Introduction to Keras

Adrian Horzyk AGH University of

Science and Technology
horzyk@agh.edu.pl Krakow, Poland

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl

2

Keras developed by Francois Chollet:

* Is an official high-level and high-performing API of TensorFlow used to
specify and train different programs.

* Runs on top of TensorFlow, Theano, MXNet, or CNTK.
 Builds models by stacking layers and connecting graphs.

* |s actively developed by thousands of contributors across the world,
e.g. Microsoft, Google, Nvidia, AWS.

* |s used by hundred thousands of developers, e.g. NetFlix, Uber, Google,
Huawei, NVidia.

 Has good amount of documentation and easy to grasp all concepts.

 Supports GPU both of Nvidia and AMD and runs seamlessly on CPU and
GPU.

* |s multi-platform (Python, R) and multi-backend.

* Allows for fast prototyping and leaves freedom to design and
architecture

http://home.agh.edu.pl/~horzyk/index-eng.php

2

Keras:

Follows best practices for reducing cognitive load
Offers consistent and simple APIs.

Minimizes the number of user actions required for common use
cases.

Provides a clear feedback upon user errors.
More productive than many other frameworks.

Integrates with lower-level Deep Learning languages like
TensorFlow or Theano.

Implements everything which was built in base language, e.g.
TensorFlow.

Produces models using GPU acceleration for various system like
Windows, Linux, Android, iOS, Raspberry Pi.

http://home.agh.edu.pl/~horzyk/index-eng.php

K|

Keras is based on Computational Graphs like:

Where “a” and “b” are inputs used to compute “e” as
an output using intermediate variables “c” and “d”.

Computational Graphs allow to express complex
expressions as a combination of simple operations.

http://home.agh.edu.pl/~horzyk/index-eng.php

K “ Keras Sequential Models

2

We can create various sequential models which linearly stack layers and can be used
for classification networks or autoencoders (consisting of encoders and decoders) like:

224%x224x3 224x224x64

1312x112x128

. 56x56x256
- 14%14x512
—g — _ Aa4x14x 7x7x512 1%x1x4096 1x1x<1000
' ——x 1 5 e 31C 3¢)
@ convolutional + RelLU
[;ﬁ max pooling
@ fully connected + RelLU
softmax
Convolutional Encoder-Decoder
Input Output

Pooling Indices A
RGB Image B Conv + Batch Normalisation + ReLU Seg mentation
I Pooling I Upsampling Softmax

http://home.agh.edu.pl/~horzyk/index-eng.php

2

|| Keras Functional Models

Keras models can:

* Use multi-input, multi-output and arbitrary static graph topologies,
 Branch into two or more submodels,

* Share layers and/or weights.

S B M .
Input Tuple <= AlexNet architecture
2506
i{hl :Hl. P4
R W e fes
] ‘ { ! L |
L ’ 5 ‘
‘ N - - - Lt Lo p
. : : :
B, . : ~
] } $
- T -

; l .
|
classification
|

« Shared parameters

http://home.agh.edu.pl/~horzyk/index-eng.php

,

-~
—
&

We can execute Keras model in two ways:

1. Deferred (symbolic)

Using Python to build a computational graph, next
compiling and executing it.

Symbolic tensors don’t have a value in the Python
code.

2. Eager (imperative)

Here the Python runtime is the execution runtime,
which is similar to the execution with Numpy.

Eager tensors have a value in the Python code.

With the eager execution, value-dependent dynamic
topologies (tree-RNNs) can be constructed and used.

http://home.agh.edu.pl/~horzyk/index-eng.php

2

1. Prepare Input (e.g. text, audio, images, video) and specify
the input dimension (size).
2. Define the Model: its architecture, build the computational

graph, define sequential or functional style of the model and
the kind of the network (MLP, CNN, RNN etc.).

3. Specify the Optimizers (Stochastic Gradient Descent (SGD),
Root Mean Square (RMSprop), Adam etc.) to configure the
learning process.

4. Define the Loss Function (e.g. Mean Square Error (MSE),
Cross Entropy, Hinge) for checking the accuracy of the
achieved prediction to adapt and improve the model.

5. Train using training data, Test using testing/validation data,
and Evaluate the Model.

http://home.agh.edu.pl/~horzyk/index-eng.php

K| 9

To start working with TensorFlow and Keras in Jupyter Notebook, you have to
install them using the following commands in the Anaconda Prompt window:

conda install pip # install pip in the virtual environment
pip install --upgrade tensorflow # for python 2.7
pip3 install --upgrade tensorflow # for python 3.*

It is recommended to install tensorflow with parameter —gpu to use GPU unit
and make computations faster:

pip install tensorflow-gpu
$ pip install Keras

If successfully installed check in Jupyter Notebook the version of the
TensorFlow using:

In [3]: M dimport tensorflow as tf
print ("TensorFlow version: " + tf._ version_)

TensorFlow version: 2.1.9

http://home.agh.edu.pl/~horzyk/index-eng.php

We will try to create and train a simple Convolutional Neural Network (CNN) to
tackle with handwritten digit classification problem using MNIST dataset:

~
\

000 00060Qaoap0OO0OCZ2 00O
/ /7 1\

XA HGLWN~
Ad e b —
NN e NV -
W d oG LUWN -~
od e Aad oy —
o~ VvV Lwh N
YIS wN
/AN L P W
KRD OGOV
B I NAXY LD
VS SAN R/ W
N SNOL WL
QT WY = WY -~
LaN Y QWPNN
O wJgcnNnT WY~

/
2
9
4
-
(o
2
N]

7999999394949 44

Each image in the MNIST dataset is 28x28 pixels and contains a centred,
grayscale digit form 0 to 9. Our goal is to classify these images to one of the ten
classes using ten output neurons of the CNN network.

https://victorzhou.com/blog/intro-to-cnns-part-1/
http://yann.lecun.com/exdb/mnist/
http://home.agh.edu.pl/~horzyk/index-eng.php

Simple CNN for MNIST classification

""'Trains a simple ConvNet on the MNIST dataset. It gets more than 99% test accuracy after 12 epochs
(but there is still a lot of margin for parameter tuning). Training can take a few minutes!'"'

K

Import Libraries

from __future__ import print_function

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

Define hyperparameters
batch_size = 128
num_classes = 10

epochs = 12

Input image dimensions
img_rows, img_cols = 28, 28

Split the data between train and test sets
(x_train, y train), (x_test, y test) = mnist.load data()

if K.image data format() == 'channels first':
x_train = x_train.reshape(x_train.shape[0], 1, img _rows, img cols)
x_test = x_test.reshape(x_test.shape[@], 1, img _rows, img cols)
input_shape = (1, img_rows, img cols)

else:
x_train = x_train.reshape(x_train.shape[©@], img_rows, img cols, 1)
x_test = x_test.reshape(x_test.shape[@], img rows, img cols, 1)
input_shape = (img_rows, img cols, 1)

http://home.agh.edu.pl/~horzyk/index-eng.php

K

Simple CNN for MNIST classification

X_train = x_train.astype('float32")
x_test = x_test.astype('float32")
x_train /= 255

x_test /= 255

print('x_train shape:', x_train.shape)
print(x_train.shape[@], "train samples’)
print(x_test.shape[@], 'test samples’)

Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Define the sequential Keras model composed of a few layers

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3),activation="relu’', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(9.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

Compile the model using optimizer
model.compile(loss=keras.losses.categorical crossentropy,
optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])

Train the model, validate, evaluate, and present scores
model.fit(x_train, y_train,batch_size=batch size, epochs=epochs,
verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y test, verbose=0)

print('Test loss:', score[@0])
print('Test accuracy:', score[l])

http://home.agh.edu.pl/~horzyk/index-eng.php

Results of CNN MNIST classification

Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz

11493376/11490434 [==============================]
x_train shape: (6@0€e, 28, 28, 1)

60000 train samples

10000 test samples

Train on 60000 samples, validate on 10000 samples
Epoch 1/12

600PB /60000 [==============================] - 545
uracy: ©.9807

Epoch 2/12

600PB /60000 [==============================] - 58S
uracy: ©.9867

Epoch 3/12

600P0 /60080 [==============================] - 61s
acy: ©.9883

Epoch 4/12

600P0 /60080 [==============================] - 60s
acy: ©.99e2

Epoch 5/12

6000 /60000 [==============================] - 625
acy: ©.9909

Epoch 6/12

60000 /60000 [==============================] - 60s
uracy: ©0.9901

Epoch 7/12

6000 /60000 [==============================] - 60s
uracy: ©.9909

Epoch 8/12

60000 /60000 [==============================] - 625
acy: 0.99@2

Epoch 9/12

60000 /60000 [==============================] - 625
acy: 0.9884

Epoch 1©/12

600PB /60000 [==============================] - 606s
uracy: ©0.9913

Epoch 11/12

600PB /60000 [==============================] - 635
acy: ©.9919

Epoch 12/12

600PB/60PB0 [==============================] - 606s
acy: ©0.9919

Test loss: ©.027094655736458435
Test accuracy: ©.9919008267982483

- 2s Bus/step

9@0us/step - loss:

96l1lus/step - loss:

1ms/step - loss: ©.0669

1ms/step - loss: ©.0547

1ms/step - loss: ©.0453

992us/step - loss:

998us/step - loss:

1ms/step - loss: ©.0346

1ms/step - loss: ©.031@

995us/step - loss:

Ims/step - loss: ©.0295

Ims/step - loss: ©.6271

- accuracy: ©.9186 - val_loss: ©.0572

- accuracy: ©.9734 - val_loss: ©.0397

accuracy: ©0.9799 - val_loss: ©.0342 -

accuracy: ©.9834 - val_loss: ©.0303 -

accuracy: ©0.9862 - val_loss: ©.0283 -

- accuracy: ©.9878 - val_loss: ©.0287

- accuracy: ©.9887 - val_loss: ©.0285

accuracy: 0.9897 - val_loss: ©.0278 -

accuracy: ©0.9903 - val_loss: ©.0382 -

- accuracy: ©.9906 - val_loss: ©.0277

accuracy: 0.9908 - val_loss: ©0.0259 -

accuracy: 0.9916 - val loss: ©0.8271 -

- val_acc

- val_acc

val_accur

val_accur

val_accur

- val_acc

- val_acc

val_accur

val_accur

- val_acc

val_accur

val accur

http://home.agh.edu.pl/~horzyk/index-eng.php

v Questions?
v" Remarks?

v Suggestions?
v" Wishes?

http://home.agh.edu.pl/~horzyk/index-eng.php

Blbllography and therature

B

https://www.youtube.com/watch?v=XNKeayZW4dY
https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-

Adrian Horzyk
tensorflow-and-keras-b91f381405f8 | horzvk@agh.edu.p]
Z;c;cgi?;t/)tl)eljc.)r?;ﬁlnsorflow.orq/2019/09/tensorﬂow 20-is-now Google: Horzyl
http://coursera.org/specializations/tensorflow-in-practice ga, e ,w” .

. https://udacity.com/course/intro-to-tensorflow-for-deep-learning qj 3

Unwersnty of Science
and Technology

in Krakow, Poland

https://www.youtube.com/watch?v=XNKeayZW4dY
https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
http://coursera.org/specializations/tensorflow-in-practice
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

Summary

http://home.agh.edu.pl/~horzyk/index-eng.php

2

Let’s try to predict the price of a bottle of wine just from its
description and variety using wide and deep networks using Keras.

We will use Wine dataset from kaggle.com:

» Starting with sequential model is easier, simply stacking the layers.

* Defining functional model allows for more flexibility and is best
suited for models with multiple inputs or combined models.

 Wide models have sparse feature vectors with mostly zero values.

* Multi-layer deep networks are necessary for tasks working on
images, speech recognition or other more complex training data.

http://home.agh.edu.pl/~horzyk/index-eng.php

2

This dataset has 12 attributes (offering a great opportunity for
sentimental analysis and various text-related predictive models):

Country (of origin)

Description (a few sentences describing the wine test and smell)
Designation (the year and the grapes it has been made from)
Points (from 1 to 10)

Price (for the bottle of wine)

Region_1 (country where the grapes were grown up)
Region_2 (more specific region that can be black)

Taster Name (who tasted and graded the wine)

Taster Twitter Handle

Title (of the wine)

Variety

Winery

http://home.agh.edu.pl/~horzyk/index-eng.php

“ Sample Wine Data

Input sample:

/a \

Description:

» Powerful vanilla scents rise from the glass, but the fruit, even in this difficult vintage, comes out
immediately.

« It’s tart and sharp, with a strong herbal component, and the wine snaps into focus quickly with fruit, acid,
tannin, herb and vanilla in equal proportion.

» Firm and tight, still quite young, this wine needs decanting and/or further bottle age to show its best.

Variety: Pinot Noir

h _
(] 4 L] J.U pyEr &NumP
Output sample: We'll use: | y

Prediction: # e) p LJ t l;)wgdn

Price—$45
Pandas K i

http://home.agh.edu.pl/~horzyk/index-eng.php

” Google Colaboratory

2

Google Colaboratory is a free Jupyter notebook environment that requires no

setup and runs entirely in the cloud.

With Colaboratory you can write and execute code, save and share your analyses,
and access powerful computing resources, all for free from your browser.

Title

Welcome To Colaboratory

MNIST_Reject_skorch_SimpleAE.ipynb

MNIST_NoReject_skorch_SimpleAE.ipynb

Copy of skorch_SimpleAE.ipynb

L A A

skorch_SimpleAE.ipynb

First opened Last opened

8 minutes ago 0 minutes ago

Dec 14,2019 Dec 14, 2019

Dec 14,2019 Dec 14, 2019

Nov 4, 2019 Nov 4, 2019

Nov 4, 2019 Nov 4, 2019

NEW PYTHON 3 NOTEBOOK

CANCEL

https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
http://home.agh.edu.pl/~horzyk/index-eng.php
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

O H Prerequisites

You can try to follow the use-case for the Wine dataset
prediction.

import numpy as np

O S S Here are all the imports we’ll need to build this model!

import tensorflow as tf
m sklearn.preprocessing import LabelEncoder
from tensorflow import keras

layers = keras.layers

This code was tested with TensorFlo kol

K print("You have TensorFlow version”, tf._versioy } Test presence of TensorFlow by prlntlng the version

wget -g https: torage.googleapis.com/s ~-cloud-ml/wine_g .CSV .
et -q https://storage. googleapis BRI] }- Download the data and convert it to a Pandas Data Frame

data = pd.read_csv("wine_data.csv")

http://home.agh.edu.pl/~horzyk/lectures/jupyternotebooks/COKerasUseCaseKaggleWine.rar
http://home.agh.edu.pl/~horzyk/index-eng.php

