

Preface

This book provides a working guide to the Open Source Computer Vision Library (OpenCV) and also
provides a general background to the field of computer vision sufficient to use OpenCV effectively.

Purpose
Computer vision is a rapidly growing field, partly as a result of both cheaper and more capable cameras,
partly because of affordable processing power, and partly because vision algorithms are starting to mature.
OpenCV itself has played a role in the growth of computer vision by enabling thousands of people to do
more productive work in vision. With its focus on real-time vision, OpenCV helps students and
professionals efficiently implement projects and jump-start research by providing them with a computer
vision and machine learning infrastructure that was previously available only in a few mature research labs.
The purpose of this text is to:

• Better document OpenCV—detail what function calling conventions really mean and how to use them
correctly.

• Rapidly give the reader an intuitive understanding of how the vision algorithms work.

• Give the reader some sense of what algorithm to use and when to use it.
• Give the reader a boost in implementing computer vision and machine learning algorithms by

providing many working coded examples to start from.

• Provide intuitions about how to fix some of the more advanced routines when something goes wrong.

Simply put, this is the text the authors wished we had in school and the coding reference book we wished
we had at work.

This book documents a tool kit, OpenCV, that allows the reader to do interesting and fun things rapidly in
computer vision. It gives an intuitive understanding as to how the algorithms work, which serves to guide
the reader in designing and debugging vision applications and also to make the formal descriptions of
computer vision and machine learning algorithms in other texts easier to comprehend and remember.

After all, it is easier to understand complex algorithms and their associated math when you start with an
intuitive grasp of how those algorithms work.

Who This Book Is For
This book contains descriptions, working coded examples, and explanations of the computer vision tools
contained in the OpenCV library. As such, it should be helpful to many different kinds of users.

Professionals

For those practicing professionals who need to rapidly implement computer vision systems, the sample
code provides a quick framework with which to start. Our descriptions of the intuitions behind the
algorithms can quickly teach or remind the reader how they work.

Students

As we said, this is the text we wish had back in school. The intuitive explanations, detailed
documentation, and sample code will allow you to boot up faster in computer vision, work on more
interesting class projects, and ultimately contribute new research to the field.

Teachers

Computer vision is a fast-moving field. We’ve found it effective to have the students rapidly cover an
accessible text while the instructor fills in formal exposition where needed and supplements with
current papers or guest lectures from experts. The students can meanwhile start class projects earlier
and attempt more ambitious tasks.

Hobbyists

Computer vision is fun, here’s how to hack it.

We have a strong focus on giving readers enough intuition, documentation, and working code to enable
rapid implementation of real-time vision applications.

What This Book Is Not
This book is not a formal text. We do go into mathematical detail at various points,1 but it is all in the
service of developing deeper intuitions behind the algorithms or to clarify the implications of any
assumptions built into those algorithms. We have not attempted a formal mathematical exposition here and
might even incur some wrath along the way from those who do write formal expositions.

This book is not for theoreticians because it has more of an “applied” nature. The book will certainly be of
general help, but is not aimed at any of the specialized niches in computer vision (e.g., medical imaging or
remote sensing analysis).

That said, it is the belief of the authors that having read the explanations here first, a student will not only
learn the theory better but remember it longer. Therefore, this book would make a good adjunct text to a
theoretical course and would be a great text for an introductory or project-centric course.

About the Programs in This Book
All the program examples in this book are based on OpenCV version 2.5. The code should definitely work
under Linux or Windows and probably under OS-X, too. Source code for the examples in the book can be
fetched from this book’s website (http://www.oreilly.com/catalog/9780596516130). OpenCV can be loaded
from its source forge site (http://sourceforge.net/projects/opencvlibrary).

OpenCV is under ongoing development, with official releases occurring once or twice a year. To keep up to
date with the developments of the library, and for pointers to where to get the very latest updates and
versions, you can visit OpenCV.org, the library’s official website.

Prerequisites
For the most part, readers need only know how to program in C and perhaps some C++. Many of the math
sections are optional and are labeled as such. The mathematics involves simple algebra and basic matrix

1 Always with a warning to more casual users that they may skip such sections.

algebra, and it assumes some familiarity with solution methods to least-squares optimization problems as
well as some basic knowledge of Gaussian distributions, Bayes’ law, and derivatives of simple functions.

The math is in support of developing intuition for the algorithms. The reader may skip the math and the
algorithm descriptions, using only the function definitions and code examples to get vision applications up
and running.

How This Book Is Best Used
This text need not be read in order. It can serve as a kind of user manual: look up the function when you
need it; read the function’s description if you want the gist of how it works “under the hood”. The intent of
this book is more tutorial, however. It gives you a basic understanding of computer vision along with
details of how and when to use selected algorithms.

This book was written to allow its use as an adjunct or as a primary textbook for an undergraduate or
graduate course in computer vision. The basic strategy with this method is for students to read the book for
a rapid overview and then supplement that reading with more formal sections in other textbooks and with
papers in the field. There are exercises at the end of each chapter to help test the student’s knowledge and
to develop further intuitions.

You could approach this text in any of the following ways.

Grab Bag

Go through Chapter 1–Chapter 3 in the first sitting, then just hit the appropriate chapters or sections as
you need them. This book does not have to be read in sequence, except for Chapter 11 and Chapter 12
(Calibration and Stereo).

Good Progress

Read just two chapters a week until you’ve covered Chapter 1–Chapter 12 in six weeks (Chapter 13 is
a special case, as discussed shortly). Start on projects and dive into details on selected areas in the
field, using additional texts and papers as appropriate.

The Sprint

Just cruise through the book as fast as your comprehension allows, covering Chapter 1–Chapter 12.
Then get started on projects and go into details on selected areas in the field using additional texts and
papers. This is probably the choice for professionals, but it might also suit a more advanced computer
vision course.

Chapter 13 is a long chapter that gives a general background to machine learning in addition to details
behind the machine learning algorithms implemented in OpenCV and how to use them. Of course, machine
learning is integral to object recognition and a big part of computer vision, but it’s a field worthy of its own
book. Professionals should find this text a suitable launching point for further explorations of the
literature—or for just getting down to business with the code in that part of the library. This chapter should
probably be considered optional for a typical computer vision class.

This is how the authors like to teach computer vision: Sprint through the course content at a level where the
students get the gist of how things work; then get students started on meaningful class projects while the
instructor supplies depth and formal rigor in selected areas by drawing from other texts or papers in the
field. This same method works for quarter, semester, or two-term classes. Students can get quickly up and
running with a general understanding of their vision task and working code to match. As they begin more
challenging and time-consuming projects, the instructor helps them develop and debug complex systems.
For longer courses, the projects themselves can become instructional in terms of project management.
Build up working systems first; refine them with more knowledge, detail, and research later. The goal in
such courses is for each project to aim at being worthy of a conference publication and with a few project
papers being published subsequent to further (postcourse) work.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, path names, directories, and
Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event handlers,
XMLtags, HTMLtags, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that could be typed literally by the user. Also used for emphasis in code
samples.

Constant width italic

Shows text that should be replaced with user-supplied values.

[…]

Indicates a reference to the bibliography. The standard bibliographic form we adopt in this book is the
use of the last name of the first author of a paper, followed by a two digit representation of the year of
publication. Thus the paper “Self-supervised monocular road detection in desert terrain,” authored by
“H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski” in 2006, would be cited as:
“[Dahlkamp06]”.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
OpenCV is free for commercial or research use, and we have the same policy on the code examples in the
book. Use them at will for homework, for research, or for commercial products. We would very much
appreciate referencing this book when you do, but it is not required. Other than how it helped with your
homework projects (which is best kept a secret), we would like to hear how you are using computer vision
for academic research, teaching courses, and in commercial products when you do use OpenCV to help
you. Again, not required, but you are always invited to drop us a line.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the
book is available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the
most accurate, current information. Try it for free at http://safari.oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list examples and any plans for future editions. You can
access this information at:

http://www.oreilly.com/catalog/9780596516130/

You can also send messages electronically. To be put on the mailing list or request a catalog, send an email
to:

info@oreilly.com

To comment on the book, send an email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly Network, see our
website at:

http://www.oreilly.com

Acknowledgments
A long-term open source effort sees many people come and go, each contributing in different ways. The list
of contributors to this library is far too long to list here, but see the
…/opencv/docs/HTML/Contributors/doc_contributors.html file that ships with OpenCV.

Thanks for Help on OpenCV
Intel is where the library was born and deserves great thanks for supporting this project the whole way
through. Open source needs a champion and enough development support in the beginning to achieve
critical mass. Intel gave it both. There are not many other companies where one could have started and
maintained such a project through good times and bad. Along the way, OpenCV helped give rise to—and
now takes (optional) advantage of—Intel’s Integrated Performance Primitives, which are hand-tuned
assembly language routines in vision, signal processing, speech, linear algebra, and more. Thus the lives of
a great commercial product and an open source product are intertwined.

Mark Holler, a research manager at Intel, allowed OpenCV to get started by knowingly turning a blind eye
to the inordinate amount of time being spent on an unofficial project back in the library’s earliest days. As
divine reward, he now grows wine up in Napa’s Mt. Veeder area. Stuart Taylor in the Performance
Libraries group at Intel enabled OpenCV by letting us “borrow” part of his Russian software team. Richard
Wirt was key to its continued growth and survival. As the first author took on management responsibility at
Intel, lab director Bob Liang let OpenCV thrive; when Justin Rattner became CTO, we were able to put
OpenCV on a more firm foundation under Software Technology Lab—supported by software guru Shinn-
Horng Lee and indirectly under his manager, Paul Wiley. Omid Moghadam helped advertise OpenCV in
the early days. Mohammad Haghighat and Bill Butera were great as technical sounding boards. Nuriel
Amir, Denver Dash, John Mark Agosta, and Marzia Polito were of key assistance in launching the machine
learning library. Rainer Lienhart, Jean-Yves Bouguet, Radek Grzeszczuk, and Ara Nefian were able
technical contributors to OpenCV and great colleagues along the way; the first is now a professor, the
second is now making use of OpenCV in some well-known Google projects, and the others are staffing
research labs and start-ups. There were many other technical contributors too numerous to name.

On the software side, some individuals stand out for special mention, especially on the Russian software
team. Chief among these is the Russian lead programmer Vadim Pisarevsky, who developed large parts of
the library and also managed and nurtured the library through the lean times when boom had turned to bust;
he, if anyone, is the true hero of the library. His technical insights have also been of great help during the
writing of this book. Giving him managerial support and protection in the lean years was Valery Kuriakin,
a man of great talent and intellect. Victor Eruhimov was there in the beginning and stayed through most of
it. We thank Boris Chudinovich for all of the contour components.

Finally, very special thanks go to Willow Garage [WG], not only for its steady financial backing to
OpenCV’s future development but also for supporting one author (and providing the other with snacks and
beverages) during the final period of writing this book.

Thanks for Help on the Book
While preparing this book, we had several key people contributing advice, reviews, and suggestions.
Thanks to John Markoff, Technology Reporter at the New York Times for encouragement, key contacts, and
general writing advice born of years in the trenches. To our reviewers, a special thanks go to Evgeniy Bart,
physics postdoc at CalTech, who made many helpful comments on every chapter; Kjerstin Williams at
Applied Minds, who did detailed proofs and verification until the end; John Hsu at Willow Garage, who
went through all the example code; and Vadim Pisarevsky, who read each chapter in detail, proofed the
function calls and the code, and also provided several coding examples. There were many other partial
reviewers. Jean-Yves Bouguet at Google was of great help in discussions on the calibration and stereo
chapters. Professor Andrew Ng at Stanford University provided useful early critiques of the machine
learning chapter. There were numerous other reviewers for various chapters—our thanks to all of them. Of
course, any errors result from our own ignorance or misunderstanding, not from the advice we received.

Finally, many thanks go to our editor, Michael Loukides, for his early support, numerous edits, and
continued enthusiasm over the long haul.

Contributors:

Vadim Pisarevsky

Reviewers:

Kari Pulli

Kjerstin Williams

Evgeniy Bart

Professor Andrew Ng

GPU Appendix:

Khanh Yun-Ta

Anatoly Baksheev

Editors etc:

Michael Loukides

Rachel B. Steely

Rachel Roumeliotis

Adrian Adds…
Coming from a background in theoretical physics, the arc that brought me through supercomputer design
and numerical computing on to machine learning and computer vision has been a long one. Along the way,
many individuals stand out as key contributors. I have had many wonderful teachers, some formal
instructors and others informal guides. I should single out Professor David Dorfan of UC Santa Cruz and
Hartmut Sadrozinski of SLAC for their encouragement in the beginning, and Norman Christ for teaching
me the fine art of computing with the simple edict that “if you cannot make the computer do it, you don’t
know what you are talking about”. Special thanks go to James Guzzo, who let me spend time on this sort of
thing at Intel—even though it was miles from what I was supposed to be doing—and who encouraged my
participation in the Grand Challenge during those years. Finally, I want to thank Danny Hillis for creating
the kind of place where all of this technology can make the leap to wizardry and for encouraging my work
on the book while at Applied Minds. Such unique institutions are rare indeed in the world.

I also would like to thank Stanford University for the extraordinary amount of support I have received from
them over the years. From my work on the Grand Challenge team with Sebastian Thrun to the STAIR
Robot with Andrew Ng, the Stanford AI Lab was always generous with office space, financial support, and
most importantly ideas, enlightening conversation, and (when needed) simple instruction on so many
aspects of vision, robotics, and machine learning. I have a deep gratitude to these people, who have
contributed so significantly to my own growth and learning.

No acknowledgment or thanks would be meaningful without a special thanks to my family, who never once
faltered in their encouragement of this project or in their willingness to accompany me on trips up and
down the state to work with Gary on this book. My thanks and my love go to them.

Gary Adds…
With three young kids at home, my wife Sonya put in more work to enable this book than I did. Deep
thanks and love—even OpenCV gives her recognition, as you can see in the face detection section example
image. Further back, my technical beginnings started with the physics department at the University of
Oregon followed by undergraduate years at UC Berkeley. For graduate school, I’d like to thank my advisor
Steve Grossberg and Gail Carpenter at the Center for Adaptive Systems, Boston University, where I first
cut my academic teeth. Though they focus on mathematical modeling of the brain and I have ended up
firmly on the engineering side of AI, I think the perspectives I developed there have made all the
difference. Some of my former colleagues in graduate school are still close friends and gave advice,
support, and even some editing of the book: thanks to Frank Guenther, Andrew Worth, Steve Lehar, Dan
Cruthirds, Allen Gove, and Krishna Govindarajan.

I specially thank Stanford University, where I’m currently a consulting professor in the AI and Robotics
lab. Having close contact with the best minds in the world definitely rubs off, and working with Sebastian
Thrun and Mike Montemerlo to apply OpenCV on Stanley (the robot that won the $2M DARPA Grand
Challenge) and with Andrew Ng on STAIR (one of the most advanced personal robots) was more
technological fun than a person has a right to have. It’s a department that is currently hitting on all
cylinders and simply a great environment to be in. In addition to Sebastian Thrun and Andrew Ng there, I
thank Daphne Koller for setting high scientific standards, and also for letting me hire away some key
interns and students, as well as Kunle Olukotun and Christos Kozyrakis for many discussions and joint
work. I also thank Oussama Khatib, whose work on control and manipulation has inspired my current
interests in visually guided robotic manipulation. Horst Haussecker at Intel Research was a great colleague
to have, and his own experience in writing a book helped inspire my effort.

Finally, thanks once again to Willow Garage for allowing me to pursue my lifelong robotic dreams in a
great environment featuring world-class talent while also supporting my time on this book and supporting
OpenCV itself.

1
Overview

What Is OpenCV?
OpenCV [OpenCV] is an open source (see http://opensource.org) computer vision library available from
http://opencv.org. The library is written in C and C++1 and runs under Linux, Windows, Mac OS X, iOS,
and Android. Interfaces are available for Python, Java, Ruby, Matlab, and other languages.

OpenCV was designed for computational efficiency with a strong focus on real-time applications:
optimizations were made at all levels, from algorithms to multicore and CPU instructions. For example,
OpenCV supports optimizations for SSE, MMX, AVX, NEON, OpenMP, and TBB. If you desire further
optimization on Intel architectures [Intel] for basic image processing, you can buy Intel’s Integrated
Performance Primitives (IPP) libraries [IPP], which consist of low-level optimized routines in many
different algorithmic areas. OpenCV automatically uses the appropriate instructions from IPP at runtime.
The GPU module also provides CUDA-accelerated versions of many routines (for Nvidia GPUs) and
OpenCL-optimized ones (for generic GPUs).

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure that helps people build
fairly sophisticated vision applications quickly. The OpenCV library contains over 500 functions that span
many areas, including factory product inspection, medical imaging, security, user interface, camera
calibration, stereo vision, and robotics. Because computer vision and machine learning often go hand-in-
hand, OpenCV also contains a full, general-purpose Machine Learning Library (MLL). This sub-library is
focused on statistical pattern recognition and clustering. The MLL is highly useful for the vision tasks that
are at the core of OpenCV’s mission, but it is general enough to be used for any machine learning problem.

Who Uses OpenCV?
Most computer scientists and practical programmers are aware of some facet of the role that computer
vision plays. But few people are aware of all the ways in which computer vision is used. For example, most
people are somewhat aware of its use in surveillance, and many also know that it is increasingly being used
for images and video on the Web. A few have seen some use of computer vision in game interfaces. Yet
few people realize that most aerial and street-map images (such as in Google’s Street View) make heavy
use of camera calibration and image stitching techniques. Some are aware of niche applications in safety
monitoring, unmanned aerial vehicles, or biomedical analysis. But few are aware how pervasive machine
vision has become in manufacturing: virtually everything that is mass-produced has been automatically
inspected at some point using computer vision.

1 The legacy C interface is still supported, and will remain so for the foreseeable future.

The BSD [BSD] open source license for OpenCV has been structured such that you can build a commercial
product using all or part of OpenCV. You are under no obligation to open-source your product or to return
improvements to the public domain, though we hope you will. In part because of these liberal licensing
terms, there is a large user community that includes people from major companies (Google, IBM, Intel,
Microsoft, Nvidia, SONY, and Siemens, to name only a few) and research centers (such as Stanford, MIT,
CMU, Cambridge, Georgia Tech and INRIA). OpenCV is also present on the web for users at
http://opencv.org, a website that hosts documentation, developer information, and other community
resources including links to compiled binaries for various platforms. For vision developers, code,
development notes and links to GitHub are at http://code.opencv.org. User questions are answered at
http://answers.opencv.org/questions/ but there is still the original Yahoo groups user forum at
http://groups.yahoo.com/group/OpenCV; it has almost 50,000 members. OpenCV is popular around the
world, with large user communities in China, Japan, Russia, Europe, and Israel. OpenCV has a Facebook
page at https://www.facebook.com/opencvlibrary.

Since its alpha release in January 1999, OpenCV has been used in many applications, products, and
research efforts. These applications include stitching images together in satellite and web maps, image scan
alignment, medical image noise reduction, object analysis, security and intrusion detection systems,
automatic monitoring and safety systems, manufacturing inspection systems, camera calibration, military
applications, and unmanned aerial, ground, and underwater vehicles. It has even been used in sound and
music recognition, where vision recognition techniques are applied to sound spectrogram images. OpenCV
was a key part of the vision system in the robot from Stanford, “Stanley”, which won the $2M DARPA
Grand Challenge desert robot race [Thrun06], and continues to play an important part in other many
robotics challenges.

What Is Computer Vision?
Computer vision2 is the transformation of data from 2D/3D stills or videos into either a decision or a new
representation. All such transformations are done for achieving some particular goal. The input data may
include some contextual information such as “the camera is mounted in a car” or “laser range finder
indicates an object is 1 meter away”. The decision might be “there is a person in this scene” or “there are
14 tumor cells on this slide”. A new representation might mean turning a color image into a grayscale
image or removing camera motion from an image sequence.

Because we are such visual creatures, it is easy to be fooled into thinking that computer vision tasks are
easy. How hard can it be to find, say, a car when you are staring at it in an image? Your initial intuitions
can be quite misleading. The human brain divides the vision signal into many channels that stream different
pieces of information into your brain. Your brain has an attention system that identifies, in a task-dependent
way, important parts of an image to examine while suppressing examination of other areas. There is
massive feedback in the visual stream that is, as yet, little understood. There are widespread associative
inputs from muscle control sensors and all of the other senses that allow the brain to draw on cross-
associations made from years of living in the world. The feedback loops in the brain go back to all stages of
processing including the hardware sensors themselves (the eyes), which mechanically control lighting via
the iris and tune the reception on the surface of the retina.

In a machine vision system, however, a computer receives a grid of numbers from the camera or from disk,
and, in most cases, that’s it. For the most part, there’s no built-in pattern recognition, no automatic control
of focus and aperture, no cross-associations with years of experience. For the most part, vision systems are
still fairly naïve. Figure 1-1 shows a picture of an automobile. In that picture we see a side mirror on the
driver’s side of the car. What the computer “sees” is just a grid of numbers. Any given number within that
grid has a rather large noise component and so by itself gives us little information, but this grid of numbers
is all the computer “sees”. Our task then becomes to turn this noisy grid of numbers into the perception:
“side mirror”. Figure 1-2 gives some more insight into why computer vision is so hard.

2 Computer vision is a vast field. This book will give you a basic grounding in the field, but we also recommend texts
by Szeliski [Szeliski2011] for a good overview of practical computer vision algorithms, and Hartley [Hartley06] for
how 3D vision really works.

Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers

In fact, the problem, as we have posed it thus far, is worse than hard; it is formally impossible to solve.
Given a two-dimensional (2D) view of a 3D world, there is no unique way to reconstruct the 3D signal.
Formally, such an ill-posed problem has no unique or definitive solution. The same 2D image could
represent any of an infinite combination of 3D scenes, even if the data were perfect. However, as already
mentioned, the data is corrupted by noise and distortions. Such corruption stems from variations in the
world (weather, lighting, reflections, movements), imperfections in the lens and mechanical setup, finite
integration time on the sensor (motion blur), electrical noise and compression artifacts after image capture.
Given these daunting challenges, how can we make any progress?

Figure 1-2: The ill-posed nature of vision: the 2D appearance of objects can change

radically with viewpoints

In the design of a practical system, additional contextual knowledge can often be used to work around the
limitations imposed on us by visual sensors. Consider the example of a mobile robot that must find and
pick up staplers in a building. The robot might use the facts that a desk is an object found inside offices and
that staplers are mostly found on desks. This gives an implicit size reference; staplers must be able to fit on
desks. It also helps to eliminate falsely “recognizing” staplers in impossible places (e.g., on the ceiling or a
window). The robot can safely ignore a 200-foot advertising blimp shaped like a stapler because the blimp

lacks the prerequisite wood-grained background of a desk. In contrast, with tasks such as image retrieval,
all stapler images in a database may be of real staplers and so large sizes and other unusual configurations
may have been implicitly precluded by the assumptions of those who took the photographs. That is, the
photographer perhaps took pictures only of real, normal-sized staplers. Also, when taking pictures, people
tend to center objects and put them in characteristic orientations. Thus, there is often quite a bit of
unintentional implicit information within photos taken by people.

Contextual information can also be modeled explicitly with machine learning techniques. Hidden variables
such as size, orientation to gravity, and so on can then be correlated with their values in a labeled training
set. Alternatively, one may attempt to measure hidden bias variables by using additional sensors. The use of
a laser range finder to measure depth allows us to accurately infer the size of an object.

The next problem facing computer vision is noise. We typically deal with noise by using statistical
methods. For example, it may be impossible to detect an edge in an image merely by comparing a point to
its immediate neighbors. But if we look at the statistics over a local region, edge detection becomes much
easier. A real edge should appear as a string of such immediate neighbor responses over a local region,
each of whose orientation is consistent with its neighbors. It is also possible to compensate for noise by
taking statistics over time. Still, other techniques account for noise or distortions by building explicit
models learned directly from the available data. For example, because lens distortions are well understood,
one need only learn the parameters for a simple polynomial model in order to describe—and thus correct
almost completely—such distortions.

The actions or decisions that computer vision attempts to make based on camera data are performed in the
context of a specific purpose or task. We may want to remove noise or damage from an image so that our
security system will issue an alert if someone tries to climb a fence or because we need a monitoring
system that counts how many people cross through an area in an amusement park. Vision software for
robots that wander through office buildings will employ different strategies than vision software for
stationary security cameras because the two systems have significantly different contexts and objectives.
As a general rule: the more constrained a computer vision context is, the more we can rely on those
constraints to simplify the problem and the more reliable our final solution will be.

OpenCV is aimed at providing the basic tools needed to solve computer vision problems. In some cases,
high-level functionalities in the library will be sufficient to solve the more complex problems in computer
vision. Even when this is not the case, the basic components in the library are complete enough to enable
creation of a complete solution of your own to almost any computer vision problem. In the latter case, there
are some tried-and-true methods of using the library; all of them start with solving the problem using as
many available library components as possible. Typically, after you’ve developed this first-draft solution,
you can see where the solution has weaknesses and then fix those weaknesses using your own code and
cleverness (better known as “solve the problem you actually have, not the one you imagine”). You can then
use your draft solution as a benchmark to assess the improvements you have made. From that point,
whatever weaknesses remain can be tackled by exploiting the context of the larger system in which your
problem solution is embedded, or by setting out to improve some component of the system with your own
novel contributions.

The Origin of OpenCV
OpenCV grew out of an Intel Research initiative to advance CPU-intensive applications. Toward this end,
Intel launched many projects including real-time ray tracing and 3D display walls. One of the authors
(Gary) working for Intel at that time was visiting universities and noticed that some top university groups,
such as the MIT Media Lab, had well-developed and internally open computer vision infrastructures—code
that was passed from student to student and that gave each new student a valuable head start in developing
his or her own vision application. Instead of reinventing the basic functions from scratch, a new student
could begin by building on top of what came before.

Thus, OpenCV was conceived as a way to make computer vision infrastructure universally available. With
the aid of Intel’s Performance Library Team,3 OpenCV started with a core of implemented code and
algorithmic specifications being sent to members of Intel’s Russian library team. This is the “where” of
OpenCV: it started in Intel’s research lab with collaboration from the Software Performance Libraries
group together with implementation and optimization expertise in Russia.

Chief among the Russian team members was Vadim Pisarevsky, who managed, coded, and optimized much
of OpenCV and who is still at the center of much of the OpenCV effort. Along with him, Victor Eruhimov
helped develop the early infrastructure, and Valery Kuriakin managed the Russian lab and greatly
supported the effort. There were several goals for OpenCV at the outset:

• Advance vision research by providing not only open but also optimized code for basic vision
infrastructure. No more reinventing the wheel.

• Disseminate vision knowledge by providing a common infrastructure that developers could build on,
so that code would be more readily readable and transferable.

• Advance vision-based commercial applications by making portable, performance-optimized code
available for free—with a license that did not require commercial applications to be open or free
themselves.

Those goals constitute the “why” of OpenCV. Enabling computer vision applications would increase the
need for fast processors. Driving upgrades to faster processors would generate more income for Intel than
selling some extra software. Perhaps that is why this open and free code arose from a hardware vendor
rather than a software company. Sometimes, there is more room to be innovative at software within a
hardware company.

In any open source effort, it is important to reach a critical mass at which the project becomes self-
sustaining. There have now been around seven million downloads of OpenCV, and this number is growing
by hundreds of thousands every month4. The user group now approaches 50,000 members. OpenCV
receives many user contributions, and central development has long since moved outside of Intel.5
OpenCV’s past timeline is shown in Figure 1-3. Along the way, OpenCV was affected by the dot-com
boom and bust and also by numerous changes of management and direction. During these fluctuations,
there were times when OpenCV had no one at Intel working on it at all. However, with the advent of
multicore processors and the many new applications of computer vision, OpenCV’s value began to rise.
Similarly, rapid growth in the field of robotics has driven much use and development of the library. After
becoming an open source library, OpenCV spent several years under active development at Willow Garage
and Itseez, and now is supported by the OpenCV foundation at http//opencv.org. Today, OpenCV is
actively being developed by the OpenCV.org foundation, Google supports on order of 15 interns a year in
the Google Summer of Code program6, and Intel is back actively supporting development. For more
information on the future of OpenCV, see Chapter 14.

3 Shinn Lee was of key help as was Stewart Taylor.
4 It is noteworthy, that at the time of the publication of “Learning OpenCV” in 2006, this rate was 26,000 per month.
Seven years later, the download rate has grown to over 160,000 downloads per month.
5 As of this writing, Itseez (http://itseez.com/) is the primary maintainer of OpenCV
6 Google Summer of Code https://developers.google.com/open-source/soc/

Figure 1-3: OpenCV timeline

Who Owns OpenCV?
Although Intel started OpenCV, the library is and always was intended to promote commercial and
research use. It is therefore open and free, and the code itself may be used or embedded (in whole or in
part) in other applications, whether commercial or research. It does not force your application code to be
open or free. It does not require that you return improvements back to the library—but we hope that you
will.

Downloading and Installing OpenCV
The main OpenCV site is at http://opencv.org, from which you can download the complete source code for
the latest release, as well as many recent releases. The downloads themselves are found at the downloads
page: http://opencv.org/downloads.html. However, if you want the very most up-to-date version it is always
found on GitHub at https://github.com/Itseez/opencv, where the active development branch is stored. The
computer vision developer’s site (with links to the above) is at http://code.opencv.org/.

Installation
In modern times, OpenCV uses Git as its development version control system, and CMake to build7. In
many cases, you will not need to worry about building, as compiled libraries exist for supported
environments. However, as you become a more advanced user, you will inevitably want to be able to
recompile the libraries with specific options tailored to your application and environment. On the tutorial
pages at http://docs.opencv.org/doc/tutorials/tutorials.html under “introduction to OpenCV”, there are
descriptions of how to set up OpenCV to work with a number of combinations of operating systems and
development tools.

7 In olden times, OpenCV developers used Subversion for version control and automake to build. Those days, however,
are long gone.

Windows

At the page: http://opencv.org/downloads.html, you will see a link to download the latest version of
OpenCV for Windows. This link will download an executable file which you can run, and which will
install OpenCV, register DirectShow filters, and perform various post-installation procedures. You are now
almost ready to start using OpenCV.8

The one additional detail is that you will want to add is an OPENCV_DIR environment variable to make it
easier to tell your compiler where to find the OpenCV binaries. You can set this by going to a command
prompt and typing9:

setx -m OPENCV_DIR D:\OpenCV\Build\x86\vc10

If you built the library to link statically, this is all you will need. If you built the library to link
dynamically, then you will also need to tell your system where to find the library binary. To do this, simply
add %OPENCV_DIR%\bin to your library path. (For example, in Windows 7, right-click on your
Computer icon, select Properties, and then click on Advanced System Settings. Finally select Environment
Variables and add the OpenCV binary path to the Path variable.)

To add the commercial IPP performance optimizations to Windows, obtain and install IPP from the Intel
site (http://www.intel.com/software/products/ipp/index.htm); use version 5.1 or later. Make sure the
appropriate binary folder (e.g., c:/program files/intel/ipp/5.1/ia64/bin) is in the system path. IPP should
now be automatically detected by OpenCV and loaded at runtime (more on this in Chapter 3).

Linux

Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing to the large variety of
versions of GCC and GLIBC in different distributions (SuSE, Debian, Ubuntu, etc.). In many cases
however, your distribution will include OpenCV. If your distribution doesn’t offer OpenCV, you will have
to build it from sources. As with the Windows installation, you can start at the
http://opencv.org/downloads.html page, but in this case the link will send you to Sourceforge10, where you
can select the tarball for the current OpenCV source code bundle.

To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers. You’ll also need
pkgconfig, libpng, libjpeg, libtiff, and libjasper with development files (i.e., the versions with -dev at the
end of their package names). You’ll need Python 2.6 or later with headers installed (developer package).
You will also need libavcodec and the other libav* libraries (including headers) from ffmpeg 1.0 or later .

Download ffmpeg from http://ffmpeg.mplayerhq.hu/download.html.11 The ffmpeg program has a lesser
general public license (LGPL). To use it with non-GPL software (such as OpenCV), build and use a shared
ffmpg library:

$> ./configure --enable-shared
$> make
$> sudo make install

You will end up with: /usr/local/lib/libavcodec.so.*, /usr/local/lib/libavformat.so.*,
/usr/local/lib/libavutil.so.*, and include files under various /usr/local/include/libav*.

To build OpenCV once it is downloaded:12

8 It is important to know that, although the Windows distribution contains binary libraries for release builds, it does not
contain the debug builds of these libraries. It is therefore likely that, before developing with OpenCV, you will want to
open the solution file and build these libraries for yourself.
9 Of course, the exact path will vary depending on your installation, for example if you are installing on an ia64
machine, then the path will not include “x86”, but rather “ia64”.
10 OpenCV has all of its many builds and versions available from Sourceforge. See links at
http://opencv.org/downloads.html
11 You can check out ffmpeg by: svn checkout svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg.

$> mkdir build && cd build
$> cmake .. && make
$> sudo make install
$> sudo ldconfig

After installation is complete, the default installation path is /usr/local/lib/ and /usr/local/include/opencv2/.
Hence you need to add /usr/local/lib/ to /etc/ld.so.conf (and run ldconfig afterwards) or add it to the
LD_LIBRARY_PATH environment variable; then you are done.

To actually build the library, you will need to go unpack the .tgz file and go into the created source
directory, and do the following:

mkdir release
cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make
sudo make install

The first and second commands create a new subdirectory and move you into it. The third command tells
CMake how to configure your build. The example options we give are probably the right ones to get you
started, but other options allow you to enable various options, determine what examples are built, python
support, CUDA GPU support, etc. The last two commands actually build the library and install the results
into the proper places.

To add the commercial IPP performance optimizations to Linux, install IPP as described previously. Let’s
assume it was installed in /opt/intel/ipp/5.1/ia32/. Add <your install_path>/bin/ and <your
install_path>/bin/linux32 LD_LIBRARY_PATH in your initialization script (.bashrc or similar):

LD_LIBRARY_PATH=/opt/intel/ipp/5.1/ia32/bin:/opt/intel/ipp/5.1
/ia32/bin/linux32:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Alternatively, you can add <your install_path>/bin and <your install_path>/bin/linux32, one per line, to
/etc/ld.so.conf and then run ldconfig as root (or use sudo).

That’s it. Now OpenCV should be able to locate IPP shared libraries and make use of them on Linux. See
…/opencv/INSTALL for more details.

MacOS X

As of this writing, full functionality on MacOS X is a priority but there are still some limitations (e.g.,
writing AVIs); these limitations are described in …/opencv/INSTALL.

The requirements and building instructions are similar to the Linux case, with the following exceptions:

• By default, Carbon is used instead of GTK+.
• By default, QuickTime is used instead of ffmpeg.

• pkg-config is optional (it is used explicitly only in the samples/c/build_all.sh script).

• RPM and ldconfig are not supported by default. Use configure+make+sudo make install to
build and install OpenCV, update DYLD_LIBRARY_PATH (unless ./configure --
prefix=/usr is used).

For full functionality, you should install libpng, libtiff, libjpeg and libjasper from darwinports and/or fink
and make them available to ./configure (see ./configure --help). Then:

sudo port selfupdate
sudo port install opencv

12 To build OpenCV using Red Hat Package Managers (RPMs), use rpmbuild –ta OpenCV-x.y.z.tar.gz
(for RPM 4.x or later), or rpm –ta OpenCV-x.y.z.tar.gz (for earlier versions of RPM), where OpenCV-
x.y.z.tar.gz should be put in /usr/src/redhat/SOURCES/ or a similar directory. Then install OpenCV using rpm -i
OpenCV-x.y.z.*.rpm.

Notes on Building with CMake

The modern OpenCV library relies on CMake in its build system. This has the advantage of making the
platform much easier to work with in a cross-platform environment. Whether you are using the command
line version of CMake on Linux (or on Windows using a command line environment such as Cygwin), or
using a visual interface to CMake such as cmake-gui, you can build OpenCV in just about any environment
in the same way.

If you are not already familiar with CMake, the essential concept behind CMake is to allow the developers
to specify all of the information needed for compilation in a platform independent way (files called
CMakeLists.txt files), which CMake then converts to the platform dependent files used in your environment
(e.g., makefiles on Unix and projects or workspaces in the Windows visual environment).

When you use CMake, you can supply additional options which tell CMake how to proceed in the
generation of the build files. For example, it is CMake which you tell if you want a debug or release library
or if you do or do not want to include a feature like the Intel Performance Primitives (IPP). An example
CMake command line invocation, which we encountered earlier, might be:

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

The last argument ‘..’ is actually a directory specification, which tells CMake where the root of the source
directory to build is. In this case it is set to ‘..’ (the directory above) because it is conventional in OpenCV
to actually do the build in a subdirectory of the OpenCV root.

In this case, the –D option is used to set environment variables which CMake will use to determine what to
put in your build files. These environment variables might be essentially enumerated values (such as
RELEASE or DEBUG for CMAKE_BUILD_TYPE), or they might be strings (such as ‘/usr/local’ for
CMAKE_INSTALL_PREFIX). Below is a partial list13 containing many of the common options that you
are likely to want.

Table 1-1: Basic CMake options you will probably need.

Option Definition Accepted Values

CMAKE_BUILD_TYPE Controls release vs. debug build RELEASE or DEBUG

CMAKE_INSTALL_PREFIX Where to put installed library Path, e.g. /usr/local

CMAKE_VERBOSE Lots of extra information from CMake ON or OFF

Table 1-2: Options which introduce features into the library. All of these can be either ON or OFF.

Option Definition Default

WITH_1394 Use libdc1394 ON

WITH_CUDA CUDA support, requires toolkit OFF

WITH_EIGEN2 Use Eigen library for linear algebra ON

WITH_FFMPEG Use ffmpeg for video I/O ON

13 You are probably wondering: “why not a complete list?” The reason is simply that the available options fluctuate
with the passage of time. The ones we list here are some of the more important ones however which are likely to stay
intact into the foreseeable future.

WITH_OPENGL enable wrappers for OpenGL objects in
the core module and the function:
cv::setOpenGLDrawCallback()

OFF

WITH_GSTREAMER Include Gstreamer support ON

WITH_GTK Include GTK support ON

WITH_IPP Intel Performance Primitives14 OFF

WITH_JASPER JPEG 2000 support for imread() ON

WITH_JPEG JPEG support for imread() ON

WITH_MIKTEX PDF documentation on Windows OFF

WITH_OPEN_EXR EXR support for imread() ON

WITH_OPENCL OpenCL support (similar to CUDA) OFF

WITH_OPENNI Support for Kinect cameras OFF

WITH_PNG PNG support for loading ON

WITH_QT Qt based Highgui functions OFF

WITH_QUICKTIME Use Quicktime for video I/O (instead of
QTKit – Mac only)

OFF

WITH_TBB Intel Thread Building Blocks OFF

WITH_TIFF TIFF support for imread() ON

WITH_UNICAP Use Unicap library, provides I/O
support for cameras using this standard.

OFF

WITH_V4L Video for Linux support ON

WITH_VIDEOINPUT Use alternate library for video I/O
(Windows only)

OFF

WITH_XIMEA Support for Ximea cameras OFF

WITH_XINE Enable Xine multimedia library for
video

OFF

ENABLE_SOLUTION_FOLDERS Categorize binaries inside directories in
Solution Explorer

OFF

14 Associated with the WITH_IPP option, there is also the IPP_PATH option. The IPP_PATH can be set to any normal
path name and indicates where the IPP libraries should be found. However, it should not be necessary if you have these
libraries in the “usual” place for your platform.

Table 1.3: Options passed by CMake to the compiler.

Option Definition Default

ENABLE_SSE Enable Streaming SIMD (SSE) instructions ON

ENABLE_SSE2 Enable Intel SSE 2 instructions ON

ENABLE_SSE3 Enable Intel SSE 3 instructions OFF

ENABLE_SSSE3 Enable Supplemental SSE 3 instructions OFF

ENABLE_SSE41 Enable Intel SSE 4.1 instructions OFF

ENABLE_SSE42 Enable Intel SSE 4.1 instructions OFF

USE_O3 Enable high optimization (i.e. –o3) ON

USE_OMIT_FRAME_POINTER Enable omit frame pointer (i.e. –fomit-
frame-pointer)

ON

Table 1-4: ‘Build’ options control exactly what gets created at compile time. All of these can be either ON or
OFF. In most all cases the default is OFF.

Option Definition Default

BUILD_DOCS Generate OpenCV documentation OFF

BUILD_EXAMPLES Generate example code OFF

BUILD_JAVA_SUPPORT Create Java OpenCV libraries OFF

BUILD_PYTHON_SUPPORT Deprecated (use
BUILD_NEW_PYTHON_SUPPORT)

OFF

BUILD_NEW_PYTHON_SUPPORT Create Python OpenCV libraries ON

BUILD_PACKAGE Create zip archive with OpenCV sources OFF

BUILD_SHARED_LIBS Build OpenCV as dynamic library (default is
static)

ON

BUILD_TESTS Build test programs for each OpenCV
module

ON

BUILD_PERF_TESTS Build available function performance tests OFF

Table 1-5: 'Install' options determine what compiled executables get placed in your binaries area.

INSTALL_C_EXAMPLES Install the C and C++ examples in
the “usual” place for binaries

OFF

INSTALL_PYTHON_EXAMPLES Install the Python examples in the
“usual” place for binaries

OFF

Not listed in these tables are additional variables which can be set to indicate the locations of various
libraries (e.g., libjasper, etc.) in such case as they are not in their default locations. For more information on
these more obscure options, a visit to the online documentation at http://opencv.org is recommended.

Getting the Latest OpenCV via Git
OpenCV is under active development, and bugs are often fixed rapidly when reports contain accurate
descriptions and code that demonstrates the bug. However, official major OpenCV releases only occur two
to four times a year. If you are seriously developing a project or product, you will probably want code fixes
and updates as soon as they become available. To do this, you will need to access OpenCV’s Git repository
on Github.

This isn’t the place for a tutorial in Git usage. If you’ve worked with other open source projects then you’re
probably familiar with it already. If you haven’t, check out Version Control with Git by Jon Loeliger
(O’Reilly). A command-line Git client is available for Linux, OS X, and most UNIX-like systems. For
Windows users, we recommend TortoiseGit (http://code.google.com/p/tortoisegit/).

On Windows, if you want the latest OpenCV from the Git repository then you’ll need to clone the OpenCV
repository on https://github.com/Itseez/opencv.git.

On Linux and Mac, you can just use the following command:
git clone https://github.com/Itseez/opencv.git

More OpenCV Documentation
The primary documentation for OpenCV is the HTML documentation available at: http//opencv.org. In
addition to this, there are extensive tutorials on many subjects at
http://docs.opencv.org/doc/tutorials/tutorials.html, and an OpenCV Wiki (currently located at
http://code.opencv.org/projects/opencv/wiki).

Online Documentation and the Wiki
As briefly mentioned earlier, there is extensive documentation as well as a wiki available at
http://opencv.org. The documentation there is divided into several major components:

• Reference (http://docs.opencv.org/): This section contains the functions, their arguments, and
some information on how to use them.

• Tutorials (http://docs.opencv.org/doc/tutorials/tutorials.html): There is a large collection of
tutorials, these tell you how to accomplish various things. There are tutorials for basic subjects,
like how to install OpenCV or create OpenCV projects on various platforms, and more advanced
topics like background subtraction of object detection.

• Quick Start (http://opencv.org/quickstart.html): This is really a tightly curated subset of the
tutorials, containing just ones that help you get up and running on specific platforms.

• Cheat Sheet (http://docs.opencv.org/trunk/opencv_cheatsheet.pdf): This is actually a single .pdf
file which contains a truly excellent compressed reference to almost the entire library. Thank
Vadim Pisarevsky for this excellent reference as you pin these two beautiful pages to your cubicle
wall.

• Wiki (http://code.opencv.org/projects/opencv/wiki): The wiki contains everything you could
possible want and more. This is where the roadmap can be found, as well as news, open issues,
bugs tracking, and countless deeper topics like how to become a contributor to OpenCV.

• Q&A (http://answers.opencv.org/questions): This is a vast archive of literally thousands of
questions people have asked, and answered. You can go there to ask questions of the OpenCV
community, or to help others by answering their questions.

All of these are accessible under the “Documentation” button on the OpenCV.org homepage. Of all of
those great resources, one warrants a little more discussion here, which is the Reference. The reference is
divided into several sections, each of which pertains to what is called a module in the library. The exact
module list has evolved over time, but the modules are the primary organizational structure in the library.
Every function in the library is part of one module. Here are the current modules:

• core: The “core” is the section of the library which contains all of the basic object types and their
basic operations.

• imgproc: The image processing module contains basic transformations on images, including filters
and similar convolutional operators.

• highgui: This HighGUI module contains user interface functions which can be used to display
images or take simple user input. It can be thought of as a very light weight window UI toolkit.

• video: The video library contains the functions you need to read and write video streams.

• calib3d: This module contains implementations of algorithms you will need to calibrate single
cameras as well as stereo or multi-camera arrays.

• features2d: The features2d module contains algorithms for detecting, describing, and matching
keypoint features.

• objdetect: This module contains algorithms for detecting specific objects, such as faces or
pedestrians. You can train the detectors to detect other objects as well.

• ml: The Machine Learning Library is actually an entire library in itself, and contains a wide array
of machine learning algorithms implemented in such as way as to work with the natural data
structures of OpenCV.

• flann: FLANN stands for “Fast Library for Approximate Nearest Neighbors”. This library contains
methods you will not likely use directly, but which are used by other functions in other modules
for doing nearest neighbor searches in large data sets.

• gpu: The GPU library contains implementations of most of the rest of the library functions
optimized for operation on CUDA GPUs. There are also some functions which are only
implemented for GPU operation. Some of these provide excellent results but require
computational resources sufficiently high that implementation on non-GPU hardware would
provide little utility.

• photo: This is a relatively new module which contains tools useful for computational photography.

• stitching: This entire module implements a sophisticated image stitching pipeline. This is new
functionality in the library but, like the ‘photo’ module is a place where future growth is expected.

• nonfree: OpenCV contains some implementations of algorithms which are patented or are
otherwise burdened by some usage restrictions (e.g., the SIFT algorithm). Those algorithms are
segregated off to their own module, so that you will know that you will need to do some kind of
special work in order to use them in a commercial product.

• contrib: This module contains new things that have yet to be blessed into the whole of the library.

• legacy: This module contains old things that have yet to be banished from the library altogether.

• ocl: The OCL module is a newer module, which could be considered analogous to the GPU
module, except that it relies on OpenCL, a Khronos standard for open parallel computing. Though
less featured than the GPU module at this time, the OCL module aims to provide implementations
which can run on any GPU or other device supporting OpenCL. (This is in contrast to the GPU
module which explicitly makes use of the Nvidia CUDA toolkit and so will only work on Nvidia
GPU devices.)

Despite the ever-increasing quality of this online documentation, one task which is not within their scope is
to provide a proper understanding of the algorithms implemented or of the exact meaning of the parameters
these algorithms require. This book aims to provide this information, as well as a more in depth
understanding of all of the basic building blocks of the library.

Exercises
1. Download and install the latest release of OpenCV. Compile it in debug and release mode.
2. Download and build the latest trunk version of OpenCV using Git.
3. Describe at least three ambiguous aspects of converting 3D inputs into a 2D representation. How

would you overcome these ambiguities?
4. What shapes can a rectangle take when you look at in with perspective distortion (that is, when you

look at it in the real world)?
5. Describe how you might start processing the image in Figure 1-1 to identify the mirror on the car?
6. How might you tell the difference between a edges in an image created by:

a) A shadow?
b) Paint on a surface?
c) Two sides of a brick?
d) The side of an object and the background?

2
Introduction to OpenCV 2.x

Include files
After installing the OpenCV library and setting up our programming environment, our next task is to make
something interesting happen with code. In order to do this, we’ll have to discuss header files. Fortunately,
the headers reflect the new, modular structure of OpenCV introduced in Chapter 1. The main header file of
interest is …/include/opencv2/opencv.hpp. This header file just calls the header files for each OpenCV
module:

#include "opencv2/core/core_c.h"

Old C data structures and arithmetic routines.

#include "opencv2/core/core.hpp"

New C++ data structures and arithmetic routines.

#include "opencv2/flann/miniflann.hpp"

Approximate nearest neighbor matching functions. (Mostly for internal use)

#include "opencv2/imgproc/imgproc_c.h"

Old C image processing functions.

#include "opencv2/imgproc/imgproc.hpp"

New C++ image processing functions.

#include "opencv2/video/photo.hpp"

Algorithms specific to handling and restoring photographs.

#include "opencv2/video/video.hpp"

Video tracking and background segmentation routines.

#include "opencv2/features2d/features2d.hpp"

Two-dimensional feature tracking support.

#include "opencv2/objdetect/objdetect.hpp"

Cascade face detector; latent SVM; HoG; planar patch detector.

#include "opencv2/calib3d/calib3d.hpp"

Calibration and stereo.

#include "opencv2/ml/ml.hpp"

Machine learning: clustering, pattern recognition.

#include "opencv2/highgui/highgui_c.h"

Old C image display, sliders, mouse interaction, I/O.

#include "opencv2/highgui/highgui.hpp"

New C++ image display, sliders, buttons, mouse, I/O.

#include "opencv2/contrib/contrib.hpp"

User-contributed code: flesh detection, fuzzy mean-shift tracking, spin images, self-similar features.

You may use the include file opencv.hpp to include any and every possible OpenCV function but, since it
includes everything, it will cause compile time to be slower. If you are only using, say, image processing
functions, compile time will be faster if you only include opencv2/imgproc/imgproc.hpp. These include
files are located on disk under the …/modules directory. For example, imgproc.hpp is located at
…/modules/imgproc/include/opencv2/imgproc/imgproc.hpp. Similarly, the sources for the functions
themselves are located under their corresponding src directory. For example, cv::Canny() in the
imgproc module is located in …/modules/improc/src/canny.cpp.

With the above include files, we can start our first C++ OpenCV program.

Legacy code such as the older blob tracking, hmm face detection, condensation tracker,
and eigen objects can be included using opencv2/legacy/legacy.hpp, which is located in
…/modules/legacy/include/opencv2/legacy/legacy.hpp.

First Program—Display a Picture
OpenCV provides utilities for reading from a wide array of image file types, as well as from video and
cameras. These utilities are part of a toolkit called HighGUI, which is included in the OpenCV package. On
the http://opencv.org site, you can go to the tutorial pages off of the documentation links at
http://docs.opencv.org/doc/tutorials/tutorials.html to see tutorials on various aspects of using OpenCV.

In the tutorial section, the “introduction to OpenCV” tutorial explains how to set up OpenCV for
various combinations of operating systems and development tools.

We will use an example from the “highgui module” to create a simple program that opens an image and
displays it on the screen (Example 2-1).

Example 2-1: A simple OpenCV program that loads an image from disk and displays it on the screen

#include <opencv2/opencv.hpp> //Include file for every supported OpenCV function

int main(int argc, char** argv) {
 cv::Mat img = cv::imread(argv[1],-1);
 if(img.empty()) return -1;
 cv::namedWindow("Example1", cv::WINDOW_AUTOSIZE);
 cv::imshow("Example1", img);
 cv::waitKey(0);
 cv::destroyWindow("Example1");
}

Note that OpenCV functions live within a namespace called cv. To call OpenCV functions, you must
explicitly tell the compiler that you are talking about the cv namespace by prepending cv:: to each function

call. To get out of this bookkeeping chore, we can employ the using namespace cv; directive as
shown in Example 2-21. This tells the compiler to assume that functions might belong to that namespace.
Note also the difference in include files between Example 2-1 and Example 2-2; in the former, we used the
general include opencv.hpp, whereas in the latter, we used only the necessary include file to improve
compile time.

Example 2-2: Same as Example 2-1 but employing the “using namespace” directive. For faster compile, we
use only the needed header file, not the generic opencv.hpp.

#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main(int argc, char** argv) {
 Mat img = imread(argv[1], -1);
 if(img.empty()) return -1;
 namedWindow("Example2", WINDOW_AUTOSIZE);
 imshow("Example2", img);
 waitKey(0);
 destroyWindow("Example2");
}

When compiled and run from the command line with a single argument, Example 2-1 loads an image into
memory and displays it on the screen. It then waits until the user presses a key, at which time it closes the
window and exits. Let’s go through the program line by line and take a moment to understand what each
command is doing.

cv::Mat img = cv::imread(argv[1], -1);

This line loads the image.2 The function cv::imread() is a high-level routine that determines the file
format to be loaded based on the file name; it also automatically allocates the memory needed for the image
data structure. Note that cv::imread() can read a wide variety of image formats, including BMP, DIB,
JPEG, JPE, PNG, PBM, PGM, PPM, SR, RAS, and TIFF. A cv::Mat structure is returned. This structure
is the OpenCV construct with which you will deal the most. OpenCV uses this structure to handle all kinds
of images: single-channel, multichannel, integer-valued, floating-point-valued, and so on. The line
immediately following

if(img.empty()) return -1;

checks to see if an image was in fact read. Another high-level function, cv::namedWindow(), opens a
window on the screen that can contain and display an image.

cv::namedWindow("Example2", cv::WINDOW_AUTOSIZE);

This function, provided by the HighGUI library, also assigns a name to the window (in this case,
"Example2"). Future HighGUI calls that interact with this window will refer to it by this name.

The second argument to cv::namedWindow() defines window properties. It may be set either to 0 (the
default value) or to cv::WINDOW_AUTOSIZE. In the former case, the size of the window will be the
same regardless of the image size, and the image will be scaled to fit within the window. In the latter case,
the window will expand or contract automatically when an image is loaded so as to accommodate the
image’s true size but may be resized by the user.

1 Of course, once you do this, you risk conflicting names with other potential namespaces. If the function foo()
exists, say, in the cv and std namespaces, you must specify which function you are talking about using either
cv::foo() or std::foo() as you intend. In this book, other than in our specific example of Example 2-2, we
will use the explicit form cv:: for objects in the OpenCV namespace, as this is generally considered to be better
programming style.
2 A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional error
message for the user. We will abbreviate such necessities in this book and assume that the reader is cultured enough to
understand the importance of error-handling code.

cv::imshow("Example2", img);

Whenever we have an image in a cv::Mat structure, we can display it in an existing window with
cv::imshow().3 On the call to cv::imshow(), the window will be redrawn with the appropriate
image in it, and the window will resize itself as appropriate if it was created using the
cv::WINDOW_AUTOSIZE flag.

cv::waitKey(0);

The cv::waitKey() function asks the program to stop and wait for a keystroke. If a positive argument
is given, the program will wait for that number of milliseconds and then continue even if nothing is
pressed. If the argument is set to 0 or to a negative number, the program will wait indefinitely for a key-
press. This function has another very important role: It handles any windowing events, such as creating
windows and drawing their content. So it must be used after cv::imshow() in order to display that
image.

With cv::Mat, images are automatically deallocated when they go out of scope, similar to the STL-style
container classes. This automatic deallocation is controlled by an internal reference counter. For the most
part, this means we no longer need to worry about the allocation and deallocation of images, which relieves
the programmer from much of the tedious bookkeeping that the OpenCV 1.0 IplImage imposed.

cv::destroyWindow("Example2");

Finally, we can destroy the window itself. The function cv::destroyWindow() will close the window
and deallocate any associated memory usage. For short programs, we will skip this step. For longer,
complex programs, the programmer should make sure to tidy up the windows before they go out of scope
to avoid memory leaks.

Our next task will be to construct a very simple—almost as simple as this one—program to read in and
display a video file. After that, we will start to tinker a little more with the actual images.

Second Program—Video
Playing a video with OpenCV is almost as easy as displaying a single picture. The only new issue we face
is that we need some kind of loop to read each frame in sequence; we may also need some way to get out of
that loop if the movie is too boring. See Example 2-3.

Example 2-3: A simple OpenCV program for playing a video file from disk. In this example we only use
specific module headers, rather than just opencv.hpp. This speeds up compilation, and so is sometimes

preferable.

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

int main(int argc, char** argv) {
 cv::namedWindow("Example3", cv::WINDOW_AUTOSIZE);
 cv::VideoCapture cap;
 cap.open(string(argv[1]));
 cv::Mat frame;
 while(1) {
 cap >> frame;
 if(!frame.data) break; // Ran out of film
 cv::imshow("Example3", frame);
 if(cv::waitKey(33) >= 0) break;
 }
 return 0;
}

3 In the case where there is no window in existence at the time you call imshow(), one will be created for you with
the name you specified in the imshow() call. This window can still be destroyed as usual with destroyWindow().

Here we begin the function main() with the usual creation of a named window (in this case, named
“Example3”). The video capture object cv::VideoCapture is then instantiated. This object can
open and close video files of as many types as ffmpeg supports.

cap.open(string(argv[1]));
cv::Mat frame;

The capture object is given a string containing the path and filename of the video to be opened. Once
opened, the capture object will contain all of the information about the video file being read, including state
information. When created in this way, the cv::VideoCapture object is initialized to the beginning of
the video. In the program, cv::Mat frame instantiates a data object to hold video frames.

cap >> frame;
if(!frame.data) break;
cv::imshow("Example3", frame);

Once inside of the while() loop, the video file is read frame by frame from the capture object stream.
The program checks to see if data was actually read from the video file (if(!frame.data)) and quits if
not. If a video frame is successfully read in, it is displayed using cv::imshow().

if(cv::waitKey(33) >= 0) break;

Once we have displayed the frame, we then wait for 33 ms4. If the user hits a key during that time then we
will exit the read loop. Otherwise, 33 ms will pass and we will just execute the loop again. On exit, all the
allocated data is automatically released when they go out of scope.

Moving Around
Now it’s time to tinker around, enhance our toy programs, and explore a little more of the available
functionality. The first thing we might notice about the video player of Example 2-3 is that it has no way to
move around quickly within the video. Our next task will be to add a slider trackbar, which will give us this
ability. For more control, we will also allow the user to single step the video by pressing the ‘s’ key, to go
into run mode by pressing the ‘r’ key, and whenever the user jumps to a new location in the video with the
slider bar, we pause there in single step mode.

The HighGUI toolkit provides a number of simple instruments for working with images and video beyond
the simple display functions we have just demonstrated. One especially useful mechanism is the trackbar,
which enables us to jump easily from one part of a video to another. To create a trackbar, we call
cv::createTrackbar() and indicate which window we would like the trackbar to appear in. In order
to obtain the desired functionality, we need a callback that will perform the relocation. Example 2-4 gives
the details.

Example 2-4: Program to add a trackbar slider to the basic viewer window for moving around within the
video file

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <fstream>

using namespace std;

int g_slider_position = 0;
int g_run = 1, g_dontset = 0; //start out in single step mode
cv::VideoCapture g_cap;

4 You can wait any amount of time you like. In this case, we are simply assuming that it is correct to play the video at
30 frames per second and allow user input to interrupt between each frame (thus we pause for input 33 ms between
each frame). In practice, it is better to check the cv::VideoCapture structure in order to determine the actual
frame rate of the video (more on this in Chapter 4).

void onTrackbarSlide(int pos, void *) {
 g_cap.set(cv::CAP_PROP_POS_FRAMES, pos);
 if(!g_dontset)
 g_run = 1;
 g_dontset = 0;
}

int main(int argc, char** argv) {
 cv::namedWindow("Example2_4", cv::WINDOW_AUTOSIZE);
 g_cap.open(string(argv[1]));
 int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT);
 int tmpw = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH);
 int tmph = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT);
 cout << "Video has " << frames << " frames of dimensions("
 << tmpw << ", " << tmph << ")." << endl;
 cv::createTrackbar("Position", "Example2_4", &g_slider_position, frames,
 onTrackbarSlide);
 cv::Mat frame;
 while(1) {
 if(g_run != 0) {
 g_cap >> frame; if(!frame.data) break;
 int current_pos = (int)g_cap.get(cv::CAP_PROP_POS_FRAMES);
 g_dontset = 1;
 cv::setTrackbarPos("Position", "Example2_4", current_pos);
 cv::imshow("Example2_4", frame);
 g_run-=1;
 }
 char c = (char) cv::waitKey(10);
 if(c == 's') // single step
 {g_run = 1; cout << "Single step, run = " << g_run << endl;}
 if(c == 'r') // run mode
 {g_run = -1; cout << "Run mode, run = " << g_run <<endl;}
 if(c == 27)
 break;
 }
 return(0);
}

In essence, the strategy is to add a global variable to represent the trackbar position and then add a callback
that updates this variable and relocates the read position in the video. One call creates the trackbar and
attaches the callback, and we are off and running.5 Let’s look at the details starting with the global
variables.

int g_slider_position = 0;
int g_run = 1, g_dontset = 0; // start out in single step mode
VideoCapture g_cap;

First we define a global variable, g_slider_position, to keep the trackbar slider position state. The
callback will need access to the capture object g_cap, so we promote that to a global variable as well.
Because we are considerate developers and like our code to be readable and easy to understand, we adopt
the convention of adding a leading g_ to any global variable. We also instantiate another global variable,
g_run, which displays new frames as long it is different from zero. A positive number tells how many
frames are displayed before stopping; a negative number means the system runs in continuous video mode.

To avoid confusion, when the user clicks on the trackbar to jump to a new location in the video, we’ll leave
the video paused there in the single step state by setting g_run = 1. This, however, brings up a subtle
problem: as the video advances, we’d like the slider trackbar position in the display window to advance
according to our location in the video. We do this by having the main program call the trackbar callback

5 Note that some AVI and mpeg encodings do not allow you to move backward in the video.

function to update the slider position each time we get a new video frame. However, we don’t want these
programmatic calls to the trackbar callback to put us into single step mode. To avoid this, we introduce a
final global variable, g_dontset to allow us to update trackbar position without triggering single state
mode.

void onTrackbarSlide(int pos, void *) {
 g_cap.set(cv::CAP_PROP_POS_FRAMES, pos);
 if(!g_dontset)
 g_run = 1;
 g_dontset = 0;
}

Now we define a callback routine to be used when the user pokes the trackbar. This routine will be passed a
32-bit integer, pos, which will be the new trackbar position. Inside this callback, we use the new requested
position in cv::g_cap.set() to actually advance the video playback to the new position. The if
statement just sets the program to go into single step mode after the next new frame comes in, but only if
the callback was triggered by a user click, not if the callback was called from the main function (which sets
g_dontset).

The call to cv::g_cap.set() is one we will see often in the future, along with its counterpart
cv::g_cap.get(). These routines allow us to configure (or query in the latter case) various properties
of the cv::VideoCapture object. In this case, we pass the argument
cv::CAP_PROP_POS_FRAMES, which indicates that we would like to set the read position in units of
frames.6

 int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT);
 int tmpw = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH);
 int tmph = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT);
 cout << "Video has " << frames << " frames of dimensions("
 << tmpw << ", " << tmph << ")." << endl;

The core of the main program is the same as in Example 2-3, so we’ll focus on what we’ve added. The first
difference after opening the video is that we use cv::g_cap.get() to determine the number of frames
in the video and the width and height of the video images. These numbers are printed out. We’ll need the
number of frames in the video to calibrate the slider (in the next step).

 createTrackbar("Position", "Example2_4", &g_slider_position, frames,
 onTrackbarSlide);

Next we create the trackbar itself. The function cv::createTrackbar() allows us to give the trackbar
a label7 (in this case, Position) and to specify a window to put the trackbar in. We then provide a
variable that will be bound to the trackbar, the maximum value of the trackbar (the number of frames in the
video), and a callback (or NULL if we don’t want one) for when the slider is moved.

 if(g_run != 0) {
 g_cap >> frame; if(!frame.data) break;
 int current_pos = (int)g_cap.get(cv::CAP_PROP_POS_FRAMES);
 g_dontset = 1;
 cv::setTrackbarPos("Position", "Example2_4", current_pos);
 cv::imshow("Example2_4", frame);
 g_run-=1;
 }

6 Because HighGUI is highly civilized, when a new video position is requested, it will automatically handle such issues
as the possibility that the frame we have requested is not a key-frame; it will start at the previous key-frame and fast
forward up to the requested frame without us having to fuss with such details.
7 Because HighGUI is a lightweight, easy-to-use toolkit, cv::createTrackbar() does not distinguish between
the name of the trackbar and the label that actually appears on the screen next to the trackbar. You may already have
noticed that cv::namedWindow() likewise does not distinguish between the name of the window and the label that
appears on the window in the GUI.

In the while loop, in addition to reading and displaying the video frame, we also get our current position in
the video, set the g_dontset so that the next trackbar callback will not put us into single step mode, and
then invoke the trackbar callback to update the position of the slider displayed to the user. The global
g_run is decremented, which has the effect of either keeping us in single step mode or of letting the video
run depending on its prior state set by user interaction via keyboard, as we’ll see next.

 char c = (char) cv::waitKey(10);
 if(c == 's') // single step
 {g_run = 1; cout << "Single step, run = " << g_run << endl;}
 if(c == 'r') // run mode
 {g_run = -1; cout << "Run mode, run = " << g_run <<endl;}
 if(c == 27)
 break;

At the bottom of the while loop, we look for keyboard input from the user. If ‘s’ has been pressed, we go
into single step mode (g_run is set to 1 which allows reading of a single frame above). If ‘r’ is pressed, we
go into continuous video mode (g_run is set to -1 and further decrementing leaves it negative for any
conceivable sized video). Finally, if ESC is pressed, the program will terminate. Note again, for short
programs, we’ve omitted the step of cleaning up the window storage using cv::destroyWindow().

A Simple Transformation
Great! Now you can use OpenCV to create your own video player, which will not be much different from
countless video players out there already. But we are interested in computer vision, and we want to do
some of that. Many basic vision tasks involve the application of filters to a video stream. We will modify
the program we already have to do a simple operation on every frame of the video as it plays.

One particularly simple operation is the smoothing of an image, which effectively reduces the information
content of the image by convolving it with a Gaussian or other similar kernel function. OpenCV makes
such convolutions exceptionally easy to do. We can start by creating a new window called "Example4-
out", where we can display the results of the processing. Then, after we have called
cv::showImage() to display the newly captured frame in the input window, we can compute and
display the smoothed image in the output window. See Example 2-5.

Example 2-5: Loading and then smoothing an image before it is displayed on the screen

#include <opencv2/opencv.hpp>

void example2_5(cv::Mat & image) {
 // Create some windows to show the input
 // and output images in.
 //
 cv::namedWindow("Example2_5-in", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Example2_5-out", cv::WINDOW_AUTOSIZE);

 // Create a window to show our input image
 //
 cv::imshow("Example2_5-in", image);

 // Create an image to hold the smoothed output
 cv::Mat out;

 // Do the smoothing
 // Could use GaussianBlur(), blur(), medianBlur() or bilateralFilter().
 cv::GaussianBlur(image, out, cv::Size(5,5), 3, 3);
 cv::GaussianBlur(out, out, cv::Size(5,5), 3, 3);

 // Show the smoothed image in the output window
 //
 cv::imshow("Example2_5-out", out);

 // Wait for the user to hit a key, windows will self destruct
 //
 cv::waitKey(0);
}

The first call to cv::showImage() is no different than in our previous example. In the next call, we
allocate another image structure. Next, the C++ object cv::Mat makes life simpler for us; we just
instantiate an output matrix “out” and it will automatically resize/reallocate and deallocate itself as
necessary as it is used. To make this point clear, we use it in two consecutive calls to
cv::GaussianBlur(). In the first call, the input images is blurred by a 5 × 5 Gaussian convolution
filter and written to out. The size of the Gaussian kernel should always be given as odd numbers since the
Gaussian kernel (specified here by cv::Size(5,5)) is computed at the center pixel in that area. In the
next call to cv::GaussianBlur(), out is used as both the input and output since temporary storage is
assigned for us in this case. The resulting double-blurred image is displayed and the routine then waits for
any user keyboard input before terminating and cleaning up allocated data as it goes out of scope.

A Not-So-Simple Transformation
That was pretty good, and we are learning to do more interesting things. In Example 2-5, we used Gaussian
blurring for no particular purpose. We will now use a function that uses Gaussian blurring to downsample it
by a factor of 2 [Rosenfeld80]. If we downsample the image several times, we form a scale space, or image
pyramid that is commonly used in computer vision to handle the changing scales in which a scene or object
is observed.

For those who know some signal processing and the Nyquist-Shannon Sampling Theorem [Shannon49],
when you downsample a signal (in this case, create an image where we are sampling every other pixel), it is
equivalent to convolving with a series of delta functions (think of these as “spikes”). Such sampling
introduces high frequencies into the resulting signal (image). To avoid this, we want to first run a high-pass
filter over the signal first to band limit its frequencies so that they are all below the sampling frequency. In
OpenCV, this Gaussian blurring and downsampling is accomplished by the function cv::pyrDown().
We use this very useful function in Example 2-6.

Example 2-6: Using cv::pyrDown() to create a new image that is half the width and height of the input
image

#include <opencv2/opencv.hpp>

int main(int argc, char** argv) {
 cv::Mat img = cv::imread(argv[1]),img2;
 cv::namedWindow("Example1", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Example2", cv::WINDOW_AUTOSIZE);
 cv::imshow("Example1", img);
 cv::pyrDown(img, img2);
 cv::imshow("Example2", img2);
 cv::waitKey(0);
 return 0;
};

Let’s now look at a similar but slightly more involved example involving the Canny edge detector
[Canny86] cv::Canny() (see Example 2-7). In this case, the edge detector generates an image that is the full
size of the input image but needs only a single-channel image to write to and so we convert to a gray scale,
single-channel image first using cv::cvtColor() with the flag to convert blue, green, red images to gray
scale: cv::BGR2GRAY.

Example 2-7: The Canny edge detector writes its output to a single-channel (grayscale) image

#include <opencv2/opencv.hpp>

int main(int argc, char** argv) {

 cv::Mat img_rgb = cv::imread(argv[1]);
 cv::Mat img_gry, img_cny;
 cv::cvtColor(img_rgb, img_gry, cv::BGR2GRAY);
 cv::namedWindow("Example Gray", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Example Canny", cv::WINDOW_AUTOSIZE);
 cv::imshow("Example Gray", img_gry);
 cv::Canny(img_gry, img_cny, 10, 100, 3, true);
 cv::imshow("Example Canny", img_cny);
 cv::waitKey(0);
}

This allows us to string together various operators quite easily. For example, if we wanted to shrink the
image twice and then look for lines that were present in the twice-reduced image, we could proceed as in
Example 2-8.

Example 2-8: Combining the pyramid down operator (twice) and the Canny subroutine in a simple image
pipeline

cv::cvtColor(img_rgb, img_gry, cv::BGR2GRAY);
cv::pyrDown(img_gry, img_pyr);
cv::pyrDown(img_pyr, img_pyr2);
cv::Canny(img_pyr2, img_cny, 10, 100, 3, true);
// do whatever with 'img_cny'
//
...

In Example 2-9, we show a simple way to read and write pixel values from Example 2-8.
Example 2-9: Getting and setting pixels in Example 2-8

 int x = 16, y = 32;
 cv::Vec3b intensity = img_rgb.at< cv::Vec3b >(y, x);
 uchar blue = intensity.val[0]; // We could write img_rgb.at< cv::Vec3b >(x,y)[0]
 uchar green = intensity.val[1];
 uchar red = intensity.val[2];
 std::cout << "At (x,y) = (" << x << ", " << y <<
 "): (blue, green, red) = (" <<
 (unsigned int)blue <<
 ", " << (unsigned int)green << ", " <<
 (unsigned int)red << ")" << std::endl;

 std::cout << "Gray pixel there is: " <<
 (unsigned int)img_gry.at<uchar>(x, y) << std::endl;

 x /= 4; y /= 4;
 std::cout << "Pyramid2 pixel there is: " <<
 (unsigned int)img_pyr2.at<uchar>(x, y) << std::endl;

 img_cny.at<uchar>(x, y) = 128; // Set the Canny pixel there to 128

Input from a Camera
Vision can mean many things in the world of computers. In some cases, we are analyzing still frames
loaded from elsewhere. In other cases, we are analyzing video that is being read from disk. In still other
cases, we want to work with real-time data streaming in from some kind of camera device.

OpenCV—more specifically, the HighGUI portion of the OpenCV library—provides us with an easy way
to handle this situation. The method is analogous to how we read videos from disk since the
cv::VideoCapture object works the same for files on disk or from camera. For the former, you give it
a path/filename, and for the latter, you give it a camera ID number (typically “0” if only one camera is
connected to the system). The default value is –1, which means “just pick one”; naturally, this also works

quite well when there is only one camera to pick (see Chapter 4 for more details). Camera capture from file
or from camera is demonstrated in Example 2-10.

Example 2-10: The same object can load videos from a camera or a file

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char** argv) {
 cv::namedWindow("Example2_10", cv::WINDOW_AUTOSIZE);
 cv::VideoCapture cap;
 if (argc==1) {
 cap.open(0); // open the default camera
 } else {
 cap.open(argv[1]);
 }
 if(!cap.isOpened()) { // check if we succeeded
 std::cerr << "Couldn't open capture." << std::endl;
 return -1;
 }
 // The rest of program proceeds as in Example 2-3
 …

In Example 2-10, if a filename is supplied, it opens that file just like in Example 2-3, and if no filename is
given, it attempts to open camera zero (0). We have added a check that something actually opened that
will report an error if not.

Writing to an AVI File
In many applications, we will want to record streaming input or even disparate captured images to an
output video stream, and OpenCV provides a straightforward method for doing this. Just as we are able to
create a capture device that allows us to grab frames one at a time from a video stream, we are able to
create a writer device that allows us to place frames one by one into a video file. The object that allows us
to do this is cv::VideoWriter.

Once this call has been made, we may stream each frame to the cv::VideoWriter object, and finally
call its cv::VideoWriter.release() method when we are done. Just to make things more
interesting, Example 2-11 describes a program that opens a video file, reads the contents, converts them to
a log-polar format (something like what your eye actually sees, as described in Chapter 6), and writes out
the log-polar image to a new video file.

Example 2-11: A complete program to read in a color video and write out the log-polar transformed video

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char* argv[]) {
 cv::namedWindow("Example2_10", cv::WINDOW_AUTOSIZE);
 cv::namedWindow("Log_Polar", cv::WINDOW_AUTOSIZE);
 cv::VideoCapture capture;
 double fps = capture.get(cv::CAP_PROP_FPS);
 cv::Size size(
 (int)capture.get(cv::CAP_PROP_FRAME_WIDTH),
 (int)capture.get(cv::CAP_PROP_FRAME_HEIGHT)
);
 cv::VideoWriter writer;
 writer.open(argv[2], CV_FOURCC('M','J','P','G'), fps, size);
 cv::Mat logpolar_frame(size,CV::U8C3), bgr_frame;
 for(;;) {
 capture >> bgr_frame;
 if(bgr_frame.empty()) break; // end if done

 cv::imshow("Example2_10", bgr_frame);
 cv::logPolar(
 bgr_frame, // Input color frame
 logpolar_frame, // Output log-polar frame
 cv::Point2f(// Centerpoint for log-polar transformation
 bgr_frame.cols/2, // x
 bgr_frame.rows/2 // y
),
 40, // Magnitude (scale parameter)
 cv::WARP_FILL_OUTLIERS // Fill outliers with ‘zero’
);
 cv::imshow("Log_Polar", logpolar_frame);
 writer << logpolar_frame;
 char c = cv::waitKey(10);
 if(c == 27) break; // allow the user to break out
 }
 capture.release();
}

Looking over this program reveals mostly familiar elements. We open one video and read some properties
(frames per second, image width and height) that we’ll need to open a file for the cv::VideoWriter
object. We then read the video frame by frame from the cv::VideoReader object, convert the frame to
log-polar format, and write the log-polar frames to this new video file one at a time until there are none left
or until the user quits by pressing ESC. Then we close up.

The call to cv::VideoWriter object contains several parameters that we should understand. The first is
just the filename for the new file. The second is the video codec with which the video stream will be
compressed. There are countless such codecs in circulation, but whichever codec you choose must be
available on your machine (codecs are installed separately from OpenCV). In our case, we choose the
relatively popular MJPG codec; this is indicated to OpenCV by using the macro CV_FOURCC(), which
takes four characters as arguments. These characters constitute the “four-character code” of the codec, and
every codec has such a code. The four-character code for motion jpeg is “MJPG,” so we specify that as
CV_FOURCC('M','J','P','G'). The next two arguments are the replay frame rate and the size of
the images we will be using. In our case, we set these to the values we got from the original (color) video.

Summary
Before moving on to the next chapter, we should take a moment to take stock of where we are and look
ahead to what is coming. We have seen that the OpenCV API provides us with a variety of easy-to-use
tools for reading and writing still images and videos from and to files along with capturing video from
cameras. We have also seen that the library contains primitive functions for manipulating these images.
What we have not yet seen are the powerful elements of the library, which allow for more sophisticated
manipulation of the entire set of abstract data types that are important to practical vision problem solving.

In the next few chapters, we will delve more deeply into the basics and come to understand in greater detail
both the interface-related functions and the image data types. We will investigate the primitive image
manipulation operators and, later, some much more advanced ones. Thereafter, we will be ready to explore
the many specialized services that the API provides for tasks as diverse as camera calibration, tracking, and
recognition. Ready? Let’s go!

Exercises
Download and install OpenCV if you have not already done so. Systematically go through the directory
structure. Note in particular the docs directory, where you can load index.htm, which further links to the
main documentation of the library. Further explore the main areas of the library. The core module contains
the basic data structures and algorithms, imgproc contains the image processing and vision algorithms, ml

includes algorithms for machine learning and clustering, and highgui contains the I/O functions. Check out
the …/samples/cpp directory, where many useful examples are stored.

1. Using the install and build instructions in this book or on the website http://opencv.org, build the
library in both the debug and the release versions. This may take some time, but you will need the
resulting library and dll files. Make sure you set the cmake file to build the samples …/opencv/samples/
directory.

2. Go to where you built the …/opencv/samples/ directory (the authors build in
…/trunk/eclipse_build/bin) and look for lkdemo.c (this is an example motion tracking program). Attach
a camera to your system and run the code. With the display window selected, type “r” to initialize
tracking. You can add points by clicking on video positions with the mouse. You can also switch to
watching only the points (and not the image) by typing “n.” Typing “n” again will toggle between
“night” and “day” views.

3. Use the capture and store code in Example 2-11 together with the cv::PyrDown() code of Example
2-6 to create a program that reads from a camera and stores down-sampled color images to disk.

4. Modify the code in Exercise 3 and combine it with the window display code in Example 2-2 to display
the frames as they are processed.

5. Modify the program of Exercise 4 with a slider control from Example 2-4 so that the user can
dynamically vary the pyramid downsampling reduction level by factors of between 2 and 8. You may
skip writing this to disk, but you should display the results.

3
Getting to Know OpenCV

OpenCV Data Types
OpenCV has many data types, which are designed to make the representation and handling of important
concepts of computer vision relatively easy and intuitive. At the same time, many algorithm developers
require a set of relatively powerful primitives that can be generalized or extended for their particular needs.
OpenCV attempts to address both of these needs through the use of templates for fundamental data types,
and specializations of those templates that make everyday operations easier.

From an organizational perspective, it is convenient to divide the data types into three major categories.
First, the basic data types are those that are assembled directly from C++ primitives (int, float, etc.).
These types include simple vectors and matrices, as well as representations of simple geometric concepts
like points, rectangles, sizes, and the like. The second category contains helper objects. These objects
represent more abstract concepts such as the garbage collecting pointer class, range objects used for slicing,
and abstractions such as termination criteria. The third category is what might be called large array types.
These are objects whose fundamental purpose is to contain arrays or other assemblies of primitives or,
more often, the basic data types mentioned first. The star example of this latter group is the cv::Mat
class, which is used to represent arbitrary-dimensional arrays containing arbitrary basic elements. Objects
such as images are specialized uses of the cv::Mat class but, unlike in earlier versions of OpenCV (i.e.,
before version 2.1), such specific use does not require a different class or type. In addition to cv::Mat,
this category contains related objects such as the sparse matrix cv::SparseMat class, which is more
naturally suited to non-dense data such as histograms.

In addition to these types, OpenCV also makes heavy use of the Standard Template Library (STL) [STL].
This vector class is particularly relied on by OpenCV, and many OpenCV library functions now have
vector template objects in their argument lists. We will not cover STL in this book, other than as necessary
to explain relevant functionality. If you are already comfortable with STL, many of the template
mechanisms used “under the hood” in OpenCV will be familiar to you.

Overview of the Basic Types
The most straightforward of the basic data types is the template class cv::Vec<>. cv::Vec<> is a
container class for primitives,1 which we will refer to as “the fixed vector classes.” Why not just use

1 Actually, this is an oversimplification that we will clear up a little later in the chapter. In fact, cv::Vec<> is a vector
container for anything, and uses templating to create this functionality. As a result, cv::Vec<> can contain other

standard template library classes? The key difference is that the fixed vector classes are classes intended for
small vectors whose dimensions are known at compile time. This allows for efficient code. What “small”
means in practice is that if you have more than just a few elements, you are probably using the wrong class.
(In fact, as of version 2.2, this number cannot exceed nine in any case). We will look shortly at the
cv::Mat class, which is the right way to handle big arrays of any number of dimensions, but for now,
think of the fixed vector classes as being handy and speedy for little guys.

Even though cv::Vec<> is a template, you will not tend to see or use it in that form most of the time.
Instead, there are aliases (typedef’s) for common instantiations of the cv::Vec<> template. They have
names like cv::Vec2i, cv::Vec3i, or cv::Vec4d (for a two-element integer vector, a three-element
integer vector, or a four-element double-precision floating-point vector, respectively). In general, anything
of the form cv::Vec{2,3,4,6}{b,s,i,f,d} is valid for any combination of two to six dimensions2 and the
five data types.

In addition to the fixed vector class, there are also “fixed matrix classes.” They are associated with the
template cv::Matx<>. Just like the fixed vector classes, cv::Matx<> is not intended to be used for
large arrays, but rather is designed for the handling of certain specific small matrix operations. In computer
vision, there are a lot of 2-by-2 or 3-by-3 matrices running around, and a few 4-by-4, which are used for
various transformations and the like. cv::Matx<> is designed to hold these sorts of objects. As with
cv::Vec<>, cv::Matx<> is normally accessed through aliases of the form
cv::Matx{1,2,3,4,6}{1,2,3,4,6}{f,d}. It is important to notice that with the fixed matrix classes (like
the fixed vector classes, but unlike cv::Mat, which we will come to shortly), the dimensionality of the
fixed matrix classes must be known at compile time. Of course, it is precisely this knowledge that makes it
possible to make operations with the fixed matrix classes highly efficient.

Closely related to the fixed vector classes are the point classes. The point classes are containers for two or
three values of one of the primitive types. The point classes are derived from their own template, so they
are not directly descended from the fixed vector classes, but they can be cast to and from them. The main
difference between the point classes and the fixed vector classes is that their members are accessed by
named variables (mypoint.x, mypoint.y, etc.) rather than by a vector index (myvec[0],
myvec[1], etc.). As with cv::Vec<>, the point classes are typically invoked using aliases for the
instantiation of an appropriate template. Those aliases have names like cv::Point2i, cv::Point2f,
or cv::Point2d, or cv::Point3i, cv::Point3f, or cv::Point3d.

The class cv::Scalar is essentially a four-dimensional point. As with the point classes, cv::Scalar
is actually associated with a template that can generate an arbitrary four-component vector, but the
keyword cv::Scalar specifically is aliased to a four-component vector with double-precision
components. Unlike the point classes, the elements of a cv::Scalar object are accessed with an integer
index, the same as cv::Vec<>. This is because cv::Scalar is directly derived from an instantiation of
cv::Vec<> (specifically, from cv::Vec<double,4>).

Next on our tour are cv::Size and cv::Rect. As with the point classes, these two are derived from
their own templates. cv::Size is mainly distinguished by having data members width and height
rather than x and y, while cv::Rect has all four. The class cv::Size is actually an alias for
cv::Size2i, which is itself an alias of a more general template in the case of width and height being
integers. For floating-point values of width and height, use the alias cv::Size2f. Similarly,
cv::Rect is an alias for the integer form of rectangle. There is also a class to represent a rectangle that is
not axis-aligned. It is called cv::RotatedRect and contains a cv::Point2f called center, a
cv::Size2f called size, and one additional float called angle.

class objects, either from OpenCV or elsewhere. In most usages, however, cv::Vec is used as a container for C
primitive types like int or float.
2 Except five, for some reason five is not an option.

Basic Types: Getting Down to Details
Each of the basic types is actually a relatively complicated object, supporting its own interface functions,
overloaded operators, and the like. In this section, we will take a somewhat more encyclopedic look at what
each type offers, and how some of the otherwise similar appearing types differ from one another.

As we go over these classes, we will try to hit on the high points of their interfaces, but not get into every
gory detail. Instead, we will provide examples that should convey what you can and can’t do with these
objects. For the lowest-level details, you should consult …/opencv2/core/core.hpp.

The Point Classes

Of the OpenCV basic types, the point classes are probably the simplest. As we mentioned earlier, these are
implemented based on a template structure, such that there can be points of any type: integer, floating-
point, and so on. There are actually two such templates, one for two-dimensional and one for three-
dimensional points. The big advantage of the point classes is that they are simple and have very little
overhead. Natively, they do not have a lot of operations defined on them, but they can be cast to somewhat
more generalized types, such as the fixed vector classes or the fixed matrix classes (discussed later), when
needed.

In most programs, the point classes are instantiated using aliases that take forms like cv::Point2i or
cv::Point3f, with the last letter indicating the desired primitive from which the point is to be
constructed. (Here, b is an unsigned character, s is a short integer, i is a 32-bit integer, f is a 32-bit
floating-point number, and d is a 64-bit floating-point number.)

Table 3-1 is the (relatively short) list of functions natively supported by the point classes. It is important to
note that there are several important operations that are supported, but they are supported indirectly
through implicit casting to the fixed vector classes (see below). These operations notably contain all of the
vector and singleton3 overloaded algebraic operators and comparison operators.

Table 3-1: Operations supported directly by the point classes

Operation Examples

Default constructors
cv::Point2i p();

cv::Point3f p();

Copy constructor cv::Point3f p2(p1);

Value constructors
cv::Point2i p(x0, x1);

cv::Point3d p(x0, x1, x2);

Cast to the fixed vector
classes (cv::Vec3f) p;

Member access
p.x; p.y; // and for three-dimensional

 // point classes: p.z

Dot product float x = p1.dot(p2)

Double-precision dot double x = p1.ddot(p2)

3 You might have expected us to use the word “scalar” here, but we avoided doing so because cv::Scalar is an
existing class in the library. As you will see shortly, a cv::Scalar in OpenCV is (somewhat confusingly) an array of
four numbers, approximately equivalent to a cv::Vec with four elements! In this context, the word “singleton” can
be understood to mean “a single object of whatever type the vector is an array of.”

product

Cross product
p1.cross(p2) // (for three-dimensional point

 // classes only)

Query if point p is inside of
rectangle r

p.inside(r) // (for two-dimensional point

 // classes only)

These types can be cast to and from the old C interface types CvPoint and CvPoint2D32f. In the case
in which a floating-point-valued instance of one of the point classes is cast to CvPoint, the values will
automatically be rounded.

class cv::Scalar

The class cv::Scalar is really a four-dimensional point class. Like the others, it is actually associated
with a template class, but the alias for accessing it returns an instantiation of that template in which all of
the members are double-precision floating-point numbers. The cv::Scalar class also has some special
member functions associated with uses of four-component vectors in computer vision.

Table 3-2: Operations supported directly by class cv::Scalar

Operation Example

Default constructors cv::Scalar s();

Copy constructor cv::Scalar s2(s1);

Value constructors
cv::Scalar s(x0);

cv::Scalar s(x0, x1, x2, x3);

Element-wise
multiplication s1.mul(s2);

(Quaternion) conjugation s.conj(); // (returns cv::Scalar(s0,-s1,-s2,-s2))

(Quaternion) real test s.isReal(); // (returns true iff s1==s2==s3==0)

You will notice that for cv::Scalar, the operation “cast to the fixed vector classes” does not appear in
Table 3-2 (as it did in the case of the point classes). This is because, unlike the point classes,
cv::Scalar inherits directly from an instantiation of the fixed vector class template. As a result, it
inherits all of the vector algebra operations, member access functions (i.e., operator[]), and other
properties from the fixed vector classes. We will get to that class later, but for now, just keep in mind that
cv::Scalar is shorthand for a four-dimensional double-precision vector that has a few special member
functions attached that are useful for various kinds of four-vectors.

The class cv::Scalar can be freely cast to and from the old C interface CvScalar type.

The Size Classes

The size classes are, in practice, similar to the corresponding point classes, and can be cast to and from
them. The primary difference between the two is that the point class’ data members are named x and y,
while the corresponding data members in the size classes are named width and height. The three
aliases for the size classes are cv::Size, cv::Size2i, and cv::Size2f. The first two of these are
equivalent and imply integer size, while the last is for 32-bit floating-point sizes. As with the point classes,
the size classes can be cast to and from the corresponding old-style OpenCV classes (in this case, CvSize
and CvSize2D32f).

Table 3-3: Operations supported directly by the size classes

Operation Example

Default constructors

cv::Size sz();

cv::Size2i sz();

cv::Point2f sz();

Copy constructor cv::Size sz2(sz1);

Value constructors cv::Size2f sz(w, h);

Member access sz.width; sz.height;

Compute area sz.area();

Unlike the point classes, the size classes do not support casting to the fixed vector classes. This means that
the size classes have more restricted utility. On the other hand, the point classes and the fixed vector classes
can be cast to the size classes without any problem.

class cv::Rect

The rectangle classes include the members x and y of the point class (representing the upper-left corner of
the rectangle) and the members width and height of the size class (representing the extent of the
rectangle). The rectangle classes, however, do not inherit from the point or size classes, and so in general
they do not inherit operators from them.

Table 3-4: Operations supported directly by class cv::Rect*

Operation Example

Default constructors cv::Rect r();

Copy constructor cv::Rect r2(r1);

Value constructors cv::Rect(x, y, w, h);

Construct from origin and
size cv::Rect(p, sz);

Construct from two corners cv::Rect(p1, p2);

Member access r.x; r.y; r.width; r.height;

Compute area r.area();

Extract upper-left corner r.tl();

Extract lower-right corner r.lr;

Determine if point p is inside
of rectangle r r.contains(p);

Cast operators and copy constructors exist to allow cv::Rect to be computed from or cast to the old-
style cv::CvRect type as well. cv::Rect is actually an alias for a rectangle template instantiated with
integer members.

The class cv::Rect also supports a variety of overloaded operators that can be used for the computation
of various geometrical properties of two rectangles or a rectangle and another object.

Table 3-5. Overloaded operators that take objects of type cv::Rect

Operation Example

Intersection of rectangles r1
and r2

cv::Rect r3 = r1 & r2;

r1 &= r2;

Minimum area rectangle
containing rectangles r1 and
r2

cv::Rect r3 = r1 | r2;

r1 |= r2;

Translate rectangle r by an
amount x

cv::Rect rx = r + v; // v is a cv::Point2i

r += v;

Enlarge a rectangle r by an
amount given by size s

cv::Rect rs = r + s; // s is a cv::Point2i

r += s;

Compare rectangles r1 and r2
for exact equality bool eq = (r1 == r2);

Compare rectangles r1 and r2
for inequality bool ne = (r1 != r2);

class cv::RotatedRect

The cv::RotatedRect class is one of the few classes in the C++ OpenCV interface that is not a
template underneath. It is a container, which holds a cv::Point2f called center, a cv::Size2f
called size, and one additional float called angle, with the latter representing the rotation of the
rectangle around center. One very important difference between cv::RotatedRect and cv::Rect
is the convention that a cv::RotatedRect is located in “space” relative to its center, while the
cv::Rect is located relative to its upper-left corner.

Table 3-6: Operations supported directly by class cv::RotatedRect

Operation Example

Default constructors cv::RotatedRect rr();

Copy constructor cv::RotatedRect rr2(rr1);

Construct from two corners cv::RotatedRect(p1, p2);

Value constructors; takes a
point, a size, and an angle cv::RotatedRect rr(p, sz, theta) ;

Member access rr.center; rr.size; rr.angle;

Return a list of the corners rr.points(pts[4]);

The Fixed Matrix Classes

The fixed matrix classes are for matrices whose dimensions are known at compile time (hence “fixed”). As
a result, all memory for their data is allocated on the stack, which means that they allocate and clean up
quickly. Operations on them are fast and there are specially optimized implementations for small matrices
(2-by-2, 3-by-3, etc.). The fixed matrix classes are also central to many of the other basic types in the C++
interface to OpenCV. The fixed vector class derives from the fixed matrix classes and other classes either
derive from the fixed vector class (like cv::Scalar), or they rely on casting to the fixed vector class for
many important operations. As usual, the fixed matrix classes are really a template. The template is called

cv::Matx<>, but individual matrices are usually allocated using aliases. The basic form of such an alias
is cv::Matx{1,2,…}{1,2,…}{f,d}, where the numbers can be any number from one to six, and the
trailing letter has the same meaning as with the previous types.4

In general, you should use the fixed matrix classes when you are representing something that is really a
matrix with which you are going to do matrix algebra. If your object is really a big data array, like an
image, or a huge list of points or something like that, the fixed matrix classes are not the correct solution;
you should be using cv::Mat (which we will get to shortly). Fixed matrix classes are for small matrices
where you know the size at compile time: (e.g., a camera matrix).

Table 3-7: Operations supported by class cv::Matx

Operation Example

Default constructor cv::Matx33f m33f(); cv::Matx43d m43d();

Copy constructor cv::Matx22d m22d(n22d);

Value constructors cv::Matx21f m(x0,x1); cv::Matx44d
m(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15);

Matrix of identical
elements m33f = cv::Matx33f::all(x);

Matrix of zeros m23d = cv::Matx23d::zeros();

Matrix of ones m16f = cv::Matx16f::ones();

Create a unit matrix m33f = cv::Matx33f::eye();

Create a matrix that
can hold the
diagonal of another

m31f = cv::Matx33f::diag(); // create a matrix of

 // size 3-by-1 of floats

Create a matrix
with uniformly
distributed entries

m33f = cv::Matx33f::randu(min, max);

Create a matrix
with normally
distributed entries

m33f = cv::Matx33f::nrandn(mean, variance);

Member access
m(i, j), m(i); // one argument for

 // one-dimensional matrices only

Matrix algebra m1 = m0; m0 * m1; m0 + m1; m0 – m1;

Singleton algebra m * a; a * m; m / a;

Comparison m1 == m2; m1 != m2;

Dot product m1.dot(m2); // (sum of element-wise

4 At the time of writing, the relevant header file called core.hpp does not actually contain every possible combination of
these integers. For example, there is no 1-by-1 matrix alias, nor is there a 5-by-5. This may or may not change in later
releases, but you will pretty much never want the missing ones anyway. If you really do want one of the odd ones, you
can just instantiate the template yourself (e.g., cv::Matx<5,5,float>).

 // multiplications, precision of m)

Dot product
m1.ddot(m2); // (sum of element-wise multiplications,

 // double precision)

Reshape a matrix m91f = m33f.reshape<9,1>();

Cast operators m44f = (Matx44f) m44d

Extract i,j-th
algebraic minor m44f.get_minor(i, j);

Extract row i m14f = m44f.row(i);

Extract column j m41f = m44f.col(j);

Extract matrix
diagonal

m41f = m44f.diag();

Compute transpose n44f = m44f.t();

Invert matrix
n44f = m44f.inv(method); // (default method is

 // cv::DECOMP_LU)

Solve linear system

m31f = m33f.solve(rhs31f, method)

m32f = m33f.solve<2>(rhs32f, method); // (template

 // form5; default method is DECOMP_LU)

Per-element
multiplication

m1.mul(m2);

Note that many of the fixed matrix functions are static relative to the class (i.e., you access them directly as
members of the class rather than as members of a particular object). For example, if you would like to
construct a 3-by-3 identity matrix, you have a handy class function for it: cv::Mat33f::eye(). Note
that, in this example, eye() does not need any arguments because it is a member of the class, and the class
is already a specialization of the cv::Matx<> template to 3-by-3.

The Fixed Vector Classes

The fixed vector classes are derived from the fixed matrix classes. They are really just convenience
functions for cv::Matx<>. In the proper sense of C++ inheritance, it is correct to say that the fixed vector
template cv::Vec<> is a cv::Matx<> whose number of columns is one. The readily available aliases
for specific instantiations of cv::Vec<> are of the form cv::Vec{2,3,4,6}{b,s,w,i,f,d}, where the
last character has the usual meanings (with the addition of w, which indicates an unsigned short).

Table 3-8: Operations supported by class cv::Vec

Operation Example

Default constructor Vec2s v2s(); Vec6f v6f(); // etc…

5 The template form is used when the right hand side of the implied matrix equation has multiple columns. In this case,
we are essentially solving for ‘k’ different systems at once. This value of ‘k’ must be supplied as the template
argument to solve<>(). It will also determine the number of columns in the result matrix.

Copy constructor Vec3f u3f(v3f);

Value constructors Vec2f v2f(x0,x1); Vec6d v6d(x0,x1,x2,x3,x4,x5);

Member access
v4f[i]; v3w(j); // (operator() and operator[]

 // both work)

Vector cross-product v3f.cross(u3f);

The primary conveniences of the fixed vector classes are the ability to access elements with a single
ordinal, and a few specific additional functions that would not make sense for a general matrix (e.g., cross
product). We can see this in Table 3-8 by the relatively small number of novel methods added to the large
number of methods inherited from the fixed matrix classes.

The Complex Number Classes

One more class type should be included in the basic types: the complex number classes. The OpenCV
complex number classes are not identical to, but are compatible with, and can be cast to and from, the
classes associated with the STL complex number class template complex<>. The most substantial
difference between the OpenCV and STL complex number classes is in member access. In the STL classes,
the real and imaginary parts are accessed through the member functions real() and imag(), while in
the OpenCV class, they are directly accessible as (public) member variables re and im.

Table 3-9: Operations supported by the OpenCV complex number classes

Operation Example

Default constructor cv::Complexf z1; cv::Complexd z2;

Copy constructor cv::Complexf z2(z1);

Value constructors cv::Complexd z1(re0); cv::Complexd(re0,im1) ;

Copy constructor cv::Complexf u2f(v2f);

Member access z1.re; z1.im;

Complex conjugate z2 = z1.conj();

Like many basic types, the complex classes are aliases for underlying templates. cv::Complexf and
cv::Complexd are aliases for single- and double-precision complex floating point numbers,
respectively.

Helper Objects
In addition to the basic types and the big containers (which we will get to in the next section), there is a
family of helper objects, which are important for controlling various algorithms (such as termination
criteria) or for doing various operations on the containers (such as “ranges” or “slices”). There is also one
very important object, the “smart” pointer object cv::Ptr. Looking into cv::Ptr, we will examine the
garbage collecting system, which is integral to the C++ interface to OpenCV. This system allows us to not
have to worry about the details of allocation and deallocation of objects in the manner that was once so
onerous in the earlier C-based OpenCV interface (i.e., before version 2.1).

class cv::TermCriteria

Many algorithms require a stopping condition to know when to quit. Generally, stopping criteria take the
form of either some finite number of iterations that are allowed (called COUNT or MAX_ITER) or some
kind of error parameter that basically says “if you are this close, you can quit” (called EPS—short for
“epsilon,” everyone’s favorite tiny number). In many cases, it is desirable to have both of these at once, so
that if the algorithm never gets “close enough,” then it will still quit at some point.

cv::TermCriteria objects encapsulate one, the other, or both of the stopping criteria so that they can
be passed conveniently to an OpenCV algorithm function. They have three member variables, type,
maxCount, and epsilon, which can be set directly (they are public) or, more often, are just set by the
constructor with the form TermCriteria(int type, int maxCount, double epsilon).
The variable type is set to one of the following values: cv::TermCriteria::COUNT or
TermCriteria::EPS. You can also “or” (i.e., |) the two together. The value
cv::TermCriteria::COUNT is a synonym for cv::TermCriteria::MAX_ITER, so you can use
that if you prefer. If the termination criterion includes cv::TermCriteria::COUNT, then you are
telling the algorithm to terminate after maxCount iterations. If the termination criterion includes
cv::TermCriteria::EPS, then you are telling the algorithm to terminate after some metric associated
with the algorithm’s convergence falls below epsilon6 The type argument has to be set accordingly for
maxCount or epsilon to be used.

class cv::Range

The cv::Range class is used to specify a continuous sequence of integers. cv::Range objects have two
elements, start and end, which—similar to cv::TermCriteria—are often set with the constructor
cv::Range(int start, int end). Ranges are inclusive of their start value, but not inclusive of
their end value, so cv::Range rng(0, 4) includes the values 0, 1, 2, 3, but not 4.

Using size(), one can find the number of elements in a range. From the above, rng.size() would be
equal to 4. There is also a member empty() that tests if a range has no elements. Finally,
cv::Range::all() can be used anywhere a range is required to indicate whatever range the consumer
has available.

The cv::Ptr template, and Garbage Collection 101

One very useful object type in C++ is a “smart” pointer.7 This pointer allows us to create a reference to a
thing, and then pass that around. You can create more references to that thing, and then all of those
references will be counted. As references go out of scope, the reference count for the smart pointer is
decremented. Once all of the references (instances of the pointer) are gone, the “thing” will automatically
be cleaned up (deallocated). The programmer doesn’t have to do this bookkeeping anymore.

The way this all works is as follows: first, you define an instance of the pointer template for the class object
that you want to “wrap.” You do this with a call like cv::Ptr<Matx33f> p(new cv::Matx33f
). The constructor for the template object takes a pointer to the object to be pointed to. Once you do this,
you have your smart pointer p, which is a sort of pointer-like object that you can pass around and use just
like a normal pointer (i.e., it supports operators such as operator*() and operator->()). Once you
have p, you can create other objects of the same type without passing them a pointer to a new object. For
example, you could create: Ptr<Mat33f> q, and when you assign the value of p to q, somewhere
behind the scenes, the “smart” action of the smart pointer comes into play. You see, just like a usual
pointer, there is still only one actual cv::Mat33f object out there that p and q both point to. The

6 The exact termination criteria are clearly algorithm dependent, but the documentation will always be clear how a
particular algorithm interprets epsilon.
7 If you are familiar with some of the more recent additions to the C++ standard, you will recognize a similarity
between the OpenCV cv::Ptr<> template and the smart_ptr<> template. Similarly, there is a smart pointer
shared_ptr<> in the Boost library. Ultimately, they all function more or less the same.

difference is that both p and q know that they are each one of two pointers. Should p disappear (such as by
falling out of scope), q knows that it is the only remaining reference to the original matrix. If q should then
disappear and its destructor is called (implicitly), q will know that is the last one left, and that it should
deallocate the original matrix. You can think of this like the last person out of a building being responsible
for turning out the lights and locking the door (and in this case, burning the building to the ground as well).

The cv::Ptr<> template class supports several additional functions in its interface related to the
reference counting functionality of the smart pointer. Specifically, the functions addref() and
release() increment and decrement the internal reference counter of the pointer. These are relatively
dangerous functions to use, but are available in case you need to micromanage the reference counters
yourself.

There is also a function empty(), which can be used to determine if a smart pointer is pointing to an
object that has been deallocated. This could happen if you called release() on the object one or more
times. In this case, you would still have a smart pointer around, but the object pointed to might already
have been destroyed. There is a second application of empty(), which is to determine if the internal
object pointer inside of the smart pointer object happens to be NULL for some other reason. This might
occur if you assigned the smart pointer by calling a function that might just return NULL in the first place
(cvLoadImage(),fopen(), etc.)

8

The final member of Ptr<> that you will want to know about is delete_obj(). This is a function that
gets called automatically when the reference count gets to zero. By default, this function is defined but does
nothing. It is there so that you can overload it in the case of instantiation of cv::Ptr<>, which points to a
class that requires some specific operation in order to clean up the class to which it points. For example,
let’s say that you are working with an old-style (pre-version 2.1) IplImage.9 In the old days, you might,
for example, have called cvLoadImage() to load that image from disk. In the C interface, that would
have looked like:

IplImage* img_p = cvLoadImage(…);

The modern version of this (while still using IplImage, rather than cv::Mat, which we are still
working our way up to) would look like:

Ptr<IplImage> img_p = cvLoadImage(“an_image”);

or (if you prefer):
Ptr<IplImage> img_p(cvLoadImage(“an_image”));

Now you can use img_p in exactly the same way as a pointer (which is to say, for readers experienced
with the pre-version 2.1 interface, “exactly as you would have back then”). Conveniently, this particular
template instantiation is actually already defined for you somewhere in the vast sea of header files that
make up OpenCV. If you were to go search it out, you would find the following template function defined:

template<> inline void cv::Ptr<IplImage>::delete_obj() {
 cvReleaseImage(&obj);
}

(The variable obj is the name of the class member variable inside of Ptr<> that actually holds the pointer
to the allocated object.) As a result of this definition, you will not need to deallocate the IplImage*
pointer you got from cvLoadImage(). Instead, it will be automatically deallocated for you when img_p
falls out of scope.

8 For the purposes of this example, we will make reference to IplImage and cvLoadImage(), both constructs
from the ancient pre-version 2.1 interface that are now deprecated. We won’t really cover them in detail in this book,
but all you need to know for this example is that IplImage is the old data structure for images, and
cvLoadImage() was the old function to get an image from disk and return a pointer to the resulting image structure.
9 This example might seem a bit artificial, but in fact, if you have a large body of pre-v2.1 code you are trying to
modernize, you will likely find yourself doing an operation like this quite often.

This example was a somewhat special (though highly relevant) situation, in that the case of a smart pointer
to IplImage is sufficiently salient that it was defined for you by the library. In a somewhat more typical
case, when the clean-up function does not exist for what you want, you will have to define it yourself.
Consider the example of creating a file handle using a smart pointer to FILE.10 In this case, we define our
own overloaded version of delete_obj() for the cv::Ptr<FILE> template:

template<> inline void cv::Ptr<FILE>::delete_obj() {
 fclose(obj);
}

Then you could go ahead and use that pointer to open a file, do whatever with it, and later, just let the
pointer fall out of scope (at which time the file handle would automatically be closed for you):

{
 Ptr<FILE> f(fopen("myfile.txt", "r"));
 if(f.empty())
 throw …; // Throw an exception, we will get to this later on…
 fprintf(f, …);
 …
}

At the final brace, f falls out of scope, the internal reference count in f goes to zero, delete_obj() is
called by f’s destructor, and (thus) fclose() is called on the file handle pointer (stored in obj).

A tip for gurus: a serious programmer might worry that the incrementing and
decrementing of the reference count might not be sufficiently atomic for the Ptr<>
template to be safe in multithreaded applications. This, however, is not the case, and
Ptr<> is thread safe. Similarly, the other reference counting objects in OpenCV are all
thread-safe in this same sense.

class cv::Exception and Exception Handling

OpenCV uses exceptions to handle errors. OpenCV defines its own exception type cv::Exception,
which is derived from the STL exception class std::exception. Really, this exception type has
nothing special about it, other than being in the cv:: namespace and so distinguishable from other objects
that are also derived from std::exception.

The type cv::Exception has members code, err, func, file, and line, which are (respectively)
a numerical error code, a string indicating the nature of the error that generated the exception, the name of
the function in which the error occurred, the file in which the error occurred, and an integer indicating the
line on which the error occurred in that file. err, func, and file are all STL strings.

There are several built-in macros for generating exceptions yourself. CV_Error(errorcode,
description) will generate and throw an exception with a fixed text description. CV_Error_(
errorcode, printf_fmt_str, [printf-args]) works the same, but allows you to replace
the fixed description with a printf-like format string and arguments. Finally, there is CV_Assert(
condition) and CV_DbgAssert(condition). Both will test your condition and throw an
exception if the condition is not met. The latter version, however, will only operate in debug builds. These
macros are the strongly preferred method of throwing exceptions, as they will automatically take care of the
fields func, file, and line for you.

The cv::DataType<> Template

When OpenCV library functions need to communicate the concept of a particular data type, they do so by
creating an object of type cv::DataType<>. cv::DataType<> itself is a template, and so the actual
objects passed around are specializations of this template. This is an example of what in C++ are generally
called traits. This allows the cv::DataType<> object to both contain runtime information about the

10 In this case, by FILE we mean struct FILE, as defined in the C standard library.

type, as well as to contain typedef statements in its own definition that allow it to refer to the same type
at compile time.

This might sound a bit confusing, and it is, but that is an inevitable consequence of trying to mix runtime
information and compile-time information in C++.11 An example will help clarify.

The template class definition for DataType is the following:
template<typename _Tp> class DataType
{
 typedef _Tp value_type;
 typedef value_type work_type;
 typedef value_type channel_type;
 typedef value_type vec_type;

 enum {
 generic_type = 1,
 depth = -1,
 channels = 1,
 fmt = 0,
 type = CV_MAKETYPE(depth, channels)
 };
};

Let’s try to understand what this means, and then follow it with an example. First, we can see that
cv::DataType<> is a template, and expects to be specialized to a class called _Tp. It then has four
typedef statements that allow the type of the cv::DataType<>, as well as some other related types,
to be extracted from the cv::DataType<> instantiated object at compile time. In the template definition,
these are all the same, but we will see in our example of a specialization of the template that they do not
have to be (and often should not be). The next section is an enum that contains several components.12
These are the generic_type, the depth, the number of channels, the format fmt, and the type.
To see what all of these things mean, we’ll look at two example specializations of cv::DataType<>,
from core.hpp. The first is the cv::DataType<> definition for float:

template<> class DataType<float>
{
public:
 typedef float value_type;
 typedef value_type work_type;
 typedef value_type channel_type;
 typedef value_type vec_type;

 enum {
 generic_type = 0,
 depth = DataDepth<channel_type>::value,
 channels = 1,
 fmt = DataDepth<channel_type>::fmt,
 type = CV_MAKETYPE(depth, channels)
 };
};

The first thing to notice is that this is a definition for a C++ built-in type. It is useful to have such
definitions for the built-in types, but we can also make them for more complicated objects. In this case, the
value_type is of course float, and the work_type, channel_type, and vec_type are all the
same. We will see more clearly what these are for in the next example. For the constants in the enum, this

11 You don’t have this sort of problem in languages (e.g., Python) that support variable introspection and have an
intrinsic runtime concept of data types.
12 If this construct is awkward to you, remember that you can always assign integer values to the “options” in an enum
declaration. In effect, this is a way of stashing a bunch of integer constants that will be fixed at compile time.

example will do just fine. The first variable generic_type is set to 0, as it is zero for all types defined in
core.hpp. The depth variable is the data type identifier used by OpenCV. For example,
cv::DataDepth<float>::value resolves to the constant cv::F32. The entry channels is one
because float is just a single number; we will see an alternative to this in the next example. The variable
fmt gives a single character representation of the format. In this case,
cv::DataDepth<float>::fmt resolves to f. The last entry is type, which is a representation
similar to depth, but which includes the number of channels (in this case, one).
CV_MAKETYPE(cv::F32,1) resolves to cv::F32C1.

The important thing about DataType<>, however, is to communicate the nature of more complicated
constructs. This is essential, for example, for allowing algorithms to be implemented in a manner that is
agnostic to the incoming data type (i.e., algorithms that use introspection to determine how to proceed with
incoming data).

Consider the example of an instantiation of cv::DataType<> for a cv::Rect<> (itself containing an
as yet unspecialized type _Tp):

template<typename _Tp> class DataType<Rect_<_Tp> >
{
public:
 typedef Rect_<_Tp> value_type;
 typedef Rect_<typename DataType<_Tp>::work_type> work_type;
 typedef _Tp channel_type;
 typedef Vec<channel_type, channels> vec_type;

 enum {
 generic_type = 0,
 depth = DataDepth<channel_type>::value,
 channels = 4,
 fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
 type = CV_MAKETYPE(depth, channels)
 };
};

This is a much more complicated example. First, notice that cv::Rect itself does not appear. You will
recall that earlier we mentioned that cv::Rect was actually an alias for a template, and that template is
called cv::Rect_<>. So this template could be specialized as cv::DataType<Rect> or, for
example, cv::DataType< Rect_<float> >. For the case cv::DataType<Rect>, we recall that
all of the elements are integers, so if we consider that case, all of the instantiations of the template
parameter _Tp resolve to int. We can see that the value_type is just the compile-time name of the
thing that the cv::DataType<> is describing (namely Rect). The work_type, however, is defined to
be the work_type of cv::DataType<int> (which, not surprisingly is int). What we see is that the
work_type is telling us what kind of variables the cv::DataType<> is made of (i.e., what we “do
work” on). The channel type is also int. This means that if we want to represent this variable as a
multichannel object, it should be represented as some number of int objects. Finally, just as
channel_type tells us how to represent this cv::DataType<> as a multichannel object, vec_type
tells us how to represent it as an object of type cv::Vec<>. The alias
cv::DataType<Rect>::vec_type will resolve to cv::Vec<int,4>. Moving on to the runtime
constants: generic_type is again 0, depth is CV::S32, channels is 4 (because there are actually
four values, the same reason the vec_type instantiated to a cv::Vec<> of size 4), fmt resolves to
0x3069 (since i is 0x69), and type resolves to cv::S32C4.

class InputArray and class OutputArray

Many OpenCV functions take arrays as arguments and return arrays as return values, but in OpenCV, there
are many kinds of arrays. We have already seen that OpenCV supports some small array types
(cv::Scalar, cv::Vec, cv::Matx), and STL’s std::vector<> in addition to the large array
types in the next section (cv::Mat and cv::SparseMat). In order to keep the interface from becoming
onerously complicated (and repetitive), OpenCV defines the types cv::InputArray and

cv::OutputArray. In effect, these types mean “any of the above” with respect to the many array forms
supported by the library. There is even a cv::InputOutputArray, specifying an array for in place
computation.

The primary difference between cv::InputArray and cv::OutputArray is that the former is
assumed to be const (i.e., read only). You will typically see these two types used in the definitions of
library routines. You will not tend to use them yourself, but when being introduced to library functions,
their presence means that you can use any array type, including a single cv::Scalar, and the result
should be what you expect.

Related to cv::InputArray is the special function cv::noArray() that returns
cv::InputArray. The returned object can be passed to any input requiring cv::InputArray to
indicate that this input is not being used.

Large Array Types
Finally, our journey brings us to the large array types. Chief among these is cv::Mat, which could be
considered the epicenter of the entire C++ implementation of the OpenCV library. The overwhelming
majority of functions in the OpenCV library are members of the cv::Mat class or take a cv::Mat as an
argument or return cv::Mat as a return value.

If you are familiar with the C interface (pre-version 2.1 implementation) of the OpenCV
library, you will remember the data types IplImage and CvMat. You might also recall
CvArr. In the C++ implementation, these are all gone, replaced with cv::Mat. This
means no more dubious casting of void* pointers in function arguments, and in general
a tremendous enhancement in the cleanliness of the library internally.

The cv::Mat class is used to represent dense arrays of any number of dimensions. In this context, dense
means that for every entry in the array, there is a data value stored in memory corresponding to that entry,
even if that entry is zero. Most images, for example, are stored as dense arrays. The alternative would be a
sparse array. In the case of a sparse array, only nonzero entries are typically stored. This can result in a
great savings of storage space if many of the entries are in fact zero, but can be very wasteful if the array is
relatively dense. A common case for using a sparse array rather than a dense array would be a histogram.
For many histograms, most of the entries are zero, and storing all those zeros is not necessary. For the case
of sparse arrays, OpenCV has the alternative data structure cv::SparseMat.

class cv::Mat: N-Dimensional Dense Arrays

The class cv::Mat can be used for arrays of any number of dimensions. The data is stored in the array in
what can be thought of as an n-dimensional analog of “raster scan order.” This means that in a one-
dimensional array, the elements are sequential. In a two-dimensional array, the data is organized into rows,
and each row appears one after the other. For three-dimensional arrays, each plane is filled out row by row,
and then the planes are packed one after the other.

Each matrix contains an element signaling the contents of the array called flags, an element that indicates
the number of dimensions called dims, two elements that indicate the number of rows and columns called
rows and cols (these are not valid for dims>2), a pointer to where the array data is stored called data,
and a reference counter analogous to the reference counter used by cv::Ptr<> called refcount. This
latter member allows cv::Mat to behave very much like a smart pointer for the data contained in data.
The memory layout in data is described by the array step[]. The data array is laid out such that the

address of an element whose indices are given by

i0 ,†ii ,†…,iNd−1() is:

& mtxi0 ,i1,…,†iNd −1Nd
() = mtx.data + mtx.step 0⎡⎣ ⎤⎦* i0 + mtx.step 1⎡⎣ ⎤⎦* i1 +…+ mtx.step Nd −1⎡⎣ ⎤⎦* iNd−1

In the simple case of a two-dimensional array, this reduces to:

& mtxi, j() = mtx.data + mtx.step 0⎡⎣ ⎤⎦* i + mtx.step 1⎡⎣ ⎤⎦* j

The data itself contained in cv::Mat is not required to be simple primitives. Each element of the data in a
cv::Mat can itself be either a single number, or multiple numbers. In the case of multiple numbers, this is
what the library refers to as a multichannel array. In fact, an n-dimensional array and an (n-1)-dimensional
multichannel array are actually very similar objects, but because of the frequency of occasions in which it
is useful to be able to think of an array as a vector valued array, the library contains special provisions for
such structures.13

One reason why this distinction is made is because of memory access. By definition, an element of an array
is the part that may be vector-valued. For example, an array might be said to be a two-dimensional three-
channel array of 32-bit floats; in this case, the element of the array is the three 32-bit floats with a size of 12
bytes. When laid out in memory, rows of an array may not be absolutely sequential; there may be small
gaps that buffer each row before the next. The difference between an n -dimensional single-channel array
and an

n −1() -dimensional multichannel array is that this padding will always occur at the end of full

rows (i.e., the channels in an element will always be sequential).

Creating an Array

An array can be created simply by instantiating a variable of type cv::Mat. An array created in this
manner has no size and no data type. It can, however, later be asked to allocate data by using a member
function such as create(). One variation of create() takes as arguments a number of rows, a number
of columns, and a type, and configures the array to represent a two-dimensional object. The type of an array
determines what kind of elements it has. Valid types in this context specify both the fundamental type of
element as well as the number of channels. All such types are defined in the library header, and have the
form cv::{U8,S16,U16,S32,F32,F64}C{1,2,3}.14 For example, cv::F32C3 would imply a 32-bit
floating-point three-channel array.

You can also specify these things when you first allocate the matrix if you prefer. There are many
constructors for cv::Mat, one of which takes the same arguments as create() (and an optional fourth
argument with which to initialize all of the elements in your new array).

cv::Mat m;
m.create(3, 10, cv::F32C3); // 3 rows, 10 columns of 3-channel 32-bit floats
m.setTo(cv::Scalar(1.0f, 0.0f, 1.0f)); // 1st channel is 1.0, 2nd 0.0, 3rd 1.0

is equivalent to
cv::Mat m(3, 10, cv::F32C3, cv::Scalar(1.0f, 0.0f, 1.0f));

It is important to understand that the data in an array is not attached rigidly to the array object. The
cv::Mat object is really a header for a data area, which—in principle—is an entirely separate thing. For
example, it is possible to assign one matrix n to another matrix m (i.e., m=n). In this case, the data pointer
inside of m will be changed to point to the same data as n. The data pointed to previously by the data

13 Pre-2.1 OpenCV array types had an explicit element IplImage::nChannels, which indicated the number of
channels. Because of the more general way in which such concepts are captured in the cv::Mat object, this
information is no longer directly stored in a class variable. Rather, it is returned by a member function
cv::channels().
14 OpenCV allows for arrays with more than three channels, but to construct one of these, you will have to call one of
the functions cv::{U8,S16,U16,S32,F32,F64}C(). These functions take a single argument, which is the number of
channels. So cv::U8C(3) is equivalent to cv::U8C3, but since there is no macro for cv::U8C7, to get this you
would have to call cv::U8C(7).

element of m (if any) will be deallocated15. At the same time, the reference counter for the data area that
they both now share will be incremented. Last, but not least, the members of m that characterize the data in
m (such as rows, cols, and flags) will be updated to accurately describe the data now pointed to by
data in m. This all results in a very convenient behavior, in which arrays can be assigned to one another,
and the work necessary to do this is done automatically behind the scenes to give the correct result.

The following is a complete list of the constructors available for cv::Mat. The list appears rather
unwieldy, but in fact you will only use a small fraction of these most of the time. Having said that, when
you need one of the more obscure ones, you will probably find that you are glad it is there.

Table 3-10: cv::Mat constructors that do not copy data

Constructor Description

cv::Mat(); Default constructor

cv::Mat(int rows, int cols, int type); Two-dimensional arrays by type

cv::Mat(int rows, int cols, int type,

 const Scalar& s);
Two-dimensional arrays by type with
initialization value

cv::Mat(int rows, int cols, int type,

 void* data, size_t step=AUTO_STEP);
Two-dimensional arrays by type with
preexisting data

cv::Mat(cv::Size sz, int type); Two-dimensional arrays by type (size in
sz)

cv::Mat(cv::Size sz,

 int type, const Scalar& s);

Two-dimensional arrays by type with
initializtion value (size in sz)

cv::Mat(cv::Size sz, int type,

 void* data, size_t step=AUTO_STEP);

Two-dimensional arrays by type with
preexisting data (size in sz)

cv::Mat(int ndims, const int* sizes,

 int type);
Multidimensional arrays by type

cv::Mat(int ndims, const int* sizes,

 int type, const Scalar& s);

Multidimensional arrays by type with
initialization value

cv::Mat(int ndims, const int* sizes,

 int type,

 void* data, size_t step=AUTO_STEP);

Multidimensional arrays by type with
preexisting data

Table 3-10 lists the basic constructors for the cv::Mat object. Other than the default constructor, these
fall into three basic categories: those that take a number of rows and a number of columns to create a two-
dimensional array, those that use a cv::Size object to create a two-dimensional array, and those that
construct n -dimensional arrays and require you to specify the number of dimensions and pass in an array
of integers specifying the size of each of the dimensions.

15 Technically, it will only be deallocated if m was the last cv::Mat around which pointed to that particular data.

In addition, some of these allow you to initialize the data, either by providing a cv::Scalar (in which
case, the entire array will be initialized to that value), or by providing a pointer to an appropriate data block
that can be used by the array. In this latter case, you are essentially just creating a header to the existing
data (i.e., no data is copied; the data member is set to point to the data indicated by the data argument).

Table 3-11: cv::Mat constructors that copy data from other cv::Mat’s

Constructor Description

cv::Mat(const Mat& mat); Copy constructor

cv::Mat(const Mat& mat,

 const cv::Range& rows,

 const cv::Range& cols);

Copy constructor that copies only a
subset of rows and columns

cv::Mat(const Mat& mat,

 const cv::Rect& roi);

Copy constructor that copies only a
subset of rows and columns specified by a
region of interest

cv::Mat(const Mat& mat,

 const cv::Range* ranges);

Generalized region of interest copy
constructor that uses an array of ranges to
select from an n-dimensional array

cv::Mat(const cv::MatExpr& expr);
Copy constructor that initializes m with
the result of an algebraic expression of
other matrices

The copy constructors (Table 3-11) show how to create an array from another array. In addition to the basic
copy constructor, there are three methods for constructing an array from a sub-region of an existing array
and one constructor that initializes the new matrix using the result of some matrix expression.

The sub-region (also known as “region of interest”) constructors come in three flavors: one that takes a
range of rows and a range of columns (this works only on a two-dimensional matrix), one that uses a
cv::Rect to specify a rectangular sub-region (also works only on a two-dimensional matrix), and a final
one that takes an array of ranges. In this latter case, the number of valid ranges pointed to by the pointer
argument ranges is required to be equal to the number of dimensions of the array mat. It is this third
option that you must use if mat is a multidimensional array with ndim greater than 2.

Table 3-12: cv::Mat constructors for pre-version 2.1 data types

Constructor Description

cv::Mat(const CvMat* old,

 bool copyData=false);

Constructor for m that creates m from an
old-style CvMat, with optional data copy

cv::Mat(const IplImage* old,

 bool copyData=false);

Constructor for m that creates m from an
old-style IplImage, with optional data
copy

If you are modernizing or maintaining pre-version 2.1 code that still contains the C-style data structures,
you may want to create a new C++-style cv::Mat structure from an existing CvMat or IplImage
structure. In this case, you have two options. You can construct a header on the existing data (by setting
copyData to false) or you can set copyData to true (in which case, new memory will be allocated for m
and all of the data from old will be copied into m).

These objects do a lot more for you than you might realize at first. In particular, they
allow for expressions that mix the C++ and C data-types by functioning as implicit
constructors for the C++ data types on demand. Thus, it is possible to simply use a
pointer to one of the C structures wherever a cv::Mat is expected and have a
reasonable expectation that things will work out correctly. (This is why the copyData
member defaults to false.)

In addition to these constructors, there are corresponding cast operators that will convert
a cv::Mat into CvMat or IplImage on demand. These also do not copy data.

Table 3-13: cv::Mat template constructors

Constructor Description

cv::Mat(const cv::Vec<T,n>& vec,

 bool copyData=true);

Construct a one-dimensional array of type
T and size n from a cv::Vec of the
same type

cv::Mat(

 const cv::Matx<T,m,n>& vec,

 bool copyData=true);

Construct a two-dimensional array of type
T and size m-by-n from a cv::Matx of
the same type

cv::Mat(const std::vector<T>& vec,

 bool copyData=true);

Construct an one-dimensional array of
type T from an STL vector containing
elements of the same type

The last set of constructors is the template constructors. These constructors are template not because they
construct a template form of cv::Mat, but because they construct an instance of cv::Mat from
something that is itself template. These constructors allow either an arbitrary cv::Vec<> or
cv::Matx<> to be used to create a cv::Mat array of corresponding dimension and type, or to use an
STL vector<> object of arbitrary type to construct an array of that same type.

Table 3-14: static functions that create cv::Mat

Function Description

cv::Mat::zeros(rows, cols, type);
Create a cv::Mat of size rows-by-
cols, which is full of zeros, with type
type (cv::F32, etc.)

cv::Mat::ones(rows, cols, type);
Create a cv::Mat of size rows-by-
cols, which is full of ones, with type
type (cv::F32, etc.)

cv::Mat::eye(rows, cols, type);
Create a cv::Mat of size rows-by-
cols, which is an identity matrix, with
type type (cv::F32, etc.)

The class cv::Mat also provides a number of static member functions to create certain kinds of
commonly used arrays. These include functions like zeros(), ones(), and eye(), which construct a
matrix full of zeros, a matrix full of ones, or an identity matrix, respectively.16

Accessing Array Elements Individually

There are several ways to access a matrix, which are designed to be convenient in different contexts. In
recent versions of OpenCV, however, a great deal of effort has been invested to make them all comparably,
if not identically, efficient. The two primary options for accessing individual elements are to access them
by location, or to access them through iteration.

The basic means of direct access is the (template) member function at<>()17. There are many variations
of this function that take different arguments for arrays of different numbers of dimensions. The way this
function works is that you specialize the at<>() template to the type of data that the matrix contains, then
access that element using the row and column locations of the data you want. Here is a simple example:

cv::Mat m = cv::Mat::eye(10, 10, 32FC1);
printf(
 “Element (3,3) is %f\n”,
 m.at<float>(3,3) //(row, col)
);

For a multichannel array, the analogous example would look like this:
cv::Mat m = cv::Mat::eye(10, 10, 32FC2);
printf(
 “Element (3,3) is (%f,%f)\n”,
 m.at<cv::Vec2f>(3,3)[0],
 m.at<cv::Vec2f>(3,3)[1]
);

Note that when you want to specify a template function like at<>() to operate on a multichannel array,
the best way to do this is to use a cv::Vec<> object (either a premade alias or the template form).

Similar to the vector case, you can create an array made of a more sophisticated type, such as complex
numbers:

cv::Mat m = cv::Mat::eye(10, 10, cv::DataType<cv::Complexf>::type);
printf(
 “Element (3,3) is %f + i%f\n”,
 m.at<cv::Complexf>(3,3).re,
 m.at<cv::Complexf>(3,3).im,
);

It is also worth noting the use of the cv::DataType<> template here. The matrix constructor requires a
runtime value that is a variable of type int that happens to take on some “magic” values that the
constructor understands. By contrast, cv::Complexf is an actual object type, a purely compile-time
construct. The need to generate one of these representations (runtime) from the other (compile time) is
precisely why the cv::DataType<> template exists. Table 3-15 lists the available variations of the
at<>() template.

Table 3-15: Variations of the at<>() accessor function

Example Description

M.at<int>(i); Element i from integer array M

16 In the case of cv::Mat::eye() and cv::Mat::ones(), if the array created is multi-channel, only the first
channel will be set 1.0 while the other channels will be 0.0.
17 For two channels, the order is (row, col), at<>(row, col).

M.at<float>(i, j); Element (i, j) (row, col) from float
array M

M.at<int>(pt);
Element at location (pt.x, pt.y) in
integer matrix M

M.at<float>(i, j, k); Element at location (i, j, k) in
three-dimensional float array M

M.at<uchar>(idx);
Element at n-dimensional location
indicated by idx[] in array M of
unsigned characters

To access a two-dimensional array, you can also extract a C-style pointer to a specific row of the array.
This is done with the ptr<>() template member function of cv::Mat. (Recall that the data in the array
is contiguous by row, thus accessing a specific column in this way would not make sense; we will see the
right way to do that shortly.) As with at<>(), ptr<>() is a template function instantiated with a type
name. It takes an integer argument indicating the row you wish a pointer to. The function returns a pointer
to the primitive type of which the array is constructed (i.e., if the array type is F32C3, the return value will
be of type float*). Thus, given a three-channel matrix mtx of type float, the construction
mtx.ptr<Vec3f>(3) would return a pointer to the first (floating-point) channel of the first element in
row 3 of mtx. This is generally the fastest way to access elements of an array,18 because once you have the
pointer, you are right down there with the data.

There are thus two ways to get a pointer to the data in a matrix mtx. One way is to go
about it with the ptr<>() member function. The other is to directly use the member
pointer data, and to use the member array step[] to compute addresses. The latter
option is similar to what one tended to do in the C interface, but is generally no longer
preferred over access methods such as at<>(), ptr<>(), and the iterators. Having
said this, direct address computation may still be most efficient, particularly when dealing
with arrays of dimension greater than two.

There is one last important point to keep in mind about C-style pointer access. If you want to access
everything in an array, you will likely iterate one row at a time, because the rows may or may not be
packed continuously in the array. However, there is a member function isContinuous() that will tell
you if the members are continuously packed. If they are, you can just grab the pointer to the very first
element of the first row and cruise through the entire array as it if were a giant one-dimensional array.

The other form of sequential access is to use the iterator mechanism built into cv::Mat. This mechanism
is based on, and works more or less identically to, the analogous mechanism provided by the STL
containers. The basic idea is that OpenCV provides a pair of iterator templates, one for const and one for
non-const arrays. These iterators are named cv::MatIterator<> and
cv::MatConstIterator<>, respectively. The cv::Mat methods begin() and end() return
objects of this type. This method of iteration is convenient because the iterators are smart enough to handle
the continuous packing as well as the non-continuous packing cases automatically, as well as handling any
number of dimensions in the array.

18 The difference in performance between using at<>() and direct pointer access depends on compiler optimization.
Access through at<>() will tend to be comparable to (though slightly slower than) direct pointer access in code with
a good optimizer, but may be more than order of magnitude slower if that optimizer is turned off (e.g., when you do a
debug build). Access through iterators is almost always slower than either of these. In almost all cases, however, using
built-in OpenCV functions will be faster than any loop you write regardless of the direct access methods described
here, so avoid that kind of construct wherever possible.

Each iterator must be declared and specified to the type of object from which the array is constructed. Here
is a simple example of the iterators being used to compute the “longest” element in a three-dimensional
array of three-channel elements (a three-dimensional vector field):

int sz[3] = { 4, 4, 4 };
cv::Mat m(3, sz, cv::F32C3); // A three-dimensional array of size 4-by-4-by-4
cv::randu(m, -1.0f, 1.0f); // fill with random numbers from -1.0 to 1.0

float max = 0.0f; // minimum possible value of L2 norm
cv::MatConstIterator<cv::Vec3f> it = m.begin();
while(it != m.end()) {
 len2 = (*it)[0]*(*it)[0]+(*it)[1]*(*it)[1]+(*it)[2]*(*it)[2];
 if(len2 > max) max = len2;
 it++;
}

Iterator-based access is typically used when doing operations over an entire array, or element-wise across
multiple arrays. Consider the case of adding two arrays, or of converting an array from the RGB color
space to the HSV color space. In such cases, the same exact operation will be done at every pixel location.

The N-ary Array Iterator: NAryMatIterator

There is another form of iteration which, though it does not handle discontinuities in the packing of the
arrays in the manner of cv::MatIterator<>, allows us to handle iteration over many arrays at once.
This iterator is called cv::NAryMatIterator, and requires only that all of the arrays that are being
iterated over be of the same geometry (number of dimensions and extent in each dimension).

Instead of returning single elements of the arrays being iterated over, the N -ary iterator operates by
returning chunks of those arrays, called planes. A plane is a portion (typically one- or two-dimensional
slice) of the input array in which the data is guaranteed to be contiguous in memory.19 This is how
discontinuity is handled; you are given the contiguous chunks one by one. For each such plane, you can
either operate on it using array operations, or iterate trivially over it yourself. (In this case, “trivially”
means to iterate over it in a way which does not need to check for discontinuities inside of the chunk.)

The concept of the plane is entirely separate from the concept of multiple arrays being iterated over
simultaneously. Consider the following code example, in which we will sum just a single multidimensional
array plane by plane:

 const int n_mat_size = 5;
 const int n_mat_sz[] = { n_mat_size, n_mat_size, n_mat_size };
 cv::Mat n_mat(3, n_mat_sz, cv::F32C1);

 cv::RNG rng;
 rng.fill(n_mat, cv::RNG::UNIFORM, 0.f, 1.f);

 const cv::Mat* arrays[] = { &n_mat, 0 };
 cv::Mat my_planes[1];
 cv::NAryMatIterator it(arrays, my_planes);

At this point, you have your N -ary iterator. Continuing our example, we will compute the sum of m0 and
m1, and place the result in m2. We will do this plane by plane, however:

// On each iteration, it.planes[i] will be the current plane of the
// i-th array from ‘arrays’.
//

 float s = 0.f; // Total sum over all planes
 int n = 0; // Total number of planes

19 In fact the dimensionality of the “plane” is not limited to 2; it can be larger. What is always the case is that the planes
will be contiguous in memory.

 for (int p = 0; p < it.nplanes; p++, ++it) {
 s += cv::sum(it.planes[0])[0];
 n++;
 }

In this example, we first create the three-dimensional array n_mat and fill it with 125 random floating
point numbers between 0.0 and 1.0. To initialize the cv::NAryMatIterator object, we need to
have two things. First, we need a C-style array containing pointers to all of the cv::Mat’s we wish to
iterate over (in this example, there is just one). This array must always be terminated with a 0 or NULL.
Next, we need another C-style array of cv::Mat’s that can be used to refer to the individual planes as we
iterate over them (in this case, there is also just one).

Once we have created the N-ary iterator, we can iterate over it. Recall that this iteration is over the planes
that make up the arrays we gave to the iterator. The number of planes (the same for each array, because
they have the same geometry) will always be given by it.nplanes. The N-ary iterator contains a C-
style array called planes that holds headers for the current plane in each input array. In our example,
there is only one array being iterated over, so we need only refer to it.planes[0] (the current plane in
the one and only array). In this example, we then call cv::sum() on each plane and accumulate the final
result.

To see the real utility of the N -ary iterator, consider a slightly expanded version of this example in which
there are two arrays we would like to sum over:

 const int n_mat_size = 5;
 const int n_mat_sz[] = { n_mat_size, n_mat_size, n_mat_size };
 cv::Mat n_mat0(3, n_mat_sz, cv::F32C1);
 cv::Mat n_mat1(3, n_mat_sz, cv::F32C1);

 cv::RNG rng;
 rng.fill(n_mat0, cv::RNG::UNIFORM, 0.f, 1.f);
 rng.fill(n_mat1, cv::RNG::UNIFORM, 0.f, 1.f);

 const cv::Mat* arrays[] = { &n_mat0, &n_mat1, 0 };
 cv::Mat my_planes[2];
 cv::NAryMatIterator it(arrays, my_planes);

 float s = 0.f; // Total sum over all planes in both arrays
 int n = 0; // Total number of planes
 for(int p = 0; p < it.nplanes; p++, ++it) {
 s += cv::sum(it.planes[0])[0];
 s += cv::sum(it.planes[1])[0];
 n++;
 }

In this second example, you can see that the C-style array called arrays is given pointers to both input
arrays, and two matrices are supplied in the my_planes array. When it is time to iterate over the planes,
at each step, planes[0] contains a plane in n_mat0 and planes[1] contains the corresponding plane
in n_mat1. In this simple example, we just sum the two planes and add them to our accumulator. In an
only slightly extended case, we could use element-wise addition to sum these two planes and place the
result into the corresponding plane in a third array.

Not shown in the example, but also important, is the member it.size, which indicates the size of each
plane. The size reported is the number of elements in the plane, so it does not include a factor for the
number of channels. In our previous example, if it.nplanes was four, then it.size would have been
sixteen:

/////////// compute dst[*] = pow(src1[*], src2[*]) //////////////
const Mat* arrays[] = { src1, src2, dst, 0 };
float* ptrs[3];

NAryMatIterator it(arrays, (uchar**)ptrs);
for(size_t i = 0; i < it.nplanes; i++, ++it)

{
 for(size_t j = 0; j < it.size; j++)
 {
 ptrs[2][j] = std::pow(ptrs[0][j], ptrs[1][j]);
 }

}

Accessing Array Elements by Block

In the previous section, we saw ways to access individual elements of an array, either singularly or by
iterating sequentially through them all. Another common situation that arises is when you need to access a
subset of an array as another array. This might be to select out a row or a column, or any sub-region of the
original array.

There are many methods that do this for us in one way or another; all of them are member functions of the
cv::Mat class and return a subsection of the array on which they are called. The simplest of these
methods are row() and col(), which take a single integer and return the indicated row or column of the
array whose member we are calling. Clearly these make sense only for a two-dimensional array; we will
get to the more complicated case momentarily.

When you use m.row() or m.col() (for some array m), or any of the other functions we are about to
discuss, it is important to understand that the data in m is not copied to the new arrays. Consider an
expression like m2 = m.row(3). This expression means to create a new array header m2, and to arrange
its data pointer, step array, and so on, such that it will access the data in row 3 in m. If you modify the
data in m2, you will be modifying the data in m. Later, we will visit the copyTo() method, which actually
will copy data. The main advantage of the way this is handled in OpenCV is that the amount of time
required to create a new array that accesses part of an existing array is not only very small, but also
independent of the size of either the old or the new array.

Closely related to row() and col() are rowRange() and colRange(). These functions do
essentially the same thing as their simpler cousins, except that they will extract an array with multiple
contiguous rows (or columns). Both functions can be called in one of two ways, either by specifying an
integer start and end row (or column), or by passing a cv::Range object that indicates the desired rows
(or columns). In the case of the two-integer method, the range is inclusive of the start index but exclusive of
the end index (you may recall that cv::Range uses a similar convention).

The member function diag() works the same as row() or col(), except that the array returned from
m.diag() references the diagonal elements of a matrix. m.diag() expects an integer argument that
indicates which diagonal is to be extracted. If that argument is zero, then it will be the main diagonal. If it is
positive, it will be offset from the main diagonal by that distance in the upper half of the array. If it is
negative, then it will be from the lower half of the array.

The last way to extract a sub-matrix is with operator(). Using this operator, you can pass either a pair
of ranges (a cv::Range for rows and a cv::Range for columns) or a cv::Rect to specify the region
you want. This is the only method of access that will allow you to extract a sub-volume from a higher-
dimensional array. In this case, a pointer to a C-style array of ranges is expected and that array must have
as many elements as the number of dimensions of the array.

Table 3-16: Block access methods of cv::Mat

Example Description

m.row(i); Array corresponding to row i of m

m.col(j); Array corresponding to column j of m

m.rowRange(i0, i1); Array corresponding to rows i0 through
i1-1 of matrix m

m.rowRange(cv::Range(i0, i1)); Array corresponding to rows i0 through
i1-1 of matrix m

m.colRange(j0, j1); Array corresponding to columns j0
through j1-1 of matrix m

m.colRange(cv::Range(j0, j1)); Array corresponding to columns j0
through j1-1 of matrix m

m.diag(d); Array corresponding to the d-offset
diagonal of matrix m

m(cv::Range(i0,i1), cv::Range(j0,j1));
Array corresponding to the subrectangle
of matrix m with one corner at i0, j0 and
the opposite corner at (i1-1, j1-1)

m(cv::Rect(i0,i1,w,h));
Array corresponding to the subrectangle
of matrix m with one corner at i0, j0 and
the opposite corner at (i0+w-1, j0+h-1)

m(ranges);

Array extracted from m corresponding to
the subvolume that is the intersection of
the ranges given by ranges[0]-
ranges[ndim-1]

Matrix Expressions: Algebra and cv::Mat

One of the things enabled by the move to C++ in version 2.1 is the overloading of operators and the ability
to create algebraic expressions consisting of matrix arrays20 and singletons. The primary advantage of this
is code clarity, as many operations can be combined into one expression that is both more compact and
often more meaningful.

In the background, many important features of OpenCV’s array class are being used to make these
operations work. For example, matrix headers are created automatically as needed and workspace data
areas are allocated (only) as required. When no longer needed, data areas are deallocated invisibly and
automatically. The result of the computation is finally placed in the destination array by operator=().
However, one important distinction, is that this form of operator=() is not assigning a cv::Mat or a
cv::Mat (as it might appear), but rather a cv::MatExpr (the expression itself21) to a cv::Mat. This
distinction is important because data is always copied into the result (left-hand side) array. Recall that
though m2=m1 is legal, it means something slightly different. In this first case, m2 would be another
reference to the data in m1. By contrast, m2=m1+m0 means something different again. Because m1+m0 is a

20 For clarity, we use the word “array” when referring to a general object of type cv::Mat, and use the word “matrix”
for those situations in which the manner in which the array is being used indicates that it is representing a mathematical
object that would be called a matrix. The distinction is a purely semantic one, and not manifest in the actual design of
OpenCV.
21 The underlying machinery of cv::MatExpr is more detail than we need, but you can think of
cv::MatExpr as being a symbolic representation of the algebraic form of the right-hand side. The great
advantage of cv::MatExpr is that when it is time to evaluate an expression, it is often clear that some
operations can be removed or simplified without evaluation (such as computing the transpose of the
transpose of a matrix, adding zero, or multiplying a matrix by its own inverse).

matrix expression, it will be evaluated and a pointer to the results will be assigned in m2. The results will
reside in a newly allocated data area.22

Table 3-17 lists examples of the algebraic operations available. Note that in addition to simple algebra,
there are comparison operators, operators for constructing matrices (such as cv::Mat::eye(), which
we encountered earlier), and higher level operations for computing transposes and inversions. The key idea
here is that you should be able to take the sorts of relatively nontrivial matrix expressions that occur when
doing computer vision and express them on a single line in a clear and concise way.

Table 3-17: Operations available for matrix expressions

Example Description

m0 + m1, m0 – m1; Addition or subtraction of matrices

m0 + s; m0 – s; s + m0, s – m1; Addition or subtraction between a matrix
and a singleton

-m0; Negation of a matrix

s * m0; m0 * s; Scaling of a matrix by a singleton

m0.mul(m1); m0/m1; Per element multiplication of m0 and m1,
per-element division of m0 by m1

m0 * m1; Matrix multiplication of m0 and m1

m0.inv(method); Matrix inversion of m0 (default value of
method is DECOMP_LU)

m0.t(); Matrix transpose of m0 (no copy is done)

m0>m1; m0>=m1; m0==m1; m0<=m1; m0<m1;
Per element comparison, returns uchar
matrix with elements 0 or 255

m0&m1; m0|m1; m0^m1; ~m0;

 m0&s; s&m0; m0|s; s|m0; m0^s; s^m0;
Bitwise logical operators between
matrices or matrix and a singleton

min(m0,m1); max(m0,m1); min(m0,s);

 min(s,m0); max(m0,s); max(s,m0);

Per element minimum and maximum
between two matrices or a matrix and a
singleton

cv::abs(m0); Per element absolute value of m0

m0.cross(m1); m0.dot(m1);
Vector cross and dot product (vector
cross product is only defined for 3-by-1
matrices)

cv::Mat::eye(Nr, Nc, type); Class static matrix initializers that return

22 If you are a real expert, this will not surprise you. Clearly a temporary array must be created to store the result of
m1+m0. Then m2 really is just another reference, but it is another reference to that temporary array. When
operator+() exits, its reference to the temporary array is discarded, but the reference count is not zero. m2 is left
holding the one and only reference to that array.

 cv::Mat::zeros(Nr, Nc, type);

 cv::Mat::ones(Nr, Nc, type);

fixed Nr-by-Nc matrices of type type

The matrix inversion operator inv() is actually a frontend to a variety of algorithms for matrix inversion.
There are currently three options. The first option is cv::DECOMP_LU, which means LU decomposition,
and which works for any nonsingular matrix. The second is cv::DECOMP_CHOLESKY, which solves the
inversion by Cholesky decomposition. Cholesky decomposition only works for symmetric, positive definite
matrices, but is much faster than LU decomposition for large matrices. The last option is
cv::DECOMP_SVD, which solves the inversion by singular value decomposition. SVD is the only
workable option for matrices that are singular or not even squares (the pseudo-inverse is then computed).

Not included in Table 3-17 are all of the functions like cv::norm(), cv::mean(), cv::sum(), and
so on (some of which we have not gotten to yet, but you can probably guess what they do) that convert
matrices to other matrices or to scalars. Any such object can still be used in a matrix expression.

Saturation Casting

In OpenCV, you will often do operations that risk overflowing or underflowing the available values in the
destination of some computation. This is particularly common when one is doing operations on unsigned
types that involve subtraction, but it can happen anywhere. To deal with this problem, OpenCV relies on a
construct called saturation casting.

What this means is that OpenCV arithmetic and other operations that act on arrays will check for
underflows and overflows automatically; in these cases, the library functions will replace the resulting
value of an operation with the lowest or highest available value, respectively. Note that this is not what C
language operations normally and natively do.

You may want to implement this particular behavior in your own functions as well. OpenCV provides some
handy templated casting operators to make this easy for you. These are implemented as a template function
called cv::saturate_cast<>(), which allows you to specify the type to which you would like to
cast the argument. Here is an example:

uchar& Vxy = m0.at<uchar>(y, x);
Vxy = cv::saturate_cast<uchar>((Vxy-128)*2 + 128);}

In this example code, the variable Vxy is first assigned to be a reference to an element of an 8-bit array m0.
This array then has 128 subtracted from it, multiply that by two (scale that up), and add 128 (so the result is
twice as far from 128 as the original). The usual C arithmetic rules would assign Vxy-128 to a (32-bit)
signed integer; followed by integer multiplication by 2 and integer addition of 128. Notice, however, that
if the original value of Vxy were (for example) 10, then Vxy-128 would be -118. The value of the
expression would then be -108. This number will not fit into the 8-bit unsigned variable Vxy. This is
where cv::saturation_cast<uchar>() comes to the rescue. It takes the value of -108 and,
recognizing that it is too low for an unsigned char, converts it to 0.

More Things an Array Can Do

At this point, we have touched on most of the members of the cv::Mat class. Of course, there are a few
things that were missed, as they did not fall into any specific category that was discussed so far. In this
section we will review the leftovers that you will need in your daily life of OpenCV programming.

Table 3-18: More class member functions of cv::Mat

Example Description

m1 = m0.clone(); Make a complete copy of m0, copying all data elements as
well; cloned array will be continuous

m0.copyTo(m1); Copy contents of m0 onto m1, reallocating m1 if necessary
(equivalent to m1=m0.clone())

m0.copyTo(m1, mask); As m0.copyTo(m1) except only entries indicated in the
array mask are copied

m0.convertTo(

 m1, type, scale, offset

);

Convert elements of m0 to type (i.eg., cv::F32) and
write to m1 after scaling by scale (default 1.0) and adding
offset (default 0.0)

m0.assignTo(m1, type); internal use only (resembles convertTo)

m0.setTo(s, mask); Set all entries in m0 to singleton value s; if mask is
present, only set those value corresponding to nonzero
elements in mask

m0.reshape(chan, rows); Changes effective shape of a two-dimensional matrix;
chan or rows may be zero, which implies “no change”;
data is not copied

m0.push_back(s); Extend a M-by-1 matrix and insert the singleton s at the end

m0.push_back(m1); Extend an M-by-N by K rows and copy m1 into that rows;
m1 must be K-by-N

m0.pop_back(n); Remove n rows from the end of an M-by-N (default value
of n is one)23

m0.locateROI(size, offset); Write whole size of m0 to cv::Size size; if m0 is a
“view” of a larger matrix, write location of starting corner
to Point& offset

m0.adjustROI(t, b, l, r); Increase the size of a view by t pixels above, b pixels
below, l pixels to the left, and r pixels to the right

m0.total(); Compute the total number of array elements (does not
include channels)

m0.isContinuous(); Return true only if the rows in m0 are packed without
space between them in memory

m0.elemSize(); Return the size of the elements of m0 in bytes (eE.g., a
three-channel float matrix would return 12 bytes)

m0.elemSize1(); Return the size of the subelements of m0 in bytes (eE.g., a
three-channel float matrix would return 4 bytes)

m0.type(); Return a valid type identifier for the elements of m0 (e.g.,
cv::F32C3)

m0.depth(); Return a valid type identifier for the individial channels of

23 Many implementations of “pop” functionality return the popped element. This one does not; its return type is void.

m0 (e.g., cv::F32)

m0.channels(); Return the number of channels in the elements of m0.

m0.size(); Return the size of the m0 as a cv::Size object.

m0.empty(); Return true only if the array has no elements (i.e.,
m0.total==0 or m0.data==NULL)

class cv::SparseMat: Sparse Arrays

The class cv::SparseMat is used when an array is likely to be very large compared to the number of
nonzero entries. This situation often arises in linear algebra with sparse matrices, but it also comes up when
one wishes to represent data, particularly histograms, in higher-dimensional arrays, since most of space will
be empty. A sparse representation only stores data that is actually present and so can save a great deal of
memory. In practice, many sparse objects would be too huge to represent at all in a dense format. The
disadvantage of sparse representations is that computation with them is slower (on a per-element basis).
This last point is important, in that computation with sparse matrices is not categorically slower, as there
can be a great economy in knowing in advance that many operations need not be done at all.

The OpenCV sparse matrix class cv::SparseMat functions analogously to the dense matrix class
cv::Mat in most ways. It is defined similarly, supports most of the same operations, and can contain the
same data types. Internally, the way data is organized is quite different. While cv::Mat uses a data array
closely related to a C data array (one in which the data is sequentially packed and addresses are directly
computable from the indices of the element), cv::SparseMat uses a hash table to store just the nonzero
elements.24 That hash table is maintained automatically, so when the number of (nonzero) elements in the
array becomes too large for efficient look-up, the table grows automatically.

Accessing Sparse Array Elements

The most important difference between sparse and dense arrays is how elements are accessed. Sparse
arrays provide four different access mechanisms: cv::SparseMat::ptr(),
cv::SparseMat::ref(), cv::SparseMat::value(), and cv::SparseMat::find().

The cv::SparseMat::ptr() method has several variations, the simplest of which has the template:
uchar* cv::SparseMat::ptr(int i0, bool createMissing, size_t* hashval=0)

This particular version is for accessing a one-dimensional array. The first argument i0 is the index of the
requested element. The next argument createMissing indicates whether the element should be created
if it is not already present in the array. When cv::SparseMat::ptr() is called, it will return a pointer
to the element if that element is already defined in the array, but NULL if that element is not defined.
However, if the createMissing argument is true, however, that element will be created and a valid
non-NULL pointer will be returned to that new element. To understand the final argument hashval, it is
necessary to recall that the underlying data representation of a cv::SparseMat is as a hash table.
Looking up objects in a hash table requires two steps: the first being the computation of the hash key (in
this case, from the indices), and the second being the searching of a list associated with that key. Normally,
that list will be short (ideally only one element), so the primary computational cost in a lookup is the
computation of the hash key. If this key has already been computed (as with
cv::SparseMat::hash(), which will be covered in the next section), then time can be saved by not
recomputing it. In the case of cv::SparseMat::ptr(), if the argument hashval is left with its
default argument of NULL, the hash key will be computed. If, however, a key is provided, it will be used.

24 Actually, zero elements may be stored, if those elements have become zero as a result of computation on the array. If
you want to clean up such elements, you must do so yourself. This is the function of the method
SparseMat::erase(), which we will visit shortly.

There are also variations of cv::SparseMat::ptr() that allow for two or three indices, as well as a
version whose first argument is a pointer to an array of integers (i.e., const int* idx), which is
required to have the same number of entries as the dimension of the array being accessed.

In all cases, the function cv::SparseMat::ptr() returns a pointer to an unsigned character (i.e.,
uchar*), which will typically need to be recast to the correct type for the array.

The accessor template function SparseMat::ref<>() is used to return a reference to a particular
element of the array. This function, like SparseMat::ptr(), can take one, two, or three indices, or a
pointer to an array of indices, and also supports an optional pointer to the hash value to use in the lookup.
Because it is a template function, you must specify the type of object being referenced. So, for example, if
your array were of type cv::F32, then you might call SparseMat::ref<>() like this:

a_sparse_mat.ref<float>(i0, i1) += 1.0f;

The template method cv::SparseMat::value<>() is identical to SparseMat::ref<>(), except
that it returns the value and not a reference to the value. As such, this method is itself a “const method.”25

The final accessor function is cv::SparseMat::find<>(), which works similarly to
cv::SparseMat::ref<>() and cv::SparseMat::value<>(), but returns a pointer to the
requested object. Unlike cv::SparseMat::ptr(), however, this pointer is of the type specified by the
template instantiation of cv::SparseMat::find<>(), and so does not need to be recast. For purposes
of code clarity, cv::SparseMat::find<>() is preferred over cv::SparseMat::ptr()
wherever possible. cv::SparseMat::find<>(), however, is a const method, and returns a const
pointer, so the two are not always interchangeable.

In addition to direct access through the four functions just outlined, it is also possible to access the elements
of a sparse matrix through iterators. As with the dense array types, the iterators are normally templated. The
templated iterators are cv::SparseMatIterator_<> and cv::SparseMatConstIterator_<>,
together with their corresponding cv::SparseMat::begin<>() and cv::SparseMat::end<>()
routines. (The const forms of the begin() and end() routines return the const iterators.) There are
also non-template iterators cv::SparseMatIterator and cv::SparseMatConstIterator,
which are returned by the non-template SparseMat::begin() and SparseMat::end() routines.

Here is an example in which we print out all of the nonzero elements of a sparse array:
// Create a 10x10 sparse matrix with a few nonzero elements
//
int size[] = {10,10};
cv::SparseMat sm(2, size, cv::F32);
for(int i=0; i<10; i++) { // Fill the array
 int idx[2];
 idx[0] = size[0] * rand();
 idx[1] = size[1] * rand();
 sm.ref<float>(idx) += 1.0f;
}

// Print out the nonzero elements
//
cv::SparseMatConstIterator_<float> it = sm.begin<float>();
cv::SparseMatConstIterator_<float> it_end = sm.end<float>();

for(; it != it_end; ++it) {
 const cv::SparseMat::Node* node = it.node();
 printf(" (%3d,%3d) %f\n", node->idx[0], node->idx[1], *it);

25 For those of you not familiar with “const correctness,””, this means that the method is declared in its prototype
such that the this pointer passed to SparseMat::value<>() is guaranteed to be a constant pointer, and thus
SparseMat::value<>() can be called on const objects, while functions like SparseMat::ref<>() cannot.
The next function SparseMat::find<>() is also a const function.

}

In this example, we also slipped in the method node(), which is defined for the iterators. node()
returns a pointer to the internal data node in the sparse matrix that is indicated by the iterator. The returned
object of type cv::SparseMat::Node has the following definition:

struct Node
{
 size_t hashval;
 size_t next;
 int idx[cv::MAX_DIM];
};

This structure contains both the index of the associated element (note that element idx is of type int[]),
as well as the hash value associated with that node (element hashval is the same hash value as can be
used with SparseMat::ptr(), SparseMat::ref(), SparseMat::value(), and
SparseMat::find().)

Functions Unique to Sparse Arrays

As stated earlier, sparse matrices support many of the same operations as dense matrices. In addition, there
are several methods that are unique to sparse matrices. These are listed in Table 3-19, and include the
functions mentioned in the previous sections.

Table 3-19: Additional class member functions of cv::SparseMat

Example Description

cv::SparseMat sm(); Create a sparse matrix without initialization

cv::SparseMat sm(3, sz, cv::F32); Create a three-dimensional sparse matrix with
dimensions given by the array sz of type float

cv::SparseMat sm(sm0); Create a new sparse matrix which is a copy of
existing sparse matrix sm0

cv::SparseMat(m0, try1d);

Create a sparse matrix from an existing dense
matrix m0; if the bool try1d is true, convert m0
to a one-dimensional sparse matrix if the dense
matrix was N-by-1 or 1-by-N

cv::SparseMat(&old_sparse_mat);
Create a new sparse matrix from a pointer to a pre-
version 2.1 C-style sparse matrix of type
CvSparseMat

CvSparseMat* old_sm =

 (cv::SparseMat*) sm;

Cast operator creates a pointer to a pre-version 2.1
C-style sparse matrix; that CvSparseMat object
is created and all data is copied into it, then its
pointer is returned

size_t n = sm.nzcount(); Return the number of nonzero elements in sm

size_t h = sm.hash(i0);

size_t h = sm.hash(i0, i1);

size_t h = sm.hash(i0, i1, i2);

size_t h = sm.hash(idx);

Return the hash value for element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element
indicated by the array of integers idx in an n-
dimensional sparse matrix

sm.ref<float>(i0) = f0;

sm.ref<float>(i0, i1) = f0;

sm.ref<float>(i0, i1, i2) = f0;

sm.ref<float>(idx) = f0;

Assign the value f0 to element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element
indicated by the array of integers idx in an n-
dimensional sparse matrix

f0 = sm.value<float>(i0);

f0 = sm.value<float>(i0, i1);

f0 = sm.value<float>(i0, i1, i2);

f0 = sm.value<float>(idx);

Assign the value to f0 from element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element
indicated by the array of integers idx in an n-
dimensional sparse matrix

p0 = sm.find<float>(i0);

p0 = sm.find<float>(i0, i1);

p0 = sm.find<float>(i0, i1, i2);

p0 = sm.find<float>(idx);

Assign to p0 the address of element i0 in a one-
dimensional sparse matrix, i0, i1 in a two-
dimensional sparse matrix, i0, i1, i2 in a three-
dimensional sparse matrix, or the element
indicated by the array of integers idx in an n-
dimensional sparse matrix

sm.erase(i0, &hashval);

sm.erase(i0, i1, &hashval);

sm.erase(idx, &hashval);

Remove the element i0, i1 in a two-dimensional
sparse matrix, i0, i1, i2 in a three-dimensional
sparse matrix, or the element indicated by the array
of integers idx in an n-dimensional sparse matrix.
If hashval is not NULL, use the provided value
instead of computing it

cv::SparseMatIterator<float> it

 = sm.begin<float>();

Create a sparse matrix iterator it and point it at
the first value of the floating-point array sm

cv::SparseMatIterator<uchar> it_end

 = sm.end<uchar>();

Create a sparse matrix iterator it_end and
initialize it to the value succeeding the final value
in the byte array sm

The Template Structure
Thus far in this chapter, we have regularly eluded to the existence of template forms for almost all of the
basic types. In fact, most programmers can get quite far into OpenCV without ever digging down into the
templates. However, knowing how to use the templates directly can be of great help in getting things done.
In this section, we will look at how that all works. If your C++ programming skills are not entirely up to
par, you can probably just skim or skip over this section entirely.

OpenCV version 2.1 and later is built on a template meta-programming style similar to STL, Boost, and
similar libraries. This sort of library design can be extremely powerful, both in terms of the quality and
speed of the final code, as well as the flexibility it allows the developer. In particular, template structures of
the kind used in OpenCV allow for algorithms to be implemented in an abstracted way that does not
specifically rely on the primitive types that are native to C++ or even native to OpenCV.

As an example, consider the cv::Point class. When you instantiate an object of type cv::Point, you
are actually instantiating a template object of type cv::Point_<int>. (Note the trailing underscore—
this is the general convention in the library used to indicate a template.) This template could have been
instantiated with a different type than int, obviously. In fact, it could have been instantiated with any type

that supports the same basic set of operators as int (i.e., addition, subtraction, multiplication, etc.). For
example, OpenCV provides a type cv::Complex that you could have used. You also could have used the
STL complex type std::complex, which has nothing to do with OpenCV at all. The same is true for
some other types of your own construction. This same concept generalizes to other type templates such as
cv::Scalar_<> and cv::Rect_<>, as well as cv::Matx_<> and cv::Vec_<>.

cv::Mat_<> and cv::SparseMat_<> Are a Little Bit Different

This concept also generalizes to cv::Mat_<> and cv::SparseMat_<>, but in a somewhat nontrivial
way. When you use cv::Point2i, recall that this is nothing more or less than an alias (typedef) for
cv::Point_<int>. In the case of the template cv::Mat and cv::Mat_<>, their relationship is not
so simple. Recall that cv::Mat already has the capability of representing essentially any type, but that this
is done at construction time by explicitly specifying the base type. In the case of cv::Mat_<>, the
instantiated template is actually derived from the cv::Mat class, and in effect specializes that class. This
simplifies access and other member functions that would otherwise need to be templated.

This is worth reiterating. The purpose of using the template forms cv::Mat_<> and
cv::SparseMat_<> are so you don’t have to use the template forms of their member functions.
Consider this example, where we have a matrix defined by:

 cv::Mat m(10, 10, cv::F32C2);

Individual element accesses to this matrix would need to specify the type of the matrix, as in the following:
 m.at< Vec2f >(i0, i1) = cv::Vec2f(x, y);

Alternatively, if you had defined the matrix m using the template class, you could use at() without
specialization, or even just use operator():

 cv::Mat_<Vec2f> m(10, 10);
 m.at(i0, i1) = cv::Vec2f(x, y);
 // or…
 m(i0, i1) = cv::Vec2f(x, y);

There is a great deal of simplification in your code that results from using these template definitions and
because if this, it is the preferred way to code.

These two ways of declaring a matrix and their associated .at methods are equivalent in
efficiency. The second method is more “correct” because it allows the compiler to detect
type mismatches when m is passed into a function that requires a certain type of matrix. If

cv::Mat m(10, 10, cv::F32C2);

is passed into
void foo((cv::Mat_<char> *)myMat);

failure would occur during runtime in perhaps nonobvious ways. If you instead used
cv::Mat_<Vec2f> m(10, 10);

failure would be detected at compile time.

Template forms can be used to create template functions that operate on an array of a particular type.
Consider our example from the previous section, where we created a small sparse matrix and then printed
out its nonzero elements. We might try writing a function to achieve this as follows:

void print_matrix(const cv::SparseMat* sm) {

 cv::SparseMatConstIterator_<float> it = sm.begin<float>();
 cv::SparseMatConstIterator_<float> it_end = sm.end<float>();

 for(; it != it_end; ++it) {
 const cv::SparseMat::Node* node = it.node();
 printf(" (%3d,%3d) %f\n", node->idx[0], node->idx[1], *it);

 }
}

Though this function would compile and work when it is passed a two-dimensional matrix of type
cv::F32, it would fail when a matrix of unexpected type was passed in. Let’s look at how we could make
this function more general.

The first thing we would want to address is the issue of the underlying data type. We could explicitly use
the cv::SparseMat_<float> template, but it would be better still to make the function a template
function. We would also need to get rid of the use of printf(), as it makes an explicit assumption that
*it is a float. A better function might look like this:

template <class T> void print_matrix(const cv::SparseMat_<T>* sm) {

 cv::SparseMatConstIterator_<T> it = sm->begin();
 cv::SparseMatConstIterator_<T> it_end = sm->end();

 for(; it != it_end; ++it) {
 const typename cv::SparseMat_<T>::Node* node = it.node();
 cout <<”(“ <<node->idx[0] <<”, “ <<node->idx[1]
 <<”) = “ <<*it <<endl;
 }
}

void calling_function1(void) {
 …
 cv::SparseMat_<float> sm(ndim, size);
 …
 print_matrix<float>(&sm);
}

void calling_function2(void) {
 …
 cv::SparseMat sm(ndim, size, cv::F32);
 …
 print_matrix<float>((cv::SparseMat_<float>*) &sm);
}

It is worth picking apart these changes. First though, before looking at changes, notice that the template for
our function takes a pointer of type const cv::SparseMat_<t>*, a pointer to a sparse matrix
template object. There is a good reason to use a pointer and not a reference here, because the caller may
have a cv::Mat object (as is done in calling_function2()) and not a cv::Mat_<> template
object (as used in calling_function1()). The cv::Mat can be dereferenced and then explicitly
cast to a pointer to the sparse matrix template object type.

In the templated prototype, we have promoted the function to a template of class T, and now expect a
cv::SparseMat_<T>* pointer as argument. In the next two lines, we declare our iterators using the
template type, but begin() and end() no longer have templated instantiations. The reason for this is
that sm is now an instantiated template, and because of that explicit instantiation, sm “knows” what sort of
matrix it is, and thus specialization of begin() and end() is unnecessary. The declaration of the Node
is similarly changed so that the Node we are using is explicitly taken from the cv::SparseMat_<T>
instantiated template class.26 Finally, we change the printf() statement to use stream output to cout.
This has the advantage that the printing is now agnostic to the type of *it.

26 The appearance of the typename keyword here is probably somewhat mysterious to most readers. It is a result of
the dependent scoping rules in C++. If you should forget it, however, most modern compilers (e.g., g++) will throw you
a friendly message reminding you to add it.

Array Operators
As we have seen so far in this chapter, there are many basic operations on arrays that are now handled by
member functions of the array classes. In addition to those, however, there are many more operations that
are most naturally represented as “friend” functions that either take array types as arguments, have array
types as return values, or both. The functions, together with their arguments, will be covered in more detail
after the table. For a shortcut, it is best to download the cheat sheet at
http://docs.opencv.org/trunk/opencv_cheatsheet.pdf.

Table 3-20: Basic matrix and image operators

Function Description

cv::abs() Absolute value of all elements in an array

cv::absdiff() Absolute value of differences between two arrays

cv::add() Element-wise addition of two arrays

cv::addWeighted() Element-wise weighted addition of two arrays (alpha blending)

cv::bitwise_and() Element-wise bit-level AND of two arrays

cv::bitwise_not() Element-wise bit-level NOT of two arrays

cv::bitwise_or() Element-wise bit-level OR of two arrays

cv::bitwise_xor() Element-wise bit-level XOR of two arrays

cv::calcCovarMatrix() Compute covariance of a set of n-dimensional vectors

cv::cartToPolar() Compute angle and magnitude from a two-dimensional vector
field

cv::checkRange() Check array for invalid values

cv::compare() Apply selected comparison operator to all elements in two arrays

cv::completeSymm() Symmetrize matrix by copying elements from one half to the other

cv::convertScaleAbs() Scale array, take absolute value, then convert to 8-bit unsigned

cv::countNonZero() Count nonzero elements in an array

cv::arrToMat() Converts pre-version 2.1 array types to cv::Mat

cv::dct() Compute discrete cosine transform of array

cv::determinant() Compute determinant of a square matrix

cv::dft() Compute discrete Fourier transform of array

cv::divide() Element-wise division of one array by another

cv::eigen() Compute eigenvalues and eigenvectors of a square matrix

cv::exp() Element-wise exponentiation of array

cv::extractImageCOI() Extract single channel from pre-version 2.1 array type

cv::flip() Flip an array about a selected axis

cv::gemm() Generalized matrix multiplication

cv::getConvertElem() Get a single pixel type conversion function

cv::getConvertScaleElem() Get a single pixel type conversion and scale function

cv::idct() Compute inverse discrete cosine transform of array

cv::idft() Compute inverse discrete Fourier transform of array

cv::inRange() Test if elements of an array are within values of two other arrays

cv::invert() Invert a square matrix

cv::log() Element-wise natural log of array

cv::magnitude() Compute magnitudes from a two-dimensional vector field

cv::LUT() Converts array to indices of a look-up table

cv::Mahalanobis() Compute Mahalanobis distance between two vectors

cv::max() Compute element-wise maxima between two arrays

cv::mean() Compute the average of the array elements

cv::meanStdDev() Compute the average and standard deviation of the array elements

cv::merge() Merge several single-channel arrays into one multichannel arrays

cv::min() Compute element-wise minima between two arrays

cv::minMaxLoc() Find minimum and maximum values in an array

cv::mixChannels() Shuffle channels from input arrays to output arrays

cv::mulSpectrums() Compute element-wise multiplication of two Fourier spectra

cv::multiply() Element-wise multiplication of two arrays

cv::mulTransposed() Calculate matrix product of one array

cv::norm() Compute normalized correlations between two arrays

cv::normalize() Normalize elements in an array to some value

cv::perspectiveTransform() Perform perspective matrix transform of a list of vectors

cv::phase() Compute orientations from a two-dimensional vector field

cv::polarToCart() Compute two-dimensional vector field from angles and
magnitudes

cv::pow() Raise every element of an array to a given power

cv::randu() Fill a given array with uniformly distributed random numbers

cv::randn() Fill a given array with normally distributed random numbers

cv::randShuffle() Randomly shuffle array elements

cv::reduce() Reduce a two-dimensional array to a vector by a given operation

cv::repeat() Tile the contents of one array into another

cv::saturate_cast<>() Template function for guarding against overflow

cv::scaleAdd() Element-wise sum of two arrays with optional scaling of the first

cv::setIdentity() Set all elements of an array to 1 for the diagonal and 0 otherwise

cv::solve() Solve a system of linear equations

cv::solveCubic() Find the (only) real roots of a cubic equation

cv::solvePoly() Find the complex roots of a polynomial equation

cv::sort() Sort elements in either the rows or columns in an array

cv::sortIdx() Same as cv::sort() except array is unmodified and indices are
returned

cv::split() Split a multichannel array into multiple single-channel arrays

cv::sqrt() Compute element-wise square root of an array

cv::subtract() Element-wise subtraction of one array from another

cv::sum() Sum all elements of an array

cv::theRNG() Return a random number generator

cv::trace() Compute the trace of an array

cv::transform() Apply matrix transformation on every element of an array

cv::transpose() Transpose all elements of an array across the diagonal

In these functions, some general rules are followed. To the extent that any exceptions exist, they are noted
in the function descriptions. Because one or more of these rules applies to just about every function
described in this section, they are listed here for convenience:

Saturation

Outputs of calculations are saturation casted to the type of the output array.

Output

The output array will be created with cv::Mat::create() if its type and size do not match the
inputs.

Scalars

Many functions such as cv::add() allow for addition of two arrays or an array and a scalar. Where
the prototypes make the option clear, the result of providing a scalar argument is the same as if a
second array had been provided with the same scalar value in every element.

Masks

Whenever a mask argument is present for a function, the output will only be computed for those
elements where the mask value corresponding to that element in the output array is nonzero.

dtype

Many arithmetic and similar functions do not require the types of the input arrays to be the same, and
even if they are the same, the output array may be of a different type than the inputs. In these cases, the
output array must have its depth explicitly specified. This is done with the dtype argument. When
present, dtype can be set to any of the basic types (cv::F32 etc.) and the result array will be of that
type. If the input arrays have the same type, then dtype can be set to its default value of -1, and the
resulting type will be the same as the types of the input arrays.

In Place Operation

Unless otherwise specified, any operation with both an array input and an array output that are of the
same size and type can use the same array for both (i.e., it is allowable to write the output on top of an
input).

Multichannel

For those operations that do not naturally make use of multiple channels, if given multichannel
arguments, each channel is processed separately.

cv::abs()

cv::MatExpr cv::abs(cv::InputArray src);
cv::MatExpr cv::abs(const cv::MatExpr& src // Matrix expresion
);

These functions compute the absolute value of an array or of some expression of arrays. The most common
usage computes the absolute value of every element in an array. Because cv::abs() can take a matrix
expression, it is able to recognize certain special cases and handle them appropriately. In fact, calls to
cv::abs() are actually converted to calls to cv::absDiff() or other functions, and handled by those
functions. In particular, the following special cases are implemented:

• m2 = cv::abs(m0 - m1) is converted to cv::absDiff(m0, m1, m2)

• m2 = cv::abs(m0) is converted to m2 = cv::absDiff(m0,
cv::Scalar::all(0), m2)

• m2 = cv::Mat_<Vec<uchar,n> >(cv::abs(alpha*m0 + beta)) (for alpha,
beta real numbers) is converted to cv::convertScaleAbs(m0, m2, alpha, beta)

The third case might seem obscure, but this is just the case of computing a scale and offset (either of which
could be trivial) to an n-channel array. This is typical of what one might do when computing a contrast
correction for an image, for example.

In the cases that are implemented by cv::absDiff(), the result array will have the same size and type
as the input array. In the case implemented by cv::convertScaleAbs(), however, the result type of
the return array will always be cv::U8.

cv::absdiff()

void cv::absdiff(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst // Result array
)

dsti = saturate † src1i − src2i()

Given two arrays, cv::absdiff() computes the difference between each pair of corresponding
elements in those arrays, and places the absolute value of that difference into the corresponding element of
the destination array.

cv::add()

void cv::add(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero
 int dtype = -1 // Output type for result array
)

dsti = saturate †src1i + src2i()

cv::add() is a simple addition function: it adds all of the elements in src1 to the corresponding
elements in src2 and puts the results in dst.

For simple cases, the same result can be achieved with the matrix operation:

dst = src1 + src2;

Accumulation is also supported:
 dst += src1;

cv::addWeighted()

void cv::addWeighted(
 cv::InputArray src1, // First input array
 double alpha, // Weight for first input array
 cv::InputArray src2, // Second input array
 double beta, // Weight for second input array
 double gamma, // Offset added to weighted sum
 cv::OutputArray dst, // Result array
 int dtype = -1 // Output type for result array
)

The function cv::addWeighted() is similar to cvAdd() except that the result written to dst is
computed according to the following formula:

dsti = saturate †src1i *αα†+ src2i *ββ†+ γ() †src1i *αα†+ src2i *ββ†+ γ().

The two source images, src1 and src2 may be of any pixel type as long as both are of the same type.
They may also have any number of channels (grayscale, color, etc.), as long as they agree.

This function can be used to implement alpha blending [Smith79; Porter84]; that is, it can be used to blend
one image with another. In this case, the parameter alpha is the blending strength of src1, and beta is
the blending strength of src2. You can convert to the standard alpha blend equation by choosing α
between 0 and 1, setting β = 1−α , and setting γ to 0; this yields:

dsti = saturate †src1i *αα†+ src2i * 1−α†() 1−α†()() †src1i *αα†+ src2i * 1−αα†()().

However, cv::addWeighted() gives us a little more flexibility—both in how we weight the blended
images and in the additional parameter γ, which allows for an additive offset to the resulting destination
image. For the general form, you will probably want to keep alpha and beta at 0 or above, and their sum
at no more than 1; gamma may be set depending on average or max image value to scale the pixels up. A
program showing the use of alpha blending is shown in Example 3-1.

Example 3-1. Complete program to alpha blend the ROI starting at

0,0() in src2 with the ROI starting at

x, y() in src1

// alphablend <imageA> <image B> <x> <y> <width> <height> alpha> <beta>
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {

 cv::Mat src1 = cv::imread(argv[1],1);
 cv::Mat src2 = cv::imread(argv[2],1);

 if(argc==9 && !src1.empty() && !src2.empty()) {

 int x = atoi(argv[3]);
 int y = atoi(argv[4]);
 int w = atoi(argv[5]);
 int h = atoi(argv[6]);
 double alpha = (double)atof(argv[7]);
 double beta = (double)atof(argv[8]);

 cv::Mat roi1(src1, cv::Rect(x,y,w,h));
 cv::Mat roi2(src2, cv::Rect(0,0,w,h));

 cv::addWeighted(roi1, alpha, roi2, beta, 0.0, roi1);

 cv::namedWindow("Alpha Blend", 1);
 cv::imshow("Alpha Blend", src2);
 cv::waitKey(0);
 }

 return 0;
}

The code in Example 3-1 takes two source images: the primary one (src1) and the one to blend (src2). It
reads in a rectangle ROI for src1 and applies an ROI of the same size to src2, but located at the origin. It
reads in alpha and beta levels but sets gamma to 0. Alpha blending is applied using
cv::addWeighted(), and the results are put into src1 and displayed. Example output is shown in
Figure 3-1, where the face of a child is blended onto a cat. Note that the code took the same ROI as in the
ROI addition example in Figure 3-1. This time we used the ROI as the target blending region.

Figure 3-1: The face of a child is alpha blended onto the face of a cat

cv::bitwise_and()

void cv::bitwise_and(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero
)

 dsti = src1i ∧ src2i

cv::bitwise_and() is a per-element bitwise conjunction operation. For every element in src1, the
bitwise AND is computed with the corresponding element in src2 and put into the corresponding element
of dst.

If you are not using a mask, the same result can be achieved with the matrix operation:
dst = src1 & src2;

cv::bitwise_not()

void cv::bitwise_not(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero

)

 dsti =∼ src1i

cv::bitwise_not() is a per-element bitwise inversion operation. For every element in src1 the
logical inversion is computed and placed into the corresponding element of dst.

If you are not using a mask, the same result can be achieved with the matrix operation:

dst = !src1;

cv::bitwise_or()

void cv::bitwise_and(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero
)

 dsti = src1i ∨ src2i

 dsti = src1i ∨ sc

cv::bitwise_or() is a per-element bitwise disjunction operation. For every element in src1, the
bitwise OR is computed with the corresponding element in src2 and put into the corresponding element of
dst.

If you are not using a mask, the same result can be achieved with the matrix operation:

dst = src1 | src2;

cv::bitwise_xor()

void cv::bitwise_and(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero
)

 dsti = src1i ⊕ src2i

 dsti = src1i!sc

cv::bitwise_and() is a per-element bitwise “exclusive or” operation. For every element in src1, the
bitwise XOR is computed with the corresponding element in src2 and put into the corresponding element
of dst.

If you are not using a mask, the same result can be achieved with the matrix operation:

dst = src1 ^ src2;

cv::calcCovarMatrix()

void cv::calcCovarMatrix(
 const cv::Mat* samples, // C-array of n-by-1 or 1-by-n matrices
 int nsamples, // number of matrices pointed to by ‘samples’
 cv::Mat& covar, // reference to return array for covariance
 cv::Mat& mean, // reference to return array for mean
 int flags, // special variations, see Table 3-21
 int ctype = cv::F64 // output matrix type for covar
);

void cv::calcCovarMatrix(
 cv::InputArray samples, // n-by-m matrix, use ‘flags’ for which is which
 cv::Mat& covar, // reference to return array for covariance
 cv::Mat& mean, // reference to return array for mean
 int flags, // special variations, see Table 3-21
 int ctype = cv::F64 // output matrix type for covar
);

Given any number of vectors, cv::calcCovarMatrix() will compute the mean and covariance
matrix for the Gaussian approximation to the distribution of those points. This can be used in many ways,

of course, and OpenCV has some additional flags that will help in particular contexts (see Table 3-21).
These flags may be combined by the standard use of the Boolean OR operator.

Table 3-21: Possible components of flags argument to cv::calcCovarMatrix()

Flag in flags argument Meaning
cv::COVAR_NORMAL Compute mean and covariance
cv::COVAR_SCRAMBLED Fast PCA “scrambled” covariance
cv::COVAR_USE_AVERAGE Use mean as input instead of computing it
cv::COVAR_SCALE Rescale output covariance matrix
cv::COVAR_ROWS Use rows of samples for input vectors
cv::COVAR_COLS Use columns of samples for input vectors

There are two basic calling conventions for cv::calcCovarMatrix(). In the first, a pointer to an
array of cv::Mat objects is passed along with nsamples, the number of matrices in that array. In this
case, the arrays may be n-by-1 or 1-by-n. The second calling convention is to pass a single array that is n-
by-m. In this case, either the flag cv::COVAR_ROWS should be supplied, to indicate that there are n (row)
vectors of length m, or cv::COVAR_COLS should be supplied, to indicate that there are m (column)
vectors of length n.

The results will be placed in covar in all cases, but the exact meaning of avg depends on the flag values
(see Table 3-21).

The flags cv::COVAR_NORMAL and cv::COVAR_SCRAMBLED are mutually exclusive; you should use
one or the other but not both. In the case of cv::COVAR_NORMAL, the function will simply compute the
mean and covariance of the points provided:

Thus the normal covariance Σ normal
2 is computed from the m vectors of length n , where vn is defined as

the nth element of the average vector: v . The resulting covariance matrix is an n -by- n matrix. The
factor z is an optional scale factor; it will be set to 1 unless the cv::COVAR_SCALE flag is used.

In the case of cv::COVAR_SCRAMBLED, cv::calcCovarMatrix() will compute the following:

This matrix is not the usual covariance matrix (note the location of the transpose operator). This matrix is
computed from the same m vectors of length n, but the resulting scrambled covariance matrix is an m-by-m
matrix. This matrix is used in some specific algorithms such as fast PCA for very large vectors (as in the
eigenfaces technique for face recognition).

The flag cv::COVAR_USE_AVG is used when the mean of the input vectors is already known. In this
case, the argument avg is used as an input rather than an output, which reduces computation time.

Finally, the flag cv::COVAR_SCALE is used to apply a uniform scale to the covariance matrix calculated.
This is the factor z in the preceding equations. When used in conjunction with the cv::COVAR_NORMAL
flag, the applied scale factor will be 1/ m (or, equivalently, 1.0/nsamples). If instead
cv::COVAR_SCRAMBLED is used, then the value of z will be 1/ n (the inverse of the length of the
vectors).

The input and output arrays to cv::calcCovarMatrix() should all be of the same floating-point type.
The size of the resulting matrix covar will be either n -by- n or m -by- m depending on whether the
standard or scrambled covariance is being computed. It should be noted that when using the cv::Mat*
form, the “vectors” input in samples do not actually have to be one-dimensional; they can be two-
dimensional objects (e.g., images) as well.

cv::cartToPolar()

void cv::cartToPolar(
 cv::InputArray x,
 cv::InputArray y,
 cv::OutputArray magnitude,
 cv::OutputArray angle,
 bool angleInDegrees = false
);

 magnitudei = † xi
2 + yi

2

anglei = atan2 yi ,†xi()

This function cv::cartToPolar() takes two input arrays x and y, which are taken to be the x and y
components of a vector field (note that this is not a single two-channel array, but two separate arrays). The
arrays x and y must be of the same size. cv::cartToPolar() then computes the polar representation
of each of those vectors. The magnitude of each vector is placed into the corresponding location in
magnitude, and the orientation of each vector is placed into the corresponding location in angle. The
returned angles are in radians unless the Boolean variable angleInDegrees is set to true.

cv::checkRange()

bool cv::checkRange(
 cv::InputArray src,
 bool quiet = true,
 Point* pos = 0, // if non-Null, location of first outlier
 double minVal = -DBL_MAX, // Lower check bound (inclusive)
 double maxVal = DBL_MAX // Upper check bound (exclusive)
);

This function cv::checkRange() tests every element of the input array src and determines if that
element is in a given range. The range is set by minVal and maxVal, but any NaN or inf value is also
considered out of range. If an out-of-range value is found, an exception will be thrown unless quiet is set
to true, in which case the return value of cv::checkRange() will be true if all values are in range
and false if any value is out of range. If the pointer pos is not NULL, then the location of the first outlier
will be stored in pos.

cv::compare()

bool cv::compare(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 int cmpop // Comparison operator, see Table 3-22
)

This function makes element-wise comparisons between corresponding pixels in two arrays, src1 and
src2, and places the results in the image dst. cv::compare() takes as its last argument a comparison
operator, which may be any of the types listed in Table 3-22. In each case, the result dst will be an 8-bit
array where pixels that match are marked with 255 and mismatches are set to 0.

Table 3-22 Values of cmpop used by cv::compare() and the resulting comparison
operation performed

Value of cmp_op Comparison
cv::CMP_EQ (src1i == src2i)
cv::CMP_GT (src1i > src2i)
cv::CMP_GE (src1i >= src2i)

cv::CMP_LT (src1i < src2i)
cv::CMP_LE (src1i <= src2i)
cv::CMP_NE (src1i != src2i)

All the listed comparisons are done with the same functions; you just pass in the appropriate argument to
indicate what you would like done.

These comparison functions are useful, for example, in background subtraction to create a mask of the
changed pixels (e.g., from a security camera) such that only novel information is pulled out of the image.

These same results can be achieved with the matrix operations:
dst = src1 == src2;

dst = src1 > src2;

dst = src1 >= src2;

dst = src1 < src2;

dst = src1 <= src2;

dst = src1 != src2;

cv::completeSymm()

bool cv::completeSymm(
 cv::InputArray mtx,
 bool lowerToUpper = false
)

!mtxij = mtx ji!†i > j! (lowerToUpper = false)

!mtxij = mtx ji!† j > i! (lowerToUpper = false)

Given a matrix (an array of dimension two) mtx, cv::completeSymm() symmetrizes the matrix by
copying.27 Specifically, all of the elements from the lower triangle are copied to their transpose position on
the upper triangle of the matrix. The diagonal elements of the mtx are left unchanged. If the flag
lowerToUpper is set to true, then the elements from the upper triangle are copied into the lower
triangle instead.

cv::convertScaleAbs()

void cv::convertScaleAbs(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 double alpha = 1.0, // Multiplicative scale factor
 double beta = 0.0 // Additive offset factor
);

dsti = saturateuchar α *srci + β()

The cv::convertScaleAbs() function is actually several functions rolled into one; it will perform
four operations in sequence. The first operation is to rescale the source image by the factor alpha, the
second is to offset by (add) the factor beta, the third is to compute the absolute value of that sum, and the
fourth operation is to cast that result (with saturation) to unsigned char (8-bit).

27 Mathematically inclined readers will realize that there are other symmetrizing processes for matrices that are more
“natural” than this operation, but this particular operation is useful in its own right, for example to complete a matrix
when only half of it was computed, and so is exposed in the library.

When you simply pass the default values (alpha = 1.0 or beta = 0.0), you need not have
performance fears; OpenCV is smart enough to recognize these cases and not waste processor time on
useless operations.

A similar result can be achieved, with somewhat greater generality using matrix algebra:
Mat_<uchar> B = saturate_cast<uchar>(
 cv::abs(src * alpha + beta)
)

This method will also generalize to types other than uchar:

Mat_<unsigned short> B = saturate_cast<unsigned short>(
 cv::abs(src * alpha + beta)
)

cv::countNonZero()

int cv::countNonZero(// Return number of non-zero elements in mtx
 cv::InputArray mtx, // Input array
);

count =

mtxi≠0
∑ 1

cv::countNonZero() returns the number of nonzero pixels in the array mtx.

cv::cvarrToMat()

cv::Mat cv::cvarrToMat(
 const CvArr* src, // Input array: CvMat, IplImage, or CvMatND
 bool copyData = false, // if false just make new header, else copy data
 bool allowND = true, // if true, and possible, convert CvMatND to Mat
 int coiMode = 0 // if 0: error if COI set, if 1: ignore COI
);

cv::cvarrToMat() is used when you have an “old-style” (pre-version 2.1) image or matrix type and
you want to convert it to a “new-style” (version 2.1 or later, which uses C++) cv::Mat object. By default,
only the header for the new array is constructed without copying the data. Instead, the data pointers in the
new header point to the existing data array (so do not deallocate it while the cv::Mat header is in use). If
you want the data copied, just set copyData to true, and then you can freely do away with the original
data object.

cv::cvarrToMat() can also take CvMatND structures, but it cannot handle all cases. The key
requirement for the conversion is that the matrix should be continuous, or at least it should be representable
as a sequence of continuous matrices. Specifically, A.dim[i].size*A.dim.step[i] should be
equal to A.dim.step[i-1] for all i, or at worst all but one. If allowND is set to true (default),
cv::cvarrToMat() will attempt the conversion when it encounters a CvMatND structure, and throw an
exception if that conversion is not possible (the condition above). If allowND is set to false, then an
exception will be thrown whenever a CvMatND structure is encountered.

Because the concept of COI28 is handled differently in the post-version 2.1 library (which is to say, it no
longer exists), COI has to be handled during the conversion. If the argument coiMode is 0, then an
exception will be thrown when src contains an active COI. If coiMode is nonzero, then no error will be
reported, and instead a cv::Mat header, which corresponds to the entire image, will be returned, ignoring

28 “COI” is an old concept from the pre-v2 library which meant “Channel of interest”. In the old IplImage class, this
COI was analogous to ROI (Region of interest), and could be set to cause certain functions to act only on the indicated
channel.

the COI. (If you want to handle COI properly, you will have to check yourself if the image has the COI set,
and if so, use cv::extractImageCOI() to create a header for just that channel.)

Most of the time, this function is used to help migrate old-style code to the new. In such
case, you will probably need to both convert old CvArr* style structures to cv::Mat,
as well as the reverse operation. The reverse operation is done using cast operators. If, for
example, you have a matrix you defined as cv::Mat A, you can convert that to an
IplImage* pointer simply with:

Mat A(640, 480, cv::U8C3);
IplImage img = A; // casting is implicit in assignment

cv::dct()

void cv::dct(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags, // for inverse transform or row-by-row
);

This function performs both the discrete cosine transform and the inverse transform depending on the
flags argument. The source array src must be either one- or two-dimensional, and the size should be an
even number (you can pad the array if necessary). The result array dst will have the same type and size as
src. The argument flags is a bit-field and can be set to one or both of DCT_INVERSE or DCT_ROWS. If
DCT_INVERSE is set, then the inverse transform is done instead of the forward transform. If the flag
DCT_ROWS is set, then a two-dimensional n-by-m input is treated as n distinct one-dimensional vectors of
length m. In this case, each such vector will be transformed independently.

The performance of cv::dct() depends strongly on the exact size of the arrays passed
to it, and this relationship is not monotonic. There are just some sizes that work better
than others. It is recommended that when passing an array to cv::dct(), you should
first determine the most optimal size that is larger than your array, and extend your array
to that size. OpenCV provides a convenient routine to compute such values for you,
called cv::getOptimalDFTSize().

As implemented, the discrete cosine transform of a vector of length n is computed using
the discrete Fourier transform (cv::dft()) on a vector of length n/2. This means that
to get the optimal size for a call to cv::dct(), you should compute it like this:

size_t optimal_dct_size = 2 * getOptimalDFTSize((N+1) / 2);

This function (and discrete transforms in general) is covered in much greater detail in Chapter 6, General
Image Transforms. In that section, we will discuss the details of how to pack and unpack the input and
output, as well as information on when and why you might want to use the discrete cosine transform.

cv::dft()

void cv::dft(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags = 0, // for inverse transform or row-by-row, etc.
 int nonzeroRows = 0 // assume only this many entries are nonzero
);

This function performs both the discrete Fourier transform as well as the inverse transform (depending on
the flags argument). The source array src must be either one- or two--dimensional. The result array
dst will have the same type and size as src. The argument flags is a bit-field and can be set to one or
more of DFT_INVERSE, DFT_ROWS, DFT_SCALE, DFT_COMPLEX_OUTPUT, or
DFT_REAL_OUTPUT. If DFT_INVERSE is set, then the inverse transform is done. If the flag DFT_ROWS
is set, then a two-dimensional n -by- m input is treated as n distinct one-dimensional vectors of length m

and each such vector will be transformed independently. The flag DFT_SCALE normalizes the results by
the number of elements in the array. This is normally done for DFT_INVERSE, as it guarantees that the
inverse of the inverse will have the correct normalization.

The flags DFT_COMPLEX_OUTPUT and DFT_REAL_OUTPUT are useful because when the Fourier
transform of a real array is computed, the result will have a complex-conjugate symmetry. So, even though
the result is complex, the number of array elements that result will be equal to the number of elements in
the real input array rather than double that number. Such a packing is the default behavior of cv::dft().
To force the output to be in complex form, set the flag DFT_COMPLEX_OUTPUT. In the case of the
inverse transform, the input is (in general) complex, and the output will be as well. However, if the input
array (to the inverse transform) has complex-conjugate symmetry (for example, if it was itself the result of
a Fourier transform of a real array), then the inverse transform will be a real array. If you know this to be
the case, and you would like the result array represented as a real array (and so use half the amount of
memory), you can set the DFT_REAL_OUTPUT flag. (Note that if you do set this flag, cv::dft() does
not check that the input array has the necessary symmetry, it simply assumes that it does.)

The last parameter to cv::dft() is nonzeroRows. This defaults to 0, but if set to any nonzero value,
will cause cv::dft() to assume that only the first nonzeroRows of the input array are actually
meaningful. (If DFT_INVERSE is set, then it is only the first nonzeroRows of the output array that are
assumed to be nonzero.) This flag is particularly handy when computing cross-correlations of convolutions
using cv::dft().

Like the performance of cv::dct(), cv::dft() depends strongly on the exact size
of the arrays passed to it, and this relationship is not monotonic. There are just some sizes
that work better than others. It is recommended that when passing an array to
cv::dft(), you should first determine the most optimal size larger than your array,
and extend your array to that size. OpenCV provides a convenient routine to compute
such values for you, called cv::getOptimalDFTSize().

Again, this function (and discrete transforms in general) is covered in much greater detail in Chapter 6,
General Image Transforms. In that section, we will discuss the details of how to pack and unpack the input
and output, as well as information on when and why you might want to use the discrete Fourier transform.

cv::cvtColor()

void cv::cvtColor(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int code, // color mapping code, see Table 3-23
 int dstCn = 0 // channels in output (0 for ‘automatic’)
);

cv::cvtColor() is used to convert from one color space (number of channels) to another [Wharton71]
while retaining the same data type. The input array src can be an 8-bit array, a 16-bit unsigned array, or a
32-bit floating-point array. The output array dst will have the same size and depth as the input array. The
conversion operation to be done is specified by the code argument, with possible values shown in Table 3-
23.29 The final parameter dstCn is the desired number of channels in the destination image. If the default
value (of 0) is given, then the number of channels is determined by the number of channels in src and the
conversion code.

Table 3-23: Conversions available by means of cv::cvtColor()

Conversion code Meaning

29 Long-time users of IPL should note that the function cvCvtColor() ignores the colorModel and
channelSeq fields of the IplImage header. The conversions are done exactly as implied by the code argument.

cv::BGR2RGB
cv::RGB2BGR
cv::RGBA2BGRA
cv::BGRA2RGBA

Convert between RGB and BGR color spaces (with
or without alpha channel)

cv::RGB2RGBA
cv::BGR2BGRA

Add alpha channel to RGB or BGR image

cv::RGBA2RGB
cv::BGRA2BGR

Remove alpha channel from RGB or BGR image

cv::RGB2BGRA
cv::RGBA2BGR
cv::BGRA2RGB
cv::BGR2RGBA

Convert RGB to BGR color spaces while adding or
removing alpha channel

cv::RGB2GRAY
cv::BGR2GRAY

Convert RGB or BGR color spaces to grayscale

cv::GRAY2RGB
cv::GRAY2BGR
cv::RGBA2GRAY
cv::BGRA2GRAY

Convert grayscale to RGB or BGR color spaces
(optionally removing alpha channel in the process)

cv::GRAY2RGBA
cv::GRAY2BGRA

Convert grayscale to RGB or BGR color spaces and
add alpha channel

cv::RGB2BGR565
cv::BGR2BGR565
cv::BGR5652RGB
cv::BGR5652BGR
cv::RGBA2BGR565
cv::BGRA2BGR565
cv::BGR5652RGBA
cv::BGR5652BGRA

Convert from RGB or BGR color space to BGR565
color representation with optional addition or
removal of alpha channel (16-bit images)

cv::GRAY2BGR565
cv::BGR5652GRAY

Convert grayscale to BGR565 color representation
or vice versa (16-bit images)

cv::RGB2BGR555
cv::BGR2BGR555
cv::BGR5552RGB
cv::BGR5552BGR
cv::RGBA2BGR555
cv::BGRA2BGR555
cv::BGR5552RGBA
cv::BGR5552BGRA

Convert from RGB or BGR color space to BGR555
color representation with optional addition or
removal of alpha channel (16-bit images)

cv::GRAY2BGR555
cv::BGR5552GRAY

Convert grayscale to BGR555 color representation
or vice versa (16-bit images)

cv::RGB2XYZ
cv::BGR2XYZ
cv::XYZ2RGB
cv::XYZ2BGR

Convert RGB or BGR image to CIE XYZ
representation or vice versa (Rec 709 with D65
white point)

cv::RGB2YCrCb
cv::BGR2YCrCb
cv::YCrCb2RGB
cv::YCrCb2BGR

Convert RGB or BGR image to luma-chroma (aka
YCC) color representation or vice versa

cv::RGB2HSV
cv::BGR2HSV
cv::HSV2RGB
cv::HSV2BGR

Convert RGB or BGR image to HSV (hue
saturation value) color representation or vice versa

cv::RGB2HLS
cv::BGR2HLS
cv::HLS2RGB
cv::HLS2BGR

Convert RGB or BGR image to HLS (hue lightness
saturation) color representation or vice versa

cv::RGB2Lab
cv::BGR2Lab
cv::Lab2RGB
cv::Lab2BGR

Convert RGB or BGR image to CIE Lab color
representation or vice versa

cv::RGB2Luv
cv::BGR2Luv
cv::Luv2RGB
cv::Luv2BGR

Convert RGB or BGR image to CIE Luv color
representation or vice versa

cv::BayerBG2RGB
cv::BayerGB2RGB
cv::BayerRG2RGB
cv::BayerGR2RGB
cv::BayerBG2BGR
cv::BayerGB2BGR
cv::BayerRG2BGR
cv::BayerGR2BGR

Convert from Bayer pattern (single-channel) to
RGB or BGR image

We will not go into the details of these conversions nor the subtleties of some of the representations
(particularly the Bayer and the CIE color spaces) here. Instead, we will just note that OpenCV contains
tools to convert to and from these various color spaces, which are of importance to various classes of users.

The color-space conversions all use the conventions: 8-bit images are in the range 0 to 255, 16-bit images
are in the range 0 to 65536, and floating-point numbers are in the range 0.0 to 1.0. When grayscale
images are converted to color images, all components of the resulting image are taken to be equal; but for
the reverse transformation (e.g., RGB or BGR to grayscale), the gray value is computed using the
perceptually weighted formula:

Y = 0.299()R + 0.587()G + 0.114()B

In the case of HSV or HLS representations, hue is normally represented as a value from 0 to 360.30 This can
cause trouble in 8-bit representations and so, when converting to HSV, the hue is divided by 2 when the
output image is an 8-bit image.

cv::determinant()

double cv::determinant(
 cv::InputArray mat
);

d = det mat()

cv::determinant() computes the determinant of a square array. The array must be of one of the
floating-point data types and must be single-channel. If the matrix is small, then the determinant is directly
computed by the standard formula. For large matrices, this is not efficient and so the determinant is
computed by Gaussian elimination.

It is worth noting that if you know that a matrix has a symmetric and positive
determinant, you can use the trick of solving via singular value decomposition (SVD).
For more information, see the upcoming section on cv::SVD(), but the trick is to set

30 Excluding 360, of course.

both U and V to NULL and then just take the products of the matrix W to obtain the
determinant.

cv::divide()

void cv::divide(
 cv::InputArray src1, // First input array (numerators)
 cv::InputArray src2, // Second input array (denominators)
 cv::OutputArray dst, // Results array (scale*src1/src2)
 double scale = 1.0, // Multiplicative scale factor
 int dtype = -1 // Data type for dst, -1 to get from src2
)

void cv::divide(
 double scale, // Numerator for all divisions
 cv::InputArray src2, // Input array (denominators)
 cv::OutputArray dst, // Results array (scale/src2)
 int dtype = -1 // Data type for dst, -1 to get from src2
)

dsti = saturate scale*†src1i / src2i()

dsti = saturate scale / src2i()

cv::divide() is a simple division function; it divides all of the elements in src1 by the corresponding
elements in src2 and puts the results in dst.

cv::eigen()

bool cv::eigen(
 cv::InputArray src,
 cv::OutputArray eigenvalues,
 int lowindex = -1,
 int highindex = -1
);

bool cv::eigen(
 cv::InputArray src,
 cv::OutputArray eigenvalues,
 cv::OutputArray eigenvectors,
 int lowindex = -1,
 int highindex = -1
);

Given a symmetric matrix mat, cv::eigen() will compute the eigenvectors and eigenvalues of that
matrix. The matrix must be of one of the floating-point types. The results array eigenvalues will
contain the eigenvalues of mat in descending order. If the array eigenvectors was provided, the
eigenvectors will be stored as the rows of that array in the same order as the corresponding eigenvalues in
eigenvalues. The additional parameters lowindex and highindex allow you to request only some
of the eigenvalues to be computed (both must be used together). For example, if lowindex=0 and
highindex=1, then only the largest two eigenvectors will be computed. Regardless of the number of
eigenvalues (and eigenvectors) requested, the result arrays will be of the same size (the requested values
will always appear in the initial rows).

Similar to cv::det() (described previously), if the matrix in question is symmetric
and positive definite,31 then it is better to use SVD to find the eigenvalues and
eigenvectors of mat.

cv::exp()

void cv::exp(
 cv::InputArray src,
 cv::OutputArray dst
);

 dsti = esrci

cv::exp() exponentiates all of the elements in src1 and puts the results in dst.

cv::extractImageCOI()

bool cv::extractImageCOI(
 cv::InputArray mat,
 cv::OutputArray dst,
 int coi = -1
);

The function cv::extractImageCOI() extracts the indicated COI from a legacy-style (pre-version
2.1) array, such as an IplImage or CvMat given by src and puts the result in dst. If the argument coi
is provided, then that particular COI will be extracted. If not, then the COI field in src will be checked to
determine which channel to extract.

This method here specifically works with legacy arrays. If you need to extract a single
channel from a modern cv::Mat object, use cv::mixChannels() or
cv::split().

cv::flip()

void cv::flip(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Results array, size and type of ‘src’
 int flipCode = 0 // >0: y-flip, 0: x-flip, <0: both
);

This function flips an image around the x -axis, the y -axis, or both. By default, flipCode is set to 0,
which flips around the x-axis.

If flipCode is set greater than zero (e.g., +1), the image will be flipped around the y -axis, and if set to a
negative value (e.g., –1), the image will be flipped about both axes.

When doing video processing on Win32 systems, you will find yourself using this function often to switch
between image formats with their origins at the upper-left and lower-left of the image.

cv::gemm()

void cv::gemm(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 double alpha, // Weight for ‘src1’ * ‘src2’ product
 cv::InputArray src3, // Third (offset) input array
 double beta, // Weight for ‘src3’ array
 cv::OutputArray dst, // Results array
 int flags = 0 // Use to transpose source arrays

31 This is, for example, always the case for covariance matrices. See cvCalcCovarMatrixSee
cv::calcCovarMatrixcvCalcCovarMatrix().

);

Generalized matrix multiplication (GEMM) in OpenCV is performed by cv::gemm(), which performs
matrix multiplication, multiplication by a transpose, scaled multiplication, and so on. In its most general
form, cv::gemm() computes the following:

 D = †α!op src1()*†op src2() + †β!op src3()

where src1, src2, and src3 are matrices, α and β are numerical coefficients, and op() is an
optional transposition of the matrix enclosed. The transpositions are controlled by the optional argument
flags, which may be 0 or any combination (by means of Boolean OR) of cv::GEMM_1_T,
cv::GEMM_2_T, and cv::GEMM_3_T (with each flag indicating a transposition of the corresponding
matrix).

All matrices must be of the appropriate size for the (matrix) multiplication, and all should be of floating-
point types. The cv::gemm() function also supports two-channel matrices that will be treated as two
components of a single complex number.

A similar result can be achieved using the matrix algebra operators. For example:
 cv::gemm(src1,src2,alpha,src3,bets,dst,cv::GEMM_1_T|cv::GEMM_3_T)

would be equivalent to:
 dst = alpha * src1.T() * src2 + beta * src3.T()

cv::getConvertElem() and cv::getConvertScaleElem()
cv::convertData cv::getConvertElem(// Returns a conversion function (below)
 int fromType, // Input pixel type (e.g., cv::U8)
 int toType // Output pixel type (e.g., cv::F32)

);
cv::convertScaleData cv::getConvertScaleElem(// Returns a conversion function
 int fromType, // Input pixel type (e.g., cv::U8)
 int toType // Output pixel type (e.g., cv::F32)
);

// Conversion functions are of these forms:
//
typedef void (*ConvertData)(
 const void* from, // Pointer to the input pixel location
 void* to, // Pointer to the result pixel location
 int cn // number of channels
);
typedef void (*ConvertScaleData)(
 const void* from, // Pointer to the input pixel location
 void* to, // Pointer to the result pixel location
 int cn, // number of channels
 double alpha, // scale factor
 double beta // offset factor
);

The functions cv::getConvertElem() and cv::getConvertScaleElem() return function
pointers to the functions that are used for specific type conversions in OpenCV. The function returned by
cv::getConvertElem() is defined (via typedef) to the type cv::ConvertData, which can be
passed a pointer to two data areas and a number of “channels.” The number of channels is given by the
argument cn of the conversion function, which is really the number of contiguous-in-memory objects of
fromType to convert. This means that if you wanted, you could convert an entire (contiguous in memory)
array by simply setting the number of channels equal to the total number of elements in the array.

Both cv::getConvertElem() and cv::getConvertScaleElem() take as arguments two
types: fromType and toType. These types are specified using the integer constants (cv::F32, etc.).

In the case of cv::getConvertScaleElem(), the returned function takes two additional arguments,
alpha and beta. These values are used by the converter function to rescale (alpha) and offset (beta)
the input value before conversion to the desired type.

cv::idct()

void cv::idct(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags, // for row-by-row
);

cv::idct() is just a convenient shorthand for the inverse discrete cosine transform. A call to
cv::idct() is exactly equivalent to a call to cv::dct() with the arguments:

cv::dct(src, dst, flags | cv::DCT_INVERSE);

cv::idft()

void cv::idft(
 cv::InputArray src, // Input array
 cv::OutputArray dst, // Result array
 int flags = 0, // for row-by-row, etc.
 int nonzeroRows = 0 // assume only this many entries are nonzero
);

cv::idft() is just a convenient shorthand for the inverse discrete Fourier transform. A call to
cv::idft() is exactly equivalent to a call to cv::dft() with the arguments:

cv::dft(src, dst, flags | cv::DCT_INVERSE, outputRows);

It is noteworthy that neither cv::dft() nor cv::idft() scales the output by
default. So you will probably want to call cv::idft() with the cv::DFT_SCALE
argument, that way, the transform and its “inverse” will be true inverse operations.

cv::inRange()

void cv::inRange(
 cv::InputArray src, // Input Array
 cv::InputArray upperb, // Array of upper bounds (inclusive)
 cv::InputArray lowerb, // Array of lower bounds (inclusive)
 cv::OutputArray dst // Result array, cv::U8C1 type
);

 dsti = lowerbi ≤ srci ≤ upperbi

When applied to a one-dimensional array, each element of src is checked against the corresponding
elements of upperb and lowerb. The corresponding element of dst is set to 255 if the element in src
is between the values given by upperb and lowerb;; otherwise, it is set to 0.

However, in the case of multichannel arrays for src, upperb, and lowerb, however, the output is still a
single channel. The output value for element i will be set to 255 if and only if the values for the
corresponding entry in src all lay inside of the intervals implied for the corresponding channel in upperb
and lowerb. In this sense, upperb and lowerb define an n -dimensional hypercube for each pixel and
the corresponding value in dst is only set to true (255) if the pixel in src lies inside that hypercube.

cv::invert()

double cv::invert(// Return 0 if ‘src’ is singular
 cv::InputArray src, // Input Array, m-by-n
 cv::OutputArray dst // Result array, n-by-m
 int method = cv::DECOMP_LU // Method for computing (pseudo) inverse

);

cv::invert() inverts the matrix in src and places the result in dst. The input array must be a
floating-point type, and the result array will be of the same type. Because cv::invert() includes the
possibility of computing pseudo-inverses, the input array need not be square. If the input array is n -by- m ,
then the result array will be m -by- n . This function supports several methods of computing the inverse
matrix (see Table 3-24), but the default is Gaussian elimination. The return value depends on the method
used.

Table 3-24: Possible values of method argument to cv::invert()

Value of method argument Meaning
cv::DECOMP_LU Gaussian elimination (LU decomposition)
cv::DECOMP_SVD Singular value decomposition (SVD)
cv::DECOMP_CHOLESKY Only for symmetric positive matrices

In the case of Gaussian elimination (cv::DECOMP_LU), the determinant of src is returned when the
function is complete. If the determinant is 0, inversion failed and the array dst is set to 0s.

In the case of cv::DECOMP_SVD, the return value is the inverse condition number for the matrix (the
ratio of the smallest to the largest eigenvalues). If the matrix src is singular, then cv::invert() in
SVD mode will compute the pseudo-inverse. The other two methods (LU and Cholesky decomposition)
require the source matrix to be square, nonsingular and positive.

cv::log()

void cv::log(
 cv::InputArray src,
 cv::OutputArray dst
);

dsti =

log srci srci ≠ 0

−C else

⎧
⎨
⎪

⎩⎪

cv::log() computes the natural log of the elements in src1 and puts the results in dst. Source pixels
that are less than or equal to zero are marked with destination pixels set to a large negative value.

cv::LUT()

void cv::LUT(
 cv::InputArray src,
 cv::InputArray lut,
 cv::OutputArray dst
);

dsti = lut srci()

The function cv::LUT() performs a “lookup table transform” on the input in src. cv::LUT() requires
the source array src to be 8-bit index values. The lut array holds the lookup table. This lookup table
array should have exactly 256 elements, and may have either a single channel or, in the case of a
multichannel src array, the same number of channels as the source array. The function cv::LUT() then
fills the destination array dst with values taken from the lookup table lut using the corresponding value
from src as an index into that table.

In the case where the values in src are signed 8-bit numbers, they are automatically offset by +128 so that
their range will index the lookup table in a meaningful way. If the lookup table is multichannel (and the
indices are as well), then the value in src is used as a multidimensional index into lut, and the result
array dst will be single channel. If lut is one-dimensional, then the result array will be multichannel,

with each channel being separately computed from the corresponding index from src and the one-
dimensional lookup table.

cv::magnitude()

void cv::magnitude(
 cv::InputArray x,
 cv::InputArray y,
 cv::OutputArray dst
);

 dsti = xi
2 + yi

2

cv::magnitude() essentially computes the radial part of a Cartesian-to-polar conversion on a two-
dimensional vector field. In the case of cv::magnitude(), this vector field is expected to be in the
form of two separate single channel arrays. These two input array should have the same size. (If you have a
single two-channel array, cv::split() will give you separate channels.) Each element in dst is
computed from the corresponding elements of x and y as the Euclidian norm of the two (i.e., the square
root of the sum of the squares of the corresponding values).

cv::Mahalanobis()

cv::Size cv::mahalanobis(
 cv::InputArray vec1,
 cv::InputArray vec2,
 cv::OutputArray icovar
);

cvMahalanobis() computes the value:

rmahalonobis =

!x −
!
µ()T

Σ −1 !x −
!
µ()

The Mahalanobis distance is defined as the vector distance measured between a point and the center of a
Gaussian distribution; it is computed using the inverse covariance of that distribution as a metric. See
Figure 3-2. Intuitively, this is analogous to the z-score in basic statistics, where the distance from the center
of a distribution is measured in units of the variance of that distribution. The Mahalanobis distance is just a
multivariable generalization of the same idea.

Figure 3-2: A distribution of points in two dimensions with superimposed ellipsoids representing
Mahalanobis distances of 1.0, 2.0, and 3.0 from the distribution’s mean

The vector vec1 is presumed to be the point x, and the vector vec2 is taken to be the distribution’s
mean.32 That matrix icovar is the inverse covariance.

This covariance matrix will usually have been computed with
cv::calcCovarMatrix() (described previously) and then inverted with
cv::invert(). It is good programming practice to use the cv::DECOMP_SVD
method for this inversion because someday you will encounter a distribution for which
one of the eigenvalues is 0!

cv::max()

cv::MatExpr cv::max(
const cv::Mat& src1, // First input Array
const cv::Mat& src2 // Second input array

);
MatExpr cv::max(// Return a matrix expression, not a matrix
 const cv::Mat& src1, // First input array (first position)
 double value // Scalar in second position
);
MatExpr cv::max(// Return a matrix expression, not a matrix
 double value, // Scalar in first position
 const cv::Mat& src1 // Input Array (second position)
);

void cv::max(
 cv::InputArray src1, // First input Array
 cv::InputArray src2, // Second input Array
 cv::OutputArray dst // Result array
);
void cv::max(
 const Mat& src1, // First input Array
 const Mat& src2, // Second input Array
 Mat& dst // Result array
);
void cv::max(
 const Mat& src1, // Input Array
 double value, // Scalar input
 Mat& dst // Result array
);

dsti = max †src1,i ,†src2,i()

cv::max() computes the maximum value of each corresponding pair of pixels in the arrays src1 and
src2. It has two basic forms: those that return a matrix expression and those that compute a result and put
it someplace you have indicated. In the three-argument form, in the case where one of the operands is a
cv::Scalar, comparison with a multichannel array is done on a per-channel basis with the appropriate
component of the cv::Scalar.

cv::mean()

cv::Scalar cv::mean(
 cv::InputArray src,

32 Actually, the Mahalanobis distance is more generally defined as the distance between any two vectors; in any case,
the vector vec2 is subtracted from the vector vec1. Neither is there any fundamental connection between mat in
cvMahalanobiscv::Mahalanobis() and the inverse covariance; any metric can be imposed here as
appropriate.

 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero
);

N = †

i,†maski≠0
∑ 1

meanc = † 1

N i,†maski≠0
∑ srci

The function cv::mean() computes average value of all of the pixels in the input array src that are not
masked out. The result is computed on a per-channel basis if src is multichannel.

cv::meanStdDev()

void cv::meanStdDev(
 cv::InputArray src,
 cv::OutputArray mean,
 cv::OutputArray stddev,
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero

);

N = †

i,†maski≠0
∑ 1

meanc = † 1

N i,†maski≠0
∑ srci

stddevc = †

i,†mask≠0
∑ srcc,i − meanc()2

The function cv::meanStdDev() computes the average value of the pixels in the input array src not
masked out, as well as their standard deviation. The mean and standard deviation are computed on a per-
channel basis if src is multichannel.

It is important to know that the standard deviation computed here is not the same as the
covariance matrix. In fact, the standard deviation computed here is only the diagonal
elements of the full covariance matrix. If you want to compute the full covariance matrix,
you will have to use cv::calcCovarMatrix().

cv::merge()

void cv::merge(
 const cv::Mat* mv, // C-style array of arrays
 size_t count, // Number of arrays pointed to by ‘mv’
 cv::OutputArray dst // Result array, contains all channels in ‘mv’
);
void merge(
 const vector<cv::Mat>& mv, // STL-style array of arrays
 cv::OutputArray dst // Result array, contains all channels in ‘mv’
);

cv::merge() is the inverse operation of cv::split(). The arrays contained in mv are combined into
the output array dst. In the case in which mv is a pointer to a C-style array of cv::Mat objects, the
additional size parameter count must also be supplied.

cv::min()

cv::MatExpr cv::min(// Return a matrix expression, not a matrix
 const cv::Mat& src1, // First input array
 const cv::Mat& src2 // Second input array
);
MatExpr cv::min(// Return a matrix expression, not a matrix
 const cv::Mat& src1, // First input array (first position)
 double value // Scalar in second position
);
MatExpr cv::min(// Return a matrix expression, not a matrix
 double value, // Scalar in first position
 const cv::Mat& src1 // Input Array (second position)
);

void cv::min(
 cv::InputArray src1, // First input Array
 cv::InputArray src2, // Second input Array
 cv::OutputArray dst // Result array
);
void cv::min(
 const Mat& src1, // First input Array
 const Mat& src2, // Second input Array
 Mat& dst // Result array
);
void cv::min(
 const Mat& src1, // Input Array
 double value, // Scalar input
 Mat& dst // Result array
);

dsti = min †src1,i ,†src2,i()

cv::min() computes the minimum value of each corresponding pair of pixels in the arrays src1 and
src2 (or one source matrix and a single value). Note that the variants of cv::min() that return a value
or return a matrix expression that can then be manipulated by OpenCV’s matrix expression machinery.

In the three-argument form, in the case where one of the operands is a cv::Scalar, comparison with a
multichannel array is done on a per-channel basis with the appropriate component of the cv::Scalar.

cv::minMaxIdx()

void cv::minMaxLoc(
 cv::InputArray src, // Input array, 1-dimensional only
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 cv::Point* minLoc, // location of min goes here (if not NULL)
 cv::Point* maxLoc, // location of max goes here (if not NULL)
 cv::InputArray mask = cv::noArray() // search only non-zero values (if not NULL)

void cv::minMaxLoc(
 const SparseMat& src, // Input sparse array
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 cv::Point* minIdx, // C-style array, indices of min location
 cv::Point* maxIdx, // C-style array, indices of min location
);

This routine finds the minimal and maximal values in the array src and (optionally) returns their locations.
The computed minimum and maximum values are placed in minVal and maxVal. Optionally, the
locations of those extrema can also be returned, but only if the src array is two-dimensional. These
locations will be written to the addresses given by minLoc and maxLoc (provided that these arguments

are non-NULL). Because these locations are of type cv::Point, this form of the function should only be
used on two-dimensional arrays (i.e., matrices or images).

cv::minMaxLoc()

void cv::minMaxLoc(
 cv::InputArray src, // Input array
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 cv::Point* minLoc, // location of min goes here (if not NULL)
 cv::Point* maxLoc, // location of max goes here (if not NULL)
 cv::InputArray mask = cv::noArray() // search only non-zero values (if present)

void cv::minMaxLoc(
 const SparseMat& src, // Input sparse array
 double* minVal, // min value goes here (in not NULL)
 double* maxVal, // min value goes here (in not NULL)
 cv::Point* minIdx, // C-style array, indices of min location
 cv::Point* maxIdx, // C-style array, indices of min location
);

This routine finds the minimal and maximal values in the array src and (optionally) returns their locations.
The computed minimum and maximum values are placed in minVal and maxVal. Optionally, the
locations of those extrema can also be returned, but only if the src array is two-dimensional. These
locations will be written to the addresses given by minLoc and maxLoc (provided that these arguments
are non-NULL). Because these locations are of type cv::Point, this form of the function should only be
used on two-dimensional arrays (i.e., matrices or images).

cv::minMaxLoc() can also be called with a cv::SparseMat for the src array. In this case, the
array can be of any number of dimensions and the minimum and maximum will be computed and their
location returned. In this case, the locations of the extrema will be returned and placed in the C-style arrays
minIdx and maxIdx. Both of those arrays, if provided, should have the same number of elements as the
number of dimensions in the src array. In the case of cv::SparseMat, the minimum and maximum are
only computed for what are generally referred to as nonzero elements in the source code. However, it is
important to note that this terminology is slightly misleading, as what is really meant is: elements that exist
in the sparse matrix representation in memory. In fact, there may, as a result of how the sparse matrix came
into being and what has been done with it in the past, be elements that exist and are also zero. Such
elements will be included in the computation of the minimum and maximum.

When working with multichannel arrays, there are several options. Natively, cv::minMaxLoc() does
not support multichannel input. Primarily this is because this operation is ambiguous.

If you want the minimum and maximum across all channels, you can use
cv::reshape() to reshape the multichannel array into one giant single-channel array.
If you would like the minimum and maximum for each channel separately, you can use
cv::split() or cv::mixChannels() to separate the channels out and analyze
them separately.

In both forms of cv::minMaxLoc, the arguments for the minimum or maximum value or location may
be set to NULL, which turns off the computation for that argument.

cv::mixChannels()

void cv::mixChannels(
 const cv::Mat* srcv, // C-style array of matrices
 int nsrc, // Number of elements in ‘srcv’
 cv::Mat* dstv, // C-style array of target matrices
 int ndst, // Number of elements in ‘dstv’
 const int* fromTo, // C-style array of pairs, …from,to…
 size_t n_pairs // Number of pairs in ‘fromTo’

);

void cv::mixChannels(
 const vector<cv::Mat>& srcv, // STL-style vector of matrices
 vector<cv::Mat>& dstv, // STL-style vector of target matrices
 const int* fromTo, // C-style array of pairs, …from,to…
 size_t n_pairs // Number of pairs in ‘fromTo’
);

There are many operations in OpenCV that are special cases of the general problem of rearranging channels
from one or more images in the input, and sorting them into particular channels in one or more images in
the output. Functions like cv::split(), cv::merge(), and (at least some cases of)
cv::cvtColor() all make use of such functionality. Those methods do what they need to do by calling
the much more general cv::mixChannels(). This function allows you to supply multiple arrays, each
with potentially multiple channels, for the input, and the same for the output, and to map the channels from
the input arrays into the channels in the output arrays in any manner you choose.

The input and output arrays can either be specified as C-style arrays of cv::Mat objects with an
accompanying integer indicating the number of cv::Mats, or as an STL vector<> of cv::Mat
objects. Output arrays must be pre-allocated with their size and number of dimensions matching those of
the input arrays.

Figure 3-3: A single four-channel RGBA image is converted to one BGR and one Alpha-only image.

The mapping is controlled by the C-style integer array fromTo. This array can contain any number of
integer pairs in sequence, with each pair indicating with its first value the source channel and with its
second value the destination channel to which that should be copied. The channels are sequentially
numbered starting at zero for the first image, then through the second image, and so on. (Figure 3-3). The
total number of pairs is supplied by the argument n_pairs.

Unlike most other functions in the post-version 2.1 library, cv::mixChannels()
does not allocate the output arrays. They must be pre-allocated and have the same size
and dimensionality as the input arrays.

cv::mulSpectrums()

doublevoid cv::mulSpectrums(
 cv::InputArray arr1, // First input array
 cv::InputArray arr2, // Second input array, same size as ‘arr1’
 cv::OutputArray dst, // Result array, same size as ‘arr1’
 int flags, // used to indicate that rows are independent
 bool conj = false // If true, conjugate arr2 first
);

In many operations involving spectra (i.e., the results from cv::dft() or cv::idft()), one wishes to
do a per-element multiplication that respects the packing of the spectra (real arrays), or their nature as
complex variables. (See the description of cv::dft() for more details.) The input arrays may be one- or
two-dimensional, with the second the same size and type as the first. If the input array is two-dimensional,
it may either be taken to be a true two-dimensional spectrum, or an array of one-dimensional spectra (one
per row). In the latter case, flags should be set to cv::DFT_ROWS; otherwise it can be set to 0.

When the two arrays are complex, they are simply multiplied on an element-wise basis, but
cv::mulSpectrums() provides an option to conjugate the second array elements before multiplication.
For example, you would use this option to perform correlation (using the Fourier transform), but for
convolution, you would use conj=false.

cv::multiply()

void cv::multiply(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 double scale = 1.0, // overall scale factor
 int dtype = -1 // Output type for result array
);

dsti = saturate scale*†src1i *src2i()

cv::multiply() is a simple multiplication function; it multiplies the elements in src1 by the
corresponding elements in src2 and puts the results in dst.

cv::mulTransposed()

void cv::mulTransposed(
 cv::InputArray src1, // Input matrix
 cv::OutputArray dst, // Result array
 bool aTa, // If true, transpose then multiply
 cv::InputArray delta = cv::noArray(), // subtract from ‘src1’ before multiplication
 double scale = 1.0, // overall scale factor
 int dtype = -1 // Output type for result array

)

dst =
scale* src − delta()T

src − delta() aTa = true

scale* src − delta() src − delta()T
aTa = false

⎧

⎨
⎪

⎩
⎪

cv::mulTransposed() is used to compute the product of a matrix and its own transpose—useful, for
example, in computing covariance. The matrix src should be two-dimensional and single-channel, but
unlike cv::GEMM(), it is not restricted to the floating-point types. The result matrix will be the same type
as the source matrix unless specified otherwise by dtype. If dtype is not negative (default), it should be
either cv::F32 or cv::F64; the output array dst will then be of the indicated type.

If a second input matrix delta is provided, that matrix will be subtracted from src before the
multiplication. If no matrix is provided (i.e., delta=cv::noArray()), then no subtraction is done. The

array delta need not be the same size as src; if delta is smaller than src, delta is repeated (also
called tiling, see cv::repeat()) in order to produce an array whose size matches the size of src. The
argument scale is applied to the matrix after the multiplication is done. Finally, the argument aTa is used
to select either the multiplication in which the transposed version of src is multiplied from the left
(aTa=true) or from the right (aTa=false).

cv::norm()

double cv::norm(// Return computed norm in double precision
 cv::InputArray src1, // Input matrix
 int normType = cv::NORM_L2, // Type of norm to compute
 cv::InputArray mask = cv::noArray() // include only non-zero values (if present)
);
double cv::norm(// Return computed norm of difference
 cv::InputArray src1, // Input matrix
 cv::InputArray src2, // Second input matrix
 int normType = cv::NORM_L2, // Type of norm to compute
 cv::InputArray mask = cv::noArray() // include only non-zero values (if present)
);
double cv::norm(
 const cv::SparseMat& src, // Input sparse matrix
 int normType = cv::NORM_L2, // Type of norm to compute
);

src1∞,L1,L2

src1− src2∞,L1,L2

This function is used to compute the norm of an array (see Table 3-25) or a variety of distance norms
(Table 3-26) between two arrays if two arrays are provided (see Table 3-26). The norm of a
cv::SparseMat can also be computed, in which case zero-entries are ignored in the computation of the
norm.

Table 3-25: Norm computed by cv:norm() for different values of normType when arr2=NULL

normType Result
 cv::NORM_INF

src1∞ = maxi abs src1i()

 cv::NORM_L1

src1L1 =

i
∑abs src1i()

 cv::NORM_L2

src1L2 =

i
∑src1i

2

i
∑src1i

2

If the second array argument src2 is non-NULL, then the norm computed is a difference norm—that is,
something like the distance between the two arrays.33 In the first three cases (shown in Table 3-26) the
norm is absolute; in the latter three cases it is rescaled by the magnitude of the second array src2.

Table 3-26: Norm computed by cv::norm() for different values of normType when arr2 is non-NULL

normType Result
cv::NORM_INF

src1− src2∞ = maxi abs src1i − src2i()

33 At least in the case of the L2 norm, there is an intuitive interpretation of the difference norm as a Euclidean distance
in a space of dimension equal to the number of pixels in the images.

cv::NORM_L1

src1− src2L1 =

i
∑abs src1i − src2i()

cv::NORM_L2

src1− src2L2 =

i
∑ src1i − src2i()2

cv::NORM_RELATIVE_INF

src1− src2∞

src2∞

cv::NORM_RELATIVE_L1

src1− src2L1

src2L1

cv::NORM_RELATIVE_L2

src1− src2L2

src2L2

In all cases, src1 and src2 must have the same size and number of channels. When there is more than
one channel, the norm is computed over all of the channels together (i.e., the sums in Table and Table 3-26
are not only over x and y but also over the channels).

cv::normalize()

void cv::normalize(
 cv::InputArray src1, // Input matrix
 cv::OutputArray dst, // Result matrix
 double alpha = 1, // first parameter (see Table 3-27)
 double beta = 0, // second parameter (see Table 3-27)
 int normType = cv::NORM_L2, // Type of norm to compute
 int dtype = -1 // Output type for result array
 cv::InputArray mask = cv::noArray()// include only non-zero values (if present)
);
void cv::normalize(
 const cv::SparseMat& src, // Input sparse matrix
 cv::SparseMat& dst, // Result sparse matrix
 double alpha = 1, // first parameter (see Table 3-27)
 int normType = cv::NORM_L2, // Type of norm to compute
);

dst∞,L1,L2 =α

min dst() =α ,††††max dst() = β

As with so many OpenCV functions, cv::normalize() does more than it might at first appear.
Depending on the value of normType, image src is normalized or otherwise mapped into a particular
range in dst. The array dst will be the same size as src, and will have the same data type, unless the
rtype argument is used. Optionally, rtype can be set to one of the OpenCV fundamental types
(cv::F32, etc.) and the output array will be of that type. The exact meaning of this operation is dependent
on the normType argument. The possible values of normType are shown in Table 3-27.

Table 3-27: Possible values of normType argument to cv::normalize()

norm_type Result
cv::NORM_INF

dst∞ = maxi abs dsti() =α

cv::NORM_L1

dstL1 =

i
∑abs dsti() =α

cv::NORM_L2

dstL2 =

i
∑dsti

2 =
i
∑dsti

2 =α

cv::NORM_MINMAX Map into range [α , β]

In the case of the infinity norm, the array src is rescaled such that the magnitude of the absolute value of
the largest entry is equal to alpha. In the case of the L1 or L2 norm, the array is rescaled so that the norm
equals the value of alpha. If normType is set to cv::MINMAX, then the values of the array are rescaled
and translated so that they are linearly mapped into the interval between alpha and beta (inclusive).

As before, if mask is non-NULL then only those pixels corresponding to nonzero values of the mask image
will contribute to the computation of the norm—and only those pixels will be altered by
cv::normalize(). Note that if the operation dtype=cv::MINMAX is used, the source array may not
be cv::SparseMat. The reason for this is that the cv::MIN_MAX operation can apply an overall offset,
and this would affect the sparsity of the array (specifically, a sparse array would become non-sparse as all
of the zero elements became non-zero as a result of this operation).

cv::perspectiveTransform()

void cv::perspectiveTransform(
 cv::InputArray src, // Input array, 2 or 3 channels
 cv::OutputArray dst, // Result array, size, type, as src1
 cv::InputArray mtx // 3-by-3 or 4-by-4 transoform matrix
);

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
→

′x / w '
′y / w '
′z / w '

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x '
y '

z '
w '

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

→ mtx⎡⎣ ⎤⎦

x
y

z
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

The cv::perspectiveTransform() function performs a plane-plane projective transform of a list of
points (not pixels). The input array should be a two- or three-channel array, and the matrix mtx should be
3-by-3 or 4-by-4, respectively, in the two cases. cv::perspectiveTransform() thus transforms
each element of src by first regarding it as a vector of length src.channels() + 1, with the
additional dimension (the projective dimension) set initially to 1.0. This is also known as homogeneous
coordinates. Each extended vector is then multiplied by mtx and the result is rescaled by the value of the
(new) projective coordinate34 (which is then thrown away as it is always 1.0 after this operation).

Note again that this routine is for transforming a list of points, not an image as such. If
you want to apply a perspective transform to an image, you are actually asking not to

34 Technically, it is possible that after multiplying by mtx, the value of w’ will be zero, corresponding to points
projected to infinity. In this case, rather than dividing by zero, a value of 0 is assigned to the ratio.

transform the individual pixels, but rather to move them from one place in the image to
another. This is the job of cv::warpPerspective().

If you want to solve the inverse problem to find the most probable perspective
transformation given many pairs of corresponding points, use
cv::getPerspectiveTransform() or cv::findHomography().

cv::phase()

void cv::phase(
 cv::InputArray x, // Input array of x-components
 cv::InputArray y, // Input array of y-components
 cv::OutputArray dst, // Output array of angles (radians)
);

dsti = atan2 yi,†xi()†

cv::phase() computes the azimuthal (angle) part of a Cartesian-to-polar conversion on a two-
dimensional vector field. This vector field is expected to be in the form of two separate single--channel
arrays. These two input arrays should, of course, be of the same size. (If you happen to have a single two--
channel array, a quick call to cv::split() will do just what you need.) Each element in dst is then
computed from the corresponding elements of x and y as the arctangent of the ratio of the two.

cv::polarToCart()

void cv::polarToCart(
 cv::InputArray magnitude, // Input array of magnitudes
 cv::InputArray angle, // Input array of angles
 cv::OutputArray x, // Output array of x-components
 cv::OutputArray y, // Output array of y-components
 bool angleInDegrees = false // degrees (if true) radians (if false)
);

xi = magnitudei*cos anglei()

yi = magnitudei*sin anglei()

cv::polarToCart() computes a vector field in Cartesian

x,† y() coordinates from polar

coordinates. The input is in two arrays, magnitude and angle, of the same size and type, specifying the
magnitude and angle of the field at every point. The output is similarly two arrays that will be of the same
size and type as the inputs, and which will contain the x and y projections of the vector at each point. The
additional flag angleInDegrees will cause the angle array to be interpreted as angles in degrees, rather
than in radians.

cv::pow()

void cv::pow(
 cv::InputArray src, // Input array
 double p, // power for exponentiation
 cv::OutputArray dst // Result array
);

dsti =
srci

p p ∈Z

srci

p
else

⎧
⎨
⎪

⎩⎪

The function cv::pow() computes the element-wise exponentiation of an array by a given power p. In
the case in which p is an integer, the power is computed directly. For non-integer p, the absolute value of

the source value is computed first, and then raised to the power p (so only real values are returned). For

some special values of p, such as integer values, or

†± 1

2 , special algorithms are used resulting in faster

computation.

cv::randu()

template<typename _Tp> _Tp randu(); // Return random number of specific type

void cv::randu(
 cv::InputOutArray mtx, // All values will be randomized
 cv::InputArray low, // minimum, 1-by-1 (Nc=1,4), or 1-by-4 (Nc=1)
 cv::InputArray high // maximum, 1-by-1 (Nc=1,4), or 1-by-4 (Nc=1)
);

mtxi ∈ lowi ,†highi⎡⎣)

There are two ways to call cv::randu(). The first method is to call the template form of randu<>(),
which will return a random value of the appropriate type. Random numbers generated in this way are
uniformly distributed35 in the range from zero to the maximum value available for that type (for integers),
and in the interval from 0.0 to 1.0 (not inclusive of 1.0) for floating-point types. This template form
generates only single numbers36.

The second way to call cv::randu() is to provide a matrix mtx that you wish to have filled with
values, and two additional arrays that specify the minimum and maximum values for the range from which
you would like a random number drawn for each particular array element. These two additional values,
low and high, should be 1-by-1 with 1 or 4 channels, or 1-by-4 with a single channel; they may also be of
type cv::Scalar. In any case, they are not the size of mtx, but rather the size of individual entries in
mtx.

The array mtx is both an input and an output, in the sense that you must allocate the matrix so that
cv::randu() will know the number of random values you need, and how they are to be arranged in
terms of rows, columns, and channels.

cv::randn()

void cv::randn(
 cv::InputOutArray mtx, // All values will be randomized
 cv::InputArray mean, // means, array is in channel-space
 cv::InputArray stddev // standard deviations, channel-space
);

mtxi ~ N meani ,†stddevi()

The function cv::randn() fills a matrix mtx with random normally distributed values37. The
parameters from which these values are drawn are taken from two additional arrays (mean and stddev)
that specify the mean and standard deviation for the distribution from which you would like a random
number drawn for each particular array element.

35 Uniform distribution random numbers are generated using the Multiply-With-Carry algorithm [G. Marsaglia].
36 In particular, this means that if you call the template form with a vector argument, such as: cv::randu<Vec4f>,
the return value, though it will be of vector type, will be all zeros except for the first element.
37 Gaussian-distribution random numbers are generated using the Ziggurat algorithm [G. Marsaglia, W. W.
Tsang].

As with the array form of cv::randu(), every element of mtx is computed separately, and the arrays
mean and stddev are in the channel-space for individual entries of mtx. Thus, if mtx were four
channels, then mean and stddev would be 1-by-4 or 1-by-1 with 4 channels (or equivalently of type
cv::Scalar).38

cv::randShuffle()

void cv::randShuffle(
 cv::InputOutArray mtx, // All values will be shuffled
 double iterFactor = 1, // Number of times to repeat shuffle
 cv::RNG* rng = NULL // your own generator, if you like
);

cv::randShuffle() attempts to randomize the entries in a one-dimensional array by selecting random
pairs of elements and interchanging their position. The number of such swaps is equal to the size of the
array mtx multiplied by the optional factor iterFactor. Optionally, a random number generator can be
supplied (for more on this, see “Random Number Generator (cv::RNG)”). If none is supplied, the default
random number generator theRNG() will be used automatically.

cv::reduce()

void cv::reduce(
 cv::InputArray src, // Input array, n-by-m must be 2-dimensional
 cv::OutputArray vec, // Output array, 1-by-m or n-by-1
 int dim, // Reduction direction (1) to row, (0) to col
 int reduceOp = cv::REDUCE_SUM, // Reduce operation (see Table 3-)
 int dtype = -1 // Output type for result array
);

Reduction is the systematic transformation of the input matrix src into a vector vec by applying some
combination rule reduceOp on each row (or column) and its neighbor until only one row (or column)
remains (see Table 3-28).39 The argument dim controls how the reduction is done, as summarized in Table
3-29.

Table 3-28: Argument reduceOp in cv::reduce() selects the reduction operator

Value of op Result
 cv::REDUCE_SUM Compute sum across vectors
 cv::REDUCE_AVG Compute average across vectors
 cv::REDUCE_MAX Compute maximum across vectors
 cv::REDUCE_MIN Compute minimum across vectors

Table 3-29: Argument dim in cv::reduce() controls the direction of the reduction

Value of dim Result
1 Collapse to a single row
0 Collapse to a single column

cv::reduce() supports multichannel arrays of any type. Using dtype, you can specify an alternative
type for dst.

38 Note that stddev is not a square matrix; correlated number generation is not supported by cv::randn().
39 Purists will note that averaging is not technically a proper fold in the sense implied here. OpenCV has a more
practical view of reductions and so includes this useful operation in cvReduce.

Using the dtype argument to specify a higher-precision format for dst is particularly
important for cv::REDUCE_SUM and cv::REDUCE_AVG, where overflows and
summation problems are possible.

cv::repeat()

void cv::repeat(
 cv::InputArray src, // Input 2-dimensional array
 int nx, // Copies in x-direction
 int ny, // Copies in y-direction
 cv::OutputArray dst // Resukt array
);
cv::Mat cv::repeat(// Return result array
 cv::InputArray src, // Input 2-dimensional array
 int nx, // Copies in x-direction
 int ny // Copies in y-direction
);

dsti, j = srci%src.rows,† j%src.cols †

This function copies the contents of src into dst, repeating as many times as necessary to fill dst. In
particular, dst can be of any size relative to src. It may be larger or smaller, and it need not have an
integer relationship between any of its dimensions and the corresponding dimensions of src.

cv::repeat() has two calling conventions. The first is the old-style convention, in which the output
array is passed as a reference to cv::repeat(). The second actually creates and returns a cv::Mat,
and is much more convenient when working with matrix expressions.

cv::scaleAdd()

void cv::scaleAdd(
 cv::InputArray src1, // First input array
 double scale, // Scale factor applied to first array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
);

 dsti = scale*src1i + src2i

cv::scaleAdd() is used to compute the sum of two arrays src1 and src2 with a scale factor scale
applied to the first before the sum is done. The results are placed in the array dst.

The same result can be achieved with the matrix algebra operation:
dst = scale * src1 + src2;

cv::setIdentity()

void cv::setIdentity(
 cv::InputOutputArray dst, // Array to reset values
 const cv::Scalar& value = cv::Scalar(1.0) // Value to apply to diagonal elems
);

dsti, j =

value i = j
0 else

⎧
⎨
⎪

⎩⎪

cv::setIdentity() sets all elements of the array to 0 except for elements whose row and column are
equal; those elements are set to 1 (or to value if provided). cv::setIdentity() supports all data
types and does not require the array to be square.

This can also be done using the eye() member function of the cv::Mat class. The use
of eye() is often more convenient when one is working with matrix expressions.

Mat A(3, 3, cv::F32);
cv::setIdentity(A, s);
C = A + B;

For some other arrays B and C, and some scalar s, this is equivalent to:

 C = s * cv::Mat::eye(3, 3, cv::F32) + B;

cv::solve()

int cv::solve(
 cv::InputArray lhs, // Left-hand side of system, n-by-n
 cv::InputArray rhs, // Right-hand side of system, n-by-1
 cv::OutputArray dst, // Results array, will be n-by-1
 int method = cv::DECOMP_LU // Method for solver
);

The function cv::solve() provides a fast way to solve linear systems based on cv::invert(). It
computes the solution to

 C = argmin X † A!X − B

where A is a square matrix given by lhs, B is the vector rhs, and C is the solution computed by
cv::solve() for the best vector X it could find. That best vector X is returned in dst. The actual
method used to solve this system is determined by the value of the method argument (Table 3-30). Only
floating-point data types are supported. The function returns an integer value where a nonzero return
indicates that it could find a solution.

Table 3-30: Possible values of method argument to cv::solve()

Value of method argument Meaning
cv::DECOMP_LU Gaussian elimination (LU decomposition)
cv::DECOMP_SVD Singular value decomposition (SVD)
cv::DECOMP_CHOLESKY For symmetric positive matrices
cv::DECOMP_EIG Eigenvalue decomposition, symmetric matrices only
cv::DECOMP_QR QR Factorization
cv::DECOMP_NORMAL Optional additional flag, indicates that the normal

equations are to be solved instead)

The methods cv::DECOMP_LU and cv::DECOMP_CHOLESKY cannot be used on singular matrices. If a
singular src1 is provided, both methods will exit and return 0 (a 1 will be returned if src1 is
nonsingular). cv::solve() can be used to solve over-determined linear systems using either QR
decomposition (cv::DECOMP_QR) or singular value decomposition (cv::DECOMP_SVD) methods to
find the least-squares solution for the given system of equations. Both of these methods can be used in case
the matrix src1 is singular.

Though the first five arguments in Table 3-30 are mutually exclusive, the last option
cv::DECOMP_NORMAL may be combined with any of the first five (e.g., by logical-or: cv_DECOMP_LU
| cv::DECOMP_NORMAL). If provided, then cv::solve() will attempt to solve the normal equations:

 src1T!src1!dst = src1T!src2 instead of the usual system src1!dst = src2 .

cv::solveCubic()

int cv::solveCubic(
 cv::InputArray coeffs,
 cv::InputArray roots

);

Given a cubic polynomial in the form of a three- or four-element vector coeffs, cv::solveCubic()
will compute the real roots of that polynomial. If coeffs has four elements, the roots of the following
polynomial are computed:

 coeffs0x3 + coeffs1x
2 + coeffs2x + coeffs3 = 0

If coeffs has only three elements, the roots of the following polynomial are computed:

 x
3 + coeffs0x2 + coeffs1x + coeffs2 = 0

The results are stored in the array roots, which will have either one or three elements, depending on how
may real roots the polynomial has.

A word of warning about cv::solveCubic() and cv::solvePoly(): the order
of the coefficients in the seemingly analogous input arrays coeffs is opposite in the
two routines. In cv::solveCubic(), the highest order coefficients come first, while
in cv::solvePoly() the highest order coefficients come last.

cv::solvePoly()

int cv::solvePoly (
 cv::InputArray coeffs,
 cv::OutputArray roots // n complex roots (2-channels)
 int maxIters = 300 // maximum iterations for solver
);

Given a polynomial of any order in the form of a vector of coefficients coeffs, cv::solvePoly()
will attempt to compute the roots of that polynomial. Given the array of coefficients coeffs, the roots of
the following polynomial are computed:

 coeffsnxn + coeffsn−1x
n−1 +!+ coeffs1x + coeffs0 = 0.

These roots are not guaranteed to be real. For an order-n polynomial (i.e., coeffs having n+1
elements), there will be n roots. As a result, the array roots will be returned in a two-channel (real,
imaginary) matrix of doubles.

cv::sort()

void cv::sort(
 cv::InputArray src,
 cv::InputArray dst,
 int flags
);

The OpenCV sort function is used for two-dimensional arrays. Only single-channel source arrays are
supported. You should not think of this like sorting rows or columns in a spreadsheet; cv::sort() sorts
every row or column separately. The result of the sort operation will be a new array dst, which is of the
same size and type as the source array.

Sorting can be done on every row or on every column by supplying either the cv::SORT_EVERY_ROW or
cv::SORT_EVERY_COLUMN flag. Sort can be in ascending or descending order, which is indicated by
the cv::SORT_ASCENDING or cv::SORT_DESCENDING flags respectively. One flag from each of the
two groups is required.

cv::sortIdx()

void cv::sortIdx(
 cv::InputArray src,
 cv::InputArray dst,
 int flags

);

Similar to cv::sort(), cv::sortIdx()is used only for single-channel two-dimensional arrays.
cv::sortIdx() sorts every row or column separately. The result of the sort operation is a new array
dst of the same size as the source array, but which contains the integer indices of the sorted elements. For
example, given an array A, a call to cv::sortIdx(A, B, cv::SORT_EVERY_ROW |
cv::SORT_DESCENDING) would produce:

A =

0.0 0.1 0.2
1.0 1.1 1.2
2.0 2.1 2.2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 B =

2 1 0
2 1 0
2 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

In this toy case, every row was previously ordered from lowest to highest and sorting has indicated that this
should be reversed.

cv::split()

void cv::split(
 const cv::Mat& mtx,
 cv::Mat* mv
);
void cv::split(
 const cv::Mat& mtx,
 vector<Mat>& mv // STL-style vector of n 1-channel cv::Mat’s
);

The function cv::split() is a special, simpler case of cv::mixChannels(). cv::split()
separates the channels in a multichannel array into multiple single-channel arrays. There are two ways for
doing this: in the first, you supply a pointer to a C-style array of pointers to cv::Mat objects that
cv::split() will use for the results of the split operation. In the second option, you supply an STL
vector full of cv::Mat objects. If you use the C-style array, you need to make sure that the number of
cv::Mat objects available is (at least) equal to the number of channels in mtx. If you use the STL vector
form, cv::split() will handle the allocation of the result arrays for you.

cv::sqrt()

void cv::sqrt(
 cv::InputArray src,
 cv::InputArray dst
);

As a special case of cv::pow(), cv::sqrt() will compute the element-wise square root of an array.
Multiple channels are processed separately.

There is such thing as a square root of a matrix, i.e., a matrix B whose relationship with
some matrix A is that BB = A. If A is square and positive definite, then if B exists,
it is unique.

If A can be diagonalized, then there is a matrix V (made from the eigenvectors of A

as columns) such that † A† =VDV −1 , where D is a diagonal matrix. The square root of

a diagonal matrix D is just the square roots of the elements of † D . So to compute A
1

2

, we simply use the matrix V and get:

 A
1

2 =VD
1

2V −1

Math fans can easily verify that this expression is correct by explicitly squaring it:

A
1

2⎛
⎝

⎞
⎠

2

= VD
1

2V −1⎛
⎝

⎞
⎠ VD

1
2V −1⎛

⎝
⎞
⎠ =VD

1
2V −1VD

1
2V −1 =VDV −1 = A

In code, this would look something like40:
void matrix_square_root(const cv::Mat& A, cv::Mat& sqrtA) {
 cv::Mat U, V, Vi, E;
 cv::eigen(A, E, U);
 V = U.T();
 cv::transpose(V, Vi); // inverse of the orthogonal V
 cv::sqrt(E, E); // assume that A is positively-defined,
otherwise its square root is complex-valued
 sqrtA = V * Mat::diag(E) * Vi;
}

cv::subtract()

void cv::subtract(
 cv::InputArray src1, // First input array
 cv::InputArray src2, // Second input array
 cv::OutputArray dst, // Result array
 cv::InputArray mask = cv::noArray(), // Optional mask, compute only where nonzero
 int dtype = -1 // Output type for result array
)

dsti = saturate †src1i − src2i()

cv::subtract() is a simple subtraction function: it subtracts all of the elements in src2 from the
corresponding elements in src1 and puts the results in dst.

For simple cases the same result can be achieved with the matrix operation:
dst = src1 - src2;

Accumulation is also supported:
 dst -= src1;

cv::sum()

cv::Scalar cv::sum(
 cv::InputArray arr
);

sumc =

i, j
∑arrci, j

cv::sum() sums all of the pixels in each of the channels of the array arr. The return value is of type
cv::Scalar, so cv::sum() can accommodate multichannel arrays, but only up to four channels. The
sum for each channel is placed in the corresponding component of the cv::scalar return value.

cv::trace()

cv::Scalar cv::trace(
 cv::InputArray mat

40 Here “something like” means that if you were really writing a responsible piece of code, you would do a lot of
checking to make sure that the matrix you were handed was in fact what you thought it was (i.e., square). You would
also probably want to check the return values of cv::eigen() and cv::invert() and think more carefully about
the actual methods used for the decomposition and inversion, make sure the eigenvalues are positive before blindly
calling sqrt() on them.

);

Tr mat()c

=
i
∑matci,i

The trace of a matrix is the sum of all of the diagonal elements. The trace in OpenCV is implemented on
top of cv::diag(), so it does not require the array passed in to be square. Multichannel arrays are
supported, but the trace is computed as a scalar so each component of the scalar will be the sum over each
corresponding channel for up to four channels.

cv::transform()

void cv::transform(
 cv::InputArray src,
 cv::OutputArray dst,
 cv::InputArray mtx
);

dstc,i, j =

′c
∑mtxc, ′c src ′c i, j

The function cv::transform() can be used to compute arbitrary linear image transforms. It treats a
multichannel input array src as a collection of vectors in what you could think of as “channel space.”
Those vectors are then each multiplied by the “small” matrix mtx, to affect a transformation in this channel
space.

The matrix mtx must have as many rows as there are channels in src, or that number plus one. In the
second case, the channel space vectors in src are automatically extended by one and the value 1.0 is
assigned to the extended element.

The exact meaning of this transformation depends on what you are using the different
channels for. If you are using the channels as color channels, then this transformation can
be thought of as a linear color space transformation. (Transformation between RGB and
YUV color spaces is an example of such a transformation. If you are using the channels
to represent the

x, y() or

x, y, z() coordinates of points, then these transformations can

be thought of as rotations (or other geometrical transformations) of those points.

cv::transpose()

void cv::transpose(
 cv::InputArray src, // Input array, 2-dimensional, n-by-m
 cv::OutputArray dst, // Result array, 2-dimensional, m-by-n
);

cv::transpose() copies every element of src into the location in dst indicated by reversing the row
and column indices. This function does support multichannel arrays; however, if you are using multiple
channels to represent complex numbers, remember that cv::transpose() does not perform complex
conjugation.

This same result can be achieved with the matrix member function cv::Mat::t().
The member function has the advantage that it can be used in matrix expressions like:

A = B + B.t();

Utility Functions
There are several operations provided by OpenCV that operate on single values (integers or floating-point
numbers). These functions either serve some special function, or are fast implementations of particular

things that come up often enough in vision processing to justify implementing in a custom way for
OpenCV.

Table 3-31 Utility and System Functions

Function Description

cv::alignPtr() Align pointer to given number of bytes

cv::alignSize() Align buffer size to given number of bytes

cv::allocate() Allocate a C-style array of objects

cvCeil()41 Round float number x to nearest integer not smaller than x

cv::cubeRoot() Compute the cube root of a number

cv::CV_Assert() Throw an exception if a given condition is not true

CV_Error() Macro to build a cv::Exception (from a fixed string) and throw
it

CV_Error_() Macro to build a cv::Exception (from a formatted string) and
throw it

cv::deallocate() Deallocate a C-style array of objects

cv::error() Indicate an error and throw an exception

cv::fastAtan2() Calculate two-dimensional angle of a vector in degrees

cv::fastFree() Deallocate a memory buffer

cv::fastMalloc() Allocate an aligned memory buffer

cvFloor()41 Round float number x to nearest integer not larger than x

cv::format() Create an STL string using sprinf-like formatting

cv::getCPUTickCount() Get tick count from internal CPU timer

cv::getNumThreads() Count number of threads currently used by OpenCV

cv::getOptimalDFTSize() Compute the best size for an array that you plan to pass to
cv::DFT()

cv::getThreadNum() Get index of the current thread

cv::getTickCount() Get tick count from generic source

cv::getTickFrequency() Get number or ticks per second (see cv::getTickCount())

41 This function has something of a legacy interface. It is a C definition, not C++ (see core …/types_c.h) where it is
defined as an inline function. There are several others with a similar interface.

cvIsInf()41 Check if a floating-point number x is infinity

cvIsNaN()41 Check if a floating-point number x is “Not a Number”

cvRound() Round float number x to the nearest integer

cv::setNumThreads() Set number of threads used by OpenCV

cv::setUseOptimized() Enables or disables the use of optimized code (SSE2, etc.)

cv::useOptimized() Indicates status of optimized code enabling (see
cv::setUseOptimized())

cv::alignPtr()

template<T> T* cv::alignPtr(// Return aligned pointer of type T*
 T* ptr, // pointer, unaligned
 int n = sizeof(T) // align to block size, a power of 2
);

Given a pointer of any type, this function computes an aligned pointer of the same type according to the
following computation:

(T*)(((size_t)ptr + n+1) & -n)

On some architectures, it is not even possible to read a multi-byte object from an address
that is not evenly divisible by the size of the object (i.e.,.,, by 4 for a 32-bit integer). On
architectures such as x86, this is handled for you automatically by the CPU by using
multiple reads and assembling your value from those reads at the cost of a substantial
penalty in performance.

cv::alignSize()

size_t cv::alignSize(// minimum size >=’sz’ divisible by ‘n’
 size_t sz, // size of buffer
 int n = sizeof(T) // align to block size, a power of 2
);

Given a number n (typically a return value from sizeof()), and a size for a buffer sz,
cv::alignSize() computes the size that this buffer should be in order to contain an integer number of
objects of size n, i.e., the minimum number that is greater or equal to sz yet divisible by n. The following
formula is used:

(sz + n-1) & -n

cv::allocate()

template<T> T* cv::allocate(// Return pointer to allocated buffer
 size_t sz // size of buffer, multiples of sizeof(T)
);

The function cv::allocate() functions similarly to the array form of new, in that it allocates a C-style
array of n objects of type T, calls the default constructor for each object, and returns a pointer to the first
object in the array.

cv::deallocate()

template<T> void cv::deallocate(
 T* ptr, // Pointer to buffer to free
 size_t sz // size of buffer, multiples of sizeof(T)
);

The function cv::deallocate() functions similarly to the array form of delete, in that it
deallocates a C-style array of n objects of type T, and calls the destructor for each object.
cv::deallocate() is used to deallocate objects allocated with cv::allocate(). The number of
elements n passed to cv::deallocate() must be the same as the number of objects originally
allocated with cv::allocate().

cv::fastAtan2()

float cv::fastAtan2(// Return value is 32-bit float
 float y, // y input value (32-bit float)
 float x // x input value (32-bit float)
);

This function computes the arctangent of an x,y pair and returns the angle from the origin to the indicated
point. The result is reported in degrees ranging from 0.0 to 360.0, inclusive of 0.0 but not inclusive of
360.0.

cvCeil()

int cvCeil(// Return the smallest int >= x
 float x // input value (32-bit float)
);

Given a floating-point number x, cvCeil() computes the smallest integer not smaller than x. If the input
value is outside of the range representable by a 32-bit integer, the result is undefined.

cv::cubeRoot()

float cv::cubeRoot(// Return value is 32-bit float
 float x // input value (32-bit float)
);

This function computes the cubed root of the argument x. Negative values of x are handled correctly (i.e.,
the return value is negative).

cv::CV_Assert() and CV_DbgAssert()

// example
CV_Assert(x!=0)

CV_Assert() is a macro that will test the expression passed to it and, if that expression evaluates to
False (or 0), it will throw an exception. The CV_Assert() macro is always tested. Alternatively, you
can use CV_DbgAssert(), which will only be tested in debug compilations.

cv::CV_Error() and CV_Error_()

// example
CV_Error(ecode, estring)
CV_Error_(ecode, fmt, ...)

The macro CV_Error() allows you to pass in an error code ecode and a fixed C-style character string
estring, which it then packages up into a cv::Exception and passes that to cv::error() to be
handled. The variant macro CV_Error_() is used if you need to construct the message string on the fly.
CV_Error_() accepts the same ecode as CV_Error(), but then expects a sprintf() style
format string followed by a variable number of arguments as would be expected by sprintf().

cv::error()

void cv::error(
 const cv::Exception& ex // Exception to be thrown
);

This function is mostly called from CV_Error() and CV_Error_(). If your code is compiled in a non-
debug build, it will throw the exception ex. If your code is compiled in a debug build, it will deliberately
provoke a memory access violation so that the execution stack and all of the parameters will be available
for whatever debugger you are running.

You will probably not call cv::error() directly, but rather rely on the macros CV_Error() and
CV_Error_() to throw the error for you. These macros take the information you want displayed in the
exception and package it up for you and pass the resulting exception to cv::error().

cv::fastFree()

void cv::fastFree(
 void* ptr // Pointer to buffer to be freed
);

This routine deallocates buffers that were allocated with cv::fastMalloc() (covered next).

cv::fastMalloc()

void* cv::fastMalloc(// Pointer to allocated buffer
 size_t size // Size of buffer to allocate
);

cv::FastMalloc() works just like the malloc() you are familiar with, except that it is often faster,
and it does buffer size alignment for you. This means that if the buffer size passed is more than 16 bytes,
the returned buffer will be aligned to a 16 byte boundary.

cvFloor()

int cvFloor(// Return the largest int <= x
 float x // input value (32-bit float)
};

Given a floating-point number x, cv::Floor() computes the largest integer not larger than x. If the
input value is outside of the range representable by a 32-bit integer, the result is undefined.

cv::format()

string cv::format(// Return STL-string
 const char* fmt, // formatting string, as sprintf()
 ... // vargs, as sprintf()
);

This function is essentially the same as sprintf() from the standard library, but rather than requiring a
character buffer from the caller, it constructs an STL string object and returns that. It is particularly handy
for formatting error messages for the Exception() constructor (which expects STL strings as
argument).

cv::getCPUTickCount()

int64 cv::getCPUTickCount(void); // long int CPU for tick count

This function reports the number of CPU ticks on those architectures that have such a construct (including,
but not limited to, x86 architectures). It is important to know, however, that the return value of this function
can be very difficult to interpret on many architectures. In particular, because on a multi-core system a
thread can be put to sleep on one core and wake up on another, the difference between the results to two
subsequent calls to cv::getCPUTickCount() can be misleading, even completely meaningless.
Therefore, unless you are certain you know what you are doing, it is best to use cv::getTickCount()
for timing measurements.42 This function is best for tasks like initializing random number generators.

cv::getNumThreads()

int cv::getNumThreads(void); // number of threads allocated to OpenCV

Return the current number of threads being used by OpenCV.

42 Of course, if you really do know what you are doing, then there is no more accurate way to get detailed timing
information than from the CPU timers themselves.

cv::getOptimalDFTSize()

int cv::getOptimalDFTSize(int n); // best size array to use for dft, >= n

When making calls to cv::dft(), the algorithm used by OpenCV to compute the transform is extremely
sensitive to the size of the array passed to cv::dft(). The preferred sizes do obey a rule for their
generation, but that rule is sufficiently complicated that it is (at best) an annoyance to compute the correct
size to which to pad your array every time. The function cv::getOptimalDFTSize() takes as
argument the size of the array you would have passed to cv::dft(), and returns the size of the array you
should pass to cv::dft(). The usage of this information is to just create a larger array into which you
can copy your data and pad out the rest with zeros.

cv::getThreadNum()

int cv::getThreadNum(void); // int, id of this particular thread

If your OpenCV library was compiled with OpenMP support, it will return the index (starting from zero) of
the currently executing thread.

cv::getTickCount()

int64 cv::getTickCount(void); // long int CPU for tick count

This function returns a tick count relative to some architecture-dependent time. The rate of ticks is also
architecture and operating system dependent, however; the time per tick can be computed by
cv::getTickFrequency() (reviewed next).below). This function is preferable to
cv::getCPUTickCount() for most timing applications, as it is not affected by low-level issues such
as which core your thread is running on and automatic throttling of CPU frequency (which most modern
processors do for power management reasons).

cv::getTickFrequency()

double cv::getTickFrequency(void); // Tick frequency in seconds as 64-bit

When using cv::getTickCount() for timing analysis, the exact meaning of a tick is, in general,
architecture dependent. The function cv::getTickFrequency() computes the conversion between
clock time (i.e., seconds) and abstract “ticks.””.

Thus to compute the time required for some specific thing to happen (such as a function
to execute), one need only call cv::getTickCount() before and after the function
call, subtract the results, and divide by the value of cv::getTickFrequency().

cvIsInf()

int cvIsInf(double x); // return 1 if x is IEEE754 “infinity”

The return value of cvIsInf() is one if x is plus or minus infinity and zero otherwise. The infinity test is
the test implied by the IEEE754 standard.

cvIsNaN()

int cvIsNan(double x); // return 1 if x is IEEE754 “Not a number”

The return value of cvIsNaN() is one if x is “not a number” and zero otherwise. The NaN test is the test
implied by the IEEE754 standard.

cvRound()

int cvRound(double x); // Return integer nearest to ‘x’

Given a floating-point number x, cvRound() computes the integer closest to x. If the input value is
outside of the range representable by a 32-bit integer, the result is undefined.

cv::setNumThreads()

void cv::setNumThreads(int nthreads); // Set number of threads OpenCV can use

When OpenCV is compiled with OpenMP support, this function sets the number of threads that OpenCV
will use in parallel OpenMP regions. The default value for the number of threads is the number of logical
cores on the CPU (i.e., if we have four cores each with two hyper-threads, there will be eight threads by
default). If nthreads is set to 0, the number of threads will be returned to this default value.

cv::setUseOptimized()

void cv::setUseOptimized(bool on_off); // If false, turn off optimized routines

Though early versions of OpenCV relied on outside libraries (such as IPP, the Intel Performance Primitives
library) for access to high performance optimizations such as SSE2 instructions, later versions have
increasingly moved to containing that code in the OpenCV itself. By default the use of these optimized
routines is enabled, unless you specifically disabled it when you built your installation of the library.
However, you can turn the use of these optimizations on and off at any time with
cv::setUseOptimized().

The test of the global flag for optimizations usage is done at a relatively high level inside
of the OpenCV library functions. The implication of this is that you should not call
cv::setUseOptimized() while any other routines might be running (on any
threads). You should make sure to call this routine when you can be certain you know
what is and what is not running, preferably from the very top level of your application.

cv::useOptimized()

bool cv::useOptimized(void); // return true if optimizations are enabled

At any time, you can check the state of the global flag, which enables the use of high performance
optimizations (see cv::setUseOptimized()) by calling cv::useOptimized(). True will be
returned only if these optimizations are currently enabled; otherwise, this function will return False.

Objects That Do Stuff
As the OpenCV library has evolved, it has become increasingly common to introduce new objects which
encapsulate functionality that is too complicated to be associated with a single function and which, if
implemented as a set of functions, would cause the overall function space of the library to become too
cluttered.

As a result, new functionality is often represented by an associated new object type, which can be thought
of as a “machine” that does whatever this function is. Most of these machines have an overloaded
operator(), which officially makes them function objects or functors. If you are not familiar with this
programming idiom, the important idea is that unlike “normal” functions, function objects are created, and
can maintain state information inside them. As a result, they can be set up with whatever data or
configuration they need, and they are “asked” to perform services through either common member
functions, or by calling them as functions (usually via the overloaded operator()43).

Principal Component Analysis (cv::PCA)
Principal component analysis is the process of analyzing a distribution in many dimensions and extracting
from that distribution the particular subset of dimensions that carry the most information. The dimensions
computed by PCA are not necessarily the basis dimensions in which the distribution was originally
specified. Indeed, one of the most important aspects of PCA is the ability to generate a new basis in which

43 Here the word “usually” means “usually when people program function objects,” but does not turn out to mean
“usually” for the OpenCV library. There is a competing convention in the OpenCV library which uses the overloaded
operator() to load the configuration, and a named member to provide the fundamental service of the object. This
convention is substantially less canonical in general, but quite common in the OpenCV library.

the axes of the new basis can be ordered by their importance44. These basis vectors will turn out to be the
eigenvectors of the covariance matrix for the distribution as a whole, and the corresponding eigenvalues
will tell us about the extent of the distribution in that dimension.

We are now in a position to explain why PCA is handled by one of these function objects. Given a
distribution once, the PCA object can compute and retain this new basis. The big advantage of the new
basis is that the basis vectors that correspond to the large eigenvalues carry most of the information about
the objects in the distribution. Thus, without losing much accuracy, we can throw away the less informative
dimensions. This dimension reduction is called a KLT Transform.45 Once you have loaded a sample
distribution and the principal components are computed, you might want to use that information to do
various things, such as applying the KLT transform to new vectors. By making the PCA functionality a
function object, it can “remember” what it needs to know about the distribution you gave it, and thereafter
use that information to provide the “service” of transforming new vectors on demand.

Figure 3-4. (a) Input data is characterized by a Gaussian approximation; (b) the data is projected into the
space implied by the eigenvectors of the covariance of that approximation; (c)the data is projected by the

KLT projection to a space defined only by the most “useful” of the eigenvectors; superimposed: a new data
point (white diamond) is projected to the reduced dimension space by cv::PCA::project(); that same

point is brought back to the original space (black diamond) by cv::PCA::backProject()

cv::PCA::PCA()

PCA::PCA();

44 You might be thinking to yourself “hey, this sounds like machine learning, what is it doing in this chapter?” This is
not a bad question. In modern computer vision, machine learning is becoming increasingly intrinsic to an ever -growing
list of algorithms. For this reason, component capabilities, such as PCA and SVD, are increasingly considered
“building blocks.”
45 KLT stands for “Karhunen-Loeve Transform,””, so that phrase “KLT Transformation” is a bit of a malapropism. It is
however at least as often said one way as the other.

PCA::PCA(
 cv::InputArray data, // Data, as rows or cols in 2d array
 cv::InputArray mean, // average, if known, 1-by-n or n-by-1
 int flags, // Are vectors rows or cols of ‘data’
 int maxComponents = 0 // Max dimensions to retain
);

The PCA object has a default constructor, cv::PCA(), which simply builds the PCA object and
initializes the empty structure. The second form executes the default construction, then immediately
proceeds to pass its arguments to PCA::operator()() (discussed next).

cv::PCA::operator()()

PCA::operator()(
 cv::InputArray data, // Data, as rows or cols in 2d array
 cv::InputArray mean, // average, if known, 1-by-n or n-by-1
 int flags, // Are vectors rows or cols of ‘data’
 int maxComponents = 0 // Max dimensions to retain
);

The overloaded operator()() for PCA builds the model of the distribution inside of the PCA object.
The argument data is an array containing all of the samples that constitute the distribution. Optionally,
mean, a second array that contains the mean value in each dimension, can be supplied. (mean can either be
 n -by-1 or 1-by- n .) The data can be arranged as an n -by- D (n rows of samples each of D dimensions)
or D -by- n array (n columns of samples each of D dimensions). The argument flags is currently
used only to specify the arrangement of the data in data and mean. In particular, flags can be set either
to cv::PCA_DATA_AS_ROW or cv::PCA_DATA_AS_COL, to indicate that either data is n-by- D and
mean is n -by- l or data is D -by- n and mean is l -by- n respectively. The final argument
maxComponents specifies the maximum number of components (dimensions) that PCA should retain.
By default, all of the components are retained.

Any subsequent call to cv::PCA::operator()() will overwrite the internal
representations of the eigenvectors and eigenvalues, so you can recycle a PCA object
whenever you need to (i.e., you don’t have to reallocate a new one for each new
distribution you want to handle if you no longer need the information about the previous
distribution).

cv::PCA::project()

cv::Mat PCA::project(// Return results, as a 2d matrix
 cv::InputArray vec // points to project, rows or cols, 2d
) const;

void PCA::project(
 cv::InputArray vec // points to project, rows or cols, 2d
 cv::OutputArray result // Result of projection, reduced space
) const;

Once you have loaded your reference distribution with cv::PCA::operator()(), you can start asking
the PCA object to do useful things for you like compute the KLT projection of some set of vectors onto the
basis vectors computed by the principal component analysis. The function cv::PCA::project() has
two forms, the first returns a matrix containing the results of the projections, while the second writes the
results to a matrix you provide. The advantage of the first form is that you can use it in matrix expressions.

The argument vec contains the input vectors. vecvec is required to have the same number of dimensions
and the same “orientation” as the data array that was passed to PCA when the distribution was first
analyzed (i.e., if your data was columns when you called cv::PCA::operator()(), vec should also
have the data arranged into columns).

The returned array will have the same number of objects as vec with the same orientation, but the
dimensionality of each object will be whatever was passed to maxComponents when the PCA object was
first configured with cv::PCA::operator()().

cv::PCA::backProject()

cv::Mat PCA::backProject(// Return results, as a 2d matrix
 cv::InputArray vec // Result of projection, reduced space
} const;

void PCA::backProject(
 cv::InputArray vec // Result of projection, reduced space
 cv::OutputArray result // “reconstructed” vectors, full dimension
) const;

The cv::PCA::backProject() function performs the reverse operation of
cv::PCA::project(), with the analogous restrictions on the input and output arrays. The argument
vec contains the input vectors, which this time are from the projected space. They will have the same
number of dimensions as you specified with maxComponents when you configured the PCA object and
the same “orientation” as the data array that was passed to PCA when the distribution was first analyzed
(i.e., if your data was columns when you called cv::PCA::operator(), vec should also have the data
arranged into columns).

The returned array will have the same number of objects as vec with the same orientation, but the
dimensionality of each object will be the dimensionality of the original data you gave to the PCA object
when the PCA object was first configured with cv::PCA::operator()()).

If you did not retain all of the dimensions when you configured the PCA object in the
beginning, the result of back projecting vectors, which are themselves projections of
some vector

!x from the original data space, will not be equal to
!x . Of course, the

difference should be small, even if the number of components retained was much smaller
than the original dimension of †

!
x , as this is the very point of using PCA in the first

place.

Singular Value Decomposition (cv::SVD)
The class cv::SVD is similar to cv::PCA above in that it is the same kind of function object. Its purpose,
however, is quite different. The singular value decomposition is essentially a tool for working with non-
square, ill-conditioned, or otherwise poorly-behaved matrices such those encountered when solving under-
determined linear systems.

Mathematically, the singular value decomposition (SVD) is the decomposition of an m -by- n matrix A
into the form:

 A =U!W!V T

where W is a diagonal matrix and U and V are m -by- n and n -by- n (unitary) matrices. Of course, the
matrix W is also an m -by- n matrix, so here “diagonal” means that any element whose row and column
numbers are not equal is necessarily 0.

cv::SVD()

SVD::SVD();
SVD::SVD(
 cv::InputArray A, // Linear system, array to be decomposed
 int flags = 0 // what to construct, can A can scratch
);

The SVD object has a default constructor, cv::SVD(), which simply builds the SVD object and
initializes the empty structure. The second form basically executes the default construction, then
immediately proceeds to pass its arguments to cv::SVD::operator()() (discussed next).

cv::SVD::operator()()

SVD::& SVD::operator() (
 cv::InputArray A, // Linear system, array to be decomposed
 int flags = 0 // what to construct, can A be scratch
);

The operator cv::SVD::operator()() passes to the cv::SVD object the matrix to be decomposed.
The matrix A, as described earlier, is decomposed into a matrix U, a matrix V (actually the transpose of V,
which we will call Vt), and a set of singular values (which are the diagonal elements of the matrix W).

The flags can be any one of cv::SVD::MODIFY_A, cv::SVD::NO_UV, or cv::SVD::FULL_UV.
The latter two are mutually exclusive, but either can be combined with the first. The flag
cv::SVD::MODIFY_A indicates that it is OK to modify the matrix A when computing. This speeds up
computation a bit and saves some memory. It is more important when the input matrix is already very
large. The flag cv::SVD::NO_UV tells cv::SVD to not explicitly compute the matrices U and Vt, while
the flag cv::SVD::FULL_UV indicates that not only would you like U and Vt computed, but that you
would like them to be represented as full size square orthogonal matrices.

cv::SVD::compute()

void SVD::compute(
 cv::InputArray A, // Linear system, array to be decomposed
 cv::OutputArray W, // Output array ‘W’, singular values
 cv::OurputArray U, // Output array ‘U’, left singular vectors
 cv::OutputArray Vt, // Output array ‘Vt’, right singular vectors
 int flags = 0 // what to construct, and if A can be scratch
);

This function is an alternative to using cv::SVD::operator()() to decompose the matrix A. The
primary difference is that the matrices W, U, and Vt are stored in the user-supplied arrays, rather than
being kept internally. The flags supported are exactly those supported by cv::SVD::operator()().

cv::SVD::solveZ()

void SVD::solveZ(
 cv::InputArray A, // Linear system, array to be decomposed
 cv::OutputArray z // One possible solution (unit length)
);

 †
!z = †argmin !x:!x=1A"!x

Given an under-determined (singular) linear system, cv::SVD::solveZ() will (attempt to) find a unit
length solution of A!

"x = 0 and place the solution in the array y. Because the linear system is singular,
however, it may have no solution, or it may have an infinite family of solutions. cv::SVD::solveZ()
will find a solution, if one exists. If no solution exists, then the return value

!y will be a vector that
minimizes † A!"x , even if this is not, in fact, zero.

cv::SVD::backSubst()

void SVD::backSubst(
 cv::InputArray b, // Right-hand side of linear system
 cv::OutputArray x // Found solution to linear system
);

void SVD::backSubst(
 cv::InputArray W, // Output array ‘W’, singular values
 cv::InputArray U, // Output array ‘U’, left singular vectors

 cv::InputArray Vt, // Output array ‘Vt’, right singular vectors
 cv::InputArray b, // Right hand side of linear system
 cv::OutputArray x // Found solution to linear system
);

Assuming that the matrix A has been previously passed to the cv::SVD object (and thus decomposed into
U, W, and Vt), the first form of cv::SVD::backSubst() attempts to solve the system :

UWV T()!"x =

"
b .

The second form does the same thing, but expects the matrices W, U, and Vt to be passed to it as
arguments. The actual method of computing dst is to evaluate the following expression:

 x†
! "!

=Vt
T#diag W()−1

#U T#b†
! "!

~ A−1#b†
! "!

.

This method produces a pseudo-solution for an over-determined system, which is the best solution in the
sense of minimizing the least-squares error.46 Of course, it will also exactly solve a correctly determined
linear system.

In practice, it is relatively rare that you would want to use cv::SVD::backSubst()
directly. This is because you can do precisely the same thing by calling cv::solve()
and passing the cv::DECOMP_SVD method flag—which is a lot easier. It is only in the
less common case in which you need to solve many different systems with the same left-
hand side (x) that you would be better off calling cv::SVD::backSubst() directly.
(As opposed to solving the same system many times with different righthand sides (b),
which you might just as well do with cv::solve().

Random Number Generator (cv::RNG)
The random number generator object RNG holds the state of a pseudorandom sequence that generates
random numbers. The benefit of doing things this way is that you can conveniently maintain multiple
streams of pseudorandom numbers.

When programming large systems, it is a good programming practice to use separate
random number streams in different modules of the code. In this way, the removal of one
module does not change the behavior of the streams in the other modules.

Once created, the random number generator provides the “service” of generating random numbers on
demand, drawn from either a uniform or a Gaussian distribution. The generator uses the Multiply with
Carry algorithm (G. Marsaglia) for uniform distributions and the Ziggurat algorithm (G. Marsaglia and W.
W. Tsang) for the generation of numbers from a Gaussian distribution.

cv::theRNG()

cv::RNG& theRNG(void); // Return a random number generator

The function cv::theRNG() returns the default random number generator for the thread from which it
was called. OpenCV automatically creates one instance of cv::RNG for each thread in execution. This is
the same random number generator that is implicitly accessed by functions like cv::randu() or
cv::randn(). Those functions are convenient and just as quick if you want a single number, or to
initialize an array, but if you have a loop of your own that needs to generate a lot of random numbers, you
are better off grabbing a reference to a random number generator (in this case, the default generator, but

46 The object 𝑑𝑖𝑎𝑔 𝑾 !𝟏 is a matrix whose diagonal elements 𝜆!∗ are defined in terms of the diagonal elements 𝜆! of 𝑾
by 𝜆!∗ = 𝜆!!! for 𝜆! ≥ 𝜀. This value ε is the singularity threshold, a very small number that is typically proportional to
the sum of the diagonal elements of 𝑾 (i.e., 𝜀! 𝜆!!).

you could use your own instead) and using RNG::operator T() to get your random numbers (more on
that operator follows).

cv::RNG()

cv::RNG::RNG(void);
cv::RNG::RNG(uint64 state); // create using the seed ‘state’

You can create an RNG object with either the default constructor, or you can pass it a 64-bit unsigned
integer that it will use as the seed of the random number sequence. If you call the default constructor (or
pass 0 to the second variation) the generator will initialize with a standardized value.47

cv::RNG::operator T()

cv::RNG::operator uchar();
cv::RNG::operator schar();
cv::RNG::operator ushort();
cv::RNG::operator short int();
cv::RNG::operator int();
cv::RNG::operator unsigned();
cv::RNG::operator float();
cv::RNG::operator double();

This is really a set of different methods that return a new random number from cv::RNG of some specific
type. Each of these is an overloaded cast operator, so in effect you cast the RNG object to whatever type
you want:

Example 3-2: Using the default random number generator we generate a pair of integers and a pair of
floating-point numbers; the style of the cast operation is up to you, this example shows both the int(x)

and the (int)x forms

cv::RNG rng = cv::theRNG();
cout << ”An integer: “ << (int)rng << endl;
cout << ”Another integer: “ << int(rng) << endl;
cout << ”A float: “ << (float)rng << endl;
cout << ”Another float: “ << float(rng) << endl;

When integer types are generated, they will be generated across the entire range of available values (using
the MWC algorithm described earlier and thus uniformly). When floating-point types are generated, they
will always be in the range from the interval [0.0, 1.0).48

cv::RNG::operator()

unsigned int cv::RNG::operator()(); // Return random value from 0-UINT_MAX
unsigned int cv::RNG::operator()(unsigned int N); // Return value from 0-(N-1)

When generating integer random numbers, the overloaded operator()() allows a convenient way to
just grab another one. In essence, calling my_rng() is equivalent to calling (unsigned int)my_rng.
The somewhat more interesting form of cv::RNG::operator()() takes an integer argument N. This
form returns a random unsigned integer modulo N (using the MWC algorithm described earlier and thus
uniformly). Thus, the range of integers returned by my_rng(N) is then the range of integers from 0 to
N-1.

cv::RNG::uniform()

int cv::RNG::uniform(int a, int b); // Return value from a-(b-1)

47 This “standard value” is not zero because, for that value, many random number generators, including the ones used
by RNG, will return nothing but zeros thereafter. Currently, this standard value is 2!" − 1.
48 In case this notation is not familiar, the designation of an interval using square brackets, [], ‘[‘ indicates that this limit
is inclusive, and the designation using parentheses, (), ‘(‘ indicates that this limit is noninclusiveinclusive. Thus the
notation [0.0,1.0) means an interval from 0.0 to 1.0 inclusive of 0.0 but not inclusive of 1.0.

float cv::RNG::uniform(float a, float b); // Return value in range [a,b)
double cv::RNG::uniform(double a, double b); // Return value in range [a,b)

This function allows you to generate a random number uniformly (using the MWC algorithm) in the
interval [a, b).

It is important to note that the C++ compiler does not consider the return value of a
function when determining which of multiple similar forms to use, only the arguments.
As a result, if you call: float x = my_rng.uniform(0,1) you are going to get
0.f, because 0 and 1 are integers and the only integer in the interval [0, 1) is 0. If you
want a floating-point number, you should use something like
my_rng.uniform(0.f,1.f), and for a double, use my_rng.uniform(0.,1.).
Of course, explicit casting of the arguments also works.

cv::RNG::gaussian()

double cv::RNG::gaussian(double sigma); // Gaussian number, zero mean, std-dev=’sigma’

This function allows you to generate a random number from a zero-mean Gaussian distribution (using the
Ziggurat algorithm) with standard deviation sigma.

cv::RNG::fill()

void cv::RNG::fill(
 InputOutputArray mat, // Input array, values will be overwritten
 int distType, // Type of distribution (Gaussian or uniform)
 InputArray a, // min (uniform) or mean (Gaussian)
 InputArray b // max (uniform) or std-deviation (Gaussian)
);

The cv::RNG::fill() algorithm fills a matrix mat of up to four channels with random numbers drawn
from a specific distribution. That distribution is selected by the distType argument, which can be either
cv::RNG::UNIFORM or cv::RNG::NORMAL. In the case of the uniform distribution, each element of

mat will be filled with a random value generated from the interval

†matc,i ∈ ac ,bc⎡⎣) . In the case of the

Gaussian (cv::RNG::NORMAL) distribution, each element is generated from a distribution with mean

taken from a and standard deviation taken from b:

†matc,i ∈N ac ,bc() . It is important to note that the

arrays a and b are not of the dimension of mat, they are nc -by-1 or 1-by- nc where nc is the number of
channels in mat (i.e., there is not a separate distribution for each element of mat, a and b specify one
distribution, not one distribution for every element of mat.)

If you have a multichannel array, then you can generate individual entries in “channel-
space” from a multivariate distribution simply by giving the appropriate mean and
standard deviation for each channel in the input arrays a and b. This distribution,
however, will be drawn from a distribution with only zero entries in the off-diagonal
elements of its covariance matrix. (This is because each element is generated completely
independently of the others.) If you need to draw from a more general distribution, the
easiest method is to generate zero-mean values using an identity covariance matrix with
cv::RNG::fill(), and then transform (translate and rotate) back to your original
basis using cv::transform().

Summary
In this chapter, we introduced some frequently encountered basic data structures. In particular, we looked at
the all-important OpenCV array structure cv::Mat, which can contain matrices, images, and
multidimensional arrays.

Exercises
In the following exercises, you may need to refer to the manual at http://docs.opencv.org/ .

1. Find and open …/opencv/modules/core/include/opencv2/core/core.hpp. Read through and find the
many conversion helper functions.
a) Choose a negative floating-point number. Take its absolute value, round it, and then take its

ceiling and floor.49
b) Generate some random numbers.
c) Create a floating-point cv::Point2f and convert it to an integer cv::Point2i.

d) Convert a cv::Point2i to a CvPoint2f.

2. This exercise will accustom you to the idea of many functions taking matrix types. Create a two-
dimensional matrix with three channels of type byte with data size 100-by-100. Set all the values to 0.
a) Draw a circle in the matrix using the cv::circle() function:

void circle(
 cv::Mat& img, // Image to be drawn on
 cv::Point center, // Location of circle center
 int radius, // Radius of circle
 const cv::Scalar& color, // Color, RGB form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

b) Display this image using methods described in Chapter 2.
1. Create a two-dimensional matrix with three channels of type byte with data size 100-by-100, and set

all the values to 0. Use the element access member: m.at<cv::Vec3f> to point to the middle
(“green”) channel. Draw a green rectangle between (20, 5) and (40, 20).

2. Create a three-channel RGB image of size 100-by-100. Clear it. Use pointer arithmetic to draw a green
square between (20, 5) and (40, 20).

3. Practice using the block access methods (Table 3-16). Create a 210-by-210 single-channel byte image
and zero it. Within the image, build a pyramid of increasing values using the submatrix constructor and
the cv::Range object. That is: the outer border should be 0, the next inner border should be 20, the
next inner border should be 40, and so on until the final innermost square is set to value 200; all
borders should be 10 pixels wide. Display the image.

4. Use multiple image objects for one image. Load an image that is at least 100-by-100. Create two
additional image objects using the first object and the submatrix constructor. Create the new images
with width at 20 and the height at 30, but with their origins located at pixel at (5, 10) and (50, 60),
respectively. Logically invert the two images using the ‘not’ logical inversion operator. Display the
loaded image, which should have two inverted rectangles within the larger image.

5. Add an CV_DbgAssert(condition) to the code of question 4 that will be triggered by a
condition in the program. Build the code in debug, run it and see the assert being triggered. Now build
it in release mode and see that the condition is not triggered.

6. Create a mask using cv::compare(). Load a real image. Use cv::split() to split the image
into red, green, and blue images.
a) Find and display the green image.
b) Clone this green plane image twice (call these clone1 and clone2).

49 Remember that cvFloor() and cvCeil() are legacy functions and are found in
…/opencv/modules/core/include/opencv2/core/types_c.h.

c) Find the green plane’s minimum and maximum value.
d) Set clone1’s values to thresh = (unsigned char)((maximum - minimum)/2.0).
e) Set clone2 to 0 and use cv::compare(green_image, clone1, clone2,

cv::CMP_GE). Now clone2 will have a mask of where the value exceeds thresh in the green
image.

f) Finally, compute the value: green_image = green_image - thresh/2 and display the
results. (Bonus: assign this value to green_image only where clone2 is non-zero.)

4
Graphical User Interface

HighGUI: Portable Graphics Toolkit
The OpenCV functions that allow us to interact with the operating system, the filesystem1, and hardware
such as cameras are collected into a sub-library called HighGUI (which stands for “high-level graphical
user interface”). HighGUI allows us to open windows, to display images, to read and write graphics-related
files (both images and video), and to handle simple mouse, pointer, and keyboard events. We can also use it
to create other useful doodads—like sliders, for example—and then add them to our windows. If you are a
GUI guru in your window environment of choice, then you might find that much of what HighGUI offers is
redundant. Yet, even so, you might find that the benefit of cross-platform portability is itself a tempting
morsel.

From our initial perspective, the HighGUI library in OpenCV can be divided into three parts: the hardware
part, the filesystem part, and the GUI part. We will take a moment to overview what is in each part before
we really dive in.

The hardware part is primarily concerned with the operation of cameras. In most operating systems,
interaction with a camera is a tedious and painful task. HighGUI allows an easy way to query a camera and
retrieve its latest image. It hides all of the nasty stuff, and that keeps us happy.

The filesystem part is concerned primarily with loading and saving images. One nice feature of the library
is that it allows us to read video using the same methods we would use to read a camera. We can therefore
abstract ourselves away from the particular device we’re using and get on with writing interesting code. In
a similar spirit, HighGUI provides us with a (relatively) universal pair of functions to load and save still
images. These functions simply rely on the filename extension and automatically handle all of the decoding
or encoding that is necessary.

The third part of HighGUI is the window system (or GUI). The library provides some simple functions that
allow us to open a window and throw an image into that window. It also allows us to register and respond
to mouse and keyboard events on that window. These features are most useful when trying to get off of the
ground with a simple application. Tossing in some slider bars, we find ourselves able to prototype a
surprising variety of applications using only the HighGUI library. If we want to link to Qt, we can even get
a little more functionality.2

1 Some lower level file system operations are located in the core module as well.
2 This is Qt the cross-platform widget toolkit. We will talk more about how this works later in this chapter.

As we proceed in this chapter, we will not treat these three segments separately; rather, we will start with
some functions of highest immediate utility and work our way to the subtler points thereafter. In this way,
you will learn what you need to get going as soon as possible.

At the end of the chapter, we will consider additional functions that will allow us to mark up images by
drawing lines or other shapes on them. These functions are primarily provided for debugging and validating
code, but will turn out to be broadly useful. Finally, we will look at more advanced data persistence for
OpenCV data types that will allow us to store and reload additional data types other than just images.

Working with Image Files
OpenCV provides special functions for the loading and saving of images that deal, either directly or
implicitly, with the complexities associated with compression and decompression of that image data. These
functions are different from the more universal XML/YML-based functions discussed in the previous
chapter in several respects. The primary distinction is that because these functions are designed for actual
images, as opposed to general arrays of data, they rely heavily on existing backends for compression and
decompression, handling all of the common file formats, each in the manner required by that file type.
Most of these compression and decompression schemes have been developed with the idea that it is
possible to lose some information without degrading the visual experience of the image. Clearly such lossy
compression schemes are not a good idea for arrays of nonimage data. Less obviously, artifacts introduced
by lossy compressions schemes can also cause headaches for computer vision algorithms as well. In many
cases, algorithms will find and respond to compression artifacts that are completely invisible to us humans.

The key difference to remember is that the loading and saving functions we will discuss here are really an
interface to the resources for handling image files that are already present in your operating system or its
available libraries. The XML/YML data persistence mentioned here is entirely intrinsic to OpenCV.

Loading and Saving Images
The most common tasks we will need to accomplish are the loading and the saving of files from disk. The
easiest way to do this is with the high-level functions cv::imread() and cv::imwrite(). These
functions handle the complete task of decompression and compression as well as the actual interaction with
the filesystem.

Reading Files with cv::imread()

Obviously the first thing to do is to learn how to get an image out of the filesystem and into our program.
The function that does this is cv::imread():

cv::Mat cv::imread(
 const string& filename, // Input filename
 int flags = cv::LOAD_IMAGE_COLOR // Flags set how to interpret file
);

When opening an image, cv::imread() does not look at the file extension. Instead, cv::imread()
analyzes the first few bytes of the file (aka its signature or “magic sequence”) and determines the
appropriate codec using that. The second argument flags can be set to one of several values. By default,
flags is set to cv::IMREAD_COLOR. This value indicates that images are to be loaded as three-channel
images with 8 bits per channel. In this case, even if the image is actually grayscale in the file, the resulting
image in memory will still have three channels, with all of the channels containing identical information.
Alternatively, if flags is set to cv::IMREAD_GRAYSCALE, the image will be loaded as grayscale,
regardless of the number of channels in the file. The final option is to set flags to

cv::IMREAD_ANYCOLOR. In this case, the image will be loaded “as is,” with the result being three-
channel if the file is color, and one-channel if the file is grayscale.3

In addition to the color-related flags, cv::imread() supports the flag cv::IMREAD_ANYDEPTH,
which indicates that if an input image channels have more than 8 bits, that it should be loaded without
conversion (i.e., the allocated array will be of the type indicated in the file.)

Table 4-1: Parameters accepted by cv::imread()

Parameter ID Meaning Default

 cv::IMREAD_COLOR Always load to three-
channel array.

 yes

 cv::IMREAD_GRAYSCALE
Always load to single-
channel array.

 no

 cv::IMREAD_ANYCOLOR Channels as indicated by
file (up to three).

 no

 cv::IMREAD_ANYDEPTH
Allow loading of more
than 8-bit depth.

 no

 cv::IMREAD_UNCHANGED
Equivalent to combining:
cv::LOAD_IMAGE_ANYCOLOR |
cv::LOAD_IMAGE_UNCHANGED

 no

cv::imread() does not give a runtime error when it fails to load an image; it simply returns an empty
cv::Mat (i.e., empty()==true).

Writing Files with cv::imwrite()

The obvious complementary function to cv::imread() is cv::imwrite(), which takes three
arguments:

int cv::imwrite(
 const string& filename, // Input filename
 cv::InputArray image, // Image to write to file
 const vector<int>& params = vector<int>() // (Optional) for parameterized formats
);

The first argument gives the filename, whose extension is used to determine the format in which the file
will be stored. The second argument is the image to be stored. The third argument is used for parameters
that are accepted by the particular file type being used for the write operation. The params argument
expects an STL vector of integers, with those integers being a sequence of parameter IDs followed by the
value to be assigned to that parameter (i.e., alternating between the parameter ID and the parameter value).
For the parameter IDs, there are aliases provided by OpenCV, as listed in Table 4-2.

Table 4-2: Parameters accepted by cv::imwrite()

Parameter ID Meaning Range Default

cv::IMWRITE_JPG_QUALITY JPEG quality 0–100 95

3 At the time of writing, “as is” does not support the loading of a fourth channel for those file types that support alpha
channels. In this case, the fourth channel will currently just be ignored and the file will be treated as if it had only three
channels.

cv::IMWRITE_PNG_COMPRESSION

PNG compression
(higher values
mean more
compression)

 0-9 3

cv::IMWRITE_PXM_BINARY
Use binary format
for PPM, PGM, or
PBM files

 0 or 1 1

The cv::imwrite() function will store only 8-bit single- or three-channel images for most file formats.
Backends for flexible image formats like PNG, TIFF, or JPEG 2000 allow storing 16-bit or even float
formats and some allow four-channel images (BGR plus alpha) as well. The return value will be 1 if the
save was successful and should be 0 if the save was not.4

A Note about Codecs
Remember, however, that cv::imwrite() is intended for images, and relies heavily on software
libraries intended for handling image file types. These libraries are generically referred to as codecs (“co-
mpression and dec-ompression librarie-s”). Your operating system will likely have many codecs available,
with (at least) one being available for each of the different common file types.

OpenCV comes with the codecs you will need for some file formats (JPEG, PNG, and TIFF), and on
Microsoft Windows as well as on Apple Mac OS X, these should be available on installation. On Linux and
other Unix-like operating systems, OpenCV will try to use codecs supplied with the OS image. In this case,
you will need to ensure you have installed the relevant packages with their development files (i.e., install
libjpeg-dev in addition to libjpeg on Linux).

In Apple’s Mac OS X, it is also possible to use the native image readers from Mac OS X.
If you do this, however, you should be aware that Mac OS X has an embedded native
color management, and so the colors that appear in the loaded file may be different than
if you had used the codecs included with the OpenCV package. This is a good example of
how the reliance on external elements by cv::imread() and cv::imwrite() can
have important and sometimes unexpected consequences.

Compression and Decompression
As already mentioned, the cv::imread() and cv::imwrite functions are high-level tools that handle
a number of separate things necessary to ultimately get your image written to or read from the disk. In
practice, it is often useful to be able to handle some of those subcomponents individually and, in particular,
to be able to compress or decompress an image in memory (using the codecs we just reviewed).

Compressing Files with cv::imencode()

Images can be compressed directly from OpenCV’s array types. In this case, the result will not be an array
type, but rather a simple character buffer. This should not be surprising, as the resulting object is now in
some format that is meaningful only to the codec that compressed it, and will (by construction) not be the
same size as the original image.

void cv::imencode(
 const string& ext, // Extension specifies codec
 cv::InputArray img, // Image to be encoded
 vector<uchar>& buf, // Encoded file bytes go here
 const vector<int>& params = vector<int>() // (Optional) for parameterized formats

4 The reason we say “should” is that, in some OS environments, it is possible to issue save commands that will actually
cause the operating system to throw an exception. Normally, however, a zero value will be returned to indicate failure.

);

The first argument to cv::imencode() is the file extension ext, represented as a string, which is
associated with the desired compression. Of course, no file is actually written, but the extension is not only
an intuitive way to refer to the desired format, it is the actual key used by most operating systems to index
the available codecs. The next argument img is the image to be compressed, and the argument following
that buf is the character array into which the compressed image will be placed. The final argument
params is used to specify any parameters which may be required (or desired) for the specific compression
codec to be used. The possible values for params are those listed earlier in Table 4-2 in the
cv::imwrite().

Uncompressing Files with cv::imdecode()
cv::Mat cv::imdecode(
 cv::InputArray buf, // Encoded file bytes are here
 int flags = cv::LOAD_IMAGE_COLOR // Flags set how to interpret file
);

Just as cv::imencode() allows us to compress an image into a character buffer, cv::imdecode()
allows us to decompress from a character buffer into an image array. cv::imdecode() takes just two
arguments, the first being the buffer5 buf and the second being the flags arguments, which takes the
same options as the flags used by cv::imread() (see Table 4-1). As was the case with
cv::imread(), cv::imdecode() does not need a file extension (as cv::imencode() did)
because it can deduce the correct codec to use from the first bytes of the compressed image in the buffer.

Just as cv::imread() returns an empty (cv::Mat::empty()==true) array if it cannot read the file
it is given, cv::imdecode() returns an empty array if the buffer it is given is empty, contains invalid or
unusable data, and so on.

Working with Video
When working with video, we must consider several functions, including (of course) how to read and write
video files. You will also probably find yourself thinking shortly thereafter about how to actually play back
such files on the screen—either for debugging, or as the final output of our program; we’ll get to that next,

Reading Video with the cv::VideoCapture Object
The first thing we need is the cv::VideoCapture object. This is another one of those “objects that do
stuff” we encountered in the previous chapter. This object contains the information needed for reading
frames from a camera or video file. Depending on the source, we use one of three different calls to create a
cv::VideoCapture object:

cv::VideoCapture::VideoCapture(
 const string& filename, // Input filename
);
cv::VideoCapture::VideoCapture(
 int device // Video Capture device id
);
cv::VideoCapture::VideoCapture();

In the case of the first constructor, we can simply give a filename for a video file (.MPG, .AVI, etc.) and
OpenCV will open the file and prepare to read it. If the open is successful and we are able to start reading
frames, the member function cv::VideoCapture::isOpen() will return true.

5 You should not be surprised that the input buf is not type vector<int>&, as it was with cv::imencode().
Recall that the type cv::InputArray covers many possibilities and vector<> is one of them.

A lot of people don’t always check these sorts of things, thinking that nothing will go wrong. Don’t do that
here. The returned value of cv::VideoCapture::isOpen() will be false if for some reason the
file could not be opened (e.g., if the file does not exist), but that is not the only possible cause. The
constructed object will also not be ready to be used if the codec with which the video is compressed is not
known. As with the image codecs, you will need to have the appropriate library already residing on your
computer in order to successfully read the video file. This is why it is always important for your code to
check the return value of cv::VideoCapture::isOpen(), because even if it works on one machine
(where the needed codec DLL or shared library is available), it might not work on another machine (where
that codec is missing). Once we have an open cv::VideoCapture object, we can begin reading frames
and do a number of other things. But before we get into that, let’s take a look at how to capture images
from a camera.

The variant of cv::VideoCapture::VideoCapture() that takes an integer device argument
works very much like the string version we just discussed, except without the headache from the
codecs.6 In this case, we give an identifier that indicates a camera we would like to access and how we
expect the operating system to talk to that camera. For the camera, this is just an identification number that
is zero (0) when we only have one camera and increments upward when there are multiple cameras on the
same system. The other part of the identifier is called the domain of the camera and indicates (in essence)
what type of camera we have. The domain can be any of the predefined constants shown in Table 4-3.

Table 4-3: Camera “domain” indicates where HighGUI should look for your camera

Camera capture constant Numerical value
 cv::CAP_ANY 0
 cv::CAP_MIL 100
 cv::CAP_VFW 200
 cv::CAP_V4L 200
 cv::CAP_V4L2 200
 cv::CAP_FIREWIRE 300
 cv::CAP_IEEE1394 300
 cv::CAP_DC1394 300
 cv::CAP_CMU1394 300
 cv::CAP_QT 500
 cv::CAP_DSHOW 700
 cv::CAP_PVAPI 800
 cv::CAP_OPENNI 900
 cv::CAP_ANDROID 1000
…

When we construct the device argument for cv::VideoCapture::VideoCapture(), we pass in
an identifier that is just the sum of the domain index and the camera index. For example:

cv::VideoCapture capture(cv::CAP_FIREWIRE);

In this example, cv::VideoCapture::VideoCapture() will attempt to open the first (i.e., number-
zero) FireWire camera. In most cases, the domain is unnecessary when we have only one camera; it is
sufficient to use cv::CAP_ANY (which is conveniently equal to 0, so we don’t even have to type that in).
One last useful hint before we move on: on some platforms, you can pass -1 to

6 Of course, to be completely fair, we should probably confess that the headache caused by different codecs has been
replaced by the analogous headache of determining which cameras are (or are not) supported on our system.

cv::VideoCapture::VideoCapture(), which will cause OpenCV to open a window that allows
you to select the desired camera.

Your last option is to create the capture object without providing any information about what is to be
opened.

cv::VideoCapture cap();
cap.open(“my_video.avi”);

In this case, the capture object will be there, but not ready for use until you explicitly open the source you
want to read from. This is done with the cv::VideoCapture::open() method which, like the
cv::VideoCapture constructor, can take either an STL string or a device ID as arguments. In either
case, cv::VideoCapture::open() will have exactly the same effect as calling the
cv::VideoCapture constructor with the same argument.

Reading Frames with cv::VideoCapture::read()
bool cv::VideoCapture::read(
 cv::Mat& image // Image into which to read data
);

Once you have a cv::VideoCapture object, you can start reading frames. The easiest way to do this is
to call cv::VideoCapture::read(), which will simply go to the open file represented by
cv::VideoCapture and get the next frame, inserting that frame into the provided array image. This
action will automatically “advance” the video capture object such that a subsequent call to
cv::VideoCapture::read() will return the next frame, and so on.

If the read was not successful (e.g., if you have reached the end of your file), then this function call will
return false (otherwise it will return true). Similarly, the array object you supplied to the function will
also be empty.

Reading Frames with cv::VideoCapture::operator>>()
cv::VideoCapture& cv::VideoCapture::operator>>(
 cv::Mat& image // Image into which to read data
);

In addition to using the read method of cv::VideoCapture, you can use the overloaded function
cv::VideoCapture::operator>>() (i.e., the “stream read” operator) to read the next frame from
your video capture object. In this case, cv::VideoCapture::operator>>() behaves exactly the
same as cv::VideoCapture::read(), except that because it is a stream operator, it returns a
reference to the original cv::VideoCapture::read() object, whether or not it succeeded. In this
case, you must check that the return array is not empty.

Reading Frames with cv::VideoCapture::grab() and cv::VideoCapture::retrieve()

Instead of taking images one at a time from your camera or video source and decoding them as you read
them, it is possible to break this process down into a grab phase, which is a little more than a memory
copy, and a retrieve phase, which handles the actual decoding of the grabbed data.

bool cv::VideoCapture::grab(void);
bool cv::VideoCapture::retrieve(
 cv::Mat& image, // Image into which to read data
 int channel = 0 // Used for multihead devices
);

The cv::VideoCapture::grab() function copies the currently available image to an internal buffer
that is invisible to the user. Why would you want OpenCV to put the frame somewhere you can’t access it?
The answer is that this grabbed frame is unprocessed, and grab() is designed simply to get it onto the
computer (typically from a camera) as quickly as possible.

There are many reasons to grab and retrieve separately rather than together as would be
the case in calling cv::VideoCapture::read(). The most common situation

arises when there are multiple cameras (e.g., with stereo imaging). In this case, it is
important to have frames that are separated in time by the minimum amount possible
(ideally they would be simultaneous for stereo imaging). Therefore, it makes the most
sense to first grab all the frames and then come back and decode them after you have
them all safely in your buffers.

As was the case with cv::VideoCapture::read(), cv::VideoCapture::grab()returns
true only if the grab was successful.

Once you have grabbed your frame, you can call cv::VideoCapture::retrieve(), which handles
the decoding and the allocation and copying necessary to return the frame to you as a cv::Mat array. The
function cv::VideoCapture::retrieve() functions analogously to
cv::VideoCapture::read(), except that it operates from the internal buffer to which
cv::VideoCapture::grab() copies frames. The other important difference between
cv::VideoCapture::read() and cv::VideoCapture::retrieve() is the additional
argument channel. The channel argument is used when the device being accessed natively has
multiple “heads” (i.e., multiple imagers). This is typically the case for devices designed specifically to be
stereo imagers, as well as slightly more exotic devices such as the Kinect.7 In these cases, the value of
channel will indicate which image from the device is to be retrieved. In these cases, you would call
cv::VideoCapture::grab() just once and then call cv::VideoCapture::retrieve() as
many times as needed to retrieve all of the images in the camera (each time with a different value for
channel).

Camera Properties: cv::VideoCapture::get() and cv::VideoCapture::set()

Video files contain not only the video frames themselves, but also important metadata, which can be
essential for handling the files correctly. When a video file is opened, that information is copied into the
cv::VideoCapture object’s internal data area. It is very common to want to read that information from
the cv::VideoCapture object, and sometimes also useful to write to that data area ourselves. The
cv::VideoCapture::get() and cv::VideoCapture::set() functions allow us to perform
these two operations:

double cv::VideoCapture::get(
 int propid // Property identifier (see Table 4-4)
);

bool cv::VideoCapture::set(
 int propid // Property identifier (see Table 4-4)
 double value // Value to which to set the property
);

The routine cv::VideoCapture::get() accepts any of the property IDs shown in Table 4-48.

Table 4-4: Video capture properties used by cv::VideoCapture::get() and cv::VideoCapture::set()

Video capture property Camera
Only

Meaning

cv::CAP_PROP_POS_MSEC Current position in video file (milliseconds) or video

7 The currently supported multihead cameras are Kinect and Videre; others may be added later.
8 It should be understood that not all of the properties recognized by OpenCV will be recognized or handled
by the “backend” behind the capture. For example, the capture mechanisms operating behind the scenes on
Android, Firewire on Linux (via dc1394), Quicktime, or a Kinect (via OpenNI) are all going to be very
different, and not all of them will offer all of the services implied by this long list of options. Expect this
list to grow as well, as new system types make new options possible.

capture timestamp
cv::CAP_PROP_POS_FRAMES Zero-based index of next frame

cv::CAP_PROP_POS_AVI_RATIO

 Relative position in the video (range is 0.0 to 1.0)

cv::CAP_PROP_FRAME_WIDTH Width of frames in the video
cv::CAP_PROP_FRAME_HEIGHT Height of frames in the video
cv::CAP_PROP_FPS Frame rate at which the video was recorded
cv::CAP_PROP_FOURCC Four character code indicating codec
cv::CAP_PROP_FRAME_COUNT Total number of frames in a video file
cv::CAP_PROP_FORMAT Format of the Mat objects returned (e.g., CV::U8C3)
cv::CAP_PROP_MODE Indicates capture mode, values are specific to video

backend being used (i.e., DC1394, etc.)
cv::CAP_PROP_BRIGHTNESS ü Brightness setting for camera (when supported)
cv::CAP_PROP_CONTRAST ü Contrast setting for camera (when supported)
cv::CAP_PROP_SATURATION ü Saturation setting for camera (when supported)
cv::CAP_PROP_HUE ü Hue setting for camera (when supported)
cv::CAP_PROP_GAIN ü Gain setting for camera (when supported)
cv::CAP_PROP_EXPOSURE ü Exposure setting for camera (when supported)
cv::CAP_PROP_CONVERT_RGB ü If nonzero, captured images will be converted to

have three channels
cv::CAP_PROP_WHITE_BALANCE ü White balance setting for camera (when supported)
cv::CAP_PROP_RECTIFICATION ü Rectification flag for stereo cameras (DC1394-2.x

only)

Most of these properties are self-explanatory. POS_MSEC is the current position in a video file, measured
in milliseconds. POS_FRAME is the current position in frame number. POS_AVI_RATIO is the position
given as a number between 0.0 and 1.0. (This is actually quite useful when you want to position a
trackbar to allow folks to navigate around your video.) FRAME_WIDTH and FRAME_HEIGHT are the
dimensions of the individual frames of the video to be read (or to be captured at the camera’s current
settings). FPS is specific to video files and indicates the number of frames per second at which the video
was captured; you will need to know this if you want to play back your video and have it come out at the
right speed. FOURCC is the four-character code for the compression codec to be used for the video you are
currently reading (more on these shortly). FRAME_COUNT should be the total number of frames in the
video, but this figure is not entirely reliable.

All of these values are returned as type double, which is perfectly reasonable except for the case of
FOURCC (FourCC) [FourCC85]. Here you will have to recast the result in order to interpret it, as shown in
Example 4-1.

Example 4-1. Unpacking a four-character code to identify a video codec

cv::VideoCapture cap("my_video.avi");
double f = cap.get(cv::CAP_PROP_FOURCC);
char* fourcc = (char*) (&f);

For each of these video capture properties, there is a corresponding cv::VideoCapture::set()
function that will attempt to set the property. These are not all meaningful things to do; for example, you
should not be setting the FOURCC of a video you are currently reading. Attempting to move around the
video by setting one of the position properties will sometimes work, but only for some video codecs (we’ll
have more to say about video codecs in the next section).

Writing Video with the cv::VideoWriter Object
The other thing we might want to do with video is writing it out to disk. OpenCV makes this easy; it is
essentially the same as reading video but with a few extra details.

Just as we did with the cv::VideoCapture device for reading, we must first create a
cv::VideoWriter device before we can write out our video. The video writer has two constructors;
one is a simple default constructor that just creates an uninitialized video object that we will have to open
later, and the other has all of the arguments necessary to actually set up the writer.

cv::VideoWriter::VideoWriter(
 const string& filename, // Input filename
 int fourcc, // codec, use CV_FOUR_CC() macro
 double fps, // Frame rate (storred in output file)
 cv::Size frame_size, // Size of individual images
 bool is_color = true // if false, you can pass gray frames
);

You will notice that the video writer requires a few extra arguments relative to the video reader. In addition
to the filename, we have to tell the writer what codec to use, what the frame rate is, and how big the frames
will be. Optionally, we can tell OpenCV that the frames are already in color (i.e., three-channel). If you set
isColor to false, you can pass grayscale frames and the video writer will handle them correctly.

As with the video reader, you can also create the video writer with a default constructor, and then configure
the writer with the cv::VideoWriter::open() method, which takes the same arguments as the full
constructor.

cv::VideoWriter out();
out.open(
 "my_video.mpg",
 CV_FOUR_CC(‘D’,’I’,’V’,’X’), // MPEG-4 codec
 30.0, // fps
 cv::Size(640, 480),
 true // expect only color frames
);

Here, the codec is indicated by its four-character code. (For those of you who are not experts in
compression codecs, they all have a unique four-character identifier associated with them). In this case, the
int that is named fourcc in the argument list for cv::VideoWriter::VideoWriter() is
actually the four characters of the fourcc packed together. Since this comes up relatively often, OpenCV
provides a convenient macro CV_FOURCC(c0,c1,c2,c3) that will do the bit packing for you.

Once you have given your video writer all the information it needs to set itself up, it is always a good idea
to ask it if it is ready to go. This is done with the cv::VideoWriter::isOpened() method, which
will return true if you are good to go. If it returns false, this could mean that you don’t have write
permission to the directory for the file you indicated, or (most often) that the codec you specified is not
available.

The codecs available to you will depend on your operating system installation and the
additional libraries you have installed. For portable code, it is especially important to be
able to gracefully handle the case in which the desired codec is not available on any
particular machine.

Writing Frames with cv::VideoWriter::write()

Once you have verified that your video writer is ready to write, you can write frames by simply passing
your array to the writer:

cv::VideoWriter::write(
 const Mat& image // Image to write as next frame
);

This image must have the same size as the size you gave to the writer when you configured it in the first
place. If you told the writer that the frames would be in color, this must also be a three-channel image. If
you indicated to the writer (via isColor) that the images is just one channel, you should supply a single-
channel (grayscale) image.

Writing Frames with cv::VideoWriter::operator<<()

The video writer also supports the idiom of the overloaded output stream operator (operator<<()). In
this case, once you have your video writer open, you can write images to the video stream in the same
manner you would write to cout or a file ofstream object:

my_video_writer << my_frame;

Working with Windows
The HighGUI toolkit provides some rudimentary built-in features for creating windows, displaying images
in those windows, and for making some user interaction possible with those windows. The native OpenCV
graphical user interface (GUI) functions have been part of the library for a very long time, and have the
advantage of being stable, portable,9 and very easy to use.

On the other hand, the native GUI features have the disadvantage of being not particularly complete. As a
result, there has been an effort to modernize the GUI portion of HighGUI, and to add a number of useful
new features. This was done by converting from “native” interfaces to the use of Qt. Qt is a cross-platform
toolkit, and so new features can be implemented only once in the library, rather than once each for each of
the native platforms. Needless to say, this has the result of making development of the Qt interface more
attractive, and so it does more stuff, and will probably grow in the future, leaving the features of the native
interface to become static legacy code.

In this section, we will first take a look at the native functions, and then move on to look at the differences,
and particularly the new features, offered by the Qt-based interface.

HighGUI Native Graphical User Interface
This section describes the core interface functions that are part of OpenCV and require no external toolkit
support. Some of them, when you are using the Qt backend, will also behave somewhat differently or have
some additional options, but we will put those details off until the next section.

The native HighGUI user input tools support only two basic interactions. Specifically, mouse clicks on the
image area can be responded to, and a simple track bar can be added. These basic functions are usually
sufficient for basic mock-ups and debugging, but hardly ideal for end-user facing applications. For that,
you will (at least) want to use the Qt-based interface or some other UI toolkit.

The main advantages of the native tools are that they are fast and easy to use, and don’t require you to
install any additional libraries.

Creating a Window with cv::namedWindow()

First, we want to be able to create a window and show an image on the screen using HighGUI. The
function that does the first part for us is cv::namedWindow(). The function expects a name for the new
window and one flag. The name appears at the top of the window, and the name is also used as a handle for

9 They are “portable” because they make use of native window GUI tools on various platforms. This means X11 on
Linux, Cocoa on MacOSX, and the raw Win32 API on Microsoft Windows machines. However, this portability only
extends to those platforms for which there is an implementation in the library. There exist platforms on which OpenCV
can be used for which there are no available implementations of the HighGUI library (e.g., Android).

the window that can be passed to other HighGUI functions.10 The flag argument indicates if the window
should autosize itself to fit an image we put into it. Here is the full prototype:

int cv::namedWindow(
 const string& name, // Handle used to identify window
 int flags = 0 // Used to tell window to autosize
);

For now, the only valid options available for flags are to set it to 0 (it’s the default value), which
indicates that users are to be able (and required) to resize the window, or to set it to
cv::WINDOW_AUTOSIZE.11 If cv::WINDOW_AUTOSIZE is set, then HighGUI resizes the window to
fit automatically whenever a new image is loaded, but users cannot resize the window.

Once we create a window, we usually want to put something inside it. But before we do that, let’s see how
to get rid of the window when it is no longer needed. For this, we use cv::destroyWindow(), a
function whose only argument is a string: the name given to the window when it was created.

int cv::destroyWindow(
 const string& name, // Handle used to identify window
);

Drawing an Image with cv::imshow()

Now we are ready for what we really want to do, and that is to load an image and to put it into the window
where we can view it and appreciate its profundity. We do this via one simple function, cv::imshow():

void cv::imshow(
 const string& name, // Handle used to identify window
 cv::InputArray image // Image to display in window
);

The first argument is the name of the window within which we intend to draw. The second argument is the
image to be drawn.

Updating a Window and cv::waitKey()

The function cv::waitKey() has two functions. The first is the one from which it derives its name,
which is to wait for some specified (possibly indefinite) amount of time for a key-press on the keyboard,
and to return that key value when it is received. cv::waitKey() accepts a key-press from any open
OpenCV window (but will not function if no such window exists).

int cv::waitKey(
 int delay = 0 // Milliseconds until giving up (0=’never’)
);

cv::waitKey() takes a single argument delay, which is the amount of time (in milliseconds) which it
will wait for a key-press before returning automatically. If the delay is set to 0, cv::waitKey() will
wait indefinitely for a key-press. If no key-press comes before delay milliseconds has passed,
cv::waitKey() will return –1.

The second, less obvious function of cv::waitKey() is that it provides an opportunity for any open
OpenCV window to be updated. This means that if you do not call cv::waitKey(), your image may

10 In OpenCV, windows are referenced by name instead of by some unfriendly (and invariably OS-dependent)
“handle.” Conversion between handles and names happens under the hood of HighGUI, so you needn’t worry about it.
11 Later in this chapter, we will look at the (optional) Qt-based backend for HighGUI. If you are using that backend,
there are more options available for cv::namedWindow() as well as other functions.

never be drawn in your window, or your window may behave strangely (and badly) when moved, resized,
or uncovered.12

An Example Displaying an Image

Let’s now put together a simple program that will display an image on the screen. We can read a filename
from the command line, create a window, and put our image in the window in 15 lines (including
comments!). This program will display our image as long as we want to sit and appreciate it, and then exit
when the ESC-key (ASCII value of 27) is pressed.

Example 4-2. A simple example of creating a window and displaying an image in that window

int main(int argc, char** argv) {

 // Create a named window with the name of the file
 cv::namedWindow(argv[1], 1);

 // Load the image from the given filename
 cv::Mat = cv::imread(argv[1]);

 // Show the image in the named window
 cv::imshow(argv[1], img);

 // Idle until the user hits the "Esc" key
 while(true) {
 if(cv::waitKey(100) == 27) break;
 }

 // Clean up and don't be piggies
 cv::destroyWindow(argv[1]);

 exit(0);
}

For convenience, we have used the filename as the window name. This is nice because OpenCV
automatically puts the window name at the top of the window, so we can tell which file we are viewing (see
Figure 4-1). Easy as cake.

12 What this sentence really means is that cv::waitKey() is the only function in HighGUI that can fetch and handle
events. This means that if it is not called periodically, no normal event processing will take place. As a corollary to this,
if HighGUI is being used within an environment that takes care of event processing, then you may not need to call
cv::waitKey().

Figure 4-1: A simple image displayed with cv::imshow()

Before we move on, there are a few other window-related functions you ought to know about. They are:
void cv::moveWindow(const char* name, int x, int y);
void cv::destroyAllWindows(void);
int cv::startWindowThread(void);

cv::moveWindow() simply moves a window on the screen so that its upper-left corner is positioned at
x,y. cv::destroyAllWindows() is a useful cleanup function that closes all of the windows and de-
allocates the associated memory.

On Linux and MacOS, cv::startWindowThread() tries to start a thread that updates the window
automatically and handles resizing and so forth. A return value of 0 indicates that no thread could be
started—for example, because there is no support for this feature in the version of OpenCV that you are
using. Note that, if you do not start a separate window thread, OpenCV can react to user interface actions
only when it is explicitly given time to do so (this happens when your program invokes
cv::waitKey()).

Mouse Events

Now that we can display an image to a user, we might also want to allow the user to interact with the image
we have created. Since we are working in a window environment and since we already learned how to
capture single keystrokes with cv::waitKey(), the next logical thing to consider is how to “listen to”
and respond to mouse events.

Unlike keyboard events, mouse events are handled by a more typical callback mechanism. This means that,
to enable response to mouse clicks, we must first write a callback routine that OpenCV can call whenever a
mouse event occurs. Once we have done that, we must register the callback with OpenCV, thereby
informing OpenCV that this is the correct function to use whenever the user does something with the
mouse over a particular window.

Let’s start with the callback. For those of you who are a little rusty on your event-driven program lingo, the
callback can be any function that takes the correct set of arguments and returns the correct type. Here, we
must be able to tell the function to be used as a callback exactly what kind of event occurred and where it
occurred. The function must also be told if the user was pressing such keys as Shift or Alt when the mouse
event occurred. A pointer to such a function is called a cv::MouseCallback. Here is the exact
prototype that your callback function must match:

void your_mouse_callback(
 int event, // Event type (see Table 4-5)
 int x, // x-location of mouse event
 int y, // y-location of mouse event
 int flags, // More details on event (see Table 4-6)

 void* param // Parameters from cv::setMouseCallback()
);

Now, whenever your function is called, OpenCV will fill in the arguments with their appropriate values.
The first argument, called the event, will have one of the values shown in Table 4-5.

Table 4-5: Mouse event types

Event Numerical value
 cv::EVENT_MOUSEMOVE 0
 cv::EVENT_LBUTTONDOWN 1
 cv::EVENT_RBUTTONDOWN 2
 cv::EVENT_MBUTTONDOWN 3
 cv::EVENT_LBUTTONUP 4
 cv::EVENT_RBUTTONUP 5
 cv::EVENT_MBUTTONUP 6
 cv::EVENT_LBUTTONDBLCLK 7
 cv::EVENT_RBUTTONDBLCLK 8
 cv::EVENT_MBUTTONDBLCLK 9

The second and third arguments will be set to the x and y coordinates of the mouse event. It is worth noting
that these coordinates represent the pixel coordinates in the image independent of the size of the window.13

The fourth argument, called flags, is a bit field in which individual bits indicate special conditions
present at the time of the event. For example, cv::EVENT_FLAG_SHIFTKEY has a numerical value of
16 (i.e., the fifth bit, or 1<<4) and so, if we wanted to test whether the shift key were down, we could
simply compute the bitwise AND of flags & cv::EVENT_FLAG_SHIFTKEY. Table 4-6 shows a
complete list of the flags.

Table 4-6: Mouse event flags

Flag Numerical value
 cv::EVENT_FLAG_LBUTTON 1
 cv::EVENT_FLAG_RBUTTON 2
 cv::EVENT_FLAG_MBUTTON 4
 cv::EVENT_FLAG_CTRLKEY 8
 cv::EVENT_FLAG_SHIFTKEY 16
 cv::EVENT_FLAG_ALTKEY 32

The final argument is a void pointer that can be used to have OpenCV pass additional information in the
form of a pointer to whatever kind of structure you need.14

13 In general, this is not the same as the pixel coordinates of the event that would be returned by the OS. This is because
OpenCV is concerned with telling you where in the image the event happened, not in the window (to which the OS
typically references mouse event coordinates).
14 A common situation in which you will want to use the param argument is when the callback itself is a static member
function of a class. In this case, you will probably find yourself wanting to pass the this pointer and so indicate which
class object instance the callback is intended to affect.

Next, we need the function that registers the callback. That function is called
cv::setMouseCallback(), and it requires three arguments.

void cv::setMouseCallback(
 const string& windowName, // Handle used to identify window
 cv::MouseCallback on_mouse, // Callback function
 void* param = NULL // Additional parameters for callback fn.
);

The first argument is the name of the window to which the callback will be attached. Only events in that
particular window will trigger this specific callback. The second argument is your callback function.
Finally, the third param argument allows us to specify the param information that should be given to the
callback whenever it is executed. This is, of course, the same param we were just discussing with the
callback prototype.

In Example 4-3, we write a small program to draw boxes on the screen with the mouse. The function
my_mouse_callback() responds to mouse events, and it uses the event to determine what to do when
it is called.

Example 4-3. Toy program for using a mouse to draw boxes on the screen

#include <opencv2/opencv.hpp>

// Define our callback which we will install for
// mouse events
//
void my_mouse_callback(
 int event, int x, int y, int flags, void* param
);

Rect box;
bool drawing_box = false;

// A litte subroutine to draw a box onto an image
//
void draw_box(cv::Mat& img, cv::Rect box) {
 cv::rectangle(
 img,
 box.tl(),
 box.br(),
 cv::Scalar(0x00,0x00,0xff) /* red */
);
}

void help() {
 std::cout << "Call: ./ch4_ex4_1\n" <<
 " shows how to use a mouse to draw regions in an image." << std::endl;
}

int main(int argc, char** argv) {

 help();
 box = cv::Rect(-1,-1,0,0);
 cv::Mat image(200, 200, CV::U8C3), temp;
 image.copyTo(temp);

 box = cv::Rect(-1,-1,0,0);
 image = cv::Scalar::all(0);

 cv::namedWindow("Box Example");

 // Here is the crucial moment where we actually install
 // the callback. Note that we set the value of ‘params’ to

 // be the image we are working with so that the callback
 // will have the image to edit.
 //
 cv::setMouseCallback(
 "Box Example",
 my_mouse_callback,
 (void*)&image
);

 // The main program loop. Here we copy the working image
 // to the temp image, and if the user is drawing, then
 // put the currently contemplated box onto that temp image.
 // Display the temp image, and wait 15ms for a keystroke,
 // then repeat.
 //
 for(;;) {

 image.copyTo(temp);
 if(drawing_box) draw_box(temp, box);
 cv::imshow("Box Example", temp);

 if(cv::waitKey(15) == 27) break;
 }

 return 0;
}

// This is our mouse callback. If the user
// presses the left button, we start a box.
// when the user releases that button, then we
// add the box to the current image. When the
// mouse is dragged (with the button down) we
// resize the box.
//
void my_mouse_callback(
 int event, int x, int y, int flags, void* param
) {

 cv::Mat& image = *(cv::Mat*) param;

 switch(event) {
 case cv::EVENT_MOUSEMOVE: {
 if(drawing_box) {
 box.width = x-box.x;
 box.height = y-box.y;
 }
 }
 break;
 case cv::EVENT_LBUTTONDOWN: {
 drawing_box = true;
 box = cv::Rect(x, y, 0, 0);
 }
 break;
 case cv::EVENT_LBUTTONUP: {
 drawing_box = false;
 if(box.width < 0) {
 box.x += box.width;
 box.width *= -1;
 }
 if(box.height < 0) {
 box.y += box.height;
 box.height *= -1;
 }

 draw_box(image, box);
 }
 break;
 }
}

Sliders, Trackbars, and Switches

HighGUI provides a convenient slider element. In HighGUI, sliders are called trackbars. This is because
their original (historical) intent was for selecting a particular frame in the playback of a video. Of course,
once added to HighGUI, people began to use trackbars for all of the usual things one might do with a slider
as well as many unusual ones (we’ll discuss some of these in the next section, “No Buttons”).

As with the parent window, the slider is given a unique name (in the form of a character string) and is
thereafter always referred to by that name. The HighGUI routine for creating a trackbar is:

int cv::createTrackbar(
 const string& trackbarName, // Handle used to identify trackbar, label
 const string& windowName, // Handle used to identify window
 int* value, // Slider position gets put here
 int count, // Total counts for slider at far right
 cv::TrackbarCallback onChange = NULL,// Callback function (optional)
 void* param = NULL // Additional parameters for callback fn.
);

The first two arguments are the name for the trackbar itself and the name of the parent window to which the
trackbar will be attached. When the trackbar is created, it is added to either the top or the bottom of the
parent window;15 it will not occlude any image that is already in the window, rather it will make the
window slightly bigger. The name of the trackbar will appear as a “label” for the trackbar. As with the
location of the trackbar itself, the exact location of this label depends on the operating system, but most
often it is immediately to the left.

Figure 4-2: A simple application displaying an image; this window has two trackbars attached named

"Trackbar0" and "Trackbar1"

15 Whether it is added to the top or bottom depends on the operating system, but it will always appear in the same place
on any given platform.

The next two arguments are value, a pointer to an integer that will be set automatically to the value to
which the slider has been moved, and count, a numerical value for the maximum value of the slider.

The last argument is a pointer to a callback function that will be automatically called whenever the slider is
moved. This is exactly analogous to the callback for mouse events. If used, the callback function must have
the form specified by cv::TrackbarCallback, which means that it must match the following
prototype:

void your_trackbar_callback(
 int pos, // Trackbar slider position
 void* param = NULL // Parameters from cv::setTrackbarCallback()
);

This callback is not actually required, so if you don’t want a callback, then you can simply set this value to
NULL. Without a callback, the only effect of the user moving the slider will be the value of *value being
updated when the slider is moved. (Of course, if you don’t have a callback, you will be responsible for
polling this value if you are going to respond to it being changed.)

The final argument to cv::createTrackbar() is params, which can be any pointer. This pointer
will be passed to your callback as its params argument whenever the callback is executed. This is very
helpful, among other things, for allowing you to handle trackbar events without having to introduce global
variables.

Finally, here are two more routines that will allow you to programmatically read or set the value of a
trackbar just by using its name:

int cv::getTrackbarPos(
 const string& trackbarName, // Handle used to identify trackbar, label
 const string& windowName, // Handle used to identify window
);

void cv::setTrackbarPos(
 const string& trackbarName, // Handle used to identify trackbar, label
 const string& windowName, // Handle used to identify window
 int pos // Trackbar slider position
);

These functions allow you to read or set the value of a trackbar from anywhere in your program.

No Buttons

Unfortunately, the native interface in HighGUI does not provide any explicit support for buttons. It is thus
common practice, among the particularly lazy,16 to instead use sliders with only two positions. Another
option that occurs often in the OpenCV samples in …/opencv/samples/c/ is to use keyboard shortcuts
instead of buttons (see, e.g., the floodfill demo in the OpenCV source-code bundle).

Switches are just sliders (trackbars) that have only two positions, “on” (1) and “off” (0) (i.e., count has
been set to 1). You can see how this is an easy way to obtain the functionality of a button using only the
available trackbar tools. Depending on exactly how you want the switch to behave, you can use the trackbar
callback to automatically reset the button back to 0 (as in Example 4-4; this is something like the standard
behavior of most GUI “buttons”) or to automatically set other switches to 0 (which gives the effect of a
“radio button”).

16 For the less lazy, the common practice was to compose the image you are displaying with a “control panel” you have
drawn and then use the mouse event callback to test for the mouse’s location when the event occurs. When the (x, y)
location is within the area of a button you have drawn on your control panel, the callback is set to perform the button
action. In this way, all “buttons” are internal to the mouse event callback routine associated with the parent window.
Really however, if you need this kind of functionality now, it is probably just best to use the Qt backend.

Example 4-4. Using a trackbar to create a “switch” that the user can turn on and off; this program plays a
video, and uses the switch to create a pause functionality

// An example program in which the user can draw boxes on the screen.
//
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

//
// Using a trackbar to create a "switch" that the user can turn on and off.
// We make this value global so everyone can see it.
//
int g_switch_value = 1;
void switch_off_function() { cout << "Pause\n"; }; //YOU COULD DO MORE WITH THESE FUNCTIONS
void switch_on_function() { cout << "Run\n"; };

// This will be the callback that we give to the trackbar.
//
void switch_callback(int position, void*) {
 if(position == 0) {
 switch_off_function();
 } else {
 switch_on_function();
 }
}

void help() {
 cout << "Call: my.avi" << endl;
 cout << "Shows putting a pause button in a video." << endl;
}

int main(int argc, char** argv) {

 cv::Mat frame; // To hold movie images
 cv::VideoCapture g_capture;
 help();
 if(argc < 2 || !g_capture.open(argv[1])){
 cout << "Failed to open " << argv[1] << " video file\n" << endl;
 return -1;
 }

 // Name the main window
 //
 cv::namedWindow("Example", 1);

 // Create the trackbar. We give it a name,
 // and tell it the name of the parent window.
 //
 cv::createTrackbar(
 "Switch",
 "Example",
 &g_switch_value,
 1,
 switch_callback
);

 // This will just cause OpenCV to idle until
 // someone hits the "Escape" key.
 //
 for(;;) {
 if(g_switch_value) {

 g_capture >> frame;
 if(frame.empty()) break;
 cv::imshow("Example", frame);
 }
 if(cv::waitKey(10)==27) break;
 }

 return 0;
}

You can see that this will turn on and off just like a light switch. In our example, whenever the trackbar
“switch” is set to 0, the callback executes the function switch_off_function(), and whenever it is
switched on, the switch_on_function() is called.

Working with the Qt Backend
As we described earlier, the trend in the development of the HighGUI portion of OpenCV is to rely
increasingly on a separate library for GUI functionality. This makes sense, as it is not OpenCV’s purpose to
reinvent that particular wheel, and there are plenty of great GUI toolkits out there that are well maintained
and which evolve and adapt to the changing times under their own development teams.

From the perspective of the OpenCV library, there is a great advantage to using such an outside toolkit.
Functionality is gained, and at the same time, development time is reduced (which would otherwise be
taken away from the core goal of the library).

However, an important clarification is that using HighGUI with the Qt backend is not the same as using Qt
directly (we will explore this possibility briefly at the end of this chapter). The HighGUI interface is still
the HighGUI interface; it simply uses Qt behind the scenes in place of the various native libraries. One side
effect of this is that it is not that convenient to extend the Qt interface. If you want more than HighGUI
gives you, you are still pretty stuck with writing your own window layer. On the bright side, the Qt
interface gives you a lot more to work with, and so perhaps you will not find that extra level of complexity
necessary as often.

Getting Started

If you have built your OpenCV installation with Qt support on,17 opening a window will automatically open
a window with two new features. These are the Toolbar and the Status Bar (see Figure 4-3). These objects
come up complete, with all of the contents you see in the figure. In particular, the Toolbar contains buttons
which will allow you to pan (the first four arrow buttons), zoom (the next four buttons), save the current
image (the ninth button), and a final button which can be used to pop up a properties window (more on this
last one a little later).

17 This means that when you configured the build with cmake, you used the –D WITH_QT=ON option.

Figure 4-3: This image is displayed with the Qt interface enabled; it shows the Toolbar, the Status Bar, and

a text Overlay (in this case, containing the name of the image)

The lower Status Bar in Figure 4-3 contains information about what is under your mouse at any given
moment. The x-y location is displayed, as well as the RGB value of the pixel currently pointed at.

All of this you get “for free” just for compiling your code with the Qt interface enabled. If you have
compiled with Qt and you do not want these decorations, then you can simply add the cv::GUI_NORMAL
flag when you call cv::namedWindow() and they will disappear.18

The Actions Menu

As you can see, when you create the window with cv::GUI_EXTENDED, you will see a range of buttons
in the Toolbar. An alternative to the toolbar, which will always be available whether you use
cv::GUI_EXTENDED or not, is the pop-up menu. This pop-up menu contains the same options as the
toolbar and can be made to appear at any time by right-clicking on the image.

18 There is also a flag CV_GUI_EXTENDED, which (in theory) creates these decorations, but its numerical value is
0x00, so it is the default behavior anyhow.

Figure 4-4. Here the Qt extended UI window is shown with the pop-up menu, which provides the same

options as the Toolbar (along with an explanation of the buttons and their keyboard shortcuts)

The Text Overlay

Another option provided by the Qt GUI is the ability to put a short-lived banner across the top of the image
you are displaying. This banner is called the Overlay, and appears with a shaded box around it for easy
reading. This is an exceptionally handy feature if you just want to throw some simple information like the
frame number or frame rate on a video, or a filename of the image you are looking at. You can display an
overlay on any window, even if you are using cv::GUI_NORMAL.

int cv::displayOverlay(
 const string& name, // Handle used to identify window
 const string& text, // Text you want to display
 int delay // Milliseconds to show text (0=’forever’)
);

The function cv::displayOverlay() takes three arguments. The first is the name of the window you
want the overlay to appear on. The second argument is whatever text you would like to appear in the
window. One word of warning here, the text has a fixed size, so if you try to cram too much stuff in there, it
will just overflow.19 By default, the text is always center justified. The third and final argument, delay, is
the amount of time (in milliseconds) that the overlay will stay in place. If delay is set to 0, then the
overlay will stay in place indefinitely (or at least until you write over it with another call to
cv::displayOverlay()). In general, if you call cv::displayOverlay() before the delay timer
for a previous call is expired, the previous text is removed and replaced with the new text, and the timer is
reset to the new delay value regardless of what is left in the timer before the new call.

Writing Your Own Text into the Status Bar

In addition to the Overlay, you can also write text into the Status Bar. By default, the Status Bar contains
information about the pixel over which your mouse pointer is located (if any). You can see in Figure 4-3

19 You can, however, insert new lines. So, for example, if you were to give the text string “Hello\nWorld”, then
the word “Hello” would appear on the first (top) line, and the word “World” would appear on a second line right below
“Hello.”

that the status bar contains an x-y location and the RGB color value of the pixel that was under the pointer
when the figure was made. You can replace this text with your own text with the
cv::displayStatusBar() method:

int cv::displayStatusBar(
 const string& name, // Handle used to identify window
 const string& text, // Text you want to display
 int delay // Milliseconds to show text (0=’forever’)
);

Unlike cv::displayOverlay(), cv::displayStatusBar() can only be used on windows that
were created with the cv::GUI_EXTENDED flag (i.e., ones that have a Status Bar in the first place).
When the delay timer is expired (if you didn’t set it to 0), then the default x-y and RGB text will re-
appear in the Status Bar.

The Control Panel

You may have noticed in the earlier figures that there is a last button on the Toolbar, corresponding to a last
option (which is “darkened” in Figure 4-4) on the pop-up menu which we have not really discussed yet.
This option opens up an entirely new window called the Control Panel. The control panel is a convenient
place to put trackbars and buttons (the Qt GUI does support buttons) that you don’t want in your face all of
the time. It is important to remember, however, that there is just one Control Panel per application, and you
do not really create it, you just configure it.

Figure 4-5: In this image, we have added two trackbars to the main window; we also show the Control

Panel with three pushbuttons, a trackbar, two radio buttons, and a checkbox

The Control Panel will not be available unless some trackbars or buttons have been assigned to it (more on
how to do this momentarily). If it is available, then the Control Panel can be made to appear by pressing the
“Display Properties Window” button on the Toolbar (the one on the far right), the identical button on the
Action Menu, or pressing Ctrl+P while your mouse is over any window.

Trackbars Revisited

In the previous section on the HighGUI native interface, we saw that it was possible to add trackbars to
windows. The trackbars in 4 were created using the same cv::createTrackbar() command we saw

earlier. The only real difference between the trackbars in the figure, and the ones we created earlier, is that
they are prettier (compare with the trackbars using the non-Qt interface in Figure 4-2).

The important new concept in the Qt interface, however, is that we can also create trackbars in the Control
Panel. This is done simply by creating the trackbar as you normally would, but by specifying an empty
string as the window name to which the trackbar is to be attached.

int contrast = 128;
cv::createTrackbar("Contrast:", "", &contrast, 255, on_change_contrast);

For example, this fragment would create a trackbar in the Control Panel that would be labeled “Contrast:”,
and whose value would start out at 128, with a maximum value of 255. Whenever the slider is adjusted,
the callback on_change_contrast() will be called.

Creating Buttons with cv::createButton()

One of the most helpful new capabilities provided by the Qt interface is the ability to create buttons. This
includes normal push-buttons, radio style (mutually exclusive) buttons, and checkboxes. All buttons created
are always located in the Control Panel.

All three styles of buttons are created with the same method:
int cv::createButton(
 const string& buttonName, // Handle used to identify trackbar, label
 cv::ButtonCallback onChange = NULL, // Callback for button event
 void* params, // (Optional) parameters for button event
 int buttonType = cv::PUSH_BUTTON, // PUSH_BUTTON or RADIOBOX
 int initialState = 0 // Start state of the button
);

The button expects a name buttonName that will appear on or next to the button. If you like, you can
neglect this and simply provide an empty string, in which case the button name will be automatically
generated in a serialized manner (e.g., “button 0,” “button 1,” etc.). The second argument onChange is a
callback that will be called whenever the button is pressed. The prototype for such a callback must match
the declaration for cv::ButtonCallback, which is:

void your_button_callback(
 int state, // Identifies button event type
 void* params // Paramaters from cv::createButton()
);

When your callback is called as a result of someone pressing a button, it will be given the value state,
which is derived from what just happened to the button. The pointer param that you gave to
cv::createButton() will also be passed to your callback, filling its param argument.

The buttonType argument can take one of three values: cv::PUSH_BUTTON, cv::RADIOBOX, or
cv::CHECKBOX. The first corresponds to your standard button—you press it, it calls your callback. In the
case of the checkbox, the value will be 1 or 0 depending on whether the box was checked or unchecked.
The same is true for a radio button, except that when you click a radio button, the callback is called both for
the button you just clicked, and for the button that is now unclicked (as a result of the mutex nature of radio
buttons). All buttons in the same row (see button bars below) are assumed to be part of the same mutex
group.

When buttons are created, they are automatically organized into button bars. A button bar is a group of
buttons that occupies a “row” in the Control Panel. Consider the following code, which generated the
Control Panel you see in Figure 4-5.

 cv::namedWindow("Image", cv::GUI_EXPANDED);
 cv::displayOverlay("Image", file_name, 0);
 cv::createTrackbar("Trackbar0", "Image", &mybar0, 255);
 cv::createTrackbar("Trackbar1", "Image", &mybar1, 255);

 cv::createButton("", NULL, NULL, cv::PUSH_BUTTON);
 cv::createButton("", NULL, NULL, cv::PUSH_BUTTON);

 cv::createButton("", NULL, NULL, cv::PUSH_BUTTON);
 cv::createTrackbar("Trackbar2", "", &mybar1, 255);
 cv::createButton("Button3", NULL, NULL, cv::RADIOBOX, 1);
 cv::createButton("Button4", NULL, NULL, cv::RADIOBOX, 0);
 cv::createButton("Button5", NULL, NULL, cv::CHECKBOX, 0);

You will notice that Trackbar0 and Trackbar1 are created in the window called “Image,” while Trackbar2
is created in an unnamed window (the Control Panel). The first three cv::createButton() calls are
not given a name for the button, and you can see in Figure 4-5 the automatically assigned names are placed
onto the buttons. You will also notice in Figure 4-5 that the first three buttons are in one row, while the
second group of three is on another. This is because of the trackbar.

Buttons are created one after another, each to the right of its predecessor, until (unless) a trackbar is
created. Because a trackbar consumes an entire row, it is given its own row below the buttons. If more
buttons are created, they will appear on a new row thereafter.20

Text and Fonts

Just as the Qt interface allowed for much prettier trackbars and other elements, Qt also allows for much
prettier and more versatile text. To write text using the Qt interface, you must first create a CvFont
object,21 which you then use whenever you want to put some text on the screen. Fonts are created using the
cv::fontQt() function:

CvFont fontQt(// Return OpenCV font characerization struct
 const string& fontName, // e.g., “Times”
 int pointSize, // Size of font, using “point” system.
 cv::Scalar color = cv::Scalar::all(0), // BGR color as a scalar (no alpha)
 int weight = cv::FONT_NORMAL, // Font weights, 1-100 or see Table 4-7
 int spacing = 0 // Space between individual characters
);

The first argument to cv::fontQt() is the system font name. This might be something like “Times.” If
your system does not have an available font with this name, then a default font will be chosen for you. The
second argument pointSize is the size of the font (i.e., 12=”12 point”, 14=”14 point”, etc.) You may
set this to 0, in which case a default font size (typically 12 point) will be selected for you.

The argument color can be set to any cv::Scalar and will set the color in which the font is drawn; the
default value is black. weight can take one of several pre-defined values, or any integer you like between
1 and 100. The pre-defined aliases and their values are shown in Table 4-7.

Table 4-7: Pre-defined aliases for Qt-font weight and their associated values

Camera capture constan Numerical value
 cv::FONT_LIGHT 25
 cv::FONT_NORMAL 50
 cv::FONT_DEMIBOLD 63
 cv::FONT_BOLD 75
 cv::FONT_BLACK 87

The final argument is spacing, which controls the spacing between individual characters. It can be negative
or positive.

20 Unfortunately, there is no “carriage return” for button placement.
21 You will notice that the name of this object is CvFont rather than what you might expect: cv::Font. This is a
legacy to the old pre-C++ interface. CvFont is a struct, and is not in the cv:: namespace.

Once you have your font, you can put text on an image (and thus on the screen)22 with cv::addText().
void cv::addText(
 cv::Mat& image, // Image onto which to write
 const string& text, // Text to write
 cv::Point location, // Location of lower-left corner of text
 CvFont* font // OpenCV font characerization struct
);

The arguments to cv::addText() are just what you would expect, the image to write on, the text to
write, where to write it, and the font to use—with the latter being a font you defined using
cv::fontQt. The location argument corresponds to the lower-left corner of the first character in text
(or, more precisely, the beginning of the baseline for that character).

Setting and Getting Window Properties

Many of the state properties of a window set at creation are queryable, and many of those can be changed
(set) even after the window’s creation.

void cv::setWindowProperty(
 const string& name, // Handle used to identify window
 int prop_id, // Identifies window property (see Table 4-8)
 double prop_value // Value to which to set property
);

double cv::getWindowProperty(
 const string& name, // Handle used to identify window
 int prop_id // Identifies window property (see Table 4-8)
);

To get a window property, you need only call cv::getWindowProperty() and supply the name of
the window and the property ID (prop_id argument) of the property you are interested in (see Table 4-8).

Table 4-8: Gettable and settable window properties

Property name Description

cv::WIND_PROP_FULL_SIZE Set to either cv::WINDOW_FULLSCREEN for full
screen window, or to cv::WINDOW_NORMAL for
regular window.

cv::WIND_PROP_AUTOSIZE Set to either cv::WINDOW_AUTOSIZE to have the
window automatically size to the displayed image, or
cv::WINDOW_NORMAL to have the image size to
the window.

cv::WIND_PROP_ASPECTRATIO

Set to either cv::WINDOW_FREERATIO to allow the
window to have any aspect ratio (as a result of user
resizing) or cv::WINDOW_KEEPRATIO to only allow
user resizing to affect absolute size (and not aspect
ratio).

22 It is important to notice here that cv::addText() is somewhat unlike all of the rest of the functions in the Qt
interface (though not inconsistent with the behavior of its non-Qt analog cv::putText()). Specifically,
cv::addText() does not put text in or on a window, but rather in an image. This means that you are actually
changing the pixel values of the image—which is different than what would happen if, for example, you were to use
cv::displayOverlay().

Saving and Recovering Window State

The Qt interface also allows the state of windows to be saved and restored. This can be very convenient, as
it includes not only the location and size of your windows, but also the state of all of the trackbars and
buttons. The interface state is saved with the cv::saveWindowParameters() function, which takes a
single argument indicating the window to be saved:

void cv::saveWindowParameters(
 const string& name // Handle used to identify window
);

Once the state of the window is saved, it can be restored with the complementary
cv::loadWindowParameters() function:

void cv::loadWindowParameters(
 const string& name // Handle used to identify window
);

The real magic here is that the load command will work correctly even if you have quit and restarted your
program. The nature of how this is done is not important to us here, but one detail you should know is that
the state information, wherever it is saved, is saved under a key that is constructed from the executable
name. So if you should change the name of the executable (though you can change its location), the state
will not restore.

Interacting with OpenGL
On many contexts, it is very useful to be able to use OpenGL to render synthetic images and display them
on top of camera of other processed images. The HighGUI and Qt GUI’s provide a convenient way to use
OpenGL to perform that rendering right on top of the whatever image you are already showing.23 This can
be extremely effective for visualizing and debugging robotic or augmented-reality applications, or
anywhere in which you are trying to generate a three-dimensional model from your image and want to see
the resulting model visualized on top of the original incoming image.

Figure 4-6. Here OpenGL is used to render a cube on top of our previous image

The basic concept is very simple; you create a callback that is an OpenGL draw function, and register it
with the interface. From there, OpenCV takes care of the rest. The callback is then called every time the
window is drawn (which includes whenever you call cv::imshow(), as you would with successive
frames of a video stream). Your callback should match the prototype for cv::OpenGLCallback(),
which means that it should be something like the following:

void your_opengl_callback(
 void* params // (Optional) Parameters from cv::createOpenGLCallback()
);

Once you have your callback, you can configure the OpenGL interface with
cv::setOpenGlDrawCallback():

void cv::setOpenGlDrawCallback(
 const string& windowName, // Handle used to identify window
 cv::OpenGLCallback callback, // OpenGL callback routine
 void* params = NULL // (Optional) parameters for callback
);

As you can see, there is not much one needs to really set things up. In addition to specifying the name of
the window on which the drawing will be done and supplying the callback function, you have a third

23 By way of reminder, in order to use these commands, you will need to have built OpenCV with the cmake flag –D
WITH_OPENGL=ON.

argument params, which allows you to specify a pointer that will be passed to callback whenever it is
called.

It is probably worth calling out here explicitly that none of this sets up the camera,
lighting, or other aspects of your OpenGL activities. Internally there is a wrapper around
your OpenGL callback that will set up the projection matrix using a call to
gluPerspective(). If you want anything different (which you almost certainly will),
you will have to clear and configure the projection matrix at the beginning of your
callback.

In Figure 4-6, we have taken a simple example code from the OpenCV documentation which draws a cube
in OpenGL, but we have replaced the fixed rotation angles in that cube with variables (rotx and roty)
which we have made the values of the two sliders in our earlier examples. Now the user can rotate the cube
with the sliders while enjoying the beautiful scenery behind.

Example 4-5: Slightly modified code from the OpenCV documentation that draws a cube every frame; this
modified version uses the global variables rotx and roty that are connected to the sliders in Figure 4-6

void on_opengl(void* param)
{
 glMatrixModel(GL_MODELVIEW);
 glLoadIdentity();

 glTranslated(0.0, 0.0, -1.0);

 glRotatef(rotx, 1, 0, 0);
 glRotatef(roty, 0, 1, 0);
 glRotatef(0, 0, 0, 1);

 static const int coords[6][4][3] = {
 { { +1, -1, -1 }, { -1, -1, -1 }, { -1, +1, -1 }, { +1, +1, -1 } },
 { { +1, +1, -1 }, { -1, +1, -1 }, { -1, +1, +1 }, { +1, +1, +1 } },
 { { +1, -1, +1 }, { +1, -1, -1 }, { +1, +1, -1 }, { +1, +1, +1 } },
 { { -1, -1, -1 }, { -1, -1, +1 }, { -1, +1, +1 }, { -1, +1, -1 } },
 { { +1, -1, +1 }, { -1, -1, +1 }, { -1, -1, -1 }, { +1, -1, -1 } },
 { { -1, -1, +1 }, { +1, -1, +1 }, { +1, +1, +1 }, { -1, +1, +1 } }
 };

 for (int i = 0; i < 6; ++i) {
 glColor3ub(i*20, 100+i*10, i*42);
 glBegin(GL_QUADS);
 for (int j = 0; j < 4; ++j) {
 glVertex3d(0.2 * coords[i][j][0], 0.2 * coords[i][j][1], 0.2 * coords[i][j][2]);
 }
 glEnd();
 }
}

As was mentioned above, whenever you call cv::imshow(), a call will be generated to your OpenGL
callback. You can also induce a call directly to that callback by calling cv::updateWindow().24

Integrating OpenCV with Full GUI Toolkits
Even OpenCV’s built-in Qt interface is still just a handy way of accomplishing some simple tasks that
come up often while developing code or exploring algorithms. When it comes time to actually build an end

24 You will really use cv::updateWindow() only when you are using OpenGL. The utility of
cv::updateWindow() is precisely that it induces an OpenGL draw event (and thus calls your callback which you
would have set up with cv::setOpenGLDrawCallback()).

user facing application, neither the native UI nor the Qt-based interface are going to do it. In this section,
we will (very) briefly explore some of the issues and techniques for working with OpenCV and two
existing toolkits: wxWidgets and Qt.

Clearly there are countless UI toolkits out there, and we would not want to waste time digging into each of
them. Having said that, it is useful to explore how to handle the issues which will arise if you want to use
OpenCV with a more fully featured toolkit.

The primary issue is how to convert OpenCV images to the form that the toolkit expects for graphics, and
to know which widget or component in the toolkit is going to do that display work for you. From there, you
don’t need much else that is specific to OpenCV. Notably, you will not need or want the features of the UI
toolkits we have covered in this chapter.

An Example of OpenCV and Qt

Here we will show an example of using the actual Qt toolkit to write a program that reads a video file and
displays it on the screen. There are several subtleties, some of which have to do with how one uses Qt, and
others to do with OpenCV. Of course, we will focus on the latter, but it is worth taking a moment to notice
how the former affect our current goal.

Below is the top-level code for our example; it just creates a Qt application and adds our QMoviePlayer
widget. Everything interesting will happen inside that object.

Example 4-6. An example program ch4_qt.cpp, which takes a single argument indicating a video file; that
video file will be replayed inside of a Qt object which we will define, called QMoviePlayer

#include <QApplication>
#include <QLabel>
#include <QMoviePlayer.hpp>
int main(int argc, char* argv[]) {

 QApplication app(argc, argv);

 QMoviePlayer mp;
 mp.open(argv[1]);
 mp.show();

 return app.exec();
}

The interesting stuff is in the QMoviePlayer object. Let’s take a look at the header file which defines
that object:

4-6 cont. The QMoviePlayer object header file QMoviePlayer.hpp
#include "ui_QMoviePlayer.h"
#include <opencv2/opencv.hpp>
#include <string>

using namespace std;

class QMoviePlayer : public QWidget {

 Q_OBJECT;

 public:
 QMoviePlayer(QWidget *parent = NULL);
 virtual ~QMoviePlayer() {;}

 bool open(string file);

 private:
 Ui::QMoviePlayer ui;
 cv::VideoCapture m_cap;

 QImage m_qt_img;
 cv::Mat m_cv_img;
 QTimer* m_timer;

 void paintEvent(QPaintEvent* q);
 void _copyImage(void);

 public slots:
 void nextFrame();

};

There is a lot going on here. The first thing that happens is the inclusion of the file ui_QMoviePlayer.h.
This file was automatically generated by the Qt Designer. What matters here is that it is just a QWidget
that contains nothing but a QFrame called frame. The member ui::QMoviePlayer is that interface
object which is defined in ui_QMoviePlayer.h.

In this file, there is also a QImage called m_qt_img and a cv::Mat called m_cv_img. These will
contain the Qt and OpenCV representations of the image we are getting from our video. Finally, there is a
QTimer, which is what will take the place of cv::waitKey(), allowing us to replay the video frames at
the correct rate. The remaining functions will become clear as we look at their actual definitions in
QMoviePlayer.cpp.

4-6 cont. The QMoviePlayer object source file: QMoviePlayer.cpp
#include "QMoviePlayer.hpp"
#include <QTimer>
#include <QPainter>

QMoviePlayer::QMoviePlayer(QWidget *parent)
 : QWidget(parent)
{
 ui.setupUi(this);
}

The top-level constructor for QMoviePlayer just calls the setup function, which was automatically built
for us for the UI member.

4-6 cont. Open.
bool QMoviePlayer::open(string file) {

 if(!m_cap.open(file)) return false;

 // If we opened the file, set up everything now:
 //
 m_cap.read(m_cv_img);
 m_qt_img = QImage(
 QSize(m_cv_img.cols, m_cv_img.rows),
 QImage::Format_RGB888
);
 ui.frame->setMinimumSize(m_qt_img.width(), m_qt_img.height());
 ui.frame->setMaximumSize(m_qt_img.width(), m_qt_img.height());
 _copyImage();

 m_timer = new QTimer(this);
 connect(
 m_timer,
 SIGNAL(timeout()),
 this,
 SLOT(nextFrame())
);
 m_timer->start(1000. / m_cap.get(cv::CAP_PROP_FPS));

 return true;

}

When an open() call is made on the QMoviePlayer, several things have to happen. The first is that the
cv::VideoCapture member object m_cap needs to be opened. If that fails, we just return. Next we
read the first frame into our OpenCV image member m_cv_img. Once we have this, we can set up the Qt
image object m_qt_img, giving it the same size as the OpenCV image. Next we resize the frame object in
the UI element to be the same size as the incoming images as well.

We will look at the call to QMoviePlayer::_copyImage() in a moment; this is going to handle the
very important process of converting the image we have already captured into m_cv_img onto the Qt
image m_qt_img, which we are actually going to have Qt paint onto the screen for us.

The last thing we do in QMoviePlayer::open() is to set up a QTimer which, when it “goes off,” will
call the function QMoviePlayer::nextFrame() (which will, not surprisingly, get the next frame).
The call to m_timer->start() is how we both start the timer running, and indicate that it should go off
at the correct rate implied by cv::CAP_PROP_FPS (i.e., 1,000 milliseconds divided by the frame rate).

4-6 cont. cv::Mat to QImage.
void QMoviePlayer::_copyImage(void) {

 // Copy the image data into the Qt QImage
 //
 cv::Mat cv_header_to_qt_image(
 cv::Size(
 m_qt_img.width(),
 m_qt_img.height()
),
 cv::U8C3,
 m_qt_img.bits()
);
 cv::cvtColor(m_cv_img, cv_header_to_qt_image, cv::BGR2RGB);
}

The function QMoviePlayer::_copyImage() is responsible for copying the image from the buffer
m_cv_img into the Qt image buffer m_qt_img. The way we do this shows off a nice feature of the
cv::Mat object. We first define a cv::Mat object called cv_hreader_to_qt_image. When we
define that object, we actually tell it what area to use for its data area, and hand it the data area for the Qt
QImage object m_qt_img.bits(). We then call cv::cvtColor to do the copying, which handles
the subtlety that OpenCV prefers BGR ordering, while Qt prefers RGB.

4-6 cont. nextFrame.
void QMoviePlayer::nextFrame() {

 // Nothing to do if capture object is not open
 //
 if(!m_cap.isOpened()) return;

 m_cap.read(m_cv_img);
 _copyImage();

 this->update();
}

The QMoviePlayer::nextFrame() function actually handles the reading of subsequent frames.
Recall that this routine is called whenever the QTimer expires. It reads the new image into the OpenCV
buffer, calls QMoviePlayer::_copyImage() to copy it into the Qt buffer, and then makes an update
call on the QWidget that this is all part of (so that Qt knows that something has changed).

4-6 cont. paintEvent.
void QMoviePlayer::paintEvent(QPaintEvent* e) {

 QPainter painter(this);
 painter.drawImage(QPoint(ui.frame->x(), ui.frame->y()), m_qt_img);

}

Last, but not least, is the function QMoviePlayer::paintEvent(). This is the function that is called
by Qt whenever it is necessary to actually draw the QMoviePlayer widget. This function just creates a
QPainter and tells it to draw the current Qt image m_qt_img (starting at the corner of the screen).

An Example of OpenCV and wxWidgets

In this example, we will use a different cross-platform toolkit, wxWidgets. The wxWidgets toolkit is
similar in many ways to Qt in terms of its GUI components, but of course, it is in the details that things
tend to become difficult. As with the Qt example, we will have one top-level file that basically puts
everything in place and a code and header file pair that define an object which encapsulates our example
task of playing a video. This time our object will be called WxMoviePlayer, and we will build it based
on the UI classes provided by wxWidgets.

 Example 4-7: An example program ch4_wx.cpp, which takes a single argument indicating a video file;
that video file will be replayed inside of a wxWidgets object which we will define called WxMoviePlayer

#include "wx/wx.h"
#include "WxMoviePlayer.hpp"

// Application class, the top level object in wxWidgets
//
class MyApp : public wxApp {
 public:
 virtual bool OnInit();
};

// Behind the scenes stuff to create a main() function and attach MyApp
//
DECLARE_APP(MyApp);
IMPLEMENT_APP(MyApp);

// When MyApp is initialized, do these things.
//
bool MyApp::OnInit() {

 wxFrame* frame = new wxFrame(NULL, wxID_ANY, wxT("ch4_wx"));
 frame->Show(true);
 WxMoviePlayer* mp = new WxMoviePlayer(
 frame,
 wxPoint(-1, -1),
 wxSize(640, 480)
);
 mp->open(wxString(argv[1]));
 mp->Show(true);

 return true;

}

The structure here is a little more complicated in appearance than with the Qt example, but the content is
very similar. The first thing we do is create a class definition for our application, which we derive from the
library class wxApp. The only thing different about our class is that it will overload the
MyApp::OnInit() function with our own content. After declaring class MyApp, we call two
macros DECLARE_APP() and IMPLEMENT_APP(). In short, these are creating the main() function,

and installing an instance of MyApp as “the application.” The last thing we do in our main program is to
actually fill out the function MyApp::OnInit(). This is going to get called when our program starts:
this functions largely as the equivalant to main() from our point of view. This function creates the
window (called a “frame” in wxWidgets), and an instance of our WxMoviePlayer object in that frame. It
then calls the open method on the WxMoviePlayer and hands it the name of the movie file we want to
open.

Of course, all of the interesting stuff is happening inside of the WxMoviePlayer object. Here is the header
file for that object:

The WxMoviePlayer object header file WxMoviePlayer.hpp
#include "opencv2/opencv.hpp"

#include "wx/wx.h"
#include <string>

#define TIMER_ID 0

using namespace std;

class WxMoviePlayer : public wxWindow {

 public:
 WxMoviePlayer(
 wxWindow* parent,
 const wxPoint& pos,
 const wxSize& size
);
 virtual ~WxMoviePlayer() {};
 bool open(wxString file);

 private:

 cv::VideoCapture m_cap;
 cv::Mat m_cv_img;
 wxImage m_wx_img;
 wxBitmap m_wx_bmp;
 wxTimer* m_timer;
 wxWindow* m_parent;

 void _copyImage(void);

 void OnPaint(wxPaintEvent& e);
 void OnTimer(wxTimerEvent& e);
 void OnKey(wxKeyEvent& e);

 protected:
 DECLARE_EVENT_TABLE();
};

The important things to notice in the above declaration are the following. The WxMoviePlayer object is
derived from wxWindow, which is the generic class used by wxWidgets for just about anything that will be
visible on the screen. We have three event-handling methods OnPaint(), onTimer(), and OnKey().
These will handle drawing, getting a new image from the video, and closing the file with the ESC key,
respectively. Finally, you will notice that there is an object of type wxImage and an object of type
wxBitmap, in addition to the OpenCV cv:Mat type image. In wxWidgets, bitmaps (which are operating
system dependant) are distinguished from “images” (which are device independent representations of
image data). The exact role of these two will be clear shortly as we look at the code file
WxMoviePlayer.cpp.

The WxMoviePlayer object source file WxMoviePlayer.cpp

#include "WxMoviePlayer.hpp"

BEGIN_EVENT_TABLE(WxMoviePlayer, wxWindow)
 EVT_PAINT(WxMoviePlayer::OnPaint)
 EVT_TIMER(TIMER_ID, WxMoviePlayer::OnTimer)
 EVT_CHAR(WxMoviePlayer::OnKey)
END_EVENT_TABLE()

The first thing we do is to set up the callbacks that will be associated with individual events. This is done
by macros provided by the wxWidgets framework.25

WxMoviePlayer::WxMoviePlayer(
 wxWindow* parent,
 const wxPoint& pos,
 const wxSize& size
) : wxWindow(parent, -1, pos, size, wxSIMPLE_BORDER) {
 m_timer = NULL;
 m_parent = parent;
}

When the movie player is created, its timer element is NULL (we will set that up when we actually have a
video open). We do take note of the parent of the player, however. (In this case, that parent will be the
wxFrame we created to put it in.) We will need to know who the parent frame is when it comes time to
closing the application in response to the ESC key.

void WxMoviePlayer::OnPaint(wxPaintEvent& event) {
 wxPaintDC dc(this);

 if(!dc.Ok()) return;

 int x,y,w,h;
 dc.BeginDrawing();
 dc.GetClippingBox(&x, &y, &w, &h);
 dc.DrawBitmap(m_wx_bmp, x, y);
 dc.EndDrawing();

 return;
}

The WxMoviePlayer::OnPaint() routine is called whenever the window needs to be repainted on
screen. You will notice that when we execute WxMoviePlayer::OnPaint(), the information we need
to actually do the painting is assumed to be in m_wx_bpm, the wxBitmap object. Because the wxBitmap
is the system dependant representation, it is already prepared to be copied to the screen. The next two
methods, WxMoviePlayer::_copyImage()and WxMoviePlayer::open() will show how it
got created in the first place.

void WxMoviePlayer::_copyImage(void) {
 m_wx_bmp = wxBitmap(m_wx_img);

 Refresh(FALSE); // indicate that the object is dirty
 Update();
}

25 The astute reader will notice that the keyboard event is “hooked up” to the WxMoviePlayer widget and not to the
top-level application or the frame (as was the case for the Qt example, and is the case for HighGUI). There are various
ways to accomplish this, but wxWidgets really prefers your keyboard events to be bound locally to visible objects in
your UI, rather than globally. Since this is a simple example, we chose to just do the easiest thing and bind the
keyboard events directly to the movie player.

The WxMoviePlayer::_copyImage() method is what is going to get called whenever a new image
is read from the cv::VideoCapture object. It does not appear to do much, but actually a lot is going on
in its short body. First and foremost is the construction of the wxBitmap m_wx_bmp from the wxImage
m_wx_img. The constructor is handling the conversion from the abstract representation used by wxImage
(which, we will see, looks very much like the representation used by OpenCV) to the device and system
specific representation used by your particular machine. Once that copy is done, a call to Refresh()
indicates that the widget is “dirty” and needs redrawing, and the subsequent call to Update() actually
indicates that the time for that redrawing is now.

bool WxMoviePlayer::open(wxString file) {
 if(!m_cap.open(std::string(file.mb_str()))) {
 return false;
 }

 // If we opened the file, set up everything now:
 //
 m_cap.read(m_cv_img);

 m_wx_img = wxImage(
 m_cv_img.cols,
 m_cv_img.rows,
 m_cv_img.data,
 TRUE // static data, do not free on delete()
);

 _copyImage();

 m_timer = new wxTimer(this, TIMER_ID);
 m_timer->Start(1000. / m_cap.get(cv::CAP_PROP_FPS));

 return true;
}

The WxMoviePlayer::open() method also does several important things. The first is to actually open
the cv::VideoCapture object, but there is a lot more to be done. Next, an image is read off of the
player, and it is used to create a wxImage object which “points at” the OpenCV cv::Mat image. This is
the opposite philosophy to the one we used in the Qt example: in this case, it turns out to be a little more
convenient to create the cv::Mat first and have it own the data, and the GUI toolkit’s image object
second and have it be just a header to that existing data. Next, we call
WxMoviePlayer::_copyImage(), and that function converts the OpenCV image m_cv_img into
the native bitmap for us.

Finally, we create a wxTimer object and tell it to wake us up every few milliseconds—with that number
being computed from the FPS reported by the cv::VideoCapture object. Whenever that timer expires,
a wxTimerEvent is generated and passed to WxMoviePlayer::OnTimer(), which you will recall
to be the handler of such events.

void WxMoviePlayer::OnTimer(wxTimerEvent& event) {
 if(!m_cap.isOpened()) return;
 m_cap.read(m_cv_img);
 cv::cvtColor(m_cv_img, m_cv_img, cv::BGR2RGB);
 _copyImage();
}

That handler does not do too much; primarily it just iterates the reading of a new frame from the video and
the conversion of that frame from BGR to RGB for display, and then calls our
WxMoviePlayer::_copyImage(), which makes the next bitmap for us.

void WxMoviePlayer::OnKey(wxKeyEvent& e) {
 if(e.GetKeyCode() == WXK_ESCAPE) m_parent->Close();
}

Finally, we have our handler for any key-presses. It simply checks to see if that key was the Escape key,
and if so, closes the program. It is worth noting that we do not close the WxMoviePlayer object, but rather
the parent frame. Closing the frame is the same as closing the window any other way; it shuts down the
application.

An Example of OpenCV and the Windows Template Library

In this example, we will use the native windows GUI API.26 The Windows Template Library, WTL, is a
very thin C++ wrapper around the raw Win32 API. WTL applications are structured similarly to MFC, in
that there is an application/document-view structure. For the purposes of this sample, we will start by
running the WTL Application Wizard from within Visual Studio, and creating a new “SDI Application”
and under “User Interface Features” ensuring “Use a View Window” is selected (it should be, by default).

Figure 4-7: The WTL Application Wizard

The exact file names generated will depend on the name you give your project. For this example, the
project is named OpenCVTest, and we will mostly be working in the COpenCVTestView class.

Example 4-8: An example header file for our custom View class

class COpenCVTestView : public CWindowImpl<COpenCVTestView> {

public:
 DECLARE_WND_CLASS(NULL)

 bool OpenFile(std::string file);
 void _copyImage();

 BOOL PreTranslateMessage(MSG* pMsg);

 BEGIN_MSG_MAP(COpenCVTestView)
 MESSAGE_HANDLER(WM_ERASEBKGND, OnEraseBkgnd)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)

26 Special thanks to Sam Leventer, who is the original author of this WTL example code.

 MESSAGE_HANDLER(WM_TIMER, OnTimer)
 END_MSG_MAP()

// Handler prototypes (uncomment arguments if needed):
// LRESULT MessageHandler(
// UINT /*uMsg*/,
// WPARAM /*wParam*/,
// LPARAM /*lParam*/,
// BOOL& /*bHandled*/
//);
// LRESULT CommandHandler(
// WORD /*wNotifyCode*/,
// WORD /*wID*/,
// HWND /*hWndCtl*/,
// BOOL& /*bHandled*/
//);
// LRESULT NotifyHandler(
// int /*idCtrl*/,
// LPNMHDR /*pnmh*/,
// BOOL& /*bHandled*/
//);

 LRESULT OnPaint(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
);
 LRESULT OnTimer(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
);
 LRESULT OnEraseBkgnd(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
);

private:
 cv::VideoCapture m_cap;
 cv::Mat m_cv_img;

 RGBTRIPLE* m_bitmapBits;
};

The structure here is very similar to the preceding wx example. The only change outside of the view code is
for the Open menu item handler, which will be in your CMainFrame class. It will need to call into the
view class to open the video:

LRESULT CMainFrame::OnFileOpen(
 WORD /*wNotifyCode*/,
 WORD /*wID*/,
 HWND /*hWndCtl*/,
 BOOL& /*bHandled*/
) {
 WTL::CFileDialog dlg(TRUE);
 if (IDOK == dlg.DoModal(m_hWnd)) {
 m_view.OpenFile(dlg.m_szFileName);
 }

 return 0;
}

bool COpenCVTestView::OpenFile(std::string file) {

 if(!m_cap.open(file)) return false;

 // If we opened the file, set up everything now:
 //
 m_cap.read(m_cv_img);

 // could create a DIBSection here, but lets just allocate memory for the raw bits
 m_bitmapBits = new RGBTRIPLE[m_cv_img.cols * m_cv_img.rows];

 _copyImage();

 SetTimer(0, 1000.0f / m_cap.get(cv::CAP_PROP_FPS));

 return true;
}

void COpenCVTestView::_copyImage() {

 // Copy the image data into the bitmap
 //
 cv::Mat cv_header_to_qt_image(
 cv::Size(
 m_cv_img.cols,
 m_cv_img.rows
),
 CV::U8C3,
 m_bitmapBits
);
 cv::cvtColor(m_cv_img, cv_header_to_qt_image, cv::BGR2RGB);
}

LRESULT COpenCVTestView::OnPaint(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
) {
 CPaintDC dc(m_hWnd);

 WTL::CRect rect;
 GetClientRect(&rect);

 if(m_cap.isOpened()) {
 BITMAPINFO bmi = {0};
 bmi.bmiHeader.biSize = sizeof(bmi.bmiHeader);
 bmi.bmiHeader.biCompression = BI_RGB;
 bmi.bmiHeader.biWidth = m_cv_img.cols;
 // note that bitmaps default to bottom-up, use negative height to
 // represent top-down
 bmi.bmiHeader.biHeight = m_cv_img.rows * -1;

 bmi.bmiHeader.biPlanes = 1;
 bmi.bmiHeader.biBitCount = 24; // 32 if you use RGBQUADs for the bits

 dc.StretchDIBits(
 0, 0,
 rect.Width(), rect.Height(),

 0, 0,
 bmi.bmiHeader.biWidth, abs(bmi.bmiHeader.biHeight),
 m_bitmapBits,
 &bmi,
 DIB_RGB_COLORS,
 SRCCOPY
);
 } else {
 dc.FillRect(rect, COLOR_WINDOW);
 }

 return 0;
}

LRESULT COpenCVTestView::OnTimer(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
) {
 // Nothing to do if capture object is not open
 //
 if(!m_cap.isOpened()) return 0;

 m_cap.read(m_cv_img);
 _copyImage();

 Invalidate();

 return 0;
}

LRESULT COpenCVTestView::OnEraseBkgnd(
 UINT /*uMsg*/,
 WPARAM /*wParam*/,
 LPARAM /*lParam*/,
 BOOL& /*bHandled*/
) {
 // since we completely paint our window in the OnPaint handler, use
 // an empty background handler
 return 0;
}

This code illustrates how to use bitmap-based drawing in a C++ application under Windows. This method
is simpler, but less efficient than using DirectShow to handle the video stream.

If you are using the .NET Runtime (either through C#, VB.NET or Managed C++), then
you may want to look into a package that completely wraps OpenCV, such as Emgu
(http://emgu.com).

Drawing Things
We often want to draw some kind of picture, or to draw something on top of an image obtained from
somewhere else. Toward this end, OpenCV provides a menagerie of functions that will allow us to make
lines, squares, circles, and the like.

The drawing functions available will work with images of any depth, but most of them only affect the first
three channels—defaulting to only the first channel in the case of single-channel images. Most of the
drawing functions support a color, a thickness, what is called a “line type” (which really means whether or
not to anti-alias lines), and subpixel alignment of objects.

When specifying colors, the convention is to use the cv::Scalar object, even though only the first three
values are used most of the time. (It is sometimes convenient to be able to use the fourth value in a
cv::Scalar to represent an alpha-channel, but the drawing functions do not currently support alpha
blending.) Also, by convention, OpenCV uses BGR ordering27 for converting multichannel images to color
renderings (this is what is used by the draw functions imshow(), which actually paints images onto your
screen for viewing). Of course, you don’t have to use this convention, and it might not be ideal if you are
using data from some other library with OpenCV headers on top of it. In any case, the core functions of the
library are always agnostic to any “meaning” you might assign to a channel.

Line Art and Filled Polygons
Functions that draw lines of one kind or another (segments, circles, rectangles, etc.) will usually accept a
thickness and lineType parameter. Both are integers, but the only accepted values for the latter are
4, 8, or cv::AA. thickness will be the thickness of the line measured in pixels. For circles, rectangles,
and all of the other closed shapes, the thickness argument can also be set to cv::FILL (which is an
alias for −1). In that case, the result is that the drawn figure will be filled in the same color as the edges.
The lineType argument indicates whether the lines should be “4-connected,” “8-connected,” or anti-
aliased. For the first two, the Bresenham algorithm is used, while for the anti-aliased lines, Gaussian
filtering is used. Wide lines are always drawn with rounded ends.

Figure 4-8: The same line as it would be rendered using the 4-connected (a), 8-connected (b), and anti-

aliased (c) line types

For the drawing algorithms, endpoints (lines), center-points (circles), corners (rectangles), and so on are
typically specified as integers. However, these algorithms support subpixel alignment, through the shift
argument. Where shift is available, it is interpreted as the number of bits in the integer arguments to treat
as fractional bits. For example, if you say you want a circle centered at (5, 5), but set shift to 1, then the
circle will be drawn at (2.5, 2.5). The effect of this will typically be quite subtle, and depend on the line
type used. The effect is most noticeable for anti-aliased lines.

Table 4-9:Drawing Functions

Function Description

cv::circle() Draw a simple circle

27 There is a slightly confusing point here, which is mostly due to legacy in origin. That is that the macro
CV_RGB(r,g,b) produces a cv::Scalar s with value s.val[] = { b, g, r, 0 }. This is as it should
be, as general OpenCV functions only know what is red, green, or blue by the order, and the ordering convention for
image data is BGR as stated in the text.

cv::clipLine() Determine if a line is inside a given box

cv::ellipse() Draw an ellipse, which may be tilted or an elliptical arc

cv::ellipse2Poly() Compute a polygon approximation to an elliptical arc

cv::fillConvexPoly() Fast algorithm for drawing filled versions of simple polygons

cv::fillPoly() General algorithm for drawing filled versions of arbitrary polygons

cv::line() Draw a simple line

cv::rectangle() Draw a simple rectangle

cv::polyLines() Draw multiple polygonal curves

cv::circle()
void circle(
 cv::Mat& img, // Image to be drawn on
 cv::Point center, // Location of circle center
 int radius, // Radius of circle
 const cv::Scalar& color, // Color, RGB form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The first argument to cv::circle() is just your image img. Next, are the center, a two-dimensional
point, and the radius. The remaining arguments are the standard color, thickness, lineType, and
shift. The shift is applied to both the radius and the center location.

cv::clipLine()
bool clipLine(// True if any part of line in ‘imgRect’
 cv::Rect imgRect, // Rectangle to clip to
 cv::Point& pt1, // First end-point of line, overwritten
 cv::Point& pt2 // Second end-point of line, overwritten
);

bool clipLine(// True if any part of line in image size
 cv::Size imgSize, // Size of image, implies rectangle at 0,0
 cv::Point& pt1, // First end-point of line, overwritten
 cv::Point& pt2 // Second end-point of line, overwritten
);

This function is used to determine if a line, specified by the two points pt1 and pt2 lies inside of a
rectangular boundary. In the first version, a cv::Rect is supplied and the line is compared to that
rectangle. cv::clipLine() will return False only if the line is entirely outside of the specified
rectangular region. The second version is the same, except that it takes a cv::Size argument. Calling this
second version is equivalent to calling the first version with a rectangle whose (𝑥, 𝑦) location is (0, 0).

cv::ellipse()
bool ellipse(
 cv::Mat& img, // Image to be drawn on
 cv::Point center, // Location of ellipse center
 cv::Size axes, // Length of major and minor axes
 double angle, // Tilt angle of major axis
 double startAngle, // Start angle for arc drawing
 double endAngle, // End angle for arc drawing

 const cv::Scalar& color, // Color, BGR form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

bool ellipse(
 cv::Mat& img, // Image to be drawn on
 const cv::RotatedRect& rect, // Rotated rectangle bounds ellipse
 const cv::Scalar& color, // Color, BGR form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The cv::ellipse() function is very similar to the cv::circle() function, with the primary
difference being the axes argument, which is of type cv::Size. In this case, the height and width
arguments represent the length of the ellipse’s major and minor axes. The angle is the angle (in degrees)
of the major axis, which is measured counterclockwise from horizontal (i.e., from the x-axis). Similarly, the
startAngle and endAngle indicate (also in degrees) the angle for the arc to start and for it to finish.
Thus, for a complete ellipse, you must set these values to 0 and 360, respectively.

Figure 4-8: An elliptical arc specified by the major and minor axes with tilt angle (left); a similar ellipse

specified using a cv::RotatedRect (right).

The alternate way to specify the drawing of an ellipse is to use a bounding box. In this case, the argument
box of type cv::RotatedRect completely specifies both the size and the orientation of the ellipse.
Both methods of specifying an ellipse are illustrated in Figure 4-8.

cv::ellipse2Poly()
void ellipse2Poly(
 cv::Point center, // Location of ellipse center
 cv::Size axes, // Length of major and minor axes
 double angle, // Tilt angle of major axis
 double startAngle, // Start angle for arc drawing
 double endAngle, // End angle for arc drawing
 int delta, // Angle between sequential vertices
 vector<cv::Point>& pts // Result, STL-vector of points
);

The cv::ellipse2Poly() function is used by cv::ellipse() internally to compute elliptical
arcs, but you can call it yourself as well. Given information about an elliptical arc (center, axes,
angle, startAngle, and endAngle—all as defined in cv::ellipse()) and a parameter delta,
which specifies the angle between subsequent points you want to sample, cv::ellipse2Poly()
computes a sequence of points that form a polygonal approximation to the elliptical arc you specified. The
computed points are returned in the vector<> pts.

cv::fillConvexPoly()
void fillConvexPoly(
 cv::Mat& img, // Image to be drawn on
 const cv::Point* pts, // C-style array of points
 int npts, // Number of points in ‘pts’
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

This function draws a filled polygon. It is much faster than cv::fillPoly() because it uses a much
simpler algorithm. This algorithm, however, will not work correctly if the polygon you pass to it has self-
intersections.28 The points in pts are treated as sequential, and a segment from the last point in pts and
the first point is implied (i.e., the polygon is assumed to be closed).

cv::fillPoly()
void fillPoly(
 cv::Mat& img, // Image to be drawn on
 const cv::Point* pts, // C-style array of arrays of points
 int npts, // Number of points in ‘pts[i]’
 int ncontours, // Number of arrays in ‘pts’
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0, // Bits of radius to treat as fraction
 cv::Point offset = Point() // Uniform offset applied to all points
);

This function draws any number of filled polygons. Unlike cv::fillConvexPoly(), it can handle
polygons with self-intersections. The argument ncontours specifies how many different polygon
contours there will be, and the argument npts is a C-style array that indicates how many points there are
in each contour (i.e., npts[i] indicates how many points there are in polygon i). pts is a C-style array
of C-style arrays containing all of the points in those polygons (i.e., pts[i][j] contains the 𝑗!! point in
the 𝑖!! polygon.) cv::fillPoly() also has one additional argument offset, which is a pixel offset
that will be applied to all vertex locations when the polygons are drawn. The polygons are assumed to be
closed (i.e., a segment from the last element of pts[i][] to the first element will be assumed).

cv::line()
void line(
 cv::Mat& img, // Image to be drawn on
 cv::Point pt1, // First end-point of line
 cv::Point pt2 // Second end-point of line
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

28 The algorithm use by cv::fillComvexPolyfillConvexPoly() is actually somewhat more general than
implied here. It will correctly draw any polygon whose contour intersects every horizontal line at most twice (though it
is allowed for the top or bottom of the polygon to be flat with respect to the horizontal). Such a polygon is said to be
“monotone with respect to the horizontal.”

The function cv::line() draws a straight line from pt1 to pt2 in the image img. Lines are
automatically clipped by the image boundaries.

cv::rectangle()
void rectangle(
 cv::Mat& img, // Image to be drawn on
 cv::Point pt1, // First corner of rectangle
 cv::Point pt2 // Opposite corner of rectangle
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

void rectangle(
 cv::Mat& img, // Image to be drawn on
 cv::Rect r, // Rectangle to draw
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

The function cv::rectangle() draws a rectangle with corners pt1 to pt2 in the image img. An
alternate form of cv::rectangle() allows the rectangle’s location and size to be specified by a single
cv::Rect argument r.

cv::polyLines()
void polyLines(
 cv::Mat& img, // Image to be drawn on
 const cv::Point* pts, // C-style array of arrays of points
 int npts, // Number of points in ‘pts[i]’
 int ncontours, // Number of arrays in ‘pts’
 bool isClosed, // If true, connect last and first points
 const cv::Scalar& color, // Color, BGR form
 int lineType = 8, // Connectedness, 4 or 8
 int shift = 0 // Bits of radius to treat as fraction
);

This function draws any number of unfilled polygons. It can handle general polygons including polygons
with self-intersections. The argument ncontours specifies how many different polygon contours there
will be, and the argument npts is a C-style array that indicates how many points there are in each contour
(i.e., npts[i] indicates how many points there are in polygon i). pts is a C-style array of C-style arrays
containing all of the points in those polygons (i.e., pts[i][j] contains the 𝑗!! point in the 𝑖!! polygon.)
Polygons are not assumed to be closed. If the argument isClosed is true, then a segment from the last
element of pts[i][] to the first element will be assumed. Otherwise the contour is taken to be an open
contour containing only npts[i]-1 segments between the npts[i] points listed.

cv::LineIterator()

The cv::LineIterator object is an iterator that is used to get each pixel of a raster line in sequence. It
is another one of those “objects that do stuff.” The constructor for the line iterator takes the two endpoints
for the line as well as a line type specifier and an additional Boolean that indicates which direction the line
should be traversed.

LineIterator::LineIterator(
 cv::Mat& img, // Image to be drawn on
 cv::Point pt1, // First end-point of line
 cv::Point pt2 // Second end-point of line
 int lineType = 8, // Connectedness, 4 or 8
 bool leftToRight = false // If true, always start steps on the left
);

Once initialized, the number of pixels in the line is stored in the member integer
cv::LineIterator::count. The overloaded dereferencing operator
cv::LineIterator::operator*() returns a pointer of type uchar*, which points to the
“current” pixel. The current pixel starts at one end of the line, and is incremented by means of the
overloaded increment operator cv::LineIterator::operator++(). The actual traversal is done
according to the Bresenham algorithm mentioned earlier.

The purpose of the cv::LineIterator is to make it possible for you to take some specific action on
each pixel along the line. This is particularly handy when creating special effects such as switching the
color of a pixel from black to white and white to black (i.e., an XOR operation on a binary image).

When accessing an individual “pixel,” remember that this pixel may have one or many channels and it
might be any kind of image depth. The return value from the dereferencing operator is always uchar*, so
you are responsible for casting that pointer to the correct type. For example, if your image were a three-
channel image of 32-bit floating-point numbers, and your iterator were called iter, then you would want
to cast the return (pointer) value of the dereferencing operator like this: (Vec3f*)*iter.

The style of the overloaded dereferencing operator
cv::LineIterator::operator*() is slightly different than what you are
probably used to from libraries like STL. The difference is that the return value from the
iterator is itself a pointer, so the iterator itself behaves not like a pointer, but like a pointer
to a pointer.

Fonts and Text
One additional form of drawing is to draw text. Of course, text creates its own set of complexities, but—as
always with this sort of thing—OpenCV is more concerned with providing a simple “down and dirty”
solution that will work for simple cases than a robust, complex solution (which would be redundant anyway
given the capabilities of other libraries).

Table 4-10: Text drawing functions

Function Description

cv::putText() Draw the specified text in an image

cv::getTextSize() Determine the width and height of a text string

cv::putText()
void cv::putText(
 cv::Mat& img, // Image to be drawn on
 const string& text, // String to write (often from cv::format)
 cv::Point origin, // Upper-left corner of text box
 int fontFace, // Font to use (e.g., cv::FONT_HERSHEY_PLAIN)
 double fontScale, // Scale of font (not “point”, but multiple)
 cv::Scalar color, // Color, RGB form
 int thickness = 1, // Thickness of line
 int lineType = 8, // Connectedness, 4 or 8
 bool bottomLeftOrigin = false // If true, measure ‘origin’ from lower left
);

OpenCV has one main routine, called cv::putText() that just throws some text onto an image. The
text indicated by text is printed with its upper-left corner of the text box at origin and in the color
indicated by color, unless the bottomLeftOrigin flag is true, in which case the lower-left corner
of the text box is located at origin. The font used is selected by the fontFace argument, which can be
any of those listed in Error! Reference source not found..

Table 4-11: Available fonts (all are variations of Hershey)

Identifier Description
cv::FONT_HERSHEY_SIMPLEX Normal size sans-serif
cv::FONT_HERSHEY_PLAIN Small size sans-serif
cv::FONT_HERSHEY_DUPLEX Normal size sans-serif, more complex than

cv::FONT_HERSHEY_SIMPLEX
cv::FONT_HERSHEY_COMPLEX Normal size serif, more complex than

cv::FONT_HERSHEY_DUPLEX
cv::FONT_HERSHEY_TRIPLEX Normal size serif, more complex than

cv::FONT_HERSHEY_COMPLEX
cv::FONT_HERSHEY_COMPLEX_SMALL Smaller version of

cv::FONT_HERSHEY_COMPLEX
cv::FONT_HERSHEY_SCRIPT_SIMPLEX Handwriting style
cv::FONT_HERSHEY_SCRIPT_COMPLEX More complex variant of

cv::FONT_HERSHEY_SCRIPT_SIMPLEX

Any of the font names listed in Error! Reference source not found. can also be combined (with an OR
operator) with cv::FONT_HERSHEY_ITALIC to render the indicated font in italics. Each font has a
“natural” size. When fontScale is not 1.0, then the font size is scaled by this number before drawing.

Figure 4-9: The eight fonts of Table 4-11, with the origin of each line separated from the vertical by 30

pixels

cv::getTextSize()
cv::Size cv::getTextSize(
 const string& text,
 cv::Point origin,
 int fontFace,
 double fontScale,
 int thickness,
 int* baseLine
);

The function cv::getTextSize() answers the question of how big some text would be if you were to
draw it (with some set of parameters), without actually drawing it on an image. The only novel argument to

cv::getTextSize() is baseLine, which is actually an output parameter. baseLine is the y-
coordinate of the text baseline relative to the bottom-most point in the text.29

Data Persistence
OpenCV provides a mechanism for serializing and de-serializing its various data types to and from disk in
either YAML or XML format, which can load and store any number of OpenCV data objects (including
basic types like int, float, etc.) in a single file. There functions are separate from the special functions
we saw earlier in the chapter that handle the more specialized situation of loading and saving image files
and video data. In this section, we will focus on general object persistence: reading and writing matrices,
OpenCV structures, configuration, and log files.

The basic mechanism for reading and writing files is the cv::FileStorage object. This object
essentially represents a file on disk, but does so in a manner that makes accessing the data represented in
the file easy and natural.

Writing to a cv::FileStorage
FileStorage::FileStorage();
FileStorage::FileStorage(string fileName, int flag);

The cv::FileStorage object is a representation of an XML or YML data file. You can create it and
pass a file name to the constructor, or you can just create an unopened storage object with the default
constructor and open the file later with cv::FileStorage::open() where the flag argument
should be either cv::FileStorage::WRITE or cv::FileStorage::APPEND.

FileStorage::open(string fileName, int flag);

Once you have opened the file you want to write to, you can write using the operator
cv::FileStorage::operator<<() in the same manner you might write to stdout with an STL
stream. Internally, however, there is quite a bit more going on when you write in this manner.

Data inside of the cv::FileStorage is stored in one of two forms, either as a “mapping” (i.e., key-
value pairs) or a “sequence” (which is a series of unnamed entries). At the top level, the data you write to
the file storage is all a mapping, and inside of that mapping you can place other mappings or sequences,
and mappings or sequences inside of those as deep as you like.

myFileStorage << ”someInteger” << 27; // save an integer
myFileStorage << ”anArray” << cv::Mat::eye(3,3,CV::F32); // save an array

To create a sequence entry, you first provide the string name for the entry, and then the entry itself. The
entry can be a number (integer, float, etc.), a string, or any OpenCV data type.

If you would like to create a new mapping or sequence you can do so with the special characters “{“ (for a
mapping) or “[“ (for a sequence). Once you have started the mapping or sequence, you can add new
elements and then finally close the mapping or sequence with “}” or “]” (respectively).

myFileStorage << ”theCat” << ”{“;
myFileStorage << ”fur” << ”gray” << "eyes” << ”green” << ”weightLbs” << 16;
myFileStorage << ”}”;

Once you have created a mapping, you enter each element with a name and the data following, just as you
did for the top-level mapping. If you create a sequence, you simply enter the new data one item after
another until you close the sequence.

myFileStorage << ”theTeam” << ”[“;

29 The “baseline” is the line on which the bottoms of characters such as a and b are aligned. Characters such
as y and g hang below the baseline.

myFileStorage << ”eddie” << ”tom” << ”scott”;
myFileStorage << ”]”;

Once you are completely done writing, you close the file with the cv::FileStorage::release()
member function.

Here is an explicit code sample from the OpenCV documentation:
#include "opencv2/opencv.hpp"
#include <time.h>

int main(int, char** argv)
{
 cv::FileStorage fs("test.yml", cv::FileStorage::WRITE);

 fs << "frameCount" << 5;
 time_t rawtime; time(&rawtime);
 fs << "calibrationDate" << asctime(localtime(&rawtime));
 cv::Mat cameraMatrix = (
 cv::Mat_<double>(3,3)
 << 1000, 0, 320, 0, 1000, 240, 0, 0, 1
);
 cv::Mat distCoeffs = (
 cv::Mat_<double>(5,1)
 << 0.1, 0.01, -0.001, 0, 0
);
 fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
 fs << "features" << "[";
 for(int i = 0; i < 3; i++)
 {
 int x = rand() % 640;
 int y = rand() % 480;
 uchar lbp = rand() % 256;

 fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
 for(int j = 0; j < 8; j++)
 fs << ((lbp >> j) & 1);
 fs << "]" << "}";
 }
 fs << "]";
 fs.release();
 return 0;
}

The result of running this program would be a YML file with the following contents:
%YAML:1.0
frameCount: 5
calibrationDate: "Fri Jun 17 14:09:29 2011\n"
cameraMatrix: !!opencv-matrix
 rows: 3
 cols: 3
 dt: d
 data: [1000., 0., 320., 0., 1000., 240., 0., 0., 1.]
distCoeffs: !!opencv-matrix
 rows: 5
 cols: 1
 dt: d
 data: [1.0000000000000001e-01, 1.0000000000000000e-02,
 -1.0000000000000000e-03, 0., 0.]
features:
 - { x:167, y:49, lbp:[1, 0, 0, 1, 1, 0, 1, 1] }
 - { x:298, y:130, lbp:[0, 0, 0, 1, 0, 0, 1, 1] }
 - { x:344, y:158, lbp:[1, 1, 0, 0, 0, 0, 1, 0] }

In the example code, you will notice that sometimes all of the data in a mapping or sequence is stored on a
single line and other times it is stored with one element per line. This is not an automatic formatting
behavior. Instead, it is created by a variant of the mapping and sequence creation strings: “{:” and “:}”
mappings, and “[:” and “:]” for sequences. This feature is only meaningful for YML output; if the output
file is XML, this nuance is ignored and the mapping or sequence is stored as it would have been without the
variant.

Reading from a cv::FileStorage
FileStorage::FileStorage(string fileName, int flag);

The cv::FileStorage can be opened for reading the same way it is opened for writing, except that the
flag argument should be set to cv::FileStorage::READ. As with writing, you can also create an
unopened file storage object with the default constructor and open it later with
cv::FileStorage::open().

FileStorage::open(string fileName, int flag);

Once the file has been opened, the data can be read with either the overloaded array operator
cv::FileStorage::operator[]() or with the iterator cv::FileNodeIterator. Once you
are completely done reading, you then close the file with the cv::FileStorage::release()
member function.

To read from a mapping, the cv::FileStorage::operator[]() is passed the string key associated
with the desired object. To read from a sequence, the same operator can be called with an integer argument
instead. The return value of this operator is not the desired object, however; it is an object of type
cv::FileNode, which represents the value that goes with the given key in an abstract form.

cv::FileNode

Once you have a cv::FileNode object, you can do one of several things with it. If it represents an
object (or a number or a string) you can just load it into a variable of the appropriate type with the
overloaded extraction operator cv::FileNode::operator>>().

cv::Mat anArray;
myFileStorage[“calibrationMatrix”] >> anArray;

The cv::FileNode object also supports direct casting to any of the basic data types.
int aNumber;
myFileStorage[“someInteger”] >> aNumber;

is equivalent to:
int aNumber;
aNumber = (int)myFileStorage[“someInteger”];

As mentioned earlier, there is also an iterator for moving through file nodes that can be used as well. Given
a cv::FileNode object, the member functions cv::FileNode::begin() and
cv::FileNode::end() have their usual interpretations as providing the first and “after last” iterator
for either a mapping or a sequence. The iterator, on dereferencing with the usual overloaded dereferencing
operator cv::FileNodeIterator::operator*(), will return another cv::FileNode object.
Such iterators support the usual incrementing and decrementing operators. If the iterator was iterating
through a mapping, then the returned cv::FileNode object will have a name that can be retrieved with
cv::FileNode::name().

Table 4-12: Member functions of cv::FileNode

Example Description

cv::FileNode fn() File node object default constructor

cv::FileNode fn1(fn0) File node object copy constructor, creates a node fn1 from a
node fn0

cv::FileNode fn1(fs, node)
File node constructor that creates a C++ style
cv::FileNode object from a C-style CvFileStorage*
pointer fs and a C-style CvFileNode* pointer node

fn[(string)key]

fn[(char*)key]
STL string or C-string accessor for named child (of mapping
node), converts key to the appropriate child node

fn[(int)id] Accessor for numbered child (of sequence node), converts ID
to the appropriate child node

fn.type() Returns node type enum

fn.empty() Determine if node is empty

fn.isNone() Determine if node has value “None”

fn.isSeq() Determine if node is a sequence

fn.isMap() Determine if node is a mapping

fn.isInt()

fn.isReal()

fn.isString()

Determine if node is an integer, a floating-point number, or a
string (respectively)

fn.name() Return nodes name if node is a child of a mapping

size_t sz=fn.size() Return size of node (in bytes)

(int)fn

(float)fn

(double)fn

(string)fn

Extract the value from a node containing an integer, 32-bit
float, 64-bit float, or string (respectively)

Of the methods in Table 4-12, one requires special clarification: cv::FileNode::type(). The
returned value is an enumerated type defined in the class cv::FileNode. The possible values are given
in Table 4-13.

Table 4-13: Possible return values for cv::FileNode::type()

Example Description

cv::FileNode::NONE = 0 Node is of type “None”

cv::FileNode::INT = 1 Node contains an integer

cv::FileNode::REAL = 2

cv::FileNode::FLOAT = 2
Node contains a floating-point number30

cv::FileNode::STR = 3

cv::FileNode::STRING = 3
Node contains a string

cv::FileNode::REF = 4 Node contains a reference (i.e., a compound object)

cv::FileNode::SEQ = 5 Node is itself a sequence of other nodes

cv::FileNode::MAP = 6 Node is itself a mapping of other nodes

cv::FileNode::FLOW = 8 Node is a Compact representation of a sequence or mapping

cv::FileNode::USER = 16 Registered object (e.g., a Matrix)

cv::FileNode::EMPTY = 32 Node has no value assigned to it

cv::FileNode::NAMED = 64 Node is a child of a mapping (i.e., it has a name)

It is worth noting that the last four enum values are powers of two starting at 8. This is because a node may
have any or all of these properties in addition to one of the first eight listed types.

The following code example (also from the OpenCV documentation) shows how we could read the file we
wrote previously:

cv::FileStorage fs2("test.yml", cv::FileStorage::READ);

// first method: use (type) operator on FileNode.
int frameCount = (int)fs2["frameCount"];

std::string date;
// second method: use cv::FileNode::operator >>
fs2["calibrationDate"] >> date;

cv::Mat cameraMatrix2, distCoeffs2;
fs2["cameraMatrix"] >> cameraMatrix2;
fs2["distCoeffs"] >> distCoeffs2;

cout << "frameCount: " << frameCount << endl
 << "calibration date: " << date << endl
 << "camera matrix: " << cameraMatrix2 << endl
 << "distortion coeffs: " << distCoeffs2 << endl;

cv::FileNode features = fs2["features"];
cv::FileNodeIterator it = features.begin(), it_end = features.end();
int idx = 0;
std::vector<uchar> lbpval;

// iterate through a sequence using FileNodeIterator
for(; it != it_end; ++it, idx++)

30 Note that the floating-point types are not distinguished. This is a somewhat subtle point. Recall that XML and YML
are ASCII text file formats. As a result, all floating-point numbers are of no specific precision until cast to an internal
machine variable type. So, at the time of parsing, all floating-point numbers are represented only as an abstract
floating-point type.

{
 cout << "feature #" << idx << ": ";
 cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";
 // you can also easily read numerical arrays using FileNode >> std::vector operator.
 (*it)["lbp"] >> lbpval;
 for(int i = 0; i < (int)lbpval.size(); i++)
 cout << " " << (int)lbpval[i];
 cout << ")" << endl;
}
fs.release();

Summary
We have seen that OpenCV provides a number of ways to bring computer vision programs to the screen.
The native HighGUI tools are convenient and easy to use, but not so great for functionality or final polish.

For a little more capability, the Qt-based HighGUI tools add buttons and some nice gadgets for
manipulating your image on the screen—which is very helpful for debugging, parameter tuning, and for
studying the subtle effects of changes in your program. Because those methods lack extensibility and are
likely unsuitable for the production of professional applications, we went on to look at a few examples of
how you might combine OpenCV with existing fully featured GUI toolkits.

We then touched on some other important functions you will need for manipulating arrays in basic ways
and went on to drawing functions. Finally, we reviewed how OpenCV can store and retrieve objects from
files.

Exercises
1. This chapter completes our introduction to basic I/O programming and data structures in OpenCV. The

following exercises build on this knowledge and create useful utilities for later use.
a) Create a program that (1) reads frames from a video, (2) turns the result to grayscale, and (3)

performs Canny edge detection on the image. Display all three stages of processing in three
different windows, with each window appropriately named for its function.

b) Display all three stages of processing in one image.
Hint: Create another image of the same height but three times the width as the video frame. Copy the images
into this, either by using pointers or (more cleverly) by creating three new cv::Mat objects that reference into
the beginning of, to one-third, and to two-thirds of the way into, the image data and then copying directly into
these (i.e. with the copyTo() function).

c) Write appropriate text labels describing the processing in each of the three slots.
2. Create a program that reads in and displays an image. When the user’s mouse clicks on the image, read

in the corresponding pixel (blue, green, red) values and write those values as text to the screen at the
mouse location.
a) For the program of Exercise 1b, display the mouse coordinates of the individual image when

clicking anywhere within the three-image display.
3. Create a program that reads in and displays an image.

a) Allow the user to select a rectangular region in the image by drawing a rectangle with the mouse
button held down, and highlight the region when the mouse button is released. Be careful to save
an image copy in memory so that your drawing into the image does not destroy the original values
there. The next mouse click should start the process all over again from the original image.

b) In a separate window, use the drawing functions to draw a graph in blue, green, and red for how
many pixels of each value were found in the selected box. This is the color histogram of that color
region. The x-axis should be eight bins that represent pixel values falling within the ranges 0–31,

32–63,…, 223–255. The y-axis should be counts of the number of pixels that were found in that
bin range. Do this for each color channel, BGR.

4. Make an application that reads and displays a video and is controlled by sliders. One slider will control
the position within the video from start to end in 10 increments; another binary slider should control
pause/unpause. Label both sliders appropriately.
a) Do this using the built in HighGUI native toolkit functions.
b) Do this using the Qt Backend.

5. Create your own simple paint program.
a) Write a program that creates an image, sets it to 0, and then displays it. Allow the user to draw

lines, circles, ellipses, and polygons on the image using the left mouse button. Create an eraser
function when the right mouse button is held down.

b) Allow “logical drawing” by allowing the user to set a slider setting to AND, OR, and XOR. That
is, if the setting is AND then the drawing will appear only when it crosses pixels greater than 0
(and so on for the other logical functions).

6. Write a program that creates an image, sets it to 0, and then displays it. Hitting Enter should fix the
label at the spot it was typed.
a) When the user clicks on a location, he or she can type in a label there.
b) Enable Backspace during editing and provide for an abort key.

7. Perspective transform.
a) Write a program that reads in an image and uses the numbers 1–9 on the keypad to control a

perspective transformation matrix (refer to our discussion of the cv::warpPerspective() in
the Dense Perspective Transform section of Chapter 6). Tapping any number should increment the
corresponding cell in the perspective transform matrix; tapping with the Shift key depressed
should decrement the number associated with that cell (stopping at 0). Each time a number is
changed, display the results in two images: the raw image and the transformed image.

b) Add functionality to zoom in or out.
c) Add functionality to rotate the image.

8. Face fun. Go to the …/samples/cpp/ directory and build the facedetect.cpp code. Draw a skull image
(or find one on the Web) and store it to disk. Modify the facedetect program to load in the image of the
skull.
a) When a face rectangle is detected, draw the skull in that rectangle.
Hint: cv::convertImage() can convert the size of the image, or you could look up the
cv::resize() function. One may then set the ROI to the rectangle and use copyTo() to copy the
properly resized image there.

a) Add a slider with 10 settings corresponding to 0.0 to 1.0. Use this slider to alpha blend the skull
over the face rectangle using the cv::addWeighted() function.

9. Image stabilization. Go to the .../samples/cpp/ directory and build the lkdemo.cpp code (this code does
motion tracking, also known as optical flow). Create and display a video image in a much larger
window image. Move the camera slightly but use the optical flow vectors to display the image in the
same place within the larger window. This is a rudimentary image stabilization technique.

10. Create a structure of an integer, a cv::Point2i and a cv::Rect; call it my_struct.

a) Write two functions:
void write_my_struct(
 cv::FileStorage* fs,
 const char* name,
 my_struct* ms
);

and:

void read_my_struct(
 cv::FileStorage* fs,
 CvFileNode* ms_node,
 my_struct* ms
);

Use them to write and read my_struct.

b) Write and read an array of 10 my_struct structures.

5
Filters and Convolution

Overview
At this point, we have all of the basics at our disposal. We understand the structure of the library as well as
the basic data structures it uses to represent images. We understand the HighGUI interface and can actually
run a program and display our results on the screen. Now that we understand these primitive methods
required to manipulate image structures, we are ready to learn some more sophisticated operations.

We will now move on to higher-level methods that treat the images as images, and not just as arrays of
colored (or grayscale) values. When we say “image processing,” we mean just that: using higher-level
operators that are defined on image structures in order to accomplish tasks whose meaning is naturally
defined in the context of graphical, visual images.

Before We Begin
There are a couple of important concepts we will need throughout this chapter, so it is worth taking a
moment to review these ideas before we dig into the specific image processing functions that make up the
bulk of this chapter. We will need to learn two main concepts: first, we’ll need to understand filters (also
called kernels) and how they are handled in OpenCV. Next, we’ll take a look at how boundaries are
handled, and what happens when OpenCV needs to compute something that is a function of the area around
a pixel if that area spills off of the edge of the image.

Filters, Kernels, and Convolution
Most of the functions we will discuss in this chapter are special cases of a general concept called image
filtering. A filter is any algorithm that starts with some image 𝐼(𝑥, 𝑦) and computes a new image 𝐼’(𝑥, 𝑦) by
computing for each pixel location 𝑥, 𝑦 in 𝐼’ some function of the pixels in 𝐼 that are in some area around
that point. The template that defines both this area’s shape, as well as how the elements of that area are
combined, is called a filter or a kernel.1 In this chapter, many of the important kernels we encounter will be

1 These two terms can be considered essentially interchangeable for our purposes. The signal processing community
typically prefers the word filter, while the mathematical community tends to prefer kernel.

linear kernels. This means that the value assigned to point 𝑥, 𝑦 in 𝐼’ can be expressed as a weighted sum of
the points around (and usually including) 𝑥, 𝑦 in 𝐼2. If you like equations, this can be written as:

𝐼! 𝑥, 𝑦 = 𝑘!,! ∙ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)
!,!∈!"#$"%

.

This basically says that for some kernel of whatever size (e.g., 5-by-5), we should sum over the area of the
kernel, and for each pair 𝑖, 𝑗 (representing one point in the kernel), we should add a contribution equal to
some value 𝑘!,! multiplied by the value of the pixel in I that is offset from 𝑥, 𝑦 by 𝑖, 𝑗. The size of the array
𝑘!,! is called the support of the kernel.3 Any filter which can be expressed in this way (i.e., with a linear
kernel) is also known as convolutions.

It is often convenient (and more intuitive) to represent the kernel graphically as an array of the values
of 𝑘!,! (Figure 5-1). We will typically use this representation throughout the book when it is necessary to
represent a kernel.

1 1 1 1 1 1 1 1 1 1 1 4 7 4 1

1 1 1 1 1 1 1 1 1 1 -1 0 1 4 16 26 16 4

1 1 1 1 1 1/25 x 1 1 1 1 1 -2 0 2 1/273 x 7 26 41 26 7

1 1 1 1 1 1 1 1 1 1 -1 0 1 4 16 26 16 4

1 1 1 1 1 1 1 1 1 1 1 4 7 4 1

 A) B) C) D)

Figure 5-1: (a) A 5-by-5 box kernel; (b) a normalized 5-by-5 box kernel; (c) a 3-by-3 Sobel “x-derivative”
kernel; and (d) a 5-by-5 normalized Gaussian kernel; in each case, the “anchor” is represented in bold.

Anchor Points

Each kernel shown in Figure 5-1 has one value depicted in bold. This is the anchor point of the kernel. This
indicates how the kernel is to be aligned with the source image. For example, in Figure 5-1 (d), the number
41 appears in bold. This means that in the summation used to compute 𝐼’(𝑥, 𝑦), it is 𝐼(𝑥, 𝑦) that is
multiplied by 41/273 (and similarly, the terms corresponding to 𝐼(𝑥 − 1, 𝑦) and 𝐼(𝑥 + 1, 𝑦) are multiplied by
26/273).

Border Extrapolation and Boundary Conditions
Something that will come up with some frequency as we look at how images are processed in OpenCV is
the issue of how borders are handled. Unlike some other image handling libraries,4 the filtering operations
in OpenCV (e.g., cv::blur(), cv::erode(), cv::dilate(), etc.) produce output images of the
same size as the input. To achieve that result, OpenCV creates “virtual” pixels outside of the image at the
borders. You can see this would be necessary for operation like cv::blur(), which is going to take all
of the pixels in a neighborhood of some point and average them to determine a new value for that point.
How could a meaningful result be computed for an edge pixel that does not have the correct number of
neighbors? In fact, it will turn out that in the absence of any clearly “right” way of handling this, we will
often find ourselves explicitly asserting how this issue is to be resolved in any given context.

2 An example of a nonlinear kernel that comes up relatively often is the median filter, which replaces the pixel at 𝑥, 𝑦
with the median value inside of the kernel area.
3 For technical purists, the “support” of the kernel actually consists of only the nonzero portion of the kernel array.
4 E.g., MATLAB.

Making Borders Yourself

Most of the library functions you will use will create these virtual pixels for you. In that context, you will
only need to tell the particular function how you would like those pixels created.5 Just the same, in order to
know what the options you have mean, it is best to take a look at the function that allows you to explicitly
create “padded” images that use one method or another.

The function that does this is cv::copyMakeBorder(). Given an image you want to pad out, and a
second image that is somewhat larger, you can ask cv::copyMakeBorder() to fill all of the pixels in
the larger image in one way or another.

void cv::copyMakeBorder(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int top, // Top side padding (pixels)
 int bottom, // Bottom side padding (pixels)
 int left, // Left side padding (pixels)
 int right, // Right side padding (pixels)
 int borderType, // Pixel extrapolation method
 const cv::Scalar& value = cv::Scalar() // Used for constant borders
);

The first two arguments to cv::copyMakeBorder() are the smaller source image and the larger
destination image. The next four arguments specify how many pixels of padding are to be added to the
source image on the top, bottom, left, and right edges. The next argument borderType actually
tells cv::copyMakeBorder() how to determine the correct values to assign to the padded pixels (as
shown in Figure 5-2).

Figure 5-2: The same image is shown padded using each of the six different borderType options

available to cv::copyMakeBorder() (the “NO BORDER” image in the upper-left is the original for
comparison)

To understand what each option does in detail, it is useful to consider an extremely zoomed in section at the
edge of each image (Figure 5-3).

5 Actually, the pixels are usually not even really created, but rather they are just “effectively created” by the generation
of the correct boundary conditions in the evaluation of the particular function in question.

Figure 5-3:. An extreme zoom in at the left side of each image; for each case, the actual pixel values are

shown, as well as a schematic representation; the vertical dotted line in the schematic represents the edge of
the original image

As you can see by inspecting the figures, some of the available options are quite different. The first option,
a constant border cv::BORDER_CONSTANT sets all of the pixels in the border region to some fixed
value. This value is set by the value argument to cv::copyMakeBorder(). (In Figure 5-2 and Figure
5-3, this value happens to be cv::Scalar(0,0,0)) The next option is to wrap around
cv::BORDER_WRAP, assigning each pixel that is a distance 𝑛 off of the edge of the image the value of the
pixel that is a distance 𝑛 in from the opposite edge. The replicate option cv::BORDER_REPLICATE
assigns every pixel off of the edge the same value as the pixel on that edge. Finally, there are two slightly
different forms of reflection available: cv::BORDER_REFLECT and cv::BORDER_REFLECT_101.
The first assigns each pixel that is a distance n off of the edge of the image the value of the pixel that is a
distance 𝑛 in from that same edge. In contrast, cv::BORDER_REFLECT_101 assigns each pixel that is a
distance 𝑛 off of the edge of the image the value of the pixel that is a distance 𝑛 + 1 in from that same edge
(with the result that the very edge pixel is not replicated). In most cases, cv::BORDER_REFLECT_101 is
the default behavior for OpenCV methods. The value of cv::BORDER_DEFAULT resolves to
cv::BORDER_REFLECT_101. Table 5-1 summarizes these options.

Table 5-1: borderType options available to cv::copyMakeBorder(), as well as many other
functions that need to implicitly create boundary conditions

Border Type Effect
cv::BORDER_CONSTANT Extend pixels by using a supplied (constant) value
cv::BORDER_WRAP Extend pixels by replicating from opposite side
cv::BORDER_REPLICATE Extend pixels by copying edge pixel
cv::BORDER_REFLECT Extend pixels by reflection
cv::BORDER_REFLECT_101 Extend pixels by reflection, edge pixel is not “doubled”
cv::BORDER_DEFAULT Alias for cv::BORDER_REFLECT_101

Manual Extrapolation

On some occasions, you will want to compute the location of the reference pixel to which a particular off-
the-edge pixel is referred. For example, given an image of width 𝑤 and height ℎ, you might want to know
what pixel in that image is being used to assign a value to virtual pixel (w + dx, h + dy). Though this
operation is essentially extrapolation, the function that computes such a result for you is (somewhat
confusingly) called cv::borderInterpolate():

int cv::borderInterpolate(// Returns coordinate of “donor” pixel
 int p, // 0-based coordinate of extrapolated pixel
 int len, // Length of array (on relevant axis)
 int borderType // Pixel extrapolation method
);

The function cv::borderInterpolate() computes the extrapolation for one dimension at a time. It
takes a coordinate p, a length len (which is the actual size of the image in the associated direction), and a
borderType value. So, for example, you could compute the value of a particular pixel in an image under
a mixed set of boundary conditions, using BORDER_REFLECT_101 in one dimension, and
BORDER_WRAP in another:

float val = img.at<float>(
 cv::borderInterpolate(100, img.rows, BORDER_REFLECT_101),
 cv::borderInterpolate(-5, img.cols, BORDER_WRAP)
);

This function is typically used internally to OpenCV, for example inside of cv::copyMakeBorder or
the cv::FilterEngine class (more on that later), but it can come in handy in your own algorithms as
well. The possible values for borderType are exactly the same as those used by
cv::copyMakeBorder. Throughout this chapter, we will encounter functions that take a borderType
argument; in all of those cases, they take the same list of argument.

Threshold Operations
Frequently we have done many layers of processing steps and want either to make a final decision about
the pixels in an image or to categorically reject those pixels below or above some value while keeping the
others. The OpenCV function cv::threshold() accomplishes these tasks (see survey [Sezgin04]). The
basic idea is that an array is given, along with a threshold, and then something happens to every element of
the array depending on whether it is below or above the threshold. If you like, you can think of threshold as
a very simple convolution operation that uses a 1-by-1 kernel and performs one of several nonlinear
operations on that one pixel:6

double cv::threshold(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 double thresh, // Threshold value
 double maxValue, // Max value for upward operations
 int thresholdType // Threshold type to use (see Example 5-2)
);

As shown in Table 5-2, each threshold type corresponds to a particular comparison operation between the
i!" source pixel (srci) and the threshold thresh. Depending on the relationship between the source pixel
and the threshold, the destination pixel dsti may be set to 0, the srci, or the given maximum value
maxValue.

6 The utility of this point of view will become clearer as we proceed through this chapter, and look at other more
complex convolutions. Many useful operations in computer vision can be expressed as a sequence of common
convolutions, and more often than not, the last one of those convolutions is a threshold operation.

Table 5-2: thresholdType options for cv::threshold()

Threshold type Operation
cv::THRESH_BINARY DST! = SRC! > THRESH ? MAXVALUE ∶ 0
cv::THRESH_BINARY_INV DST! = SRC! > THRESH ? 0 ∶ MAXVALUE
cv::THRESH_TRUNC DST! = SRC! > THRESH ? THRESH ∶ SRC!
cv::THRESH_TOZERO DST! = SRC! > THRESH ? SRC! ∶ 0
cv::THRESH_TOZERO_INV DST! = SRC! > THRESH ? 0 ∶ SRC!

Figure 5-4 should help to clarify the exact implications of each of the available values for
thresholdType, the thresholding operation.

Figure 5-4: Results of varying the threshold type in cv::threshold(); the horizontal line through each
chart represents a particular threshold level applied to the top chart and its effect for each of the five types

of threshold operations below

Let’s look at a simple example. In Example 5-1, we sum all three channels of an image and then clip the
result at 100.

Example 5-1: Example code making use of cv::threshold()

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;

void sum_rgb(const cv::Mat& src, cv::Mat& dst) {

 // Split image onto the color planes.
 vector< cv::Mat> planes;
 cv::split(src, planes);

 cv::Mat b = planes[0], g = planes[1], r = planes[2], s;

 // Add equally weighted rgb values.
 cv::addWeighted(r, 1./3., g, 1./3., 0.0, s);
 cv::addWeighted(s, 1., b, 1./3., 0.0, s);

 // Truncate values above 100.
 cv::threshold(s, dst, 100, 100, cv::THRESH_TRUNC);
}

void help()
{
 cout << "Call: ./ch5_ex5_2 faceScene.jpg" << endl;
 cout << "Shows use of alpha blending (addWeighted) and threshold" << endl;
}

int main(int argc, char** argv)

{
 help();
 if(argc < 2) { cout << "specify input image" << endl; return -1; }

 // Load the image from the given file name.
 cv::Mat src = cv::imread(argv[1]), dst;
 if(src.empty()) { cout << "can not load " << argv[1] << endl; return -1; }
 sum_rgb(src, dst);

 // Create a named window with the name of the file and
 // show the image in the window
 cv::imshow(argv[1], dst);

 // Idle until the user hits any key.
 cv::waitKey(0);

 return 0;
}

Some important ideas are shown here. One thing is that we don’t want to add directly into an 8-bit array
(with the idea of normalizing next) because the higher bits will overflow. Instead, we use equally weighted
addition of the three color channels (cv::addWeighted()); then the sum is truncated to saturate at the
value of 100 for the return. Had we used a floating-point temporary image for s in Example 5-1, we could
have substituted the code shown in Example 5-2 instead. Note that cv::accumulate() can accumulate
8-bit integer image types into a floating-point image.

Example 5-2: Alternative method to combine and threshold image planes

void sum_rgb(const cv::Mat& src, cv::Mat& dst) {

 // Split image onto the color planes.
 vector<cv::Mat> planes;
 cv::split(src, planes);

 cv::Mat b = planes[0], g = planes[1], r = planes[2];

 // Accumulate separate planes, combine and threshold
 cv::Mat s = cv::Mat::zeros(b.size(), cv::F32);
 cv::accumulate(b, s);
 cv::accumulate(g, s);
 cv::accumulate(r, s);

 // Truncate values above 100 and rescale into dst
 cv::threshold(s, s, 100, 100, cv::THRESH_TRUNC);
 s.convertTo(dst, b.type());
}

Otsu’s Algorithm
It is also possible to have cv::threshold() attempt to determine the optimal value of the threshold for
you. This is done by passing the special value cv::THRESH_OTSU as the value of thresh.

Briefly, Otsu’s algorithm is to consider all possible thresholds, and to compute the variance 𝜎!! for each of
the two classes of pixels (i.e., the class below the threshold and the class above it). Otsu’s algorithm
minimizes:

𝜎!! ≡ 𝑤! 𝑡 ∙ 𝜎!! + 𝑤! 𝑡 ∙ 𝜎!!,

where 𝑤! 𝑡 and 𝑤! 𝑡 are the relative weights for the two classes given by the relative (normalized)
number of pixels in each class (that is, their probability) and 𝜎!! and 𝜎!! are the variances in each class.
Some thought (think of an image with 2 colors) will convince you that minimizing the variance over both

classes is the same as maximizing the variance between the two classes. Because an exhaustive search of
the space of possible thresholds is required, this is not a particularly fast process.

Adaptive Threshold
There is a modified threshold technique in which the threshold level is itself variable (across the image). In
OpenCV, this method is implemented in the cv::adaptiveThreshold() [Jain86] function:

void cv::adaptiveThreshold(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 double maxValue, // Max value for upward operations
 int adaptiveMethod, // Method to weight pixels in block by
 int thresholdType // Threshold type to use (see Example 5-2)
 int blockSize, // Block size
 double C // Constant to offset sum over block by
);

cv::adaptiveThreshold() allows for two different adaptive threshold types depending on the
settings of adaptiveMethod. In both cases, the adaptive threshold T(x, y) is set on a pixel-by-pixel
basis by computing a weighted average of the b-by-b region around each pixel location minus a constant,
where 𝑏 is given by blockSize and the constant is given by C. If the method is set to
cv::ADAPTIVE_THRESH_MEAN_C, then all pixels in the area are weighted equally. If it is set to
cv::ADAPTIVE_THRESH_GAUSSIAN_C, then the pixels in the region around (𝑥, 𝑦) are weighted
according to a Gaussian function of their distance from that center point.

Finally, the parameter thresholdType is the same as for cv::threshold() shown in Table 5-2.

The adaptive threshold technique is useful when there are strong illumination or reflectance gradients that
you need to threshold relative to the general intensity gradient. This function handles only single-channel 8-
bit or floating-point images, and it requires that the source and destination images be distinct.

Example 5-3 shows source code for comparing cv::adaptiveThreshold() and

cv::threshold().

Figure 5-5 illustrates the result of processing an image that has a strong lighting gradient across it with both
functions. The lower-left portion of the figure shows the result of using a single global threshold as in
cv::threshold(); the lower-right portion shows the result of adaptive local threshold using
cv::adaptiveThreshold(). We see that we get the whole checkerboard via adaptive threshold, a
result that is impossible to achieve when using a single threshold. Note the calling-convention comments at
the top of the code in Example 5-3; the parameters used for Figure 5-5 were:

./adaptThresh 15 1 1 71 15 ../Data/cal3-L.bmp

Figure 5-5: Binary threshold versus adaptive binary threshold: the input image (top) was turned into a
Boolean image using a global threshold (lower-left) and an adaptive threshold (lower-right); raw image

courtesy of Kurt Konolige

Example 5-3: Threshold versus adaptive threshold

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{
 if(argc != 7) { cout <<
 "Usage: ch5_ex5_3 fixed_threshold invert(0=off|1=on) "
 "adaptive_type(0=mean|1=gaussian) block_size offset image\n"
 "Example: ch5_ex5_3 100 1 0 15 10 fruits.jpg\n"; return -1; }

 // Command line
 double fixed_threshold = (double)atof(argv[1]);
 int threshold_type = atoi(argv[2]) ? cv::THRESH_BINARY : cv::THRESH_BINARY_INV;
 int adaptive_method = atoi(argv[3]) ? cv::ADAPTIVE_THRESH_MEAN_C
 : cv::ADAPTIVE_THRESH_GAUSSIAN_C;
 int block_size = atoi(argv[4]);
 double offset = (double)atof(argv[5]);
 cv::Mat Igray = cv::imread(argv[6], cv::LOAD_IMAGE_GRAYSCALE);

 // Read in gray image

 if(Igray.empty()){ cout << "Can not load " << argv[6] << endl; return -1; }

 // Declare the output images
 cv::Mat It, Iat;

 // Thresholds
 cv::threshold(
 Igray,
 It,
 fixed_threshold,
 255,
 threshold_type);
 cv::adaptiveThreshold(
 Igray,
 Iat,
 255,
 adaptive_method,
 threshold_type,
 block_size,
 offset
);

 // Show the results
 cv::imshow("Raw",Igray);
 cv::imshow("Threshold",It);
 cv::imshow("Adaptive Threshold",Iat);
 cv::waitKey(0);
 return 0;
}

Smoothing

Figure 5-6: Gaussian blur on 1D pixel array

Smoothing, also called blurring, is a simple and frequently used image processing operation. There are
many reasons for smoothing, but it is often done to reduce noise or camera artifacts. Smoothing is also
important when we wish to reduce the resolution of an image in a principled way (we will discuss this in
more detail in the “Image Pyramids” section of this chapter).

OpenCV offers five different smoothing operations, each with its own associated library function, which
each accomplish slightly different kinds of smoothing.

The src and dst arguments in all of these functions are the usual source and destination arrays. After
that, each smoothing operation has parameters that are specific to the associated operation. Of these, the
only common parameter is the last, borderType. This argument tells the smoothing operation how to
handle pixels at the edge of the image.

Simple Blur and the Box Filter

Figure 5-7: Image smoothing by block averaging: on the left are the input images; on the right, the output
images

void cv::blur(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::Size ksize, // Kernel size
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The simple blur operation is provided by cv::blur(). Each pixel in the output is the simple mean of all
of the pixels in a window, usually called a kernel, around the corresponding pixel in the input. The size of
this window is specified by the argument ksize. The argument anchor can be used to specify how the
kernel is aligned with the pixel being computed. By default, the value of anchor is cv::Point(-1,-
1), which indicates that the kernel should be centered relative to the filter. In the case of multichannel
images, each channel will be computed separately.

 1 1 1 1 1

 1 1 1 1 1
1/25 x 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

Figure 5-8: A 5-by-5 blur filter, also called a normalized box filter.

The simple blur is a specialized version of the box filter. A box filter is any filter that has a rectangular
profile and for which the values 𝑘!,! are all equal. In most cases, 𝑘!,! = 1 for all 𝑖, 𝑗, or 𝑘!,! = 1

𝐴, where 𝐴 is
the area of the filter. The latter case is called a normalized box filter.

void cv::boxFilter(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int ddepth, // Pixel depth of output image (e.g., cv::U8)
 cv::Size ksize, // Kernel size
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 bool normalize = true, // If true, divide by box area
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The OpenCV function cv::boxFilter() is the somewhat more general form of which cv::blur()
is essentially a special case. The main difference between cv::boxFilter() and cv::blur() is that
the former can be run in an un-normalized mode (normalize = false), and that the depth of the
output image dst can be controlled. (In the case of cv::blur(), the depth of dst will always equal the
depth of src.) If the value of ddepth is set to -1, then the destination image will have the same depth as
the source; otherwise, you can use any of the usual aliases (e.g., cv::F32).

Median Filter

Figure 5-9: Image blurring by taking the median of surrounding pixels

The median filter [Bardyn84] replaces each pixel by the median or “middle-valued” pixel (as opposed to
the mean pixel) in a rectangular neighborhood around the center pixel.7 Results of median filtering are

shown in

Figure 5-9. Simple blurring by averaging can be sensitive to noisy images, especially images with large
isolated outlier values (sometimes called “shot noise”). Large differences in even a small number of points
can cause a noticeable movement in the average value. Median filtering is able to ignore the outliers by
selecting the middle points, though at a cost in speed.

void cv::medianBlur(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::Size ksize // Kernel size
);

The arguments to cv::medianBlur are essentially the same as with previous filters, the source array
src, the destination array dst, and the kernel size ksize. For cv::medianBlur(), the anchor point
is always assumed to be at the center of the kernel.

7 Note that the median filter is an example of a nonlinear kernel, which cannot be represented in the pictorial style
shown in Figure 5-1.

Gaussian Filter

Figure 5-10: Gaussian filtering (blurring)

The next smoothing filter, the Gaussian filter, is probably the most useful. Gaussian filtering is done by
convolving each point in the input array with a Gaussian kernel and then summing to produce the output
array:

void cv::GaussianBlur(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::Size ksize, // Kernel size
 double sigmaX, // Gaussian half-width in x-direction
 double sigmaY = 0.0, // Gaussian half-width in y-direction
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

For the Gaussian blur (Figure 5-11), the parameter ksize gives the width and height of the filter window.
The next parameter indicates the sigma value (half width at half max) of the Gaussian kernel in the x-
dimension. The fourth parameter similarly indicates the sigma value in the y-dimension. If you specify only
the x value, and set the y value to zero (its default value), then the y and x values will be taken to be equal.
If you set them both to zero, then the Gaussian’s parameters will be automatically determined from the
window size using the following formulae:

𝜎! =
𝑛! − 1
2

∙ 0.30 + 0.80, 𝑛! = 𝑘𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ − 1,

𝜎! =
𝑛! − 1
2

∙ 0.30 + 0.80, 𝑛! = 𝑘𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡 − 1.

Finally, cv::GaussianBlur() takes the usual borderType argument.

 1 4 7 4 1
1/141

1
x 7 26 41 26 7

 1 4 7 4 1

Figure 5-11: An example Gaussian kernel. Here ksize=(5,3), sigmaX=1, and sigmaY=0.5

Gaussian smoothing is faster than one might expect. Because convolution by Gaussians is linearly
combinable, we may separate the convolution along the x and the y axis converting the operation from

being n2 in an n-by-n kernel size to being 2n for each pixel. The OpenCV implementation of Gaussian
smoothing also provides even higher performance for several common kernels. 3-by-3, 5-by-5, and 7-by-7
with the “standard” sigma (i.e., sigmaX = 0.0) give better performance than other kernels. Gaussian
blur supports single- or three-channel images in either 8-bit or 32-bit floating-point formats, and it can be
done in place. Results of Gaussian blurring are shown in Figure 5-10.

Bilateral Filter

Figure 5-12: Results of bilateral smoothing

void cv::bilateralFilter(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int d, // Pixel neighborhood size (max distance)
 double sigmaColor, // Width parameter for color weighting function
 double sigmaSpace, // Width parameter for spatial weighting function
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The fifth and final form of smoothing supported by OpenCV is called bilateral filtering [Tomasi98], an
example of which is shown in Figure 5-12. Bilateral filtering is one operation from a somewhat larger class
of image analysis operators known as edge-preserving smoothing. Bilateral filtering is most easily
understood when contrasted to Gaussian smoothing. A typical motivation for Gaussian smoothing is that
pixels in a real image should vary slowly over space and thus be correlated to their neighbors, whereas
random noise can be expected to vary greatly from one pixel to the next (i.e., noise is not spatially
correlated). It is in this sense that Gaussian smoothing reduces noise while preserving signal.
Unfortunately, this method breaks down near edges, where you do expect pixels to be uncorrelated with
their neighbors across the edge. As a result, Gaussian smoothing blurs away edges. At the cost of what is
unfortunately substantially more processing time, bilateral filtering provides a means of smoothing an
image without smoothing away the edges.

Like Gaussian smoothing, bilateral filtering constructs a weighted average of each pixel and its neighboring
components. The weighting has two components, the first of which is the same weighting used by Gaussian
smoothing. The second component is also a Gaussian weighting but is based not on the spatial distance
from the center pixel but rather on the difference in intensity8 from the center pixel.9 When intensities are

8 In the case of multichannel (i.e., color) images, the difference in intensity is replaced with a weighted sum over colors.
This weighting is chosen to enforce a Euclidean distance in the CIE Lab color space.

close, the intensity weighting is nearly 1.0 and we get Gaussian smoothing, but when there are large
differences in intensity, the weight is nearly zero and almost no averaging is done, keeping high-contrast
edges sharp. The effect of this filter is typically to turn an image into what appears to be a watercolor
painting of the same scene.10 This can be useful as an aid to segmenting the image.

Bilateral filtering takes three parameters (other than the source and destination). The first is the diameter d
of the pixel neighborhood that is considered when filtering. The second is the width of the Gaussian kernel
used in the color domain called sigmaColor, which is analogous to the sigma parameters in the Gaussian
filter. The third is the width of the Gaussian kernel in the spatial domain called sigmaSpace. The larger
this second parameter, the broader the range of intensities (or colors) that will be included in the smoothing
(and thus the more extreme a discontinuity must be in order to be preserved).

The filter size has a strong effect (as you might expect) on the speed of the algorithm. Typical values are
less than or equal to five for video processing, but might be as high as nine for non-real-time applications.
As an alternative to specifying d explicitly, it can be set to -1, in which case, it will be automatically
computed from sigmaSpace.

In practice, small values (e.g., 10) give a very light, but noticeable effect, while large
values (e.g., 150) have a very strong effect and tend to render the image into a somewhat
“cartoonish” appearance.

Derivatives and Gradients
One of the most basic and important convolutions is the computation of derivatives (or approximations to
them). There are many ways to do this, but only a few are well suited to a given situation.

The Sobel Derivative
In general, the most common operator used to represent differentiation is the Sobel derivative [Sobel68]
operator (see Figure 5-13 and Figure 5-14). Sobel operators exist for any order of derivative as well as for
mixed partial derivatives (e.g., 𝜕!/𝜕𝑥𝜕𝑦).

9 Technically, the use of Gaussian distribution functions is not a necessary feature of bilateral filtering. The
implementation in OpenCV uses Gaussian weighting even though the method allows many possible weighting
functions.
10 This effect is particularly pronounced after multiple iterations of bilateral filtering.

Figure 5-13: The effect of the Sobel operator when used to approximate a first derivative in the x-

dimension.

void cv::Sobel(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int ddepth, // Pixel depth of output image (e.g., cv::U8)
 int xorder, // order of corresponding derivative in x
 int yorder, // order of corresponding derivative in y
 cv::Size ksize = 3, // Kernel size
 double scale = 1, // Scale applied before assignment to dst
 double delta = 0, // Offset applied before assignment to dst
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

Here, src and dst are your image input and output. The argument ddepth allows you to select the depth
(type) of the generated output (e.g., cv::F32). As a good example of how to use ddepth, if src is an 8-
bit image, then the dst should have a depth of at least cv::S16 to avoid overflow. xorder and
yorder are the orders of the derivative. Typically, you’ll use 0, 1, or at most 2; a 0 value indicates no
derivative in that direction.11 The ksize parameter should be odd and is the width (and the height) of the
filter used. Currently, aperture sizes up to 31 are supported.12 The scale factor and delta are applied to
the derivative before storing in dst. This can be useful when you want to actually visualize a derivative in
an 8-bit image you can show on the screen:

𝑑𝑠𝑡! = 𝑠𝑐𝑎𝑙𝑒 ∙ 𝑘!,! ∗ 𝐼 𝑥 + 𝑖, 𝑦 + 𝑗
!,!"#$%&!!"#$"%

+ 𝑑𝑒𝑙𝑡𝑎.

The borderType argument functions exactly as described for other convolution operations.

Sobel computations are fast for the same reason Gaussian blurring is fast: the kernel can be separated and
so, rather than a 2D x,y convolution over the area of the kernel, we reduce to a 1D x convolution combined
with a 1D y convolution (see the exercises below).

11 Either xorder or yorder must be nonzero.
12 In practice, it really only makes sense to set the kernel size to 3 or greater. If you set ksize to 1, then the kernel
size will automatically be adjusted up to 3.

Figure 5-14: The effect of the Sobel operator when used to approximate a first derivative in the y-

dimension.

Sobel derivatives have the nice property that they can be defined for kernels of any size, and those kernels
can be constructed quickly and iteratively. Up to the limit of not spanning key image structures, larger
kernels give a better approximation to the derivative because they span more area and are thus less sensitive
to noise.

To understand this more exactly, we must realize that a Sobel derivative is not really a derivative as it is
defined on a discrete space. What the Sobel operator actually represents is a fit to a polynomial. That is, the
Sobel derivative of second order in the x-direction is not really a second derivative; it is a local fit to a
parabolic function. This explains why one might want to use a larger kernel: that larger kernel is computing
the fit over a larger number of pixels.

Scharr Filter
In fact, there are many ways to approximate a derivative in the case of a discrete grid. The downside of the
approximation used for the Sobel operator is that it is less accurate for small kernels. For large kernels,
where more points are used in the approximation, this problem is less significant. This inaccuracy does not
show up directly for the x and y filters used in cv::Sobel(), because they are exactly aligned with the
x- and y-axes. The difficulty arises when you want to make image measurements that are approximations of

directional derivatives (i.e., direction of the image gradient by using the arctangent of the 𝑦/𝑥 filter
responses)13.

To put this in context, a concrete example of where you may want image measurements of this kind would
be in the process of collecting shape information from an object by assembling a histogram of gradient
angles around the object. Such a histogram is the basis on which many common shape classifiers are
trained and operated. In this case, inaccurate measures of gradient angle will decrease the recognition
performance of the classifier because the data to be learned will vary depending on the rotation of the
object.

For a 3-by-3 Sobel filter, the inaccuracies are more apparent the further the gradient angle is from
horizontal or vertical. OpenCV addresses this inaccuracy for small (but fast) 3-by-3 Sobel derivative filters
by a somewhat obscure use of the special ksize value cv::SCHARR in the cv::Sobel() function.
The Scharr filter is just as fast but more accurate than the Sobel filter, so it should always be used if you
want to make image measurements using a 3-by-3 filter. The filter coefficients for the Scharr filter are
shown in Figure 5-15 [Scharr00].

-3 0 +3 -3 -10 -3

-10 0 +10 0 0 0

-3 0 +3 +3 +10 +3

 A) B)
Figure 5-15: The 3-by-3 Scharr filter using flag cv::SCHARR

The Laplacian
The OpenCV Laplacian function (first used in vision by Marr [Marr82]) implements a discrete
approximation to the Laplacian operator14:

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑓 =
𝜕!𝑓
𝜕𝑥!

+
𝜕!𝑓
𝜕𝑦!

Because the Laplacian operator can be defined in terms of second derivatives, you might well suppose that
the discrete implementation works something like the second-order Sobel derivative. Indeed it does, and in
fact, the OpenCV implementation of the Laplacian operator uses the Sobel operators directly in its
computation:

void cv::Laplacian(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int ddepth, // Pixel depth of output image (e.g., cv::U8)
 cv::Size ksize = 3, // Kernel size
 double scale = 1, // Scale applied before assignment to dst
 double delta = 0, // Offset applied before assignment to dst
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The cv::Laplacian() function takes the same arguments as the cv::Sobel() function, with the
exception that the orders of the derivatives are not needed. This aperture ksize is precisely the same as
the aperture appearing in the Sobel derivatives and, in effect, gives the size of the region over which the
pixels are sampled in the computation of the second derivatives. In the actual implementation, for ksize
anything other than 1, the Laplacian is computed directly from the sum of the corresponding Sobel

13 As you might recall, there are functions cv::cartToPolar() and cv::polarToCart() that implement
exactly this transformation. If you find yourself wanting to call cv::cartToPolar() on a pair of 𝑥- and y-
derivative images, you should probably be using CV_SCHARR to compute those images.
14 Note that the Laplacian operator is distinct from the Laplacian pyramid, which we will discuss in Chapter 6.

operators. In the special case of ksize=1, the Laplacian is computed by convolution with the following
single kernel:

0 1 0

1 -4 1

0 1 0

Figure 5-16. The single kernel used by cv::Laplacian() when ksize=1

Figure 5-17: Laplace transform (upper right) of the racecar image: zooming in on the tire (circled in white)

and considering only the x-dimension, we show a (qualitative) representation of the brightness as well as
the first and second derivatives (lower three cells); the 0s in the second derivative correspond to edges, and

the 0 corresponding to a large first derivative is a strong edge

The Laplace operator can be used in a variety of contexts. A common application is to detect “blobs.”
Recall that the form of the Laplacian operator is a sum of second derivatives along the x-axis and y-axis.
This means that a single point or any small blob (smaller than the aperture) that is surrounded by higher
values will tend to maximize this function. Conversely, a point or small blob that is surrounded by lower
values will tend to maximize the negative of this function.

With this in mind, the Laplace operator can also be used as a kind of edge detector. To see how this is done,
consider the first derivative of a function, which will (of course) be large wherever the function is changing
rapidly. Equally important, it will grow rapidly as we approach an edge-like discontinuity and shrink
rapidly as we move past the discontinuity. Hence, the derivative will be at a local maximum somewhere
within this range. Therefore, we can look to the 0s of the second derivative for locations of such local
maxima. Got that? Edges in the original image will be 0s of the Laplacian. Unfortunately, both substantial
and less meaningful edges will be 0s of the Laplacian, but this is not a problem because we can simply
filter out those pixels that also have larger values of the first (Sobel) derivative. Figure 5-17 shows an
example of using a Laplacian on an image together with details of the first and second derivatives and their
zero crossings.

Image Morphology

Figure 5-18: Summary results for all morphology operators

OpenCV provides a fast, convenient interface for doing morphological transformations [Serra83] on an
image. Image morphology is its own topic, and over the years, especially in the early days of computer
vision, a great number of morphological operations were developed. Most were developed for one specific
purpose or another, and some of those found broader utility over the years. Essentially, all morphology
operations are based on just two primitive operations. We will start with those, and then move on to the
more complex operations, each of which is typically defined in terms of its simpler predecessors.

Dilation and Erosion

Figure 5-19: Morphological dilation: take the maximum under a square kernel

The basic morphological transformations are called dilation and erosion, and they arise in a wide variety of
contexts such as removing noise, isolating individual elements, and joining disparate elements in an image.
More sophisticated morphology operations, based on these two basic operations, can also be used to find
intensity peaks (or holes) in an image and to define a particular form of image gradient.

Figure 5-20: Results of the dilation, or “max,” operator: bright regions are expanded and often joined

Dilation is a convolution of some image with a kernel in which any given pixel is replaced with the local
maximum of all of the pixel values covered by the kernel. As we mentioned earlier, this is an example of a
nonlinear operation, so the kernel cannot be expressed in the form shown in Figure 5-1. Most often, the

kernel used for Dilation is a “solid” square kernel, or sometimes a disk, with the anchor point at the center.
The effect of dilation is to cause filled15 regions within an image to grow as diagrammed in

Figure 5-19.

15 Here the term “filled” actually means those pixels whose value is nonzero. You could read this as “bright,” since the
local maximum actually takes the pixel with the highest intensity value under the template (kernel). It is worth
mentioning that the diagrams that appear in this chapter to illustrate morphological operators are in this sense inverted
relative to what would happen on your screen (because books write with dark ink on light paper instead of light pixels
on a dark screen).

Erosion is the converse operation. The action of the erosion operator is equivalent to computing a local
minimum over the area of the kernel.16 Erosion is diagrammed in

Figure 5-21.

Image morphology is often done on Boolean17 images that result from a threshold
operation. However, because dilation is just a max operator and erosion is just a min
operator, morphology may be used on intensity images as well.

In general, whereas dilation expands a bright region 𝐴, erosion (

Figure 5-21) reduces such a bright region. Moreover, dilation will tend to fill concavities and erosion will
tend to remove protrusions. Of course, the exact result will depend on the kernel, but these statements are
generally true so long as the kernel is both convex and filled.

In OpenCV, we effect these transformations using the cv::erode() and cv::dilate() functions:
void cv::erode(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::InputArray element, // Structuring element, can be cv::Mat()
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int iterations = 1, // Number of times to apply
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
 const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()

16 To be precise, the pixel in the destination image is set to the value equal to the minimal value of the pixels under the
kernel in the source image.
17 It should be noted that OpenCV does not actually have a Boolean image data type. The minimum size representation
is 8-bit characters. Those functions which interpret an image as Boolean do so by classifying all pixels as either zero
(“False” or 0) or nonzero (“True” or 1).

);

Figure 5-21: Morphological erosion: take the minimum under a square kernel

void cv::dilate(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::InputArray element, // Structuring element, can be cv::Mat()
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int iterations = 1, // Number of times to apply
 int borderType = cv::BORDER_CONSTANT // Border extrapolation to use
 const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);

Both cv::erode() and cv::dilate() take a source and destination image, and both support “in
place” calls (in which the source and destination are the same image). The third argument is the kernel, to
which you may pass an uninitialized array cv::Mat(), which will cause it to default to using a 3-by-3
kernel with the anchor at its center (we will discuss how to create your own kernels later). The fourth
argument is the number of iterations. If not set to the default value of 1, the operation will be applied
multiple times during the single call to the function. The borderType argument is the usual border type,
and the borderValue is the value that will be used for off-the-edge pixels when the borderType is
set to cv::BORDER_CONSTANT.

The results of an erode operation on a sample image are shown in

Figure 5-22 and those of a dilation operation on the same image are shown in

Figure 5-20. The erode operation is often used to eliminate “speckle” noise in an image. The idea here is
that the speckles are eroded to nothing while larger regions that contain visually significant content are not
affected. The dilate operation is often used when attempting to find connected components (i.e., large
discrete regions of similar pixel color or intensity). The utility of dilation arises because in many cases a
large region might otherwise be broken apart into multiple components as a result of noise, shadows, or
some other similar effect. A small dilation will cause such components to “melt” together into one.

To recap: when OpenCV processes the cv::erode() function, what happens beneath the hood is that
the value of some point p is set to the minimum value of all of the points covered by the kernel when
aligned at p; for the dilation operator, the equation is the same except that max is considered rather than
min:

Figure 5-22: Results of the erosion, or “min,” operator: bright regions are isolated and shrunk

𝑒𝑟𝑜𝑑𝑒 𝑥, 𝑦 = min
!,! ∈!"#$"%

𝑠𝑟𝑐 𝑥 + 𝑖, 𝑦 + 𝑗

𝑑𝑖𝑙𝑎𝑡𝑒 𝑥, 𝑦 = max
(!,!)∈!"#$"%

𝑠𝑟𝑐(𝑥 + 𝑖, 𝑦 + 𝑗)

You might be wondering why we need a complicated formula when the earlier heuristic description was
perfectly sufficient. Some users actually prefer such formulas but, more importantly, the formulas capture

some generality that isn’t apparent in the qualitative description. Observe that if the image is not Boolean,
then the min and max operators play a less trivial role. Take another look at

Figure 5-22 and

Figure 5-20, which show the erosion and dilation operators applied to two real images.

The General Morphology Function
When working with Boolean images and image masks, the basic erode and dilate operations are usually
sufficient. When working with grayscale or color images, however, a number of additional operations are
often helpful. Several of the more useful operations can be handled by the multipurpose
cv::morphologyEx() function.

void cv::morphologyEx(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int op, // Morphology operator to use e.g. cv::MOP_OPEN
 cv::InputArray element, // Structuring element, can be cv::Mat()
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int iterations = 1, // Number of times to apply
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
 const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()

);

In addition to the arguments that we saw with the cv::dilate() and cv::erode() functions,
cv::morphologyEx() has one new—and very important—parameter. This new argument, called op,
is the specific operation to be done; the possible values of this argument are listed on Table 5-3.

Table 5-3: cv::morphologyEx() operation options

Value of operation Morphological operator Requires temp image?
cv::MOP_OPEN Opening No
cv::MOP_CLOSE Closing No
cv::MOP_GRADIENT Morphological gradient Always
cv::MOP_TOPHAT Top Hat For in-place only (src =

dst)
cv::MOP_BLACKHAT Black Hat For in-place only (src =

dst)

Opening and closing

Figure 5-23: Morphological opening applied to a simple Boolean image.

The first two operations, opening and closing, are actually simple combinations of the erosion and dilation
operators. In the case of opening, we erode first and then dilate (Figure 5-23). Opening is often used to
count regions in a Boolean image. For example, if we have thresholded an image of cells on a microscope
slide, we might use opening to separate out cells that are near each other before counting the regions.

Figure 5-24: Morphological closing applied to a simple Boolean image.

In the case of closing, we dilate first and then erode (Figure 5-24). Closing is used in most of the more
sophisticated connected-component algorithms to reduce unwanted or noise-driven segments. For
connected components, usually an erosion or closing operation is performed first to eliminate elements that

arise purely from noise and then an opening operation is used to connect nearby large regions. (Notice that,
although the end result of using open or close is similar to using erode or dilate, these new operations tend
to preserve the area of connected regions more accurately.)

Figure 5-25: Morphological opening operation applied to a (one-dimensional) non-Boolean image: the
upward outliers are eliminated as a result

Figure 5-26: Morphological closing operation applied to a (one-dimensional) non-Boolean image: the
downward outliers are eliminated as a result

When used on non-Boolean images, the most prominent effect of closing is to eliminate lone outliers that are
are lower in value than their neighbors, whereas the effect of opening is to eliminate lone outliers that are

higher than their neighbors. Results of using the opening operator are shown in

Figure 5-25, and of the closing operator in

Figure 5-26.

Figure 5-27: Results of morphological opening on an image: small bright regions are removed, and the
remaining bright regions are isolated but retain their size

One last note on the opening and closing operators concerns how the iterations argument is
interpreted. You might expect that asking for two iterations of closing would yield something like dilate-

erode-dilate-erode. It turns out that this would not be particularly useful. What you usually want (and what
you get) is dilate-dilate-erode-erode. In this way, not only the single outliers but also neighboring pairs of

outliers will disappear. Figure 5-23 (c) and

Figure 5-26 (c) illustrate the effect of calling open and close (respectively) with an iteration count of two.

Figure 5-28: Results of morphological closing on an image: bright regions are joined but retain their basic
size

Morphological gradient

Figure 5-29: Morphological gradient applied to a simple Boolean image.

Our next available operator is the morphological gradient. For this one, it is probably easier to start with a
formula and then figure out what it means:

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑟𝑐 = 𝑑𝑖𝑙𝑎𝑡𝑒 𝑠𝑟𝑐 – 𝑒𝑟𝑜𝑑𝑒 𝑠𝑟𝑐 .

As we can see in Figure 5-29, the effect of subtracting the eroded (slightly reduced) image from the dilated
(slightly enlarged) image is to leave behind a representation of the edges of objects in the original image.

Figure 5-30: Morphological gradient applied to (one-dimensional) non-Boolean image: as expected, the
operator has its highest values where the grayscale image is changing most rapidly.

With a grayscale image (

Figure 5-30), we see that the value of the operator is telling us something about how fast the image
brightness is changing; this is why the name “morphological gradient” is justified. Morphological gradient
is often used when we want to isolate the perimeters of bright regions so we can treat them as whole objects
(or as whole parts of objects). The complete perimeter of a region tends to be found because a contracted

version is subtracted from an expanded version of the region, leaving a complete perimeter edge. This
differs from calculating a gradient, which is much less likely to work around the full perimeter of an object.

Figure 5-31: Results of the morphological gradient operator: bright perimeter edges are identified

Top Hat and Black Hat

Figure 5-32: The Top Hat (left) and Black Hat (right) morphology operators

The last two operators are called Top Hat and Black Hat [Meyer78]. These operators are used to isolate
patches that are, respectively, brighter or dimmer than their immediate neighbors. You would use these
when trying to isolate parts of an object that exhibit brightness changes relative only to the object to which
they are attached. This often occurs with microscope images of organisms or cells, for example. Both
operations are defined in terms of the more primitive operators, as follows:

𝑇𝑜𝑝𝐻𝑎𝑡 𝑠𝑟𝑐 = 𝑠𝑟𝑐– 𝑜𝑝𝑒𝑛 𝑠𝑟𝑐 ,

𝐵𝑙𝑎𝑐𝑘𝐻𝑎𝑡 𝑠𝑟𝑐 = 𝑐𝑙𝑜𝑠𝑒 𝑠𝑟𝑐 – 𝑠𝑟𝑐.

Figure 5-33: Results of morphological Top Hat operation: bright local peaks are isolated

As you can see, the Top Hat operator subtracts the opened form of A from A. Recall that the effect of the
open operation was to exaggerate small cracks or local drops. Thus, subtracting 𝑜𝑝𝑒𝑛(𝐴) from 𝐴 should
reveal areas that are lighter than the surrounding region of 𝐴, relative to the size of the kernel (see Figure 5-
33); conversely, the Black Hat operator reveals areas that are darker than the surrounding region of 𝐴
(Figure 5-34). Summary results for all the morphological operators discussed in this chapter are assembled
in Figure 5-18.18

Figure 5-34: Results of morphological Black Hat operation: dark holes are isolated

Making Your Own Kernel
In the morphological operations we have looked at so far, the kernels considered were always square and 3-
by-3. If you need something a little more general than that, OpenCV allows you to create your own kernel.

18 Both of these operations (Top Hat and Black Hat) make more sense in grayscale morphology, where the structuring
element is a matrix of real numbers (not just a Boolean mask) and the matrix is added to the current pixel neighborhood
before taking a minimum or maximum. Unfortunately, this is not yet implemented in OpenCV.

In the case of morphology, the kernel is often called a structuring element, so the routine that allows you to
create your own morphology kernels is called cv::getStructuringElement().

In fact, you can just create any array you like and use it as a structuring element in functions like
cv::dilate(), cv::erode(), or cv::morphologyEx(), but this is often more work than is
necessary. Often what you need is a nonsquare kernel of an otherwise common shape. This is what
cv::getStructuringElement() is for:

cv::Mat cv::getStructuringElement(
 int shape, // Element shape, e.g. cv::MORPH_RECT
 cv::Size ksize, // Size of structuring element (should be odd)
 cv::Point anchor = cv::Point(-1,-1) // Location of anchor point
);

The first argument shape controls which basic shape will be used to create the element (Table 5-4), while
ksize and anchor specify the size of the element and the location of the anchor point, respectively. As
usual, if the anchor argument is left with its default value of cv::Point(-1,-1), then
cv::getStructuringElement() will take this to mean that the anchor should automatically be
placed at the center of the element.

Table 5-4 cv::getStructuringElement() element shapes

Value of shape Element Description
cv::MORPH_RECT Rectangular 𝐸!,! = 1,∀𝑖, 𝑗
cv::MORPH_ELLIPSE Elliptic Ellipse with axes ksize.width and

ksize.height.
cv::MORPH_CROSS Cross-shaped 𝐸!,! = 1, iff 𝑖 == 𝑎𝑛𝑐ℎ𝑜𝑟. 𝑦 or 𝑗 == 𝑎𝑛𝑐ℎ𝑜𝑟. 𝑥

Of the options for shape shown in Table 5-4, the last is there only for legacy
compatibility. In the old C API (v1.x), there was a separate structure used for the purpose
of expressing convolution kernels. There is no need to use this functionality now, as you
can simply pass any cv::Mat to the morphological operators as a structuring element if
you need something more complicated than the basic shape-based elements created by
cv::getStructuringElement().

Convolution with an Arbitrary Linear Filter
In the functions we have seen so far, the basic mechanics of the convolution were happening deep down
below the level of the OpenCV API. We took some time to understand the basics of convolution, then we
went on to look at a long list of functions that implemented different kinds of useful convolutions. In
essentially every case, there was a kernel that was implied by the function we chose, and we just passed
that function a little extra information that parameterized that particular filter type. For linear filters,
however, it is possible to just provide the entire kernel and let OpenCV handle the convolution for us.

From an abstract point of view, this is very straightforward: we just need a function that takes an array
argument to describe the kernel and we are done. At a practical level, there is an important subtlety that
strongly affects performance. That subtlety is that some kernels are separable, and others are not.

-1 0 +1 1 0 1 0

-2 0 +2 = 2 ⨂ -1 0 +1 1 1 1

-1 0 +1 1 0 1 0

 (a) (b) (c) (d)

Figure 5-35: The Sobel kernel (a) is separable; it can be expressed as two one-dimensional convolutions (b
and c); (d) is an example of a non-separable kernel

A separable kernel is one that can be thought of as two one-dimensional kernels, the application of which is
done by first convolving with the 𝑥-kernel and then with the 𝑦-kernel. The benefit of this decomposition is
that the computational cost of a kernel convolution is approximately the image area multiplied by the
kernel area19. This means that convolving your image of area 𝐴 by an 𝑛-by-𝑛 kernel takes time proportional
to 𝐴𝑛!, while convolving your image once by an 𝑛-by-1 kernel and then by a 1-by-𝑛 kernel takes time
proportional to 𝐴𝑛 + 𝐴𝑛 = 2𝐴𝑛. For even n as small as 3 there is a benefit, and the benefit grows with 𝑛.

Applying a general filter with cv::filter2D()

Given that the number of operations required for an image convolution, at least at first glance20, seems to be
the number of pixels in the image multiplied by the number of pixels in the kernel, this can be a lot of
computation and so is not something you want to do with some for loop and a lot of pointer de-
referencing. In situations like this, it is better to let OpenCV do the work for you and take advantage of the
internal optimizations. The OpenCV way to do this is with cv::filter2D():

cv::filter2D(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int ddepth, // Pixel depth of output image (e.g., cv::U8)
 cv::InputArray kernel, // Your own kernel
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 double delta = 0, // Offset before assignment to dst
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

Here we create an array of the appropriate size, fill it with the coefficients of our linear filter, and then pass
it together with the source and destination images into cv::filter2D(). As usual, we can specify the
depth of the resulting image with ddepth, the anchor point for the filter with anchor, and the border
extrapolation method with borderType. The kernel can be of even size if its anchor point is defined;
otherwise, it should be of odd size. If you want an overall offset applied to the result after application of the
linear filter, you can use the argument delta.

Applying a general separable filter with cv::sepFilter2D

In the case where your kernel is separable, you will get the best performance from OpenCV by expressing
it in its separated form and passing those one-dimensional kernels to OpenCV (e.g., passing the kernels
shown in Figure 5-35b and Figure 5-35c instead of the one shown in Figure 5-35a.) The OpenCV function
cv::sepFilter2D() is like cv::filter2D(), except that it expects these two one-dimensional
kernels instead of one two-dimensional kernel.

cv::sepFilter2D(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int ddepth, // Pixel depth of output image (e.g., cv::U8)
 cv::InputArray rowKernel, // 1-by-N row Kernel
 cv::InputArray columnKernel, // M-by-1 column kernel
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point

19 This statement is only exactly true for convolution in the spatial domain, which is how OpenCV handles only small
kernels.
20 We say “at first glance” because it is also possible to perform convolutions in the frequency domain. In this case, for
an n-by-n image and an 𝑚-by-𝑚 kernel with 𝑛 ≫ 𝑚, the computational time will be proportional to 𝑛! log n and
not to the 𝑛!𝑚! that is expected for computations in the spatial domain. Because the frequency domain computation is
independent of the size of the kernel, it is more efficient for large kernels. OpenCV automatically decides whether to do
the convolution in the frequency domain based on the size of the kernel.

 double delta = 0, // Offset before assignment to dst
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

All the arguments of cv::sepFilter2D() are the same as those of cv::filter2D(), with the
exception of the replacement of the kernel argument with the rowKernel and columnKernel
arguments. The latter two are expected to be 𝑛!-by-1 and 1-by-𝑛! arrays (with 𝑛! not necessarily equal to
𝑛!).

The Filter Architecture
Almost all of the functions described in this chapter are based on a unified Filter Architecture. The Filter
Architecture is a class system that allows you (or the OpenCV developers) to create a new filter and
automatically reuse all of the things that every filter has in common (the convolution steps, handling of the
borders, etc.)

The Big Picture
The process of doing convolutions is complex because these are always very computationally intensive
operations. As a result, there is a great benefit to doing things very efficiently. On the other hand, writing
very efficient code is often very difficult to do in a modular way. As a result, OpenCV has an entire
architecture for handling just this problem. This architecture begins at the top with high-level operations
like cv::blur(). This function takes your image, smoothes it, and gives it back. Sounds simple, but this
is actually the result of many different layers operating together. When you want to do your own thing, you
will have to figure out exactly which level you want to tinker with. Tinker at too high a level, and you
won’t have the control you need. Tinker at too low a level, and you will find yourself reinventing every sort
of wheel before you are done. To get the most out of OpenCV’s filter architecture, it is important to keep
the big picture in mind.

The big picture is best understood by working through an example. The “top” layer of the filter architecture
is a collection of high-level service routines, like cv::blur() mentioned above. Inside of
cv::blur(), however, your image is given to an object called a filter engine. The filter engine is a class
that handles all of the general aspects of applying a filter kernel to your image, like iterating over the
image, operating on each segment of the image, and handling boundary conditions. As the filter engine
moves through the image, it will pass chunks of the image down to the next level that contains the actual
filters. These filters, called base filters in OpenCV, do the actual work of computing individual destination
image pixels from small windows of the source image and the kernel. At the very bottom of this hierarchy
are the kernel builders. These are routines that actually compute individual kernels from some specific set
of parameters (i.e., the variance of the Gaussian used in the cv::blur() code).

Filter Engines
You can use the Filter Engine layer to implement your own basic filters. The filters you implement need
not be linear filters as was the case with cv::filter2D(). For performance reasons, you may also want
to create composite filters, which—though they may accomplish something similar or identical to some
sequence of filters provided for you by OpenCV—will run much faster. This is because combining the
operations at a local level will mean that your data will stay in the processor cache, get handled, and get
sent back to main memory, in just one transaction (as opposed to one for each filter you used in the
composition).

The Basics of How Filter Engines Work
The basic objects that are used to represent filters in two dimensions are all derived from the
cv::BaseFilter class. This class essentially defines the kernel operation. For linear kernels, this can

be thought of as the kernel weights. For nonlinear kernels, in principle, this could be just about any function
that maps the weights in the kernel support area to a single number that is the result of the filter.

The object responsible for applying a filter is a cv::FilterEngine. The cv::FilterEngine class
is one of those “classes that do things.” When you want to use a cv::BaseFilter-derived kernel
object, you have to create a cv::FilterEngine object to do the work, and pass it a pointer to your
cv::BaseFilter object when you create it.

The cv::FilterEngine Class

The filter engine class is both a container for the base filters, as well as a device for actually applying the
filter to an image. When constructed, the filter engine constructor will require either a two-dimensional
filter (non-separable case) or two one-dimensional filters (separable case). In addition, you will have to tell
it what kinds of images it will operate on, what kind it will return, and what data type to use for its
intermediate buffer (more on that in a moment). The way the borders are handled is also a property of the
filter engine, as it is responsible for the action of the more atomic filter object it contains on the images
provided to the engine. Here is the constructor for the cv::FilterEngine class:

cv::FilterEngine(
 const cv::Ptr< cv::BaseFilter>& _filter2D,
 const cv::Ptr< cv::BaseRowFilter>& _rowFilter,
 const cv::Ptr< cv::BaseColumnFilter>& _columnFilter,
 int srcType,
 int dstType,
 int bufType,
 int _rowBorderType = cv::BORDER_REPLICATE,
 int _columnBorderType = -1,
 const Scalar& _borderValue = cv::Scalar()
);

The first three arguments are used to pass the base filter to the filter engine. We will cover the details of
how to make those shortly. What is important at the moment is that you will only use either the first option,
_filter2D, or the next two, _rowFilter and _columnFilter. If you are using _filter2D, then
you should pass cv::Mat() (empty matrix constructor) to _rowFilter and _columnFilter;
conversely if you wish to use _rowFilter and _columnFilter, you should pass cv::Mat() to
_filter2D.

The next three arguments, srcType, dstType, and bufType should all be depth types (e.g., cv::F32
etc.) All data passed to the filter engine must be of type srcType. All final returned data will be of type
dstType. The buffer type bufType must be the same as the source type for non-separable filters. In the
case of separable filters, the row filter will be processed first, and its output will be written to a buffer of
type bufType. The column filter will then be applied on that buffer and the results written to the output
area, which will be of the destination type. Thus the row filter must be one that takes arrays of type
srcType and returns bufType, while the column filter must take arrays of type bufType and return
arrays of type dstType.

Row and column borders can be handled differently by the filter engine if you like, by passing different
values to _rowBorderType and _columnBorderType. If you wish, you may pass -1 (the default
value) to _columnBorderType to make it the same as the row border type. The border value
_borderValue is only used for cv::BORDERTYPE_CONSTANT, in which case extrapolated pixels
will have value _borderValue.

You may create a filter engine with the constructor described above, or you may create a filter engine using
the default constructor cv::FilterEngine(), and then initialize the engine with its init() method:

cv::FilterEngine::init(
 const cv::Ptr< cv::BaseFilter>& _filter2D,
 const cv::Ptr< cv::BaseRowFilter>& _rowFilter,
 const cv::Ptr< cv::BaseColumnFilter>& _columnFilter,
 int srcType,

 int dstType,
 int bufType,
 int _rowBorderType = cv::BORDER_REPLICATE,
 int _columnBorderType = -1,
 const Scalar& _borderValue = cv::Scalar()
);

Once you have the filter engine, there are several methods that allow you to use the engine to actually do a
convolution. They are the methods called cv::FilterEngine::start(),
cv::FilterEngine::proceed(), and cv::FilterEngine::apply(). The start()
methods initializes convolution for processing pixels in a set region of the source image, though it does not
actually process the pixels. The proceed() method does the processing of pixels in that section of the
image after start() or a previous call to proceed(). The apply() method is essentially a higher-
level call that processes the entire image at once.

virtual int cv::FilterEngine::start(// Return starting y-position in source image
 cv::Size wholeSize, // Size of entire source image
 Rect roi, // Region of interest inside of source image
 int maxBufRows = -1 // Leave this at -1, or see text below
);
virtual int cv::FilterEngine::start(// Return starting y-position in source image
 const cv::Mat& src, // Source image
 const cv::Rect& srcRoi = cv::Rect(0,0,-1,-1), // Region of interest in source
 bool isolated = false, // if true, use edge extrapolation
 int maxBufRows = -1 // Leave this at -1, or see text below
);

Both forms of cv::FilterEngine::start() support a region of interest, typically abbreviated ROI.
This is the portion of the incoming source image that will be acted on by the filter engine. The first form of
start() requires to be told both the size of the image that is going to be processed, called wholeSize, and
the size and location of the ROI, which are together in the cv::Rect called roi. The argument
maxBufRows should be left at its default value of -1.21

The second form is the one you will probably use most often; it takes the source image (and computes the
equivalent of wholeSize from that), the region of interest, and a new argument called isolated. The
parameter isolated deals with the way off-the-edge pixels are treated for an ROI that is smaller than the
entire image. If isolated is true, those pixels will be extrapolated the same as would be off-the-edge
pixels of the image as a whole. If isolated is false, however, off-the-edge pixels will not be
extrapolated. Instead they will be taken from the image outside of the ROI.
cv::FilterEngine::start() returns an integer indicating the y-position in the image at which
processing should begin (as computed from the ROI).

Once you have called cv::FilterEngine::start(), you can begin processing your data with
cv::FilterEngine::proceed().

21 This parameter is the size of internal ring buffer used for filtering and affects only the processing speed. As
maxBufRows increases from the minimal value (i.e., kernel_aperture_height), the speed will increase until,
after a certain value, it will decrease because of the less efficient cache use. The measured difference in speed should be
quite small, but you can play with it if filter performance is critical to your application.
In the case of non-separable filters with large apertures however, keep in mind that the function cv::filter2D()
checks the aperture size and, if it's large enough (~11-by-11 or larger), it uses the fast DFT-based algorithm. This
method filters each pixel in ~𝑂(𝑙𝑜𝑔 𝑛) time (i.e. time almost does not depend on the aperture size). By contrast,
FilterEngine always uses the direct algorithm that takes 𝑂(𝑛!) operations for each pixel (in the case of an 𝑛-by-𝑛
filter). In other words, if you want the highest performance in linear non-separable filtering operations, where aperture
size is sufficiently large, it's better to use cv::filter2D(), rather than to use FilterEngine and try to tune
maxBufRows.

Thank Vadim Pisarevsky for this important insight.

virtual int cv::FilterEngine::proceed(// Returns the number of produced rows
 const uchar* src, // Points into source image
 int srcStep, // Source image step size
 int srcCount, // Number of row steps to process
 uchar* dst, // Points into destination image
 int dstStep // Destination image step size
);

When called, cv::FilterEngine::proceed() requires to be passed some detailed bookkeeping
information. The first argument src is the location in memory of the current row being operated on. This
means, for example, that the first time you call cv::FilterEngine::proceed(), you will need to
compute src from the y-value returned to you by cv::FilterEngine::start(). You will also
have to pass the step size from the source image as srcStep. The argument srcCount is the number or
row steps you would like to process in this call to cv::FilterEngine::proceed(). Finally, you
must give the data pointer and step size for the area to which the results of the filter will be written. These
two arguments are dst and dstStep, respectively. The way in which both
cv::FilterEngine::start() and cv::FilterEngine::proceed() are used is best
understood by example. Below is an example from the OpenCV source code, which is a (slightly
simplified) implementation of the Laplace operator:

Example 5-4: An example implementation of a Laplace operator using the cv::FilterEngine() class

void laplace_f(
 const cv::Mat& src, // Input image
 cv::Mat& dst // Result image
) {
 CV_Assert(src.type() == cv::F32);
 dst.create(src.size(), src.type());

 // get the derivative and smooth kernels for d2I/dx2
 // for d2I/dy2 use the same kernels, just swapped
 cv::Mat kd, ks;
 cv::getSobelKernels(kd, ks, 2, 0, ksize, false, ktype);

 // process 10 source rows at once
 int DELTA = std::min(10, src.rows);
 cv::Ptr< cv::FilterEngine> Fxx = cv::createSeparableLinearFilter(
 src.type(),
 dst.type(),
 kd, ks,
 Point(-1,-1),
 0,
 borderType, borderType,
 Scalar()
);
 cv::Ptr< cv::FilterEngine> Fyy = cv::createSeparableLinearFilter(
 src.type(),
 dst.type(),
 ks, kd,
 Point(-1,-1),
 0,
 borderType, borderType,
 Scalar()
);

 int y = Fxx->start(src), dsty = 0, dy = 0;
 Fyy->start(src);
 const uchar* sptr = src.data + y*src.step;

 // allocate the buffers for the spatial image derivatives;
 // the buffers need to have more than DELTA rows, because at the
 // last iteration the output may take max(kd.rows-1,ks.rows-1)

 // rows more than the input.
 cv::Mat Ixx(DELTA + kd.rows - 1, src.cols, dst.type());
 cv::Mat Iyy(DELTA + kd.rows - 1, src.cols, dst.type());

 // inside the loop always pass DELTA rows to the filter
 // (note that the "proceed" method takes care of possibe overflow, since
 // it was given the actual image height in the "start" method)
 // on output you can get:
 // * < DELTA rows (initial buffer accumulation stage)
 // * = DELTA rows (settled state in the middle)
 // * > DELTA rows (when the input image is over, generate
 // "virtual" rows using the border mode and filter them)
 // this variable number of output rows is dy
 // dsty is the current output row
 // sptr is the pointer to the first input row in the portion to process
 //
 for(; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy)
 {
 Fxx->proceed(
 sptr,
 (int) src.step,
 DELTA,
 Ixx.data,
 (int) Ixx.step
);
 dy = Fyy->proceed(
 sptr,
 (int) src.step,
 DELTA,
 Iyy.data,
 (int) Iyy.step
);
 if(dy > 0)
 {
 Mat dstripe = dst.rowRange(dsty, dsty + dy);
 add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
 }
 }
}

We will cover shortly how functions like cv::createSeparableLinearFilter() work, but what
is important here is that these functions just return instances of classes derived from the
cv::FilterEngine base class. Also, notice how the start() and proceed() methods are used. As
you can see, the implementation laplace_f() loops through the incoming image in chunks of size
DELTA and processes each chunk before moving on.

Now that you know how to use start() and proceed(), you might wonder why it is worth the effort.
In fact, the next method we will look at called cv::FilterEngine::apply() just does the whole
thing in one go.22 The reason is performance. If you have several things you want to do, like applying the
two kernels (or more!) in sequence in our example, it is much better to do everything you want to do to a
bit of data and then write it out to the destination image. In this way, you can keep all of the working data
in processor cache and your filter will run much faster.

If this kind of performance detail is not critical to your application, you can simply tell a filter engine to just
go through an entire image and output the result. This is done with the
cv::FilterEngine::apply() method.

22 One additional consequence of this is that when apply() calls start(), it always passes maxBufRows the
default value of -1.

virtual void apply(
 const cv::Mat& src, // Input image
 cv::Mat& dst // Result image
 const cv::Rect& srcRoi = cv::Rect(0,0,-1,-1), // Region of interest to he processed
 cv::Point dstOffs = cv::Point(0,0), // Offset to write to in destination image
 bool isolated = false, // if true, use edge extrapolation
);

Internally, cv::FilterEngine::apply() just wraps up a call to
cv::FilterEngine::start() and then one big call to cv::FilterEngine::proceed(),
which then goes through the entire image. The only new detail is the argument dstOffs, which is the
destination offset. The destination offset is a point that indicates where in the destination image to write the
result of the processed ROI. If left at its default value of cv::Point(0,0), then the result data will be
written into the upper-left corner of the destination image. Otherwise, it will be offset appropriately. This is
particularly useful when you wish to process some ROI in the source image and write the results to the
corresponding location in the destination image.

Filter Engine Builders
OpenCV contains built in functions that will create filter engines for you. It is worth taking a moment to
appreciate what this really means. Creating a filter engine means both creating the filters that the engine
will apply (i.e., a box filter of a Gaussian filter, etc.), as well as actually implementing the start(),
proceed(), and apply() methods of that filter for you. Each of the library routines we will discuss in
this section creates an object of a different type, but all of these objects are derived from
cv::FilterEngine, and so inherit the interface we discussed in the previous section, as well as
provide the implementation of that interface.

For each of these cv::FilterEngine factories, there is also a corresponding higher-level routine we
have already encountered, which (unbeknownst to you) creates the appropriate engine, applies it to your
image, and cleans it up, returning you only the result of that computation. For example,
cv::boxFilter() is really just a higher-level wrapper around cv::createBoxFilter() and the
subsequent application of the created filter to your image.23

You will notice that all of these routines return cv::Ptr<cv::FilterEngine>. It is probably worth
taking a moment to appreciate what this means. Notice first that this is a good example of where OpenCV
uses its smart pointer construct cv::Ptr<>. This way you will not have to deallocate the filter engine you
create. You can pass the smart pointer around, do what you need to with it, and trust that at the end of
whatever you are doing, when there are no more references to the engine around, the engine itself will be
deallocated. It is also worth noting that smart pointer, just like the traditional pointer, can be a base class
pointer, and can be used to operate on derived class objects. Thus, just because all of these filter builders
return a (smart) pointer of type cv::FilterEngine, it is not correct to conclude that they return objects
of type cv::FilterEngine. Exactly on the contrary, these functions all return their own specific filter
engine types that are all derived from cv::FilterEngine.

cv::createBoxFilter()

You can directly create a box filter using cv::createBoxFilter():

cv::Ptr<cv::FilterEngine> cv::createBoxFilter(
 int srcType, // Source image type (e.g., cv::U8)
 int dstType, // Destination image type (e.g., cv::U8)
 cv::Size ksize, // Kernel size
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 bool normalize = true, // If true, divide by box area

23 Actually, cv::boxFilter() does not literally call cv::createBoxFilter() explicitly, but it essentially
implements the latter’s functionality internally before calling the further subroutines shared by both routines.

 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

As you might have expected, the arguments to cv::createBoxFilter() are essentially the same as
those for cv::boxFilter(), with the exception that instead of providing the source and destination
images, only the types of those images are required to define the filter. The ksize and anchor
arguments define the size of the kernel and the (optional) anchor point as with cv::boxFilter, and the
filter can be normalized or not by setting the normalize argument to true or false. The borderType
argument has the usual effect.

cv::createDerivFilter()

You can create a derivative filter using cv::createBoxFilter():

cv::Ptr<cv::FilterEngine> cv::createDerivFilter(
 int srcType, // Source image type (e.g., cv::U8)
 int dstType, // Destination image type (e.g., cv::U8)
 int dx, // order of corresponding derivative in x
 int dy, // order of corresponding derivative in y
 int ksize, // Kernel size
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

The arguments to cv::createDerivFilter() are essentially the same as those for cv::Sobel(),
with the exception that instead of providing the source and destination images, only the types of those
images are required to define the filter. The dx and dy arguments define the order of the derivative to be
approximated, and ksize gives the size of the kernel to be used24. The borderType argument has the
usual effect.

cv::createGaussianFilter()

You can directly create a Gaussian filter using cv::createGaussianFilter():

cv::Ptr<cv::FilterEngine> cv::createGaussianFilter(
 int type, // Source and destination type (e.g., cv::U8)
 cv::Size ksize, // Kernel size
 double sigmaX, // Gaussian half-width in x-direction
 double sigmaY = 0.0, // Gaussian half-width in y-direction
 int borderType = cv::BORDER_DEFAULT // Border extrapolation to use
);

As you might expect by now, the arguments to cv::createGaussianFilter() are essentially the
same as those for cv::GaussianBlur(). In this case, however, there is only one type argument for
the source and destination; this filter requires both to be of the same type25. sigmaX and sigmaY indicate
the variance of the Gaussian in the 𝑥- and 𝑦-direction respectively, with sigmaY being optional (if set to
zero sigmaY will be equal to sigmaX). The borderType argument has the usual effect.

cv::createLinearFilter()

You can directly create a general linear filter using cv::createLinearFilter():
cv::Ptr<cv::FilterEngine> cv::createLinearFilter(
 int srcType, // Source image type (e.g., cv::U8)
 int dstType, // Destination image type (e.g., cv::U8)
 cv::InputArray kernel, // Your own kernel

24 Note that the ksize argument for cv::createDerivFilter() is an integer, while the ksize argument for
cv::createBoxFilter() was of type cv::Size. This is natural because the kernel of a derivative filter will
always be square.
25 If you need to work around this, you can call cv::getGaussianKernel() directly, and then
cv::createSeparableLinearFilter(). (We will get to both of those functions shortly.)

 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 double delta = 0, // Offset before assignment to dst
 int rowBorderType = cv::BORDER_DEFAULT, // Row extrapolation
 int columnBorderType = -1, // Column extrapolation
 const cv::Scalar& borderValue = cv::Scalar() // Value for constant borders
);

If you have your own linear kernel, you can have OpenCV make it into a filter engine for you with
cv::createLinearFilter(); this is the filter engine analog of cv::filter2D(). This function
should only be used when you have a non-separable kernel, as you will get much better performance from
cv::createSeparableLinearFilter() if your kernel is separable. The arguments are the source
type, srcType, and destination type, dstType, for the input and output images, the kernel you want
to use, an optional anchor point (the default is to use the center of your kernel), an optional offset
delta, and the border extrapolation parameters. Unlike most of the other similar functions,
cv::createLinearFilter() allows you to specify the border extrapolation method for the vertical,
rowBorderType, and the horizontal, columnBorderType, separately. If you omit the latter (or set it
to -1) it will default to being the same as the former. The final borderValue argument is used to define
the off-the-edge pixel values when either rowBorderType or columnBorderType is set to cv::
BORDER_CONSTANT.

cv::createMorphologyFilter()

You can create a filter which implements the morphological operations using
cv::createMorphologyFilter():

cv::Ptr<cv::FilterEngine> cv::createMorphologyFilter(
 int op,
 int type,
 cv::InputArray element,
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 int rowBorderType = cv::BORDER_DEFAULT, // Row extrapolation
 int columnBorderType = -1, // Column extrapolation
 const cv::Scalar& borderValue = cv::Scalar() // Value for constant borders
)

By now you know the pattern. The arguments to cv::createMorphologyFilter() are essentially
the same as those for cv::morphologyEx(). The op argument must be one of the operations from
Table 5-3, and the type is the type of the source and destination images, which must be the same. The
element is your structuring element and the optional anchor lets you locate the anchor point somewhere
other than the (default) center of your structuring element. rowBorderType and columBorderType
let you specify the vertical and horizontal border extrapolation methods, and borderValue is the
constant used in the case that one of the extrapolation methods is cv::BORDER_CONSTANT.

cv::createSeparableLinearFilter()

In the case of a separable linear kernel, you can directly create a filter using
cv::createSeparableLinearFilter():

cv::Ptr<cv::FilterEngine> cv::createSeparableLinearFilter(
 int srcType, // Source image type (e.g., cv::U8)
 int dstType, // Destination image type (e.g., cv::U8)
 cv::InputArray rowKernel, // 1-by-N row Kernel
 cv::InputArray columnKernel, // M-by-1 column kernel
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 double delta = 0, // Offset before dst
 int rowBorderType = cv::BORDER_DEFAULT, // Row extrapolation
 int columnBorderType = -1, // Column extrapolation
 const cv::Scalar& borderValue = cv::Scalar() // Value for constant borders
);

The cv::createSeparableLinearFilter() function is the filter engine analog of the
cv::sepFilter2D() function. It requires the source type, srcType, and the destination type,

dstType. The row and column kernels are each specified separately with rowKernel and
columnKernel. anchor, delta, and the border extrapolation arguments all have their usual meanings.

Base Filters
The filter builders we looked at in the last section created the low-level filter object you needed for you,
and then wrapped it up in a cv::FilterEngine object that you could then use. Of course, if you were
always going to rely on these functions, it would not have been necessary to learn so much about how the
filter engine itself actually works or gets constructed.

The real reason to use this is when you are going to create your own filter entirely, and then use that to
build a filter engine that does your own special thing.

In this section, we will look at how you create a low-level filter object of your own. Because separability
plays such an important role in the performance of filters, and because you would not be making your own
base-level filters if you were not concerned about performance, the base filter classes are divided into the
non-separable cv::BaseFilter class, and the two classes used for separable filters,
cv::BaseRowFilter and cv::BaseColumnFilter.

The cv::BaseFilter Class

Down at the bottom of the image filtering class hierarchy lives cv::BaseFilter. It implements the
actual operator that combines some kernel with the appropriate window of an input image to compute the
corresponding output image pixel. This mapping need not be linear at all, and can be any general function
of the input image pixels and the kernel pixels. The only restriction is that this function must be computable
on a row-by-row basis26.

The definition of the cv::BaseFilter class looks like the following:
class cv::BaseFilter {

public:

 virtual ~BaseFilter();

 // To be overriden by the user.
 //
 // runs a filtering operation on the set of rows,
 // "dstcount + ksize.height - 1" rows on input,
 // "dstcount" rows on output,
 // each input row has "(width + ksize.width-1)*cn" elements
 // each output row has "width*cn" elements.
 // the filtered rows are written into "dst" buffer.
 //
 virtual void operator() (
 const uchar** src,
 uchar* dst,
 int dststep,
 int dstcount,
 int width,
 int cn
) = 0;

 // resets the filter state (may be needed for IIR filters)
 //

26 This means that the function 𝐹, which maps the pixels 𝑥!,! of the image and the values {𝑘!,!} of the kernel may
contain terms which are functions of multiple values of 𝑗—the column index—but may not contain terms which are
functions of multiple values of 𝑖—the row index.

 virtual void reset();

 Size ksize;
 Point anchor;
};

As you can see, the method operator() is declared pure virtual, and of course this means that you
cannot (directly) instantiate objects of type cv::BaseFilter. This should not surprise you, however;
the intent is for you to be able to derive your own base filter objects off of cv::BaseFilter, and to
implement the operator() and reset() functions yourself as appropriate for your own needs.

The cv::BaseFilter::operator() is called by the filter engine (into which you have installed
your base filter), so the filter engine is going to supply all of the arguments. The src and dst pointers will
point to the source and destination data respectively, but they will point into those images at the proper
place. The src pointer actually points to an array of pointers, each of which points to one of the rows that
you will need to process the kernel (given by the ksize member variable). Similarly, the dst pointer
points to the row in which the destination pixels are located. At the time when the call to
cv::BaseFilter::operator() is made, these pointers will be “aligned,” in the sense that the dst
points to the first pixel you will be computing, and the pointers in src point to the first pixels you will
need for the kernel you have. All of this was set up for you by the filter engine. At this level, you do not
need to worry about boundary conditions either, as the src pointers actually point to a place where the
necessary boundary values are already computed. dststep is the step size you will need in order to
increment the dst pointer to compute other destination values, while dstcount is the total number of
destination values you will need to compute. width and cn are the width of the image rows to be
processed and the number of channels respectively.

The cv::BaseFilter::reset() method is only used in cases where the filter maintains an internal
state. The method is automatically called before any new image is processed27.

Once you have created your base filter, you can construct a filter engine to run it with the
cv::FilterEngine() constructor and you are ready for business.

The cv::BaseRowFilter and cv::BaseColumnFilter Classes

As we saw when we looked at cv::FilterEngine, it can be given either a single non-separable base
filter, or a pair of base filters corresponding to the row and column portions of a separable filter. The
cv::BaseRowFilter and cv::BaseColumnFilter classes are how we implement those
components of separable filters. Here are the class definitions for these two (virtual base) classes.

class cv::BaseRowFilter {

public:
 virtual ~BaseRowFilter();

 // To be overriden by the user.
 //
 // runs filtering operation on the single input row
 // of "width" element, each element is has "cn" channels.
 // the filtered row is written into "dst" buffer.
 //
 virtual void operator()(
 const uchar* src,
 uchar* dst,
 int width,
 int cn
) = 0;

27 As an example of where the reset method might be used, the current implementation of the box filter uses a sliding
sum buffer, which needs to be cleared before each new call.

 int ksize, anchor;
};

class cv::BaseColumnFilter {

public:
 virtual ~BaseColumnFilter();

 // To be overriden by the user.
 //
 // runs a filtering operation on the set of rows,
 // "dstcount + ksize - 1" rows on input,
 // "dstcount" rows on output,
 // each input and output row has "width" elements
 // the filtered rows are written into "dst" buffer.
 //
 virtual void operator()(
 const uchar** src,
 uchar* dst,
 int dststep,
 int dstcount,
 int width
) = 0;

 // resets the filter state (may be needed for IIR filters)
 //
 virtual void reset();

 int ksize, anchor;
};

The cv::BaseRowFilter class is the simplest because row data is sequential in memory, and so there
is a little less bookkeeping. The associated cv::BaseRowFilter::operator() inherits this relative
simplicity. The arguments are just the pointers to the source and destination rows, the width of the rows,
and the number of channels, cn. As with cv::BaseFilter::operator(), the source and destination
pointers are of type uchar*, and so it will be your responsibility to cast them to the correct type.

The cv::BaseColumnFilter class needs to handle the non-sequential nature of the required data. As a
result, there are the additional arguments dststep and dstcount, which the row filter did not require28.
These have the same meaning as they did for the cv::BaseFilter() class.

Base Filter Builders
There will be times when you want to build your own filter engine, but will want to use existing filters to
build it. In these cases, it is not necessary to go and re-implement the low-level filters you want. Instead,
you can ask OpenCV to just give you the base filter object it normally uses for a particular task.

getLinearFilter(), getLinearRowFilter(), and getLinearColumnFilter()
cv::Ptr<cv::BaseFilter> cv::getLinearFilter(// Return filter object
 int srcType, // Source image type (e.g., cv::U8)
 int dstType, // Destination image type (e.g., cv::U8)
 cv::InputArray kernel, // Your own kernel
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
 double delta = 0, // Offset before assignment to dst
 int bits = 0 // For fixed precision integer kernels

28 You will also notice that the number of channels is not present. This is because it is, in effect, now absorbed into
dststep.

);

cv::Ptr<cv::BaseColumnFilter> cv::getLinearColumnFilter(// Return filter object
 int bufType, // Buffer image type (e.g., cv::U8)
 int dstType, // Destination image type (e.g., cv::U8)
 cv::InputArray columnKernel, // M-by-1 column kernel
 int anchor, // 1-d Location of anchor point
 int symmetryType, // See Table 5-5
 double delta = 0, // Offset before assignment to dst
 int bits = 0 // For fixed precision integer kernels
);

cv::Ptr<cv::BaseRowFilter> cv::getLinearRowFilter(// Return filter object
 int srcType, // Source image type (e.g., cv::U8)
 int bufType, // Buffer image type (e.g., cv::U8)
 cv::InputArray rowKernel, // 1-by-N row Kernel
 int anchor, // 1-d Location of anchor point
 int symmetryType, // See Table 5-5
;

The function cv::getLinearFilter() returns a (smart) pointer to a cv::BaseFilter-derived
object that implements a general two-dimensional non-separable linear filter based on the kernel (and
anchor point) you provide. You can provide an optional output offset delta, which will be applied after
your kernel and before the result is written to the destination array. The last argument, bits, is used when
your kernel is an integer matrix, but you want to use it to represent fixed (but nonzero) precision numbers.

The cv::getLinearRowFilter() and cv::getLinearColumnFilter() functions return
(smart) pointers to cv::BaseRowFilter and cv::BaseColumnFilter objects, respectively. The
one additional argument that is interesting in these two is the symmetryType argument. The symmetry
type may be any of the options shown in Table 5-5, including combinations of the types where meaningful
(e.g., a kernel might be both smooth and symmetrical, in which case symmetryType would be
cv::KERNEL_SMOOTH | cv::KERNEL_SYMMETRICAL).

Table 5-5: Filter kernel symmetry types

Kernel Symmetry Meaning
 cv::KERNEL_GENERAL Generic type, means no special

symmetries.
 cv::KERNEL_SYMMETRICAL Kernel is symmetrical and anchor

is at the center.
 cv::KERNEL_ASYMMETRICAL Kernel is asymmetrical and

anchor is at the center.
 cv::KERNEL_SMOOTH Kernel is greater than or equal to

zero everywhere and normalized.
 cv::KERNEL_INTEGER All kernel elements are integers.

You should make sure that what you indicate to be the symmetry properties of your kernel are in fact
correct. The benefit of this information is that it can lead to a much faster operation of the filter.
Alternatively, you can ask OpenCV to automatically inspect your kernel for you, by calling the function
cv::getKernelType(cv::InputArray kernel, cv::Point anchor), which will
determine the kernel type for you. This is not really the best way to do things if you can compute the
answer yourself at coding time—because of the runtime required to inspect the kernel—but can be handy if
the kernel itself is being dynamically generated at runtime.

getMorphologyFilter(), getMorphologyRowFilter(), and
getMorphologyColumnFilter()

These functions are the analogs of the linear filter generators above, only for morphological filters. As with
the linear filters, there is a function for creating a non-separable two-dimensional filter, and two methods
for creating the two one-dimensional filter types needed to define a separable kernel:

cv::Ptr<cv::BaseFilter> cv::getMorphologyFilter(
 int op, // Morphology operator to use e.g. cv::MOP_OPEN
 int type, // Source and destination type (e.g., cv::U8)
 cv::InputArray element, // Structuring element
 cv::Point anchor = cv::Point(-1,-1), // Location of anchor point
);

cv::Ptr<cv::BaseRowFilter> cv::getMorphologyRowFilter(
 int op, // Morphology operator to use e.g. cv::MOP_OPEN
 int type, // Source and destination type (e.g., cv::U8)
 int esize, // Element size (width)
 int anchor = -1 // 1-d Location of anchor point
);

cv::Ptr<cv::BaseColumnFilter> cv::getMorphologyColumnFilter(
 int op, // Morphology operator to use e.g. cv::MOP_OPEN
 int type, // Source and destination type (e.g., cv::U8)
 int esize, // Element size (height)
 int anchor = -1 // 1-d Location of anchor point
);

The first function, cv::getMorphologyFilter(), which is used for non-separable kernels expects a
morphological operator type op (from Table 5-3), the input and output image type given by type, a
structuring element and an optional anchor point.

The row and column filter constructors require the same arguments, except that the element size, esize, is
just an integer that indicates the extent of the row (or column) dimension of the kernel. Similarly, the
anchor point, anchor, is an integer that, as usual, can be set to -1 to indicate that the center point of the
kernel is to be used.

Kernel Builders
At this point, you have found your way to the absolute bottom of the food chain: the OpenCV filter stack.
High-level functions call filter engines. Filter engines call base filter generators. Base filter generators go to
the kernel builders to get the actual arrays that represent individual kernels. The two kernel builders that
you may want to access yourself are cv::getDerivKernel(), which constructs the Sobel and Scharr
kernels, and cv::getGaussianKernel(), which constructs Gaussian kernels.

cv::getDerivKernel()

The actual kernel array for a derivative filter is generated by cv::getDerivKernel().

void cv::getDerivKernels(
 cv::OutputArray kx,
 cv::OutputArray ky,
 int dx, // order of corresponding derivative in x
 int dy, // order of corresponding derivative in y
 int ksize, // Kernel size
 bool normalize = true, // If true, divide by box area
 int ktype = cv::F32 // Type for filter coefficients
);

The result of cv::getDerivKernel() is placed in the kx and ky array arguments. You might recall
that the derivative type kernels (Sobel and Scharr) are separable kernels. For this reason, you will get back
two arrays, one that is 1-by-ksize (row coefficients, kx) and another that is ksize-by-1 (column

coefficients, ky). These are computed from the x- and y-derivative orders dx and dy. The derivative
kernels are always square, so the size argument ksize is an integer. ksize can be any of 1, 3, 5, 7, or
cv::SCHARR. The normalize argument tells cv::getDerivKernels() if it should normalize the
kernel elements “correctly.” For situations where you are operating on floating point images, there is no
reason not to set normalize to true, but when you are doing operations on integer arrays, it is often more
sensible to not normalize the arrays until some later point in your processing, so that you will not throw
away precision that you will later need29. The final argument ktype indicates the type of the filter
coefficients (or equivalently the type of the arrays kx and ky). The value of ktype can be either
cv::F32 or cv::F64.

cv::getGaussianKernel()

The actual kernel array for a Gaussian filter is generated by cv::getGaussianKernel().

cv::Mat cv::getGaussianKernel(
 int ksize, // Kernel size
 double sigmaX, // Gaussian half-width
 int ktype = cv::F32 // Type for filter coefficients
);

As with the derivative kernel, the Gaussian kernel is separable. For this reason
cv::getGaussianKernel() computes only a ksize-by-1 array of coefficients. The value of ksize
can be any odd positive number. The argument sigma sets the standard deviation of the approximated
Gaussian distribution. The coefficients are computed from sigma according to the following function:

𝑘! = 𝛼 ∙ 𝑒
! !! !"#$%!! ! !

!! !

That is, the coefficient alpha is computed such that the filter overall is normalized. sigma may be set to -
1, in which case the value of sigma will be automatically computed from the size ksize.30

The Filter Architecture up Close (Advanced)
An architecture as nuanced as the filter architecture in OpenCV is something like an automobile. You can
choose to not understand it, and hope it works right (in which case, you could pretty much have skipped
this entire section of the chapter), you can understand it at a user level, and be content that this will help
you not do terribly unwise things that bite you later (like knowing that the oil does, in fact, have to be
changed every few thousand miles), or you can really get down and understand the thing, with the mindset
of maintaining it, modifying it, and bending it to your will. This above section of the chapter was mainly
for that kind of intermediate users, who want to understand and use wisely, but maybe not seriously get
down into it. This little subsection, however, is for the benefit of those of you who really want to go do
some work yourself in the filter architecture.

To this end, let’s consider a simple high-level call to cv::boxFilter(). This call will manage to use
just about every nasty detail of the architecture before it is done. Example 5-5 shows what really happens
when you call cv::boxFilter() and supply it with a source array, a destination array, and the kernel
parameters.

Example 5-5: A detailed walk-through of the operation of a high-level filter function: cv::boxFilter()

cv::boxFilter calls cv::createBoxFilter, and passes the kernel parameters.

29 If you are, in fact, going to do this, you will find yourself needing that normalization coefficient at some point. The
normalization coefficient you will need is: 2!"#$%∗!!!"!!"!!.
30 In this case, 𝜎 = 0.3 ∙ !"#$%!!

!
− 1 + 0.8.

cv::createBoxFilter calls cv::getRowSumFilter() and gives it type information and

kernel parameters

cv::getRowSumFilter uses the type information to call the template RowSum<>()

constructor

RowSum<> constructor returns a type-specific object derived from

BaseRowFilter. class cv::RowSum<> implements operator() for row summation.

cv::getRowSumFilter returns the cv::RowSum<> object

cv::createBoxFilter calls cv::getColumnSumFilter() and gives it type information and

kernel parameters

cv::getColumnSumFilter uses the type information to call the template

ColumnSum<>() constructor

ColumnSum<>() constructor returns a type-specific object derived from

BaseColumnFilter. class cv::ColumnSum<> implements operator() for column

summation.

cv::getColumnSumFilter returns the cv::ColumnSum<> object

cv::createBoxFilter creates a new cv::FilterEngine object, and passes it the

cv::RowSum<> and cv::ColumnSum<> filter objects.

cv::createBoxFilter returns a pointer to the new cv::FilterEngine object

cv::boxFilter() calls the apply method on the new cv::FilterEngine object it was given.

The source and destination images given to cv::boxFilter are passed to the apply()

method. (note that apply() would accept an ROI, but in this context one is not

generated).

The (generic) cv::FilterEngine::apply() method calls the (generic)

cv::FilterEngine::start() method. It supplies the source image and any source image

ROI.

If an ROI was passed in, that is recorded in a cv::FilterEngine member variable.

cv::FilterEngine::start() does some book-keeping that has to do with whether or

not the source image is actually a subwindow of a larger image, we’ll ignore this

for now.

cv::FilterEngine::start() calls another (different) cv::FilterEngine::start()

method. It passes this start() method the size of the “true” source image (i.e.,

if source is a view on some parent, this is the parent), and the location of the

source ROI relative to that parent image.

This cv::FilterEngine::start() allocates the internal ‘rows’ buffer of the

FilterEngine. This is a vector of N char* pointers, where N is set either by

the maxBufRows argument to apply (which nobody ever uses) or the kernel

height.

cv::FilterEngine::start() handles the borders

cv::FilterEngine::start() computes the first source row that will be used in

the computation of all results. Similarly, cv::FilterEngine::start() computes

the last source row that will be used in the computation of all results. These

are stored in in a cv::FilterEngine member variable

cv::FilterEngine::start() calls the reset() member of the columnFilter member

(which is the cv::ColumnSum object constructed above).

cv::FilterEngine::start() (somewhat unnecessarily) returns the computed start

source row.

The first cv::FilterEngine::start() method returns the computed first row, but

adjusted into the “coordinates” of the parent view (if the source image is

actually a view on a larger array.)

The cv::FilterEngine::apply() method computes the destination pointer for the first

destination pixel. This is just the data area for the source image offset by the

“true” start row multiplied by the source step.

The cv::FilterEngine::apply() method computes the total number of rows that will be

analyzed (using the difference of the two row value member variables computed earlier

by cv::FilterEngine::start()).

The cv::FilterEngine::apply() method computes the address of the first pixel in the

destination image to be computed.

cv::FilterEngine::apply() method calls the (generic) cv::FilterEngine::proceed()

method, passing it the locations of the first source pixel, the first destination

pixel, the source step, the destination step, the total number of rows to be “used” to

compute all destination pixels.

For each destination pixel, cv::FilterEngine proceed() calls the member operator()

of the rowFilter member of the cv::FilterEngine (our cv::RowSum<> object), passing

it the source pointer, the destination pointer, and the width of the given to

apply (which in this case is null) or the width of the image.

cv::RowSum<>::operator() then computes a sum across ‘width’ source pixels

accumulating them into the indicated destination pixel. All subsequent

destination pixels in the row are then computed from that.

For each destination pixel, proceed() calls the member operator() of the

cv::columnFilter member of the cv::FilterEngine (our cv::ColumnSum<> object),

passing it an array of source pointers corresponding to the relevant rows of the

source image, a pointer to the destination pixel, the destination step, the number

of columns that will be summed, and the width of the image (or of any ROI that was

given to the filter when it was constructed).

The cv::ColumnSum<>::operator() then computes the sum across count columns and
accumulates the result in the destination pixel. Compute the sum for width

pixels.

cv::FilterEngine::proceed() returns

cv::FilterEngine::apply() returns

cv::boxFilter() returns

In words, this is what happens. At the top level, the user calls cv::boxFilter(), and gives it a source
and destination image and the size of the kernel. cv::boxFilter(), however, is really just a pretty thin
wrapper; its purpose is to create a cv::FilterEngine that will handle the box filtering process. In
order to do this, however, it will need the actual base filter objects. Because the box filter is a separable
filter, two base filter objects are required, one for the horizontal (rows) and one for the vertical (columns).

To create a base filter object, cv::boxFilter() will use the cv::getRowSumFilter() and
cv::getColumnSumFilter() methods31. What these do is they instantiate and return template base

31 It is worth mentioning here that these latter two functions are not officially part of the OpenCV API; they are below
the API functions. This means that you should probably not be calling them yourself, as they are not guaranteed to

filters called cv::RowSum<> and cv::ColumnSum<>. These objects are templates because each filter
needs to know what types are being used for the source and destination images in order to implement their
functionality in the most efficient way possible. Recall that it is the operator() members of these
objects that do the low-level work (which we will get to momentarily).

The cv::getRowSumFilter() and cv::getColumnSumFilter() methods return cv::Ptr<>
smart pointers to the base filters, which are then passed to the cv::FilterEngine constructor. The
constructed filter engine is then returned to cv::boxFilter() in the form of another cv::Ptr<>
smart pointer. Once this pointer to the box filter engine is returned, cv::boxFilter() then just calls
the apply() method of the filter engine. Of course, a lot gets done inside of this method.

The cv::FilterEngine::apply() method takes as argument the source and destination images. It
would also accept a region of interest (ROI), but none is generated in this context (so the default “whole
image” is assumed). This apply() method is a generic member of cv::FilterEngine, in the sense
that it is not overloaded in any way. The filter engine object is not a derived object, but the generic base
class element. This is the way the architecture is designed; you should not have to overload
cv::FilterEngine. (This is in contrast to the base filters, which are interfaces only and always need to
be overloaded.)

The cv::FilterEngine::apply() then calls cv::FilterEngine::start(). There is some
opportunity for confusion here, because there are two start() methods associated with
cv::FilterEnging(). The first start method takes the source image and the source ROI (and some
other stuff) as arguments. It is responsible for some minor checking and housekeeping, and then it calls the
second start() method. The main piece of housekeeping it does is to resolve the possibility that the
source image is actually a view32 on a larger array, which has implications for the isolated argument,
for example. Once this is done, the second start() method can be called, and given the parent array
(i.e., if the current source is a view of some other array, it is that other larger array that is passed), and a
corrected ROI (which is the given ROI converted to the coordinates of the larger parent array). The second
start() routine now does some real work.

The main responsibility of this start() method is to set up all of the data structures that are going to be
needed for the base filters to operate. This is more effort than it might sound like, because the base filters
will not be made aware of things like the boundary type, or if they are in an ROI. They will just be handed
data to chew on and they will spit out results. In order to achieve this, there will have to be areas for “off
the edge” pixels to be placed alongside the real image pixel values so that the base filters will not have to
be aware of the difference. This data goes in a filter engine member variable called rows which is an array
of char* pointers, one for each row of scratch space that will be needed (these actually form a circular
buffer so that data only needs to be copied in once, and can then be used until it is no longer needed).
start() is also responsible for computing the (integer ordinal for the) first and last rows that will be
used. Again, these are the first and last row of the image in our case, because there is no ROI, but generally,
if start() were not being called from inside of cv::boxFilter(), we might have gotten one from
cv::FilterEngine::apply() or directly by whomever else might have called
cv::FilterEngine::start(). A final responsibility that cv::FilterEngine::start() has
is to call the reset() method on the base column filter. (We will understand why shortly when we get
into the base column filter’s internal details.) The starting row (in parent image coordinates) is then
returned to the first start() function, which in turn returns it to cv::FilterEngine::apply() in
coordinates local to the source image.

remain in existence or have stable interfaces in future versions of the library. There will be several things in this current
exposition which are of this kind.
32 Recall that a ‘view’ refers to the case in which you have a cv::Mat A, and then generate a second cv::Mat B
with a function like cv::Mat::getSubRect(). In this case B does not have its own data, it has a pointer to the
data area in A and offsets and strides which make accesses to B appear as if B were a separate array.

Next, cv::FilterEngine::apply() calls cv::FilterEngine::proceed(), and passes it the
source image data, the source image step, the destination image data, the destination step, and the number
of rows from the source image that will be required to compute all destination pixels. It is important not to
miss here that, in fact, there is a lot more information provided to proceed(), because when start()
was running, it was computing various things that it stored in member variables of the filter engine (like
those scratch buffers for the data rows). The source data and destination data areas given to proceed()
are the location of the first data needed for actual computation of a required destination pixel. This is a little
subtle, because all of the implications of ROIs are handled in cv::FilterEngine::apply() before
calling proceed(). These pointers are not just pointers to the data in the images, they are pointers to the
beginning or the relevant data.

cv::FilterEngine::proceed() is essentially a big for loop over all of the desired destination
pixels. It actually handles them on a row by row basis. It counts through the destination rows, handles
actual copy of data into the buffers (the ones that start() allocated for us), as well as updates the
circular buffer, and calls the base filters once the data areas are ready. First it calls the operator()
member of the base row filter for any given destination pixel, then it calls the operator() member of
the base column filter for those pixels. (At least, that is what it does in this example. If the filter engine
were a non-separable filter, then obviously it would just make a single call to the operator() member of
the installed two-dimensional filter.)

Inside of the base row filter, which in our example is cv::RowSum<>, each pixel in the destination row is
computed as a sum over the neighboring pixels. The first such destination pixel is a straight sum. All
subsequent pixels are computed from the previous pixel, by subtracting the one contributing pixel that is
now out of the window and adding the one pixel that has just entered the window. Inside of the base
column filter cv::ColumnSum<>, the summation over vertical columns (of the results from the row filter
summation) is performed. One important difference between the row and column sum filters is that the
column filters need to maintain some internal state—this is to enable a similar trick to what the row filter
uses for summing, except that the row filter is given an entire row at a time, while the column filter needs
to be called many times in order to complete an entire column.

This call to cv::FilterEngine::proceed() finishes up all of its work and returns.
cv::FilterEngine::apply() returns, and then cv::boxFilter() returns. At this point, the
results of your computation are sitting in your destination array and you are all done.

For each destination pixel, cv::FilterEngine proceed() calls the member operator()

of the rowFilter member of the cv::FilterEngine (our cv::RowSum<> object), passing

it the source pointer, the destination pointer, and the width of the given to

apply (which in this case is null) or the width of the image.

cv::RowSum<>::operator() then computes a sum across ‘width’ source pixels

accumulating them into the indicated destination pixel. All subsequent

destination pixels in the row are then computed from that.

For each destination pixel, proceed() calls the member operator() of the

cv::columnFilter member of the cv::FilterEngine (our cv::ColumnSum<> object),

passing it an array of source pointers corresponding to the relevant rows of the

source image, a pointer to the destination pixel, the destination step, the number

of columns that will be summed, and the ‘width’ of the image (or of any ROI that

was given to the filter when it was constructed).

The cv::ColumnSum<>::operator() then computes the sum across ‘count’ columns
and accumulates the result in the destination pixel. Compute the sum for

‘width’ pixels.

Summary
In this chapter, we learned about general image convolution, including the importance of how boundaries
are handled in convolutions. We learned about image kernels, and the difference between linear and
nonlinear kernels.

We learned how OpenCV implements a number of common image filters, and learned what those filters do
to different kinds of input data.

Finally, we learned how OpenCV actually implements the functions that do convolutions. We saw how the
general filter architecture is designed, and learned how we could make our own components for that
architecture and thus how to “micromanage” the process to tune custom filters for speed.

Exercises
1. Load an image of an interesting or sufficiently “rich” scene. Using cv::threshold(), set the

threshold to 128. Use each setting type in Table 5-5 on the image and display the results. You should
familiarize yourself with thresholding functions because they will prove quite useful.
a) Repeat the exercise but use cv::adaptiveThreshold() instead. Set param1=5.

b) Repeat part a using param1=0 and then param1=-5.

2. Load an image with interesting textures. Smooth the image in several ways using cv::smooth()
with smoothtype=cv::GAUSSIAN.

a) Use a symmetric 3-by-3, 5-by-5, 9-by-9 and 11-by-11 smoothing window size and display the
results.

b) Are the output results nearly the same by smoothing the image twice with a 5-by-5 Gaussian filter
as when you smooth once with two 11-by-11 filters? Why or why not?

3. Display the filter, creating a 100-by-100 single-channel image. Clear it and set the center pixel equal to
255.
a) Smooth this image with a 5-by-5 Gaussian filter and display the results. What did you find?
b) Do this again but now with a 9-by-9 Gaussian filter.
c) What does it look like if you start over and smooth the image twice with the 5-by-5 filter?

Compare this with the 9-by-9 results. Are they nearly the same? Why or why not?
4. Load an interesting image. Again, blur it with cv::smooth() using a Gaussian filter.

a) Set param1=param2=9. Try several settings of param3 (e.g., 1, 4, and 6). Display the results.

b) This time, set param1=param2=0 before setting param3 to 1, 4, and 6. Display the results.
Are they different? Why?

c) Again use param1=param2=0 but now set param3=1 and param4=9. Smooth the picture
and display the results.

d) Repeat part c but with param3=9 and param4=1. Display the results.

e) Now smooth the image once with the settings of part c and once with the settings of part d.
Display the results.

f) Compare the results in part e with smoothings that use param3=param4=9 and
param3=param4=0 (i.e., a 9-by-9 filter). Are the results the same? Why or why not?

5. Create a low-variance random image (use a random number call such that the numbers don’t differ by
much more than 3 and most numbers are near 0). Load the image into a drawing program such as
PowerPoint and then draw a wheel of lines meeting at a single point. Use bilateral filtering on the
resulting image and explain the results.

6. In a drawing program such as PowerPoint, draw a series of concentric circles forming a bull’s-eye.

a) Make a series of lines going into the bull’s-eye. Save the image.
b) Using a 3-by-3 aperture size, take and display the first-order x- and y-derivatives of your picture.

Then increase the aperture size to 5-by-5, 9-by-9, and 13-by-13. Describe the results.
7. Create a new image that is just a 45 degree line, white on black. For a given series of aperture sizes, we

will take the image’s first-order x-derivative (𝑑𝑥) and first-order y-derivative (𝑑𝑦). We will then take
measurements of this line as follows. The (𝑑𝑥) and (𝑑𝑦) images constitute the gradient of the input
image. The magnitude at location 𝑖, 𝑗 is 𝑚𝑎𝑔 𝑖, 𝑗 = 𝑑𝑥! 𝑖, 𝑗 + 𝑑𝑦! 𝑖, 𝑗 and the angle
is Θ 𝑖, 𝑗 = 𝑎𝑡𝑎𝑛2(𝑑𝑦 𝑖, 𝑗 ,𝑑𝑥 𝑖, 𝑗). Scan across the image and find places where the magnitude is at
or near maximum. Record the angle at these places. Average the angles and report that as the measured
line angle.
a) Do this for a 3-by-3 aperture Sobel filter.
b) Do this for a 5-by-5 filter.
c) Do this for a 9-by-9 filter.
d) Do the results change? If so, why?

8. Find and load a picture of a face where the face is frontal, has eyes open, and takes up most or all of
the image area. Write code to find the pupils of the eyes.

A Laplacian “likes” a bright central point surrounded by dark. Pupils are just the opposite. Invert and
convolve with a sufficiently large Laplacian.

9. Use a camera to take two pictures of the same scene while moving the camera as little as possible.
Load these images into the computer as src1 and src1.

a) Take the absolute value of src1 minus src1 (subtract the images); call it diff12 and display.
If this were done perfectly, diff12 would be black. Why isn’t it?

b) Create cleandiff by using cv::erode() and then cv::dilate() on diff12. Display
the results.

c) Create dirtydiff by using cv::dilate() and then cv::erode() on diff12 and then
display.

d) Explain the difference between cleandiff and dirtydiff.

10. Take a picture of a scene. Then, without moving the camera, put a coffee cup in the scene and take a
second picture. Load these images and convert both to 8-bit grayscale images.
a) Take the absolute value of their difference. Display the result, which should look like a noisy

mask of a coffee mug.
b) Do a binary threshold of the resulting image using a level that preserves most of the coffee mug

but removes some of the noise. Display the result. The “on” values should be set to 255.

c) Do a cv::MOP_OPEN on the image to further clean up noise.

11. Create a clean mask from noise. After completing exercise 10, continue by keeping only the largest
remaining shape in the image. Set a pointer to the upper-left of the image and then traverse the image.
When you find a pixel of value 255 (“on”), store the location and then flood fill (Chapter 6,
cv::floodFill()) it using a value of 100. Read the connected component returned from flood fill
and record the area of filled region. If there is another larger region in the image, then flood fill the
smaller region using a value of 0 and delete its recorded area. If the new region is larger than the
previous region, then flood fill the previous region using the value 0 and delete its location. Finally, fill
the remaining largest region with 255. Display the results. We now have a single, solid mask for the
coffee mug.

12. For this exercise, use the mask created in exercise 10 or create another mask of your own (perhaps by
drawing a digital picture, or simply use a square). Load an outdoor scene. Now use this mask with
copyTo(), to copy an image of a mug into the scene.

13. Load an image of a scene and convert it to grayscale.
a) Run the morphological Top Hat operation on your image and display the results.

b) Convert the resulting image into an 8-bit mask.
c) Copy a grayscale value into the original image where the Top Hat mask (from b) is nonzero.

Display the results.
14. Use cv::filter2D() to create a filter that detects only 60 degree lines in an image. Display the

results on a sufficiently interesting image scene.
15. Refer to the Sobel derivative filter shown in Figure 5-15. Make a kernel of this figure and convolve an

image with it. Then, make two kernels of the separable parts. Take the image again, and convolve with
first the x and then the y kernels. Subtract these two images to convince yourself that the separable
operation produces the exact same result.

16. Separable kernels. Create a 3-by-3 Gaussian kernel using rows [(1/16, 2/16, 1/16), (2/16, 4/16, 2/16),
(1/16, 2/16, 1/16)] and with anchor point in the middle.
a) Run this kernel on an image and display the results.
b) Now create two one-dimensional kernels with anchors in the center: one going “across” (1/4, 2/4,

1/4), and one going down (1/4, 2/4, 1/4). Load the same original image and use
cv::filter2D() to convolve the image twice, once with the first 1D kernel and once with the
second 1D kernel. Describe the results.

c) Describe the order of complexity (number of operations) for the kernel in part a) and for the
kernels in part b). The difference is the advantage of being able to use separable kernels and the
entire Gaussian class of filters—or any linearly decomposable filter that is separable, since
convolution is a linear operation.

17. Can you make a separable kernel from the filter shown in Figure 5-15? If so, show what it looks like.

6
General Image Transforms

Overview
In the previous chapter, we covered the class of image transformations that can be understood specifically
in terms of convolution. Of course, there are a lot of useful operations that cannot be expressed in this way
(i.e., as a little window scanning over the image doing one thing or another). In general, transformations
that can be expressed as convolutions are local, meaning that even though they may change the entire
image, the effect on any particular pixel is determined by only a small number of pixels around that one.
The transforms we will look in this chapter generally will not have this property.

Some very useful image transforms are very simple, and you will use them all of the time—resize for
example. Others are somewhat more special purpose. In many cases, the image transforms we will look at
in this chapter have the purpose of converting an image into some entirely different representation. This
different representation will usually still be an array of values, but those values might be quite different in
meaning than the intensity values in the input image. An example of this would be the frequency
representation resulting from a Fourier transform. In a few cases, the result of the transformation will be
something like a list of components, as would be the case for the Hough Line Transform.

There are a number of useful transforms that arise repeatedly in computer vision. OpenCV provides
complete implementations of some of the more common ones as well as building blocks to help you
implement your own transformations.

Stretch, Shrink, Warp, and Rotate
The simplest image transforms we will encounter are those that resize an image, either to make it larger or
smaller. These operations are a little less trivial than you might think, because resizing immediately implies
questions about how pixels are interpolated (for enlargement) or merged (for reduction).

Uniform Resize
We often encounter an image of some size that we would like to convert to an image of some other size.
We may want to upsize (zoom in) or downsize (zoom out) the image; both of these tasks are accomplished
by the same function.

cv::resize()

The cv::resize() function handles all of our resizing needs. We provide our input image, and the size
we would like it be converted to, and it will generate a new image of exactly the desired size.

void cv::resize(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::Size dsize, // New Size
 double fx = 0, // x-rescale
 double fy = 0, // y-rescale
 int interpolation = cv::INTER_LINEAR // interpolation method
);

We can specify the size of the output image in two ways. One way is to use absolute sizing; in this case, the
dsize argument directly sets the size we would like the result image dst to be. The other option is to use
relative sizing; in this case, we set dsize to cv::Size(0,0), and instead set fx and fy to the scale
factors we would like to apply to the x- and y-axes respectively.1 The last argument is the
interpolation method, which defaults to linear interpolation. The other available options are shown in
Table 6-1.

Table 6-1: cv::resize() interpolation options

Interpolation Meaning
 cv::INTER_NEAREST Nearest neighbor
 cv::INTER_LINEAR Bilinear
 cv::INTER_AREA Pixel area re-sampling
 cv::INTER_CUBIC Bicubic interpolation
 cv::INTER_LANCZOS4 Lanczos interpolation over 8-

by-8 neighborhood.

Interpolation is an important issue here. Pixels in the source image sit on an integer grid; for example, we
can refer to a pixel at location (20, 17). When these integer locations are mapped to a new image, there can
be gaps—either because the integer source pixel locations are mapped to float locations in the destination
image and must be rounded to the nearest integer pixel location, or because there are some locations to
which no pixels at all are mapped (think about doubling the image size by stretching it; then every other
destination pixel would be left blank). These problems are generally referred to as forward projection
problems. To deal with such rounding problems and destination gaps, we actually solve the problem
backwards: we step through each pixel of the destination image and ask, “Which pixels in the source are
needed to fill in this destination pixel?” These source pixels will almost always be on fractional pixel
locations, so we must interpolate the source pixels to derive the correct value for our destination value. The
default method is bilinear interpolation, but you may choose other methods (as shown in Table 6-1).

The easiest approach is to take the resized pixel’s value from its closest pixel in the source image; this is
the effect of choosing the interpolation value cv::INTER_NEAREST. Alternatively, we can
linearly weight the 2-by-2 surrounding source pixel values according to how close they are to the
destination pixel, which is what cv::INTER_LINEAR does. We can also virtually place the new resized
pixel over the old pixels and then average the covered pixel values, as done with cv::INTER_AREA.2 For
yet smoother interpolation, we have the option of fitting a cubic spline between the 4-by-4 surrounding
pixels in the source image and then reading off the corresponding destination value from the fitted spline;
this is the result of choosing the cv::INTER_CUBIC interpolation method. Finally, we have the Lanczos
interpolation, which is similar to the cubic method, but uses information from an 8-by-8 area around the
pixel.3

1 Either dsize must be cv::Size(0,0) or fx and fy must both be zero.
2 At least that’s what happens when cv::resize() shrinks an image. When it expands an image,
cv::INTER_AREA amounts to the same thing as cv::INTER_NEAREST.
3 The subtleties of the Lanczos filter are beyond the scope of this book, but this filter is commonly used in processing
digital images because it has the effect of increasing the perceived sharpness of the image.

It is important to notice the difference between cv::resize() and the similarly
named cv::Mat::resize() member function of the cv::Mat class.
cv::resize() creates a new image, of a different size, over which the original pixels
are mapped. The cv::Mat::resize() member function resizes the image whose
member you are calling, and it crops that image to the new size. Pixels are not
interpolated (or extrapolated) in the case of cv::Mat::resize().

Image Pyramids
Image pyramids [Adelson84] are heavily used in a wide variety of vision applications. An image pyramid is
a collection of images—all arising from a single original image—that are successively downsampled until
some desired stopping point is reached. (Of course, this stopping point could be a single-pixel image!)

There are two kinds of image pyramids that arise often in the literature and in applications: the Gaussian
[Rosenfeld80] and Laplacian [Burt83] pyramids [Adelson84]. The Gaussian pyramid is used to
downsample images, and the Laplacian pyramid (to be discussed shortly) is required when we want to
reconstruct an upsampled image from an image lower in the pyramid.

cv::pyrDown()

Normally, we produce layer (𝑖 + 1) in the Gaussian pyramid (we denote this layer 𝐺!!!) from layer 𝐺i of
the pyramid, by first convolving 𝐺i with a Gaussian kernel and then removing every even-numbered row
and column. Of course, in this case, it follows immediately that each image is exactly one-quarter the area
of its predecessor. Iterating this process on the input image 𝐺! produces the entire pyramid. OpenCV
provides us with a method for generating each pyramid stage from its predecessor:

void cv::pyrDown(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 const cv::Size& dstsize = cv::Size() // Output image size
);

The cv::pyrDown() method will do exactly this for us if we leave the destination size argument
dstsize set to its default value of cv::Size(). To be even a little more specific, the default size of the
output image is ((src.cols+1)/2, (src.rows+1)/2).4 Alternatively, we can supply a
dstsize, which will indicate the size we would like for the output image; dstsize, however, must
obey some very strict constraints. Specifically:

𝑑𝑠𝑡𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ ∗ 2 − 𝑠𝑟𝑐. 𝑐𝑜𝑙𝑠 ≤ 2

𝑑𝑠𝑡𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 2 − 𝑠𝑟𝑐. 𝑟𝑜𝑤𝑠 ≤ 2

This restriction means that the destination image is very close to half the size of the source image. The use
of the dstsize argument is only for handling somewhat esoteric cases in which very tight control is
needed on how the pyramid is constructed.

cv::buildPyramid()

It is a relatively common situation that you have an image, and wish to build a sequence of new images that
are each downscaled from their predecessor. The function cv::buildPyramid() creates such a stack
of images for you in a single call.

void cv::buildPyramid(
 cv::InputArray src, // Input Image
 cv::OutputArrayOfArrays dst, // Output Images from pyramid
 int maxlevel // Number of pyramid levels
);

4 The +1s are there to make sure odd sized images are handled correctly. They have no effect if the image was even
sized to begin with.

The argument src is the source image. The argument dst is of a somewhat unusual looking type
cv::OutputArrayOfArrays, but you can think of this as just being an STL vector<> or objects of
type cv::OutputArray. The most common example of this would be vector<cv::Mat>. The
argument maxlevel indicates how many pyramid levels are to be constructed.

Figure 6-1: An image pyramid generated with maxlevel=3 (left); two pyramids interleaved together to
create a 2 pyramid (right)

The argument maxlevel is any integer greater than or equal to zero, and indicates the number of
pyramid images to be generated. When cv::buildPyramid() runs, it will return a vector in dst that
is of length maxlevel+1. The first entry in dst will be identical to src. The second will be half as
large (i.e., as would result from calling cv::pyrDown()). The third will be half the size of the second,
and so on (left-hand panel of Figure 6-1).

In practice, one often wants a pyramid with a finer logarithmic scaling than factors of
two. One way to achieve this is to simply call cv::resize() yourself as many times
as needed for whatever scale factor you want to use—but this can be quite slow. An
alternative (for some common scale factors) is to call cv::resize() only once for
each interleaved set of images you want, and then call cv::buildPyramid() on each
of those resized “bases.” You can then interleave these results together for one large
finer-grained pyramid. Figure 6-1 (right) shows an example in which two pyramids are
generated. The original image is first rescaled by a factor of 2, and then
cv::buildPyramid() is called on that one image to make a second pyramid of four
intermediate images. Once combined with the original pyramid, the result is a finer
pyramid with scale factor of 2 across the entire pyramid.

cv::pyrUp()

Similarly, we can convert an existing image to an image that is twice as large in each direction by the
following analogous (but not inverse!) operation:

void cv::pyrUp(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 const cv::Size& dstsize = cv::Size() // Output image size
);

In this case, the image is first upsized to twice the original in each dimension, with the new (even) rows
filled with 0s. Thereafter, a convolution is performed with the Gaussian filter5 to approximate the values of
the “missing” pixels.

5 This filter is also normalized to four, rather than to one. This is appropriate because the inserted rows have 0s in all of
their pixels before the convolution. (Normally, the sum of Gaussian kernel elements would be 1, but in case of 2x

Analogous to cv::PyrDown(), if dstsize is set to its default value of cv::Size(), the resulting
image will be exactly twice the size (in each dimension) as src. Again, we can supply a dstsize that
will indicate the size we would like for the output image dstsize, but it must again obey some very strict
constraints. Specifically:

𝑑𝑠𝑡𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ ∗ 2 − 𝑠𝑟𝑐. 𝑐𝑜𝑙𝑠 ≤ (𝑑𝑠𝑡𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ % 2)

𝑑𝑠𝑡𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 2 − 𝑠𝑟𝑐. 𝑟𝑜𝑤𝑠 ≤ (𝑑𝑠𝑡𝑠𝑖𝑧𝑒. ℎ𝑒𝑖𝑔ℎ𝑡 % 2)

This restriction means that the destination image is very close to double the size of the source image. As
before, the use of the dstsize argument is only for handling somewhat esoteric cases in which very tight
control is needed on how the pyramid is constructed.

The Laplacian Pyramid

We noted previously that the operator cv::pyrUp() is not the inverse of cv::pyrDown(). This
should be evident because cv::pyrDown() is an operator that loses information. In order to restore the
original (higher-resolution) image, we would require access to the information that was discarded by the
downsampling. This data forms the Laplacian pyramid. The 𝑖!! layer of the Laplacian pyramid is defined
by the relation:

𝐿! = 𝐺! − 𝑈𝑃(𝐺!!!)⨂ℊ!!!

Here the operator 𝑈𝑃() upsizes by mapping each pixel in location (x, y) in the original image to pixel
(2𝑥 + 1,2𝑦 + 1) in the destination image; the ⨂ symbol denotes convolution; and ℊ!!! is a 5-by-5
Gaussian kernel. Of course, 𝑈𝑃(𝐺!!!)⨂ℊ!!! is the definition of the cv::pyrUp() operator provided by
OpenCV. Hence, we can use OpenCV to compute the Laplacian operator directly as:

𝐿! = 𝐺! − 𝑝𝑦𝑟𝑈𝑝(𝐺!!!)

The Gaussian and Laplacian pyramids are shown diagrammatically in Table 6-2, which also shows the
inverse process for recovering the original image from the sub-images. Note how the Laplacian is really an
approximation that uses the difference of Gaussians, as revealed in the preceding equation and diagrammed
in the figure.

Figure 6-2: The Gaussian pyramid and its inverse, the Laplacian pyramid

pyramid up-sampling—in the 2D case—all the kernel elements are multiplied by 4 to recover the average brightness
after inserting zero rows and columns.)

Nonuniform Mappings
In this section, we turn to geometric manipulations of images, i.e., those transformations that have their
origin at the intersection of three-dimensional geometry and projective geometry.6 Such manipulations
include both uniform and nonuniform resizing (the latter is known as warping). There are many reasons to
perform these operations: for example, warping and rotating an image so that it can be superimposed on a
wall in an existing scene, or artificially enlarging a set of training images used for object recognition. 7 The
functions that can stretch, shrink, warp, and/or rotate an image are called geometric transforms (for an early
exposition, see [Semple79]). For planar areas, there are two flavors of geometric transforms: transforms
that use a 2-by-3 matrix, which are called affine transforms; and transforms based on a 3-by-3 matrix,
which are called perspective transforms or homographies. You can think of the latter transformation as a
method for computing the way in which a plane in three dimensions is perceived by a particular observer,
who might not be looking straight on at that plane.

An affine transformation is any transformation that can be expressed in the form of a matrix multiplication
followed by a vector addition. In OpenCV, the standard style of representing such a transformation is as a
2-by-3 matrix. We define:

𝐴 ≡
𝑎!! 𝑎!"
𝑎!" 𝑎!! 𝐵 ≡

𝑏!
𝑏!

 𝑇 ≡ 𝐴 𝐵 𝑋 ≡
𝑥
𝑦 𝑋! ≡

𝑥
𝑦
1

It is easily seen that the effect of the affine transformation 𝐴 · 𝑋 + 𝐵 is exactly equivalent to extending
the vector 𝑋 into the vector 𝑋´ and simply left-multiplying 𝑋´ by 𝑇.

Affine transformations can be visualized as follows. Any parallelogram 𝐴𝐵𝐶𝐷 in a plane can be mapped to
any other parallelogram 𝐴’𝐵’𝐶’𝐷’ by some affine transformation. If the areas of these parallelograms are
nonzero, then the implied affine transformation is defined uniquely by (three vertices of) the two
parallelograms. If you like, you can think of an affine transformation as drawing your image into a big
rubber sheet and then deforming the sheet by pushing or pulling8 on the corners to make different kinds of
parallelograms.

Figure 6-3: Affine and perspective transformations

6 We will cover these transformations in detail here, and will return to them in Chapter 11 when we discuss how they
can be used in the context of three-dimensional vision techniques.
7 This activity might seem a bit dodgy; after all, wouldn’t it be better to just use a recognition method that’s invariant to
local affine distortions? Nonetheless, this method has a long history and is quite useful in practice.
8 One can even pull in such a manner as to invert the parallelogram.

When we have multiple images that we know to be slightly different views of the same object, we might
want to compute the actual transforms that relate the different views. In this case, affine transformations are
often used to model the views because, having fewer parameters, they are easier to solve for. The downside
is that true perspective distortions can only be modeled by a homography,9 so affine transforms yield a
representation that cannot accommodate all possible relationships between the views. On the other hand,
for small changes in viewpoint the resulting distortion is affine, so in some circumstances, an affine
transformation may be sufficient.

Affine transforms can convert rectangles to parallelograms. They can squash the shape but must keep the
sides parallel; they can rotate it and/or scale it. Perspective transformations offer more flexibility; a
perspective transform can turn a rectangle into a trapezoid or any general quadrilateral. Of course, since
parallelograms are also trapezoids, affine transformations are a subset of perspective transformations.
Figure 6-3 shows examples of various affine and perspective transformations.

Affine Transformation
There are two situations that arise when working with affine transformations. In the first case, we have an
image (or a region of interest) we’d like to transform; in the second case, we have a list of points for which
we’d like to compute the result of a transformation. Each of these cases if very similar in concept, but quite
different in terms of practical implementation. As a result, OpenCV has two different functions for these
situations.

cv::warpAffine(), Dense affine transformations

In the first case, the obvious input and output formats are images, and the implicit requirement is that the
warping assumes the pixels are a dense representation of the underlying image. This means that image
warping must necessarily handle interpolations so that the output images are smooth and look natural. The
affine transformation function provided by OpenCV for dense transformations is cv::warpAffine():

void cv::warpAffine(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::InputArray M, // 2-by-3 transformation matrix
 cv::Size dsize, // Destination image size
 int flags = cv::INTER_LINEAR, // Interpolation, and inverse
 int borderMode = cv::BORDER_CONSTANT, // Pixel extrapolation method
 const cv::Scalar& borderValue = cv::Scalar() // Used for constant borders
);

Here src and dst are your source and destination arrays. The input M is the 2-by-3 matrix we introduced
earlier that quantifies the desired transformation. Each element in the destination array is computed from
the element of the source array at the location given by:

𝑑𝑠𝑡 𝑥, 𝑦 = 𝑠𝑟𝑐 𝑀!!𝑥 +𝑀!"𝑦 +𝑀!",𝑀!"𝑥 +𝑀!!𝑦 +𝑀!"

In general, however, the location indicated by the right-hand side of this equation will not be an integer
pixel. In this case, it is necessary to use interpolation to find an appropriate value for 𝑑𝑠𝑡(𝑥, 𝑦). The next
argument, flags, selects the interpolation method. The available interpolation methods are those in Table
6-1, the same as cv::resize(), plus one additional option, cv::WARP_INVERSE_MAP (which may
be added with the usual Boolean OR). This option is a convenience that allows for inverse warping from
dst to src instead of from src to dst. The final two arguments are for border extrapolation, and have
the same meaning as similar arguments in image convolutions (See Chapter 5).

9 “Homography” is the mathematical term for mapping points on one surface to points on another. In this sense, it is a
more general term than used here. In the context of computer vision, homography almost always refers to mapping
between points on two image planes that correspond to the same location on a planar object in the real world. It can be
shown that such a mapping is representable by a single 3-by-3 orthogonal matrix (more on this in Chapter 11).

cv::getAffineTransform(), Computing an Affine Map Matrix

OpenCV provides two functions to help you generate the map matrix M. The first is used when you already
have two images that you know to be related by an affine transformation or that you’d like to approximate
in that way:

cv::Mat cv::getAffineTransform(// Return 2-by-3 matrix
 const cv::Point2f* src, // Coordinates three of vertices
 const cv::Point2f* dst // Target coordinates three of vertices
);

Here src and dst are arrays containing three two-dimensional (𝑥, 𝑦) points. The return value is an array
that is the affine transform computed from those points.

The src and dst in cv::getAffineTransform() are just arrays of three points10 defining two
parallelograms. The simplest way to define an affine transform is thus to set src to three corners in the
source image—for example, the upper- and lower-left together with the upper-right of the source image.
The mapping from the source to destination image is then entirely defined by specifying dst, the locations
to which these three points will be mapped in that destination image. Once the mapping of these three
independent corners (which, in effect, specify a “representative” parallelogram) is established, all the other
points can be warped accordingly.

Example 6-1 shows some code that uses these functions. In the example, we obtain the
cv::warpAffine() matrix parameters by first constructing two three-component arrays of points (the
corners of our representative parallelogram) and then convert that to the actual transformation matrix using
cv::getAffineTransform(). We then do an affine warp followed by a rotation of the image. For
our array of representative points in the source image, called srcTri[], we take the three points:
(0,0), (0,height-1), and (width-1,0). We then specify the locations to which these points will
be mapped in the corresponding array dstTri[].

Example 6-1: An affine transformation

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Warp affine\nUsage: ch6_ex6_2 <imagename>\n" << endl;
 return -1;
 }

 cv::Mat src = cv::imread(argv[1],1);
 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 cv::Point3f srcTri[] = {
 cv::Point2f(0,0), // src Top left
 cv::Point2f(src.cols-1, 0), // src Top right
 cv::Point2f(0, src.rows-1) // src Bottom left
 };

 cv::Point2f dstTri[] = {
 cv::Point2f(src.cols*0.f, src.rows*0.33f), // dst Top left
 cv::Point2f(src.cols*0.85f, src.rows*0.25f), // dst Top right
 cv::Point2f(src.cols*0.15f, src.rows*0.7f) // dst Bottom left
 };

10 We need just three points because, for an affine transformation, we are only representing a parallelogram. We will
need four points to represent a general trapezoid when we address perspective transformations.

 // COMPUTE AFFINE MATRIX
 //
 cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
 cv::Mat dst, dst2;
 cv::warpAffine(
 src,
 dst,
 warp_mat,
 src.size(),
 cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar()
);
 for(int i = 0; i < 3; ++i)
 cv::circle(dst, dstTri[i], 5, cv::Scalar(255, 0, 255), -1, cv::AA);

 cv::imshow("Affine Transform Test", dst);
 cv::waitKey();

 for(int frame=0;;++frame) {
 // COMPUTE ROTATION MATRIX
 cv::Point2f center(src.cols*0.5f, src.rows*0.5f);
 double angle = frame*3 % 360, scale = (cos((angle - 60)* cv::PI/180) + 1.05)*0.8;

 cv::Mat rot_mat = cv::getRotationMatrix2D(center, angle, scale);

 cv::warpAffine(
 src,
 dst,
 rot_mat,
 src.size(),
 cv::INTER_LINEAR,
 cv::BORDER_CONSTANT,
 cv::Scalar()
);
 cv::imshow("Rotated Image", dst);
 if(cv::waitKey(30) >= 0)
 break;
 }
 return 0;
}

The second way to compute the map matrix M is to use cv::getRotationMatrix2D(), which
computes the map matrix for a rotation around some arbitrary point, combined with an optional rescaling.
This is just one possible kind of affine transformation, but it represents an important subset that has an
alternative (and more intuitive) representation that’s easier to work with in your head:

cv::Mat cv::getRotationMatrix2D(// Return 2-by-3 matrix
 cv::Point2f center // Center of rotation
 double angle, // Angle of rotation
 double scale // Rescale after rotation
);

The first argument, center, is the center point of the rotation. The next two arguments give the
magnitude of the rotation and the overall rescaling. The function returns the map matrix M, which (as
always) is a 2-by-3 matrix of floating-point numbers).

If we define 𝛼 = scale ∗ cos(angle) and 𝛽 = scale ∗ sin(angle), then this function computes the matrix M
to be:

𝛼 𝛽 1 − 𝛼 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟! − 𝛽 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟!
−𝛽 𝛼 𝛽 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟! − 1 − 𝛼 ∙ 𝑐𝑒𝑛𝑡𝑒𝑟!

You can combine these methods of setting the map_matrix to obtain, for example, an image that is
rotated, scaled, and warped.

cv::transform() for Sparse Affine Transformations

We have explained that cv::warpAffine() is the right way to handle dense mappings. For sparse
mappings (i.e., mappings of lists of individual points), it is best to use cv::transform(). You will
recall from Chapter 3 that the transform method has the following prototype:

void cv::transform(
 cv::InputArray src, // Input N-by-1 array (Ds channele)
 cv::OutputArray dst, // Output N-by-1 array (Dd channels)
 cv::InputArray mtx // Transfor matrux (Ds-by-Dd)
);

In general, src is an 𝑁-by-1 array with 𝐷! channels, where 𝑁 is the number of points to be transformed
and 𝐷! is the dimension of those source points. The output array dst will be the same size but may have a
different number of channels, 𝐷!. The transformation matrix mtx is a 𝐷!-by-𝐷! matrix that is then applied
to every element of src, after which the results are placed into dst.

Note that cv::transform() acts on the channel indices of every point in an array.
For the current problem, we assume that the array is essentially a large vector (𝑁-by-1 or
1-by-𝑁) of these multichannel objects. The important thing to remember is that the index
that the transformation matrix is relative to is the channel index, not the “vector” index of
the large array.

In the case of transformations that are simple rotations, our transformation matrix mtx will be a 2-by-2
matrix only, and it can be applied directly to the two-channel indices of src. In fact this is true for
rotations, stretch, and warp as well in some simple cases. Usually, however, to do a general affine
transformation, including translations and rotations about arbitrary centers, and so on, it is necessary to
extend the number of channels in src to three, so that the action of the more usual 2-by-3 affine
transformation matrix is defined. In this case, all of the third-channel entries must be set to 1.0 (i.e., the
points must be supplied in homogeneous coordinates). Of course, the output array will still be a two-
channel array.

cv::invertAffineTransform(), Inverting an Affine Transformation

Given an affine transformation represented as a 2-by-3 matrix, it is often desirable to be able to compute
the inverse transformation, which will “put back” all of the transformed points to where they came from.
This is done with cv::invertAffineTransform():

void cv::invertAffineTransform(
 cv::InputArray M, // Input 2-by-3 matrix
 cv::OutputArray iM // Output also a 2-by-3 matrix
);

This function takes a 2-by-3 array M and returns another 2-by-3 array iM that inverts M. Note that
cv::invertAffineTransform() does not actually act on any image, it just supplies the inverse
transform. Once you have iM, you can use it as you would have used M, with either cv::warpAffine()
or cv::transform().

Perspective Transformation
To gain the greater flexibility offered by perspective transforms (homographies), we need a new function
that will allow us to express this broader class of transformations. First we remark that, even though a
perspective projection is specified completely by a single matrix, the projection is not actually a linear

transformation. This is because the transformation requires division by the final dimension (usually 𝑍; see
Chapter 11) and thus loses a dimension in the process.

As with affine transformations, image operations (dense transformations) are handled by different functions
than transformations on point sets (sparse transformations).

cv::warpPerspective(), Dense perspective transform

The dense perspective transform uses an OpenCV function that is analogous to the one provided for dense
affine transformations. Specifically, cv::warpPerspective() has all of the same arguments as
cv::warpAffine(), except with the small, but crucial, distinction that the map matrix must now be 3-
by-3.

void cv::warpPerspective(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::InputArray M, // 3-by-3 transformation matrix
 cv::Size dsize, // Destination image size
 int flags = cv::INTER_LINEAR, // Interpolation, and inverse
 int borderMode = cv::BORDER_CONSTANT, // Pixel extrapolation method
 const cv::Scalar& borderValue = cv::Scalar() // Used for constant borders
);

Each element in the destination array is computed from the element of the source array at the location given
by:

𝑑𝑠𝑡 𝑥, 𝑦 = 𝑠𝑟𝑐
𝑀!!𝑥 +𝑀!"𝑦 +𝑀!"

𝑀!"𝑥 +𝑀!"𝑦 +𝑀!!
,
𝑀!"𝑥 +𝑀!!𝑦 +𝑀!"

𝑀!"𝑥 +𝑀!"𝑦 +𝑀!!

As with the affine transformation, the location indicated by the right side of this equation will not
(generally) be an integer location. Again the flags argument is used to select the desired interpolation
method, and has the same possible values as the corresponding argument to cv::warpAffine().

cv::getPerspectiveTransform(), Computing the perspective map matrix

As with the affine transformation, for filling the map_matrix in the preceding code we have a
convenience function that can compute the transformation matrix from a list of point correspondences:

cv::Mat cv::getPerspectiveTransform(// Return 3-by-3 matrix
 const cv::Point2f* src, // Coordinates of four vertices
 const cv::Point2f* dst // Target coordinates of four vertices
);

The src and dst argument are now arrays of four (not three) points, so we can independently control how
the corners of (typically) a rectangle in src are mapped to (generally) some rhombus in dst. Our
transformation is completely defined by the specified destinations of the four source points. As mentioned
earlier, for perspective transformations, the return value will be a 3-by-3 array; see Example 6-2 for sample
code. Other than the 3-by-3 matrix and the shift from three to four control points, the perspective
transformation is otherwise exactly analogous to the affine transformation we already introduced.

Example 6-2: Code for perspective transformation

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Perspective Warp\nUsage: ch6_ex6_3 <imagename>\n" << endl;
 return -1;
 }

 Mat src = cv::imread(argv[1],1);
 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 cv::Point2f srcQuad[] = {
 cv::Point2f(0, 0), // src Top left
 cv::Point2f(src.cols-1, 0), // src Top right
 cv::Point2f(src.cols-1, src.rows-1), // src Bottom right
 cv::Point2f(0, src.rows-1) // src Bottom left
 };

 cv::Point2f dstQuad[] = {
 cv::Point2f(src.cols*0.05f, src.rows*0.33f),
 cv::Point2f(src.cols*0.9f, src.rows*0.25f),
 cv::Point2f(src.cols*0.8f, src.rows*0.9f),
 cv::Point2f(src.cols*0.2f, src.rows*0.7f)
 };

 // COMPUTE PERSPECTIVE MATRIX
 cv::Mat warp_mat = cv::getPerspectiveTransform(srcQuad, dstQuad);
 cv::Mat dst;
 cv::warpPerspective(src, dst, warp_mat, src.size(), cv::INTER_LINEAR,
 cv::BORDER_CONSTANT, cv::Scalar());
 for(int i = 0; i < 4; i++)
 cv::circle(dst, dstQuad[i], 5, cv::Scalar(255, 0, 255), -1, cv::AA);

 cv::imshow("Perspective Transform Test", dst);
 cv::waitKey();
 return 0;
}

cv::perspectiveTransform(), Sparse perspective transformations

There is a special function, cv::perspectiveTransform(), that performs perspective
transformations on lists of points. Because cv::transform() is limited to linear operations, it does not
conveniently handle perspective transforms. This is because such transformations require division by the
third coordinate of the homogeneous representation (𝑥 = 𝑓 ∗ 𝑋/𝑍, 𝑦 = 𝑓 ∗ 𝑌/𝑍). The special function
cv::perspectiveTransform() takes care of this for us:

void cv::perspectiveTransform(
 cv::InputArray src, // Input N-by-1 array (2 or 3 channele)
 cv::OutputArray dst, // Output N-by-1 array (2 or 3 channels)
 cv::InputArray mtx // Transfor matrux (3-by-3 or 4-by-4)
);

As usual, the src and dst arguments are, respectively, the array of source points to be transformed and
the array of destination points resulting from the transformation. These arrays should be two- or three-
channel arrays. The matrix mat can be either a 3-by-3 or a 4-by-4 matrix. If it is 3-by-3, then the projection
is from two dimensions to two; if the matrix is 4-by-4, then the projection is from three dimensions to three.

In the current context, we are transforming a set of points in an image to another set of points in an image,
which sounds like a mapping from two dimensions to two dimensions. This is not exactly correct, however,
because the perspective transformation is actually mapping points on a two-dimensional plane embedded in
a three-dimensional space back down to a (different) two-dimensional subspace. Think of this as being just
what a camera does (we will return to this topic in greater detail when discussing cameras in later chapters).
The camera takes points in three dimensions and maps them to the two dimensions of the camera imager.
This is essentially what is meant when the source points are taken to be in “homogeneous coordinates.” We
are adding a dimension to those points by introducing the 𝑍 dimension and then setting all of the 𝑍 values
to 1. The projective transformation is then projecting back out of that space onto the two-dimensional space
of our output. This is a rather long-winded way of explaining why, when mapping points in one image to
points in another, you will need a 3-by-3 matrix.

Outputs of the code in Example 6-1 and Example 6-2 are shown in Figure 6-4 for affine and perspective
transformations. In these examples, we transform actual images; you can compare these with the simple
diagrams of Figure 6-3.

Figure 6-4: Perspective and affine mapping of an image

General Remappings
The affine and perspective transformations we have seen so far are actually specific cases of a more general
process. Under the hood, those two both have the same basic behavior. They take pixels from one place in
the source image and map them to another place in the destination image. In fact, there are other useful
operations that have the same structure. In this section, we will look at another few transformations of this
kind, and then look at how OpenCV makes it possible to implement your own general mapping
transformations.

Polar Mappings
In Chapter 3, we briefly encountered two functions, cv::cartToPolar() and
cv::polarToCart(), which could be used to convert arrays of points in an 𝑥-𝑦 Cartesian
representation to (or from) arrays of points in an 𝑟-𝜃 polar representation.

There is a slight style inconsistency here between the polar mapping functions and the
perspective and affine transformation functions. The polar mapping functions expect
pairs of single-channel arrays, rather than double-channel arrays as their way of
representing two-dimensional vectors. This difference has its origin in the way the two
functions are traditionally used, rather than any intrinsic difference between what they are
doing.

The functions cv::cartToPolar() and cv::polarToCart() are employed by more complex
routines such as cv::logPolar() (described later) but are also useful in their own right.

cv::cartToPolar(), Converting from Cartesian to Polar Coordinates

For the case of mapping from Cartesian coordinates to polar coordinates, we have the function
cv::cartToPolar():

void cv::cartToPolar(
 cv::InputArray x, // Input single channel x-array
 cv::InputArray y, // Input single channel y-array
 cv::OutputArray magnitude, // Output single channel mag-array
 cv::OutputArray angle, // Output single channel angle-array
 bool angleInDegrees = false // Set true for degrees, else radians
);

The first two arguments x, and y, are single-channel arrays. Conceptually, what is being represented here is
not just a list of points, but a vector field11—with the x-component of the vector field at any given point
being represented by the value of the array x at that point, and the y-component of the vector field at any
given point being represented by the value of the array y at that point. Similarly, the result of this function
appears in the arrays magnitude and angle, with each point in magnitude representing the length of
the vector at that point in x and y, and each point in angle representing the orientation of that vector. The
angles recorded in angle will, by default, be in radians, i.e., [0, 2𝜋). If the argument angleInDegrees
is set to true, however, then the angles array will be recorded in degrees [0, 360).

As an example of where you might use this function, suppose you have already taken the x- and y-
derivatives of an image, either by using cv::Sobel() or by using convolution functions via
cv::DFT() or cv::filter2D(). If you stored the x-derivatives in an image dx_img and the y-
derivatives in dy_img, you could now create an edge-angle recognition histogram. That is, you could then
collect all the angles provided the magnitude or strength of the edge pixel is above some desired threshold.
To calculate this, we would first create two new destination images (and call them img_mag and
img_angle, for example) for the directional derivatives and then use the function cvCartToPolar(
dx_img, dy_img, img_mag, img_angle, 1). We would then fill a histogram from
img_angle as long as the corresponding “pixel” in img_mag is above our desired threshold.

In Chapter 13, we will discuss image recognition and image features. This process is
actually the basis of how an important image feature used in object recognition, called
HOG (histogram of oriented gradients), is calculated.

cv::polarToCart(), Converting from Polar to Cartesian Coordinates

The function cv::cartToPolar() performs the reverse mapping from polar coordinates to Cartesian
coordinates.

void cv::polarToCart(
 cv::InputArray magnitude, // Output single channel mag-array
 cv::InputArray angle, // Output single channel angle-array
 cv::OutputArray x, // Input single channel x-array
 cv::OutputArray y, // Input single channel y-array
 bool angleInDegrees = false // Set true for degrees, else radians
);

The inverse operation is also often useful, allowing us to convert from polar back to Cartesian coordinates.
It takes essentially the same arguments as cv::cartToPolar(), with the exception that magnitude
and angle are now inputs, and x and y are now the results.

11 If you are not familiar with the concept of a vector field, it is sufficient for our purposes to just think of this as a two
component vector associated with every point in “image.”

LogPolar
For two-dimensional images, the log-polar transform [Schwartz80] is a change from Cartesian to log-polar
coordinates: (𝑥, 𝑦)⟷ 𝑟𝑒!", where 𝑟 = 𝑥! + 𝑦! and 𝜃 = 𝑎𝑡𝑎𝑛2 𝑦, 𝑥 . Next, to separate out the polar
coordinates into a (𝜌, 𝜃) space that is relative to some center point (𝑥𝑐, 𝑦𝑐); we take the log so that
𝜌 = log ((𝑥 − 𝑥!)! + (𝑦 − 𝑦!)!) and 𝜃 = 𝑎𝑡𝑎𝑛2 𝑦 − 𝑦! , 𝑥 − 𝑥! . For image purposes—when we need to
“fit” the interesting stuff into the available image memory—we typically apply a scaling factor 𝑚 to 𝜌.
Figure 6-5 shows a square object on the left and its encoding in log-polar space.

Figure 6-5: The log-polar transform maps (𝑥, 𝑦) into (𝑙𝑜𝑔(𝑟), 𝜃). Here, a square is displayed in the log-
polar coordinate system

The next question is, of course, “Why bother?” The log-polar transform takes its inspiration from the
human visual system. Your eye has a small but dense center of photoreceptors in its center (the fovea), and
the density of receptors falls off rapidly (exponentially) from there. Try staring at a spot on the wall and
holding your finger at arm’s length in your line of sight. Then, keep staring at the spot and move your
finger slowly away; note how the detail rapidly decreases as the image of your finger moves away from
your fovea. This structure also has certain nice mathematical properties (beyond the scope of this book) that
concern preserving the angles of line intersections.

More important for us is that the log-polar transform can be used to create two-dimensional invariant
representations of object views by shifting the transformed image’s center of mass to a fixed point in the

log-polar plane; see

Figure 6-6. On the left are three shapes that we want to recognize as “square.” The problem is, they look
very different. One is much larger than the others and another is rotated. The log-polar transform appears

on the right in

Figure 6-6. Observe that size differences in the (𝑥, 𝑦) plane are converted to shifts along the log (𝑟) axis of
the log-polar plane and that the rotation differences are converted to shifts along the 𝜃-axis in the log-polar
plane. If we take the transformed center of each transformed square in the log-polar plane and then re-
center that point to a certain fixed position, then all the squares will show up identically in the log-polar
plane. This yields a type of invariance to two-dimensional rotation and scaling.12

Figure 6-6: Log-polar transform of rotated and scaled squares: size goes to a shift on the 𝑙𝑜𝑔 𝑟 axis and
rotation to a shift on the 𝜃-axis

cv::logPolar()

The OpenCV function for a log-polar transform is cv::logPolar():

void cv::logPolar(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 cv::Point2f center, // Center of transform
 double m, // Scale factor
 int flags = cv::INTER_LINEAR
 | cv::WARP_FILL_OUTLIERS // interpolation and fill modes
);

12 In Chapter 13, we‘ll learn about recognition. For now, simply note that it wouldn‘t be a good idea to derive a log-
polar transform for a whole object because such transforms are quite sensitive to the exact location of their center
points. What is more likely to work for object recognition is to detect a collection of key points (such as corners or blob
locations) around an object, truncate the extent of such views, and then use the centers of those key points as log-polar
centers. These local log-polar transforms could then be used to create local features that are (partially) scale- and
rotation-invariant and that can be associated with a visual object.

The src and dst are the usual input and output images. The parameter center is the center point
(𝑥! , 𝑦!) of the log-polar transform; m is the scale factor, which should be set so that the features of interest
dominate the available image area. The flags parameter allows for different interpolation methods. The
interpolation methods are the same set of standard interpolations available in OpenCV (Table 6-1). The
interpolation methods can be combined with either or both of the flags cv::WARP_FILL_OUTLIERS (to
fill points that would otherwise be undefined) or cv::WARP_INVERSE_MAP (to compute the reverse
mapping from log-polar to Cartesian coordinates).

Sample log-polar coding is given in Example 6-4, which demonstrates the forward and backward (inverse)
log-polar transform. The results on a photographic image are shown in Figure 6-7.

Figure 6-7: Log-polar example on an elk with transform centered at the white circle on the left; the output
is on the right

Example 6-3: Log-polar transform example

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 3) {
 cout << "LogPolar\nUsage: ch6_ex6_4 <imagename> <M value>\n”
 <<”<M value>~30 is usually good enough\n";
 return -1;
 }

 cv::Mat src = cv::imread(argv[1],1);

 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 double M = atof(argv[2]);
 cv::Mat dst(src.size(), src.type()), src2(src.size(), src.type());

 cv::logPolar(
 src,
 dst,
 cv::Point2f(src.cols*0.5f, src.rows*0.5f),
 M,
 cv::INTER_LINEAR | cv::WARP_FILL_OUTLIERS
);
 cv::logPolar(
 dst,
 src2,
 cv::Point2f(src.cols*0.5f, src.rows*0.5f),
 M,

 cv::INTER_LINEAR | cv::WARP_INVERSE_MAP
);
 cv::imshow("log-polar", dst);
 cv::imshow("inverse log-polar", src2);
 cv::waitKey();
 return 0;
}

Arbitrary Mappings
We sometimes want to accomplish interpolation programmatically; that is, we’d like to apply some known
algorithm that will determine the mapping. In other cases, however, we’d like to do this mapping ourselves.
Before diving into some methods that will compute (and apply) these mappings for us, let’s take a moment
to look at the function responsible for applying the mappings that these other methods rely upon.

One common use of cv::remap() is to rectify (correct distortions in) calibrated and stereo images. We
will see functions in Chapters 11 and 12 that convert calculated camera distortions and alignments into
mapx and mapy parameters.

The OpenCV function we want is called cv:remap():

cv::remap(), General Image Remapping
void cv::remap(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 cv::InputArray map1, // target x-location for src pixels
 cv::InputArray map2, // target y-location for src pixels
 int interpolation = cv::INTER_LINEAR, // Interpolation, and inverse
 int borderMode = cv::BORDER_CONSTANT, // Pixel extrapolation method
 const cv::Scalar& borderValue = cv::Scalar() // Used for constant borders
);

The first two arguments of cv::remap() are the source and destination images, respectively. The next
two arguments, map1 and map2, indicate where any particular pixel is to be relocated. This is how you
specify your own general mapping. These should be the same size as the source and destination images,
and must be one of the following data types: cv::S16C2, cv::F32C1, or cv::F32C2. Non-integer
mappings are allowed: cv::remap() will do the interpolation calculations for you automatically.

The next argument, interpolation, contains flags that tell cv::remap() exactly how that
interpolation is to be done. Any one of the values listed in Table 6-1 will work – except for
cv::INTER_AREA, which is not implemented for cv::remap().

Discrete Fourier Transform
For any set of values that are indexed by a discrete (integer) parameter, it is possible to define a discrete
Fourier transform (DFT)13 in a manner analogous to the Fourier transform of a continuous function. For 𝑁
complex numbers 𝑥!, 𝑥!, 𝑥!,… , 𝑥!!!, the one-dimensional DFT is defined by the following formula (where
𝑖 = −1):

𝑔! = 𝑓!𝑒
!!!"! !"

!!!

!!!

13 Joseph Fourier [Fourier] was the first to find that some functions can be decomposed into an infinite series of other
functions, and doing so became a field known as Fourier analysis. Some key text on methods of decomposing functions
into their Fourier series are Morse for physics [Morse53] and Papoulis in general [Papoulis62]. The fast Fourier
transform was invented by Cooley and Tukey in 1965 [Cooley65] though Carl Gauss worked out the key steps as early
as 1805 [Johnson84]. Early use in computer vision is described by Ballard and Brown [Ballard82].

A similar transform can be defined for a two-dimensional array of numbers (of course higher-dimensional
analogues exist also):

𝑔!!,!! = 𝑓!!,!!𝑒
!!!"! (!!!!!!!!!)

!!!!

!!!!

!!!!

!!!!

In general, one might expect that the computation of the 𝑁 different terms 𝑔𝑘 would require 𝑂(𝑁2)
operations. In fact, there are several fast Fourier transform (FFT) algorithms capable of computing these
values in 𝑂(𝑁 log 𝑁) time.

cv::dft(), the Discrete Fourier Transform

The OpenCV function cv::dft() implements one such FFT algorithm. The function cv::dft() can
compute FFTs for one- and two-dimensional arrays of inputs. In the latter case, the two-dimensional
transform can be computed or, if desired, only the one-dimensional transforms of each individual row can
be computed (this operation is much faster than calling cv::dft() several times):

void cv::dft(
 cv::InputArray src, // Input array (real or complex)
 cv::OutputArray dst, // Output array
 int flags = 0, // for inverse, or other variations
 int nonzeroRows = 0 // number of rows to not ignore
);

The input array must be of floating-point type and may be single- or double-channel. In the single-channel
case, the entries are assumed to be real numbers and the output will be packed in a special space-saving
format called CCS or Complex Conjugate Symmetrical.14 If the source and channel are two-channel
matrices or images, then the two channels will be interpreted as the real and imaginary components of the
input data. In this case, there will be no special packing of the results, and some space will be wasted with a
lot of 0s in both the input and output arrays.15

The special packing of result values that is used with single-channel CCS output is as follows.

For a one-dimensional array:

𝑅𝑒 𝑌! 𝑅𝑒 𝑌! 𝐼𝑚 𝑌! 𝑅𝑒 𝑌! 𝐼𝑚 𝑌! ⋯ 𝑅𝑒 𝑌 !
!!!

 𝐼𝑚 𝑌 !
!!!

 𝑅𝑒 𝑌 !
!

For a two-dimensional array:

𝑅𝑒 𝑌!! 𝑅𝑒 𝑌!" 𝐼𝑚 𝑌!" 𝑅𝑒 𝑌!" 𝐼𝑚 𝑌!" ⋯ 𝑅𝑒 𝑌
!,!!! !!

 𝐼𝑚 𝑌
!,!!! !!

 𝑅𝑒 𝑌
!,!!!

𝑅𝑒 𝑌!" 𝑅𝑒 𝑌!! 𝐼𝑚 𝑌!! 𝑅𝑒 𝑌!" 𝐼𝑚 𝑌!" ⋯ 𝑅𝑒 𝑌
!,!!! !!

 𝐼𝑚 𝑌
!,!!! !!

 𝑅𝑒 𝑌
!,!!!

𝑅𝑒 𝑌!" 𝑅𝑒 𝑌!" 𝐼𝑚 𝑌!" 𝑅𝑒 𝑌!! 𝐼𝑚 𝑌!! ⋯ 𝑅𝑒 𝑌
!,!!! !!

 𝐼𝑚 𝑌
!,!!! !!

 𝑅𝑒 𝑌
!,!!!

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑅𝑒 𝑌!!
! !!,!

 𝑅𝑒 𝑌!!!!,! 𝐼𝑚 𝑌!!!!,! 𝑅𝑒 𝑌!!!!,! 𝐼𝑚 𝑌!!!!,! ⋯ 𝑅𝑒 𝑌
!!!!,

!!
! !!

 𝐼𝑚 𝑌
!!!!,

!!
! !!

 𝑅𝑒 𝑌
!!!!,

!!
!

14 As a result of this compact representation, the size of the output array for a single-channel image is the same as the
size of the input array because the elements that are provably zero are omitted. In the case of the two-channel
(complex) array, the output size will, of course, also be equal to the input size.
15 When using this method, you must be sure to explicitly set the imaginary components to 0 in the two-channel
representation. An easy way to do this is to create a matrix full of 0s using cv::Mat::zeros() for the imaginary
part and then to call cv::merge() with a real-valued matrix to form a temporary complex array on which to run
cv::dft() (possibly in-place). This procedure will result in full-size, unpacked, complex matrix of the spectrum.

𝐼𝑚 𝑌!!
! !!,!

 𝑅𝑒 𝑌!!!!,! 𝐼𝑚 𝑌!!!!,! 𝑅𝑒 𝑌!!!!,! 𝐼𝑚 𝑌!!!!,! ⋯ 𝑅𝑒 𝑌
!!!!,

!!
! !!

 𝐼𝑚 𝑌
!!!!,

!!
! !!

 𝑅𝑒 𝑌
!!!!,

!!
!

𝑅𝑒 𝑌!!
! ,!

 𝑅𝑒 𝑌!!!!,! 𝐼𝑚 𝑌!!!!,! 𝑅𝑒 𝑌!!!!,! 𝐼𝑚 𝑌!!!!,! ⋯ 𝑅𝑒 𝑌
!!!!,

!!
! !!

 𝐼𝑚 𝑌
!!!!,

!!
! !!

 𝑅𝑒 𝑌
!!!!,

!!
!

It is worth taking a moment to look closely at the indices of these arrays. Certain values in the array are
guaranteed to be 0 (more accurately, certain values of 𝑓𝑘 are guaranteed to be real). It should also be noted
that the last row listed in the table will be present only if 𝑁! is even and that the last column will be present
only if 𝑁! is even. In the case of the two-dimensional array being treated as 𝑁! separate one-dimensional
arrays rather than a full two-dimensional transform (we’ll take a look at how to do this), all of the result
rows will be analogous to the single row listed for the output of the one-dimensional array.

The third argument, called flags, indicates exactly what operation is to be done. As usual, flags is
treated as a bit array, so you can combine any flags you need with Boolean OR. The transformation we
started with is known as a forward transform and is selected by default. The inverse transform16 is defined
in exactly the same way except for a change of sign in the exponential and a scale factor. To perform the
inverse transform without the scale factor, use the flag cv::DFT_INVERSE. The flag for the scale factor
is cv::DFT_SCALE, which results in all of the output being scaled by a factor of 𝑁!! (or 𝑁!𝑁!

!!
 for a

two-dimensional transform). This scaling is necessary if the sequential application of the forward transform
and the inverse transform is to bring us back to where we started. Because one often wants to combine
cv::DFT_INVERSE with cv::DFT_SCALE, there are several shorthand notations for this kind of
operation. In addition to just combining the two operations, you can use cv::DFT_INV_SCALE (or
cv::DFT_INVERSE_SCALE if you’re not into that brevity thing). The last flag you may want to have
handy is cv::DFT_ROWS, which allows you to tell cv::dft() to treat a two-dimensional array as a
collection of one-dimensional arrays that should each be transformed separately as if they were 𝑁! distinct
vectors of length 𝑁!. This can significantly reduce overhead when doing many transformations at a time.
By using cv::DFT_ROWS it is also possible to implement three-dimensional (and higher) DFT.

Though the default behavior of the forward transform is to produce results in CCS format (which results in
an output array exactly the same size as the input array), you can explicitly ask OpenCV to not do this with
the flag cv::DFT_COMPLEX_OUTPUT. The result will be the full complex array (with all of the zeros in
it). Conversely, when performing an inverse transformation on a complex array, the result is normally also
a complex array. If the source array had complex conjugate symmetry,17 you can ask OpenCV to produce a
purely real array (which will be smaller than the input array) by passing the cv::DFT_REAL_OUTPUT
flag.

In order to understand the last argument, nonzero_rows, we must digress for a moment to explain that
in general, DFT algorithms strongly prefer input vectors of some lengths over input vectors of other
lengths; similarly for arrays of some sizes over arrays of other sizes. In most DFT algorithms, the preferred
sizes are powers of 2 (i.e., 2! for some integer 𝑛). In the case of the algorithm used by OpenCV, the
preference is that the vector lengths, or array dimensions, be 2!3!5!, for some integers 𝑝, 𝑞, and 𝑟. Hence
the usual procedure is to create a somewhat larger array and then to copy your array into that somewhat
roomier zero-padded array. For convenience, there is a handy utility function,
cv::getOptimalDFTSize(), which takes the (integer) length of your vector and returns the first
equal or larger size that can be expressed in the form given (i.e., 2!3!5!). Despite the need for this
padding, it is possible to indicate to cv::dft() that you really do not care about the transform of those
rows that you had to add down below your actual data (or, if you are doing an inverse transform, which

16 With the inverse transform, the input is packed in the special format described previously. This makes sense because,
if we first called the forward DFT and then ran the inverse DFT on the results, we would expect to wind up with the
original data—that is, of course, if we remember to use the cv::DFT_SCALE flag!
17 This is not to say that it is in CCS format, only that it possesses the symmetry, as it would if (for example) it was the
result of a forward transform of a purely real array in the first place. Also, take note that you are telling OpenCV that
the input array has this symmetry—it will trust you. It does not actually check to verify that this symmetry is present.

rows in the result you do not care about). In either case, you can use nonzero_rows to indicate how
many rows contain meaningful data. This will provide some savings in computation time.

cv::idft(), the Inverse Discrete Fourier Transform

As we saw earlier, the function cv::dft() can be made to implement not only the discrete Fourier
transform, but also the inverse operation (with the provision of the correct flags argument). It is often
preferable, if only for code readability, to have a separate function that does this inverse operation by
default.

void cv::idft(
 cv::InputArray src, // Input array (real or complex)
 cv::OutputArray dst, // Output array
 int flags = 0, // for variations
 int nonzeroRows = 0 // number of rows to not ignore
);

Calling cv::idft() is exactly equivalent to calling cv::dft() with the cv::DFT_INVERSE flag
(in addition to whatever flags you supply to cv::idft(), of course.)

cv::mulSpectrums(), Spectrum Multiplication

In many applications that involve computing DFTs, one must also compute the per-element multiplication
of the two resulting spectra. Because such results are complex numbers, typically packed in their special
high-density CCS format, it would be tedious to unpack them and handle the multiplication via the “usual”
matrix operations. Fortunately, OpenCV provides the handy cv::mulSpectrums() routine, which
performs exactly this function for us:

void cv::mulSpectrums(
 cv::InputArray src1, // First input array (ccs or complex)
 cv::InputArray src2, // Second input array (ccs or complex)
 cv::OutputArray dst, // Result array
 int flags, // for row-by-row computation
 bool conj = false // true to conjugate src2
);

Note that the first two arguments are arrays, which may be either CCS packed single-channel spectra or
two-channel complex spectra (as you would get from calls to cv::dft()). The third argument is the
destination array, which will be of the same size and type as the source arrays. The final argument, conj,
tells cv::mulSpectrums() exactly what you want done. In particular, it may be set to false for
implementing the above pair multiplication or set to true if the element from the first array is to be
multiplied by the complex conjugate of the corresponding element of the second array18.

Convolution Using Discrete Fourier Transforms

It is possible to greatly increase the speed of a convolution by using DFT via the convolution theorem
[Titchmarsh26] that relates convolution in the spatial domain to multiplication in the Fourier domain
[Morse53; Bracewell65; Arfken85].19 To accomplish this, one first computes the Fourier transform of the
image and then the Fourier transform of the convolution filter. Once this is done, the convolution can be
performed in the transform space in linear time with respect to the number of pixels in the image. It is
worthwhile to look at the source code for computing such a convolution, as it will also provide us with
many good examples of using cv::dft(). The code is shown in Example 6-4, which is taken directly
from the OpenCV reference.

18 The primary usage of this argument is the implementation of a correlation in Fourier space. It turns out that the only
difference between convolution (which we will discuss in the next section), and correlation, is the conjugation of the
second array in the spectrum multiplication.
19 Recall that OpenCV’s DFT algorithm implements the FFT whenever the data size makes the FFT faster.

Example 6-4: Use of cv::dft() and cv::idft() to accelerate the computation of convolutions

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Fourier Transform\nUsage: ch6_ex6_5 <imagename>" << endl;
 return -1;
 }

 cv::Mat A = cv::imread(argv[1],0);

 if(A.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 cv::Size patchSize(100, 100);
 cv::Point topleft(A.cols/2, A.rows/2);
 cv::Rect roi(topleft.x, topleft.y, patchSize.width, patchSize.height);
 cv::Mat B = A(roi);

 int dft_M = cv::getOptimalDFTSize(A.rows+B.rows-1);
 int dft_N = cv::getOptimalDFTSize(A.cols+B.cols-1);

 cv::Mat dft_A = cv::Mat::zeros(dft_M, dft_N, cv::F32);
 cv::Mat dft_B = cv::Mat::zeros(dft_M, dft_N, cv::F32);

 cv::Mat dft_A_part = dft_A(Rect(0, 0, A.cols,A.rows));
 cv::Mat dft_B_part = dft_B(Rect(0, 0, B.cols,B.rows));

 A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
 B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);

 cv::dft(dft_A, dft_A, 0, A.rows);
 cv::dft(dft_B, dft_B, 0, B.rows);

 // set the last parameter to false to compute convolution instead of correlation
 cv::mulSpectrums(dft_A, dft_B, dft_A, 0, true);
 cv::idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1);

 cv::Mat corr = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
 cv::normalize(corr, corr, 0, 1, NORM_MINMAX, corr.type());
 cv::pow(corr, 3., corr);

 cv::B ^= cv::Scalar::all(255);

 cv::imshow("Image", A);
 cv::imshow("Correlation", corr);
 cv::waitKey();
 return 0;
}

In Example 6-4, we can see that the input arrays are first created and then initialized. Next, two new arrays
are created whose dimensions are optimal for the DFT algorithm. The original arrays are copied into these
new arrays and the transforms are then computed. Finally, the spectra are multiplied together and the
inverse transform is applied to the product. The transforms are the slowest20 part of this operation; an 𝑁-by-

20 By “slowest” we mean “asymptotically slowest”—in other words, that this portion of the algorithm takes the most
time for very large 𝑁. This is an important distinction. In practice, as we saw in the earlier section on convolutions, it is

 𝑁 image takes 𝑂(𝑁! log 𝑁) time and so the entire process is also completed in that time (assuming that
𝑁 > 𝑀 for an 𝑀-by-𝑀 convolution kernel). This time is much faster than 𝑂(𝑁!𝑀!), the non-DFT
convolution time required by the more naïve method.

cv::dct(), the Discrete Cosine Transform

For real-valued data, it is often sufficient to compute what is, in effect, only half of the discrete Fourier
transform. The discrete cosine transform (DCT) [Ahmed74; Jain77] is defined analogously to the full DFT
by the following formula:

𝑐! =
1
𝑁

!
!
𝑥! +

2
𝑁

!
!
𝑥! cos (𝑘 +

1
2
)
𝑛
𝑁
𝜋

!!!

!!!

Of course, there is a similar transform for higher dimensions. Note that, by convention, the normalization
factor is applied to both the cosine transform and its inverse (which is not the convention for the discrete
Fourier transform).

The basic ideas of the DFT apply also to the DCT, but now all the coefficients are real-valued. Astute
readers might object that the cosine transform is being applied to a vector that is not a manifestly even
function. However, with cv::dct(), the algorithm simply treats the vector as if it were extended to
negative indices in a mirrored manner.

The actual OpenCV call is:
void cv::dct(
 cv::InputArray src, // Input array (even size)
 cv::OutputArray dst, // Output array
 int flags = 0 // for row-by-row or inverse
);

The cv::dct() function expects arguments like those for cv::dft() except that, because the results
are real-valued, there is no need for any special packing of the result array (or of the input array in the case
of an inverse transform). Unlike cv::dft(), however, the input array must have an even number of
elements (you can pad the last element with a zero if necessary to achieve this). The flags argument can
be set to cv::DCT_INVERSE to generate the inverse transformation, and either may be combined with
cv::DCT_ROWS with the same effect as with cv::dft(). Because of the different normalization
convention, both the forward and inverse cosine transforms always contain their respective contribution to
the overall normalization of the transform; hence there is no analog to cv::DFT_SCALE for
cv::dct().

As with cv::dft(), there is a strong dependence of performance on array size. In fact, deep down, the
implementation of cv::dct() actually calls cv::dft() on an array exactly half the size of your input
array. For this reason, the optimal size of an array to pass to cv::dct() is exactly double the size of the
optimal array you would pass to cv::dft(). Putting everything together, the best way to get an optimal
size for cv::dct() is to compute:

size_t optimal_dct_size = 2 * cv::getOptimalDFTSize((N+1)/2);

where N is the actual size of your data that you want to transform.

cv::idct(), the Inverse Discrete Cosine Transform

Just as with cv::idft() and cv::dft(), cv::dct() can be asked to compute the inverse cosine
transform using the flags argument. As before, code readability is often improved with the use of a
separate function that does this inverse operation by default.

void cv::idct(
 cv::InputArray src, // Input array

not always optimal to pay the overhead for conversion to Fourier space. In general, when convolving with a small
kernel it will not be worth the trouble to make this transformation.

 cv::OutputArray dst, // Output array
 int flags = 0, // for row-by-row computation
);

Calling cv::idct() is exactly equivalent to calling cv::dct() with the cv::DCT_INVERSE flag
(in addition to any other flags you supply to cv::idct()).

Integral Images
OpenCV allows you to calculate an integral image easily with the appropriately named
cv::integral() function. An integral image [Viola04] is a data structure that allows rapid summing
of sub-regions21. Such summations are useful in many applications; a notable one is the computation of
Haar wavelets, which are used in face detection and similar algorithms.

There are three variations of the integral image that are supported by OpenCV. They are the sum, the
square-sum, and the tilted-sum.

A standard integral image sum has the form:

𝑠𝑢𝑚 𝑥, 𝑦 = 𝑖𝑚𝑎𝑔𝑒 𝑥′, 𝑦′
!!!!!!!!

The square-sum image is the sum of squares:

𝑠𝑢𝑚!"#$%& 𝑥, 𝑦 = 𝑖𝑚𝑎𝑔𝑒 𝑥′, 𝑦′ !

!!!!!!!!

The tilted-sum is like the sum except that it is for the image rotated by 45 degrees:

𝑠𝑢𝑚!"#!$% 𝑥, 𝑦 = 𝑖𝑚𝑎𝑔𝑒 𝑥′, 𝑦′
!"#(!!!!)!!!!!!

Using these integral images, one may calculate sums, means, and standard deviations over arbitrary upright
or “tilted” rectangular regions of the image. As a simple example, to sum over a simple rectangular region
described by the corner points (𝑥!, 𝑦!) and (𝑥!, 𝑦!), where 𝑥! > 𝑥! and 𝑦! > 𝑦!, we’d compute:

𝑖𝑚𝑎𝑔𝑒 𝑥, 𝑦
!!!!<!!!!!!<!!

= [𝑠𝑢𝑚 𝑥!, 𝑦! − 𝑠𝑢𝑚 𝑥!, 𝑦! − 𝑠𝑢𝑚 𝑥!, 𝑦! + 𝑠𝑢𝑚 𝑥!, 𝑦!]

In this way, it is possible to do fast blurring, approximate gradients, compute means and standard
deviations, and perform fast block correlations even for variable window sizes.

21 The citation above is the best for more details on the method, but it was actually introduced in computer vision in
2001 in a paper Robust Real-time Object Detection by the same authors. The method was previously used as early as
1984 in computer graphics, where the integral image is known as a Summed Area Table.

To make this all a little more clear, consider the 7-by-5 image shown in

Figure 6-8; the region is shown as a bar chart in which the height associated with the pixels represents the
brightness of those pixel values. The same information is shown in Figure 6-9, numerically on the left and
in integral form on the right. Integral images 𝐼! are computed by going across rows, proceeding row by row
using the previously computed integral image values together with the current raw image 𝐼 pixel value
𝐼(𝑥, 𝑦) to calculate the next integral image value as follows:

𝐼! 𝑥, 𝑦 = [𝐼 𝑥, 𝑦 − 𝐼 𝑥 − 1, 𝑦 − 𝐼 𝑥, 𝑦 − 1 + 𝐼 𝑥 − 1, 𝑦 − 1]

Figure 6-8: Simple 7-by-5 image shown as a bar chart with x, y, and height equal to pixel value

The last term is subtracted off because this value is double-counted when adding the second and third
terms. You can verify that this works by testing some values in Figure 6-9.

When using the integral image to compute a region, we can see by Figure 6-9 that, in order to compute the
central rectangular area bounded by the 20s in the original image, we’d calculate 398 – 9 – 10 + 1 =
 380. Thus, a rectangle of any size can be computed using four measurements (resulting in 𝑂(1)
computational complexity).

1 2 5 1 2 0 0 0 0 0 0

2 20 50 20 5 0 1 3 8 9 11

5 50 100 50 2 0 3 25 80 101 108

2 20 50 20 1 0 8 80 235 306 315

1 5 25 1 2 0 10 102 307 398 408

5 2 25 2 5 0 11 108 338 430 442

2 1 5 2 1 0 16 115 370 464 481

 0 18 118 378 474 492

Figure 6-9: The 7-by-5 image of

Figure 6-8 shown numerically at left (with the origin assumed to be the upper-left) and converted to an (8-
by-6) integral image at right

cv::integral(), for Standard Summation Integral

The different forms of integral are (somewhat confusingly) distinguished in the C++ API only by their
arguments. The form that computes the basic sum has only three.

void cv::integral(
 cv::InputArray image, // Input array
 cv::OutputArray sum, // Output sum results
 int sdepth = -1 // Depth for results (e.g., cv::F32)
);

The first and second are the input and result images. If the input image is of size 𝑊-by- 𝐻, then the output
image will be of size (𝑊 + 1)-by-(𝐻 + 1).22 The third argument sdepth specifies the desired depth of
the sum (destination) image. sdepth can be any of cv::S32, cv::F32, or cv::F64.23

22 This allows for the rows of zeros which are implied by the fact that summing zero terms results in a sum of zero.
23 It is worth noting that even though sum and tilted_sum allow 32-bit float as output for input images of 32-bit
float type, it is recommended to use 64-bit float, particularly for larger images. After all, a modern large image can be
many millions of pixels.

cv::integral(), for Squared Summation Integral

The squared sum is computed with the same function as the regular sum, except that the provision of an
additional output argument for the squared sum.

void cv::integral(
 cv::InputArray image, // Input array
 cv::OutputArray sum, // Output sum results
 cv::OutputArray sqsum, // Output sum of squares results
 int sdepth = -1 // Depth for results (e.g., cv::F32)
);

The cv::OutputArray argument sqsum indicates to cv::integral() that the square sum should
be computed in addition to the regular sum. As before, sdepth specifies the desired depth of the resulting
images. sdepth can be any of cv::S32, cv::F32, or cv::F64.

cv::integral(), for Standard Summation Integral

Similar to the squared sum, the tilted sum integral is essentially the same function, with an additional
argument for the additional result.

void cv::integral(
 cv::InputArray image, // Input array
 cv::OutputArray sum, // Output sum results
 cv::OutputArray sqsum, // Output sum of squares results
 cv::OutputArray tilted, // Output tilted sum results
 int sdepth = -1 // Depth for results (e.g., cv::F32)
);

The additional cv::OutputArray argument tilted is computed by this form of cv::integral(),
in addition to the other sums, thus all of the other arguments are the same.

The Canny Edge Detector
Though it is possible to expose edges in images with simple filters such as the Laplace filter, it is possible
to improve on this method substantially. The simple Laplace filter method was refined by J. Canny in 1986
into what is now commonly called the Canny edge detector [Canny86]. One of the differences between the
Canny algorithm and the simpler, Laplace-based algorithm in the previous chapter is that, in the Canny
algorithm, the first derivatives are computed in 𝑥 and 𝑦 and then combined into four directional derivatives.
The points where these directional derivatives are local maxima are then candidates for assembling into
edges.

Figure 6-10: Results of Canny edge detection for two different images when the high and low thresholds are
set to 50 and 10, respectively.

However, the most significant new dimension to the Canny algorithm is that it tries to assemble the
individual edge candidate pixels into contours.24 These contours are formed by applying a hysteresis
threshold to the pixels. This means that there are two thresholds, an upper and a lower. If a pixel has a
gradient larger than the upper threshold, then it is accepted as an edge pixel; if a pixel is below the lower
threshold, it is rejected. If the pixel’s gradient is between the thresholds, then it will be accepted only if it is
connected to a pixel that is above the high threshold. Canny recommended a ratio of high:low threshold

between 2:1 and 3:1.

Figure 6-10 and

Figure 6-11 show the results of applying cv::Canny() to a test pattern and a photograph using high:low
hysteresis threshold ratios of 5:1 and 3:2, respectively.

24 We’ll have much more to say about contours later. As you await those revelations, keep in mind that the
cv::Canny() routine does not actually return objects of a contour type; we will have to build those from the output
of cv::Canny() if we want them by using cv::findContours(). Everything you ever wanted to know about
contours will be covered in Chapter 8.

Figure 6-11: Results of Canny edge detection for two different images when the high and low thresholds are
set to 150 and 100, respectively

cv::Canny()

The OpenCV implementation of the Canny edge detection algorithm converts an input image into an “edge
image”.

void cv::Canny(
 cv::InputArray image, // Input single channel image
 cv::OutputArray edges, // Output edge image
 double threshold1, // “lower” threshold
 double threshold2, // “upper” threshold
 int apertureSize = 3, // Sobel aperture
 bool L2gradient = false // true for more accurate L2-norm
);

The cv::Canny() function expects an input image, which must be single-channel, and an output image,
which will also be grayscale (but which will actually be a Boolean image). The next two arguments are the
low and high thresholds. The next to last argument apertureSize is the aperture used by the Sobel
derivative operators that are called inside of the implementation of cv::Canny(). The final argument
L2gradient is used to select between computing the gradient “correctly” using the proper 𝐿!-norm, or if
a faster less accurate 𝐿!-norm based method should be used. If the argument L2gradient is set to true,
the more accurate form is used:

𝑔𝑟𝑎𝑑 𝑥, 𝑦 !! =
𝑑𝐼
𝑑𝑥

!

+
𝑑𝐼
𝑑𝑦

!

If L2gradient is set to false, the faster form is used:

𝑔𝑟𝑎𝑑 𝑥, 𝑦 !! =
𝑑𝐼
𝑑𝑥

+
𝑑𝐼
𝑑𝑦

Line Segment Detection
In a great number of practical image processing applications, it is useful to be able to find either the
dominant line segments, or all of the lines in an image. In particular, straight lines often provide valuable
clues about perspective and the structure of objects. OpenCV provides several different algorithms which
address this problem in different ways, each with their own distinct strengths and weaknesses.

The Hough transform25 is a method for finding lines, circles, or other simple forms in an image. The
original Hough transform was a line transform, which is a relatively fast way of searching a binary image
for straight lines. The transform can be further generalized to cases other than just simple lines (we will
return to this in the next section).

In addition to the Hough Line Transform, another more recent algorithm called LSD (for Line Segment
Detector) provides a fast technique which is, in general, more robust than the Hough Line Transform.

Hough Line Transform
The basic theory of the Hough line transform is that any point in a binary image could be part of some set
of possible lines. If we parameterize each line by, for example, a slope 𝑎 and an intercept 𝑏, then a point in
the original image is transformed to a locus of points in the (𝑎, 𝑏) plane corresponding to all of the lines

passing through that point (see

Figure 6-12). If we convert every nonzero pixel in the input image into such a set of points in the output
image and sum over all such contributions, then lines that appear in the input (i.e., (𝑥, 𝑦) plane) image will
appear as local maxima in the output (i.e., (𝑎, 𝑏) plane) image. Because we are summing the contributions
from each point, the (𝑎, 𝑏) plane is commonly called the accumulator plane.

25 Hough developed the transform for use in physics experiments [Hough59]; its use in vision was introduced by Duda
and Hart [Duda72].

Figure 6-12: The Hough line transform finds many lines in each image; some of the lines found are
expected, but others may not be.

It might occur to you that the slope-intercept form is not really the best way to represent all of the lines
passing through a point (because of the considerably different density of lines as a function of the slope,
and the related fact that the interval of possible slopes goes from –∞ to +∞). It is for this reason that the
actual parameterization of the transform image used in numerical computation is somewhat different. The
preferred parameterization represents each line as a point in polar coordinates (𝜌, 𝜃), with the implied line
being the line passing through the indicated point but perpendicular to the radial from the origin to that

point (see

Figure 6-13). The equation for such a line is:

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃

The OpenCV Hough transform algorithm does not make this computation explicit to the user. Instead, it
simply returns the local maxima in the (𝜌, 𝜃) plane. However, you will need to understand this process in
order to understand the arguments to the OpenCV Hough line transform function.

Figure 6-13: A point 𝑥!, 𝑦! in the image plane (a) implies many lines each parameterized by a different 𝜌
and 𝜃 (b); these lines in the 𝜌, 𝜃 plane, which taken together form a curve of characteristic shape (c).

OpenCV supports three different kinds of Hough line transform: the standard Hough transform (SHT)
[Duda72], the multiscale Hough transform (MHT), and the progressive probabilistic Hough transform
(PPHT).26 The SHT is the algorithm we just looked at. The MHT algorithm is a slight refinement that gives

26 The “probabilistic Hough transform” (PHT) was introduced by Kiryati, Eldar, and Bruckshtein in 1991 [Kiryati91];
the PPHT was introduced by Matas, Galambosy, and Kittler in 1999 [Matas99].

more accurate values for the matched lines. The PPHT is a variation of this algorithm that, among other
things, computes an extent for individual lines in addition to the orientation (as shown in

Figure 6-14). It is “probabilistic” because, rather than accumulating every possible point in the accumulator
plane, it accumulates only a fraction of them. The idea is that if the peak is going to be high enough
anyhow, then hitting it only a fraction of the time will be enough to find it; the result of this conjecture can
be a substantial reduction in computation time.

cv::HoughLines(), the Standard and Multi-scale Hough Transforms

The standard and multi-scale Hough transforms are both implemented in a single function:
cv::HoughLines() – with the distinction being in the use (or nonuse) of two optional parameters.

void cv::HoughLines(
 cv::InputArray image, // Input single channel image
 cv::OutputArray lines, // N-by-1 2-channel array
 double rho, // rho resolution (pixels)
 double theta, // theta resolution (radians)
 int threshold, // Unnormalized accumulator threshold
 double srn = 0, // rho refinement (for MHT)
 double stn = 0 // theta refinement (for MHT)
);

The first argument is the input image. It must be an 8-bit image, but the input is treated as binary
information (i.e., all nonzero pixels are considered to be equivalent). The second argument is the place
where the found lines will be stored. It will be an 𝑁-by-1 two-channel array of floating point type (the
number of columns 𝑁, will be the number of lines returned).27 The two channels will contain the 𝜌 and 𝜃
values for each found line.

The next two arguments, rho and theta, set the resolution desired for the lines (i.e., the resolution of the
accumulator plane). The units of rho are pixels and the units of theta are radians; thus, the accumulator
plane can be thought of as a two-dimensional histogram with cells of dimension rho pixels by theta
radians. The threshold value is the value in the accumulator plane that must be reached for the
algorithm to report a line. This last argument is a bit tricky in practice; it is not normalized, so you should
expect to scale it up with the image size for SHT. Remember that this argument is, in effect, indicating the
number of points (in the edge image) that must support the line for the line to be returned.

27 As usual, depending on the object type you pass to lines, this could be either a 1-by-𝑁 array with two channels, or
if you like, a std::vector<> with 𝑁 entries, with each of those entries being of type Vec2f.

Figure 6-14: The Canny edge detector (param1=50, param2=150) is run first, with the results shown in
gray, and the progressive probabilistic Hough transform (param1=50, param2=10) is run next, with the
results overlaid in white; you can see that the strong lines are generally picked up by the Hough transform

The parameters srn and stn are not used by the standard Hough transform; they control an extension of
the SHT algorithm called the multi-scale Hough transform (MHT). For MHT, these two parameters
indicate higher resolutions to which the parameters for the lines should be computed. MHT first computes
the locations of the lines to the accuracy given by the rho and theta parameters and then goes on to
refine those results by a factor of srn and stn, respectively (i.e., the final resolution in rho is rho
divided by srn and the final resolution in theta is theta divided by stn). Leaving these parameters
set to zero causes the SHT algorithm to be run.

cv::HoughLinesP(), the Progressive Probabilistic Hough Transform
void cv::HoughLinesP(
 cv::InputArray image, // Input single channel image
 cv::OutputArray lines, // N-by-1 4-channel array
 double rho, // rho resolution (pixels)
 double theta, // theta resolution (radians)
 int threshold, // Un-normalized accumulator threshold
 double minLineLength = 0, // required line length
 double maxLineGap = 0 // required line separation
);

The cv::HoughLinesP() function works very much like cv::HoughLines(), with two important
differences. The first is that the lines argument will be a four-channel array (or a vector of objects all of
type Vec4i). The four channels will be the x!, y! and x!, y! (in that order), the x, y locations of the
two endpoints of the found line segment. The second important difference is the meaning of the two
parameters. For the PPHT, the minLineLength and maxLineGap arguments set the minimum length
of a line segment that will be returned, and the separation between collinear segments required for the
algorithm not to join them into a single longer segment.

Line Segment Detection (LSD): cv::LineSegmentDetector
The LSD algorithm, originally developed by Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel
Morel, and Gregory Randall [vonGioi10][vonGioi12], is a linear time line segment finding algorithm. The
LSD algorithm works by first analyzing the image in a local way and determining what kind of line might
be supported by the pixels in these small patches. The patches are then agglomerated into larger hypotheses
which are then validated before being accepted.

Figure 6-15: Beginning with an image (a), the LSD algorithm first computes the local level line field (b).
Level lines associated with weak gradients are rejected (c). Line support regions are associated with
rectangles (d) whose width W is the approximate width of the line. In some cases, the widths are reduced to
produce lines with lower NFA scores (e). The final resulting lines are shown here on top of the original
image (f).

The local procedure is based on what is called a level line (or, collectively across the entire image, the level
line field Figure 6-15b). The level line field is computed by first computing the gradient of the image at
every point, the level lines are perpendicular to those local gradients.

Once the level line field has been computed, connected regions can be generated which contain level lines
of the same or similar orientation (i.e. within some tolerance 𝜏). This is a very powerful idea, because it
does not require the level lines to be associated with equally strong gradients28. In this way, aliasing effects
can be naturally accounted for, as even in an aliased line, the orientation of the local level lines will be
approximately parallel.

Collectively, the regions containing similar level lines are called line support regions. A rectangle is fit to
each such line support region; this rectangle represents a hypothesis for a line Figure 6-15d.

The LSD algorithm does not double count individual level lines. To avoid doing so, the level lines are first
sorted based on the magnitudes of their associated gradients, on the assumption that the strongest gradients
go with the most important lines. The line support regions are then constructed by building out from those
strong gradient points in descending order of their strength. Because an exact ordering is not necessary for
this process, the gradient magnitudes are instead binned into 𝑁!"#$ different bins in between zero and the
largest observed gradient. The advantage of this pseudo-ordering is that it takes 𝑂(𝑁) time, rather than
𝑂(𝑁 log𝑁) time (as would be expected of a full sorting).

Once the rectangle hypotheses have been formed, each can be tested; if a large number of the points
contained are consistent with the hypothesis, then a line segment has probably been found. If, on the other
hand, this bounding rectangle contains many points which are not part of the original line support region,
the proposed segment is probably not real.

The actual test is based on what is called the number of false alarms (NFA) for a particular rectangle. The
NFA is a function of the total number of pixels in the rectangle 𝑛 as well as the number of aligned pixels in
that rectangle 𝑘. Conceptually, the NFA is the number of rectangles we would expect to find in a random

28 It is however, common practice to exclude level lines whose associated gradient is below some threshold (as shown
in Figure 6-15c).

image with similar significance to the hypothesis rectangle (i.e. similar 𝑛 and 𝑘)29. Rectangle hypotheses
are rejected if their NFA is below some threshold: 𝑁𝐹𝐴!,! 𝑛, 𝑘 < 𝜖. Optionally, a refinement pass can
attempt to tune the rectangle hypotheses to minimize their NFA Figure 6-15e.

Using the cv::lineSegmentDetector Object

The LSD algorithm is implemented in OpenCV using the more contemporary style in which features of the
library are implemented as objects which hold their various parameters and thereafter provide an
algorithmic service by means of their member functions. The object which implements the LSD algorithm
is called cv::lineSegmentDetector. The following function creates one of these objects and returns
you a cv::Ptr<> to it:

cv::Ptr<LineSegmentDetector> cv::createLineSegmentDetector(
int refine = cv::LSD_REFINE_STD,
double scale = 0.8,
double sigma_scale = 0.6,
double quant = 2.0,
double ang_th = 22.5,
double log_eps = 0,
double density_th = 0.7,
int n_bins = 1024

);

You should first notice that every argument to this function has a default value. This is not an accident.
These values were determined by the designers of the LSD algorithm to be broadly optimal. As a result,
you are unlikely to want to change them. For experts (and the experimentally minded) however, we
describe them here.

The first argument is refine, which controls how the algorithm will attempt to refine (though not
necessarily reduce) its initial findings to the best final output. The three refinement options are to do
nothing (cv::LSD_REFINE_NONE), to attempt to break long arcs into multiple shorted but straighter
segments (cv::LSD_REFINE_STD), and to both do arc decomposition as well as automatic parameter
tuning, which should give better results at the expense of longer runtime (cv::LSD_REFINE_ADV).

The second argument is the scale argument. Any incoming image to the LSD algorithm is automatically
rescaled in both dimensions by this factor. The utility of this is that, just as with human perception, lines
which are apparent at large scales will often be invisible when the image is viewed at high resolution;
similarly, at reduced resolution, lines in fine details will be lost.

As part of the reduction produced by scale, the image is first convolved with a Gaussian kernel. The size
of this kernel is specified by sigma_scale; the size in pixels is actually the ratio of sigma_scale
divided by scale. The default sigma value of 0.8 along with the default value for sigma_scale of
0.6 are chosen to give good results even in images with substantial aliasing effects on lines, without
substantially altering the return from what would be expected at full scale.

The argument quant is a bound on the possible error in the gradient value due to quantization effects. It is
used to determine which gradients are too small to use for the computation of level lines. This value would
naturally be 1.0 (because the pixel values are integer values), but it has been found empirically that one
gets better results by doubling this to 2.0 (the default).

The ang_th argument sets the angular tolerance within which level lines can be considered to have the
same orientation as their bounding rectangle. The default value for this parameter is 22.5 (degrees).

The log_eps argument is only used with advanced refinement (cv::LSD_REFINE_ADV). In this case,
it is used to set the log of the cutoff on the number of false alarms (NFA). This is the (log of the) parameter

29 We are hand waving away some math here. The actual concept of significance is based on the probability of
generating a similar rectangle on a noise image. As such, “similar 𝑛 and 𝑘” means “those 𝑛 and 𝑘 which would give a
similar probability”, which in fact means that they give the same value for 𝐵 𝑛, 𝑘, 𝑝 =

𝑛
𝑗

!
!!! 𝑝! 1 − 𝑝 !!!. (Here

𝑝 = 𝜏/𝜋.)

𝜖 we encountered earlier. The default value for log (𝜖) is 0, which corresponds to one false alarm (per
image). You can set this to -1 or -2 to prune out some of the more marginal lines.

The next argument, density_th is straight forward; it is simply the fraction of aligned points in a
particular rectangle required for that rectangle to be considered. The default for this parameter is 0.7.

The final argument, n_bins, is the number of bins in the pseudo-ordering of the gradient modulus. The
default number of bins is 1024.

Once you have constructed your cv::lineSegmentDetector argument, you can use it to perform
detections on images:

void cv::LineSegmentDetector::detect(
const InputArray image,
cv::OutputArray lines,
cv::OutputArray width = cv::noArray(),
cv::OutputArray prec = cv::noArray(),
cv::OutputArray nfa = cv::noArray()

);

The input image should be a grayscale image (cv::U8C1). From this image, the resulting lines will be
computed and returned. The lines output array will be filled with cv::Vec4i objects, each of which
will contain the x and y location of the point at one end of the line followed by the x and y location of the
point at the other end.

The optional parameters width, prec, and nfa return the widths, precisions, and NFA’s of each of the
found lines. Each of these will be a single column array with the same number of rows as lines. The
width is the transverse width of the associated rectangle, and thus an approximation of the width of the
line. The precision (angular tolerance) is initially set to 𝜏/𝜋, and so starts out proportional to ang_th.
However, the LSD algorithm will attempt to reduce both the width and the precision if doing so will
improve the NFA.30 The final NFA’s associated with each line can be returned in the array nfa, but only
when advanced refinement (cv::LSD_REFINE_ADV) is used. The values in nfa are the negative log of
the NFA for that rectangle (e.g. +1 corresponds to an NFA of 0.1).

Once you have your lines, there is a convenient method for drawing them on top of your image:
void cv::LineSegmentDetector::drawSegments(
cv::InputOutputArray image,
cv::InputArray lines

);

Given an image, and the lines you computed with cv::LineSegmentDetector::detect(), an
image is produced by adding the lines on top of image (in red if image is in color).

If you should have two sets of lines, you can also compare them using the method
cv::LineSegmentDetector::compareSegments(), which has the following prototype:

int cv::LineSegmentDetector::compareSegments(
const cv::Size& size,
cv::InputArray lines1,
cv::InputArray lines2,
cv::InputOutputArray image = noArray()

);

In order to use the comparison method, you must provide size, which is the size of the original image you
found the two sets of lines in (they must come from an image of the same size). You can then provide two
sets of lines: lines1 and lines2, in the same format (array of cv::Vec4i) that you them from the
detector. If you provide an image array, the line segment detector will draw both sets of lines (one in blue,

30 If you think about a line without a smooth edge, reducing the width of the rectangle might well reduce the area of the
rectangle much faster than it reduces the number of aligned points. In a similar idea, reducing the precision will reduce
the number of aligned points, but may reduce the number of false alarms even faster.

the other in red) on your image. Even if you do not supply an image for visualization, the return value of
the segment comparison method tells you how many pixels were not matching in the two line images (i.e. a
return value of 0 corresponds to a perfect match).

The Circle Detection
Algorithms such as the Hough Transform can be generalized to other contexts as well. One particularly
useful example is circle detection which, as we will see, employs a very similar mechanism to the Hough
Line Transform to find circles in an image.

Hough Circle Transform
The Hough circle transform [Kimme75] (see

Figure 6-16) works in a manner roughly analogous to the Hough line transforms just described. The reason
it is only “roughly” is that—if one were to try doing the exactly analogous thing—the accumulator plane
would have to be replaced with an accumulator volume with three dimensions: one for 𝑥 and one for 𝑦 (the
location of the circle center), and another for the circle radius 𝑟. This would mean far greater memory
requirements and much slower speed. The implementation of the circle transform in OpenCV avoids this
problem by using a somewhat more tricky method called the Hough gradient method.

The Hough gradient method works as follows. First, the image is passed through an edge detection phase
(in this case, cv::Canny()). Next, for every nonzero point in the edge image, the local gradient is
considered (the gradient is computed by first computing the first-order Sobel x- and y-derivatives via
cv::Sobel()). Using this gradient, every point along the line indicated by this slope—from a specified
minimum to a specified maximum distance—is incremented in the accumulator. At the same time, the
location of every one of these nonzero pixels in the edge image is noted. The candidate centers are then
selected from those points in this (two-dimensional) accumulator that are both above some given threshold
and larger than all of their immediate neighbors. These candidate centers are sorted in descending order of
their accumulator values, so that the centers with the most supporting pixels appear first. Next, for each
center, all of the nonzero pixels (recall that this list was built earlier) are considered. These pixels are sorted
according to their distance from the center. Working out from the smallest distances to the maximum
radius, a single radius is selected that is best supported by the nonzero pixels. A center is kept if it has
sufficient support from the nonzero pixels in the edge image and if it is a sufficient distance from any
previously selected center.

This implementation enables the algorithm to run much faster and, perhaps more importantly, helps
overcome the problem of the otherwise sparse population of a three-dimensional accumulator, which would

lead to a lot of noise and render the results unstable. On the other hand, this algorithm has several
shortcomings that you should be aware of.

Figure 6-16: The Hough circle transform finds some of the circles in the test pattern and (correctly) finds
none in the photograph

First, the use of the Sobel derivatives to compute the local gradient—and the attendant assumption that this
can be considered equivalent to a local tangent—is not a numerically stable proposition. It might be true
“most of the time,” but you should expect this to generate some noise in the output.

Second, the entire set of nonzero pixels in the edge image is considered for every candidate center; hence,
if you make the accumulator threshold too low, the algorithm will take a long time to run. Third, because
only one circle is selected for every center, if there are concentric circles then you will get only one of
them.

Finally, because centers are considered in ascending order of their associated accumulator value and
because new centers are not kept if they are too close to previously accepted centers, there is a bias toward
keeping the larger circles when multiple circles are concentric or approximately concentric. (It is only a
“bias” because of the noise arising from the Sobel derivatives; in a smooth image at infinite resolution, it
would be a certainty.)

cv::HoughCircles(), the Hough Circle Transform

The Hough circle transform function cv::HoughCircles() has similar arguments to the line
transform.

void cv::HoughCircles(
 cv::InputArray image, // Input single channel image
 cv::OutputArray circles, // N-by-1 3-channel or vector of Vec3f
 int method, // Always cv::HOUGH_GRADIENT
 double dp, // Accumulator resolution (ratio)
 double minDist, // Required separation (between lines)
 double param1 = 100, // Upper Canny threshold
 double param2 = 100, // Un-normalized accumulator threshold
 int minRadius = 0, // Smallest radius to consider
 int maxRadius = 0 // Largest radius to consider
);

The input image is again an 8-bit image. One significant difference between cv::HoughCircles()
and cv::HoughLines() is that the latter requires a binary image. The cv::HoughCircles()

function will internally (automatically) call cv::Sobel()31 for you, so you can provide a more general
grayscale image.

The result array circles will be either a matrix-array or a vector, depending on what you pass to
cv::HoughCircles(). If a matrix is used, it will be a one-dimensional array of type cv::F32C3; the
three channels will be used to encode the location of the circle and its radius. If a vector is used, it must be
of type std::vector<Vec3f>. The method argument must always be set to
cv::HOUGH_GRADIENT.

The parameter dp is the resolution of the accumulator image used. This parameter allows us to create an
accumulator of a lower resolution than the input image. It makes sense to do this because there is no reason
to expect the circles that exist in the image to fall naturally into the same number of bins as the width or
height of the image itself. If dp is set to 1 then the resolutions will be the same; if set to a larger number
(e.g., 2), then the accumulator resolution will be smaller by that factor (in this case, half). The value of dp
cannot be less than 1.

The parameter minDist is the minimum distance that must exist between two circles in order for the
algorithm to consider them distinct circles.

For the (currently required) case of the method being set to cv::HOUGH_GRADIENT, the next two
arguments, param1 and param2, are the edge (Canny) threshold and the accumulator threshold,
respectively. You may recall that the Canny edge detector actually takes two different thresholds itself.
When cv::Canny() is called internally, the first (higher) threshold is set to the value of param1 passed
into cv::HoughCircles(), and the second (lower) threshold is set to exactly half that value. The
parameter param2 is the one used to threshold the accumulator and is exactly analogous to the
threshold argument of cv::HoughLines().

The final two parameters are the minimum and maximum radius of circles that can be found. This means
that these are the radii of circles for which the accumulator has a representation. Example 6-5 shows an
example program using cv::HoughCircles().

Example 6-5: Using cv::HoughCircles() to return a sequence of circles found in a grayscale image

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
using namespace std;

int main(int argc, char** argv) {

 if(argc != 2) {
 cout << "Hough Circle detect\nUsage: ch6_ex6_1 <imagename>\n" << endl;
 return -1;
 }

 cv::Mat src = cv::imread(argv[1], 1), image;
 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }
 cv::cvtColor(src, image, cv::BGR2GRAY);

 cv::GaussianBlur(image, image, Size(5,5), 0, 0);

 vector<cv::Vec3f> circles;
 cv::HoughCircles(image, circles, cv::HOUGH_GRADIENT, 2, image.cols/10);

 for(size_t i = 0; i < circles.size(); ++i) {
 cv::circle(

31 The function cv::Sobel(), not cv::Canny(), is called internally. The reason is that cv::HoughCircles()
needs to estimate the orientation of a gradient at each pixel, and this is difficult to do with binary edge map.

 src,
 cv::Point(cvRound(circles[i][0]), cvRound(circles[i][1])),
 cvRound(circles[i][2]),
 cv::Scalar(0,0,255),
 2,
 cv::AA
);
 }
 cv::imshow("Hough Circles", src);
 cv::waitKey(0);
 return 0;
}

It is worth reflecting momentarily on the fact that, no matter what tricks we employ, there is no getting
around the requirement that circles be described by three degrees of freedom (𝑥, 𝑦, and 𝑟), in contrast to
only two degrees of freedom (𝜌 and 𝜃) for lines. The result will invariably be that any circle-finding
algorithm requires more memory and computation time than the line-finding algorithms we looked at
previously. With this in mind, it’s a good idea to bound the radius parameter as tightly as circumstances
allow in order to keep these costs under control.32 The Hough transform was extended to arbitrary shapes
by Ballard in 1981 [Ballard81] basically by considering objects as collections of gradient edges.

Distance Transformation
The distance transform of an image is defined as a new image in which every output pixel is set to a value
equal to the distance to the nearest zero pixel in the input image—according to some specific distance
metric. It should be immediately obvious that the typical input to a distance transform should be some kind
of edge image. In most applications the input to the distance transform is an output of an edge detector such
as the Canny edge detector that has been inverted (so that the edges have value zero and the non-edges are
nonzero).

There are two methods available to compute the distance transform. The first method uses a mask that is
typically a 3-by-3 or 5-by-5 array. Each point in the array defines the “distance” to be associated with a
point in that particular position relative to the center of the mask. Larger distances are built up (and thus
approximated) as sequences of “moves” defined by the entries in the mask. This means that using a larger
mask will yield more accurate distances. When using this method, given a specific distance metric, the
appropriate mask is automatically selected from a set known to OpenCV. This is the “original” method
developed by Borgefors (1986) [Borgefors86]. The second method computes exact distances, and is due to
Felzenszwalb [Felzenszwalb04]. Both methods run in time linear in the total number of pixels, but the
exact algorithm is still slower.

32 Although cv::HoughCircles() catches centers of the circles quite well, it sometimes fails to find the correct
radius. Therefore, in an application where only a center must be found (or where some different technique can be used
to find the actual radius), the radius returned by cv::HoughCircles() can be ignored.

Figure 6-17: First a Canny edge detector was run with param1=100 and param2=200; then the
distance transform was run with the output scaled by a factor of 5 to increase visibility

The distance metric can be any of several different types, including the classic L2 (Cartesian) distance
metric.

cv::distanceTransform(), for Unlabeled Distance Transform

When calling the OpenCV distance transform function, the output image will be a 32-bit floating-point
image (i.e., cv::F32).

void cv::distanceTransform(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 int distanceType, // Distance metric to use
 int maskSize // Mask to use (3, 5, or see below)
);

cv::distanceTransform() has some additional parameters. The first is distanceType, which
indicates the distance metric to be used. Your choices here are cv::DIST_C, cv::DIST_L1 and
cv::DIST_L2. These methods compute the distance to the nearest zero based on integer steps along a
grid. The difference between the methods is that cv::DIST_C is the distance when the steps are counted
on a 4-connected grid (i.e., diagonal moves are not allowed), and cv::DIST_L1 gives the number of
steps on an 8-connected grid (i.e., diagonal moves are allowed). When distanceType is set to
cv::DIST_L2, cv::distanceTransform() attempts to compute the exact Euclidian distances.

After the distance type is the maskSize, which may be 3, 5, or cv::DIST_MASK_PRECISE. In the
case of 3 or 5, this argument indicates that a 3-by-3 or 5-by-5 mask should be used with the Borgefors
method. If you are using cv::DIST_L1 or cv::DIST_C, you can always use a 3-by-3 mask and you
will get exact results. If you are using cv::DIST_L2, the Borgefors method is always approximate, and
using the larger 5-by-5 mask will result in a better approximation to the 𝐿! distance, at the cost of a slightly
slower computation. Alternatively, cv::DIST_MASK_PRECISE can be used to indicate the
Felzenszwalb algorithm (when used with cv::DIST_L2).

cv::distanceTransform(), for Labeled Distance Transform

It is also possible to ask the distance transform algorithm to not only calculate the distances, but to also
report which object that minimum distance is to. These “objects” are called connected components. We will
have a lot more to say about connected components in Chapter 8, but for now, you can think of them as
exactly what they sound like; they are structures made of continuously connected groups of zeros in the
source image.

void cv::distanceTransform(
 cv::InputArray src, // Input Image
 cv::OutputArray dst, // Result image
 cv::OutputArray labels, // Output connected componet id’s
 int distanceType, // Distance metric to use
 int maskSize, // Mask to use (3, 5, or see below)
 int labelType = cv::DIST_LABEL_CCOMP // How to label
);

If a labels array is provided, then as a result of running cv::distanceTransform() it will be of
the same size as dst. In this case, the computation of connected components will be done automatically,
and the label associated with the nearest33 such component will be placed in each pixel of labels.

If you are wondering how to differentiate labels, consider that for any pixel that is zero in
src, then the corresponding distance must also be zero. In addition to this, the label for
that pixel must be the label of the connected component it is part of. As a result, if you
want to know what label was given to any particular zero pixel, you need only look up
that pixel in labels.

The argument labelType can be set either to cv::DIST_LABEL_CCOMP or
cv::DIST_LABEL_PIXEL. In the former case, the function automatically finds connected components
of zero pixels in the input image and gives each one a unique label. In the latter case, all zero pixels are
given distinct labels.

Histogram Equalization
Cameras and image sensors must usually deal not only with the contrast in a scene but also with the image
sensors’ exposure to the resulting light in that scene. In a standard camera, the shutter and lens aperture
settings juggle between exposing the sensors to too much or too little light. Often the range of contrasts is
too much for the sensors to deal with; hence, there is a trade-off between capturing the dark areas (e.g.,
shadows), which requires a longer exposure time, and the bright areas, which require shorter exposure to
avoid saturating “whiteouts.”

Figure 6-18: The image on the left has poor contrast, as is confirmed by the histogram of its intensity values
on the right

After the picture has been taken, there’s nothing we can do about what the sensor recorded; however, we
can still take what’s there and try to expand the dynamic range of the image to increase its contrast. The

33 The output “labels” array will basically be the discrete Voronoi diagram.

most commonly used technique for this is histogram equalization.34 35 In

Figure 6-18 we can see that the image on the left is poor because there’s not much variation of the range of
values. This is evident from the histogram of its intensity values on the right. Because we are dealing with
an 8-bit image, its intensity values can range from 0 to 255, but the histogram shows that the actual
intensity values are all clustered near the middle of the available range. Histogram equalization is a method
for stretching this range out.

Figure 6-19: Result of cumulative distribution function (left) computed for a Gaussian distribution (right)

The underlying math behind histogram equalization involves mapping one distribution (the given
histogram of intensity values) to another distribution (a wider and, ideally, uniform distribution of intensity
values). That is, we want to spread out the y-values of the original distribution as evenly as possible in the
new distribution. It turns out that there is a good answer to the problem of spreading out distribution values:
the remapping function should be the cumulative distribution function. An example of the cumulative
density function is shown in Error! Reference source not found. for the somewhat idealized case of a
distribution that was originally pure Gaussian. However, cumulative density can be applied to any
distribution; it is just the running sum of the original distribution from its negative to its positive bounds.

34 If you are wondering why histogram equalization is not in the chapter on histograms (Chapter 7), the reason is that
histogram equalization makes no explicit use of any histogram data types. Although histograms are used internally, the
function (from the user’s perspective) requires no histograms at all.
35 Histogram equalization is an old mathematical technique; its use in image processing is described in various
textbooks [Jain86; Russ02; Acharya05], conference papers [Schwarz78], and even in biological vision [Laughlin81].

Figure 6-20: Using the cumulative density function to equalize a Gaussian distribution

We may use the cumulative distribution function to remap the original distribution to an equally spread

distribution (see

Figure 6-20) simply by looking up each y-value in the original distribution and seeing where it should go in
the equalized distribution.

For continuous distributions the result will be an exact equalization, but for digitized/discrete distributions
the results may be far from uniform.

Applying this equalization process to

Figure 6-18 yields the equalized intensity distribution histogram and resulting image in Error! Reference
source not found..

Figure 6-21: Histogram equalized results: the spectrum has been spread out

cv::equalizeHist(), Contrast Equalization

OpenCV wraps this whole process up in one neat function.
void cv::equalizeHist(
 const cv::InputArray src, // Input Image
 cv::OutputArray dst // Result image
);

In cv::equalizeHist(), the source src must be a single-channel, 8-bit image. The destination image
dst will be the same. For color images you will have to separate the channels and process them one by
one.

Segmentation
The topic of image segmentation is a large one, which we have touched on in several places already, and
will return to in more sophisticated contexts later in the book as well. Here, we will focus on several
methods of the library that specifically implement techniques that are either segmentation methods in
themselves, or primitives that will be used later by more sophisticated tactics. It should be noted that at this
time, there is no general “magic” solution for image segmentation, and it remains a very active area in

computer vision research. Despite this, many good techniques have been developed that are reliable at least
in some specific domain, and in practice can yield very good results.

Flood Fill
Flood fill [Heckbert00; Shaw04; Vandevenne04] is an extremely useful function that is often used to mark
or isolate portions of an image for further processing or analysis. Flood fill can also be used to derive, from
an input image, masks that can be used for subsequent routines to speed or restrict processing to only those
pixels indicated by the mask. The function cv::floodFill() itself takes an optional mask that can be
further used to control where filling is done (e.g., when doing multiple fills of the same image).

In OpenCV, flood fill is a more general version of the sort of fill functionality that you probably already
associate with typical computer painting programs. For both, a seed point is selected from an image and
then all similar neighboring points are colored with a uniform color. The difference is that the neighboring
pixels need not all be identical in color.36 The result of a flood fill operation will always be a single
contiguous region. The cv::floodFill() function will color a neighboring pixel either if it is within a
specified range (loDiff to upDiff) of the current pixel or if (depending on the settings of flags) the
neighboring pixel is within a specified range of the original seed value.

The cv::floodFill() function will color a neighboring pixel if it is within a specified range (loDiff
to upDiff) of either the current pixel or if (depending on the settings of flags) the neighboring pixel is
within a specified range of the original seed value. Flood filling can also be constrained by an optional
mask argument. There are two different prototypes for the cv::floodFill() routine, one that accepts
an explicit mask parameter, and one that does not.

int cv::floodFill(
 cv::InputOutputArray image, // Input image, 1 or 3 channels
 cv::Point seed, // Start point for flood
 cv::Scalar newVal, // Value for painted pixels
 cv::Rect* rect, // Output bounds painted domain
 cv::Scalar lowDiff = cv::Scalar(),// Maximum down color distance
 cv::Scalar highDiff = cv::Scalar(),// Maximum up color distance
 int flags // Local vs. global, and mask-only
);

int cv::floodFill(
 cv::InputOutputArray image, // Input w-by-h image, 1 or 3 channels
 cv::InputOutputArray mask, // Singl-channel 8-bit, w+2-by-h+2
 cv::Point seed, // Start point for flood
 cv::Scalar newVal, // Value for painted pixels
 cv::Rect* rect, // Output bounds painted domain
 cv::Scalar lowDiff = cv::Scalar(),// Maximum down color distance
 cv::Scalar highDiff = cv::Scalar(),// Maximum up color distance
 int flags // Local vs. global, and mask-only
);

The parameter image is the input image, which can be 8-bit or a floating-point type, and must either have
one or three channels. In general, this image array will be modified by cv::floodFill(). The flood
fill process begins at the location seed. The seed will be set to value newVal, as will all subsequent
pixels colored by the algorithm. A pixel will be colorized if its intensity is not less than a colorized
neighbor’s intensity minus loDiff and not greater than the colorized neighbor’s intensity plus upDiff.
If the flags argument includes cv::FLOODFILL_FIXED_RANGE, then a pixel will be compared to the
original seed point rather than to its neighbors. Generally, the flags argument controls the connectivity of
the fill, what the fill is relative to, whether we are filling only a mask, and what values are used to fill the

36 Users of contemporary painting and drawing programs should note that most of them now employ a filling algorithm
very much like cv::floodFill().

mask. Our first example of flood fill is shown in

Figure 6-22.

The argument mask indicates a mask that can function both as input to cv::floodFill() (in which
case, it constrains the regions that can be filled) and as output from cv::floodFill() (in which case, it
will indicate the regions that actually were filled). mask must be a single-channel 8-bit image whose size is
exactly two pixels larger in width and height than the source image37.

In the sense that mask is an input to cv::floodFill(), the algorithm will not flood across nonzero
pixels in the mask. As a result you should zero it before use if you don’t want masking to block the
flooding operation.

When the mask is present, it will also be used as an output. When the algorithm runs, every “filled” pixel
will be set to a nonzero value in the mask. You have the option of adding the value
cv::FLOODFILL_MASK_ONLY to flags (using the usual Boolean OR operator). In this case, the input
image will not be modified at all. Instead, only mask will be modified.

37 This is done to make processing easier and faster for the internal algorithm. Note that since the mask is larger than
the original image, pixel (𝑥, 𝑦) in image corresponds to pixel (𝑥 + 1, 𝑦 + 1) in mask. This is, however, an excellent
opportunity to use cv::Mat::getSubRect().

Figure 6-22: Results of flood fill (top image is filled with gray, bottom image with white) from the dark
circle located just off center in both images; in this case, the upDiff and loDiff parameters were each
set to 7.0

If the flood-fill mask is used, then the mask pixels corresponding to the repainted image
pixels are set to 1. Don’t be confused if you fill the mask and see nothing but black upon
display; the filled values are there, but the mask image needs to be rescaled if you want to
display it in a way you can actually see it on the screen. After all, the difference between
0 and 1 is pretty small on an intensity scale of 0 to 255.

Two possible values for flags have already been mentioned: cv::FLOODFILL_FIXED_RANGE and
cv::FLOODFILL_MASK_ONLY. In addition to these, you can also add the numerical values 4 or 8.38 In
this case, you are specifying whether the flood fill algorithm should consider the pixel array to be four-
connected or eight-connected. In the former case, a four-connected array is one in which pixels are only
connected to their four nearest neighbors (left, right, above, and below). In the latter eight-connected case,
pixels are considered to be connected to diagonally neighboring pixels as well.

It’s time to clarify the flags argument, which is tricky because it has three parts. The low 8 bits (0–7) can
be set to 4 or 8. This controls the connectivity considered by the filling algorithm. If set to 4, only
horizontal and vertical neighbors to the current pixel are considered in the filling process; if set to 8, flood
fill will additionally include diagonal neighbors. The high 8 bits (16–23) can be set with the flags
cv::FLOODFILL_FIXED_RANGE (fill relative to the seed point pixel value; otherwise, fill relative to
the neighbor’s value), and/or cv::FLOODFILL_MASK_ONLY (fill the mask location instead of the source
image location). Obviously, you must supply an appropriate mask if cv::FLOODFILL_MASK_ONLY is
set. The middle bits (8–15) of flags can be set to the value with which you want the mask to be filled. If
the middle bits of flags are 0s, the mask will be filled with 1s. All these flags may be linked together via
OR. For example, if you want an 8-way connectivity fill, filling only a fixed range, filling the mask not the
image, and filling using a value of 47, then the parameter to pass in would be:

flags = 8
 | cv::FLOODFILL_MASK_ONLY
 | cv::FLOODFILL_FIXED_RANGE
 | (47<<8);

38 The text here reads “add,” but recall that flags is really a bit-field argument. Conveniently, however, 4 and 8 are
single bits. So you can use “add” or “OR,” whichever you prefer (e.g., flags = 8 |
cv::FLOODFILL_MASK_ONLY).

Figure 6-22 shows flood fill in action on a sample image. Using cv::FLOODFILL_FIXED_RANGE with
a wide range resulted in most of the image being filled (starting at the center). We should note that
newVal, loDiff, and upDiff are prototyped as type cv::Scalar so they can be set for three
channels at once. For example, loDiff = cv::Scalar(20,30,40) will set lo_iff thresholds of
20 for red, 30 for green, and 40 for blue.

Figure 6-23: Results of flood fill (top image is filled with gray, bottom image with white) from the dark
circle located just off center in both images; in this case, flood fill was done with a fixed range and with a
high and low difference of 25.0

Watershed Algorithm
In many practical contexts, we would like to segment an image but do not have the benefit of a separate
background image. One technique that is often effective in this context is the watershed algorithm
[Meyer92]. This algorithm converts lines in an image into “mountains” and uniform regions into “valleys”
that can be used to help segment objects. The watershed algorithm first takes the gradient of the intensity
image; this has the effect of forming valleys or basins (the low points) where there is no texture and of
forming mountains or ranges (high ridges corresponding to edges) where there are dominant lines in the
image. It then successively floods basins starting from user-specified (or algorithm-specified) points until
these regions meet. Regions that merge across the marks so generated are segmented as belonging together
as the image “fills up.” In this way, the basins connected to the marker point become “owned” by that
marker. We then segment the image into the corresponding marked regions.

More specifically, the watershed algorithm allows a user (or another algorithm!) to mark parts of an object
or background that are known to be part of the object or background. The user or algorithm can draw a
simple line that effectively tells the watershed algorithm to “group points like these together.” The
watershed algorithm then segments the image by allowing marked regions to “own” the edge-defined

valleys in the gradient image that are connected with the segments.

Figure 6-24 clarifies this process.

The function specification of the watershed segmentation algorithm is:
void cv::watershed(
 cv::InputArray image, // Input 8-bit, 3 channels
 cv::InputOutputArray markers // I/O 32-bit float, single channel
);

Here, image must be an 8-bit, 3-channel (color) image and markers is a single-channel integer
(cv::S32) image of the same (𝑥, 𝑦) dimensions. On input, the value of markers is 0 except where the
user (or an algorithm) has indicated by using positive numbers that some regions belong together. For

example, in the left panel of

Figure 6-24, the orange might have been marked with a 1, the lemon with a 2, the lime with 3, the upper
background with 4, and so on.

After the algorithm has run, all of the former zero value pixels in markers will be set to one of the given
markers (i.e., all of the pixels of the orange are hoped to come out with a 1 on them, the pixels of the lemon
with a 2, etc.), except the boundary pixels between regions, which will be set to -1.

Figure 6-24 (right) shows an example of such a segmentation.

Figure 6-24: Watershed algorithm: after a user has marked objects that belong together (left), the algorithm
then merges the marked area into segments (right)

One small word of warning is in order here. It is tempting to think that all regions will be
separated by pixels with marker value -1 at their boundaries. This is not actually the
case, however. Notably, if two neighboring pixels were input originally with nonzero but
distinct values, they will remain touching and not separated by a -1 pixel on output.

Grabcuts
The Grabcuts algorithm, introduced by Rother, Kolmogorov, and Blake [Rother04], extends the Graphcuts
algorithm [Boykov01] for use in user-directed image segmentation. The grabcuts algorithm is capable of
obtaining excellent segmentations, often with no more than a bounding rectangle around the foreground
object to be segmented.

This Graphcuts algorithm uses user-labeled foreground and background regions to establish distribution
histograms for those two classes of image regions. It then combines the assertion that unlabeled foreground
or background should conform to similar distributions, with the idea that these regions should tend to be
smooth and connected (i.e., a bunch of blobs). These assertions are combined into an energy functional
which gives a low energy (i.e., cost) to solutions which conform to these assertions and a high energy to
solutions which violate them. The final result is obtained by minimizing this energy function39.

The Grabcuts algorithm extends Graphcuts in several important ways. The first is that it replaces the
histogram models with a Gaussian mixture model, enabling the algorithm to work on color images. In
addition, it solves the energy functional minimization problem in an iterative manner, which provides better
overall results, and allows much greater flexibility in the labeling provided by the user. Notably, this latter
point allows even one-sided labelings which identify either background or foreground pixels (while
Graphcuts required both).

The implementation in OpenCV allows the caller to either just provide a rectangle around the object to be
segmented, in which case the pixels “under” the rectangle’s boundary are taken to be background and no
foreground is specified. Alternatively, the caller can specify an overall mask in which pixels are
categorized as being either definitely foreground, definitely background, probably foreground, and
probably background. In this case, the definite regions will be used to classify the other regions, with the
latter being classified into the definite categories by the algorithm.

The OpenCV implementation of Grabcuts is implemented by the cv::Grabcuts() function:
void cv::grabCut(
 cv::InputArray img,
 cv::InputOutputArray mask,
 cv::Rect rect,

39 This minimization is a non-trivial problem. In practice it is performed using a technique called Mincut, which is how
both the Graphcuts and Grabcuts algorithms get their respective names.

 cv::InputOutputArray bgdModel,
 cv::InputOutputArray fgdModel,
 int iterCount,
 int mode = cv::GC_EVAL
);

Given an input image img, the resulting labeling will be computed by cv::grabCut() and placed in the
output array mask. This mask array can also be used as an input. This is determined by the mode
variable. If mode contains the flag cv::GC_INIT_WITH_MASK40, then the values currently in mask
when it is called will be used to initialize the labeling of the image. The mask is expected to be a single
channel image of cv::U8 type in which every value is one of the following enumerations:

The argument rect is only used when you are not using mask initialization. When the mode contains the
flag cv::GC_INIT_WITH_RECT, the entire region outside of the provided rectangle is taken to be
“definitely background”, while the rest is automatically set to “probably foreground”.

The next two arrays are essentially temporary buffers. When you first call cv::grabCut(), they can be
empty arrays. However, if for some reason you should run the Grabcuts algorithm for some number of
iterations and then want to restart the algorithm for more iterations (possibly after allowing a user to
provide additional “definite” pixels to guide the algorithm) you will need to pass in the same (unmodified)
buffers that were filled by the previous run (in addition to using the mask you got back from the previous
run as input for the next run).

The Grabcuts algorithm essentially runs the Graphcuts algorithm some number of times. Between each
such run, the mixture models are recomputed. The itercount argument determines how many such
iterations will be applied. Typical values for itercount are 10 or 12, though the number required may
depend on the size and nature of the image being processed.

Mean-Shift Segmentation
Mean-shift segmentation finds the peaks of color distributions over space [Comaniciu99]. It is related to the
“Mean Shift Algorithm,” which we will discuss in Chapter 10, when we discuss tracking and motion. The
main difference between the two is that the former looks at spatial distributions of color (and is thus related
to our current topic of segmentation), while the latter tracks those distributions through time in successive

40 Actually, you do not need to explicitly provide the cv::GC_INIT_WITH_MASK flag, because mask initialization is
the default behavior. So as long as you do not provide the cv::GC_INIT_WITH_RECT flag, you will get mask
initialization. However, this is not implemented as a default argument, but rather a default in the procedural logic of
the function, and is therefore not guaranteed to remain unchanged in future releases of the library. It is best to either
use the cv::GC_INIT_WITH_MASK flag or the cv::GC_INIT_WITH_RECT flag explicitly, both for future
proofing, and for general clarity.

Enumerated value Numerical value Meaning

cv::GC_BGD 0 Background (definitely)

cv::GC_FGD 1 Foreground (definitely)

cv::PR_GC_BGD 2 Probably Background

cv::PR_GC_FGD 3 Probably Foreground

frames. The function that does this segmentation based on the color distribution peaks is
cv::pyrMeanShiftFiltering().

Given a set of multidimensional data points whose dimensions are (𝑥, 𝑦, 𝐼!"#$, 𝐼!"##$, 𝐼!"#), mean shift can
find the highest density “clumps” of data in this space by scanning a window over the space. Notice,
however, that the spatial variables (𝑥, 𝑦) can have very different ranges from the color magnitude ranges
(𝐼!"#$, 𝐼!"##$, 𝐼!"#). Therefore, mean shift needs to allow for different window radii in different dimensions.
In this case we should have one radius for the spatial variables (spatialRadius) and one radius for the
color magnitudes (colorRadius). As mean-shift windows move, all the points traversed by the windows
that converge at a peak in the data become connected to or “owned” by that peak. This ownership, radiating
out from the densest peaks, forms the segmentation of the image. The segmentation is actually done over a
scale pyramid (cv::pyrUp(), cv::pyrDown()), as described in Chapter 5, so that color clusters at a
high level in the pyramid (shrunken image) have their boundaries refined at lower pyramid levels in the
pyramid.

The output of the mean-shift segmentation algorithm is a new image that has been “posterized,” meaning
that the fine texture is removed and the gradients in color are mostly flattened. Such images can then be
further segmented using whatever algorithm is appropriate for your needs (e.g., cv::Canny() combined
with cv::findContours(), if in fact a contour segmentation is what you ultimately want).

The function prototype for cv::pyrMeanShiftFiltering() looks like this:
void cv::pyrMeanShiftFiltering(
 cv::InputArray src, // 8-bit, 3-channel image
 cv::OutputArray dst, // 8-bit, 3-channels, same size as src
 cv::double sp, // spatial window radius
 cv::double sr, // color window radius
 int maxLevel = 1, // max pyramid level
 cv::TermCriteria termcrit = TermCriteria(
 cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
 5,
 1
)
);

In cv::pyrMeanShiftFiltering() we have an input image src and an output image dst. Both
must be 8-bit, three-channel color images of the same width and height. The spatialRadius and
colorRadius define how the mean-shift algorithm averages color and space together to form a
segmentation. For a 640-by-480 color image, it works well to set spatialRadius equal to 2 and
colorRadius equal to 40. The next parameter of this algorithm is max_level, which describes how
many levels of scale pyramid you want used for segmentation. A max_level of 2 or 3 works well for a
640-by-480 color image.

The final parameter is cv::TermCriteria, which we have seen in some previous algorithms.
cv::TermCriteria is used for all iterative algorithms in OpenCV. The mean-shift segmentation
function comes with good defaults if you just want to leave this parameter blank. Otherwise,
cv::TermCriteria has the following constructor:

cv::TermCriteria(
 int type; // cv::TermCriteria::MAX_ITER, cv::TermCriteria::EPS, or both
 int max_iter, // maximum iterations when cv::TermCriteria::MAX_ITER is used
 double epsilon // convergence value when cv::TermCriteria::EPS is used
);

Typically, we just use the cv::TermCriteria() constructor inline to generate the
cv::TermCriteria object that we need. The first argument is either
cv::TermCriteria::MAX_ITER or cv::TermCriteria::EPS, which tells the algorithm that
we want to terminate either after some fixed number of iterations or when the convergence metric reaches
some small value, respectively. The next two arguments set the values at which these criteria should
terminate the algorithm. The reason we have both options is because we can set the type to

cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS to stop when either limit is
reached. The parameter max_iter limits the number of iterations if
cv::TermCriteria::MAX_ITER is set, whereas epsilon sets the error limit if
cv::TermCriteria::EPS is set. Of course the exact meaning of epsilon depends on the algorithm.

Figure 6-25 shows an example of mean-shift segmentation using the following values:
cv::pyrMeanShiftFiltering(src, dst, 20, 40, 2);

Figure 6-25: Mean-shift segmentation over scale using cv::pyrMeanShiftFiltering() with
parameters max_level=2, spatialRadius=20, and colorRadius=40; similar areas now have
similar values and so can be treated as super pixels, which can speed up subsequent processing
significantly

Image Repair
Images are often corrupted by noise. There may be dust or water spots on the lens, scratches on the older
images, or parts of an image that were vandalized. Inpainting [Telea04] is a method for removing such
damage by taking the color and texture at the border of the damaged area and propagating and mixing it

inside the damaged area. See

Figure 6-26 for an application that involves the removal of writing from an image.

Inpainting
Inpainting works provided the damaged area is not too “thick” and enough of the original texture and color
remains around the boundaries of the damage.

Figure 6-27 shows what happens when the damaged area is too large.

Figure 6-26: Inpainting: an image damaged by overwritten text (left) is restored by inpainting (right)

The prototype for cv::inpaint() is
void cv::inpaint(
 cv::InputArray src, // Input Image: 8-bit, 1 or 3 channels
 cv::InputArray inpaintMask, // 8-bit, 1 channel. Inpaint non-zeros
 cv::OutputArray dst, // Result image
 double inpaintRadius, // Range to consider around pixel
 int flags // Select NS or TELEA
);

Figure 6-27: Inpainting cannot magically restore textures that are completely removed: the navel of the
orange has been completely blotted out (left); inpainting fills it back in with mostly orangelike texture
(right)

Here src is an 8-bit single-channel grayscale image or a three-channel color image to be repaired, and
inpaintMask is an 8-bit single-channel image of the same size as src in which the damaged areas (e.g.,

the writing seen in the left panel of

Figure 6-26) have been marked by nonzero pixels; all other pixels are set to 0 in inpaintMask. The
output image will be written to dst, which must have the same size and number of channels as src. The
inpaintRadius is the area around each inpainted pixel that will be factored into the resulting output

color of that pixel. As in

Figure 6-27, interior pixels within a thick enough inpainted region may take their color entirely from other
inpainted pixels closer to the boundaries. Almost always, one uses a small radius such as 3 because too
large a radius will result in a noticeable blur. Finally, the flags parameter allows you to experiment with
two different methods of inpainting: cv::INPAINT_NS (Navier-Stokes method), and
cv::INPAINT_TELEA (A. Telea’s method).

Denoising
Another important problem that arises is the problem of noise in the image. In many applications, the most
important source of noise is low-light conditions. In low light, the gain on the imager must be increased
and the result is that noise is also amplified. The character of this kind of noise is typically random isolated
pixels which appear either too bright or too dark, but discoloration is also possible in color images.

The denoising algorithm implemented in OpenCV is called Fast Non-local Means Denoising (FNLMD),
and is based on work by Antoni Buades, Bartomeu Coll, and Jean-Michel Morel [Buades05]. While simple
denoising algorithms essentially rely on averaging individual pixels with their neighbors, the central
concept of FNLMD is to look for similar pixels elsewhere in the image, and average the among those. In
this context a pixel is considered to be a similar pixel not because it is similar in color or intensity, but
because it is similar in environment. The key logic here is that many images contain repetitive structures,
and so even if your pixel is corrupted by noise, there will be many other pixels similar to it which are not.

The identification of similar pixels proceeds based on a window 𝐵(𝑝, 𝑠), centered on pixel 𝑝 and of size 𝑠.
Given such a window around the point we wish to update, we can compare that window with an analogous
window around some other pixel 𝑞. We define the square-distance between 𝐵(𝑝, 𝑠) and 𝐵(𝑞, 𝑠) to be:

𝑑! 𝐵 𝑝, 𝑠 ,𝐵 𝑞, 𝑠 =
1
3𝑠!

𝐼! 𝑝 + 𝑗 − 𝐼! 𝑞 + 𝑗
!

!"#(!,!)

!

!!!

,

where 𝑐 is the color index, 𝐼!(𝑝) is the intensity of the image in channel 𝑐 at point 𝑝, and the summation
over 𝑗 is over the elements of the patch. From this square-distance, a weight can be assigned to every other
pixel relative to the pixel currently being updated. This weight is given by the formula:

𝑤 𝑝, 𝑞 = 𝑒!
!"# !!!!!!,!.!

!! .

In this weight function, 𝜎 is the standard deviation expected in the noise (in intensity units), and ℎ is a
generic filtering parameter which determines how quickly patches will become irrelevant as their square-
distance grows from the patch we are updating. In general, increasing the value of ℎ will increase the noise
removed but at the expense of some of the image detail. Decreasing the value if ℎ will preserve detail, but
also more of the noise.

Typically, there is a decreasing return in considering patches very far away (in pixel units) from the pixel
being updated, as the number of such patches increases quadratically with the distance allowed. For this
reason, a search window is defined and only patches in the search window contribute to the update. The
update of the current pixel is then given by a simple weighted average of all other pixels in the search
window using the given exponentially decaying weight function41. It is for this reason that the algorithm is
called “non-local”; the patches which contribute to the repair of a given pixel are only loosely correlated to
the location of the pixel being recomputed.

The OpenCV implementation of FNLMD has several different functions in it, each of which applies to
slightly different circumstances.

Basic FNLMD with cv::fastNlMeansDenoising()
void cv::fastNlMeansDenoising(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 float h = 3, // Weight decay parameter
 int templateWindowSize = 7, // Size of patches used in comparison
 int searchWindowSize = 21 // Max distance to patch considered
);

The first of these four functions, cv::fastNlMeansDenoising(), implements the algorithm as
described exactly. The result array dst is computed from the input array src using a patch area of
templateWindowSize, a decay parameter of h, and patches inside of searchWindowSize distance
are considered. The image may be 1, 2, or 3 channel, but must be or type cv::U8.42 Table 6-2 lists some
values, provided from the authors of the algorithm, which can be used to help set the decay parameter, ℎ.

Table 6-2: Recommended values for cv::fastNlMeansDenoising() for grayscale images.

Noise: 𝝈 Patch Size: 𝒔 Search Window Decay Parameter: 𝒉

0 < 𝜎 ≤ 15 3 x 3 21 x 21 0.40 ∙ 𝜎

15 < 𝜎 ≤ 30 5 x 5 21 x 21 0.40 ∙ 𝜎

30 < 𝜎 ≤ 45 7 x 7 35 x 35 0.35 ∙ 𝜎

45 < 𝜎 ≤ 75 9 x 9 35 x 35 0.35 ∙ 𝜎

41 There is one subtlety here, which is that the weight of the contribution of the pixel p in its own recalculation would
be 𝑤 𝑝, 𝑝 = 𝑒! = 1. In general this results in too high a weight relative to other similar pixels and very little change
occurs in the value at 𝑝. For this reason, the weight at p is normally chosen to be the maximum of the weights of the
pixels within the area 𝐵(𝑝, 𝑠).
42 Note that though this image allows for multiple channels, it is not the best way to handle color images. For color
images, it is better to use cv::fastNlMeansDenoisingColored().

75 < 𝜎 ≤ 100 11 x 11 35 x 35 0.30 ∙ 𝜎

FNLMD on Color Images with cv::fastNlMeansDenoisingColored()
void cv::fastNlMeansDenoisingColored(
 cv::InputArray src, // Input image
 cv::OutputArray dst, // Output image
 float h = 3, // Weight decay parameter
 float hColor = 3, // Weight decay parameter for color
 int templateWindowSize = 7, // Size of patches used in comparison
 int searchWindowSize = 21 // Max distance to patch considered
);

The second variation of the FNLMD algorithm is used for color images. It accepts only images of type
cv::U8C3. Though it would be possible in principle to apply the algorithm more or less directly to an
RGB image, in practice it is better to convert the image to a different color space for the computation. The
function cv::fastNlMeansDenoisingColored() first converts the image to the LAB color space,
then applies the FNLMD algorithm, then converts the result back to RGB. The primary advantage of
doing this is that in color there are, in effect, three decay parameters. In an RGB representation however it
would be unlikely that you would want to set any of them to different values. In the LAB space however, it
is natural to assign a different decay parameter to the luminosity component than to the color components.
The function cv::fastNlMeansDenoisingColored() allows you to do just that. The parameter h
is used for the luminosity decay parameter, while the new parameter hColor is used for the color
channels. In general the value of hColor will be quite a bit smaller than h. In most contexts, 10 is a
suitable value.

Table 6-3: Recommended values for cv::fastNlMeansDenoising() for color images.

Noise: 𝝈 Patch Size: 𝒔 Search Window Decay Parameter: 𝒉

0 < 𝜎 ≤ 25 3 x 3 21 x 21 0.55 ∙ 𝜎

25 < 𝜎 ≤ 55 5 x 5 35 x 35 0.40 ∙ 𝜎

55 < 𝜎 ≤ 100 7 x 7 35 x 35 0.35 ∙ 𝜎

FNLMD on Video with cv::fastNlMeansDenoisingMulti() and
cv::fastNlMeansDenoisingColoredMulti()

void cv::fastNlMeansDenoisingMulti(
 cv::InputArrayOfArrays srcImgs, // Sequence of several images
 cv::OutputArray dst, // Output image
 int imgToDenoiseIndex, // Index of image from srcImgs to denoise
 int temporalWindowSize, // Number of images to use in denoising (odd)
 float h = 3, // Weight decay parameter
 int templateWindowSize = 7, // Size of patches used for comparison
 int searchWindowSize = 21 // Maximum distance to patch considered
);
void cv::fastNlMeansDenoisingColoredMulti(
 cv::InputArrayOfArrays srcImgs, // Sequence of several images
 cv::OutputArray dst, // Output image
 int imgToDenoiseIndex, // Index of image from srcImgs to denoise
 int temporalWindowSize, // Number of images to use in denoising (odd)
 float h = 3, // Weight decay parameter
 float hColor = 3, // Weight decay parameter for color dimensions
 int templateWindowSize = 7, // Size of patches used for comparison
 int searchWindowSize = 21 // Maximum distance to patch considered
);

The third and fourth variations are used for sequential images, such as those which might be captured from
video. In the case of sequential images, it is natural to imagine that other frames than just the current one
might contain useful information for denoising a pixel. In most applications the noise will not be constant
between images, while the signal will likely be similar or even identical. The functions
cv::fastNlMeansDenoisingMulti() and
cv::fastNlMeansDenoisingColoredMulti() expect an array of images, srcImgs, rather than
a single image. Additionally, they must be told which image in the sequence is actually to be denoised; this
is done with the parameter imgToDenoiseIndex. Finally, a temporal window must be provided which
indicates the number of images from the sequence to be used in the denoising. This parameter must be odd,
and the implied window is always centered on imgToDenoiseIndex. (Thus, if you were to set
imgToDenoiseIndex to 4, and temporalWindowSize to 5, the images which would be used in the
denoising would be 2, 3, 4, 5, and 6.)

Summary
In this chapter, we learned a variety of methods that can be used to transform images. These
transformations included scale transformations, as well as affine and perspective transformations. We
learned how to remap vector functions from Cartesian to polar representations as well as how to perform
discrete Fourier transformations. Finally, we learned how to perform edge transformations, including both
low-level routines to extract edges on a pixel-by-pixel level, as well as higher-level routines which would
integrate those edges into contours.

What all of these functions have in common is their conversion of one image into another through a global
operation on the entire image.

Exercises
1. In this exercise, we learn to experiment with parameters by setting good lowThresh and

highThresh values in cv::Canny(). Load an image with suitably interesting line structures.
We’ll use three different high:low threshold settings of 1.5:1, 2.75:1, and 4:1.
a) Report what you see with a high setting of less than 50.

b) Report what you see with high settings between 50 and 100.

c) Report what you see with high settings between 100 and 150.

d) Report what you see with high settings between 150 and 200.

e) Report what you see with high settings between 200 and 250.

f) Summarize your results and explain what happens as best you can.
2. Load an image containing clear lines and circles such as a side view of a bicycle. Use the Hough line

and Hough circle calls and see how they respond to your image.
3. Can you think of a way to use the Hough transform to identify any kind of shape with a distinct

perimeter? Explain how.
4. Get a product or print out a 1D barcode (having a series of parallel vertical lines in a row) from the

web. Use the Line Segment Detector algorithm to create a 1D barcode detector.
5. Look at the diagrams of how the log-polar function transforms a square into a wavy line.

a) Draw the log-polar results if the log-polar center point were sitting on one of the corners of the
square.

b) What would a circle look like in a log-polar transform if the center point were inside the circle and
close to the edge?

c) Draw what the transform would look like if the center point were sitting just outside of the circle.

6. A log-polar transform takes shapes of different rotations and sizes into a space where these correspond
to shifts in the 𝜃-axis and log (𝑟) axis. The Fourier transform is translation invariant. How can we use
these facts to force shapes of different sizes and rotations to automatically give equivalent
representations in the log-polar domain?

7. Draw separate pictures of large, small, large rotated, and small rotated squares. Take the log-polar
transform of these each separately. Code up a two-dimensional shifter that takes the center point in the
resulting log-polar domain and shifts the shapes to be as identical as possible.

8. Take the Fourier transform of a small Gaussian distribution and the Fourier transform of an image.
Multiply them and take the inverse Fourier transform of the results. What have you achieved? As the
filters get bigger, you will find that working in the Fourier space is much faster than in the normal
space.

9. Load an interesting image, convert it to grayscale, and then take an integral image of it. Now find
vertical and horizontal edges in the image by using the properties of an integral image.
Use long skinny rectangles; subtract and add them in place.

10. A good computer vision programming interview question is to code up an integral image. Let’s do
that:

• Write a routine that takes an image and returns an integral image.
• Write a routine that takes an image and returns a 45 degree rotated integral image.

• Can you write an integral image for 22.5 degree rotated images? If so, how?
11. Explain how you could use the distance transform to automatically align a known shape with a test

shape when the scale is known and held fixed. How would this be done over multiple scales?
12. Practice histogram equalization on images that you load in, and report the results.
13. Load an image, take a perspective transform, and then rotate it. Can this transform be done in one step?

In the 2005 DARPA Grand Challenge robot race, the authors on the Stanford team used a kind of color
clustering algorithm to separate road from non-road. The colors were sampled from a laser-defined
trapezoid of road patch in front of the car. Other colors in the scene that were close in color to this
patch—and whose connected component connected to the original trapezoid—were labeled as road.
See Figure 6-28, where the watershed algorithm was used to segment the road after using a trapezoid
mark inside the road and an inverted “U” mark outside the road. Suppose we could automatically
generate these marks. What could go wrong with this method of segmenting the road?
Hint: Look carefully at Figure 6-28 and then consider that we are trying to extend the road trapezoid by using
things that look like what’s in the trapezoid.

Figure 6-28: Using the watershed algorithm to identify a road: markers are put in the original image (left),
and the algorithm yields the segmented road (right)

14. In-painting works pretty well for the repair of writing over textured regions. What would happen if the
writing obscured a real object edge in a picture? Try it.

15. How well does inpainting work at fixing up writing drawn over a mean-shift segmented image? Try it
for various settings and show the results.

16. Take an image and add noise to it in the following ways:

• Randomly add uniform noise of successively higher ranges. Run the function
cv::fastNlMeansDenoisingColored() on it. Report the results.

• Do the same, but use Gaussian noise instead.

• Do the same, but add shot noise. Change the value of every “𝑁!!” pixel. For example, every
1000th pixel, 500th, 100th, 50th, and 10th.

7
Histograms and Matching

In the course of analyzing images, objects, and video information, we frequently want to represent what we
are looking at as a histogram. Histograms can be used to represent such diverse things as the color
distribution of an object, an edge gradient template of an object [Freeman95], and the distribution of
probabilities representing our current hypothesis about an object’s location. Figure 7-1 shows the use of
histograms for rapid gesture recognition. Edge gradients were collected from “up,” “right,” “left,” “stop”
and “OK” hand gestures. A webcam was then set up to watch a person who used these gestures to control
web videos. In each frame, color interest regions were detected from the incoming video; then edge
gradient directions were computed around these interest regions, and these directions were collected into
orientation bins within a histogram. The histograms were then matched against the gesture models to
recognize the gesture. The vertical bars in Figure 7-1 show the match levels of the different gestures. The
gray horizontal line represents the threshold for acceptance of the “winning” vertical bar corresponding to a
gesture model.

Histograms find uses in many computer vision applications. Histograms are used to detect scene transitions
in videos by marking when the edge and color statistics markedly change from frame to frame. They are
used to identify interest points in images by assigning each interest point a “tag” consisting of histograms
of nearby features. Histograms of edges, colors, corners, and so on form a general feature type that is
passed to classifiers for object recognition. Sequences of color or edge histograms are used to identify
whether videos have been copied on the web, where scenes change in a movie, in image retrieval from
massive databases, and the list goes on. Histograms are one of the classic tools of computer vision.

Histograms are simply collected counts of the underlying data organized into a set of predefined bins. They
can be populated by counts of features computed from the data, such as gradient magnitudes and directions,
color, or just about any other characteristic. In any case, they are used to obtain a statistical picture of the
underlying distribution of data. The histogram usually has fewer dimensions than the source data. Figure 7-
2 depicts a typical situation. The figure shows a two-dimensional distribution of points (upper-left); we
impose a grid (upper-right) and count the data points in each grid cell, yielding a one-dimensional
histogram (lower-right). Because the raw data points can represent just about anything, the histogram is a
handy way of representing whatever it is that you have learned from your image.

Figure 7-1: Local histograms of gradient orientations are used to find the hand and its gesture; here the
“winning” gesture (longest vertical bar) is a correct recognition of “L” (move left)

Histograms that represent continuous distributions do so by quantizing the points into each grid cell.1 This
is where problems can arise, as shown in Figure 7-3. If the grid is too wide (upper-left), then the output is
too coarse and we lose the structure of the distribution. If the grid is too narrow (upper-right), then there is
not enough averaging to represent the distribution accurately and we get small, “spiky” cells.

Figure 7-2: Typical histogram example: starting with a cloud of points (upper-left), a counting grid is
imposed (upper-right) that yields a one-dimensional histogram of point counts (lower-right)

OpenCV has a data type for representing histograms. The histogram data structure is capable of
representing histograms in one or many dimensions, and it contains all the data necessary to track bins of
both uniform and non-uniform sizes. And, as you might expect, it comes equipped with a variety of useful
functions that allow us to easily perform common operations on our histograms.

1 This is also true of histograms representing information that falls naturally into discrete groups when the histogram
uses fewer bins than the natural description would suggest or require. An example of this is representing 8-bit intensity
values in a 10-bin histogram: each bin would then combine the points associated with approximately 25 different
intensities, (erroneously) treating them all as equivalent.

Figure 7-3: A histogram’s accuracy depends on its grid size: a grid that is too wide yields too coarse
quantization in the histogram values (left); a grid that is too small yields “spiky” and singleton results from
too small samples (right).

Histogram Representation in OpenCV
Histograms are represented in OpenCV as arrays, using the same array structures as are used for other
data.2 This means that you can use cv::Mat, if you have a one- or two-dimensional array (with the array
being 𝑁-by-1 or 1-by-𝑁 in the former case), vector<> types, or sparse matrices. Of course, the
interpretation of the array is different, even if the underlying code is identical. For an n-dimensional array,
the interpretation is an n-dimensional array of histogram bins, in which the value for any particular element
represents the number of counts in that particular bin. This distinction is important in the sense that bins,
being just indices into an array of some dimensionality, are simple integers. The identity of the bin, i.e.,
what it represents, is separate from the bin’s integer index. Whenever you are working with histograms,
you will find yourself needing to handle the conversion between measured values and histogram bin
indices. Many OpenCV functions will do this task, or some part of this task, for you.

When working with higher-dimensional histograms, often most of the entries in that histogram are zero.
The cv::SparseMat class is very good for representing such cases. In fact, histograms are the primary
reason for the existence of the cv::SparseMat class. Most functions that work on dense arrays will also
work on sparse arrays, but we will touch on a few important exceptions in the next section.

cv::calcHist(), Creating a Histogram from Data

The function cv::calcHist() computes the bin values for a histogram from one or more arrays of
data. Recall that the dimensions of the histogram are not related to the dimensionality of the input arrays, or
their size, but rather to their number. Each dimension of the histogram represents counting (and binning)
across all pixels values in one of the channels of one of the input arrays. You are not required to use every
channel in every image, however; you can pick whatever subset you would like of the channels of the
arrays passed to cv::calcHist().

2 This is a substantial change in the C++ API relative to the C API. In the latter, there is a specific structure called a
CvHistogram for representing histogram data. The elimination of this structure in the C++ interface creates a much
simpler more unified library.

void cv::calcHist(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in ‘images’ array
 const int* channels, // C-style list of int’s identifying channels
 cv::InputArray mask, // pixels in ‘images’ count iff ‘mask’ nonzero
 cv::OutputArray hist, // output histogram array
 int dims, // histogram dimensionality < cv::MAX_DIMS (32)
 const int* histSize, // C-style array, histogram sizes in each dim
 const float** ranges, // C-style array of ‘dims’ pairs set bin sizes
 bool uniform = true, // true for uniform binning
 bool accumulate = false // if true, add to ‘hist’ rather than replacing
);

void cv::calcHist(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in ‘images’ array
 const int* channels, // C-style list of int’s identifying channels
 cv::InputArray mask, // pixels in ‘images’ count iff ‘mask’ nonzero
 cv::SparseMat& hist, // output histogram (sparse) array
 int dims, // histogram dimensionality < cv::MAX_DIMS (32)
 const int* histSize, // C-style array, histogram sizes in each dim
 const float** ranges, // C-style array of ‘dims’ pairs set bin sizes
 bool uniform = true, // true for uniform binning
 bool accumulate = false // if true, add to ‘hist’ rather than replacing
);

There are three forms of the cv::calcHist() function, two of which use “old-fashioned” C-style
arrays, while the third uses the now preferred STL vector template type arguments. The primary distinction
between the first two is whether the computed results are to be organized into a dense or a sparse array.

The first arguments are the array data, with images being either a pointer to a C-style list of arrays or the
more modern cv::InputArrayOfArrays. In either case, the role of images is to contain one or
more arrays from which the histogram will be constructed. All of these arrays must be the same size, but
each can have any number of channels. These arrays may be 8-bit integers or of 32-bit floating point type,
but the type of all of the arrays must match. In the case of the C-style array input, the additional argument
narrays indicates the number of arrays pointed to by images. The argument channels indicates
which channels to consider when creating the histogram. Once again, channels may be a C-style array or
an STL vector of integers. These integers identify which channels from the input arrays are to be used for
the output histogram. The channels are numbered sequentially, so the first 𝑁!

! channels in images[0]
are numbered zero through 𝑁!

! − 1, while the next 𝑁!
! channels in images[1] are numbered 𝑁!

!
through 𝑁!

! + 𝑁!
! − 1, and so on. Of course, the number of entries in channels is equal to the number

of dimensions of the histogram you are creating.

The array mask is an optional mask which, if present, will be used to select which pixels of the arrays in
images will contribute to the histogram. mask must be an 8-bit array and the same size as the input
arrays. Any pixel in images corresponding to a nonzero pixel in mask will be counted. If you do not wish
to use a mask, you can pass cv::noArray() instead.

The argument hist is the output histogram you would like to fill. The argument dims is the number of
dimensions that histogram will have. Recall that dims is also the number of entries in the channels
array, indicating how each dimension is to be computed. The argument histSize may be a C-style array
or an STL style vector of integers and indicates the number of bins that should be allocated in each
dimension of hist. The number of entries in histSize must also be equal to dims.

Figure 7-4: The ranges argument may be either a C-style array of arrays, or a single STL style vector of
floating point numbers. In the case of a uniform histogram, only the minimum and maximum bin edges must
be supplied. For a non-uniform histogram, the lower edge of each bin in each dimension must be supplied,
as well as the maximum value.

While histSize indicates the number of bins in each dimension, ranges indicates the values that
correspond to each bin in each dimension. ranges also can be a C-style array or an STL vector. In the C-
style array case, each entry ranges[i] is another array and the length of ranges must be equal to dims.
In this case, entry ranges[i] indicates the bin structure of the corresponding 𝑖!! dimension. How
ranges[i] is interpreted depends on the value of the argument uniform. If uniform is true, then
all of the bins in the 𝑖!! dimension are of the same size, and all that is needed is to specify the (inclusive)
lower bound of the lowest bin and the (non-inclusive) upper bound of the highest bin (e.g., ranges[i] =
{0,100.0}). If, on the other hand, uniform is false, then if there are 𝑁! bins in the 𝑖!! dimension,
there must be 𝑁! + 1 entries in ranges[i]. Thus, the 𝑗!! entry will be interpreted as the (inclusive) lower
bound of bin j and the (non-inclusive) upper bound of bin (𝑗 − 1). In the case in which ranges is of type
vector<float>, the entries having the same meaning as the C-style array values, but here they are
“flattened” into one single-level array (i.e., for the uniform case, there are just two entries in ranges per
histogram dimension and they are in the order of the dimensions, while for the non-uniform case, there will
be 𝑁! + 1 entries per dimension, and they are again all in the order of the dimensions).

The final argument accumulate is used to tell OpenCV that the array hist is not to be deleted,
reallocated, or otherwise set to zero before adding new counts from the arrays in images.

Basic Manipulations with Histograms
Even though the data structure for the histogram is the same as the data structure used for matrices and
image arrays, this particular interpretation of the data structure invites new operations on these arrays that
accomplish tasks specific to histograms. In this section, we will touch on some simple operations that are
specific to histograms, as well as review how some important histogram manipulations can be performed
with array operations we have already discussed in prior chapters.

Histogram Normalization

When dealing with a histogram, we first need to accumulate information into its various bins. Once we
have done this, however, it is often desirable to work with the histogram in normalized form, so that
individual bins will represent the fraction of the total number of events assigned to the entire histogram. In
the C++ API, this can be accomplished simply using the array algebra operators and operations:

cv::Mat normalized = my_hist / my_hist.Sum();

or:
my_hist /= my_hist.Sum()

Histogram Threshold

It is also common that you wish to threshold a histogram, and (for example) throw away all bins whose
entries contain less than some minimum number of counts. Like normalization, this operation can be
accomplished without the use of any particular special histogram routine. Instead, you can use the standard
array threshold function:

cv::threshold(
 my_hist, // input histogram
 my_thresholded_hist, // result with all values<threshold set to zero
 threshold, // cutoff value
 0, // value does not matter in this case
 cv::THRESH_TOZERO // threshold type
);

Finding the Most Populated Bin

In some cases, you would like to find the bins that are above some threshold, and throw away the others. In
other cases, you would like to simply find the one bin that has the most weight in it. This is particularly
common when the histogram is being used to represent a probability distribution. In this case, the function
cv::minMaxLoc() will give you what you want.

In the case of a two-dimensional array, you can use the cv::InputArray form of
cv::minMaxLoc():

void cv::minMaxLoc(
 cv::InputArray src, // Input array
 double* minVal, // fill with minimum value (if not NULL)
 double* maxVal = 0, // fill with maximum value (if not NULL)
 cv::Point* minLoc = 0, // fill with minimum location (if not NULL)
 cv::Point* maxLoc = 0, // fill with maximum location (if not NULL)
 cv::InputArray mask = cv::noArray() // ignore points for which mask is zero
);

The arguments minVal and maxVal are pointers to locations you provide for cv::minMaxLoc() to
store the minimum and maximum values that have been identified. Similarly, minLoc and maxLoc are
pointers to variables (of type cv::Point, in this case) where the actual locations of the minimum and
maximum can be stored. If you do not want one or more of these four results to be computed, you can
simply pass NULL for that (pointer) variable and that information will not be computed:

double max_val;
cv::Point max_pt;

cv::minMaxLoc(
 my_hist, // input histogram
 NULL, // don’t care about the min value
 &max_val, // place to put the maximum value
 NULL, // don’t care about the location of the min value
 &max_pt // place to put the maximum value location (a cv::Point)
);

In this example, though, the histogram would need to be two-dimensional.3 If your histogram is of sparse
array type, then there is no problem. Recall that there is an alternate form of cv::minMaxLoc()for
sparse arrays:

void cv::minMaxLoc(
 const cv::SparseMat& src, // Input (sparse) array
 double* minVal, // fill minimum value (if not NULL)
 double* maxVal = 0, // fill maximum value (if not NULL)
 cv::Point* minLoc = 0, // fill minimum location (if not NULL)
 cv::Point* maxLoc = 0, // fill maximum location (if not NULL)
 cv::InputArray mask = cv::noArray() // ignore points if mask is zero
);

It should be noted that this form of cv::minMaxLoc() actually differs from the previous form in several
ways. In addition to taking a sparse matrix as the source, it also takes type int* for the minIdx and
maxIdx variables instead of cv::Point* for the analogous minLoc and maxLoc variables. This is
because the sparse matrix form of cv::minMaxLoc() supports arrays of any dimensionality. Therefore,
you need to allocate the location variables yourself and make sure that they have the correct amount of
space available for the n-dimensional index associated with a point in the (n-dimensional) sparse
histogram:

double maxval;
int* max_pt = new int[my_hist.dims()];

cv::minMaxLoc(
 my_hist, // input sparse histogram
 NULL, // don’t care about the min value
 &max_val, // place to put the maximum value
 NULL, // don’t care about the location of the min value
 &max_pt // place to put the maximum value location (a cv::Point)
);

It turns out that if you want to find the minimum or maximum of an n-dimensional array that is not sparse,
you need to use another function. This function works essentially the same as cv::minMaxLoc(), and
has a similar name, but is not quite the same creature:

void cv::minMaxIdx(
 cv::InputArray src,
 double* minVal, // will put minimum value (if not NULL)
 double* maxVal = 0, // will put maximum value (if not NULL)
 int* minLoc = 0, // will put min location indices (if not NULL)
 int* maxLoc = 0, // will put max location indices (if not NULL)
 cv::InputArray mask = cv::noArray() // ignore points if mask is zero
);

In this case, the arguments have the same meanings as the corresponding arguments in the two forms of
cv::minMaxLoc(). You must allocate minIdx and maxIdx to C-style arrays of the correct size
yourself (as before). One word of warning is in order here, however. If the input array src is one
dimensional, you should allocate minIdx and maxIdx to be of dimension two. The reason for this is that
cv::minMaxIdx() treats a one-dimensional array as a two-dimensional array internally. As a result, if
the maximum is found at position 𝑘, the return value for maxIdx will be (k,0) for a single-column
matrix and (0,k) for a single-row matrix.

Comparing Two Histograms
Yet another indispensable tool for working with histograms, first introduced by Swain and Ballard
[Swain91] and further generalized by Schiele and Crowley [Schiele96], is the ability to compare two

3 If you have a one-dimensional vector<> array, you can just use cv::Mat(vec).reshape(1) to make it a
𝑁-by-1 array in two dimensions.

histograms in terms of some specific criteria for similarity. The function cv::compareHist() does just
this.

double cv::compareHist(
 cv::InputArray H1, // First histogram to be compared
 cv::InputArray H2, // Second histogram to be compared
 int method // method for the comparison (see options below)
);

double cv::compareHist(
 const cv::SparseMat& H1, // First histogram to be compared
 const cv::SparseMat& H2, // Second histogram to be compared
 int method // method for the comparison (see options below)
);

The first two arguments are the histograms to be compared, which should be of the same size. The third
argument is where we select our desired distance metric. The four available options are as follows.

Correlation (method = cv::COMP_CORREL)

The first comparison is based on statistical correlation; it implements the Pearson Correlation Coefficient,
and is typically appropriate when 𝐻! and 𝐻! can be interpreted as probability distributions.

𝑑!"##$% 𝐻!,𝐻! =
𝐻!!(𝑖) ∙ 𝐻!!(𝑖)!

𝐻!!
!(𝑖) ∙ 𝐻!!

!(𝑖)!!

Here, 𝐻!! 𝑖 = 𝐻! 𝑖 − 𝑁!! ℎ!(𝑗)! and 𝑁 is equal to the number of bins in the histogram.

For correlation, a high score represents a better match than a low score. A perfect match is 1 and a
maximal mismatch is –1; a value of 0 indicates no correlation (random association).

Chi-square (method = cv::COMP_CHISQR)

For chi-square,4 distance metric is based on the chi-squared test statistic, which is a test as to whether or
not two distributions are in fact correlated.

𝑑!!!!!"#$%& 𝐻!,𝐻! =
𝐻! 𝑖 − 𝐻! 𝑖

!

𝐻! 𝑖 + 𝐻! 𝑖!

For this test, a low score represents a better match than a high score. A perfect match is 0 and a total
mismatch is unbounded (depending on the size of the histogram).

Intersection (method = cv::COMP_INTERSECT)

The histogram intersection method is based on a simple intersection of the two histograms. This means
that it ask, in effect, what do these two have in common, and sums over all of the bins of the histograms.

𝑑!"#$%&$'#!(" 𝐻!,𝐻! = min (𝐻! 𝑖 ,𝐻! 𝑖
!

)

For this metric, high scores indicate good matches and low scores indicate bad matches. If both histograms
are normalized to 1.0, then a perfect match is 1.0 and a total mismatch is 0.0.

Bhattacharyya distance (method = cv::COMP_BHATTACHARYYA)

The last option, called the Bhattacharyya distance [Bhattacharyya43], is also a measure of overlap of two
distributions.

4 The chi-square test was invented by Karl Pearson [Pearson] who founded the field of mathematical statistics.

𝑑!"##$% 𝐻!,𝐻! = 1 −
𝐻! 𝑖 ∙ 𝐻! 𝑖!

𝐻!(𝑖)! 𝐻!(𝑖)!

In this case, low scores indicate good matches and high scores indicate bad matches. A perfect match is
0.0 and a total mismatch is a 1.0.

With cv::COMP_BHATTACHARYYA, a special factor in the code is used to normalize the input
histograms. In general, however, you should normalize histograms before comparing them, because
concepts like histogram intersection make little sense (even if allowed) without normalization.

The simple case depicted in Figure 7-5 should help clarify matters using about the simplest case
imaginable: a one-dimensional histogram with only two bins. The model histogram has a 1.0 value in the
left bin and a 0.0 value in the right bin. The last three rows show the comparison histograms and the
values generated for them by the various metrics (the EMD metric will be explained shortly).

Figure 7-5: Histogram matching measures

Figure 7-5 provides a quick reference for the behavior of different matching types. Close inspection of
these matching algorithms in the figure will reveal a disconcerting observation. If histogram bins shift by
just one slot, as with the chart’s first and third comparison histograms, then all these matching methods
(except EMD) yield a maximal mismatch even though these two histograms have a similar “shape.” The
rightmost column in Figure 7-5 reports values returned by EMD, a type of distance measure. In comparing
the third to the model histogram, the EMD measure quantifies the situation precisely: the third histogram
has moved to the right by one unit. We shall explore this measure further in the “Earth Mover’s Distance”
section to follow.

In the authors’ experience, intersection works well for quick-and-dirty matching and chi-square or
Bhattacharyya work best for slower but more accurate matches. The EMD measure gives the most intuitive
matches but is much slower.

Histogram Usage Examples
It’s probably time for some helpful examples. The program in Example 7-1 (adapted from the OpenCV
code bundle) shows how we can use some of the functions just discussed. This program computes a hue-
saturation histogram from an incoming image and then draws that histogram as an illuminated grid.

Example 7-1: Histogram computation and display

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

int main(int argc, char** argv){

 if(argc != 2) {
 cout << "Computer Color Histogram\nUsage: ch7_ex7_1 <imagename>" << endl;
 return -1;
 }
 cv::Mat src = cv::imread(argv[1],1);

 if(src.empty()) { cout << "Can not load " << argv[1] << endl; return -1; }

 // Compute the HSV image, and decompose it into separate planes.
 //
 cv::Mat hsv;
 cv::cvtColor(src, hsv, cv::BGR2HSV);

 float h_ranges[] = {0, 180}; // hue is [0, 180]
 float s_ranges[] = {0, 255};
 const float* ranges[] = {h_ranges, s_ranges};
 int histSize[] = {20, 2}, ch[] = {0, 1};

 cv::Mat hist;

 // Compute the histogram
 cv::calcHist(&hsv, 1, ch, cv::noArray(), hist, 2, histSize, ranges, true);
 cv::normalize(hist, hist, 0, 255, cv::NORM_MINMAX);

 int scale = 10;
 cv::Mat hist_img(histSize[0]*scale, histSize[1]*scale, CV::U8C3);

 // Draw our histogram.
 for(int h = 0; h < histSize[0]; h++) {
 for(int s = 0; s < histSize[1]; s++){
 float hval = hist.at<float>(h, s);
 cv::rectangle(
 hist_img,
 cv::Rect(h*scale,s*scale,scale,scale),
 cv::Scalar::all(hval),
 -1
);
 }
 }

 cv::imshow("image", src);
 cv::imshow("H-S histogram", hist_img);
 cv::waitKey();
 return 0;
}

In this example, we have spent a fair amount of time preparing the arguments for cv::calcHist(),
which is not uncommon.

In many practical applications, it is useful to consider the color histograms associated with human skin
tone. By way of example, we have histograms taken from a human hand under various lighting conditions
in Figure 7-6. The left column shows images of a hand in an indoor environment, a shaded outdoor
environment, and a sunlit outdoor environment. In the middle column are the blue, green, and red (BGR)
histograms corresponding to the observed flesh tone of the hand. In the right column are the corresponding

HSV histograms, where the vertical axis is 𝑉 (value), the radius is 𝑆 (saturation) and the angle is 𝐻 (hue).
Notice that indoors is the darkest, outdoors in shadow in is a bit brighter, and outdoors in the sun is the
brightest. Note also that the colors shift around somewhat as a result of the changing color of the
illuminating light.

Figure 7-6: Histogram of flesh colors under indoor (upper-left), shadowed outdoor (middle left), and direct
sun outdoor (lower-left) lighting conditions; the middle and right-hand columns display the associated BGR
and HSV histograms, respectively

As a test of histogram comparison, we could take a portion of one palm (e.g., the top half of the indoor
palm), and compare the histogram representation of the colors in that image either with the histogram
representation of the colors in the remainder of that image or with the histogram representations of the
other two hand images. To make a lower dimensional comparison, we use only hue (𝐻) and saturation (𝑆)
from an HSV color space.

Table 7-1: Histogram comparison, via four matching methods, of palm-flesh colors in upper half of indoor
palm with listed variant palm-flesh color. We used 30 bins for hue, and 32 for saturation. For reference,
the expected score for a perfect match is provided in the first row.

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA
(Perfect Match) (1.0) (0.0) (1.0) (0.0)
Indoor lower half 0.96 0.14 0.82 0.2
Outdoor shade 0.09 1.57 0.13 0.8
Outdoor sun –0.0 1.98 0.01 0.99

To put this experiment into practice (see code later in Example 7-2), we take three images of a hand under
different lighting conditions (Figure 7-6). First we construct a histogram from the hand portion of the top
image (the dark one), which we will use as our reference. We then compare that histogram to a histogram
taken from the hand in the bottom half of that same image, and then to the hands that appear in the next two
(whole) images. The first image is an indoor image, the latter two are outdoors. Using 30 bins for hue and
32 for saturation, the matching results are shown in Table 7-1, in which several things are apparent. First,
the distance metrics even with the lower half of the same indoor image are hardly perfect. Second, some of
the distance metrics return a small number when the distance is small, and a larger number when it is high,
while other metrics do the opposite. This is as we should have expected from the simple analysis of the
matching measures shown in Figure 7-5. The recognition results in Example 7-1 are not good however
because, referencing Figure 7-6, we can see that the distribution in H-S space shifts location, especially in

saturation and so, with fine grain bins, the bins will shift (similar to the last row of Figure 7-5). When we
use only 2 bins for saturation and 20 for hue, we get better results as shown in Table 7-2.

Table 7-2: Histogram comparison, same images as Table 7-1, but 2 bins for saturation, 20 for hue.

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA
(Perfect Match) (1.0) (0.0) (1.0) (0.0)
Indoor lower half 0.99 0.06 0.93 0.08
Outdoor shade 0.43 19.12 0.41 0.56
Outdoor sun 0.7 147.36 0.98 0.55

Some More Complicated Stuff
Everything we’ve discussed so far was reasonably basic. Each of the functions provided for a relatively
obvious need. Collectively, they form a good foundation for much of what you might want to do with
histograms in the context of computer vision (and probably in other contexts as well). At this point we want
to look at some more complicated routines available within OpenCV that are extremely useful in certain
applications. These routines include a more sophisticated method of comparing two histograms as well as
tools for computing and/or visualizing which portions of an image contribute to a given portion of a
histogram.

Earth Mover’s Distance
We saw earlier that lighting changes can cause significant shifts in color values (see

Figure 7-6), although such shifts tend not to change the shape of the histogram of color values, but shift the
color value locations and thus cause the histogram-matching schemes we’ve learned about to fail. The
difficulty with histogram match measures is that they can return a large difference in the case where two
histograms are similarly shaped, but only displaced relative to one another. It is often desirable to have a
distance measure that performs like a match, but is less sensitive to such displacements. Earth mover’s
distance (EMD) [Rubner00] is such a metric; it essentially measures how much work it would take to
“shovel” one histogram shape into another, including moving part (or all) of the histogram to a new
location. It works in any number of dimensions.

Return again to Figure 7-5; we see the “earth shoveling” nature of EMD’s distance measure in the right-
most column. An exact match is a distance of 0.0. Half a match is half a “shovel full,” the amount it
would take to spread half of the left histogram into the next slot. Finally, moving the entire histogram one
step to the right would require an entire unit of distance (i.e., to change the model histogram into the
“totally mismatched” histogram).

The EMD algorithm itself is quite general; it allows users to set their own distance metric or their own cost-
of-moving matrix. One can record where the histogram “material” flowed from one histogram to another,
and one can employ nonlinear distance metrics derived from prior information about the data. The EMD
function in OpenCV is cv::EMD():

float cv::EMD(
 cv::InputArray signature1, // size1-by-(dims+1) float array
 cv::InputArray signature2, // size2-by-(dims+1) float array
 int distType, // distance type (e.g., ‘cv::DIST_L1’)
 cv::InputArray cost = noArray(), // size1-by-size2 array (for cv::DIST_USER)
 float* lowerBound = 0, // input/output low bound on sig. distance
 cv::OutputArray flow = noArray() // output, size1-by-size2, from sig1 to sig2
);

Although we’re applying the EMD to histograms, the interface prefers that we talk to it in terms of what the
algorithm calls signatures for the first two array parameters. These signatures are arrays that are always of
type float and consist of rows containing the histogram bin count followed by its coordinates. For the

one-dimensional histogram of

Figure 7-5, the signatures (listed array rows) for the left-hand column of histograms (skipping the model)
would be as follows: top, [[1, 0], [0, 1]]; middle, [[0.5, 0], [0.5, 1]]; bottom, [[0, 0], [1, 1]]. If we had a bin
in a three-dimensional histogram with a bin count of 537 at (x, y, z) index (7, 43, 11), then the
signature row for that bin would be [537, 7, 43, 11]. This is how we perform the necessary step of
converting histograms into signatures. (We will go through this in a little more detail in Example 7-2.)

The parameter distType should be any of: Manhattan distance (cv::DIST_L1), Euclidean distance
(cv::DIST_L2), Checkerboard Distance (cv::DIST_C), or a user-defined distance metric
(cv::DIST_USER). In the case of the user-defined distance metric, the user supplies this information in
the form of a (pre-calculated) cost matrix via the cost argument. (In this case, cost is an n1-by-n2 matrix,
with n1 and n2 the sizes of signature1 and signature2, respectively.)

The argument lowerBound has two functions (one as input, the other as output). As a return value, it is a
lower bound on the distance between the centers of mass of the two histograms. In order for this lower

bound to be computed, one of the standard distance metrics must be in use (i.e., not cv::DIST_USER),
and the total weights of the two signatures must be the same (as would be the case for normalized
histograms). If you supply a lower-bound argument, you must also initialize that variable to a meaningful
value. This value is used as the lower bound on separations for which the EMD will be computed at all.5 Of
course, if you want the EMD computed no matter what the distance is, you can always initialize
lowerBound to zero.

The next argument, flow, is an optional 𝑛!-by-𝑛! matrix that can be used to record the flow of mass from
the 𝑖!! point of signature1 to the 𝑗!! point of signature2. In essence, this tells you how the mass
was rearranged to give the computed total EMD.

As an example, suppose we have two histograms, hist1 and hist2, which we want to convert into two
signatures, sig1 and sig2. Just to make things more difficult, let’s suppose that these are two-
dimensional histograms (as in the preceding code examples) of dimension h_bins by s_bins. Example
7-2 shows how to convert these two histograms into two signatures.

Example 7-2: Creating signatures from histograms for EMD; note that this code is the source of the data in
Table 7-1, in which the hand histogram is compared in different lighting conditions

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

void help(){
 cout << "\nCall is:\n"
 << "./ch7_ex7_3_expanded modelImage0 testImage1 testImage2 badImage3\n\n"
 << "for example: "
 << " ./ch7_ex7_3_expanded HandIndoorColor.jpg HandOutdoorColor.jpg "
 << "HandOutdoorSunColor.jpg fruits.jpg\n"
 << "\n";
}

// Compare 3 images’ histograms
//
int main(int argc, char** argv) {

 if(argc != 5) { help(); return -1; }

 vector<cv::Mat> src(5);
 cv::Mat tmp;
 int i;

 tmp = cv::imread(argv[1], 1);
 if(tmp.empty()) {
 cerr << "Error on reading image 1," << argv[1] << "\n" << endl;
 help();
 return(-1);
 }

 // Parse the first image into two image halves divided halfway on y
 //
 cv::Size size = tmp.size();
 int width = size.width;
 int height = size.height;

5 This is important because it is typically possible to compute the lower bound for a pair of histograms much more
quickly than the actual EMD. As a result, in many practical cases, if the EMD is above some bound, you probably do
not care about the actual value of the EMD, only that it is “too big” (i.e., the things you are comparing are “not
similar”). In this case, it is quite helpful to have cv::EMD() exit once it is known that the EMD value will be big
enough that you do not care for the exact value.

 int halfheight = height >> 1;
 cout << "Getting size [[" << tmp.cols << "] [" << tmp.rows << "]]\n" << endl;
 cout << "Got size (w,h): (" << size.width << "," << size.height << ")" << endl;

 src[0] = cv::Mat(cv::Size(width,halfheight), CV::U8C3);
 src[1] = cv::Mat(cv::Size(width,halfheight), CV::U8C3);

 // Divide the first image into top and bottom halfs into src[0] and src[1]
 //
 cv::Mat_<cv::Vec3b>::iterator tmpit = tmp.begin<cv::Vec3b>();

 // top half
 cv::Mat_<cv::Vec3b>::iterator s0it = src[0].begin<cv::Vec3b>();
 for(i = 0; i < width*halfheight; ++i, ++tmpit, ++s0it) *s0it = *tmpit;

 // Bottom half
 cv::Mat_<cv::Vec3b>::iterator s1it = src[1].begin<cv::Vec3b>();
 for(i = 0; i < width*halfheight; ++i, ++tmpit, ++s1it) *s1it = *tmpit;

 // Load the other three images
 //
 for(i = 2; i<5; ++i){
 src[i] = cv::imread(argv[i], 1);
 if(src[i].empty()) {
 cerr << "Error on reading image " << i << ": " << argv[i] << "\n" << endl;
 help();
 return(-1);
 }
 }

 // Compute the HSV image, and decompose it into separate planes.
 //
 vector<cv::Mat> hsv(5), hist(5), hist_img(5);
 int h_bins = 8;
 int s_bins = 8;
 int hist_size[] = { h_bins, s_bins }, ch[] = {0, 1};
 float h_ranges[] = { 0, 180 }; // hue range is [0,180]
 float s_ranges[] = { 0, 255 };
 const float* ranges[] = { h_ranges, s_ranges };
 int scale = 10;

 for(i = 0; i<5; ++i) {
 cv::cvtColor(src[i], hsv[i], cv::BGR2HSV);
 cv::calcHist(&hsv[i], 1, ch, noArray(), hist[i], 2, hist_size, ranges, true);
 cv::normalize(hist[i], hist[i], 0, 255, cv::NORM_MINMAX);
 hist_img[i] = cv::Mat::zeros(hist_size[0]*scale, hist_size[1]*scale, CV::U8C3);

 // Draw our histogram For the 5 images
 //
 for(int h = 0; h < hist_size[0]; h++)
 for(int s = 0; s < hist_size[1]; s++){
 float hval = hist[i].at<float>(h, s);
 cv::rectangle(
 hist_img[i],
 cv::Rect(h*scale, s*scale, scale, scale),
 cv::Scalar::all(hval),
 -1
);
 }
 }

 // Display
 cv::namedWindow("Source0", 1);cv::imshow("Source0", src[0]);

 cv::namedWindow("HS Histogram0", 1);cv::imshow("HS Histogram0", hist_img[0]);

 cv::namedWindow("Source1", 1);cv::imshow("Source1", src[1]);
 cv::namedWindow("HS Histogram1", 1); cv::imshow("HS Histogram1", hist_img[1]);

 cv::namedWindow("Source2", 1); cv::imshow("Source2", src[2]);
 cv::namedWindow("HS Histogram2", 1); cv::imshow("HS Histogram2", hist_img[2]);

 cv::namedWindow("Source3", 1); cv::imshow("Source3", src[3]);
 cv::namedWindow("HS Histogram3", 1); cv::imshow("HS Histogram3", hist_img[3]);

 cv::namedWindow("Source4", 1); cv::imshow("Source4", src[4]);
 cv::namedWindow("HS Histogram4", 1); cv::imshow("HS Histogram4", hist_img[4]);

 // Compare the histogram src0 vs 1, vs 2, vs 3, vs 4
 //
 cout << "Comparison:\n"
 << "Corr Chi Intersect Bhat\n"
 << endl;

 for(i=1; i<5; ++i) { // For each histogram
 cout << "Hist[0] vs Hist[" << i << "]: " << endl;;
 for(int j=0; j<4; ++j) { // For each comparison type
 cout << "method[" << j << "]: " << cv::compareHist(hist[0],hist[i],j) << " ";
 }
 cout << endl;
 }

 //Do EMD and report
 //
 vector<cv::Mat> sig(5);
 cout << "\nEMD: " << endl;

 // Oi Vey, parse histograms to earth movers signatures
 //
 for(i=0; i<5; ++i) {

 vector<cv::Vec3f> sigv;

 // (re)normalize histogram to make the bin weights sum to 1.
 //
 cv::normalize(hist[i], hist[i], 1, 0, cv::NORM_L1);
 for(int h = 0; h < h_bins; h++)
 for(int s = 0; s < s_bins; s++) {
 float bin_val = hist[i].at<float>(h, s);
 if(bin_val != 0)
 sigv.push_back(cv::Vec3f(bin_val, (float)h, (float)s));
 }

 // make Nx3 32fC1 matrix, where N is the number of nonzero histogram bins
 //
 sig[i] = cv::Mat(sigv).clone().reshape(1);
 if(i > 0)
 cout << "Hist[0] vs Hist[" << i << "]: "
 << EMD(sig[0], sig[i], cv::DIST_L2) << endl;
 }
 cv::waitKey(0);
}

Back Projection
Back projection is a way of recording how well the pixels fit the distribution of pixels in a histogram
model. For example, if we have a histogram of flesh color, then we can use back projection to find flesh
color areas in an image. The function for doing this kind of lookup has two variations, one for dense arrays,
and one for sparse arrays.

Basic Back Projection: cv::calcBackProject()

Back-projection computes a vector from the selected channels of the input images just like
cv::calcHist(), but instead of accumulating events in the output histogram it reads the output
histogram and reports the bin value already present. In the context of statistics, if you think of the input
histogram as a (prior) probability distribution for the particular vector (color) on some object, then back
projection is computing the probability that any particular part of the image is in fact drawn from that prior
distribution (e.g., part of the object).

void cv::calcBackProject(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in ‘images’ array
 const int* channels, // C-style list of ints identifying channels
 cv::InputArray hist, // input histogram array
 cv::OutputArray backProject, // output single channel array
 const float** ranges, // C-style array of ‘dims’ pairs set bin sizes
 double scale = 1, // Optional scale factor for output
 bool uniform = true // true for uniform binning
);

void cv::calcBackProject(
 const cv::Mat* images, // C-style array of images, 8U or 32F
 int nimages, // number of images in ‘images’ array
 const int* channels, // C-style list of ints identifying channels
 const cv::SparseMat& hist, // input (sparse) histogram array
 cv::OutputArray backProject, // output single channel array
 const float** ranges, // C-style array of ‘dims’ pairs set bin sizes
 double scale = 1, // Optional scale factor for output
 bool uniform = true // true for uniform binning
);

void cv::calcBackProject(
 cv::InputArrayOfArrays images, // STL-vector of images, 8U or 32F
 const vector<int>& channels, // STL-vector, channels indices to use
 cv::InputArray hist, // input histogram array
 cv::OutputArray backProject, // output single channel array
 const vector<float>& ranges, // STL-style vector of range boundaries
 double scale = 1, // Optional scale factor for output
 bool uniform = true // true for uniform binning
);

There are three versions of cv::calcBackProject(). The first two use C-style arrays for their inputs.
One of these supports dense histograms and one supports sparse histograms. The third version uses the
newer template-based inputs rather than C-style pointers6. In both cases, the image is provided in the form
of a set of individual single or multichannel arrays (the images variable), while the histogram is precisely
the form of histogram that is produced by cv::calcHist() (the hist variable). The set of single-
channel arrays is exactly the same form as what you would have used when you called
cv::calcHist() in the first place, only this time, it is the image you want to compare your histogram
to. If the argument images is a C-style array (type cv::Mat*), you will also need to tell
cv::calcBackProject() how many elements it has; this is the function of the nimages argument.

6 Of these three, the third is the generally preferred form in modern code (i.e., the use of the C-style arrays for input is
considered “old-fashioned” in most modern OpenCV code.)

The argument channels is a list of the channels that will actually be used in the back projection. Once
again, the form of this argument is the same as the form of the corresponding argument used by
cv::calcHist(). Each integer entry in the array channels is related to a channel in the input
arrays by enumerating the channels in order, starting with the first array (arrays[0]), then for the
second array (images[1]), and so on (e.g., if there were three matrices pointed to by images, with three
channels each, their channels would correspond to the values 0, 1, and 2 for the first array, 3, 4, and 5 for
the second array, and 6, 7, and 8 for the third array). As you can see, though the number of entries in
channels must be the same as the dimensionality of the histogram hist, that number need not be the
same as the number of arrays in (or the total number of channels represented by) images.

The results of the back projection computation will be placed in the array backProject.
backProject will be the same size and type as images[0], and have a single channel.

Because histogram data is stored in the same matrix structures used for other data, there is no place to
record the bin information that was used in the original construction of the histogram. In this sense, to
really comprehend a histogram completely, the associated cv::Mat (or cv::SparseMat or whatever)
is needed, as well as the original ranges data structure that was used when the histogram was created by
cv::calcHist().7 It is for this reason that this range of information needs to be supplied to
cv::calcBackProject() in the ranges argument.

Finally, there are two optional arguments, scale and uniform. scale is an optional scale factor that is
applied to the return values placed in backProject. (This is particularly useful if you want to visualize
the results.) uniform is used to indicate whether or not the input histogram is a uniform histogram (in the
sense of cv::calcHist()). Because uniform defaults to true, this argument is only needed for non-
uniform histograms.

Example 7-1 showed how to convert an image into single-channel planes and then make an array of them.
As described above, the values in backProject are set to the values in the associated bin in hist. If the
histogram is normalized, then this value can be associated with a conditional probability value (i.e., the

7 An alternative approach would have been to define another data-type for histograms which inherited from cv::Mat,
but which also contained this bin information. The authors of the library chose not to take this route in the 2.0 (and
later) version of the library in favor of simplifying the library.

probability that a pixel in image is a member of the type characterized by the histogram in hist).8 In

Figure 7-7, we use a flesh-color histogram to derive a probability of flesh image.

8 Specifically, in the case of our flesh-tone H-S histogram, if 𝐶 is the color of the pixel and 𝐹 is the probability that a
pixel is flesh, then this probability map gives us 𝑝(𝐶|𝐹), the probability of drawing that color if the pixel actually is
flesh. This is not quite the same as 𝑝(𝐹|𝐶), the probability that the pixel is flesh given its color. However, these two
probabilities are related by Bayes' theorem [Bayes1763] and so, if we know the overall probability of encountering a
flesh-colored object in a scene as well as the total probability of encountering of the range of flesh colors, then we can
compute 𝑝(𝐹|𝐶) from 𝑝(𝐶|𝐹). Specifically, Bayes' theorem establishes the following relation:

𝑝 𝐹 𝐶 =
𝑝 𝐹
𝑝 𝐶

𝑝(𝐶|𝐹)

Figure 7-7: Back projection of histogram values onto each pixel based on its color: the HS (Hue and
Saturation planes of an HSV representation of the image) flesh-color histogram (upper-left) is used to
convert the hand image (upper-right) into the flesh-color probability image (lower-right); the lower-left
panel is the histogram of the hand image

When backProject is a byte image rather than a float image, you should either not
normalize the histogram or else scale it up before use. The reason is that the highest
possible value in a normalized histogram is 1, so anything less than that will be rounded
down to 0 in the 8-bit image. You might also need to scale backProject in order to
see the values with your eyes, depending on how high the values are in your histogram.

Template Matching
Template matching via cv::matchTemplate() is not based on histograms; rather, the function
matches an actual image patch against an input image by “sliding” the patch over the input image using one
of the matching methods described in this section.9

If, as in Figure 7-8, we have an image patch containing a face, then we can slide that face over an input
image looking for strong matches that would indicate another face is present.

void cv::matchTemplate
 cv::InputArray image, // Input image to be searched, 8U or 32F, size W-by-H
 cv::InputArray templ, // Template to use, same type as ‘image’, size w-by-h
 cv::OutputArray result, // Result image, type 32F, size (W-w+1)-by(H-h+1)
 int method // Comparison method to use
);

The input to cv::matchTemplate() starts with a single 8-bit or floating-point plane or color image.
The matching model in templ is just a patch from another (presumably similar) image containing the
object for which you are searching. The computed output will be put in the result image, which should

9 In prior versions of the library, there was a function called: cvCalcBackProjectPatch(). This function was not
ported to the 2.x library as it was considered to be very slow, and the similar results can be achieved through use of
cv::matchTemplate().

be a single-channel byte or floating-point image of size (image.width – templ.width + 1,
image.height – templ.height + 1). The matching method is chosen from one of the options
listed below (we use I to denote the input image, T the template, and R the result image in the definitions).
For each of these, there is also a normalized version10:

Figure 7-8: cv::matchTemplate() sweeps a template image patch across another image looking for
matches

Square difference matching method (method = cv::TM_SQDIFF)

These methods match the squared difference, so a perfect match will be 0 and bad matches will be large:

𝑅!"_!"## = 𝑇 𝑥!, 𝑦! − 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

Normalized square difference matching method (method = cv::TM_SQDIFF_NORMED)

𝑅!"_!"##_!"#$%& =
𝑇 𝑥!, 𝑦! − 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

𝑇 𝑥!, 𝑦! !
!!,!! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

Correlation matching methods (method = cv::TM_CCORR)

These methods multiplicatively match the template against the image, so a perfect match will be large and
bad matches will be small or zero.

𝑅!!"## = 𝑇 𝑥!, 𝑦! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦!

!!,!!

Normalized cross-correlation matching method (method = cv::TM_SQDIFF_NORMED)

𝑅!!"##_!"#$%& =
𝑇 𝑥!, 𝑦! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦!!!,!!

𝑇 𝑥!, 𝑦! !
!!,!! ∙ 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

10 The normalized versions were first developed by Galton [Galton] as described by Rodgers [Rodgers88]. The
normalized methods are useful, as they can help reduce the effects of lighting differences between the template and the
image. In each case, the normalization coefficient is the same.

Correlation coefficient matching methods (method = cv::TM_CCOEFF)

These methods match a template relative to its mean against the image relative to its mean, so a perfect
match will be 1.0 and a perfect mismatch will be -1.0; a value of 0.0 simply means that there is no
correlation (random alignments).

𝑅!!"#$$ = 𝑇! !!,!! ∙ 𝐼! !!!!,!!!!

!!,!!

𝑇! 𝑥!, 𝑦! = 𝑇 𝑥!, 𝑦! −
𝑇(𝑥!!, 𝑦!!)!!!,!!!

(𝑤 − ℎ)

𝐼! 𝑥 + 𝑥!, 𝑦 + 𝑦! = 𝐼 𝑥 + 𝑥!, 𝑦 + 𝑦! −
𝐼(𝑥!!, 𝑦!!)!!!,!!!

(𝑤 − ℎ)

Normalized correlation coefficient matching method (method = cv::TM_CCOEFF_NORMED)

𝑅!!"#$$_!"#$%& =
𝑇′ 𝑥!, 𝑦! ∙ 𝐼′ 𝑥 + 𝑥!, 𝑦 + 𝑦!!!,!!

𝑇′ 𝑥!, 𝑦! !
!!,!! ∙ 𝐼′ 𝑥 + 𝑥!, 𝑦 + 𝑦! !

!!,!!

Here T’ and I’ are as defined for cv::TM_CCOEFF.

As usual, we obtain more accurate matches (at the cost of more computations) as we move from simpler
measures (square difference) to the more sophisticated ones (correlation coefficient). It’s best to do some
test trials of all these settings and then choose the one that best trades off accuracy for speed in your
application.

Be careful when interpreting your results. The square-difference methods show best
matches with a minimum, whereas the correlation and correlation-coefficient methods
show best matches at maximum points.

Once we use cv::matchTemplate() to obtain a matching result image, we can then use
cv::minMaxLoc() or cv::minMaxIdx() to find the location of the best match. Again, we want to
ensure there’s an area of good match around that point in order to avoid random template alignments that
just happen to work well. A good match should have good matches nearby, because slight misalignments of
the template shouldn’t vary the results too much for real matches. Looking for the best matching “hill” can
be done by slightly smoothing the result image before seeking the maximum (for correlation or correlation-
coefficient) or minimum (for square-difference matching methods). The morphological operators (for
example) can be helpful in this context.

Figure 7-9: Match results of six matching methods for the template search depicted in Figure 7-8: the best
match for square difference is zero and for the other methods it’s the maximum point; thus, matches are
indicated by dark areas in the left column and by bright spots in the other two columns

Example 7-3 should give you a good idea of how the different template matching techniques behave. This
program first reads in a template and image to be matched and then performs the matching via the methods
we’ve discussed here.

Example 7-3: Template matching

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

void help(){

 cout << "\n"
 "Example of using matchTemplate(). The call is:\n"
 "\n"
 "ch7_ex7_5 template image_to_be_searched\n"
 "\n"
 " This routine will search using all methods:\n"
 " cv::TM_SQDIFF 0\n"
 " cv::TM_SQDIFF_NORMED 1\n"
 " cv::TM_CCORR 2\n"
 " cv::TM_CCORR_NORMED 3\n"
 " cv::TM_CCOEFF 4\n"
 " cv::TM_CCOEFF_NORMED 5\n"
 "\n";
}

// Display the results of the matches
//
int main(int argc, char** argv) {

 if(argc != 3) {
 help();

 return -1;
 }

 cv::Mat src, templ, ftmp[6]; // ftmp is what to display on

 // Read in the template to be used for matching:
 //
 if((templ=cv::imread(argv[1], 1)).empty()) {
 cout << "Error on reading template " << argv[1] << endl;
 help(); return -1;
 }

 // Read in the source image to be searched:
 //
 if((src=cv::imread(argv[2], 1)).empty()) {
 cout << "Error on reading src image " << argv[2] << endl;
 help(); return -1;
 }

 // Do the matching of the template with the image
 for(int i=0; i<6; ++i){
 cv::matchTemplate(src, templ, ftmp[i], i);
 cv::normalize(ftmp[i],ftmp[i],1,0,cv::MINMAX);
 }

 // Display
 //
 cv::imshow("Template", templ);
 cv::imshow("Image", src);
 cv::imshow("SQDIFF", ftmp[0]);
 cv::imshow("SQDIFF_NORMED", ftmp[1]);
 cv::imshow("CCORR", ftmp[2]);
 cv::imshow("CCORR_NORMED", ftmp[3]);
 cv::imshow("CCOEFF", ftmp[4]);
 cv::imshow("CCOEFF_NORMED", ftmp[5]);

 // Let user view results:
 //
 cv::waitKey(0);
}

Note the use of cv::normalize() in this code, which allows us to display the results in a consistent
way. (Recall that some of the matching methods can return negative-valued results.) We use the
cv::MINMAX flag when normalizing; this tells the function to shift and scale the floating-point images so
that all returned values are between 0.0 and 1.0. Figure 7-9 shows the results of sweeping the face
template over the source image (shown in Figure 7-9) using each of cv::matchTemplate()’s
available matching methods. In outdoor imagery especially, it’s almost always better to use one of the
normalized methods. Among those, correlation coefficient gives the most clearly delineated match—but, as
expected, at a greater computational cost. For a specific application, such as automatic parts inspection or
tracking features in a video, you should try all the methods and find the speed and accuracy trade-off that
best serves your needs.

Summary
In this chapter, we learned how OpenCV represents histograms at dense or sparse matrix objects. In
practice, such histograms are typically used to represent probability density functions, which associate
probability amplitude to every element of an array of some number of dimensions. We learned how to do
basic operations on arrays, which are useful when interpreting arrays as probability distributions—such as
normalization and comparison with other distributions.

Exercises
1. Generate 1,000 random numbers 𝑟i between 0.0 and 1.0. Decide on a bin size and then take a

histogram of 1/𝑟i.
a) Are there similar numbers of entries (i.e., within a factor of ±10) in each histogram bin?
b) Propose a way of dealing with distributions that are highly nonlinear so that each bin has, within a

factor of 10, the same amount of data.
2. Take three images of a hand in each of the three lighting conditions discussed in the text. Use

cv::calcHist() to make an RGB histogram of the flesh color of one of the hands photographed
indoors.
a) Try using just a few large bins (e.g., 2 per dimension), a medium number of bins (16 per

dimension) and many bins (256 per dimension). Then run a matching routine (using all histogram
matching methods) against the other indoor lighting images of hands. Describe what you find.

b) Now add 8 and then 32 bins per dimension and try matching across lighting conditions (train on
indoor, test on outdoor). Describe the results.

3. As in exercise 2, gather RGB histograms of hand flesh color. Take one of the indoor histogram
samples as your model and measure EMD (earth mover’s distance) against the second indoor
histogram and against the first outdoor shaded and first outdoor sunlit histograms. Use these
measurements to set a distance threshold.
a) Using this EMD threshold, see how well you detect the flesh histogram of the third indoor

histogram, the second outdoor shaded, and the second outdoor sunlit histograms. Report your
results.

b) Take histograms of randomly chosen nonflesh background patches to see how well your EMD
discriminates. Can it reject the background while matching the true flesh histograms?

4. Using your collection of hand images, design a histogram that can determine under which of the three
lighting conditions a given image was captured. Toward this end, you should create features—perhaps
sampling from parts of the whole scene, sampling brightness values, and/or sampling relative
brightness (e.g., from top to bottom patches in the frame) or gradients from center to edges.

5. Assemble three histograms of flesh models from each of our three lighting conditions.
a) Use the first histograms from indoor, outdoor shaded, and outdoor sunlit as your models. Test

each one of these against the second images in each respective class to see how well the flesh-
matching score works. Report matches.

b) Use the “scene detector” you devised in part a, to create a “switching histogram” model. First use
the scene detector to determine which histogram model to use: indoor, outdoor shaded, or outdoor
sunlit. Then use the corresponding flesh model to accept or reject the second flesh patch under all
three conditions. How well does this switching model work?

6. Create a flesh-region interest (or “attention”) detector.
a) Just indoors for now, use several samples of hand and face flesh to create an RGB histogram.
b) Use cv::calcBackProject() to find areas of flesh.

c) Use cv::erode() from Chapter 5 to clean up noise and then cv::floodFill() (from the
same chapter) to find large areas of flesh in an image. These are your “attention” regions.

7. Try some hand-gesture recognition. Photograph a hand about two feet from the camera; create some
(nonmoving) hand gestures: thumb up, thumb left, and thumb right.
a) Using your attention detector from exercise 6, take image gradients in the area of detected flesh

around the hand and create a histogram model for each of the three gestures. Also create a
histogram of the face (if there’s a face in the image) so that you’ll have a (nongesture) model of
that large flesh region. You might also take histograms of some similar but nongesture hand
positions, just so they won’t be confused with the actual gestures.

b) Test for recognition using a webcam: use the flesh interest regions to find “potential hands”; take
gradients in each flesh region; use histogram matching above a threshold to detect the gesture. If
two models are above threshold, take the better match as the winner.

c) Move your hand one to two feet further back and see if the gradient histogram can still recognize
the gestures. Report.

8. Repeat exercise 7 but with EMD for the matching. What happens to EMD as you move your hand
back?

9. With the same images as before but with captured image patches instead of histograms of the flesh
around the hand, use cv::matchTemplate() instead of histogram matching. What happens to
template matching when you move your hand backwards so that its size is smaller in the image?

10. With your hands facing a camera, take the gradient direction of several pictures of your open hand, a
closed fist and a “thumbs up” gesture. Collect histograms of the gradient direction in a window around
your hands. This becomes your trained “model”. Now run live and use the various histogram matching
techniques to see how well they can recognize your gestures.

8
Contours

Although algorithms like the Canny edge detector can be used to find the edge pixels that separate different
segments in an image, they do not tell you anything about those edges as entities in themselves. The next
step is to be able to assemble those edge pixels into contours. By now you have probably come to expect
that there is a convenient function in OpenCV that will do exactly this for you, and indeed there is:
cv::findContours(). We will start out this chapter with some basics that we will need in order to use
this function.. With those concepts in hand, we will get into contour finding in some detail. Thereafter, we
will move on to the many things we can do with contours after they’ve been computed.

Contour Finding
A contour is a list of points that represent, in one way or another, a curve in an image. This representation
can be different depending on the circumstance at hand. There are many ways to represent a curve.
Contours are represented in OpenCV by STL style vector<> template objects in which every entry in the
vector encodes information about the location of the next point on the curve. It should be noted that though
a sequence of 2d points (vector<cv::Point> or vector<cv::Point2f>) is the most common
representation, there are other ways to represent contours as well. One example of such a construct is the
Freeman Chain, in which each point is represented as a particular “step” in a given direction from the prior
point. We will get into such variations in more detail as we encounter them. For now, the important thing to
know is that contours are almost always STL vectors, but are not necessarily limited to the obvious vectors
of cv::Point objects.

The function cv::findContours() computes contours from binary images. It can take images created
by cv::Canny(), which have edge pixels in them, or images created by functions like
cv::threshold() or cv::adaptiveThreshold(), in which the edges are implicit as boundaries
between positive and negative regions.1

Contour Hierarchies
Before getting down to exactly how to extract contours, it is worth taking a moment to understand exactly
what a contour is, and how groups of contours can be related to one another. Of particular interest is the
concept of a contour tree, which is important for understanding one of the most useful ways

1 There are some subtle differences between passing edge images and binary images to cvFindContours(); we
will discuss those shortly.

cv::findContours() (retrieval methods derive from Suzuki [Suzuki85]) can communicate its results
to us.

Take a moment to look at

Figure 8-1, which depicts the functionality of cv::findContours(). The upper part of the figure
shows a test image containing a number of “colored” (here, gray) regions (labeled A through E) on a light
background. The lower portion of the figure depicts the same image along with the contours that will be
located by cv::findContours(). Those contours are labeled cX or hX, where “c” stands for
“contour,” “h” stands for “hole,” and “X” is some number. OpenCV and cv::findContours()
distinguishes between the exterior boundaries of non-zero regions which are labeled contours and the
interior

 boundaries which are labeled holes.

F s

co t
(th ed
(th ur

The concept of containment here is important in many applications. For this reason, OpenCV can be asked
that encodes the containment relationships in its

The
of v
node an
entr
part
the d ause
it ha rent).

mponent in the four-element vector representation of each node in a contour

igure 8-1: A test image (left side) passed to cv::findContours(). There are five colored region
(labeled A, B, C, D, and E), but contours are formed from both the exterior and interior edges of each
lored region. The result is nine contours in total. Each contour is identified and appears in an output lis
e contours argument—upper-right). Optionally, a hierarchical representation can also be generat
e hierarchy argument—lower-right). In the graph shown (corresponding to the constructed conto

tree), each node is a contour, the links in the graph are labeled with the index in the four-element data
structure associated with each node in the hierarchy array.

to assemble the found contours into a contour tree2
structure. A contour tree corresponding to this test image would have the contour called c0 at the root node,
with the holes h00 and h01 as its children. Those would in turn have as children the contours that they
directly contain, and so on.

re are many possible ways to represent such a tree. OpenCV represents such trees with arrays (typically
ntry or ectors) in which each entry in the array represents one particular contour. In that array, each e

 contains a set of four integers (typically represented as an element of type cv::Vec4i, just like
y in a four-channel array). Each of the four components indicates another node in the hierarchy with a

hat element of icular relationship to the current node. Where a particular relationship does not exist, t
ata structure is set to -1 (e.g., element 3, the parent id for the root node would have value -1 bec
s no pa

Table 8-1: Meaning of each co
hierarchy list

Index Meaning

2 Contour trees first appeared in Reeb [Reeb46] and were further developed by [Bajaj97], [Kreveld97], [Pascucci02],
and [Carr04].

0 Next Contour (same level)

1 Previous Contour (same level)

2 First Child (next level down)

3 Parent (next level up)

By way of example, consider the contours in

Figure 8-1. The five colored regions result in a total of nine total contours (counting both the exterior and
ch region). If a contour tree is constructed from these nine contours, each node will the interior edges of ea

have as children those contours that are contained within it. The resulting tree is visualized in the lower-

right of

re 8-1, For each node, those links that are valid are also visualized, and the links are labeled with the
x associated with that link in the four-element data structure for that node (Error! Reference source
found.).

Figu
inde
not

It is interesting to note the c sequences of using cv::findContouon rs() on an image
generated by cv::canny() or a similar edge detector relative to what happens with a
binary image such as the test image shown in Figure 8-1. Deep down,
cv::findContours() does not really know anything about edge images. This means
that, to cv::findContours(), an “edge” is just a very thin “on” area. As a result, for
every exterior contour, there will be a hole contour that almost exactly coincides with it.
This hole is actually just inside of the exterior boundary. You can think of it as the on-to-
off transition that marks the interior edge of the edge.

Finding Contours with cv::findContours()

trees in hand, we can look at the cv::findContours() function itself and With this concept of contour
see exactly how we tell it what we want and how we interpret its response:

void cv::findContours(
 cv::InputOutputArray image, // Input “binary” 8-bit single channel
 cv::OutputArrayOfArrays contours, // Vector of vectors or points
 cv::OutputArray hierarchy, // (optional) topology information
 int mode, // Contour retrieval mode (Figure 8-2)
 int method, // Approximation method
 cv::Point offset = cv::Point() // (optional) Offset every point
);

void cv::findContours(
 cv::InputOutputArray image, // Input “binary” 8-bit single channel
 cv::OutputArrayOfArrays contours, // Vector of vectors or points

 int mode, // Contour retrieval mode (Figure 8-2)
 int method, // Approximation method
 cv::Point offset = cv::Point() // (optional) Offset every point
);

The be
inte ted as binary (i.e., as if all nonzero pixels were equivalent to one another). When it runs,

g one of the two forms of

 fir
rpre

st argument is the input image; this image should be an 8-bit single-channel image and will

cv::findContours() will actually use this image as scratch space for computation, so if you need that
image for anything later, you should make a copy and pass that to cv::findContours(). The second
argument is an array of arrays, which in most practical cases will mean an STL vector of STL vectors. This
will be filled with the list of contours found (i.e., it will be a vector of contours, where contours[i] will
be a specific contour and thus contours[i][j] would refer to a specific vertex in contour[i]).

The next argument can be either supplied or not supplied (by usinhierarchy
the function shown above). If supplied, hierarchy is the output that describes the tree structure of the
contours. The output hierarchy will be an array (again typically an STL vector) with one entry for each
contour in contours. Each such entry will contain an array of four elements, each indicating the node to
which a particular link from the current node is connected (Error! Reference source not found.).

Figure 8-2: The way in which the tree node variables are used to “hook up” all of the contours located by
findContours(). The contour nodes are the same as in cv::

Figure 8-1.

The argument tells OpenCV how you would like the contours extracted. There are four possible
TERNAL, cv::RETR_LIST, cv::RETR_CCOMP, and

. Each mode is described below:

mode
values for mode: cv::RETR_EX
cv::RETR_TREE

cv:
e extreme outer contours. In

:RETR_EXTERNAL
Retrieves only th

Figure 8-1, there is only one exterior contour, so

Figure 8-2 indicates that the first contour points to that outermost sequence and that there are no
further connections.

cv::RETR_LIST
Retrieves all the contours and puts them in the list.

Figure 8-2 depicts the “hierarchy” resulting from the test image in

Figure 8-1. In this case, nine contours are found and they are all connected to one another by
hierarchy[i][0] and hierarchy[i][1] (hierarchy[i][2] and hierarchy[i][3]
are not used here).3

cv::RETR_CCOMP
Retrieves all the contours and organizes them into a two-level hierarchy, where the top-level boundaries are

external boundaries of the components and the second-level boundaries are boundaries of the holes.

Referring to

Figure 8-2, we can see that there are five exterior boundaries, of which three contain holes. The holes
are connected to their corresponding exterior boundaries by hierarchy[i][2] and
hierarchy[i][3]. The outermost boundary c0 contains two holes. Because hierarchy[i][2]
can contain only one value, the node can only have one child. All of the holes inside of c0 are
connected to one another by the hierarchy[i][0] and hierarchy[i][1] pointers.

3 Yo the OpenCV
librar which the contours return value was not automatically organized into a list as the vector<> type now
implies.

u are
y in

 not very likely to use this option. This organization primarily made sense in previous versions of

cv::RETR_TREE
Retrieves all the contours and reconstructs the full hierarchy of nested contours. In our example

(

Figure 8-1 and

Figure 8-2), this means that the root node is the outermost contour c0. Below c0 is the hole h00, which
is connected to the other hole h01 at the same level. Each of those holes in turn has children (the
contours c000 and c010, respectively), which are connected to their parents by vertical links. Thi

h become the leaf nodes in the tree.
s

ontours in the image, whic

The next five values pertain to the method (i.e., how the contours are represented):

continues down to the most-interior c

cv:

ce a large number
point. No attempt is made to

ny
ction of the number of points returned. The extreme

that is oriented along the x-y axes. In this case, only four

AIN_APPROX_TC89_L1 or cv::CHAIN_APPROX_TC89_KCOS

 returned.
T-C algorithm requires no additional parameters to run.

t. The offset argument is optional. If

void cv::drawContours(

:CHAIN_APPROX_NONE

Translates all the points from the contour code into points. This operation
oints, as each point will be one of the eight neighbors of the previous

 will produ
of p
reduce the number of vertices returned.

cv::CHAIN_APPROX_SIMPLE

Compresses horizontal, vertical, and diagonal segments, leaving only their ending points. For ma
special cases, this can result in a substantial redu
example would be a rectangle (of any size)
points would be returned.

cv::CH

Applies one of the flavors of the Teh-Chin chain approximation algorithm.4 The Teh-Chin algorithm is
a more sophisticated (and more compute-intensive) method for reducing the number of points
The

The final argument to cv::findContours() is offse
present, every point in the returned contour will be shifted by this amount. This is particularly useful when
either the contours are extracted from a region of interest, but you would like them represented in the parent
image’s coordinate system, or the reverse case, where you are extracting the contours in the coordinates of
a larger image, but would like to express them relative to some subregion of the image.

Drawing Contours
One of the most straightforward things you might want to do with a list of contours, once you have it, is to
draw the contours on the screen. For this we have cv::drawContours():

 cv::InputOutputArray image, // Will draw on input image
 cv::InputArrayOfArrays contours, // Vector of vectors or points
 int contourIdx, // Contour to draw (-1 is “all”)
 const cv::Scalar& color, // Color for contours
 int thickness = 1, // Thickness for contour lines
 int lineType = 8, // Connectedness (‘4’ or ‘8’)
 cv::InputArray hierarchy = noArray(), // optional (from findContours)
 int maxLevel = INT_MAX, // Max level in hierarchy to descend
 cv::Point offset = cv::Point() // (optional) Offset every point
)

The first argument image is simple: it is the image on which to draw the contours. The next argument,
contour, is the list of contours to be drawn. This is in the same form as the contour output of
cv::findContours(); it is a list of lists of points. The contourIdx argument can be used to select
either a single contour to draw or to tell cv::drawContours() to draw all of the contours on the list
provid n. If
contourIdx

e corresponding arguments in other

ed in the contours argument. If contourIdx is a positive number, all contours will be draw
is negative (usually this is just set to -1), all contours are drawn.

The color, thickness, and lineType arguments are similar to th
the color argument draw functions such as cv::Line(). As usual, is a four-component cv::Scalar,

the thickness is an integer indicating the thickness of the lines to be drawn in pixels, and the lineType
may be either 4 or 8 indicating whether the line is to be drawn as a 4-connected (ugly), 8-connected (not
too ugly), or cv::AA (pretty) line.

eper details of the algorithm.

4 If you are interested in the details of how this algorithm works, you can consult Teh, C.H. and Chin, R.T., On the
Detection of Dominant Points on Digital Curve. PAMI 11 8, pp. 859–872 (1989). Because the algorithm requires no
tuning parameters, however, you can get quite far without knowing the de

The hierarchy argument corresponds to the hierarchy output from cv::findContours(). The
hierarchy works with the maxLevel argument. The latter limits the depth in the hierarchy to which

contours will be drawn in your image. Setting maxLev indicates that the highest
level) in the hierarchy should be drawn; higher numbers indicate that numbe of layers down from the

highest level which should be included. Looking at

el to zero only “level 0” (
r

Figure 8-2, you can see that this is useful for contour trees; it is also potentially useful for connected
component MP) in case you would like only to visualize exterior contours (but not
“holes”—in

Finally, we ca to the draw routine so that the contour will be drawn elsewhere than at the
absolute co t was defined. This feature is par cularly useful when he contour has
already been converted to center-of-mass or other local coordinates. offset is particularly helpful in the
case in whi indContours() one or more times in different im regions
(ROIs) but e results within the original lar e image. Conversely, we could use
offset if we’d extracted a contour from a large image and then wanted to form a small mask for this
contour.

A Contour Example
 an image in it. A trackbar

sets nd the contours in the thresholded image are drawn. The image is updated
whe

ever the

s (cv::RETR_CCO
terior contours).

n give an offset
ordinates by which i ti t

ch you have used cv::f
now want to display all th

age sub-
g

Example 8-1 is drawn from the OpenCV package. Here we create a window with
a simple threshold, a

never the trackbar is adjusted.

Example 8-1: Finding contours based on a trackbar’s location; the contours are updated when
trackbar is moved

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;

cv::Mat g_gray, g_binary;
int g_thresh = 100;

void on_trackbar(int, void*) {
 cv::threshold(g_gray, g_binary, g_thresh, 255, cv::THRESH_BINARY);
 vector< vector< cv::Point> > contours;
 cv::findContours(
 g_binary,

 contours,
 cv::noArray(),
 cv::RETR_LIST,
 cv::CHAIN_APPROX_SIMPLE
);
 g_binary = cv alar::all(0); ::Sc

 cv::drawContours(g_binary, contours, -1, cv::Scalar::all(255));
 cv::imshow("Contours", g_binary);
}

int main(int argc, char** argv)
{
 if(argc != 2 || (g_gray = cv::imread(argv[1], 0)).empty()) {
 cout << "Find threshold dependent contours\nUsage: ./ch8_ex8_1 fruits.jpg"
 << endl;
 return -1;
 }
 cv::namedWindow("Contours", 1);
 cv::createTrackbar(
 "Threshold",
 "Contours",
 &g_thresh,
 255,
 on_trackbar
);
 on_trackbar(0, 0);
 cv::waitKey();
 return 0;
}

Here, everything of interest to us is happening inside of the function on_trackbar(). The image
g_gray is thresholded such that only those pixels brighter than g_thresh remain nzero. The
cv::findContours() function is then called on this thresholded image. is
then ca

In th
good
(cv
you d
by

 no
cvDrawContours()

lled and the contours are drawn (in white) onto the grayscale image.

Another Contour Example
is example, we find contours on an input image and then proceed to draw them one by one. This is a
 example to tinker with on your o n to explore the effects of changing either the contour finding modw e

If ::RETR_LIST in the code) or the max_depth that is used to draw the contours (0 in the code).
 set max_depth to a larger number, notice that the example code steps through the contours returne

:findContours() by means of hierarchy[i][1]. Thus, for some topologiescv:
(cv::RETR_TREE, cv::RETR_CCOMP, etc.), you may see the same contour more than once as you
step through. See Example 8-2.

Example 8-2: Finding and drawing contours on an input image

#include <opencv2/opencv.hpp>
#include <algorithm>
#include <iostream>

using namespace std;

struct AreaCmp
{
 AreaCmp(const vector<float>& _areas) : areas(&_areas) {}
 bool operator()(int a, int b) const { return (*areas)[a] > (*areas)[b]; }
 const vector<float>* areas;
};

int main(int argc, char* argv[]) {

 cv::Mat img, img_edge, img_color;

 // load image or show help if no image was provided
 if(argc != 2 || (img = cv::imread(argv[1], cv::LOAD_IMAGE_GRAYSCALE)).empty()){
 cout << "\nExample 8_2 Drawing Contours\nCall is:\n./ch8_ex8_2 image\n\n";
 return -1;
 }

 cv::threshold(img, img_edge, 128, 255, cv::THRESH_BINARY);
 cv::imshow("Image after threshold", img_edge);
 vector< vector< cv::Point > > contours;
 vector< cv::Vec4i > hierar ; chy

 cv::findContours(
 img_edge,
 contours,
 hierarchy,
 cv::RETR_LIST,
 cv::CHAIN_APPROX_SIMPLE
);
 cout << "\n\nHit any key to draw the next contour, ESC to quit\n\n";
 cout << "Total Contours Detected: " << contours.size() << endl;
 vector<int> sortIdx(contours.size());
 vector<float> areas(contours.size());
 for(int n = 0; n < (int) ntours.size(); n++) { co
 sortIdx[n] = n;
 areas[n] = contourArea(contours[n], false);
 }
 // sort contours so that the largest contours go first
 std::sort(sortIdx.begin(), sortIdx.end(), AreaCmp(areas));

 for(int n = 0; n < (int)sortIdx.size(); n++) {
 int idx = sortIdx[n];
 cv::cvtColor(img, img_ olor, cv::GRAY2BGR); c
 cv::drawContours(img_color, contours, idx,
 cv::Scalar(0,0,255), 2, 8, hierarchy,
 0 // Try different values of max_level, and see what happens
);
 cout << "Contour #" << idx << ": area=" << areas[idx] <<
 ", nvertices=" << contours[idx].size() << endl;
 cv::imshow(argv[0], img_color);
 int k;
 if((k = cv::waitKey()&255) == 27)
 break;
 }
 cout << "Finished all contours\n";
 return 0;
}

More to Do with Contours
When analyzing an image, there are many different things we might want to do with contours. After all,
most contours are—or are candidates to be—things that we are interested in identifying or manipulating.
The various relevant tasks include characterizing the contours in various ways, simplifying or
approximating them, matching them to templates, and so on.

In this section, we will examine some of these common tasks and visit the various functions built into
OpenCV that will either do these things for us or at least make it easier for us to perform our own tasks.

Polygon Approximations

cv::approxPolyDP()

The routine cv::approxPolyDP() is an implementation of one of these two algorithms5:

void cv::approxPolyDP(

If we are drawing a contour or are engaged in shape analysis, it is common to approximate a contour
representing a polygon with another contour having fewer vertices. There are many different ways to do
this; OpenCV offers implementations of two of them.

Polygon Approximation with

 cv::InputArray curve, // Array or vector of 2-dimensional points
 cv::OutputArray approxCurve, // Result, type is same as ‘curve’
 double epsilo // Max distance from original ‘curve’ to ‘approxCurve’ n,
 bool closed // If true, assume link from last to first vertex
);

The cv::approxPolyDP() function acts on one poly at a time, which is given in the input curve.
The output of will be placed in the output array. As usual,

resented
arrays of size N-by-1 (but having two channels). Whicheve representation you choose, the input and
output arrays used for curve and approxCurve should be of the same type.

The parameter epsilon is the accuracy of approximation you require. The meaning of the epsilon
inal lygon

closed ot th
indicated by rve uld be considered a closed polygon. If set to true, the curve will be assumed to be

The Douglas-Peucker Algorithm Explained
In order to help understand how to set the epsilon parameter, as well as to better understand the output
of cv::approxPolyDP(), it is worth taking a moment to understand exactly how the algorithm works.

gon
cv:: approxPolyDP() approxCurve

these polygons can be rep as either STL vectors of cv::Point objects or as OpenCV cv::Mat
r

parameter is that this is the largest deviation you will allow between the orig po and the final
approximated polygon. , the last argument, indicates whether or n e sequence of points

 cu sho
closed (i.e., that the last point is to be considered connected to the first point).

In

5 For aficionados, the method we are discussing here is the Douglas-Peucker (DP) approximation [Douglas73]. Other
popular methods are the Rosenfeld-Johnson [Rosenfeld73] and Teh-Chin [Teh89] algorithms. Of those two, the Teh-
Chin algorithm is not available in OpenCV as a reduction method, but is available at the time of the extraction of the
polygon (see “Finding Contours with cv::findContours()”).

Figure 8-3, starting with a contour (panel b), the algorithm begins by picking two extremal points and
connecting them with a line (panel c). Then the original polygon is searched to find the point farthest from
the line just drawn, and that point is added to the approximation.

The process is iterated (panel d), adding the next most distant point to the accumulated approximation, until
all of the points are less than the distance indicated by the precision parameter (panel f). This means that
good arameter are some fraction of the contour’s length, or of the length of its bounding
box, of the contour’s overall size.

 candidates for the p
r measure or a simila

Figure 8-3: Visualization of the DP algorithm used by cv::approxPolyDP(): the original image (a) is
approximated by a contour (b) and then, starting from the first two maximally separated vertices (c), the

vertices are iteratively selected from that contour (d–f)

s we will discuss work equally well for any collection of
urve between those points). We will mention along

the way which methods make sense only for curves (such as computing arc length) and which make sense
ing

additional

Geometry and Summary Characteristics
Another task that one often faces with contours is computing their various summary characteristics. These
might include length or some other form of size measure of the overall contour. Other useful characteristics
are the contour moments, which can be used to summarize the gross shape characteristics of a contour
discussed in the next section. Some of the method
points (i.e., even those that do not imply a piecewise c

for any general set of points (such as bound boxes).

Length using cv::arcLength()

The subroutine cv::arcLength() will take a contour and return its length.

double cv::arcLength(
 cv::InputArray points, // Array or vector of 2-dimensional points
 bool closed // If true, assume link from last to first vertex
);

The first argument of cv::arcLength() is the contour itself, whose form may be any of the usual
representations of a curve (i.e., STL vector of points or array of two-channel elements). The second

points
closed argument indicates whether the contour should be treated as closed. If the contour is considered
closed, the distance from the last point in to the first contributes to the overall arc length.

cv::arcLength() is an example of a case where the points argument is implicitly assumed to represent
a curve, and so is not particularly meaningful for a general set of points.

Upright Bounding Box with cv::boundingRect()

Of course, the length and area are simple characterizations of a contour. One of the simplest ways to
characterize a contour is to report a bounding box for that contour. The simplest version of that would be to
simply compute the upright bounding rectangle. This is what cv::boundingRect() does for us:

cv::Rect cv::boundingRect(// Return upright rectangle bounding the points
 cv::InputArray points, // Array or vector of 2-dimensional points
);

The cv::boundingRect() function just takes one argument, which is the curve whose bounding box
you would like computed. The function returns a v f type cv::Rect, which is the bounding box you
are looking for.

The bounding box computation is meaningful for any set of points, whether or not those p s r sent a
int

A Minimum Area Rectangle with cv::minAreaRect()
e b g r

alue o

oint epre
curve or are just some arbitrary constellation of po s.

One problem with th oundin ectangle from cv::boundingRect() is that it returns a cv::Rect
and so can only represent a rectangle whose sides are oriented horizontally and vertically. In contrast, the

routine cv::minAreaRect() returns the minimal rectangle that will bound your contour, and this
rectangle may be inclined relative to the vertical; see

Figure 8-4. The arguments are otherwise similar to cv::boundingRect(). The OpenCV data type
cv::RotatedRect is just what is needed to represent such a rectangle. Recall that it has the following
definition:

class cv:: tatedRect { Ro
 cv::Point2f center; // Exact center point (around which to rotate)
 cv::Size2f size; // Size of rectangle (centered on ‘center’)
 float angle; // degrees
};

So, in order to get a little tighter fit, you can call cv::minAreaRect():

cv::RotatedRect cv::minAreaRect(// Return rectangle bounding the points
 cv::InputArray points, // Array or vector of 2-dimensional points
);

As usual, points can be any of the standard representations for a sequence of points, and is equally
meaningful for curves as well as arbitrary point sets.

Figure 8-4: cv::Rect can represent only upright rectangles, but cv::Box2D can handle rectangles of
any inclination

nclosing Circle Using cv::minEnclosingCircle()

Next, we have cv::minEnclosingCircle().6 This routine works pretty much he same way as the
bounding box routines, with the exception that there is no convenient data type for the return value. As a
result, you must pass in references to variables you would like set by cv::minEnclosingCircle():

v::minEnclosingCircle(

A Minimal E

 t

void c
 cv:: 2InputArray points, // Array or vector of -dimensional points
 cv::Point2f& center, // Result location of circle center
 float& radius // Result radius of circle
);

The input curve is just the usual sequence of points representation. The center and radius variables are
variables you will have to allocate and which will be set for you by cv::minEnclosingCircle().

The cv::minEnclosingCircle function is equally meaningful for curves as for general point sets.

Fitting an Ellipse with cv::fitEllipse()

As with the minimal enclosing circle, OpenCV also provides a method for fitting an ellipse to a set of
point

cv::RotatedRect cv::fitEllipse(// ngle bounding the ellipse (Figure 8-5)

s:
 Return recta

 oints cv::InputArray points // Array or vector of 2-dimensional p
);

cv::fitE e() tak st a po nt.

At first g it m ppear cv:: lips s just elliptical analog of
cv::minEnclosingCircle(). e is, however sub re n
cv::minEnclosingCircle() an :fitE se(), is that rmer si omputes
the smalles that c ely enc e giv ts, wh he latt a fittin tion and
re s th est ati poi m t no s in the

llips

lance,

t circle

es ju

ight a

omplet

ints array as argu

that
Ther

d cv:
loses th

me

fitEl

llip
en poin

e() i
, a
 which
ereas t

 the
tle diffe
 the fo
er uses

nce betwee
mply c
g func

turn the ellipse at is the b approxim on to the nt set. This eans tha t all point

6 For more information on the inner workings of these fitting techniques, see Fitzgibbon and Fisher [Fitzgibbon95] and
Zhang [Zhang96].

contour will even be enclosed in the ellipse returned by cv::fitEllipse().7 The fitting is done using
a least-squares fitness function.

The results of the fit are returned in a cv::RotatedRect structure. The indicated box exactly encloses

the ellipse (

Figure 8-5).

Figure 8-5: Ten-point contour with the minimal enclosing circle superimposed (a) and wi
b). A “rotated rectangle” is used by OpenCV to represent that elli

th the best fitting
ellipsoid (psoid (c).

Finding the B r Contour with

In many cases, set of points which you believe is approximately a straight
line—or, more be a noisy sample whose underlying origin is a straight
line. In such a situation, the problem is to determine what line would be the best explanation for the points
you observe. In fact, there are many reasons why one might want to find best line fit, and as a result, there
are many variations of how to actually do that fitting.

This fitting is d , which is defined to b

est Line Fit to You cv::fitLine()

 your “contour” will actually be a
 accurately, which you believe to

 a

e: one by minimizing a cost function

, where

Here is the set of parameters that define the line, is the ith point in the contour, and is the distance

betw n that pee oint and the line defined by . Thus e function, it is th that fundamen distinguishes

tally

7 th ciently small (or certain other degenerate cases—including all of the points

), points to lie on the ellipse. In general, however, some points will be inside,
some will be outside, and few if any will actually lie on the ellipse itself.

 Of course, if e number of points is suffi
being collinear it is possible for all of the

the different available fitting methods. In the case of , the cost function will become the
familiar least-squares fitting procedure that is probably st readers from elementary statistics.
The more complex distan useful when m methods are needed (i.e., fitting

u a or

familiar to mo
ce functions are ore robust fitting

 methods that handle o tlier d ta points more gracefully). Table 8-2 shows the available forms f and

ST_L2

the associated OpenCV enum values used by cv::fitLine().

Table 8-2: Available distance metrics for the distType parameter in cv::fitLine()

distType Distance Metric

Least-squares
method

cv::DI

cv::DIST_L1

cv::DIST_L12

cv::DIST_FAIR

cv::DIST_WELSCH

cv::DIST_HUBER

The OpenCV function cv::fitLine() has the following function prototype:

void cv::fitLine(
 cv::InputArray points, // Array 2-dimensional points or vector of
 cv::OutputArray line, // Vector of Vec4f (2d), or Vec6f (3d)
 int distType, // Distance type (Table 8-2)
 double param, // Parameter for distance metric (Table 8-2)
 double reps, // Radius accuracy parameter
 double aeps // Angle accuracy parameter
);

The argument points is mostly what you have come to expect, a representation of a set of points either
a cv::Mat array or an STL vector. One very important difference, however, between

 as
c

t,
r

his
 cv::fitLine() matically select the optim e for

r

v::fitLine()

al valu

and many of the other functions we are looking at in this section is that cv::fitLine() accepts both
two- and three-dimensional points. The output line is a little strange. That entry should be of type
cv::Vec4f (for a two-dimensional line), or cv::Vec6f (for a three-dimensional line) where the first
half of the values gives the line direction and the second half a point on the line. The third argumen
distType, allows us to select the distance metric we would like to use. The possible values fo
distType are shown in Table 8-2. The argument param is used to supply a value for the parameters
used by some of the distance metrics (these parameters appear as the variables C in Table 8-2). T
parameter can be set to 0, in which case will auto
the selected distance metric. The parameters reps and aeps represent your required accuracy for the
origin of the fitted line (the x, y, z parts) and for the angle of the line (the vx, vy, vz parts). Typical values fo

these parameters are for both of them.

Finding the Convex Hull of a Contour Using cv::convexHull()

ere are many situations in which we need to simpTh lify a polygon by finding its convex hull. The convex
hull of a polygon or contour is the polygon which completely contains the original, is made only of
from the original, and is everyw

points
here convex (i.e., that the internal angle between any three sequential

poin s less than 180 degrees). An example of a convex hull can be seen in Figure 8-6. There are many
reasons to compute convex hulls. One particularly common reason is that testing if a point is inside of a
convex polygon can be very fast, and it is often worthwhile to test first if a point is inside of the convex hull
of a complicated polygon before even bothering to test if it is in the true polygon.

ts i

Figure 8-6: An image (a) is converted to a contour (b). The Convex hull of that contour (c) has far fewer

points and is a much simpler piece of geometry.

In order to compute the convex hull of a contour, OpenCV provides the function cv::convexHull():

void cv::convexHull(
 cv::InputArray points, // Array or vector of 2-dimensional points
 cv::OutputArray hull, // Can be array of points or of (int) indices
 bool clockwise = false, // if true, output points will be clocwise
 bool returnPoints = true // true for points in ‘hull’, else indices
);

The points input to cv::convexHull() can be any of the usual representations of a contour. The
argument hull is where the resulting convex hull will appear. For this argument, you have two options: if
you like, you can provide the usual contour type structure and cv::convexHull() will fill that up with
the points in the resulting convex hull. The other option is to provide not an array of points but an array of
integers. In this case, cv::convexHull() will associate an index with each point that is to appear in the
hull and place those indices in hull. In this case, the indexes will begin at zero and the index value i will
refer to the point points[i].

The clockwise argument indicates how you would like to have cv::convexHull() express the hull
it computes. If clockwise is set to true, then hull will be in a clockwise order, otherwise it will be in a
counter-clockwise order. The final argument, returnPoints, is associated with the option to return
point indices rather than point values. If points is an STL vector object, this argument is ignored,
because the type of the vector template (int vs. cv::Point) can be used to infer what you want. If,
however, points is a cv::Mat type array, returnPoints must be set to true if you are expecting
point coordinates, and false if you are expecting indices.

Geometrical Tests
When dealing with bounding boxes and other summary representations of polygon contours, it is often
desirable to perform such simple geometrical checks as polygon overlap or a fast overlap check between
bounding boxes. OpenCV provides a small but handy set of routines for this sort of geometrical checking.

Many important tests that apply to rectangles are supported through interfaces provided by those rectangle
types. For example, the contains() method of type cv::Rect can be passed a point and it will
determine if that point is inside the rectangle.

Similarly, the minimal rectangle containing two rectangles can be computed with the logical “or” operator
(e.g., rect1 | rect2), while the intersection of two rectangles can be computed with the logical “and”
operator (e.g., rect1 & rect2). For cv::RotatedRect, we have no such functions since the result
is mostly not a rectangle.

For operations on general curves, however, there are library functions that can be used.

25BTesting If a Contour Is Convex with cv::isContourConvex()

A common thing to want to know about a contour is whether or not it is convex. There are lots of reasons to
do this, but one of the most common reasons is that there are a lot of algorithms for working with polygons
that either only work on convex polygons or that can be simplified dramatically for the case of convex
polygons. To test if a polygon is convex, simply call cv::isContourConvex() and pass it your
contour in any of the usual representations. The contour passed will always be assumed to be a closed
polygon (i.e., a link between the last and first points in the contour is presumed to be implied):

bool cv::isContourConvex(// Return true if contour is convex
 cv::InputArray contour // Array or vector of 2-dimensional points
);

Because of the nature of the implementation, cv::isContourConvex() requires that the contour
passed to it be a simple polygon. This means that the contour must not have any self-intersections.

26BTesting If a Point Is Inside a Polygon with cv::pointPolygonTest()
double cv::pointPolygonTest(// Return distance to polygon boundary (or just side)
 cv::InputArray contour, // Array or vector of 2-dimensional points
 cv::Point2f pt, // Test point
 bool measureDist // If true, return distance, otherwise, {0,+1,-1} only
);

This first geometry toolkit function is cv::pointPolygonTest(), which allows you to test whether a
point is inside a polygon (indicated by the array contour). In particular, if the argument measureDist
is set to true, then the function returns the distance to the nearest contour edge; that distance is 0 if the
point is inside the contour and positive if the point is outside. If the measure_dist argument is false
then the return values are simply + 1, – 1, or 0 depending on whether the point is inside, outside, or on an
edge (or vertex), respectively. As always, the contour itself can be either an STL vector or an n-by-1 two-
channel array of points.

2BMatching Contours and Images
Now that we have a pretty good idea of what a contour is and of how to work with contours as objects in
OpenCV, we would like to move to the topic of how to use them for some practical purposes. The most
common task associated with contours is matching them in some way with one another. We may have two
computed contours that we’d like to compare or a computed contour and some abstract template with
which we’d like to compare our contour. We will discuss both of these cases.

12BMoments
One of the simplest ways to compare two contours is to compute what are called contour moments. Contour
moments represent certain high-level characteristics of a contour, an image, or a set of points. (The entire
discussion that follows will apply equally well to contours, images, or point sets, so for convenience we
will just refer to these options collectively as objects.) Numerically, the moments are defined by the
following formula:

In this expression, the moment is defined as a sum over all of the pixels in the object, in which the

value of the pixel at point x, y is multiplied by the factor . For example, if the image is a binary image

(i.e., one in which every pixel is either zero of one), then is just the area of the nonzero pixels in the
image. In the case of a contour, the result is the length of the contour,F

8
F and in the case of a point set it is just

the number of points. After a little thought, you should be able to convince yourself that for the same binary

image, the and moments, divided by the moment, are the average x and y values across the

object. The term “moments” relates to the how this term is used in statistics, and the higher order moments
can be related to what are called the moments of a statistical distribution (i.e., area, average, variance, etc.).
In this sense, you can think of the moments of a non-binary image as being the moments of a binary image
in which individual pixels are individually weighted.

27BComputing Moments with cv::moments()

The function that computes these moments for us is
cv::Moments cv::moments(// Return structure contains moments
 cv::InputArray points, // 2-dimensional points or an “image”
 bool binaryImage = false // If false, interpret image values as “mass”
)

The first argument, points, is the contour we are interested in, and the second, binaryImage, tells
OpenCV if the input image should be interpreted as a binary image. The points argument can be either a
two-dimensional array (in which case it will be understood to be an image) or a set of points represented as
an N-by-1 or 1-by-N array (with two channels) or an STL vector of cv::Point objects. In the latter cases
(the sets of points), cv::moments will interpret these points not as a discrete set of points, but as a
contour with those points as vertices.F

9
F The meaning of this second argument is that if true, all nonzero

pixels will be treated as having value one (1), rather than whatever actual value is stored there. This is
particularly useful when the image is the output of a threshold operation, but which might, for example,
have 255 as its nonzero values. The cv::moments() function returns an instance of the cv::Moments
object. That object is defined as follows:

class Moments {
public:

8 Mathematical purists might object that should be not the contour’s length but rather its area. But because we are
looking here at a contour and not a filled polygon, the length and the area are actually the same in a discrete pixel space
(at least for the relevant distance measure in our pixel space). There are also functions for computing moments of

IplImage images; in that case, would actually be the area of nonzero pixels. Indeed the distinction is not entirely
academic, however, a contour is actually represented as a set of vertex points, the formula used to compute the length
will not give precisely the same area as would be computed by first rasterizing the contour (i.e., using
cv::drawContours()) and then computing the area of that rasterization—though the two should converge to the
same value in the limit of infinite resolution.
9 In such case as you may need to handle a set of points, rather than a contour, it is most convenient to simply create an
image containing those points.

 double m00; // zero order moment (x1)
 double m10, m01; // first order moments (x2)
 double m20, m11, m02; // second order moments (x3)
 double m30, m21, m12, m03; // third order moments (x4)
 double mu20, mu11, mu02; // second order central moments (x3)
 double mu30, mu21, mu12, mu03; // third order central moments (x4)
 double nu20, nu11, nu02; // second order Hu invariant moments (x3)
 double nu30, nu21, nu12, nu03; // third order Hu invariant moments (x4)
 Moments();
 Moments(
 double m00,
 double m10, double m01,
 double m20, double m11, double m02,
 double m30, double m21, double m12, double m03
);
 Moments(const CvMoments& moments); // convert v1.x struct to C++ object
 operator CvMoments() const; // convert C++ object to v1.x struct
}

A single call to cv::moments() will compute all of the moments up to third order (i.e., moments for

which). It will also compute what are called central moments and normalized central moments.
We will discuss those next.

13BMore About Moments
The moment computation just described gives some rudimentary characteristics of a contour that can be
used to compare two contours. However, the moments resulting from that computation are not the best
parameters for such comparisons in most practical cases. In general, the moments we have discussed so far
will not be the same for two otherwise identical contours which are displaced relative to one another, of
different size, or rotated relative to one another.

28BCentral Moments Are Invariant Under Translation

Given a particular contour or image, the moment of that contour will clearly be the same no matter
where that contour appears in an image. The higher order moments, however, clearly will not be. Consider

the moment, which we identified earlier with the average x-position of a pixel in the object. Clearly
given two otherwise identical objects in different places, the average x-position is different. It may be less
obvious on casual inspection, but the second order moments, which tell us something about the spread of
the object, are also not invariant under translationF

10
F. This is not particularly convenient, as we would

certainly like (in most cases) to be able to use these moments to compare an object that might appear
anywhere in an image to a reference object that appeared somewhere (probably somewhere else) in some
reference image.

The solution to this is to compute what are called central moments, which are usually denoted and
defined by the following relation:

where:

10 For those who are not into this sort of math jargon, the phrase “invariant under translation” means that some quantity
computed for some object is unchanged if that entire object is moved (i.e., “translated”) from one place to another in
the image. The phrase “invariant under rotation” similarly means that the quantity being computed is unchanged of the
object is rotated in the image.

, and

Of course, it should be immediately clear that = (because the terms involving p and q vanish

anyhow), and that the and central moments are both equal to zero as well. The higher order
moments are thus the same as the non-central moments but measured with respect to the “center of mass”
of (or in the coordinates of the center of mass of) the object as a whole. Because these measurements are
relative to this center, they do not change if the object appears in any arbitrary location in the image.

You will notice that there are no elements mu00, mu10, or mu01 in the object
cv::Moments. This is simply because these values are “trivial” (i.e., mu00=m00, and
mu10=mu01=0). The same is true for the normalized central moments (except that
nu00=1, while nu10 and nu01 are both zero). For this reason they are not included in
the structure, as they would just waste memory storing redundant information.

29BNormalized Central Moments Are Also Invariant Under Scaling

Just as the central moments allow for us to compare two different objects that are in different locations in
our image, it is also often important to be able to compare two different objects that are the same except for
being different sizes. (This sometimes happens because we are looking for an object of a type that appears
in nature of different sizes—e.g., bears—but more often it is simply because we do not necessarily know
how far the object will be from the imager that generated our image in the first place.)

Just as the central moments are defined based on the original moments by subtracting out the average to
achieve translational invariance, the normalized central moments achieve scale invariance by factoring out
the overall size of the object. The formula for the normalized central moments is the following:

This marginally intimidating formula just says that the normalized central moments are equal to the central
moments up to a normalization factor that is itself just some power of the area of the object (with that
power being greater for higher order moments).

There is no specific function for computing normalized moments in OpenCV, as they are computed
automatically by cv::Moments() when the standard and central moments are computed.

30BHu Invariant Moments are Invariant Under Rotation

Finally, the Hu invariant moments are linear combinations of the normalized central moments. The idea
here is that, by combining the different normalized central moments, it is possible to create functions
representing different aspects of the image in a way that is invariant to scale, rotation, and (for all but the

one called h1) reflection.

For the sake of completeness, we show here the actual definitions of the Hu moments:

-

Looking at X

Figure 8-7X and XTable 8-3X, we can gain a sense of how the Hu moments behave. Observe first that the
moments tend to be smaller as we move to higher orders. This should be no surprise in that, by their
definition, higher Hu moments have more powers of various normalized factors. Since each of those factors
is less than 1, the products of more and more of them will tend to be smaller numbers.

Figure 8-7: Images of five simple characters; looking at their Hu moments yields some intuition concerning
their behavior.

Table 8-3: Values of the Hu moments for the five simple characters shown in

X

Figure 8-7X.

h1 h2 h3 h4 h5 h6 h7

A 2.837e–1 1.961e–3 1.484e–2 2.265e–4 –4.152e–7 1.003e–5 –7.941e–9

I 4.578e–1 1.820e–1 0.000 0.000 0.000 0.000 0.000

O 3.791e–1 2.623e–4 4.501e–7 5.858e–7 1.529e–13 7.775e–9 –2.591e–13

M 2.465e–1 4.775e–4 7.263e–5 2.617e–6 –3.607e–11 –5.718e–8 –7.218e–24

F 3.186e–1 2.914e–2 9.397e–3 8.221e–4 3.872e–8 2.019e–5 2.285e–6

Other factors of particular interest are that the “I”, which is symmetric under 180 degree rotations and
reflection, has a value of exactly 0 for h3 through h7 and that the “O,” which has similar symmetries, has
all nonzero moments. We leave it to the reader to look at the figures, compare the various moments, and
build a basic intuition for what those moments represent.

31BComputing Hu Invariant Moments with cv::HuMoments()

While the other moments were all computed with the same function cv::moments(), the Hu invariant
moments are computed with a second function that takes the cv::Moments object you got from
cv::moments() and returns a list of numbers for the seven invariant moments:

void cv::HuMoments(
 const cv::Moments& moments, // Input is result from cv::moments() function
 double* hu // Return is C-style array of 7 Hu moments
);

The function cv::HuMoments() expects a cv::Moments object and a pointer to a C-style array you
should have already allocated with room for the seven invariant moments.

14BMatching and Hu Moments
double cv::MatchShapes(
 cv::InputArray object1, // First array of 2-d points or cv:U8C1 image
 cv::InputArray object2, // Second array of 2-d points or cv:U8C1 image
 int method, // Comparison method (XTable 8-4X)
 double parameter = 0 // Method-specific parameter (for later extensions)
);

Naturally, with Hu moments we would like to compare two objects and determine whether they are similar.
Of course, there are many possible definitions of “similar.” To make this process somewhat easier, the
OpenCV function cv::matchShapes() allows us to simply provide two objects and have their
moments computed and compared according to a criterion that we provide.

These objects can be either grayscale images or contours. In either case, cv::matchShapes() will
compute the moments for you before proceeding with the comparison. The method used in
cv::matchShapes() is one of the three listed in XTable 8-4X.

Table 8-4: Matching methods used by cv::matchShapes()

Value of method cv::matchShapes() return value

cv::CONTOURS_MATCH_I1

cv::CONTOURS_MATCH_I2

cv::CONTOURS_MATCH_I3

In the table, and are defined as:

In these expressions, and are the Hu invariant moments of images A and B, respectively.

Each of the three values defined in XTable 8-4X has a different meaning in terms of how the comparison
metric is computed. This metric determines the value ultimately returned by cv::matchShapes(). The
final parameter argument is not currently used, so we can safely leave it at the default value of 0 (it is
there for future comparison metrics that may require an additional user provided parameter).

3BSummary
In this chapter we learned about contours, sequences of points in two dimensions. These sequences could
be represented as STL vectors of two-dimensional point objects (e.g., cv::Vec2f), as N-by-1 dual
channel arrays, or as N-by-2 single channel arrays. Such sequences can be used to represent contours in in
image plane, and there are many features built into the library to help us construct and manipulate these
contours.

Contours are generally useful for representing spatial partitions of an image. In this context, the OpenCV
library provides us with tools for comparing such partitions to one another, as well as for testing properties
of these partitions, such as convexity, moments, or the relationship of an arbitrary point with such a
contour.

4BExercises
1. Finding the extremal points (i.e., the two points that are farthest apart) in a closed contour of N points

can be accomplished by comparing the distance of each point to every other point.
a) What is the complexity of such an algorithm?
b) Explain how you can do this faster. What is the maximal closed contour length that could fit into a

4-by-4 image? What is its contour area?
2. Using PowerPoint or a similar program, draw a white circle of radius 20 on a black background (the

circle’s circumference will thus be 2 π 20 ≈ 125.7. Save your drawing as an image.
a) Read the image in, turn it into grayscale, threshold, and find the contour. What is the contour

length? Is it the same (within rounding) or different from the calculated length?
b) Using 125.7 as a base length of the contour, run cv::approxPolyDP() using as parameters

the following fractions of the base length: 90%, 66%, 33%, 10%. Find the contour length and
draw the results.

3. Suppose we are building a bottle detector and wish to create a “bottle” feature. We have many images
of bottles that are easy to segment and find the contours of, but the bottles are rotated and come in
various sizes. We can draw the contours and then find the Hu moments to yield an invariant bottle-
feature vector. So far, so good—but should we draw filled-in contours or just line contours? Explain
your answer.

4. When using cv::moments() to extract bottle contour moments in exercise X3X, how should we set
isBinary? Explain your answer.

5. Take the letter shapes used in the discussion of Hu moments. Produce variant images of the shapes by
rotating to several different angles, scaling larger and smaller, and combining these transformations.
Describe which Hu features respond to rotation, which to scale, and which to both.

6. Make a shape in PowerPoint (or another drawing program) and save it as an image. Make a scaled, a
rotated, and a rotated and scaled version of the object and then store these as images. Compare them

using cv::matchShapes(). How do the match scores compare for Hu
moments verses ordinary moments?

7. Use a depth sensor such as the kinect camera to segment your hands. Use moments to attempt to
recognize various gestures.

9
Background Subtraction

0BOverview of Background Subtraction
Because of its simplicity and because camera locations are fixed in many contexts, background subtraction
(aka background differencing) is a fundamental image processing operation for video security applications.
Toyama, Krumm, Brumitt, and Meyers give a good overview and comparison with many techniques
[Toyama99]. In order to perform background subtraction, we first must “learn” a model of the background.

Once learned, this background model is compared against the current image and then the known
background parts are subtracted away. The objects left after subtraction are presumably new foreground
objects.

Of course, “background” is an ill-defined concept that varies by application. For example, if you are
watching a highway, perhaps average traffic flow should be considered background. Normally, background
is considered to be any static or periodically moving parts of a scene that remain static or periodic over the
period of interest. The whole ensemble may have time-varying components, such as trees waving in
morning and evening wind but standing still at noon. Two common but substantially distinct environment
categories that are likely to be encountered are indoor and outdoor scenes. We are interested in tools that
will help us in both of these environments. First we will discuss the weaknesses of typical background
models and then will move on to discuss higher-level scene models. In that context, we present a quick
method that is mostly good for indoor static background scenes whose lighting doesn’t change much. We
then follow this by a “codebook” method that is slightly slower but can work in both outdoor and indoor
scenes; it allows for periodic movements (such as the trees waving in the wind) and for lighting to change
slowly or periodically. This method is also tolerant to learning the background even when there are
occasional foreground objects moving by. We’ll top this off by another discussion of connected
components (first seen in Chapter 5) in the context of cleaning up foreground object detection. We will
then compare the quick background method against the codebook background method. This chapter will
conclude with a discussion of the implementations available in the OpenCV library of two modern
algorithms for background subtraction. These algorithms use the principles discussed in the chapter, but
also include both extensions and implementation details which make them more suitable for real-world
application.

1BWeaknesses of Background Subtraction
Although the background modeling methods mentioned here work fairly well for simple scenes, they suffer
from an assumption that is often violated: namely that the behavior of all of the pixels in the image is
statistically independent from the behavior of all of the others. Notably, the methods we describe here learn

a model for the variations a pixel experiences without considering any of its neighboring pixels. In order to
take surrounding pixels into account, we could learn a multipart model, a simple example of which would
be an extension of our basic independent pixel model to include a rudimentary sense of the brightness of
neighboring pixels. In this case, we use the brightness of neighboring pixels to distinguish when
neighboring pixel values are relatively bright or dim. We then learn effectively two models for the
individual pixel: one for when the surrounding pixels are bright and one for when the surrounding pixels
are dim. In this way, we have a model that takes into account the surrounding context. But this comes at the
cost of twice as much memory use and more computation, since we now need different values for when the
surrounding pixels are bright or dim. We also need twice as much data to fill out this two-state model. We
can generalize the idea of “high” and “low” contexts to a multidimensional histogram of single and
surrounding pixel intensities as well as make it even more complex by doing all this over a few time steps.
Of course, this richer model over space and time would require still more memory, more collected data
samples, and more computational resources.F

1

Because of these extra costs, the more complex models are usually avoided. We can often more efficiently
invest our resources in cleaning up the false positive pixels that result when the independent pixel
assumption is violated. This cleanup usually takes the form of image processing operations
(cv::erode(), cv::dilate(), and cv::floodFill(), mostly) that eliminate stray patches of
pixels. We’ve discussed these routines previously (Chapter 5) in the context of finding large and compactF

2
F

connected components within noisy data. We will employ connected components again in this chapter and
so, for now, will restrict our discussion to approaches that assume pixels vary independently.

2BScene Modeling
How do we define background and foreground? If we’re watching a parking lot and a car comes in to park,
then this car is a new foreground object. But should it stay foreground forever? How about a trash can that
was moved? It will show up as foreground in two places: the place it was moved to and the “hole” it was
moved from. How do we tell the difference? And again, how long should the trash can (and its hole) remain
foreground? If we are modeling a dark room and suddenly someone turns on a light, should the whole room
become foreground? To answer these questions, we need a higher-level “scene” model, in which we define
multiple levels between foreground and background states, and a timing-based method of slowly relegating
unmoving foreground patches to background patches. We will also have to detect and create a new model
when there is a global change in a scene.

In general, a scene model might contain multiple layers, from “new foreground” to older foreground on
down to background. There might also be some motion detection so that, when an object is moved, we can
identify both its “positive” aspect (its new location) and its “negative” aspect (its old location, the “hole”).

In this way, a new foreground object would be put in the “new foreground” object level and marked as a
positive object or a hole. In areas where there was no foreground object, we could continue updating our
background model. If a foreground object does not move for a given time, it is demoted to “older
foreground,” where its pixel statistics are provisionally learned until its learned model joins the learned
background model.

For global change detection such as turning on a light in a room, we might use global frame differencing.
For example, if many pixels change at once, then we could classify it as a global rather than local change
and then switch to using a different model for the new situation.

1 In cases in which a computer is expected to “learn” something from data, it is often the case that the primary practical
obstacle to success turns out to be having enough data. The more complex your model becomes, the easier it is to get
yourself into a situation in which the expressive power of your model vastly exceeds your capability to generate
training data for that model. We will re-encounter this issue in more detail in the later chapter on machine learning.
2 Here we are using mathematician’s definition of “compact,” which has nothing to do with size.

10BA Slice of Pixels
Before we go on to modeling pixel changes, let’s get an idea of what pixels in an image can look like over
time. Consider a camera looking out a window to a scene of a tree blowing in the wind. Error! Reference
source not found. shows what the pixels in a given line segment of the image look like over 60 frames. We
wish to model these kinds of fluctuations. Before doing so, however, we make a small digression to discuss
how we sampled this line because it’s a generally useful trick for creating features and for debugging.

Figure 9-1: Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames: some
dark areas (upper-left) are quite stable, whereas moving branches (upper-center) can vary widely

Because this comes up quite often in various contexts, OpenCV makes it easy to sample an arbitrary line of
pixels. This is done with the object called the line iterator, which we encountered way back in Chapter 3.
The line iterator, cv::LineIterator, is an object which, once instantiated, can be queried to give us
information about all of the points along a line in sequence.

The first thing we need to do is to instantiate a line iterator object. We do this with the
cv::LineIterator constructor:

cv::LineIterator::LineIterator(
 const cv::Mat& image, // Image to iterate over
 cv::Point pt1, // Start point for iterator
 cv::Point pt2, // End point for iterator
 int connectivity = 8, // Connectivity, either 4 or 8
 int left_to_right = 0 // Iteration direction, 0 (false) or 1 (true)
);

Here, the input image may be of any type or number of channels. The points pt1 and pt2 are the ends of
the line segment. The connectivity can be 4 (the line can step right, left, up, or down) or 8 (the line
can additionally step along the diagonals). Finally, if left_to_right is set to 0 (false), then
line_iterator scans from pt1 to pt2; otherwise, it will go from the leftmost to the rightmost point.F

3
F

The iterator can then just be incremented through, pointing to each of the pixels along the line between the
given endpoints points. We increment the iterator with the usual cv::LineIterator
::operator++(). All the channels are available at once. If, for example, our line iterator is called
line_iterator, then we can access the current point by dereferencing the iterator (e.g.,
*line_iterator). One word of warning is in order here, however, which is that the return type of
cv::LineIterator::operator*() is not a pointer to a built-in OpenCV vector type (i.e.,
cv::Vec<> or some instantiation of it), but rather it is a uchar* pointer. This means that you will

3 The left_to_right flag was introduced because a discrete line drawn from pt1 to pt2 does not always match
the line from pt2 to pt1. Therefore, setting this flag gives the user a consistent rasterization regardless of the pt1,
pt2 order.

typically want to cast this value yourself to something like cv::Vec3f* (or whatever is appropriate for
the array image).F

4
F

With this convenient tool in hand, we can take look at how it can be used to extract data from a scene. The
program in XExample 9-1X reads a movie file and generates the sort of data seen in XFigure 9-1X.

Example 9-1: Reads out the RGB values of all pixels in one row of a video and accumulates those values
into three separate files

#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>

using namespace std;

void help() {
 cout << "\n"
 << "Read out RGB pixel values and store them to disk\nCall:\n"
 << "./ch9_ex9_1 avi_file\n"
 << "\n This will store to files blines.csv, glines.csv and rlines.csv\n\n"
 << endl;
}

int main(int argc, char** argv) {

 if(argc != 2) { help(); return -1; }
 cv::namedWindow("Example9_1", CV_WINDOW_AUTOSIZE);

 cv::VideoCapture cap;
 if((argc < 2)|| !cap.open(argv[1]))
 {
 cerr << "Couldn't open video file" << endl;
 help();
 cap.open(0);
 return -1;
 }

 cv::Point pt1(10,10), pt2(30,30);
 int max_buffer;
 cv::Mat rawImage;
 ofstream b,g,r;
 b.open("blines.csv");
 g.open("glines.csv");
 r.open("rlines.csv");

 // MAIN PROCESSING LOOP:
 //
 for(;;) {
 cap >> rawImage;
 if(!rawImage.data) break;

 cv::LineIterator it(rawImage, pt1, pt2, 8);
 for(int j=0; j<it.count; ++j,++it) {
 b << (int)(*it)[0] << ", ";

4 In some cases, you can get away with being a little sloppy here. Specifically, when the image is already of unsigned
character type, you can just access the elements directly with constructions like (*line_iterator)[0], or
(*line_iterator)[1], and so on. On close inspection, these are actually dereferencing the iterator to get a
character pointer, then using the built-in C offset dereference bracket operator, rather than casting the dereferenced
iterator to an OpenCV vector type like Vec3f and accessing the channel through the overloaded dereferencing operator
of that class. In the end, for the special case of Vec3b (or any number of channels), it happens to all come to the same
thing.

 g << (int)(*it)[1] << ", ";
 r << (int)(*it)[2] << ", ";
 (*it)[2] = 255; // Mark this sample in red
 }
 cv::imshow("Example9_1", rawImage);
 int c = cv::waitKey(10);
 b << "\n"; g << "\n"; r << "\n";
 }

 // CLEAN UP:
 //
 b << endl; g << endl; r << endl;
 b.close(); g.close(); r.close();
 cout << "\n"
 << "Data stored to files: blines.csv, glines.csv and rlines.csv\n\n"
 << endl;
}

In Example 9-1, we stepped through the points, one at a time, and processed each one. Another common
and useful way to approach the problem is to create a buffer (of the appropriate type) and copy the entire
line into that buffer before processing the buffer. In that case, the buffer copy would have looked something
like the following:

LineIterator it(rawImage, pt1, pt2, 8);
vector<Vec3b> buf(it.count);
for(int i=0; i < it.count; i++, ++it) buf[i] = (const Vec3b)*it;

The primary advantage of this approach is that if the image rawImage were not of an unsigned character
type, this method is a cleaner way of casting to the appropriate type.

We are now ready to move on to some methods for modeling the kinds of pixel fluctuations seen in XFigure
9-1XError! Reference source not found.. As we move from simple to increasingly complex models, we
shall restrict our attention to those models that will run in real time and within reasonable memory
constraints.

11BFrame Differencing
The very simplest background subtraction method is to subtract one frame from another (possibly several
frames later) and then label any difference that is “big enough” the foreground. This process tends to catch
the edges of moving objects. For simplicity, let’s say we have three single-channel images:
frameTime1, frameTime2, and frameForeground. The image frameTime1 is filled with an
older grayscale image, and frameTime2 is filled with the current grayscale image. We could then use the
following code to detect the magnitude (absolute value) of foreground differences in
frameForeground:

cv::absdiff(
 frameTime1, // First input array
 frameTime2, // Second input array
 frameForeground // Result array
);

Because pixel values always exhibit noise and fluctuations, we should ignore (set to 0) small differences
(say, less than 15), and mark the rest as big differences (set to 255):

cv::threshold(
 frameForeground, // Input Image
 frameForeground, // Result image
 15, // Threshold value
 255, // Max value for upward operations
 cv::THRESH_BINARY // Threshold type to use
);

The image frameForeground then marks candidate foreground objects as 255 and background pixels
as 0. We need to clean up small noise areas as discussed earlier; we might do this with cv::erode()

followed by cv::dilate()or by using connected components. For color images, we could use the same
code for each color channel and then combine the channels with the cv::max() function. This method is
much too simple for most applications other than merely indicating regions of motion. For a more effective
background model we need to keep some statistics about the means and average differences of pixels in the

scene. You can look ahead to the section entitled “XA Quick X” to see examples of frame differencing in

X

Figure 9-6X and X

Figure 9-7X.

3BAveraging Background Method
The averaging method basically learns the average and standard deviation (or similarly, but
computationally faster, the average difference) of each pixel as its model of the background.

Consider the pixel line from XFigure 9-1X. Instead of plotting one sequence of values for each frame (as we
did in that figure), we can represent the variations of each pixel throughout the video in terms of an average
value and a pixel’s associated average differences (XFigure 9-2X). In the same video, a foreground object

(which is, in fact, a hand) passes in front of the camera. The resulting change in statistics of an associated
pixel is shown in the figure.

Figure 9-2: Data from XFigure 9-1X presented in terms of average differences: an object (a hand) passes in
front of the camera causing the statistics of a pixel’s value to change.

The averaging method makes use of four OpenCV routines: cv::Mat::operator+=(), to accumulate
images over time; cv::absdiff(), to accumulate frame-to-frame image differences over time;
cv::inRange(), to segment the image (once a background model has been learned) into foreground and
background regions; and cv::max(), to compile segmentations from different color channels into a
single mask image. Because this is a rather long code example, we will break it into pieces and discuss each
piece in turn.

First, we create pointers for the various scratch and statistics-keeping images we will need along the way. It
will prove helpful to sort these pointers according to the type of images they will later hold.

#include <opencv2/opencv.hpp>
#include <iostream>
#include <fstream>

using namespace std;

// Global storage
//
// Float, 3-channel images
//
cv::Mat IavgF, IdiffF, IprevF, IhiF, IlowF;
cv::Mat tmp, tmp2;

// Float, 1-channel images
//
vector<cv::Mat> Igray(3);
vector<cv::Mat> Ilow(3);
vector<cv::Mat> Ihi(3);

// Byte, 1-channel image
//
cv::Mat Imaskt;

// Counts number of images learned for averaging later
//
float Icount;

Next, we create a single call to allocate all the necessary intermediate images. For convenience, we pass in
a single image (from our video) that can be used as a reference for sizing the intermediate images:

// I is just a sample image for allocation purposes
// (passed in for sizing)
//

void AllocateImages(IplImage* I){

 CvSize sz = cvGetSize(I);

 IavgF = cv::Mat::zeros(sz, CV::F32C3);
 IdiffF = cv::Mat::zeros(sz, CV::F32C3);
 IprevF = cv::Mat::zeros(sz, CV::F32C3);
 IhiF = cv::Mat::zeros(sz, CV::F32C3);
 IlowF = cv::Mat::zeros(sz, CV::F32C3);
 Icount = 0.00001; // Protect against divide by zero

 tmp = cv::Mat::zeros(sz, CV::F32C3);
 tmp2 = cv::Mat::zeros(sz, CV::F32C3);
 Imaskt = cv::Mat(sz, CV::F32C1);
}

In the next piece of code, we learn the accumulated background image and the accumulated absolute value
of frame-to-frame image differences (a computationally quicker proxyF

5
F for learning the standard deviation

of the image pixels). This is typically called for 30 to 1,000 frames, sometimes taking just a few frames
from each second or sometimes taking all available frames. The routine will be called with a three-color-
channel image of depth 8 bits:

// Learn the background statistics for one more frame
// I is a color sample of the background, 3-channel, 8u
//
void accumulateBackground(cv::Mat& I){

 static int first = 1; // nb. Not thread safe
 I.convertTo(tmp, CV::F32); // convert to float
 if(!first){
 IavgF += tmp;
 cv::absdiff(tmp, IprevF, tmp2);
 IdiffF += tmp2;
 Icount += 1.0;
 }
 first = 0;
 IprevF = tmp;
}

We first use cv::Mat::convertTo() to turn the raw background 8-bit-per-channel, three-color-
channel image into a floating-point three-channel image. We then accumulate the raw floating-point images
into IavgF. Next, we calculate the frame-to-frame absolute difference image using cv::absdiff()
and accumulate that into image IdiffF. Each time we accumulate these images, we increment the image
count Icount, a global, to use for averaging later.

Once we have accumulated enough frames, we convert them into a statistical model of the background.
That is, we compute the means and deviation measures (the average absolute differences) of each pixel:

void createModelsfromStats() {

 IavgF *= (1.0/Icount);
 IdiffF *= (1.0/Icount);

 // Make sure diff is always something
 //
 IdiffF += cv::Scalar(1.0, 1.0, 1.0);

5 Notice our use of the word “proxy.” Average difference is not mathematically equivalent to standard deviation, but in
this context it is close enough to yield results of similar quality. The advantage of average difference is that it is faster
to compute than the standard deviation. With only a tiny modification of the code example you can use standard
deviations instead and compare the quality of the final results for yourself; we’ll discuss this more explicitly later in
this section.

 setHighThreshold(7.0);
 setLowThreshold(6.0);
}

In this section, we use cv::Mat::operator*=() to calculate the average raw and absolute difference
images by dividing by the number of input images accumulated. As a precaution, we ensure that the
average difference image is at least 1; we’ll need to scale this factor when calculating a foreground-
background threshold and would like to avoid the degenerate case in which these two thresholds could
become equal.

The next two routines, setHighThreshold() and setLowThreshold(), are utility functions that
set a threshold based on the frame-to-frame average absolute differences (FFAAD). The FFAAD can be
thought of as the basic metric against which we compare observed changes in order to determine if they are
significant. The call setHighThreshold(7.0), for example, fixes a threshold such that any value that
is 7 times the FFAAD above average for that pixel is considered foreground; likewise,
setLowThreshold(6.0) sets a threshold bound that is 6 times the FFAAD below the average for that
pixel. Within this range around the pixel’s average value, objects are considered to be background. These
threshold functions are:

void setHighThreshold(float scale) {
 IhiF = IavgF + (IdiffF * scale);
 cv::split(IhiF, Ihi);
}
void setLowThreshold(float scale) {
 IlowF = IavgF - (IdiffF * scale);
 cv::split(IlowF, Ilow);
}

In setLowThreshold() and setHighThreshold(), we first scale the difference image (the
FFAAD) prior to adding or subtracting these ranges relative to IavgF. This action sets the IhiF and
IlowF range for each channel in the image via cv::split().

Once we have our background model, complete with high and low thresholds, we use it to segment the
image into foreground (things not “explained” by the background image) and the background (anything
that fits within the high and low thresholds of our background model). Segmentation is done by calling:

// Create a binary: 0,255 mask where 255 means foreground pixel
// I Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
//
void backgroundDiff(
 cv::Mat& I,
 cv::Mat& Imask
) {
 I.convertTo(tmp, CV::F32); // To float
 cv::split(tmp, Igray);

 // Channel 1
 //
 cv::inRange(Igray[0], Ilow[0], Ihi[0], Imask);

 // Channel 2
 //
 cv::inRange(Igray[1], Ilow[1], Ihi[1], Imaskt);
 Imask = cv::min(Imask, Imaskt);

 // Channel 3
 //
 cv::inRange(Igray[2], Ilow[2], Ihi[2], Imaskt);
 Imask = cv::min(Imask, Imaskt);

 // Finally, invert the results
 //

 Imask = 255 – Imask;
}

This function first converts the input image I (the image to be segmented) into a floating-point image by
calling cv::Mat::convertTo(). We then convert the three-channel image into separate one-channel
image planes using cv::split(). These color channel planes are then checked to see if they are within
the high and low range of the average background pixel via the cv::inRange() function, which sets the
grayscale 8-bit depth image Imaskt to max (255) when it’s in range and to 0 otherwise. For each color
channel, we logically ANDF

6
F the segmentation results into a mask image Imask, since strong differences in

any color channel are considered evidence of a foreground pixel here. Finally, we invert Imask using
cv::operator-(), because foreground should be the values out of range, not in range. The mask
image is the output result.

By way of putting it all together, we can define a function main(), which reads in a video and builds a
background model. For our example, we run the video in a training mode until the user hits the space bar,
after which the video runs in a mode in which any foreground objects detected are highlighted in red:

void help() {
 cout << "\n"
 << "Train a background model on incoming video, then run the model\n"
 << "./ch9_ex9_2 avi_file\n"
 << endl;
}

int main(int argc, char** argv) {

 if(argc != 2) { help(); return -1; }
 cv::namedWindow("Example9_2", cv::WINDOW_AUTOSIZE);

 cv::VideoCapture cap;
 if((argc < 2)|| !cap.open(argv[1])) {
 cerr << "Couldn't open video file" << endl;
 help();
 cap.open(0);
 return -1;
 }

 // FIRST PROCESSING LOOP (TRAINING):
 //
 while(1) {
 cap >> image;
 if(!image.data) exit(0);

 accumulateBackground(image);

 cv::imshow("Example9_2", rawImage);
 if(cv::waitKey(7) == 0x20) break;
 }

 // We have all of our data, so create the models
 //
 createModelsfromStats();

 // SECOND PROCESSING LOOP (TESTING):
 //
 cv::Mat mask;
 while(1) {

6 In this circumstance, you could have used the bitwise OR operator as well, because the images being OR’ed are
unsigned character images and only the values 0x00 and 0xff are relevant. In general, however, the cv::max()
operation is a good way to get a “fuzzy” OR which responds sensibly to a range of values.

 cap >> image;
 if(!image.data) exit(0);

 backgroundDiff(image, mask);

 // A simple visualization is to write to the red channel
 //
 cv::split(image, Igray);
 Igray[2] = cv::max(mask, Igray[2]);
 cv::merge(Igray, image);

 cv::imshow("Example9_2", image);
 if(cv::waitKey(7) == 0x20) break;
 }

 exit(0);
}

We’ve just seen a simple method of learning background scenes and segmenting foreground objects. It will
work well only with scenes that do not contain moving background components (it would fail with a waving

curtain or waving trees). It also assumes that the lighting remains fairly constant (as in indoor static

scenes). You can look ahead to X

Figure 9-6X to check the performance of this averaging method.

12BAccumulating Means, Variances, and Covariances
The averaging background method just described made use the accumulation operator,
cv::Mat::operator+=() to do what was essentially the simplest possible thing: to sum up a bunch of
data that we could then normalize into an average. The average is a convenient statistical quantity for a lot
of reasons, of course, but one often overlooked advantage of the average is the fact that it can be computed
incrementally in this way.F

7
F This means that we can do processing on line without needing to accumulate all

of the data before analyzing. We will now consider a slightly more sophisticated model, which can also be
computed on line in this way.

Our next model will represent the intensity (or color) variation within a pixel by computing a Gaussian
model for that variation. A one-dimensional Gaussian model is characterized by a single mean (or average)

7 For purists, our implementation above is not exactly a purely incremental computation, as we divide by the number of
samples at the end. There does, however, exist a purely incremental method for updating the average when a new data
point is introduced, but the “nearly incremental” version used is substantially more computationally efficient. We will
continue throughout the chapter to refer to methods as “incremental” if they can be computed from purely cumulative
functions of the data combined with factors associated with overall normalization.

and a single variance (which tells us something about the expected spread of measured values about the
mean). In the case of a d-dimensional model (e.g., a three-color model), there will be a d-dimensional
vector for the mean, and a -element matrix that represents not only the individual variances of the d-
dimensions, but also the covariances, which represent correlations between each of the individual
dimensions.

As promised, each of these quantities—the means, the variances, and the covariances—can be computed in
an incremental manner. Given a stream of incoming images, we can define three functions that will
accumulate the necessary data, and three functions that will actually convert those accumulations into the
model parameters.

The code which follows assumes the existence of a few global variables:
cv::Mat sum;
cv::Mat sqsum;
int image_count = 0;

23BComputing the Mean with cv::Mat::operator+=()

As we saw in our previous example, the best method to compute the pixel means is to add them all up using
cv::Mat::operator+=() and then divide by the total number of images to obtain the mean:

void accumulateMean(
 cv::Mat& I
) {
 if(sum.empty) {
 sum = cv::Mat::zeros(I.size(), CV::F32C(I.channels()));
 }
 I.convertTo(scratch, sum.type());
 sum += scratch;
 image_count++;
}

The function above, accumulateMean(), is then called on each incoming image. Once all of the
images that are going to be used for the background model have been computed, you can call the next
function, computeMean() to get a single “image” that contains the averages for every pixel across your
entire input set:

cv::Mat& computeMean(
 cv::Mat& mean
) {
 mean = sum / image_count;
}

24BComputing the mean with cv::accumulate()

OpenCV provides another function, which is essentially similar to just using the
cv::Mat::operator+=() operator, but with two important distinctions. The first is that it will
automatically handle the cv::Mat::convertTo() functionality (and thus remove the need for a
scratch image), and the second is that it allows the use of an image mask. This function is
cv::accumulate(). The ability to use an image mask when computing a background model is a very
useful thing, as one often has some other information that some part of the image should not be included in
the background model. For example, one might be building a background model of a highway or other
uniformly colored area, and be able to immediately determine from color that some objects are not part of
the background. This sort of thing can be very helpful in a real-world situation in which there is little or no
opportunity to get access to the scene in the complete absence of foreground objects.

The accumulate function has the following prototype:
void accumulate(

 cv::InputArray src, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64

 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

Here the array dst is the array in which the accumulation is happening, and src is the new image which
will be added. cv::accumulate() admits an optional mask. If present, only the pixels in dst which
correspond to nonzero elements in mask will be updated.

With cv::accumulate(), the function accumulateMean() above can be simplified to:

void accumulateMean(
 cv::Mat& I
) {
 if(sum.empty) {
 sum = cv::Mat::zeros(I.size(), CV::F32C(I.channels()));
 }
 cv::accumulate(I, sum);
 image_count++;
}

25BVariation: Computing the mean with cv::accumulateWeighted()

Another alternative that is often useful is to use a running average. The running average is given by the
following formula:

For a constant value of α, running averages are not equivalent to the result of summing with

cv::Mat::operator+=(), or cv::accumulate(). To see this, simply consider adding three

numbers (2, 3, and 4) with α set to 0.5. If we were to accumulate them with cv::accumulate(), then

the sum would be 9 and the average 3. If we were to accumulate them with
cv::accumulateWeighted(), the first sum would give , and then adding
the third term would give . The reason the second number is larger is that the
most recent contributions are given more weight than those from farther in the past. Such a running average

is thus also called a tracker. The parameter α can be thought of as setting the amount of time necessary for

the influence of a previous frame to fade.

To accumulate running averages across entire images, we use the OpenCV function
cv::accumulateWeighted():

void accumulateWeighted(
 cv::InputArray src, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 double alpha, // Weight factor applied to src
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

Here the array dst is the array in which the accumulation is happening, and src is the new image that will
be added. The value alpha is the weighting parameter. Like cv::accumulate(),

cv::accumulateWeighted() admits an optional mask. If present, only the pixels in dst that
correspond to nonzero elements in mask will be updated.

26BFinding the variance with the help of cv::accumulateSquare()

We can also accumulate squared images, which will allow us to compute quickly the variance of individual
pixels. You may recall from your last class in statistics that the variance of a finite population is defined by
the formula:

where is the mean of x for all N samples. The problem with this formula is that it entails making one pass

through the images to compute and then a second pass to compute . A little algebra should allow you
to convince yourself that the following formula will work just as well:

Using this form, we can accumulate both the pixel values and their squares in a single pass. Then, the
variance of a single pixel is just the average of the square minus the square of the average. With this in
mind, we can define an accumulation function and a computation function as we did with the mean. As
with the mean, one option would be to first do an element by element squaring of the incoming image, and
then to accumulate that with something like sqsum += I.mul(I). This, however, has several
disadvantages, the most significant of which is that I.mul(I) does not do any kind of implicit type
conversion (as we saw that += did not do either). As a result, elements of (for example) an 8-bit array,
when squared, will almost inevitably cause overflows. As with cv::accumulate(), however, OpenCV
provides us with a convenient function that does what we need all in a single convenient package; it is
called cv::accumulateSquare():

void accumulateSquare(
 cv::InputArray src, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

With the help of cv::accumulateSquare(), we can write a function to accumulate the information
we need for our variance computation:

void accumulateVariance(
 cv::Mat& I
) {
 if(sum.empty) {
 sum = cv::Mat::zeros(I.size(), CV::F32C(I.channels()));
 sqsum = cv::Mat::zeros(I.size(), CV::F32C(I.channels()));
 }
 cv::accumulate(I, sum);
 cv::accumulateSquare(I, sqsum);
 image_count++;
}

The associated computation function would then be:
// note that ‘variance’ is sigma^2
//
void computeVariance(

 cv::Mat& variance
) {
 double one_by_N = 1.0 / image_count;
 variance = one_by_N * sqsum – (one_by_N * one_by_N) * sum.mul(sum);
}

27BFinding the Covariance with cv::accumulateWeighted()

The variance of the individual channels in a multichannel image captures some important information
about how similar we expect background pixels in future images to be to our observed average. This,
however, is still a very simplistic model for both the background and our “expectations.” One important
additional concept which we could introduce is the concept of covariance. Covariance captures inter-
relations between the variations in individual channels. For example, our background might be an ocean
scene in which we expect very little variation in the red channel, but quite a bit in the green and blue
channels. If we follow our intuition that the ocean is just one color really, and that the variation we see is
primarily a result of lighting effects, we might conclude that if there were a gain or loss of intensity in the
green channel, there should be a corresponding gain or loss of intensity in the blue channel. The corollary
of this is that if there were a substantial gain in the blue channel without an accompanying gain in the green
channel, we might not want to consider this background. This intuition is captured by the concept of
covariance.

Figure 9-3: The same data set is visualized on the left and the right. On the left (a) the (square root of the)
variance of the data in the x and y dimensions is shown, and the resulting model for the data is visualized.
On the right (b) the covariance of the data is captured in the visualized model. The model has become an

ellipsoid which is narrower in one dimension and wider in the other than the more simplistic model on the
left.

In XFigure 9-3X, we visualize what might be the blue and green channel data for a particular pixel in our
ocean background example. On the left, the variance only has been computed. On the right, the covariance
between the two channels has also been computed, and the resulting model is able to fit the data much more
tightly.

Mathematically, the covariance between any two different observables is given by the formula:

As you can see, the covariance between any observable x and itself: is equal to the variance of

that same observable . In a d-dimensional space (such as the RGB values for a pixel, for which d=3), it

is convenient to talk about the covariance matrix , whose components include all of the covariances
between the variables as well as the variances of the variables individually. As can be seen from the
formula above, the covariance matrix is symmetric, i.e., .

In a much earlier chapter, we encountered a function which could be used when dealing with individual
vectors of data (as opposed to whole arrays of individual vectors). That function was

cv::calcCovarMatrix(), which will allow us to provide N vectors of dimension d and it will spit out

the d-by-d covariance matrix. Our problem now, however, is that we would like to compute such a matrix

for every point in an array (or at least, in the case of a 3-dimensional RGB image, we would like to
compute the 6 unique entries in that matrix).

In practice, the best way to do this is simply to compute the variances using the code we already developed,
and to compute the three new objects (the off-diagonal elements of) separately. Looking at the
formula for the covariance, we see that cv::accumulateSquare() will not quite work here, as we
need to accumulate the terms (i.e., the product of two different channel values from a particular
pixel in each image).

The function which does this for us in OpenCV is cv::accumulateProduct().

void accumulateProduct(
 cv::InputArray src1, // Input, 1 or 3 channels, U8 or F32
 cv::InputArray src2, // Input, 1 or 3 channels, U8 or F32
 cv::InputOutputArray dst, // Result image, F32 or F64
 cv::InputArray mask = cv::noArray() // Use src pixel if mask pixel != 0
);

This function works exactly like cv::accumulateSquare(), except that rather than squaring the
individual elements of src, it multiplies the corresponding elements of src1 and src2. What it does not
do (unfortunately) is allow us to pluck individual channels out of those incoming arrays. In the case of
multichannel arrays in src1 and src2, the computed result is done on a per-channel basis.

For our current need to compute the off-diagonal elements of a covariance model, this is not really what we
want. What we want are different channels of the same image. To do this, we will have to split our
incoming image apart using cv::split().

vector<cv::Mat> planes(3);
vector<cv::Mat> sums(3);
vector<cv::Mat> xysums(6);

int image_count = 0;

void accumulateCovariance(
 cv::Mat& I
) {
 int i, j, n;
 if(sum.empty) {
 for(i=0; i<3; i++) { // the r, g, and b sums
 sums[i] = cv::Mat::zeros(I.size(), CV::F32C1);
 }
 for(n=0; n<6; n++) { // the rr, rg, rb, gg, gb, and bb elements
 xysums[n] = cv::Mat::zeros(I.size(), CV::F32C1));
 }
 }

 cv::split(I, rgb);
 for(i=0; i<3; i++) {
 cv::accumulate(rgb[i], sums[i]);
 }
 n = 0;
 for(i=0; i<3; i++) { // "row" of Sigma
 for(j=i; j<3; j++) { // "column" of Sigma
 n++;
 cv::accumulateProduct(rgb[i], rgb[j], xysums[n]);
 }
 }
 image_count++;
}

The corresponding compute function is also just a slight extension of the compute function for the
variances we saw earlier.

// note that ‘variance’ is sigma^2
//
void computeVariance(
 cv::Mat& covariance // a six-channel array, channels are the
 // rr, rg, rb, gg, gb, and bb elements of Sigma_xy
) {
 double one_by_N = 1.0 / image_count;

 // reuse the xysum arrays as storage for individual entries
 //
 int n = 0;
 for(int i=0; i<3; i++) { // "row" of Sigma
 for(int j=i; j<3; j++) { // "column" of Sigma
 n++;
 xysums[n] = one_by_N * xysums[n]
 – (one_by_N * one_by_N) * sums[i].mul(sums[j]);
 }
 }

 // reassemble the six individual elements into a six-channel array
 //
 cv::merge(xysums, covariance);
}

28BA Brief Note on Model Testing and cv::Mahalanobis()

In this section, we introduced some slightly more complicated models, but did not discuss how to test if a
particular pixel in a new image is in the predicted domain of variation for the background model. In the
case of the variance-only model (Gaussian models on all channels with an implicit assumption of statistical
independence between the channels) the problem is made more complicated by the fact that the variances
for the individual dimensions will not necessarily be equal. In this case, however, it is common to compute
what is called a z-score for each dimension separately (the z-score is the distance from the mean divided by

the standard deviation:). The z-score tells us something about the probability of the individual
pixel originating from the distribution in question. The z-scores for multiple dimensions are then

summarized as the square root of sum of squares (e.g.,).

In the case of the full covariance matrix, the analog of the z-score is called the Mahalanobis distance. This
distance is essentially the distance from the mean to the point in question measured in constant-probability
contours such as that shown in XFigure 9-3X. Looking back at XFigure 9-3X, a point up and to the left of the
mean in the model (a) will appear to have a low Mahalanobis distance by that model. The same point
would have a much higher Mahalanobis distance by the model in (b). It is worth noting that the z-score
formula for the simplified model in the previous paragraph is precisely the Mahalanobis distance under the
model in XFigure 9-3X (a), as one would expect.

OpenCV provides a function for computing Mahalanobis distances:
double cv::Mahalanobis(// Return distance as F64
 cv::InputArray vec1, // First vector (1-dimensional, length n)
 cv::InputArray vec2, // Second vector (1-dimensional, length n)
 cv::InputArray icovar // Inverse covariance matrix, n-by-n
);

The cv::Mahalanobis() function expects vector objects for vec1 and vec2 of dimension d and a d-

by-d matrix for the inverse covariance icovar. (The inverse covariance is used because inverting this

matrix is costly, and in most cases you have many vectors you would like to compare with the same
covariance—so the assumption is that you will invert it once and pass the inverse covariance to
cv::Mahalanobis() many times for each such inversion.)

In our context of background subtraction, this is not entirely convenient, as
cv::Mahalanobis() wants to be called on a per-element basis. Unfortunately, there
is no array-sized version of this capability in OpenCV. As a result, you will have to loop
through each pixel, create the covariance matrix from the individual elements, invert that
matrix, and store the inverse somewhere. Then, when you want to make a comparison,
you will need to loop through the pixels in your image, retrieve the inverse covariance
you need, and call cv::Mahalanobis() for each pixel.

4BA More Advanced Background Subtraction Method
Many background scenes contain complicated moving objects such as trees waving in the wind, fans
turning, curtains fluttering, and so on. Often, such scenes also contain varying lighting, such as clouds
passing by or doors and windows letting in different light.

A nice method to deal with this would be to fit a time-series model to each pixel or group of pixels. This
kind of model deals with the temporal fluctuations well, but its disadvantage is the need for a great deal of
memory [Toyama99]. If we use 2 seconds of previous input at 30 Hz, this means we need 60 samples for
each pixel. The resulting model for each pixel would then encode what it had learned in the form of 60
different adapted weights. Often we’d need to gather background statistics for much longer than 2 seconds,
which means that such methods are typically impractical on present-day hardware.

To get fairly close to the performance of adaptive filtering, we take inspiration from the techniques of video
compression and attempt to form a codebookF

8
F to represent significant states in the background.F

9
F The

simplest way to do this would be to compare a new value observed for a pixel with prior observed values. If
the value is close to a prior value, then it is modeled as a perturbation on that color. If it is not close, then it
can seed a new group of colors to be associated with that pixel. The result could be envisioned as a bunch

8 The method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but rather
than learning oriented cylinders in RGB space, for speed, the authors use axis-aligned boxes in YUV space. Fast
methods for cleaning up the resulting background image can be found in Martins [Martins99].
9 There is a large literature for background modeling and segmentation. OpenCV’s implementation is intended to be
fast and robust enough that you can use it to collect foreground objects mainly for the purposes of collecting data sets
to train classifiers on. Recent work in background subtraction allows arbitrary camera motion [Farin04; Colombari07]
and dynamic background models using the mean-shift algorithm [Liu07].

of blobs floating in RGB space, each blob representing a separate volume considered likely to be
background.

In practice, the choice of RGB is not particularly optimal. It is almost always better to use a color space
whose axis is aligned with brightness, such as the YUV color space. (YUV is the most common choice, but
spaces such as HSV, where V is essentially brightness, would work as well.) The reason for this is that,
empirically, most of the natural variation in the background tends to be along the brightness axis, not the
color axis.

The next detail is how to model these “blobs.” We have essentially the same choices as before with our
simpler model. We could, for example, choose to model the blobs as Gaussian clusters with a mean and a
covariance. It turns out that the simplest case, in which the “blobs” are simply boxes with a learned extent
in each of the three axes of our color space, works out quite well. It is the simplest in terms of memory
required and in terms of the computational cost of determining whether a newly observed pixel is inside
any of the learned boxes.

Let’s explain what a codebook is by using a simple example

(X

Figure 9-4X). A codebook is made up of boxes that grow to cover the common values seen over time. The

upper panel of X

Figure 9-4X shows a waveform over time; you could think of this as the brightness of an individual pixel. In
the lower panel, boxes form to cover a new value and then slowly grow to cover nearby values. If a value is
too far away, then a new box forms to cover it and likewise grows slowly toward new values.

Figure 9-4: Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new value
and slowly grows to cover nearby values; if values are too far away then a new box is formed (see text)

In the case of our background model, we will learn a codebook of boxes that cover three dimensions: the
three channels that make up our image at each pixel.

X

Figure 9-5X visualizes the (intensity dimension of the) codebooks for six different pixels learned from the data
in XFigure 9-1X.F

10
F This codebook method can deal with pixels that change levels dramatically (e.g., pixels in a

windblown tree, which might alternately be one of many colors of leaves, or the blue sky beyond that tree).
With this more precise method of modeling, we can detect a foreground object that has values between the
pixel values. Compare this with XFigure 9-2X, where the averaging method cannot distinguish the hand value

(shown as a dotted line) from the pixel fluctuations. Peeking ahead to the next section, we see the better
performance of the codebook method versus the averaging method shown later in

X

Figure 9-8X.

10 In this case, we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course, there is
actually a codebook for every pixel.

Figure 9-5: Intensity portion of learned codebook entries for fluctuations of six chosen pixels (shown as
vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so can better

model discontinuous distributions; thus they can detect a foreground hand (value at dotted line) whose
average value is between the values that background pixels can assume. In this case the codebooks are one-

dimensional and only represent variations in intensity

In the codebook method of learning a background model, each box is defined by two thresholds (max and
min) over each of the three-color axes. These box boundary thresholds will expand (max getting larger,
min getting smaller) if new background samples fall within a learning threshold (learnHigh and
learnLow) above max or below min, respectively. If new background samples fall outside of the box
and its learning thresholds, then a new box will be started. In the background difference mode, there are
acceptance thresholds maxMod and minMod; using these threshold values, we say that if a pixel is “close
enough” to a max or a min box boundary then we count it as if it were inside the box. At runtime, the
threshold for inclusion in a “box” can be set to a different value than was used in the construction of the
boxes; often this threshold is simply set to zero in all three dimensions.

A situation we will not cover is a pan-tilt camera surveying a large scene. When working
with a large scene, it is necessary to stitch together learned models indexed by the pan
and tilt angles.

13BStructures
It’s time to look at all of this in more detail, so let’s create an implementation of the codebook algorithm.
First, we need our codebook structure, which will simply point to a bunch of boxes in YUV space:

class CodeBook : public vector<CodeElement> {
public:
 int t; // count every access
 CodeBook() { t=0; } // Default is an empty book
 CodeBook(int n) : vector<CodeElement>(n) { t=0; } // Construct book of size n
};

The codebook is derived from an STL vector of CodeElement objects (see below). The variable t counts
the number of points we’ve accumulated since the start or the last clear operation. Here’s how the actual
codebook elements are described:

#define CHANNELS 3
class CodeElement {
public:
 uchar learnHigh[CHANNELS]; // High side threshold for learning
 uchar learnLow[CHANNELS]; // Low side threshold for learning
 uchar max[CHANNELS]; // High side of box boundary
 uchar min[CHANNELS]; // Low side of box boundary
 int t_last_update; // Allow us to kill stale entries
 int stale; // max negative run (longest period of inactivity)

 CodeElement& operator=(CodeElement& ce) {
 for(i=0; i<CHANNELS; i++) {
 learnHigh[i] = ce.learnHigh[i];
 learnLow[i] = ce.learnLow[i];
 min[i] = ce.min[i];
 max[i] = ce.max[i];
 }
 t_last_update = ce.t_last_update;
 stale = ce.stale;
 }
 CodeElement(CodeElement& ce) { *this = ce; }
};

Each codebook entry consumes four bytes per channel plus two integers, or (4 * CHANNELS + 4 + 4) bytes
(20 bytes when we use three channels). We may set CHANNELS to any positive number equal to or less

than the number of color channels in an image, but it is usually set to either 1 (“Y,” or brightness only) or 3
(YUV, HSV). In this structure, for each channel, max and min are the boundaries of the codebook box.
The parameters learnHigh[] and learnLow[] are the thresholds that trigger generation of a new
code element. Specifically, a new code element will be generated if a new pixel is encountered whose
values do not lie between min – learnLow and max + learnHigh in each of the channels. The
time to last update (t_last_update) and stale are used to enable the deletion of seldom-used
codebook entries created during learning. Now we can proceed to investigate the functions that use this
structure to learn dynamic backgrounds.

14BLearning the background
We will have one CodeBook of CodeElements for each pixel. We will need an array of such
codebooks that is equal in length to the number of pixels in the images we’ll be learning. For each pixel,
updateCodebook() is called for as many images as are sufficient to capture the relevant changes in the
background. Learning may be updated periodically throughout, and clearStaleEntries() can be
used to learn the background in the presence of (small numbers of) moving foreground objects. This is
possible because the seldom-used “stale” entries induced by a moving foreground will be deleted. The
interface to updateCodebook() is as follows:

// Updates the codebook entry with a new data point
// NOTES:
// cbBounds must be of length equal to numChannels
//
int updateCodebook(// return CodeBook index
 cv::Vec3b& p, // incoming YUV pixel
 CodeBook& c, // CodeBook for the pixel
 unsigned* cbBounds, // Learning bounds for codebook (Rule of thumb: {10,10,10})
 int numChannels // Number of color channels we're learning
) {
 unsigned int high[3], low[3], n;
 for(n=0; n<numChannels; n++) {
 high[n] = p[n] + *(cbBounds+n); if(high[n] > 255) high[n] = 255;
 low[n] = p[n] - *(cbBounds+n); if(low[n] < 0) low[n] = 0;
 }
 int matchChannel;
 // SEE IF THIS FITS AN EXISTING CODEWORD
 //
 int i;
 for(i=0; i<c.size(); i++) {
 matchChannel = 0;
 for(n=0; n<numChannels; n++) {
 if(// Found an entry for this channel
 (c[i]->learnLow[n] <= p[n]) && (p[n] <= c[i]->learnHigh[n])
)
 matchChannel++;
 }
 if(matchChannel == numChannels) { // If an entry was found
 c[i]->t_last_update = c.t;

 // adjust this codeword for the first channel
 //
 for(n=0; n<numChannels; n++) {
 if(c[i]->max[n] < p[n]) c[i]->max[n] = p[n];
 else if(c[i]->min[n] > p[n]) c[i]->min[n] = p[n];
 }
 break;
 }
 }
. . .continued below

This function grows or adds a codebook entry when the pixel p falls outside the existing codebook boxes.
Boxes grow when the pixel is within cbBounds of an existing box. If a pixel is outside the cbBounds
distance from a box, a new codebook box is created. The routine first sets high and low levels to be used
later. It then goes through each codebook entry to check whether the pixel value p is inside the learning
bounds of the codebook “box.” If the pixel is within the learning bounds for all channels, then the
appropriate max or min level is adjusted to include this pixel and the time of last update is set to the
current timed count c.t. Next, the updateCodebook() routine keeps statistics on how often each
codebook entry is hit:

. . . continued from above

 // OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
 //
 for(int s=0; s<c.size(); s++) {
 // Track which codebook entries are going stale:
 //
 int negRun = c.t - c[s]->t_last_update;
 if(c[s]->stale < negRun) c[s]->stale = negRun;
 }

. . .continued below

Here, the variable stale contains the largest negative runtime (i.e., the longest span of time during which
that code was not accessed by the data). Tracking stale entries allows us to delete codebooks that were
formed from noise or moving foreground objects and hence tend to become stale over time. In the next
stage of learning the background, updateCodebook() adds a new codebook if needed:

. . . continued from above

 // ENTER A NEW CODEWORD IF NEEDED
 //
 if(i == c.size()) { // if no existing codeword found, make one
 CodeElement ce;
 for(n=0; n<numChannels; n++) {
 ce->learnHigh[n] = high[n];
 ce->learnLow[n] = low[n];
 ce->max[n] = p[n];
 ce->min[n] = p[n];
 }
 ce->t_last_update = c.t;
 ce->stale = 0;
 c.push_back(ce);
 }
. . .continued below

Finally, updateCodebook() slowly adjusts (by adding 1) the learnHigh and learnLow learning
boundaries if pixels were found outside of the box thresholds but still within the high and low bounds:

. . . continued from above

 // SLOWLY ADJUST LEARNING BOUNDS
 //
 for(n=0; n<numChannels; n++) {
 if(c[i]->learnHigh[n] < high[n]) c[i]->learnHigh[n] += 1;
 if(c[i]->learnLow[n] > low[n]) c[i]->learnLow[n] -= 1;
 }
 return i;
}

The routine concludes by returning the index of the modified codebook. We’ve now seen how codebooks
are learned. In order to learn in the presence of moving foreground objects and to avoid learning codes for
spurious noise, we need a way to delete entries that were accessed only rarely during learning.

15BLearning with moving foreground objects
The following routine, clearStaleEntries(), allows us to learn the background even if there are
moving foreground objects:

// During learning, after you've learned for some period of time,
// periodically call this to clear out stale codebook entries
//
//
int clearStaleEntries(// return number of entries cleared
 CodeBook &c // Codebook to clean up
){
 int staleThresh = c.t>>1;
 int *keep = new int[c.size()];
 int keepCnt = 0;

 // SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
 //
 for(int i=0; i<c.size(); i++){
 if(c[i]->stale > staleThresh)
 keep[i] = 0; // Mark for destruction
 else
 {
 keep[i] = 1; // Mark to keep
 keepCnt += 1;
 }
 }

 // move the entries we want to keep to the front of the vector and then
 // truncate to the correct length once all of the good stuff is saved.
 //
 int k = 0;
 int numCleared = 0
 for(int ii=0; ii<c.size(); ii++) {
 if(keep[ii]) {
 c[k] = c[ii];
 // We have to refresh these entries for next clearStale
 cc[k]->t_last_update = 0;
 k++;
 } else {
 numCleared++;
 }
 }
 c.resize(keepCnt);
 delete[] keep;

 return numCleared;
}

The routine begins by defining the parameter staleThresh, which is hardcoded (by a rule of thumb) to
be half the total running time count, c.t. This means that, during background learning, if codebook entry
i is not accessed for a period of time equal to half the total learning time, then i is marked for deletion
(keep[i] = 0). The vector keep[] is allocated so that we can mark each codebook entry; hence it is
c.size() long. The variable keepCnt counts how many entries we will keep. After recording which
codebook entries to keep, we go through the entries and move the ones we want to the front of the vector in
the codebook. Finally, we resize that vector so that all of the stuff hanging off of the end is chopped off.

16BBackground differencing: Finding foreground objects
We’ve seen how to create a background codebook model and how to clear it of seldom-used entries. Next
we turn to background_diff(), where we use the learned model to segment foreground pixels from
the previously learned background:

// Given a pixel and a codebook, determine if the pixel is
// covered by the codebook
//
// NOTES:
// minMod and maxMod must have length numChannels,
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
// one max threshold per channel.
//
uchar backgroundDiff(// return 0 => background, 255 => foreground
 cv::Vec3b& p, // Pixel (YUV)
 CodeBook& c, // Codebook
 int numChannels, // Number of channels we are testing
 int* minMod, // Add this (possibly negative) number onto max level
 // when determining if new pixel is foreground
 int* maxMod // Subtract this (possibly negative) number from min level
 // when determining if new pixel is foreground
) {
 int matchChannel;

 // SEE IF THIS FITS AN EXISTING CODEWORD
 //
 for(int i=0; i<c.size(); i++) {
 matchChannel = 0;
 for(int n=0; n<numChannels; n++) {
 if(
 (c[i]->min[n] - minMod[n] <= p[n]) && (p[n] <= c[i]->max[n] + maxMod[n])
) {
 matchChannel++; // Found an entry for this channel
 } else {
 break;
 }
 }
 if(matchChannel == numChannels) {
 break; // Found an entry that matched all channels
 }
 }
 if(i >= c.size()) return 0;
 return 255;
}

The background differencing function has an inner loop similar to the learning routine
updateCodebook, except here we look within the learned max and min bounds plus an offset threshold,
maxMod and minMod, of each codebook box. If the pixel is within the box plus maxMod on the high side
or minus minMod on the low side for each channel, then the matchChannel count is incremented. When
matchChannel equals the number of channels, we’ve searched each dimension and know that we have a
match. If the pixel is not within a learned box, 255 is returned (a positive detection of foreground);
otherwise, 0 is returned (the pixel is background).

The three functions updateCodebook(), clearStaleEntries(), and backgroundDiff()
constitute a codebook method of segmenting foreground from learned background.

17BUsing the Codebook Background Model
To use the codebook background segmentation technique, typically we take the following steps:

1. Learn a basic model of the background over a few seconds or minutes using updateCodebook().
2. Clean out stale entries with clearStaleEntries().
3. Adjust the thresholds minMod and maxMod to best segment the known foreground.
4. Maintain a higher-level scene model (as discussed previously).
5. Use the learned model to segment the foreground from the background via backgroundDiff().
6. Periodically update the learned background pixels.
7. At a much slower frequency, periodically clean out stale codebook entries with

clearStaleEntries().

18BA Few More Thoughts on Codebook Models
In general, the codebook method works quite well across a wide number of conditions, and it is relatively
quick to train and to run. It doesn’t deal well with varying patterns of light—such as morning, noon, and
evening sunshine—or with someone turning lights on or off indoors. This type of global variability can be
taken into account by using several different codebook models, one for each condition, and then allowing
the condition to control which model is active.

5BConnected Components for Foreground Cleanup
Before comparing the averaging method to the codebook method, we should pause to discuss ways to clean
up the raw segmented image using connected-components analysis. This form of analysis is useful for
noisy input mask images, and such noise is more the rule than the exception. The basic idea behind the
method is to use the morphological operation open to shrink areas of small noise to 0 followed by the
morphological operation close to rebuild the area of surviving components that was lost in opening.
Thereafter, we find the “large enough” contours of the surviving segments and can take statistics of all such
segments. Finally, we retrieve either the largest contour or all contours of size above some threshold. In the
routine that follows, we implement most of the functions that you would want for this connected
component analysis:

• Whether to approximate the surviving component contours by polygons or by convex hulls
• Setting how large a component contour must be in order not to be deleted
• Returning the bounding boxes of the surviving component contours
• Returning the centers of the surviving component contours

The connected components header that implements these operations is as follows:
// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff
//
void findConnectedComponents(
 cv::Mat& mask, // Is a grayscale (8-bit depth) "raw" mask image that
 // will be cleaned up
 int poly1_hull0 = 1, // If set, approximate connected component by
 // (DEFAULT) polygon, or else convex hull (0)
 float perimScale = 4, // Len = image (width+height)/perimScale. If contour
 // len < this, delete that contour (DEFAULT: 4)
 vector<cv::Rect>& bbs // Reference to bounding box rectangle return vector
 vector<cv::Point>& centers // Reference to contour centers return vector
);

The function body is listed below. First, we do morphological opening and closing in order to clear out
small pixel noise, after which we rebuild the eroded areas that survive the erosion of the opening operation.
The routine takes two additional parameters, which here are hardcoded via #define. The defined values
work well, and you are unlikely to want to change them. These additional parameters control how simple

the boundary of a foreground region should be (higher numbers are more simple) and how many iterations
the morphological operators should perform; the higher the number of iterations, the more erosion takes
place in opening before dilation in closing.F

11
F More erosion eliminates larger regions of blotchy noise at the

cost of eroding the boundaries of larger regions. Again, the parameters used in this sample code work well,
but there’s no harm in experimenting with them if you like:

// polygons will be simplified using DP algorithm with ‘epsilon’ a fixed
// fraction of the polygons length. This number is that divisor.
//
#define DP_EPSILON_DENOMINATOR 20.0

// How many iterations of erosion and/or dilation there should be
//
#define CVCLOSE_ITR 1

We now discuss the connected-component algorithm itself. The first part of the routine performs the
morphological open and closing operations:

void findConnectedComponents(
 cv::Mat& mask,
 int poly1_hull0,
 float perimScale,
 vector<cv::Rect>& bbs,
 vector<cv::Point>& centers
) {

 // CLEAN UP RAW MASK
 //
 cv::morphologyEx(
 mask, mask, cv::MOP_OPEN, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR
);
 cv::morphologyEx(
 mask, mask, cv::MOP_CLOSE, cv::Mat(), cv::Point(-1,-1), CVCLOSE_ITR
);

Now that the noise has been removed from the mask, we find all contours:
 // FIND CONTOURS AROUND ONLY BIGGER REGIONS
 //
 vector< vector<cv::Point> > contours_all; // all contours found
 vector< vector<cv::Point> > contours; // just the ones we want to keep
 cv::findContours(
 mask,
 contours_all,
 CV_RETR_EXTERNAL,
 CV_CHAIN_APPROX_SIMPLE
);

Next, we toss out contours that are too small and approximate the rest with polygons or convex hulls:
 for(
 vector< vector<cv::Point> >::iterator c = contours_all.begin();
 c != contours.end();
 ++c
) {

 // length of this contour
 //
 int len = cv::arcLength(*c, true);

 // length threshold a fraction of image perimeter

11 Observe that the value CVCLOSE_ITR is actually dependent on the resolution. For images of extremely high
resolution, leaving this value set to 1 is not likely to yield satisfactory results.

 //
 double q = (mask->height + mask->width) / DP_EPSILON_DENOMINATOR;

 if(len >= q) { // If the contour is long enough to keep...
 vector<cv::Point> c_new;
 if(poly1_hull0) { // If the caller wants results as reduced polygons...
 cv::approxPolyDP(*c, c_new, len/20.0, true);
 } else { // Convex Hull of the segmentation
 Cv::convexHull(*c, c_new);
 }
 contours.push_back(c_new);
 }
 }

In the preceding code, we use the Douglas-Peucker approximation algorithm to reduce polygons (if the user
has not asked us to just return convex hulls). All this processing yields a new list of contours. Before
drawing the contours back into the mask, we define some simple colors to draw:

 // Just some convenience variables
 const cv::Scalar CVX_WHITE = cv::RGB(0xff,0xff,0xff);
 const cv::Scalar CVX_BLACK = cv::RGB(0x00,0x00,0x00);

We use these definitions in the following code, where we first analyze each of the contours separately, then
zero out the mask and draw the whole set of clean contours back into the mask:

 // CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES
 //
 int idx = 0;
 cv::Moments moments;
 cv::Mat scratch = mask.clone();
 for(
 vector< vector<cv::Point> >::iterator c = contours.begin();
 c != contours.end;
 c++, idx++
) {

 cv::drawContours(scratch, contours, idx, CVX_WHITE, CV_FILLED);

 // Find the center of each contour
 //
 moments = cv::moments(scratch, true);
 cv::Point p;
 p.x = (int)(moments.m10 / moments.m00);
 p.y = (int)(moments.m01 / moments.m00);
 centers.push_back(p);

 bbs.push_back(cv::boundingRect(c));

 Scratch.setTo(0);
 }

 // PAINT THE FOUND REGIONS BACK INTO THE IMAGE
 //
 mask.setTo(0);
 cv::drawContours(mask, contours, -1, CVX_WHITE);
}

That concludes a useful routine for creating clean masks out of noisy raw masks

19BA Quick Test
We start with an example to see how this really works in an actual video. Let’s stick with our video of the
tree outside of the window. Recall (XFigure 9-1X) that at some point in time, a hand passes through the scene.

One might expect that we could find this hand relatively easily with a technique such as frame differencing
(discussed previously in its own section). The basic idea of frame differencing was to subtract the current
frame from a “lagged” frame and then threshold the difference.

Sequential frames in a video tend to be quite similar. Hence one might expect that, if we take a simple
difference of the original frame and the lagged frame, we’ll not see too much unless there is some
foreground object moving through the scene.F

12
F But what does “not see too much” mean in this context?

Really, it means “just noise.” Thus, in practice the problem is sorting out that noise from the signal when a
foreground object does come along.

To understand this noise a little better, first consider a pair of frames from the video in which there is no
foreground object—just the background and the resulting noise.

X

Figure 9-6X shows a typical frame from such a video (upper-left) and the previous frame (upper-right). The
figure also shows the results of frame differencing with a threshold value of 15 (lower-left). You can see
substantial noise from the moving leaves of the tree. Nevertheless, the method of connected components is
able to clean up this scattered noise quite wellF

13
F (lower-right). This is not surprising, because there is no

12 In the context of frame differencing, an object is identified as “foreground” mainly by its velocity. This is reasonable
in scenes that are generally static or in which foreground objects are expected to be much closer to the camera than
background objects (and thus appear to move faster by virtue of the projective geometry of cameras).

13 The size threshold for the connected components has been tuned to give zero response in these empty
frames. The real question then is whether or not the foreground object of interest (the hand) survives

reason to expect much spatial correlation in this noise and so its signal is characterized by a large number
of very small regions.

Figure 9-6: Frame differencing: a tree is waving in the background in the current (upper-left) and previous
(upper-right) frame images; the difference image (lower-left) is completely cleaned up (lower-right) by the

connected-components method

pruning at this size threshold. We will see

(

Figure 9-7) that it does so nicely.

Now consider the situation in which a foreground object (our ubiquitous hand) passes through the view of

the imager. X

Figure 9-7X shows two frames that are similar to those in

X

Figure 9-6X except that now there is a hand moving across from left to right. As before, the current frame
(upper-left) and the previous frame (upper-right) are shown along with the response to frame differencing
(lower-left) and the fairly good results of the connected-component cleanup (lower-right).

Figure 9-7: Frame difference method of detecting a hand, which is moving left to right as the foreground
object (upper two panels); the difference image (lower-left) shows the “hole” (where the hand used to be)
toward the left and its leading edge toward the right, and the connected-component image (lower-right)

shows the cleaned-up difference

We can also clearly see one of the deficiencies of frame differencing: it cannot distinguish between the
region from where the object moved (the “hole”) and where the object is now. Furthermore, in the overlap
region, there is often a gap because “flesh minus flesh” is 0 (or at least below threshold).

Thus, we see that using connected components for cleanup is a powerful technique for rejecting noise in
background subtraction. As a bonus, we were also able to glimpse some of the strengths and weaknesses of
frame differencing.

6BComparing Two Background Methods
We have discussed two classes of background modeling techniques so far in this chapter: the average
distance method (and its variants) and the codebook method. You might be wondering which method is
better, or, at least, when you can get away with using the easy one. In these situations, it’s always best to
just do a straight bake offF

14
F between the available methods.

We will continue with the same tree video that we’ve been using throughout the chapter. In addition to the
moving tree, this film has a lot of glare coming off a building to the right and off portions of the inside wall
on the left. It is a fairly challenging background to model.

14 For the uninitiated, “bake off” is actually a bona fide term used to describe any challenge or comparison of multiple
algorithms on a predetermined data set.

In X

XFigure 9-8X, we compare the average difference method at top against the codebook method at bottom; on
the left are the raw foreground images and on the right are the cleaned-up connected components. You can

see that the average difference method leaves behind a sloppier mask and breaks the hand into two
components. This is not so surprising; in XFigure 9-2 X, we saw that using the average difference from the

mean as a background model often included pixel values associated with the hand value (shown as a dotted
line in that figure). Compare this with

X

Figure 9-5X, where codebooks can more accurately model the fluctuations of the leaves and branches and so
more precisely identify foreground hand pixels (dotted line) from background pixels.

X

Figure 9-8X confirms not only that the background model yields less noise but also that connected
components can generate a fairly accurate object outline.

Figure 9-8: With the averaging method (top row), the connected-components cleanup knocks out the fingers
(upper-right); the codebook method (bottom row) does much better at segmentation and creates a clean

connected-component mask (lower-right)

7BOpenCV Background Subtraction Encapsulation
Thus far, we have looked in detail at how you might implement your own basic background subtraction
algorithms. The advantage of that approach is that it is much more clear what is going on and how
everything is working. The disadvantage is that as time progresses, newer and better methods are developed
which, though rooted in the same fundamental ideas, become sufficiently complicated so that you would
like to be able to regard them as “black boxes” and just use them without getting too deep in the gory
details.

To this end, OpenCV now provides a genericized class-based interface to background subtraction. At this
time, there are two implementations which use this interface, but as time progresses, there are expected to
be more. In this section we will first look at the interface in its generic form, then investigate the two
implementations which are available. Both implementations are based on a mixture of gaussians (MOG)
approach, which essentially takes the statistical modeling concept we introduced for our simplest
background modeling scheme (see “XAccumulating Means, Variances, and CovariancesX”) and marries it
with the multimodal capability of the codebook scheme (the one developed in “XA More Advanced
Background Subtraction MethodX”). Both of these MOG methods are 21st century algorithms suitable for
many practical day-to-day situations.

20BThe cv::BackgroundSubtractor Base Class
The cv::BackgroundSubtractor (abstract) base classF

15
F specifies only the minimal number of

necessary methods. It has the following definition:
class cv::BackgroundSubtractor : public Algorithm {

15 Actually, as shown below, this base class is not literally abstract (i.e., it does not contain any pure virtual functions).
However, it is always used in the library as if it were abstract; meaning that though the compiler will let you instantiate
an instance of cv::BackgroundSubtractor there is no purpose in, nor meaning to, doing so. We considered
coining the phrase “relatively abstract” for the circumstance, but later thought better of it.

public:
 virtual ~BackgroundSubtractor();
 virtual void apply(
 cv::InputArray image,
 cv::OutputArray fgmask,
 double learningRate = 0
);
 virtual void getBackgroundImage(
 cv::OutputArray backgroundImage
) const;
};

As you can see, after the destructor, there are only two methods definedF

16
F. The first is the apply()

function, which in this context is used to both ingest a new image and to produce the calculated foreground
mask for that image. The second function produces an image representation of the background. This image
is primarily for visualization and debugging; after all there is much more information associated with any
single pixel in the background than just a color. As a result the image produced by
getBackgroundImage() can only be a partial presentation of the information that exists in the
background model.

One thing that might seem to be a glaring omission is the absence of a method that accumulates
background images for training. The reason for this is that there came to be (relative) consensus in the
academic literature that any background subtraction algorithm that was not essentially continuously
training was an undesirable algorithm. The reasons for this are many, with the most obvious of which being
the effect of gradual illumination change on a scene (e.g., as the sun rises and sets outside the window). The
more subtle issues arise from the fact that in many practical scenes there is not opportunity to expose the
algorithm to a prolonged period in which no foreground objects are present. Similarly, in many cases,
things that seem to be background for an extended period (such as a parked car) might finally move,
leaving a permanent foreground “hole” at the location of their absence. For these reasons, essentially all
modern background subtraction algorithms do not distinguish between training and running modes; rather,
they continuously train and build models in which those things that are seen rarely (and can thus be
understood to be foreground) are removed and those things that are seen a majority of the time (which are
understood to be the background) are retained.

21BKadewTraKuPong and Bowden Method
The first of the available algorithms brings us several new capabilities which address real-world challenges
in background subtraction. These are: a multimodal model, continuous online training, two separate
(automatic) training modes that improve initialization performance, and explicit detection and rejection of
shadows [KaewTraKulPong2001]. All of this is largely invisible to you, the user. Not unexpectedly,
however, this algorithm does have some parameters which you may want to tune to your particular
application. They are the history, the number of Gaussian mixtures, the background ratio, and the noise
strength.F

17

16 You will also note that there is no constructor at all (other than the implied default constructor). We will see that the
construction of the subclasses of cv::BackgroundSubtractor will be the things we actually want to create, so
they provide their own construction scheme.
17 If you find yourself looking up the citation given for this algorithm, the first three parameters—history, number of

Gaussian mixtures, and background ratio—are referred to in the paper as: L, K, and T respectively. The last, and noise

strength, can be thought of as the initialization value of for a newly created component.

The first of these, the history, is the point at which the algorithm will switch out of the initialization mode

and into its nominal run mode. The default value for this parameter is 200 frames. The number of Gaussian

mixtures is the number of Gaussian components to the overall mixture model that is used to approximate

the background in any given pixel. The default value for this parameter is 5.

Given some number of Gaussian components to the model, each will have a weight. This weight indicates
the portion of the observed values of a pixel that are explained by that particular component of the model.
They are not all necessarily “background,” some are likely to be foreground objects which have passed by
at one point or another. Ordering the components by weight, the ones which are included as true

background are the first b of them, where b is the minimum number required to “explain” some fixed

percentage of the total model. This percentage is called the background ratio, and its default value is 0.7 (or

70%). Thus, by way of example, if there are five components, with weights 0.40, 0.25, 0.20, 0.10, and

0.05, then b would be three, because it required the first three to exceed the required

background ratio of 0.70.

The last parameter is the noise strength. This parameter sets the uncertainty assigned to a new Gaussian
component when it is created. New components are created whenever new unexplained pixels appear,
either because not all components have been assigned yet, or because a new pixel value has been observed
which is not explained by any existing component (in which case the least valuable existing component is
recycled to make room for this new information). In practice, the effect of increasing the noise strength is
to allow the given number of Gaussian components to “explain” more. Of course, the tradeoff is that they
will tend to explain perhaps even more than has been observed. The default value for the noise strength is

15 (measured in units of 0‐255 pixel intensities).

29Bcv::createBackgroundSubtractorMOG() and cv::BackgroundSubtractorMOG

When we would like to construct an algorithm object which actually implements a specific form of
background subtraction, we rely on a creator function to generate a cv::Ptr<> smart pointer to an
instance of the algorithm object. The algorithm object cv::BackgroundSubtractorMOG is a
subclass of the cv::BackgroundSubtractor base class. In the case of
cv::BackgroundSubtractorMOG that function is
cv::createBackgroundSubtractorMOG():

cv::Ptr<cv::BackgroundSubtractorMOG> cv::createBackgroundSubtractorMOG(
 int history = 200, // Length of initialization history
 int nmixtures = 5, // Number of Gaussian components in mixture
 double backgroundRatio = 0.7, // Keep components which explain this fraction
 double noiseSigma = 0 // Start uncertainty for new components
);

Once you have your background subtractor object, you can then proceed to make use of its apply()
method. The default values used by cv::createBackgroundSubtractorMOG() should serve for
the majority of cases. The last value is actually the one you are most likely to want to experiment with, the
value of noiseSigma, in most cases, should be set to a larger value, 5, 10, or even 15.

22BZivkovic Method
This second background subtraction method is in many ways similar to the first, in that it also uses a
Gaussian mixture model to model the distribution of colors observed in any particular pixel. One
particularly notable distinction between the two algorithms is that the Zivkovic method does not use a fixed
number of Gaussian components; rather, it adapts the number dynamically to give the best overall
explanation of the observed distribution [Zivkovic04, Zivkovic06]. This has the downside that the more
components there are, the more compute resources are consumed updating and comparing with the model.
On the other hand, it has the upside that the model is capable of potentially much higher fidelity.

This algorithm has some parameters in common with the KB method, but introduces many new parameters
as well. Fortunately, only two of the parameters are especially important, while the others are ones which
we can mostly leave at their default values. The two particularly critical parameters are the history (also
called the decay parameter) and the variance threshold.

The first of these, the history, sets the amount of time over which some “experience” of a pixel color will
last. Essentially, it is the time it takes for the influence of that pixel to decay away to nothing. The default

value for this period is 500 frames. That value is approximately the time before a measurement is

“forgotten.” Internally to the algorithm, however, it is slightly more accurate to think of this as an

exponential decay parameter whose value is (i.e., the influence of a measurement
decays like .

The second parameter, the variance threshold sets the confidence level with which a new pixel
measurement must be within, relative to an existing Gaussian mixture component, to be considered part of
that component. The units of the variance threshold are in squared-Mahalanobis distance. This means
essentially that if you would include a pixel that is three sigma from the center of a component into that

component, then you would set the variance threshold to .F

18
F The default value for this

parameter is actually .

30Bcv::createBackgroundSubtractorMOG2() and cv::BackgroundSubtractorMOG2

Analogous to the previous cv::BackgroundSubtractorMOG case, the Zivkovic method is
implemented by the object: cv::BackgroundSubtractorMOG2, which is another subclass of the
cv::BackgroundSubtractor base class. As before, these objects are generated by an associated
creator function: cv::createBackgroundSubtractorMOG2(), which not only allocates the
algorithm object, but also returns a smart pointer to the allocated instance.

cv::Ptr<cv::BackgroundSubtractorMOG2> cv::createBackgroundSubtractorMOG2(
 int history = 500, // Length of history
 float varThreshold = 16, // Threshold decides if new pixel is “explained”
 bool bShadowDetection = true // true if MOG2 should try to detect shadows
);

The history and variance threshold parameters history and varThreshold are just as described
above. The new parameter bShadowDetection allows optional shadow detection and removal to be
turned on. When operational, it functions much like the similar functionality in the KB algorithm but, as
you would expect, slows the algorithm down slightly.

 If you want to modify any of the values you set when you called
cv::createBackgroundSubtractorMOG2(), there are getter/setter methods which can be used to
change not only these values, but a number of the more subtle parameters of the algorithm as well.

int cv::createBackgroundSubtractorMOG2::getHistory(); // Get
void cv::createBackgroundSubtractorMOG2::setHistory(int val); // Set

int cv::createBackgroundSubtractorMOG2::getNMixtures(); // Get
void cv::createBackgroundSubtractorMOG2::setNMixtures(int val); // Set

double cv::createBackgroundSubtractorMOG2::getBackgroundRatio(); // Get
void cv::createBackgroundSubtractorMOG2::setBackgroundRatio(double val); // Set

double cv::createBackgroundSubtractorMOG2::getVarThresholdGen(); // Get
void cv::createBackgroundSubtractorMOG2::setVarThresholdGen(double val); // Set

double cv::createBackgroundSubtractorMOG2::getVarInt(); // Get
void cv::createBackgroundSubtractorMOG2::setVarInt(double val); // Set

double cv::createBackgroundSubtractorMOG2::getComplexityReductionThreshold(); // Get
void cv::createBackgroundSubtractorMOG2::setComplexityReductionThreshold(
 double val
); // Set

bool cv::createBackgroundSubtractorMOG2::getDetectShadows(); // Get
void cv::createBackgroundSubtractorMOG2::setDetectShadows(bool val); // Set

double cv::createBackgroundSubtractorMOG2::getShadowThreshold(); // Get
void cv::createBackgroundSubtractorMOG2::setShadowThreshold(double val); // Set

18 Recall that the Mahalanobis distance is essentially a z-score (i.e., a measurement of how far you are from the center
of a Gaussian distribution—measured in units of that distribution’s uncertainty) which takes into account the
complexities of a distribution in an arbitrary number of dimensions with arbitrary covariance matrix .

You can also see why computing the squared Mahalanobis distance is more natural, which is why you provide the
threshold as rather than z.

int cv::createBackgroundSubtractorMOG2::getShadowValue(); // Get
void cv::createBackgroundSubtractorMOG2::setShadowValue(int val); // Set

The meaning of these functions is as follows: setNMixtures() resets the length of the history that you
assigned with the constructor. setNMixtures() sets the maximum number of Gaussian components

any pixel model can have (the default is 5). Increasing this improves model fidelity at the cost of runtime.

setBackgroundRatio() sets the background ratio, which has the same meaning as in the KB

algorithmF

19
F (default for this algorithm is 0.90).

The function setVarThresholdGen() controls when a new component of the muli-Gaussian model
will be created. If the squared Mahalanobis distance from the center of the nearest component of the model
exceeds this threshold for generation, then a new component will be added centered on the new pixel value.
The default value for this parameter is . Similarly, the function setVarInit() controls the
variance threshold (described earlier in this section), which is the initial variance assigned to a new
Gaussian component of a model. Don’t forget that both the threshold for generation and the new model
variance are squared distances, so typical values will be 9, 16, 25, etc. (not 3, 4, or 5).

The setComplexityReductionThreshold() function controls what Zivkovic et al. call the
complexity reduction prior. It is related to the number of samples needed to accept that a component
actually exists. The default value for this parameter is 0.05. Probably the most important thing to know
about this value is that if you set it to 0.00, then the entire algorithm simplifies substantiallyF

20
F (both in

terms of speed and result quality).

The remaining functions set variables associated with how shadows are handled. The
setDetectShadows() function simply allows you to turn on and off the shadow detection behavior of
the algorithm (effectively overriding whatever value you gave to bShadowDetection when you called
the algorithm constructor). If shadow detection is turned on, you can set the threshold that is used to
determine if a pixel is a shadow using the setShadowThreshold() function. The interpretation of the
shadow threshold is that it is the relative brightness threshold for a pixel to be considered a shadow relative

to something which is already in the model (e.g., if the shadow threshold is 0.60, then any pixel which has

the same color as an existing component and is between 0.60 and 1.0 times as bright is considered a

19 As a good rule of thumb, you can expect that a pixel whose value is not described by the existing model and which
stays approximately constant for a number of frames equal to the history times the background ratio, will be updated in
the model to become part of the background.
20 For a more technical definition of “simplifies substantially,” what really happens is that Zivkovic’s algorithm
simplifies into something very similar to the algorithm of Stauffer and Grimson. We do not discuss that algorithm here
in detail, but it is cited in Zivkovic’s paper and was a relatively standard benchmark relative to which Zivkovic’s
algorithm was an improvement.

shadow). The default value for this parameter is 0.50. Finally, the setShadowValue() function is used

if you want to change the numerical value assigned to shadow pixels in the foreground mask. By default,
background will be assigned the value of 0, foreground the value of 255, and shadow pixels the value of
127. You can change the value assigned to shadow pixels using setShadowValue() to any value
(except 0 or 255).

8BSummary
In this chapter, we looked at the specific problem of background subtraction. This problem plays a major
role in a vast array of practical computer vision applications, ranging from industrial automation, to
security, to robotics. Starting with the basic theory of background subtraction, we developed two basic
models of how such subtraction could be accomplished based on simple statistical methods. From there we
showed how connected component analysis could be used to increase the utility of background subtraction
results and compared the two basic methods we had developed.

We concluded the chapter by looking at the more advanced background subtraction methods supplied by
the OpenCV library as complete implementations. These methods are similar in spirit to the simpler
methods we developed in detail at the beginning of the chapter, but contain improvements which make
them suitable for more challenging real-world applications.

9BExercises
1. Using cv::accumulateWeighted(), re-implement the averaging method of background

subtraction. In order to do so, learn the running average of the pixel values in the scene to find the
mean and the running average of the absolute difference (cv::absdiff()) as a proxy for the
standard deviation of the image.

2. Shadows are often a problem in background subtraction because they can show up as a foreground
object. Use the averaging or codebook method of background subtraction to learn the background.
Have a person then walk in the foreground. Shadows will “emanate” from the bottom of the
foreground object.
a) Outdoors, shadows are darker and bluer than their surround; use this fact to eliminate them.
b) Indoors, shadows are darker than their surround; use this fact to eliminate them.

3. The simple background models presented in this chapter are often quite sensitive to their threshold
parameters. In Chapter 10, we’ll see how to track motion, and this can be used as a reality check on the
background model and its thresholds. You can also use it when a known person is doing a “calibration
walk” in front of the camera: find the moving object and adjust the parameters until the foreground
object corresponds to the motion boundaries. We can also use distinct patterns on a calibration object
itself (or on the background) for a reality check and tuning guide when we know that a portion of the
background has been occluded.
a) Modify the code to include an auto-calibration mode. Learn a background model and then put a

brightly colored object in the scene. Use color to find the colored object and then use that object to
automatically set the thresholds in the background routine so that it segments the object. Note that
you can leave this object in the scene for continuous tuning.

b) Use your revised code to address the shadow-removal problem of exercise X2X.
4. Use background segmentation to segment a person with arms held out. Investigate the effects of the

different parameters and defaults in the cv::findContours() routine. Show your results for
different settings of the contour approximation method:

a) cv::CHAIN_APPROX_NONE
b) cv::CHAIN_APPROX_SIMPLE
c) cv::CHAIN_APPROX_TC89_L1
d) cv::CHAIN_APPROX_TC89_KCOS

5. Although it might be a little slow, try running background segmentation when the video input is first
pre-segmented by using cv::pyrMeanShiftFiltering(). That is, the input stream is first
mean-shift segmented and then passed for background learning—and later testing for foreground—by
the codebook background segmentation routine.
a) Show the results compared to not running the mean-shift segmentation.
b) Try systematically varying the maximum pyramid level (max_level), spatial radius (sp), and

color radius (cr) of the mean-shift segmentation. Compare those results.
6. Set up a camera in your room or looking out over a scene. Use

cv::BackgroundSubtractorMOG to “watch” your room or scene over several days.
a) Detect lights on and off by looking at very instantaneous change in brightness.
b) Segment out (save instances to a file) of fast changing objects (for example people) from medium

changing objects (for example chairs).

	Cover
	Preface
	Chapter 1 Overview
	Chapter 2 Introduction to OpenCV 2.x
	Chapter 3 Getting to Know OpenCV
	Chapter 4 Graphical User Interface
	Chapter 5 Filters and Convolution
	Chapter 6 General Image Transforms
	Chapter 7 Histograms and Matching
	Chapter 8 Contours
	Chapter 9 Background Subtraction

