1", src[1] ); 
  cv::namedWindow( "HS Histogram1", 1 ); cv::imshow( "HS Histogram1", hist_img[1] ); 
 
  cv::namedWindow( "Source2", 1 ); cv::imshow( "Source2", src[2] ); 
  cv::namedWindow( "HS Histogram2", 1 ); cv::imshow( "HS Histogram2", hist_img[2] ); 
 
  cv::namedWindow( "Source3", 1 ); cv::imshow( "Source3", src[3] ); 
  cv::namedWindow( "HS Histogram3", 1 ); cv::imshow( "HS Histogram3", hist_img[3] ); 
 
  cv::namedWindow( "Source4", 1 ); cv::imshow( "Source4", src[4] ); 
  cv::namedWindow( "HS Histogram4", 1 ); cv::imshow( "HS Histogram4", hist_img[4] ); 
 
  // Compare the histogram src0 vs 1, vs 2, vs 3, vs 4 
  // 
  cout << "Comparison:\n" 
    << "Corr                 Chi                 Intersect          Bhat\n"  
    << endl; 
 
  for(i=1; i<5; ++i) {  // For each histogram 
    cout << "Hist[0] vs Hist[" << i << "]: " << endl;; 
    for(int j=0; j<4; ++j) { // For each comparison type 
      cout << "method[" << j << "]: " << cv::compareHist(hist[0],hist[i],j) << "  "; 
    } 
    cout << endl; 
  } 
 
  //Do EMD and report 
  // 
  vector<cv::Mat> sig(5); 
  cout << "\nEMD: " << endl; 
 
  // Oi Vey, parse histograms to earth movers signatures 
  // 
  for( i=0; i<5; ++i) { 
 
    vector<cv::Vec3f> sigv; 
 
    // (re)normalize histogram to make the bin weights sum to 1. 
    // 
    cv::normalize(hist[i], hist[i], 1, 0, cv::NORM_L1); 
    for( int h = 0; h < h_bins; h++ ) 
      for( int s = 0; s < s_bins; s++ ) { 
        float bin_val = hist[i].at<float>(h, s); 
        if( bin_val != 0 ) 
          sigv.push_back( cv::Vec3f(bin_val, (float)h, (float)s)); 
      } 
 
    // make Nx3 32fC1 matrix, where N is the number of nonzero histogram bins 
    // 
    sig[i] = cv::Mat(sigv).clone().reshape(1); 
    if( i > 0 ) 
      cout << "Hist[0] vs Hist[" << i << "]: "  
           << EMD(sig[0], sig[i], cv::DIST_L2) << endl; 
  } 
  cv::waitKey(0); 
} 



Back Projection 
Back projection is a way of recording how well the pixels fit the distribution of pixels in a histogram 
model. For example, if we have a histogram of flesh color, then we can use back projection to find flesh 
color areas in an image. The function for doing this kind of lookup has two variations, one for dense arrays, 
and one for sparse arrays.  

Basic Back Projection: cv::calcBackProject() 

Back-projection computes a vector from the selected channels of the input images just like 
cv::calcHist(), but instead of accumulating events in the output histogram it reads the output 
histogram and reports the bin value already present.  In the context of statistics, if you think of the input 
histogram as a (prior) probability distribution for the particular vector (color) on some object, then back 
projection is computing the probability that any particular part of the image is in fact drawn from that prior 
distribution (e.g., part of the object). 

void cv::calcBackProject( 
  const cv::Mat*  images,            // C-style array of images, 8U or 32F 
  int             nimages,           // number of images in ‘images’ array 
  const int*      channels,          // C-style list of ints identifying channels 
  cv::InputArray  hist,              // input histogram array 
  cv::OutputArray backProject,       // output single channel array  
  const float**   ranges,            // C-style array of ‘dims’ pairs set bin sizes 
  double          scale      = 1,    // Optional scale factor for output 
  bool            uniform    = true  // true for uniform binning 
); 
 
void cv::calcBackProject( 
  const cv::Mat*  images,            // C-style array of images, 8U or 32F 
  int             nimages,           // number of images in ‘images’ array 
  const int*      channels,          // C-style list of ints identifying channels 
  const cv::SparseMat& hist,         // input (sparse) histogram array 
  cv::OutputArray backProject,       // output single channel array  
  const float**   ranges,            // C-style array of ‘dims’ pairs set bin sizes 
  double          scale      = 1,    // Optional scale factor for output 
  bool            uniform    = true  // true for uniform binning 
); 
 
void cv::calcBackProject( 
  cv::InputArrayOfArrays images,            // STL-vector of images, 8U or 32F 
  const vector<int>&     channels,          // STL-vector, channels indices to use 
  cv::InputArray         hist,              // input histogram array 
  cv::OutputArray        backProject,       // output single channel array  
  const vector<float>&   ranges,            // STL-style vector of range boundaries  
  double                 scale      = 1,    // Optional scale factor for output 
  bool                   uniform    = true  // true for uniform binning 
); 

There are three versions of cv::calcBackProject(). The first two use C-style arrays for their inputs. 
One of these supports dense histograms and one supports sparse histograms. The third version uses the 
newer template-based inputs rather than C-style pointers6. In both cases, the image is provided in the form 
of a set of individual single or multichannel arrays (the images variable), while the histogram is precisely 
the form of histogram that is produced by cv::calcHist() (the hist variable). The set of single-
channel arrays is exactly the same form as what you would have used when you called 
cv::calcHist() in the first place, only this time, it is the image you want to compare your histogram 
to. If the argument images is a C-style array (type cv::Mat*), you will also need to tell  
cv::calcBackProject() how many elements it has; this is the function of the nimages argument.  

                                                             
6 Of these three, the third is the generally preferred form in modern code (i.e., the use of the C-style arrays for input is 
considered “old-fashioned” in most modern OpenCV code.) 



The argument channels is a list of the channels that will actually be used in the back projection. Once 
again, the form of this argument is the same as the form of the corresponding argument used by 
cv::calcHist(). Each integer entry in the array channels is related to a channel in the input 
arrays by enumerating the channels in order, starting with the first array (arrays[0]), then for the 
second array (images[1]), and so on (e.g., if there were three matrices pointed to by images, with three 
channels each, their channels would correspond to the values 0, 1, and 2 for the first array, 3, 4, and 5 for 
the second array, and 6, 7, and 8 for the third array). As you can see, though the number of entries in 
channels must be the same as the dimensionality of the histogram hist, that number need not be the 
same as the number of arrays in (or the total number of channels represented by) images.  

The results of the back projection computation will be placed in the array backProject. 
backProject will be the same size and type as images[0], and have a single channel. 

Because histogram data is stored in the same matrix structures used for other data, there is no place to 
record the bin information that was used in the original construction of the histogram. In this sense, to 
really comprehend a histogram completely, the associated cv::Mat (or cv::SparseMat or whatever) 
is needed, as well as the original ranges data structure that was used when the histogram was created by 
cv::calcHist().7 It is for this reason that this range of information needs to be supplied to 
cv::calcBackProject() in the ranges argument. 

Finally, there are two optional arguments, scale and uniform. scale is an optional scale factor that is 
applied to the return values placed in backProject. (This is particularly useful if you want to visualize 
the results.)  uniform is used to indicate whether or not the input histogram is a uniform histogram (in the 
sense of cv::calcHist()). Because uniform defaults to true, this argument is only needed for non-
uniform histograms. 

Example 7-1 showed how to convert an image into single-channel planes and then make an array of them. 
As described above, the values in backProject are set to the values in the associated bin in hist. If the 
histogram is normalized, then this value can be associated with a conditional probability value (i.e., the 

                                                             
7 An alternative approach would have been to define another data-type for histograms which inherited from cv::Mat, 
but which also contained this bin information. The authors of the library chose not to take this route in the 2.0 (and 
later) version of the library in favor of simplifying the library. 



probability that a pixel in image is a member of the type characterized by the histogram in hist).8 In 

 
Figure 7-7, we use a flesh-color histogram to derive a probability of flesh image. 

 

                                                             
8 Specifically, in the case of our flesh-tone H-S histogram, if 𝐶 is the color of the pixel and 𝐹 is the probability that a 
pixel is flesh, then this probability map gives us 𝑝(𝐶|𝐹), the probability of drawing that color if the pixel actually is 
flesh. This is not quite the same as 𝑝(𝐹|𝐶), the probability that the pixel is flesh given its color. However, these two 
probabilities are related by Bayes' theorem [Bayes1763] and so, if we know the overall probability of encountering a 
flesh-colored object in a scene as well as the total probability of encountering of the range of flesh colors, then we can 
compute 𝑝(𝐹|𝐶) from 𝑝(𝐶|𝐹). Specifically, Bayes' theorem establishes the following relation: 

𝑝 𝐹 𝐶 =
𝑝 𝐹
𝑝 𝐶

𝑝(𝐶|𝐹) 



 

Figure 7-7: Back projection of histogram values onto each pixel based on its color: the HS (Hue and 
Saturation planes of an HSV representation of the image) flesh-color histogram (upper-left) is used to 
convert the hand image (upper-right) into the flesh-color probability image (lower-right); the lower-left 
panel is the histogram of the hand image 

When backProject is a byte image rather than a float image, you should either not 
normalize the histogram or else scale it up before use. The reason is that the highest 
possible value in a normalized histogram is 1, so anything less than that will be rounded 
down to 0 in the 8-bit image. You might also need to scale backProject in order to 
see the values with your eyes, depending on how high the values are in your histogram. 

Template Matching 
Template matching via cv::matchTemplate() is not based on histograms; rather, the function 
matches an actual image patch against an input image by “sliding” the patch over the input image using one 
of the matching methods described in this section.9  

If, as in Figure 7-8, we have an image patch containing a face, then we can slide that face over an input 
image looking for strong matches that would indicate another face is present.  

void cv::matchTemplate 
  cv::InputArray  image,        // Input image to be searched, 8U or 32F, size W-by-H 
  cv::InputArray  templ,        // Template to use, same type as ‘image’, size w-by-h 
  cv::OutputArray result,       // Result image, type 32F, size (W-w+1)-by(H-h+1) 
  int             method        // Comparison method to use 
);  

The input to cv::matchTemplate() starts with a single 8-bit or floating-point plane or color image. 
The matching model in templ is just a patch from another (presumably similar) image containing the 
object for which you are searching. The computed output will be put in the result image, which should 

                                                             
9 In prior versions of the library, there was a function called: cvCalcBackProjectPatch(). This function was not 
ported to the 2.x library as it was considered to be very slow, and the similar results can be achieved through use of 
cv::matchTemplate().  



be a single-channel byte or floating-point image of size (image.width – templ.width + 1, 
image.height – templ.height + 1). The matching method is chosen from one of the options 
listed below (we use I to denote the input image, T the template, and R the result image in the definitions). 
For each of these, there is also a normalized version10: 

 

 

Figure 7-8: cv::matchTemplate() sweeps a template image patch across another image looking for 
matches 

Square difference matching method (method = cv::TM_SQDIFF) 

These methods match the squared difference, so a perfect match will be 0 and bad matches will be large: 

𝑅!"_!"## = 𝑇 𝑥!, 𝑦! − 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

 

Normalized square difference matching method (method = cv::TM_SQDIFF_NORMED) 

𝑅!"_!"##_!"#$%& =
𝑇 𝑥!, 𝑦! − 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

𝑇 𝑥!, 𝑦! !
!!,!! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!
 

Correlation matching methods (method = cv::TM_CCORR) 

These methods multiplicatively match the template against the image, so a perfect match will be large and 
bad matches will be small or zero. 

𝑅!!"## = 𝑇 𝑥!, 𝑦! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦!

!!,!!

 

Normalized cross-correlation matching method (method = cv::TM_SQDIFF_NORMED) 

𝑅!!"##_!"#$%& =
𝑇 𝑥!, 𝑦! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦!!!,!!

𝑇 𝑥!, 𝑦! !
!!,!! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!
 

                                                             
10 The normalized versions were first developed by Galton [Galton] as described by Rodgers [Rodgers88]. The 
normalized methods are useful, as they can help reduce the effects of lighting differences between the template and the 
image. In each case, the normalization coefficient is the same. 



 

Correlation coefficient matching methods (method = cv::TM_CCOEFF) 

These methods match a template relative to its mean against the image relative to its mean, so a perfect 
match will be 1.0 and a perfect mismatch will be -1.0; a value of 0.0 simply means that there is no 
correlation (random alignments). 

𝑅!!"#$$ = 𝑇! !!,!! ∙ 𝐼! !!!!,!!!!

!!,!!
 

𝑇! 𝑥!, 𝑦! = 𝑇 𝑥!, 𝑦! −
𝑇(𝑥!!, 𝑦!!)!!!,!!!

(𝑤 − ℎ)
 

𝐼! 𝑥 + 𝑥!, 𝑦 + 𝑦! = 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! −
𝐼(𝑥!!, 𝑦!!)!!!,!!!

(𝑤 − ℎ)
 

Normalized correlation coefficient matching method (method = cv::TM_CCOEFF_NORMED) 

𝑅!!"#$$_!"#$%& =
𝑇′ 𝑥!, 𝑦! ∙ 𝐼′ 𝑥 + 𝑥!, 𝑦 + 𝑦!!!,!!

𝑇′ 𝑥!, 𝑦! !
!!,!! ∙ 𝐼′ 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

 

Here T’ and I’ are as defined for cv::TM_CCOEFF. 

As usual, we obtain more accurate matches (at the cost of more computations) as we move from simpler 
measures (square difference) to the more sophisticated ones (correlation coefficient). It’s best to do some 
test trials of all these settings and then choose the one that best trades off accuracy for speed in your 
application. 

Be careful when interpreting your results. The square-difference methods show best 
matches with a minimum, whereas the correlation and correlation-coefficient methods 
show best matches at maximum points. 

Once we use cv::matchTemplate() to obtain a matching result image, we can then use 
cv::minMaxLoc() or cv::minMaxIdx() to find the location of the best match. Again, we want to 
ensure there’s an area of good match around that point in order to avoid random template alignments that 
just happen to work well. A good match should have good matches nearby, because slight misalignments of 
the template shouldn’t vary the results too much for real matches. Looking for the best matching “hill” can 
be done by slightly smoothing the result image before seeking the maximum (for correlation or correlation-
coefficient) or minimum (for square-difference matching methods). The morphological operators (for 
example) can be helpful in this context. 



 

Figure 7-9: Match results of six matching methods for the template search depicted in Figure 7-8: the best 
match for square difference is zero and for the other methods it’s the maximum point; thus, matches are 
indicated by dark areas in the left column and by bright spots in the other two columns 

Example 7-3 should give you a good idea of how the different template matching techniques behave. This 
program first reads in a template and image to be matched and then performs the matching via the methods 
we’ve discussed here. 

Example 7-3: Template matching 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
void help(){ 
 
  cout << "\n" 
    "Example of using matchTemplate(). The call is:\n" 
    "\n" 
    "ch7_ex7_5 template image_to_be_searched\n" 
    "\n" 
    "   This routine will search using all methods:\n" 
    "         cv::TM_SQDIFF        0\n" 
    "         cv::TM_SQDIFF_NORMED 1\n" 
    "         cv::TM_CCORR         2\n" 
    "         cv::TM_CCORR_NORMED  3\n" 
    "         cv::TM_CCOEFF        4\n" 
    "         cv::TM_CCOEFF_NORMED 5\n" 
    "\n"; 
} 
 
 
// Display the results of the matches 
//  
int main( int argc, char** argv ) { 
 
  if( argc != 3) { 
    help(); 



    return -1; 
  } 
 
  cv::Mat src, templ, ftmp[6]; // ftmp is what to display on     
 
  // Read in the template to be used for matching: 
  // 
  if((templ=cv::imread(argv[1], 1)).empty()) { 
    cout << "Error on reading template " << argv[1] << endl; 
    help(); return -1; 
  } 
 
  // Read in the source image to be searched: 
  // 
  if((src=cv::imread(argv[2], 1)).empty()) { 
    cout << "Error on reading src image " << argv[2] << endl; 
    help(); return -1; 
  } 
 
  // Do the matching of the template with the image 
  for(int i=0; i<6; ++i){ 
    cv::matchTemplate( src, templ, ftmp[i], i);  
    cv::normalize(ftmp[i],ftmp[i],1,0,cv::MINMAX); 
  } 
 
  // Display 
  // 
  cv::imshow( "Template", templ ); 
  cv::imshow( "Image", src ); 
  cv::imshow( "SQDIFF", ftmp[0] ); 
  cv::imshow( "SQDIFF_NORMED", ftmp[1] ); 
  cv::imshow( "CCORR", ftmp[2] ); 
  cv::imshow( "CCORR_NORMED", ftmp[3] ); 
  cv::imshow( "CCOEFF", ftmp[4] ); 
  cv::imshow( "CCOEFF_NORMED", ftmp[5] ); 
 
  // Let user view results: 
  // 
  cv::waitKey(0); 
} 

Note the use of cv::normalize() in this code, which allows us to display the results in a consistent 
way. (Recall that some of the matching methods can return negative-valued results.) We use the 
cv::MINMAX flag when normalizing; this tells the function to shift and scale the floating-point images so 
that all returned values are between 0.0 and 1.0. Figure 7-9 shows the results of sweeping the face 
template over the source image (shown in Figure 7-9) using each of cv::matchTemplate()’s 
available matching methods. In outdoor imagery especially, it’s almost always better to use one of the 
normalized methods. Among those, correlation coefficient gives the most clearly delineated match—but, as 
expected, at a greater computational cost. For a specific application, such as automatic parts inspection or 
tracking features in a video, you should try all the methods and find the speed and accuracy trade-off that 
best serves your needs. 

Summary 
In this chapter, we learned how OpenCV represents histograms at dense or sparse matrix objects. In 
practice, such histograms are typically used to represent probability density functions, which associate 
probability amplitude to every element of an array of some number of dimensions. We learned how to do 
basic operations on arrays, which are useful when interpreting arrays as probability distributions—such as 
normalization and comparison with other distributions. 



Exercises 
1. Generate 1,000 random numbers 𝑟i between 0.0 and 1.0. Decide on a bin size and then take a 

histogram of 1/𝑟i. 
a) Are there similar numbers of entries (i.e., within a factor of ±10) in each histogram bin? 
b) Propose a way of dealing with distributions that are highly nonlinear so that each bin has, within a 

factor of 10, the same amount of data. 
2. Take three images of a hand in each of the three lighting conditions discussed in the text. Use 

cv::calcHist() to make an RGB histogram of the flesh color of one of the hands photographed 
indoors. 
a) Try using just a few large bins (e.g., 2 per dimension), a medium number of bins (16 per 

dimension) and many bins (256 per dimension). Then run a matching routine (using all histogram 
matching methods) against the other indoor lighting images of hands. Describe what you find. 

b) Now add 8 and then 32 bins per dimension and try matching across lighting conditions (train on 
indoor, test on outdoor). Describe the results. 

3. As in exercise 2, gather RGB histograms of hand flesh color. Take one of the indoor histogram 
samples as your model and measure EMD (earth mover’s distance) against the second indoor 
histogram and against the first outdoor shaded and first outdoor sunlit histograms. Use these 
measurements to set a distance threshold. 
a) Using this EMD threshold, see how well you detect the flesh histogram of the third indoor 

histogram, the second outdoor shaded, and the second outdoor sunlit histograms. Report your 
results. 

b) Take histograms of randomly chosen nonflesh background patches to see how well your EMD 
discriminates. Can it reject the background while matching the true flesh histograms? 

4. Using your collection of hand images, design a histogram that can determine under which of the three 
lighting conditions a given image was captured. Toward this end, you should create features—perhaps 
sampling from parts of the whole scene, sampling brightness values, and/or sampling relative 
brightness (e.g., from top to bottom patches in the frame) or gradients from center to edges. 

5. Assemble three histograms of flesh models from each of our three lighting conditions. 
a) Use the first histograms from indoor, outdoor shaded, and outdoor sunlit as your models. Test 

each one of these against the second images in each respective class to see how well the flesh-
matching score works. Report matches. 

b) Use the “scene detector” you devised in part a, to create a “switching histogram” model. First use 
the scene detector to determine which histogram model to use: indoor, outdoor shaded, or outdoor 
sunlit. Then use the corresponding flesh model to accept or reject the second flesh patch under all 
three conditions. How well does this switching model work? 

6. Create a flesh-region interest (or “attention”) detector. 
a) Just indoors for now, use several samples of hand and face flesh to create an RGB histogram. 
b) Use cv::calcBackProject() to find areas of flesh. 

c) Use cv::erode() from Chapter 5 to clean up noise and then cv::floodFill() (from the 
same chapter) to find large areas of flesh in an image. These are your “attention” regions. 

7. Try some hand-gesture recognition. Photograph a hand about two feet from the camera; create some 
(nonmoving) hand gestures: thumb up, thumb left, and thumb right. 
a) Using your attention detector from exercise 6, take image gradients in the area of detected flesh 

around the hand and create a histogram model for each of the three gestures. Also create a 
histogram of the face (if there’s a face in the image) so that you’ll have a (nongesture) model of 
that large flesh region. You might also take histograms of some similar but nongesture hand 
positions, just so they won’t be confused with the actual gestures. 



b) Test for recognition using a webcam: use the flesh interest regions to find “potential hands”; take 
gradients in each flesh region; use histogram matching above a threshold to detect the gesture. If 
two models are above threshold, take the better match as the winner. 

c) Move your hand one to two feet further back and see if the gradient histogram can still recognize 
the gestures. Report. 

8. Repeat exercise 7 but with EMD for the matching. What happens to EMD as you move your hand 
back? 

9. With the same images as before but with captured image patches instead of histograms of the flesh 
around the hand, use cv::matchTemplate() instead of histogram matching. What happens to 
template matching when you move your hand backwards so that its size is smaller in the image? 

10. With your hands facing a camera, take the gradient direction of several pictures of your open hand, a 
closed fist and a “thumbs up” gesture. Collect histograms of the gradient direction in a window around 
your hands. This becomes your trained “model”.  Now run live and use the various histogram matching 
techniques to see how well they can recognize your gestures. 



8 
Contours 

Although algorithms like the Canny edge detector can be used to find the edge pixels that separate different 
segments in an image, they do not tell you anything about those edges as entities in themselves. The next 
step is to be able to assemble those edge pixels into contours. By now you have probably come to expect 
that there is a convenient function in OpenCV that will do exactly this for you, and indeed there is: 
cv::findContours(). We will start out this chapter with some basics that we will need in order to use 
this function.. With those concepts in hand, we will get into contour finding in some detail. Thereafter, we 
will move on to the many things we can do with contours after they’ve been computed. 

Contour Finding 
A contour is a list of points that represent, in one way or another, a curve in an image. This representation 
can be different depending on the circumstance at hand. There are many ways to represent a curve. 
Contours are represented in OpenCV by STL style vector<> template objects in which every entry in the 
vector encodes information about the location of the next point on the curve. It should be noted that though 
a sequence of 2d points (vector<cv::Point> or vector<cv::Point2f>) is the most common 
representation, there are other ways to represent contours as well. One example of such a construct is the 
Freeman Chain, in which each point is represented as a particular “step” in a given direction from the prior 
point. We will get into such variations in more detail as we encounter them. For now, the important thing to 
know is that contours are almost always STL vectors, but are not necessarily limited to the obvious vectors 
of cv::Point objects. 

The function cv::findContours() computes contours from binary images. It can take images created 
by cv::Canny(), which have edge pixels in them, or images created by functions like 
cv::threshold() or cv::adaptiveThreshold(), in which the edges are implicit as boundaries 
between positive and negative regions.1 

Contour Hierarchies 
Before getting down to exactly how to extract contours, it is worth taking a moment to understand exactly 
what a contour is, and how groups of contours can be related to one another. Of particular interest is the 
concept of a contour tree, which is important for understanding one of the most useful ways 

                                                           
1 There are some subtle differences between passing edge images and binary images to cvFindContours(); we 
will discuss those shortly. 



cv::findContours() (retrieval methods derive from Suzuki [Suzuki85]) can communicate its results 
to us. 

Take a moment to look at 

 

Figure 8-1, which depicts the functionality of cv::findContours(). The upper part of the figure 
shows a test image containing a number of “colored” (here, gray) regions (labeled A through E) on a light 
background. The lower portion of the figure depicts the same image along with the contours that will be 
located by cv::findContours(). Those contours are labeled cX or hX, where “c” stands for 
“contour,” “h” stands for “hole,” and “X” is some number. OpenCV and cv::findContours() 
distinguishes between the exterior boundaries of non-zero regions which are labeled contours and the 
interior

 
 boundaries which are labeled holes.  
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The concept of containment here is important in many applications. For this reason, OpenCV can be asked 
that encodes the containment relationships in its 

The
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entr
part
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mponent in the four-element vector representation of each node in a contour 

igure 8-1: A test image (left side) passed to cv::findContours(). There are five colored region
(labeled A, B, C, D, and E), but contours are formed from both the exterior and interior edges of each 
lored region. The result is nine contours in total. Each contour is identified and appears in an output lis
e contours argument—upper-right). Optionally, a hierarchical representation can also be generat
e hierarchy argument—lower-right). In the graph shown (corresponding to the constructed conto

tree), each node is a contour, the links in the graph are labeled with the index in the four-element data
structure associated with each node in the hierarchy array. 

to assemble the found contours into a contour tree2 
structure. A contour tree corresponding to this test image would have the contour called c0 at the root node, 
with the holes h00 and h01 as its children. Those would in turn have as children the contours that they 
directly contain, and so on. 

re are many possible ways to represent such a tree. OpenCV represents such trees with arrays (typically 
ntry  or ectors) in which each entry in the array represents one particular contour. In that array, each e

 contains a set of four integers (typically represented as an element of type cv::Vec4i, just like 
y in a four-channel array). Each of the four components indicates another node in the hierarchy with a 

hat element of icular relationship to the current node. Where a particular relationship does not exist, t
ata structure is set to -1 (e.g., element 3, the parent id for the root node would have value -1 bec
s no pa

Table 8-1: Meaning of each co
hierarchy list 

Index Meaning 

                                                           
2 Contour trees first appeared in Reeb [Reeb46] and were further developed by [Bajaj97], [Kreveld97], [Pascucci02], 
and [Carr04]. 



0 Next Contour (same level) 

1 Previous Contour (same level) 

2 First Child (next level down) 

3 Parent (next level up) 

By way of example, consider the contours in 

 

Figure 8-1. The five colored regions result in a total of nine total contours (counting both the exterior and 
ch region). If a contour tree is constructed from these nine contours, each node will the interior edges of ea



have as children those contours that are contained within it. The resulting tree is visualized in the lower-

right of  

re 8-1, For each node, those links that are valid are also visualized, and the links are labeled with the 
x associated with that link in the four-element data structure for that node (Error! Reference source 
found.). 

Figu
inde
not 

It is interesting to note the c sequences of using cv::findContouon rs() on an image 
generated by cv::canny() or a similar edge detector relative to what happens with a 
binary image such as the test image shown in Figure 8-1. Deep down, 
cv::findContours() does not really know anything about edge images. This means 
that, to cv::findContours(), an “edge” is just a very thin “on” area. As a result, for 
every exterior contour, there will be a hole contour that almost exactly coincides with it. 
This hole is actually just inside of the exterior boundary. You can think of it as the on-to-
off transition that marks the interior edge of the edge. 

Finding Contours with    cv::findContours()

trees in hand, we can look at the cv::findContours() function itself and With this concept of contour 
see exactly how we tell it what we want and how we interpret its response: 

void cv::findContours( 
  cv::InputOutputArray    image,               // Input “binary” 8-bit single channel 
  cv::OutputArrayOfArrays contours,            // Vector of vectors or points 
  cv::OutputArray         hierarchy,           // (optional) topology information 
  int                     mode,                // Contour retrieval mode (Figure 8-2) 
  int                     method,              // Approximation method 
  cv::Point               offset = cv::Point() // (optional) Offset every point 
); 
 
void cv::findContours( 
  cv::InputOutputArray    image,               // Input “binary” 8-bit single channel 
  cv::OutputArrayOfArrays contours,            // Vector of vectors or points 



  int                     mode,                // Contour retrieval mode (Figure 8-2) 
  int                     method,              // Approximation method 
  cv::Point               offset = cv::Point() // (optional) Offset every point 
); 

The  be 
inte ted as binary (i.e., as if all nonzero pixels were equivalent to one another). When it runs, 

g one of the two forms of 

 fir
rpre

st argument is the input image; this image should be an 8-bit single-channel image and will

cv::findContours() will actually use this image as scratch space for computation, so if you need that 
image for anything later, you should make a copy and pass that to cv::findContours(). The second 
argument is an array of arrays, which in most practical cases will mean an STL vector of STL vectors. This 
will be filled with the list of contours found (i.e., it will be a vector of contours, where contours[i] will 
be a specific contour and thus contours[i][j] would refer to a specific vertex in contour[i]). 

The next argument  can be either supplied or not supplied (by usinhierarchy
the function shown above). If supplied, hierarchy is the output that describes the tree structure of the 
contours. The output hierarchy will be an array (again typically an STL vector) with one entry for each 
contour in contours. Each such entry will contain an array of four elements, each indicating the node to 
which a particular link from the current node is connected (Error! Reference source not found.).  

 



Figure 8-2: The way in which the tree node variables are used to “hook up” all of the contours located by 
findContours(). The contour nodes are the same as in cv::

 

Figure 8-1. 

The  argument tells OpenCV how you would like the contours extracted. There are four possible 
TERNAL, cv::RETR_LIST, cv::RETR_CCOMP, and 

. Each mode is described below: 

mode
values for mode: cv::RETR_EX
cv::RETR_TREE



cv:
e extreme outer contours. In 

:RETR_EXTERNAL 
Retrieves only th

 

Figure 8-1, there is only one exterior contour, so 

 

Figure 8-2 indicates that the first contour points to that outermost sequence and that there are no 
further connections. 



cv::RETR_LIST 
Retrieves all the contours and puts them in the list. 

 

Figure 8-2 depicts the “hierarchy” resulting from the test image in 

 



Figure 8-1. In this case, nine contours are found and they are all connected to one another by 
hierarchy[i][0] and hierarchy[i][1] (hierarchy[i][2] and hierarchy[i][3] 
are not used here).3 

cv::RETR_CCOMP 
Retrieves all the contours and organizes them into a two-level hierarchy, where the top-level boundaries are 

external boundaries of the components and the second-level boundaries are boundaries of the holes. 

Referring to  

Figure 8-2, we can see that there are five exterior boundaries, of which three contain holes. The holes 
are connected to their corresponding exterior boundaries by hierarchy[i][2] and 
hierarchy[i][3]. The outermost boundary c0 contains two holes. Because hierarchy[i][2] 
can contain only one value, the node can only have one child. All of the holes inside of c0 are 
connected to one another by the hierarchy[i][0] and hierarchy[i][1] pointers. 

                                                           
3 Yo  the OpenCV 
librar  which the contours return value was not automatically organized into a list as the vector<> type now 
implies. 

u are
y in

 not very likely to use this option. This organization primarily made sense in previous versions of



cv::RETR_TREE 
Retrieves all the contours and reconstructs the full hierarchy of nested contours. In our example 

(  

Figure 8-1 and  

Figure 8-2), this means that the root node is the outermost contour c0. Below c0 is the hole h00, which 
is connected to the other hole h01 at the same level. Each of those holes in turn has children (the 
contours c000 and c010, respectively), which are connected to their parents by vertical links. Thi

h become the leaf nodes in the tree. 
s 

ontours in the image, whic

The next five values pertain to the method (i.e., how the contours are represented):  

continues down to the most-interior c



cv:

ce a large number 
point. No attempt is made to 

ny 
ction of the number of points returned. The extreme 

that is oriented along the x-y axes. In this case, only four 

AIN_APPROX_TC89_L1 or cv::CHAIN_APPROX_TC89_KCOS 

 returned. 
T-C algorithm requires no additional parameters to run. 

t. The offset argument is optional. If 

void  cv::drawContours( 

:CHAIN_APPROX_NONE 

Translates all the points from the contour code into points. This operation
oints, as each point will be one of the eight neighbors of the previous 

 will produ
of p
reduce the number of vertices returned. 

cv::CHAIN_APPROX_SIMPLE 

Compresses horizontal, vertical, and diagonal segments, leaving only their ending points. For ma
special cases, this can result in a substantial redu
example would be a rectangle (of any size) 
points would be returned. 

cv::CH

Applies one of the flavors of the Teh-Chin chain approximation algorithm.4 The Teh-Chin algorithm is 
a more sophisticated (and more compute-intensive) method for reducing the number of points
The 

The final argument to cv::findContours() is offse
present, every point in the returned contour will be shifted by this amount. This is particularly useful when 
either the contours are extracted from a region of interest, but you would like them represented in the parent 
image’s coordinate system, or the reverse case, where you are extracting the contours in the coordinates of 
a larger image, but would like to express them relative to some subregion of the image.  

Drawing Contours 
One of the most straightforward things you might want to do with a list of contours, once you have it, is to 
draw the contours on the screen. For this we have cv::drawContours(): 

  cv::InputOutputArray   image,                 // Will draw on input image 
  cv::InputArrayOfArrays contours,              // Vector of vectors or points 
  int                    contourIdx,            // Contour to draw (-1 is “all”) 
  const cv::Scalar&      color,                 // Color for contours 
  int                    thickness = 1,         // Thickness for contour lines 
  int                    lineType  = 8,         // Connectedness (‘4’ or ‘8’) 
  cv::InputArray         hierarchy = noArray(), // optional (from findContours) 
  int                    maxLevel  = INT_MAX,   // Max level in hierarchy to descend 
  cv::Point              offset = cv::Point()   // (optional) Offset every point 
) 

The first argument image is simple: it is the image on which to draw the contours. The next argument, 
contour, is the list of contours to be drawn. This is in the same form as the contour output of 
cv::findContours(); it is a list of lists of points. The contourIdx argument can be used to select 
either a single contour to draw or to tell cv::drawContours() to draw all of the contours on the list 
provid n. If 
contourIdx 

e corresponding arguments in other 

                                                          

ed in the contours argument. If contourIdx is a positive number, all contours will be draw
is negative (usually this is just set to -1), all contours are drawn. 

The color, thickness, and lineType arguments are similar to th
the color argument draw functions such as cv::Line(). As usual, is a four-component cv::Scalar, 

the thickness is an integer indicating the thickness of the lines to be drawn in pixels, and the lineType 
may be either 4 or 8 indicating whether the line is to be drawn as a 4-connected (ugly), 8-connected (not 
too ugly), or cv::AA (pretty) line. 

 

eper details of the algorithm. 

4 If you are interested in the details of how this algorithm works, you can consult Teh, C.H. and Chin, R.T., On the 
Detection of Dominant Points on Digital Curve. PAMI 11 8, pp. 859–872 (1989). Because the algorithm requires no 
tuning parameters, however, you can get quite far without knowing the de



The hierarchy argument corresponds to the hierarchy output from cv::findContours(). The 
hierarchy works with the maxLevel argument. The latter limits the depth in the hierarchy to which 

contours will be drawn in your image. Setting maxLev  indicates that the highest 
level) in the hierarchy should be drawn; higher numbers indicate that numbe of layers down from the 

highest level which should be included. Looking at 

el to zero  only “level 0” (
r 

 

Figure 8-2, you can see that this is useful for contour trees; it is also potentially useful for connected 
component MP) in case you would like only to visualize exterior contours (but not 
“holes”—in

Finally, we ca  to the draw routine so that the contour will be drawn elsewhere than at the 
absolute co t was defined. This feature is par cularly useful when he contour has 
already been converted to center-of-mass or other local coordinates. offset is particularly helpful in the 
case in whi indContours() one or more times in different im regions 
(ROIs) but e results within the original lar e image. Conversely, we could use 
offset if we’d extracted a contour from a large image and then wanted to form a small mask for this 
contour. 

A Contour Example 
 an image in it. A trackbar 

sets nd the contours in the thresholded image are drawn. The image is updated 
whe

ever the 

s (cv::RETR_CCO
terior contours). 

n give an offset
ordinates by which i ti  t

ch you have used cv::f
now want to display all th

age sub-
g

Example 8-1 is drawn from the OpenCV package. Here we create a window with
a simple threshold, a

never the trackbar is adjusted. 

Example 8-1: Finding contours based on a trackbar’s location; the contours are updated when
trackbar is moved 

#include <opencv2/opencv.hpp> 
#include <iostream> 
 
using namespace std; 
 
cv::Mat g_gray, g_binary; 
int g_thresh = 100; 
 
void on_trackbar(int, void*) { 
  cv::threshold( g_gray, g_binary, g_thresh, 255, cv::THRESH_BINARY ); 
  vector< vector< cv::Point> > contours; 
  cv::findContours( 
    g_binary,  



    contours,  
    cv::noArray(), 
    cv::RETR_LIST,  
    cv::CHAIN_APPROX_SIMPLE 
  ); 
  g_binary = cv alar::all(0); ::Sc
     
  cv::drawContours( g_binary, contours, -1, cv::Scalar::all(255)); 
  cv::imshow( "Contours", g_binary ); 
} 
 
int main( int argc, char** argv ) 
{ 
  if( argc != 2 || ( g_gray = cv::imread(argv[1], 0)).empty() ) { 
 cout << "Find threshold dependent contours\nUsage: ./ch8_ex8_1 fruits.jpg"  
      << endl; 
    return -1; 
  } 
  cv::namedWindow( "Contours", 1 ); 
  cv::createTrackbar(  
    "Threshold",  
    "Contours",  
    &g_thresh,  
    255,  
    on_trackbar 
  ); 
  on_trackbar(0, 0); 
  cv::waitKey(); 
  return 0; 
} 

Here, everything of interest to us is happening inside of the function on_trackbar(). The image 
g_gray is thresholded such that only those pixels brighter than g_thresh remain nzero. The 
cv::findContours() function is then called on this thresholded image.  is 
then ca

In th  
good
(cv
you d 
by  

 no
cvDrawContours()

lled and the contours are drawn (in white) onto the grayscale image.  

Another Contour Example 
is example, we find contours on an input image and then proceed to draw them one by one. This is a
 example to tinker with on your o n to explore the effects of changing either the contour finding modw e 

If ::RETR_LIST in the code) or the max_depth that is used to draw the contours (0 in the code). 
 set max_depth to a larger number, notice that the example code steps through the contours returne

:findContours() by means of hierarchy[i][1]. Thus, for some topologiescv:
(cv::RETR_TREE, cv::RETR_CCOMP, etc.), you may see the same contour more than once as you 
step through. See Example 8-2. 

Example 8-2: Finding and drawing contours on an input image 

#include <opencv2/opencv.hpp> 
#include <algorithm> 
#include <iostream> 
 
using namespace std; 
 
struct AreaCmp 
{ 
    AreaCmp(const vector<float>& _areas) : areas(&_areas) {} 
    bool operator()(int a, int b) const { return (*areas)[a] > (*areas)[b]; } 
    const vector<float>* areas; 
}; 
 



 
int main(int argc, char* argv[]) { 
 
  cv::Mat img, img_edge, img_color; 
   
  // load image or show help if no image was provided 
  if( argc != 2 || (img = cv::imread( argv[1], cv::LOAD_IMAGE_GRAYSCALE )).empty() ){ 
      cout << "\nExample 8_2 Drawing Contours\nCall is:\n./ch8_ex8_2 image\n\n"; 
      return -1; 
  } 
   
  cv::threshold(img, img_edge, 128, 255, cv::THRESH_BINARY); 
  cv::imshow("Image after threshold", img_edge); 
  vector< vector< cv::Point > > contours; 
  vector< cv::Vec4i > hierar ;   chy
     
  cv::findContours( 
    img_edge,  
    contours,  
    hierarchy,  
    cv::RETR_LIST,  
    cv::CHAIN_APPROX_SIMPLE 
  ); 
  cout << "\n\nHit any key to draw the next contour, ESC to quit\n\n"; 
  cout << "Total Contours Detected: " << contours.size() << endl; 
  vector<int> sortIdx(contours.size());   
  vector<float> areas(contours.size()); 
  for( int n = 0; n < (int) ntours.size(); n++ ) { co
      sortIdx[n] = n; 
      areas[n] = contourArea(contours[n], false); 
  } 
  // sort contours so that the largest contours go first 
  std::sort( sortIdx.begin(), sortIdx.end(), AreaCmp(areas )); 
     
  for( int n = 0; n < (int)sortIdx.size(); n++ ) { 
     int idx = sortIdx[n];  
     cv::cvtColor( img, img_ olor, cv::GRAY2BGR ); c
     cv::drawContours(img_color, contours, idx, 
                   cv::Scalar(0,0,255), 2, 8, hierarchy, 
                   0 // Try different values of max_level, and see what happens 
                   );  
     cout << "Contour #" << idx << ": area=" << areas[idx] << 
        ", nvertices=" << contours[idx].size() << endl; 
     cv::imshow(argv[0], img_color); 
     int k; 
     if((k = cv::waitKey()&255) == 27) 
       break; 
  } 
  cout << "Finished all contours\n"; 
  return 0; 
} 

More to Do with Contours 
When analyzing an image, there are many different things we might want to do with contours. After all, 
most contours are—or are candidates to be—things that we are interested in identifying or manipulating. 
The various relevant tasks include characterizing the contours in various ways, simplifying or 
approximating them, matching them to templates, and so on. 

In this section, we will examine some of these common tasks and visit the various functions built into 
OpenCV that will either do these things for us or at least make it easier for us to perform our own tasks. 



Polygon Approximations 

cv::approxPolyDP()

The routine cv::approxPolyDP() is an implementation of one of these two algorithms5: 

void cv::approxPolyDP( 

If we are drawing a contour or are engaged in shape analysis, it is common to approximate a contour 
representing a polygon with another contour having fewer vertices. There are many different ways to do 
this; OpenCV offers implementations of two of them.  

Polygon Approximation with   

  cv::InputArray  curve,    // Array or vector of 2-dimensional points 
  cv::OutputArray approxCurve, // Result, type is same as ‘curve’ 
  double          epsilo      // Max distance from original ‘curve’ to ‘approxCurve’ n,
  bool            closed      // If true, assume link from last to first vertex   
); 

The cv::approxPolyDP() function acts on one poly at a time, which is given in the input curve. 
The output of  will be placed in the  output array. As usual, 

resented
arrays of size N-by-1 (but having two channels). Whicheve representation you choose, the input and 
output arrays used for curve and approxCurve should be of the same type. 

The parameter epsilon is the accuracy of approximation you require. The meaning of the epsilon 
inal lygon

closed ot th
indicated by rve uld be considered a closed polygon. If set to true, the curve will be assumed to be 

The Douglas-Peucker Algorithm Explained 
In order to help understand how to set the epsilon parameter, as well as to better understand the output 
of cv::approxPolyDP(), it is worth taking a moment to understand exactly how the algorithm works. 

gon 
cv:: approxPolyDP() approxCurve

these polygons can be rep  as either STL vectors of cv::Point objects or as OpenCV cv::Mat 
r 

parameter is that this is the largest deviation you will allow between the orig po  and the final 
approximated polygon. , the last argument, indicates whether or n e sequence of points 

 cu sho
closed (i.e., that the last point is to be considered connected to the first point). 

In  

                                                           
5 For aficionados, the method we are discussing here is the Douglas-Peucker (DP) approximation [Douglas73]. Other 
popular methods are the Rosenfeld-Johnson [Rosenfeld73] and Teh-Chin [Teh89] algorithms. Of those two, the Teh-
Chin algorithm is not available in OpenCV as a reduction method, but is available at the time of the extraction of the 
polygon (see “Finding Contours with cv::findContours()”). 



Figure 8-3, starting with a contour (panel b), the algorithm begins by picking two extremal points and 
connecting them with a line (panel c). Then the original polygon is searched to find the point farthest from 
the line just drawn, and that point is added to the approximation. 

The process is iterated (panel d), adding the next most distant point to the accumulated approximation, until 
all of the points are less than the distance indicated by the precision parameter (panel f). This means that 
good arameter are some fraction of the contour’s length, or of the length of its bounding 
box, of the contour’s overall size. 

 candidates for the p
r measure  or a simila

 

Figure 8-3: Visualization of the DP algorithm used by cv::approxPolyDP(): the original image (a) is 
approximated by a contour (b) and then, starting from the first two maximally separated vertices (c), the 

vertices are iteratively selected from that contour (d–f) 

s we will discuss work equally well for any collection of 
urve between those points). We will mention along 

the way which methods make sense only for curves (such as computing arc length) and which make sense 
ing 

additional 

Geometry and Summary Characteristics 
Another task that one often faces with contours is computing their various summary characteristics. These 
might include length or some other form of size measure of the overall contour. Other useful characteristics 
are the contour moments, which can be used to summarize the gross shape characteristics of a contour 
discussed in the next section. Some of the method
points (i.e., even those that do not imply a piecewise c

for any general set of points (such as bound boxes). 

Length using cv::arcLength() 

The subroutine cv::arcLength() will take a contour and return its length.  

double  cv::arcLength( 
  cv::InputArray  points,    // Array or vector of 2-dimensional points 
  bool            closed       // If true, assume link from last to first vertex 
); 

The first argument of cv::arcLength() is the contour itself, whose form may be any of the usual 
representations of a curve (i.e., STL vector of points or array of two-channel elements). The second 

points 
closed argument indicates whether the contour should be treated as closed. If the contour is considered 
closed, the distance from the last point in to the first contributes to the overall arc length.  

cv::arcLength() is an example of a case where the points argument is implicitly assumed to represent 
a curve, and so is not particularly meaningful for a general set of points. 



Upright Bounding Box with cv::boundingRect() 

Of course, the length and area are simple characterizations of a contour. One of the simplest ways to 
characterize a contour is to report a bounding box for that contour. The simplest version of that would be to 
simply compute the upright bounding rectangle. This is what cv::boundingRect() does for us: 

cv::Rect cv::boundingRect(     // Return upright rectangle bounding the points 
  cv::InputArray  points,    // Array or vector of 2-dimensional points 
); 

The cv::boundingRect() function just takes one argument, which is the curve whose bounding box 
you would like computed. The function returns a v f type cv::Rect, which is the bounding box you 
are looking for. 

The bounding box computation is meaningful for any set of points, whether or not those p s r sent a 
int

A Minimum Area Rectangle with cv::minAreaRect() 
e b g r

alue o

oint epre
curve or are just some arbitrary constellation of po s. 

One problem with th oundin ectangle from cv::boundingRect() is that it returns a cv::Rect 
and so can only represent a rectangle whose sides are oriented horizontally and vertically. In contrast, the 

routine cv::minAreaRect() returns the minimal rectangle that will bound your contour, and this 
rectangle may be inclined relative to the vertical; see 

 

Figure 8-4. The arguments are otherwise similar to cv::boundingRect(). The OpenCV data type 
cv::RotatedRect is just what is needed to represent such a rectangle. Recall that it has the following 
definition: 

class cv:: tatedRect { Ro
  cv::Point2f center;      // Exact center point (around which to rotate) 
  cv::Size2f  size;        // Size of rectangle (centered on ‘center’) 
  float       angle;       // degrees 
}; 

So, in order to get a little tighter fit, you can call cv::minAreaRect(): 

cv::RotatedRect cv::minAreaRect( // Return rectangle bounding the points 
  cv::InputArray  points,      // Array or vector of 2-dimensional points 
); 

As usual, points can be any of the standard representations for a sequence of points, and is equally 
meaningful for curves as well as arbitrary point sets. 



 

Figure 8-4: cv::Rect can represent only upright rectangles, but cv::Box2D can handle rectangles of 
any inclination 

nclosing Circle Using cv::minEnclosingCircle() 

Next, we have cv::minEnclosingCircle().6 This routine works pretty much he same way as the 
bounding box routines, with the exception that there is no convenient data type for the return value. As a 
result, you must pass in references to variables you would like set by cv::minEnclosingCircle(): 

v::minEnclosingCircle( 

A Minimal E

 t

void  c
   cv::  2InputArray points,      // Array or vector of -dimensional points 
   cv::Point2f&   center,        // Result location of circle center 
   float&         radius         // Result radius of circle 
); 

The input curve is just the usual sequence of points representation. The center and radius variables are 
variables you will have to allocate and which will be set for you by cv::minEnclosingCircle(). 

The cv::minEnclosingCircle function is equally meaningful for curves as for general point sets. 

Fitting an Ellipse with cv::fitEllipse() 

As with the minimal enclosing circle, OpenCV also provides a method for fitting an ellipse to a set of 
point

cv::RotatedRect cv::fitEllipse(  // ngle bounding the ellipse (Figure 8-5)  

s: 
 Return recta

 oints  cv::InputArray  points      // Array or vector of 2-dimensional p
); 

cv::fitE e() tak st a po nt.  

At first g it m ppear cv:: lips s just elliptical analog of 
cv::minEnclosingCircle(). e is, however sub re n 
cv::minEnclosingCircle() an :fitE se(),  is that rmer si omputes 
the smalles  that c ely enc e giv ts, wh he latt  a fittin tion and 
re s  th est ati poi m t no s in the 
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6 For more information on the inner workings of these fitting techniques, see Fitzgibbon and Fisher [Fitzgibbon95] and 
Zhang [Zhang96]. 



contour will even be enclosed in the ellipse returned by cv::fitEllipse().7 The fitting is done using 
a least-squares fitness function. 

The results of the fit are returned in a cv::RotatedRect structure. The indicated box exactly encloses 

the ellipse (  

Figure 8-5). 

 

Figure 8-5: Ten-point contour with the minimal enclosing circle superimposed (a) and wi
b). A “rotated rectangle” is used by OpenCV to represent that elli

th the best fitting 
ellipsoid ( psoid (c). 

Finding the B r Contour with 

In many cases,  set of points which you believe is approximately a straight 
line—or, more  be a noisy sample whose underlying origin is a straight 
line. In such a situation, the problem is to determine what line would be the best explanation for the points 
you observe. In fact, there are many reasons why one might want to find best line fit, and as a result, there 
are many variations of how to actually do that fitting. 

This fitting is d , which is defined to b  

est Line Fit to You cv::fitLine() 

 your “contour” will actually be a
 accurately, which you believe to

 a 

e: one by minimizing a cost function

, where  

Here  is the set of parameters that define the line,  is the ith point in the contour, and  is the distance 

betw n that pee oint and the line defined by . Thus e function, it is th   that fundamen distinguishes 

                                                        

tally 

   
7 th ciently small (or certain other degenerate cases—including all of the points 

), points to lie on the ellipse. In general, however, some points will be inside, 
some will be outside, and few if any will actually lie on the ellipse itself. 

 Of course, if e number of points is suffi
being collinear  it is possible for all of the 



the different available fitting methods. In the case of , the cost function will become the 
familiar least-squares fitting procedure that is probably st readers from elementary statistics. 
The more complex distan useful when m methods are needed (i.e., fitting 
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 methods that handle o tlier d ta points more gracefully). Table 8-2 shows the available forms f  and 
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the associated OpenCV enum values used by cv::fitLine().  

Table 8-2: Available distance metrics for the distType parameter in cv::fitLine() 

distType Distance Metric   

Least-squares 
method  

cv::DI

cv::DIST_L1   

cv::DIST_L12  
 

cv::DIST_FAIR   

 
cv::DIST_WELSCH  

cv::DIST_HUBER  

 

The OpenCV function cv::fitLine() has the following function prototype: 

void cv::fitLine( 
  cv::InputArray  points,      // Array  2-dimensional points  or vector of
  cv::OutputArray line,          // Vector of Vec4f (2d), or Vec6f (3d) 
  int             distType,      // Distance type (Table 8-2) 
  double          param,         // Parameter for distance metric (Table 8-2) 
  double          reps,          // Radius accuracy parameter 
  double          aeps           // Angle accuracy parameter 
); 

The argument points is mostly what you have come to expect, a representation of a set of points either
a cv::Mat array or an STL vector. One very important difference, however, between 
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and many of the other functions we are looking at in this section is that cv::fitLine() accepts both
two- and three-dimensional points. The output line is a little strange. That entry should be of type
cv::Vec4f (for a two-dimensional line), or cv::Vec6f (for a three-dimensional line) where the first 
half of the values gives the line direction and the second half a point on the line. The third argumen
distType, allows us to select the distance metric we would like to use. The possible values fo
distType are shown in Table 8-2. The argument param is used to supply a value for the parameters 
used by some of the distance metrics (these parameters appear as the variables C in Table 8-2). T
parameter can be set to 0, in which case  will auto
the selected distance metric. The parameters reps and aeps represent your required accuracy for the
origin of the fitted line (the x, y, z parts) and for the angle of the line (the vx, vy, vz parts). Typical values fo

these parameters are    for both of them. 



Finding the Convex Hull of a Contour Using cv::convexHull() 

ere are many situations in which we need to simpTh lify a polygon by finding its convex hull. The convex 
hull of a polygon or contour is the polygon which completely contains the original, is made only of 
from the original, and is everyw

points 
here convex (i.e., that the internal angle between any three sequential 

poin s less than 180 degrees). An example of a convex hull can be seen in Figure 8-6. There are many 
reasons to compute convex hulls. One particularly common reason is that testing if a point is inside of a 
convex polygon can be very fast, and it is often worthwhile to test first if a point is inside of the convex hull 
of a complicated polygon before even bothering to test if it is in the true polygon. 

ts i

 
Figure 8-6: An image (a) is converted to a contour (b). The Convex hull of that contour (c) has far fewer 

points and is a much simpler piece of geometry. 

In order to compute the convex hull of a contour, OpenCV provides the function cv::convexHull(): 

void cv::convexHull( 
  cv::InputArray  points,             // Array or vector of 2-dimensional points 
  cv::OutputArray hull,                 // Can be array of points or of (int) indices 
  bool            clockwise    = false, // if true, output points will be clocwise 
  bool            returnPoints = true   // true for points in ‘hull’, else indices 
); 

The points input to cv::convexHull() can be any of the usual representations of a contour. The 
argument hull is where the resulting convex hull will appear. For this argument, you have two options: if 
you like, you can provide the usual contour type structure and cv::convexHull() will fill that up with 
the points in the resulting convex hull. The other option is to provide not an array of points but an array of 
integers. In this case, cv::convexHull() will associate an index with each point that is to appear in the 
hull and place those indices in hull. In this case, the indexes will begin at zero and the index value i will 
refer to the point points[i]. 

The clockwise argument indicates how you would like to have cv::convexHull() express the hull 
it computes. If clockwise is set to true, then hull will be in a clockwise order, otherwise it will be in a 
counter-clockwise order. The final argument, returnPoints, is associated with the option to return 
point indices rather than point values. If points is an STL vector object, this argument is ignored, 
because the type of the vector template (int vs. cv::Point) can be used to infer what you want. If, 
however, points is a cv::Mat type array, returnPoints must be set to true if you are expecting 
point coordinates, and false if you are expecting indices. 

Geometrical Tests 
When dealing with bounding boxes and other summary representations of polygon contours, it is often 
desirable to perform such simple geometrical checks as polygon overlap or a fast overlap check between 
bounding boxes. OpenCV provides a small but handy set of routines for this sort of geometrical checking. 



Many important tests that apply to rectangles are supported through interfaces provided by those rectangle 
types. For example, the contains() method of type cv::Rect can be passed a point and it will 
determine if that point is inside the rectangle. 

Similarly, the minimal rectangle containing two rectangles can be computed with the logical “or” operator 
(e.g., rect1 | rect2), while the intersection of two rectangles can be computed with the logical “and” 
operator (e.g., rect1 & rect2). For cv::RotatedRect, we have no such functions since the result 
is mostly not a rectangle.  

For operations on general curves, however, there are library functions that can be used.  

25BTesting If a Contour Is Convex with cv::isContourConvex() 

A common thing to want to know about a contour is whether or not it is convex. There are lots of reasons to 
do this, but one of the most common reasons is that there are a lot of algorithms for working with polygons 
that either only work on convex polygons or that can be simplified dramatically for the case of convex 
polygons. To test if a polygon is convex, simply call cv::isContourConvex() and pass it your 
contour in any of the usual representations. The contour passed will always be assumed to be a closed 
polygon (i.e., a link between the last and first points in the contour is presumed to be implied): 

bool cv::isContourConvex(      // Return true if contour is convex 
  cv::InputArray  contour    // Array or vector of 2-dimensional points 
); 

Because of the nature of the implementation, cv::isContourConvex() requires that the contour 
passed to it be a simple polygon. This means that the contour must not have any self-intersections.  

26BTesting If a Point Is Inside a Polygon with cv::pointPolygonTest() 
double cv::pointPolygonTest(   // Return distance to polygon boundary (or just side) 
  cv::InputArray contour,    // Array or vector of 2-dimensional points 
  cv::Point2f    pt,           // Test point 
  bool           measureDist   // If true, return distance, otherwise, {0,+1,-1} only 
); 

This first geometry toolkit function is cv::pointPolygonTest(), which allows you to test whether a 
point is inside a polygon (indicated by the array contour). In particular, if the argument measureDist 
is set to true, then the function returns the distance to the nearest contour edge; that distance is 0 if the 
point is inside the contour and positive if the point is outside. If the measure_dist argument is false 
then the return values are simply + 1, – 1, or 0 depending on whether the point is inside, outside, or on an 
edge (or vertex), respectively. As always, the contour itself can be either an STL vector or an n-by-1 two-
channel array of points. 

2BMatching Contours and Images 
Now that we have a pretty good idea of what a contour is and of how to work with contours as objects in 
OpenCV, we would like to move to the topic of how to use them for some practical purposes. The most 
common task associated with contours is matching them in some way with one another. We may have two 
computed contours that we’d like to compare or a computed contour and some abstract template with 
which we’d like to compare our contour. We will discuss both of these cases. 

12BMoments 
One of the simplest ways to compare two contours is to compute what are called contour moments. Contour 
moments represent certain high-level characteristics of a contour, an image, or a set of points. (The entire 
discussion that follows will apply equally well to contours, images, or point sets, so for convenience we 
will just refer to these options collectively as objects.) Numerically, the moments are defined by the 
following formula: 



 

In this expression, the moment  is defined as a sum over all of the pixels in the object, in which the 

value of the pixel at point x, y is multiplied by the factor . For example, if the image is a binary image 

(i.e., one in which every pixel is either zero of one), then  is just the area of the nonzero pixels in the 
image. In the case of a contour, the result is the length of the contour,F

8
F and in the case of a point set it is just 

the number of points. After a little thought, you should be able to convince yourself that for the same binary 

image, the and moments, divided by the  moment, are the average x and y values across the 

object. The term “moments” relates to the how this term is used in statistics, and the higher order moments 
can be related to what are called the moments of a statistical distribution (i.e., area, average, variance, etc.). 
In this sense, you can think of the moments of a non-binary image as being the moments of a binary image 
in which individual pixels are individually weighted. 

27BComputing Moments with cv::moments() 

The function that computes these moments for us is 
cv::Moments cv::moments(             // Return structure contains moments 
  cv::InputArray points,             // 2-dimensional points or an “image” 
  bool           binaryImage = false // If false, interpret image values as “mass” 
) 

The first argument, points, is the contour we are interested in, and the second, binaryImage, tells 
OpenCV if the input image should be interpreted as a binary image. The points argument can be either a 
two-dimensional array (in which case it will be understood to be an image) or a set of points represented as 
an N-by-1 or 1-by-N array (with two channels) or an STL vector of cv::Point objects. In the latter cases 
(the sets of points), cv::moments will interpret these points not as a discrete set of points, but as a 
contour with those points as vertices.F

9
F The meaning of this second argument is that if true, all nonzero 

pixels will be treated as having value one (1), rather than whatever actual value is stored there. This is 
particularly useful when the image is the output of a threshold operation, but which might, for example, 
have 255 as its nonzero values. The cv::moments() function returns an instance of the cv::Moments 
object. That object is defined as follows: 

class Moments { 
public: 

                                                           
8 Mathematical purists might object that  should be not the contour’s length but rather its area. But because we are 
looking here at a contour and not a filled polygon, the length and the area are actually the same in a discrete pixel space 
(at least for the relevant distance measure in our pixel space). There are also functions for computing moments of 

IplImage images; in that case,  would actually be the area of nonzero pixels. Indeed the distinction is not entirely 
academic, however, a contour is actually represented as a set of vertex points, the formula used to compute the length 
will not give precisely the same area as would be computed by first rasterizing the contour (i.e., using 
cv::drawContours()) and then computing the area of that rasterization—though the two should converge to the 
same value in the limit of infinite resolution. 
9 In such case as you may need to handle a set of points, rather than a contour, it is most convenient to simply create an 
image containing those points. 



    double m00;                    //   zero order moment               (x1) 
    double m10, m01;               //  first order moments              (x2) 
    double m20, m11, m02;          // second order moments              (x3) 
    double m30, m21, m12, m03;     //  third order moments              (x4) 
    double mu20, mu11, mu02;       // second order central moments      (x3) 
    double mu30, mu21, mu12, mu03; //  third order central moments      (x4) 
    double nu20, nu11, nu02;       // second order Hu invariant moments (x3) 
    double nu30, nu21, nu12, nu03; //  third order Hu invariant moments (x4) 
  Moments(); 
  Moments( 
    double m00,  
    double m10, double m01,  
    double m20, double m11, double m02,  
    double m30, double m21, double m12, double m03  
  ); 
  Moments( const CvMoments& moments );  // convert v1.x struct to C++ object 
  operator CvMoments() const;           // convert C++ object to v1.x struct 
}  

A single call to cv::moments() will compute all of the moments up to third order (i.e., moments for 

which ). It will also compute what are called central moments and normalized central moments. 
We will discuss those next. 

13BMore About Moments 
The moment computation just described gives some rudimentary characteristics of a contour that can be 
used to compare two contours. However, the moments resulting from that computation are not the best 
parameters for such comparisons in most practical cases. In general, the moments we have discussed so far 
will not be the same for two otherwise identical contours which are displaced relative to one another, of 
different size, or rotated relative to one another.  

28BCentral Moments Are Invariant Under Translation 

Given a particular contour or image, the moment of that contour will clearly be the same no matter 
where that contour appears in an image. The higher order moments, however, clearly will not be. Consider 

the  moment, which we identified earlier with the average x-position of a pixel in the object. Clearly 
given two otherwise identical objects in different places, the average x-position is different. It may be less 
obvious on casual inspection, but the second order moments, which tell us something about the spread of 
the object, are also not invariant under translationF

10
F. This is not particularly convenient, as we would 

certainly like (in most cases) to be able to use these moments to compare an object that might appear 
anywhere in an image to a reference object that appeared somewhere (probably somewhere else) in some 
reference image. 

The solution to this is to compute what are called central moments, which are usually denoted and 
defined by the following relation: 

 
where: 

                                                           
10 For those who are not into this sort of math jargon, the phrase “invariant under translation” means that some quantity 
computed for some object is unchanged if that entire object is moved (i.e., “translated”) from one place to another in 
the image. The phrase “invariant under rotation” similarly means that the quantity being computed is unchanged of the 
object is rotated in the image. 



, and  

Of course, it should be immediately clear that =  (because the terms involving p and q vanish 

anyhow), and that the  and  central moments are both equal to zero as well. The higher order 
moments are thus the same as the non-central moments but measured with respect to the “center of mass” 
of (or in the coordinates of the center of mass of) the object as a whole. Because these measurements are 
relative to this center, they do not change if the object appears in any arbitrary location in the image. 

You will notice that there are no elements mu00, mu10, or mu01 in the object 
cv::Moments. This is simply because these values are “trivial” (i.e., mu00=m00, and 
mu10=mu01=0). The same is true for the normalized central moments (except that 
nu00=1, while nu10 and nu01 are both zero). For this reason they are not included in 
the structure, as they would just waste memory storing redundant information. 

29BNormalized Central Moments Are Also Invariant Under Scaling 

Just as the central moments allow for us to compare two different objects that are in different locations in 
our image, it is also often important to be able to compare two different objects that are the same except for 
being different sizes. (This sometimes happens because we are looking for an object of a type that appears 
in nature of different sizes—e.g., bears—but more often it is simply because we do not necessarily know 
how far the object will be from the imager that generated our image in the first place.) 

Just as the central moments are defined based on the original moments by subtracting out the average to 
achieve translational invariance, the normalized central moments achieve scale invariance by factoring out 
the overall size of the object. The formula for the normalized central moments is the following: 

 
This marginally intimidating formula just says that the normalized central moments are equal to the central 
moments up to a normalization factor that is itself just some power of the area of the object (with that 
power being greater for higher order moments). 

There is no specific function for computing normalized moments in OpenCV, as they are computed 
automatically by cv::Moments() when the standard and central moments are computed. 

30BHu Invariant Moments are Invariant Under Rotation 

Finally, the Hu invariant moments are linear combinations of the normalized central moments. The idea 
here is that, by combining the different normalized central moments, it is possible to create functions 
representing different aspects of the image in a way that is invariant to scale, rotation, and (for all but the 

one called h1) reflection. 

For the sake of completeness, we show here the actual definitions of the Hu moments: 
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Looking at X  

Figure 8-7X and XTable 8-3X, we can gain a sense of how the Hu moments behave. Observe first that the 
moments tend to be smaller as we move to higher orders. This should be no surprise in that, by their 
definition, higher Hu moments have more powers of various normalized factors. Since each of those factors 
is less than 1, the products of more and more of them will tend to be smaller numbers. 

 

Figure 8-7: Images of five simple characters; looking at their Hu moments yields some intuition concerning 
their behavior. 

Table 8-3: Values of the Hu moments for the five simple characters shown in 

X  

Figure 8-7X.       

 

h1  h2  h3  h4  h5  h6  h7 

A 2.837e–1 1.961e–3 1.484e–2 2.265e–4 –4.152e–7 1.003e–5 –7.941e–9 

I 4.578e–1 1.820e–1 0.000 0.000 0.000 0.000 0.000 

O 3.791e–1 2.623e–4 4.501e–7 5.858e–7 1.529e–13 7.775e–9 –2.591e–13 

M 2.465e–1 4.775e–4 7.263e–5 2.617e–6 –3.607e–11 –5.718e–8 –7.218e–24 

F 3.186e–1 2.914e–2 9.397e–3 8.221e–4 3.872e–8 2.019e–5 2.285e–6 



Other factors of particular interest are that the “I”, which is symmetric under 180 degree rotations and 
reflection, has a value of exactly 0 for h3 through h7 and that the “O,” which has similar symmetries, has 
all nonzero moments. We leave it to the reader to look at the figures, compare the various moments, and 
build a basic intuition for what those moments represent. 

31BComputing Hu Invariant Moments with cv::HuMoments()  

While the other moments were all computed with the same function cv::moments(), the Hu invariant 
moments are computed with a second function that takes the cv::Moments object you got from 
cv::moments() and returns a list of numbers for the seven invariant moments:  

void cv::HuMoments( 
  const cv::Moments& moments, // Input is result from cv::moments() function 
  double*            hu       // Return is C-style array of 7 Hu moments 
); 

The function cv::HuMoments() expects a cv::Moments object and a pointer to a C-style array you 
should have already allocated with room for the seven invariant moments. 

14BMatching and Hu Moments 
double  cv::MatchShapes( 
  cv::InputArray object1,      // First array of 2-d points or cv:U8C1 image 
  cv::InputArray object2,      // Second array of 2-d points or cv:U8C1 image   
  int            method,       // Comparison method (XTable 8-4X) 
  double         parameter = 0 // Method-specific parameter (for later extensions) 
); 

Naturally, with Hu moments we would like to compare two objects and determine whether they are similar. 
Of course, there are many possible definitions of “similar.” To make this process somewhat easier, the 
OpenCV function cv::matchShapes() allows us to simply provide two objects and have their 
moments computed and compared according to a criterion that we provide. 

These objects can be either grayscale images or contours. In either case, cv::matchShapes() will 
compute the moments for you before proceeding with the comparison. The method used in 
cv::matchShapes() is one of the three listed in XTable 8-4X. 

Table 8-4: Matching methods used by cv::matchShapes() 

Value of method cv::matchShapes() return value 

cv::CONTOURS_MATCH_I1 
 

cv::CONTOURS_MATCH_I2 
 

 

cv::CONTOURS_MATCH_I3 
 

 

In the table,  and are defined as: 



 

 

In these expressions,  and  are the Hu invariant moments of images A and B, respectively. 

Each of the three values defined in XTable 8-4X has a different meaning in terms of how the comparison 
metric is computed. This metric determines the value ultimately returned by cv::matchShapes(). The 
final parameter argument is not currently used, so we can safely leave it at the default value of 0 (it is 
there for future comparison metrics that may require an additional user provided parameter). 

3BSummary 
In this chapter we learned about contours, sequences of points in two dimensions.  These sequences could 
be represented as STL vectors of two-dimensional point objects (e.g., cv::Vec2f), as N-by-1 dual 
channel arrays, or as N-by-2 single channel arrays.  Such sequences can be used to represent contours in in 
image plane, and there are many features built into the library to help us construct and manipulate these 
contours. 

Contours are generally useful for representing spatial partitions of an image.  In this context, the OpenCV 
library provides us with tools for comparing such partitions to one another, as well as for testing properties 
of these partitions, such as convexity, moments, or the relationship of an arbitrary point with such a 
contour. 

4BExercises 
1. Finding the extremal points (i.e., the two points that are farthest apart) in a closed contour of N points 

can be accomplished by comparing the distance of each point to every other point. 
a) What is the complexity of such an algorithm? 
b) Explain how you can do this faster. What is the maximal closed contour length that could fit into a 

4-by-4 image? What is its contour area? 
2. Using PowerPoint or a similar program, draw a white circle of radius 20 on a black background (the 

circle’s circumference will thus be 2 π 20 ≈ 125.7. Save your drawing as an image. 
a) Read the image in, turn it into grayscale, threshold, and find the contour. What is the contour 

length? Is it the same (within rounding) or different from the calculated length? 
b) Using 125.7 as a base length of the contour, run cv::approxPolyDP() using as parameters 

the following fractions of the base length: 90%, 66%, 33%, 10%. Find the contour length and 
draw the results. 

3. Suppose we are building a bottle detector and wish to create a “bottle” feature. We have many images 
of bottles that are easy to segment and find the contours of, but the bottles are rotated and come in 
various sizes. We can draw the contours and then find the Hu moments to yield an invariant bottle-
feature vector. So far, so good—but should we draw filled-in contours or just line contours? Explain 
your answer. 

4. When using cv::moments() to extract bottle contour moments in exercise X3X, how should we set 
isBinary? Explain your answer. 

5. Take the letter shapes used in the discussion of Hu moments. Produce variant images of the shapes by 
rotating to several different angles, scaling larger and smaller, and combining these transformations. 
Describe which Hu features respond to rotation, which to scale, and which to both. 

6. Make a shape in PowerPoint (or another drawing program) and save it as an image. Make a scaled, a 
rotated, and a rotated and scaled version of the object and then store these as images. Compare them 



using cv::matchShapes(). How do the match scores compare for Hu 
moments verses ordinary moments? 

7. Use a depth sensor such as the kinect camera to segment your hands. Use moments to attempt to 
recognize various gestures. 
 



9 
Background Subtraction 

0BOverview of Background Subtraction 
Because of its simplicity and because camera locations are fixed in many contexts, background subtraction 
(aka background differencing) is a fundamental image processing operation for video security applications. 
Toyama, Krumm, Brumitt, and Meyers give a good overview and comparison with many techniques 
[Toyama99]. In order to perform background subtraction, we first must “learn” a model of the background. 

Once learned, this background model is compared against the current image and then the known 
background parts are subtracted away. The objects left after subtraction are presumably new foreground 
objects. 

Of course, “background” is an ill-defined concept that varies by application. For example, if you are 
watching a highway, perhaps average traffic flow should be considered background. Normally, background 
is considered to be any static or periodically moving parts of a scene that remain static or periodic over the 
period of interest. The whole ensemble may have time-varying components, such as trees waving in 
morning and evening wind but standing still at noon. Two common but substantially distinct environment 
categories that are likely to be encountered are indoor and outdoor scenes. We are interested in tools that 
will help us in both of these environments. First we will discuss the weaknesses of typical background 
models and then will move on to discuss higher-level scene models. In that context, we present a quick 
method that is mostly good for indoor static background scenes whose lighting doesn’t change much. We 
then follow this by a “codebook” method that is slightly slower but can work in both outdoor and indoor 
scenes; it allows for periodic movements (such as the trees waving in the wind) and for lighting to change 
slowly or periodically. This method is also tolerant to learning the background even when there are 
occasional foreground objects moving by. We’ll top this off by another discussion of connected 
components (first seen in Chapter 5) in the context of cleaning up foreground object detection. We will 
then compare the quick background method against the codebook background method. This chapter will 
conclude with a discussion of the implementations available in the OpenCV library of two modern 
algorithms for background subtraction.  These algorithms use the principles discussed in the chapter, but 
also include both extensions and implementation details which make them more suitable for real-world 
application. 

1BWeaknesses of Background Subtraction 
Although the background modeling methods mentioned here work fairly well for simple scenes, they suffer 
from an assumption that is often violated: namely that the behavior of all of the pixels in the image is 
statistically independent from the behavior of all of the others. Notably, the methods we describe here learn 



a model for the variations a pixel experiences without considering any of its neighboring pixels. In order to 
take surrounding pixels into account, we could learn a multipart model, a simple example of which would 
be an extension of our basic independent pixel model to include a rudimentary sense of the brightness of 
neighboring pixels. In this case, we use the brightness of neighboring pixels to distinguish when 
neighboring pixel values are relatively bright or dim. We then learn effectively two models for the 
individual pixel: one for when the surrounding pixels are bright and one for when the surrounding pixels 
are dim. In this way, we have a model that takes into account the surrounding context. But this comes at the 
cost of twice as much memory use and more computation, since we now need different values for when the 
surrounding pixels are bright or dim. We also need twice as much data to fill out this two-state model. We 
can generalize the idea of “high” and “low” contexts to a multidimensional histogram of single and 
surrounding pixel intensities as well as make it even more complex by doing all this over a few time steps. 
Of course, this richer model over space and time would require still more memory, more collected data 
samples, and more computational resources.F

1 

Because of these extra costs, the more complex models are usually avoided. We can often more efficiently 
invest our resources in cleaning up the false positive pixels that result when the independent pixel 
assumption is violated. This cleanup usually takes the form of image processing operations 
(cv::erode(), cv::dilate(), and cv::floodFill(), mostly) that eliminate stray patches of 
pixels. We’ve discussed these routines previously (Chapter 5) in the context of finding large and compactF

2
F 

connected components within noisy data. We will employ connected components again in this chapter and 
so, for now, will restrict our discussion to approaches that assume pixels vary independently. 

2BScene Modeling 
How do we define background and foreground? If we’re watching a parking lot and a car comes in to park, 
then this car is a new foreground object. But should it stay foreground forever? How about a trash can that 
was moved? It will show up as foreground in two places: the place it was moved to and the “hole” it was 
moved from. How do we tell the difference? And again, how long should the trash can (and its hole) remain 
foreground? If we are modeling a dark room and suddenly someone turns on a light, should the whole room 
become foreground? To answer these questions, we need a higher-level “scene” model, in which we define 
multiple levels between foreground and background states, and a timing-based method of slowly relegating 
unmoving foreground patches to background patches. We will also have to detect and create a new model 
when there is a global change in a scene. 

In general, a scene model might contain multiple layers, from “new foreground” to older foreground on 
down to background. There might also be some motion detection so that, when an object is moved, we can 
identify both its “positive” aspect (its new location) and its “negative” aspect (its old location, the “hole”). 

In this way, a new foreground object would be put in the “new foreground” object level and marked as a 
positive object or a hole. In areas where there was no foreground object, we could continue updating our 
background model. If a foreground object does not move for a given time, it is demoted to “older 
foreground,” where its pixel statistics are provisionally learned until its learned model joins the learned 
background model. 

For global change detection such as turning on a light in a room, we might use global frame differencing. 
For example, if many pixels change at once, then we could classify it as a global rather than local change 
and then switch to using a different model for the new situation. 

                                                           
1 In cases in which a computer is expected to “learn” something from data, it is often the case that the primary practical 
obstacle to success turns out to be having enough data. The more complex your model becomes, the easier it is to get 
yourself into a situation in which the expressive power of your model vastly exceeds your capability to generate 
training data for that model. We will re-encounter this issue in more detail in the later chapter on machine learning. 
2 Here we are using mathematician’s definition of “compact,” which has nothing to do with size. 



10BA Slice of Pixels 
Before we go on to modeling pixel changes, let’s get an idea of what pixels in an image can look like over 
time. Consider a camera looking out a window to a scene of a tree blowing in the wind. Error! Reference 
source not found. shows what the pixels in a given line segment of the image look like over 60 frames. We 
wish to model these kinds of fluctuations. Before doing so, however, we make a small digression to discuss 
how we sampled this line because it’s a generally useful trick for creating features and for debugging. 

 

Figure 9-1: Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames: some 
dark areas (upper-left) are quite stable, whereas moving branches (upper-center) can vary widely 

Because this comes up quite often in various contexts, OpenCV makes it easy to sample an arbitrary line of 
pixels. This is done with the object called the line iterator, which we encountered way back in Chapter 3. 
The line iterator, cv::LineIterator, is an object which, once instantiated, can be queried to give us 
information about all of the points along a line in sequence. 

The first thing we need to do is to instantiate a line iterator object. We do this with the 
cv::LineIterator constructor: 

cv::LineIterator::LineIterator( 
  const cv::Mat& image,                 // Image to iterate over 
  cv::Point      pt1,                   // Start point for iterator 
  cv::Point      pt2,                   // End point for iterator 
  int            connectivity  = 8,     // Connectivity, either 4 or 8 
  int            left_to_right = 0      // Iteration direction, 0 (false) or 1 (true) 
); 

Here, the input image may be of any type or number of channels. The points pt1 and pt2 are the ends of 
the line segment. The connectivity can be 4 (the line can step right, left, up, or down) or 8 (the line 
can additionally step along the diagonals). Finally, if left_to_right is set to 0 (false), then 
line_iterator scans from pt1 to pt2; otherwise, it will go from the leftmost to the rightmost point.F

3
F  

The iterator can then just be incremented through, pointing to each of the pixels along the line between the 
given endpoints points. We increment the iterator with the usual cv::LineIterator 
::operator++(). All the channels are available at once. If, for example, our line iterator is called 
line_iterator, then we can access the current point by dereferencing the iterator (e.g., 
*line_iterator). One word of warning is in order here, however, which is that the return type of 
cv::LineIterator::operator*() is not a pointer to a built-in OpenCV vector type (i.e., 
cv::Vec<> or some instantiation of it), but rather it is a uchar* pointer. This means that you will 
                                                           
3 The left_to_right flag was introduced because a discrete line drawn from pt1 to pt2 does not always match 
the line from pt2 to pt1. Therefore, setting this flag gives the user a consistent rasterization regardless of the pt1, 
pt2 order. 



typically want to cast this value yourself to something like cv::Vec3f* (or whatever is appropriate for 
the array image).F

4
F  

With this convenient tool in hand, we can take look at how it can be used to extract data from a scene. The 
program in XExample 9-1X reads a movie file and generates the sort of data seen in XFigure 9-1X. 

Example 9-1: Reads out the RGB values of all pixels in one row of a video and accumulates those values 
into three separate files 

#include <opencv2/opencv.hpp> 
#include <iostream> 
#include <fstream> 
 
using namespace std; 
 
void help() { 
  cout << "\n" 
    << "Read out RGB pixel values and store them to disk\nCall:\n"  
    << "./ch9_ex9_1 avi_file\n"  
    << "\n This will store to files blines.csv, glines.csv and rlines.csv\n\n"  
    << endl; 
} 
 
int main( int argc, char** argv  ) { 
 
  if(argc != 2) { help(); return -1; } 
  cv::namedWindow( "Example9_1", CV_WINDOW_AUTOSIZE ); 
 
  cv::VideoCapture cap; 
  if((argc < 2)|| !cap.open(argv[1])) 
  { 
  cerr << "Couldn't open video file" << endl; 
   help(); 
    cap.open(0); 
    return -1; 
  } 
 
  cv::Point pt1(10,10), pt2(30,30); 
  int max_buffer; 
  cv::Mat rawImage; 
  ofstream b,g,r; 
  b.open("blines.csv"); 
  g.open("glines.csv"); 
  r.open("rlines.csv"); 
 
  // MAIN PROCESSING LOOP: 
  // 
  for(;;) { 
   cap >> rawImage;  
    if( !rawImage.data ) break; 
 
    cv::LineIterator it( rawImage, pt1, pt2, 8); 
    for( int j=0; j<it.count; ++j,++it ) { 
      b << (int)(*it)[0] << ", "; 

                                                           
4 In some cases, you can get away with being a little sloppy here. Specifically, when the image is already of unsigned 
character type, you can just access the elements directly with constructions like (*line_iterator)[0], or 
(*line_iterator)[1], and so on. On close inspection, these are actually dereferencing the iterator to get a 
character pointer, then using the built-in C offset dereference bracket operator, rather than casting the dereferenced 
iterator to an OpenCV vector type like Vec3f and accessing the channel through the overloaded dereferencing operator 
of that class. In the end, for the special case of Vec3b (or any number of channels), it happens to all come to the same 
thing. 



      g << (int)(*it)[1] << ", "; 
      r << (int)(*it)[2] << ", "; 
      (*it)[2] = 255;               // Mark this sample in red 
    } 
    cv::imshow( "Example9_1", rawImage ); 
    int c = cv::waitKey(10); 
    b << "\n"; g << "\n"; r << "\n"; 
  } 
 
  // CLEAN UP: 
  // 
  b << endl; g << endl; r << endl; 
  b.close(); g.close(); r.close(); 
  cout << "\n" 
    << "Data stored to files: blines.csv, glines.csv and rlines.csv\n\n"  
    << endl; 
} 

In Example 9-1, we stepped through the points, one at a time, and processed each one. Another common 
and useful way to approach the problem is to create a buffer (of the appropriate type) and copy the entire 
line into that buffer before processing the buffer. In that case, the buffer copy would have looked something 
like the following: 

LineIterator it(rawImage, pt1, pt2, 8); 
vector<Vec3b> buf(it.count); 
for( int i=0; i < it.count; i++, ++it ) buf[i] = (const Vec3b)*it; 

The primary advantage of this approach is that if the image rawImage were not of an unsigned character 
type, this method is a cleaner way of casting to the appropriate type. 

We are now ready to move on to some methods for modeling the kinds of pixel fluctuations seen in XFigure 
9-1XError! Reference source not found.. As we move from simple to increasingly complex models, we 
shall restrict our attention to those models that will run in real time and within reasonable memory 
constraints. 

11BFrame Differencing 
The very simplest background subtraction method is to subtract one frame from another (possibly several 
frames later) and then label any difference that is “big enough” the foreground. This process tends to catch 
the edges of moving objects. For simplicity, let’s say we have three single-channel images: 
frameTime1, frameTime2, and frameForeground. The image frameTime1 is filled with an 
older grayscale image, and frameTime2 is filled with the current grayscale image. We could then use the 
following code to detect the magnitude (absolute value) of foreground differences in 
frameForeground: 

cv::absdiff( 
  frameTime1,                    // First input array 
  frameTime2,                    // Second input array 
  frameForeground                // Result array  
); 

Because pixel values always exhibit noise and fluctuations, we should ignore (set to 0) small differences 
(say, less than 15), and mark the rest as big differences (set to 255): 

cv::threshold( 
  frameForeground,                // Input Image 
  frameForeground,                // Result image 
  15,                             // Threshold value 
  255,                            // Max value for upward operations 
  cv::THRESH_BINARY               // Threshold type to use 
); 



The image frameForeground then marks candidate foreground objects as 255 and background pixels 
as 0. We need to clean up small noise areas as discussed earlier; we might do this with cv::erode() 

followed by cv::dilate()or by using connected components. For color images, we could use the same 
code for each color channel and then combine the channels with the cv::max() function. This method is 
much too simple for most applications other than merely indicating regions of motion. For a more effective 
background model we need to keep some statistics about the means and average differences of pixels in the 

scene. You can look ahead to the section entitled “XA Quick X” to see examples of frame differencing in 

X  

Figure 9-6X and X  

Figure 9-7X. 

3BAveraging Background Method 
The averaging method basically learns the average and standard deviation (or similarly, but 
computationally faster, the average difference) of each pixel as its model of the background. 

Consider the pixel line from XFigure 9-1X. Instead of plotting one sequence of values for each frame (as we 
did in that figure), we can represent the variations of each pixel throughout the video in terms of an average 
value and a pixel’s associated average differences (XFigure 9-2X). In the same video, a foreground object 



(which is, in fact, a hand) passes in front of the camera. The resulting change in statistics of an associated 
pixel is shown in the figure. 

 

Figure 9-2: Data from XFigure 9-1X presented in terms of average differences: an object (a hand) passes in 
front of the camera causing the statistics of a pixel’s value to change. 

The averaging method makes use of four OpenCV routines: cv::Mat::operator+=(), to accumulate 
images over time; cv::absdiff(), to accumulate frame-to-frame image differences over time; 
cv::inRange(), to segment the image (once a background model has been learned) into foreground and 
background regions; and cv::max(), to compile segmentations from different color channels into a 
single mask image. Because this is a rather long code example, we will break it into pieces and discuss each 
piece in turn. 

First, we create pointers for the various scratch and statistics-keeping images we will need along the way. It 
will prove helpful to sort these pointers according to the type of images they will later hold. 

#include <opencv2/opencv.hpp> 
#include <iostream> 
#include <fstream> 
 
using namespace std; 
 
// Global storage 
// 
// Float, 3-channel images 
// 
cv::Mat IavgF, IdiffF, IprevF, IhiF, IlowF; 
cv::Mat tmp, tmp2;  
 
// Float, 1-channel images 
// 
vector<cv::Mat> Igray(3); 
vector<cv::Mat> Ilow(3); 
vector<cv::Mat> Ihi(3); 
 
// Byte, 1-channel image 
// 
cv::Mat Imaskt; 
 
// Counts number of images learned for averaging later 
// 
float Icount; 

Next, we create a single call to allocate all the necessary intermediate images. For convenience, we pass in 
a single image (from our video) that can be used as a reference for sizing the intermediate images: 

// I is just a sample image for allocation purposes 
// (passed in for sizing) 
// 



void AllocateImages( IplImage* I ){ 
 
  CvSize sz = cvGetSize( I ); 
 
  IavgF     = cv::Mat::zeros( sz, CV::F32C3 ); 
  IdiffF    = cv::Mat::zeros( sz, CV::F32C3 ); 
  IprevF    = cv::Mat::zeros( sz, CV::F32C3 ); 
  IhiF      = cv::Mat::zeros( sz, CV::F32C3 ); 
  IlowF     = cv::Mat::zeros( sz, CV::F32C3 );  
  Icount    = 0.00001; // Protect against divide by zero 
 
  tmp       = cv::Mat::zeros( sz, CV::F32C3 ); 
  tmp2      = cv::Mat::zeros( sz, CV::F32C3 ); 
  Imaskt    = cv::Mat( sz, CV::F32C1 ); 
} 

In the next piece of code, we learn the accumulated background image and the accumulated absolute value 
of frame-to-frame image differences (a computationally quicker proxyF

5
F for learning the standard deviation 

of the image pixels). This is typically called for 30 to 1,000 frames, sometimes taking just a few frames 
from each second or sometimes taking all available frames. The routine will be called with a three-color-
channel image of depth 8 bits: 

// Learn the background statistics for one more frame 
// I is a color sample of the background, 3-channel, 8u 
// 
void accumulateBackground( cv::Mat& I ){ 
 
  static int first = 1;                 // nb. Not thread safe 
  I.convertTo( tmp, CV::F32 );          // convert to float 
  if( !first ){ 
    IavgF += tmp; 
    cv::absdiff( tmp, IprevF, tmp2 ); 
    IdiffF += tmp2; 
    Icount += 1.0; 
  } 
  first = 0; 
  IprevF = tmp; 
} 

We first use cv::Mat::convertTo() to turn the raw background 8-bit-per-channel, three-color-
channel image into a floating-point three-channel image. We then accumulate the raw floating-point images 
into IavgF. Next, we calculate the frame-to-frame absolute difference image using cv::absdiff() 
and accumulate that into image IdiffF. Each time we accumulate these images, we increment the image 
count Icount, a global, to use for averaging later. 

Once we have accumulated enough frames, we convert them into a statistical model of the background. 
That is, we compute the means and deviation measures (the average absolute differences) of each pixel: 

void createModelsfromStats() { 
 
    IavgF  *= (1.0/Icount); 
    IdiffF *= (1.0/Icount); 
 
    // Make sure diff is always something 
    // 
    IdiffF += cv::Scalar( 1.0, 1.0, 1.0 ); 

                                                           
5 Notice our use of the word “proxy.” Average difference is not mathematically equivalent to standard deviation, but in 
this context it is close enough to yield results of similar quality. The advantage of average difference is that it is faster 
to compute than the standard deviation. With only a tiny modification of the code example you can use standard 
deviations instead and compare the quality of the final results for yourself; we’ll discuss this more explicitly later in 
this section. 



    setHighThreshold( 7.0 ); 
    setLowThreshold( 6.0 ); 
} 

In this section, we use cv::Mat::operator*=() to calculate the average raw and absolute difference 
images by dividing by the number of input images accumulated. As a precaution, we ensure that the 
average difference image is at least 1; we’ll need to scale this factor when calculating a foreground-
background threshold and would like to avoid the degenerate case in which these two thresholds could 
become equal. 

The next two routines, setHighThreshold() and setLowThreshold(), are utility functions that 
set a threshold based on the frame-to-frame average absolute differences (FFAAD). The FFAAD can be 
thought of as the basic metric against which we compare observed changes in order to determine if they are 
significant. The call setHighThreshold(7.0), for example, fixes a threshold such that any value that 
is 7 times the FFAAD above average for that pixel is considered foreground; likewise, 
setLowThreshold(6.0) sets a threshold bound that is 6 times the FFAAD below the average for that 
pixel. Within this range around the pixel’s average value, objects are considered to be background. These 
threshold functions are: 

void setHighThreshold( float scale ) { 
  IhiF = IavgF + (IdiffF * scale); 
  cv::split( IhiF, Ihi ); 
} 
void setLowThreshold( float scale ) { 
  IlowF = IavgF - (IdiffF * scale); 
  cv::split( IlowF, Ilow ); 
} 

In setLowThreshold() and setHighThreshold(), we first scale the difference image (the 
FFAAD) prior to adding or subtracting these ranges relative to IavgF. This action sets the IhiF and 
IlowF range for each channel in the image via cv::split(). 

Once we have our background model, complete with high and low thresholds, we use it to segment the 
image into foreground (things not “explained” by the background image) and the background (anything 
that fits within the high and low thresholds of our background model). Segmentation is done by calling: 

// Create a binary: 0,255 mask where 255 means foreground pixel 
// I      Input image, 3-channel, 8u 
// Imask  Mask image to be created, 1-channel 8u 
// 
void backgroundDiff( 
  cv::Mat& I, 
  cv::Mat& Imask 
) { 
  I.convertTo( tmp, CV::F32 );    // To float 
  cv::split( tmp, Igray ); 
 
  // Channel 1 
  // 
  cv::inRange( Igray[0], Ilow[0], Ihi[0], Imask ); 
 
  // Channel 2 
  // 
  cv::inRange( Igray[1], Ilow[1], Ihi[1], Imaskt ); 
  Imask = cv::min( Imask, Imaskt ); 
 
  // Channel 3 
  // 
  cv::inRange( Igray[2], Ilow[2], Ihi[2], Imaskt );  
  Imask = cv::min( Imask, Imaskt ); 
 
  // Finally, invert the results 
  // 



  Imask = 255 – Imask; 
} 

This function first converts the input image I (the image to be segmented) into a floating-point image by 
calling cv::Mat::convertTo(). We then convert the three-channel image into separate one-channel 
image planes using cv::split(). These color channel planes are then checked to see if they are within 
the high and low range of the average background pixel via the cv::inRange() function, which sets the 
grayscale 8-bit depth image Imaskt to max (255) when it’s in range and to 0 otherwise. For each color 
channel, we logically ANDF

6
F the segmentation results into a mask image Imask, since strong differences in 

any color channel are considered evidence of a foreground pixel here. Finally, we invert Imask using 
cv::operator-(), because foreground should be the values out of range, not in range. The mask 
image is the output result. 

By way of putting it all together, we can define a function main(), which reads in a video and builds a 
background model. For our example, we run the video in a training mode until the user hits the space bar, 
after which the video runs in a mode in which any foreground objects detected are highlighted in red: 

void help() { 
  cout << "\n" 
    << "Train a background model on incoming video, then run the model\n"  
    << "./ch9_ex9_2 avi_file\n"    
    << endl; 
} 
 
int main( int argc, char** argv  ) { 
 
  if(argc != 2) { help(); return -1; } 
  cv::namedWindow( "Example9_2", cv::WINDOW_AUTOSIZE ); 
 
  cv::VideoCapture cap; 
  if((argc < 2)|| !cap.open(argv[1])) { 
  cerr << "Couldn't open video file" << endl; 
   help(); 
    cap.open(0); 
    return -1; 
  } 
 
  // FIRST PROCESSING LOOP (TRAINING): 
  // 
  while(1) { 
   cap >> image;  
    if( !image.data ) exit(0); 
   
    accumulateBackground( image ); 
 
    cv::imshow( "Example9_2", rawImage ); 
    if( cv::waitKey(7) == 0x20 ) break; 
  } 
 
  // We have all of our data, so create the models 
  // 
  createModelsfromStats(); 
   
  // SECOND PROCESSING LOOP (TESTING): 
  // 
  cv::Mat mask; 
  while(1) { 

                                                           
6 In this circumstance, you could have used the bitwise OR operator as well, because the images being OR’ed are 
unsigned character images and only the values 0x00 and 0xff are relevant. In general, however, the cv::max() 
operation is a good way to get a “fuzzy” OR which responds sensibly to a range of values. 



   cap >> image;  
    if( !image.data ) exit(0); 
   
    backgroundDiff( image, mask ); 
   
    // A simple visualization is to write to the red channel 
    // 
    cv::split( image, Igray ); 
    Igray[2] = cv::max( mask, Igray[2] ); 
    cv::merge( Igray, image ); 
 
    cv::imshow( "Example9_2", image ); 
    if( cv::waitKey(7) == 0x20 ) break; 
  } 
 
  exit(0); 
} 

We’ve just seen a simple method of learning background scenes and segmenting foreground objects. It will 
work well only with scenes that do not contain moving background components (it would fail with a waving 

curtain or waving trees). It also assumes that the lighting remains fairly constant (as in indoor static 

scenes). You can look ahead to X  

Figure 9-6X to check the performance of this averaging method. 

12BAccumulating Means, Variances, and Covariances 
The averaging background method just described made use the accumulation operator, 
cv::Mat::operator+=() to do what was essentially the simplest possible thing: to sum up a bunch of 
data that we could then normalize into an average. The average is a convenient statistical quantity for a lot 
of reasons, of course, but one often overlooked advantage of the average is the fact that it can be computed 
incrementally in this way.F

7
F This means that we can do processing on line without needing to accumulate all 

of the data before analyzing. We will now consider a slightly more sophisticated model, which can also be 
computed on line in this way. 

Our next model will represent the intensity (or color) variation within a pixel by computing a Gaussian 
model for that variation. A one-dimensional Gaussian model is characterized by a single mean (or average) 
                                                           
7 For purists, our implementation above is not exactly a purely incremental computation, as we divide by the number of 
samples at the end. There does, however, exist a purely incremental method for updating the average when a new data 
point is introduced, but the “nearly incremental” version used is substantially more computationally efficient. We will 
continue throughout the chapter to refer to methods as “incremental” if they can be computed from purely cumulative 
functions of the data combined with factors associated with overall normalization. 



and a single variance (which tells us something about the expected spread of measured values about the 
mean).  In the case of a d-dimensional model (e.g., a three-color model), there will be a d-dimensional 
vector for the mean, and a -element matrix that represents not only the individual variances of the d-
dimensions, but also the covariances, which represent correlations between each of the individual 
dimensions. 

As promised, each of these quantities—the means, the variances, and the covariances—can be computed in 
an incremental manner. Given a stream of incoming images, we can define three functions that will 
accumulate the necessary data, and three functions that will actually convert those accumulations into the 
model parameters. 

The code which follows assumes the existence of a few global variables: 
cv::Mat sum; 
cv::Mat sqsum; 
int     image_count = 0; 

23BComputing the Mean with cv::Mat::operator+=() 

As we saw in our previous example, the best method to compute the pixel means is to add them all up using 
cv::Mat::operator+=() and then divide by the total number of images to obtain the mean: 

void accumulateMean( 
  cv::Mat& I 
) { 
  if( sum.empty ) { 
    sum = cv::Mat::zeros( I.size(), CV::F32C(I.channels()) ); 
  } 
  I.convertTo( scratch, sum.type() ); 
  sum += scratch; 
  image_count++; 
} 

The function above, accumulateMean(), is then called on each incoming image. Once all of the 
images that are going to be used for the background model have been computed, you can call the next 
function, computeMean() to get a single “image” that contains the averages for every pixel across your 
entire input set: 

cv::Mat& computeMean(  
  cv::Mat& mean 
) { 
  mean = sum / image_count; 
} 

24BComputing the mean with cv::accumulate() 

OpenCV provides another function, which is essentially similar to just using the 
cv::Mat::operator+=() operator, but with two important distinctions. The first is that it will 
automatically handle the cv::Mat::convertTo() functionality (and thus remove the need for a 
scratch image), and the second is that it allows the use of an image mask. This function is 
cv::accumulate(). The ability to use an image mask when computing a background model is a very 
useful thing, as one often has some other information that some part of the image should not be included in 
the background model. For example, one might be building a background model of a highway or other 
uniformly colored area, and be able to immediately determine from color that some objects are not part of 
the background. This sort of thing can be very helpful in a real-world situation in which there is little or no 
opportunity to get access to the scene in the complete absence of foreground objects. 

The accumulate function has the following prototype: 
void accumulate( 
 
  cv::InputArray       src,                 // Input, 1 or 3 channels, U8 or F32 
  cv::InputOutputArray dst,                 // Result image, F32 or F64  



  cv::InputArray       mask = cv::noArray() // Use src pixel if mask pixel != 0  
); 

Here the array dst is the array in which the accumulation is happening, and src is the new image which 
will be added. cv::accumulate() admits an optional mask. If present, only the pixels in dst which 
correspond to nonzero elements in mask will be updated. 

With cv::accumulate(), the function accumulateMean() above can be simplified to: 

void accumulateMean( 
  cv::Mat& I 
) { 
  if( sum.empty ) { 
    sum = cv::Mat::zeros( I.size(), CV::F32C(I.channels()) ); 
  } 
  cv::accumulate( I, sum ); 
  image_count++; 
} 

25BVariation: Computing the mean with cv::accumulateWeighted() 

Another alternative that is often useful is to use a running average. The running average is given by the 
following formula: 

 

For a constant value of α, running averages are not equivalent to the result of summing with 

cv::Mat::operator+=(), or cv::accumulate(). To see this, simply consider adding three 

numbers (2, 3, and 4) with α set to 0.5. If we were to accumulate them with cv::accumulate(), then 

the sum would be 9 and the average 3. If we were to accumulate them with 
cv::accumulateWeighted(), the first sum would give , and then adding 
the third term would give . The reason the second number is larger is that the 
most recent contributions are given more weight than those from farther in the past. Such a running average 

is thus also called a tracker. The parameter α can be thought of as setting the amount of time necessary for 

the influence of a previous frame to fade. 

To accumulate running averages across entire images, we use the OpenCV function 
cv::accumulateWeighted(): 

void accumulateWeighted( 
  cv::InputArray       src,                 // Input, 1 or 3 channels, U8 or F32 
  cv::InputOutputArray dst,                 // Result image, F32 or F64  
  double               alpha,               // Weight factor applied to src 
  cv::InputArray       mask = cv::noArray() // Use src pixel if mask pixel != 0  
); 

Here the array dst is the array in which the accumulation is happening, and src is the new image that will 
be added. The value alpha is the weighting parameter. Like cv::accumulate(), 



cv::accumulateWeighted() admits an optional mask. If present, only the pixels in dst that 
correspond to nonzero elements in mask will be updated. 

26BFinding the variance with the help of cv::accumulateSquare() 

We can also accumulate squared images, which will allow us to compute quickly the variance of individual 
pixels. You may recall from your last class in statistics that the variance of a finite population is defined by 
the formula: 

 

where  is the mean of x for all N samples. The problem with this formula is that it entails making one pass 

through the images to compute  and then a second pass to compute . A little algebra should allow you 
to convince yourself that the following formula will work just as well: 

 

Using this form, we can accumulate both the pixel values and their squares in a single pass. Then, the 
variance of a single pixel is just the average of the square minus the square of the average. With this in 
mind, we can define an accumulation function and a computation function as we did with the mean. As 
with the mean, one option would be to first do an element by element squaring of the incoming image, and 
then to accumulate that with something like sqsum += I.mul(I). This, however, has several 
disadvantages, the most significant of which is that I.mul(I) does not do any kind of implicit type 
conversion (as we saw that += did not do either). As a result, elements of (for example) an 8-bit array, 
when squared, will almost inevitably cause overflows. As with cv::accumulate(), however, OpenCV 
provides us with a convenient function that does what we need all in a single convenient package; it is 
called cv::accumulateSquare(): 

void accumulateSquare( 
  cv::InputArray       src,                 // Input, 1 or 3 channels, U8 or F32 
  cv::InputOutputArray dst,                 // Result image, F32 or F64  
  cv::InputArray       mask = cv::noArray() // Use src pixel if mask pixel != 0  
); 

With the help of cv::accumulateSquare(), we can write a function to accumulate the information 
we need for our variance computation: 

void accumulateVariance( 
  cv::Mat& I 
) { 
  if( sum.empty ) { 
    sum   = cv::Mat::zeros( I.size(), CV::F32C(I.channels()) ); 
    sqsum = cv::Mat::zeros( I.size(), CV::F32C(I.channels()) ); 
  } 
  cv::accumulate( I, sum ); 
  cv::accumulateSquare( I, sqsum ); 
  image_count++; 
} 

The associated computation function would then be: 
// note that ‘variance’ is sigma^2 
// 
void computeVariance( 



  cv::Mat& variance 
) {   
  double one_by_N = 1.0 / image_count; 
  variance = one_by_N  * sqsum – (one_by_N * one_by_N) * sum.mul(sum); 
} 

27BFinding the Covariance with cv::accumulateWeighted() 

The variance of the individual channels in a multichannel image captures some important information 
about how similar we expect background pixels in future images to be to our observed average. This, 
however, is still a very simplistic model for both the background and our “expectations.”  One important 
additional concept which we could introduce is the concept of covariance. Covariance captures inter-
relations between the variations in individual channels. For example, our background might be an ocean 
scene in which we expect very little variation in the red channel, but quite a bit in the green and blue 
channels. If we follow our intuition that the ocean is just one color really, and that the variation we see is 
primarily a result of lighting effects, we might conclude that if there were a gain or loss of intensity in the 
green channel, there should be a corresponding gain or loss of intensity in the blue channel. The corollary 
of this is that if there were a substantial gain in the blue channel without an accompanying gain in the green 
channel, we might not want to consider this background. This intuition is captured by the concept of 
covariance. 

 
Figure 9-3: The same data set is visualized on the left and the right. On the left (a) the (square root of the) 
variance of the data in the x and y dimensions is shown, and the resulting model for the data is visualized. 
On the right (b) the covariance of the data is captured in the visualized model. The model has become an 

ellipsoid which is narrower in one dimension and wider in the other than the more simplistic model on the 
left. 

In XFigure 9-3X, we visualize what might be the blue and green channel data for a particular pixel in our 
ocean background example. On the left, the variance only has been computed. On the right, the covariance 
between the two channels has also been computed, and the resulting model is able to fit the data much more 
tightly. 

Mathematically, the covariance between any two different observables is given by the formula: 

 

As you can see, the covariance between any observable x and itself:  is equal to the variance of 

that same observable . In a d-dimensional space (such as the RGB values for a pixel, for which d=3), it 



is convenient to talk about the covariance matrix , whose components include all of the covariances 
between the variables as well as the variances of the variables individually. As can be seen from the 
formula above, the covariance matrix is symmetric, i.e., . 

In a much earlier chapter, we encountered a function which could be used when dealing with individual 
vectors of data (as opposed to whole arrays of individual vectors). That function was 

cv::calcCovarMatrix(), which will allow us to provide N vectors of dimension d and it will spit out 

the d-by-d covariance matrix. Our problem now, however, is that we would like to compute such a matrix 

for every point in an array (or at least, in the case of a 3-dimensional RGB image, we would like to 
compute the 6 unique entries in that matrix). 

In practice, the best way to do this is simply to compute the variances using the code we already developed, 
and to compute the three new objects (the off-diagonal elements of ) separately. Looking at the 
formula for the covariance, we see that cv::accumulateSquare() will not quite work here, as we 
need to accumulate the  terms (i.e., the product of two different channel values from a particular 
pixel in each image). 

The function which does this for us in OpenCV is cv::accumulateProduct(). 

void accumulateProduct( 
  cv::InputArray       src1,                // Input, 1 or 3 channels, U8 or F32 
  cv::InputArray       src2,                // Input, 1 or 3 channels, U8 or F32 
  cv::InputOutputArray dst,                 // Result image, F32 or F64 
  cv::InputArray       mask = cv::noArray() // Use src pixel if mask pixel != 0  
); 

This function works exactly like cv::accumulateSquare(), except that rather than squaring the 
individual elements of src, it multiplies the corresponding elements of src1 and src2. What it does not 
do (unfortunately) is allow us to pluck individual channels out of those incoming arrays. In the case of 
multichannel arrays in src1 and src2, the computed result is done on a per-channel basis.  

For our current need to compute the off-diagonal elements of a covariance model, this is not really what we 
want. What we want are different channels of the same image. To do this, we will have to split our 
incoming image apart using cv::split(). 

vector<cv::Mat> planes(3);  
vector<cv::Mat> sums(3);  
vector<cv::Mat> xysums(6); 
 
int image_count = 0; 
 
void accumulateCovariance( 
  cv::Mat& I 
) { 
  int i, j, n; 
  if( sum.empty ) { 
    for( i=0; i<3; i++ ) {    // the r, g, and b sums 
      sums[i]   = cv::Mat::zeros( I.size(), CV::F32C1 ); 
    } 
    for( n=0; n<6; n++ ) {    // the rr, rg, rb, gg, gb, and bb elements 
      xysums[n] = cv::Mat::zeros( I.size(), CV::F32C1 ) ); 
    } 
  } 



  cv::split( I, rgb ); 
  for( i=0; i<3; i++ ) { 
    cv::accumulate( rgb[i], sums[i] );  
  } 
  n = 0; 
  for( i=0; i<3; i++ ) {      // "row" of Sigma 
    for( j=i; j<3; j++ ) {    // "column" of Sigma 
      n++; 
      cv::accumulateProduct( rgb[i], rgb[j], xysums[n] ); 
    } 
  } 
  image_count++; 
} 

The corresponding compute function is also just a slight extension of the compute function for the 
variances we saw earlier. 

// note that ‘variance’ is sigma^2 
// 
void computeVariance( 
  cv::Mat& covariance      // a six-channel array, channels are the 
                           // rr, rg, rb, gg, gb, and bb elements of Sigma_xy 
) {   
  double one_by_N = 1.0 / image_count; 
 
  // reuse the xysum arrays as storage for individual entries 
  // 
  int n = 0; 
  for( int i=0; i<3; i++ ) {     // "row" of Sigma 
    for( int j=i; j<3; j++ ) {   // "column" of Sigma 
      n++; 
      xysums[n] = one_by_N  * xysums[n]  
        – (one_by_N * one_by_N) * sums[i].mul(sums[j]); 
    } 
  } 
   
  // reassemble the six individual elements into a six-channel array 
  //  
  cv::merge( xysums, covariance ); 
} 

28BA Brief Note on Model Testing and cv::Mahalanobis() 

In this section, we introduced some slightly more complicated models, but did not discuss how to test if a 
particular pixel in a new image is in the predicted domain of variation for the background model. In the 
case of the variance-only model (Gaussian models on all channels with an implicit assumption of statistical 
independence between the channels) the problem is made more complicated by the fact that the variances 
for the individual dimensions will not necessarily be equal. In this case, however, it is common to compute 
what is called a z-score for each dimension separately (the z-score is the distance from the mean divided by 

the standard deviation: ). The z-score tells us something about the probability of the individual 
pixel originating from the distribution in question. The z-scores for multiple dimensions are then 

summarized as the square root of sum of squares (e.g., ). 

In the case of the full covariance matrix, the analog of the z-score is called the Mahalanobis distance. This 
distance is essentially the distance from the mean to the point in question measured in constant-probability 
contours such as that shown in XFigure 9-3X. Looking back at XFigure 9-3X, a point up and to the left of the 
mean in the model (a) will appear to have a low Mahalanobis distance by that model. The same point 
would have a much higher Mahalanobis distance by the model in (b). It is worth noting that the z-score 
formula for the simplified model in the previous paragraph is precisely the Mahalanobis distance under the 
model in XFigure 9-3X (a), as one would expect. 



OpenCV provides a function for computing Mahalanobis distances: 
double cv::Mahalanobis(                     // Return distance as F64 
  cv::InputArray vec1,                      // First vector (1-dimensional, length n) 
  cv::InputArray vec2,                      // Second vector (1-dimensional, length n) 
  cv::InputArray icovar                     // Inverse covariance matrix, n-by-n 
); 

The cv::Mahalanobis() function expects vector objects for vec1 and vec2 of dimension d and a d-

by-d matrix for the inverse covariance icovar. (The inverse covariance is used because inverting this 

matrix is costly, and in most cases you have many vectors you would like to compare with the same 
covariance—so the assumption is that you will invert it once and pass the inverse covariance to 
cv::Mahalanobis() many times for each such inversion.) 

In our context of background subtraction, this is not entirely convenient, as 
cv::Mahalanobis() wants to be called on a per-element basis. Unfortunately, there 
is no array-sized version of this capability in OpenCV. As a result, you will have to loop 
through each pixel, create the covariance matrix from the individual elements, invert that 
matrix, and store the inverse somewhere. Then, when you want to make a comparison, 
you will need to loop through the pixels in your image, retrieve the inverse covariance 
you need, and call cv::Mahalanobis() for each pixel. 

4BA More Advanced Background Subtraction Method 
Many background scenes contain complicated moving objects such as trees waving in the wind, fans 
turning, curtains fluttering, and so on. Often, such scenes also contain varying lighting, such as clouds 
passing by or doors and windows letting in different light. 

A nice method to deal with this would be to fit a time-series model to each pixel or group of pixels. This 
kind of model deals with the temporal fluctuations well, but its disadvantage is the need for a great deal of 
memory [Toyama99]. If we use 2 seconds of previous input at 30 Hz, this means we need 60 samples for 
each pixel. The resulting model for each pixel would then encode what it had learned in the form of 60 
different adapted weights. Often we’d need to gather background statistics for much longer than 2 seconds, 
which means that such methods are typically impractical on present-day hardware. 

To get fairly close to the performance of adaptive filtering, we take inspiration from the techniques of video 
compression and attempt to form a codebookF

8
F to represent significant states in the background.F

9
F The 

simplest way to do this would be to compare a new value observed for a pixel with prior observed values. If 
the value is close to a prior value, then it is modeled as a perturbation on that color. If it is not close, then it 
can seed a new group of colors to be associated with that pixel. The result could be envisioned as a bunch 

                                                           
8 The method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but rather 
than learning oriented cylinders in RGB space, for speed, the authors use axis-aligned boxes in YUV space. Fast 
methods for cleaning up the resulting background image can be found in Martins [Martins99]. 
9 There is a large literature for background modeling and segmentation. OpenCV’s implementation is intended to be 
fast and robust enough that you can use it to collect foreground objects mainly for the purposes of collecting data sets 
to train classifiers on. Recent work in background subtraction allows arbitrary camera motion [Farin04; Colombari07] 
and dynamic background models using the mean-shift algorithm [Liu07]. 



of blobs floating in RGB space, each blob representing a separate volume considered likely to be 
background. 

In practice, the choice of RGB is not particularly optimal. It is almost always better to use a color space 
whose axis is aligned with brightness, such as the YUV color space. (YUV is the most common choice, but 
spaces such as HSV, where V is essentially brightness, would work as well.) The reason for this is that, 
empirically, most of the natural variation in the background tends to be along the brightness axis, not the 
color axis. 

The next detail is how to model these “blobs.” We have essentially the same choices as before with our 
simpler model. We could, for example, choose to model the blobs as Gaussian clusters with a mean and a 
covariance. It turns out that the simplest case, in which the “blobs” are simply boxes with a learned extent 
in each of the three axes of our color space, works out quite well. It is the simplest in terms of memory 
required and in terms of the computational cost of determining whether a newly observed pixel is inside 
any of the learned boxes. 

Let’s explain what a codebook is by using a simple example 

(X  



Figure 9-4X). A codebook is made up of boxes that grow to cover the common values seen over time. The 

upper panel of X  

Figure 9-4X shows a waveform over time; you could think of this as the brightness of an individual pixel. In 
the lower panel, boxes form to cover a new value and then slowly grow to cover nearby values. If a value is 
too far away, then a new box forms to cover it and likewise grows slowly toward new values. 

 

Figure 9-4: Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new value 
and slowly grows to cover nearby values; if values are too far away then a new box is formed (see text) 



In the case of our background model, we will learn a codebook of boxes that cover three dimensions: the 
three channels that make up our image at each pixel. 

X  

Figure 9-5X visualizes the (intensity dimension of the) codebooks for six different pixels learned from the data 
in XFigure 9-1X.F

10
F This codebook method can deal with pixels that change levels dramatically (e.g., pixels in a 

windblown tree, which might alternately be one of many colors of leaves, or the blue sky beyond that tree). 
With this more precise method of modeling, we can detect a foreground object that has values between the 
pixel values. Compare this with XFigure 9-2X, where the averaging method cannot distinguish the hand value 

(shown as a dotted line) from the pixel fluctuations. Peeking ahead to the next section, we see the better 
performance of the codebook method versus the averaging method shown later in 

X  

Figure 9-8X. 

 

                                                           
10 In this case, we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course, there is 
actually a codebook for every pixel. 



Figure 9-5: Intensity portion of learned codebook entries for fluctuations of six chosen pixels (shown as 
vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so can better 

model discontinuous distributions; thus they can detect a foreground hand (value at dotted line) whose 
average value is between the values that background pixels can assume. In this case the codebooks are one-

dimensional and only represent variations in intensity 

In the codebook method of learning a background model, each box is defined by two thresholds (max and 
min) over each of the three-color axes. These box boundary thresholds will expand (max getting larger, 
min getting smaller) if new background samples fall within a learning threshold (learnHigh and 
learnLow) above max or below min, respectively. If new background samples fall outside of the box 
and its learning thresholds, then a new box will be started. In the background difference mode, there are 
acceptance thresholds maxMod and minMod; using these threshold values, we say that if a pixel is “close 
enough” to a max or a min box boundary then we count it as if it were inside the box. At runtime, the 
threshold for inclusion in a “box” can be set to a different value than was used in the construction of the 
boxes; often this threshold is simply set to zero in all three dimensions. 

A situation we will not cover is a pan-tilt camera surveying a large scene. When working 
with a large scene, it is necessary to stitch together learned models indexed by the pan 
and tilt angles. 

13BStructures 
It’s time to look at all of this in more detail, so let’s create an implementation of the codebook algorithm. 
First, we need our codebook structure, which will simply point to a bunch of boxes in YUV space: 

class CodeBook : public vector<CodeElement> { 
public: 
  int t;                                              // count every access 
  CodeBook() { t=0; }                                 // Default is an empty book 
  CodeBook( int n ) : vector<CodeElement>(n) { t=0; } // Construct book of size n 
}; 

The codebook is derived from an STL vector of CodeElement objects (see below). The variable t counts 
the number of points we’ve accumulated since the start or the last clear operation. Here’s how the actual 
codebook elements are described: 

#define CHANNELS 3 
class CodeElement { 
public: 
  uchar learnHigh[CHANNELS];   // High side threshold for learning 
  uchar learnLow[CHANNELS];    // Low side threshold for learning 
  uchar max[CHANNELS];         // High side of box boundary 
  uchar min[CHANNELS];         // Low side of box boundary 
  int   t_last_update;         // Allow us to kill stale entries 
  int   stale;                 // max negative run (longest period of inactivity) 
 
  CodeElement& operator=( CodeElement& ce ) { 
    for( i=0; i<CHANNELS; i++ ) { 
      learnHigh[i] = ce.learnHigh[i]; 
      learnLow[i]  = ce.learnLow[i]; 
      min[i]       = ce.min[i]; 
      max[i]       = ce.max[i]; 
    } 
    t_last_update = ce.t_last_update; 
    stale         = ce.stale; 
  } 
  CodeElement( CodeElement& ce ) { *this = ce; } 
}; 

Each codebook entry consumes four bytes per channel plus two integers, or (4 * CHANNELS + 4 + 4) bytes 
(20 bytes when we use three channels). We may set CHANNELS to any positive number equal to or less 



than the number of color channels in an image, but it is usually set to either 1 (“Y,” or brightness only) or 3 
(YUV, HSV). In this structure, for each channel, max and min are the boundaries of the codebook box. 
The parameters learnHigh[] and learnLow[] are the thresholds that trigger generation of a new 
code element. Specifically, a new code element will be generated if a new pixel is encountered whose 
values do not lie between min – learnLow and max + learnHigh in each of the channels. The 
time to last update (t_last_update) and stale are used to enable the deletion of seldom-used 
codebook entries created during learning. Now we can proceed to investigate the functions that use this 
structure to learn dynamic backgrounds. 

14BLearning the background 
We will have one CodeBook of CodeElements for each pixel. We will need an array of such 
codebooks that is equal in length to the number of pixels in the images we’ll be learning. For each pixel, 
updateCodebook() is called for as many images as are sufficient to capture the relevant changes in the 
background. Learning may be updated periodically throughout, and clearStaleEntries() can be 
used to learn the background in the presence of (small numbers of) moving foreground objects. This is 
possible because the seldom-used “stale” entries induced by a moving foreground will be deleted. The 
interface to updateCodebook() is as follows: 

// Updates the codebook entry with a new data point  
// NOTES: 
//      cbBounds must be of length equal to numChannels 
// 
int updateCodebook(       // return CodeBook index 
  cv::Vec3b& p,           // incoming YUV pixel 
  CodeBook&  c,           // CodeBook for the pixel 
  unsigned*  cbBounds,    // Learning bounds for codebook (Rule of thumb: {10,10,10}) 
  int        numChannels   // Number of color channels we're learning 
) { 
  unsigned int high[3], low[3], n; 
  for( n=0; n<numChannels; n++ ) { 
    high[n] = p[n] + *(cbBounds+n);    if( high[n] > 255 ) high[n] = 255; 
    low[n]  = p[n] - *(cbBounds+n);    if( low[n]  < 0   ) low[n]  = 0; 
  } 
  int matchChannel; 
  // SEE IF THIS FITS AN EXISTING CODEWORD 
  // 
  int i; 
  for( i=0; i<c.size(); i++ ) { 
    matchChannel = 0; 
    for( n=0; n<numChannels; n++ ) { 
      if( // Found an entry for this channel 
       ( c[i]->learnLow[n] <= p[n] ) && ( p[n] <= c[i]->learnHigh[n]) 
      ) 
      matchChannel++; 
    } 
    if( matchChannel == numChannels ) {     // If an entry was found 
      c[i]->t_last_update = c.t; 
 
      // adjust this codeword for the first channel 
      // 
      for( n=0; n<numChannels; n++ ) { 
        if( c[i]->max[n] < p[n] )       c[i]->max[n] = p[n]; 
        else if( c[i]->min[n] > p[n] )  c[i]->min[n] = p[n]; 
      } 
      break; 
    } 
  } 
. . .continued below 



This function grows or adds a codebook entry when the pixel p falls outside the existing codebook boxes. 
Boxes grow when the pixel is within cbBounds of an existing box. If a pixel is outside the cbBounds 
distance from a box, a new codebook box is created. The routine first sets high and low levels to be used 
later. It then goes through each codebook entry to check whether the pixel value p is inside the learning 
bounds of the codebook “box.” If the pixel is within the learning bounds for all channels, then the 
appropriate max or min level is adjusted to include this pixel and the time of last update is set to the 
current timed count c.t. Next, the updateCodebook() routine keeps statistics on how often each 
codebook entry is hit: 

. . . continued from above 
 
  // OVERHEAD TO TRACK POTENTIAL STALE ENTRIES 
  // 
  for( int s=0; s<c.size(); s++ ) { 
    // Track which codebook entries are going stale: 
    // 
    int negRun = c.t - c[s]->t_last_update; 
    if( c[s]->stale < negRun ) c[s]->stale = negRun; 
  } 
 
. . .continued below 

Here, the variable stale contains the largest negative runtime (i.e., the longest span of time during which 
that code was not accessed by the data). Tracking stale entries allows us to delete codebooks that were 
formed from noise or moving foreground objects and hence tend to become stale over time. In the next 
stage of learning the background, updateCodebook() adds a new codebook if needed: 

. . . continued from above 
 
  // ENTER A NEW CODEWORD IF NEEDED 
  // 
  if( i == c.size() ) {          // if no existing codeword found, make one 
    CodeElement ce; 
    for( n=0; n<numChannels; n++ ) { 
      ce->learnHigh[n] = high[n]; 
      ce->learnLow[n]  = low[n]; 
      ce->max[n]       = p[n]; 
      ce->min[n]       = p[n]; 
    } 
    ce->t_last_update = c.t; 
    ce->stale = 0; 
    c.push_back( ce ); 
  } 
. . .continued below 

Finally, updateCodebook() slowly adjusts (by adding 1) the learnHigh and learnLow learning 
boundaries if pixels were found outside of the box thresholds but still within the high and low bounds: 

. . . continued from above 
 
  // SLOWLY ADJUST LEARNING BOUNDS 
  // 
  for( n=0; n<numChannels; n++ ) { 
    if( c[i]->learnHigh[n] < high[n]) c[i]->learnHigh[n] += 1; 
    if( c[i]->learnLow[n]  > low[n] ) c[i]->learnLow[n]  -= 1; 
  } 
  return i; 
} 

The routine concludes by returning the index of the modified codebook. We’ve now seen how codebooks 
are learned. In order to learn in the presence of moving foreground objects and to avoid learning codes for 
spurious noise, we need a way to delete entries that were accessed only rarely during learning. 



15BLearning with moving foreground objects 
The following routine, clearStaleEntries(), allows us to learn the background even if there are 
moving foreground objects: 

// During learning, after you've learned for some period of time, 
// periodically call this to clear out stale codebook entries 
//  
//   
int clearStaleEntries(     // return number of entries cleared 
  CodeBook &c              // Codebook to clean up 
){ 
  int staleThresh = c.t>>1; 
  int *keep = new int[c.size()]; 
  int keepCnt = 0; 
 
  // SEE WHICH CODEBOOK ENTRIES ARE TOO STALE 
  // 
  for( int i=0; i<c.size(); i++ ){ 
    if(c[i]->stale > staleThresh) 
      keep[i] = 0; // Mark for destruction 
    else 
    { 
      keep[i] = 1; // Mark to keep 
      keepCnt += 1; 
    } 
  } 
 
  // move the entries we want to keep to the front of the vector and then 
  // truncate to the correct length once all of the good stuff is saved. 
  // 
  int k = 0; 
  int numCleared = 0 
  for( int ii=0; ii<c.size(); ii++ ) { 
    if( keep[ii] ) { 
      c[k] = c[ii];  
      // We have to refresh these entries for next clearStale 
      cc[k]->t_last_update = 0; 
      k++; 
    } else { 
      numCleared++; 
    } 
  } 
  c.resize( keepCnt ); 
  delete[] keep; 
 
  return numCleared; 
} 

The routine begins by defining the parameter staleThresh, which is hardcoded (by a rule of thumb) to 
be half the total running time count, c.t. This means that, during background learning, if codebook entry 
i is not accessed for a period of time equal to half the total learning time, then i is marked for deletion 
(keep[i] = 0). The vector keep[] is allocated so that we can mark each codebook entry; hence it is 
c.size() long. The variable keepCnt counts how many entries we will keep. After recording which 
codebook entries to keep, we go through the entries and move the ones we want to the front of the vector in 
the codebook. Finally, we resize that vector so that all of the stuff hanging off of the end is chopped off. 



16BBackground differencing: Finding foreground objects 
We’ve seen how to create a background codebook model and how to clear it of seldom-used entries. Next 
we turn to background_diff(), where we use the learned model to segment foreground pixels from 
the previously learned background: 

// Given a pixel and a codebook, determine if the pixel is 
// covered by the codebook 
//  
// NOTES: 
// minMod and maxMod must have length numChannels, 
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and 
//      one max threshold per channel. 
// 
uchar backgroundDiff(     // return 0 => background, 255 => foreground 
  cv::Vec3b& p,            // Pixel (YUV) 
  CodeBook&  c,            // Codebook 
  int        numChannels,  // Number of channels we are testing 
  int*       minMod,       // Add this (possibly negative) number onto max level 
                           //   when determining if new pixel is foreground 
  int*       maxMod        // Subtract this (possibly negative) number from min level 
                           //   when determining if new pixel is foreground 
) { 
  int matchChannel; 
 
  // SEE IF THIS FITS AN EXISTING CODEWORD 
  // 
  for( int i=0; i<c.size(); i++ ) { 
    matchChannel = 0; 
    for( int n=0; n<numChannels; n++ ) { 
      if(  
        (c[i]->min[n] - minMod[n] <= p[n] ) && (p[n] <= c[i]->max[n] + maxMod[n]) 
      ) { 
        matchChannel++; // Found an entry for this channel 
      } else { 
        break; 
      } 
    } 
    if(matchChannel == numChannels) { 
      break; // Found an entry that matched all channels 
    } 
  } 
  if( i >= c.size() ) return 0; 
  return 255; 
} 

The background differencing function has an inner loop similar to the learning routine 
updateCodebook, except here we look within the learned max and min bounds plus an offset threshold, 
maxMod and minMod, of each codebook box. If the pixel is within the box plus maxMod on the high side 
or minus minMod on the low side for each channel, then the matchChannel count is incremented. When 
matchChannel equals the number of channels, we’ve searched each dimension and know that we have a 
match. If the pixel is not within a learned box, 255 is returned (a positive detection of foreground); 
otherwise, 0 is returned (the pixel is background). 

The three functions updateCodebook(), clearStaleEntries(), and backgroundDiff() 
constitute a codebook method of segmenting foreground from learned background. 

17BUsing the Codebook Background Model 
To use the codebook background segmentation technique, typically we take the following steps: 



1. Learn a basic model of the background over a few seconds or minutes using updateCodebook(). 
2. Clean out stale entries with clearStaleEntries(). 
3. Adjust the thresholds minMod and maxMod to best segment the known foreground. 
4. Maintain a higher-level scene model (as discussed previously). 
5. Use the learned model to segment the foreground from the background via backgroundDiff(). 
6. Periodically update the learned background pixels. 
7. At a much slower frequency, periodically clean out stale codebook entries with 

clearStaleEntries(). 

18BA Few More Thoughts on Codebook Models 
In general, the codebook method works quite well across a wide number of conditions, and it is relatively 
quick to train and to run. It doesn’t deal well with varying patterns of light—such as morning, noon, and 
evening sunshine—or with someone turning lights on or off indoors. This type of global variability can be 
taken into account by using several different codebook models, one for each condition, and then allowing 
the condition to control which model is active. 

5BConnected Components for Foreground Cleanup 
Before comparing the averaging method to the codebook method, we should pause to discuss ways to clean 
up the raw segmented image using connected-components analysis. This form of analysis is useful for 
noisy input mask images, and such noise is more the rule than the exception. The basic idea behind the 
method is to use the morphological operation open to shrink areas of small noise to 0 followed by the 
morphological operation close to rebuild the area of surviving components that was lost in opening. 
Thereafter, we find the “large enough” contours of the surviving segments and can take statistics of all such 
segments. Finally, we retrieve either the largest contour or all contours of size above some threshold. In the 
routine that follows, we implement most of the functions that you would want for this connected 
component analysis: 

• Whether to approximate the surviving component contours by polygons or by convex hulls 
• Setting how large a component contour must be in order not to be deleted 
• Returning the bounding boxes of the surviving component contours 
• Returning the centers of the surviving component contours 

The connected components header that implements these operations is as follows: 
// This cleans up the foreground segmentation mask derived from calls 
// to backgroundDiff 
// 
void findConnectedComponents( 
  cv::Mat&   mask,               // Is a grayscale (8-bit depth) "raw" mask image that 
                                 // will be cleaned up 
  int        poly1_hull0 = 1,    // If set, approximate connected component by 
                                 //  (DEFAULT) polygon, or else convex hull (0) 
  float      perimScale  = 4,    // Len = image (width+height)/perimScale. If contour 
                                 //  len < this, delete that contour (DEFAULT: 4) 
  vector<cv::Rect>&  bbs         // Reference to bounding box rectangle return vector 
  vector<cv::Point>& centers     // Reference to contour centers return vector 
 ); 

The function body is listed below. First, we do morphological opening and closing in order to clear out 
small pixel noise, after which we rebuild the eroded areas that survive the erosion of the opening operation. 
The routine takes two additional parameters, which here are hardcoded via #define. The defined values 
work well, and you are unlikely to want to change them. These additional parameters control how simple 



the boundary of a foreground region should be (higher numbers are more simple) and how many iterations 
the morphological operators should perform; the higher the number of iterations, the more erosion takes 
place in opening before dilation in closing.F

11
F More erosion eliminates larger regions of blotchy noise at the 

cost of eroding the boundaries of larger regions. Again, the parameters used in this sample code work well, 
but there’s no harm in experimenting with them if you like: 

// polygons will be simplified using DP algorithm with ‘epsilon’ a fixed  
// fraction of the polygons length. This number is that divisor. 
// 
#define DP_EPSILON_DENOMINATOR 20.0 
 
// How many iterations of erosion and/or dilation there should be 
// 
#define CVCLOSE_ITR 1 

We now discuss the connected-component algorithm itself. The first part of the routine performs the 
morphological open and closing operations: 

void findConnectedComponents( 
  cv::Mat&   mask, 
  int        poly1_hull0, 
  float      perimScale, 
  vector<cv::Rect>&  bbs, 
  vector<cv::Point>& centers 
) { 
 
  // CLEAN UP RAW MASK 
  // 
  cv::morphologyEx(  
    mask, mask, cv::MOP_OPEN,  cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR  
  ); 
  cv::morphologyEx(  
    mask, mask, cv::MOP_CLOSE, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR  
  ); 

Now that the noise has been removed from the mask, we find all contours: 
  // FIND CONTOURS AROUND ONLY BIGGER REGIONS 
  // 
  vector< vector<cv::Point> > contours_all; // all contours found 
  vector< vector<cv::Point> > contours;     // just the ones we want to keep 
  cv::findContours(   
    mask, 
    contours_all,  
    CV_RETR_EXTERNAL,  
    CV_CHAIN_APPROX_SIMPLE 
  ); 

Next, we toss out contours that are too small and approximate the rest with polygons or convex hulls: 
  for(  
    vector< vector<cv::Point> >::iterator c = contours_all.begin(); 
    c != contours.end(); 
    ++c  
  ) { 
 
    // length of this contour 
    // 
    int len = cv::arcLength( *c, true ); 
 
    // length threshold a fraction of image perimeter 

                                                           
11 Observe that the value CVCLOSE_ITR is actually dependent on the resolution. For images of extremely high 
resolution, leaving this value set to 1 is not likely to yield satisfactory results. 



    //    
    double q = (mask->height + mask->width) / DP_EPSILON_DENOMINATOR; 
 
    if( len >= q ) {        // If the contour is long enough to keep... 
      vector<cv::Point> c_new; 
      if( poly1_hull0 ) {   // If the caller wants results as reduced polygons... 
        cv::approxPolyDP( *c, c_new, len/20.0, true ); 
      } else {              // Convex Hull of the segmentation 
        Cv::convexHull( *c, c_new ); 
      } 
      contours.push_back(c_new ); 
    } 
  } 

In the preceding code, we use the Douglas-Peucker approximation algorithm to reduce polygons (if the user 
has not asked us to just return convex hulls). All this processing yields a new list of contours. Before 
drawing the contours back into the mask, we define some simple colors to draw: 

  // Just some convenience variables 
  const cv::Scalar CVX_WHITE   = cv::RGB(0xff,0xff,0xff); 
  const cv::Scalar CVX_BLACK   = cv::RGB(0x00,0x00,0x00); 

We use these definitions in the following code, where we first analyze each of the contours separately, then 
zero out the mask and draw the whole set of clean contours back into the mask: 

 
  // CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES 
  // 
  int idx = 0; 
  cv::Moments moments;  
  cv::Mat scratch = mask.clone(); 
  for(  
    vector< vector<cv::Point> >::iterator c = contours.begin();  
    c != contours.end;  
    c++, idx++  
  ) { 
 
    cv::drawContours( scratch, contours, idx, CVX_WHITE, CV_FILLED ); 
     
    // Find the center of each contour 
    // 
    moments = cv::moments( scratch, true ); 
    cv::Point p; 
    p.x = (int)( moments.m10 / moments.m00 ); 
    p.y = (int)( moments.m01 / moments.m00 ); 
    centers.push_back(p); 
 
    bbs.push_back( cv::boundingRect(c) ); 
 
    Scratch.setTo( 0 ); 
  } 
 
  // PAINT THE FOUND REGIONS BACK INTO THE IMAGE 
  // 
  mask.setTo( 0 ); 
  cv::drawContours( mask, contours, -1, CVX_WHITE );  
} 

That concludes a useful routine for creating clean masks out of noisy raw masks 

19BA Quick Test 
We start with an example to see how this really works in an actual video. Let’s stick with our video of the 
tree outside of the window. Recall ( XFigure 9-1X) that at some point in time, a hand passes through the scene. 



One might expect that we could find this hand relatively easily with a technique such as frame differencing 
(discussed previously in its own section). The basic idea of frame differencing was to subtract the current 
frame from a “lagged” frame and then threshold the difference. 

Sequential frames in a video tend to be quite similar. Hence one might expect that, if we take a simple 
difference of the original frame and the lagged frame, we’ll not see too much unless there is some 
foreground object moving through the scene.F

12
F But what does “not see too much” mean in this context? 

Really, it means “just noise.” Thus, in practice the problem is sorting out that noise from the signal when a 
foreground object does come along. 

To understand this noise a little better, first consider a pair of frames from the video in which there is no 
foreground object—just the background and the resulting noise. 

X  

Figure 9-6X shows a typical frame from such a video (upper-left) and the previous frame (upper-right). The 
figure also shows the results of frame differencing with a threshold value of 15 (lower-left). You can see 
substantial noise from the moving leaves of the tree. Nevertheless, the method of connected components is 
able to clean up this scattered noise quite wellF

13
F (lower-right). This is not surprising, because there is no 

                                                           
12 In the context of frame differencing, an object is identified as “foreground” mainly by its velocity. This is reasonable 
in scenes that are generally static or in which foreground objects are expected to be much closer to the camera than 
background objects (and thus appear to move faster by virtue of the projective geometry of cameras). 

13 The size threshold for the connected components has been tuned to give zero response in these empty 
frames. The real question then is whether or not the foreground object of interest (the hand) survives 



reason to expect much spatial correlation in this noise and so its signal is characterized by a large number 
of very small regions. 

 

Figure 9-6: Frame differencing: a tree is waving in the background in the current (upper-left) and previous 
(upper-right) frame images; the difference image (lower-left) is completely cleaned up (lower-right) by the 

connected-components method 

                                                                                                                                                                             
pruning at this size threshold. We will see 

(  

Figure 9-7) that it does so nicely. 



Now consider the situation in which a foreground object (our ubiquitous hand) passes through the view of 

the imager. X  

Figure 9-7X shows two frames that are similar to those in 

X  

Figure 9-6X except that now there is a hand moving across from left to right. As before, the current frame 
(upper-left) and the previous frame (upper-right) are shown along with the response to frame differencing 
(lower-left) and the fairly good results of the connected-component cleanup (lower-right). 

 



 

Figure 9-7: Frame difference method of detecting a hand, which is moving left to right as the foreground 
object (upper two panels); the difference image (lower-left) shows the “hole” (where the hand used to be) 
toward the left and its leading edge toward the right, and the connected-component image (lower-right) 

shows the cleaned-up difference 

We can also clearly see one of the deficiencies of frame differencing: it cannot distinguish between the 
region from where the object moved (the “hole”) and where the object is now. Furthermore, in the overlap 
region, there is often a gap because “flesh minus flesh” is 0 (or at least below threshold). 

Thus, we see that using connected components for cleanup is a powerful technique for rejecting noise in 
background subtraction. As a bonus, we were also able to glimpse some of the strengths and weaknesses of 
frame differencing. 

6BComparing Two Background Methods 
We have discussed two classes of background modeling techniques so far in this chapter: the average 
distance method (and its variants) and the codebook method. You might be wondering which method is 
better, or, at least, when you can get away with using the easy one. In these situations, it’s always best to 
just do a straight bake offF

14
F between the available methods. 

We will continue with the same tree video that we’ve been using throughout the chapter. In addition to the 
moving tree, this film has a lot of glare coming off a building to the right and off portions of the inside wall 
on the left. It is a fairly challenging background to model. 

                                                           
14 For the uninitiated, “bake off” is actually a bona fide term used to describe any challenge or comparison of multiple 
algorithms on a predetermined data set. 



In X  

XFigure 9-8X, we compare the average difference method at top against the codebook method at bottom; on 
the left are the raw foreground images and on the right are the cleaned-up connected components. You can 

see that the average difference method leaves behind a sloppier mask and breaks the hand into two 
components. This is not so surprising; in XFigure 9-2 X, we saw that using the average difference from the 

mean as a background model often included pixel values associated with the hand value (shown as a dotted 
line in that figure). Compare this with 

X  

Figure 9-5X, where codebooks can more accurately model the fluctuations of the leaves and branches and so 
more precisely identify foreground hand pixels (dotted line) from background pixels. 

X  



Figure 9-8X confirms not only that the background model yields less noise but also that connected 
components can generate a fairly accurate object outline. 

 

Figure 9-8: With the averaging method (top row), the connected-components cleanup knocks out the fingers 
(upper-right); the codebook method (bottom row) does much better at segmentation and creates a clean 

connected-component mask (lower-right) 

7BOpenCV Background Subtraction Encapsulation 
Thus far, we have looked in detail at how you might implement your own basic background subtraction 
algorithms. The advantage of that approach is that it is much more clear what is going on and how 
everything is working. The disadvantage is that as time progresses, newer and better methods are developed 
which, though rooted in the same fundamental ideas, become sufficiently complicated so that you would 
like to be able to regard them as “black boxes” and just use them without getting too deep in the gory 
details. 

To this end, OpenCV now provides a genericized class-based interface to background subtraction. At this 
time, there are two implementations which use this interface, but as time progresses, there are expected to 
be more. In this section we will first look at the interface in its generic form, then investigate the two 
implementations which are available. Both implementations are based on a mixture of gaussians (MOG) 
approach, which essentially takes the statistical modeling concept we introduced for our simplest 
background modeling scheme (see “XAccumulating Means, Variances, and CovariancesX”) and marries it 
with the multimodal capability of the codebook scheme (the one developed in “XA More Advanced 
Background Subtraction MethodX”). Both of these MOG methods are 21st century algorithms suitable for 
many practical day-to-day situations. 

20BThe cv::BackgroundSubtractor Base Class 
The cv::BackgroundSubtractor (abstract) base classF

15
F specifies only the minimal number of 

necessary methods. It has the following definition: 
class cv::BackgroundSubtractor : public Algorithm { 
 

                                                           
15 Actually, as shown below, this base class is not literally abstract (i.e., it does not contain any pure virtual functions). 
However, it is always used in the library as if it were abstract; meaning that though the compiler will let you instantiate 
an instance of cv::BackgroundSubtractor there is no purpose in, nor meaning to, doing so. We considered 
coining the phrase “relatively abstract” for the circumstance, but later thought better of it. 



public: 
  virtual ~BackgroundSubtractor(); 
  virtual void apply( 
    cv::InputArray  image,  
    cv::OutputArray fgmask,  
    double          learningRate = 0 
  ); 
  virtual void getBackgroundImage( 
    cv::OutputArray backgroundImage 
  ) const; 
}; 

As you can see, after the destructor, there are only two methods definedF

16
F. The first is the apply() 

function, which in this context is used to both ingest a new image and to produce the calculated foreground 
mask for that image. The second function produces an image representation of the background. This image 
is primarily for visualization and debugging; after all there is much more information associated with any 
single pixel in the background than just a color. As a result the image produced by 
getBackgroundImage() can only be a partial presentation of the information that exists in the 
background model. 

One thing that might seem to be a glaring omission is the absence of a method that accumulates 
background images for training. The reason for this is that there came to be (relative) consensus in the 
academic literature that any background subtraction algorithm that was not essentially continuously 
training was an undesirable algorithm. The reasons for this are many, with the most obvious of which being 
the effect of gradual illumination change on a scene (e.g., as the sun rises and sets outside the window). The 
more subtle issues arise from the fact that in many practical scenes there is not opportunity to expose the 
algorithm to a prolonged period in which no foreground objects are present. Similarly, in many cases, 
things that seem to be background for an extended period (such as a parked car) might finally move, 
leaving a permanent foreground “hole” at the location of their absence. For these reasons, essentially all 
modern background subtraction algorithms do not distinguish between training and running modes; rather, 
they continuously train and build models in which those things that are seen rarely (and can thus be 
understood to be foreground) are removed and those things that are seen a majority of the time (which are 
understood to be the background) are retained. 

21BKadewTraKuPong and Bowden Method 
The first of the available algorithms brings us several new capabilities which address real-world challenges 
in background subtraction. These are: a multimodal model, continuous online training, two separate 
(automatic) training modes that improve initialization performance, and explicit detection and rejection of 
shadows [KaewTraKulPong2001]. All of this is largely invisible to you, the user. Not unexpectedly, 
however, this algorithm does have some parameters which you may want to tune to your particular 
application. They are the history, the number of Gaussian mixtures, the background ratio, and the noise 
strength.F

17 

                                                           
16 You will also note that there is no constructor at all (other than the implied default constructor). We will see that the 
construction of the subclasses of cv::BackgroundSubtractor will be the things we actually want to create, so 
they provide their own construction scheme. 
17 If you find yourself looking up the citation given for this algorithm, the first three parameters—history, number of 

Gaussian mixtures, and background ratio—are referred to in the paper as: L, K, and T respectively. The last, and noise 

strength, can be thought of as the initialization value of  for a newly created component. 



The first of these, the history, is the point at which the algorithm will switch out of the initialization mode 

and into its nominal run mode. The default value for this parameter is 200 frames. The number of Gaussian 

mixtures is the number of Gaussian components to the overall mixture model that is used to approximate 

the background in any given pixel. The default value for this parameter is 5.  

Given some number of Gaussian components to the model, each will have a weight. This weight indicates 
the portion of the observed values of a pixel that are explained by that particular component of the model. 
They are not all necessarily “background,” some are likely to be foreground objects which have passed by 
at one point or another. Ordering the components by weight, the ones which are included as true 

background are the first b of them, where b is the minimum number required to “explain” some fixed 

percentage of the total model. This percentage is called the background ratio, and its default value is 0.7 (or 

70%). Thus, by way of example, if there are five components, with weights 0.40, 0.25, 0.20, 0.10, and 

0.05, then b would be three, because it required the first three  to exceed the required 

background ratio of 0.70.  

The last parameter is the noise strength. This parameter sets the uncertainty assigned to a new Gaussian 
component when it is created. New components are created whenever new unexplained pixels appear, 
either because not all components have been assigned yet, or because a new pixel value has been observed 
which is not explained by any existing component (in which case the least valuable existing component is 
recycled to make room for this new information). In practice, the effect of increasing the noise strength is 
to allow the given number of Gaussian components to “explain” more. Of course, the tradeoff is that they 
will tend to explain perhaps even more than has been observed. The default value for the noise strength is 

15 (measured in units of 0‐255 pixel intensities). 



29Bcv::createBackgroundSubtractorMOG() and cv::BackgroundSubtractorMOG 

When we would like to construct an algorithm object which actually implements a specific form of 
background subtraction, we rely on a creator function to generate a cv::Ptr<> smart pointer to an 
instance of the algorithm object. The algorithm object cv::BackgroundSubtractorMOG  is a 
subclass of the cv::BackgroundSubtractor base class. In the case of 
cv::BackgroundSubtractorMOG that function is 
cv::createBackgroundSubtractorMOG(): 

cv::Ptr<cv::BackgroundSubtractorMOG> cv::createBackgroundSubtractorMOG( 
  int    history         = 200,      // Length of initialization history 
  int    nmixtures       = 5,        // Number of Gaussian components in mixture 
  double backgroundRatio = 0.7,      // Keep components which explain this fraction 
  double noiseSigma      = 0         // Start uncertainty for new components 
); 

Once you have your background subtractor object, you can then proceed to make use of its apply() 
method.  The default values used by cv::createBackgroundSubtractorMOG() should serve for 
the majority of cases.  The last value is actually the one you are most likely to want to experiment with, the 
value of noiseSigma, in most cases, should be set to a larger value, 5, 10, or even 15.  

22BZivkovic Method 
This second background subtraction method is in many ways similar to the first, in that it also uses a 
Gaussian mixture model to model the distribution of colors observed in any particular pixel. One 
particularly notable distinction between the two algorithms is that the Zivkovic method does not use a fixed 
number of Gaussian components; rather, it adapts the number dynamically to give the best overall 
explanation of the observed distribution [Zivkovic04, Zivkovic06]. This has the downside that the more 
components there are, the more compute resources are consumed updating and comparing with the model. 
On the other hand, it has the upside that the model is capable of potentially much higher fidelity. 

This algorithm has some parameters in common with the KB method, but introduces many new parameters 
as well. Fortunately, only two of the parameters are especially important, while the others are ones which 
we can mostly leave at their default values. The two particularly critical parameters are the history (also 
called the decay parameter) and the variance threshold.  

The first of these, the history, sets the amount of time over which some “experience” of a pixel color will 
last. Essentially, it is the time it takes for the influence of that pixel to decay away to nothing. The default 

value for this period is 500 frames. That value is approximately the time before a measurement is 

“forgotten.”  Internally to the algorithm, however, it is slightly more accurate to think of this as an 

exponential decay parameter whose value is   (i.e., the influence of a measurement 
decays like . 

The second parameter, the variance threshold sets the confidence level with which a new pixel 
measurement must be within, relative to an existing Gaussian mixture component, to be considered part of 
that component. The units of the variance threshold are in squared-Mahalanobis distance. This means 
essentially that if you would include a pixel that is three sigma from the center of a component into that 



component, then you would set the variance threshold to .F

18
F  The default value for this 

parameter is actually . 

30Bcv::createBackgroundSubtractorMOG2() and cv::BackgroundSubtractorMOG2 

Analogous to the previous cv::BackgroundSubtractorMOG case, the Zivkovic method is 
implemented by the object: cv::BackgroundSubtractorMOG2, which is another subclass of the 
cv::BackgroundSubtractor base class. As before, these objects are generated by an associated 
creator function: cv::createBackgroundSubtractorMOG2(), which not only allocates the 
algorithm object, but also returns a smart pointer to the allocated instance. 

cv::Ptr<cv::BackgroundSubtractorMOG2> cv::createBackgroundSubtractorMOG2( 
  int   history          = 500,    // Length of history 
  float varThreshold     = 16,     // Threshold decides if new pixel is “explained” 
  bool  bShadowDetection = true    // true if MOG2 should try to detect shadows 
); 

The history and variance threshold parameters history and varThreshold are just as described 
above. The new parameter bShadowDetection allows optional shadow detection and removal to be 
turned on. When operational, it functions much like the similar functionality in the KB algorithm but, as 
you would expect, slows the algorithm down slightly. 

 If you want to modify any of the values you set when you called 
cv::createBackgroundSubtractorMOG2(), there are getter/setter methods which can be used to 
change not only these values, but a number of the more subtle parameters of the algorithm as well. 

int    cv::createBackgroundSubtractorMOG2::getHistory();                      // Get 
void   cv::createBackgroundSubtractorMOG2::setHistory( int val );             // Set 
 
int    cv::createBackgroundSubtractorMOG2::getNMixtures();                    // Get 
void   cv::createBackgroundSubtractorMOG2::setNMixtures( int val );           // Set 
 
double cv::createBackgroundSubtractorMOG2::getBackgroundRatio();              // Get 
void   cv::createBackgroundSubtractorMOG2::setBackgroundRatio( double val );  // Set 
 
double cv::createBackgroundSubtractorMOG2::getVarThresholdGen();              // Get 
void   cv::createBackgroundSubtractorMOG2::setVarThresholdGen( double val );  // Set 
 
double cv::createBackgroundSubtractorMOG2::getVarInt();                       // Get 
void   cv::createBackgroundSubtractorMOG2::setVarInt(double val );            // Set 
 
double cv::createBackgroundSubtractorMOG2::getComplexityReductionThreshold(); // Get 
void   cv::createBackgroundSubtractorMOG2::setComplexityReductionThreshold(  
                                             double val  
                                           );                                 // Set 
 
bool   cv::createBackgroundSubtractorMOG2::getDetectShadows();                // Get 
void   cv::createBackgroundSubtractorMOG2::setDetectShadows( bool val );      // Set 
 
double cv::createBackgroundSubtractorMOG2::getShadowThreshold();              // Get 
void   cv::createBackgroundSubtractorMOG2::setShadowThreshold( double val );  // Set  
 

                                                           
18 Recall that the Mahalanobis distance is essentially a z-score (i.e., a measurement of how far you are from the center 
of a Gaussian distribution—measured in units of that distribution’s uncertainty) which takes into account the 
complexities of a distribution in an arbitrary number of dimensions with arbitrary covariance matrix . 

 
You can also see why computing the squared Mahalanobis distance is more natural, which is why you provide the 
threshold as  rather than z. 



int    cv::createBackgroundSubtractorMOG2::getShadowValue();                  // Get 
void   cv::createBackgroundSubtractorMOG2::setShadowValue( int val );         // Set 

The meaning of these functions is as follows: setNMixtures() resets the length of the history that you 
assigned with the constructor. setNMixtures() sets the maximum number of Gaussian components 

any pixel model can have (the default is 5). Increasing this improves model fidelity at the cost of runtime. 

setBackgroundRatio() sets the background ratio, which has the same meaning as in the KB 

algorithmF

19
F (default for this algorithm is 0.90).  

The function setVarThresholdGen() controls when a new component of the muli-Gaussian model 
will be created.  If the squared Mahalanobis distance from the center of the nearest component of the model 
exceeds this threshold for generation, then a new component will be added centered on the new pixel value. 
The default value for this parameter is . Similarly, the function setVarInit() controls the 
variance threshold (described earlier in this section), which is the initial variance assigned to a new 
Gaussian component of a model. Don’t forget that both the threshold for generation and the new model 
variance are squared distances, so typical values will be 9, 16, 25, etc. (not 3, 4, or 5). 

The setComplexityReductionThreshold() function controls what Zivkovic et al. call the 
complexity reduction prior. It is related to the number of samples needed to accept that a component 
actually exists. The default value for this parameter is 0.05. Probably the most important thing to know 
about this value is that if you set it to 0.00, then the entire algorithm simplifies substantiallyF

20
F (both in 

terms of speed and result quality). 

The remaining functions set variables associated with how shadows are handled.  The 
setDetectShadows() function simply allows you to turn on and off the shadow detection behavior of 
the algorithm (effectively overriding whatever value you gave to bShadowDetection when you called 
the algorithm constructor).  If shadow detection is turned on, you can set the threshold that is used to 
determine if a pixel is a shadow using the setShadowThreshold() function. The interpretation of the 
shadow threshold is that it is the relative brightness threshold for a pixel to be considered a shadow relative 

to something which is already in the model (e.g., if the shadow threshold is 0.60, then any pixel which has 

the same color as an existing component and is between 0.60 and 1.0 times as bright is considered a 

                                                           
19 As a good rule of thumb, you can expect that a pixel whose value is not described by the existing model and which 
stays approximately constant for a number of frames equal to the history times the background ratio, will be updated in 
the model to become part of the background. 
20 For a more technical definition of “simplifies substantially,” what really happens is that Zivkovic’s algorithm 
simplifies into something very similar to the algorithm of Stauffer and Grimson. We do not discuss that algorithm here 
in detail, but it is cited in Zivkovic’s paper and was a relatively standard benchmark relative to which Zivkovic’s 
algorithm was an improvement. 



shadow). The default value for this parameter is 0.50. Finally, the setShadowValue() function is used 

if you want to change the numerical value assigned to shadow pixels in the foreground mask.  By default, 
background will be assigned the value of 0, foreground the value of 255, and shadow pixels the value of 
127.  You can change the value assigned to shadow pixels using setShadowValue() to any value 
(except 0 or 255). 

8BSummary  
In this chapter, we looked at the specific problem of background subtraction.  This problem plays a major 
role in a vast array of practical computer vision applications, ranging from industrial automation, to 
security, to robotics.  Starting with the basic theory of background subtraction, we developed two basic 
models of how such subtraction could be accomplished based on simple statistical methods.  From there we 
showed how connected component analysis could be used to increase the utility of background subtraction 
results and compared the two basic methods we had developed. 

We concluded the chapter by looking at the more advanced background subtraction methods supplied by 
the OpenCV library as complete implementations.  These methods are similar in spirit to the simpler 
methods we developed in detail at the beginning of the chapter, but contain improvements which make 
them suitable for more challenging real-world applications. 

9BExercises 
1. Using cv::accumulateWeighted(), re-implement the averaging method of background 

subtraction. In order to do so, learn the running average of the pixel values in the scene to find the 
mean and the running average of the absolute difference (cv::absdiff()) as a proxy for the 
standard deviation of the image. 

2. Shadows are often a problem in background subtraction because they can show up as a foreground 
object. Use the averaging or codebook method of background subtraction to learn the background. 
Have a person then walk in the foreground. Shadows will “emanate” from the bottom of the 
foreground object. 
a) Outdoors, shadows are darker and bluer than their surround; use this fact to eliminate them. 
b) Indoors, shadows are darker than their surround; use this fact to eliminate them. 

3. The simple background models presented in this chapter are often quite sensitive to their threshold 
parameters. In Chapter 10, we’ll see how to track motion, and this can be used as a reality check on the 
background model and its thresholds. You can also use it when a known person is doing a “calibration 
walk” in front of the camera: find the moving object and adjust the parameters until the foreground 
object corresponds to the motion boundaries. We can also use distinct patterns on a calibration object 
itself (or on the background) for a reality check and tuning guide when we know that a portion of the 
background has been occluded. 
a) Modify the code to include an auto-calibration mode. Learn a background model and then put a 

brightly colored object in the scene. Use color to find the colored object and then use that object to 
automatically set the thresholds in the background routine so that it segments the object. Note that 
you can leave this object in the scene for continuous tuning. 

b) Use your revised code to address the shadow-removal problem of exercise X2X. 
4. Use background segmentation to segment a person with arms held out. Investigate the effects of the 

different parameters and defaults in the cv::findContours() routine. Show your results for 
different settings of the contour approximation method: 



a) cv::CHAIN_APPROX_NONE  
b) cv::CHAIN_APPROX_SIMPLE  
c) cv::CHAIN_APPROX_TC89_L1 
d) cv::CHAIN_APPROX_TC89_KCOS 

5. Although it might be a little slow, try running background segmentation when the video input is first 
pre-segmented by using cv::pyrMeanShiftFiltering(). That is, the input stream is first 
mean-shift segmented and then passed for background learning—and later testing for foreground—by 
the codebook background segmentation routine. 
a) Show the results compared to not running the mean-shift segmentation. 
b) Try systematically varying the maximum pyramid level (max_level), spatial radius (sp), and 

color radius (cr) of the mean-shift segmentation. Compare those results. 
6. Set up a camera in your room or looking out over a scene. Use 

cv::BackgroundSubtractorMOG to “watch” your room or scene over several days.  
a) Detect lights on and off by looking at very instantaneous change in brightness. 
b) Segment out (save instances to a file) of fast changing objects (for example people) from medium 

changing objects (for example chairs).  
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