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Regarding the title of this course

TensorFlow: Deep learning with Keras

I Deep learning is a set of methods for using artificial neural
networks

I Keras is probably the most popular library that implements Deep
learning methods

I TensorFlow is a library that includes Keras as a submodule
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Artificial intelligence

I machines (or computers) that mimic cognitive
functions that we associate with the human mind

I translate text (like a book)
I recognize object in image (face, handwriting)
I recognize speech
I creativity (poetry, music, paintings)
I expert diagnosis (physician, mechanic)

I Tesler: AI is whatever hasn’t been done yet
I optical character recognition
I playing chess

What kind of murderer has moral fiber? – A cereal killer.
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Machine learning

Machine learning involves computers discovering how they can perform
tasks without being explicitly programmed to do so.

Traditional algorithm:

I A human programmer designs an algorithm telling the machine
how to execute all steps required to solve the problem at hand.

For some tasks, it can be challenging for a human to manually create
the needed algorithm.
Machine learning algorithm:

I A human programmer designs an algorithm that helps the
computer develop its own algorithm, rather than having human
programmer specify every needed step.

I Do not let the word “learning” mislead you.
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Machine learning example: Spam filtering

Text Category

secret prize! claim secret prize now spam
could you send me that image we talked about ham
account compromised reset password spam
free entry for 2 week tournament spam
are you coming to a secret party for Mark ham
you have a virus please download spam
I’m in Ljubljana on Thursday, have time? ham
$50 gift card for Amazon spam

data parameters

model

ML

algorithm

Basic machine learning algorithm:

I Count the words that appear in spam/ham messages

I Calculate probabilities that a word is present in a message
belonging to a given class

Result is a model that can calculate probability that a message is spam



Machine learning

Artificial intelligence that is not machine learning:

I rule-based systems (natural language processing, theorem proving)

I early computer vision





Artificial neural network
Despite its name it doesn’t have much to do with biological brain.

It is a simple mathematical model that:

I is fast – can be easily parallelized

I matrix multiplication is highly
parallelizable and optimized

I composition of linear functions is
linear – we need nonlinearity

I the fastest nonlinear functions are
those of a single variable

I can capture wide range of functions

I L-NL and NL-L are not universal
approximators

I NL-L-NL and L-NL-L are and out of
those L-NL-L is faster

Traditional neural network

a = W1x + b1

h = σ(a)

y = W2h + b2
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Deep neural network

The number of all possible models
for a network with a single hidden
layer is

a#parameters

#hidden units!

More formal result for capacity of
a deep network (per parameter)

w f−2

d
(w/f )(d−1)f
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Deep neural network

More philosophical reasons for why depth is good:

I belief that the function we want to learn is a computer program
consisting of multiple steps, where each step makes use of the
previous step’s output

I belief that the nature of knowledge is hierarchical, where more
abstract concepts build on simpler ones

I belief that the learning problem consists of discovering a set of
underlying factors of variation that can in turn be described in
terms of other, simpler underlying factors of variation



Deep neural network





Training a neural network

There have been many procedures to train neural networks through
history.

I learning rules (Hebian, correlation)

I perceptron learning (linear least squares)

I neuroevolution

I gradient based methods

input output

target

error
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Training a neural network
I gradient based methods

input output

target

error

I Derivative of error with respect
to all parameters of the
network are calculated using
backpropagation algorithm.

I Parameters of the network are
changed in direction that
minimizes the error.



Overfitting and underfitting

Overfitting is a modeling error that
occurs when a model has learned
too much.

I model capacity is so high that
noise is being modeled

I model doesn’t generalize well
from our training data to
unseen data

I this can usually be avoided by

#data instances� #parameters



Overfitting and underfitting

However, overfitting is a
complicated phenomenon.

I model capacity

I data set distribution

I complexity of an underlying
problem

The most bulletproof way to know
if overfitting happened is to
measure error on unseen data

I Test error
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Regularization

AI problems normally require high capacity
models.

I depth due to problem complexity

I width to ensure information flow

To reduce overfitting we handicap the
network without reducing its size.

I constraints on the structure of the
network

I disruptions in the training phase

Techniques:

I weight decay

I parameter sharing

I semi-supervised
learning

I dropout

I early stopping

I sparse representations

I data augmentation

I batch/layer
normalization
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Weight decay

error + λ‖parameters‖q

Dropout

Batch normalization
Data augmentation





Cross-validation method



Deep learning

Official definition: Deep learning is the study of machine learning
models composed of multiple layers of functions that progressively
extract higher level features from the raw input.

However, this idea existed also 1950–2010 when success of deep
learning was very limited.

I gradient based training (on GPU)

I availability of large quantity of data

I appropriate cost functions

I new regularizations

I new representation mappings (eg. embeddings)

I new network architectures
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Keras



Neural networks with Keras

I Introduction to neural networks through classification

I Neural network for regression

I Image classification



Convolutional neural networks

I Image classification with convolutional neural networks

I Exercise: Classification of images from CIFAR10 dataset
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Recurrent neural network

I part of output from a layer is
fed as additional input along
with the next instance

I short term memory



Recurrent neural networks

Internal state doesn’t depend only on
current data instance but also on all
previous ones.

Advantages

I no need to choose time window

I weight sharing

I partially observable modeling

Disadvantages

I less parallelizable

I difficult to train

I vanishing and exploding gradients

Applications:

I Time series prediction

I Robot control

I Text generation

I Music composition

I Video processing

I Machine translation

I Handwriting
recognition

I Genetics and protein
related ML

I Speech recognition



TensorFlow



What can TensorFlow do?

1. It can perform numerical operations on data (in a parallel way –
multi-core, GPU).

import tensorflow as tf

A = tf.Variable( [[1.0 , 2.0], [3.0, 4.0]] )

B = tf.Variable( [[5.0 , 6.0], [7.0, 8.0]] )

C = tf.matmul(A, B) # matrix multiplication

D = A - B*C # elementwise operations

cos_D = tf.cos(D) # elementwise math functions

sum_D = tf.reduce_sum(D) # sum of all D components

max_D = tf.reduce_max(D) # max component of D

svd_D = tf.linalg.svd(D) # singular value decomposition



C = tf.matmul(A, B)

# <tf.Tensor: id=17, shape=(2, 2), dtype=float32 ,

# numpy=array ([[19. , 22.], [43., 50.]] , dtype=float32)>

cos_D = tf.cos(D)

# <tf.Tensor: id=30, shape=(2, 2), dtype=float32 ,

# numpy=array ([[ 0.96945935 , -0.36729133] ,

# [ -0.89988 , 0.9873345 ]],

# dtype=float32)>

max_D = tf.reduce_max(D)

# <tf.Tensor: id=26, shape =(), dtype=float32 ,

# numpy =-94.0>

C.numpy()

# array ([[19. , 22.], [43., 50.]] , dtype=float32)



svd_D = tf.linalg.svd(D)

# (<tf.Tensor: id=27, shape =(2,), dtype=float32 ,

# numpy=array ([520.9103 , 2.9102921] , dtype=float32)>,

#

# <tf.Tensor: id=28, shape=(2, 2), dtype=float32 ,

# numpy=array ([[ -0.30792360 , 0.95141107] ,

# [ -0.95141107 , -0.30792360]] ,

# dtype=float32)>,

#

# <tf.Tensor: id=29, shape=(2, 2), dtype=float32 ,

# numpy=array ([[0.59984480 , 0.80011636] ,

# [0.80011636 , -0.59984480]] ,

# dtype=float32)>)



What can TensorFlow do?
1. It can perform numerical operations on data (in a parallel way –

multi-core, GPU).

2. It can calculate derivatives using automatic differentiation.
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Figure 4: B0 LASSO computation graph with a pre-defined λ tuning param-
eter.

Ridge penalties for the B0 matrix can be implemented in similar fashion, but instead of an
“absolute value” operation, the first added node is a “square” operation. These penalties
can be added to any tensor in the computation graph, meaning penalization of the factor
loadings or the residual covariances, or even a penalty on B is quickly implemented. The
elastic net penalty specifically can be implemented by imposing both a ridge and a lasso
penalty on the tensor of interest.

Note that each additional penalty comes with its own parameter to be selected – a
process called “hyperparameter tuning”. Tuning of penalty parameters is traditionally
done through cross-validation; glmnet (Friedman et al., 2010) provides a function for
automatically selecting the penalization strength in regression models through this method.
Another method is through inspecting model fit criteria. For example, Jacobucci et al.
(2016) suggest selecting the penalty parameter through the BIC or the RMSEA, where the
degrees of freedom is determined by the amount of nonzero parameters, which changes as
a function of the penalization strength. Another example is penalized network estimation,
where Epskamp, Borsboom, & Fried (2018) suggest hyperparameter tuning through an
extended version of the BIC. In Bayesian optimization, there is another option. Here, van
Erp, Oberski, & Mulder (2019) show that a prior can be set on the penalty parameter – a
“hyperprior” – and in this way the parameter itself is learned along with the model: the
“full Bayes” approach. In the deep learning literature, this is called Bayesian optimization
or gradient-based optimization of hyperparameters (Bengio, 2000).

In the field of variable selection, various implementations of the LASSO have been shown
to exhibit desirable properties (e.g., Van De Geer, Bühlmann, & others, 2009), making
it a natural choice for obtaining sparsity in structural equation models. In addition,
there are extensions which decrease bias in high-dimensional situations (Fan & Li, 2001;
Zhang, 2010). In the Bayesian case, the spike-and-slab prior is such an extension which

13
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Why do we need derivatives?

Knowing in which direction “down” is, can help us when solving
optimization problems.

Visualizing the Loss Landscape of Neural Nets

Hao Li1, Zheng Xu1, Gavin Taylor2, Christoph Studer3, Tom Goldstein1

1University of Maryland, College Park 2United States Naval Academy 3Cornell University
{haoli,xuzh,tomg}@cs.umd.edu, taylor@usna.edu, studer@cornell.edu

Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effects on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [2], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [42]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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Why do we need derivatives?

Knowing in which direction “down” is, can help us when solving
optimization problems.

Visualizing the Loss Landscape of Neural Nets
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effects on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [2], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [42]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
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I So, various competitions show that evolutionary algorithms
outperform gradient based optimization algorithms.

I However, all those competitions use functions of “low” dimension
(≤ 100) and gradient based optimization excels in high dimensions.

How many local minima are there with respect to dimension?
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


If eigenvalues of Hessian matrix
are randomly distributed, then
probability that a stationary
point is a local minimum is 2−n.

I Saddle points are
exponentially more common
than local minima.
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Ways to calculate derivatives of a program
1. Numerical differentiation

∂

∂x1
f (x1, x2, . . . ) ≈

f (x1 + h, x2, . . . )− f (x1 − h, x2, . . . )

2h

Very efficient for

I Noisy functions

I Locally flat functions

Algorithms that use it

I Nelder-Mead algorithm

I OpenAI evolution strategy

2.3 Step ellipsoid

fstep(x) = 0.1 max

(
|ẑ1|/104,

D∑

i=1

102 i−1
D−1 z2

i

)

• ẑ = Λ10R(x− xopt)

• z̃i =

{
b0.5 + ẑic if ẑi > 0.5

b0.5 + 10 ẑic/10 otherwise
for i = 1, . . . , D,

denotes the rounding procedure in order to produce the plateaus.

• z = Qz̃

Properties The function consists of many plateaus of different sizes. Apart from a small area
close to the global optimum, the gradient is zero almost everywhere.

• condition number is about 100

2.3.1 113 Step ellipsoid with gaussian noise

f113(x) = fGN (fstep(x), 1) + fpen(x) + fopt (113)
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Fig. 3 Nelder-Mead method

the Nelder-Mead method for DNN hyperparameter opti-
mization. In the study by Gilles et al., their SVM has only
two hyperparameters. On the other hand, DNNs often
have more than 10 times number of hyperparameters. So,
our task is more challenging.
The Nelder-Mead method minimizes the objective

function by repeating its evaluation at each vertex of the
simplex and by replacing points according to the following
procedure (Figs. 4 and 5).

(i) Order: Order the n + 1 vertices Y = {
y0, y1, . . . , yn

}

as follows:

f 0 = f (y0) ≤ f 1 = f (y1) ≤ · · · ≤ f n = f (yn).

(ii) Reflect: Reflect the worst vertex yn over the centroid
yc = ∑n−1

i=0 yi/n of the remaining n vertices:

yr = yc + δr(yc − yn).

Evaluate f r = f (yr). If f 0 ≤ f r < f n−1, then replace
yn with the reflected point yr and terminate iteration
k : Yk+1 = {

y0, y1, . . . , yn−1, yr
}
.

(iii) Expand: If f r < f 0, calculate:

ye = yc + δe(yc − yn)

and evaluate f e = f (ye). If f e ≤ f r , then replace yn
with the expansion point ye and terminate iteration
k : Yk+1 = {

y0, y1, . . . , yn−1, ye
}
. Otherwise, replace

Fig. 4 Reflection, expansion, outside contraction, and inside
contraction of a simplex by the Nelder-Mead method

Fig. 5 Shrinking a simplex by the Nelder-Mead method. y1 and y2 are
shrunk to ys1 and ys2, respectively

yn with the reflected point yr and terminate iteration
k : Yk+1 = {

y0, y1, . . . , yn−1, yr
}
.

(iv) Contract: If f r ≥ f n−1, then a contraction is
performed between the best of yr and yn.

(a) Outside contraction: If f r < f n, perform an
outside contraction:

yoc = yc + δoc(yc − yn)

and evaluate f oc = f (yoc). If f oc ≤ f r , then
replace yn with the outside contraction point
yock and terminate iteration k :
Yk+1 = {

y0, y1, . . . , yn−1, yoc
}
. Otherwise,

perform a shrink.
(b) Inside contraction: If f r ≥ f n, perform an

inside contraction:

yic = yc + δic(yc − yn)

and evaluate f ic = f (yic). If f ic < f n, then
replace yn with the inside contraction point
yic and terminate iteration k :
Yk+1 = {y0, y1, . . . , yn−1, yic}. Otherwise,
perform a shrink.

(v) Shrink: Evaluate f at the n points
y0 + γ s(yi − y0),where i = 1, . . . , n, replace
y1, . . . , yn with these points, and terminate iteration
k : Yk+1 = {y0 + γ s(yi − y0), i = 0, . . . , n}.

Here, γ s, δic, δoc, δr , and δe are constant hyperparame-
ters usually taking the following values:

γ s = 1
2
, δic = −1

2
, δoc = 1

2
, δr = 1 and δe = 2. (15)

Note that each step of an iteration, e.g., initialization and
shrink operations, can be parallelized easily.

4 Poor hyperparameter setting detection
DNNs are very sensitive to hyperparameter settings. As
a result, training can fail simply because some hyperpa-
rameters, e.g., the learning rate, are slightly inappropriate.



Ways to calculate derivatives of a program

2. Symbolic differentiation

∂

∂x
log (1 + exp (ax + b)) =

a exp (ax + b)

1 + exp (ax + b)

Very efficient in case function
has large number of outputs

x1

x2
f

y1

y2

y3

y4

y5

if f(x, data) > 0:

g(x, data)

else:

h(x, data)
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Ways to calculate derivatives of a program

3. Automatic differentiation

I Sort of a hybrid between simbolic and numerical differentiation

I There exist forward and reverse automatic differentiation –
TensorFlow uses reverse automatic differentiation

Very efficient in case function has
large number of inputs

y1

y2
f

x1

x2

x3

x4

x5

Example:

f (x1, x2, . . . , xn) = x1 · x2 · . . . · xn

∇f =




x2 · x3 · . . . · xn
x1 · x3 · . . . · xn

...
x1 · x2 · . . . · xn−1



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The same thing in TensorFlow

import tensorflow as tf

x1 = tf.Variable (3.1)

x2 = tf.Variable (-1.4)

with tf.GradientTape () as tape: # Save graph to tape

tape.watch ([x1, x2]) # Watch for x1 and x2

f = (x1+x2)*tf.exp(x2) # Calculate f(x1 , x2)

df = tape.gradient(f, [x1, x2])

# [<tf.Tensor: id=22, shape =(), dtype=float32 , numpy

=0.24659698 > ,

# <tf.Tensor: id=25, shape =(), dtype=float32 , numpy

=0.66581184 >]



Optimizers

Vanilla update

x += - learning_rate * dx

Momentum update

v = mu * v - learning_rate * dx # integrate velocity

x += v # integrate position

Adam

m = beta1*m + (1-beta1)*dx

v = beta2*v + (1-beta2)*(dx**2)

x += - learning_rate * m / (np.sqrt(v) + eps)



Optimizers

Optimizers are available in tf.keras.optimizers module

I Vanilla update (tf.keras.optimizers.SGD)

I Adagrad (tf.keras.optimizers.Adagrad)

I RMSprop (tf.keras.optimizers.RMSprop)

I Adam (tf.keras.optimizers.Adam)



Matrix factorization example

Suppose we have movie ratings from various people for set of movies
they have watched.

user id movie id rating

4160 14501 5
182 14502 2

6649 14502 3
17240 14502 1

115 14503 4
...

...
...
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Matrix factorization example
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ce

error = ‖W � (R − G · H)‖ = min. G ,H ≥ 0
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# Initialize variables.

G = tf.Variable (...)

H = tf.Variable (...)

# Choose a gradient based optimizer.

optimizer = tf.keras.optimizers.Adam()

# Perform gradient descent.

for i in range(num_steps):

with tf.GradientTape () as tape:

tape.watch ([G, H])

absG = tf.abs(G)

absH = tf.abs(H)

dR = R - tf.matmul(absG , absH)

loss = tf.reduce_sum(tf.square(dR))

dG, dH = tape.gradient(loss , [G, H])

optimizer.apply_gradients ([[dG , G], [dH , H]])



Example: Finite element method

Ku = λMu resonance spectra
geometric

stuff

solve


