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CHAPTER 1

Introduction to Deep Learning

Deep Learning has revolutionized the technology industry. Modern machine transla‐
tion, search engines, and computer assistants are all powered by deep-learning. This
trend will only continue as deep-learning expands its reach into robotics, pharma‐
ceuticals, energy, and all other fields of contemporary technology. It is rapidly becom‐
ing essential for the modern software professional to develop a working knowledge of
the principles of deep-learning.

This book will provide an introduction to the fundamentals of machine learning
through Tensorflow. Tensorflow is Google’s new software library for deep-learning.
Tensorflow makes it straightforward for engineers to design and deploy sophisticated
deep-learning architectures. Readers of “Deep Learning with Tensorflow” will learn
how to use Tensorflow to build systems capable of detecting objects in images, under‐
standing human speech, analyzing video and predicting the properties of potential
medicines. Furthermore, readers will gain an intuitive understanding of Tensorflow’s
potential as a system for performing tensor calclus and will be able to learn how to
use Tensorflow for tasks outside the traditional purview of machine learning.

Furthermore, “Deep Learning with Tensorflow” is one of the first deep-learning book
written for practitioners. It teaches fundamental concepts through practical examples
and builds understanding of machine-learning foundations from the ground up. The
target audience for this book is practicing developers, who are comfortable with
designing software systems, but not necessarily with creating learning systems. Read‐
ers should hold basic familiarity with basic linear algebra and calculus. We will review
the necessary fundamentals, but readers may need to consult additional references to
get details. We also anticipate that out book will prove useful for scientists and other
professionals who are comfortable with scripting, but not necessarily with designing
learning algorithms.
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In the remainder of this chapter, we will introduce readers to the history of deep-
learning, and to the broader impact deep learning has had on the research and com‐
mercial communities. We will next cover some of the most famous applications of
deep-learning. This will include both prominent machine learning architectures and
fundamental deep learning primitives. We will end by giving a brief persepctive of
where deep learning is heading over the next few years before we dive into Tensor‐
flow in the next few chapters.

Machine Learning eats Computer Science
Until recently, software engineers went to school to learn a number of basic algo‐
rithms (graph search, sorting, database queries and so on). After school, these engi‐
neers would go out into real world to apply these algorithms to systems. Most of
todays’s digital economy is built on intricate chains of basic algorithms laboriously
glued together by generations of engineers. Most of these systems are not capable of
adapting. All configurations and reconfigurations have to be performed by highly
trained engineers, rendering systems brittle.

Machine learning promises to change broadly the field of software development by
enabling systems to adapt dynamically. Deployed machine learning systems are capa‐
ble of learning desired behaviors from databases of examples. Furthermore, such sys‐
tems can be regularly retrained as new data comes in. Very sophisticated software
systems, powered by machine learning, are capable of dramatically changing their
behavior without needed major changes to their code (just to their training data).
This trend is only likely to accelerate as machine learning tools and deployment
become easier and easier.

As the behavior of software engineered systems change, the roles of software engi‐
neers will change as well. In some ways, this transformation will be analogous to the
transformation following the development of programming languages. The first com‐
puters were painstakingly programmed. Networks of wires were connected and inter‐
connected. Then punchcards were set-up to enable the creation of new programs
without hardware changes to computers. Following the punchcard era, the first
assembly languages were created. Then higher level languages like Fortran or Lisp.
Succeeding layers of development have created very high level languages like Python,
with intricate ecosystems of pre-coded algorithms. Much modern computer science
even relies on autogenerated code. Modern app developers use tools like Android
Studio to autogenerate much of the code they’d like to make. Each successive wave of
simplification has broadened the scope of computer science by lowering barriers to
entry.

Machine learning promises to further and continue this wave of transformations. Sys‐
tems built on spoken language and natural language understanding such as Alexa and
Siri will likely allow order of magnitude increase in number of basic programmers.
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Furthermore, ML powered systems are likely to become more robust against errors.
Capacity to retrain models will mean that codebases can shrink and that maintaina‐
bility will increase. In short, machine learning is likely to completely upend the role
of software engineers. Today’s programmers will need to understand how machine
learning systems learn, and will need to understand the classes of errors that arise in
common machine learning systems. Furthermore, they will need to understand the
design patterns that underly machine learning systems (very different in style and
form from classical software design patterns). And, they will need to know enough
tensor calculus to understand why a sophisticated deep architecture may be misbe‐
having during learning. It’s not an understatement to say that understanding of
machine learning (theory and practice) will become a fundamental skill that every
computer scientist and software engineer will need to understand for the coming dec‐
ade.

In the remainder of this chapter, we will provide a whirlwind tour of the basics of
modern deep learning. The remainder of this book will go into much greater depth
on all the topics we touch on today.

Deep Learning Primitives
Most deep architectures are built by combining and recombining a limited set of
architectural primitives (neural network layers). In this section, we will provide a
brief overview of the common modules which are found in many deep networks.

Fully Connected Layer
A fully connected network transforms a list of inputs into a list of outputs. The trans‐
formation is called fully connected since any input value can affect any output value.
These layers will have many learnable parameters, even for relatively small inputs, but
they have the large advantage that they assume no structure in the inputs.
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Convolutional Layer
A convolutional network assumes special spatial structure in its input. In particular, it
assumes that inputs that are close to each other in the original input are semantically
related. This assumption makes most sense for images, which is one reason convolu‐
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tional layers have found wide use in deep architectures for image processing.

Recurrent Neural Network (RNN) Layers
Recurrent neural network layers are primities which allow neural networks to learn
from sequences of inputs. This layer assumes that the input evolves from sequence
step to next sequence step following a defined update rule which can be learned from
data. This update rule presents a prediction of the next state in the sequence given all
the states which have come previously.

Deep Learning Primitives | 9



Long Short-Term Memory (LSTM) Cells
The RNNs presented in the previous section are capable of learning arbitrary
sequence update rules in theory. In practice however, such models typically forget the
past rapidly. So RNN layers are not adept at modeling longer term connections from
the past, of the type that commonly arise in language modeling. The Long Short-
Term Memory (LSTM) cell is a modification to the RNN layer that allows for signals
from deeper in the past to make their way to the present.

Deep Learning Zoo
There have been hundreds of different deep learning models that combine the deep
learning primitives presented in the previous section. Some of these architectures
have been historically important. Others were the first presentations of novel designs
that influenced perceptions of what deep learning could do.

In this section, we present a “zoo” of different deep learning architectures that have
proven influential for the research community. We want to emphasize that is an epi‐
sodic history that makes no attempt to be exhaustive. The models presented here are
simply those that caught the authors’ fancy. There are certainly important models in
the literature which have not been presented here.

LeNet
The LeNet architecture is arguably the first prominent “deep” convolutional architec‐
ture. Introduced in 1988, it was used to perform optical character recoginition (OCR)
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for documents. Although it performed its task admirably, the computational cost of
the LeNet was extreme for the architectures available at the time, so the design lan‐
guished in (relative) obscurity for a few decades after its creation.

AlexNet
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was first organ‐
ized in 2010 as a test of the progress made in visual recognition systems. The organiz‐
ers made use of Amazon Mechanical Turk, an online platform to connect workers to
requesters, to catalog a large collection of images with assocated lists of objects
present in the image. The use of Mechanical Turk permitted the curation of a collec‐
tion of data significantly larger than those gathered previously.

The first two years the challenge ran, more traditional machine-learned systems
which relied on systems like HOG and SIFT features (hand-tuned visual feature
extraction methods). In 2012, the AlexNet architecture, based on a modification of
LeNet run on powerful GPUs entered and dominated the challenge with error rates
one half of the nearest entrants. The strength of this victory dramatically galvanized
the (already started) trend towards deep learning architectures in computer vision.
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ResNet
Since 2012, convolutional architectures have consistently won the ILSVRC challenge
(along with many other computer vision challenges). The ResNet architecture, win‐
ner of the ILSVRC 2015 challenge, is particularly notable because it goes much
deeper than previously convolutional architectures such as AlexNet. ResNet architec‐
ture trend up to 130 layers deep, in contrast to the 8-10 layer architectures that won
previously.

Very deep networks historically were challenging to learn; when deep networks go
this far down, they start to run into the vanishing gradients problem. Put less techni‐
cally, signals are attenuated as the progress through the network, leading to dimin‐
ished learning. This attenuation can be explained mathematically, but the effect is that
each additional layer multiplicatively reduces the strength of the signal, leading to
caps on the effective depth of networks. The ResNet introduced an innovation which
controlled this attenuation, the bypass connection. These connections allow signals to
pass through the network undiminished to allow signals from dozens of layers deeper
to communicate with the output.

Neural Captioning Model
As practitioners became more comfortable with the use of deep learning primitives,
they started to experiment with mixing and matching these primitive modules to cre‐
ate higher-order systems that could perform more complex tasks than basic object
detection. Neural captioning systems attempt to automatically generate captions for
the contents of images. They do so by combining a convolutional network, which
extracts information from images, with an LSTM to generate a descriptive sentence
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for the image. The entire system is trained end-to-end. That is, the convolutional net‐
work and the LSTM network are trained together to achieve the desired goal of gen‐
erating descriptive sentences for provided images. This end-to-end training is one of
the key innovations powering modern deep learning systems.

Google Neural Machine Translation
Google’s neural machine translation (Google-NMT) system uses the paradigm of
end-to-end training to build a production translation system, which takes sentences
from the source language directly to the target language. The Google-NTM system
depends on the fundamental building block of the LSTM, which it stacks over a
dozen times and trains on an extremely large dataset of translated sentences. The
final architecture provided for a breakthrough advance in machine-translation by
cutting the gap between human and machine translations by up to 60%. The system is
deployed widely now, and has already made a significant impression on the popular
press.
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One shot models
One shot learning is perhaps the most interesting new idea in machine/deep learning.
Most deep learning techniques typically require very large amounts of data to learn
meangingful behavior. The AlexNet architecture, for example, made use of the large
ILSVRC dataset to learn a visual object detector. However, much work in cognitive
science has indicated that humans need fewer examples to learn complex concepts.
Take the example of baby learning about giraffes for the first time. A baby shown a
single giraffe might be capable of learning to recognize a giraffe shown only one
example of a giraffe.

Recent progress in deep-learning has started to invent architectures capable of similar
learning feats. Given only a few examples of a concept (but given ample sources of
side information), such systems can learn to make meaningful predictions with very
few datapoints. One recent paper (by one of the authors of this book) used this idea to
demonstrate that one-shot learning can function even in contexts babies can’t (such
as drug discovery for example).
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AlphaGo
Go is an ancient board game, widely influential in Asia. Computer Go was a major
challenge for computer science since the techniques that enabled the computer chess
system DeepBlue to beat Garry Kasparov do not scale to Go. Part of the issue is that
Go has a much bigger board than Chess, resulting in far more moves possible per
step. As a result, brute force search with contemporary computer hardware is insuffi‐
cient to solve Go.
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Computer Go was finally solved by AlphaGo from Google Deepmind. AlphaGo
proved capable of defeating one of the world’s strongest Go champions, Lee Sedol in a
5 game match. Some of the key ideas from AlphaGo are the use of deep value net‐
work and a deep policy network. The value network provides an estimate of the value
of a board position. Unlike chess, in Go, it’s very difficult to find the value of a current
board. The value network solves this problem by learning. The policy network on the
other hand helps estimate the best move to take in a current board state. The combi‐
nation of these two techniques with Monte Carlo Tree search (a more classical search
method) helped overcome the large branching factor in Go games.

Generative Adversarial Networks
Generative Adversarial Networks (GANs) are a new type of deep network that uses
two dueling neural networks, the generator and the adversary which duel against one
another. The generator tries to draw samples from a distribution (say tries to generate
realistic looking images of birds). The discriminator then works on differentiating
samples drawn from the generator from true data samples (is a particular bird a real
image or generator-created). The power of GANs is that this “adversarial” training
seems capable of generating image samples of considerably higher fidelity than other
techniques.
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GANs have proven capable of generating very realistic images, and will likely power
the next generation of computer graphics tools. Samples from such systems are now
approaching photorealism (although, many theoretical and practical caveats still
remain to be worked out with these systems).

Neural Turing Machines
Most of the deep-learning systems presented so far have only learned limited (even if
complex) functions. For example, object detection in images, captioning, machine
translation, or Go game-play. But, there’s no fundamental reason a deep-learning
architecture couldn’t learn more sophisticated functions. For example, perhaps we
could have deep architectures that learn general algorithms, concepts such as sorting,
addition, or multiplication. The Neural Turing Machine (NTM) is a first attempt at
making a deep-learning architecture capable of learning arbitrary algorithms. This
architecture adds an external memory bank to an LSTM-like system, to allow the
deep architecture to make use of scratch space to computer more sophisticated func‐
tions. At the moment, NTM-like architectures are still quite limited, and only capable
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of learning simple algorithms. However, as understanding of the design space
improves, this limitation need not hold moving forward.

Deep Learning Frameworks
Researchers have been implementing software packages to facilitate the construction
of neural network (deep learning) architectures for decades. Until the last few years,
these systems were mostly special purpose and only used within an academic group.
This lack of standardized, industrial strength software made it difficult for non-
experts to make use of neural network packages.

This situation has changed dramatically over the last few years. Google implemented
the DistBelief system in 2012 and made use of it to construct and deploy many sim‐
pler deep learning architectures. The advent of DistBelief, and similar packages such
as Caffe, Theano, Torch and Keras, MxNet and so on have widely spurred industry
adoption.

Tensorflow draws upon this rich intellectual history, and builds upon some of these
packages (Theano in particular) for design principles. Tensorflow (and Theano) in
particular use the concept of tensors as the fundamental underlying primitive power‐
ing deep-learning systems. This focus on tensors distinguishes these packages from

18 | Chapter 1: Introduction to Deep Learning



systems such as DistBelief or Caffe which don’t allow the same flexibility for building
sophisticated models.

While the rest of this book will focus on Tensorflow, understanding the underlying
principles should allow readers to take the lessors learned and apply them with little
difficulty to alternate deep learning frameworks. While the details certainly differ,
most modern frameworks share the same basis as tensor calculus engines.
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Dynamic Graphs

One of the major current weaknesses of TensorFlow is that con‐
structing a new deep learning architecture is relatively slow (on the
order of multiple seconds to initialize an architecture). As a result,
it’s not convenient to construct some sophisticated deep architec‐
tures which change their structure on the fly in TensorFlow. One
such architecture is the TreeLSTM, which uses the syntactic parse
tree of English sentences to perform natural language understand‐
ing. Sinch each sentence has a different parse tree, each sentence
requires a slightly different architecture.

While such models can be implemented in Tensorflow, doing so
requires significant ingenuity due to the limitations of the current
Tensorflow API. New frameworks such as Chainer, DyNet, and
PyTorch promise to remove these barriers by making the construc‐
tion of new architectures light-weight enough so that models like
the TreeLSTM can be constructed easily. It’s likely that improving
support for such models will be a major focus for TensorFlow
developers moving forward.
One takeaway from this discussion is that progress in the deep
learning framework space is rapid, and today’s novel system can be
tomorrow’s old news. However, the fundamental principles of the
underlying tensor calculus date back centuries, and will stand read‐
ers in good stead regardless of future changes in programming
models. This book will emphasize using TensorFlow as a vehicle for
developing an intuitive knowledge of the underlying tensor calcu‐
lus.
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Empirical Learning
Machine learning (and deep learning in particular), like much of computer science is
a very empirical discipline. It’s only really possible to understand deep learning
through significant practical experience. For that reason, we’ve included a number of
in-depth case-studies throughout the remainder of this book. We encourage readers
to dive deeply into these examples and to get their hands dirty experimenting with
their own ideas using Tensorflow. It’s never enough to understand algorithms only
theoretically.
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CHAPTER 2

Introduction to Tensorflow Primitives

This chapter aims to introduce readers to fundamental aspects of Tensorflow. In par‐
ticular, readers will learn how to perform basic computations in Tensorflow. A large
part of this chapter will be spent introducing readers to the concept of tensors, and
with how tensors are represented and manipulated within tensorflow. This discussion
will necessitate a brief overview of some of the mathematical concepts that underly
tensorial mathematics. In particular, we’ll briefly review basic linear algebra and
demonstrate how to perform basic linear algebraic operations with Tensorflow.

We’ll follow this discussion of basic mathematics with a discussion of the differences
between declarative and imperative programming styles. Unlike many programming
languages, Tensorflow is largely declarative. Calling a tensorflow operation adds a
description of a computation to Tensorflow’s “computation graph”. In particular, ten‐
sorflow code “describes” computations and doesn’t actually perform them. In order to
run Tensorflow code, users need to create tf.Session objects. We introduce the con‐
cept of sesions and describe how users can use them to perform computations in Ten‐
sorflow.

We end the chapter by discussing the notion of variables. Variables in tensorflow hold
tensors and allow for stateful computation that modifies variables to occur. We
demonstrate how to create variables and update their values via Tensorflow.

Introducing Tensors
Tensors are fundamental mathematical constructs in fields such as physics and engi‐
neering. Historically however, tensors have made fewer inroads in computer science,
which has traditionally been more associated with discrete mathematics and logic.
This state of affairs has started to change significantly with the advent of machine
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learning and its foundation on continuous, vectorial mathematics. Modern machine
learning is founded upon the manipulation of tensors and the calculus of tensors.

Scalars, Vectors, and Matrices
To start, we will give some simple examples of tensors that readers will likely be famil‐
iar with. The simplest example of a tensor is a scalar, a single constant value drawn
from the real numbers (Recall that the real numbers are decimal numbers of arbitrary
precision, with both positive and negative numbers permitted). Mathematically, we
denote the real numbers by the ℝ. More formally, we call a scalar a 0-tensor.

Aside on fields

Mathematically sophisticated readers will protest that it’s entirely
meaningful to define tensors based on the complex numbers, or
with binary numbers. More generally, it’s sufficient that the num‐
bers come from a field: a mathematical collection of numbers
where 0, 1, addition, multiplication, subtraction, and division are
defined. Common fields include the real numbers ℝ, the rational
numbers ℚ, the complex numbers ℂ, and finite fields such as ℤ2.
For simplicity, in much of the discussion, we will assume real val‐
ued tensors, but substituting in values from other fields is entirely
reasonable.

If scalars are 0-tensors, what constitutes a 1-tensor? Formally, speaking, a 1-tensor is
a vector; a list of real numbers. Traditional, vectors are written as either column vec‐
tors

a
b

or as row vectors

a b

Notationally, the collection of all column vector of length 2 is denoted ℝ2, 1 while set
of all row vectors of length 2 is ℝ1, 2. More computationally, we might saw that the
shape of a column vector is 2, 1 , while the shape of a row vector is 1, 2 . This notion
of tensor shape is quite important for understanding tensorflow computations, and
we will return to it later on in this chapter. If we don’t wish to specify whether a vec‐
tor is a row vector or column vector, we can say it comes from the set ℝ2 and has
shape 2 .
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One of the simplest use of vectors is to represent coordinates in the real world. Sup‐
pose that we decide on a origin point (say the position where you’re current stand‐
ing). Then any position in the world can be represented by three displacement values
from your current position (left-right displacement, front-back displacement, up-
down displacement). Thus, the set of vectors (vector space) ℝ3 can represent any
position in the world. (Savvy readers might protest that the earth is spherical, so our
representation doesn’t match the natural human notion of direction, but it will suffice
for a flat-world like a video game).

For a different example, let’s suppose that a cat is described by its height, weight, and
color. Then a video game cat can be represented a vector

height
weight
color

in the space ℝ3. This type of representation is often called a featurization. That is, a
featurization is a representation of a real-world entity as a vector (or more generally
as a tensor). Nearly all machine learning algorithms operate on vectors or tensors.
Thus the process of featurization is a critical part of any machine learning pipeline.
Often, the featurization system can be the most sophisticated part of a machine learn‐
ing system. Suppose we have a benzene molecule
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How can we transform this molecule into a vector suitable for a query to a machine
learning system? There are a number of potential solutions to this problem, most of
which exploit the idea of marking the presence of subfragments of the molecule. The
presence or absence of specific subfragments is marked by setting indices in a binary
vector (in 0, 1 n) to 1/0 respectively.

Note that this process sounds (and is) fairly complex. In fact, one of the most chal‐
lenging aspects of building a machine learning system is deciding how to transform
the data in question into a tensorial format. For some types of data, this transforma‐
tion is obvious. For others (such as molecules), the transformation required can be
quite subtle. For the practitioner of machine learning, it isn’t usually necessary to
invent a new featurization method since the research literature is extensive, but it will
often be necessary to read the scholarly literature to understand best practices for
transforming a new data stream.

Now that we have established that 0-tensors are scalars (ℝ) and that 1-tensors are
vectors (ℝn), what is a 2-tensor? Traditionally, a 2-tensor is referred to as a matrix

a b
c d

The matrix above has two rows and two columns. The set of all such matrices is
referred to as ℝ 2, 2 . Returning to our notion of tensor shape above, the shape of this
matrix is 2, 2 . Matrices are traditionally used to represent transformations of vec‐
tors. For example, the action of rotating a vector in the plane. by angle α can per‐
formed by the matrix

Rα =
cos α − sin α
sin α cos α

26 | Chapter 2: Introduction to Tensorflow Primitives



Matrix Mathematics
There are a number of standard mathematical operations on matrices that machine
learning programs use repeatedly. We will briefly review some of the most fundamen‐
tal of these operations. The matrix transpose is a convenient operation that flips a
matrix around its diagonal. Mathematically, suppose A is a matrix, then the transpose
matrix AT is defined by equation Ai, j

T = A j, i. For example, the transpose of the rota‐
tion matrix Rα above is

Rα
T =

cos α sin α
− sin α cos α

Addition of matrices is only defined for matrices of the same shape and is simply per‐
formed elementwise. For example

1 2
3 4

+
1 1
1 1

=
2 3
4 5

Similarly, matrices can be multiplied by scalars. In this case, each element of the
matrix is simply multiplied elementwise by the scalar in question.

2 ·
1 2
3 4

=
2 4
6 8

Furthermore, it is sometimes possible to multiply two matrices directly. This notion
of matrix multiplication is probably the most important mathematical concept associ‐
ated with matrices. Note specifically that matrix multiplication is not the same notion
as element-wise multiplication of matrices. Rather, suppose we have a matrix A of
shape m, n  with m rows and n columns. Then, A can be multiplied on the right by
any matrix B of shape n, k  (where k is any positive integer) to form matrix AB of
shape m, k .

This description hides a number of subtleties. Note first that matrix multiplication is
not commutative. That is, AB ≠ BA in general. In fact, AB can exist when BA is not
meaningful. Suppose for example A is a matrix of shape 2, 3  and B is a matrix of
shape 3, 4 . Then AB is a matrix of shape 2, 4 . However BA is not defined since
4 ≠ 2. As another subtlety, note that a matrix of shape m, n  can be multiplied on the
right by a matrix of shape n, 1 . However, a matrix of shape n, 1  is simply a row
vector! So, it is meaningful to multiply matrices by vectors. Matrix-vector multiplica‐
tion is one of the fundamental building blocks of common machine learning systems.
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We will provide one final analogy before jumping into a mathematical definition.
One of the nicest properties of standard multiplication is that it is a linear operator.
That is, if a, b, c, d are all real numbers, then

a b · c + d = b · ac + d

Now suppose that instead, A, C, D are now matrices where C, D are of the same size
and it is meaningful to multiply AC or D (b remains a real number). Then matrix
multiplication is a linear operator.

A b · C + D = b · AC + D

In fact, it can be shown that notion of linearity completely defines matrix multiplica‐
tion mathematically. For a computer science analogy, think of linearity as a property
demanded by an abstract method in a superclass. Then standard multiplication and
matrix multiplication are concrete implementations of that abstract method for dif‐
ferent subclasses (respectively real numbers and matrices). For the actual mathemati‐
cal description, suppose A is a matrix of shape m, n  and B is a matrix of shape n, k .
Then AB is defined by

AB i, j = ∑
k

Ai, kBk, j

Tensors
In the previous sections, we introduced the notion of scalars as 0-tensors, vectors as
1-tensors, and matrices as 2-tensors. What then is a a 3-tensor? Before passing to a
general definition, it can help to think about the commonalities between scalars, vec‐
tors, and matrices. Scalars are single numbers. Vectors are lists of numbers. To pick
out any particular element of a vector requires knowing its index. Hence, we need 1
index element into the vector (thus a 1-tensor). Matrices are tables of numbers. To
pick out any particular element of a matrix requires knowing its row and column.
Hence, we need 2 index elements (thus a 2-tensor). It follows naturally that a 3-tensor
is a set of numbers where there are 3 required indices. It can help to think of a 3-
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tensor as a rectangular prism of numbers

The 3-tensor T displayed above is of shape N, N, N . An arbitrary element of the ten‐
sor would then be selected by specifying i, j, k  as indices.

There is a linkage between tensors and shapes. A 1-tensor has a shape of length 1, a 2-
tensor a shape of length 2, and a 3-tensor of length 3. The astute reader might protest
that this contradicts our earlier discussion of row and column vectors. By our defini‐
tion, a row vector has shape n, 1 . Wouldn’t that make a row vector a 2-tensor (or a
matrix)? This is exactly what has happened. Recall that a vector which is not specified
to be a row vector or column vector has shape n . When we specify that a vector is a
row vector or a column vector, we in fact specify a method of transforming the
underlying vector into a matrix. This type of dimension expansion is a common trick
in tensor manipulation, and as we will see later in the chapter, amply supported
within tensorflow.

Note that another way of thinking about a 3-tensor is as a list of matrices all with the
same shape. Suppose that W is a matrix with shape n, n . Then the tensor
Ti jk = W1,⋯, Wn  consists of n copies of the matrix W stacked back-to-back.

Note that a black and white image can be represented as a 2-tensor. Suppose we have
a 224x224 pixel black and white image. Then, pixel i, j  is 1/0 to encode a black/
white pixel respectively. It follows that a black and white image can be represented as
a matrix of shape 224, 224 . Now, consider a 224x224 color image. The color at a par‐
ticular is typically represented by 3 separate RGB channels. That is, pixel i, j  is rep‐
resented as a tuple of numbers r, g, b  which encode the amount of red, green, and
blue at the pixel respectively. Each of r, g, b is typically an integer from 0 to 255. It
follows now that the color image can be encoded as a 3-tensor of shape 224, 224, 3 .
Continuing the analogy, consider a color video. Suppose that each frame of the video
is a 224x224 color image. Then a minute of video (at 60 fps) would be a 4-tensor of
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shape 224, 224, 3, 3600 . Continuing even further, a collection of 10 such videos
would then form a 5-tensor of shape 10, 224, 224, 3, 3600 . In general, tensors pro‐
vide for a convenient representation of numeric data. In practice, it’s not common to
see tensors of higher order than 5-tensors, but it’s good to design any tensor software
to allow for arbitrary tensors since intelligent users will always come up with use
cases designers don’t consider.

Tensors in physics.
Tensors are used widely in physics to encode fundamental physical quantities. For
example, the stress tensor is commonly used in material science to define the stress at
a point within a material. Mathematically, the stress tensor is a 2-tensor of shape (3,
3)

σ =

σ1, 1 σ1, 2 σ1, 3

σ2, 1 σ2, 2 σ2, 3

σ3, 1 σ3, 2 σ3, 3

Then, suppose that n is a vector of shape (3) that encode a direction. The stress Tn in
direction n is specified by the vector Tn = T · n (note the matrix-vector multiplica‐
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tion). This relationship is depicted pictorially below

As another physical example, Einstein’s field equations of general relativity are com‐
monly expressed in tensorial format

Rμν − 1
2Rgμν + Λgμν = 8πG

c4 Tμν

Here Rμν is the Ricci curvature tensor, gμν is the metric tensor, Tμν is the stress-energy
tensor, and the remaining quantities are scalars. Note however, that there’s an impor‐
tant subtletly distinguishing these tensors and the other tensors we’ve discussed pre‐
viously. Quantities like the metric tensor provide a separate tensor (in the sense of an
array of numbers) for each point in space-time (mathematically, the metric tensor is a
tensor field). The same holds for the stress tensor discussed above, and for the other
tensors in these equations. At a given point in space-time, each of these quantities
becomes a symmetric 2-tensor of shape 4, 4  using our notation.
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Part of the power of modern tensor calculus systems such as Tensorflow is that some
of the mathematical machinery long used for classical physics can now be adapted to
solve applied problems in image processing, and language understanding. At the
same time, today’s Tensor calculus systems are still limited compared with the mathe‐
matical machinery of physicists. For example, there’s no simple way to talk about a
quantity such as the metric tensor using Tensorflow yet. We hope that as tensor calcu‐
lus becomes more fundamental to computer science, the situation will change and
that systems like Tensorflow will serve as a bridge between physical world and the
computational world.

Mathematical Asides
The discussion so far in this chapter has introduced tensors informally via example
and illustration. In our definition, a tensor is simply an array of numbers. It’s often
convenient to view a tensor as a function instead. The most common definition intro‐
duces a tensor as a multilinear function from a product of vector spaces to the real
numbers.

T :V1 × V2 ×⋯Vn ℝ

This definition uses a number of terms we haven’t introduced yet. A vector space is
simply a collection of vectors. We’ve seen a few examples of vector spaces such as ℝ3

or generally ℝn. We won’t lose any generality by holding that V i = ℝ
di. Recall that a

function f  is linear if f x + y = f x + f y  and f cx = c f x . A multilinear func‐
tion is simply a function which is linear in each argument. This function can be
viewed as assigning individual entries of a multidimensional array, when provided
indices into the array as arguments.

We won’t use this more mathematical definition much in this book, but it serves as a
useful bridge to connect the deep learning concepts we will learn about with the cen‐
turies of mathematical research that have been undertaken on tensors by the physics
and mathematics communities.

32 | Chapter 2: Introduction to Tensorflow Primitives



Covariance and Contravariance.

Our definition here has swept many details under the rug which
would need to be carefully attended to for a formal treatment. For
example, we don’t touch upon the notion of covariant and contra‐
variant indices here. What we call a n-tensor is better described as a
p, q -tensor where \(\n = p + q \) and \(\p\) is the number of con‐

travariant indices, and q the number of covariant indices. Matrices
are 1, 1 -tensors for example. As a subtlety, there are 2-tensors
which are not matrices! We won’t dig into these topics carefully
here since they don’t crop up much in machine learning, but we
encourage discerning readers to understand how covariance and
contravariance affect the machine learning systems they construct.

Basic Computations in Tensorflow
We’ve spent the last sections covering the mathematical definitions of various tensors.
It’s now time to cover how to create an manipulate tensors using Tensorflow. For this
section, we recommend readers follow along using an interactive python session
(with IPython). Many of the basic Tensorflow concepts are easiest to understand after
experimenting with them directly.

When experimenting with Tensorflow interactively, it’s convenient to use tf.Interac
tiveSession(). Invoking this statement within IPython will make Tensorflow behave
almost imperatively, allowing beginners to play with tensors much more easily. We
will enter into an in-depth discussion of imperative vs. declarative style and of ses‐
sions later in this chapter.

>>> import tensorflow as tf
>>> tf.InteractiveSession()
<tensorflow.python.client.session.InteractiveSession>

The rest of the code in this section will assume that an interactive session has been
loaded.

Initializing Constant Tensors.
Until now, we’ve discussed tensors as abstract mathematical entities. However, a sys‐
tem like Tensorflow must run on a real computer, so any tensors must live on com‐
puter memory in order to be useful to computer programmers. Tensorflow provides a
number of functions which instantiate basic tensors in memory. The simplets of these
are tf.zeros() and tf.ones(). tf.zeros() takes a tensor shape (represented as a
python tuple) and returns a tensor of that shape filled with zeros. Let’s try invoking
this command in the shell.

>>> tf.zeros(2)
<tf.Tensor 'zeros:0' shape=(2,) dtype=float32>
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It looks like Tensorflow returns a reference to the desired tensor rather than the value
of the tensor itself. To force the value of the tensor to be returned, we will use the
method tf.Tensor.eval() of tensor objects. Since we have initialized tf.Interacti
veSession(), this method will return the value of the zeros tensor to us.

>>> a = tf.zeros(2)
>>> a.eval()
array([ 0.,  0.], dtype=float32)

Note that the evaluated value of the tensorflow tensor is itself a python object. In par‐
ticular, a.eval() is a numpy.ndarray object. Numpy is a sophisticated numerical sys‐
tem for python. We won’t attempt an in-depth discussion of Numpy here beyond
noting that Tensorflow is designed to be compatible with Numpy conventions to a
large degree.

We can call tf.zeros() and tf.ones() to create and display tensors of various sizes.

>>> a = tf.zeros((2, 3))
>>> a.eval()
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]], dtype=float32)
>>> b = tf.ones((2,2,2))
>>> b.eval()
array([[[ 1.,  1.],
        [ 1.,  1.]],

       [[ 1.,  1.],
        [ 1.,  1.]]], dtype=float32)

To provide a crude analogy, tf.zeros() and tf.ones() are like the C function mal
loc() which allocates memory for programs to work in. This analogy doesn’t stretch
far however, since Tensorflow doesn’t often compute on CPU memory. (Most heavy-
duty Tensorflow systems perform computations on GPU memory. We won’t get into
the details of how Tensorflow manages various computing devices here).

What if we’d like a tensor filled with some quantity besides 0/1? The tf.fill()
method provides a nice shortcut for doing so.

>>> b = tf.fill((2, 2), value=5.)
>>> b.eval()
array([[ 5.,  5.],
       [ 5.,  5.]], dtype=float32)

tf.constant is another function, similar to tf.fill which allows for construction of
Tensors which shouldn’t change during the program execution.

>>> a = tf.constant(3)
>>> a.eval()
3
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Sampling Random Tensors
Although working with constant tensors is convenient for testing ideas, it’s much
more common to initialize tensors with random values. The most common way to do
this is to sample each entry in tensor from a random distribution. tf.random_normal
allows for each entry in a tensor of specified shape to be sampled from a Normal dis‐
tribution of specified mean and standard deviation.

Symmetry Breaking

Many machine learning algorithms learn by performing updates to
a set of tensors that hold weights. These update equations usually
satisfy the property that weights initialized at the same value will
continue to evolve together. Thus, if the initial set of tensors is ini‐
tialized to a constant value, the model won’t be capable of learning
much. Fixing this situation requires symmetry breaking. The easiest
way of breaking symmetry is to sample each entry in a tensor ran‐
domly.

>>> a = tf.random_normal((2, 2), mean=0, stddev=1)
>>> a.eval()
array([[-0.73437649, -0.77678096],
       [ 0.51697761,  1.15063596]], dtype=float32)

One thing to note is that machine learning systems often make use of very large ten‐
sors which often have tens of millions of parameters. At these scales, it becomes com‐
mon to sample random values from Normal distributions which are far from the
mean. Such large samples can lead to numerical instability, so it’s common to sample
using tf.truncated_normal() instead of tf.random_normal(). This function
behaves the same as tf.random_normal() in terms of API, but drops and resamples
all values more than 2 standard deviations from the mean.

tf.random_uniform() behaves like tf.random_normal() except for the fact that ran‐
dom values are sampled from the Uniform distribution over a specified range.

>>> a = tf.random_uniform((2, 2), minval=-2, maxval=2)
>>> a.eval()
array([[-1.90391684,  1.4179163 ],
       [ 0.67762709,  1.07282352]], dtype=float32)

Tensor Addition and Scaling
Tensorflow makes use of python’s operator overloading to make basic tensor arith‐
metic straightforward with standard python operators.

>>> c = tf.ones((2, 2))
>>> d = tf.ones((2, 2))
>>> e = c + d
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>>> e.eval()
array([[ 2.,  2.],
       [ 2.,  2.]], dtype=float32)
>>> f = 2 * e
>>> f.eval()
array([[ 4.,  4.],
       [ 4.,  4.]], dtype=float32)

Tensors can also be multiplied this way. Note however that this is element wise multi‐
plication and not matrix multiplication.

>>> c = tf.fill((2,2), 2.)
>>> d = tf.fill((2,2), 7.)
>>> e = c * d
>>> e.eval()
array([[ 14.,  14.],
       [ 14.,  14.]], dtype=float32)

Matrix Operations
Tensorflow provides a variety of amenities for working with matrices. (Matrices by
far are the most common type of tensor used in practice). In particular, Tensorflow
provides shortcuts to make certain types of commonly used matrices. The most
widely used of these is likely the identity matrix. Identity matrices are square matrices
which are 0 everywhere except on the diagonal, where they are 1. tf.eye() allows for
fast construction of identity matrices of desired size.

>>> a = tf.eye(4)
>>> a.eval()
array([[ 1.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]], dtype=float32)

Diagonal matrices are another common type of matrix. Like identity matrices, diago‐
nal matrices are only nonzero along the diagonal. Unlike the diagonal matrices, they
may take arbitrary values along the diagonal. Let’s construct a diagonal matrix with
ascending values along the diagonal. To start, we’ll need a method to construct a vec‐
tor of ascending values in Tensorflow. The easiest way for doing is invoking
tf.range(start, limit, delta). The resulting vector can then be fed to
tf.diag(diagonal) which will construct a matrix with the specified diagonal.

>>> r = tf.range(1, 5, 1)
>>> r.eval()
array([1, 2, 3, 4], dtype=int32)
>>> d = tf.diag(r)
>>> d.eval()
array([[1, 0, 0, 0],
       [0, 2, 0, 0],
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       [0, 0, 3, 0],
       [0, 0, 0, 4]], dtype=int32)

Now suppose that we have a specified matrix in Tensorflow. How do we compute the
matrix transpose? tf.matrix_transpose() will do the trick nicely.

>>> a = tf.ones((2, 3))
>>> a.eval()
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.]], dtype=float32)
>>> at = tf.matrix_transpose(a)
>>> at.eval()
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]], dtype=float32)

Now, let’s suppose we have a pair of matrices we’d like to multiply using matrix multi‐
plication. The easiest way to do so is by invoking tf.matmul().

>>> a = tf.ones((2, 3))
>>> a.eval()
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.]], dtype=float32)
>>> b = tf.ones((3, 4))
>>> b.eval()
array([[ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.]], dtype=float32)
>>> c = tf.matmul(a, b)
>>> c.eval()
array([[ 3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.]], dtype=float32)

Conscientious readers can check that this answer matches the mathematical defini‐
tion of matrix multiplication we provided above. ==== Tensor types Readers may
have noticed the dtype notation in the examples above. Tensors in tensorflow come
in a variety of types such as tf.float32, tf.float64, tf.int32, tf.int64. It’s possi‐
ble to to create tensors of specified types by setting dtype in tensor construction
functions. Furthermore, given a tensor, it’s possible to change its type using casting
functions such as tf.to_double(), tf.to_float(), tf.to_int32(), tf.to_int64()
and others.

>>> a = tf.ones((2,2), dtype=tf.int32)
>>> a.eval()
array([[0, 0],
       [0, 0]], dtype=int32)
>>> b = tf.to_float(a)
>>> b.eval()
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)
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Tensor Shape Manipulations
Within Tensorflow, tensors are just collections of numbers written in memory. The
different shapes are views into the underlying set of numbers that provide different
ways of interacting with the set of numbers. At different times, it can be useful to view
the same set of numbers as forming tensors with different shapes. tf.reshape()
allows tensors to be converted into tensors with different shapes.

>>> a = tf.ones(8)
>>> a.eval()
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.], dtype=float32)
>>> b = tf.reshape(a, (4, 2))
>>> b.eval()
array([[ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.],
       [ 1.,  1.]], dtype=float32)
>>> c = tf.reshape(a, (2, 2, 2))
>>> c.eval()
array([[[ 1.,  1.],
        [ 1.,  1.]],

       [[ 1.,  1.],
        [ 1.,  1.]]], dtype=float32)

Notice how we can turn the original 1-tensor into a 2-tensor and then into a 3-tensor
with tf.reshape. While all necessary shape manipulations can be performed with
tf.reshape(), sometimes it can be convenient to perform simpler shape manipula‐
tions using functions such as tf.expand_dims or tf.squeeze. tf.expand_dims adds
an extra dimension to a tensor of size 1. It’s useful for increasing the rank of a tensor
by one (for example, when converting a vector into a row vector or column vector).
tf.squeeze on the other hand removes all dimensions of size 1 from a tensor. It’s a
useful way to convert a row or column vector into a flat vector.

This is also a convenient opportunity to introduce the tf.Tensor.get_shape()
method. This method lets users query the shape of a tensor.

>>> a = tf.ones(2)
>>> a.get_shape()
TensorShape([Dimension(2)])
>>> a.eval()
array([ 1.,  1.], dtype=float32)
>>> b = tf.expand_dims(a, 0)
>>> b.get_shape()
TensorShape([Dimension(1), Dimension(2)])
>>> b.eval()
array([[ 1.,  1.]], dtype=float32)
>>> c = tf.expand_dims(a, 1)
>>> c.get_shape()
TensorShape([Dimension(2), Dimension(1)])
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>>> c.eval()
array([[ 1.],
       [ 1.]], dtype=float32)
>>> d = tf.squeeze(b)
>>> d.get_shape()
TensorShape([Dimension(2)])
>>> d.eval()
array([ 1.,  1.], dtype=float32)

Introduction to Broadcasting
Broadcasting is a term (introduced by Numpy) for when a tensor systems matrices
and vectors of different sizes can be added together. These rules allow for convenien‐
ces like adding a vector to every row of a matrix. Broadcasting rules can be quite
complex, so we will not dive into a formal discussion of the rules. It’s often easier to
experiment and see how the broadcasting works.

>>> a = tf.ones((2, 2))
>>> a.eval()
array([[ 1.,  1.],
       [ 1.,  1.]], dtype=float32)
>>> b = tf.range(0, 2, 1, dtype=tf.float32)
>>> b.eval()
array([ 0.,  1.], dtype=float32)
>>> c = a + b
>>> c.eval()
array([[ 1.,  2.],
       [ 1.,  2.]], dtype=float32)

Notice that the vector b is added to every row of matrix a above. Notice another sub‐
tlety that we explicitly set the dtype for b above. If the dtype isn’t set, Tensorflow will
report a type error. Let’s see what would have happened if we hadn’t set the dtype
above.

>>> b = tf.range(0, 2, 1)
>>> b.eval()
array([0, 1], dtype=int32)
>>> c = a + b
ValueError: Tensor conversion requested dtype float32 for Tensor with dtype int32: 'Tensor("range_2:0", shape=(2,), dtype=int32)

Unlike languages like C, Tensorflow doesn’t perform implicit type casting under the
hood. It’s often necessary to perform explicit type casts when doing arithmetic opera‐
tions. === Imperative and Declarative Programming Most situations in computer
science involve imperative programming. Consider a simple python program

>>> a = 3
>>> b = 4
>>> c = a + b
>>> c
7
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This program, when translated into machine code, instructs the machine to perform
a primitive addition operation on two registers, one which contains 3, and the other
which contains 4. The result is then 7. This style of programming is called imperative
since programming tells the computer explicitly which actions to perform.

An alternate style of programming is declarative. In a declarative system, a computer
program is a high level description of the computation which is to be performed. It
does not instruct the computer exactly how to perform the computation. Consider
the Tensorflow equivalent of the program above.

>>> a = tf.constant(3)
>>> b = tf.constant(4)
>>> c = a + b
>>> c
<tf.Tensor 'add_1:0' shape=() dtype=int32>
>>> c.eval()
7

Note that the value of c isn’t 7! Rather, it’s a Tensor. The code above specifies the com‐
putation of adding two values together to create a new Tensor. The actual computa‐
tion isn’t executed until we call c.eval(). In the sections before, we have been using
the eval() method to simulate imperative style in Tensorflow since it can be chal‐
lenging to understand declarative programming at first.

Note that declarative programming is by no means an unknown concept to software
engineeering. Relational databases and SQL provide an example of a widely used
declarative programming system. Commands like SELECT and JOIN may be imple‐
mented in an arbitrary fashion under the hood so long as their basic semantics are
preserved. Tensorflow code is best thought of as analogous to a SQL program; the
Tensorflow code specificies a computation to be performed, with details left up to
Tensorflow. The Tensorflow engineers exploit this lack of detail under the hood to
tailor the execution style to the underlying hardward, be it CPU, GPU, or mobile
device.

However, it’s important to note that the grand weakness of declarative programming
is that the abstraction is quite leaky. For example, without detailed understanding of
the underlying implementation of the relational database, long SQL programs can
become unbearably inefficient. Similarly, large Tensorflow programs implemented
without understanding of the underlying learning algorithms are unlikely to work
well. In the rest of this section, we will start paring back the abstraction, a process we
will continue through the rest of the book.

Tensorflow Graphs
Any computation in Tensorflow represented as an instance of a tf.Graph object.
Such as graph consists of a set of tf.Tensor objects and tf.Operation objects. We
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have covered tf.Tensor in some detail, but what are tf.Operation objects? We have
seen them under the hood over the course of this chapter. A call to an operation like
tf.matmul creates a tf.Operation under the hood to mark the need to perform the
matrix multiplication operation.

When a tf.Graph is not explicitly specified, Tensorflow adds tensors and operations
to a hidden global tf.Graph instance. This instance can be fetched by
tf.get_default_graph().

>>> tf.get_default_graph()
<tensorflow.python.framework.ops.Graph>

It is possible to specify that Tensorflow operations be performed in graphs other than
the default. We will demonstrate examples of this in future chapters. ==== Tensor‐
flow Sessions In Tensorflow, a tf.Session() object stores the context under which a
computation is performed. At the beginning of this chapter, we used tf.Interactive
Session() to set up an environment for all Tensorflow computations. This call cre‐
ated a hidden global contex for all computations performed. We then used
tf.Tensor.eval() to execute our declaratively specified computations. Underneath
the hood, this call is evaluated in context of this hidden global tf.Session. It is of
course (and often necessary) to use an explicit context for a computation instead of a
hidden context.

>>> sess = tf.Session()
>>> a = tf.ones((3, 3))
>>> b = tf.matmul(a, a)
>>> b.eval(session=sess)
array([[ 2.,  2.],
       [ 2.,  2.]], dtype=float32)

This code evaluates b in the context of sess instead of the hidden global session. In
fact, we can make this more explicit with an alternate notation

>>> sess.run(b)
array([[ 2.,  2.],
       [ 2.,  2.]], dtype=float32)

In fact, calling b.eval(session=sess) is just syntactic sugar for calling sess.run(b)
under the hood.

This entire discussion may smack a bit of sophistry. What does it matter which ses‐
sion is in play given that all the different methods seem to return the same answer.
Explicit sessions don’t really show their value until we start to perform computations
which have state, a topic we will discuss in the following section.
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Tensorflow Variables
All the code that we’ve dealt with in this section has dealt in constant tensors. While
we could combine and recombine these tensors in any way we chose, we could never
change the value of tensors themselves (only create new tensors with new values).
The style of programming so far has been functional and not stateful. While func‐
tional computations are very useful, machine learning often depends heavily on state‐
ful computations. Learning algorithms are essentially rules for updating stored
tensors to explain provided data. If it’s not possible to update these stored tensors, it
would be hard to learn.

The tf.Variable() class provides a wrapper around tensors which allows for stateful
computations. The variable objects serve as holders for tensors. Creating a variable is
easy enough.

>>> a = tf.Variable(tf.ones((2, 2)))
>>> a
<tensorflow.python.ops.variables.Variable>

What happens when we try to evaluate the variable a as thought it were a tensor?

>>> a.eval()
FailedPreconditionError: Attempting to use uninitialized value Variable

The evaluation fails since variables have to be excplicitly initialized. The easiest way
to initialize all variables is to invoke tf.global_variables_initializer. Running
this operation within a session will initialize all variables in the program.

>>> sess = tf.Session()
>>> sess.run(tf.global_variables_initializer())
>>> a.eval(session=sess)
array([[ 1.,  1.],
       [ 1.,  1.]], dtype=float32)

After initialization, we are able to fetch the value stored within the variable as though
it were a plain tensor. So far, there’s not much more to variables than plain tensors.
Variables only become interesting once we can assign to them. tf.assign() lets us
do this. Using tf.assign() we can update the value of an existing variable.

>>> sess.run(a.assign(tf.zeros((2,2))
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)
>>> sess.run(a)
array([[ 0.,  0.],
       [ 0.,  0.]], dtype=float32)

What would happen if we tried to assign to a a value not of shape (2,2)? Let’s find
out.

>>> sess.run(a.assign(tf.zeros((3,3))))
ValueError: Dimension 0 in both shapes must be equal, but are 2 and 3 for 'Assign_3' (op: 'Assign') with input shapes: [2,2], [3,3].
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We see that Tensorflow complains. The shape of the variable is fixed upon initializa‐
tion and must be preserved with updates. As another interesting note, tf.assign is
itself a part of the underlying global tf.Graph instance. This allows Tensorflow pro‐
grams to update their internal state every time they are run. We shall make heavy use
of this feature in the chapters to come.

Review
In this chapter, we’ve introduced the mathematical concept of tensors, and briefly
reviewed a number of mathematical concepts associated with tensors. We then
demonstrated how to create tensors in Tensorflow and perform these same mathe‐
matical operations within Tensorflow. We also briefly introduced some underlying
tensorflow structures like the computational graph, sessions, and variables. If you
haven’t completely grasped the concepts discussed in this chapter, don’t worry much
about it. We will repeatedly use these same concepts over the remainder of the book,
so there will be plently of chances to let the ideas sink in.
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