


OpenCV with Python Blueprints

Design and develop advanced computer vision projects 
using OpenCV with Python

Michael Beyeler

BIRMINGHAM - MUMBAI



OpenCV with Python Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1141015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-269-0

www.packtpub.com

www.packtpub.com 


Credits

Author
Michael Beyeler

Reviewers
Jia-Shen Boon

Florian LE BOURDAIS

Steve Goldsmith

Rahul Kavi

Scott Lobdell

Vipul Sharma

Commissioning Editor
Akram Hussain

Acquisition Editor
Divya Poojari

Content Development Editor
Zeeyan Pinheiro

Technical Editor
Namrata Patil

Copy Editor
Vikrant Phadke

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa



About the Author

Michael Beyeler is a PhD candidate in the department of computer science at 
the University of California, Irvine, where he is working on computational models 
of the brain as well as their integration into autonomous brain-inspired robots. His 
work on vision-based navigation, learning, and cognition has been presented at IEEE 
conferences and published in international journals. Currently, he is one of the main 
developers of CARLsim, an open source GPGPU spiking neural network simulator.

This is his first technical book that, in contrast to his (or any) dissertation, might 
actually be read.

Michael has professional programming experience in Python, C/C++, CUDA, 
MATLAB, and Android. Born and raised in Switzerland, he received a BSc degree 
in electrical engineering and information technology, as well as a MSc degree in 
biomedical engineering from ETH Zurich. When he is not "nerding out" on robots, he 
can be found on top of a snowy mountain, in front of a live band, or behind the piano.

I would like to thank Packt Publishing for this great opportunity 
and their support, my girlfriend for putting up with my late-night 
writing sessions, as well as the technical reviewers, who have 
spotted (hopefully) all my glaring errors and helped make this book 
a success.



About the Reviewers

Jia-Shen Boon is a researcher in robotics at the University of Wisconsin-Madison, 
supervised by Professor Michael Coen. He is a proud son of the sunny city-state of 
Singapore. Before coming to Wisconsin, he was a research engineer at DSO National 
Labs, where he worked on autonomous underwater vehicles and other unspeakable 
things. During his free time, Jia-Shen likes to study the Japanese language and write 
about himself in the third person.

Florian LE BOURDAIS hails from France and Germany. While he was growing 
up in the lazy south of France, an encounter with music from The Beatles gave him 
an early grasp of the English language. One of his earliest childhood memories has 
him watching his older German cousin, Dominik, coding a Tetris clone in the family 
basement using QBasic. High school and the advent of hand-held calculators led him 
to write his first Snake program using the TI-Basic language. After having acquired 
a solid background in mathematics and physics, Florian was admitted to one of the 
top French engineering schools. He studied mechanical engineering, but interned 
as an index-arbitrage trader in Japan during the financial crisis. Keen to come back 
to a country he much liked, he specialized in nuclear engineering and was doing an 
internship in a Japanese fast-breeder reactor during the Fukushima nuclear crisis.

Coming back to France, Florian was happy to start an engineering job in non-
destructive testing. He specializes in ultrasound inspection methods, with a focus on 
phased array transducers, guided waves, and EMATs. He has published more than 
10 international conference proceedings. At night, he's a hacker who likes to play 
with 3D printers, fermented Korean cabbage, the Raspberry Pi, Japanese characters, 
and guitars. He regularly writes a blog about his side projects at http://flothesof.
github.io.

I would like to thank my friends and family for supporting me 
throughout this project. Special thanks goes to my favorite machine 
learning specialists at the Geeks d'Orléans, as well as Coloc du 1000.

http://flothesof.github.io
http://flothesof.github.io


Rahul Kavi is a PhD student at West Virginia University. He holds a master's 
degree in computer science. He is pursuing a PhD in the area of distributed machine 
learning and computer vision. He is a computer vision and robotics enthusiast. 
Rahul has worked on developing prototypes, optimizing computer vision, and 
machine learning applications for desktops, mobile devices, and autonomous 
robots. He writes blogs on his research interests and part-time projects at www.
developerstation.org. He is a source code contributor to OpenCV.

Vipul Sharma is an engineering undergraduate from Jabalpur Engineering 
College. He is an ardent Python enthusiast and was one of the students selected 
for Google Summer of Code 2015 under the Python Software Foundation. He has 
been actively involved in Python and OpenCV since 2012. A few of his projects on 
OpenCV include a motion sensing surveillance camera, hand-gesture recognition, 
and solving a Rubik's cube by reading images of its faces in real time. Vipul loves 
contributing to open source software and is currently working on Optical Character 
Recognition (OCR) using OpenCV. You can check out his projects at https://
github.com/vipul-sharma20.

www.developerstation.org
www.developerstation.org
https://github.com/vipul-sharma20
https://github.com/vipul-sharma20


www.PacktPub.com

Support files, eBooks, discount offers, 
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/




[ i ]

Table of Contents
Preface vii
Chapter 1: Fun with Filters 1

Planning the app 3
Creating a black-and-white pencil sketch 3

Implementing dodging and burning in OpenCV 4
Pencil sketch transformation 6

Generating a warming/cooling filter 8
Color manipulation via curve shifting 9
Implementing a curve filter by using lookup tables 9
Designing the warming/cooling effect 10

Cartoonizing an image 13
Using a bilateral filter for edge-aware smoothing 13
Detecting and emphasizing prominent edges 14
Combining colors and outlines to produce a cartoon 16

Putting it all together 17
Running the app 17
The GUI base class 18

The GUI constructor 20
Handling video streams 20
A basic GUI layout 21

A custom filter layout 22
Summary 24



Table of Contents

[ ii ]

Chapter 2: Hand Gesture Recognition Using a Kinect  
Depth Sensor 25

Planning the app 27
Setting up the app 27

Accessing the Kinect 3D sensor 28
Running the app 29
The Kinect GUI 30

Tracking hand gestures in real time 31
Hand region segmentation 32

Finding the most prominent depth of the image center region 33
Applying morphological closing to smoothen the segmentation mask 35
Finding connected components in a segmentation mask 36

Hand shape analysis 38
Determining the contour of the segmented hand region 38
Finding the convex hull of a contour area 39
Finding the convexity defects of a convex hull 40

Hand gesture recognition 40
Distinguishing between different causes of convexity defects 41
Classifying hand gestures based on the number of extended fingers 42

Summary 45
Chapter 3: Finding Objects via Feature Matching  
and Perspective Transforms 47

Tasks performed by the app 48
Planning the app 50
Setting up the app 51

Running the app 51
The FeatureMatching GUI 52

The process flow 53
Feature extraction 55

Feature detection 55
Detecting features in an image with SURF 56

Feature matching 57
Matching features across images with FLANN 58
The ratio test for outlier removal 58
Visualizing feature matches 59
Homography estimation 61
Warping the image 64

Feature tracking 65
Early outlier detection and rejection 66



Table of Contents

[ iii ]

Seeing the algorithm in action 68
Summary 70

Chapter 4: 3D Scene Reconstruction Using Structure  
from Motion 71

Planning the app 73
Camera calibration 74

The pinhole camera model 75
Estimating the intrinsic camera parameters 76

The camera calibration GUI 77
Initializing the algorithm 78
Collecting image and object points 79
Finding the camera matrix 81

Setting up the app 82
The main function routine 83
The SceneReconstruction3D class 84

Estimating the camera motion from a pair of images 85
Point matching using rich feature descriptors 86
Point matching using optic flow 87
Finding the camera matrices 91
Image rectification 93

Reconstructing the scene 95
3D point cloud visualization 97
Summary 100

Chapter 5: Tracking Visually Salient Objects 101
Planning the app 104
Setting up the app 104

The main function routine 105
The Saliency class 106
The MultiObjectTracker class 106

Visual saliency 107
Fourier analysis 109
Natural scene statistics 112
Generating a Saliency map with the spectral residual approach 115
Detecting proto-objects in a scene 119

Mean-shift tracking 120
Automatically tracking all players on a soccer field 122
Extracting bounding boxes for proto-objects 124
Setting up the necessary bookkeeping for mean-shift tracking 124
Tracking objects with the mean-shift algorithm 125

Putting it all together 127
Summary 128



Table of Contents

[ iv ]

Chapter 6: Learning to Recognize Traffic Signs 129
Planning the app 131
Supervised learning 131

The training procedure 132
The testing procedure 133
A classifier base class 135

The GTSRB dataset 136
Parsing the dataset 137

Feature extraction 140
Common preprocessing 141
Grayscale features 142
Color spaces 142
Speeded Up Robust Features 142
Histogram of Oriented Gradients 143

Support Vector Machine 145
Using SVMs for Multi-class classification 146
Training the SVM 148
Testing the SVM 149

Confusion matrix 152
Accuracy 153
Precision 154
Recall 156

Putting it all together 157
Summary 161

Chapter 7: Learning to Recognize Emotions on Faces 163
Planning the app 165
Face detection 167

Haar-based cascade classifiers 167
Pre-trained cascade classifiers 168
Using a pre-trained cascade classifier 168
The FaceDetector class 169

Detecting faces in grayscale images 170
Preprocessing detected faces 171

Facial expression recognition 174
Assembling a training set 175

Running the screen capture 175
The GUI constructor 176
The GUI layout 178
Processing the current frame 180
Adding a training sample to the training set 181
Dumping the complete training set to a file 182



Table of Contents

[ v ]

Feature extraction 183
Preprocessing the dataset 183
Principal component analysis 185

Multi-layer perceptrons (MLPs) 187
The perceptron 188
Deep architectures 189

An MLP for facial expression recognition 192
Training the MLP 193
Testing the MLP 194
Running the script 195

Putting it all together 197
Summary 199

Index 201





[ vii ]

Preface
OpenCV is a native, cross-platform C++ library for computer vision, machine learning, 
and image processing. It is increasingly being adopted in Python for development. 
OpenCV has C++/C, Python, and Java interfaces, with support for Windows, Linux, 
Mac, iOS, and Android. Developers who use OpenCV build applications to process 
visual data; this can include live streaming data such as photographs or videos from 
a device such as a camera. However, as developers move beyond their first computer 
vision applications, they might find it difficult to come up with solutions that are well-
optimized, robust, and scalable for real-world scenarios.

This book demonstrates how to develop a series of intermediate to advanced projects 
using OpenCV and Python, rather than teaching the core concepts of OpenCV in 
theoretical lessons. The working projects developed in this book teach you how to 
apply your theoretical knowledge to topics such as image manipulation, augmented 
reality, object tracking, 3D scene reconstruction, statistical learning, and object 
categorization.

By the end of this book, you will be an OpenCV expert, and your newly gained 
experience will allow you to develop your own advanced computer vision 
applications.

What this book covers
Chapter 1, Fun with Filters, explores a number of interesting image filters (such as  
a black-and-white pencil sketch, warming/cooling filters, and a cartoonizer effect), 
and we apply them to the video stream of a webcam in real time.

Chapter 2, Hand Gesture Recognition Using a Kinect Depth Sensor, helps you develop an 
app to detect and track simple hand gestures in real time using the output of a depth 
sensor, such as a Microsoft Kinect 3D Sensor or Asus Xtion.
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Chapter 3, Finding Objects via Feature Matching and Perspective Transforms, is where 
you develop an app to detect an arbitrary object of interest in the video stream of 
a webcam, even if the object is viewed from different angles or distances, or under 
partial occlusion.

Chapter 4, 3D Scene Reconstruction Using Structure from Motion, shows you how to 
reconstruct and visualize a scene in 3D by inferring its geometrical features from 
camera motion.

Chapter 5, Tracking Visually Salient Objects, helps you develop an app to track multiple 
visually salient objects in a video sequence (such as all the players on the field during 
a soccer match) at once.

Chapter 6, Learning to Recognize Traffic Signs, shows you how to train a support 
vector machine to recognize traffic signs from the German Traffic Sign Recognition 
Benchmark (GTSRB) dataset.

Chapter 7, Learning to Recognize Emotions on Faces, is where you develop an app that 
is able to both detect faces and recognize their emotional expressions in the video 
stream of a webcam in real time.

What you need for this book
This book supports several operating systems as development environments, 
including Windows XP or a later version, Max OS X 10.6 or a later version, and 
Ubuntu12.04 or a later version. The only hardware requirement is a webcam (or 
camera device), except for in Chapter 2, Hand Gesture Recognition Using a Kinect Depth 
Sensor, which instead requires access to a Microsoft Kinect 3D Sensor or an Asus Xtion.

The book contains seven projects, with the following requirements.

All projects can run on any of Windows, Mac, or Linux, and they require the 
following software packages:

• OpenCV 2.4.9 or later: Recent 32-bit and 64-bit versions as well as 
installation instructions are available at http://opencv.org/downloads.
html. Platform-specific installation instructions can be found at http://
docs.opencv.org/doc/tutorials/introduction/table_of_content_
introduction/table_of_content_introduction.html.

• Python 2.7 or later: Recent 32-bit and 64-bit installers are available at 
https://www.python.org/downloads. The installation instructions can be 
found at https://wiki.python.org/moin/BeginnersGuide/Download.

http://opencv.org/downloads.html
http://opencv.org/downloads.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
https://www.python.org/downloads
https://wiki.python.org/moin/BeginnersGuide/Download
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• NumPy 1.9.2 or later: This package for scientific computing officially comes 
in 32-bit format only, and can be obtained from http://www.scipy.org/
scipylib/download.html. The installation instructions can be found at 
http://www.scipy.org/scipylib/building/index.html#building.

• wxPython 2.8 or later: This GUI programming toolkit can be obtained from 
http://www.wxpython.org/download.php. Its installation instructions are 
given at http://wxpython.org/builddoc.php.

In addition, some chapters require the following free Python modules:

• SciPy 0.16.0 or later (Chapter 1): This scientific Python library officially 
comes in 32-bit only, and can be obtained from http://www.scipy.org/
scipylib/download.html. The installation instructions can be found at 
http://www.scipy.org/scipylib/building/index.html#building.

• matplotlib 1.4.3 or later (Chapters 4 to 7): This 2D plotting library can be 
obtained from http://matplotlib.org/downloads.html. Its installation 
instructions can be found by going to http://matplotlib.org/faq/
installing_faq.html#how-to-install.

• libfreenect 0.5.2 or later (Chapter 2): The libfreenect module by the 
OpenKinect project (http://www.openkinect.org) provides drivers and 
libraries for the Microsoft Kinect hardware, and can be obtained from 
https://github.com/OpenKinect/libfreenect. Its installation instructions 
can be found at http://openkinect.org/wiki/Getting_Started.

Furthermore, the use of iPython (http://ipython.org/install.html) is highly 
recommended as it provides a flexible, interactive console interface.

Finally, if you are looking for help or get stuck along the way, you can go to several 
websites that provide excellent help, documentation, and tutorials:

• The official OpenCV API reference, user guide, and tutorials: http://docs.
opencv.org

• The official OpenCV forum: http://www.answers.opencv.org/questions

• OpenCV-Python tutorials by Alexander Mordvintsev and Abid Rahman K: 
http://opencv-python-tutroals.readthedocs.org/en/latest

http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/building/index.html#building
http://www.wxpython.org/download.php
http://wxpython.org/builddoc.php
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/building/index.html#building
http://matplotlib.org/downloads.html
http://matplotlib.org/faq/installing_faq.html#how-to-install
http://matplotlib.org/faq/installing_faq.html#how-to-install
http://www.openkinect.org
https://github.com/OpenKinect/libfreenect
http://openkinect.org/wiki/Getting_Started
http://ipython.org/install.html
http://docs.opencv.org
http://docs.opencv.org
http://www.answers.opencv.org/questions
http://opencv-python-tutroals.readthedocs.org/en/latest 
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Who this book is for
This book is for intermediate users of OpenCV who aim to master their skills 
by developing advanced practical applications. You should already have some 
experience of building simple applications, and you are expected to be familiar with 
OpenCV's concepts and Python libraries. Basic knowledge of Python programming 
is expected and assumed.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"In OpenCV, a webcam can be accessed with a call to cv2.VideoCapture."

A block of code is set as follows:

def main():
    capture = cv2.VideoCapture(0)
    if not(capture.isOpened()):
        capture.open()
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "The Take 
Snapshot button is placed below the radio buttons."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you. The latest and most up-to-date example code for 
this book is also publicly available on GitHub: http://www.github.com/mbeyeler/
opencv-python-blueprints.

Downloading the color images of this 
book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/OpenCVwithPythonBlueprints_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.github.com/mbeyeler/opencv-python-blueprints
http://www.github.com/mbeyeler/opencv-python-blueprints
https://www.packtpub.com/sites/default/files/downloads/OpenCVwithPythonBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/OpenCVwithPythonBlueprints_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
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Fun with Filters
The goal of this chapter is to develop a number of image processing filters and apply 
them to the video stream of a webcam in real time. These filters will rely on various 
OpenCV functions to manipulate matrices through splitting, merging, arithmetic 
operations, and applying lookup tables for complex functions.

The three effects are as follows:

• Black-and-white pencil sketch: To create this effect, we will make use of two 
image blending techniques, known as dodging and burning

• Warming/cooling filters: To create these effects, we will implement our own 
curve filters using a lookup table

• Cartoonizer: To create this effect, we will combine a bilateral filter, a median 
filter, and adaptive thresholding

OpenCV is such an advanced toolchain that often the question is not how to 
implement something from scratch, but rather which pre-canned implementation 
to choose for your needs. Generating complex effects is not hard if you have a lot of 
computing resources to spare. The challenge usually lies in finding an approach that 
not only gets the job done, but also gets it done in time.

Instead of teaching the basic concepts of image manipulation through theoretical 
lessons, we will take a practical approach and develop a single end-to-end app that 
integrates a number of image filtering techniques. We will apply our theoretical 
knowledge to arrive at a solution that not only works but also speeds up seemingly 
complex effects so that a laptop can produce them in real time.
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The following screenshot shows the final outcome of the three effects running  
on a laptop:

All of the code in this book is targeted for OpenCV 2.4.9 and has been 
tested on Ubuntu 14.04. Throughout this book, we will make extensive 
use of the NumPy package (http://www.numpy.org). In addition, 
this chapter requires the UnivariateSpline module of the SciPy 
package (http://www.scipy.org) as well as the wxPython 2.8 
graphical user interface (http://www.wxpython.org/download.
php) for cross-platform GUI applications. We will try to avoid further 
dependencies wherever possible.

http://www.numpy.org
http://www.scipy.org
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
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Planning the app
The final app will consist of the following modules and scripts:

• filters: A module comprising different classes for the three different image 
effects. The modular approach will allow us to use the filters independently 
of any graphical user interface (GUI).

• filters.PencilSketch: A class for applying the pencil sketch effect to an 
RGB color image.

• filters.WarmingFilter: A class for applying the warming filter to an RGB 
color image.

• filters.CoolingFilter: A class for applying the cooling filter to an RGB 
color image.

• filters.Cartoonizer: A method for applying the cartoonizer effect to an 
RGB color image.

• gui: A module that provides a wxPython GUI application to access the 
webcam and display the camera feed, which we will make extensive use of 
throughout the book.

• gui.BaseLayout: A generic layout from which more complicated layouts 
can be built.

• chapter1: The main script for this chapter.
• chapter1.FilterLayout: A custom layout based on gui.BaseLayout that 

displays the camera feed and a row of radio buttons that allows the user 
to select from the available image filters to be applied to each frame of the 
camera feed.

• chapter1.main: The main function routine for starting the GUI application 
and accessing the webcam.

Creating a black-and-white pencil sketch
In order to obtain a pencil sketch (that is, a black-and-white drawing) of the camera 
frame, we will make use of two image blending techniques, known as dodging and 
burning. These terms refer to techniques employed during the printing process in 
traditional photography; photographers would manipulate the exposure time of a 
certain area of a darkroom print in order to lighten or darken it. Dodging lightens an 
image, whereas burning darkens it. 
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Areas that were not supposed to undergo changes were protected with a mask. 
Today, modern image editing programs, such as Photoshop and Gimp, offer ways to 
mimic these effects in digital images. For example, masks are still used to mimic the 
effect of changing exposure time of an image, wherein areas of a mask with relatively 
intense values will expose the image more, thus lightening the image. OpenCV does 
not offer a native function to implement these techniques, but with a little insight 
and a few tricks, we will arrive at our own efficient implementation that can be used 
to produce a beautiful pencil sketch effect.

If you search on the Internet, you might stumble upon the following common 
procedure to achieve a pencil sketch from an RGB color image:

1. Convert the color image to grayscale.
2. Invert the grayscale image to get a negative.
3. Apply a Gaussian blur to the negative from step 2.
4. Blend the grayscale image from step 1 with the blurred negative from step 3 

using a color dodge.

Whereas steps 1 to 3 are straightforward, step 4 can be a little tricky. Let's get that 
one out of the way first.

OpenCV 3 comes with a pencil sketch effect right out of the 
box. The cv2.pencilSketch function uses a domain filter 
introduced in the 2011 paper Domain transform for edge-aware 
image and video processing, by Eduardo Gastal and Manuel 
Oliveira. However, for the purpose of this book, we will develop 
our own filter.

Implementing dodging and burning in 
OpenCV
In modern image editing tools, such as Photoshop, color dodging of an image A with 
a mask B is implemented as the following ternary statement acting on every pixel 
index, called idx:

((B[idx] == 255) ? B[idx] :  
    min(255, ((A[idx] << 8) / (255-B[idx]))))

This essentially divides the value of an A[idx] image pixel by the inverse of the 
B[idx] mask pixel value, while making sure that the resulting pixel value will be  
in the range of [0, 255] and that we do not divide by zero.
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We could translate this into the following naïve Python function, which accepts two 
OpenCV matrices (image and mask) and returns the blended image:

def dodgeNaive(image, mask):
    # determine the shape of the input image
    width,height = image.shape[:2]

    # prepare output argument with same size as image
    blend = np.zeros((width,height), np.uint8)

    for col in xrange(width):
        for row in xrange(height):

            # shift image pixel value by 8 bits
            # divide by the inverse of the mask
            tmp = (image[c,r] << 8) / (255.-mask)

            # make sure resulting value stays within bounds
            if tmp > 255:
                tmp = 255
            blend[c,r] = tmp
    return blend

As you might have guessed, although this code might be functionally correct, it will 
undoubtedly be horrendously slow. Firstly, the function uses for loops, which are 
almost always a bad idea in Python. Secondly, NumPy arrays (the underlying format 
of OpenCV images in Python) are optimized for array calculations, so accessing and 
modifying each image[c,r] pixel separately will be really slow.

Instead, we should realize that the <<8 operation is the same as multiplying the pixel 
value with the number 2^8=256, and that pixel-wise division can be achieved with 
the cv2.divide function. Thus, an improved version of our dodge function could 
look like this:

import cv2

def dodgeV2(image, mask):
    return cv2.divide(image, 255-mask, scale=256)

We have reduced the dodge function to a single line! The dodgeV2 function produces 
the same result as dodgeNaive but is orders of magnitude faster. In addition, cv2.
divide automatically takes care of division by zero, making the result 0 where 255-
mask is zero.
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Now, it is straightforward to implement an analogous burning function,  
which divides the inverted image by the inverted mask and inverts the result:

import cv2

def burnV2(image, mask):
    return 255 – cv2.divide(255-image, 255-mask, scale=256)

Pencil sketch transformation
With these tricks in our bag, we are now ready to take a look at the entire procedure. 
The final code will be in its own class in the filters module. After we have converted 
a color image to grayscale, we aim to blend this image with its blurred negative:

1. We import the OpenCV and numpy modules:
import cv2
import numpy as np

2. Instantiate the PencilSketch class:
class PencilSketch:
    def __init__(self, (width, height),  
        bg_gray='pencilsketch_bg.jpg'):

The constructor of this class will accept the image dimensions as well as an 
optional background image, which we will make use of in just a bit. If the file 
exists, we will open it and scale it to the right size:

self.width = width
self.height = height

# try to open background canvas (if it exists)
self.canvas = cv2.imread(bg_gray, cv2.CV_8UC1)
if self.canvas is not None:
    self.canvas = cv2.resize(self.canvas,  
        (self.width, self.height))

3. Add a render method that will perform the pencil sketch:
def renderV2(self, img_rgb):

4. Converting an RGB image (imgRGB) to grayscale is straightforward:
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)

Note that it does not matter whether the input image is RGB or BGR.
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5. We then invert the image and blur it with a large Gaussian kernel of size 
(21,21):
img_gray_inv = 255 – img_gray
img_blur = cv2.GaussianBlur(img_gray_inv, (21,21), 0, 0)

6. We use our dodgeV2 dodging function from the aforementioned code to 
blend the original grayscale image with the blurred inverse:
img_blend = dodgeV2(mg_gray, img_blur)
return cv2.cvtColor(img_blend, cv2.COLOR_GRAY2RGB)

The resulting image looks like this:

Did you notice that our code can be optimized further?

A Gaussian blur is basically a convolution with a Gaussian function. One of the 
beauties of convolutions is their associative property. This means that it does not 
matter whether we first invert the image and then blur it, or first blur the image and 
then invert it.

"Then what matters?" you might ask. Well, if we start with a blurred image and pass 
its inverse to the dodgeV2 function, then within that function, the image will get 
inverted again (the 255-mask part), essentially yielding the original image. If we get 
rid of these redundant operations, an optimized render method would look like this:

def render(img_rgb):
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.GaussianBlur(img_gray, (21,21), 0, 0)
    img_blend = cv2.divide(img_gray, img_blur, scale=256)
    return img_blend
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For kicks and giggles, we want to lightly blend our transformed image (img_blend) 
with a background image (self.canvas) that makes it look as if we drew the image 
on a canvas:

if self.canvas is not None:
    img_blend = cv2.multiply(img_blend, self.canvas, scale=1./256)
return cv2.cvtColor(img_blend, cv2.COLOR_GRAY2BGR)

And we're done! The final output looks like what is shown here:

Generating a warming/cooling filter
When we perceive images, our brain picks up on a number of subtle clues to infer 
important details about the scene. For example, in broad daylight, highlights may 
have a slightly yellowish tint because they are in direct sunlight, whereas shadows 
may appear slightly bluish due to the ambient light of the blue sky. When we view 
an image with such color properties, we might immediately think of a sunny day.

This effect is no mystery to photographers, who sometimes purposely manipulate 
the white balance of an image to convey a certain mood. Warm colors are generally 
perceived as more pleasant, whereas cool colors are associated with night and 
drabness.

To manipulate the perceived color temperature of an image, we will implement 
a curve filter. These filters control how color transitions appear between different 
regions of an image, allowing us to subtly shift the color spectrum without adding  
an unnatural-looking overall tint to the image.
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Color manipulation via curve shifting
A curve filter is essentially a function, y = f(x), that maps an input pixel value x to  
an output pixel value y. The curve is parameterized by a set of n+1 anchor points,  
as follows: {(x_0,y_0), (x_1,y_1), ..., (x_n, y_n)}.

Each anchor point is a pair of numbers that represent the input and output pixel 
values. For example, the pair (30, 90) means that an input pixel value of 30 is 
increased to an output value of 90. Values between anchor points are interpolated 
along a smooth curve (hence the name curve filter).

Such a filter can be applied to any image channel, be it a single grayscale channel or 
the R, G, and B channels of an RGB color image. Thus, for our purposes, all values of 
x and y must stay between 0 and 255.

For example, if we wanted to make a grayscale image slightly brighter, we could use 
a curve filter with the following set of control points: {(0,0), (128, 192), (255,255)}. This 
would mean that all input pixel values except 0 and 255 would be increased slightly, 
resulting in an overall brightening effect of the image.

If we want such filters to produce natural-looking images, it is important to respect 
the following two rules:

• Every set of anchor points should include (0,0) and (255,255). This is 
important in order to prevent the image from appearing as if it has an  
overall tint, as black remains black and white remains white.

• The function f(x) should be monotonously increasing. In other words, 
with increasing x, f(x) either stays the same or increases (that is, it never 
decreases). This is important for making sure that shadows remain shadows 
and highlights remain highlights.

Implementing a curve filter by using lookup 
tables
Curve filters are computationally expensive, because the values of f(x) must be 
interpolated whenever x does not coincide with one of the prespecified anchor 
points. Performing this computation for every pixel of every image frame that we 
encounter would have dramatic effects on performance.
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Instead, we make use of a lookup table. Since there are only 256 possible pixel 
values for our purposes, we need to calculate f(x) only for all the 256 possible values 
of x. Interpolation is handled by the UnivariateSpline function of the scipy.
interpolate module, as shown in the following code snippet:

from scipy.interpolate import UnivariateSpline

def _create_LUT_8UC1(self, x, y):
  spl = UnivariateSpline(x, y)
  return spl(xrange(256))

The return argument of the function is a 256-element list that contains the 
interpolated f(x) values for every possible value of x.

All we need to do now is come up with a set of anchor points, (x_i, y_i), and we are 
ready to apply the filter to a grayscale input image (img_gray):

import cv2
import numpy as np

x = [0, 128, 255]
y = [0, 192, 255]
myLUT = _create_LUT_8UC1(x, y)
img_curved = cv2.LUT(img_gray, myLUT).astype(np.uint8)

The result looks like this (the original image is on the left, and the transformed image 
is on the right):

Designing the warming/cooling effect
With the mechanism to quickly apply a generic curve filter to any image channel 
in place, we now turn to the question of how to manipulate the perceived color 
temperature of an image. Again, the final code will have its own class in the filters 
module.
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If you have a minute to spare, I advise you to play around with the different curve 
settings for a while. You can choose any number of anchor points and apply the 
curve filter to any image channel you can think of (red, green, blue, hue, saturation, 
brightness, lightness, and so on). You could even combine multiple channels, or 
decrease one and shift another to a desired region. What will the result look like?

However, if the number of possibilities dazzles you, take a more conservative 
approach. First, by making use of our _create_LUT_8UC1 function developed in the 
preceding steps, let's define two generic curve filters, one that (by trend) increases all 
pixel values of a channel, and one that generally decreases them:

class WarmingFilter:

  def __init__(self):
    self.incr_ch_lut = _create_LUT_8UC1([0, 64, 128, 192, 256],
      [0, 70, 140, 210, 256])
    self.decr_ch_lut = _create_LUT_8UC1([0, 64, 128, 192, 256],
      [0, 30,  80, 120, 192])

The easiest way to make an image appear as if it was taken on a hot, sunny day 
(maybe close to sunset), is to increase the reds in the image and make the colors 
appear vivid by increasing the color saturation. We will achieve this in two steps:

1. Increase the pixel values in the R channel and decrease the pixel values in 
the B channel of an RGB color image using incr_ch_lut and decr_ch_lut, 
respectively:
def render(self, img_rgb):
    c_r, c_g, c_b = cv2.split(img_rgb)
    c_r = cv2.LUT(c_r, self.incr_ch_lut).astype(np.uint8)
    c_b = cv2.LUT(c_b, self.decr_ch_lut).astype(np.uint8)
    img_rgb = cv2.merge((c_r, c_g, c_b))

2. Transform the image into the HSV color space (H means hue, S means 
saturation, and V means value), and increase the S channel using incr_ch_
lut. This can be achieved with the following function, which expects an RGB 
color image as input:

c_b = cv2.LUT(c_b, decrChLUT).astype(np.uint8)

# increase color saturation
c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb, 
    cv2.COLOR_RGB2HSV))
c_s = cv2.LUT(c_s, self.incr_ch_lut).astype(np.uint8)
return cv2.cvtColor(cv2.merge((c_h, c_s, c_v)), 
    cv2.COLOR_HSV2RGB)



Fun with Filters

[ 12 ]

The result looks like what is shown here:

Analogously, we can define a cooling filter that increases the pixel values in the B 
channel, decreases the pixel values in the R channel of an RGB image, converts the 
image into the HSV color space, and decreases color saturation via the S channel:

class CoolingFilter:

    def render(self, img_rgb):

        c_r, c_g, c_b = cv2.split(img_rgb)
        c_r = cv2.LUT(c_r, self.decr_ch_lut).astype(np.uint8)
        c_b = cv2.LUT(c_b, self.incr_ch_lut).astype(np.uint8)
        img_rgb = cv2.merge((c_r, c_g, c_b))

        # decrease color saturation
        c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb,  
            cv2.COLOR_RGB2HSV))
        c_s = cv2.LUT(c_s, self.decr_ch_lut).astype(np.uint8)
        return cv2.cvtColor(cv2.merge((c_h, c_s, c_v)),  
            cv2.COLOR_HSV2RGB)

Now, the result looks like this:
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Cartoonizing an image
Over the past few years, professional cartoonizer software has popped up all over 
the place. In order to achieve the basic cartoon effect, all that we need is a bilateral 
filter and some edge detection. The bilateral filter will reduce the color palette, or 
the numbers of colors that are used in the image. This mimics a cartoon drawing, 
wherein a cartoonist typically has few colors to work with. Then we can apply edge 
detection to the resulting image to generate bold silhouettes. The real challenge, 
however, lies in the computational cost of bilateral filters. We will thus use some 
tricks to produce an acceptable cartoon effect in real time.

We will adhere to the following procedure to transform an RGB color image into  
a cartoon:

1. Apply a bilateral filter to reduce the color palette of the image.
2. Convert the original color image into grayscale.
3. Apply a median blur to reduce image noise.
4. Use adaptive thresholding to detect and emphasize the edges in an  

edge mask.
5. Combine the color image from step 1 with the edge mask from step 4.

Using a bilateral filter for edge-aware 
smoothing
A strong bilateral filter is ideally suitable for converting an RGB image into a color 
painting or a cartoon, because it smoothens flat regions while keeping edges sharp.  
It seems that the only drawback of this filter is its computational cost, as it is orders 
of magnitude slower than other smoothing operations, such as a Gaussian blur.

The first measure to take when we need to reduce the computational cost is to 
perform an operation on an image of low resolution. In order to downscale an RGB 
image (imgRGB) to a quarter of its size (reduce the width and height to half), we could 
use cv2.resize:

import cv2

img_small = cv2.resize(img_rgb, (0,0), fx=0.5, fy=0.5)

A pixel value in the resized image will correspond to the pixel average of a small 
neighborhood in the original image. However, this process may produce image 
artifacts, which is also known as aliasing. While this is bad enough on its own, the 
effect might be enhanced by subsequent processing, for example, edge detection.
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A better alternative might be to use the Gaussian pyramid for downscaling (again to 
a quarter of the original size). The Gaussian pyramid consists of a blur operation that 
is performed before the image is resampled, which reduces aliasing effects:

img_small = cv2.pyrDown(img_rgb)

However, even at this scale, the bilateral filter might still be too slow to run in real 
time. Another trick is to repeatedly (say, five times) apply a small bilateral filter to 
the image instead of applying a large bilateral filter once:

num_iter = 5
for _ in xrange(num_iter):
    img_small = cv2.bilateralFilter(img_small, d=9, sigmaColor=9,  
        sigmaSpace=7)

The three parameters in cv2.bilateralFilter control the diameter of the 
pixel neighborhood (d) and the standard deviation of the filter in the color space 
(sigmaColor) and coordinate space (sigmaSpace).

Don't forget to restore the image to its original size:

img_rgb = cv2.pyrUp(img_small)

The result looks like a blurred color painting of a creepy programmer, as follows:

Detecting and emphasizing prominent edges
Again, when it comes to edge detection, the challenge often does not lie in how the 
underlying algorithm works, but instead which particular algorithm to choose for 
the task at hand. You might already be familiar with a variety of edge detectors. 
For example, Canny edge detection (cv2.Canny) provides a relatively simple and 
effective method to detect edges in an image, but it is susceptible to noise. 
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The Sobel operator (cv2.Sobel) can reduce such artifacts, but it is not rotationally 
symmetric. The Scharr operator (cv2.Scharr) was targeted at correcting this, but 
only looks at the first image derivative. If you are interested, there are even more 
operators for you, such as the Laplacian or ridge operator (which includes the 
second derivative), but they are far more complex. And in the end, for our specific 
purposes, they might not look better, maybe because they are as susceptible to 
lighting conditions as any other algorithm.

For the purpose of this project, we will choose a function that might not even be 
associated with conventional edge detection—cv2.adaptiveThreshold. Like cv2.
threshold, this function uses a threshold pixel value to convert a grayscale image into 
a binary image. That is, if a pixel value in the original image is above the threshold, 
then the pixel value in the final image will be 255. Otherwise, it will be 0. However, 
the beauty of adaptive thresholding is that it does not look at the overall properties 
of the image. Instead, it detects the most salient features in each small neighborhood 
independently, without regard to the global image optima. This makes the algorithm 
extremely robust to lighting conditions, which is exactly what we want when we seek 
to draw bold, black outlines around objects and people in a cartoon.

However, it also makes the algorithm susceptible to noise. To counteract this, we 
will preprocess the image with a median filter. A median filter does what its name 
suggests; it replaces each pixel value with the median value of all the pixels in a 
small pixel neighborhood. We first convert the RGB image (img_rgb) to grayscale 
(img_gray) and then apply a median blur with a seven-pixel local neighborhood:

# convert to grayscale and apply median blur
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
img_blur = cv2.medianBlur(img_gray, 7)

After reducing the noise, it is now safe to detect and enhance the edges using 
adaptive thresholding. Even if there is some image noise left, the cv2.ADAPTIVE_
THRESH_MEAN_C algorithm with blockSize=9 will ensure that the threshold is 
applied to the mean of a 9 x 9 neighborhood minus C=2:

img_edge = cv2.adaptiveThreshold(img_blur, 255,  
                                 cv2.ADAPTIVE_THRESH_MEAN_C,  
                                 cv2.THRESH_BINARY, 9, 2)

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support


Fun with Filters

[ 16 ]

The result of the adaptive thresholding looks like this:

Combining colors and outlines to produce  
a cartoon
The last step is to combine the two. Simply fuse the two effects together into a single 
image using cv2.bitwise_and. The complete function is as follows:

def render(self, img_rgb):
    numDownSamples = 2 # number of downscaling steps
    numBilateralFilters = 7  # number of bilateral filtering steps

    # -- STEP 1 --
    # downsample image using Gaussian pyramid
    img_color = img_rgb
    for _ in xrange(numDownSamples):
        img_color = cv2.pyrDown(img_color)

    # repeatedly apply small bilateral filter instead of applying
    # one large filter
    for _ in xrange(numBilateralFilters):
        img_color = cv2.bilateralFilter(img_color, 9, 9, 7)

    # upsample image to original size
    for _ in xrange(numDownSamples):
        img_color = cv2.pyrUp(img_color)

    # -- STEPS 2 and 3 --
    # convert to grayscale and apply median blur
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
    img_blur = cv2.medianBlur(img_gray, 7)
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    # -- STEP 4 --
    # detect and enhance edges
    img_edge = cv2.adaptiveThreshold(img_blur, 255,
        cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)

    # -- STEP 5 --
    # convert back to color so that it can be bit-ANDed
    # with color image
    img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
    return cv2.bitwise_and(img_color, img_edge)

The result looks like what is shown here:

Putting it all together
Before we can make use of the designed image filter effects in an interactive way,  
we need to set up the main script and design a GUI application.

Running the app
To run the application, we will turn to the chapter1.py. script, which we will start 
by importing all the necessary modules:

import numpy as np

import wx
import cv2
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We will also have to import a generic GUI layout (from gui) and all the designed 
image effects (from filters):

from gui import BaseLayout
from filters import PencilSketch, WarmingFilter, CoolingFilter,  
    Cartoonizer

OpenCV provides a straightforward way to access a computer's webcam or camera 
device. The following code snippet opens the default camera ID (0) of a computer 
using cv2.VideoCapture:

def main():
    capture = cv2.VideoCapture(0)

On some platforms, the first call to cv2.VideoCapture fails to open a channel.  
In that case, we provide a workaround by opening the channel ourselves:

if not(capture.isOpened()):
    capture.open() 

In order to give our application a fair chance to run in real time, we will limit the size 
of the video stream to 640 x 480 pixels:

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

If you are using OpenCV 3, the constants that you are looking for 
might be called cv3.CAP_PROP_FRAME_WIDTH and cv3.CAP_
PROP_FRAME_HEIGHT.

Then the capture stream can be passed to our GUI application, which is an instance 
of the FilterLayout class:

    # start graphical user interface
    app = wx.App()
    layout = FilterLayout(None, -1, 'Fun with Filters', capture)
    layout.Show(True)
    app.MainLoop()

The only thing left to do now is design the said GUI.

The GUI base class
The FilterLayout GUI will be based on a generic, plain layout class called 
BaseLayout, which we will be able to use in subsequent chapters as well.
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The BaseLayout class is designed as an abstract base class. You can think of this class 
as a blueprint or recipe that will apply to all the layouts that we are yet to design—a 
skeleton class, if you will, that will serve as the backbone for all of our future GUI code. 
In order to use abstract classes, we need the following import statement:

from abc import ABCMeta, abstractmethod

We also include some other modules that will be helpful, especially the wx Python 
module and OpenCV (of course):

import time

import wx
import cv2

The class is designed to be derived from the blueprint or skeleton, that is, the 
wx.Frame class. We also mark the class as abstract by adding the __metaclass__ 
attribute:

class BaseLayout(wx.Frame):
    __metaclass__ = ABCMeta

Later on, when we write our own custom layout (FilterLayout), we will use the 
same notation to specify that the class is based on the BaseLayout blueprint (or 
skeleton) class, for example, in class FilterLayout(BaseLayout):. But for now, 
let's focus on the BaseLayout class.

An abstract class has at least one abstract method. An abstract method is akin to 
specifying that a certain method must exist, but we are not sure at that time what  
it should look like. For example, suppose BaseLayout contains a method specified  
as follows:

@abstractmethod
def _init_custom_layout(self): 
    pass

Then any class deriving from it, such as FilterLayout, must specify a fully  
fleshed-out implementation of a method with that exact signature. This will  
allow us to create custom layouts, as you will see in a moment.

But first, let's proceed to the GUI constructor.
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The GUI constructor
The BaseLayout constructor accepts an ID (-1), a title string ('Fun with Filters'), 
a video capture object, and an optional argument that specifies the number of frames 
per second. Then, the first thing to do in the constructor is try and read a frame from 
the captured object in order to determine the image size:

def __init__(self, parent, id, title, capture, fps=10):
    self.capture = capture
    # determine window size and init wx.Frame
    _, frame = self.capture.read()
    self.imgHeight,self.imgWidth = frame.shape[:2]

We will use the image size to prepare a buffer that will store each video frame as 
a bitmap, and to set the size of the GUI. Because we want to display a bunch of 
control buttons below the current video frame, we set the height of the GUI to self.
imgHeight+20:

self.bmp = wx.BitmapFromBuffer(self.imgWidth, 
    self.imgHeight, frame)
wx.Frame.__init__(self, parent, id, title, 
        size=(self.imgWidth, self.imgHeight+20))

We then provide two methods to initialize some more parameters and create the 
actual layout of the GUI:

self._init_base_layout()
self._create_base_layout()

Handling video streams
The video stream of the webcam is handled by a series of steps that begin with the 
_init_base_layout method. These steps might appear overly complicated at first, 
but they are necessary in order to allow the video to run smoothly, even at higher 
frame rates (that is, to counteract flicker).

The wxPython module works with events and callback methods. When a certain 
event is triggered, it can cause a certain class method to be executed (in other words, 
a method can bind to an event). We will use this mechanism to our advantage and 
display a new frame every so often using the following steps:

1. We create a timer that will generate a wx.EVT_TIMER event whenever 1000./
fps milliseconds have passed:
def _init_base_layout(self):
    self.timer = wx.Timer(self)
    self.timer.Start(1000./self.fps)
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2. Whenever the timer is up, we want the _on_next_frame method to be called. 
It will try to acquire a new video frame:
self.Bind(wx.EVT_TIMER, self._on_next_frame)

3. The _on_next_frame method will process the new video frame and store the 
processed frame in a bitmap. This will trigger another event, wx.EVT_PAINT. 
We want to bind this event to the _on_paint method, which will paint the 
display the new frame:
self.Bind(wx.EVT_PAINT, self._on_paint)

The _on_next_frame method grabs a new frame and, once done, sends the frame to 
another method, __process_frame, for further processing:

def _on_next_frame(self, event):
    ret, frame = self.capture.read()
    if ret:
        frame = self._process_frame(cv2.cvtColor(frame, 
            cv2.COLOR_BGR2RGB))

The processed frame (frame) is then stored in a bitmap buffer (self.bmp):

self.bmp.CopyFromBuffer(frame)

Calling Refresh triggers the aforementioned wx.EVT_PAINT event, which binds to 
_on_paint:

self.Refresh(eraseBackground=False)

The paint method then grabs the frame from the buffer and displays it:

def _on_paint(self, event):
    deviceContext = wx.BufferedPaintDC(self.pnl)
    deviceContext.DrawBitmap(self.bmp, 0, 0)

A basic GUI layout
The creation of the generic layout is done by a method called _create_base_layout. 
The most basic layout consists of only a large black panel that provides enough room 
to display the video feed:

def _create_base_layout(self):
    self.pnl = wx.Panel(self, -1,
                        size=(self.imgWidth, self.imgHeight))
    self.pnl.SetBackgroundColour(wx.BLACK)
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In order for the layout to be extendable, we add it to a vertically arranged 
wx.BoxSizer object:

self.panels_vertical = wx.BoxSizer(wx.VERTICAL)
self.panels_vertical.Add(self.pnl, 1, flag=wx.EXPAND)

Next, we specify an abstract method, _create_custom_layout, for which we will 
not fill in any code. Instead, any user of our base class can make their own custom 
modifications to the basic layout:

self._create_custom_layout()

Then, we just need to set the minimum size of the resulting layout and center it:

self.SetMinSize((self.imgWidth, self.imgHeight))
self.SetSizer(self.panels_vertical)
self.Centre()

A custom filter layout
Now we are almost done! If we want to use the BaseLayout class, we need to 
provide code for the three methods that were left blank previously:

• _init_custom_layout: This is where we can initialize task-specific 
parameters

• _create_custom_layout: This is where we can make task-specific 
modifications to the GUI layout

• _process_frame: This is where we perform task-specific processing on each 
captured frame of the camera feed

At this point, initializing the image filters is self-explanatory, as it only requires us to 
instantiate the corresponding classes:

def _init_custom_layout(self):
    self.pencil_sketch = PencilSketch((self.imgWidth, 
        self.imgHeight))
    self.warm_filter = WarmingFilter()
    self.cool_filter = CoolingFilter()
    self.cartoonizer = Cartoonizer()

To customize the layout, we arrange a number of radio buttons horizontally,  
one button per image effect mode:

def _create_custom_layout(self):
    # create a horizontal layout with all filter modes
    pnl = wx.Panel(self, -1 )
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    self.mode_warm = wx.RadioButton(pnl, -1, 'Warming Filter',
        (10, 10), style=wx.RB_GROUP)
    self.mode_cool = wx.RadioButton(pnl, -1, 'Cooling Filter', 
        (10, 10))
    self.mode_sketch = wx.RadioButton(pnl, -1, 'Pencil Sketch',
        (10, 10))
    self.mode_cartoon = wx.RadioButton(pnl, -1, 'Cartoon',
        (10, 10))
    hbox = wx.BoxSizer(wx.HORIZONTAL)
    hbox.Add(self.mode_warm, 1)
    hbox.Add(self.mode_cool, 1)
    hbox.Add(self.mode_sketch, 1)
    hbox.Add(self.mode_cartoon, 1)
    pnl.SetSizer(hbox)

Here, the style=wx.RB_GROUP option makes sure that only one of these radio 
buttons can be selected at a time.

To make these changes take effect, pnl needs to be added to list of existing panels:

self.panels_vertical.Add(pnl, flag=wx.EXPAND | wx.BOTTOM | wx.TOP,  
            border=1)

The last method to be specified is _process_frame. Recall that this method is 
triggered whenever a new camera frame is received. All that we need to do is 
pick the right image effect to be applied, which depends on the radio button 
configuration. We simply check which of the buttons is currently selected and call 
the corresponding render method:

def _process_frame(self, frame_rgb):
    if self.mode_warm.GetValue():
        frame = self.warm_filter.render(frame_rgb)
    elif self.mode_cool.GetValue():
        frame = self.cool_filter.render(frame_rgb)
    elif self.mode_sketch.GetValue():
        frame = self.pencil_sketch.render(frame_rgb)
    elif self.mode_cartoon.GetValue():
        frame = self.cartoonizer.render(frame_rgb)

Don't forget to return the processed frame:

return frame
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And we're done!

Here is the result:

Summary
In this chapter, we explored a number of interesting image processing effects. We 
used dodging and burning to create a black-and-white pencil sketch effect, explored 
lookup tables to arrive at an efficient implementation of curve filters, and got creative 
to produce a cartoon effect.

In the next chapter, we will shift gears a bit and explore the use of depth sensors, 
such as Microsoft Kinect 3D, to recognize hand gestures in real time.
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Hand Gesture Recognition 
Using a Kinect Depth Sensor

The goal of this chapter is to develop an app that detects and tracks simple hand 
gestures in real time using the output of a depth sensor, such as that of a Microsoft 
Kinect 3D sensor or an Asus Xtion. The app will analyze each captured frame to 
perform the following tasks:

• Hand region segmentation: The user's hand region will be extracted in each 
frame by analyzing the depth map output of the Kinect sensor, which is done 
by thresholding, applying some morphological operations, and finding 
connected components

• Hand shape analysis: The shape of the segmented hand region will be 
analyzed by determining contours, convex hull, and convexity defects

• Hand gesture recognition: The number of extended fingers will be 
determined based on the hand contour's convexity defects, and the gesture 
will be classified accordingly (with no extended fingers corresponding to a 
fist, and five extended fingers corresponding to an open hand)

Gesture recognition is an ever-popular topic in computer science. This is because 
it not only enables humans to communicate with machines (human-machine 
interaction or HMI), but also constitutes the first step for machines to begin 
understanding human body language. With affordable sensors such as Microsoft 
Kinect or Asus Xtion, and open source software such as OpenKinect and OpenNI, it 
has never been easy to get started in the field yourself. So, what shall we do with all 
this technology?
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The beauty of the algorithm that we are going to implement in this chapter is that it 
works well for a number of hand gestures, yet is simple enough to run in real time 
on a generic laptop. Also, if we want, we can easily extend it to incorporate more 
complicated hand pose estimations. The end product looks like this:

No matter how many fingers of my left hand I extend, the algorithm correctly 
segments the hand region (white), draws the corresponding convex hull (the green 
line surrounding the hand), finds all convexity defects that belong to the spaces 
between fingers (large green points) while ignoring others (small red points), and 
infers the correct number of extended fingers (the number in the bottom-right 
corner), even for a fist.

This chapter assumes that you have a Microsoft Kinect 3D sensor 
installed. Alternatively, you may install an Asus Xtion or any other 
depth sensor for which OpenCV has built-in support. First, install 
OpenKinect and libfreenect from http://www.openkinect.org/
wiki/Getting_Started. Then, you need to build (or rebuild) 
OpenCV with OpenNI support. The GUI used in this chapter will 
again be designed with wxPython, which can be obtained from 
http://www.wxpython.org/download.php.

http://www.openkinect.org/wiki/Getting_Started
http://www.openkinect.org/wiki/Getting_Started
http://www.wxpython.org/download.php
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Planning the app
The final app will consist of the following modules and scripts:

• gestures: A module that consists of an algorithm for recognizing hand 
gestures. We separate this algorithm from the rest of the application so that it 
can be used as a standalone module without the need for a GUI.

• gestures.HandGestureRecognition: A class that implements the entire 
process flow of hand-gesture recognition. It accepts a single-channel depth 
image (acquired from the Kinect depth sensor) and returns an annotated 
RGB color image with an estimated number of extended fingers.

• gui: A module that provides a wxPython GUI application to access the 
capture device and display the video feed. This is the same module that we 
used in the last chapter. In order to have it access the Kinect depth sensor 
instead of a generic camera, we will have to extend some of the base class 
functionality.

• gui.BaseLayout: A generic layout from which more complicated layouts 
can be built.

• chapter2: The main script for the chapter.
• chapter2.KinectLayout: A custom layout based on gui.BaseLayout that 

displays the Kinect depth sensor feed. Each captured frame is processed with 
the HandGestureRecognition class described earlier.

• chapter2.main: The main function routine for starting the GUI application 
and accessing the depth sensor.

Setting up the app
Before we can get down to the nitty-gritty of our gesture recognition algorithm, we 
need to make sure that we can access the Kinect sensor and display a stream of depth 
frames in a simple GUI.
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Accessing the Kinect 3D sensor
Accessing Microsoft Kinect from within OpenCV is not much different from 
accessing a computer's webcam or camera device. The easiest way to integrate a 
Kinect sensor with OpenCV is by using an OpenKinect module called freenect.  
For installation instructions, take a look at the preceding information box. The 
following code snippet grants access to the sensor using cv2.VideoCapture:

import cv2
import freenect

device = cv2.cv.CV_CAP_OPENNI
capture = cv2.VideoCapture(device)

On some platforms, the first call to cv2.VideoCapture fails to open a capture 
channel. In this case, we provide a workaround by opening the channel ourselves:

if not(capture.isOpened(device)):
    capture.open(device)

If you want to connect to your Asus Xtion, the device variable should be assigned 
the cv2.cv.CV_CAP_OPENNI_ASUS value instead.

In order to give our app a fair chance of running in real time, we will limit the frame 
size to 640 x 480 pixels:

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

If you are using OpenCV 3, the constants you are looking for might be 
called cv3.CAP_PROP_FRAME_WIDTH and cv3.CAP_PROP_FRAME_
HEIGHT.

The read() method of cv2.VideoCapture is inappropriate when we need to 
synchronize a set of cameras or a multihead camera, such as a Kinect. In this case, we 
should use the grab() and retrieve() methods instead. An even easier approach 
when working with OpenKinect is to use the sync_get_depth() and sync_get_
video()methods.

For the purpose of this chapter, we will need only the Kinect's depth map, which is a 
single-channel (grayscale) image in which each pixel value is the estimated distance 
from the camera to a particular surface in the visual scene. The latest frame can be 
grabbed via this code:

depth, timestamp = freenect.sync_get_depth()
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The preceding code returns both the depth map and a timestamp. We will ignore 
the latter for now. By default, the map is in 11-bit format, which is inadequate to be 
visualized with cv2.imshow right away. Thus, it is a good idea to convert the image 
to 8-bit precision first.

In order to reduce the range of depth values in the frame, we will clip the maximal 
distance to a value of 1,023 (or 2**10-1). This will get rid of values that correspond 
either to noise or distances that are far too large to be of interest to us:

np.clip(depth, 0, 2**10-1, depth)
depth >>= 2

Then, we will convert the image into 8-bit format and display it:

depth = depth.astype(np.uint8)
cv2.imshow("depth", depth)

Running the app
In order to run our app, we will need to execute a main function routine that accesses 
the Kinect, generates the GUI, and executes the main loop of the app. This is done by 
the main function of chapter2.py:

import numpy as np

import wx
import cv2
import freenect

from gui import BaseLayout
from gestures import HandGestureRecognition

def main():
    device = cv2.cv.CV_CAP_OPENNI
    capture = cv2.VideoCapture()
    if not(capture.isOpened()):
        capture.open(device)

    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)
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As in the last chapter, we will design a suitable layout (KinectLayout) for the 
current project:

    # start graphical user interface
    app = wx.App()
    layout = KinectLayout(None, -1, 'Kinect Hand Gesture  
        Recognition', capture)
    layout.Show(True)
    app.MainLoop()

The Kinect GUI
The layout chosen for the current project (KinectLayout) is as plain as it gets.  
It should simply display the live stream of the Kinect depth sensor at a comfortable 
frame rate of 10 frames per second. Therefore, there is no need to further customize 
BaseLayout:

class KinectLayout(BaseLayout):
    def _create_custom_layout(self):
        pass

The only parameter that needs to be initialized this time is the recognition class.  
This will be useful in just a moment:

    def _init_custom_layout(self):
        self.hand_gestures = HandGestureRecognition()

Instead of reading a regular camera frame, we need to acquire a depth frame via 
the freenect method sync_get_depth(). This can be achieved by overriding the 
following method:

def _acquire_frame(self):

As mentioned earlier, by default this function returns a single-channel depth  
image with 11-bit precision and a timestamp. However, we are not interested  
in the timestamp, and we simply pass on the frame if the acquisition is successful:

        frame, _ = freenect.sync_get_depth()
        # return success if frame size is valid
        if frame is not None:
            return (True, frame)
        else:
            return (False, frame)
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The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure that we provide a _process_frame method. This method accepts 
a depth image with 11-bit precision, processes it, and returns an annotated 8-bit RGB 
color image. Conversion to a regular grayscale image is the same as mentioned in the 
previous subsection:

def _process_frame(self, frame):
    # clip max depth to 1023, convert to 8-bit grayscale
    np.clip(frame, 0, 2**10 – 1, frame)
    frame >>= 2
    frame = frame.astype(np.uint8)

The resulting grayscale image can then be passed to the hand gesture recognizer, 
which will return the estimated number of extended fingers (num_fingers) and the 
annotated RGB color image mentioned earlier (img_draw):

num_fingers, img_draw = self.hand_gestures.recognize(frame)

In order to simplify the segmentation task of the HandGestureRecognition class, 
we will instruct the user to place their hand in the center of the screen. To provide a 
visual aid for this, let's draw a rectangle around the image center and highlight the 
center pixel of the image in orange:

height, width = frame.shape[:2]
cv2.circle(img_draw, (width/2, height/2), 3, [255, 102, 0], 2)
cv2.rectangle(img_draw, (width/3, height/3), (width*2/3,  
            height*2/3), [255, 102, 0], 2)

In addition, we will print num_fingers on the screen:

cv2.putText(img_draw, str(num_fingers), (30, 30),  
            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255))

return img_draw

Tracking hand gestures in real time
Hand gestures are analyzed by the HandGestureRecognition class, especially by its 
recognize method. This class starts off with a few parameter initializations, which 
will be explained and used later:

class HandGestureRecognition:
    def __init__(self):
        # maximum depth deviation for a pixel to be considered  
            # within range
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        self.abs_depth_dev = 14

        # cut-off angle (deg): everything below this is a  
            convexity 
        # point that belongs to two extended fingers
        self.thresh_deg = 80.0

The recognize method is where the real magic takes place. This method handles the 
entire process flow, from the raw grayscale image all the way to a recognized hand 
gesture. It implements the following procedure:

1. It extracts the user's hand region by analyzing the depth map (img_gray) and 
returning a hand region mask (segment):
def recognize(self, img_gray):
    segment = self._segment_arm(img_gray)

2. It performs contour analysis on the hand region mask (segment). Then, it 
returns the largest contour area found in the image (contours) and any 
convexity defects (defects):
[contours, defects] = self._find_hull_defects(segment)

3. Based on the contours found and the convexity defects, it detects the number 
of extended fingers (num_fingers) in the image. Then, it annotates the 
output image (img_draw) with contours, defect points, and the number of 
extended fingers:
img_draw = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)
[num_fingers, img_draw] =  
    self._detect_num_fingers(contours,
        defects, img_draw)

4. It returns the estimated number of extended fingers (num_fingers), as well 
as the annotated output image (img_draw):
return (num_fingers, img_draw)

Hand region segmentation
The automatic detection of an arm, and later the hand region, could be designed to 
be arbitrarily complicated, maybe by combining information about the shape and 
color of an arm or hand. However, using a skin color as a determining feature to 
find hands in visual scenes might fail terribly in poor lighting conditions or when 
the user is wearing gloves. Instead, we choose to recognize the user's hand by its 
shape in the depth map. Allowing hands of all sorts to be present in any region of the 
image unnecessarily complicates the mission of the present chapter, so we make two 
simplifying assumptions:
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• We will instruct the user of our app to place their hand in front of the center 
of the screen, orienting their palm roughly parallel to the orientation of the 
Kinect sensor so that it is easier to identify the corresponding depth layer of 
the hand.

• We will also instruct the user to sit roughly one to two meters away from the 
Kinect, and to slightly extend their arm in front of their body so that the hand 
will end up in a slightly different depth layer than the arm. However, the 
algorithm will still work even if the full arm is visible.

In this way, it will be relatively straightforward to segment the image based on the 
depth layer alone. Otherwise, we would have to come up with a hand detection 
algorithm first, which would unnecessarily complicate our mission. If you feel 
adventurous, feel free to do this on your own.

Finding the most prominent depth of the 
image center region
Once the hand is placed roughly in the center of the screen, we can start finding all 
image pixels that lie on the same depth plane as the hand.

To do this, we simply need to determine the most prominent depth value of the 
center region of the image. The simplest approach would be as follows: look only  
at the depth value of the center pixel:

width, height = depth.shape
center_pixel_depth = depth[width/2, height/2]

Then, create a mask in which all pixels at a depth of center_pixel_depth are white 
and all others are black:

import numpy as np

depth_mask = np.where(depth == center_pixel_depth, 255,  
    0).astype(np.uint8)

However, this approach will not be very robust, because chances are that it will be 
compromised by the following:

• Your hand will not be placed perfectly parallel to the Kinect sensor
• Your hand will not be perfectly flat
• The Kinect sensor values will be noisy

Therefore, different regions of your hand will have slightly different depth values.
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The _segment_arm method takes a slightly better approach; that is, looking at a small 
neighborhood in the center of the image and determining the median (meaning the 
most prominent) depth value. First, we find the center region (for example, 21 x  
21 pixels) of the image frame:

def _segment_arm(self, frame):
    """ segments the arm region based on depth """
    center_half = 10 # half-width of 21 is 21/2-1
    lowerHeight = self.height/2 – center_half
    upperHeight = self.height/2 + center_half
    lowerWidth = self.width/2 – center_half
    upperWidth = self.width/2 + center_half
    center = frame[lowerHeight:upperHeight,  
        lowerWidth:upperWidth]

We can then reshape the depth values of this center region into a one-dimensional 
vector and determine the median depth value, med_val:

med_val = np.median(center)

We can now compare med_val with the depth value of all pixels in the image and 
create a mask in which all pixels whose depth values are within a particular range 
[med_val-self.abs_depth_dev, med_val+self.abs_depth_dev] are white, and 
all other pixels are black. However, for reasons that will be come clear in a moment, 
let's paint the pixels gray instead of white:

frame = np.where(abs(frame – med_val) <= self.abs_depth_dev, 
        128, 0).astype(np.uint8)
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The result will look like this:

Applying morphological closing to smoothen 
the segmentation mask
A common problem with segmentation is that a hard threshold typically results 
in small imperfections (that is, holes, as in the preceding image) in the segmented 
region. These holes can be alleviated by using morphological opening and closing. 
Opening removes small objects from the foreground (assuming that the objects are 
bright on a dark foreground), whereas closing removes small holes (dark regions).

This means that we can get rid of the small black regions in our mask by applying 
morphological closing (dilation followed by erosion) with a small 3 x 3 pixel kernel:

        kernel = np.ones((3, 3), np.uint8)
        frame = cv2.morphologyEx(frame, cv2.MORPH_CLOSE, kernel)
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The result looks a lot smoother, as follows:

Notice, however, that the mask still contains regions that do not belong to the hand 
or arm, such as what appears to be one of my knees on the left and some furniture 
on the right. These objects just happen to be on the same depth layer as my arm 
and hand. If possible, we could now combine the depth information with another 
descriptor, maybe a texture-based or skeleton-based hand classifier, that would  
weed out all non-skin regions.

Finding connected components in a 
segmentation mask
An easier approach is to realize that most of the time hands are not connected to 
knees or furniture. We already know that the center region belongs to the hand,  
so we can simply apply cv2.floodfill to find all the connected image regions.
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Before we do this, we want to be absolutely certain that the seed point for the flood 
fill belongs to the right mask region. This can be achieved by assigning a grayscale 
value of 128 to the seed point. However, we also want to make sure that the center 
pixel does not, by any coincidence, lie within a cavity that the morphological 
operation failed to close. So, let's set a small 7 x 7 pixel region with a grayscale  
value of 128 instead:

small_kernel = 3
frame[self.height/2-small_kernel :
            self.height/2+small_kernel,  
            self.width/2-small_kernel :  
            self.width/2+small_kernel] = 128

As flood filling (as well as morphological operations) is potentially dangerous, later 
OpenCV versions require the specification of a mask that avoids flooding the entire 
image. This mask has to be 2 pixels wider and taller than the original image and has 
to be used in combination with the cv2.FLOODFILL_MASK_ONLY flag. It can be very 
helpful in constraining the flood filling to a small region of the image or a specific 
contour so that we need not connect two neighboring regions that should have never 
been connected in the first place. It's better to be safe than sorry, right?

Ah, screw it! Today, we feel courageous! Let's make the mask entirely black:

mask = np.zeros((self.height+2, self.width+2), np.uint8)

Then, we can apply the flood fill to the center pixel (the seed point) and paint all the 
connected regions white:

flood = frame.copy()
cv2.floodFill(flood, mask, (self.width/2, self.height/2),  
    255, flags=4 | (255 << 8))

At this point, it should be clear why we decided to start with a gray mask earlier. 
We now have a mask that contains white regions (arm and hand), gray regions 
(neither arm nor hand but other things in the same depth plane), and black regions 
(all others). With this setup, it is easy to apply a simple binary threshold to highlight 
only the relevant regions of the pre-segmented depth plane:

ret, flooded = cv2.threshold(flood, 129, 255, cv2.THRESH_BINARY)
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This is what the resulting mask looks like:

The resulting segmentation mask can now be returned to the recognize method, 
where it will be used as an input to _find_hull_defects, as well as a canvas for 
drawing the final output image (img_draw).

Hand shape analysis
Now that we know (roughly) where the hand is located, we aim to learn something 
about its shape.

Determining the contour of the segmented 
hand region
The first step involves determining the contour of the segmented hand region. 
Luckily, OpenCV comes with a pre-canned version of such an algorithm—cv2.
findContours. This function acts on a binary image and returns a set of points that 
are believed to be part of the contour. As there might be multiple contours present  
in the image, it is possible to retrieve an entire hierarchy of contours:

def _find_hull_defects(self, segment):
    contours, hierarchy = cv2.findContours(segment,  
        cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
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Furthermore, because we do not know which contour we are looking for, we have 
to make an assumption to clean up the contour result. Since it is possible that some 
small cavities are left over even after the morphological closing—but we are fairly 
certain that our mask contains only the segmented area of interest—we will assume 
that the largest contour found is the one that we are looking for. Thus, we simply 
traverse the list of contours, calculate the contour area (cv2.contourArea), and store 
only the largest one (max_contour):

max_contour = max(contours, key=cv2.contourArea)

Finding the convex hull of a contour area
Once we have identified the largest contour in our mask, it is straightforward 
to compute the convex hull of the contour area. The convex hull is basically the 
envelope of the contour area. If you think of all the pixels that belong to the contour 
area as a set of nails sticking out of a board, then the convex hull is the shape formed 
by a tight rubber band that surrounds all the nails.

We can get the convex hull directly from our largest contour (max_contour):

hull = cv2.convexHull(max_contour, returnPoints=False)

As we now want to look at convexity deficits in this hull, we are instructed by the 
OpenCV documentation to set the returnPoints optional flag to False.

The convex hull drawn in yellow around a segmented hand region looks like this:
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Finding the convexity defects of a convex hull
As is evident from the preceding screenshot, not all points on the convex hull belong 
to the segmented hand region. In fact, all the fingers and the wrist cause severe 
convexity defects, that is, points of the contour that are far away from the hull.

We can find these defects by looking at both the largest contour (max_contour)  
and the corresponding convex hull (hull):

defects = cv2.convexityDefects(max_contour, hull)

The output of this function (defects) is a 4-tuple that contains start_index (the 
point of the contour where the defect begins), end_index (the point of the contour 
where the defect ends), farthest_pt_index (the farthest from the convex hull point 
within the defect), and fixpt_depth (the distance between the farthest point and the 
convex hull). We will make use of this information in just a moment when we try to 
extract the number of extended fingers.

For now though, our job is done. The extracted contour (max_contour) and 
convexity defects (defects) can be passed to recognize, where they will be used as 
inputs to _detect_num_fingers:

return (cnt,defects)

Hand gesture recognition
What remains to be done is to classify the hand gesture based on the number of 
extended fingers. For example, if we find five extended fingers, we assume the hand 
to be open, whereas no extended fingers implies a fist. All that we are trying to do is 
count from zero to five and make the app recognize the corresponding number  
of fingers.

This is actually trickier than it might seem at first. For example, people in Europe 
might count to three by extending their thumb, index finger, and middle finger. 
If you do that in the US, people there might get horrendously confused, because 
they do not tend to use their thumbs when signaling the number two. This might 
lead to frustration, especially in restaurants (trust me). If we could find a way to 
generalize these two scenarios—maybe by appropriately counting the number of 
extended fingers—we would have an algorithm that could teach simple hand gesture 
recognition to not only a machine but also (maybe) to an average waitress.
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As you might have guessed, the answer is related to convexity defects. As mentioned 
earlier, extended fingers cause defects in the convex hull. However, the inverse 
is not true; that is, not all convexity defects are caused by fingers! There might be 
additional defects caused by the wrist, as well as the overall orientation of the hand 
or the arm. How can we distinguish between these different causes of defects?

Distinguishing between different causes of 
convexity defects
The trick is to look at the angle between the farthest point from the convex hull 
point within the defect (farthest_pt_index) and the start and end points of the 
defect (start_index and end_index, respectively), as illustrated in the following 
screenshot:

In this screenshot, the orange markers serve as a visual aid to center the hand in 
the middle of the screen, and the convex hull is outlined in green. Each red dot 
corresponds to the point farthest from the convex hull (farthest_pt_index) for 
every convexity defect detected. If we compare a typical angle that belongs to two 
extended fingers (such as θj) to an angle that is caused by general hand geometry 
(such as θi), we notice that the former is much smaller than the latter. This is 
obviously because humans can spread their fingers only a little, thus creating a 
narrow angle made by the farthest defect point and the neighboring fingertips.
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Therefore, we can iterate over all convexity defects and compute the angle between 
the said points. For this, we will need a utility function that calculates the angle (in 
radians) between two arbitrary, list-like vectors, v1 and v2:

def angle_rad(v1, v2):
    return np.arctan2(np.linalg.norm(np.cross(v1, v2)),  
        np.dot(v1, v2))

This method uses the cross product to compute the angle, rather than doing it in the 
standard way. The standard way of calculating the angle between two vectors v1 
and v2 is by calculating their dot product and dividing it by the norm of v1 and the 
norm of v2. However, this method has two imperfections:

• You have to manually avoid division by zero if either the norm of v1 or the 
norm of v2 is zero

• The method returns relatively inaccurate results for small angles

Similarly, we provide a simple function to convert an angle from degrees to radians:

def deg2rad(angle_deg):
    return angle_deg/180.0*np.pi

Classifying hand gestures based on the 
number of extended fingers
What remains to be done is actually to classify the hand gesture based on the  
number of extended fingers. The _detect_num_fingers method will take as input 
the detected contour (contours), the convexity defects (defects), and a canvas to 
draw on (img_draw):

def _detect_num_fingers(self, contours, defects, img_draw):

Based on these parameters, it will then determine the number of extended fingers.

However, we first need to define a cut-off angle that can be used as a threshold to 
classify convexity defects as being caused by extended fingers or not. Except for the 
angle between the thumb and the index finger, it is rather hard to get anything close 
to 90 degrees, so anything close to that number should work. We do not want the 
cut-off angle to be too high, because that might lead to misclassifications:

self.thresh_deg = 80.0
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For simplicity, let's focus on the special cases first. If we do not find any convexity 
defects, it means that we possibly made a mistake during the convex hull calculation, 
or there are simply no extended fingers in the frame, so we return 0 as the number  
of detected fingers:

if defects is None:
    return [0, img_draw]

However, we can take this idea even further. Due to the fact that arms are usually 
slimmer than hands or fists, we can assume that the hand geometry will always 
generate at least two convexity defects (which usually belong to the wrists). So, if 
there are no additional defects, it implies that there are no extended fingers:

if len(defects) <= 2:
    return [0, img_draw]

Now that we have ruled out all special cases, we can begin counting real fingers. 
If there is a sufficient number of defects, we will find a defect between every pair 
of fingers. Thus, in order to get the number right (num_fingers), we should start 
counting at 1:

num_fingers = 1

Then, we can start iterating over all convexity defects. For each defect, we will extract 
the four elements and draw its hull for visualization purposes:

for i in range(defects.shape[0]):
    # each defect point is a 4-tuplestart_idx, end_idx,  
        farthest_idx, _ == defects[i, 0]
    start = tuple(contours[start_idx][0])
    end = tuple(contours[end_idx][0])
    far = tuple(contours[farthest_idx][0])

    # draw the hull
    cv2.line(img_draw, start, end [0, 255, 0], 2)

Then, we will compute the angle between the two edges from far to start and from 
far to end. If the angle is smaller than self.thresh_deg degrees, it means that we 
are dealing with a defect that is most likely caused by two extended fingers. In such 
cases, we want to increment the number of detected fingers (num_fingers), and 
draw the point with green. Otherwise, we draw the point with red:

# if angle is below a threshold, defect point belongs
# to two extended fingers
if angle_rad(np.subtract(start, far),  
        np.subtract(end, far))
        < deg2rad(self.thresh_deg):
    # increment number of fingers
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    num_fingers = num_fingers + 1

    # draw point as green
    cv2.circle(img_draw, far, 5, [0, 255, 0], -1)
else:
    # draw point as red
    cv2.circle(img_draw, far, 5, [255, 0, 0], -1)

After iterating over all convexity defects, we pass the number of detected fingers and 
the assembled output image to the recognize method:

return (min(5, num_fingers), img_draw)

This will make sure that we do not exceed the common number of fingers per hand.

The result can be seen in the following screenshots:

Interestingly, our app is able to detect the correct number of extended fingers in a 
variety of hand configurations. Defect points between extended fingers are easily 
classified as such by the algorithm, and others are successfully ignored.
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Summary
This chapter showed a relatively simple and yet surprisingly robust way of 
recognizing a variety of hand gestures by counting the number of extended fingers.

The algorithm first shows how a task-relevant region of the image can be segmented 
using depth information acquired from a Microsoft Kinect 3D Sensor, and how 
morphological operations can be used to clean up the segmentation result. By 
analyzing the shape of the segmented hand region, the algorithm comes up with a 
way to classify hand gestures based on the types of convexity effects found in the 
image. Once again, mastering our use of OpenCV to perform a desired task did not 
require us to produce a large amount of code. Instead, we were challenged to gain an 
important insight that made us use the built-in functionality of OpenCV in the most 
effective way possible.

Gesture recognition is a popular but challenging field in computer science,  
with applications in a large number of areas, such as human-computer interaction, 
video surveillance, and even the video game industry. You can now use your 
advanced understanding of segmentation and structure analysis to build your  
own state-of-the-art gesture recognition system.

In the next chapter, we will continue to focus on detecting objects of interest in  
visual scenes, but we will assume a much more complicated case—viewing the  
object from an arbitrary perspective and distance. To do this, we will combine 
perspective transformations with scale-invariant feature descriptors to develop  
a robust feature-matching algorithm.
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Finding Objects via  
Feature Matching and 

Perspective Transforms
The goal of this chapter is to develop an app that is able to detect and track an 
object of interest in the video stream of a webcam, even if the object is viewed from 
different angles or distances or under partial occlusion.

In this chapter, we will cover the following topics:

• Feature extraction
• Feature matching
• Feature tracking

In the previous chapter, you learned how to detect and track a simple object  
(the silhouette of a hand) in a very controlled environment. To be more specific,  
we instructed the user of our app to place the hand in the central region of the screen 
and made assumptions about the size and shape of the object (the hand). But what 
if we wanted to detect and track objects of arbitrary sizes, possibly viewed from a 
number of different angles or under partial occlusion?

For this, we will make use of feature descriptors, which are a way of capturing the 
important properties of our object of interest. We do this so that the object can be 
located even when it is embedded in a busy visual scene. We will again apply our 
algorithm to the live stream of a webcam, and do our best to keep the algorithm 
robust yet simple enough to run in real time.
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Tasks performed by the app
The app will analyze each captured frame to perform the following tasks:

• Feature extraction: We will describe an object of interest with Speeded-Up 
Robust Features (SURF), which is an algorithm used to find distinctive 
keypoints in an image that are both scale invariant and rotation invariant. 
These keypoints will help us make sure that we are tracking the right object 
over multiple frames. Because the appearance of the object might change 
from time to time, it is important to find keypoints that do not depend on  
the viewing distance or viewing angle of the object (hence the scale and 
rotation invariance).

• Feature matching: We will try to establish a correspondence between 
keypoints using the Fast Library for Approximate Nearest Neighbors 
(FLANN) to see whether a frame contains keypoints similar to the keypoints 
from our object of interest. If we find a good match, we will mark the object 
in each frame.

• Feature tracking: We will keep track of the located object of interest from 
frame to frame using various forms of early outlier detection and outlier 
rejection to speed up the algorithm.

• Perspective transform: We will then reverse any translations and rotations 
that the object has undergone by warping the perspective so that the object 
appears upright in the center of the screen. This creates a cool effect in which 
the object seems frozen in a position while the entire surrounding scene 
rotates around it.

An example of the first three steps is shown in the following image, which contains  
a template image of our object of interest on the left, and me holding a printout of the 
template image on the right. Matching features in the two frames are connected with 
blue lines, and the located object is outlined in green on the right:
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The last step is transforming the located object so that it is projected onto the frontal 
plane (which should look roughly like the original template image, appearing  
close-up and roughly upright), while the entire scene seems to warp around it,  
as shown in the following figure:
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Again, the GUI will be designed with wxPython 2.8, which 
can be obtained from http://www.wxpython.org/
download.php. This chapter has been tested with OpenCV 
2.4.9. Note that if you are using OpenCV 3, you may have to 
obtain the so-called extra modules from https://github.
com/Itseez/opencv_contrib and install OpenCV 3 with 
the OPENCV_EXTRA_MODULES_PATH variable set in order to 
get SURF and FLANN installed. Also, note that you may have 
to obtain a license to use SURF in commercial applications.

Planning the app
The final app will consist of a Python class for detecting, matching, and tracking 
image features, as well as a wxPython GUI application that accesses the webcam  
and displays each processed frame.

The project will contain the following modules and scripts:

• feature_matching: A module containing an algorithm for feature extraction, 
feature matching, and feature tracking. We separate this algorithm from the 
rest of the application so that it can be used as a standalone module without 
the need for a GUI.

• feature_matching.FeatureMatching: A class that implements the entire 
feature-matching process flow. It accepts an RGB camera frame and tries to 
locate an object of interest in it.

• gui: A module that provides a wxPython GUI application to access the 
capture device and display the video feed. This is the same module that we 
used in previous chapters.

• gui.BaseLayout: A generic layout from which more complicated layouts can 
be built. This chapter does not require any modifications to the basic layout.

• chapter3: The main script for the chapter.
• chapter3.FeatureMatchingLayout: A custom layout based on gui.

BaseLayout that displays the webcam video feed. Each captured frame  
will be processed with the FeatureMatching class described earlier.

• chapter3.main: The main function routine for starting the GUI application 
and accessing the depth sensor.

http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
https://github.com/Itseez/opencv_contrib
https://github.com/Itseez/opencv_contrib
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Setting up the app
Before we can get down to the nitty-gritty of our feature-matching algorithm, we need 
to make sure that we can access the webcam and display the video stream in a simple 
GUI. Luckily, we have already figured out how to do this in Chapter 1, Fun with Filters.

Running the app
In order to run our app, we will need to execute a main function routine that accesses 
the webcam, generates the GUI, and executes the main loop of the app:

import cv2
import wx

from gui import BaseLayout
from feature_matching import FeatureMatching

def main():
    capture = cv2.VideoCapture(0)
    if not(capture.isOpened()):
        capture.open()

    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

    # start graphical user interface
    app = wx.App()

    layout = FeatureMatchingLayout(None, -1, 'Feature Matching',  
        capture)
    layout.Show(True)
    app.MainLoop()

If you are using OpenCV 3, the constants that you are 
looking for might be called cv3.CAP_PROP_FRAME_
WIDTH and cv3.CAP_PROP_FRAME_HEIGHT.
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The FeatureMatching GUI
Analogous to the previous chapter, the layout chosen for the current project 
(FeatureMatchingLayout) is as plain as it gets. It should simply display the video 
feed of the webcam at a comfortable frame rate of 10 frames per second. Therefore, 
there is no need to further customize BaseLayout:

class FeatureMatchingLayout(BaseLayout):
    def _create_custom_layout(self):
        pass

The only parameter that needs to be initialized this time is the feature-matching 
class. We pass to it the path to a template (or training) file that depicts the object  
of interest:

    def _init_custom_layout(self):
        self.matching = FeatureMatching 
            (train_image='salinger.jpg')

The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure that we provide a _process_frame method. This method accepts a 
RGB color image, processes it by means of the FeatureMatching method match, and 
passes the processed image for visualization. If the object is detected in the current 
frame, the match method will report success=True and we will return the processed 
frame. If the match method is not successful, we will simply return the input frame:

    def _process_frame(self, frame):
        self.matching = FeatureMatching 
            (train_image='salinger.jpg')
        # if object detected, display new frame, else old one
        success, new_frame = self.matching.match(frame)
        if success:
            return new_frame
        else:
            return frame
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The process flow
Features are extracted, matched, and tracked by the FeatureMatching class, especially 
by its public match method. However, before we can begin analyzing the incoming 
video stream, we have some homework to do. It might not be clear right away what 
some of these things mean (especially for SURF and FLANN), but we will discuss 
these steps in detail in the following sections. For now, we only have to worry  
about initialization:

class FeatureMatching:
     def __init__(self, train_image='salinger.jpg'):

1. This sets up a SURF detector (see the next section for details) with a Hessian 
threshold between 300 and 500:
self.min_hessian = 400
self.SURF = cv2.SURF(self.min_hessian)

2. We load a template of our object of interest (self.img_obj), or print an error 
if it cannot be found:
self.img_obj = cv2.imread(train_image, cv2.CV_8UC1)
if self.img_obj is None:
    print "Could not find train image " + train_image 
        raise SystemExit

3. Also, store the shape of the image (self.sh_train) for convenience:
self.sh_train = self.img_train.shape[:2]  # rows, cols

For reasons that will soon be evidently clear, we will call the template image 
the train image and every incoming frame a query image. The train image 
has a size of 480 x 270 pixels and looks like this:
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4. Apply SURF to the object of interest. This can be done with a convenient 
function call that returns both a list of keypoints and the descriptor (see the 
next section for details):
self.key_train, self.desc_train =  
    self.SURF.detectAndCompute(self.img_obj, None)

We will do the same with each incoming frame and compare lists of features 
across images.

5. Set up a FLANN object (see the next section for details). This requires the 
specification of some additional parameters via dictionaries, such as which 
algorithm to use and how many trees to run in parallel:
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, 
    trees = 5)
search_params = dict(checks=50)
self.flann = cv2.FlannBasedMatcher(index_params,  
    search_params)

6. Finally, initialize some additional bookkeeping variables. These will come 
in handy when we want to make our feature tracking both quicker and 
more accurate. For example, we will keep track of the latest computed 
homography matrix and of the number of frames we have spent without 
locating our object of interest (see the next section for details):
self.last_hinv = np.zeros((3,3))
self.num_frames_no_success = 0
self.max_frames_no_success = 5
self.max_error_hinv = 50.

Then, the bulk of the work is done by the FeatureMatching method match.  
This method follows the procedure elaborated here:

1. It extracts interesting image features from each incoming video frame.  
This is done in FeatureMatching._extract_features.

2. It matches features between the template image and the video frame.  
This is done in FeatureMatching._match_features. If no such match  
is found, it skips to the next frame.

3. It finds the corner points of the template image in the video frame. This is 
done in FeatureMatching._detect_corner_points. If any of the corners 
lies (significantly) outside the frame, it skips to the next frame.

4. It calculates the area of the quadrilateral that the four corner points span.  
If the area is either too small or too large, it skips to the next frame.

5. It outlines the corner points of the template image in the current frame.
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6. It finds the perspective transform that is necessary to bring the located 
object from the current frame to the frontoparallel plane. This is done in 
FeatureMatching._warp_keypoints. If the result is significantly different 
from the result we got recently for an earlier frame, it skips to the next frame.

7. It warps the perspective of the current frame to make the object of interest 
appear centered and upright.

In the following sections, we will discuss these steps in detail.

Feature extraction
Generally speaking, a feature is an interesting area of an image. It is a measurable 
property of an image that is very informative about what the image represents. 
Usually, the grayscale value of an individual pixel (the raw data) does not tell us  
a lot about the image as a whole. Instead, we need to derive a property that is  
more informative.

For example, knowing that there are patches in the image that look like eyes, a nose, 
and a mouth will allow us to reason about how likely it is that the image represents 
a face. In this case, the number of resources required to describe the data (are we 
seeing an image of a face?) is drastically reduced (does the image contain two eyes?  
a nose? a mouth?).

More low-level features, such as the presence of edges, corners, blobs, or ridges, may 
be more informative generally. Some features may be better than others, depending 
on the application. Once we have made up our mind on how to describe our favorite 
feature, we need to come up with a way to check whether or not the image contains 
such features and where it contains them.

Feature detection
The process of finding areas of interest in an image is called feature detection. 
OpenCV provides a whole range of feature detection algorithms, such as these:

• Harris corner detection: Knowing that edges are areas with high-intensity 
changes in all directions, Harris and Stephens came up with a fast way of 
finding such areas. This algorithm is implemented as cv2.cornerHarris  
in OpenCV.

• Shi-Tomasi corner detection: Shi and Tomasi have their own idea of what 
are good features to track, and they usually do better than Harris corner 
detection by finding the N strongest corners. This algorithm is implemented 
as cv2.goodFeaturesToTrack in OpenCV.
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• Scale-Invariant Feature Transform (SIFT): Corner detection is not sufficient 
when the scale of the image changes. To this end, Lowe developed a method 
to describe keypoints in an image that are independent of orientation and 
size (hence the name scale invariant).The algorithm is implemented as  
cv2.SIFT in OpenCV2, but was moved to the extra modules in OpenCV3 
since its code is proprietary.

• Speeded-Up Robust Features (SURF): SIFT has proven to be really good, 
but it is not fast enough for most applications. This is where SURF comes in, 
which replaces the expensive Laplacian of a Gaussian from SIFT with a box 
filter. The algorithm is implemented as cv2.SURF in OpenCV2, but, like SIFT, 
it was moved to the extra modules in OpenCV3 since its code is proprietary.

OpenCV has support for even more feature descriptors, such as Features from 
Accelerated Segment Test (FAST), Binary Robust Independent Elementary 
Features (BRIEF), and Oriented FAST and Rotated BRIEF (ORB), the latter  
being an open source alternative to SIFT or SURF.

Detecting features in an image with SURF
In the remainder of this chapter, we will make use of the SURF detector.

The SURF algorithm can be roughly divided into two distinctive steps: detecting points 
of interest, and formulating a descriptor. SURF relies on the Hessian corner detector for 
interest point detection, which requires the setting of a min_hessian threshold. This 
threshold determines how large the output from the Hessian filter must be in order for 
a point to be used as an interest point. A larger value results in fewer but (theoretically) 
more salient interest points, whereas a smaller value results in more numerous but 
less salient points. Feel free to experiment with different values. In this chapter, we 
will choose a value of 400, as seen earlier in FeatureMatching.__init__, where we 
created a SURF descriptor with the following code snippet:

self.min_hessian = 400
self.SURF = cv2.SURF(self.min_hessian)

Both the features and the descriptor can then be obtained in a single step,  
for example, on an input image img_query without the use of a mask (None):

key_query, desc_query = self.SURF.detectAndCompute 
    (img_query, None)
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In OpenCV 2.4.8 or later, we can now easily draw the keypoints with the  
following function:

imgOut = cv2.drawKeypoints(img_query, key_query, None,  
    (255, 0, 0), 4)
cv2.imshow(imgOut)

Make sure that you check len(keyQuery) first, as 
SURF might return a large number of features. If you 
care only about drawing the keypoints, try setting 
min_hessian to a large value until the number of 
returned keypoints is manageable.
If our OpenCV distribution is older than that, we might 
have to write our own function. Note that SURF is 
protected by patent laws. Therefore, if you wish to use 
SURF in a commercial application, you will be required 
to obtain a license.

Feature matching
Once we have extracted features and their descriptors from two (or more) images, we 
can start asking whether some of these features show up in both (or all) images. For 
example, if we have descriptors for both our object of interest (self.desc_train) and 
the current video frame (desc_query), we can try to find regions of the current frame 
that look like our object of interest. This is done by the following method, which makes 
use of the Fast Library for Approximate Nearest Neighbors (FLANN):

good_matches = self._match_features(desc_query)

The process of finding frame-to-frame correspondences can be formulated as the 
search for the nearest neighbor from one set of descriptors for every element of 
another set.

The first set of descriptors is usually called the train set, because in machine learning, 
these descriptors are used to train some model, such as the model of the object  
that we want to detect. In our case, the train set corresponds to the descriptor  
of the template image (our object of interest). Hence, we call our template image  
the train image (self.img_train).

The second set is usually called the query set, because we continually ask whether it 
contains our train image. In our case, the query set corresponds to the descriptor of 
each incoming frame. Hence, we call a frame the query image (img_query).
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Features can be matched in any number of ways, for example, with the help of a 
brute-force matcher (cv2.BFMatcher) that looks for each descriptor in the first set 
and the closest descriptor in the second set by trying each one (exhaustive search).

Matching features across images with FLANN
The alternative is to use an approximate k-nearest neighbor (kNN) algorithm to find 
correspondences, which is based on the fast third-party library FLANN. A FLANN 
match is performed with the following code snippet, where we use kNN with k=2:

def _match_features(self, desc_frame):
    matches = self.flann.knnMatch(self.desc_train, desc_frame,  
        k=2)

The result of flann.knnMatch is a list of correspondences between two sets of 
descriptors, both contained in the matches variable. These are the train set, because it 
corresponds to the pattern image of our object of interest, and the query set, because 
it corresponds to the image in which we are searching for our object of interest.

The ratio test for outlier removal
The more the correct matches found (which means that more pattern-to-image 
correspondences exist), the more the chances that the pattern is present in the image. 
However, some matches might be false positives.

A well-known technique for removing outliers is called the ratio test. Since we 
performed kNN-matching with k=2, the two nearest descriptors are returned 
for each match. The first match is the closest neighbor and the second match is 
the second closest neighbor. Intuitively, a correct match will have a much closer 
first neighbor than its second closest neighbor. On the other hand, the two closest 
neighbors will be at a similar distance from an incorrect match. Therefore, we can 
find out how good a match is by looking at the difference between the distances. 
The ratio test says that the match is good only if the distance ratio between the first 
match and the second match is smaller than a given number (usually around 0.5); in 
our case, this number chosen to be 0.7. To remove all matches that do not satisfy this 
requirement, we filter the list of matches and store the good matches in the good_
matches variable:

# discard bad matches, ratio test as per Lowe's paper
good_matches = filter(lambda x: x[0].distance<0.7*x[1].distance, 
    matches)

Then we pass the matches we found to FeatureMatching.match so that they can be 
processed further:

return good_matches
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Visualizing feature matches
In newer versions of OpenCV, we can easily draw matches using cv2.drawMatches 
or cv3.drawMatchesKnn.

In older versions of OpenCV, we may need to write our own function. The goal is to 
draw both the object of interest and the current video frame (in which we expect the 
object to be embedded) next to each other:

def draw_good_matches(img1, kp1, img2, kp2, matches):
    # Create a new output image that concatenates the
    # two images together (a.k.a) a montage
    rows1, cols1 = img1.shape[:2]
    rows2, cols2 = img2.shape[:2]
    out = np.zeros((max([rows1, rows2]), cols1+cols2, 3),  
        dtype='uint8')

In order to draw colored lines on the image, we create a three-channel RGB image:

    # Place the first image to the left, copy 3x for RGB
    out[:rows1, :cols1, :] = np.dstack([img1, img1, img1])

    # Place the next image to the right of it, copy 3x for RGB
    out[:rows2, cols1:cols1 + cols2, :] = np.dstack([img2, img2, 
        img2])

Then, for each pair of points between both images, we draw small blue circles, and 
we connect the two circles with a line. For this, we have to iterate over the list of 
matching keypoints. The keypoints are stored as tuples in Python, with two entries 
for the x and y coordinates. Each match, m, stores the index in the keypoint lists, 
where m.trainIdx points to the index in the first keypoint list (kp1) and m.queryIdx 
points to the index in the second keypoint list (kp2):

for m in matches:
    # Get the matching keypoints for each of the images
    c1, r1 = kp1[m.trainIdx].pt
    c2, r2 = kp2[m.queryIdx].pt

With the correct indices, we can now draw a circle at the correct location (with the 
radius as 4, the color as blue, and the thickness as 1) and connect the circles with a line:

    radius = 4
    BLUE = (255, 0, 0)
    thickness = 1
    # Draw a small circle at both co-ordinates
    cv2.circle(out, (int(c1), int(r1)), radius, BLUE, thickness)
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    cv2.circle(out, (int(c2) + cols1, int(r2)), radius, BLUE,  
        thickness

    # Draw a line in between the two points
    cv2.line(out, (int(c1), int(r1)), (int(c2) + cols1, int(r2)),  
        BLUE, thickness)
    return out

Then, the returned image can be drawn with this code:

cv2.imshow('imgFlann', draw_good_matches(self.img_train,  
    self.key_train, img_query, key_query, good_matches))

The blue lines connect the features in the object (left) to the features in the scenery 
(right), as shown here:

This works fine in a simple example such as this, but what happens when there are 
other objects in the scene? Since our object contains some lettering that seems highly 
salient, what happens when there are other words present?
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As it turns out, the algorithm works even under such conditions, as you can see in 
this screenshot:

Interestingly, the algorithm did not confuse the name of the author as seen on the 
left with the black-on-white lettering next to the book in the scene, even though they 
spell out the same name. This is because the algorithm found a description of the 
object that does not rely purely on the grayscale representation. On the other hand, 
an algorithm doing a pixel-wise comparison could have easily gotten confused.

Homography estimation
Since we are assuming that the object of our interest is planar (an image) and rigid, 
we can find the homography transformation between the feature points of the two 
images. Homography will calculate the perspective transformation required to bring 
all feature points in the object image (self.key_train) into the same plane as all the 
feature points in the current image frame (self.key_query). But first, we need to 
find the image coordinates of all keypoints that are good matches:

def _detect_corner_points(self, key_frame, good_matches):
    src_points = [self.key_train[good_matches[i].trainIdx].pt
        for i in xrange(len(good_matches))]
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    dst_points = [keyQuery[good_matches[i].queryIdx].pt
        for i in xrange(len(good_matches))]

To find the correct perspective transformation (a homography matrix H), the  
cv2.findHomography function will use the random sample consensus (RANSAC) 
method to probe different subsets of input points:

H, _ = cv2.findHomography(np.array(src_points),  
    np.array(dst_points), cv2.RANSAC)

The homography matrix H can then help us transform any point in the pattern into 
the scenery, such as transforming a corner point in the training image to a corner 
point in the query image. In other words, this means that we can draw the outline 
of the book cover in the query image by transforming the corner points from the 
training image! For this, we take the list of corner points of the training image  
(src_corners) and see where they are projected in the query image by performing  
a perspective transform:

self.sh_train = self.img_train.shape[:2]  # rows, cols
src_corners = np.array([(0,0), (self.sh_train[1],0),  
    (self.sh_train[1],self.sh_train[0]), (0,self.sh_train[0])],  
    dtype=np.float32)
dst_corners = cv2.perspectiveTransform(src_corners[None, :, :],  
    H)

The dst_corners return argument is a list of image points. All that we need to do is 
draw a line between each point in dst_corners and the very next one, and we will 
have an outline in the scenery. But first, in order to draw the line at the right image 
coordinates, we need to offset the x coordinate by the width of the pattern image 
(because we are showing the two images next to each other):

dst_corners = map(tuple,dst_corners[0])
dst_corners = [(np.int(dst_corners[i][0]+self.sh_train[1]), 
    np.int(dst_corners[i][1]))

Then we can draw the lines from the ith point to the (i+1)-th point in the list 
(wrapping around to 0):

for i in xrange(0,len(dst_corners)):
    cv2.line(img_flann, dst_corners[i], dst_corners[(i+1) % 4], 
        (0, 255, 0), 3)
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Finally, we draw the outline of the book cover, like this:

This works even when the object is only partially visible, as follows:
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Warping the image
We can also do the opposite—going from the probed scenery to the training pattern 
coordinates. This makes it possible for the book cover to be brought onto the frontal 
plane, as if we were looking at it directly from above. To achieve this, we can simply 
take the inverse of the homography matrix to get the inverse transformation:

Hinv = cv2.linalg.inverse(H)

However, this would map the top-left corner of the book cover to the origin of our 
new image, which would cut off everything to the left of and above the book cover. 
Instead, we want to roughly center the book cover in the image. Thus, we need to 
calculate a new homography matrix. As input, we will have our pts_scene scenery 
points. As output, we want an image that has the same shape as the pattern image:

dst_size = img_in.shape[:2]  # cols, rows

The book cover should be roughly half of that size. We can come up with a scaling 
factor and a bias term so that every keypoint in the scenery image is mapped to the 
correct coordinate in the new image:

scale_row = 1./src_size[0]*dst_size[0]/2.
bias_row = dst_size[0]/4.
scale_col = 1./src_size[1]*dst_size[1]/2.
bias_col = dst_size[1]/4.

Next, we just need to apply this linear scaling to every keypoint in the list.  
The easiest way to do this is with list comprehensions:

src_points = [key_frame[good_matches[i].trainIdx].pt
    for i in xrange(len(good_matches))]
dst_points = [self.key_train[good_matches[i].queryIdx].pt
    for i in xrange(len(good_matches))]
dst_points = [[x*scale_row+bias_row, y*scale_col+bias_col]
    for x, y in dst_points]

Then we can find the homography matrix between these points (make sure that the 
list is converted to a NumPy array):

Hinv, _ = cv2.findHomography(np.array(src_points),  
    np.array(dst_points), cv2.RANSAC)

After that, we can use the homography matrix to transform every pixel in the image 
(this is also called warping the image):

img_warp = cv2.warpPerspective(img_query, Hinv, dst_size)
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The result looks like this (matching on the left and warped image on the right):

The image resulting from the perspective transformation might not be perfectly 
aligned with the frontoparallel plane, because after all, the homography matrix is 
only approximate. In most cases, however, our approach works just fine, such as in 
the example shown in the following figure:

Feature tracking
Now that our algorithm works for single frames, how can we make sure that the 
image found in one frame will also be found in the very next frame?
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In FeatureMatching.__init__, we created some bookkeeping variables that we 
said we would use for feature tracking. The main idea is to enforce some coherence 
while going from one frame to the next. Since we are capturing roughly 10 frames 
per second, it is reasonable to assume that the changes from one frame to the next 
will not be too radical. Therefore, we can be sure that the result we get in any given 
frame has to be similar to the result we got in the previous frame. Otherwise, we 
discard the result and move on to the next frame.

However, we have to be careful not to get stuck with a result that we think is 
reasonable but is actually an outlier. To solve this problem, we keep track of  
the number of frames we have spent without finding a suitable result. We use  
self.num_frames_no_success; if this number is smaller than a certain threshold, 
say self.max_frames_no_success, we do the comparison between the frames. If it 
is greater than the threshold, we assume that too much time has passed since the last 
result was obtained, in which case it would be unreasonable to compare the results 
between the frames.

Early outlier detection and rejection
We can extend the idea of outlier rejection to every step in the computation. The goal 
then becomes minimizing the workload while maximizing the likelihood that the 
result we obtain is a good one.

The resulting procedure for early outlier detection and rejection is embedded in 
FeatureMatching.match and looks as follows:

def match(self, frame):
    # create a working copy (grayscale) of the frame
    # and store its shape for convenience
    img_query = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    sh_query = img_query.shape[:2]  # rows,cols

1. Find good matches between the feature descriptors of the pattern and the 
query image:

key_query, desc_query = self._extract_features(img_query)
good_matches = self._match_features(descQuery)

In order for RANSAC to work in the very next step, we need at least four 
matches. If fewer matches are found, we admit defeat and return False  
right away:
if len(good_matches) < 4:
    self.num_frames_no_success= 
        self.num_frames_no_success + 1
    return False, frame
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2. Find the corner points of the pattern in the query image (dst_corners):
dst_corners = self._detect_corner_points(key_query,  
    good_matches)

If any of these points lies significantly outside the image (by 20 pixels in  
our case), it means that either we are not looking at our object of interest,  
or the object of interest is not entirely in the image. In both cases, we have  
no interest in proceeding, and we return False:
if np.any(filter(lambda x: x[0] < -20 or x[1] < -20
    or x[0] > sh_query[1] + 20 or x[1] > sh_query[0] + 20,
    dst_corners)):
        self.num_frames_no_success = 
            self.num_frames_no_success + 1
        return False, frame

3. If the four recovered corner points do not span a reasonable quadrilateral  
(a polygon with four sides), it means that we are probably not looking at our 
object of interest. The area of a quadrilateral can be calculated with this code:
area = 0
for i in xrange(0, 4):
    next_i = (i + 1) % 4
    area = area + (dst_corners[i][0]*dst_corners[next_i][1] 
        - dst_corners[i][1]*dst_corners[next_i][0])/2.

If the area is either unreasonably small or unreasonably large, we discard the 
frame and return False:

if area < np.prod(sh_query)/16. or area > 
    np.prod(sh_query)/2.:
        self.num_frames_no_success= 
            self.num_frames_no_success + 1
        return False, frame

4. If the recovered homography matrix is too different from the one that we  
last recovered (self.last_hinv), it means that we are probably looking  
at a different object, in which case we discard the frame and return False. 
We compare the current homography matrix to the last one by calculating 
the distance between the two matrices:
np.linalg.norm(Hinv – self.last_hinv)

However, we only want to consider self.last_hinv if it is fairly recent, say, 
from within the last self.max_frames_no_success. This is why we keep 
track of self.num_frames_no_success:
recent = self.num_frames_no_success <  
    self.max_frames_no_success
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similar = np.linalg.norm(Hinv - self.last_hinv) <  
    self.max_error_hinv
if recent and not similar:
    self.num_frames_no_success =  
        self.num_frames_no_success + 1
    return False, frame

This will help us keep track of the one and the same object of interest over  
time. If, for any reason, we lose track of the pattern image for more than  
self.max_frames_no_success frames, we skip this condition and accept  
whatever homography matrix was recovered up to that point. This makes sure that 
we do not get stuck with some self.last_hinv matrix that is actually an outlier.

Otherwise, we can be fairly certain that we have successfully located the object of 
interest in the current frame. In such a case, we store the homography matrix and 
reset the counter:

self.num_frames_no_success = 0
self.last_hinv = Hinv

All that is left to do is warping the image and (for the first time) returning True along 
with the warped image so that the image can be plotted:

img_out = cv2.warpPerspective(img_query, Hinv, dst_size)
img_out = cv2.cvtColor(img_out, cv2.COLOR_GRAY2RGB)
return True, imgOut

Seeing the algorithm in action
The result of the matching procedure in a live stream from my laptop's webcam 
looks like this:
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As you can see, most of the keypoints in the pattern image were matched correctly 
with their counterparts in the query image on the right. The printout of the pattern 
can now be slowly moved around, tilted, and turned. As long as all the corner points 
stay in the current frame, the homography matrix is updated accordingly and the 
outline of the pattern image is drawn correctly.

This works even if the printout is upside down, as shown here:

In all cases, the warped image brings the pattern image to an upright, centered 
position on the frontoparallel plane. This creates a cool effect of having the 
pattern image frozen in place in the center of the screen, while the surroundings 
twist and turn around it, like this:
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In most cases, the warped image looks fairly accurate, as seen in the one earlier. If, 
for any reason, the algorithm accepts a wrong homography matrix that leads to an 
unreasonably warped image, then the algorithm will discard the outlier and recover 
within half a second (that is, within self.max_frames_no_success frames), leading 
to accurate and efficient tracking throughout.

Summary
This chapter showed a robust feature tracking method that is fast enough to run in 
real time when applied to the live stream of a webcam.

First, the algorithm shows you how to extract and detect important features in 
an image independently of perspective and size, be it in a template of our object 
of interest (train image) or a more complex scene in which we expect the object 
of interest to be embedded (query image). A match between feature points in the 
two images is then found by clustering the keypoints using a fast version of the 
nearest neighbor algorithm. From there on, it is possible to calculate a perspective 
transformation that maps one set of feature points to the other. With this information, 
we can outline the train image as found in the query image and warp the query image 
so that the object of interest appears upright in the center of the screen.

With this in hand, we now have a good starting point for designing a cutting-edge 
feature tracking, image stitching, or augmented-reality application.

In the next chapter, we will continue studying the geometrical features of a scene, 
but this time, we will be concentrating on motion. Specifically, we will study how to 
reconstruct a scene in 3D by inferring its geometrical features from camera motion. 
For this, we will have to combine our knowledge of feature matching with optic flow 
and structure-from-motion techniques.
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3D Scene Reconstruction 
Using Structure from Motion

The goal of this chapter is to study how to reconstruct a scene in 3D by inferring the 
geometrical features of the scene from camera motion. This technique is sometimes 
referred to as structure from motion. By looking at the same scene from different 
angles, we will be able to infer the real-world 3D coordinates of different features in 
the scene. This process is known as triangulation, which allows us to reconstruct the 
scene as a 3D point cloud.

In the previous chapter, you learned how to detect and track an object of interest in 
the video stream of a webcam, even if the object is viewed from different angles or 
distances, or under partial occlusion. Here, we will take the tracking of interesting 
features a step further and consider what we can learn about the entire visual scene 
by studying similarities between image frames. If we take two pictures of the same 
scene from different angles, we can use feature matching or optic flow to estimate 
any translational and rotational movement that the camera underwent between 
taking the two pictures. However, in order for this to work, we will first have to 
calibrate our camera.

The complete procedure involves the following steps:

1. Camera calibration: We will use a chessboard pattern to extract the intrinsic 
camera matrix as well as the distortion coefficients, which are important for 
performing the scene reconstruction.
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2. Feature matching: We will match points in two 2D images of the same visual 
scene, either via Speeded-Up Robust Features (SURF) or via optic flow, as 
seen in the following image:

3. Image rectification: By estimating the camera motion from a pair of images, 
we will extract the essential matrix and rectify the images.
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4. Triangulation: We will reconstruct the 3D real-world coordinates of the 
image points by making use of constraints from epipolar geometry.

5. 3D point cloud visualization: Finally, we will visualize the recovered 
3D structure of the scene using scatterplots in matplotlib, which is most 
compelling when studied using pyplot's Pan axes button. This button lets 
you rotate and scale the point cloud in all three dimensions. It is a little 
harder to visualize in still frames, as can be seen in the following figure (left 
panel: standing slightly in front to the left side of the fountain, center panel: 
looking down on the fountain, right panel: standing slightly in front to the 
right of the fountain):

This chapter has been tested with OpenCV 2.4.9 and wxPython 2.8 
(http://www.wxpython.org/download.php). It also requires 
NumPy (http://www.numpy.org) and matplotlib (http://www.
matplotlib.org/downloads.html). Note that if you are using 
OpenCV3, you may have to obtain the so-called extra modules from 
https://github.com/Itseez/opencv_contrib and install 
OpenCV3 with the OPENCV_EXTRA_MODULES_PATH variable set in 
order to get SURF installed. Also note that you may have to obtain a 
license to use SURF in commercial applications.

Planning the app
The final app will extract and visualize structure from motion on a pair of images. 
We will assume that these two images have been taken with the same camera, whose 
internal camera parameters we know. If these parameters are not known, they need 
to be estimated first in a camera calibration process.

http://www.wxpython.org/download.php
http://www.numpy.org
http://www.matplotlib.org/downloads.html
http://www.matplotlib.org/downloads.html
https://github.com/Itseez/opencv_contrib


3D Scene Reconstruction Using Structure from Motion

[ 74 ]

The final app will then consist of the following modules and scripts:

• chapter4.main: This is the main function routine for starting the application.
• scene3D.SceneReconstruction3D: This is a class that contains a range  

of functionalities for calculating and visualizing structure from motion.  
It includes the following public methods:

 ° __init__: This constructor will accept the intrinsic camera matrix 
and the distortion coefficients

 ° load_image_pair: A method used to load from the file, two images 
that have been taken with the camera described earlier

 ° plot_optic_flow: A method used to visualize the optic flow 
between the two image frames

 ° draw_epipolar_lines: A method used to draw the epipolar lines of 
the two images

 ° plot_rectified_images: A method used to plot a rectified version 
of the two images

• plot_point_cloud: This is a method used to visualize the recovered real-
world coordinates of the scene as a 3D point cloud. In order to arrive at a 3D 
point cloud, we will need to exploit epipolar geometry. However, epipolar 
geometry assumes the pinhole camera model, which no real camera follows. 
We need to rectify our images to make them look as if they have come from a 
pinhole camera. For that, we need to estimate the parameters of the camera, 
which leads us to the field of camera calibration.

Camera calibration
So far, we have worked with whatever image came straight out of our webcam, 
without questioning the way in which it was taken. However, every camera lens 
has unique parameters, such as focal length, principal point, and lens distortion. 
What happens behind the covers when a camera takes a picture, is that; light falls 
through a lens, followed by an aperture, before falling on the surface of a light sensor. 
This process can be approximated with the pinhole camera model. The process of 
estimating the parameters of a real-world lens such that it would fit the pinhole camera 
model is called camera calibration (or camera resectioning, and it should not be 
confused with photometric camera calibration).
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The pinhole camera model
The pinhole camera model is a simplification of a real camera in which there is 
no lens and the camera aperture is approximated by a single point (the pinhole). 
When viewing a real-world 3D scene (such as a tree), light rays pass through the 
point-sized aperture and fall on a 2D image plane inside the camera, as seen in the 
following diagram:

In this model, a 3D point with coordinates (X,Y,Z) is mapped to a 2D point with 
coordinates (x,y) that lies on the image plane. Note that this leads to the tree 
appearing upside down on the image plane. The line that is perpendicular to the 
image plane, and passes through the pinhole is called the principal ray, and its 
length is called the focal length. The focal length is a part of the internal camera 
parameters, as it may vary depending on the camera being used.

Hartley and Zisserman found a mathematical formula to describe how a 2D point 
with coordinates (x,y) can be inferred from a 3D point with coordinates (X,Y,Z) and 
the camera's intrinsic parameters, as follows:

0
0
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x x

y y
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For now, let's focus on the 3 x 3 matrix in the preceding formula, which is the intrinsic 
camera matrix—a matrix that compactly describes all internal camera parameters. The 
matrix comprises focal lengths (fx and fy) and optical centers (cx and cy) expressed  
in pixel coordinates. As mentioned earlier, the focal length is the distance between  
the pinhole and the image plane. A true pinhole camera has only one focal length,  
in which case fx = fy = f. However, in reality, these two values might differ,  
maybe due to flaws in the digital camera sensor. The point at which the principal  
ray intersects the image plane is called the principal point, and its relative position  
on the image plane is captured by the optical center (or principal point offset).

In addition, a camera might be subject to radial or tangential distortion, leading to 
a fish-eye effect. This is because of hardware imperfections and lens misalignments. 
These distortions can be described with a list of the distortion coefficients. 
Sometimes, radial distortions are actually a desired artistic effect. At other times, 
they need to be corrected.

For more information on the pinhole camera model, there are many 
good tutorials out there on the Web, such as http://ksimek.
github.io/2013/08/13/intrinsic.

Because these parameters are specific to the camera hardware (hence the name 
intrinsic), we need to calculate them only once in the lifetime of a camera. This is 
called camera calibration.

Estimating the intrinsic camera parameters
In OpenCV, camera calibration is fairly straightforward. The official documentation 
provides a good overview of the topic and some sample C++ scripts at http://
docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_
calibration.html.

For educational purposes, we will develop our own calibration script in Python.  
We will need to present a special pattern image, with a known geometry (chessboard 
plate or black circles on a white background), to the camera we wish to calibrate. 
Because we know the geometry of the pattern image, we can use feature detection to 
study the properties of the internal camera matrix. For example, if the camera suffers 
from undesired radial distortion, the different corners of the chessboard pattern 
will appear distorted in the image and not lie on a rectangular grid. By taking about 
10 to 20 snapshots of the chessboard pattern from different points of view, we can 
collect enough information to correctly infer the camera matrix and the distortion 
coefficients.

http://ksimek.github.io/2013/08/13/intrinsic
http://ksimek.github.io/2013/08/13/intrinsic
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
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For this, we will use the calibrate.py script. Analogous to previous chapters, we 
will use a simple layout (CameraCalibration) based on BaseLayout that embeds 
a webcam video stream. The main function of the script will generate the GUI and 
execute the main loop of the app:

import cv2
import numpy as np
import wx

from gui import BaseLayout

    def main():
        capture = cv2.VideoCapture(0)
        if not(capture.isOpened()):
            capture.open()

        capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
        capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

        # start graphical user interface
        app = wx.App()
        layout = CameraCalibration(None, -1, 'Camera Calibration',  
            capture)
        layout.Show(True)
        app.MainLoop()

If you are using OpenCV 3, the constants that you are looking 
for might be called cv3.CAP_PROP_FRAME_WIDTH and cv3.
CAP_PROP_FRAME_HEIGHT.

The camera calibration GUI
The GUI is a customized version of the generic BaseLayout:

class CameraCalibration(BaseLayout):

The layout consists of only the current camera frame and a single button below it. 
This button allows us to start the calibration process:

def _create_custom_layout(self):
    """Creates a horizontal layout with a single button"""
    pnl = wx.Panel(self, -1)
    self.button_calibrate = wx.Button(pnl, 
        label='Calibrate Camera')
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    self.Bind(wx.EVT_BUTTON, self._on_button_calibrate)
    hbox = wx.BoxSizer(wx.HORIZONTAL)
    hbox.Add(self.button_calibrate)
    pnl.SetSizer(hbox)

For these changes to take effect, pnl needs to be added to the list of existing panels:

self.panels_vertical.Add(pnl, flag=wx.EXPAND | wx.BOTTOM |  
    wx.TOP, border=1)

The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure that we provide the _init_custom_layout and _process_frame 
methods.

Initializing the algorithm
In order to perform the calibration process, we need to do some bookkeeping. For 
now, let's focus on a single 10 x 7 chessboard. The algorithm will detect all the 9 x 
6 inner corners of the chessboard (referred to as object points) and store the detected 
image points of these corners in a list. So, let's first initialize the chessboard size to 
the number of inner corners:

def _init_custom_layout(self):
    """Initializes camera calibration"""
    # setting chessboard size
    self.chessboard_size = (9, 6)

Next, we need to enumerate all the object points and assign them object point 
coordinates so that the first point has coordinates (0,0), the second one (top row)  
has coordinates (1,0), and the last one has coordinates (8,5):

# prepare object points
self.objp = np.zeros((np.prod(self.chessboard_size), 3),  
    dtype=np.float32)
self.objp[:, :2] = np.mgrid[0:self.chessboard_size[0], 
    0:self.chessboard_size[1]].T.reshape(-1, 2)

We also need to keep track of whether we are currently recording the object and 
image points or not. We will initiate this process once the user clicks on the self.
button_calibrate button. After that, the algorithm will try to detect a chessboard 
in all subsequent frames until a number of self.record_min_num_frames 
chessboards have been detected:

    # prepare recording
    self.recording = False
    self.record_min_num_frames = 20
    self._reset_recording()
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Whenever the self.button_calibrate button is clicked on, we reset all the 
bookkeeping variables, disable the button, and start recording:

def _on_button_calibrate(self, event):
    self.button_calibrate.Disable()
    self.recording = True
    self._reset_recording()

Resetting the bookkeeping variables involves clearing the lists of recorded object  
and image points (self.obj_points and self.img_points) as well as resetting  
the number of detected chessboards (self.recordCnt) to 0:

def _reset_recording(self):
    self.record_cnt = 0
    self.obj_points = []
    self.img_points = []

Collecting image and object points
The _process_frame method is responsible for doing the hard work of the 
calibration technique. After the self.button_calibrate button has been clicked 
on, this method starts collecting data until a total of self.record_min_num_frames 
chessboards are detected:

def _process_frame(self, frame):
    """Processes each frame"""

    # if we are not recording, just display the frame
    if not self.recording:
        return frame

    # else we're recording
    img_gray = cv2.cvtColor(frame,  
        cv2.COLOR_BGR2GRAY).astype(np.uint8)

    if self.record_cnt < self.record_min_num_frames:
        ret, corners = cv2.findChessboardCorners(img_gray,  
            self.chessboard_size, None)

The cv2.findChessboardCorners function will parse a grayscale image (img_gray) 
to find a chessboard of size self.chessboard_size. If the image indeed contains a 
chessboard, the function will return true (ret) as well as a list of chessboard corners 
(corners).
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Then, drawing the chessboard is straightforward:

if ret:
    cv2.drawChessboardCorners(frame,  
        self.chessboard_size, corners, ret)

The result looks like this (drawing the chessboard corners in color for the effect):

We could now simply store the list of detected corners and move on to the next 
frame. However, in order to make the calibration as accurate as possible, OpenCV 
provides a function to refine the corner point measurement:

criteria = (cv2.TERM_CRITERIA_EPS + 
        cv2.TERM_CRITERIA_MAX_ITER, 30, 0.01)
cv2.cornerSubPix(img_gray, corners, (9, 9), (-1, -1),
        criteria)

This will refine the coordinates of the detected corners to subpixel precision.  
Now we are ready to append the object and image points to the list and advance  
the frame counter:

self.obj_points.append(self.objp)
self.img_points.append(corners)
self.record_cnt += 1
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Finding the camera matrix
Once we have collected enough data (that is, once self.record_cnt reaches 
the value of self.record_min_num_frames), the algorithm is ready to perform 
the calibration. This process can be performed with a single call to cv2.
calibrateCamera:

else:
    print "Calibrating..."
    ret, K, dist, rvecs, tvecs =  
        cv2.calibrateCamera(self.obj_points,  
            self.img_points, (self.imgHeight, self.imgWidth),  
            None, None)

The function returns  true on success (ret), the intrinsic camera matrix (K), the 
distortion coefficients (dist), as well as two rotation and translation matrices 
(rvecs and tvecs). For now, we are mainly interested in the camera matrix and 
the distortion coefficients, because these will allow us to compensate for any 
imperfections of the internal camera hardware. We will simply print them on the 
console for easy inspection:

print "K=", K
print "dist=", dist

For example, the calibration of my laptop's webcam recovered the following values:

K= [[ 3.36696445e+03 0.00000000e+00 2.99109943e+02]
    [ 0.00000000e+00 3.29683922e+03 2.69436829e+02]
    [ 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
dist= [[ 9.87991355e-01 -3.18446968e+02 9.56790602e-02  
        -3.42530800e-02 4.87489304e+03]]

This tells us that the focal lengths of my webcam are fx=3366.9644 pixels 
and fy=3296.8392 pixels, with the optical center at cx=299.1099 pixels and 
cy=269.4368 pixels.

A good idea might be to double-check the accuracy of the calibration process. This 
can be done by projecting the object points onto the image using the recovered camera 
parameters so that we can compare them with the list of image points we collected 
with the cv2.findChessboardCorners function. If the two points are roughly the 
same, we know that the calibration was successful. Even better, we can calculate the 
mean error of the reconstruction by projecting every object point in the list:

mean_error = 0
for i in xrange(len(self.obj_points)):
    img_points2, _ = cv2.projectPoints(self.obj_points[i],  
        rvecs[i], tvecs[i], K, dist)
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    error = cv2.norm(self.img_points[i], img_points2,  
        cv2.NORM_L2)/len(img_points2)
    mean_error += error

print "mean error=",  {} pixels".format(mean_error)

Performing this check on my laptop's webcam resulted in a mean error of 0.95 pixels, 
which is fairly close to zero.

With the internal camera parameters recovered, we can now set out to take beautiful, 
undistorted pictures of the world, possibly from different viewpoints so that we can 
extract some structure from motion.

Setting up the app
Going forward, we will be using a famous open source dataset called fountain-P11. 
It depicts a Swiss fountain viewed from various angles. An example of this is shown 
in the following image:
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The dataset consists of 11 high-resolution images and can be downloaded from 
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html. Had we taken the 
pictures ourselves, we would have had to go through the entire camera calibration 
procedure to recover the intrinsic camera matrix and the distortion coefficients. 
Luckily, these parameters are known for the camera that took the fountain dataset,  
so we can go ahead and hardcode these values in our code.

The main function routine
Our main function routine will consist of creating and interacting with an instance of 
the SceneReconstruction3D class. This code can be found in the chapter4.py file, 
which imports all the necessary modules and instantiates the class:

import numpy as np

from scene3D import SceneReconstruction3D

def main():
    # camera matrix and distortion coefficients
    # can be recovered with calibrate.py
    # but the examples used here are already undistorted, taken 
    # with a camera of known K
    K = np.array([[2759.48/4, 0, 1520.69/4, 0, 2764.16/4, 
        1006.81/4, 0, 0, 1]]).reshape(3, 3)
    d = np.array([0.0, 0.0, 0.0, 0.0, 0.0]).reshape(1, 5)

Here, the K matrix is the intrinsic camera matrix for the camera that took the fountain 
dataset. According to the photographer, these images are already distortion free,  
so we set all the distortion coefficients (d) to zero.

Note that if you want to run the code presented in this chapter on 
a dataset other than fountain-P11, you will have to adjust the 
intrinsic camera matrix and the distortion coefficients.

Next, we load a pair of images to which we would like to apply our structure-from-
motion techniques. I downloaded the dataset into a subdirectory called fountain_
dense:

# load a pair of images for which to perform SfM
scene = SceneReconstruction3D(K, d)
scene.load_image_pair("fountain_dense/0004.png",  
    "fountain_dense/0005.png")

http://cvlabwww.epfl.ch/data/multiview/denseMVS.html
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Now we are ready to perform various computations, such as the following:

scene.plot_optic_flow()
scene.draw_epipolar_lines()
scene.plot_rectified_images()

# draw 3D point cloud of fountain
# use "pan axes" button in pyplot to inspect the cloud (rotate 
# and zoom to convince you of the result)
scene.plot_point_cloud()

The next sections will explain these functions in detail.

The SceneReconstruction3D class
All of the relevant 3D scene reconstruction code for this chapter can be found as part 
of the SceneReconstruction3D class in the scene3D module. Upon instantiation, the 
class stores the intrinsic camera parameters to be used in all subsequent calculations:

import cv2
import numpy as np
import sys

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

class SceneReconstruction3D:
    def __init__(self, K, dist):
        self.K = K
        self.K_inv = np.linalg.inv(K)
        self.d = dist

Then, the first step is to load a pair of images on which to operate: 

def load_image_pair(self, img_path1, img_path2, 
        downscale=True):
    self.img1 = cv2.imread(img_path1, cv2.CV_8UC3)
    self.img2 = cv2.imread(img_path2, cv2.CV_8UC3)

    # make sure images are valid
    if self.img1 is None:
        sys.exit("Image " + img_path1 + " could not be  
            loaded.")
    if self.img2 is None:
        sys.exit("Image " + img_path2 + " could not be  
            loaded.")
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If the loaded images are grayscale, the method will convert to them to BGR format, 
because the other methods expect a three-channel image:

if len(self.img1.shape)==2:
    self.img1 = cv2.cvtColor(self.img1, cv2.COLOR_GRAY2BGR)
    self.img2 = cv2.cvtColor(self.img2, cv2.COLOR_GRAY2BGR)

In the case of the fountain sequence, all images are of a relatively high resolution.  
If an optional downscale flag is set, the method will downscale the images to a  
width of roughly 600 pixels:

# scale down image if necessary
# to something close to 600px wide
target_width = 600
if downscale and self.img1.shape[1]>target_width:
    while self.img1.shape[1] > 2*target_width:
        self.img1 = cv2.pyrDown(self.img1)
        self.img2 = cv2.pyrDown(self.img2)

Also, we need to compensate for the radial and tangential lens distortions using the 
distortion coefficients specified earlier (if there are any):

self.img1 = cv2.undistort(self.img1, self.K, self.d)
self.img2 = cv2.undistort(self.img2, self.K, self.d)

Finally, we are ready to move on to the meat of the project—estimating the camera 
motion and reconstructing the scene!

Estimating the camera motion from a pair 
of images
Now that we have loaded two images (self.img1 and self.img2) of the same 
scene, such as two examples from the fountain dataset, we find ourselves in a similar 
situation as in the last chapter. We are given two images that supposedly show the 
same rigid object or static scene, but from different viewpoints. However, this time 
we want to go a step further; if the only thing that changes between taking the two 
pictures is the location of the camera, can we infer the relative camera motion by 
looking at the matching features?

Well, of course we can. Otherwise, this chapter would not make much sense, would 
it? We will take the location and orientation of the camera in the first image as a 
given and then find out how much we have to reorient and relocate the camera so 
that its viewpoint matches that from the second image.
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In other words, we need to recover the essential matrix of the camera in the second 
image. An essential matrix is a 4 x 3 matrix that is the concatenation of a 3 x 3 
rotation matrix and a 3 x 1 translation matrix. It is often denoted as [R | t]. You can 
think of it as capturing the position and orientation of the camera in the second 
image relative to the camera in the first image.

The crucial step in recovering the essential matrix (as well as all other 
transformations in this chapter) is feature matching. We can either reuse our code 
from the last chapter and apply a speeded-up robust features (SURF) detector to 
the two images, or calculate the optic flow between the two images. The user may 
choose their favorite method by specifying a feature extraction mode, which will be 
implemented by the following private method:

def ___extract_keypoints(self, feat_mode):
    if featMode == "SURF":
        # feature matching via SURF and BFMatcher
        self._extract_keypoints_surf()
    else:
        if feat_mode == "flow":
            # feature matching via optic flow
            self._extract_keypoints_flow()
        else:
            sys.exit("Unknown mode " + feat_mode 
                + ". Use 'SURF' or 'FLOW'")

Point matching using rich feature descriptors
As we saw in the last chapter, a fast and robust way of extracting important features 
from an image is by using a SURF detector. In this chapter, we want to use it for two 
images, self.img1 and self.img2:

def _extract_keypoints_surf(self):
    detector = cv2.SURF(250)
    first_key_points, first_des =  
        detector.detectAndCompute(self.img1, None)
    second_key_points, second_desc =  
        detector.detectAndCompute(self.img2, None)

For feature matching, we will use a BruteForce matcher, but other matchers  
(such as FLANN) can work as well:

matcher = cv2.BFMatcher(cv2.NORM_L1, True)
matches = matcher.match(first_desc, second_desc)
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For each of the matches, we need to recover the corresponding image coordinates. 
These are maintained in the self.match_pts1 and self.match_pts2 lists:

first_match_points = np.zeros((len(matches), 2),  
    dtype=np.float32)
second_match_points = np.zeros_like(first_match_points)
for i in range(len(matches)):
    first_match_points[i] = 
        first_key_points[matches[i].queryIdx].pt
    second_match_points[i] = 
        second_key_points[matches[i].trainIdx].pt

self.match_pts1 = first_match_points
self.match_pts2 = second_match_points

The following screenshot shows an example of the feature matcher applied to two 
arbitrary frames of the fountain sequence:

Point matching using optic flow
An alternative to using rich features, is using optic flow. Optic flow is the process 
of estimating motion between two consecutive image frames by calculating a 
displacement vector. A displacement vector can be calculated for every pixel in the 
image (dense) or only for selected points (sparse).

One of the most commonly used techniques for calculating dense optic flow is the 
Lukas-Kanade method. It can be implemented in OpenCV with a single line of code, 
by using the cv2.calcOpticalFlowPyrLK function.
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But before that, we need to select some points in the image that are worth tracking. 
Again, this is a question of feature selection. If we were interested in getting an 
exact result for only a few highly salient image points, we can use Shi-Tomasi's cv2.
goodFeaturesToTrack function. This function might recover features like this:

However, in order to infer structure from motion, we might need many more 
features and not just the most salient Harris corners. An alternative would be to 
detect the FAST features:

def _extract_keypoints_flow(self):
    fast = cv2.FastFeatureDetector()
    first_key_points = fast.detect(self.img1, None)

We can then calculate the optic flow for these features. In other words, we want to 
find the points in the second image that most likely correspond to the first_key_
points from the first image. For this, we need to convert the keypoint list into a 
NumPy array of (x,y) coordinates:

first_key_list = [i.pt for i in first_key_points]
first_key_arr = np.array(first_key_list).astype(np.float32)

Then the optic flow will return a list of corresponding features in the second image 
(second_key_arr):

second_key_arr, status, err =  
    cv2.calcOpticalFlowPyrLK(self.img1, self.img2,  
        first_key_arr)
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The function also returns a vector of status bits (status), which indicate whether 
the flow for a keypoint has been found or not, and a vector of estimated error values 
(err). If we were to ignore these two additional vectors, the recovered flow field 
could look something like this:

In this image, an arrow is drawn for each keypoint, starting at the image location of 
the keypoint in the first image and pointing to the image location of the same keypoint 
in the second image. By inspecting the flow image, we can see that the camera moved 
mostly to the right, but there also seems to be a rotational component. However, some 
of these arrows are really large, and some of them make no sense. For example, it 
is very unlikely that a pixel in the bottom-right image corner actually moved all the 
way to the top of the image. It is much more likely that the flow calculation for this 
particular keypoint is wrong. Thus, we want to exclude all the keypoints for which the 
status bit is zero or the estimated error is larger than some value:

condition = (status == 1) * (err < 5.)
concat = np.concatenate((condition, condition), axis=1)
first_match_points = first_key_arr[concat].reshape(-1, 2)
second_match_points = second_key_arr[concat].reshape(-1, 2)

self.match_pts1 = first_match_points
self.match_pts2 = second_match_points
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If we draw the flow field again with a limited set of keypoints, the image will look 
like this:

The flow field can be drawn with the following public method, which first extracts 
the keypoints using the preceding code and then draws the actual lines on the image:

def plot_optic_flow(self):
    self._extract_key_points("flow")

    img = self.img1
    for i in xrange(len(self.match_pts1)):
        cv2.line(img, tuple(self.match_pts1[i]),  
            tuple(self.match_pts2[i]), color=(255, 0, 0))
        theta = np.arctan2(self.match_pts2[i][1] –  
            self.match_pts1[i][1], self.match_pts2[i][0] –  
            self.match_pts1[i][0])
        cv2.line(img, tuple(self.match_pts2[i]),
             (np.int(self.match_pts2[i][0] –  
             6*np.cos(theta+np.pi/4)),
             np.int(self.match_pts2[i][1] – 
             6*np.sin(theta+np.pi/4))), color=(255, 0, 0))
        cv2.line(img, tuple(self.match_pts2[i]),  
            (np.int(self.match_pts2[i][0] – 
            6*np.cos(theta-np.pi/4)), 
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            np.int(self.match_pts2[i][1] – 
            6*np.sin(theta-np.pi/4))), color=(255, 0, 0))
    for i in xrange(len(self.match_pts1)):
        cv2.line(img, tuple(self.match_pts1[i]),  
            tuple(self.match_pts2[i]), color=(255, 0, 0))
        theta = np.arctan2(self.match_pts2[i][1] - 
            self.match_pts1[i][1], 
            self.match_pts2[i][0] - self.match_pts1[i][0])
    cv2.imshow("imgFlow",img)
    cv2.waitKey()

The advantage of using optic flow instead of rich features is that the process is 
usually faster and can accommodate the matching of many more points, making  
the reconstruction denser.

The caveat in working with optic flow is that it works best for consecutive images 
taken by the same hardware, whereas rich features are mostly agnostic to this.

Finding the camera matrices
Now that we have obtained the matches between keypoints, we can calculate two 
important camera matrices: the fundamental matrix and the essential matrix. These 
matrices will specify the camera motion in terms of rotational and translational 
components. Obtaining the fundamental matrix (self.F) is another OpenCV one-liner:

def _find_fundamental_matrix(self):
    self.F, self.Fmask = cv2.findFundamentalMat(self.match_pts1,  
        self.match_pts2, cv2.FM_RANSAC, 0.1, 0.99)

The only difference between the fundamental matrix and the essential matrix is that 
the latter operates on rectified images:

def _find_essential_matrix(self):
    self.E = self.K.T.dot(self.F).dot(self.K)

The essential matrix (self.E) can then be decomposed into rotational and translational 
components, denoted as [R | t], using singular value decomposition (SVD):

def _find_camera_matrices(self):
    U, S, Vt = np.linalg.svd(self.E)
    W = np.array([0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,  
        1.0]).reshape(3, 3)
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Using the unitary matrices U and V in combination with an additional matrix, W, 
we can now reconstruct [R | t]. However, it can be shown that this decomposition 
has four possible solutions and only one of them is the valid second camera matrix. 
The only thing we can do is check all four possible solutions and find the one that 
predicts that all the imaged keypoints lie in front of both cameras.

But prior to that, we need to convert the keypoints from 2D image coordinates to 
homogeneous coordinates. We achieve this by adding a z coordinate, which we set  
to 1:

first_inliers = []
second_inliers = []
for i in range(len(self.Fmask)):
    if self.Fmask[i]:
        first_inliers.append(self.K_inv.dot( 
            [self.match_pts1[i][0], self.match_pts1[i][1],  
            1.0]))
        second_inliers.append(self.K_inv.dot( 
            [self.match_pts2[i][0], self.match_pts2[i][1],  
            1.0]))

We then iterate over the four possible solutions and choose the one that has _in_
front_of_both_cameras returning True:

# First choice: R = U * Wt * Vt, T = +u_3 (See Hartley 
# & Zisserman 9.19)
R = U.dot(W).dot(Vt)
T = U[:, 2]

if not self._in_front_of_both_cameras(first_inliers, 
        second_inliers, R, T):
    # Second choice: R = U * W * Vt, T = -u_3
    T = - U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,  
        second_inliers, R, T):
    # Third choice: R = U * Wt * Vt, T = u_3
    R = U.dot(W.T).dot(Vt)
    T = U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,  
        second_inliers, R, T):
    # Fourth choice: R = U * Wt * Vt, T = -u_3
    T = - U[:, 2]
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Now, we can finally construct the [R | t] matrices of the two cameras. The first 
camera is simply a canonical camera (no translation and no rotation):

self.Rt1 = np.hstack((np.eye(3), np.zeros((3, 1))))

The second camera matrix consists of [R | t] recovered earlier:

self.Rt2 = np.hstack((R, T.reshape(3, 1)))

The __InFrontOfBothCameras private method is a helper function that makes sure 
that every pair of keypoints is mapped to 3D coordinates that make them lie in front 
of both cameras:

def _in_front_of_both_cameras(self, first_points, second_points,  
        rot, trans):
    rot_inv = rot
    for first, second in zip(first_points, second_points):
        first_z = np.dot(rot[0, :] - second[0]*rot[2, :], trans) /  
            np.dot(rot[0, :] - second[0]*rot[2, :], second)
        first_3d_point = np.array([first[0] * first_z, second[0] *  
            first_z, first_z])
        second_3d_point = np.dot(rot.T, first_3d_point) –  
            np.dot(rot.T, trans)

If the function finds any keypoint that is not in front of both cameras, it will  
return False:

if first_3d_point[2] < 0 or second_3d_point[2] < 0:
    return False
return True

Image rectification
Maybe, the easiest way to make sure that we have recovered the correct camera 
matrices is to rectify the images. If they are rectified correctly, then; a point in the 
first image, and a point in the second image that correspond to the same 3D world 
point, will lie on the same vertical coordinate. In a more concrete example, such as in 
our case, since we know that the cameras are upright, we can verify that horizontal 
lines in the rectified image correspond to horizontal lines in the 3D scene.

First, we perform all the steps described in the previous subsections to obtain the  
[R | t] matrix of the second camera:

def plot_rectified_images(self, feat_mode="SURF"):
    self._extract_keypoints(feat_mode)
    self._find_fundamental_matrix()
    self._find_essential_matrix()
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    self._find_camera_matrices_rt()

    R = self.Rt2[:, :3]
    T = self.Rt2[:, 3]

Then, rectification can be performed with two OpenCV one-liners that remap the 
image coordinates to the rectified coordinates based on the camera matrix (self.K), 
the distortion coefficients (self.d), the rotational component of the essential matrix 
(R), and the translational component of the essential matrix (T):

    R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(self.K,  
        self.d, self.K, self.d, self.img1.shape[:2], R, T,
        alpha=1.0)
    mapx1, mapy1 = cv2.initUndistortRectifyMap(self.K,  
        self.d, R1, self.K, self.img1.shape[:2], cv2.CV_32F)
    mapx2, mapy2 = cv2.initUndistortRectifyMap(self.K, self.d, R2,  
        self.K, self.img2.shape[:2], cv2.CV_32F)
    img_rect1 = cv2.remap(self.img1, mapx1, mapy1,  
        cv2.INTER_LINEAR)
    img_rect2 = cv2.remap(self.img2, mapx2, mapy2,  
        cv2.INTER_LINEAR)

To make sure that the rectification is accurate, we plot the two rectified images  
(img_rect1 and img_rect2) next to each other:

total_size = (max(img_rect1.shape[0], img_rect2.shape[0]),  
    img_rect1.shape[1] + img_rect2.shape[1], 3)
img = np.zeros(total_size, dtype=np.uint8)
img[:img_rect1.shape[0], :img_rect1.shape[1]] = img_rect1
img[:img_rect2.shape[0], img_rect1.shape[1]:] = img_rect2

We also draw horizontal blue lines after every 25 pixels, across the side-by-side 
images to further help us visually investigate the rectification process:

for i in range(20, img.shape[0], 25):
    cv2.line(img, (0, i), (img.shape[1], i), (255, 0, 0))
    cv2.imshow('imgRectified', img)
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Now we can easily convince ourselves that the rectification was successful,  
as shown here:

Reconstructing the scene
Finally, we can reconstruct the 3D scene by making use of a process called 
triangulation. We are able to infer the 3D coordinates of a point because of the 
way epipolar geometry works. By calculating the essential matrix, we get to know 
more about the geometry of the visual scene than we might think. Because the two 
cameras depict the same real-world scene, we know that most of the 3D real-world 
points will be found in both images. Moreover, we know that the mapping from the 
2D image points to the corresponding 3D real-world points, will follow the rules of 
geometry. If we study a sufficiently large number of image points, we can construct, 
and solve, a (large) system of linear equations to get the ground truth of the real-
world coordinates.
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Let's return to the Swiss fountain dataset. If we ask two photographers to take a picture 
of the fountain from different viewpoints at the same time, it is not hard to realize 
that the first photographer might show up in the picture of the second photographer, 
and vice-versa. The point on the image plane where the other photographer is visible 
is called the epipole or epipolar point. In more technical terms, the epipole is the 
point on one camera's image plane onto which the center of projection of the other 
camera projects. It is interesting to note that both the epipoles in their respective 
image planes, and both the centers of projection, lie on a single 3D line. By looking at 
the lines between the epipoles and image points, we can limit the number of possible 
3D coordinates of the image points. In fact, if the projection point is known, then the 
epipolar line (which is the line between the image point and the epipole) is known, 
and in turn the same point projected onto the second image must lie on that particular 
epipolar line. Confusing? I thought so. Let's just look at these images:

Each line here is the epipolar line of a particular point in the image. Ideally, all the 
epipolar lines drawn in the left-hand-side image should intersect at a point, and that 
point typically lies outside the image. If the calculation is accurate, then that point 
should coincide with the location of the second camera as seen from the first camera. 
In other words, the epipolar lines in the left-hand-side image tell us that the camera 
that took the right-hand-side image is located to our (that is, the first camera's) 
right-hand side. Analogously, the epipolar lines in the right-hand-side image tell us 
that the camera that took the image on the left is located to our (that is, the second 
camera's) left-hand side.

Moreover, for each point observed in one image, the same point must be observed in 
the other image on a known epipolar line. This is known as epipolar constraint. We 
can use this fact to show that if two image points correspond to the same 3D point, 
then the projection lines of those two image points must intersect precisely at the 3D 
point. This means that the 3D point can be calculated from two image points, which 
is what we are going to do next.
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Luckily, OpenCV again provides a wrapper to solve an extensive set of linear 
equations. First, we have to convert our list of matching feature points into a  
NumPy array:

first_inliers = np.array(self.match_inliers1).reshape 
    (-1, 3)[:, :2]
second_inliers = np.array(self.match_inliers2).reshape 
    (-1, 3)[:, :2]

Triangulation is performed next, using the preceding two [R | t] matrices (self.Rt1 
for the first camera and self.Rt2 for the second camera):

pts4D = cv2.triangulatePoints(self.Rt1, self.Rt2, first_inliers.T, 
    second_inliers.T).T

This will return the triangulated real-world points using 4D homogeneous 
coordinates. To convert them to 3D coordinates, we need to divide the (X,Y,Z) 
coordinates by the fourth coordinate, usually referred to as W:

pts3D = pts4D[:, :3]/np.repeat(pts4D[:, 3], 3).reshape(-1, 3)

3D point cloud visualization
The last step is visualizing the triangulated 3D real-world points. An easy way of 
creating 3D scatterplots is by using matplotlib. However, if you are looking for more 
professional visualization tools, you may be interested in Mayavi (http://docs.
enthought.com/mayavi/mayavi), VisPy (http://vispy.org), or the Point Cloud 
Library (http://pointclouds.org). Although the latter does not have Python 
support for point cloud visualization yet, it is an excellent tool for point cloud 
segmentation, filtering, and sample consensus model fitting. For more information, 
head over to strawlab's GitHub repository at https://github.com/strawlab/
python-pcl.

Before we can plot our 3D point cloud, we obviously have to extract the [R | t] 
matrix and perform the triangulation as explained earlier:

def plot_point_cloud(self, feat_mode="SURF"):
    self._extract_keypoints(feat_mode)
    self._find_fundamental_matrix()
    self._find_essential_matrix()
    self._find_camera_matrices_rt()

    # triangulate points
    first_inliers = np.array( 
        self.match_inliers1).reshape(-1, 3)[:, :2]

http://docs.enthought.com/mayavi/mayavi
http://docs.enthought.com/mayavi/mayavi
http://vispy.org
http://pointclouds.org
https://github.com/strawlab/python-pcl
https://github.com/strawlab/python-pcl
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    second_inliers = np.array( 
        self.match_inliers2).reshape(-1, 3)[:, :2]
    pts4D = cv2.triangulatePoints(self.Rt1, self.Rt2, 
        first_inliers.T, second_inliers.T).T

    # convert from homogeneous coordinates to 3D
    pts3D = pts4D[:, :3]/np.repeat(pts4D[:, 3], 3).reshape(-1, 3)

Then, all we need to do is open a matplotlib figure and draw each entry of pts3D in 
a 3D scatterplot:

    Ys = pts3D[:,0]
    Zs = pts3D[:,1]
    Xs = pts3D[:,2]
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(Xs, Ys, Zs, c='r', marker='o')
    ax.set_xlabel('Y')
    ax.set_ylabel('Z')
    ax.set_zlabel('X')
    plt.show()

The result is most compelling when studied using pyplot's Pan axes button, which 
lets you rotate and scale the point cloud in all three dimensions. This will make it 
immediately clear that most of the points that you see lie on the same plane, namely 
the wall behind the fountain, and that the fountain itself extends from that wall in 
negative z coordinates. It is a little harder to draw this convincingly, but here we go:
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Each subplot shows the recovered 3D coordinates of the fountain as seen from a 
different angle. In the top row, we are looking at the fountain from a similar angle 
as the second camera in the previous images, that is, by standing to the right and 
slightly in front of the fountain. You can see how most of the points are mapped 
to a similar x coordinate, which corresponds to the wall behind the fountain. For a 
subset of points concentrated between z coordinates -0.5 and -1.0, the x coordinate 
is significantly different, which shows different keypoints that belong to the surface 
of the fountain. The first two panels in the lower row look at the fountain from the 
other side. The last panel shows a birds-eye view of the fountain, highlighting the 
fountain's silhouette as a half-circle in the lower half of the image.
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Summary
In this chapter, we explored a way of reconstructing a scene in 3D—by inferring  
the geometrical features of 2D images taken by the same camera. We wrote a script 
to calibrate a camera, and you learned about fundamental and essential matrices. 
We used this knowledge to perform triangulation. We then went on to visualize the 
real-world geometry of the scene in a 3D point cloud. Using simple 3D scatterplots in 
matplotlib, we found a way to convince ourselves that our calculations were accurate 
and practical.

Going forward from here, it will be possible to store the triangulated 3D points in a file 
that can be parsed by the Point Cloud Library, or to repeat the procedure for different 
image pairs so that we can generate a denser and more accurate reconstruction. 
Although we have covered a lot in this chapter, there is a lot more left to do. Typically, 
when talking about a structure-from-motion pipeline, we include two additional steps 
that we have not talked about so far: bundle adjustment and geometry fitting. One 
of the most important steps in such a pipeline is to refine the 3D estimate in order to 
minimize reconstruction errors. Typically, we would also want to get all points that do 
not belong to our object of interest out of the cloud. But with the basic code in hand, 
you can now go ahead and write your own advanced structure-from-motion pipeline!

In the next chapter, we will move away from rigid scenes and instead focus on 
tracking visually salient and moving objects in a scene. This will give you an 
understanding of how to deal with non-static scenes. We will also explore how 
we can make an algorithm focus on what's important in a scene, quickly, which is a 
technique known to speed up object detection, object recognition, object tracking, 
and content-aware image editing.
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Tracking Visually Salient 
Objects

The goal of this chapter is to track multiple visually salient objects in a video 
sequence at once. Instead of labeling the objects of interest in the video ourselves,  
we will let the algorithm decide which regions of a video frame are worth tracking.

We have previously learned how to detect simple objects of interest (such as a 
human hand) in tightly controlled scenarios or how to infer geometrical features 
of a visual scene from camera motion. In this chapter, we ask what we can learn 
about a visual scene by looking at the image statistics of a large number of frames. 
By analyzing the Fourier spectrum of natural images we will build a saliency map, 
which allows us to label certain statistically interesting patches of the image as 
(potential or) proto-objects. We will then feed the location of all the proto- objects to a 
mean-shift tracker that will allow us to keep track of where the objects move from 
one frame to the next.

To build the app, we need to combine the following two main features:

• Saliency map: We will use Fourier analysis to get a general understanding 
of natural image statistics, which will help us build a model of what general 
image backgrounds look like. By comparing and contrasting the background 
model to a specific image frame, we can locate sub-regions of the image that 
pop out of their surroundings. Ideally, these sub-regions correspond to the 
image patches that tend to grab our immediate attention when looking at the 
image.

• Object tracking: Once all the potentially interesting patches of an image are 
located, we will track their movement over many frames using a simple yet 
effective method called mean-shift tracking. Because it is possible to have 
multiple proto-objects in the scene that might change appearance over time, 
we need to be able to distinguish between them and keep track of all of them.
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Visual saliency is a technical term from cognitive psychology that tries to describe 
the visual quality of certain objects or items that allows them to grab our immediate 
attention. Our brains constantly drive our gaze towards the important regions of 
the visual scene and keep track of them over time, allowing us to quickly scan our 
surroundings for interesting objects and events while neglecting the less important 
parts.

An example of a regular RGB image and its conversion to a saliency map, where the 
statistically interesting pop-out regions appear bright and the others dark, is shown in 
the following figure:

Traditional models might try to associate particular features with each target (much 
like our feature matching approach in Chapter 3, Finding Objects via Feature Matching 
and Perspective Transforms), which would convert the problem to the detection of 
specific categories or objects. However, these models require manual labeling and 
training. But what if the features or the number of the objects to track is not known?
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Instead, we will try to mimic what the brain does, that is, tune our algorithm to the 
statistics of the natural images, so that we can immediately locate the patterns or 
sub-regions that "grab our attention" in the visual scene (that is, patterns that deviate 
from these statistical regularities) and flag them for further inspection. The result 
is an algorithm that works for any number of proto-objects in the scene, such as 
tracking all the players on a soccer field. Refer to the following image:

This chapter uses OpenCV 2.4.9, as well as the additional packages 
NumPy (http://www.numpy.org), wxPython 2.8 (http://www.
wxpython.org/download.php), and matplotlib (http://www.
matplotlib.org/downloads.html). Although parts of the 
algorithms presented in this chapter have been added to an optional 
Saliency module of the OpenCV 3.0.0 release, there is currently no 
Python API for it, so we will write our own code.

http://www.numpy.org
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
http://www.matplotlib.org/downloads.html
http://www.matplotlib.org/downloads.html
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Planning the app
The final app will convert each RGB frame of a video sequence into a saliency map, 
extract all the interesting proto-objects, and feed them to a mean-shift tracking 
algorithm. To do this, we need the following components:

• main: The main function routine (in chapter5.py) to start the application.
• Saliency: A class that generates a saliency map from an RGB color image.  

It includes the following public methods:
 ° Saliency.get_saliency_map: The main method to convert an RGB 

color image to a saliency map
 ° Saliency.get_proto_objects_map: A method to convert a saliency 

map into a binary mask containing all the proto-objects
 ° Saliency.plot_power_density: A method to display the 2D power 

density of an RGB color image, which is helpful to understand the 
Fourier transform

 ° Saliency.plot_power_spectrum: A method to display the radially 
averaged power spectrum of an RGB color image, which is helpful to 
understand natural image statistics

• MultiObjectTracker: A class that tracks multiple objects in a video using 
mean-shift tracking. It includes the following public method, which itself 
contains a number of private helper methods:

 ° MultiObjectTracker.advance_frame: A method to update the 
tracking information for a new frame, combining bounding boxes 
obtained from both the saliency map and mean-shift tracking

In the following sections, we will discuss these steps in detail.

Setting up the app
In order to run our app, we will need to execute a main function routine that reads  
a frame of a video stream, generates a saliency map, extracts the location of the 
proto-objects, and tracks these locations from one frame to the next.
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The main function routine
The main process flow is handled by the main function in chapter5.py, which 
instantiates the two classes (Saliency and MultipleObjectTracker) and opens  
a video file showing the number of soccer players on the field:

import cv2
import numpy as np
from os import path

from saliency import Saliency
from tracking import MultipleObjectsTracker

def main(video_file='soccer.avi', roi=((140, 100), (500, 600))):
    if path.isfile(video_file):
        video = cv2.VideoCapture(video_file)
    else:
        print 'File "' + video_file + '" does not exist.'
        raise SystemExit

    # initialize tracker
    mot = MultipleObjectsTracker()

The function will then read the video frame by frame, extract some meaningful 
region of interest (for illustration purposes), and feed it to the Saliency module:

    while True:
        success, img = video.read()
        if success:
            if roi:
                # grab some meaningful ROI
                img = img[roi[0][0]:roi[1][0],  
                    roi[0][1]:roi[1][1]]
            # generate saliency map
            sal = Saliency(img, use_numpy_fft=False,  
                gauss_kernel=(3, 3))

The Saliency will generate a map of all the interesting proto-objects and feed that into 
the tracker module. The output of the tracker module is the input frame annotated 
with bounding boxes as shown in the preceding figure.

cv2.imshow("tracker", mot.advance_frame(img,  
            sal.get_proto_objects_map(use_otsu=False)))
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The app will run through all the frames of the video until the end of the file is 
reached or the user presses the q key:

if cv2.waitKey(100) & 0xFF == ord('q'):
    break

The Saliency class
The constructor of the Saliency class accepts a video frame, which can be either 
grayscale or RGB, as well as some options such as whether to use NumPy's or 
OpenCV's Fourier package:

def __init__(self, img, use_numpy_fft=True, gauss_kernel=(5, 5)):
    self.use_numpy_fft = use_numpy_fft
    self.gauss_kernel = gauss_kernel
    self.frame_orig = img

A saliency map will be generated from a down sampled version of the image,  
and because the computation is relatively time-intensive, we will maintain a flag 
need_saliency_map that makes sure we do the computations only once:

    self.small_shape = (64, 64)
    self.frame_small = cv2.resize(img, self.small_shape[1::-1])

    # whether we need to do the math (True) or it has already
    # been done (False)
    self.need_saliency_map = True

From then on, the user may call any of the class' public methods, which will all be 
passed on the same image.

The MultiObjectTracker class
The constructor of the tracker class is straightforward. All it does is set up the 
termination criteria for mean-shift tracking and store the conditions for the minimum 
contour area (min_area) and minimum frame-by-frame drift (min_shift2) to be 
considered in the subsequent computation steps:
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def __init__(self, min_area=400, min_shift2=5):
    self.object_roi = []
    self.object_box = []

    self.min_cnt_area = min_area
    self.min_shift2 = min_shift2

    # Setup the termination criteria, either 100 iteration or move
    # by at least 1 pt
    self.term_crit = (cv2.TERM_CRITERIA_EPS |  
        cv2.TERM_CRITERIA_COUNT, 100, 1) 

From then on, the user may call the advance_frame method to feed a new frame to 
the tracker.

However, before we make use of all this functionality, we need to learn about image 
statistics and how to generate a saliency map.

Visual saliency
As already mentioned in the introduction, visual saliency tries to describe the visual 
quality of certain objects or items that allows them to grab our immediate attention. 
Our brains constantly drive our gaze towards the important regions of the visual 
scene, as if it were to shine a flashlight on different sub-regions of the visual world, 
allowing us to quickly scan our surroundings for interesting objects and events while 
neglecting the less important parts.
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It is thought that this is an evolutionary strategy to deal with the constant information 
overflow that comes with living in a visually rich environment. For example, if you 
take a casual walk through a jungle, you want to be able to notice the attacking tiger in 
the bush to your left before admiring the intricate color pattern on the butterfly's wings 
in front of you. As a result, the visually salient objects have the remarkable quality of 
popping out of their surroundings, much like the target bars in the following figure:

The visual quality that makes these targets pop out may not always be trivial though. 
If you are viewing the image on the left in color, you may immediately notice the 
only red bar in the image. However, if you look at the same image in grayscale, the 
target bar will be hard to find (it is the fourth bar from the top, fifth bar from the 
left). Similar to color saliency, there is a visually salient bar in the image on the right. 
Although the target bar is of unique color in the left image and of unique orientation 
in the right image, put the two characteristics together and suddenly the unique 
target bar does not pop out anymore:
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In this preceding display, there is again one bar that is unique and different from all 
the other ones. However, because of the way the distracting items were designed, 
there is little salience to guide you towards the target bar. Instead, you find yourself 
scanning the image, seemingly at random, looking for something interesting. (Hint: 
The target is the only red and almost-vertical bar in the image, second row from the 
top, third column from the left.)

What does this have to do with computer vision, you ask? Quite a lot, actually. 
Artificial vision systems suffer from information overload much like you and me, 
except that they know even less about the world than we do. What if we could extract 
some insights from biology and use them to teach our algorithms something about the 
world? Imagine a dashboard camera in your car that automatically focuses on the most 
relevant traffic sign. Imagine a surveillance camera that is part of a wildlife observation 
station that will automatically detect and track the sighting of the notoriously shy 
platypus but will ignore everything else. How can we teach the algorithm what is 
important and what is not? How can we make that platypus "pop out"?

Fourier analysis
To find the visually salient sub-regions of an image, we need to look at its frequency 
spectrum. So far we have treated all our images and video frames in the spatial 
domain; that is, by analyzing the pixels or studying how the image intensity changes 
in different sub-regions of the image. However, the images can also be represented 
in the frequency domain; that is, by analyzing the pixel frequencies or studying how 
often and with what periodicity the pixels show up in the image.
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An image can be transformed from the space domain into the frequency domain 
by applying the Fourier transform. In the frequency domain, we no longer think in 
terms of image coordinates (x,y). Instead, we aim to find the spectrum of an image. 
Fourier's radical idea basically boils down to the following question: what if any 
signal or image could be transformed into a series of circular paths (also called 
harmonics)?

For example, think of a rainbow. Beautiful, isn't it? In a rainbow, white sunlight 
(composed of many different colors or parts of the spectrum) is spread into its 
spectrum. Here the color spectrum of the sunlight is exposed when the rays of light 
pass through raindrops (much like white light passing through a glass prism). The 
Fourier transform aims to do the same thing: to recover all the different parts of the 
spectrum that are contained in the sunlight.

A similar thing can be achieved for arbitrary images. In contrast to rainbows,  
where frequency corresponds to electromagnetic frequency, with images we consider 
spatial frequency; that is, the spatial periodicity of the pixel values. In an image 
of a prison cell, you can think of spatial frequency as (the inverse of) the distance 
between two adjacent prison bars.

The insights that can be gained from this change of perspective are very powerful. 
Without going into too much detail, let us just remark that a Fourier spectrum comes 
with both a magnitude and a phase. While the magnitude describes the amount 
of different frequencies in the image, the phase talks about the spatial location of 
these frequencies. The following image shows a natural image on the left and the 
corresponding Fourier magnitude spectrum (of the grayscale version) on the right:

The magnitude spectrum on the right tells us which frequency components are 
the most prominent (bright) in the grayscale version of the image on the left. The 
spectrum is adjusted so that the center of the image corresponds to zero frequency in 
x and y. The further you move to the border of the image, the higher the frequency 
gets. This particular spectrum is telling us that there are a lot of low-frequency 
components in the image on the left (clustered around the center of the image).
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In OpenCV, this transformation can be achieved with the Discrete Fourier 
Transform (DFT) using the plot_magnitude method of the Saliency class.  
The procedure is as follows:

1. Convert the image to grayscale if necessary: Because the method accepts 
both grayscale and RGB color images, we need to make sure we operate  
on a single-channel image:
def plot_magnitude(self):
    if len(self.frame_orig.shape)>2:
        frame = cv2.cvtColor(self.frame_orig,  
            cv2.COLOR_BGR2GRAY)
    else:
        frame = self.frame_orig

2. Expand the image to an optimal size: It turns out that the performance of a 
DFT depends on the image size. It tends to be fastest for the image sizes that 
are multiples of the number two. It is therefore generally a good idea to pad 
the image with zeros:
rows, cols = self.frame_orig.shape[:2]
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
frame = cv2.copyMakeBorder(frame, 0, ncols-cols, 0,  
    nrows-rows, cv2.BORDER_CONSTANT, value = 0)

3. Apply the DFT: This is a single function call in NumPy. The result is a 2D 
matrix of complex numbers:
img_dft = np.fft.fft2(frame)

4. Transform the real and complex values to magnitude: A complex number has 
a real (Re) and a complex (imaginary - Im) part. To extract the magnitude, we 
take the absolute value:
magn = np.abs(img_dft)

5. Switch to a logarithmic scale: It turns out that the dynamic range of the 
Fourier coefficients is usually too large to be displayed on the screen. We 
have some small and some high changing values that we can't observe like 
this. Therefore, the high values will all turn out as white points, and the small 
ones as black points. To use the gray scale values for visualization, we can 
transform our linear scale to a logarithmic one:
log_magn = np.log10(magn)

6. Shift quadrants: To center the spectrum on the image. This makes it easier to 
visually inspect the magnitude spectrum:
spectrum = np.fft.fftshift(log_magn)
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7. Return the result for plotting:
return spectrum/np.max(spectrum)*255

Natural scene statistics
The human brain figured out how to focus on visually salient objects a long time 
ago. The natural world in which we live has some statistical regularities that makes 
it uniquely natural, as opposed to a chessboard pattern or a random company logo. 
Probably, the most commonly known statistical regularity is the 1/f law. It states that 
the amplitude of the ensemble of natural images obeys a 1/f distribution, as shown 
in the figure later This is sometimes also referred to as scale invariance.

A 1D power spectrum (as a function of frequency) of a 2D image can be visualized 
with the plot_power_spectrum method of the Saliency class. We can use a similar 
recipe as for the magnitude spectrum used previously, but we will have to make sure 
that we correctly collapse the 2D spectrum onto a single axis.

1. Convert the image to grayscale if necessary (same as earlier):
def plot_power_spectrum(self):
    if len(self.frame_orig.shape)>2:
        frame = cv2.cvtColor(self.frame_orig,  
            cv2.COLOR_BGR2GRAY)
    else:
        frame = self.frame_orig

2. Expand the image to optimal size (same as earlier):
rows, cols = self.frame_orig.shape[:2]
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
frame = cv2.copyMakeBorder(frame, 0, ncols-cols, 0,  
    nrows-rows, cv2.BORDER_CONSTANT, value = 0)
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3. Apply the DFT and get the log spectrum: Here we give the user an option 
(via flag use_numpy_fft) to use either NumPy's or OpenCV's Fourier tools:
if self.use_numpy_fft:
    img_dft = np.fft.fft2(frame)
    spectrum = np.log10(np.real(np.abs(img_dft))**2)
else:
    img_dft = cv2.dft(np.float32(frame),  
        flags=cv2.DFT_COMPLEX_OUTPUT)
    spectrum = np.log10(img_dft[:,:,0]**2  
        + img_dft[:,:,1]**2)

4. Perform radial averaging: This is the tricky part. It would be wrong to 
simply average the 2D spectrum in the direction of x or y. What we are 
interested in is a spectrum as a function of frequency, independent of the 
exact orientation. This is sometimes also called the radially averaged power 
spectrum (RAPS), and can be achieved by summing up all the frequency 
magnitudes, starting at the center of the image, looking into all possible 
(radial) directions, from some frequency r to r+dr. We use the binning 
function of NumPy's histogram to sum up the numbers, and accumulate 
them in the variable histo:
L = max(frame.shape)
freqs = np.fft.fftfreq(L)[:L/2]
dists = np.sqrt(np.fft.fftfreq(frame.shape[0]) 
    [:,np.newaxis]**2 + np.fft.fftfreq 
        (frame.shape[1])**2)
dcount = np.histogram(dists.ravel(), bins=freqs)[0]
histo, bins = np.histogram(dists.ravel(), bins=freqs, 
    weights=spectrum.ravel())

5. Plot the result: Finally, we can plot the accumulated numbers in histo, but 
must not forget to normalize these by the bin size (dcount):

centers = (bins[:-1] + bins[1:]) / 2
plt.plot(centers, histo/dcount)
plt.xlabel('frequency')
plt.ylabel('log-spectrum')
plt.show()
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The result is a function that is inversely proportional to the frequency. If you want  
to be absolutely certain of the 1/f property, you could take np.log10 of all the x 
values and make sure the curve is decreasing roughly linearly. On a linear x axis  
and logarithmic y axis, the plot looks like the following:

This property is quite remarkable. It states that if we were to average all the spectra 
of all the images ever taken of natural scenes (neglecting all the ones taken with 
fancy image filters, of course), we would get a curve that would look remarkably like 
the one shown in the preceding image.
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But going back to the image of a peaceful little boat on the Limmat river, what 
about single images? We have just looked at the power spectrum of this image 
and witnessed the 1/f property. How can we use our knowledge of natural image 
statistics to tell an algorithm not to stare at the tree on the left, but instead focus on 
the boat that is chugging in the water?

This is where we realize what saliency really means.

Generating a Saliency map with the spectral 
residual approach
The things that deserve our attention in an image are not the image patches that 
follow the 1/f law, but the patches that stick out of the smooth curves. In other 
words, the statistical anomalies. These anomalies are termed the spectral residual  
of an image, and correspond to the potentially interesting patches of an image  
(or proto-objects). A map that shows these statistical anomalies as bright spots  
is called a saliency map.
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The spectral residual approach described here is based on the 
original scientific publication by Xiaodi Hou and Liqing Zhang (2007). 
Saliency Detection: A Spectral Residual Approach. IEEE Transactions on 
Computer Vision and Pattern Recognition (CVPR), p.1-8. doi: 10.1109/
CVPR.2007.383267.

In order to generate a saliency map based on the spectral residual approach, we need 
to process each channel of an input image separately (single channel in the case of a 
grayscale input image, and three separate channels in the case of an RGB input image).

The saliency map of a single channel can be generated with the private method 
Saliency._get_channel_sal_magn using the following recipe:

1. Calculate the (magnitude and phase of the) Fourier spectrum of an image,  
by again using either the fft module of NumPy or OpenCV functionality:
def _get_channel_sal_magn(self, channel):
    if self.use_numpy_fft:
        img_dft = np.fft.fft2(channel)
        magnitude, angle = cv2.cartToPolar 
            (np.real(img_dft), np.imag(img_dft))
    else:
        img_dft = cv2.dft(np.float32(channel),  
            flags=cv2.DFT_COMPLEX_OUTPUT)
        magnitude, angle = cv2.cartToPolar 
            (img_dft[:, :, 0], img_dft[:, :, 1])

2. Calculate the log amplitude of the Fourier spectrum. We will clip the lower 
bound of magnitudes to 1e-9 in order to prevent a division by zero while 
calculating the log:
log_ampl = np.log10(magnitude.clip(min=1e-9))

3. Approximate the averaged spectrum of a typical natural image by 
convolving the image with a local averaging filter:
log_ampl_blur = cv2.blur(log_amlp, (3, 3))

4. Calculate the spectral residual. The spectral residual primarily contains the 
nontrivial (or unexpected) parts of a scene.
magn = np.exp(log_amlp – log_ampl_blur)

5. Calculate the saliency map by using the inverse Fourier transform, again 
either via the fft module in NumPy or with OpenCV:

    if self.use_numpy_fft:
        real_part, imag_part = cv2.polarToCart(residual,
            angle)
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        img_combined = np.fft.ifft2 
            (real_part + 1j*imag_part)
        magnitude, _ = cv2.cartToPolar 
            ( np.real(img_combined), np.imag(img_combined))
    else:
        img_dft[:, :, 0], img_dft[:, :, 1] =  
            cv2.polarToCart(  
                residual, angle)
        img_combined = cv2.idft(img_dft)
        magnitude, _ = cv2.cartToPolar 
            (img_combined[:, :, 0], img_combined[:, :, 1])
    return magnitude

The resulting single-channel saliency map (magnitude) is then returned to 
Saliency.get_saliency_map, where the procedure is repeated for all channels  
of the input image. If the input image is grayscale, we are pretty much done:

def get_saliency_map(self):
    if self.need_saliency_map:
        # haven't calculated saliency map for this frame yet
        num_channels = 1
        if len(self.frame_orig.shape)==2:
            # single channel
            sal = self._get_channel_sal_magn(self.frame_small)

However, if the input image has multiple channels, as is the case for an RGB color 
image, we need to consider each channel separately:

        else:
            # consider each channel independently
            sal = np.zeros_like 
                (self.frame_small).astype(np.float32)
            for c in xrange(self.frame_small.shape[2]):
                sal[:, :, c] = self._get_channel_sal_magn 
                    (self.frame_small[:, :, c])

The overall salience of a multi-channel image is then determined by the average over 
all channels:

sal = np.mean(sal, 2)

Finally, we need to apply some post-processing, such as an optional blurring stage to 
make the result appear smoother:

        if self.gauss_kernel is not None:
            sal = cv2.GaussianBlur(sal, self.gauss_kernel, 
                sigmaX=8, sigmaY=0)
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Also, we need to square the values in sal in order to highlight the regions of high 
salience,  as outlined by the authors of the original paper. In order to display the 
image, we scale it back up to its original resolution and normalize the values, so that 
the largest value is one:

        sal = sal**2
        sal = np.float32(sal)/np.max(sal)
        sal = cv2.resize(sal, self.frame_orig.shape[1::-1])

In order to avoid having to redo all these intense calculations, we store a local copy 
of the saliency map for further reference and make sure to lower the flag:

        self.saliency_map = sal
        self.need_saliency_map = False

    return self.saliency_map

Then, when the user makes subsequent calls to class methods that rely on the 
calculation of the saliency map under the hood, we can simply refer to the local  
copy instead of having to do the calculations all over again.

The resulting saliency map then looks like the following image:

Now we can clearly spot the boat in the water (lower-left corner), which appears as 
one of the most salient sub-regions of the image. There are other salient regions, too, 
such as the Grossmünster on the right (have you guessed the city yet?).
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By the way, the reason these two areas are the most salient ones 
in the image seems to be clear and undisputable evidence that the 
algorithm is aware of the ridiculous number of church towers in 
the city center of Zurich, effectively prohibiting any chance of them 
being labeled as "salient".

Detecting proto-objects in a scene
In a sense, the saliency map is already an explicit representation of proto-objects, as it 
contains only the interesting parts of an image. So now that we have done all the hard 
work, all that is left to do in order to obtain a proto-object map is to threshold the 
saliency map.

The only open parameter to consider here is the threshold. Setting the threshold 
too low will result in labeling a lot of regions as proto-objects, including some that 
might not contain anything of interest (false alarm). On the other hand, setting the 
threshold too high will ignore most of the salient regions in the image and might 
leave us with no proto-objects at all. The authors of the original spectral residual 
paper chose to label only those regions of the image as proto-objects whose saliency 
was larger than three-times the mean saliency of the image. We give the user the 
choice to either implement this threshold, or to go with the Otsu threshold by setting 
the input flag use_otsu to true:

def get_proto_objects_map(self, use_otsu=True):

We then retrieve the saliency map of the current frame and make sure to convert it to 
uint8 precision, so that it can be passed to cv2.threshold:

    saliency = self.get_saliency_map()
    if use_otsu:
        _, img_objects = cv2.threshold(np.uint8(saliency*255),  
            0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Otherwise, we will use the threshold thresh:

    else:
        thresh = np.mean(saliency)*255
        _, img_objects = cv2.threshold(np.uint8(saliency*255),  
            thresh, 255, cv2.THRESH_BINARY)
    return img_objects
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The resulting proto-objects mask looks like the following image:

The proto-objects mask then serves as an input to the tracking algorithm.

Mean-shift tracking
It turns out that the salience detector discussed previously is already a great tracker 
of proto-objects by itself. One could simply apply the algorithm to every frame of 
a video sequence and get a good idea of the location of the objects. However, what 
is getting lost is correspondence information. Imagine a video sequence of a busy 
scene, such as from a city center or a sports stadium. Although a saliency map could 
highlight all the proto-objects in every frame of a recorded video, the algorithm 
would have no way to know which proto-objects from the previous frame are still 
visible in the current frame. Also, the proto-objects map might contain some  
false-positives, such as in the following example:
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Note that the bounding boxes extracted from the proto-objects map made (at least) 
three mistakes in the preceding example: it missed highlighting a player (upper-left), 
merged two players into the same bounding box, and highlighted some additional 
arguably non-interesting (although visually salient) objects. In order to improve 
these results, we want to make use of a tracking algorithm.

To solve the correspondence problem, we could use the methods we have learned 
about previously, such as feature matching and optic flow. Or, we could use a 
different technique called mean-shift tracking.

Mean-shift is a simple yet very effective technique for tracking arbitrary objects. 
The intuition behind mean-shift is to consider the pixels in a small region of interest 
(say, a bounding box of an object we want to track) as sampled from an underlying 
probability density function that best describes a target.

Consider, for example, the following image:

Here, the small gray dots represent samples from a probability distribution. Assume 
that the closer the dots, the more similar they are to each other. Intuitively speaking, 
what mean-shift is trying to do is to find the densest region in this landscape and 
draw a circle around it. The algorithm might start out centering a circle over a region 
of the landscape that is not dense at all (dashed circle). Over time, it will slowly move 
towards the densest region (solid circle) and anchor on it. If we design the landscape 
to be more meaningful than dots (for example, by making the dots correspond to 
color histograms in the small neighborhoods of an image), we can use mean-shift 
tracking to find the objects of interest in the scene by finding the histogram that most 
closely matches the histogram of a target object.
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Mean-shift has many applications (such as clustering, or finding the mode of 
probability density functions), but it is also particularly well-suited to target tracking. 
In OpenCV, the algorithm is implemented in cv2.meanShift, but it requires some 
pre-processing to function correctly. We can outline the procedure as follows:

1. Fix a window around each data point: For example, a bounding box around 
an object or region of interest.

2. Compute the mean of data within the window: In the context of tracking, 
this is usually implemented as a histogram of the pixel values in the region  
of interest. For best performance on color images, we will convert to HSV 
color space.

3. Shift the window to the mean and repeat until convergence: This is handled 
transparently by cv2.meanShift. We can control the length and accuracy of 
the iterative method by specifying termination criteria.

Automatically tracking all players on a soccer 
field
For the remainder of this chapter, our goal is to combine the saliency detector with 
mean-shift tracking to automatically track all the players on a soccer field. The 
proto-objects identified by the salience detector will serve as input to the mean-shift 
tracker. Specifically, we will focus on a video sequence from the Alfheim dataset, 
which can be freely obtained from http://home.ifi.uio.no/paalh/dataset/
alfheim/.

The reason for combining the two algorithms (saliency map and mean-shift 
tracking), is to remove false positives and improve the accuracy of the overall 
tracking. This will be achieved in a two-step procedure:

1. Have both the saliency detector and mean-shift tracking assemble a list of 
bounding boxes for all the proto-objects in a frame. The saliency detector will 
operate on the current frame, whereas the mean-shift tracker will try to find 
the proto-objects from the previous frame in the current frame.

2. Keep only those bounding boxes for which both algorithms agree on the 
location and size. This will get rid of outliers that have been mislabeled as 
proto-objects by one of the two algorithms.

http://home.ifi.uio.no/paalh/dataset/alfheim/
http://home.ifi.uio.no/paalh/dataset/alfheim/
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The hard work is done by the previously introduced MultiObjectTracker class  
and its advance_frame method. This method relies on a few private worker 
methods, which will be explained in detail next. The advance_frame method is 
called whenever a new frame arrives, and accepts a proto-objects map as input:

def advance_frame(self, frame, proto_objects_map):
    self.tracker = copy.deepcopy(frame)

The method then builds a list of all the candidate bounding boxes, combining the 
bounding boxes both from the saliency map of the current frame as well as the  
mean-shift tracking results from the previous to the current frame:

# build a list of all bounding boxes
box_all = []

# append to the list all bounding boxes found from the
# current proto-objects map
box_all = self._append_boxes_from_saliency(proto_objects_map, 
    box_all)

    # find all bounding boxes extrapolated from last frame
    # via mean-shift tracking
    box_all = self._append_boxes_from_meanshift(frame, box_all)

The method then attempts to merge the candidate bounding boxes in order to 
remove the duplicates. This can be achieved with cv2.groupRectangles, which will 
return a single bounding box if group_thresh+1 or more bounding boxes overlap in 
an image:

# only keep those that are both salient and in mean shift
if len(self.object_roi)==0:
    group_thresh = 0    # no previous frame: keep all form 
    # saliency
else:
    group_thresh = 1 # previous frame + saliency
box_grouped,_ = cv2.groupRectangles(box_all, group_thresh,  
    0.1)

In order to make mean-shift work, we will have to do some bookkeeping, which will 
be explained in detail in the following subsections:

# update mean-shift bookkeeping for remaining boxes
self._update_mean_shift_bookkeeping(frame, box_grouped)
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Then we can draw the list of unique bounding boxes on the input image and return 
the image for plotting:

for (x, y, w, h) in box_grouped:
    cv2.rectangle(self.tracker, (x, y), (x + w, y + h), 
        (0, 255, 0), 2)

return self.tracker

Extracting bounding boxes for proto-objects
The first private worker method is relatively straightforward. It takes a proto-objects 
map as input as well as a (previously aggregated) list of bounding boxes. To this list, 
it adds all the bounding boxes found from the contours of the proto-objects:

def _append_boxes_from_saliency(self, proto_objects_map, box_all):
    box_sal = []
    cnt_sal, _ = cv2.findContours(proto_objects_map, 1, 2)

However, it discards the bounding boxes that are smaller than some threshold, 
self.min_cnt_area, which is set in the constructor:

for cnt in cnt_sal:
    # discard small contours
    if cv2.contourArea(cnt) < self.min_cnt_area:
        continue

The result is appended to the box_all list and passed up for further processing:

    # otherwise add to list of boxes found from saliency map
    box = cv2.boundingRect(cnt)
    box_all.append(box)

return box_all

Setting up the necessary bookkeeping for 
mean-shift tracking
The second private worker method is concerned with setting up all the bookkeeping 
that is necessary to perform mean-shift tracking. The method accepts an input image 
and a list of bounding boxes for which to generate the bookkeeping information:

def _update_mean_shift_bookkeeping(self, frame, box_grouped):
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Bookkeeping mainly consists of calculating a histogram of the HSV color values of 
each proto-object's bounding box. Thus the input RGB image is converted to HSV 
right away:

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Then, every bounding box in box_grouped is parsed. We need to store both the 
location and size of the bounding box (self.object_box), as well as a histogram of 
the HSV color values (self.object_roi):

self.object_roi = []
self.object_box = []

The location and size of the bounding box is extracted from the list, and the region of 
interest is cut out of the HSV image:

for box in box_grouped:
    (x, y, w, h) = box
    hsv_roi = hsv[y:y + h, x:x + w]

We then calculate a histogram of all the hue (H) values in the region of interest.  
We also ignore the dim or the weakly pronounced areas of the bounding box by 
using a mask, and normalize the histogram in the end:

mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),  
        np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

We then store this information in the corresponding private member variables,  
so that it will be available in the very next frame of the process loop, where we  
will aim to locate the region of interest using the mean-shift algorithm:

self.object_roi.append(roi_hist)
self.object_box.append(box)

Tracking objects with the mean-shift 
algorithm
Finally, the third private worker method tracks the proto-objects by using the 
bookkeeping information stored earlier from the previous frame. Similar to 
_append_boxes_from_meanshift, we build a list of all the bounding boxes 
aggregated from mean-shift and pass it up for further processing. The method 
accepts an input image and a previously aggregated list of bounding boxes:

def _append_boxes_from_meanshift(self, frame, box_all):
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
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The method then parses all the previously stored proto-objects (from self.object_
roi and self.object_box):

for i in xrange(len(self.object_roi)):
    roi_hist = copy.deepcopy(self.object_roi[i])
    box_old = copy.deepcopy(self.object_box[i])

In order to find the new, shifted location of a region of interest recorded in the previous 
image frame, we feed the back-projected region of interest to the mean-shift algorithm. 
Termination criteria (self.term_crit) will make sure to try a sufficient number of 
iterations (100) and look for mean-shifts of at least some number of pixels (1):

dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
ret, box_new = cv2.meanShift(dst, tuple(box_old),  
    self.term_crit)

But, before we append the newly detected, shifted bounding box to the list, we want 
to make sure that we are actually tracking the objects that move. The objects that 
do not move are most likely false-positives, such as line markings or other visually 
salient patches that are irrelevant to the task at hand.

In order to discard the irrelevant tracking results, we compare the location of the 
bounding box from the previous frame (box_old) and the corresponding bounding 
box from the current frame (box_new):

(xo, yo, wo, ho) = box_old
(xn, yn, wn, hn) = box_new

If their centers of mass did not shift at least sqrt(self.min_shift2) pixels, we do 
not include the bounding box in the list:

co = [xo + wo/2, yo + ho/2]
cn = [xn + wn/2, yn + hn/2]
if (co[0] - cn[0])**2 + (co[1] - cn[1])**2 >= self.min_shift2:
    box_all.append(box_new)

The resulting list of bounding boxes is again passed up for further processing:

        return box_all
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Putting it all together
The result of our app can be seen in the following image:

Throughout the video sequence, the algorithm is able to pick up the location of the 
players, successfully tracking them frame-by-frame by using mean-shift tracking, 
and combining the resulting bounding boxes with the bounding boxes returned by 
the salience detector.

It is only through the clever combination of the saliency map and tracking that we 
can exclude false-positives such as line markings and artifacts of the saliency map. 
The magic happens in cv2.groupRectangles, which requires a similar bounding 
box to appear at least twice in the box_all list, otherwise it is discarded. This means 
that a bounding box is only then kept in the list if both mean-shift tracking and the 
saliency map (roughly) agree on the location and size of the bounding box.
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Summary
In this chapter, we explored a way to label the potentially interesting objects in a 
visual scene, even if their shape and number is unknown. We explored natural image 
statistics using Fourier analysis, and implemented a state-of-the-art method for 
extracting the visually salient regions in the natural scenes. Furthermore, we combined 
the output of the salience detector with a tracking algorithm to track multiple objects of 
unknown shape and number in a video sequence of a soccer game.

It would now be possible to extend our algorithm to feature more complicated feature 
descriptions of proto-objects. In fact, mean-shift tracking might fail when the objects 
rapidly change size, as would be the case if an object of interest were to come straight 
at the camera. A more powerful tracker, which comes for free in OpenCV, is cv2.
CamShift. CAMShift stands for Continuously Adaptive Mean-Shift, and bestows 
upon mean-shift the power to adaptively change the window size. Of course, it would 
also be possible to simply replace the mean-shift tracker with a previously studied 
technique such as feature matching or optic flow.

In the next chapter, we will move to the fascinating field of machine learning, which 
will allow us to build more powerful descriptors of objects. Specifically, we will 
focus on both detecting (where?) and identifying (what?) the street signs in images. 
This will allow us to train a classifier that could be used in a dashboard camera in 
your car, and will familiarize us with the important concepts of machine learning 
and object recognition.
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Learning to Recognize  
Traffic Signs

The goal of this chapter is to train a multiclass classifier to recognize traffic signs.  
In this chapter, we will cover the following topics:

• Supervised learning concepts
• The German Traffic Sign Recognition Benchmark (GTSRB) dataset feature 

extraction
• Support vector machines (SVMs)

We have previously studied how to describe objects by means of keypoints and 
features, and how to find the correspondence points in two different images of the 
same physical object. However, our previous approaches were rather limited when it 
comes to recognizing objects in real-world settings and assigning them to conceptual 
categories. For example, in Chapter 2, Hand Gesture Recognition Using a Kinect Depth 
Sensor, the required object in the image was a hand, and it had to be nicely placed in 
the center of the screen. Wouldn't it be nice if we could remove these restrictions?

In this chapter, we will instead train a Support Vector Machine (SVM) to recognize all 
sorts of traffic signs. Although SVMs are binary classifiers (that is, they can be used to 
learn, at most, two categories: positives and negatives, animals and non-animals, and 
so on), they can be extended to be used in multiclass classification. In order to achieve 
good classification performance, we will explore a number of color spaces as well as 
the Histogram of Oriented Gradients (HOG) feature. Then, classification performance 
will be judged based on accuracy, precision, and recall. The following sections will 
explain all of these terms in detail.
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To arrive at such a multiclass classifier, we need to perform the following steps:

1. Preprocess the dataset: We need a way to load our dataset, extract the 
regions of interest, and split the data into appropriate training and test sets.

2. Extract features: Chances are that raw pixel values are not the most 
informative representation of the data. We need a way to extract meaningful 
features from the data, such as features based on different color spaces and 
HOG.

3. Train the classifier: We will train the multiclass classifier on the training data 
in two different ways: the one-vs-all strategy (where we train a single SVM 
per class, with the samples of that class as positive samples and all other 
samples as negatives), and the one-vs-one strategy (where we train a single 
SVM for every pair of classes, with the samples of the first class as positive 
samples and the samples of the second class as negative samples).

4. Score the classifier: We will evaluate the quality of the trained ensemble 
classifier by calculating different performance metrics, such as accuracy, 
precision, and recall.

The end result will be an ensemble classifier that achieves a nearly perfect score in 
classifying 10 different street sign categories:
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Planning the app
The final app will parse a dataset, train the ensemble classifier, assess its classification 
performance, and visualize the result. This will require the following components:

• main: The main function routine (in chapter6.py) for starting the 
application.

• datasets.gtsrb: A script for parsing the German Traffic Sign Recognition 
Benchmark (GTSRB) dataset. This script contains the following functions:

 ° load_data: A function used to load the GTSRB dataset, extract a 
feature of choice, and split the data into training and test sets.

 ° _extract_features: A function that is called by load_data to 
extract a feature of choice from the dataset.

• classifiers.Classifier: An abstract base class that defines the common 
interface for all classifiers.

• classifiers.MultiClassSVM: A class that implements an ensemble of 
SVMs for multiclass classification using the following public methods:

 ° MultiClassSVM.fit: A method used to fit the ensemble of SVMs to 
training data. It takes a matrix of training data as input, where each 
row is a training sample and the columns contain feature values, and 
a vector of labels.

 ° MultiClassSVM.evaluate: A method used to evaluate the ensemble 
of SVMs by applying it to some test data after training. It takes a matrix 
of test data as input, where each row is a test sample and the columns 
contain feature values, and a vector of labels. The function returns 
three different performance metrics: accuracy, precision, and recall.

In the following sections, we will discuss these steps in detail.

Supervised learning
An important subfield of machine learning is supervised learning. In supervised 
learning, we try to learn from a set of labeled training data; that is, every data sample 
has a desired target value or true output value. These target values could correspond 
to the continuous output of a function (such as y in y = sin(x)), or to more abstract 
and discrete categories (such as cat or dog). If we are dealing with continuous output, 
the process is called regression, and if we are dealing with discrete output, the 
process is called classification. Predicting housing prices from sizes of houses is 
an example of regression. Predicting the species from the color of a fish would be 
classification. In this chapter, we will focus on classification using SVMs.
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The training procedure
As an example, we may want to learn what cats and dogs look like. To make this a 
supervised learning task, we will have to create a database of pictures of both cats 
and dogs (also called a training set), and annotate each picture in the database with 
its corresponding label: cat or dog. The task of the program (in literature, it is often 
referred to as the learner) is then to infer the correct label for each of these pictures 
(that is, for each picture, predict whether it is a picture of a cat or a dog). Based on these 
predictions, we derive a score of how well the learner performed. The score is then 
used to change the parameters of the learner in order to improve the score over time.

This procedure is outlined in the following figure:

Training data is represented by a set of features. For real-life classification tasks, 
these features are rarely the raw pixel values of an image, since these tend not to 
represent the data well. Often, the process of finding the features that best describe 
the data is an essential part of the entire learning task (also referred to as feature 
selection or feature engineering). That is why it is always a good idea to deeply 
study the statistics and appearances of the training set that you are working with 
before even thinking about setting up a classifier.

As you are probably aware, there is an entire zoo of learners, cost functions, and 
learning algorithms out there. These make up the core of the learning procedure. 
The learner (for example, a linear classifier, support vector machine, or decision tree) 
defines how input features are converted into a score or cost function (for example, 
mean-squared error, hinge loss, or entropy), whereas the learning algorithm (for 
example, gradient descent and backpropagation for neural networks) defines how 
the parameters of the learner are changed over time.
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The training procedure in a classification task can also be thought of as finding an 
appropriate decision boundary, which is a line that best partitions the training set 
into two subsets, one for each class. For example, consider training samples with 
only two features (x and y values) and a corresponding class label (positive, +, or 
negative, –). At the beginning of the training procedure, the classifier tries to draw 
a line to separate all positives from all negatives. As the training progresses, the 
classifier sees more and more data samples. These are used to update the decision 
boundary, as illustrated in the following figure:

Compared to this simple illustration, an SVM tries to find the optimal decision 
boundary in a high-dimensional space, so the decision boundary can be more 
complex than a straight line.

The testing procedure
In order for a trained classifier to be of any practical value, we need to know 
how it performs when applied to a never-seen-before data sample (also called 
generalization). To stick to our example shown earlier, we want to know which  
class the classifier predicts when we present it with a previously unseen picture  
of a cat or a dog.
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More generally speaking, we want to know which class the ? sign in the following 
figure corresponds to, based on the decision boundary we learned during the 
training phase:

You can see why this is a tricky problem. If the location of the question mark 
were more to the left, we would be certain that the corresponding class label is +. 
However, in this case, there are several ways to draw the decision boundary such 
that all the + signs are to the left of it and all the – signs are to the right of it, as 
illustrated in this figure:
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The label of ? thus depends on the exact decision boundary that was derived during 
training. If the ? sign in the preceding figure is actually a –, then only one decision 
boundary (the leftmost) would get the correct answer. A common problem is that 
training results in a decision boundary that works "too well" on the training set  
(also known as overfitting), but makes a lot of mistakes when applied to unseen 
data. In that case, it is likely that the learner imprinted details that are specific to the 
training set on the decision boundary, instead of revealing general properties about 
the data that might also be true for unseen data.

A common technique for reducing the effect of 
overfitting is called regularization.

Long story short, the problem always comes back to finding the boundary that best 
splits, not only the training, but also the test set. That is why the most important 
metric for a classifier is its generalization performance (that is, how well it classifies 
data not seen in the training phase).

A classifier base class
From the insights gained in the preceding content, you are now able to write a 
simple base class suitable for all possible classifiers. You can think of this class as a 
blueprint or recipe that will apply to all classifiers that we are yet to design (we did 
this with the BaseLayout class in Chapter 1, Fun with Filters). In order to create an 
abstract base class (ABC) in Python, we need to include the ABCMeta module:

from abc import ABCMeta

This allows us to register the class as a metaclass:

class Classifier:
    """Abstract base class for all classifiers"""
    __metaclass__ = ABCMeta

Recall that an abstract class has at least one abstract method. An abstract method 
is akin to specifying that a certain method must exist, but we are not yet sure what 
it should look like. We now know that a classifier in its most generic form should 
contain a method for training, wherein a model is fitted to the training data, and for 
testing, wherein the trained model is evaluated by applying it to the test data:

    @abstractmethod
    def fit(self, X_train, y_train):
        pass
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    @abstractmethod
    def evaluate(self, X_test, y_test, visualize=False):
        pass

Here, X_train and X_test correspond to the training and test data, respectively, 
where each row represents a sample, and each column is a feature value of that 
sample. The training and test labels are passed as y_train and y_test vectors, 
respectively.

The GTSRB dataset
In order to apply our classifier to traffic sign recognition, we need a suitable dataset. 
A good choice might be the German Traffic Sign Recognition Benchmark (GTSRB), 
which contains more than 50,000 images of traffic signs belonging to more than 40 
classes. This is a challenging dataset that was used by professionals in a classification 
challenge during the International Joint Conference on Neural Networks (IJCNN) 
2011. The dataset can be freely obtained from http://benchmark.ini.rub.de/?sec
tion=gtsrb&subsection=dataset.

The GTSRB dataset is perfect for our purposes because it is large, organized, open 
source, and annotated. However, for the purpose of this book, we will limit the 
classification to data samples from a total of 10 classes.

Although the actual traffic sign is not necessarily a square, or centered, in each 
image, the dataset comes with an annotation file that specifies the bounding boxes 
for each sign.

A good idea before doing any sort of machine learning is usually to get a feeling of 
the dataset, its qualities, and its challenges. If all the exemplars of the dataset are 
stored in a list, X, then we can plot a few exemplars with the following script, where 
we pick a fixed number (sample_size) of random indices (sample_idx) and display 
each exemplar (X[sample_idx[sp-1]]) in a separate subplot:

sample_size = 15
sample_idx = np.random.randint(len(X), size=sample_size)
sp = 1
for r in xrange(3):
    for c in xrange(5):
        ax = plt.subplot(3,5,sp)
        sample = X[sample_idx[sp-1]]
        ax.imshow(sample.reshape((32,32)), cmap=cm.Greys_r)
            ax.axis('off')
        sp += 1
plt.show()

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
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The following screenshot shows some examples of this dataset:

Even from this small data sample, it is immediately clear that this is a challenging 
dataset for any sort of classifier. The appearances of the signs change drastically based 
on viewing angle (orientation), viewing distance (blurriness), and lighting conditions 
(shadows and bright spots). For some of these signs, such as the rightmost sign in the 
second row, it is difficult even for humans (at least for me) to tell the correct class label 
right away. Good thing we are aspiring experts of machine learning!

Parsing the dataset
Luckily, the chosen dataset comes with a script for parsing the files (more 
information can be found at http://benchmark.ini.rub.de/?section=gtsrb&sub
section=dataset#Codesnippets).

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Codesnippets
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Codesnippets
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We spruce it up a bit and adjust it for our purposes. In particular, we want a function 
that not only loads the dataset, but also extracts a certain feature of interest (via the 
feature input argument), crops the sample to the hand-labeled Region of Interest 
(ROI) containing solely the sample (cut_roi), and automatically splits the data into 
a training and a test set (test_split). We also allow the specification of a random 
seed number (seed), and plot some samples for visual inspection (plot_samples):

import cv2
import numpy as np
import csv

from matplotlib import cm
from matplotlib import pyplot as plt

def load_data(rootpath="datasets", feature="hog", cut_roi=True, 
    test_split=0.2, plot_samples=False, seed=113):

Although the full dataset contains more than 50,000 examples belonging to 43 
classes, for the purpose of this chapter, we will limit ourselves to 10 classes. For 
easy access, we will hardcode the class labels to use here, but it is straightforward to 
include more classes (note that you will have to download the entire dataset for this):

classes = np.array([0, 4, 8, 12, 16, 20, 24, 28, 32, 36])

We then need to iterate over all the classes so as to read all the training samples (to 
be stored in X) and their corresponding class labels (to be stored in labels). Every 
class has a CSV file containing all of the annotation information for every sample in 
the class, which we will parse with csv.reader:

X = [] # images
labels =  []  # corresponding labels

# subdirectory for class
for c in xrange(len(classes)):
    prefix = rootpath + '/' + format(classes[c], '05d') + '/'

    # annotations file
    gt_file = open(prefix + 'GT-'+ format(classes[c], '05d') 
        + '.csv')
    gt_reader = csv.reader(gt_file, delimiter=';')
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Every line of the file contains the annotation for one data sample. We skip the first 
line (the header) and extract the sample's filename (row[0]) so that we can read in 
the image:

    gt_reader.next() # skip header
    # loop over all images in current annotations file
    for row in gt_reader:
        # first column is filename
        im = cv2.imread(prefix + row[0])

Occasionally, the object in these samples is not perfectly cut out but is embedded 
in its surroundings. If the cut_roi input argument is set, we will ignore the 
background and cut out the object using the bounding boxes specified in the 
annotation file:

    if cut_roi:
        im = im[np.int(row[4]):np.int(row[6]), 
            np.int(row[3]):np.int(row[5]), :]

Then, we are ready to append the image (im) and its class label (c) to our list of 
samples (X) and class labels (labels):

    X.append(im)
    labels.append(c)
    gt_file.close()

Often, it is desirable to perform some form of feature extraction, because raw image 
data is rarely the best description of the data. We will defer this job to another 
function, which we will discuss in detail in the next section:

if feature is not None:
    X = _extract_feature(X, feature)

As pointed out in the previous subsection, it is imperative to keep the samples that 
we use to train our classifier, separate from the samples that we use to test it. For 
this, we shuffle the data and split it into two separate sets such that the training set 
contains a fraction (1-test_split) of all samples and the rest of the samples belong 
to the test set:

np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(labels)

X_train = X[:int(len(X)*(1-test_split))]
y_train = labels[:int(len(X)*(1-test_split))]
X_test = X[int(len(X)*(1-test_split)):]
y_test = labels[int(len(X)*(1-test_split)):]



Learning to Recognize Traffic Signs

[ 140 ]

Finally, we can return the extracted data:

return (X_train, y_train), (X_test, y_test)

Feature extraction
Chances are, that raw pixel values are not the most informative way to represent the 
data, as we have already realized in Chapter 3, Finding Objects via Feature Matching 
and Perspective Transforms. Instead, we need to derive a measurable property of the 
data that is more informative for classification.

However, often it is not clear which features would perform best. Instead, it is often 
necessary to experiment with different features that the modeler finds appropriate. 
After all, the choice of features might strongly depend on the specific dataset to 
be analyzed or the specific classification task to be performed. For example, if you 
have to distinguish between a stop sign and a warning sign, then the most telling 
feature might be the shape of the sign or the color scheme. However, if you have to 
distinguish between two warning signs, then color and shape will not help you at all, 
and you will be required to come up with more sophisticated features.

In order to demonstrate how the choice of features affects classification performance, 
we will focus on the following:

• A few simple color transformations, such as grayscale, RGB, and HSV. 
Classification based on grayscale images will give us some baseline 
performance for the classifier. RGB might give us slightly better performance 
because of the distinct color schemes of some traffic signs. Even better 
performance is expected from HSV. This is because it represents colors even 
more robustly than RGB. Traffic signs tend to have very bright, saturated 
colors that (ideally) are quite distinct from their surroundings.

• Speeded-Up Robust Features (SURF), which should appear very familiar to 
you by now. We have previously recognized SURF as an efficient and robust 
method of extracting meaningful features from an image, so can't we use this 
technique to our advantage in a classification task?

• Histogram of Oriented Gradients (HOG), which is by far the most advanced 
feature descriptor to be considered in this chapter. The technique counts 
occurrences of gradient orientations along a dense grid laid out on the image, 
and is well-suited for use with SVMs.

Feature extraction is performed by the gtsrb._extract_features function, which 
is implicitly called by gtsrb.load_data. It extracts different features as specified by 
the feature input argument.
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The easiest case is not to extract any features, instead simply resizing the image to a 
suitable size:

def _extract_feature(X, feature):
    # operate on smaller image
    small_size = (32, 32)
    X = [cv2.resize(x, small_size) for x in X]

For most of the following features, we will be using the (already suitable) 
default arguments in OpenCV. However, these values are not set in 
stone, and even in real-world classification tasks, it is often necessary to 
search across the range of possible values for both feature extracting and 
learning parameters in a process called hyperparameter exploration.

Common preprocessing
There are three common forms of preprocessing that are almost always applied 
to any data before classification: mean subtraction, normalization, and principal 
component analysis (PCA). In this chapter, we will focus on the first two.

Mean subtraction is the most common form of preprocessing (sometimes also 
referred to as zero-centering or de-meaning), where the mean value of every feature 
dimension is calculated across all samples in a dataset. This feature-wise average 
is then subtracted from every sample in the dataset. You can think of this process 
as centering the cloud of data on the origin. Normalization refers to the scaling of 
data dimensions so that they are of roughly the same scale. This can be achieved 
by either dividing each dimension by its standard deviation (once it has been zero-
centered), or scaling each dimension to lie in the range of [-1, 1]. It makes sense to 
apply this step only if you have reason to believe that different input features have 
different scales or units. In the case of images, the relative scales of pixels are already 
approximately equal (and in the range of [0, 255]), so it is not strictly necessary to 
perform this additional preprocessing step.

In this chapter, the idea is to enhance the local intensity contrast of images so that we 
do not focus on the overall brightness of an image:

# normalize all intensities to be between 0 and 1
X = np.array(X).astype(np.float32) / 255

# subtract mean
X = [x - np.mean(x) for x in X]
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Grayscale features
The easiest feature to extract is probably the grayscale value of each pixel. Usually, 
grayscale values are not very indicative of the data they describe, but we will include 
them here for illustrative purposes (that is, to achieve baseline performance):

if feature == 'gray' or feature == 'surf':
    X = [cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) for x in X]

Color spaces
Alternatively, you might find that colors contain some information that raw 
grayscale values cannot capture. Traffic signs often have a distinct color scheme, and 
it might be indicative of the information it is trying to convey (that is, red for stop 
signs and forbidden actions, green for informational signs, and so on). We could opt 
for using the RGB images as input, in which case we do not have to do anything, 
since the dataset is already RGB.

However, even RGB might not be informative enough. For example, a stop sign in 
broad daylight might appear very bright and clear, but its colors might appear much 
less vibrant on a rainy or foggy day. A better choice might be the HSV color space, 
which rearranges RGB color values in a cylindrical coordinate space along the axes 
of hue, saturation, and value (or brightness). The most telling feature of traffic signs 
in this color space might be the hue (a more perceptually relevant description of 
color or chromaticity), better distinguishing the color scheme of different sign types. 
Saturation and value could be equally important, however, as traffic signs tend to 
use relatively bright and saturated colors that do not typically appear in natural 
scenes (that is, their surroundings).

In OpenCV, the HSV color space is only a single call to cv2.cvtColor away:

if feature == 'hsv':
    X = [cv2.cvtColor(x, cv2.COLOR_BGR2HSV) for x in X]

Speeded Up Robust Features
But wait a minute! In Chapter 3, Finding Objects via Feature Matching and Perspective 
Transforms you learned that the SURF descriptor is one of the best and most robust 
ways to describe images independent of scale or rotations. Can we use this technique 
to our advantage in a classification task?
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Glad you asked! To make this work, we need to adjust SURF so that it returns a fixed 
number of features per image. By default, the SURF descriptor is only applied to a 
small list of interesting keypoints in the image, the number of which might differ on 
an image-by-image basis. This is unsuitable for our current purposes, because we 
want to find a fixed number of feature values per data sample.

Instead, we need to apply SURF to a fixed dense grid laid out over the image, which 
can be achieved by creating a dense feature detector:

if feature == 'surf':
    # create dense grid of keypoints
    dense = cv2.FeatureDetector_create("Dense")
    kp = dense.detect(np.zeros(small_size).astype(np.uint8))

Then it is possible to obtain SURF descriptors for each point on the grid and append 
that data sample to our feature matrix. We initialize SURF with a minHessian value 
of 400 as we did before, and:

surf = cv2.SURF(400)
surf.upright = True
surf.extended = True

Keypoints and descriptors can then be obtained via this code:

kp_des = [surf.compute(x, kp) for x in X]

Because surf.compute has two output arguments, kp_des will actually be a 
concatenation of both keypoints and descriptors. The second element in the kp_des 
array is the descriptor that we care about. We select the first num_surf_features 
from each data sample and add it back to the training set:

num_surf_features = 36
X = [d[1][:num_surf_features, :] for d in kp_des]

Histogram of Oriented Gradients
The last feature descriptor to consider is the Histogram of Oriented Gradients 
(HOG). HOG features have previously been shown to work exceptionally well 
in combination with SVMs, especially when applied to tasks such as pedestrian 
recognition.
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The essential idea behind HOG features is that the local shapes and appearance  
of objects within an image can be described by the distribution of edge directions. 
The image is divided into small connected regions, within which a histogram 
of gradient directions (or edge directions) is compiled. Then, the descriptor is 
assembled by concatenating the different histograms. For improved performance, 
the local histograms can be contrast-normalized, which results in better invariance to 
changes in illumination and shadowing. You can see why this sort of preprocessing 
might just be the perfect fit for recognizing traffic signs under different viewing 
angles and lighting conditions.

The HOG descriptor is fairly accessible in OpenCV by means of cv2.HOGDescriptor, 
which takes the detection window size (32 x 32), the block size (16 x 16), the cell size 
(8 x 8), and the cell stride (8 x 8), as input arguments. For each of these cells, the HOG 
descriptor then calculates a histogram of oriented gradients using nine bins:

elif feature == 'hog':
    # histogram of oriented gradients
    block_size = (small_size[0] / 2, small_size[1] / 2)
    block_stride = (small_size[0] / 4, small_size[1] / 4)
    cell_size = block_stride
    num_bins = 9
    hog = cv2.HOGDescriptor(small_size, block_size,  
        block_stride, cell_size, num_bins)

Applying the HOG descriptor to every data sample is then as easy as calling hog.
compute:

X = [hog.compute(x) for x in X]

After we have extracted all the features we want, we should remember to have 
gtsrb._extract_features return the assembled list of data samples so that they 
can be split into training and test sets:

X = [x.flatten() for x in X]
return X

Now, we are finally ready to train the classifier on the preprocessed dataset.
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Support Vector Machine
A Support Vector Machine (SVM) is a learner for binary classification (and regression) 
that tries to separate examples from the two different class labels with a decision 
boundary that maximizes the margin between the two classes.

Let's return to our example of positive and negative data samples, each of which has 
exactly two features (x and y) and two possible decision boundaries, as follows:

Both of these decision boundaries get the job done. They partition all the samples of 
positives and negatives with zero misclassifications. However, one of them seems 
intuitively better. How can we quantify "better" and thus learn the "best" parameter 
settings?

This is where SVMs come in. SVMs are also called maximal margin classifiers 
because they can be used to do exactly that; they define the decision boundary  
so as to make those two clouds of + and – as far apart as possible. 
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For the preceding example, an SVM would find two lines that pass through the  
data points on the class margins (the dashed lines in the following figure), and then 
make the line that passes through the center of the margins, the decision boundary 
(the bold black line in the following figure):

It turns out that to find the maximal margin, it is only important to consider the data 
points that lie on the class margins. These points are sometimes also called support 
vectors.

In addition to performing linear classification (that is, when the decision 
boundary is a straight line), SVMs can also perform a non-linear 
classification using what is called the kernel trick, implicitly mapping 
their inputs to high-dimensional feature spaces.

Using SVMs for Multi-class classification
Whereas some classification algorithms, such as neural networks, naturally lend 
themselves to using more than two classes, SVMs are binary classifiers by nature. 
They can, however, be turned into multiclass classifiers.
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Here, we will consider two different strategies:

• one-vs-all: The one-vs-all strategy involves training a single classifier 
per class, with the samples of that class as positive samples and all other 
samples as negatives. For k classes, this strategy thus requires the training 
of k different SVMs. During testing, all classifiers can express a "+1" vote 
by predicting that an unseen sample belongs to their class. In the end, an 
unseen sample is classified by the ensemble as the class with the most votes. 
Usually, this strategy is used in combination with confidence scores instead 
of predicted labels so that in the end, the class with the highest confidence 
score can be picked.

• one-vs-one: The one-vs-one strategy involves training a single classifier per 
class pair, with the samples of the first class as positive samples and the 
samples of the second class as negative samples. For k classes, this strategy 
requires the training of k*(k-1)/2 classifiers. However, the classifiers have 
to solve a significantly easier task, so there is a trade-off when considering 
which strategy to use. During testing, all classifiers can express a "+1" 
vote for either the first or the second class. In the end, an unseen sample is 
classified by the ensemble as the class with the most votes.

Which strategy to use can be specified by the user via an input argument (mode) to 
the MutliClassSVM class:

class MultiClassSVM(Classifier):
    """Multi-class classification using Support Vector Machines  
       (SVMs) """
    def __init__(self, num_classes, mode="one-vs-all",  
        params=None):
        self.num_classes = num_classes
        self.mode = mode
        self.params = params or dict()

As mentioned earlier, depending on the classification strategy, we will need 
either k or k*(k-1)/2 SVM classifiers, for which we will maintain a list in self.
classifiers: 

        # initialize correct number of classifiers
        self.classifiers = []
        if mode == "one-vs-one":
            # k classes: need k*(k-1)/2 classifiers
            for i in xrange(numClasses*(numClasses-1)/2):
                self.classifiers.append(cv2.SVM())
        elif mode == "one-vs-all":
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            # k classes: need k classifiers
            for i in xrange(numClasses):
                self.classifiers.append(cv2.SVM())
        else:
            print "Unknown mode ",mode

Once the classifiers are correctly initialized, we are ready for training.

Training the SVM
Following the requirements defined by the Classifier base class, we need to 
perform training in a fit method:

def fit(self, X_train, y_train, params=None):
    """ fit model to data """
    if params is None:
        params = self.params

The training will differ depending on the classification strategy that is being used. 
The one-vs-one strategy requires us to train an SVM for each pair of classes:

if self.mode == "one-vs-one":
    svm_id=0
    for c1 in xrange(self.numClasses):
        for c2 in xrange(c1+1,self.numClasses):

Here we use svm_id to keep track of the number of SVMs we use. In contrast to the 
one-vs-all strategy, we need to train a much larger number of SVMs here. However, 
the training samples to consider per SVM include only samples of either class—c1 or 
c2:

y_train_c1 = np.where(y_train==c1)[0]
y_train_c2 = np.where(y_train==c2)[0]

data_id = np.sort(np.concatenate((y_train_c1,  
    y_train_c2), axis=0))
X_train_id = X_train[data_id,:]
y_train_id = y_train[data_id]

Because an SVM is a binary classifier, we need to convert our integer class labels into 
0s and 1s. We assign label 1 to all samples of the c1 class, and label 0 to all samples 
of the c2 class, again using the handy np.where function:

y_train_bin = np.where(y_train_id==c1, 1,  
    0).flatten()
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Then we are ready to train the SVM:

self.classifiers[svm_id].train(X_train_id,  
    y_train_bin, params=self.params)

Here, we pass a dictionary of training parameters, self.params, to the SVM. For 
now, we only consider the (already suitable) default parameter values, but feel free 
to experiment with different settings.

Don't forget to update svm_id so that you can move on to the next SVM in the list:

svm_id += 1

On the other hand, the one-vs-all strategy requires us to train a total of self.
numClasses SVMs, which makes indexing a lot easier:

elif self.mode == "one-vs-all":
    for c in xrange(self.numClasses):

Again, we need to convert integer labels to binary labels. In contrast to the one-vs-
one strategy, every SVM here considers all training samples. We assign label 1 to 
all samples of the c class and label 0 to all other samples, and pass the data to the 
classifier's training method:

y_train_bin = np.where(y_train==c,1,0).flatten()
self.classifiers[c].train(X_train, y_train_bin,  
    params=self.params)

OpenCV will take care of the rest. What happens under the hood is that the SVM 
training uses Lagrange multipliers to optimize some constraints that lead to the 
maximum-margin decision boundary. The optimization process is usually performed 
until some termination criteria are met, which can be specified via the SVM's 
optional arguments:

params.term_crit = (cv2.TERM_CRITERIA_EPS +  
    cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)

Testing the SVM
There are many ways to evaluate a classifier, but most often, we are simply interested 
in the accuracy metric, that is, how many data samples from the test set were classified 
correctly.
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In order to arrive at this metric, we need to have each individual SVM predict the 
labels of the test data, and assemble their consensus in a 2D voting matrix (Y_vote):

def evaluate(self, X_test, y_test, visualize=False):
    """Evaluates model performance"""
    Y_vote = np.zeros((len(y_test), self.numClasses))

For each sample in the dataset, the voting matrix will contain the number of times 
the sample has been voted to belong to a certain class. Populating the voting matrix 
will take a slightly different form depending on the classification strategy. In the case 
of the one-vs-one strategy, we need to loop over all k*(k-1)/2 classifiers and obtain 
a vector, called y_hat, that contains the predicted labels for all test samples that 
belong to either the c1 class or the c2 class:

if self.mode == "one-vs-one":
    svm_id = 0
    for c1 in xrange(self.numClasses):
        for c2 in xrange(c1+  1, self.numClasses):
            data_id = np.where((y_test==c1) + (y_test==c2))[0]
            X_test_id = X_test[data_id,:],:],:] 
            y_test_id = y_test[data_id]

            # predict labels
            y_hat = self.classifiers[svm_id].predict_all 
                ( X_test_id)

The y_hat vector will contain 1s whenever the classifier believes that the sample 
belongs to the c1 class, and 0s wherever the classifier believes that the sample 
belongs to the c2 class. The tricky part is how to +1 the correct cell in the Y_vote 
matrix. For example, if the ith entry in y_hat is 1 (meaning that we believe that the 
ith sample belongs to the c1 class), we want to increment the value of the ith row 
and c1th column in the Y_vote matrix. This will indicate that the present classifier 
expressed a vote to classify the ith sample as belonging to the c1 class.

Since we know the indices of all test samples that belong to either class, c1 or c2 
(stored in data_id), we know which rows of Y_vote to access. Because data_id 
is used as an index for Y_vote, we only need to find the indices in data_id that 
correspond to entries where y_hat is 1:

            # we vote for c1 where y_hat is 1, and for c2 where 
            # y_hat is 0
            # np.where serves as the inner index into the 
            # data_id array, which in turn serves as index 
            # into the Y_vote matrix
            Y_vote[data_id[np.where(y_hat==1)[0]],c1] += 1



Chapter 6

[ 151 ]

Similarly, we can express a vote for the c2 class:

            Y_vote[data_id[np.where(y_hat==0)[0]],c2] += 1

Then we increment svm_id and move on to the next classifier:

             svm_id += 1

The one-vs-all strategy poses a different problem. Indexing in the Y_vote matrix 
is less tricky, because we always consider all the test data samples. We repeat the 
procedure of predicting labels for each data sample:

elif self.mode == "one-vs-all":
    for c in xrange(self.numClasses):
        # predict labels
        y_hat = self.classifiers[c].predict_all(X_test)

Wherever y_hat has a value of 1, the classifier expresses a vote that the data sample 
belongs to class c, and we update the voting matrix:

        # we vote for c where y_hat is 1
        if np.any(y_hat):
            Y_vote[np.where(y_hat==1)[0], c] += 1

The tricky part now is, "What to do with entries of y_hat that have a value of 0?" 
Since we classified one-vs-all, we only know that the sample is not of the c class  
(that is, it belongs to the "rest"), but we do not know what the exact class label is 
supposed to be. Thus, we cannot add these samples to the voting matrix.

Since we neglected to include samples that are consistently classified as belonging to 
the "rest," it is possible that some rows in the Y_vote matrix will have all 0s. In such a 
case, simply pick a class at random (unless you have a better idea):

        # find all rows without votes, pick a class at random
        no_label = np.where(np.sum(y_vote,axis=1)==0)[0]
        Y_vote[no_label,np.random.randint(self.numClasses,  
            size=len(no_label))] = 1

Now, we are ready to calculate the desired performance metrics as described in 
detail in later sections. For the purpose of this chapter, we choose to calculate 
accuracy, precision, and recall, which are implemented in their own dedicated 
private methods:

accuracy = self.__accuracy(y_test, Y_vote)
precision = self.__precision(y_test, Y_vote)
recall = self.__recall(y_test, Y_vote)

return (accuracy,precision,recall)
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The scikit-learn machine learning package (http://scikit-
learn.org) supports the three metrics—accuracy, precision, and 
recall (as well as others)—straight out of the box, and also comes 
with a variety of other useful tools. For educational purposes (and to 
minimize software dependencies), we will derive the three metrics 
ourselves.

Confusion matrix
A confusion matrix is a 2D matrix of size equal to (self.numClasses, self.
numClasses), where the rows correspond to the predicted class labels, and columns 
correspond to the actual class labels. Then, the [r,c] matrix element contains the 
number of samples that were predicted to have label r, but in reality have label c. 
Having access to a confusion matrix will allow us to calculate precision and recall.

The confusion matrix can be calculated from a vector of ground-truth labels (y_test) 
and the voting matrix (Y_vote). We first convert the voting matrix into a vector of 
predicted labels by picking the column index (that is, the class label) that received 
the most votes:

def __confusion(self, y_test, Y_vote):
    y_hat = np.argmax(Y_vote, axis=1)

Then we need to loop twice over all classes and count the number of times a data 
sample of the c_true ground-truth class was predicted as having the c_pred class:

    conf = np.zeros((self.numClasses,  
        self.numClasses)).astype(np.int32)
    for c_true in xrange(self.numClasses):
        # looking at all samples of a given class, c_true
        # how many were classified as c_true? how many as others?
        for c_pred in xrange(self.numClasses):

All elements of interest in each iteration are thus the samples that have the c_true 
label in y_test and the c_pred label in y_hat:

            y_this = np.where((y_test==c_true) * (y_hat==c_pred))

The corresponding cell in the confidence matrix is then the number of non-zero 
elements in y_this:

            conf[c_pred,c_true] = np.count_nonzero(y_this)

After the nested loops complete, we pass the confusion matrix for further processing:

    return conf

http://scikit-learn.org
http://scikit-learn.org
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As you may have guessed already, the goal of a good classifier is to make the 
confusion matrix diagonal, which would imply that the ground-truth class (c_true) 
and the predicted class (c_pred) of every sample are the same.

The one-vs-one strategy, in combination with HOG features, actually performs  
really well, which is evident from this resulting confusion matrix, wherein most  
of the off-diagonal elements are zero:

Accuracy
The most straightforward metric to calculate is probably accuracy. This metric 
simply counts the number of test samples that have been predicted correctly,  
and returns the number as a fraction of the total number of test samples:

def __accuracy(self, y_test, y_vote):
    """ Calculates the accuracy based on a vector of ground-truth  
        labels (y_test) and a 2D voting matrix (y_vote) of size  
        (len(y_test),numClasses). """

The classification prediction (y_hat) can be extracted from the vote matrix by finding 
out which class has received the most votes:

    y_hat = np.argmax(y_vote, axis=1)

The correctness of the prediction can be verified by comparing the predicted label of 
a sample to its actual label:

    # all cases where predicted class was correct
    mask = (y_hat == y_test)
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Accuracy is then calculated by counting the number of correct predictions (that is, 
non-zero entries in mask) and normalizing that number by the total number of test 
samples:

    return np.count_nonzero(mask)*1./len(y_test)

Precision
Precision in binary classification is a useful metric for measuring the fraction of 
retrieved instances that are relevant (also called the positive predictive value). 
In a classification task, the number of true positives is defined as the number of 
items correctly labeled as belonging to the positive class. Precision is defined as the 
number of true positives divided by the total number of positives. In other words, 
out of all the pictures in the test set that a classifier thinks contain a cat, precision is 
the fraction of pictures that actually contain a cat.

The total number of positives can also be calculated as the sum of true positives 
and false positives, the latter being the number of samples incorrectly labeled as 
belonging to a particular class. This is where the confusion matrix comes in handy, 
because it will allow us to quickly calculate the number of false positives.

Again, we start by translating the voting matrix into a vector of predicted labels:

def __precision(self, y_test, Y_vote):
    """ precision extended to multi-class classification """
    # predicted classes
    y_hat = np.argmax(Y_vote, axis=1)

The procedure will differ slightly depending on the classification strategy.  
The one-vs-one strategy requires us operating with the confusion matrix:

    if True or self.mode == "one-vs-one":
        # need confusion matrix
        conf = self.__confusion(y_test, y_vote)

        # consider each class separately
        prec = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):

Since true positives are the samples that are predicted to have label c and also have 
label c in reality, they correspond to the diagonal elements of the confusion matrix:

            # true positives: label is c, classifier predicted c
            tp = conf[c,c]
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Similarly, false positives correspond to the off-diagonal elements of the confusion 
matrix that are in the same column as the true positive. The quickest way to calculate 
that number is to sum up all the elements in column c but subtract the true positives:

            # false positives: label is c, classifier predicted 
            # not c
            fp = np.sum(conf[:,c]) - conf[c,c]

Precision is the number of true positives divided by the sum of true positives and 
false positives:

    if tp + fp != 0:
        prec[c] = tp*1./(tp+fp)

The one-vs-all strategy makes the math slightly easier. Since we always operate on 
the full test set, we need to find only those samples that have a ground-truth label of 
c in y_test and a predicted label of c in y_hat:

    elif self.mode == "one-vs-all":
        # consider each class separately
        prec = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):
            # true positives: label is c, classifier predicted c
            tp = np.count_nonzero((y_test==c) * (y_hat==c))

Similarly, false positives have a ground-truth label of c in y_test and their predicted 
label is not c in y_hat:

            # false positives: label is c, classifier predicted 
            # not c
            fp = np.count_nonzero((y_test==c) * (y_hat!=c))

Again, precision is the number of true positives divided by the sum of true positives 
and false positives:

            if tp + fp != 0:
                prec[c] = tp*1./(tp+fp)

After that, we pass the precision vector for visualization:
    return prec
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Recall
Recall is similar to precision in the sense that it measures the fraction of relevant 
instances that are retrieved (as opposed to the fraction of retrieved instances that are 
relevant). In a classification task, the number of false negatives is the number of items 
not labeled as belonging to the positive class but should have been labeled. Recall is 
the number of true positives divided by the sum of true positives and false negatives. 
In other words, out of all the pictures of cats in the world, recall is the fraction of 
pictures that have been correctly identified as pictures of cats.

Again, we start off by translating the voting matrix into a vector of predicted labels:

def __recall(self, y_test, Y_vote):
    """ recall extended to multi-class classification """
    # predicted classes
    y_hat = np.argmax(Y_vote, axis=1)

The procedure is almost identical to calculating precision. The one-vs-one strategy 
once again requires some arithmetic involving the confusion matrix:

    if True or self.mode == "one-vs-one":
        # need confusion matrix
        conf = self.__confusion(y_test, y_vote)

        # consider each class separately
        recall = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):

True positives once again correspond to diagonal elements in the confusion matrix:

            # true positives: label is c, classifier predicted c
            tp = conf[c,c]

To get the number of false negatives, we sum up all the columns in the row c and 
subtract the number of true positives for this row. This will give us the number 
of samples for which the classifier predicted the class as c but that actually had a 
ground-truth label other than c:

            # false negatives: label is not c, classifier
            # predicted c
            fn = np.sum(conf[c,:]) - conf[c,c]

Recall is the number of true positives divided by the sum of true positives and false 
negatives:

            if tp + fn != 0:
                recall[c] = tp*1./(tp+fn)
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Again, the one-vs-all strategy makes the math slightly easier. Since we always 
operate on the full test set, we need to find only those samples whose ground-truth 
label is not c in y_test, and predicted label is c in y_hat:

    elif self.mode == "one-vs-all":
        # consider each class separately
        recall = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):
            # true positives: label is c, classifier predicted c
            tp = np.count_nonzero((y_test==c) * (y_hat==c))

            # false negatives: label is not c, classifier
            # predicted c
            fn = np.count_nonzero((y_test!=c) * (y_hat==c))

            if tp + fn != 0:
                recall[c] = tp*1./(tp+fn)

After that, we pass the recall vector for visualization:
    return recall

Putting it all together
To run our app, we will need to execute the main function routine (in chapter6.py). 
It loads the data, trains the classifier, evaluates its performance, and visualizes the 
result.

But first, we need to import all the relevant modules and set up a main function:

import numpy as np

import matplotlib.pyplot as plt
from datasets import gtsrb
from classifiers import MultiClassSVM

def main():
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Then, the goal is to compare classification performance across settings and feature 
extraction methods. This includes running the task with both classification strategies, 
one-vs-all and one-vs-one, as well as preprocessing the data with a list of different 
feature extraction approaches:

    strategies = ['one-vs-one', 'one-vs-all']features = [None, 
        'gray', 'rgb', 'hsv', 'surf', 'hog']

For each of these settings, we need to collect three performance metrics—accuracy, 
precision, and recall:

    accuracy = np.zeros((2,len(features)))
    precision = np.zeros((2,len(features)))
    recall = np.zeros((2,len(features)))

A nested for loop will run the classifier with all of these settings and populate the 
performance metric matrices. The outer loop is over all elements in the features 
vector:

    for f in xrange(len(features)):
        (X_train,y_train), (X_test,y_test) = gtsrb.load_data(  
            "datasets/gtsrb_training",  
            feature=features[f], test_split=0.2)

Before passing the training data (X_train,y_train) and test data (X_test,y_test) 
to the classifiers, we want to make sure that they are in the format that the classifier 
expects; that is, each data sample is stored in a row of X_train or X_test, with the 
columns corresponding to feature values:

X_train = np.squeeze(np.array(X_train)).astype(np.float32)
y_train = np.array(y_train)
X_test = np.squeeze(np.array(X_test)).astype(np.float32)
y_test = np.array(y_test)

We also need to know the number of class labels (since we did not load the complete 
GTSRB dataset). This can be achieved by concatenating y_train and y_test and 
extracting all unique labels in the combined list:

labels = np.unique(np.hstack((y_train,y_test)))

Next, the inner loop iterates over all the elements in the strategies vector, which 
currently includes the two strategies, one-vs-all and one-vs-one:

for s in xrange(len(strategies)):
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Then we instantiate the MultiClassSVM class with the correct number of unique 
labels and the corresponding classification strategy:

MCS = MultiClassSVM(len(labels),strategies[s])

Now we are all ready to apply the ensemble classifier to the training data and extract 
the three performance metrics after training:

MCS.fit(X_train, y_train)
(accuracy[s,f],precision[s,f],recall[s,f]) =  
    MCS.evaluate(X_test, y_test)

This ends the nested for loop. All that is left to do is to visualize the result. For this, we 
choose matplotlib's bar plot functionality. The goal is to show the three performance 
metrics (accuracy, precision, and recall) for all combinations of extracted features and 
classification strategies. We will use one plotting window per classification strategy, 
and arrange the corresponding data in a stacked bar plot:

f,ax = plt.subplots(2)
for s in xrange(len(strategies)):
    x = np.arange(len(features))
    ax[s].bar(x-0.2, accuracy[s,:], width=0.2, color='b',  
        hatch='/', align='center')
    ax[s].bar(x, precision[s,:], width=0.2, color='r',  
        hatch='\\', align='center')
    ax[s].bar(x+0.2, recall[s,:], width=0.2, color='g',  
        hatch='x', align='center')

For the sake of visibility, the y axis is restricted to the relevant range:

ax[s].axis([-0.5, len(features) + 0.5, 0, 1.5])

Finally, we add some plot decorations:

ax[s].legend(('Accuracy','Precision','Recall'), loc=2,  
    ncol=3, mode="expand")
ax[s].set_xticks(np.arange(len(features)))
ax[s].set_xticklabels(features)
ax[s].set_title(strategies[s])
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Now the data is ready to be plotted!

plt.show()

This screenshot contains a lot of information, so let's break it down step by step:

• The most straightforward observation is that the HOG feature seems mighty 
powerful! This feature has outperformed all other features, no matter what 
the classification strategy is. Again, this highlights the importance of feature 
extraction, which generally requires a deep understanding of the statistics of 
the dataset under study.

• Interestingly, with the use of the one-vs-one strategy, all approaches led 
to an accuracy north of 0.95, which might stem from the fact that a binary 
classification task (with two possible class labels) is sometimes easier to learn 
than a 10-class classification task. Unfortunately, the same cannot be said for 
the one-vs-all approach. But to be fair, the one-vs-all approach had to operate 
with only 10 SVMs, whereas the one-vs-one approach had 45 SVMs to work 
with. This gap is only likely to increase if we add more object categories.

• The effect of de-meaning can be seen by comparing the result for None with 
the result for rgb. These two settings were identical, except that the samples 
under rgb were normalized. The difference in performance is evident, 
especially for the one-vs-all strategy.
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• A little disappointing is the finding that none of the color transformations 
(neither RGB nor HSV) were able to perform significantly better than the 
simple grayscale transform. SURF did not help either.

Summary
In this chapter, we trained a multiclass classifier to recognize traffic signs from 
the GTSRB database. We discussed the basics of supervised learning, explored the 
intricacies of feature extraction, and extended SVMs so that they can be used for 
multiclass classification.

Notably, we left out some details along the way, such as attempting to fine-tune 
the hyperparameters of the learning algorithm. When we restrict the traffic sign 
dataset to only 10 classes, the default values of the various function arguments along 
the way, seem to be sufficient for performing exceptionally well (just look at the 
perfect score achieved with the HOG feature and the one-vs-one strategy). With this 
functional setup and a good understanding of the underlying methodology, you 
can now try to classify the entire GTSRB dataset! It is definitely worth taking a look 
at their website, where you will find classification results for a variety of classifiers. 
Maybe, your own approach will soon be added to the list.

In the next (and last) chapter, we will move even deeper into the field of machine 
learning. Specifically, we will focus on recognizing emotional expressions in human 
faces using convolutional neural networks. This time, we will combine the classifier 
with a framework for object detection, which will allow us to localize (where?) 
a human face in an image, and then focus on identifying (what?) the emotional 
expression contained in that face. This will conclude our quest into the depths of 
machine learning, and provide you with all the necessary tools to develop your own 
advanced OpenCV projects using the principles and concepts of computer vision.
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Learning to Recognize 
Emotions on Faces

We previously familiarized ourselves with the concepts of object detection and  
object recognition, but we never combined them to develop an app that can do  
both end-to-end. For the final chapter in this book, we will do exactly that.

The goal of this chapter is to develop an app that combines both face detection and 
face recognition, with a focus on recognizing emotional expressions in the detected 
face.

For this, we will touch upon two other classic algorithms that come bundled with 
OpenCV: Haar Cascade Classifiers and multi-layer peceptrons (MLPs). While the 
former can be used to rapidly detect (or locate, answering the question: where?) 
objects of various sizes and orientations in an image, the latter can be used to 
recognize them (or identify, answering the question: what?).

The end goal of the app will be to detect your own face in each captured frame of a 
webcam live stream and label your emotional expression. To make this task feasible, 
we will limit ourselves to the following possible emotional expressions: neutral, 
happy, sad, surprised, angry, and disgusted.

To arrive at such an app, we need to solve the following two challenges:

• Face detection: We will use the popular Haar cascade classifier by Viola and 
Jones, for which OpenCV provides a whole range of pre-trained exemplars. 
We will make use of face cascades and eye cascades to reliably detect and 
align facial regions from frame to frame.
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• Facial expression recognition: We will train a multi-layer perceptron to 
recognize the six different emotional expressions listed earlier, in every 
detected face. The success of this approach will crucially depend on the 
training set that we assemble, and the preprocessing that we choose to 
apply to each sample in the set. In order to improve the quality of our self-
recorded training set, we will make sure that all data samples are aligned 
using affine transformations and reduce the dimensionality of the feature 
space by applying Principal Component Analysis (PCA). The resulting 
representation is sometimes also referred to as Eigenfaces.

The reliable recognition of faces and facial expressions is a challenging task for 
artificial intelligence, yet humans are able to perform these kinds of tasks with 
apparent ease. Today's state-of-the-art models range all the way from 3D deformable 
face models fitting over convolutional neural networks, to deep learning algorithms. 
Granted, these approaches are significantly more sophisticated than our approach. 
Yet, MLPs are classic algorithms that helped transform the field of machine learning, 
so for educational purposes, we will stick to a set of algorithms that come bundled 
with OpenCV.

We will combine the algorithms mentioned earlier in a single end-to-end app that 
annotates a detected face with the corresponding facial expression label in each 
captured frame of a video live stream. The end result might look something like  
the following image, capturing my reaction when the code first compiled:
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Planning the app
The final app will consist of a main script that integrates the process flow end-to-end, 
from face detection to facial expression recognition, as well as some utility functions 
to help along the way.

Thus, the end product will require several components:

• chapter7: The main script and entry-point for the chapter.
• chapter7.FaceLayout: A custom layout based on gui.BaseLayout that 

operates in two different modes:
 ° Training mode: In the training mode, the app will collect image 

frames, detect a face therein, assign a label depending on the facial 
expression, and upon exiting, save all the collected data samples in a 
file, so that it can be parsed by datasets.homebrew.

 ° Testing mode: In the testing mode, the app will detect a face in each 
video frame and predict the corresponding class label by using a  
pre-trained MLP.

• chapter3.main: The main function routine to start the GUI application.
• detectors.FaceDetector: A class for face detection.

 °  detect: A method to detect faces in a grayscale image. Optionally, 
the image is downscaled for better reliability. Upon successful 
detection, the method returns the extracted head region.

 ° align_head: A method to preprocess an extracted head region with 
affine transformations such that the resulting face appears centered 
and upright.

• classifiers.Classifier: An abstract base class that defines the common 
interface for all classifiers (same as in Chapter 6, Learning to Recognize Traffic 
Signs).

• classifiers.MultiLayerPerceptron: A class that implements an MLP by 
using the following public methods:

 ° fit: A method to fit the MLP to the training data. It takes as input, a 
matrix of the training data, where each row is a training sample, and 
columns contain feature values, and a vector of labels.

 ° evaluate: A method to evaluate the MLP by applying it to some test 
data after training. It takes as input, a matrix of test data, where each 
row is a test sample and columns contain feature values, and a vector 
of labels. The function returns three different performance metrics: 
accuracy, precision, and recall.
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 ° predict: A method to predict the class labels of some test data. We 
expose this method to the user so it can be applied to any number of 
data samples, which will be helpful in the testing mode, when we do 
not want to evaluate the entire dataset, but instead predict the label 
of only a single data sample.

 ° save: A method to save a trained MLP to file.
 ° load: A method to load a pre-trained MLP from file.

• train_test_mlp: A script to train and test an MLP by applying it to our  
self-recorded dataset. The script will explore different network architectures 
and store the one with the best generalization performance in a file, so that 
the pre-trained classifier can be loaded later.

• datasets.homebrew: A class to parse the self-recorded training set. 
Analogously to the previous chapter, the class contains the following 
methods:

 ° load_data: A method to load the training set, perform PCA on it via 
the extract_features function, and split the data into the training 
and test sets. Optionally, the preprocessed data can be stored in a file 
so that we can load it later on without having to parse the data again.

 ° load_from_file: A method to load a previously stored preprocessed 
dataset.

 ° extract_features: A method to extract a feature of choice (in 
the present chapter: to perform PCA on the data). We expose this 
function to the user so it can be applied to any number of data 
samples, which will be helpful in the testing mode, when we do not 
want to parse the entire dataset but instead predict the label of only a 
single data sample.

• gui: A module providing a wxPython GUI application to access the capture 
device and display the video feed. This is the same module that we used in 
the previous chapters.

 ° gui.BaseLayout: A generic layout from which more complicated 
layouts can be built. This chapter does not require any modifications 
to the basic layout.

In the following sections, we will discuss these components in detail.
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Face detection
OpenCV comes preinstalled with a range of sophisticated classifiers for general-
purpose object detection. Perhaps, the most commonly known detector is the cascade 
of Haar-based feature detectors for face detection, which was invented by Paul Viola 
and Michael Jones.

Haar-based cascade classifiers
Every book on OpenCV should at least mention the Viola–Jones face detector. 
Invented in 2001, this cascade classifier disrupted the field of computer vision,  
as it finally allowed real-time face detection and face recognition.

The classifier is based on Haar-like features (similar to Haar basis functions), which 
sum up the pixel intensities in small regions of an image, as well as capture the 
difference between adjacent image regions. Some example rectangle features are 
shown in the following figure, relative to the enclosing (light gray) detection window:

Here, the top row shows two examples of an edge feature, either vertically oriented 
(left) or oriented at a 45 degree angle (right). The bottom row shows a line feature 
(left) and a center-surround feature (right). The feature value for each of these is then 
calculated by summing up all pixel values in the dark gray rectangle and subtracting 
this value from the sum of all pixel values in the white rectangle. This procedure 
allowed the algorithm to capture certain qualities of human faces, such as the fact 
that eye regions are usually darker than the region surrounding the cheeks. 
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Thus, a common Haar feature would have a dark rectangle (representing the eye 
region) atop a bright rectangle (representing the cheek region). Combining this 
feature with a bank of rotated and slightly more complicated wavelets, Viola and 
Jones arrived at a powerful feature descriptor for human faces. In an additional act of 
genius, these guys came up with an efficient way to calculate these features, making 
it possible for the first time to detect faces in real-time.

Pre-trained cascade classifiers
Even better, this approach does not only work for faces but also for eyes, mouths, 
full bodies, company logos, you name it. A number of pre-trained classifiers can be 
found under the OpenCV install path in the data folder:

Cascade classifier type XML file name
Face detector (default) haarcascade_frontalface_default.

xml

Face detector (fast Haar) haarcascade_frontalface_alt2.xml

Eye detector haarcascade_lefteye_2splits.xml

haarcascade_righteye_2splits.xml

Mouth detector haarcascade_mcs_mouth.xml

Nose detector haarcascade_mcs_nose.xml

Full body detector haarcascade_fullbody.xml

In this chapter, we will use haarcascade_frontalface_default.xml, 
haarcascade_lefteye_2splits.xml, and haarcascade_righteye_2splits.xml.

If you are wearing glasses, make sure to use haarcascade_eye_
tree_eyeglasses.xml on both eyes instead.

Using a pre-trained cascade classifier
A cascade classifier can be loaded and applied to a (grayscale!) image frame with the 
following code:

import cv2

frame = cv2.imread('example_grayscale.jpg', cv2.CV_8UC1) 
face_casc =  
    cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
faces = face_casc.detectMultiScale(frame, scaleFactor=1.1, 
    minNeighbors=3)
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The detectMultiScale function comes with a number of options:

• minFeatureSize: The minimum face size to consider (for example, 20 × 20 
pixels).

• searchScaleFactor: Amount by which to rescale the image (scale pyramid). 
For example, a value of 1.1 will gradually reduce the size of the input image 
by 10 percent, making it more likely for a face to be found than a larger value.

• minNeighbors: The number of neighbors each candidate rectangle should 
have to retain it. Typically, choose 3 or 5.

• flags: Options for old cascades (will be ignored by newer ones). For 
example, whether to look for all faces or just the largest (cv2.cv.CASCADE_
FIND_BIGGEST_OBJECT).

If detection is successful, the function will return a list of bounding boxes (faces) 
that contain the coordinates of the detected face regions:

for (x, y, w, h) in faces:
    # draw bounding box on frame
    cv2.rectangle(frame, (x, y), (x + w, y + h), (100, 255, 0), 2)

If your pre-trained face cascade does not detect anything, a common 
reason is usually that the path to the pre-trained cascade file could not 
be found. In this case, CascadeClassifier will fail silently. Thus, 
it is always a good idea to check whether the returned classifier casc 
= cv2.CascadeClassifier(filename) is empty, by checking 
casc.empty().

The FaceDetector class
All relevant face detection code for this chapter can be found as part of the 
FaceDetector class in the detectors module. Upon instantiation, this class loads 
three different cascade classifiers that are needed for preprocessing: a face cascade 
and two eye cascades.

import cv2
import numpy as np

class FaceDetector:
    def __init__(



Learning to Recognize Emotions on Faces

[ 170 ]

        self,  
        face_casc='params/haarcascade_frontalface_default.xml', 
        left_eye_casc='params/haarcascade_lefteye_2splits.xml', 
        right_eye_casc='params/haarcascade_righteye_2splits.xml', 
        scale_factor=4):

Because our preprocessing requires a valid face cascade, we make sure that the file 
can be loaded. If not, we print an error message and exit the program:

        self.face_casc = cv2.CascadeClassifier(face_casc)
        if self.face_casc.empty():
            print 'Warning: Could not load face cascade:', 
                face_casc
            raise SystemExit

For reasons that will become clear in just a moment, we also need two eye cascades, 
for which we proceed analogously:

        self.left_eye_casc = cv2.CascadeClassifier(left_eye_casc)
        if self.left_eye_casc.empty():
            print 'Warning: Could not load left eye cascade:',  
                left_eye_casc
            raise SystemExit
        self.right_eye_casc = 
            cv2.CascadeClassifier(right_eye_casc)
        if self.right_eye_casc.empty():
            print 'Warning: Could not load right eye cascade:',  
                right_eye_casc
            raise SystemExit

Face detection works best on low-resolution grayscale images. This is why we also 
store a scaling factor (scale_factor) so that we can operate on downscaled versions 
of the input image if necessary:

self.scale_factor = scale_factor

Detecting faces in grayscale images
Faces can then be detected using the detect method. Here, we ensure that we 
operate on a downscaled grayscale image:

def detect(self, frame):
    frameCasc = cv2.cvtColor(cv2.resize(frame, (0, 0),  
        fx=1.0 / self.scale_factor, fy=1.0 / self.scale_factor),  
        cv2.COLOR_RGB2GRAY)
    faces = self.face_casc.detectMultiScale(frameCasc, 
        scaleFactor=1.1, minNeighbors=3,  
        flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT) *  
        self.scale_factor
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If a face is found, we continue to extract the head region from the bounding box 
information and store the result in head:

for (x, y, w, h) in faces:
    head = cv2.cvtColor(frame[y:y + h, x:x + w],  
        cv2.COLOR_RGB2GRAY)

We also draw the bounding box onto the input image:

cv2.rectangle(frame, (x, y), (x + w, y + h), (100, 255, 0), 2)

In case of success, the method should return a Boolean indicating success (True),  
the annotated input image (frame), and the extracted head region (head):

return True, frame, head

Otherwise, if no faces were detected, the method indicates failure with a Boolean 
(False) and returns the unchanged input image (frame) and None for the head region:

return False, frame, None

Preprocessing detected faces
After a face has been detected, we might want to preprocess the extracted head 
region before applying classification on it. Although the face cascade is fairly 
accurate, for recognition, it is important that all the faces are upright and centered on 
the image. This idea is best illustrated with an image. Consider a sad programmer 
under a tree:
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Because of his emotional state, the programmer tends to keep his head slightly tilted 
to the side while looking down. The facial region as extracted by the face cascade is 
shown as the leftmost grayscale thumbnail on the right. In order to compensate for 
the head orientation, we aim to rotate and scale the face so that all data samples will 
be perfectly aligned. This is the job of the align_head method in the FaceDetector 
class:

def align_head(self, head):
    height, width = head.shape[:2]

Fortunately, OpenCV comes with a few eye cascades that can detect both open 
and closed eyes, such as haarcascade_lefteye_2splits.xml and haarcascade_
righteye_2splits.xml. This allows us to calculate the angle between the line that 
connects the center of the two eyes and the horizon so that we can rotate the face 
accordingly. In addition, adding eye detectors will reduce the risk of having false 
positives in our dataset, allowing us to add a data sample only if both the head and 
the eyes have been successfully detected.

After loading these eye cascades from file in the FaceDetector constructor, they are 
applied to the input image (head):

    left_eye_region = head[0.2*height:0.5*height,  
        0.1*width:0.5*width]
    left_eye = self.left_eye_casc.detectMultiScale( 
        left_eye_region, scaleFactor=1.1, minNeighbors=3,  
        flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT)

Here, it is important that we pass only a small, relevant region (left_eye_region; 
compare small thumbnails in the top-right corner of the preceding figure) to the eye 
cascades. For simplicity, we use hardcoded values that focus on the top half of the 
facial region and assume the left eye to be in the left half.

If an eye is detected, we extract the coordinates of its center point:

left_eye_center = None
for (xl, yl, wl, hl) in left_eye:
    # find the center of the detected eye region
    left_eye_center = np.array([0.1 * width + xl + wl / 2,  
        0.2 * height + yl + hl / 2])
    break # need only look at first, largest eye
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Then, we proceed to do the same for the right eye:

right_eye_region = head[0.2*height:0.5*height,  
    0.5*width:0.9*width]
right_eye = self.right_eye_casc.detectMultiScale( 
    right_eye_region, scaleFactor=1.1, minNeighbors=3, 
    flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT)
right_eye_center = None
for (xr, yr, wr, hr) in right_eye:
    # find the center of the detected eye region
    right_eye_center = np.array([0.5 * width + xr + wr / 2,  
        0.2 * height + yr + hr / 2])
    break  # need only look at first, largest eye

As mentioned earlier, if we do not detect both the eyes, we discard the sample as a 
false positive:

if left_eye_center is None or right_eye_center is None:
    return False, head

Now, this is where the magic happens. No matter how crooked the face that we 
detected is, before we add it to the training set, we want the eyes to be exactly at 25 
percent and 75 percent of the image width (so that the face is in the center) and at 20 
percent of the image height:

desired_eye_x = 0.25
desired_eye_y = 0.2
desired_img_width = 200
desired_img_height = desired_img_width

This can be achieved by warping the image using cv2.warpAffine (remember 
Chapter 3, Finding Objects via Feature Matching and Perspective Transforms?). First,  
we calculate the angle (in degrees) between the line that connects the two eyes  
and a horizontal line:

eye_center = (left_eye_center + right_eye_center) / 2
eye_angle_deg = np.arctan2(
    right_eye_center[1] – left_eye_center[1],
    right_eye_center[0] – left_eye_center[0]) * 
    180.0 / cv2.cv.CV_PI
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Then, we derive a scaling factor that will scale the distance between the two eyes to 
be exactly 50 percent of the image width:

eye_size_scale = (1.0 - desired_eye_x * 2) *  
    desired_img_width / np.linalg.norm( 
    right_eye_center – left_eye_center)

With these two parameters (eye_angle_deg and eye_size_scale) in hand, we can 
now come up with a suitable rotation matrix that will transform our image:

rot_mat = cv2.getRotationMatrix2D(tuple(eye_center),  
eye_angle_deg, eye_size_scale)

We make sure that the center of the eyes will be centered in the image:

rot_mat[0,2] += desired_img_width*0.5 – eye_center[0]
rot_mat[1,2] += desired_eye_y*desired_img_height –  
    eye_center[1]

Finally, we arrive at an upright scaled version of the facial region that looks like the 
lower-right thumbnail of the preceding image:

res = cv2.warpAffine(head, rot_mat,  
    (desired_img_width, desired_img_height))
return True, res

Facial expression recognition
The facial expression recognition pipeline is encapsulated by chapter7.py. This file 
consists of an interactive GUI that operates in two modes (training and testing), as 
described earlier.

In order to arrive at our end-to-end app, we need to cover the following three steps:

1. Load the chapter7.py GUI in the training mode to assemble a training set.
2. Train an MLP classifier on the training set via train_test_mlp.py. Because 

this step can take a long time, the process takes place in its own script. After 
successful training, store the trained weights in a file, so that we can load the 
pre-trained MLP in the next step.

3. Load the chapter7.py GUI in the testing mode to classify facial expressions 
on a live video stream in real-time. This step involves loading several pre-
trained cascade classifiers as well as our pre-trained MLP classifier. These 
classifiers will then be applied to every captured video frame.
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Assembling a training set
Before we can train an MLP, we need to assemble a suitable training set. Because 
chances are, that your face is not yet part of any dataset out there (the NSA's private 
collection doesn't count), we will have to assemble our own. This is done most easily 
by returning to our GUI application from the previous chapters, which can access a 
webcam, and operate on each frame of a video stream.

The GUI will present the user with the option of recording one of the following six 
emotional expressions: neutral, happy, sad, surprised, angry, and disgusted. Upon 
clicking a button, the app will take a snapshot of the detected facial region, and 
upon exiting, it will store all collected data samples in a file. These samples can then 
be loaded from file and used to train an MLP classifier in train_test_mlp.py, as 
described in step two given earlier.

Running the screen capture
In order to run this app (chapter7.py), we need to set up a screen capture by using 
cv2.VideoCapture and pass the handle to the FaceLayout class:

import time
import wx
from os import path
import cPickle as pickle

import cv2
import numpy as np

from datasets import homebrew
from detectors import FaceDetector
from classifiers import MultiLayerPerceptron
from gui import BaseLayout

def main():
    capture = cv2.VideoCapture(0)
    if not(capture.isOpened()):
        capture.open()

    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

    # start graphical user interface
    app = wx.App()
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    layout = FaceLayout(None, -1, 'Facial Expression Recognition',  
        capture)
    layout.init_algorithm()
    layout.Show(True)
    app.MainLoop()

if __name__ == '__main__':
    main()

If you happen to have installed some non-canonical releases of 
OpenCV, the frame width and frame weight parameters might have a 
slightly different name (for example, cv3.CAP_PROP_FRAME_WIDTH). 
However, in newer releases, it is the easiest to access the old OpenCV1 
sub-module cv and its variables cv2.cv.CV_CAP_PROP_FRAME_
WIDTH and cv2.cv.CV_CAP_PROP_FRAME_HEIGHT.

The GUI constructor
Analogous to the previous chapters, the GUI of the app is a customized version of 
the generic BaseLayout:

class FaceLayout(BaseLayout):

We initialize the training samples and labels as empty lists, and make sure to call  
the _on_exit method upon closing the window so that the training data is dumped 
to file:

    def _init_custom_layout(self):
        # initialize data structure
        self.samples = []
        self.labels = []

        # call method to save data upon exiting
        self.Bind(wx.EVT_CLOSE, self._on_exit)

We also have to load several classifiers to make the preprocessing and (later on)  
the real-time classification work. For convenience, default file names are provided:

    def init_algorithm(
        self,  
        save_training_file='datasets/faces_training.pkl', 
        load_preprocessed_data='datasets/faces_preprocessed.pkl', 
        load_mlp='params/mlp.xml',
        face_casc='params/haarcascade_frontalface_default.xml', 
        left_eye_casc='params/haarcascade_lefteye_2splits.xml', 
        right_eye_casc='params/haarcascade_righteye_2splits.xml'):
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Here, save_training_file indicates the name of a pickle file in which to store all 
training samples after data acquisition is complete:

        self.dataFile = save_training_file

The three cascades are passed to the FaceDetector class as explained in the  
previous section:

        self.faces = FaceDetector(face_casc, left_eye_casc,  
            right_eye_casc)

As their names suggest, the remaining two arguments (load_preprocessed_data 
and load_mlp) are concerned with a real-time classification of the detected faces by 
using the pre-trained MLP classifier:

        # load preprocessed dataset to access labels and PCA 
        # params
        if path.isfile(load_preprocessed_data):
            (_, y_train), (_, y_test), self.pca_V, self.pca_m = 
                homebrew.load_from_file(load_preprocessed_data)
            self.all_labels = np.unique(np.hstack((y_train, 
                y_test)))

            # load pre-trained multi-layer perceptron
            if path.isfile(load_mlp):
                self.MLP = MultiLayerPerceptron(  
                    np.array([self.pca_V.shape[1],  
                    len(self.all_labels)]),  
                    self.all_labels)
                self.MLP.load(load_mlp)

If any of the parts required for the testing mode are missing, we print a warning  
and disable the testing mode altogether:

            else:
                print "Warning: Testing is disabled"
                print "Could not find pre-trained MLP file ", 
                    load_mlp
                self.testing.Disable()
        else:
            print "Warning: Testing is disabled"
            print "Could not find preprocessed data file ",  
                loadPreprocessedData
        self.testing.Disable()
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The GUI layout
Creation of the layout is again deferred to a method called _create_custom_layout. 
We keep the layout as simple as possible: We create a panel for the acquired video 
frame, and draw a row of buttons below it.

The idea is to then click one of the six radio buttons to indicate which facial 
expression you are trying to record, then place your head within the bounding box, 
and click the Take Snapshot button.

Below the current camera frame, we place two radio buttons to select either the 
training or the testing mode, and tell the GUI that the two are mutually exclusive by 
specifying style=wx.RB_GROUP:

def _create_custom_layout(self):
    # create horizontal layout with train/test buttons
    pnl1 = wx.Panel(self, -1)
    self.training = wx.RadioButton(pnl1, -1, 'Train', (10, 10),  
        style=wx.RB_GROUP)
    self.testing = wx.RadioButton(pnl1, -1, 'Test')
    hbox1 = wx.BoxSizer(wx.HORIZONTAL)
    hbox1.Add(self.training, 1)
    hbox1.Add(self.testing, 1)
    pnl1.SetSizer(hbox1)

Also, we want the event of a button click to bind to the self._on_training  
and self._on_testing methods, respectively:

self.Bind(wx.EVT_RADIOBUTTON, self._on_training,  
    self.training)
self.Bind(wx.EVT_RADIOBUTTON, self._on_testing, self.testing)

The second row should contain similar arrangements for the six facial  
expression buttons:

# create a horizontal layout with all buttons
pnl2 = wx.Panel(self, -1 )
self.neutral = wx.RadioButton(pnl2, -1, 'neutral',  
    (10, 10), style=wx.RB_GROUP)
self.happy = wx.RadioButton(pnl2, -1, 'happy')
self.sad = wx.RadioButton(pnl2, -1, 'sad')
self.surprised = wx.RadioButton(pnl2, -1, 'surprised')
self.angry = wx.RadioButton(pnl2, -1, 'angry')
self.disgusted = wx.RadioButton(pnl2, -1, 'disgusted')
hbox2 = wx.BoxSizer(wx.HORIZONTAL)
hbox2.Add(self.neutral, 1)
hbox2.Add(self.happy, 1)
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hbox2.Add(self.sad, 1)
hbox2.Add(self.surprised, 1)
hbox2.Add(self.angry, 1)
hbox2.Add(self.disgusted, 1)
pnl2.SetSizer(hbox2)

The Take Snapshot button is placed below the radio buttons and will bind to the 
_on_snapshot method:

pnl3 = wx.Panel(self, -1)
self.snapshot = wx.Button(pnl3, -1, 'Take Snapshot')
self.Bind(wx.EVT_BUTTON, self.OnSnapshot, self.snapshot)
hbox3 = wx.BoxSizer(wx.HORIZONTAL)
hbox3.Add(self.snapshot, 1)
pnl3.SetSizer(hbox3)

This will look like the following:

To make these changes take effect, the created panels need to be added to the list of 
existing panels:

# display the button layout beneath the video stream
self.panels_vertical.Add (pnl1, flag=wx.EXPAND | wx.TOP, border=1)
self.panels_vertical.Add(pnl2, flag=wx.EXPAND | wx.BOTTOM,  
    border=1)
self.panels_vertical.Add(pnl3, flag=wx.EXPAND | wx.BOTTOM,  
    border=1)

The rest of the visualization pipeline is handled by the BaseLayout class. Now, 
whenever the user clicks the self.testing button, we no longer want to record 
training samples, but instead switch to the testing mode. In the testing mode, none of 
the training-related buttons should be enabled, as shown in the following image:
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This can be achieved with the following method that disables all the relevant 
buttons:

def _on_testing(self, evt):
    """Whenever testing mode is selected, disable all  
        training-related buttons"""
    self.neutral.Disable()
    self.happy.Disable()
    self.sad.Disable()
    self.surprised.Disable()
    self.angry.Disable()
    self.disgusted.Disable()
    self.snapshot.Disable()

Analogously, when we switch back to the training mode, the buttons should be 
enabled again:

def _on_training(self, evt):
    """Whenever training mode is selected, enable all 
        training-related buttons"""
    self.neutral.Enable()
    self.happy.Enable()
    self.sad.Enable()
    self.surprised.Enable()
    self.angry.Enable()
    self.disgusted.Enable()
    self.snapshot.Enable()

Processing the current frame
The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure to provide the _process_frame method. This method begins by 
detecting faces in a downscaled grayscale version of the current frame, as explained 
in the previous section:

def _process_frame(self, frame):
    success, frame, self.head = self.faces.detect(frame)

If a face is found, success is True, and the method has access to an annotated 
version of the current frame (frame) and the extracted head region (self.head). 
Note that we store the extracted head region for further reference, so that we can 
access it in _on_snapshot.

We will return to this method when we talk about the testing mode, but for now,  
this is all we need to know. Don't forget to pass the processed frame:

    return frame
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Adding a training sample to the training set
When the Take Snapshot button is clicked upon, the _on_snapshot method is 
called. This method detects the emotional expression that we are trying to record by 
checking the value of all radio buttons, and assigns a class label accordingly:

def _on_snapshot(self, evt):
    if self.neutral.GetValue():
        label = 'neutral'
    elif self.happy.GetValue():
        label = 'happy'
    elif self.sad.GetValue():
        label = 'sad'
    elif self.surprised.GetValue():
        label = 'surprised'
    elif self.angry.GetValue():
        label = 'angry'
    elif self.disgusted.GetValue():
        label = 'disgusted'

We next need to look at the detected facial region of the current frame (stored in 
self.head by _process_frame), and align it with all the other collected frames.  
That is, we want all the faces to be upright and the eyes to be aligned. Otherwise,  
if we do not align the data samples, we run the risk of having the classifier compare 
eyes to noses. Because this computation can be costly, we do not apply it on every 
frame, but instead only upon taking a snapshot. The alignment takes place in the 
following method:

    if self.head is None:
        print "No face detected"
    else:
        success, head = self.faces.align_head(self.head)

If this method returns True for success, indicating that the sample was successfully 
aligned with all other samples, we add the sample to our dataset:

if success:
    print "Added sample to training set"
    self.samples.append(head.flatten())
    self.labels.append(label)
else:
    print "Could not align head (eye detection failed?)"

All that is left to do now is to make sure that we save the training set upon exiting.
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Dumping the complete training set to a file
Upon exiting the app (for example, by clicking the Close button of the window),  
an event EVT_CLOSE is triggered, which binds to the _on_exit method. This method 
simply dumps the collected samples and the corresponding class labels to file:

def _on_exit(self, evt):
    """Called whenever window is closed"""
    # if we have collected some samples, dump them to file
    if len(self.samples) > 0:

However, we want to make sure that we do not accidentally overwrite previously 
stored training sets. If the provided filename already exists, we append a suffix and 
save the data to the new filename instead:

    # make sure we don't overwrite an existing file
    if path.isfile(self.data_file):
        filename, fileext = path.splitext(self.data_file)
        offset = 0
        while True: # a do while loop
            file = filename + "-" + str(offset) + fileext
            if path.isfile(file):
                offset += 1
            else:
                break
        self.data_file = file

Once we have created an unused filename, we dump the data to file by making use 
of the pickle module:

    f = open(self.dataFile, 'wb')
    pickle.dump(self.samples, f)
    pickle.dump(self.labels, f)
    f.close()

Upon exiting, we inform the user that a file was created and make sure that all data 
structures are correctly deallocated:

    print "Saved", len(self.samples), "samples to", self.data_file
    self.Destroy()
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Here are some examples from the assembled training set I:

Feature extraction
We have previously made the point that, finding the features that best describe the 
data is often an essential part of the entire learning task. We have also looked at 
common preprocessing methods such as mean subtraction and normalization.  
Here, we will look at an additional method that has a long tradition in face 
recognition: principal component analysis (PCA).

Preprocessing the dataset
Analogous to Chapter 6, Learning to Recognize Traffic Signs, we write a new dataset 
parser in dataset/homebrew.py that will parse our self-assembled training set.  
We define a load_data function that will parse the dataset, perform feature 
extraction, split the data into training and testing sets, and return the results:

import cv2
import numpy as np

import csv
from matplotlib import cm
from matplotlib import pyplot as plt

from os import path
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import cPickle as pickle

def load_data(load_from_file, test_split=0.2, num_components=50, 
    save_to_file=None, plot_samples=False, seed=113):
    """load dataset from pickle """

Here, load_from_file specifies the path to the data file that we created in the 
previous section. We can also specify another file called save_to_file, which will 
contain the dataset after feature extraction. This will be helpful later on when we 
perform real-time classification.

The first step is thus to try and open load_from_file. If the file exists, we use the 
pickle module to load the samples and labels data structures; else, we throw an 
error:

# prepare lists for samples and labels
X = []
labels = []
if not path.isfile(load_from_file):
    print "Could not find file", load_from_file
    return (X, labels), (X, labels), None, None
else:
    print "Loading data from", load_from_file
    f = open(load_from_file, 'rb')
    samples = pickle.load(f)
    labels = pickle.load(f)
    print "Loaded", len(samples), "training samples"

If the file was successfully loaded, we perform PCA on all samples. The num_
components variable specifies the number of principal components that we want to 
consider. The function also returns a list of basis vectors (V) and a mean value (m) for 
every sample in the set:

# perform feature extraction
# returns preprocessed samples, PCA basis vectors & mean
X, V, m = extract_features(samples,  
    num_components=num_components)

As pointed out earlier, it is imperative to keep the samples that we use to train our 
classifier separate from the samples that we use to test it. For this, we shuffle the data 
and split it into two separate sets, such that the training set contains a fraction (1 - 
test_split) of all samples, and the rest of the samples belong to the test set:

# shuffle dataset
np.random.seed(seed)
np.random.shuffle(X)
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np.random.seed(seed)
np.random.shuffle(labels)

# split data according to test_split
X_train = X[:int(len(X)*(1-test_split))]
y_train = labels[:int(len(X)*(1-test_split))]

X_test = X[int(len(X)*(1-test_split)):]
y_test = labels[int(len(X)*(1-test_split)):]

If specified, we want to save the preprocessed data to file:

if save_to_file is not None:
    # dump all relevant data structures to file
    f = open(save_to_file, 'wb')
    pickle.dump(X_train, f)
    pickle.dump(y_train, f)
    pickle.dump(X_test, f)
    pickle.dump(y_test, f)
    pickle.dump(V, f)
    pickle.dump(m, f)
    f.close()
    print "Save preprocessed data to", save_to_file

Finally, we can return the extracted data:

return (X_train, y_train), (X_test, y_test), V, m

Principal component analysis
PCA is a dimensionality reduction technique that is helpful whenever we are 
dealing with high-dimensional data. In a sense, you can think of an image as a point 
in a high-dimensional space. If we flatten a 2D image of height m and width n (by 
concatenating either all rows or all columns), we get a (feature) vector of length m 
× n. The value of the i-th element in this vector is the grayscale value of the i-th 
pixel in the image. To describe every possible 2D grayscale image with these exact 
dimensions, we will need an m × n dimensional vector space that contains 256 
raised to the power of m × n vectors. Wow! An interesting question that comes to 
mind when considering these numbers is as follows: could there be a smaller, more 
compact vector space (using less than m × n features) that describes all these images 
equally well? After all, we have previously realized that grayscale values are not the 
most informative measures of content.
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This is where PCA comes in. Consider a dataset from which we extracted exactly 
two features. These features could be the grayscale values of pixels at some x and y 
positions, but they could also be more complex than that. If we plot the dataset along 
these two feature axes, the data might lie within some multivariate Gaussian, as 
shown in the following image:

What PCA does is rotate all data points until the data lie aligned with the two axes 
(the two inset vectors) that explain most of the spread of the data. PCA considers 
these two axes to be the most informative, because if you walk along them, you 
can see most of the data points separated. In more technical terms, PCA aims to 
transform the data to a new coordinate system by means of an orthogonal linear 
transformation. The new coordinate system is chosen such that if you project the 
data onto these new axes, the first coordinate (called the first principal component) 
observes the greatest variance. In the preceding image, the small vectors drawn 
correspond to the eigenvectors of the covariance matrix, shifted so that their tails 
come to lie at the mean of the distribution.

Fortunately, someone else has already figured out how to do all this in Python. In 
OpenCV, performing PCA is as simple as calling cv2.PCACompute. Embedded in our 
feature extraction method, the option reads as follows:

def extract_feature(X, V=None, m=None, num_components=50):
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Here, the function can be used to either perform PCA from scratch or use a 
previously calculated set of basis vectors (V) and mean (m), which is helpful during 
testing when we want to perform real-time classification. The number of principal 
components to consider is specified via num_components. If we do not specify any of 
the optional arguments, PCA is performed from scratch on all the data samples in X:

    if V is None or m is None:
        # need to perform PCA from scratch
        if num_components is None:
            num_components = 50
 
        # cols are pixels, rows are frames
        Xarr = np.squeeze(np.array(X).astype(np.float32))

        # perform PCA, returns mean and basis vectors
        m, V = cv2.PCACompute(Xarr)

The beauty of PCA is that the first principal component by definition explains 
most of the variance of the data. In other words, the first principal component is 
the most informative of the data. This means that we do not need to keep all of the 
components to get a good representation of the data! We can limit ourselves to the 
num_components most informative ones:

    # use only the first num_components principal components
    V = V[:num_components]

Finally, a compressed representation of the data is achieved by projecting the zero-
centered original data onto the new coordinate system:

    for i in xrange(len(X)):
        X[i] = np.dot(V, X[i] - m[0, i])

    return X, V, m

Multi-layer perceptrons
Multi-layer perceptrons (MLPs) have been around for a while. MLPs are artificial 
neural networks (ANNs) used to convert a set of input data into a set of output data. 
At the heart of an MLP is a perceptron, which resembles (yet overly simplifies) a 
biological neuron. By combining a large number of perceptrons in multiple layers, 
the MLP is able to make non-linear decisions about its input data. Furthermore, 
MLPs can be trained with backpropagation, which makes them very interesting for 
supervised learning.
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The perceptron
A perceptron is a binary classifier that was invented in the 1950s by Frank 
Rosenblatt. A perceptron calculates a weighted sum of its inputs, and if this sum 
exceeds a threshold, it outputs a 1; else, it outputs a 0. In some sense, a perceptron is 
integrating evidence that its afferents signal the presence (or absence) of some object 
instance, and if this evidence is strong enough, the perceptron will be active (or 
silent). This is loosely connected to what researchers believe biological neurons are 
doing (or can be used to do) in the brain, hence, the term artificial neural network.

A sketch of a perceptron is depicted in the following figure:

Here, a perceptron computes a weighted (w_i) sum of all its inputs (x_i), combined 
with a bias term (b). This input is fed into a nonlinear activation function (θ) that 
determines the output of the perceptron (y). In the original algorithm, the activation 
function was the Heaviside step function. In modern implementations of ANNs, 
the activation function can be anything ranging from sigmoid to hyperbolic tangent 
functions. The Heaviside function and the sigmoid function are plotted in the 
following image:
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Depending on the activation function, these networks might be able to perform 
either classification or regression. Traditionally, one only talks of MLPs when nodes 
use the Heaviside step function.

Deep architectures
Once you have the perceptron figured out, it would make sense to combine multiple 
perceptrons to form a larger network. Multi-layer perceptrons usually consist of at 
least three layers, where the first layer has a node (or neuron) for every input feature 
of the dataset, and the last layer has a node for every class label. The layer in between 
is called the hidden layer. An example of this feed-forward neural network is 
shown in the following figure:
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In a feed-forward neural network, some or all of the nodes in the input layer are 
connected to all the nodes in the hidden layer, and some or all of the nodes in the 
hidden layer are connected to some or all of the nodes in the output layer. You would 
usually choose the number of nodes in the input layer to be equal to the number of 
features in the dataset, so that each node represents one feature. Analogously, the 
number of nodes in the output layer is usually equal to the number of classes in the 
data, so that when an input sample of class c is presented, the c-th node in the output 
layer is active and all others are silent.

It is also possible to have multiple hidden layers of course. Often, it is not clear 
beforehand what the optimal size of the network should be.

Typically, you will see the error rate on the training set decrease when you add more 
neurons to the network, as is depicted in the following figure (thinner, red curve):

This is because the expressive power or complexity (also referred to as the  
Vapnik–Chervonenkis or VC dimension) of the model increases with the increasing 
size of the neural network. However, the same cannot be said for the error rate on 
the test set (thicker, blue curve)! Instead, what you will find is that with increasing 
model complexity, the test error goes through a minimum, and adding more 
neurons to the network will not improve the generalization performance any more. 
Therefore, you would want to steer the size of the neural network to what is labeled 
the optimal range in the preceding figure, which is where the network achieves the 
best generalization performance.
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You can think of it this way. A model of weak complexity (on the far left of the plot) 
is probably too small to really understand the dataset that it is trying to learn, thus 
yielding large error rates on both the training and the test sets. This is commonly 
referred to as underfitting. On the other hand, a model on the far right of the plot is 
probably so complex that it begins to memorize the specifics of each sample in the 
training data, without paying attention to the general attributes that make a sample 
stand apart from the others. Therefore, the model will fail when it has to predict data 
that it is has never seen before, effectively yielding a large error rate on the test set. 
This is commonly referred to as overfitting.

Instead, what you want is to develop a model that neither underfits nor overfits. 
Often this can only be achieved by trial-and-error; that is, by considering the network 
size as a hyperparameter that needs to be tweaked and tuned depending on the exact 
task to be performed.

An MLP learns by adjusting its weights so that when an input sample of class c is 
presented, the c-th node in the output layer is active and all the others are silent. 
MLPs are trained by means of backpropagation, which is an algorithm to calculate 
the partial derivative of a loss function with respect to any synaptic weight or 
neuron bias in the network. These partial derivatives can then be used to update the 
weights and biases in the network in order to reduce the overall loss step-by-step.

A loss function can be obtained by presenting training samples to the network and 
by observing the network's output. By observing which output nodes are active 
and which are silent, we can calculate the relative error between what the output 
layer is doing and what it should be doing (that is, the loss function). We then make 
corrections to all the weights in the network so that the error decreases over time. 
It turns out that the error in the hidden layer depends on the output layer, and the 
error in the input layer depends on the error in both the hidden layer and the output 
layer. Thus, in a sense, the error (back)propagates through the network. In OpenCV, 
backpropagation is used by specifying cv3.ANN_MLP_TRAIN_PARAMS_BACKPROP in 
the training parameters.

Gradient descent comes in two common flavors: In stochastic gradient 
descent, we update the weights after each presentation of a training 
example, whereas in batch learning, we present training examples in 
batches and update the weights only after each batch is presented. In 
both scenarios, we have to make sure that we adjust the weights only 
slightly per sample (by adjusting the learning rate) so that the network 
slowly converges to a stable solution over time.
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An MLP for facial expression recognition
Analogous to Chapter 6, Learning to Recognize Traffic Signs, we will develop a multi-
layer perceptron class that is modeled after the classifier base class. The base 
classifier contains a method for training, where a model is fitted to the training data, 
and for testing, where the trained model is evaluated by applying it to the test data:

from abc import ABCMeta, abstractmethod

class Classifier:
    """Abstract base class for all classifiers"""
    __metaclass__ = ABCMeta

    @abstractmethod
    def fit(self, X_train, y_train):
        pass

    @abstractmethod
    def evaluate(self, X_test, y_test, visualize=False):
        pass

Here, X_train and X_test correspond to the training and the test data, respectively, 
where each row represents a sample and each column is a feature value of this 
sample. The training and test labels are passed as the y_train and y_test vectors, 
respectively.

We thus define a new class, MultiLayerPerceptron, which derives from the 
classifier base class:

class MultiLayerPerceptron(Classifier):

The constructor of this class accepts an array called layer_sizes that specifies the 
number of neurons in each layer of the network and an array called class_labels 
that spells out all available class labels. The first layer will contain a neuron for each 
feature in the input, whereas the last layer will contain a neuron per output class:

    def __init__(self, layer_sizes, class_labels, params=None):
        self.num_features = layer_sizes[0]
        self.num_classes = layer_sizes[-1]
        self.class_labels = class_labels
        self.params = params or dict()

The constructor initializes the multi-layer perceptron by means of an OpenCV 
module called cv2.ANN_MLP:

        self.model = cv2.ANN_MLP()
        self.model.create(layer_sizes)
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For the sake of convenience to the user, the MLP class allows operations on string 
labels as enumerated via class_labels (for example, neutral, happy, and sad). Under 
the hood, the class will convert back and forth from strings to integers and from 
integers to strings, so that cv2.ANN_MLP will only be exposed to integers. These 
transformations are handled by the following two private methods:

def _labels_str_to_num(self, labels):
    """ convert string labels to their corresponding ints """
    return np.array([int(np.where(self.class_labels == l)[0])  
        for l in labels])

def _labels_num_to_str(self, labels):
    """Convert integer labels to their corresponding string  
        names """
    return self.class_labels[labels]

Load and save methods provide simple wrappers for the underlying cv2.ANN_MLP 
class:

def load(self, file):
    """ load a pre-trained MLP from file """
    self.model.load(file)

def save(self, file):
    """ save a trained MLP to file """
    self.model.save(file)

Training the MLP
Following the requirements defined by the Classifier base class, we need to 
perform training in a fit method:

def fit(self, X_train, y_train, params=None):
    """ fit model to data """
    if params is None:
        params = self.params

Here, params is an optional dictionary that contains a number of options relevant 
to training, such as the termination criteria (term_crit) and the learning algorithm 
(train_method) to be used during training. For example, to use backpropagation 
and terminate training either after 300 iterations or when the loss reaches values 
smaller than 0.01, specify params as follows:

params = dict(
    term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),  
    train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP)
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Because the train method of the cv2.ANN_MLP module does not allow  
integer-valued class labels, we need to first convert y_train into "one-hot" code, 
consisting only of zeros and ones, which can then be fed to the train method:

y_train = self._labels_str_to_num(y_train)
y_train = self._one_hot(y_train).reshape(-1,  
    self.num_classes)
    self.model.train(X_train, y_train, None, params=params)

The one-hot code is taken care of in _one_hot:

def _one_hot(self, y_train):
    """Convert a list of labels into one-hot code """

Each class label c in y_train needs to be converted into a self.num_classes-long 
vector of zeros and ones, where all entries are zeros except the c-th, which is a one. 
We prepare this operation by allocating a vector of zeros:

    num_samples = len(y_train)
    new_responses = np.zeros(num_samples * self.num_classes,  
        np.float32)

Then, we identify the indices of the vector that correspond to all the c-th class labels:

    resp_idx = np.int32(y_train + 
        np.arange(num_samples)  self.num_classes)

The vector elements at these indices then need to be set to one:

    new_responses[resp_idx] = 1
    return new_responses

Testing the MLP
Following the requirements defined by the Classifier base class, we need to 
perform training in an evaluate method:

def evaluate(self, X_test, y_test, visualize=False):
    """ evaluate model performance """

Analogous to the previous chapter, we will evaluate the performance of our classifier 
in terms of accuracy, precision, and recall. To reuse our previous code, we again 
need to come up with a 2D voting matrix, where each row stands for a data sample 
in the testing set and the c-th column contains the number of votes for the c-th class.
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In the world of perceptrons, the voting matrix actually has a straightforward 
interpretation: The higher the activity of the c-th neuron in the output layer, the 
stronger the vote for the c-th class. So, all we need to do is to read out the activity of 
the output layer and plug it into our accuracy method:

    ret, Y_vote = self.model.predict(X_test)
    y_test = self._labels_str_to_num(y_test)
    accuracy = self._accuracy(y_test, Y_vote)
    precision = self._precision(y_test, Y_vote)
    recall = self._recall(y_test, Y_vote)

    return (accuracy, precision, recall)

In addition, we expose the predict method to the user, so that it is possible to 
predict the label of even a single data sample. This will be helpful when we perform 
real-time classification, where we do not want to iterate over all test samples, but 
instead only consider the current frame. This method simply predicts the label of an 
arbitrary number of samples and returns the class label as a human-readable string:

def predict(self, X_test):
    """ predict the labels of test data """
    ret, Y_vote = self.model.predict(X_test)

    # find the most active cell in the output layer
    y_hat = np.argmax(Y_vote, 1)

    # return string labels
    return self._labels_num_to_str(y_hat)

Running the script
The MLP classifier can be trained and tested by using the train_test_mlp.py 
script. The script first parses the homebrew dataset and extracts all class labels:

import cv2
import numpy as np

from datasets import homebrew
from classifiers import MultiLayerPerceptron

def main():
    # load training data
    # training data can be recorded using chapter7.py in training 
    # mode
    (X_train, y_train),(X_test, y_test) =
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        homebrew.load_data("datasets/faces_training.pkl",  
        num_components=50, test_split=0.2,  
        save_to_file="datasets/faces_preprocessed.pkl",  
        seed=42)
    if len(X_train) == 0 or len(X_test) == 0:
        print "Empty data"
    raise SystemExit

    # convert to numpy
    X_train = np.squeeze(np.array(X_train)).astype(np.float32)
    y_train = np.array(y_train)
    X_test = np.squeeze(np.array(X_test)).astype(np.float32)
    y_test = np.array(y_test)

    # find all class labels
    labels = np.unique(np.hstack((y_train, y_test)))

We also make sure to provide some valid termination criteria as described above:

    params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300,  
        0.01), train_method=cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,  
        bp_dw_scale=0.001, bp_moment_scale=0.9 )

Often, the optimal size of the neural network is not known a priori, but instead,  
a hyperparameter needs to be tuned. In the end, we want the network that gives 
us the best generalization performance (that is, the network with the best accuracy 
measure on the test set). Since we do not know the answer, we will run a number of 
different-sized MLPs in a loop and store the best in a file called saveFile:

    save_file = 'params/mlp.xml'
    num_features = len(X_train[0])
    num_classes = len(labels)

    # find best MLP configuration
    print "1-hidden layer networks"
    best_acc = 0.0 # keep track of best accuracy
    for l1 in xrange(10):
        # gradually increase the hidden-layer size
        layer_sizes = np.int32([num_features, 
            (l1 + 1) * num_features / 5, 
            num_classes])
    MLP = MultiLayerPerceptron(layer_sizes, labels)
    print layer_sizes
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The MLP is trained on X_train and tested on X_test:

    MLP.fit(X_train, y_train, params=params)
    (acc, _, _) = MLP.evaluate(X_train, y_train)
    print " - train acc = ", acc
    (acc, _, _) = MLP.evaluate(X_test, y_test)
    print " - test acc = ", acc

Finally, the best MLP is saved to file:

    if acc > best_acc:
        # save best MLP configuration to file
        MLP.save(saveFile)
    best_acc = acc

The saved params/mlp.xml file that contains the network configuration and learned 
weights can then be loaded into the main GUI application (chapter7.py) by passing 
loadMLP='params/mlp.xml' to the init_algorithm method of the FaceLayout 
class. The default arguments throughout this chapter will make sure that everything 
works straight out of the box.

Putting it all together
In order to run our app, we will need to execute the main function routine  
(in chapter7.py) that loads the pre-trained cascade classifier and the pre-trained 
multi-layer perceptron, and applies them to each frame of the webcam live stream.

However, this time, instead of collecting more training samples, we will select the 
radio button that says Test. This will trigger an EVT_RADIOBUTTON event, which 
binds to FaceLayout._on_testing, disabling all training-related buttons in the 
GUI and switching the app to the testing mode. In this mode, the pre-trained MLP 
classifier is applied to every frame of the live stream, trying to predict the current 
facial expression.

As promised earlier, we now return to FaceLayout._process_frame:

def _process_frame(self, frame):
    """ detects face, predicts face label in testing mode """

Unchanged from what we discussed earlier, the method begins by detecting faces in 
a downscaled grayscale version of the current frame:

    success, frame, self.head = self.faces.detect(frame)
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However, in the testing mode, there is more to the function:

    # in testing mode: predict label of facial expression
    if success and self.testing.GetValue():

In order to apply our pre-trained MLP classifier to the current frame, we need to 
apply the same preprocessing to the current frame as we did with the entire training 
set. After aligning the head region, we apply PCA by using the pre-loaded basis 
vectors (self.pca_V) and mean values (self.pca_m):

    # if face found: preprocess (align)
    success, head = self.faces.align_head(self.head)
    if success:
        # extract features using PCA (loaded from file)
        X, _, _ = homebrew.extract_features( 
            [head.flatten()], self.pca_V, self.pca_m)

Then, we are ready to predict the class label of the current frame:

    # predict label with pre-trained MLP
    label = self.MLP.predict(np.array(X))[0]

Since the predict method already returns a string label, all that is left to do is to 
display it above the bounding box in the current frame:

    # draw label above bounding box
    cv2.putText(frame, str(label), (x,y-20),  
        cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
    break # need only look at first, largest face

Finally, we are done!

    return frame
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The end result looks like the following:

Although the classifier has only been trained on (roughly) 100 training samples, it 
reliably detects my various facial expressions in every frame of the live stream, no 
matter how distorted my face seemed to be at the moment. This is a good indication 
that the neural network that was learned neither underfits nor overfits the data, since 
it is capable of predicting the correct class labels even for new data samples.

Summary
The final chapter of this book has really rounded up our experience and made  
us combine a variety of our skills to arrive at an end-to-end app that consists of  
both object detection and object recognition. We became familiar with a range  
of pre-trained cascade classifiers that OpenCV has to offer, collected our very  
own training dataset, learned about multi-layer perceptrons, and trained them  
to recognize emotional expressions in faces. Well, at least my face.

The classifier was undoubtedly able to benefit from the fact that I was the only 
subject in the dataset, but with all the knowledge and experience that you have 
gathered with this book, it is now time to overcome these limitations! You can 
start small and train the classifier on images of you indoors and outdoors, at night 
and day, during summer and winter. Or, maybe, you are anxious to tackle a real-
world dataset and be part of Kaggle's Facial Expression Recognition challenge 
(see https://www.kaggle.com/c/challenges-in-representation-learning-
facial-expression-recognition-challenge).

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
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If you are into machine learning, you might already know that there is a variety of 
accessible libraries out there, such as pylearn (https://github.com/lisa-lab/
pylearn2), scikit-learn (http://scikit-learn.org), and pycaffe (http://caffe.
berkeleyvision.org). Deep learning enthusiasts might want to look into Theano 
(http://deeplearning.net/software/theano) or Torch (http://torch.ch). 
Finally, if you find yourself stuck with all these algorithms and no datasets to apply 
them to, make sure to stop by the UC Irvine Machine Learning Repository (http://
archive.ics.uci.edu/ml).

Congratulations! You are now an OpenCV expert.

https://github.com/lisa-lab/pylearn2
https://github.com/lisa-lab/pylearn2
http://scikit-learn.org
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
http://deeplearning.net/software/theano
http://torch.ch
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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harmonics  110
hidden layer  189
high-resolution images dataset

URL, for downloading  83
Histogram of Oriented Gradients  

(HOG)  129, 140-144
HSV color space  11
hue  142
hyperparameter exploration  141

I
image

bilateral filter, used for edge-aware  
smoothing  13

cartoonizing  13
colors, combining with outlines  16, 17
prominent edges, detecting  14, 15
prominent edges, emphasizing  14, 16

image plane  75
image rectification  72, 93, 95
images pair

camera motion, estimating from  85, 86
image statistics  101
information overflow  108
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International Joint Conference on Neural 
Networks (IJCNN)  136

intrinsic camera matrix  76
intrinsic camera parameters

algorithm, initializing  78, 79
camera calibration GUI  77, 78
camera matrix, finding  81, 82
estimating  76, 77
image, collecting  79, 80
object points , collecting  79, 80

K
kernel trick  146
keypoints  48
Kinect depth sensor

accessing  28, 29
Kinect GUI  30, 31

L
Laplacian  15
learner  132
learning rate  191
lookup tables

used, for implementing curve filter  9, 10
loss function  191
Lukas-Kanade method  87

M
mask  4
matching procedure

result  68-70
matplotlib

URL  73, 103
Mayavi

URL  97
mean-shift algorithm

objects, tracking with  125, 126
mean-shift tracking

about  120, 121
bookkeeping, setting up for  124, 125

mean subtraction  141, 183
median blur  13
median filter  1

methods, Saliency class
Saliency.get_proto_objects_map  104
Saliency.get_saliency_map  104
Saliency.plot_power_density  104
Saliency.plot_power_spectrum  104

modules and scripts, app
chapter1  3
chapter1.FilterLayout  3
chapter1.main  3
chapter3  50
chapter3.FeatureMatchingLayout  50
chapter3.main  50
feature_matching  50
feature_matching.FeatureMatching  50
filters  3
filters.Cartoonizer  3
filters.CoolingFilter  3
filters.PencilSketch  3
filters.WarmingFilter  3
gui  50
gui.BaseLayout  3, 50

modules and scripts, Kinect depth sensor
chapter2  27
chapter2.KinectLayout  27
chapter2.main  27
gestures  27
gestures.HandGestureRecognition  27
gui  27
gui.BaseLayout  27

morphological operations  25
multiclass classifier, steps

classifier, scoring  130
classifier, training  130
dataset, preprocessing  130
features extraction  130

multi-layer perceptrons (MLPs)
about  163, 187
deep architectures  189-191
for facial expression recognition 192, 193
script, running  195-197
testing  194, 195
training  193, 194

MultiObjectTracker class
advance_frame method  104
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N
natural scene statistics  112-115
normalization  141, 183
NumPy

URL  73, 103

O
objects

tracking, with mean-shift  
algorithm  125, 126

object tracking  101
one-vs-all strategy  130, 147
one-vs-one strategy  130, 147
OpenCV

about  1
burning, implementing  4, 6
dodging, implementing  4, 6

opencv_contrib
URL  50

OpenKinect
URL  26

optic flow
about  71
used, for point matching  87-91

Oriented FAST and Rotated  
BRIEF (ORB)  56

overfitting  135, 191

P
perceptron  187-189
perspective transform

warping  48
pinhole camera model

about  75, 76
reference link  76

players
tracking, automatically on soccer  

field  122, 123
Point Cloud Library

URL  97
point matching

performing, optic flow used  87-91
performing, rich feature descriptors  

used  86, 87

positive predictive value  154
precision  129, 154, 155
prerequisites, app

main function  104
MultiObjectTracker class  104
Saliency class  104

pre-trained cascade classifiers
about  168
using  168

principal component analysis  
(PCA)  183-187

principal ray  75
process flow  53, 54
proto-objects

bounding boxes, extracting for  124
detecting, in scene  119, 120

pycaffe
reference link  200

pylearn
reference link  200

R
radially averaged power spectrum  

(RAPS)  113
random sample consensus (RANSAC)  62
ratio test  58
read() method  28
recall  129, 156, 157
reconstruct  71
Region of Interest (ROI)  138
regression  131
regularization  135
rich feature descriptors

used, for point matching  86, 87
ridge operator  15

S
Saliency class

methods  104
saliency map

about  101
generating, with spectral residual approach  

115-118
saturation  142
scale invariance  112
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Scale-Invariant Feature Transform  
(SIFT)  56

scene
proto-objects, detecting in  119, 120
reconstructing  95-97

Scharr operator  15
scikit-learn

reference link  200
SciPy package

URL  2
score  132
singular value decomposition (SVD)  91
Sobel operator  15
spatial domain  109
spectral residual approach

about  115
saliency map generating with  115-118

Speeded-Up Robust Features. See  SURF
stochastic gradient descent  191
strawlab, GitHub

reference link  97
structure from motion  71
supervised learning

about  131
classifier base class  135
testing procedure  133-135
training procedure  132, 133

support vector machine (SVM)
about  129, 145, 146
testing  149-151
training  148, 149
using, for Multi-Class classification  146-148

support vectors  146
SURF

about  48, 56, 72, 140-143
used, for detecting features in image  56, 57

T
Theano

reference link  200
thresholding  25
Torch

reference link  200

training set, facial expression recognition
assembling  175
current frame, processing  180
dumping, to file  182, 183
GUI constructor  176, 177
GUI layout  178, 179
screen capture, running  175, 176
training sample, adding  181

triangulation  71, 73, 95
true positives  154

U
UC Irvine Machine Learning Repository

reference link  200
underfitting  191

V
value  142
Vapnik-Chervonenkis (VC) dimension  190
VisPy

URL  97
visual saliency  102-109

W
warming/cooling filter

about  1
color manipulation, via curve shifting  9
color temperature  8
curve filter, implementing with lookup 

tables  9, 10
generating  8
warming/cooling effect, designing  10-12

wxPython
URL  26

wxPython 2.8
graphical user interface, URL  2
URL  50, 73, 103

Z
zero-centering  141
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