

OpenCV: Computer Vision
Projects with Python

Get savvy with OpenCV and actualize
cool computer vision applications

A course in three modules

BIRMINGHAM - MUMBAI

OpenCV: Computer Vision Projects with Python

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: October 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78712-549-0

www.packtpub.com

Credits

Authors
Joseph Howse

Prateek Joshi

Michael Beyeler

Reviewers
David Millán Escrivá

Abid K.

Will Brennan

Gabriel Garrido Calvo

Pavan Kumar Pavagada Nagaraja

Marvin Smith

Jia-Shen Boon

Florian LE BOURDAIS

Steve Goldsmith

Rahul Kavi

Scott Lobdell

Vipul Sharma

Content Development Editor
Mayur Pawanikar

Production Coordinator
Nilesh Mohite

[i]

Preface
OpenCV is an open-source, cross-platform library that provides building blocks
for computer vision experiments and applications. It provides high-level interfaces
for capturing, processing, and presenting image data. For example, it abstracts
details about camera hardware and array allocation. OpenCV is widely used in
both academia and industry. Today, computer vision can reach consumers in many
contexts via webcams, camera phones, and gaming sensors such as the Kinect.
For better or worse, people love to be on camera, and as developers, we face a
demand for applications that capture images, change their appearance, and extract
information from them. OpenCV's Python bindings can help us explore solutions to
these requirements in a high-level language and in a standardized data format that is
interoperable with scientific libraries such as NumPy and SciPy.

Computer vision is found everywhere in modern technology. OpenCV for Python
enables us to run computer vision algorithms in real time. With the advent of
powerful machines, we are getting more processing power to work with. Using this
technology, we can seamlessly integrate our computer vision applications into the
cloud. Web developers can develop complex applications without having to reinvent
the wheel.

This course is specifically designed to teach the following topics. First, we will
learn how to get started with OpenCV and OpenCV 3's Python API, and develop
a computer vision application that tracks body parts. Then, we will build amazing
intermediate-level computer vision applications such as making an object disappear
from an image, identifying different shapes, reconstructing a 3D map from images,
and building an augmented reality application. Finally, we'll move to more advanced
projects such as hand gesture recognition, tracking visually salient objects, as well as
recognizing traffic signs and emotions on faces using support vector machines and
multi-layer perceptron respectively.

Preface

[ii]

What this learning path covers
Module 1, OpenCV Computer Vision with Python, in this module you can have a
development environment that links Python, OpenCV, depth camera libraries
(OpenNI, SensorKinect), and general-purpose scientific libraries (NumPy, SciPy).

Module 2, OpenCV with Python By Example, this module covers various examples at
different levels, teaching you about the different functions of OpenCV, and their
actual implementations.

Module 3, OpenCV with Python Blueprints, this module intends to give the tools,
knowledge, and skills you need to be OpenCV experts and this newly gained
experience will allow you to develop your own advanced computer vision
applications.

What you need for this learning path
This course provides setup instructions for all the relevant software, including package
managers, build tools, Python, NumPy, SciPy, OpenCV, OpenNI, and SensorKinect.
The setup instructions are tailored for Windows XP or later versions, Mac OS 10.6
(Snow Leopard) or later versions, and Ubuntu 12.04 or later versions. Other Unix-like
operating systems should work too if you are willing to do your own tailoring of the
setup steps. You need a webcam for the projects described in the course. For additional
features, some variants of the project use a second webcam or even an OpenNI-
compatible depth camera such as Microsoft Kinect or Asus Xtion PRO.

The hardware requirement being a webcam (or camera device), except for Chapter
2, Hand Gesture Recognition Using a Kinect Depth Sensor , of the 3rd Module which
instead requires access to a Microsoft Kinect 3D Sensor or an Asus Xtion.

The course contains projects with the following requirements.

All projects can run on any of Windows, Mac, or Linux, and they require the
following software packages:

• OpenCV 2.4.9 or later: Recent 32-bit and 64-bit versions as well as
installation instructions are available at http://opencv.org/downloads.
html. Platform-specific installation instructions can be found at http://
docs.opencv.org/doc/tutorials/introduction/table_of_content_
introduction/table_of_content_introduction.html.

• Python 2.7 or later: Recent 32-bit and 64-bit installers are available at
https://www.python.org/downloads. The installation instructions can be
found at https://wiki.python.org/moin/BeginnersGuide/Download.

http://opencv.org/downloads.html
http://opencv.org/downloads.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
https://www.python.org/downloads
https://wiki.python.org/moin/BeginnersGuide/Download

Preface

[iii]

• NumPy 1.9.2 or later: This package for scientific computing officially comes
in 32-bit format only, and can be obtained from http://www.scipy.org/
scipylib/download.html. The installation instructions can be found at
http://www.scipy.org/scipylib/building/index.html#building.

wxPython 2.8 or later: This GUI programming toolkit can be obtained from
http://www.wxpython.org/download.php. Its installation instructions are given
at http://wxpython.org/builddoc.php.

In addition, some chapters require the following free Python modules:

• SciPy 0.16.0 or later: This scientific Python library officially comes in 32-
bit only, and can be obtained from http://www.scipy.org/scipylib/
download.html. The installation instructions can be found at http://www.
scipy.org/scipylib/building/index.html#building.

• matplotlib 1.4.3 or later: This 2D plotting library can be obtained from
http://matplotlib.org/downloads.html. Its installation instructions
can be found by going http://matplotlib.org/faq/installing_faq.
html#how-to-install.

• libfreenect 0.5.2 or later: The libfreenect module by the OpenKinect project
(http://www.openkinect.org) provides drivers and libraries for the
Microsoft Kinect hardware, and can be obtained from https://github.
com/OpenKinect/libfreenect. Its installation instructions can be found at
http://openkinect.org/wiki/Getting_Started.

Furthermore, the use of iPython (http://ipython.org/install.html) is highly
recommended as it provides a flexible, interactive console interface.

Finally, if you are looking for help or get stuck along the way, you can go for several
websites that provide excellent help, documentation, and tutorials:

• The official OpenCV API reference, user guide, and tutorials:
http://docs.opencv.org

The official OpenCV forum: http://www.answers.opencv.org/questions

OpenCV-Python tutorials by Alexander Mordvintsev and Abid Rahman K:
http://opencv-python-tutroals.readthedocs.org/en/latest

http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/building/index.html#building
http://www.wxpython.org/download.php
http://wxpython.org/builddoc.php
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/building/index.html#building
http://www.scipy.org/scipylib/building/index.html#building
http://matplotlib.org/downloads.html
http://matplotlib.org/faq/installing_faq.html#how-to-install
http://matplotlib.org/faq/installing_faq.html#how-to-install
http://www.openkinect.org
https://github.com/OpenKinect/libfreenect
https://github.com/OpenKinect/libfreenect
http://openkinect.org/wiki/Getting_Started
http://ipython.org/install.html
http://docs.opencv.org
http://www.answers.opencv.org/questions
http://opencv-python-tutroals.readthedocs.org/en/latest

Preface

[iv]

Who this learning path is for
This Learning Path is for someone who has a working knowledge of Python and
wants to try out OpenCV. This Learning Path will take you from a beginner to an
expert in computer vision applications using OpenCV.

OpenCV's applications are humongous and this Learning Path is the best resource to
get yourself acquainted thoroughly with OpenCV.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[v]

6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.
com/PacktPublishing/OpenCV-Computer-Vision-Projects-with-Python. We
also have other code bundles from our rich catalog of books, videos, and courses
available at https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/OpenCV-Computer-Vision-Projects-with-Python
https://github.com/PacktPublishing/OpenCV-Computer-Vision-Projects-with-Python
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[vi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[i]

Module 1: OpenCV Computer Vision with Python 1
Chapter 1: Setting up OpenCV 3

Choosing and using the right setup tools 4
Running samples 16
Finding documentation, help, and updates 17
Summary 18

Chapter 2: Handling Files, Cameras, and GUIs 19
Basic I/O scripts 19
Project concept 26
An object-oriented design 27
Summary 36

Chapter 3: Filtering Images 37
Creating modules 37
Channel mixing – seeing in Technicolor 38
Curves – bending color space 42
Highlighting edges 51
Custom kernels – getting convoluted 52
Modifying the application 55
Summary 56

Chapter 4: Tracking Faces with Haar Cascades 57
Conceptualizing Haar cascades 58
Getting Haar cascade data 59
Creating modules 60
Defining a face as a hierarchy of rectangles 60
Tracing, cutting, and pasting rectangles 61
Adding more utility functions 63
Tracking faces 64

Table of Contents

[ii]

Modifying the application 69
Summary 74

Chapter 5: Detecting Foreground/Background Regions
and Depth 75

Creating modules 75
Capturing frames from a depth camera 76
Creating a mask from a disparity map 79
Masking a copy operation 80
Modifying the application 82
Summary 84

Appendix A: Integrating with Pygame 85
Installing Pygame 85
Documentation and tutorials 86
Subclassing managers.WindowManager 86
Modifying the application 88
Further uses of Pygame 88
Summary 89

Appendix B: Generating Haar Cascades for Custom Targets 91
Gathering positive and negative training images 91
Finding the training executables 92
Creating the training sets and cascade 93
Testing and improving <cascade> 96
Summary 97

Module 2: OpenCV with Python By Example 99
Chapter 1: Detecting Edges and Applying Image Filters 101

2D convolution 102
Blurring 103
Edge detection 106
Motion blur 109
Sharpening 111
Embossing 113
Erosion and dilation 115
Creating a vignette filter 116
Enhancing the contrast in an image 119
Summary 122

Chapter 2: Cartoonizing an Image 123
Accessing the webcam 123
Keyboard inputs 124

Table of Contents

[iii]

Mouse inputs 126
Interacting with a live video stream 128
Cartoonizing an image 130
Summary 138

Chapter 3: Detecting and Tracking Different Body Parts 139
Using Haar cascades to detect things 139
What are integral images? 141
Detecting and tracking faces 142
Fun with faces 144
Detecting eyes 147
Fun with eyes 150
Detecting ears 152
Detecting a mouth 153
It's time for a moustache 155
Detecting a nose 156
Detecting pupils 158
Summary 160

Chapter 4: Extracting Features from an Image 161
Why do we care about keypoints? 161
What are keypoints? 164
Detecting the corners 166
Good Features To Track 168
Scale Invariant Feature Transform (SIFT) 169
Speeded Up Robust Features (SURF) 172
Features from Accelerated Segment Test (FAST) 174
Binary Robust Independent Elementary Features (BRIEF) 176
Oriented FAST and Rotated BRIEF (ORB) 178
Summary 179

Chapter 5: Creating a Panoramic Image 181
Matching keypoint descriptors 181
Creating the panoramic image 186
What if the images are at an angle to each other? 192
Summary 194

Chapter 6: Seam Carving 195
Why do we care about seam carving? 196
How does it work? 197
How do we define "interesting"? 198
How do we compute the seams? 199
Can we expand an image? 203
Can we remove an object completely? 207

Table of Contents

[iv]

Summary 213
Chapter 7: Detecting Shapes and Segmenting an Image 215

Contour analysis and shape matching 215
Approximating a contour 219
Identifying the pizza with the slice taken out 221
How to censor a shape? 225
What is image segmentation? 229
Watershed algorithm 233
Summary 235

Chapter 8: Object Tracking 237
Frame differencing 237
Colorspace based tracking 240
Building an interactive object tracker 242
Feature based tracking 248
Background subtraction 253
Summary 257

Chapter 9: Object Recognition 259
Object detection versus object recognition 259
What is a dense feature detector? 263
What is a visual dictionary? 267
What is supervised and unsupervised learning? 271
What are Support Vector Machines? 271
How do we actually implement this? 273
Summary 285

Chapter 10: Stereo Vision and 3D Reconstruction 287
What is stereo correspondence? 287
What is epipolar geometry? 292
Building the 3D map 300
Summary 307

Chapter 11: Augmented Reality 309
What is the premise of augmented reality? 309
What does an augmented reality system look like? 310
Geometric transformations for augmented reality 311
What is pose estimation? 313
How to track planar objects? 314
How to augment our reality? 324
Let's add some movements 330
Summary 336

Table of Contents

[v]

Module 3: OpenCV with Python Blueprints 337
Chapter 1: Fun with Filters 339

Planning the app 341
Creating a black-and-white pencil sketch 341
Generating a warming/cooling filter 346
Cartoonizing an image 351
Putting it all together 355
Summary 362

Chapter 2: Hand Gesture Recognition Using a Kinect
Depth Sensor 363

Planning the app 365
Setting up the app 365
Tracking hand gestures in real time 369
Hand region segmentation 370
Hand shape analysis 376
Hand gesture recognition 378
Summary 383

Chapter 3: Finding Objects via Feature Matching and
Perspective Transforms 385

Tasks performed by the app 386
Planning the app 388
Setting up the app 389
The process flow 391
Feature extraction 393
Feature matching 395
Feature tracking 403
Seeing the algorithm in action 406
Summary 408

Chapter 4: 3D Scene Reconstruction Using Structure from Motion 409
Planning the app 411
Camera calibration 412
Setting up the app 420
Estimating the camera motion from a pair of images 423
Reconstructing the scene 433
3D point cloud visualization 435
Summary 438

Chapter 5: Tracking Visually Salient Objects 439
Planning the app 442
Setting up the app 442

Table of Contents

[vi]

Visual saliency 445
Mean-shift tracking 458
Putting it all together 465
Summary 466

Chapter 6: Learning to Recognize Traffic Signs 467
Planning the app 469
Supervised learning 469
The GTSRB dataset 474
Feature extraction 478
Support Vector Machine 483
Putting it all together 495
Summary 499

Chapter 7: Learning to Recognize Emotions on Faces 501
Planning the app 503
Face detection 505
Facial expression recognition 512
Putting it all together 535

Bibliography 539

[1]

Module 1

OpenCV Computer Vision with Python

Learn to capture videos, manipulate images, and track objects with
Python using the OpenCV Library

Setting up OpenCV
This chapter is a quick guide to setting up Python 2.7, OpenCV, and related libraries.
After setup, we also look at OpenCV's Python sample scripts and documentation.

The following related libraries are covered:

• NumPy: This is a dependency of OpenCV's Python bindings. It provides
numeric computing functionality, including efficient arrays.

• SciPy: This is a scientific computing library that is closely related to NumPy.
It is not required by OpenCV but it is useful for manipulating the data in
OpenCV images.

• OpenNI: This is an optional dependency of OpenCV. It adds support for
certain depth cameras, such as Asus XtionPRO.

• SensorKinect: This is an OpenNI plugin and optional dependency of
OpenCV. It adds support for the Microsoft Kinect depth camera.

For this book's purposes, OpenNI and SensorKinect can be considered optional. They
are used throughout Chapter 5, Separating Foreground/Background Regions Depth, but
are not used in the other chapters or appendices.

At the time of writing, OpenCV 2.4.3 is the latest version. On some operating
systems, it is easier to set up an earlier version (2.3.1). The differences between these
versions should not affect the project that we are going to build in this book.

Some additional information, particularly about OpenCV's build options and their
dependencies, is available in the OpenCV wiki at http://opencv.willowgarage.
com/wiki/InstallGuide. However, at the time of writing, the wiki is not up-to-date
with OpenCV 2.4.3.

Setting up OpenCV

[4]

Choosing and using the right setup tools
We are free to choose among various setup tools, depending on our operating system
and how much configuration we want to do. Let's take an overview of the tools for
Windows, Mac, Ubuntu, and other Unix-like systems.

Making the choice on Windows XP, Windows
Vista, Windows 7, or Windows 8
Windows does not come with Python preinstalled. However, installation wizards
are available for precompiled Python, NumPy, SciPy, and OpenCV. Alternatively,
we can build from source. OpenCV's build system uses CMake for configuration
and either Visual Studio or MinGW for compilation.

If we want support for depth cameras including Kinect, we should first install
OpenNI and SensorKinect, which are available as precompiled binaries with
installation wizards. Then, we must build OpenCV from source.

The precompiled version of OpenCV does not offer support
for depth cameras.

On Windows, OpenCV offers better support for 32-bit Python than 64-bit Python.
Even if we are building from source, I recommend using 32-bit Python. Fortunately,
32-bit Python works fine on either 32-bit or 64-bit editions of Windows.

Some of the following steps refer to editing the system's Path variable.
This task can be done in the Environment Variables window of Control
Panel.
On Windows Vista/Windows 7/Windows 8, open the Start menu and
launch Control Panel. Now, go to System and Security | System |
Advanced system settings. Click on the Environment Variables button.
On Windows XP, open the Start menu and go to Control Panel | System.
Select the Advanced tab. Click on the Environment Variables button.
Now, under System variables, select Path and click on the Edit button.
Make changes as directed. To apply the changes, click on all the OK
buttons (until we are back in the main window of Control Panel). Then,
log out and log back in (alternatively, reboot).

Chapter 1

[5]

Using binary installers (no support for depth
cameras)
Here are the steps to set up 32-bit Python 2.7, NumPy, and OpenCV:

1. Download and install 32-bit Python 2.7.3 from http://www.python.org/
ftp/python/2.7.3/python-2.7.3.msi.

2. Download and install NumPy 1.6.2 from http://sourceforge.net/
projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-
python2.7.exe/download.

3. Download and install SciPy 11.0 from http://sourceforge.net/
projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-
python2.7.exe/download.

4. Download the self-extracting ZIP of OpenCV 2.4.3 from http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.3/
OpenCV-2.4.3.exe/download. Run the self-extracting ZIP and, when
prompted, enter any destination folder, which we will refer to as <unzip_
destination>. A subfolder, <unzip_destination>\opencv, is created.

5. Copy <unzip_destination>\opencv\build\python\2.7\cv2.pyd to
C:\Python2.7\Lib\site-packages (assuming we installed Python 2.7 to
the default location). Now, the new Python installation can find OpenCV.

6. A final step is necessary if we want Python scripts to run using the new
Python installation by default. Edit the system's Path variable and append
;C:\Python2.7 (assuming we installed Python 2.7 to the default location).
Remove any previous Python paths, such as ;C:\Python2.6. Log out and
log back in (alternatively, reboot).

Using CMake and compilers
Windows does not come with any compilers or CMake. We need to install them.
If we want support for depth cameras, including Kinect, we also need to install
OpenNI and SensorKinect.

Let's assume that we have already installed 32-bit Python 2.7, NumPy, and SciPy
either from binaries (as described previously) or from source. Now, we can
proceed with installing compilers and CMake, optionally installing OpenNI and
SensorKinect, and then building OpenCV from source:

1. Download and install CMake 2.8.9 from http://www.cmake.org/files/
v2.8/cmake-2.8.9-win32-x86.exe. When running the installer, select
either Add CMake to the system PATH for all users or Add CMake to the
system PATH for current user.

Setting up OpenCV

[6]

2. Download and install Microsoft Visual Studio 2010, Microsoft Visual C++
Express 2010, or MinGW. Note that OpenCV 2.4.3 cannot be compiled with
the more recent versions (Microsoft Visual Studio 2012 and Microsoft Visual
Studio Express 2012).
For Microsoft Visual Studio 2010, use any installation media you purchased.
During installation, include any optional C++ components. Reboot after
installation is complete.
For Microsoft Visual C++ Express 2010, get the installer from
http://www.microsoft.com/visualstudio/eng/downloads.
Reboot after installation is complete.
For MinGW get the installer from http://sourceforge.net/projects/
mingw/files/Installer/mingw-get-inst/mingw-get-inst-20120426/
mingw-get-inst-20120426.exe/download. When running the installer,
make sure that the destination path does not contain spaces and that the
optional C++ compiler is included. Edit the system's Path variable and
append ;C:\MinGW\bin (assuming MinGW is installed to the default
location.) Reboot the system.

3. Optionally, download and install OpenNI 1.5.4.0 from http://www.openni.
org/wp-content/uploads/2012/12/OpenNI-Win32-1.5.4.0-Dev1.zip
(32 bit). Alternatively, for 64-bit Python, use http://www.openni.org/wp-
content/uploads/2012/12/OpenNI-Win64-1.5.4.0-Dev.zip (64 bit).

4. Optionally, download and install SensorKinect 0.93 from https://github.
com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-
Win32-v5.1.2.1.msi?raw=true (32 bit). Alternatively, for 64-bit Python,
use https://github.com/avin2/SensorKinect/blob/unstable/Bin/
SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true (64 bit).

5. Download the self-extracting ZIP of OpenCV 2.4.3 from http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.3/
OpenCV-2.4.3.exe/download. Run the self-extracting ZIP and, when
prompted, enter any destination folder, which we will refer to as <unzip_
destination>. A subfolder, <unzip_destination>\opencv, is created.

6. Open Command Prompt and make another folder where our build will go:
> mkdir<build_folder>

Change directory to the build folder:
> cd <build_folder>

Chapter 1

[7]

7. Now, we are ready to configure our build. To understand all the options, we
could read the code in <unzip_destination>\opencv\CMakeLists.txt.
However, for this book's purposes, we only need to use the options that will
give us a release build with Python bindings and, optionally, depth camera
support via OpenNI and SensorKinect.
For Visual Studio 2010 or Visual C++ Express 2010, run:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G "Visual
Studio 10" <unzip_destination>\opencv

Alternatively, for MinGW, run:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G
"MinGWMakefiles" <unzip_destination>\opencv

If OpenNI is not installed, omit -D:WITH_OPENNI=ON. (In this case, depth
cameras will not be supported.) If OpenNI and SensorKinect are installed
to non-default locations, modify the command to include -D:OPENNI_
LIB_DIR=<openni_install_destination>\Lib -D:OPENNI_INCLUDE_
DIR=<openni_install_destination>\Include -D:OPENNI_PRIME_SENSOR_
MODULE_BIN_DIR=<sensorkinect_install_destination>\Sensor\Bin.
CMake might report that it has failed to find some dependencies. Many of
OpenCV's dependencies are optional; so, do not be too concerned yet. If the
build fails to complete or you run into problems later, try installing missing
dependencies (often available as prebuilt binaries) and then rebuild OpenCV
from this step.

8. Having configured our build system, we are ready to compile.
For Visual Studio or Visual C++ Express, open <build_folder>/OpenCV.
sln. Select Release configuration and build. If you get build errors, double-
check that Release configuration is selected.
Alternatively, for MinGW, run:
> mingw32-make.

9. Copy <build_folder>\lib\Release\cv2.pyd (from a Visual Studio build)
or <build_folder>\lib\cv2.pyd (from a MinGW build) to C:\Python2.7\
Lib\site-packages (assuming Python 2.7 is installed to the default
location). Now, the Python installation can find part of OpenCV.

10. Finally, we need to make sure that Python and other processes can find
the rest of OpenCV. Edit the system's Path variable and append ;<build_
folder>/bin/Release (for a Visual Studio build) or ;<build_folder>/bin
(for a MinGW build). Reboot your system.

Setting up OpenCV

[8]

Making the choice on Mac OS X Snow
Leopard, Mac OS X Lion, or Mac OS X
Mountain Lion
Some versions of Mac come with Python 2.7 preinstalled. However, the preinstalled
Python is customized by Apple for the system's internal needs. Normally, we should
not install any libraries atop Apple's Python. If we do, our libraries might break
during system updates or, worse, might conflict with preinstalled libraries that the
system requires. Instead, we should install standard Python 2.7 and then install our
libraries atop it.

For Mac, there are several possible approaches to obtaining standard Python 2.7,
NumPy, SciPy, and OpenCV. All approaches ultimately require OpenCV to be
compiled from source using Xcode Developer Tools. However, depending on the
approach, this task is automated for us by third-party tools in various ways. We will
look at approaches using MacPorts or Homebrew. These tools can potentially do
everything that CMake can do, plus they help us resolve dependencies and separate
our development libraries from the system libraries.

I recommend MacPorts, especially if you want to compile
OpenCV with depth camera support via OpenNI and
SensorKinect. Relevant patches and build scripts, including
some that I maintain, are ready-made for MacPorts. By contrast,
Homebrew does not currently provide a ready-made solution for
compiling OpenCV with depth camera support.

Before proceeding, let's make sure that the Xcode Developer Tools are properly
set up:

1. Download and install Xcode from the Mac App Store or http://connect.
apple.com/. During installation, if there is an option to install Command
Line Tools, select it.

2. Open Xcode and accept the license agreement.
3. A final step is necessary if the installer did not give us the option to install

Command Line Tools. Go to Xcode | Preferences | Downloads and click on
the Install button next to Command Line Tools. Wait for the installation to
finish and quit Xcode.

Now we have the required compilers for any approach.

Chapter 1

[9]

Using MacPorts with ready-made packages
We can use the MacPorts package manager to help us set up Python 2.7, NumPy,
and OpenCV. MacPorts provides Terminal commands that automate the process
of downloading, compiling, and installing various pieces of open source software
(OSS). MacPorts also installs dependencies as needed. For each piece of software, the
dependencies and build recipe are defined in a configuration file called a Portfile. A
MacPorts repository is a collection of Portfiles.

Starting from a system where Xcode and its Command Line Tools are already set up,
the following steps will give us an OpenCV installation via MacPorts:

1. Download and install MacPorts from
http://www.macports.org/install.php.

2. If we want support for the Kinect depth camera, we need to tell MacPorts
where to download some custom Portfiles that I have written. To do so, edit
/opt/local/etc/macports/sources.conf (assuming MacPorts is installed
to the default location). Just above the line rsync://rsync.macports.org/
release/ports/ [default], add the following line:
http://nummist.com/opencv/ports.tar.gz

Save the file. Now, MacPorts knows to search for Portfiles in my online
repository first and, then, the default online repository.

3. Open Terminal and run the following command to update MacPorts:
$ sudo port selfupdate

When prompted, enter your password.

4. Now (if we are using my repository), run the following command to
install OpenCV with Python 2.7 bindings and support for depth
cameras including Kinect:
$ sudo port install opencv +python27 +openni_sensorkinect

Alternatively (with or without my repository), run the following command
to install OpenCV with Python 2.7 bindings and support for depth cameras
excluding Kinect:
$ sudo port install opencv +python27 +openni

Dependencies, including Python 2.7, NumPy, OpenNI, and (in the first
example) SensorKinect, are automatically installed as well.

Setting up OpenCV

[10]

By adding +python27 to the command, we are specifying that we want the
opencv variant (build configuration) with Python 2.7 bindings. Similarly,
+openni_sensorkinect specifies the variant with the broadest possible
support for depth cameras via OpenNI and SensorKinect. You may omit
+openni_sensorkinect if you do not intend to use depth cameras or you
may replace it with +openni if you do intend to use OpenNI-compatible
depth cameras but just not Kinect. To see the full list of available variants
before installing, we can enter:
$ port variants opencv

Depending on our customization needs, we can add other variants to the
install command. For even more flexibility, we can write our own variants
(as described in the next section).

5. Also, run the following command to install SciPy:
$ sudo port install py27-scipy

6. The Python installation's executable is named python2.7. If we want to link
the default python executable to python2.7, let's also run:
$ sudo port install python_select

$ sudo port select python python27

Using MacPorts with your own custom packages
With a few extra steps, we can change the way that MacPorts compiles OpenCV or
any other piece of software. As previously mentioned, MacPorts' build recipes are
defined in configuration files called Portfiles. By creating or editing Portfiles, we can
access highly configurable build tools, such as CMake, while also benefitting from
MacPorts' features, such as dependency resolution.

Let's assume that we already have MacPorts installed. Now, we can configure
MacPorts to use custom Portfiles that we write:

1. Create a folder somewhere to hold our custom Portfiles. We will refer to this
folder as <local_repository>.

2. Edit the file /opt/local/etc/macports/sources.conf (assuming MacPorts
is installed to the default location). Just above the line rsync://rsync.
macports.org/release/ports/ [default], add this line:
file://<local_repository>

For example, if <local_repository> is /Users/Joe/Portfiles, add:
file:///Users/Joe/Portfiles

Chapter 1

[11]

Note the triple slashes.
Save the file. Now, MacPorts knows to search for Portfiles in
<local_repository> first and, then, its default online repository.

3. Open Terminal and update MacPorts to ensure that we have the latest
Portfiles from the default repository:
$ sudo port selfupdate

4. Let's copy the default repository's opencv Portfile as an example. We should
also copy the directory structure, which determines how the package is
categorized by MacPorts.
$ mkdir <local_repository>/graphics/
$ cp /opt/local/var/macports/sources/rsync.macports.org/release/
ports/graphics/opencv <local_repository>/graphics

Alternatively, for an example that includes Kinect support, we could download
my online repository from http://nummist.com/opencv/ports.tar.gz,
unzip it and copy its entire graphics folder into <local_repository>:
$ cp <unzip_destination>/graphics <local_repository>

5. Edit <local_repository>/graphics/opencv/Portfile. Note that this file
specifies CMake configuration flags, dependencies, and variants. For details
on Portfile editing, go to http://guide.macports.org/#development.
To see which CMake configuration flags are relevant to OpenCV, we
need to look at its source code. Download the source code archive from
http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.3/OpenCV-2.4.3.tar.bz2/download, unzip it to any location,
and read <unzip_destination>/OpenCV-2.4.3/CMakeLists.txt.
After making any edits to the Portfile, save it.

6. Now, we need to generate an index file in our local repository so that
MacPorts can find the new Portfile:
$ cd <local_repository>

$ portindex

7. From now on, we can treat our custom opencv just like any other MacPorts
package. For example, we can install it as follows:
$ sudo port install opencv +python27 +openni_sensorkinect

Note that our local repository's Portfile takes precedence over the
default repository's Portfile because of the order in which they are
listed in /opt/local/etc/macports/sources.conf.

Setting up OpenCV

[12]

Using Homebrew with ready-made packages
(no support for depth cameras)
Homebrew is another package manager that can help us. Normally, MacPorts and
Homebrew should not be installed on the same machine.

Starting from a system where Xcode and its Command Line Tools are already set up,
the following steps will give us an OpenCV installation via Homebrew:

1. Open Terminal and run the following command to install Homebrew:
$ ruby -e "$(curl -fsSkLraw.github.com/mxcl/homebrew/go)"

2. Unlike MacPorts, Homebrew does not automatically put its executables in
PATH. To do so, create or edit the file ~/.profile and add this line at the top:
export PATH=/usr/local/bin:/usr/local/sbin:$PATH

Save the file and run this command to refresh PATH:
$ source ~/.profile

Note that executables installed by Homebrew now take precedence over
executables installed by the system.

3. For Homebrew's self-diagnostic report, run:
$ brew doctor

Follow any troubleshooting advice it gives.

4. Now, update Homebrew:
$ brew update

5. Run the following command to install Python 2.7:
$ brew install python

6. Now, we can install NumPy. Homebrew's selection of Python library
packages is limited so we use a separate package management tool
called pip, which comes with Homebrew's Python:
$ pip install numpy

7. SciPy contains some Fortran code, so we need an appropriate compiler.
We can use Homebrew to install the gfortran compiler:
$ brew install gfortran

Now, we can install SciPy:
$ pip install scipy

Chapter 1

[13]

8. To install OpenCV on a 64-bit system (all new Mac hardware since late 2006),
run:
$ brew install opencv

Alternatively, to install OpenCV on a 32-bit system, run:
$ brew install opencv --build32

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Using Homebrew with your own custom packages
Homebrew makes it easy to edit existing package definitions:

$ brew edit opencv

The package definitions are actually scripts in the Ruby programming language.
Tips on editing them can be found in the Homebrew wiki at https://github.com/
mxcl/homebrew/wiki/Formula-Cookbook. A script may specify Make or CMake
configuration flags, among other things.

To see which CMake configuration flags are relevant to OpenCV, we need to look at
its source code. Download the source code archive from http://sourceforge.net/
projects/opencvlibrary/files/opencv-unix/2.4.3/OpenCV-2.4.3.tar.bz2/
download, unzip it to any location, and read <unzip_destination>/OpenCV-2.4.3/
CMakeLists.txt.

After making any edits to the Ruby script, save it.

The customized package can be treated as normal. For example, it can be installed
as follows:

$ brew install opencv

Making the choice on Ubuntu 12.04 LTS or
Ubuntu 12.10
Ubuntu comes with Python 2.7 preinstalled. The standard Ubuntu repository
contains OpenCV 2.3.1 packages without support for depth cameras. Alternatively,
OpenCV 2.4.3 can be built from source using CMake and GCC. When built from
source, OpenCV can support depth cameras via OpenNI and SensorKinect, which
are available as precompiled binaries with installation scripts.

Setting up OpenCV

[14]

Using the Ubuntu repository (no support for depth
cameras)
We can install OpenCV 2.3.1 and its dependencies using the Apt package manager:

1. Open Terminal and run this command to update Apt:
$ sudo apt-get update

2. Now, run these commands to install NumPy, SciPy, and OpenCV with
Python bindings:
$ sudo apt-get install python-numpy

$ sudo apt-get install python-scipy

$ sudo apt-get install libopencv-*

$ sudo apt-get install python-opencv

Enter Y whenever prompted about package installation.

Equivalently, we could have used Ubuntu Software Center, which is Apt's
graphical frontend.

Using CMake via a ready-made script that you may
customize
Ubuntu comes with the GCC compilers preinstalled. However, we need to install the
CMake build system. We also need to install or reinstall various other libraries, some
of which need to be specially configured for compatibility with OpenCV. Because the
dependencies are complex, I have written a script that downloads, configures, and
builds OpenCV and related libraries so that the resulting OpenCV installation has
support for depth cameras including Kinect:

1. Download my installation script from http://nummist.com/opencv/
install_opencv_ubuntu.sh and put it in any destination, say
<script_folder>.

2. Optionally, edit the script to customize OpenCV's build configuration. To
see which CMake configuration flags are relevant to OpenCV, we need to
look at its source code. Download the source code archive from http://
sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.3/
OpenCV-2.4.3.tar.bz2/download, unzip it to any location, and read
<unzip_destination>/OpenCV-2.4.3/CMakeLists.txt.
After making any edits to the script, save it.

Chapter 1

[15]

3. Open Terminal and run this command to update Apt:
$ sudo apt-get update

4. Change directory to <script_folder>:
$ cd <script_folder>

Set the script's permissions so that it is executable:
$ chmod +x install_opencv_ubuntu.sh

Execute the script:
$./install_opencv_ubuntu.sh

When prompted, enter your password. Enter Y whenever prompted about
package installation.

5. The installation script creates a folder, <script_folder>/opencv, which
contains downloads and built files that are temporarily used by the script.
After the installation script terminates, <script_folder>/opencv may
safely be deleted; although, first, you might want to look at OpenCV's
Python samples in <script_folder>/opencv/samples/python and
<script_folder>/opencv/samples/python2.

Making the choice on other Unix-like systems
The approaches for Ubuntu (as described previously) are likely to work on any
Linux distribution derived from Ubuntu 12.04 LTS or Ubuntu 12.10, such as:

• Kubuntu 12.04 LTS or Kubuntu 12.10
• Xubuntu 12.04 LTS or Xubuntu 12.10
• Linux Mint 13 or Linux Mint 14

On Debian Linux and its derivatives, the Apt package manager works the same as on
Ubuntu, though the available packages may differ.

On Gentoo Linux and its derivatives, the Portage package manager is similar to
MacPorts (as described previously), though the available packages may differ.

On other Unix-like systems, the package manager and available packages may differ.
Consult your package manager's documentation and search for any packages with
opencv in their names. Remember that OpenCV and its Python bindings might be
split into multiple packages.

Setting up OpenCV

[16]

Also, look for any installation notes published by the system provider, the repository
maintainer, or the community. Because OpenCV uses camera drivers and media
codecs, getting all of its functionality to work can be tricky on systems with poor
multimedia support. Under some circumstances, system packages might need to
be reconfigured or reinstalled for compatibility.

If packages are available for OpenCV, check their version number. OpenCV 2.3.1
or greater is recommended for this book's purposes. Also check whether the
packages offer Python bindings and whether they offer depth camera support
via OpenNI and SensorKinect. Finally, check whether anyone in the developer
community has reported success or failure in using the packages.

If instead we want to do a custom build of OpenCV from source, it might be helpful
to refer to the installation script for Ubuntu (discussed previously) and adapt it to the
package manager and packages that are present on another system.

Running samples
Running a few sample scripts is a good way to test that OpenCV is correctly set up.
The samples are included in OpenCV's source code archive.

On Windows, we should have already downloaded and unzipped OpenCV's
self-extracting ZIP. Find the samples in <unzip_destination>/opencv/samples.

On Unix-like systems, including Mac, download the source code archive from
http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.3/OpenCV-2.4.3.tar.bz2/download and unzip it to any location
(if we have not already done so). Find the samples in <unzip_destination>/
OpenCV-2.4.3/samples.

Some of the sample scripts require command-line arguments. However, the
following scripts (among others) should work without any arguments:

• python/camera.py: This displays a webcam feed (assuming a webcam is
plugged in).

• python/drawing.py: This draws a series of shapes, like a screensaver.
• python2/hist.py: This displays a photo. Press A, B, C, D, or E to see

variations of the photo, along with a corresponding histogram of color
or grayscale values.

• python2/opt_flow.py (missing from the Ubuntu package): This displays
a webcam feed with a superimposed visualization of optical flow (direction
of motion). For example, slowly wave your hand at the webcam to see the
effect. Press 1 or 2 for alternative visualizations.

Chapter 1

[17]

To exit a script, press Esc (not the window's close button).

If we encounter the message, ImportError: No module named cv2.cv, then we
are running the script from a Python installation that does not know anything about
OpenCV. There are two possible explanations:

• Some steps in the OpenCV installation might have failed or been missed. Go
back and review the steps.

• If we have multiple Python installations on the machine, we might be using
the wrong Python to launch the script. For example, on Mac, it might be the
case that OpenCV is installed for MacPorts Python but we are running the
script with the system's Python. Go back and review the installation steps
about editing the system path. Also, try launching the script manually from
the command line using commands such as:

$ python python/camera.py

You can also use the following command:
$ python2.7 python/camera.py

As another possible means of selecting a different Python installation, try
editing the sample script to remove #! lines. These lines might explicitly
associate the script with the wrong Python installation (for our particular setup).

Finding documentation, help, and
updates
OpenCV's documentation is online at http://docs.opencv.org/. The documentation
includes a combined API reference for OpenCV's new C++ API, its new Python API
(which is based on the C++ API), its old C API, and its old Python API (which is based
on the C API). When looking up a class or function, be sure to read the section about
the new Python API (cv2 module), not the old Python API (cv module).

The documentation entitled OpenCV 2.1 Python Reference
(http://opencv.willowgarage.com/documentation/python/)
might show up in Google searches for OpenCV Python API. Avoid
this documentation, since it is out-of-date and covers only the old
(C-like) Python API.

Setting up OpenCV

[18]

The documentation is also available as several downloadable PDF files:

• API reference: http://docs.opencv.org/opencv2refman
• Tutorials: http://docs.opencv.org/opencv_tutorials

(These tutorials use C++ code. For a Python port of the tutorials'
code, see Abid Rahman K.'s repository at http://goo.gl/EPsD1.)

• User guide (incomplete): http://docs.opencv.org/opencv_user

If you write code on airplanes or other places without Internet access, you will
definitely want to keep offline copies of the documentation.

If the documentation does not seem to answer your question, try talking to the
OpenCV community. Here are some sites where you will find helpful people:

• Official OpenCV forum: http://www.answers.opencv.org/questions/
• Blog of David Millán Escrivá (one of this book's reviewers):

http://blog.damiles.com/

• Blog of Abid Rahman K. (one of this book's reviewers):
http://www.opencvpython.blogspot.com/

• My site for this book: http://nummist.com/opencv/

Last, if you are an advanced user who wants to try new features, bug-fixes, and
sample scripts from the latest (unstable) OpenCV source code, have a look at the
project's repository at https://github.com/Itseez/opencv/.

Summary
By now, we should have an OpenCV installation that can do everything we need for
the project described in this book. Depending on which approach we took, we might
also have a set of tools and scripts that are usable to reconfigure and rebuild OpenCV
for our future needs.

We know where to find OpenCV's Python samples. These samples cover a different
range of functionality than this book's project, but they are useful as additional
learning aids.

Handling Files, Cameras,
and GUIs

This chapter introduces OpenCV's I/O functionality. We also discuss a project
concept and the beginnings of an object-oriented design for this project, which we
will flesh out in subsequent chapters.

By starting with a look at I/O capabilities and design patterns, we are building our
project in the same way we would make a sandwich: from the outside in. Bread slices
and spread or endpoints and glue, come before fillings or algorithms. We choose this
approach because computer vision is extroverted—it contemplates the real world
outside our computer—and we want to apply all our subsequent, algorithmic work
to the real world through a common interface.

All the finished code for this chapter can be downloaded from
my website: http://nummist.com/opencv/3923_02.zip.

Basic I/O scripts
All CV applications need to get images as input. Most also need to produce images
as output. An interactive CV application might require a camera as an input
source and a window as a output destination. However, other possible sources
and destinations include image files, video files, and raw bytes. For example, raw
bytes might be received/sent via a network connection or might be generated by an
algorithm if we are incorporating procedural graphics into our application. Let's look
at each of these possibilities.

Handling Files, Cameras, and GUIs

[20]

Reading/Writing an image file
OpenCV provides the imread() and imwrite() functions that support various file
formats for still images. The supported formats vary by system but should always
include the BMP format. Typically, PNG, JPEG, and TIFF should be among the
supported formats too. Images can be loaded from one file format and saved to
another. For example, let's convert an image from PNG to JPEG:

import cv2

image = cv2.imread('MyPic.png')
cv2.imwrite('MyPic.jpg', image)

Most of the OpenCV functionality that we use is in the cv2 module.
You might come across other OpenCV guides that instead rely on the
cv or cv2.cv modules, which are legacy versions. We do use cv2.cv
for certain constants that are not yet redefined in cv2.

By default, imread() returns an image in BGR color format, even if the file uses a
grayscale format. BGR (blue-green-red) represents the same color space as RGB
(red-green-blue) but the byte order is reversed.

Optionally, we may specify the mode of imread() to be CV_LOAD_IMAGE_COLOR
(BGR), CV_LOAD_IMAGE_GRAYSCALE (grayscale), or CV_LOAD_IMAGE_UNCHANGED
(either BGR or grayscale, depending on the file's color space). For example, let's load
a PNG as a grayscale image (losing any color information in the process) and, then,
save it as a grayscale PNG image:

import cv2

grayImage = cv2.imread('MyPic.png', cv2.CV_LOAD_IMAGE_GRAYSCALE)
cv2.imwrite('MyPicGray.png', grayImage)

Regardless of the mode, imread() discards any alpha channel (transparency). The
imwrite() function requires an image to be in BGR or grayscale format with a
number of bits per channel that the output format can support. For example, bmp
requires 8 bits per channel while PNG allows either 8 or 16 bits per channel.

Chapter 2

[21]

Converting between an image and raw bytes
Conceptually, a byte is an integer ranging from 0 to 255. Throughout real-time
graphics applications today, a pixel is typically represented by one byte per
channel, though other representations are also possible.

An OpenCV image is a 2D or 3D array of type numpy.array. An 8-bit grayscale
image is a 2D array containing byte values. A 24-bit BGR image is a 3D array, also
containing byte values. We may access these values by using an expression like
image[0, 0] or image[0, 0, 0]. The first index is the pixel's y coordinate, or row,
0 being the top. The second index is the pixel's x coordinate, or column, 0 being the
leftmost. The third index (if applicable) represents a color channel.

For example, in an 8-bit grayscale image with a white pixel in the upper-left corner,
image[0, 0] is 255. For a 24-bit BGR image with a blue pixel in the upper-left
corner, image[0, 0] is [255, 0, 0].

As an alternative to using an expression like image[0, 0] or
image[0, 0] = 128, we may use an expression like image.
item((0, 0)) or image.setitem((0, 0), 128). The latter
expressions are more efficient for single-pixel operations. However,
as we will see in subsequent chapters, we usually want to perform
operations on large slices of an image rather than single pixels.

Provided that an image has 8 bits per channel, we can cast it to a standard Python
bytearray, which is one-dimensional:

byteArray = bytearray(image)

Conversely, provided that bytearray contains bytes in an appropriate order, we can
cast and then reshape it to get a numpy.array type that is an image:

grayImage = numpy.array(grayByteArray).reshape(height, width)
bgrImage = numpy.array(bgrByteArray).reshape(height, width, 3)

As a more complete example, let's convert bytearray containing random bytes to a
grayscale image and a BGR image:

import cv2
import numpy
import os

Make an array of 120,000 random bytes.
randomByteArray = bytearray(os.urandom(120000))

Handling Files, Cameras, and GUIs

[22]

flatNumpyArray = numpy.array(randomByteArray)

Convert the array to make a 400x300 grayscale image.
grayImage = flatNumpyArray.reshape(300, 400)
cv2.imwrite('RandomGray.png', grayImage)

Convert the array to make a 400x100 color image.
bgrImage = flatNumpyArray.reshape(100, 400, 3)
cv2.imwrite('RandomColor.png', bgrImage)

After running this script, we should have a pair of randomly generated images,
RandomGray.png and RandomColor.png, in the script's directory.

Here, we use Python's standard os.urandom() function to generate
random raw bytes, which we then convert to a Numpy array. Note
that it is also possible to generate a random Numpy array directly
(and more efficiently) using a statement such as numpy.random.
randint(0, 256, 120000).reshape(300, 400). The
only reason we are using os.urandom() is to help demonstrate
conversion from raw bytes.

Reading/Writing a video file
OpenCV provides the VideoCapture and VideoWriter classes that support various
video file formats. The supported formats vary by system but should always include
AVI. Via its read() method, a VideoCapture class may be polled for new frames until
reaching the end of its video file. Each frame is an image in BGR format. Conversely,
an image may be passed to the write() method of the VideoWriter class, which
appends the image to the file in VideoWriter. Let's look at an example that reads
frames from one AVI file and writes them to another AVI file with YUV encoding:

import cv2

videoCapture = cv2.VideoCapture('MyInputVid.avi')
fps = videoCapture.get(cv2.cv.CV_CAP_PROP_FPS)
size = (int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
 'MyOutputVid.avi', cv2.cv.CV_FOURCC('I','4','2','0'), fps, size)

success, frame = videoCapture.read()
while success: # Loop until there are no more frames.
 videoWriter.write(frame)
 success, frame = videoCapture.read()

Chapter 2

[23]

The arguments to VideoWriter class' constructor deserve special attention.
The video's filename must be specified. Any preexisting file with that name is
overwritten. A video codec must also be specified. The available codecs may vary
from system to system. Options include:

• cv2.cv.CV_FOURCC('I','4','2','0'): This is an uncompressed YUV, 4:2:0
chroma subsampled. This encoding is widely compatible but produces large
files. The file extension should be avi.

• cv2.cv.CV_FOURCC('P','I','M','1'): This is MPEG-1. The file extension
should be avi.

• cv2.cv.CV_FOURCC('M','J','P','G'): This is motion-JPEG. The file
extension should be avi.

• cv2.cv.CV_FOURCC('T','H','E','O'): This is Ogg-Vorbis. The file
extension should be ogv.

• cv2.cv.CV_FOURCC('F','L','V','1'): This is Flash video. The file
extension should be flv.

A frame rate and frame size must be specified, too. Since we are copying from
another video, these properties can be read from our get() method of the
VideoCapture class.

Capturing camera frames
A stream of camera frames is represented by the VideoCapture class, too.
However, for a camera, we construct a VideoCapture class by passing the
camera's device index instead of a video's filename. Let's consider an example
that captures 10 seconds of video from a camera and writes it to an AVI file:

import cv2

cameraCapture = cv2.VideoCapture(0)
fps = 30 # an assumption
size = (int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
 'MyOutputVid.avi', cv2.cv.CV_FOURCC('I','4','2','0'), fps, size)

success, frame = cameraCapture.read()
numFramesRemaining = 10 * fps - 1
while success and numFramesRemaining > 0:
 videoWriter.write(frame)
 success, frame = cameraCapture.read()
 numFramesRemaining -= 1

Handling Files, Cameras, and GUIs

[24]

Unfortunately, the get() method of a VideoCapture class does not return an
accurate value for the camera's frame rate; it always returns 0. For the purpose of
creating an appropriate VideoWriter class for the camera, we have to either make
an assumption about the frame rate (as we did in the code previously) or measure it
using a timer. The latter approach is better and we will cover it later in this chapter.

The number of cameras and their ordering is of course system-dependent.
Unfortunately, OpenCV does not provide any means of querying the number of
cameras or their properties. If an invalid index is used to construct a VideoCapture
class, the VideoCapture class will not yield any frames; its read() method will
return (false, None).

The read() method is inappropriate when we need to synchronize a set of cameras
or a multi-head camera (such as a stereo camera or a Kinect). Then, we use the
grab() and retrieve() methods instead. For a set of cameras:

success0 = cameraCapture0.grab()
success1 = cameraCapture1.grab()
if success0 and success1:
 frame0 = cameraCapture0.retrieve()
 frame1 = cameraCapture1.retrieve()

For a multi-head camera, we must specify a head's index as an argument
to retrieve():

success = multiHeadCameraCapture.grab()
if success:
 frame0 = multiHeadCameraCapture.retrieve(channel = 0)
 frame1 = multiHeadCameraCapture.retrieve(channel = 1)

We will study multi-head cameras in more detail in Chapter 5, Detecting Foreground/
Background Regions and Depth.

Displaying camera frames in a window
OpenCV allows named windows to be created, redrawn, and destroyed using the
namedWindow(), imshow(), and destroyWindow() functions. Also, any window
may capture keyboard input via the waitKey() function and mouse input via the
setMouseCallback() function. Let's look at an example where we show frames of
live camera input:

import cv2

clicked = False
def onMouse(event, x, y, flags, param):

Chapter 2

[25]

 global clicked
 if event == cv2.cv.CV_EVENT_LBUTTONUP:
 clicked = True

cameraCapture = cv2.VideoCapture(0)
cv2.namedWindow('MyWindow')
cv2.setMouseCallback('MyWindow', onMouse)

print 'Showing camera feed. Click window or press any key to stop.'
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1 and not clicked:
 cv2.imshow('MyWindow', frame)
 success, frame = cameraCapture.read()

cv2.destroyWindow('MyWindow')

The argument to waitKey() is a number of milliseconds to wait for keyboard input.
The return value is either -1 (meaning no key has been pressed) or an ASCII keycode,
such as 27 for Esc. For a list of ASCII keycodes, see http://www.asciitable.com/.
Also, note that Python provides a standard function, ord(), which can convert a
character to its ASCII keycode. For example, ord('a') returns 97.

On some systems, waitKey() may return a value that encodes more
than just the ASCII keycode. (A bug is known to occur on Linux when
OpenCV uses GTK as its backend GUI library.) On all systems, we can
ensure that we extract just the ASCII keycode by reading the last byte
from the return value, like this:

keycode = cv2.waitKey(1)
if keycode != -1:
 keycode &= 0xFF

OpenCV's window functions and waitKey() are interdependent. OpenCV windows
are only updated when waitKey() is called, and waitKey() only captures input
when an OpenCV window has focus.

The mouse callback passed to setMouseCallback() should take five arguments, as
seen in our code sample. The callback's param argument is set as an optional third
argument to setMouseCallback(). By default, it is 0. The callback's event argument
is one of the following:

• cv2.cv.CV_EVENT_MOUSEMOVE: Mouse movement
• cv2.cv.CV_EVENT_LBUTTONDOWN: Left button down
• cv2.cv.CV_EVENT_RBUTTONDOWN: Right button down

Handling Files, Cameras, and GUIs

[26]

• cv2.cv.CV_EVENT_MBUTTONDOWN: Middle button down
• cv2.cv.CV_EVENT_LBUTTONUP: Left button up
• cv2.cv.CV_EVENT_RBUTTONUP: Right button up
• cv2.cv.CV_EVENT_MBUTTONUP: Middle button up
• cv2.cv.CV_EVENT_LBUTTONDBLCLK: Left button double-click
• cv2.cv.CV_EVENT_RBUTTONDBLCLK: Right button double-click
• cv2.cv.CV_EVENT_MBUTTONDBLCLK: Middle button double-click

The mouse callback's flags argument may be some bitwise combination of
the following:

• cv2.cv.CV_EVENT_FLAG_LBUTTON: The left button pressed
• cv2.cv.CV_EVENT_FLAG_RBUTTON: The right button pressed
• cv2.cv.CV_EVENT_FLAG_MBUTTON: The middle button pressed
• cv2.cv.CV_EVENT_FLAG_CTRLKEY: The Ctrl key pressed
• cv2.cv.CV_EVENT_FLAG_SHIFTKEY: The Shift key pressed
• cv2.cv.CV_EVENT_FLAG_ALTKEY: The Alt key pressed

Unfortunately, OpenCV does not provide any means of handling window events.
For example, we cannot stop our application when the window's close button
is clicked. Due to OpenCV's limited event handling and GUI capabilities, many
developers prefer to integrate it with another application framework. Later in this
chapter, we will design an abstraction layer to help integrate OpenCV into any
application framework.

Project concept
OpenCV is often studied through a cookbook approach that covers a lot of
algorithms but nothing about high-level application development. To an extent, this
approach is understandable because OpenCV's potential applications are so diverse.
For example, we could use it in a photo/video editor, a motion-controlled game, a
robot's AI, or a psychology experiment where we log participants' eye movements.
Across such different use cases, can we truly study a useful set of abstractions?

I believe we can and the sooner we start creating abstractions, the better. We will
structure our study of OpenCV around a single application, but, at each step, we
will design a component of this application to be extensible and reusable.

Chapter 2

[27]

We will develop an interactive application that performs face tracking and image
manipulations on camera input in real time. This type of application covers a broad
range of OpenCV's functionality and challenges us to create an efficient, effective
implementation. Users would immediately notice flaws, such as a low frame rate
or inaccurate tracking. To get the best results, we will try several approaches using
conventional imaging and depth imaging.

Specifically, our application will perform real-time facial merging. Given two
streams of camera input (or, optionally, prerecorded video input), the application
will superimpose faces from one stream atop faces in the other. Filters and
distortions will be applied to give the blended scene a unified look and feel. Users
should have the experience of being engaged in a live performance where they enter
another environment and another persona. This type of user experience is popular in
amusement parks such as Disneyland.

We will call our application Cameo. A cameo is (in jewelry) a small portrait of a
person or (in film) a very brief role played by a celebrity.

An object-oriented design
Python applications can be written in a purely procedural style. This is often done
with small applications like our basic I/O scripts, discussed previously. However,
from now on, we will use an object-oriented style because it promotes modularity
and extensibility.

From our overview of OpenCV's I/O functionality, we know that all images are
similar, regardless of their source or destination. No matter how we obtain a stream
of images or where we send it as output, we can apply the same application-specific
logic to each frame in this stream. Separation of I/O code and application code
becomes especially convenient in an application like Cameo, which uses multiple
I/O streams.

We will create classes called CaptureManager and WindowManager as high-level
interfaces to I/O streams. Our application code may use a CaptureManager to
read new frames and, optionally, to dispatch each frame to one or more outputs,
including a still image file, a video file, and a window (via a WindowManager class).
A WindowManager class lets our application code handle a window and events in an
object-oriented style.

Both CaptureManager and WindowManager are extensible. We could make
implementations that did not rely on OpenCV for I/O. Indeed, Appendix A,
Integrating with Pygame uses a WindowManager subclass.

Handling Files, Cameras, and GUIs

[28]

Abstracting a video stream –
managers.CaptureManager
As we have seen, OpenCV can capture, show, and record a stream of images from
either a video file or a camera, but there are some special considerations in each
case. Our CaptureManager class abstracts some of the differences and provides a
higher-level interface for dispatching images from the capture stream to one or more
outputs—a still image file, a video file, or a window.

A CaptureManager class is initialized with a VideoCapture class and has the
enterFrame() and exitFrame() methods that should typically be called on every
iteration of an application's main loop. Between a call to enterFrame() and a call
to exitFrame(), the application may (any number of times) set a channel property
and get a frame property. The channel property is initially 0 and only multi-head
cameras use other values. The frame property is an image corresponding to the
current channel's state when enterFrame() was called.

A CaptureManager class also has writeImage(), startWritingVideo(), and
stopWritingVideo() methods that may be called at any time. Actual file writing
is postponed until exitFrame(). Also during the exitFrame() method, the frame
property may be shown in a window, depending on whether the application
code provides a WindowManager class either as an argument to the constructor of
CaptureManager or by setting a property, previewWindowManager.

If the application code manipulates frame, the manipulations are reflected in
any recorded files and in the window. A CaptureManager class has a constructor
argument and a property called shouldMirrorPreview, which should be True
if we want frame to be mirrored (horizontally flipped) in the window but not in
recorded files. Typically, when facing a camera, users prefer the live camera feed to
be mirrored.

Recall that a VideoWriter class needs a frame rate, but OpenCV does not provide
any way to get an accurate frame rate for a camera. The CaptureManager class works
around this limitation by using a frame counter and Python's standard time.time()
function to estimate the frame rate if necessary. This approach is not foolproof.
Depending on frame rate fluctuations and the system-dependent implementation
of time.time(), the accuracy of the estimate might still be poor in some cases.
However, if we are deploying to unknown hardware, it is better than just assuming
that the user's camera has a particular frame rate.

Chapter 2

[29]

Let's create a file called managers.py, which will contain our implementation of
CaptureManager. The implementation turns out to be quite long. So, we will look at
it in several pieces. First, let's add imports, a constructor, and properties, as follows:

import cv2
import numpy
import time

class CaptureManager(object):

 def __init__(self, capture, previewWindowManager = None,
 shouldMirrorPreview = False):

 self.previewWindowManager = previewWindowManager
 self.shouldMirrorPreview = shouldMirrorPreview

 self._capture = capture
 self._channel = 0
 self._enteredFrame = False
 self._frame = None
 self._imageFilename = None
 self._videoFilename = None
 self._videoEncoding = None
 self._videoWriter = None

 self._startTime = None
 self._framesElapsed = long(0)
 self._fpsEstimate = None

 @property
 def channel(self):
 return self._channel

 @channel.setter
 def channel(self, value):
 if self._channel != value:
 self._channel = value
 self._frame = None

 @property
 def frame(self):

Handling Files, Cameras, and GUIs

[30]

 if self._enteredFrame and self._frame is None:
 _, self._frame = self._capture.retrieve(
 channel = self.channel)
 return self._frame

 @property
 def isWritingImage (self):

 return self._imageFilename is not None

 @property
 def isWritingVideo(self):
 return self._videoFilename is not None

Note that most of the member variables are non-public, as denoted by the underscore
prefix in variable names, such as self._enteredFrame. These non-public variables
relate to the state of the current frame and any file writing operations. As previously
discussed, application code only needs to configure a few things, which are
implemented as constructor arguments and settable public properties: the camera
channel, the window manager, and the option to mirror the camera preview.

By convention, in Python, variables that are prefixed with a single
underscore should be treated as protected (accessed only within the
class and its subclasses), while variables that are prefixed with a double
underscore should be treated as private (accessed only within the class).

Continuing with our implementation, let's add the enterFrame() and exitFrame()
methods to managers.py:

 def enterFrame(self):
 """Capture the next frame, if any."""

 # But first, check that any previous frame was exited.
 assert not self._enteredFrame, \
 'previous enterFrame() had no matching exitFrame()'

 if self._capture is not None:
 self._enteredFrame = self._capture.grab()

 def exitFrame (self):

Chapter 2

[31]

 """Draw to the window. Write to files. Release the frame."""

 # Check whether any grabbed frame is retrievable.
 # The getter may retrieve and cache the frame.
 if self.frame is None:
 self._enteredFrame = False
 return

 # Update the FPS estimate and related variables.
 if self._framesElapsed == 0:
 self._startTime = time.time()
 else:
 timeElapsed = time.time() - self._startTime
 self._fpsEstimate = self._framesElapsed / timeElapsed
 self._framesElapsed += 1

 # Draw to the window, if any.
 if self.previewWindowManager is not None:
 if self.shouldMirrorPreview:
 mirroredFrame = numpy.fliplr(self._frame).copy()
 self.previewWindowManager.show(mirroredFrame)
 else:
 self.previewWindowManager.show(self._frame)

 # Write to the image file, if any.
 if self.isWritingImage:
 cv2.imwrite(self._imageFilename, self._frame)
 self._imageFilename = None

 # Write to the video file, if any.
 self._writeVideoFrame()

 # Release the frame.
 self._frame = None
 self._enteredFrame = False

Note that the implementation of enterFrame() only grabs (synchronizes) a frame,
whereas actual retrieval from a channel is postponed to a subsequent reading of
the frame variable. The implementation of exitFrame() takes the image from the
current channel, estimates a frame rate, shows the image via the window manager
(if any), and fulfills any pending requests to write the image to files.

Handling Files, Cameras, and GUIs

[32]

Several other methods also pertain to file writing. To finish our class implementation,
let's add the remaining file-writing methods to managers.py:

 def writeImage(self, filename):
 """Write the next exited frame to an image file."""
 self._imageFilename = filename

 def startWritingVideo(
 self, filename,
 encoding = cv2.cv.CV_FOURCC('I','4','2','0')):
 """Start writing exited frames to a video file."""
 self._videoFilename = filename
 self._videoEncoding = encoding

 def stopWritingVideo (self):
 """Stop writing exited frames to a video file."""
 self._videoFilename = None
 self._videoEncoding = None
 self._videoWriter = None

def _writeVideoFrame(self):

 if not self.isWritingVideo:
 return

 if self._videoWriter is None:
 fps = self._capture.get(cv2.cv.CV_CAP_PROP_FPS)
 if fps == 0.0:
 # The capture's FPS is unknown so use an estimate.
 if self._framesElapsed < 20:
 # Wait until more frames elapse so that the
 # estimate is more stable.
 return
 else:
 fps = self._fpsEstimate
 size = (int(self._capture.get(
 cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
 int(self._capture.get(
 cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
 self._videoWriter = cv2.VideoWriter(
 self._videoFilename, self._videoEncoding,

Chapter 2

[33]

 fps, size)

 self._videoWriter.write(self._frame)

The public methods, writeImage(), startWritingVideo(), and
stopWritingVideo(), simply record the parameters for file writing operations,
whereas the actual writing operations are postponed to the next call of exitFrame().
The non-public method, _writeVideoFrame(), creates or appends to a video file in
a manner that should be familiar from our earlier scripts. (See the Reading/Writing a
video file section.) However, in situations where the frame rate is unknown, we skip
some frames at the start of the capture session so that we have time to build up an
estimate of the frame rate.

Although our current implementation of CaptureManager relies on VideoCapture, we
could make other implementations that do not use OpenCV for input. For example,
we could make a subclass that was instantiated with a socket connection, whose byte
stream could be parsed as a stream of images. Also, we could make a subclass that
used a third-party camera library with different hardware support than what OpenCV
provides. However, for Cameo, our current implementation is sufficient.

Abstracting a window and keyboard –
managers.WindowManager
As we have seen, OpenCV provides functions that cause a window to be created,
be destroyed, show an image, and process events. Rather than being methods of
a window class, these functions require a window's name to pass as an argument.
Since this interface is not object-oriented, it is inconsistent with OpenCV's general
style. Also, it is unlikely to be compatible with other window or event handling
interfaces that we might eventually want to use instead of OpenCV's.

For the sake of object-orientation and adaptability, we abstract this functionality
into a WindowManager class with the createWindow(), destroyWindow(),
show(), and processEvents() methods. As a property, a WindowManager class
has a function object called keypressCallback, which (if not None) is called from
processEvents() in response to any key press. The keypressCallback object must
take a single argument, an ASCII keycode.

Handling Files, Cameras, and GUIs

[34]

Let's add the following implementation of WindowManager to managers.py:

class WindowManager(object):

 def __init__(self, windowName, keypressCallback = None):
 self.keypressCallback = keypressCallback

 self._windowName = windowName
 self._isWindowCreated = False

 @property
 def isWindowCreated(self):
 return self._isWindowCreated

 def createWindow (self):
 cv2.namedWindow(self._windowName)
 self._isWindowCreated = True

 def show(self, frame):
 cv2.imshow(self._windowName, frame)

 def destroyWindow (self):
 cv2.destroyWindow(self._windowName)
 self._isWindowCreated = False

 def processEvents (self):
 keycode = cv2.waitKey(1)
 if self.keypressCallback is not None and keycode != -1:
 # Discard any non-ASCII info encoded by GTK.
 keycode &= 0xFF
 self.keypressCallback(keycode)

Our current implementation only supports keyboard events, which will be sufficient
for Cameo. However, we could modify WindowManager to support mouse events too.
For example, the class's interface could be expanded to include a mouseCallback
property (and optional constructor argument) but could otherwise remain the same.
With some event framework other than OpenCV's, we could support additional
event types in the same way, by adding callback properties.

Chapter 2

[35]

Appendix A, Integrating with Pygame, shows a WindowManager subclass that is
implemented with Pygame's window handling and event framework instead of
OpenCV's. This implementation improves on the base WindowManager class by
properly handling quit events—for example, when the user clicks on the window's
close button. Potentially, many other event types can be handled via Pygame too.

Applying everything – cameo.Cameo
Our application is represented by a class, Cameo, with two methods: run() and
onKeypress(). On initialization, a Cameo class creates a WindowManager class with
onKeypress() as a callback, as well as a CaptureManager class using a camera and
the WindowManager class. When run() is called, the application executes a main
loop in which frames and events are processed. As a result of event processing,
onKeypress() may be called. The Space bar causes a screenshot to be taken, Tab
causes a screencast (a video recording) to start/stop, and Esc causes the application
to quit.

In the same directory as managers.py, let's create a file called cameo.py containing
the following implementation of Cameo:

import cv2
from managers import WindowManager, CaptureManager

class Cameo(object):

 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 self._captureManager = CaptureManager(
 cv2.VideoCapture(0), self._windowManager, True)

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 frame = self._captureManager.frame

 # TODO: Filter the frame (Chapter 3).

 self._captureManager.exitFrame()
 self._windowManager.processEvents()

 def onKeypress (self, keycode):

Handling Files, Cameras, and GUIs

[36]

 """Handle a keypress.

 space -> Take a screenshot.
 tab -> Start/stop recording a screencast.
 escape -> Quit.

 """
 if keycode == 32: # space
 self._captureManager.writeImage('screenshot.png')
 elif keycode == 9: # tab
 if not self._captureManager.isWritingVideo:
 self._captureManager.startWritingVideo(
 'screencast.avi')
 else:
 self._captureManager.stopWritingVideo()
 elif keycode == 27: # escape
 self._windowManager.destroyWindow()

if __name__=="__main__":
 Cameo().run()

When running the application, note that the live camera feed is mirrored, while
screenshots and screencasts are not. This is the intended behavior, as we pass True
for shouldMirrorPreview when initializing the CaptureManager class.

So far, we do not manipulate the frames in any way except to mirror them for
preview. We will start to add more interesting effects in Chapter 3, Filtering Images.

Summary
By now, we should have an application that displays a camera feed, listens for
keyboard input, and (on command) records a screenshot or screencast. We are
ready to extend the application by inserting some image-filtering code (Chapter 3,
Filtering Images) between the start and end of each frame. Optionally, we are also
ready to integrate other camera drivers or other application frameworks (Appendix A,
Integrating with Pygame), besides the ones supported by OpenCV.

Filtering Images
This chapter presents some techniques for altering images. Our goal is to achieve
artistic effects, similar to the filters that can be found in image editing applications,
such as Photoshop or Gimp.

As we proceed with implementing filters, you can try applying them to any BGR
image and then saving or displaying the result. To fully appreciate each effect, try
it with various lighting conditions and subjects. By the end of this chapter, we will
integrate filters into the Cameo application.

All the finished code for this chapter can be downloaded from
my website: http://nummist.com/opencv/3923_03.zip.

Creating modules
Like our CaptureManager and WindowManager classes, our filters should be reusable
outside Cameo. Thus, we should separate the filters into their own Python module
or file.

Let's create a file called filters.py in the same directory as cameo.py. We need the
following import statements in filters.py:

import cv2
import numpy
import utils

Let's also create a file called utils.py in the same directory. It should contain the
following import statements:

import cv2
import numpy
import scipy.interpolate

http://nummist.com/opencv/3923_03.zip

Filtering Images

[38]

We will be adding filter functions and classes to filters.py, while more
general-purpose math functions will go in utils.py.

Channel mixing – seeing in Technicolor
Channel mixing is a simple technique for remapping colors. The color at a
destination pixel is a function of the color at the corresponding source pixel (only).
More specifically, each channel's value at the destination pixel is a function of any or
all channels' values at the source pixel. In pseudocode, for a BGR image:

dst.b = funcB(src.b, src.g, src.r)
dst.g = funcG(src.b, src.g, src.r)
dst.r = funcR(src.b, src.g, src.r)

We may define these functions however we please. Potentially, we can map a scene's
colors much differently than a camera normally does or our eyes normally do.

One use of channel mixing is to simulate some other, smaller color space inside RGB
or BGR. By assigning equal values to any two channels, we can collapse part of the
color space and create the impression that our palette is based on just two colors of
light (blended additively) or two inks (blended subtractively). This type of effect can
offer nostalgic value because early color films and early digital graphics had more
limited palettes than digital graphics today.

As examples, let's invent some notional color spaces that are reminiscent of
Technicolor movies of the 1920s and CGA graphics of the 1980s. All of these notional
color spaces can represent grays but none can represent the full color range of RGB:

• RC (red, cyan): Note that red and cyan can mix to make grays. This color
space resembles Technicolor Process 2 and CGA Palette 3.

• RGV (red, green, value): Note that red and green cannot mix to make grays.
So we need to specify value or whiteness as well. This color space resembles
Technicolor Process 1.

• CMV (cyan, magenta, value): Note that cyan and magenta cannot mix to
make grays. So we need to specify value or whiteness as well. This color
space resembles CGA Palette 1.

Chapter 3

[39]

The following is a screenshot from The Toll of the Sea (1922), a movie shot in
Technicolor Process 2:

The following image is from Commander Keen: Goodbye Galaxy (1991), a game that
supports CGA Palette 1. (For color images, see the electronic edition of this book.):

Filtering Images

[40]

Simulating RC color space
RC color space is easy to simulate in BGR. Blue and green can mix to make cyan. By
averaging the B and G channels and storing the result in both B and G, we effectively
collapse these two channels into one, C. To support this effect, let's add the following
function to filters.py:

def recolorRC(src, dst):
 """Simulate conversion from BGR to RC (red, cyan).

 The source and destination images must both be in BGR format.

 Blues and greens are replaced with cyans.

 Pseudocode:
 dst.b = dst.g = 0.5 * (src.b + src.g)
 dst.r = src.r

 """
 b, g, r = cv2.split(src)
 cv2.addWeighted(b, 0.5, g, 0.5, 0, b)
 cv2.merge((b, b, r), dst)

Three things are happening in this function:

1. Using split(), we extract our source image's channels as one-dimensional
arrays. Having put the data in this format, we can write clear, simple channel
mixing code.

2. Using addWeighted(), we replace the B channel's values with an average
of B and G. The arguments to addWeighted() are (in order) the first source
array, a weight applied to the first source array, the second source array, a
weight applied to the second source array, a constant added to the result, and
a destination array.

3. Using merge(), we replace the values in our destination image with the
modified channels. Note that we use b twice as an argument because we
want the destination's B and G channels to be equal.

Similar steps—splitting, modifying, and merging channels—can be applied to our
other color space simulations as well.

Chapter 3

[41]

Simulating RGV color space
RGV color space is just slightly more difficult to simulate in BGR. Our intuition
might say that we should set all B-channel values to 0 because RGV cannot represent
blue. However, this change would be wrong because it would discard the blue
component of lightness and, thus, turn grays and pale blues into yellows. Instead,
we want grays to remain gray while pale blues become gray. To achieve this result,
we should reduce B values to the per-pixel minimum of B, G, and R. Let's implement
this effect in filters.py as the following function:

def recolorRGV(src, dst):
 """Simulate conversion from BGR to RGV (red, green, value).

 The source and destination images must both be in BGR format.

 Blues are desaturated.

 Pseudocode:
 dst.b = min(src.b, src.g, src.r)
 dst.g = src.g
 dst.r = src.r

 """
 b, g, r = cv2.split(src)
 cv2.min(b, g, b)
 cv2.min(b, r, b)
 cv2.merge((b, g, r), dst)

The min() function computes the per-element minimums of the first two arguments
and writes them to the third argument.

Simulating CMV color space
Simulating CMV color space is quite similar to simulating RGV, except that the
desaturated part of the spectrum is yellow instead of blue. To desaturate yellows,
we should increase B values to the per-pixel maximum of B, G, and R. Here is an
implementation that we can add to filters.py:

def recolorCMV(src, dst):
 """Simulate conversion from BGR to CMV (cyan, magenta, value).

 The source and destination images must both be in BGR format.

 Yellows are desaturated.

Filtering Images

[42]

 Pseudocode:
 dst.b = max(src.b, src.g, src.r)
 dst.g = src.g
 dst.r = src.r

 """
 b, g, r = cv2.split(src)
 cv2.max(b, g, b)
 cv2.max(b, r, b)
 cv2.merge((b, g, r), dst)

The max() function computes the per-element maximums of the first two arguments
and writes them to the third argument.

By design, the three preceding effects tend to produce major color distortions,
especially when the source image is colorful in the first place. If we want to craft subtle
effects, channel mixing with arbitrary functions is probably not the best approach.

Curves – bending color space
Curves are another technique for remapping colors. Channel mixing and curves
are similar insofar as the color at a destination pixel is a function of the color at the
corresponding source pixel (only). However, in the specifics, channel mixing and
curves are dissimilar approaches. With curves, a channel's value at a destination pixel
is a function of (only) the same channel's value at the source pixel. Moreover, we do
not define the functions directly; instead, for each function, we define a set of control
points from which the function is interpolated. In pseudocode, for a BGR image:

dst.b = funcB(src.b) where funcB interpolates pointsB
dst.g = funcG(src.g) where funcG interpolates pointsG
dst.r = funcR(src.r) where funcR interpolates pointsR

The type of interpolation may vary between implementations, though it should
avoid discontinuous slopes at control points and, instead, produce curves. We will
use cubic spline interpolation whenever the number of control points is sufficient.

Chapter 3

[43]

Formulating a curve
Our first step toward curve-based filters is to convert control points to a function.
Most of this work is done for us by a SciPy function called interp1d(), which takes
two arrays (x and y coordinates) and returns a function that interpolates the points.
As an optional argument to interp1d(), we may specify a kind of interpolation,
which, in principle, may be linear, nearest, zero, slinear (spherical linear),
quadratic, or cubic, though not all options are implemented in the current version
of SciPy. Another optional argument, bounds_error, may be set to False to permit
extrapolation as well as interpolation.

Let's edit utils.py and add a function that wraps interp1d() with a slightly
simpler interface:

def createCurveFunc(points):
 """Return a function derived from control points."""
 if points is None:
 return None
 numPoints = len(points)
 if numPoints < 2:
 return None
 xs, ys = zip(*points)
 if numPoints < 4:
 kind = 'linear'
 # 'quadratic' is not implemented.
 else:
 kind = 'cubic'
 return scipy.interpolate.interp1d(xs, ys, kind,
 bounds_error = False)

Rather than two separate arrays of coordinates, our function takes an array of
(x, y) pairs, which is probably a more readable way of specifying control
points. The array must be ordered such that x increases from one index to the
next. Typically, for natural-looking effects, the y values should increase too,
and the first and last control points should be (0, 0) and (255, 255) in order
to preserve black and white. Note that we will treat x as a channel's input value
and y as the corresponding output value. For example, (128, 160) would
brighten a channel's midtones.

Note that cubic interpolation requires at least four control points. If there are
only two or three control points, we fall back to linear interpolation but, for
natural-looking effects, this case should be avoided.

Filtering Images

[44]

Caching and applying a curve
Now we can get the function of a curve that interpolates arbitrary control points.
However, this function might be expensive. We do not want to run it once per
channel, per pixel (for example, 921,600 times per frame if applied to three channels
of 640 x 480 video). Fortunately, we are typically dealing with just 256 possible input
values (in 8 bits per channel) and we can cheaply precompute and store that many
output values. Then, our per-channel, per-pixel cost is just a lookup of the cached
output value.

Let's edit utils.py and add functions to create a lookup array for a given function
and to apply the lookup array to another array (for example, an image):

def createLookupArray(func, length = 256):
 """Return a lookup for whole-number inputs to a function.

 The lookup values are clamped to [0, length - 1].

 """
 if func is None:
 return None
 lookupArray = numpy.empty(length)
 i = 0
 while i < length:
 func_i = func(i)
 lookupArray[i] = min(max(0, func_i), length - 1)
 i += 1
 return lookupArray

def applyLookupArray(lookupArray, src, dst):
 """Map a source to a destination using a lookup."""
 if lookupArray is None:
 return
 dst[:] = lookupArray[src]

Note that the approach in createLookupArray() is limited to whole-number input
values, as the input value is used as an index into an array. The applyLookupArray()
function works by using a source array's values as indices into the lookup array.
Python's slice notation ([:]) is used to copy the looked-up values into a destination
array.

Chapter 3

[45]

Let's consider another optimization. What if we always want to apply two or more
curves in succession? Performing multiple lookups is inefficient and may cause
loss of precision. We can avoid this problem by combining two curve functions into
one function before creating a lookup array. Let's edit utils.py again and add the
following function that returns a composite of two given functions:

def createCompositeFunc(func0, func1):
 """Return a composite of two functions."""
 if func0 is None:
 return func1
 if func1 is None:
 return func0
 return lambda x: func0(func1(x))

The approach in createCompositeFunc() is limited to input functions that each
take a single argument. The arguments must be of compatible types. Note the use of
Python's lambda keyword to create an anonymous function.

Here is a final optimization issue. What if we want to apply the same curve to
all channels of an image? Splitting and remerging channels is wasteful, in this
case, because we do not need to distinguish between channels. We just need one-
dimensional indexing, as used by applyLookupArray(). Let's edit utils.py to add
a function that returns a one-dimensional interface to a preexisting, given array that
may be multidimensional:

def createFlatView(array):
 """Return a 1D view of an array of any dimensionality."""
 flatView = array.view()
 flatView.shape = array.size
 return flatView

The return type is numpy.view, which has much the same interface as numpy.array,
but numpy.view only owns a reference to the data, not a copy.

The approach in createFlatView() works for images with any number of channels.
Thus, it allows us to abstract the difference between grayscale and color images in
cases when we wish to treat all channels the same.

Filtering Images

[46]

Designing object-oriented curve filters
Since we cache a lookup array for each curve, our curve-based filters have data
associated with them. Thus, they need to be classes, not just functions. Let's make
a pair of curve filter classes, along with corresponding higher-level classes that can
apply any function, not just a curve function:

• VFuncFilter: This is a class that is instantiated with a function, which it
can later apply to an image using apply(). The function is applied to the V
(value) channel of a grayscale image or to all channels of a color image.

• VcurveFilter: This is a subclass of VFuncFilter. Instead of being
instantiated with a function, it is instantiated with a set of control points,
which it uses internally to create a curve function.

• BGRFuncFilter: This is a class that is instantiated with up to four
functions, which it can later apply to a BGR image using apply().
One of the functions is applied to all channels and the other three
functions are each applied to a single channel. The overall function
is applied first and then the per-channel functions.

• BGRCurveFilter: this is a subclass of BGRFuncFilter. Instead of being
instantiated with four functions, it is instantiated with four sets of control
points, which it uses internally to create curve functions.

Additionally, all these classes accept a constructor argument that is a numeric type,
such as numpy.uint8 for 8 bits per channel. This type is used to determine how
many entries should be in the lookup array.

Let's first look at the implementations of VFuncFilter and VcurveFilter, which
may both be added to filters.py:

class VFuncFilter(object):
 """A filter that applies a function to V (or all of BGR)."""

 def __init__(self, vFunc = None, dtype = numpy.uint8):
 length = numpy.iinfo(dtype).max + 1
 self._vLookupArray = utils.createLookupArray(vFunc, length)

 def apply(self, src, dst):
 """Apply the filter with a BGR or gray source/destination."""
 srcFlatView = utils.flatView(src)
 dstFlatView = utils.flatView(dst)
 utils.applyLookupArray(self._vLookupArray, srcFlatView,
 dstFlatView)

class VCurveFilter(VFuncFilter):

Chapter 3

[47]

 """A filter that applies a curve to V (or all of BGR)."""

 def __init__(self, vPoints, dtype = numpy.uint8):
 VFuncFilter.__init__(self, utils.createCurveFunc(vPoints),
 dtype)

Here, we are internalizing the use of several of our previous functions:
createCurveFunc(), createLookupArray(), flatView(), and
applyLookupArray(). We are also using numpy.iinfo() to determine
the relevant range of lookup values, based on the given numeric type.

Now, let's look at the implementations of BGRFuncFilter and BGRCurveFilter,
which may both be added to filters.py as well:

class BGRFuncFilter(object):
 """A filter that applies different functions to each of BGR."""

 def __init__(self, vFunc = None, bFunc = None, gFunc = None,
 rFunc = None, dtype = numpy.uint8):
 length = numpy.iinfo(dtype).max + 1
 self._bLookupArray = utils.createLookupArray(
 utils.createCompositeFunc(bFunc, vFunc), length)
 self._gLookupArray = utils.createLookupArray(
 utils.createCompositeFunc(gFunc, vFunc), length)
 self._rLookupArray = utils.createLookupArray(
 utils.createCompositeFunc(rFunc, vFunc), length)

 def apply(self, src, dst):
 """Apply the filter with a BGR source/destination."""
 b, g, r = cv2.split(src)
 utils.applyLookupArray(self._bLookupArray, b, b)
 utils.applyLookupArray(self._gLookupArray, g, g)
 utils.applyLookupArray(self._rLookupArray, r, r)
 cv2.merge([b, g, r], dst)

class BGRCurveFilter(BGRFuncFilter):
 """A filter that applies different curves to each of BGR."""

 def __init__(self, vPoints = None, bPoints = None,
 gPoints = None, rPoints = None, dtype = numpy.uint8):
 BGRFuncFilter.__init__(self,
 utils.createCurveFunc(vPoints),
 utils.createCurveFunc(bPoints),
 utils.createCurveFunc(gPoints),
 utils.createCurveFunc(rPoints), dtype)

Filtering Images

[48]

Again, we are internalizing the use of several of our previous functions:
createCurveFunc(), createCompositeFunc(), createLookupArray(), and
applyLookupArray(). We are also using iinfo(), split(), and merge().

These four classes can be used as is, with custom functions or control points being
passed as arguments at instantiation. Alternatively, we can make further subclasses
that hard-code certain functions or control points. Such subclasses could be
instantiated without any arguments.

Emulating photo films
A common use of curves is to emulate the palettes that were common in pre-digital
photography. Every type of photo film has its own, unique rendition of color
(or grays) but we can generalize about some of the differences from digital sensors.
Film tends to suffer loss of detail and saturation in shadows, whereas digital tends to
suffer these failings in highlights. Also, film tends to have uneven saturation across
different parts of the spectrum. So each film has certain colors that pop or jump out.

Thus, when we think of good-looking film photos, we may think of scenes
(or renditions) that are bright and that have certain dominant colors. At the
other extreme, we may remember the murky look of underexposed film that
could not be improved much by the efforts of the lab technician.

We are going to create four different film-like filters using curves. They are inspired
by three kinds of film and a processing technique:

• Kodak Portra, a family of films that are optimized for portraits and weddings
• Fuji Provia, a family of general-purpose films
• Fuji Velvia, a family of films that are optimized for landscapes
• Cross-processing, a nonstandard film processing technique, sometimes used

to produce a grungy look in fashion and band photography

Each film emulation effect is a very simple subclass of BGRCurveFilter. We just
override the constructor to specify a set of control points for each channel. The choice
of control points is based on recommendations by photographer Petteri Sulonen. See
his article on film-like curves at http://www.prime-junta.net/pont/How_to/100_
Curves_and_Films/_Curves_and_films.html.

The Portra, Provia, and Velvia effects should produce normal-looking images. The
effect should not be obvious except in before-and-after comparisons.

http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html

Chapter 3

[49]

Emulating Kodak Portra
Portra has a broad highlight range that tends toward warm (amber) colors,
while shadows are cooler (more blue). As a portrait film, it tends to make people's
complexions fairer. Also, it exaggerates certain common clothing colors, such as
milky white (for example, a wedding dress) and dark blue (for example, a suit or
jeans). Let's add this implementation of a Portra filter to filters.py:

class BGRPortraCurveFilter(BGRCurveFilter):
 """A filter that applies Portra-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 vPoints = [(0,0),(23,20),(157,173),(255,255)],
 bPoints = [(0,0),(41,46),(231,228),(255,255)],
 gPoints = [(0,0),(52,47),(189,196),(255,255)],
 rPoints = [(0,0),(69,69),(213,218),(255,255)],
 dtype = dtype)

Emulating Fuji Provia
Provia has strong contrast and is slightly cool (blue) throughout most tones. Sky,
water, and shade are enhanced more than sun. Let's add this implementation of a
Provia filter to filters.py:

class BGRProviaCurveFilter(BGRCurveFilter):
 """A filter that applies Provia-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 bPoints = [(0,0),(35,25),(205,227),(255,255)],
 gPoints = [(0,0),(27,21),(196,207),(255,255)],
 rPoints = [(0,0),(59,54),(202,210),(255,255)],
 dtype = dtype)

Filtering Images

[50]

Emulating Fuji Velvia
Velvia has deep shadows and vivid colors. It can often produce azure skies in
daytime and crimson clouds at sunset. The effect is difficult to emulate but here
is an attempt that we can add to filters.py:

class BGRVelviaCurveFilter(BGRCurveFilter):
 """A filter that applies Velvia-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 vPoints = [(0,0),(128,118),(221,215),(255,255)],
 bPoints = [(0,0),(25,21),(122,153),(165,206),(255,255)],
 gPoints = [(0,0),(25,21),(95,102),(181,208),(255,255)],
 rPoints = [(0,0),(41,28),(183,209),(255,255)],
 dtype = dtype)

Emulating cross-processing
Cross-processing produces a strong, blue or greenish-blue tint in shadows and a
strong, yellow or greenish-yellow in highlights. Black and white are not necessarily
preserved. Also, contrast is very high. Cross-processed photos take on a sickly
appearance. People look jaundiced, while inanimate objects look stained. Let's edit
filters.py to add the following implementation of a cross-processing filter:

class BGRCrossProcessCurveFilter(BGRCurveFilter):
 """A filter that applies cross-process-like curves to BGR."""

 def __init__(self, dtype = numpy.uint8):
 BGRCurveFilter.__init__(
 self,
 bPoints = [(0,20),(255,235)],
 gPoints = [(0,0),(56,39),(208,226),(255,255)],
 rPoints = [(0,0),(56,22),(211,255),(255,255)],
 dtype = dtype)

Chapter 3

[51]

Highlighting edges
Edges play a major role in both human and computer vision. We, as humans, can
easily recognize many object types and their pose just by seeing a backlit silhouette
or a rough sketch. Indeed, when art emphasizes edges and pose, it often seems to
convey the idea of an archetype, like Rodin's The Thinker or Joe Shuster's Superman.
Software, too, can reason about edges, poses, and archetypes. We will discuss these
kinds of reasoning in later chapters.

For the moment, we are interested in a simple use of edges for artistic effect. We
are going to trace an image's edges with bold, black lines. The effect should be
reminiscent of a comic book or other illustration, drawn with a felt pen.

OpenCV provides many edge-finding filters, including Laplacian(), Sobel(), and
Scharr(). These filters are supposed to turn non-edge regions to black while turning
edge regions to white or saturated colors. However, they are prone to misidentifying
noise as edges. This flaw can be mitigated by blurring an image before trying to find
its edges. OpenCV also provides many blurring filters, including blur() (simple
average), medianBlur(), and GaussianBlur(). The arguments to the edge-finding
and blurring filters vary but always include ksize, an odd whole number that
represents the width and height (in pixels) of the filter's kernel.

A kernel is a set of weights that are applied to a region in the source
image to generate a single pixel in the destination image. For example,
a ksize of 7 implies that 49 (7 x 7) source pixels are considered in
generating each destination pixel. We can think of a kernel as a piece
of frosted glass moving over the source image and letting through a
diffused blend of the source's light.

For blurring, let's use medianBlur(), which is effective in removing digital
video noise, especially in color images. For edge-finding, let's use Laplacian(),
which produces bold edge lines, especially in grayscale images. After applying
medianBlur(), but before applying Laplacian(), we should convert from BGR
to grayscale.

Once we have the result of Laplacian(), we can invert it to get black edges on a
white background. Then, we can normalize it (so that its values range from 0 to 1)
and multiply it with the source image to darken the edges. Let's implement this
approach in filters.py:

def strokeEdges(src, dst, blurKsize = 7, edgeKsize = 5):
 if blurKsize >= 3:
 blurredSrc = cv2.medianBlur(src, blurKsize)
 graySrc = cv2.cvtColor(blurredSrc, cv2.COLOR_BGR2GRAY)

Filtering Images

[52]

 else:
 graySrc = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
 cv2.Laplacian(graySrc, cv2.cv.CV_8U, graySrc, ksize = edgeKsize)
 normalizedInverseAlpha = (1.0 / 255) * (255 - graySrc)
 channels = cv2.split(src)
 for channel in channels:
 channel[:] = channel * normalizedInverseAlpha
 cv2.merge(channels, dst)

Note that we allow kernel sizes to be specified as arguments to strokeEdges().
The blurKsize argument is used as ksize for medianBlur(), while edgeKsize is
used as ksize for Laplacian(). With my webcams, I find that a blurKsize value
of 7 and edgeKsize value of 5 look best. Unfortunately, medianBlur() is expensive
with a large ksize like 7. If you encounter performance problems when running
strokeEdges(), try decreasing the blurKsize value. To turn off blur, set it to a
value less than 3.

Custom kernels – getting convoluted
As we have just seen, many of OpenCV's predefined filters use a kernel. Remember
that a kernel is a set of weights, which determine how each output pixel is calculated
from a neighborhood of input pixels. Another term for a kernel is a convolution
matrix. It mixes up or convolutes the pixels in a region. Similarly, a kernel-based filter
may be called a convolution filter.

OpenCV provides a very versatile function, filter2D(), which applies any kernel
or convolution matrix that we specify. To understand how to use this function, let's
first learn the format of a convolution matrix. It is a 2D array with an odd number
of rows and columns. The central element corresponds to a pixel of interest and the
other elements correspond to that pixel's neighbors. Each element contains an integer
or floating point value, which is a weight that gets applied to an input pixel's value.
Consider this example:

kernel = numpy.array([[-1, -1, -1],
 [-1, 9, -1],
 [-1, -1, -1]])

Here, the pixel of interest has a weight of 9 and its immediate neighbors each have
a weight of -1. For the pixel of interest, the output color will be nine times its input
color, minus the input colors of all eight adjacent pixels. If the pixel of interest was
already a bit different from its neighbors, this difference becomes intensified. The
effect is that the image looks sharper as the contrast between neighbors is increased.

Chapter 3

[53]

Continuing our example, we can apply this convolution matrix to a source image
and destination image as follows:

cv2.filter2D(src, -1, kernel, dst)

The second argument specifies the per-channel depth of the destination image
(such as cv2.CV_8U for 8 bits per channel). A negative value (as used here) means
that the destination image has the same depth as the source image.

For color images, note that filter2D() applies the kernel equally
to each channel. To use different kernels on different channels, we
would also have to use the split() and merge() functions, as
we did in our earlier channel mixing functions. (See the section
Simulating RC color space.)

Based on this simple example, let's add two classes to filters.py. One class,
VConvolutionFilter, will represent a convolution filter in general. A subclass,
SharpenFilter, will represent our sharpening filter specifically. Let's edit
filters.py to implement these two new classes as follows:

class VConvolutionFilter(object):
 """A filter that applies a convolution to V (or all of BGR)."""

 def __init__(self, kernel):
 self._kernel = kernel

 def apply(self, src, dst):
 """Apply the filter with a BGR or gray source/destination."""
 cv2.filter2D(src, -1, self._kernel, dst)

class SharpenFilter(VConvolutionFilter):
 """A sharpen filter with a 1-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[-1, -1, -1],
 [-1, 9, -1],
 [-1, -1, -1]])
 VConvolutionFilter.__init__(self, kernel)

The pattern is very similar to the VCurveFilter class and its subclasses. (See the
section Designing object-oriented curve filters.)

Filtering Images

[54]

Note that the weights sum to 1. This should be the case whenever we want to leave
the image's overall brightness unchanged. If we modify a sharpening kernel slightly,
so that its weights sum to 0 instead, then we have an edge detection kernel that
turns edges white and non-edges black. For example, let's add the following edge
detection filter to filters.py:

class FindEdgesFilter(VConvolutionFilter):
 """An edge-finding filter with a 1-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[-1, -1, -1],
 [-1, 8, -1],
 [-1, -1, -1]])
 VConvolutionFilter.__init__(self, kernel)

Next, let's make a blur filter. Generally, for a blur effect, the weights should sum
to 1 and should be positive throughout the neighborhood. For example, we can
take a simple average of the neighborhood, as follows:

class BlurFilter(VConvolutionFilter):
 """A blur filter with a 2-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04],
 [0.04, 0.04, 0.04, 0.04, 0.04]])
 VConvolutionFilter.__init__(self, kernel)

Our sharpening, edge detection, and blur filters use kernels that are highly
symmetric. Sometimes, though, kernels with less symmetry produce an interesting
effect. Let's consider a kernel that blurs on one side (with positive weights) and
sharpens on the other (with negative weights). It will produce a ridged or embossed
effect. Here is an implementation that we can add to filters.py:

class EmbossFilter(VConvolutionFilter):
 """An emboss filter with a 1-pixel radius."""

 def __init__(self):
 kernel = numpy.array([[-2, -1, 0],
 [-1, 1, 1],
 [0, 1, 2]])
 VConvolutionFilter.__init__(self, kernel)

Chapter 3

[55]

This set of custom convolution filters is very basic. Indeed, it is more basic than
OpenCV's ready-made set of filters. However, with a bit of experimentation, you
should be able to write your own kernels that produce a unique look.

Modifying the application
Now that we have high-level functions and classes for several filters, it is trivial to
apply any of them to the captured frames in Cameo. Let's edit cameo.py and add the
lines that appear in bold face in the following excerpt:

import cv2
import filters
from managers import WindowManager, CaptureManager

class Cameo(object):

 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 self._captureManager = CaptureManager(
 cv2.VideoCapture(0), self._windowManager, True)
 self._curveFilter = filters.BGRPortraCurveFilter()

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 frame = self._captureManager.frame

 # TODO: Track faces (Chapter 3).

 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)

 self._captureManager.exitFrame()
 self._windowManager.processEvents()

 # ... The rest is the same as in Chapter 2.

Here, I have chosen to apply two effects: stroking the edges and emulating Portra
film colors. Feel free to modify the code to apply any filters you like.

Filtering Images

[56]

Here is a screenshot from Cameo, with stroked edges and Portra-like colors:

Summary
At this point, we should have an application that displays a filtered camera feed. We
should also have several more filter implementations that are easily swappable with
the ones we are currently using. Now, we are ready to proceed with analyzing each
frame for the sake of finding faces to manipulate in the next chapter.

Tracking Faces with
Haar Cascades

This chapter introduces some of OpenCV's tracking functionality, along with the
data files that define particular types of trackable objects. Specifically, we look at
Haar cascade classifiers, which analyze contrast between adjacent image regions to
determine whether or not a given image or subimage matches a known type. We
consider how to combine multiple Haar cascade classifiers in a hierarchy, such that
one classifier identifies a parent region (for our purposes, a face) and other classifiers
identify child regions (eyes, nose, and mouth).

We also take a detour into the humble but important subject of rectangles.
By drawing, copying, and resizing rectangular image regions, we can perform
simple manipulations on image regions that we are tracking.

By the end of this chapter, we will integrate face tracking and rectangle
manipulations into Cameo. Finally, we'll have some face-to-face interaction!

All the finished code for this chapter can be downloaded from
my website: http://nummist.com/opencv/3923_04.zip.

Tracking Faces with Haar Cascades

[58]

Conceptualizing Haar cascades
When we talk about classifying objects and tracking their location, what exactly are
we hoping to pinpoint? What constitutes a recognizable part of an object?

Photographic images, even from a webcam, may contain a lot of detail for our
(human) viewing pleasure. However, image detail tends to be unstable with respect to
variations in lighting, viewing angle, viewing distance, camera shake, and digital noise.
Moreover, even real differences in physical detail might not interest us for the purpose
of classification. I was taught in school, that no two snowflakes look alike under a
microscope. Fortunately, as a Canadian child, I had already learned how to recognize
snowflakes without a microscope, as the similarities are more obvious in bulk.

Thus, some means of abstracting image detail is useful in producing stable
classification and tracking results. The abstractions are called features, which are
said to be extracted from the image data. There should be far fewer features than
pixels, though any pixel might influence multiple features. The level of similarity
between two images can be evaluated based on distances between the images'
corresponding features. For example, distance might be defined in terms of spatial
coordinates or color coordinates. Haar-like features are one type of feature that is
often applied to real-time face tracking. They were first used for this purpose by
Paul Viola and Michael Jones in 2001. Each Haar-like feature describes the pattern
of contrast among adjacent image regions. For example, edges, vertices, and thin
lines each generate distinctive features. For any given image, the features may vary
depending on the regions' size, which may be called the window size. Two images
that differ only in scale should be capable of yielding similar features, albeit for
different window sizes. Thus, it is useful to generate features for multiple window
sizes. Such a collection of features is called a cascade. We may say a Haar cascade
is scale-invariant or, in other words, robust to changes in scale. OpenCV provides
a classifier and tracker for scale-invariant Haar cascades, which it expects to be in
a certain file format. Haar cascades, as implemented in OpenCV, are not robust to
changes in rotation. For example, an upside-down face is not considered similar to
an upright face and a face viewed in profile is not considered similar to a face viewed
from the front. A more complex and more resource-intensive implementation could
improve Haar cascades' robustness to rotation by considering multiple transformations
of images as well as multiple window sizes. However, we will confine ourselves to the
implementation in OpenCV.

Chapter 4

[59]

Getting Haar cascade data
As part of your OpenCV setup, you probably have a directory called haarcascades.
It contains cascades that are trained for certain subjects using tools that come with
OpenCV. The directory's full path depends on your system and method of setting up
OpenCV, as follows:

• Build from source archive: <unzip_destination>/data/haarcascades
• Windows with self-extracting ZIP: <unzip_destination>/data/

haarcascades

• Mac with MacPorts: /opt/local/share/OpenCV/haarcascades
• Mac with Homebrew: The haarcascades file is not included; to get it,

download the source archive
• Ubuntu with apt or Software Center: The haarcascades file is not included;

to get it, download the source archive

If you cannot find haarcascades, then download the source archive
from http://sourceforge.net/projects/opencvlibrary/
files/opencv-unix/2.4.3/OpenCV-2.4.3.tar.bz2/
download (or the Windows self-extracting ZIP from http://
sourceforge.net/projects/opencvlibrary/files/opencv-
win/2.4.3/OpenCV-2.4.3.exe/download), unzip it, and look for
<unzip_destination>/data/haarcascades.

Once you find haarcascades, create a directory called cascades in the same folder
as cameo.py and copy the following files from haarcascades into cascades:

haarcascade_frontalface_alt.xml
haarcascade_eye.xml
haarcascade_mcs_nose.xml
haarcascade_mcs_mouth.xml

As their names suggest, these cascades are for tracking faces, eyes, noses, and
mouths. They require a frontal, upright view of the subject. We will use them later
when building a high-level tracker. If you are curious about how these data sets are
generated, refer to Appendix B, Generating Haar Cascades for Custom Targets. With a lot
of patience and a powerful computer, you can make your own cascades, trained for
various types of objects.

Tracking Faces with Haar Cascades

[60]

Creating modules
We should continue to maintain good separation between application-specific code
and reusable code. Let's make new modules for tracking classes and their helpers.

A file called trackers.py should be created in the same directory as cameo.py
(and, equivalently, in the parent directory of cascades). Let's put the following
import statements at the start of trackers.py:

import cv2
import rects
import utils

Alongside trackers.py and cameo.py, let's make another file called rects.py
containing the following import statement:

import cv2

Our face tracker and a definition of a face will go in trackers.py, while various
helpers will go in rects.py and our preexisting utils.py file.

Defining a face as a hierarchy of
rectangles
Before we start implementing a high-level tracker, we should define the type of
tracking result that we want to get. For many applications, it is important to estimate
how objects are posed in real, 3D space. However, our application is about image
manipulation. So we care more about 2D image space. An upright, frontal view of a
face should occupy a roughly rectangular region in the image. Within such a region,
eyes, a nose, and a mouth should occupy rough rectangular subregions. Let's open
trackers.py and add a class containing the relevant data:

class Face(object):
 """Data on facial features: face, eyes, nose, mouth."""

 def __init__(self):
 self.faceRect = None
 self.leftEyeRect = None
 self.rightEyeRect = None
 self.noseRect = None
 self.mouthRect = None

Chapter 4

[61]

Whenever our code contains a rectangle as a property or a function
argument, we will assume it is in the format (x, y, w, h)
where the unit is pixels, the upper-left corner is at (x, y), and
the lower-right corner at (x+w, y+h). OpenCV sometimes uses
a compatible representation but not always. So we must be careful
when sending/receiving rectangles to/from OpenCV. For example,
sometimes OpenCV requires the upper-left and lower-right corners
as coordinate pairs.

Tracing, cutting, and pasting rectangles
When I was in primary school, I was poor at crafts. I often had to take my unfinished
craft projects home, where my mother volunteered to finish them for me so that I
could spend more time on the computer instead. I shall never cut and paste a sheet
|of paper, nor an array of bytes, without thinking of those days.

Just as in crafts, mistakes in our graphics program are easier to see if we first draw
outlines. For debugging purposes, Cameo will include an option to draw lines
around any rectangles represented by a Face. OpenCV provides a rectangle()
function for drawing. However, its arguments represent a rectangle differently
than Face does. For convenience, let's add the following wrapper of rectangle()
to rects.py:

def outlineRect(image, rect, color):
 if rect is None:
 return
 x, y, w, h = rect
 cv2.rectangle(image, (x, y), (x+w, y+h), color)

Here, color should normally be either a BGR triplet (of values ranging from 0 to 255)
or a grayscale value (ranging from 0 to 255), depending on the image's format.

Next, Cameo must support copying one rectangle's contents into another rectangle.
We can read or write a rectangle within an image by using Python's slice notation.
Remembering that an image's first index is the y coordinate or row, we can specify a
rectangle as image[y:y+h, x:x+w]. For copying, a complication arises if the source
and destination of rectangles are of different sizes. Certainly, we expect two faces to
appear at different sizes, so we must address this case. OpenCV provides a resize()
function that allows us to specify a destination size and an interpolation method.
Combining slicing and resizing, we can add the following implementation of a copy
function to rects.py:

def copyRect(src, dst, srcRect, dstRect,
 interpolation = cv2.INTER_LINEAR):

Tracking Faces with Haar Cascades

[62]

 """Copy part of the source to part of the destination."""

 x0, y0, w0, h0 = srcRect
 x1, y1, w1, h1 = dstRect

 # Resize the contents of the source sub-rectangle.
 # Put the result in the destination sub-rectangle.
 dst[y1:y1+h1, x1:x1+w1] = \
 cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
 interpolation = interpolation)

OpenCV supports the following options for interpolation:

• cv2.INTER_NEAREST: This is nearest-neighbor interpolation, which is cheap
but produces blocky results

• cv2.INTER_LINEAR: This is bilinear interpolation (the default), which offers a
good compromise between cost and quality in real-time applications

• cv2.INTER_AREA: This is pixel area relation, which may offer a better
compromise between cost and quality when downscaling but produces
blocky results when upscaling

• cv2.INTER_CUBIC: This is bicubic interpolation over a 4 x 4 pixel
neighborhood, a high-cost, high-quality approach

• cv2.INTER_LANCZOS4: This is Lanczos interpolation over an 8 x 8 pixel
neighborhood, the highest-cost, highest-quality approach

Copying becomes more complicated if we want to support swapping of two or more
rectangles' contents. Consider the following approach, which is wrong:

copyRect(image, image, rect0, rect1) # overwrite rect1
copyRect(image, image, rect1, rect0) # copy from rect1
Oops! rect1 was already overwritten by the time we copied from it!

Instead, we need to copy one of the rectangles to a temporary array before
overwriting anything. Let's edit rects.py to add the following function, which
swaps the contents of two or more rectangles in a single source image:

def swapRects(src, dst, rects,
 interpolation = cv2.INTER_LINEAR):
 """Copy the source with two or more sub-rectangles swapped."""

 if dst is not src:
 dst[:] = src

 numRects = len(rects)

Chapter 4

[63]

 if numRects < 2:
 return

 # Copy the contents of the last rectangle into temporary storage.
 x, y, w, h = rects[numRects - 1]
 temp = src[y:y+h, x:x+w].copy()

 # Copy the contents of each rectangle into the next.
 i = numRects - 2
 while i >= 0:
 copyRect(src, dst, rects[i], rects[i+1], interpolation)
 i -= 1

 # Copy the temporarily stored content into the first rectangle.
 copyRect(temp, dst, (0, 0, w, h), rects[0], interpolation)

The swap is circular, such that it can support any number of rectangles. Each
rectangle's content is destined for the next rectangle, except that the last rectangle's
content is destined for the first rectangle.

This approach should serve us well enough for Cameo, but it is still not
entirely foolproof. Intuition might tell us that the following code should
leave image unchanged:

swapRects(image, image, rect0, rect1)
swapRects(image, image, rect1, rect0)

However, if rect0 and rect1 overlap, our intuition may be incorrect. If you see
strange-looking results, then investigate the possibility that you are swapping
overlapping rectangles.

Adding more utility functions
Last chapter, we created a module called utils for some miscellaneous helper
functions. A couple of extra helper functions will make it easier for us to write
a tracker.

First, it may be useful to know whether an image is in grayscale or color. We can
tell based on the dimensionality of the image. Color images are 3D arrays, while
grayscale images have fewer dimensions. Let's add the following function to utils.
py to test whether an image is in grayscale:

def isGray(image):
 """Return True if the image has one channel per pixel."""
 return image.ndim < 3

Tracking Faces with Haar Cascades

[64]

Second, it may be useful to know an image's dimensions and to divide these
dimensions by a given factor. An image's (or other array's) height and width,
respectively, are the first two entries in its shape property. Let's add the following
function to utils.py to get an image's dimensions, divided by a value:

def widthHeightDividedBy(image, divisor):
 """Return an image's dimensions, divided by a value."""
 h, w = image.shape[:2]
 return (w/divisor, h/divisor)

Now, let's get back on track with this chapter's main subject, tracking.

Tracking faces
The challenge in using OpenCV's Haar cascade classifiers is not just getting a
tracking result; it is getting a series of sensible tracking results at a high frame rate.
One kind of common sense that we can enforce is that certain tracked objects should
have a hierarchical relationship, one being located relative to the other. For example,
a nose should be in the middle of a face. By attempting to track both a whole face and
parts of a face, we can enable application code to do more detailed manipulations
and to check how good a given tracking result is. A face with a nose is a better result
than one without. At the same time, we can support some optimizations, such as
only looking for faces of a certain size and noses in certain places.

We are going to implement an optimized, hierarchical tracker in a class called
FaceTracker, which offers a simple interface. A FaceTracker may be initialized
with certain optional configuration arguments that are relevant to the tradeoff
between tracking accuracy and performance. At any given time, the latest tracking
results of FaceTracker are stored in a property called faces, which is a list of Face
instances. Initially, this list is empty. It is refreshed via an update() method that
accepts an image for the tracker to analyze. Finally, for debugging purposes, the
rectangles of faces may be drawn via a drawDebugRects() method, which accepts
an image as a drawing surface. Every frame, a real-time face-tracking application
would call update(), read faces, and perhaps call drawDebugRects().

Internally, FaceTracker uses an OpenCV class called CascadeClassifier.
A CascadeClassifier is initialized with a cascade data file, such as the ones
that we found and copied earlier. For our purposes, the important method of
CascadeClassifier is detectMultiScale(), which performs tracking that may be
robust to variations in scale. The possible arguments to detectMultiScale() are:

• image: This is an image to be analyzed. It must have 8 bits per channel.

Chapter 4

[65]

• scaleFactor: This scaling factor separates the window sizes in two
successive passes. A higher value improves performance but diminishes
robustness with respect to variations in scale.

• minNeighbors: This value is one less than the minimum number of
regions that are required in a match. (A match may merge multiple
neighboring regions.)

• flags: There are several flags but not all combinations are valid. The valid
standalone flags and valid combinations include:

 ° cv2.cv.CV_HAAR_SCALE_IMAGE: Scales each windowed image region
to match the feature data. (The default approach is the opposite: scale
the feature data to match the window.) Scaling the image allows for
certain optimizations on modern hardware. This flag must not be
combined with others.

 ° cv2.cv.CV_HAAR_DO_CANNY_PRUNING: Eagerly rejects regions that
contain too many or too few edges to match the object type. This
flag should not be combined with cv2.cv.CV_HAAR_FIND_BIGGEST_
OBJECT.

 ° cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT: Accepts, at most, one
match (the biggest).

 ° cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.HAAR_DO_
ROUGH SEARCH: Accepts, at most, one match (the biggest) and skips
some steps that would refine (shrink) the region of this match. The
minNeighbors argument should be greater than 0.

• minSize: A pair of pixel dimensions representing the minimum object size
being sought. A higher value improves performance.

• maxSize: A pair of pixel dimensions representing the maximum object size
being sought. A lower value improves performance.

The return value of detectMultiScale() is a list of matches, each expressed as a
rectangle in the format [x, y, w, h].

Similarly, the initializer of FaceTracker accepts scaleFactor, minNeighbors, and
flags as arguments. The given values are passed to all detectMultiScale() calls
that a FaceTracker makes internally. Also during initialization, a FaceTracker
creates CascadeClassifiers using face, eye, nose, and mouth data. Let's add the
following implementation of the initializer and the faces property to trackers.py:

class FaceTracker(object):
 """A tracker for facial features: face, eyes, nose, mouth."""

 def __init__(self, scaleFactor = 1.2, minNeighbors = 2,

Tracking Faces with Haar Cascades

[66]

 flags = cv2.cv.CV_HAAR_SCALE_IMAGE):

 self.scaleFactor = scaleFactor
 self.minNeighbors = minNeighbors
 self.flags = flags

 self._faces = []

 self._faceClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_frontalface_alt.xml')
 self._eyeClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_eye.xml')
 self._noseClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_mcs_nose.xml')
 self._mouthClassifier = cv2.CascadeClassifier(
 'cascades/haarcascade_mcs_mouth.xml')

 @property
 def faces(self):
 """The tracked facial features."""
 return self._faces

The update() method of FaceTracker first creates an equalized, grayscale variant
of the given image. Equalization, as implemented in OpenCV's equalizeHist()
function, normalizes an image's brightness and increases its contrast. Equalization as
a preprocessing step makes our tracker more robust to variations in lighting, while
conversion to grayscale improves performance. Next, we feed the preprocessed image
to our face classifier. For each matching rectangle, we search certain subregions for a left
and right eye, nose, and mouth. Ultimately, the matching rectangles and subrectangles
are stored in Face instances in faces. For each type of tracking, we specify a minimum
object size that is proportional to the image size. Our implementation of FaceTracker
should continue with the following code for update():

 def update(self, image):
 """Update the tracked facial features."""

 self._faces = []

 if utils.isGray(image):
 image = cv2.equalizeHist(image)

Chapter 4

[67]

 else:
 image = cv2.cvtColor(image, cv2.cv.CV_BGR2GRAY)
 cv2.equalizeHist(image, image)

 minSize = utils.widthHeightDividedBy(image, 8)

 faceRects = self._faceClassifier.detectMultiScale(
 image, self.scaleFactor, self.minNeighbors, self.flags,
 minSize)

 if faceRects is not None:
 for faceRect in faceRects:

 face = Face()
 face.faceRect = faceRect

 x, y, w, h = faceRect

 # Seek an eye in the upper-left part of the face.
 searchRect = (x+w/7, y, w*2/7, h/2)
 face.leftEyeRect = self._detectOneObject(
 self._eyeClassifier, image, searchRect, 64)

 # Seek an eye in the upper-right part of the face.
 searchRect = (x+w*4/7, y, w*2/7, h/2)
 face.rightEyeRect = self._detectOneObject(
 self._eyeClassifier, image, searchRect, 64)

 # Seek a nose in the middle part of the face.
 searchRect = (x+w/4, y+h/4, w/2, h/2)
 face.noseRect = self._detectOneObject(
 self._noseClassifier, image, searchRect, 32)

 # Seek a mouth in the lower-middle part of the face.
 searchRect = (x+w/6, y+h*2/3, w*2/3, h/3)
 face.mouthRect = self._detectOneObject(
 self._mouthClassifier, image, searchRect, 16)

 self._faces.append(face)

Tracking Faces with Haar Cascades

[68]

Note that update() relies on utils.isGray() and utils.
widthHeightDividedBy(), both implemented earlier in this chapter. Also, it relies
on a private helper method, _detectOneObject(), which is called several times
in order to handle the repetitious work of tracking several subparts of the face.
As arguments, _detectOneObject() requires a classifier, image, rectangle, and
minimum object size. The rectangle is the image subregion that the given classifier
should search. For example, the nose classifier should search the middle of the face.
Limiting the search area improves performance and helps eliminate false positives.
Internally, _detectOneObject() works by running the classifier on a slice of the
image and returning the first match (or None if there are no matches). This approach
works whether or not we are using the cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT
flag. Our implementation of FaceTracker should continue with the following code
for _detectOneObject():

 def _detectOneObject(self, classifier, image, rect,
 imageSizeToMinSizeRatio):

 x, y, w, h = rect

 minSize = utils.widthHeightDividedBy(
 image, imageSizeToMinSizeRatio)

 subImage = image[y:y+h, x:x+w]

 subRects = classifier.detectMultiScale(
 subImage, self.scaleFactor, self.minNeighbors,
 self.flags, minSize)

 if len(subRects) == 0:
 return None

 subX, subY, subW, subH = subRects[0]
 return (x+subX, y+subY, subW, subH)

Lastly, FaceTracker should offer basic drawing functionality so that its tracking
results can be displayed for debugging purposes. The following method
implementation simply defines colors, iterates over Face instances, and draws
rectangles of each Face to a given image using our rects.outlineRect() function:

def drawDebugRects(self, image):
 """Draw rectangles around the tracked facial features."""

 if utils.isGray(image):

Chapter 4

[69]

 faceColor = 255
 leftEyeColor = 255
 rightEyeColor = 255
 noseColor = 255
 mouthColor = 255
 else:
 faceColor = (255, 255, 255) # white
 leftEyeColor = (0, 0, 255) # red
 rightEyeColor = (0, 255, 255) # yellow
 noseColor = (0, 255, 0) # green
 mouthColor = (255, 0, 0) # blue

 for face in self.faces:
 rects.outlineRect(image, face.faceRect, faceColor)
 rects.outlineRect(image, face.leftEyeRect, leftEyeColor)
 rects.outlineRect(image, face.rightEyeRect,
 rightEyeColor)
 rects.outlineRect(image, face.noseRect, noseColor)
 rects.outlineRect(image, face.mouthRect, mouthColor)

Now, we have a high-level tracker that hides the details of Haar cascade classifiers
while allowing application code to supply new images, fetch data about tracking
results, and ask for debug drawing.

Modifying the application
Let's look at two approaches to integrating face tracking and swapping into Cameo.
The first approach uses a single camera feed and swaps face rectangles found within
this camera feed. The second approach uses two camera feeds and copies face
rectangles from one camera feed to the other.

For now, we will limit ourselves to manipulating faces as a whole and not
subelements such as eyes. However, you could modify the code to swap only eyes,
for example. If you try this, be careful to check that the relevant subrectangles of the
face are not None.

Tracking Faces with Haar Cascades

[70]

Swapping faces in one camera feed
For the single-camera version, the modifications are quite straightforward. On
initialization of Cameo, we create a FaceTracker and a Boolean variable indicating
whether debug rectangles should be drawn for the FaceTracker. The Boolean is
toggled in onKeypress() in response to the X key. As part of the main loop in run(),
we update our FaceTracker with the current frame. Then, the resulting FaceFace
objects (in the faces property) are fetched and their faceRects are swapped using
rects.swapRects(). Also, depending on the Boolean value, we may draw debug
rectangles that reflect the original positions of facial elements before any swap.

import cv2
import filters
from managers import WindowManager, CaptureManager
import rects
from trackers import FaceTracker

class Cameo(object):

 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 self._captureManager = CaptureManager(
 cv2.VideoCapture(0), self._windowManager, True)
 self._faceTracker = FaceTracker()
 self._shouldDrawDebugRects = False
 self._curveFilter = filters.BGRPortraCurveFilter()

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 frame = self._captureManager.frame

 self._faceTracker.update(frame)
 faces = self._faceTracker.faces
 rects.swapRects(frame, frame,

Chapter 4

[71]

 [face.faceRect for face in faces])

 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)

 if self._shouldDrawDebugRects:
 self._faceTracker.drawDebugRects(frame)

 self._captureManager.exitFrame()
 self._windowManager.processEvents()

 def onKeypress(self, keycode):
 """Handle a keypress.

 space -> Take a screenshot.
 tab -> Start/stop recording a screencast.
 x -> Start/stop drawing debug rectangles around faces.
 escape -> Quit.

 """
 if keycode == 32: # space
 self._captureManager.writeImage('screenshot.png')
 elif keycode == 9: # tab
 if not self._captureManager.isWritingVideo:
 self._captureManager.startWritingVideo(
 'screencast.avi')
 else:
 self._captureManager.stopWritingVideo()
 elif keycode == 120: # x
 self._shouldDrawDebugRects = \
 not self._shouldDrawDebugRects
 elif keycode == 27: # escape
 self._windowManager.destroyWindow()

if __name__=="__main__":
 Cameo().run()

Tracking Faces with Haar Cascades

[72]

The following screenshot is from Cameo. Face regions are outlined after the user
presses X:

The following screenshot is from Cameo. American businessman Bill Ackman
performs a takeover of the author's face:

Chapter 4

[73]

Copying faces between camera feeds
For the two-camera version, let's create a new class, CameoDouble, which is a
subclass of Cameo. On initialization, a CameoDouble invokes the constructor of
Cameo and also creates a second CaptureManager. During the main loop in run(), a
CameoDouble gets new frames from both cameras and then gets face tracking results
for both frames. Faces are copied from one frame to the other using copyRect().
Then, the destination frame is displayed, optionally with debug rectangles drawn
overtop it. We can implement CameoDouble in cameo.py as follows:

For some models of MacBook, OpenCV has problems using
the built-in camera when an external webcam is plugged in.
Specifically, the application may become deadlocked while waiting
for the built-in camera to supply a frame. If you encounter this
issue, use two external cameras and do not use the built-in camera.

class CameoDouble(Cameo):

 def __init__(self):
 Cameo.__init__(self)
 self._hiddenCaptureManager = CaptureManager(
 cv2.VideoCapture(1))

 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 self._hiddenCaptureManager.enterFrame()
 frame = self._captureManager.frame
 hiddenFrame = self._hiddenCaptureManager.frame

 self._faceTracker.update(hiddenFrame)
 hiddenFaces = self._faceTracker.faces
 self._faceTracker.update(frame)
 faces = self._faceTracker.faces

 i = 0
 while i < len(faces) and i < len(hiddenFaces):
 rects.copyRect(
 hiddenFrame, frame, hiddenFaces[i].faceRect,
 faces[i].faceRect)

Tracking Faces with Haar Cascades

[74]

 i += 1

 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)

 if self._shouldDrawDebugRects:
 self._faceTracker.drawDebugRects(frame)

 self._captureManager.exitFrame()
 self._hiddenCaptureManager.exitFrame()
 self._windowManager.processEvents()

To run a CameoDouble instead of a Cameo, we just need to modify our
if __name__=="__main__" block, as follows:

if __name__=="__main__":
 #Cameo().run() # uncomment for single camera
 CameoDouble().run() # uncomment for double camera

Summary
We now have two versions of Cameo. One version tracks faces in a single camera
feed and, when faces are found, swaps them by copying and resizing. The other
version tracks faces in two camera feeds and, when faces are found in each, copies
and resizes faces from one feed to replace faces in the other. Additionally, in both
versions, one camera feed is made visible and effects are applied to it.

These versions of Cameo demonstrate the basic functionality that we proposed two
chapters ago. The user can displace his or her face onto another body, and the result
can be stylized to give it a more unified feel. However, the transplanted faces are
still just rectangular cutouts. So far, no effort is made to cut away non-face parts of
the rectangle or to align superimposed and underlying components such as eyes.
The next chapter examines some more sophisticated techniques for facial blending,
particularly using depth vision.

Detecting Foreground/
Background Regions

and Depth
This chapter shows how to use data from a depth camera to identify foreground
and background regions, such that we can limit an effect to only the foreground or
only the background. As prerequisites, we need a depth camera, such as Microsoft
Kinect, and we need to build OpenCV with support for our depth camera. For build
instructions, see Chapter 1, Setting up OpenCV.

Creating modules
Our code for capturing and manipulating depth-camera data will be reusable
outside Cameo.py. So we should separate it into a new module. Let's create a file
called depth.py in the same directory as Cameo.py. We need the following import
statement in depth.py:

import numpy

We will also need to modify our preexisting rects.py file so that our copy
operations can be limited to a non-rectangular sub region of a rectangle.
To support the changes we are going to make, let's add the following
import statements to rects.py:

import numpy
import utils

Detecting Foreground/Background Regions and Depth

[76]

Finally, the new version of our application will use depth-related functionality.
So, let's add the following import statement to Cameo.py:

import depth

Now, let's get deeper into the subject of depth.

Capturing frames from a depth camera
Back in Chapter 2, Handling Files, Cameras, and GUIs, we discussed the concept that
a computer can have multiple video capture devices and each device can have
multiple channels. Suppose a given device is a stereo camera. Each channel might
correspond to a different lens and sensor. Also, each channel might correspond to
a different kind of data, such as a normal color image versus a depth map. When
working with OpenCV's VideoCapture class or our wrapper CaptureManager,
we can choose a device on initialization and we can read one or more channels
from each frame of that device. Each device and channel is identified by an integer.
Unfortunately, the numbering of devices and channels is unintuitive. The C++
version of OpenCV defines some constants for the identifiers of certain devices and
channels. However, these constants are not defined in the Python version. To remedy
this situation, let's add the following definitions in depth.py:

Devices.
CV_CAP_OPENNI = 900 # OpenNI (for Microsoft Kinect)
CV_CAP_OPENNI_ASUS = 910 # OpenNI (for Asus Xtion)
Channels of an OpenNI-compatible depth generator.
CV_CAP_OPENNI_DEPTH_MAP = 0 # Depth values in mm (CV_16UC1)
CV_CAP_OPENNI_POINT_CLOUD_MAP = 1 # XYZ in meters (CV_32FC3)
CV_CAP_OPENNI_DISPARITY_MAP = 2 # Disparity in pixels (CV_8UC1)
CV_CAP_OPENNI_DISPARITY_MAP_32F = 3 # Disparity in pixels (CV_32FC1)
CV_CAP_OPENNI_VALID_DEPTH_MASK = 4 # CV_8UC1
Channels of an OpenNI-compatible RGB image generator.
CV_CAP_OPENNI_BGR_IMAGE = 5
CV_CAP_OPENNI_GRAY_IMAGE = 6

The depth-related channels require some explanation, as given in the following list:

• A depth map is a grayscale image in which each pixel value is the estimated
distance from the camera to a surface. Specifically, an image from the
CV_CAP_OPENNI_DEPTH_MAP channel gives the distance as a floating-point
number of millimeters.

Chapter 5

[77]

• A point cloud map is a color image in which each color corresponds to
a spatial dimension (x, y, or z). Specifically, the CV_CAP_OPENNI_POINT_
CLOUD_MAP channel yields a BGR image where B is x (blue is right), G is y
(green is up), and R is z (red is deep), from the camera's perspective. The
values are in meters.

• A disparity map is a grayscale image in which each pixel value is the stereo
disparity of a surface. To conceptualize stereo disparity, let's suppose we
overlay two images of a scene, shot from different viewpoints. The result
would be like seeing double images. For points on any pair of twin objects
in the scene, we can measure the distance in pixels. This measurement is the
stereo disparity. Nearby objects exhibit greater stereo disparity than far-off
objects. Thus, nearby objects appear brighter in a disparity map.

• A valid depth mask shows whether the depth information at a given pixel
is believed to be valid (shown by a non-zero value) or invalid (shown by
a value of zero). For example, if the depth camera depends on an infrared
illuminator (an infrared flash), then depth information is invalid in regions
that are occluded (shadowed) from this light.

The following screenshot shows a point-cloud map of a man sitting behind a
sculpture of a cat:

Detecting Foreground/Background Regions and Depth

[78]

The following screenshot has a disparity map of a man sitting behind a sculpture
of a cat:

A valid depth mask of a man sitting behind a sculpture of a cat is shown in the
following screenshot:

Chapter 5

[79]

Creating a mask from a disparity map
For the purposes of Cameo, we are interested in disparity maps and valid depth
masks. They can help us refine our estimates of facial regions.

Using our FaceTracker function and a normal color image, we can obtain
rectangular estimates of facial regions. By analyzing such a rectangular region in the
corresponding disparity map, we can tell that some pixels within the rectangle are
outliers—too near or too far to really be a part of the face. We can refine the facial
region to exclude these outliers. However, we should only apply this test where the
data are valid, as indicated by the valid depth mask.

Let's write a function to generate a mask whose values are 0 for rejected regions of
the facial rectangle and 1 for accepted regions. This function should take a disparity
map, a valid depth mask, and a rectangle as arguments. We can implement it in
depth.py as follows:

def createMedianMask(disparityMap, validDepthMask, rect = None):
 """Return a mask selecting the median layer, plus shadows."""
 if rect is not None:
 x, y, w, h = rect
 disparityMap = disparityMap[y:y+h, x:x+w]
 validDepthMask = validDepthMask[y:y+h, x:x+w]
 median = numpy.median(disparityMap)
 return numpy.where((validDepthMask == 0) | \
 (abs(disparityMap - median) < 12),
 1.0, 0.0)

To identify outliers in the disparity map, we first find the median using numpy.
median(), which takes an array as an argument. If the array is of odd length,
median() returns the value that would lie in the middle of the array if the array
were sorted. If the array is of even length, median() returns the average of the two
values that would be sorted nearest to the middle of the array.

To generate the mask based on per-pixel Boolean operations, we use numpy.where()
with three arguments. As the first argument, where() takes an array whose elements
are evaluated for truth or falsity. An output array of like dimensions is returned.
Wherever an element in the input array is true, the where() function's second
argument is assigned to the corresponding element in the output array. Conversely,
wherever an element in the input array is false, the where() function's third
argument is assigned to the corresponding element in the output array.

Detecting Foreground/Background Regions and Depth

[80]

Our implementation treats a pixel as an outlier when it has a valid disparity
value that deviates from the median disparity value by 12 or more. I chose the
value 12 just by experimentation. Feel free to tweak this value later based on the
results you encounter when running Cameo with your particular camera setup.

Masking a copy operation
As part of the previous chapter's work, we wrote copyRect() as a copy operation
that limits itself to given rectangles of the source and destination images. Now, we
want to apply further limits to this copy operation. We want to use a given mask that
has the same dimensions as the source rectangle. We shall copy only those pixels in
the source rectangle where the mask's value is not zero. Other pixels shall retain their
old values from the destination image. This logic, with an array of conditions and
two arrays of possible output values, can be expressed concisely with the numpy.
where() function that we have recently learned.

Let's open rects.py and edit copyRect() to add a new argument, mask. This
argument may be None, in which case we fall back to our old implementation of the
copy operation. Otherwise, we next ensure that mask and the images have the same
number of channels. We assume that mask has one channel but the images may have
three channels (BGR). We can add duplicate channels to mask using the repeat()
and reshape() methods of numpy.array. Finally, we perform the copy operation
using where(). The complete implementation is as follows:

def copyRect(src, dst, srcRect, dstRect, mask = None,
 interpolation = cv2.INTER_LINEAR):
 """Copy part of the source to part of the destination."""

 x0, y0, w0, h0 = srcRect
 x1, y1, w1, h1 = dstRect

 # Resize the contents of the source sub-rectangle.
 # Put the result in the destination sub-rectangle.
 if mask is None:
 dst[y1:y1+h1, x1:x1+w1] = \
 cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
 interpolation = interpolation)
 else:
 if not utils.isGray(src):
 # Convert the mask to 3 channels, like the image.
 mask = mask.repeat(3).reshape(h0, w0, 3)
 # Perform the copy, with the mask applied.
 dst[y1:y1+h1, x1:x1+w1] = \

Chapter 5

[81]

 numpy.where(cv2.resize(mask, (w1, h1),
 interpolation = \
 cv2.INTER_NEAREST),
 cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
 interpolation = interpolation),
 dst[y1:y1+h1, x1:x1+w1])

We also need to modify our swapRects() function, which uses copyRect()
to perform a circular swap of a list of rectangular regions. The modifications
to swapRects() are quite simple. We just need to add a new argument, masks,
which is a list of masks whose elements are passed to the respective copyRect()
calls. If the given masks is None, we pass None to every copyRect() call. The
following is the full implementation:

def swapRects(src, dst, rects, masks = None,
 interpolation = cv2.INTER_LINEAR):
 """Copy the source with two or more sub-rectangles swapped."""

 if dst is not src:
 dst[:] = src

 numRects = len(rects)
 if numRects < 2:
 return

 if masks is None:
 masks = [None] * numRects

 # Copy the contents of the last rectangle into temporary storage.
 x, y, w, h = rects[numRects - 1]
 temp = src[y:y+h, x:x+w].copy()

 # Copy the contents of each rectangle into the next.
 i = numRects - 2
 while i >= 0:
 copyRect(src, dst, rects[i], rects[i+1], masks[i],
 interpolation)
 i -= 1

 # Copy the temporarily stored content into the first rectangle.
 copyRect(temp, dst, (0, 0, w, h), rects[0], masks[numRects - 1],
 interpolation)

Detecting Foreground/Background Regions and Depth

[82]

Note that the mask in copyRect() and masks in swapRects() both default to
None. Thus, our new versions of these functions are backward-compatible with
our previous versions of Cameo.

Modifying the application
For the depth-camera version of Cameo, let's create a new class, CameoDepth, as a
subclass of Cameo. On initialization, a CameoDepth class creates a CaptureManager
class that uses a depth camera device (either CV_CAP_OPENNI for Microsoft Kinect
or CV_CAP_OPENNI_ASUS for Asus Xtion, depending on our setup). During the main
loop in run(), a CameoDepth function gets a disparity map, a valid depth mask,
and a normal color image in each frame. The normal color image is used to estimate
facial rectangles, while the disparity map and valid depth mask are used to refine the
estimate of the facial region using createMedianMask(). Faces in the normal color
image are swapped using copyRect(), with the faces' respective masks applied.
Then, the destination frame is displayed, optionally with debug rectangles drawn
overtop it. We can implement CameoDepth in cameo.py as follows:

class CameoDepth(Cameo):
 def __init__(self):
 self._windowManager = WindowManager('Cameo',
 self.onKeypress)
 device = depth.CV_CAP_OPENNI # uncomment for Microsoft Kinect
 #device = depth.CV_CAP_OPENNI_ASUS # uncomment for Asus Xtion
 self._captureManager = CaptureManager(
 cv2.VideoCapture(device), self._windowManager, True)
 self._faceTracker = FaceTracker()
 self._shouldDrawDebugRects = False
 self._curveFilter = filters.BGRPortraCurveFilter()
 def run(self):
 """Run the main loop."""
 self._windowManager.createWindow()
 while self._windowManager.isWindowCreated:
 self._captureManager.enterFrame()
 self._captureManager.channel = \
 depth.CV_CAP_OPENNI_DISPARITY_MAP
 disparityMap = self._captureManager.frame
 self._captureManager.channel = \
 depth.CV_CAP_OPENNI_VALID_DEPTH_MASK
 validDepthMask = self._captureManager.frame
 self._captureManager.channel = \
 depth.CV_CAP_OPENNI_BGR_IMAGE
 frame = self._captureManager.frame

Chapter 5

[83]

 self._faceTracker.update(frame)
 faces = self._faceTracker.faces
 masks = [
 depth.createMedianMask(
 disparityMap, validDepthMask, face.faceRect) \
 for face in faces
]
 rects.swapRects(frame, frame,
 [face.faceRect for face in faces], masks)
 filters.strokeEdges(frame, frame)
 self._curveFilter.apply(frame, frame)
 if self._shouldDrawDebugRects:
 self._faceTracker.drawDebugRects(frame)
 self._captureManager.exitFrame()
 self._windowManager.processEvents()

To run a CameoDepth function instead of a Cameo or CameoDouble function, we just
need to modify our if __name__=="__main__" block, as follows:

if __name__=="__main__":
 #Cameo().run() # uncomment for single camera
 #CameoDouble().run() # uncomment for double camera
 CameoDepth().run() # uncomment for depth camera

The following is a screenshot showing the CameoDepth class in action. Note that our
mask gives the copied regions some irregular edges, as intended. The effect is more
successful on the left and right sides of the faces (where they meet the background)
than on the top and bottom (where they meet hair and neck regions of similar depth):

Detecting Foreground/Background Regions and Depth

[84]

Summary
We now have an application that uses a depth camera, facial tracking, copy
operations, masks, and image filters. By developing this application, we have
gained practice in leveraging the functionality of OpenCV, NumPy, and other
libraries. We have also practiced wrapping this functionality in a high-level,
reusable, and object-oriented design.

Congratulations! You now have the skill to develop computer vision applications
in Python using OpenCV. Still, there is always more to learn and do! If you liked
working with NumPy and OpenCV, please check out these other titles from
Packt Publishing:

• NumPy Cookbook, Ivan Idris
• OpenCV 2 Computer Vision Application Programming Cookbook, Robert Laganière,

which uses OpenCV's C++ API for desktops
• Mastering OpenCV with Practical Computer Vision Projects, (by multiple authors),

which uses OpenCV's C++ API for multiple platforms
• The upcoming book, OpenCV for iOS How-to, which uses OpenCV's C++ API

for iPhone and iPad
• OpenCV Android Application Programming, my upcoming book, which uses

OpenCV's Java API for Android

Here ends of our tour of OpenCV's Python bindings. I hope you are able to use this
book and its codebase as a starting point for rewarding work in computer vision. Let
me know what you are studying or developing next!

Integrating with Pygame
This appendix shows how to set up the Pygame library and how to use Pygame
for window management in an OpenCV application. Also, the appendix gives an
overview of Pygame's other functionality and some resources for learning Pygame.

All the finished code for this chapter can be downloaded from my
website: http://nummist.com/opencv/3923_06.zip.

Installing Pygame
Let's assume that we already have Python set up according to one of the approaches
described in Chapter 1, Setting up OpenCV. Depending on our existing setup, we can
install Pygame in one of the following ways:

• Windows with 32-bit Python: Download and install Pygame 1.9.1 from
http://pygame.org/ftp/pygame-1.9.1.win32-py2.7.msi.

• Windows with 64-bit Python: Download and install Pygame 1.9.2 preview
from http://www.lfd.uci.edu/~gohlke/pythonlibs/2k2kdosm/pygame-
1.9.2pre.win-amd64-py2.7.exe.

• Mac with Macports: Open Terminal and run the following command:
$ sudo port install py27-game

• Mac with Homebrew: Open Terminal and run the following commands to
install Pygame's dependencies and, then, Pygame itself:
$ brew install sdl sdl_image sdl_mixer sdl_ttf smpeg portmidi

$ /usr/local/share/python/pip install \

> hg+http://bitbucket.org/pygame/pygame

Integrating with Pygame

[86]

• Ubuntu and its derivatives: Open Terminal and run the following command:
$ sudo apt-get install python-pygame

• Other Unix-like systems: Pygame is available in the standard repositories of
many systems. Typical package names include pygame, pygame27, py-game,
py27-game, python-pygame, and python27-pygame.

Now, Pygame should be ready for use.

Documentation and tutorials
Pygame's API documentation and some tutorials can be found online at
http://www.pygame.org/docs/.

Al Sweigart's Making Games With Python and Pygame is a cookbook for recreating
several classic games in Pygame 1.9.1. The free electronic version is available online
at http://inventwithpython.com/pygame/chapters/ or as a downloadable PDF
file at http://inventwithpython.com/makinggames.pdf.

Subclassing managers.WindowManager
As discussed in Chapter 2, Handling Cameras, Files and GUIs, our object-oriented
design allows us to easily swap OpenCV's HighGUI window manager for another
window manager, such as Pygame. To do so, we just need to subclass our managers.
WindowManager class and override four methods: createWindow(), show(),
destroyWindow(), and processEvents(). Also, we need to import some
new dependencies.

To proceed, we need the managers.py file from Chapter 2, Handling Cameras, Files,
and GUIs and the utils.py file from Chapter 4, Tracking Faces with Haar Cascades.
From utils.py, we only need one function, isGray(), which we implemented
in Chapter 4, Tracking Faces with Haar Cascades. Let's edit managers.py to add the
following imports:

import pygame
import utils

Also in managers.py, somewhere after our WindowManager implementation, we
want to add our new subclass called PygameWindowManager:

class PygameWindowManager(WindowManager):
 def createWindow(self):
 pygame.display.init()
 pygame.display.set_caption(self._windowName)

Appendix A

[87]

 self._isWindowCreated = True
 def show(self, frame):
 # Find the frame's dimensions in (w, h) format.
 frameSize = frame.shape[1::-1]
 # Convert the frame to RGB, which Pygame requires.
 if utils.isGray(frame):
 conversionType = cv2.COLOR_GRAY2RGB
 else:
 conversionType = cv2.COLOR_BGR2RGB
 rgbFrame = cv2.cvtColor(frame, conversionType)
 # Convert the frame to Pygame's Surface type.
 pygameFrame = pygame.image.frombuffer(
 rgbFrame.tostring(), frameSize, 'RGB')
 # Resize the window to match the frame.
 displaySurface = pygame.display.set_mode(frameSize)
 # Blit and display the frame.
 displaySurface.blit(pygameFrame, (0, 0))
 pygame.display.flip()
 def destroyWindow(self):
 pygame.display.quit()
 self._isWindowCreated = False
 def processEvents(self):
 for event in pygame.event.get():
 if event.type == pygame.KEYDOWN and \
 self.keypressCallback is not None:
 self.keypressCallback(event.key)
 elif event.type == pygame.QUIT:
 self.destroyWindow()
 return

Note that we are using two Pygame modules: pygame.display and pygame.event.

A window is created by calling pygame.display.init() and destroyed by calling
pygame.display.quit(). Repeated calls to display.init() have no effect, as
Pygame is intended for single-window applications only. The Pygame window has a
drawing surface of type pygame.Surface. To get a reference to this Surface, we can
call pygame.display.get_surface() or pygame.display.set_mode(). The latter
function modifies the Surface entity's properties before returning it. A Surface
entity has a blit() method, which takes, as arguments, another Surface and a
coordinate pair where the latter Surface should be "blitted" (drawn) onto the first.
When we are done updating the window's Surface for the current frame, we should
display it by calling pygame.display.flip().

Integrating with Pygame

[88]

Events, such as keypresses, are polled by calling pygame.event.get(), which
returns the list of all events that have occurred since the last call. Each event is of type
pygame.event.Event and has the property type, which indicates the category of an
event such as pygame.KEYDOWN for keypresses and pygame.QUIT for the window's
Close button being clicked. Depending on the value of type, an Event entity may have
other properties, such as key (an ASCII key code) for the KEYDOWN events.

Relative to the base WindowManager that uses HighGUI, PygameWindowManager
incurs some overhead cost by converting between OpenCV's image format and
Pygame's Surface format of each frame. However, PygameWindowManager offers
normal window closing behavior, whereas the base WindowManager does not.

Modifying the application
Let's modify the cameo.py file to use PygameWindowManager instead of
WindowManager. Find the following line in cameo.py:

from managers import WindowManager, CaptureManager

Replace it with:

from managers import PygameWindowManager as WindowManager, \
 CaptureManager

That's all! Now cameo.py uses a Pygame window that should close when the
standard Close button is clicked.

Further uses of Pygame
We have used only some basic functions of the pygame.display and pygame.event
modules. Pygame provides much more functionality, including:

• Drawing 2D geometry
• Drawing text
• Managing groups of drawable AI entities (sprites)
• Capturing various input events relating to the window, keyboard, mouse,

and joysticks/gamepads
• Creating custom events
• Playback and synthesis of sounds and music

For example, Pygame might be a suitable backend for a game that uses computer
vision, whereas HighGUI would not be.

Appendix A

[89]

Summary
By now, we should have an application that uses OpenCV for capturing (and possibly
manipulating) images, while using Pygame for displaying the images and catching
events. Starting from this basic integration example, you might want to expand
PygameWindowManager to wrap additional Pygame functionality or you might want to
create another WindowManager subclass to wrap another library.

Generating Haar Cascades
for Custom Targets

This appendix shows how to generate Haar cascade XML files like the ones used
in Chapter 4, Tracking Faces with Haar Cascades. By generating our own cascade
files, we can potentially track any pattern or object, not just faces. However, good
results might not come quickly. We must carefully gather images, configure
script parameters, perform real-world tests, and iterate. A lot of human time and
processing time might be involved.

Gathering positive and negative training
images
Do you know the flashcard pedagogy? It is a method of teaching words and
recognition skills to small children. The teacher shows the class a series of
pictures and says the following:

"This is a cow. Moo! This is a horse. Neigh!"

The way that cascade files are generated is analogous to the flashcard pedagogy.
To learn how to recognize cows, the computer needs positive training images that
are pre-identified as cows and negative training images that are pre-identified as
non-cows. Our first step, as trainers, is to gather these two sets of images.

Generating Haar Cascades for Custom Targets

[92]

When deciding how many positive training images to use, we need to consider the
various ways in which our users might view the target. The ideal, simplest case is
that the target is a 2D pattern that is always on a flat surface. In this case, one positive
training image might be enough. However, in other cases, hundreds or even thousands
of training images might be required. Suppose that the target is your country's flag.
When printed on a document, the flag might have a predictable appearance but when
printed on a piece of fabric that is blowing in the wind, the flag's appearance is highly
variable. A natural, 3D target, such as a human face, might range even more widely
in appearance. Ideally, our set of positive training images should be representative of
the many variations our camera may capture. Optionally, any of our positive training
images may contain multiple instances of the target.

For our negative training set, we want a large number of images that do not contain
any instances of the target but do contain other things that our camera is likely to
capture. For example, if a flag is our target, our negative training set might include
photos of the sky in various weather conditions. (The sky is not a flag but is often
seen behind a flag.) Do not assume too much though. If the camera's environment is
unpredictable and the target occurs in many settings, use a wide variety of negative
training images. Consider building a set of generic environmental images that you
can reuse across multiple training scenarios.

Finding the training executables
To automate cascade training as much as possible, OpenCV provides two
executables. Their names and locations depend on the operating system and
the particular setup of OpenCV, as described in the following two sections.

On Windows
The two executables on Windows are called ONopencv_createsamples.exe and
ONopencv_traincascade.exe. They are not prebuilt. Rather, they are present only
if you compiled OpenCV from source. Their parent folder is one of the following,
depending on the compilation approach you chose in Chapter 1, Setting up OpenCV:

• MinGW: <unzip_destination>\bin
• Visual Studio or Visual C++ Express: <unzip_destination>\bin\Release

If you want to add the executables' folder to the system's Path variable, refer back
to the instructions in the information box in the Making the choice on Windows XP,
Windows Vista, Windows 7, and Windows 8 section of Chapter 1, Setting up OpenCV.
Otherwise, take note of the executables' full path because we will need to use it in
running them.

Appendix B

[93]

On Mac, Ubuntu, and other Unix-like systems
The two executables on Mac, Ubuntu, and other Unix-like systems are called
opencv_createsamples and opencv_traincascade. Their parent folder is one
of the following, depending on your system and the approach that you chose in
Chapter 1, Setting up OpenCV:

• Mac with MacPorts: /opt/local/bin
• Mac with Homebrew: /opt/local/bin or /opt/local/sbin
• Ubuntu with Apt: /usr/bin
• Ubuntu with my custom installation script: /usr/local/bin
• Other Unix-like systems: /usr/bin and /usr/local/bin

Except in the case of Mac with Homebrew, the executables' folder should be in
PATH by default. For Homebrew, if you want to add the relevant folders to PATH,
see the instructions in the second step of the Using Homebrew with ready-made packages
(no support for depth cameras) section of Chapter 1, Setting up OpenCV. Otherwise, note
the executables' full path because we will need to use it in running them.

Creating the training sets and cascade
Hereafter, we will refer to the two executables as <opencv_createsamples> and
<opencv_traincascade>. Remember to substitute the path and filename that are
appropriate to your system and setup.

These executables have certain data files as inputs and outputs. Following is a typical
approach to generating these data files:

1. Manually create a text file that describes the set of negative training images.
We will refer to this file as <negative_description>.

2. Manually create a text file that describes the set of positive training images.
We will refer to this file as <positive_description>.

3. Run <opencv_createsamples> with <negative_description> and
<positive_description> as arguments. The executable creates a
binary file describing the training data. We will refer to the latter
file as <binary_description>.

4. Run <opencv_traincascade> with <binary_description> as an
argument. The executable creates the binary cascade file, which we
will refer to as <cascade>.

Generating Haar Cascades for Custom Targets

[94]

The actual names and paths of <negative_description>, <positive_description>,
<binary_description>, and <cascade> may be anything we choose.

Now, let's look at each of the three steps in detail.

Creating <negative_description>
<negative_description> is a text file listing the relative paths to all negative
training images. The paths should be separated by line breaks. For example, suppose
we have the following directory structure, where <negative_description> is
negative/desc.txt:

negative
 desc.txt
 images
 negative 0.png
 negative 1.png

Then, the contents of negative/desc.txt could be as follows:

"images/negative 0.png"
"images/negative 1.png"

For a small number of images, we can write such a file by hand. For a large number
of images, we should instead use the command line to find relative paths matching
a certain pattern and to output these matches to a file. Continuing our example,
we could generate negative/desc.txt by running the following commands on
Windows in Command Prompt:

> cd negative

> forfiles /m images*.png /c "cmd /c echo @relpath" > desc.txt

Note that in this case, relative paths are formatted as .\images\negative 0.png,
which is acceptable.

Alternatively, in a Unix-like shell, such as Terminal on Mac or Ubuntu, we could run
the following commands:

$ cd negative

$ find images/*.png | sed -e "s/^/\"/g;s/$/\"/g" > desc.txt

Appendix B

[95]

Creating <positive_description>
<positive_description> is needed if we have more than one positive training
image. Otherwise, proceed to the next section. <positive_description> is a
text file listing the relative paths to all positive training images. After each path,
<positive_description> also contains a series of numbers indicating how many
instances of the target are found in the image and which sub-rectangles contain those
instances of the target. For each sub-rectangle, the numbers are in this order: x, y,
width, and height. Consider the following example:

"images/positive 0.png" 1 120 160 40 40
"images/positive 1.png" 2 200 120 40 60 80 60 20 20

Here, images/positive 0.png contains one instance of the target in a sub-rectangle
whose upper-left corner is at (120, 160) and whose lower-right corner is at (160,
200). Meanwhile, images/positive 1.png contains two instances of the target.
One instance is in a sub-rectangle whose upper-left corner is at (200, 120) and whose
lower-right corner is at (240, 180). The other instance is in a sub-rectangle whose
upper-left corner is at (80, 60) and whose lower-right corner is at (100, 80).

To create such a file, we can start by generating the list of image paths in the same
manner as for <negative_description>. Then, we must manually add data about
target instances based on an expert (human) analysis of the images.

Creating <binary_description> by running
<opencv_createsamples>
Assuming we have multiple positive training images and, thus, we created
<positive_description>, we can now generate <binary_description> by
running the following command:

$ <opencv_createsamples> -vec <binary_description> -info <positive_
description> -bg <negative_description>

Alternatively, if we have a single positive training image, which we will refer to as
<positive_image>, we should run the following command instead:

$ <opencv_createsamples> -vec <binary_description> -image <positive_
image> -bg <negative_description>

For other (optional) flags of <opencv_createsamples>, see the official documentation
at http://docs.opencv.org/doc/user_guide/ug_traincascade.html.

Generating Haar Cascades for Custom Targets

[96]

Creating <cascade> by running
<opencv_traincascade>
Finally, we can generate <cascade> by running the following command:

$ <opencv_traincascade> -data <cascade> -vec <binary_description> -bg
<negative_description>

For other (optional) flags of <opencv_traincascade>, see the official documentation
at http://docs.opencv.org/doc/user_guide/ug_traincascade.html.

Vocalizations
For good luck, make an imitative sound when running
<opencv_traincascade>. For example, say "Moo!" if
the positive training images are cows.

Testing and improving <cascade>
<cascade> is an XML file that is compatible with the constructor for OpenCV's
CascadeClassifier class. For an example of how to use CascadeClassifier, refer
back to our implementation of FaceTracker in Chapter 4, Tracking Faces with Haar
Cascades. By copying and modifying FaceTracker and Cameo, you should be able
to create a simple test application that draws rectangles around tracked instances of
your custom target.

Perhaps in your first attempts at cascade training, you will not get reliable tracking
results. To improve your training results, do the following:

• Consider making your classification problem more specific. For example, a
bald, shaven, male face without glasses cascade might be easier to
train than a general face cascade. Later, as your results improve, you can try
to expand your problem again.

• Gather more training images, many more!
• Ensure that <negative_description> contains all the negative training

images and only the negative training images.
• Ensure that <positive_description> contains all the positive training

images and only the positive training images.
• Ensure that the sub-rectangles specified in <positive_description>

are accurate.

Appendix B

[97]

• Review and experiment with the optional flags to <opencv_createsamples>
and <opencv_traincascade>. The flags are described in the official
documentation at http://docs.opencv.org/doc/user_guide/ug_
traincascade.html.

Good luck and good image-hunting!

Summary
We have discussed the data and executables that are used in generating cascade
files that are compatible with OpenCV's CascadeClassifier. Now, you can start
gathering images of your favorite things and training classifiers for them!

[99]

Module 2

OpenCV with Python By Example

Build real-world computer vision applications and develop
cool demos using OpenCV for Python

[101]

Detecting Edges and
Applying Image Filters

In this chapter, we are going to see how to apply cool visual effects to images.
We will learn how to use fundamental image processing operators. We are going
to discuss edge detection and how we can use image filters to apply various effects
on photos.

By the end of this chapter, you will know:

• What is 2D convolution and how to use it
• How to blur an image
• How to detect edges in an image
• How to apply motion blur to an image
• How to sharpen and emboss an image
• How to erode and dilate an image
• How to create a vignette filter
• How to enhance image contrast

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Detecting Edges and Applying Image Filters

[102]

2D convolution
Convolution is a fundamental operation in image processing. We basically apply a
mathematical operator to each pixel and change its value in some way. To apply this
mathematical operator, we use another matrix called a kernel. The kernel is usually
much smaller in size than the input image. For each pixel in the image, we take the
kernel and place it on top such that the center of the kernel coincides with the pixel
under consideration. We then multiply each value in the kernel matrix with the
corresponding values in the image, and then sum it up. This is the new value that
will be substituted in this position in the output image.

Here, the kernel is called the "image filter" and the process of applying this kernel
to the given image is called "image filtering". The output obtained after applying
the kernel to the image is called the filtered image. Depending on the values in the
kernel, it performs different functions like blurring, detecting edges, and so on.
The following figure should help you visualize the image filtering operation:

Chapter 1

[103]

Let's start with the simplest case which is identity kernel. This kernel doesn't really
change the input image. If we consider a 3x3 identity kernel, it looks something like
the following:

Blurring
Blurring refers to averaging the pixel values within a neighborhood. This is also
called a low pass filter. A low pass filter is a filter that allows low frequencies and
blocks higher frequencies. Now, the next question that comes to our mind is—What
does "frequency" mean in an image? Well, in this context, frequency refers to the
rate of change of pixel values. So we can say that the sharp edges would be high
frequency content because the pixel values change rapidly in that region. Going
by that logic, plain areas would be low frequency content. Going by this definition,
a low pass filter would try to smoothen the edges.

A simple way to build a low pass filter is by uniformly averaging the values in the
neighborhood of a pixel. We can choose the size of the kernel depending on how
much we want to smoothen the image, and it will correspondingly have different
effects. If you choose a bigger size, then you will be averaging over a larger area.
This tends to increase the smoothening effect. Let's see what a 3x3 low pass filter
kernel looks like:

Detecting Edges and Applying Image Filters

[104]

We are dividing the matrix by 9 because we want the values to sum up to 1. This is
called normalization, and it's important because we don't want to artificially increase
the intensity value at that pixel's location. So you should normalize the kernel before
applying it to an image. Normalization is a really important concept, and it is used
in a variety of scenarios, so you should read a couple of tutorials online to get a good
grasp on it.

Here is the code to apply this low pass filter to an image:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
rows, cols = img.shape[:2]

kernel_identity = np.array([[0,0,0], [0,1,0], [0,0,0]])
kernel_3x3 = np.ones((3,3), np.float32) / 9.0
kernel_5x5 = np.ones((5,5), np.float32) / 25.0

cv2.imshow('Original', img)

output = cv2.filter2D(img, -1, kernel_identity)
cv2.imshow('Identity filter', output)

output = cv2.filter2D(img, -1, kernel_3x3)
cv2.imshow('3x3 filter', output)

output = cv2.filter2D(img, -1, kernel_5x5)
cv2.imshow('5x5 filter', output)

cv2.waitKey(0)

Chapter 1

[105]

If you run the preceding code, you will see something like this:

The size of the kernel versus the blurriness
In the preceding code, we are generating different kernels in the code which are
kernel_identity, kernel_3x3, and kernel_5x5. We use the function, filter2D,
to apply these kernels to the input image. If you look at the images carefully, you can
see that they keep getting blurrier as we increase the kernel size. The reason for this
is because when we increase the kernel size, we are averaging over a larger area.
This tends to have a larger blurring effect.

An alternative way of doing this would be by using the OpenCV function, blur.
If you don't want to generate the kernels yourself, you can just use this function
directly. We can call it using the following line of code:

output = cv2.blur(img, (3,3))

This will apply the 3x3 kernel to the input and give you the output directly.

Detecting Edges and Applying Image Filters

[106]

Edge detection
The process of edge detection involves detecting sharp edges in the image and
producing a binary image as the output. Typically, we draw white lines on a black
background to indicate those edges. We can think of edge detection as a high pass
filtering operation. A high pass filter allows high frequency content to pass through and
blocks the low frequency content. As we discussed earlier, edges are high frequency
content. In edge detection, we want to retain these edges and discard everything else.
Hence, we should build a kernel that is the equivalent of a high pass filter.

Let's start with a simple edge detection filter known as the Sobel filter. Since edges
can occur in both horizontal and vertical directions, the Sobel filter is composed of
the following two kernels:

The kernel on the left detects horizontal edges and the kernel on the right detects
vertical edges. OpenCV provides a function to directly apply the Sobel filter to a
given image. Here is the code to use Sobel filters to detect edges:

import cv2
import numpy as np

img = cv2.imread('input_shapes.png', cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape

sobel_horizontal = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
sobel_vertical = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)

cv2.imshow('Original', img)
cv2.imshow('Sobel horizontal', sobel_horizontal)
cv2.imshow('Sobel vertical', sobel_vertical)

cv2.waitKey(0)

Chapter 1

[107]

The output will look something like the following:

In the preceding figure, the image in the middle is the output of horizontal edge
detector, and the image on the right is the vertical edge detector. As we can see here,
the Sobel filter detects edges in either a horizontal or vertical direction and it doesn't
give us a holistic view of all the edges. To overcome this, we can use the Laplacian
filter. The advantage of using this filter is that it uses double derivative in both
directions. You can call the function using the following line:

laplacian = cv2.Laplacian(img, cv2.CV_64F)

The output will look something like the following screenshot:

Detecting Edges and Applying Image Filters

[108]

Even though the Laplacian kernel worked great in this case, it doesn't always work
well. It gives rise to a lot of noise in the output, as shown in the screenshot that follows.
This is where the Canny edge detector comes in handy:

Chapter 1

[109]

As we can see in the above images, the Laplacian kernel gives rise to a noisy output
and this is not exactly useful. To overcome this problem, we use the Canny edge
detector. To use the Canny edge detector, we can use the following function:

canny = cv2.Canny(img, 50, 240)

As we can see, the quality of the Canny edge detector is much better. It takes two
numbers as arguments to indicate the thresholds. The second argument is called the
low threshold value, and the third argument is called the high threshold value. If
the gradient value is above the high threshold value, it is marked as a strong edge.
The Canny Edge Detector starts tracking the edge from this point and continues the
process until the gradient value falls below the low threshold value. As you increase
these thresholds, the weaker edges will be ignored. The output image will be cleaner
and sparser. You can play around with the thresholds and see what happens as you
increase or decrease their values. The overall formulation is quite deep. You can
learn more about it at http://www.intelligence.tuc.gr/~petrakis/courses/
computervision/canny.pdf

Motion blur
When we apply the motion blurring effect, it will look like you captured the picture
while moving in a particular direction. For example, you can make an image look
like it was captured from a moving car.

The input and output images will look like the following ones:

http://www.intelligence.tuc.gr/~petrakis/courses/computervision/canny.pdf
http://www.intelligence.tuc.gr/~petrakis/courses/computervision/canny.pdf

Detecting Edges and Applying Image Filters

[110]

Following is the code to achieve this motion blurring effect:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
cv2.imshow('Original', img)

size = 15

generating the kernel
kernel_motion_blur = np.zeros((size, size))
kernel_motion_blur[int((size-1)/2), :] = np.ones(size)
kernel_motion_blur = kernel_motion_blur / size

applying the kernel to the input image
output = cv2.filter2D(img, -1, kernel_motion_blur)

cv2.imshow('Motion Blur', output)
cv2.waitKey(0)

Under the hood
We are reading the image as usual. We are then constructing a motion blur kernel.
A motion blur kernel averages the pixel values in a particular direction. It's like a
directional low pass filter. A 3x3 horizontal motion-blurring kernel would look this:

This will blur the image in a horizontal direction. You can pick any direction and it will
work accordingly. The amount of blurring will depend on the size of the kernel. So, if
you want to make the image blurrier, just pick a bigger size for the kernel. To see the
full effect, we have taken a 15x15 kernel in the preceding code. We then use filter2D
to apply this kernel to the input image, to obtain the motion-blurred output.

Chapter 1

[111]

Sharpening
Applying the sharpening filter will sharpen the edges in the image. This filter is
very useful when we want to enhance the edges in an image that's not crisp. Here are
some images to give you an idea of what the image sharpening process looks like:

As you can see in the preceding figure, the level of sharpening depends on the type of
kernel we use. We have a lot of freedom to customize the kernel here, and each kernel
will give you a different kind of sharpening. To just sharpen an image, like we are
doing in the top right image in the preceding picture, we would use a kernel like this:

Detecting Edges and Applying Image Filters

[112]

If we want to do excessive sharpening, like in the bottom left image, we would use
the following kernel:

But the problem with these two kernels is that the output image looks artificially
enhanced. If we want our images to look more natural, we would use an Edge
Enhancement filter. The underlying concept remains the same, but we use an
approximate Gaussian kernel to build this filter. It will help us smoothen the image
when we enhance the edges, thus making the image look more natural.

Here is the code to achieve the effects applied in the preceding screenshot:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
cv2.imshow('Original', img)

generating the kernels
kernel_sharpen_1 = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
kernel_sharpen_2 = np.array([[1,1,1], [1,-7,1], [1,1,1]])
kernel_sharpen_3 = np.array([[-1,-1,-1,-1,-1],
 [-1,2,2,2,-1],
 [-1,2,8,2,-1],
 [-1,2,2,2,-1],
 [-1,-1,-1,-1,-1]]) / 8.0

applying different kernels to the input image
output_1 = cv2.filter2D(img, -1, kernel_sharpen_1)
output_2 = cv2.filter2D(img, -1, kernel_sharpen_2)
output_3 = cv2.filter2D(img, -1, kernel_sharpen_3)

cv2.imshow('Sharpening', output_1)
cv2.imshow('Excessive Sharpening', output_2)
cv2.imshow('Edge Enhancement', output_3)
cv2.waitKey(0)

Chapter 1

[113]

If you noticed, in the preceding code, we didn't divide the first two kernels by a
normalizing factor. The reason is because the values inside the kernel already sum
up to 1, so we are implicitly dividing the matrices by 1.

Understanding the pattern
You must have noticed a common pattern in image filtering code examples.
We build a kernel and then use filter2D to get the desired output. That's exactly
what's happening in this code example as well! You can play around with the values
inside the kernel and see if you can get different visual effects. Make sure that you
normalize the kernel before applying it, or else the image will look too bright because
you are artificially increasing the pixel values in the image.

Embossing
An embossing filter will take an image and convert it into an embossed image.
We basically take each pixel and replace it with a shadow or a highlight. Let's say
we are dealing with a relatively plain region in the image. Here, we need to replace
it with plain gray color because there's not much information there. If there is a lot
of contrast in a particular region, we will replace it with a white pixel (highlight),
or a dark pixel (shadow), depending on the direction in which we are embossing.

This is what it will look like:

Detecting Edges and Applying Image Filters

[114]

Let's take a look at the code and see how to do this:

import cv2
import numpy as np

img_emboss_input = cv2.imread('input.jpg')

generating the kernels
kernel_emboss_1 = np.array([[0,-1,-1],
 [1,0,-1],
 [1,1,0]])
kernel_emboss_2 = np.array([[-1,-1,0],
 [-1,0,1],
 [0,1,1]])
kernel_emboss_3 = np.array([[1,0,0],
 [0,0,0],
 [0,0,-1]])

converting the image to grayscale
gray_img = cv2.cvtColor(img_emboss_input,cv2.COLOR_BGR2GRAY)

applying the kernels to the grayscale image and adding the offset
output_1 = cv2.filter2D(gray_img, -1, kernel_emboss_1) + 128
output_2 = cv2.filter2D(gray_img, -1, kernel_emboss_2) + 128
output_3 = cv2.filter2D(gray_img, -1, kernel_emboss_3) + 128

cv2.imshow('Input', img_emboss_input)
cv2.imshow('Embossing - South West', output_1)
cv2.imshow('Embossing - South East', output_2)
cv2.imshow('Embossing - North West', output_3)
cv2.waitKey(0)

If you run the preceding code, you will see that the output images are embossed.
As we can see from the kernels above, we are just replacing the current pixel value
with the difference of the neighboring pixel values in a particular direction. The
embossing effect is achieved by offsetting all the pixel values in the image by 128.
This operation adds the highlight/shadow effect to the picture.

Chapter 1

[115]

Erosion and dilation
Erosion and dilation are morphological image processing operations. Morphological
image processing basically deals with modifying geometric structures in the image.
These operations are primarily defined for binary images, but we can also use them
on grayscale images. Erosion basically strips out the outermost layer of pixels in a
structure, where as dilation adds an extra layer of pixels on a structure.

Let's see what these operations look like:

Following is the code to achieve this:

import cv2
import numpy as np

img = cv2.imread('input.png', 0)

kernel = np.ones((5,5), np.uint8)

img_erosion = cv2.erode(img, kernel, iterations=1)
img_dilation = cv2.dilate(img, kernel, iterations=1)

cv2.imshow('Input', img)
cv2.imshow('Erosion', img_erosion)
cv2.imshow('Dilation', img_dilation)

cv2.waitKey(0)

Detecting Edges and Applying Image Filters

[116]

Afterthought
OpenCV provides functions to directly erode and dilate an image. They are called
erode and dilate, respectively. The interesting thing to note is the third argument in
these two functions. The number of iterations will determine how much you want
to erode/dilate a given image. It basically applies the operation successively to the
resultant image. You can take a sample image and play around with this parameter
to see what the results look like.

Creating a vignette filter
Using all the information we have, let's see if we can create a nice vignette filter.
The output will look something like the following:

Here is the code to achieve this effect:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
rows, cols = img.shape[:2]

generating vignette mask using Gaussian kernels
kernel_x = cv2.getGaussianKernel(cols,200)
kernel_y = cv2.getGaussianKernel(rows,200)
kernel = kernel_y * kernel_x.T

Chapter 1

[117]

mask = 255 * kernel / np.linalg.norm(kernel)
output = np.copy(img)

applying the mask to each channel in the input image
for i in range(3):
 output[:,:,i] = output[:,:,i] * mask

cv2.imshow('Original', img)
cv2.imshow('Vignette', output)
cv2.waitKey(0)

What's happening underneath?
The Vignette filter basically focuses the brightness on a particular part of the
image and the other parts look faded. In order to achieve this, we need to filter out
each channel in the image using a Gaussian kernel. OpenCV provides a function
to do this, which is called getGaussianKernel. We need to build a 2D kernel
whose size matches the size of the image. The second parameter of the function,
getGaussianKernel, is interesting. It is the standard deviation of the Gaussian
and it controls the radius of the bright central region. You can play around with
this parameter and see how it affects the output.

Once we build the 2D kernel, we need to build a mask by normalizing this kernel
and scaling it up, as shown in the following line:

 mask = 255 * kernel / np.linalg.norm(kernel)

This is an important step because if you don't scale it up, the image will look black.
This happens because all the pixel values will be close to 0 after you superimpose
the mask on the input image. After this, we iterate through all the color channels
and apply the mask to each channel.

Detecting Edges and Applying Image Filters

[118]

How do we move the focus around?
We now know how to create a vignette filter that focuses on the center of the
image. Let's say we want to achieve the same vignette effect, but we want to focus
on a different region in the image, as shown in the following figure:

All we need to do is build a bigger Gaussian kernel and make sure that the peak
coincides with the region of interest. Following is the code to achieve this:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
rows, cols = img.shape[:2]

generating vignette mask using Gaussian kernels
kernel_x = cv2.getGaussianKernel(int(1.5*cols),200)
kernel_y = cv2.getGaussianKernel(int(1.5*rows),200)
kernel = kernel_y * kernel_x.T
mask = 255 * kernel / np.linalg.norm(kernel)
mask = mask[int(0.5*rows):, int(0.5*cols):]
output = np.copy(img)

Chapter 1

[119]

applying the mask to each channel in the input image
for i in range(3):
 output[:,:,i] = output[:,:,i] * mask

cv2.imshow('Input', img)
cv2.imshow('Vignette with shifted focus', output)

cv2.waitKey(0)

Enhancing the contrast in an image
Whenever we capture images in low-light conditions, the images turn out to be
dark. This typically happens when you capture images in the evening or in a dimly
lit room. You must have seen this happen many times! The reason this happens is
because the pixel values tend to concentrate near 0 when we capture the images
under such conditions. When this happens, a lot of details in the image are not
clearly visible to the human eye. The human eye likes contrast, and so we need to
adjust the contrast to make the image look nice and pleasant. A lot of cameras and
photo applications implicitly do this already. We use a process called Histogram
Equalization to achieve this.

To give an example, this is what it looks like before and after contrast enhancement:

Detecting Edges and Applying Image Filters

[120]

As we can see here, the input image on the left is really dark. To rectify this, we need
to adjust the pixel values so that they are spread across the entire spectrum of values,
that is, between 0 and 255.

Following is the code for adjusting the pixel values:

import cv2
import numpy as np

img = cv2.imread('input.jpg', 0)

equalize the histogram of the input image
histeq = cv2.equalizeHist(img)

cv2.imshow('Input', img)
cv2.imshow('Histogram equalized', histeq)
cv2.waitKey(0)

Histogram equalization is applicable to grayscale images. OpenCV provides a
function, equalizeHist, to achieve this effect. As we can see here, the code is pretty
straightforward, where we read the image and equalize its histogram to adjust the
contrast of the image.

How do we handle color images?
Now that we know how to equalize the histogram of a grayscale image, you might
be wondering how to handle color images. The thing about histogram equalization
is that it's a nonlinear process. So, we cannot just separate out the three channels in
an RGB image, equalize the histogram separately, and combine them later to form
the output image. The concept of histogram equalization is only applicable to the
intensity values in the image. So, we have to make sure not to modify the color
information when we do this.

In order to handle the histogram equalization of color images, we need to convert it to
a color space where intensity is separated from the color information. YUV is a good
example of such a color space. Once we convert it to YUV, we just need to equalize
the Y-channel and combine it with the other two channels to get the output image.

Chapter 1

[121]

Following is an example of what it looks like:

Here is the code to achieve histogram equalization for color images:

import cv2
import numpy as np

img = cv2.imread('input.jpg')

img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

equalize the histogram of the Y channel
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])

convert the YUV image back to RGB format
img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)

cv2.imshow('Color input image', img)
cv2.imshow('Histogram equalized', img_output)

cv2.waitKey(0)

Detecting Edges and Applying Image Filters

[122]

Summary
In this chapter, we learned how to use image filters to apply cool visual effects to
images. We discussed the fundamental image processing operators and how we
can use them to build various things. We learnt how to detect edges using various
methods. We understood the importance of 2D convolution and how we can use it
in different scenarios. We discussed how to smoothen, motion-blur, sharpen, emboss,
erode, and dilate an image. We learned how to create a vignette filter, and how we
can change the region of focus as well. We discussed contrast enhancement and how
we can use histogram equalization to achieve it. In the next chapter, we will discuss
how to cartoonize a given image.

[123]

Cartoonizing an Image
In this chapter, we are going to learn how to convert an image into a cartoon-like
image. We will learn how to access the webcam and take keyboard/mouse inputs
during a live video stream. We will also learn about some advanced image filters
and see how we can use them to cartoonize an image.

By the end of this chapter, you will know:

• How to access the webcam
• How to take keyboard and mouse inputs during a live video stream
• How to create an interactive application
• How to use advanced image filters
• How to cartoonize an image

Accessing the webcam
We can build very interesting applications using the live video stream from the
webcam. OpenCV provides a video capture object which handles everything related
to opening and closing of the webcam. All we need to do is create that object and
keep reading frames from it.

The following code will open the webcam, capture the frames, scale them down by a
factor of 2, and then display them in a window. You can press the Esc key to exit.

import cv2

cap = cv2.VideoCapture(0)

Check if the webcam is opened correctly
if not cap.isOpened():

Cartoonizing an Image

[124]

 raise IOError("Cannot open webcam")

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=0.5, fy=0.5, interpolation=cv2.
INTER_AREA)
 cv2.imshow('Input', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

Under the hood
As we can see in the preceding code, we use OpenCV's VideoCapture function to
create the video capture object cap. Once it's created, we start an infinite loop and
keep reading frames from the webcam until we encounter a keyboard interrupt.
In the first line within the while loop, we have the following line:

ret, frame = cap.read()

Here, ret is a Boolean value returned by the read function, and it indicates whether
or not the frame was captured successfully. If the frame is captured correctly, it's
stored in the variable frame. This loop will keep running until we press the Esc key.
So we keep checking for a keyboard interrupt in the following line:

if c == 27:

As we know, the ASCII value of Esc is 27. Once we encounter it, we break the loop
and release the video capture object. The line cap.release() is important because
it gracefully closes the webcam.

Keyboard inputs
Now that we know how to capture a live video stream from the webcam, let's see
how to use the keyboard to interact with the window displaying the video stream.

import argparse

import cv2

def argument_parser():

Chapter 2

[125]

 parser = argparse.ArgumentParser(description="Change color space
of the \
 input video stream using keyboard controls. The control
keys are: \
 Grayscale - 'g', YUV - 'y', HSV - 'h'")
 return parser

if __name__=='__main__':
 args = argument_parser().parse_args()

 cap = cv2.VideoCapture(0)

 # Check if the webcam is opened correctly
 if not cap.isOpened():
 raise IOError("Cannot open webcam")

 cur_char = -1
 prev_char = -1

 while True:
 # Read the current frame from webcam
 ret, frame = cap.read()

 # Resize the captured image
 frame = cv2.resize(frame, None, fx=0.5, fy=0.5,
interpolation=cv2.INTER_AREA)

 c = cv2.waitKey(1)

 if c == 27:
 break

 if c > -1 and c != prev_char:
 cur_char = c
 prev_char = c

 if cur_char == ord('g'):
 output = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 elif cur_char == ord('y'):
 output = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV)

 elif cur_char == ord('h'):
 output = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Cartoonizing an Image

[126]

 else:
 output = frame

 cv2.imshow('Webcam', output)

 cap.release()
 cv2.destroyAllWindows()

Interacting with the application
This program will display the input video stream and wait for the keyboard input
to change the color space. If you run the previous program, you will see the window
displaying the input video stream from the webcam. If you press G, you will see that
the color space of the input stream gets converted to grayscale. If you press Y, the
input stream will be converted to YUV color space. Similarly, if you press H, you will
see the image being converted to HSV color space.

As we know, we use the function waitKey() to listen to the keyboard events. As and
when we encounter different keystrokes, we take appropriate actions. The reason we
are using the function ord() is because waitKey() returns the ASCII value of the
keyboard input; thus, we need to convert the characters into their ASCII form before
checking their values.

Mouse inputs
In this section, we will see how to use the mouse to interact with the display
window. Let's start with something simple. We will write a program that will detect
the quadrant in which the mouse click was detected. Once we detect it, we will
highlight that quadrant.

import cv2
import numpy as np

def detect_quadrant(event, x, y, flags, param):
 if event == cv2.EVENT_LBUTTONDOWN:
 if x > width/2:
 if y > height/2:
 point_top_left = (int(width/2), int(height/2))
 point_bottom_right = (width-1, height-1)
 else:
 point_top_left = (int(width/2), 0)
 point_bottom_right = (width-1, int(height/2))

Chapter 2

[127]

 else:
 if y > height/2:
 point_top_left = (0, int(height/2))
 point_bottom_right = (int(width/2), height-1)
 else:
 point_top_left = (0, 0)
 point_bottom_right = (int(width/2), int(height/2))

 cv2.rectangle(img, (0,0), (width-1,height-1), (255,255,255),
-1)
 cv2.rectangle(img, point_top_left, point_bottom_right,
(0,100,0), -1)

if __name__=='__main__':
 width, height = 640, 480
 img = 255 * np.ones((height, width, 3), dtype=np.uint8)
 cv2.namedWindow('Input window')
 cv2.setMouseCallback('Input window', detect_quadrant)

 while True:
 cv2.imshow('Input window', img)
 c = cv2.waitKey(10)
 if c == 27:
 break

 cv2.destroyAllWindows()

The output will look something like the following image:

Cartoonizing an Image

[128]

What's happening underneath?
Let's start with the main function in this program. We create a white image on which
we are going to click using the mouse. We then create a named window and bind
the mouse callback function to this window. Mouse callback function is basically the
function that will be called when a mouse event is detected. There are many kinds of
mouse events such as clicking, double-clicking, dragging, and so on. In our case, we
just want to detect a mouse click. In the function detect_quadrant, we check the first
input argument event to see what action was performed. OpenCV provides a set of
predefined events, and we can call them using specific keywords. If you want to see
a list of all the mouse events, you can go to the Python shell and type the following:

>>> import cv2
>>> print [x for x in dir(cv2) if x.startswith('EVENT')]

The second and third arguments in the function detect_quadrant provide the X
and Y coordinates of the mouse click event. Once we know these coordinates, it's
pretty straightforward to determine what quadrant it's in. With this information, we
just go ahead and draw a rectangle with the specified color, using cv2.rectangle().
This is a very handy function that takes the top left point and the bottom right point
to draw a rectangle on an image with the specified color.

Interacting with a live video stream
Let's see how we can use the mouse to interact with live video stream from the
webcam. We can use the mouse to select a region and then apply the "negative film"
effect on that region, as shown next:

Chapter 2

[129]

In the following program, we will capture the video stream from the webcam, select
a region of interest with the mouse, and then apply the effect:

import cv2
import numpy as np

def draw_rectangle(event, x, y, flags, params):
 global x_init, y_init, drawing, top_left_pt, bottom_right_pt

 if event == cv2.EVENT_LBUTTONDOWN:
 drawing = True
 x_init, y_init = x, y

 elif event == cv2.EVENT_MOUSEMOVE:
 if drawing:
 top_left_pt = (min(x_init, x), min(y_init, y))
 bottom_right_pt = (max(x_init, x), max(y_init, y))
 img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]

 elif event == cv2.EVENT_LBUTTONUP:
 drawing = False
 top_left_pt = (min(x_init, x), min(y_init, y))
 bottom_right_pt = (max(x_init, x), max(y_init, y))
 img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]

if __name__=='__main__':
 drawing = False
 top_left_pt, bottom_right_pt = (-1,-1), (-1,-1)

 cap = cv2.VideoCapture(0)

 # Check if the webcam is opened correctly
 if not cap.isOpened():
 raise IOError("Cannot open webcam")

 cv2.namedWindow('Webcam')
 cv2.setMouseCallback('Webcam', draw_rectangle)

 while True:
 ret, frame = cap.read()
 img = cv2.resize(frame, None, fx=0.5, fy=0.5,
interpolation=cv2.INTER_AREA)
 (x0,y0), (x1,y1) = top_left_pt, bottom_right_pt
 img[y0:y1, x0:x1] = 255 - img[y0:y1, x0:x1]

Cartoonizing an Image

[130]

 cv2.imshow('Webcam', img)

 c = cv2.waitKey(1)
 if c == 27:
 break

 cap.release()
 cv2.destroyAllWindows()

If you run the preceding program, you will see a window displaying the video
stream. You can just draw a rectangle on the window using your mouse and you will
see that region being converted to its "negative".

How did we do it?
As we can see in the main function of the program, we initialize a video capture
object. We then bind the function draw_rectangle with the mouse callback in the
following line:

cv2.setMouseCallback('Webcam', draw_rectangle)

We then start an infinite loop and start capturing the video stream. Let's see what is
happening in the function draw_rectangle. Whenever we draw a rectangle using
the mouse, we basically have to detect three types of mouse events: mouse click,
mouse movement, and mouse button release. This is exactly what we do in this
function. Whenever we detect a mouse click event, we initialize the top left point of
the rectangle. As we move the mouse, we select the region of interest by keeping the
current position as the bottom right point of the rectangle.

Once we have the region of interest, we just invert the pixels to apply the "negative
film" effect. We subtract the current pixel value from 255 and this gives us the
desired effect. When the mouse movement stops and button-up event is detected, we
stop updating the bottom right position of the rectangle. We just keep displaying this
image until another mouse click event is detected.

Cartoonizing an image
Now that we know how to handle the webcam and keyboard/mouse inputs, let's
go ahead and see how to convert a picture into a cartoon-like image. We can either
convert an image into a sketch or a colored cartoon image.

Chapter 2

[131]

Following is an example of what a sketch will look like:

If you apply the cartoonizing effect to the color image, it will look something like this
next image:

Cartoonizing an Image

[132]

Let's see how to achieve this:

import cv2
import numpy as np

def cartoonize_image(img, ds_factor=4, sketch_mode=False):
 # Convert image to grayscale
 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # Apply median filter to the grayscale image
 img_gray = cv2.medianBlur(img_gray, 7)

 # Detect edges in the image and threshold it
 edges = cv2.Laplacian(img_gray, cv2.CV_8U, ksize=5)
 ret, mask = cv2.threshold(edges, 100, 255, cv2.THRESH_BINARY_INV)

 # 'mask' is the sketch of the image
 if sketch_mode:
 return cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

 # Resize the image to a smaller size for faster computation
 img_small = cv2.resize(img, None, fx=1.0/ds_factor, fy=1.0/ds_
factor, interpolation=cv2.INTER_AREA)
 num_repetitions = 10
 sigma_color = 5
 sigma_space = 7
 size = 5

 # Apply bilateral filter the image multiple times
 for i in range(num_repetitions):
 img_small = cv2.bilateralFilter(img_small, size, sigma_color,
sigma_space)

 img_output = cv2.resize(img_small, None, fx=ds_factor, fy=ds_
factor, interpolation=cv2.INTER_LINEAR)

 dst = np.zeros(img_gray.shape)

 # Add the thick boundary lines to the image using 'AND' operator
 dst = cv2.bitwise_and(img_output, img_output, mask=mask)
 return dst

Chapter 2

[133]

if __name__=='__main__':
 cap = cv2.VideoCapture(0)

 cur_char = -1
 prev_char = -1

 while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=0.5, fy=0.5,
interpolation=cv2.INTER_AREA)

 c = cv2.waitKey(1)
 if c == 27:
 break

 if c > -1 and c != prev_char:
 cur_char = c
 prev_char = c

 if cur_char == ord('s'):
 cv2.imshow('Cartoonize', cartoonize_image(frame, sketch_
mode=True))
 elif cur_char == ord('c'):
 cv2.imshow('Cartoonize', cartoonize_image(frame, sketch_
mode=False))
 else:
 cv2.imshow('Cartoonize', frame)

 cap.release()
 cv2.destroyAllWindows()

Deconstructing the code
When you run the preceding program, you will see a window with a video stream
from the webcam. If you press S, the video stream will change to sketch mode and you
will see its pencil-like outline. If you press C, you will see the color-cartoonized version
of the input stream. If you press any other key, it will return to the normal mode.

Cartoonizing an Image

[134]

Let's look at the function cartoonize_image and see how we did it. We first convert
the image to a grayscale image and run it through a median filter. Median filters are
very good at removing salt and pepper noise. This is the kind of noise where you
see isolated black or white pixels in the image. It is common in webcams and mobile
cameras, so we need to filter it out before we proceed further. To give an example,
look at the following images:

As we see in the input image, there are a lot of isolated green pixels. They are
lowering the quality of the image and we need to get rid of them. This is where the
median filter comes in handy. We just look at the NxN neighborhood around each
pixel and pick the median value of those numbers. Since the isolated pixels in this
case have high values, taking the median value will get rid of these values and also
smoothen the image. As you can see in the output image, the median filter got rid of
all those isolated pixels and the image looks clean. Following is the code to do it:

import cv2
import numpy as np

img = cv2.imread('input.png')
output = cv2.medianBlur(img, 7)
cv2.imshow('Input', img)
cv2.imshow('Median filter', output)
cv2.waitKey()

Chapter 2

[135]

The code is pretty straightforward. We just use the function medianBlur to apply the
median filter to the input image. The second argument in this function specifies the
size of the kernel we are using. The size of the kernel is related to the neighborhood
size that we need to consider. You can play around with this parameter and see how
it affects the output.

Coming back to cartoonize_image, we proceed to detect the edges on the grayscale
image. We need to know where the edges are so that we can create the pencil-line
effect. Once we detect the edges, we threshold them so that things become black and
white, both literally and metaphorically!

In the next step, we check if the sketch mode is enabled. If it is, then we just convert
it into a color image and return it. What if we want the lines to be thicker? Let's say
we want to see something like the following image:

As you can see, the lines are thicker than before. To achieve this, replace the if code
block with the following piece of code:

if sketch_mode:
 img_sketch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
 kernel = np.ones((3,3), np.uint8)
 img_eroded = cv2.erode(img_sketch, kernel, iterations=1)
 return cv2.medianBlur(img_eroded, 5)

Cartoonizing an Image

[136]

We are using the erode function with a 3x3 kernel here. The reason we have this in
place is because it gives us a chance to play with the thickness of the line drawing.
Now you might ask that if we want to increase the thickness of something, shouldn't
we be using dilation? Well, the reasoning is right, but there is a small twist here. Note
that the foreground is black and the background is white. Erosion and dilation treat
white pixels as foreground and black pixels as background. So if we want to increase
the thickness of the black foreground, we need to use erosion. After we apply erosion,
we just use the median filter to clear out the noise and get the final output.

In the next step, we use bilateral filtering to smoothen the image. Bilateral filtering
is an interesting concept and its performance is much better than a Gaussian filter.
The good thing about bilateral filtering is that it preserves the edges, whereas the
Gaussian filter smoothens everything out equally. To compare and contrast, let's
look at the following input image:

Chapter 2

[137]

Let's apply the Gaussian filter to the previous image:

Now, let's apply the bilateral filter to the input image:

As you can see, the quality is better if we use the bilateral filter. The image looks
smooth and the edges look nice and sharp! The code to achieve this is given next:

import cv2
import numpy as np

img = cv2.imread('input.jpg')

Cartoonizing an Image

[138]

img_gaussian = cv2.GaussianBlur(img, (13,13), 0)
img_bilateral = cv2.bilateralFilter(img, 13, 70, 50)

cv2.imshow('Input', img)
cv2.imshow('Gaussian filter', img_gaussian)
cv2.imshow('Bilateral filter', img_bilateral)
cv2.waitKey()

If you closely observe the two outputs, you can see that the edges in the Gaussian
filtered image look blurred. Usually, we just want to smoothen the rough areas in
the image and keep the edges intact. This is where the bilateral filter comes in handy.
The Gaussian filter just looks at the immediate neighborhood and averages the pixel
values using a Gaussian kernel. The bilateral filter takes this concept to the next level
by averaging only those pixels that are similar to each other in intensity. It also takes
a color neighborhood metric to see if it can replace the current pixel that is similar in
intensity as well. If you look the function call:

img_small = cv2.bilateralFilter(img_small, size, sigma_color,
sigma_space)

The last two arguments here specify the color and space neighborhood. This is the
reason the edges look crisp in the output of the bilateral filter. We run this filter
multiple times on the image to smoothen it out, to make it look like a cartoon.
We then superimpose the pencil-like mask on top of this color image to create a
cartoon-like effect.

Summary
In this chapter, we learnt how to access the webcam. We discussed how to take the
keyboard and mouse inputs during live video stream. We used this knowledge to
create an interactive application. We discussed the median and bilateral filters, and
talked about the advantages of the bilateral filter over the Gaussian filter. We used
all these principles to convert the input image into a sketch-like image, and then
cartoonized it.

In the next chapter, we will learn how to detect different body parts in static images
as well as in live videos.

[139]

Detecting and Tracking
Different Body Parts

In this chapter, we are going to learn how to detect and track different body parts in
a live video stream. We will start by discussing the face detection pipeline and how
it's built from the ground up. We will learn how to use this framework to detect and
track other body parts, such as eyes, ears, mouth, and nose.

By the end of this chapter, you will know:

• How to use Haar cascades
• What are integral images
• What is adaptive boosting
• How to detect and track faces in a live video stream
• How to detect and track eyes in a live video stream
• How to automatically overlay sunglasses on top of a person's face
• How to detect ears, nose, and mouth
• How to detect pupils using shape analysis

Using Haar cascades to detect things
When we say Haar cascades, we are actually talking about cascade classifiers based
on Haar features. To understand what this means, we need to take a step back and
understand why we need this in the first place. Back in 2001, Paul Viola and Michael
Jones came up with a very effective object detection method in their seminal paper.
It has become one of the major landmarks in the field of machine learning.

Detecting and Tracking Different Body Parts

[140]

In their paper, they have described a machine learning technique where a boosted
cascade of simple classifiers is used to get an overall classifier that performs really
well. This way, we can circumvent the process of building a single complex classifier
that performs with high accuracy. The reason this is so amazing is because building a
robust single-step classifier is a computationally intensive process. Besides, we need
a lot of training data to build such a classifier. The model ends up becoming complex
and the performance might not be up to the mark.

Let's say we want to detect an object like, say, a pineapple. To solve this, we need
to build a machine learning system that will learn what a pineapple looks like.
It should be able to tell us if an unknown image contains a pineapple or not. To
achieve something like this, we need to train our system. In the realm of machine
learning, we have a lot of methods available to train a system. It's a lot like training
a dog, except that it won't fetch the ball for you! To train our system, we take a lot
of pineapple and non-pineapple images, and then feed them into the system. Here,
pineapple images are called positive images and the non-pineapple images are called
negative images.

As far as the training is concerned, there are a lot of routes available. But all the
traditional techniques are computationally intensive and result in complex models.
We cannot use these models to build a real time system. Hence, we need to keep the
classifier simple. But if we keep the classifier simple, it will not be accurate. The trade
off between speed and accuracy is common in machine learning. We overcome this
problem by building a set of simple classifiers and then cascading them together to
form a unified classifier that's robust. To make sure that the overall classifier works
well, we need to get creative in the cascading step. This is one of the main reasons
why the Viola-Jones method is so effective.

Coming to the topic of face detection, let's see how to train a system to detect faces.
If we want to build a machine learning system, we first need to extract features from
all the images. In our case, the machine learning algorithms will use these features to
learn what a face looks like. We use Haar features to build our feature vectors. Haar
features are simple summations and differences of patches across the image. We do
this at multiple image sizes to make sure our system is scale invariant.

If you are curious, you can learn more about the formulation
at http://www.cs.ubc.ca/~lowe/425/slides/13-
ViolaJones.pdf

Once we extract these features, we pass it through a cascade of classifiers. We just
check all the different rectangular sub-regions and keep discarding the ones that
don't have faces in them. This way, we arrive at the final answer quickly to see if a
given rectangle contains a face or not.

http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf
http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf

Chapter 3

[141]

What are integral images?
If we want to compute Haar features, we will have to compute the summations of
many different rectangular regions within the image. If we want to effectively build
the feature set, we need to compute these summations at multiple scales. This is a
very expensive process! If we want to build a real time system, we cannot spend so
many cycles in computing these sums. So we use something called integral images.

To compute the sum of any rectangle in the image, we don't need to go through
all the elements in that rectangular area. Let's say AP indicates the sum of all the
elements in the rectangle formed by the top left point and the point P in the image as
the two diagonally opposite corners. So now, if we want to compute the area of the
rectangle ABCD, we can use the following formula:

Area of the rectangle ABCD = AC – (AB + AD - AA)

Why do we care about this particular formula? As we discussed earlier, extracting
Haar features includes computing the areas of a large number of rectangles in the
image at multiple scales. A lot of those computations are repetitive and the overall
process is very slow. In fact, it is so slow that we cannot afford to run anything in real
time. That's the reason we use this formulation! The good thing about this approach
is that we don't have to recalculate anything. All the values for the areas on the right
hand side of this equation are already available. So we just use them to compute the
area of any given rectangle and extract the features.

Detecting and Tracking Different Body Parts

[142]

Detecting and tracking faces
OpenCV provides a nice face detection framework. We just need to load the cascade
file and use it to detect the faces in an image. Let's see how to do it:

import cv2
import numpy as np

face_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_frontalface_alt.
xml')

cap = cv2.VideoCapture(0)
scaling_factor = 0.5

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=scaling_factor,
fy=scaling_factor, interpolation=cv2.INTER_AREA)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
 for (x,y,w,h) in face_rects:
 cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)

 cv2.imshow('Face Detector', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

Chapter 3

[143]

If you run the above code, it will look something like the following image:

Understanding it better
We need a classifier model that can be used to detect the faces in an image.
OpenCV provides an xml file that can be used for this purpose. We use the function
CascadeClassifier to load the xml file. Once we start capturing the input frames
from the webcam, we convert it to grayscale and use the function detectMultiScale
to get the bounding boxes for all the faces in the current image. The second argument
in this function specifies the jump in the scaling factor. As in, if we don't find an
image in the current scale, the next size to check will be, in our case, 1.3 times bigger
than the current size. The last parameter is a threshold that specifies the number of
adjacent rectangles needed to keep the current rectangle. It can be used to increase
the robustness of the face detector.

Detecting and Tracking Different Body Parts

[144]

Fun with faces
Now that we know how to detect and track faces, let's have some fun with it. When
we capture a video stream from the webcam, we can overlay funny masks on top of
our faces. It will look something like this next image:

If you are a fan of Hannibal, you can try this next one:

Chapter 3

[145]

Let's look at the code to see how to overlay the skull mask on top of the face in the
input video stream:

import cv2
import numpy as np

face_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_frontalface_alt.
xml')

face_mask = cv2.imread('mask_hannibal.png')
h_mask, w_mask = face_mask.shape[:2]

if face_cascade.empty():
 raise IOError('Unable to load the face cascade classifier
xml file')

cap = cv2.VideoCapture(0)
scaling_factor = 0.5

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=scaling_factor,
fy=scaling_factor, interpolation=cv2.INTER_AREA)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Detecting and Tracking Different Body Parts

[146]

 face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
 for (x,y,w,h) in face_rects:
 if h > 0 and w > 0:
 # Adjust the height and weight parameters depending
on the sizes and the locations. You need to play around with
these to make sure you get it right.
 h, w = int(1.4*h), int(1.0*w)
 y -= 0.1*h

 # Extract the region of interest from the image
 frame_roi = frame[y:y+h, x:x+w]
 face_mask_small = cv2.resize(face_mask, (w, h),
interpolation=cv2.INTER_AREA)

 # Convert color image to grayscale and threshold it
 gray_mask = cv2.cvtColor(face_mask_small, cv2.COLOR_
BGR2GRAY)
 ret, mask = cv2.threshold(gray_mask, 180, 255,
cv2.THRESH_BINARY_INV)

 # Create an inverse mask
 mask_inv = cv2.bitwise_not(mask)

 # Use the mask to extract the face mask region of
interest
 masked_face = cv2.bitwise_and(face_mask_small, face_mask_
small, mask=mask)

 # Use the inverse mask to get the remaining part of
the image
 masked_frame = cv2.bitwise_and(frame_roi,
frame_roi, mask=mask_inv)

 # add the two images to get the final output
 frame[y:y+h, x:x+w] = cv2.add(masked_face,
masked_frame)

 cv2.imshow('Face Detector', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

Chapter 3

[147]

Under the hood
Just like before, we first load the face cascade classifier xml file. The face detection
steps work as usual. We start the infinite loop and keep detecting the face in every
frame. Once we know where the face is, we need to modify the coordinates a
bit to make sure the mask fits properly. This manipulation process is subjective
and depends on the mask in question. Different masks require different levels of
adjustments to make it look more natural. We extract the region-of-interest from the
input frame in the following line:

frame_roi = frame[y:y+h, x:x+w]

Now that we have the required region-of-interest, we need to overlay the mask on
top of this. So we resize the input mask to make sure it fits in this region-of-interest.
The input mask has a white background. So if we just overlay this on top of the
region-of-interest, it will look unnatural because of the white background. We need
to overlay only the skull-mask pixels and the remaining area should be transparent.

So in the next step, we create a mask by thresholding the skull image. Since the
background is white, we threshold the image so that any pixel with an intensity
value greater than 180 becomes 0, and everything else becomes 255. As far as the
frame region-of-interest is concerned, we need to black out everything in this mask
region. We can do that by simply using the inverse of the mask we just created. Once
we have the masked versions of the skull image and the input region-of-interest, we
just add them up to get the final image.

Detecting eyes
Now that we understand how to detect faces, we can generalize the concept to detect
other body parts too. It's important to understand that Viola-Jones framework can be
applied to any object. The accuracy and robustness will depend on the uniqueness of
the object. For example, a human face has very unique characteristics, so it's easy to
train our system to be robust. On the other hand, an object like towel is too generic,
and there are no distinguishing characteristics as such; so it's more difficult to build a
robust towel detector.

Let's see how to build an eye detector:

import cv2
import numpy as np

face_cascade = cv2.CascadeClassifier('./cascade_files/haarcascade_
frontalface_alt.xml')
eye_cascade = cv2.CascadeClassifier('./cascade_files/haarcascade_eye.
xml')

Detecting and Tracking Different Body Parts

[148]

if face_cascade.empty():
 raise IOError('Unable to load the face cascade classifier xml file')

if eye_cascade.empty():
 raise IOError('Unable to load the eye cascade classifier xml file')

cap = cv2.VideoCapture(0)
ds_factor = 0.5

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,
interpolation=cv2.INTER_AREA)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 faces = face_cascade.detectMultiScale(gray, 1.3, 5)
 for (x,y,w,h) in faces:
 roi_gray = gray[y:y+h, x:x+w]
 roi_color = frame[y:y+h, x:x+w]
 eyes = eye_cascade.detectMultiScale(roi_gray)
 for (x_eye,y_eye,w_eye,h_eye) in eyes:
 center = (int(x_eye + 0.5*w_eye), int(y_eye + 0.5*h_eye))
 radius = int(0.3 * (w_eye + h_eye))
 color = (0, 255, 0)
 thickness = 3
 cv2.circle(roi_color, center, radius, color, thickness)

 cv2.imshow('Eye Detector', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

Chapter 3

[149]

If you run this program, the output will look something like the following image:

Afterthought
If you notice, the program looks very similar to the face detection program. Along
with loading the face detection cascade classifier, we load the eye detection cascade
classifier as well. Technically, we don't need to use the face detector. But we know
that eyes are always on somebody's face. We use this information and search for eyes
only in the relevant region of interest, that is the face. We first detect the face, and
then run the eye detector on this sub-image. This way, it's faster and more efficient.

Detecting and Tracking Different Body Parts

[150]

Fun with eyes
Now that we know how to detect eyes in an image, let's see if we can do something
fun with it. We can do something like what is shown in the following screenshot:

Let's look at the code to see how to do something like this:

import cv2
import numpy as np

face_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_frontalface_alt.
xml')
eye_cascade = cv2.CascadeClassifier('./cascade_files/haarcascade_eye.
xml')

if face_cascade.empty():
 raise IOError('Unable to load the face cascade classifier
xml file')

if eye_cascade.empty():
 raise IOError('Unable to load the eye cascade classifier xml
file')

img = cv2.imread('input.jpg')
sunglasses_img = cv2.imread('sunglasses.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

centers = []
faces = face_cascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in faces:

Chapter 3

[151]

 roi_gray = gray[y:y+h, x:x+w]
 roi_color = img[y:y+h, x:x+w]
 eyes = eye_cascade.detectMultiScale(roi_gray)
 for (x_eye,y_eye,w_eye,h_eye) in eyes:
 centers.append((x + int(x_eye + 0.5*w_eye), y +
int(y_eye + 0.5*h_eye)))

if len(centers) > 0:
 # Overlay sunglasses; the factor 2.12 is customizable
depending on the size of the face
 sunglasses_width = 2.12 * abs(centers[1][0] -
centers[0][0])
 overlay_img = np.ones(img.shape, np.uint8) * 255
 h, w = sunglasses_img.shape[:2]
 scaling_factor = sunglasses_width / w
 overlay_sunglasses = cv2.resize(sunglasses_img, None,
fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 x = centers[0][0] if centers[0][0] < centers[1][0] else
centers[1][0]

 # customizable X and Y locations; depends on the size of
the face
 x -= 0.26*overlay_sunglasses.shape[1]
 y += 0.85*overlay_sunglasses.shape[0]

 h, w = overlay_sunglasses.shape[:2]
 overlay_img[y:y+h, x:x+w] = overlay_sunglasses

 # Create mask
 gray_sunglasses = cv2.cvtColor(overlay_img,
cv2.COLOR_BGR2GRAY)
 ret, mask = cv2.threshold(gray_sunglasses, 110, 255,
cv2.THRESH_BINARY)
 mask_inv = cv2.bitwise_not(mask)
 temp = cv2.bitwise_and(img, img, mask=mask)
 temp2 = cv2.bitwise_and(overlay_img, overlay_img,
mask=mask_inv)
 final_img = cv2.add(temp, temp2)

 cv2.imshow('Eye Detector', img)
 cv2.imshow('Sunglasses', final_img)
 cv2.waitKey()
 cv2.destroyAllWindows()

Detecting and Tracking Different Body Parts

[152]

Positioning the sunglasses
Just like we did earlier, we load the image and detect the eyes. Once we detect the eyes,
we resize the sunglasses image to fit the current region of interest. To create the region
of interest, we consider the distance between the eyes. We resize the image accordingly
and then go ahead to create a mask. This is similar to what we did with the skull mask
earlier. The positioning of the sunglasses on the face is subjective. So you will have to
tinker with the weights if you want to use a different pair of sunglasses.

Detecting ears
Since we know how the pipeline works, let's just jump into the code:

import cv2
import numpy as np

left_ear_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_leftear.xml')
right_ear_cascade = cv2.CascadeClassifier('./cascade_files/
haarcascade_mcs_rightear.xml')

if left_ear_cascade.empty():
 raise IOError('Unable to load the left ear cascade
classifier xml file')

if right_ear_cascade.empty():
 raise IOError('Unable to load the right ear cascade classifier xml
file')

img = cv2.imread('input.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

left_ear = left_ear_cascade.detectMultiScale(gray, 1.3, 5)
right_ear = right_ear_cascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in left_ear:
 cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 3)

for (x,y,w,h) in right_ear:
 cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 3)

cv2.imshow('Ear Detector', img)
cv2.waitKey()
cv2.destroyAllWindows()

Chapter 3

[153]

If you run the above code on an image, you should see something like the following
screenshot:

Detecting a mouth
Following is the code:

import cv2
import numpy as np

mouth_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_mouth.xml')

if mouth_cascade.empty():
 raise IOError('Unable to load the mouth cascade classifier
xml file')

cap = cv2.VideoCapture(0)
ds_factor = 0.5

Detecting and Tracking Different Body Parts

[154]

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,
interpolation=cv2.INTER_AREA)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 mouth_rects = mouth_cascade.detectMultiScale(gray, 1.7, 11)
 for (x,y,w,h) in mouth_rects:
 y = int(y - 0.15*h)
 cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
 break

 cv2.imshow('Mouth Detector', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

Following is what the output looks like:

Chapter 3

[155]

It's time for a moustache
Let's overlay a moustache on top:

import cv2
import numpy as np

mouth_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_mouth.xml')

moustache_mask = cv2.imread('../images/moustache.png')
h_mask, w_mask = moustache_mask.shape[:2]

if mouth_cascade.empty():
 raise IOError('Unable to load the mouth cascade classifier
xml file')

cap = cv2.VideoCapture(0)
scaling_factor = 0.5

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=scaling_factor,
fy=scaling_factor, interpolation=cv2.INTER_AREA)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 mouth_rects = mouth_cascade.detectMultiScale(gray, 1.3, 5)
 if len(mouth_rects) > 0:
 (x,y,w,h) = mouth_rects[0]
 h, w = int(0.6*h), int(1.2*w)
 x -= 0.05*w
 y -= 0.55*h
 frame_roi = frame[y:y+h, x:x+w]
 moustache_mask_small = cv2.resize(moustache_mask, (w,
h), interpolation=cv2.INTER_AREA)

 gray_mask = cv2.cvtColor(moustache_mask_small,
cv2.COLOR_BGR2GRAY)
 ret, mask = cv2.threshold(gray_mask, 50, 255,
cv2.THRESH_BINARY_INV)
 mask_inv = cv2.bitwise_not(mask)
 masked_mouth = cv2.bitwise_and(moustache_mask_small,
moustache_mask_small, mask=mask)
 masked_frame = cv2.bitwise_and(frame_roi, frame_roi,
mask=mask_inv)
 frame[y:y+h, x:x+w] = cv2.add(masked_mouth,
masked_frame)

Detecting and Tracking Different Body Parts

[156]

 cv2.imshow('Moustache', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

Here's what it looks like:

Detecting a nose
The following program shows how you detect a nose:

import cv2
import numpy as np

nose_cascade =
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_nose.xml')

if nose_cascade.empty():
 raise IOError('Unable to load the nose cascade classifier
xml file')

Chapter 3

[157]

cap = cv2.VideoCapture(0)
ds_factor = 0.5

while True:
 ret, frame = cap.read()
 frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,
interpolation=cv2.INTER_AREA)
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 nose_rects = nose_cascade.detectMultiScale(gray, 1.3, 5)
 for (x,y,w,h) in nose_rects:
 cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
 break

 cv2.imshow('Nose Detector', frame)

 c = cv2.waitKey(1)
 if c == 27:
 break

cap.release()
cv2.destroyAllWindows()

The output looks something like the following image:

Detecting and Tracking Different Body Parts

[158]

Detecting pupils
We are going to take a different approach here. Pupils are too generic to take the
Haar cascade approach. We will also get a sense of how to detect things based on
their shape. Following is what the output will look like:

Let's see how to build the pupil detector:

import math

import cv2
import numpy as np

img = cv2.imread('input.jpg')
scaling_factor = 0.7

img = cv2.resize(img, None, fx=scaling_factor,
fy=scaling_factor, interpolation=cv2.INTER_AREA)
cv2.imshow('Input', img)
gray = cv2.cvtColor(~img, cv2.COLOR_BGR2GRAY)

Chapter 3

[159]

ret, thresh_gray = cv2.threshold(gray, 220, 255,
cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh_gray,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

for contour in contours:
 area = cv2.contourArea(contour)
 rect = cv2.boundingRect(contour)
 x, y, width, height = rect
 radius = 0.25 * (width + height)

 area_condition = (100 <= area <= 200)
 symmetry_condition = (abs(1 - float(width)/float(height))
<= 0.2)
 fill_condition = (abs(1 - (area / (math.pi * math.pow(radius,
2.0)))) <= 0.3)

 if area_condition and symmetry_condition and fill_condition:
 cv2.circle(img, (int(x + radius), int(y + radius)),
int(1.3*radius), (0,180,0), -1)

cv2.imshow('Pupil Detector', img)

c = cv2.waitKey()
cv2.destroyAllWindows()

If you run this program, you will see the output as shown earlier.

Deconstructing the code
As we discussed earlier, we are not going to use Haar cascade to detect pupils. If we
can't use a pre-trained classifier, then how are we going to detect the pupils? Well,
we can use shape analysis to detect the pupils. We know that pupils are circular, so
we can use this information to detect them in the image. We invert the input image
and then convert it into grayscale image as shown in the following line:

gray = cv2.cvtColor(~img, cv2.COLOR_BGR2GRAY)

As we can see here, we can invert an image using the tilde operator. Inverting
the image is helpful in our case because the pupil is black in color, and black
corresponds to a low pixel value. We then threshold the image to make sure that
there are only black and white pixels. Now, we have to find out the boundaries of all
the shapes. OpenCV provides a nice function to achieve this, that is findContours.
We will discuss more about this in the upcoming chapters. But for now, all we need
to know is that this function returns the set of boundaries of all the shapes that are
found in the image.

Detecting and Tracking Different Body Parts

[160]

The next step is to identify the shape of the pupil and discard the rest. We will use
certain properties of the circle to zero-in on this shape. Let's consider the ratio of width
to height of the bounding rectangle. If the shape is a circle, this ratio will be 1. We can
use the function boundingRect to obtain the coordinates of the bounding rectangle.
Let's consider the area of this shape. If we roughly compute the radius of this shape
and use the formula for the area of the circle, then it should be close to the area of this
contour. We can use the function contourArea to compute the area of any contour in
the image. So we can use these conditions and filter out the shapes. After we do that,
we are left with two pupils in the image. We can refine it further by limiting the search
region to the face or the eyes. Since you know how to detect faces and eyes, you can
give it a try and see if you can get it working for a live video stream.

Summary
In this chapter, we discussed Haar cascades and integral images. We understood
how the face detection pipeline is built. We learnt how to detect and track faces in
a live video stream. We discussed how to use the face detection pipeline to detect
various body parts like eyes, ears, nose, and mouth. We learnt how to overlay masks
on top on the input image using the results of body parts detection. We used the
principles of shape analysis to detect the pupils.

In the next chapter, we are going to discuss feature detection and how it can be used
to understand the image content.

[161]

Extracting Features from
an Image

In this chapter, we are going to learn how to detect salient points, also known as
keypoints, in an image. We will discuss why these keypoints are important and
how we can use them to understand the image content. We will talk about different
techniques that can be used to detect these keypoints, and understand how we can
extract features from a given image.

By the end of this chapter, you will know:

• What are keypoints and why do we care about them
• How to detect keypoints
• How to use keypoints for image content analysis
• The different techniques to detect keypoints
• How to build a feature extractor

Why do we care about keypoints?
Image content analysis refers to the process of understanding the content of an
image so that we can take some action based on that. Let's take a step back and
talk about how humans do it. Our brain is an extremely powerful machine that
can do complicated things very quickly. When we look at something, our brain
automatically creates a footprint based on the "interesting" aspects of that image.
We will discuss what interesting means as we move along this chapter.

Extracting Features from an Image

[162]

For now, an interesting aspect is something that's distinct in that region. If we call
a point interesting, then there shouldn't be another point in its neighborhood that
satisfies the constraints. Let's consider the following image:

Now close your eyes and try to visualize this image. Do you see something specific?
Can you recollect what's in the left half of the image? Not really! The reason for this
is that the image doesn't have any interesting information. When our brain looks at
something like this, there's nothing to make note of. So it tends to wander around!
Let's take a look at the following image:

Chapter 4

[163]

Now close your eyes and try to visualize this image. You will see that the recollection
is vivid and you remember a lot of details about this image. The reason for this is that
there are a lot of interesting regions in the image. The human eye is more sensitive to
high frequency content as compared to low frequency content. This is the reason we
tend to recollect the second image better than the first one. To further demonstrate
this, let's look at the following image:

If you notice, your eye immediately went to the TV remote, even though it's not at
the center of the image. We automatically tend to gravitate towards the interesting
regions in the image because that is where all the information is. This is what our
brain needs to store in order to recollect it later.

When we build object recognition systems, we need to detect these "interesting"
regions to create a signature for the image. These interesting regions are
characterized by keypoints. This is why keypoint detection is critical in many
modern computer vision systems.

Extracting Features from an Image

[164]

What are keypoints?
Now that we know that keypoints refer to the interesting regions in the image, let's
dig a little deeper. What are keypoints made of? Where are these points? When we
say "interesting", it means that something is happening in that region. If the region
is just uniform, then it's not very interesting. For example, corners are interesting
because there is sharp change in intensity in two different directions. Each corner is
a unique point where two edges meet. If you look at the preceding images, you will
see that the interesting regions are not completely made up of "interesting" content.
If you look closely, we can still see plain regions within busy regions. For example,
consider the following image:

Chapter 4

[165]

If you look at the preceding object, the interior parts of the interesting regions are
"uninteresting".

So, if we were to characterize this object, we would need to make sure that we picked
the interesting points. Now, how do we define "interesting points"? Can we just say
that anything that's not uninteresting can be an interesting point? Let's consider the
following example:

Extracting Features from an Image

[166]

Now, we can see that there is a lot of high frequency content in this image along the
edge. But we cannot call the whole edge "interesting". It is important to understand
that "interesting" doesn't necessarily refer to color or intensity values. It can be
anything, as long as it is distinct. We need to isolate the points that are unique in
their neighborhood. The points along the edge are not unique with respect to their
neighbors. So, now that we know what we are looking for, how do we pick an
interesting point?

What about the corner of the table? That's pretty interesting, right? It's unique with
respect to its neighbors and we don't have anything like that in its vicinity. Now this
point can be chosen as one of our keypoints. We take a bunch of these keypoints to
characterize a particular image.

When we do image analysis, we need to convert it into a numerical form before we
deduce something. These keypoints are represented using a numerical form and a
combination of these keypoints is then used to create the image signature. We want
this image signature to represent a given image in the best possible way.

Detecting the corners
Since we know that the corners are "interesting", let's see how we can detect them.
In computer vision, there is a popular corner detection technique called Harris
Corner Detector. We basically construct a 2x2 matrix based on partial derivatives
of the grayscale image, and then analyze the eigenvalues. This is actually an
oversimplification of the actual algorithm, but it covers the gist. So, if you want to
understand the underlying mathematical details, you can look into the original paper
by Harris and Stephens at http://www.bmva.org/bmvc/1988/avc-88-023.pdf. A
corner point is a point where both the eigenvalues would have large values.

Let's consider the following image:

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Chapter 4

[167]

If you run the Harris corner detector on this image, you will see something like this:

As you can see, all the black dots correspond to the corners in the image. If you
notice, the corners at the bottom of the box are not detected. The reason for this is
that the corners are not sharp enough. You can adjust the thresholds in the corner
detector to identify these corners. The code to do this is as follows:

import cv2
import numpy as np

img = cv2.imread('box.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)

dst = cv2.cornerHarris(gray, 4,5, 0.04) # to detect only
sharp corners
#dst = cv2.cornerHarris(gray, 14, 5, 0.04) # to detect soft
corners

Result is dilated for marking the corners
dst = cv2.dilate(dst,None)

Threshold for an optimal value, it may vary depending on the
image.
img[dst > 0.01*dst.max()] = [0,0,0]

cv2.imshow('Harris Corners',img)
cv2.waitKey()

Extracting Features from an Image

[168]

Good Features To Track
Harris corner detector performs well in many cases, but it misses out on a few things.
Around six years after the original paper by Harris and Stephens, Shi-Tomasi came
up with a better corner detector. You can read the original paper at http://www.
ai.mit.edu/courses/6.891/handouts/shi94good.pdf. They used a different
scoring function to improve the overall quality. Using this method, we can find the
'N' strongest corners in the given image. This is very useful when we don't want to
use every single corner to extract information from the image.

If you apply the Shi-Tomasi corner detector to the image shown earlier, you will see
something like this:

Following is the code:

import cv2
import numpy as np

img = cv2.imread('box.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

corners = cv2.goodFeaturesToTrack(gray, 7, 0.05, 25)
corners = np.float32(corners)

http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf

Chapter 4

[169]

for item in corners:
 x, y = item[0]
 cv2.circle(img, (x,y), 5, 255, -1)

cv2.imshow("Top 'k' features", img)
cv2.waitKey()

Scale Invariant Feature Transform (SIFT)
Even though corner features are "interesting", they are not good enough to characterize
the truly interesting parts. When we talk about image content analysis, we want the
image signature to be invariant to things such as scale, rotation, illumination, and so
on. Humans are very good at these things. Even if I show you an image of an apple
upside down that's dimmed, you will still recognize it. If I show you a really enlarged
version of that image, you will still recognize it. We want our image recognition
systems to be able to do the same.

Let's consider the corner features. If you enlarge an image, a corner might stop being
a corner as shown below.

Extracting Features from an Image

[170]

In the second case, the detector will not pick up this corner. And, since it was picked
up in the original image, the second image will not be matched with the first one. It's
basically the same image, but the corner features based method will totally miss it.
This means that corner detector is not exactly scale invariant. This is why we need
a better method to characterize an image.

SIFT is one of the most popular algorithms in all of computer vision. You can read
David Lowe's original paper at http://www.cs.ubc.ca/~lowe/papers/ijcv04.
pdf. We can use this algorithm to extract keypoints and build the corresponding
feature descriptors. There is a lot of good documentation available online, so we will
keep our discussion brief. To identify a potential keypoint, SIFT builds a pyramid
by downsampling an image and taking the difference of Gaussian. This means that
we run a Gaussian filter at each level and take the difference to build the successive
levels in the pyramid. In order to see if the current point is a keypoint, it looks at
the neighbors as well as the pixels at the same location in neighboring levels of the
pyramid. If it's a maxima, then the current point is picked up as a keypoint. This
ensures that we keep the keypoints scale invariant.

Now that we know how it achieves scale invariance, let's see how it achieves rotation
invariance. Once we identify the keypoints, each keypoint is assigned an orientation.
We take the neighborhood around each keypoint and compute the gradient magnitude
and direction. This gives us a sense of the direction of that keypoint. If we have this
information, we will be able to match this keypoint to the same point in another image
even if it's rotated. Since we know the orientation, we will be able to normalize those
keypoints before making the comparisons.

Once we have all this information, how do we quantify it? We need to convert it
to a set of numbers so that we can do some kind of matching on it. To achieve this,
we just take the 16x16 neighborhood around each keypoint, and divide it into 16
blocks of size 4x4. For each block, we compute the orientation histogram with 8 bins.
So, we have a vector of length 8 associated with each block, which means that the
neighborhood is represented by a vector of size 128 (8x16). This is the final keypoint
descriptor that will be used. If we extract N keypoints from an image, then we will
have N descriptors of length 128 each. This array of N descriptors characterizes the
given image.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Chapter 4

[171]

Consider the following image:

If you extract the keypoint locations using SIFT, you will see something like the
following, where the size of the circle indicates the strength of the keypoints,
and the line inside the circle indicates the orientation:

Extracting Features from an Image

[172]

Before we look at the code, it is important to know that SIFT is patented and it's not
freely available for commercial use. Following is the code to do it:

import cv2
import numpy as np

input_image = cv2.imread('input.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT()
keypoints = sift.detect(gray_image, None)

input_image = cv2.drawKeypoints(input_image, keypoints,
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('SIFT features', input_image)
cv2.waitKey()

We can also compute the descriptors. OpenCV lets us do it separately or we can
combine the detection and computation parts in the same step by using the following:

keypoints, descriptors = sift.detectAndCompute(gray_image,
None)

Speeded Up Robust Features (SURF)
Even though SIFT is nice and useful, it's computationally intensive. This means
that it's slow and we will have a hard time implementing a real-time system if it
uses SIFT. We need a system that's fast and has all the advantages of SIFT. If you
remember, SIFT uses the difference of Gaussian to build the pyramid and this
process is slow. So, to overcome this, SURF uses a simple box filter to approximate
the Gaussian. The good thing is that this is really easy to compute and it's reasonably
fast. There's a lot of documentation available online on SURF at http://opencv-
python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/
py_surf_intro/py_surf_intro.html?highlight=surf. So, you can go through
it to see how they construct a descriptor. You can refer to the original paper at
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf. It is important to know
that SURF is also patented and it is not freely available for commercial use.

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html?highlight=surf
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html?highlight=surf
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html?highlight=surf
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf

Chapter 4

[173]

If you run the SURF keypoint detector on the earlier image, you will see something
like the following one:

Here is the code:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

surf = cv2.SURF()

This threshold controls the number of keypoints
surf.hessianThreshold = 15000

kp, des = surf.detectAndCompute(gray, None)

img = cv2.drawKeypoints(img, kp, None, (0,255,0), 4)

cv2.imshow('SURF features', img)
cv2.waitKey()

Extracting Features from an Image

[174]

Features from Accelerated Segment Test
(FAST)
Even though SURF is faster than SIFT, it's just not fast enough for a real-time
system, especially when there are resource constraints. When you are building
a real-time application on a mobile device, you won't have the luxury of using
SURF to do computations in real time. We need something that's really fast and
computationally inexpensive. Hence, Rosten and Drummond came up with FAST.
As the name indicates, it's really fast!

Instead of going through all the expensive calculations, they came up with a high-
speed test to quickly determine if the current point is a potential keypoint. We need
to note that FAST is just for keypoint detection. Once keypoints are detected, we
need to use SIFT or SURF to compute the descriptors. Consider the following image:

If we run the FAST keypoint detector on this image, you will see something like this:

Chapter 4

[175]

If we clean it up and suppress the unimportant keypoints, it will look like this:

Following is the code for this:

import cv2
import numpy as np

gray_image = cv2.imread('input.jpg', 0)

fast = cv2.FastFeatureDetector()

Detect keypoints
keypoints = fast.detect(gray_image, None)
print "Number of keypoints with non max suppression:",
len(keypoints)

Draw keypoints on top of the input image
img_keypoints_with_nonmax = cv2.drawKeypoints(gray_image,
keypoints, color=(0,255,0))
cv2.imshow('FAST keypoints - with non max suppression',
img_keypoints_with_nonmax)

Disable nonmaxSuppression
fast.setBool('nonmaxSuppression', False)

Detect keypoints again
keypoints = fast.detect(gray_image, None)

Extracting Features from an Image

[176]

print "Total Keypoints without nonmaxSuppression:",
len(keypoints)

Draw keypoints on top of the input image
img_keypoints_without_nonmax = cv2.drawKeypoints(gray_image,
keypoints, color=(0,255,0))
cv2.imshow('FAST keypoints - without non max suppression',
img_keypoints_without_nonmax)
cv2.waitKey()

Binary Robust Independent Elementary
Features (BRIEF)
Even though we have FAST to quickly detect the keypoints, we still have to use
SIFT or SURF to compute the descriptors. We need a way to quickly compute the
descriptors as well. This is where BRIEF comes into the picture. BRIEF is a method
for extracting feature descriptors. It cannot detect the keypoints by itself, so we need
to use it in conjunction with a keypoint detector. The good thing about BRIEF is that
it's compact and fast.

Consider the following image:

Chapter 4

[177]

BRIEF takes the list of input keypoints and outputs an updated list. So if you run
BRIEF on this image, you will see something like this:

Following is the code:

import cv2
import numpy as np

gray_image = cv2.imread('input.jpg', 0)

Initiate FAST detector
fast = cv2.FastFeatureDetector()

Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")

Extracting Features from an Image

[178]

find the keypoints with STAR
keypoints = fast.detect(gray_image, None)

compute the descriptors with BRIEF
keypoints, descriptors = brief.compute(gray_image, keypoints)

gray_keypoints = cv2.drawKeypoints(gray_image, keypoints,
color=(0,255,0))
cv2.imshow('BRIEF keypoints', gray_keypoints)
cv2.waitKey()

Oriented FAST and Rotated BRIEF (ORB)
So, now we have arrived at the best combination out of all the combinations that we
have discussed so far. This algorithm came out of the OpenCV Labs. It's fast, robust,
and open-source! Both SIFT and SURF algorithms are patented and you can't use
them for commercial purposes. This is why ORB is good in many ways.

If you run the ORB keypoint extractor on one of the images shown earlier, you will
see something like the following:

Chapter 4

[179]

Here is the code:

import cv2
import numpy as np

input_image = cv2.imread('input.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

Initiate ORB object
orb = cv2.ORB()

find the keypoints with ORB
keypoints = orb.detect(gray_image, None)

compute the descriptors with ORB
keypoints, descriptors = orb.compute(gray_image, keypoints)

draw only the location of the keypoints without size or
orientation
final_keypoints = cv2.drawKeypoints(input_image, keypoints,
color=(0,255,0), flags=0)

cv2.imshow('ORB keypoints', final_keypoints)
cv2.waitKey()

Summary
In this chapter, we learned about the importance of keypoints and why we need
them. We discussed various algorithms to detect keypoints and compute feature
descriptors. We will be using these algorithms in all the subsequent chapters in
various different contexts. The concept of keypoints is central to computer vision,
and plays an important role in many modern systems.

In the next chapter, we are going to discuss how to stitch multiple images of the
same scene together to create a panoramic image.

[181]

Creating a Panoramic Image
In this chapter, we are going to learn how to stitch multiple images of the same scene
together to create a panoramic image.

By the end of this chapter, you will know:

• How to match keypoint descriptors between multiple images
• How to find overlapping regions between images
• How to warp images based on the matching keypoints
• How to stitch multiple images to create a panoramic image

Matching keypoint descriptors
In the last chapter, we learned how to extract keypoints using various methods. The
reason that we extract keypoints is because we can use them for image matching.
Let's consider the following image:

Creating a Panoramic Image

[182]

As you can see, it's the picture of a school bus. Now, let's take a look at the
following image:

The preceding image is a part of the school bus image and it's been rotated
anticlockwise by 90 degrees. We could easily recognize this because our brain
is invariant to scaling and rotation. Our goal here is to find the matching points
between these two images. If you do that, it would look something like this:

Chapter 5

[183]

Following is the code to do this:

import sys

import cv2
import numpy as np

def draw_matches(img1, keypoints1, img2, keypoints2, matches):
 rows1, cols1 = img1.shape[:2]
 rows2, cols2 = img2.shape[:2]

 # Create a new output image that concatenates the two images
together
 output_img = np.zeros((max([rows1,rows2]), cols1+cols2, 3),
dtype='uint8')
 output_img[:rows1, :cols1, :] = np.dstack([img1, img1, img1])
 output_img[:rows2, cols1:cols1+cols2, :] = np.dstack([img2, img2,
img2])

 # Draw connecting lines between matching keypoints
 for match in matches:
 # Get the matching keypoints for each of the images
 img1_idx = match.queryIdx
 img2_idx = match.trainIdx

 (x1, y1) = keypoints1[img1_idx].pt
 (x2, y2) = keypoints2[img2_idx].pt

 # Draw a small circle at both co-ordinates and then draw a
line
 radius = 4
 colour = (0,255,0) # green
 thickness = 1
 cv2.circle(output_img, (int(x1),int(y1)), radius, colour,
thickness)
 cv2.circle(output_img, (int(x2)+cols1,int(y2)), radius,
colour, thickness)
 cv2.line(output_img, (int(x1),int(y1)),
(int(x2)+cols1,int(y2)), colour, thickness)

 return output_img

if __name__=='__main__':
 img1 = cv2.imread(sys.argv[1], 0) # query image (rotated
subregion)

Creating a Panoramic Image

[184]

 img2 = cv2.imread(sys.argv[2], 0) # train image (full image)

 # Initialize ORB detector
 orb = cv2.ORB()

 # Extract keypoints and descriptors
 keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
 keypoints2, descriptors2 = orb.detectAndCompute(img2, None)

 # Create Brute Force matcher object
 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

 # Match descriptors
 matches = bf.match(descriptors1, descriptors2)

 # Sort them in the order of their distance
 matches = sorted(matches, key = lambda x:x.distance)

 # Draw first 'n' matches
 img3 = draw_matches(img1, keypoints1, img2, keypoints2,
matches[:30])

 cv2.imshow('Matched keypoints', img3)
 cv2.waitKey()

How did we match the keypoints?
In the preceding code, we used the ORB detector to extract the keypoints. Once we
extracted the keypoints, we used the Brute Force matcher to match the descriptors.
Brute Force matching is pretty straightforward! For every descriptor in the first
image, we match it with every descriptor in the second image and take the closest
one. To compute the closest descriptor, we use the Hamming distance as the metric,
as shown in the following line:

bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

You can read more about the Hamming distance at https://en.wikipedia.org/
wiki/Hamming_distance. The second argument in the preceding line is a Boolean
variable. If this is true, then the matcher returns only those keypoints that are closest
to each other in both directions. This means that if we get (i, j) as a match, then we
can be sure that the i-th descriptor in the first image has the j-th descriptor in the
second image as its closest match and vice versa. This increases the consistency
and robustness of descriptor matching.

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance

Chapter 5

[185]

Understanding the matcher object
Let's consider the following line again:

matches = bf.match(descriptors1, descriptors2)

Here, the variable matches is a list of DMatch objects. You can read more about it
in the OpenCV documentation. We just need to quickly understand what it means
because it will become increasingly relevant in the upcoming chapters. If we are
iterating over this list of DMatch objects, then each item will have the following
attributes:

• item.distance: This attribute gives us the distance between the descriptors.
A lower distance indicates a better match.

• item.trainIdx: This attribute gives us the index of the descriptor in the list
of train descriptors (in our case, it's the list of descriptors in the full image).

• item.queryIdx: This attribute gives us the index of the descriptor in the list
of query descriptors (in our case, it's the list of descriptors in the rotated
subimage).

• item.imgIdx: This attribute gives us the index of the train image.

Drawing the matching keypoints
Now that we know how to access different attributes of the matcher object, let's see
how we can use them to draw the matching keypoints. OpenCV 3.0 provides a direct
function to draw the matching keypoints, but we will not be using that. It's better to
take a peek inside to see what's happening underneath.

We need to create a big output image that can fit both the images side by side.
So, we do that in the following line:

output_img = np.zeros((max([rows1,rows2]), cols1+cols2, 3),
dtype='uint8')

As we can see here, the number of rows is set to the bigger of the two values and
the number of columns is simply the sum of both the values. For each item in the list
of matches, we extract the locations of the matching keypoints, as we can see in the
following lines:

(x1, y1) = keypoints1[img1_idx].pt
(x2, y2) = keypoints2[img2_idx].pt

Once we do that, we just draw circles on those points to indicate their locations and
then draw a line connecting the two points.

Creating a Panoramic Image

[186]

Creating the panoramic image
Now that we know how to match keypoints, let's go ahead and see how we can stitch
multiple images together. Consider the following image:

Let's say we want to stitch the following image with the preceding image:

Chapter 5

[187]

If we stitch these images, it will look something like the following one:

Now let's say we captured another part of this house, as seen in the following image:

Creating a Panoramic Image

[188]

If we stitch the preceding image with the stitched image we saw earlier, it will look
something like this:

We can keep stitching images together to create a nice panoramic image. Let's take a
look at the code:

import sys
import argparse

import cv2
import numpy as np

def argument_parser():
 parser = argparse.ArgumentParser(description='Stitch two
images together')
 parser.add_argument("--query-image", dest="query_image",
required=True,
 help="First image that needs to be stitched")
 parser.add_argument("--train-image", dest="train_image",
required=True,
 help="Second image that needs to be stitched")
 parser.add_argument("--min-match-count",
dest="min_match_count", type=int,
 required=False, default=10, help="Minimum number of
matches required")
 return parser

Chapter 5

[189]

Warp img2 to img1 using the homography matrix H
def warpImages(img1, img2, H):
 rows1, cols1 = img1.shape[:2]
 rows2, cols2 = img2.shape[:2]

 list_of_points_1 = np.float32([[0,0], [0,rows1],
[cols1,rows1], [cols1,0]]).reshape(-1,1,2)
 temp_points = np.float32([[0,0], [0,rows2], [cols2,rows2],
[cols2,0]]).reshape(-1,1,2)
 list_of_points_2 = cv2.perspectiveTransform(temp_points, H)
 list_of_points = np.concatenate((list_of_points_1,
list_of_points_2), axis=0)

 [x_min, y_min] = np.int32(list_of_points.min(axis=0).ravel() -
0.5)
 [x_max, y_max] = np.int32(list_of_points.max(axis=0).ravel() +
0.5)
 translation_dist = [-x_min,-y_min]
 H_translation = np.array([[1, 0, translation_dist[0]], [0, 1,
translation_dist[1]], [0,0,1]])

 output_img = cv2.warpPerspective(img2, H_translation.dot(H),
(x_max-x_min, y_max-y_min))
 output_img[translation_dist[1]:rows1+translation_dist[1],
translation_dist[0]:cols1+translation_dist[0]] = img1

 return output_img

if __name__=='__main__':
 args = argument_parser().parse_args()
 img1 = cv2.imread(args.query_image, 0)
 img2 = cv2.imread(args.train_image, 0)
 min_match_count = args.min_match_count

 cv2.imshow('Query image', img1)
 cv2.imshow('Train image', img2)

 # Initialize the SIFT detector
 sift = cv2.SIFT()

 # Extract the keypoints and descriptors
 keypoints1, descriptors1 = sift.detectAndCompute(img1, None)
 keypoints2, descriptors2 = sift.detectAndCompute(img2, None)

Creating a Panoramic Image

[190]

 # Initialize parameters for Flann based matcher
 FLANN_INDEX_KDTREE = 0
 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
 search_params = dict(checks = 50)

 # Initialize the Flann based matcher object
 flann = cv2.FlannBasedMatcher(index_params, search_params)

 # Compute the matches
 matches = flann.knnMatch(descriptors1, descriptors2, k=2)

 # Store all the good matches as per Lowe's ratio test
 good_matches = []
 for m1,m2 in matches:
 if m1.distance < 0.7*m2.distance:
 good_matches.append(m1)

 if len(good_matches) > min_match_count:
 src_pts = np.float32([keypoints1[good_match.queryIdx].pt
for good_match in good_matches]).reshape(-1,1,2)
 dst_pts = np.float32([keypoints2[good_match.trainIdx].pt
for good_match in good_matches]).reshape(-1,1,2)

 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,
5.0)
 result = warpImages(img2, img1, M)
 cv2.imshow('Stitched output', result)

 cv2.waitKey()

 else:
 print "We don't have enough number of matches between the
two images."
 print "Found only %d matches. We need at least %d
matches." % (len(good_matches), min_match_count)

Finding the overlapping regions
The goal here is to find the matching keypoints so that we can stitch the images
together. So, the first step is to get these matching keypoints. As discussed in the
previous section, we use a keypoint detector to extract the keypoints, and then
use a Flann based matcher to match the keypoints.

Chapter 5

[191]

You can learn more about Flann at http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&t
ype=pdf.

The Flann based matcher is faster than Brute Force matching because it doesn't
compare each point with every single point on the other list. It only considers the
neighborhood of the current point to get the matching keypoint, thereby making it
more efficient.

Once we get a list of matching keypoints, we use Lowe's ratio test to keep only
the strong matches. David Lowe proposed this ratio test in order to increase the
robustness of SIFT.

You can read more about this at http://www.cs.ubc.ca/~lowe/
papers/ijcv04.pdf.

Basically, when we match the keypoints, we reject the matches in which the ratio
of the distances to the nearest neighbor and the second nearest neighbor is greater
than a certain threshold. This helps us in discarding the points that are not distinct
enough. So, we use that concept here to keep only the good matches and discard
the rest. If we don't have sufficient matches, we don't proceed further. In our case,
the default value is 10. You can play around with this input parameter to see how it
affects the output.

If we have a sufficient number of matches, then we extract the list of keypoints in
both the images and extract the homography matrix. If you remember, we have
already discussed homography in the first chapter. So if you have forgotten about it,
you may want to take a quick look. We basically take a bunch of points from both
the images and extract the transformation matrix.

Stitching the images
Now that we have the transformation, we can go ahead and stitch the images. We
will use the transformation matrix to transform the second list of points. We keep the
first image as the frame of reference and create an output image that's big enough to
hold both the images. We need to extract information about the transformation of the
second image. We need to move it into this frame of reference to make sure it aligns
with the first image. So, we have to extract the translation information and then warp
it. We then add the first image into this and construct the final output. It is worth
mentioning that this works for images with different aspect ratios as well. So, if you
get a chance, try it out and see what the output looks like.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&type=pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Creating a Panoramic Image

[192]

What if the images are at an angle
to each other?
Until now, we were looking at images that were on the same plane. Stitching those
images was straightforward and we didn't have to deal with any artifacts. In real
life, you cannot capture multiple images on exactly the same plane. When you are
capturing multiple images of the same scene, you are bound to tilt your camera and
change the plane. So the question is, will our algorithm work in that scenario? As it
turns out, it can handle those cases as well.

Let's consider the following image:

Now, let's consider another image of the same scene. It's at an angle with respect to
the first image, and it's partially overlapping as well:

Chapter 5

[193]

Let's consider the first image as our reference. If we stitch these images using our
algorithm, it will look something like this:

Creating a Panoramic Image

[194]

If we keep the second image as our reference, it will look something like this:

Why does it look stretched?
If you observe, a portion of the output image corresponding to the query image looks
stretched. It's because the query image is transformed and adjusted to fit into our
frame of reference. The reason it looks stretched is because of the following lines in
our code:

M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = warpImages(img2, img1, M)

Since the images are at an angle with respect to each other, the query image will have
to undergo a perspective transformation in order to fit into the frame of reference.
So, we transform the query image first, and then stitch it into our main image to form
the panoramic image.

Summary
In this chapter, we learned how to match keypoints among multiple images.
We discussed how to stitch multiple images together to create a panoramic image.
We learned how to deal with images that are not on the same plane.

In the next chapter, we are going to discuss how to do content-aware image resizing
by detecting "interesting" regions in the image.

[195]

Seam Carving
In this chapter, we are going to learn about content-aware image resizing, which is
also known as seam carving. We will discuss how to detect "interesting" parts in an
image and how to use that information to resize a given image without deteriorating
those interesting parts.

By the end of this chapter, you will know:

• What is content awareness
• How to quantify "interesting" parts in an image
• How to use dynamic programming for image content analysis
• How to increase and decrease the width of an image without deteriorating

the interesting regions while keeping the height constant
• How to make an object disappear from an image

Seam Carving

[196]

Why do we care about seam carving?
Before we start our discussion about seam carving, we need to understand why it is
needed in the first place. Why should we care about the image content? Why can't
we just resize the given image and move on with our lives? Well, to answer that
question, let's consider the following image:

Now, let's say we want to reduce the width of this image while keeping the height
constant. If you do that, it will look something like this:

Chapter 6

[197]

As you can see, the ducks in the image look skewed, and there's degradation in the
overall quality of the image. Intuitively speaking, we can say that the ducks are the
"interesting" parts in the image. So when we resize it, we want the ducks to be intact.
This is where seam carving comes into the picture. Using seam carving, we can detect
these interesting regions and make sure they don't get degraded.

How does it work?
We have been talking about image resizing and how we should consider the image's
content when we resize it. So, why on earth is it called seam carving? It should just
be called content-aware image resizing, right? Well, there are many different terms
that are used to describe this process, such as image retargeting, liquid scaling, seam
carving, and so on. The reason it's called seam carving is because of the way we
resize the image. The algorithm was proposed by Shai Avidan and Ariel Shamir. You
can refer to the original paper at http://dl.acm.org/citation.cfm?id=1276390.

We know that the goal is to resize the given image and keep the interesting content
intact. So, we do that by finding the paths of least importance in that image. These
paths are called seams. Once we find these seams, we remove them from the image
to obtain a rescaled image. This process of removing, or "carving", will eventually
result in a resized image. This is the reason we call it "seam carving". Consider the
image that follows:

http://dl.acm.org/citation.cfm?id=1276390

Seam Carving

[198]

In the preceding image, we can see how we can roughly divide the image into
interesting and uninteresting parts. We need to make sure that our algorithm detects
these uninteresting parts and removes them. Let's consider the ducks image and the
constraints we have to work with. We need to keep the height constant. This means
that we need to find vertical seams in the image and remove them. These seams start at
the top and end at the bottom (or vice versa). If we were dealing with vertical resizing,
then the seams would start on the left-hand side and end on the right. A vertical seam
is just a bunch of connected pixels starting at the top row and ending at the last row in
the image.

How do we define "interesting"?
Before we start computing the seams, we need to find out what metric we will
be using to compute these seams. We need a way to assign "importance" to each
pixel so that we can find out the paths that are least important. In computer vision
terminology, we say that we need to assign an energy value to each pixel so that
we can find the path of minimum energy. Coming up with a good way to assign
the energy value is very important because it will affect the quality of the output.

One of the metrics that we can use is the value of the derivative at each point. This is
a good indicator of the level of activity in that neighborhood. If there is some activity,
then the pixel values will change rapidly. Hence the value of the derivative at that
point would be high. On the other hand, if the region were plain and uninteresting,
then the pixel values wouldn't change as rapidly. So, the value of the derivative at
that point in the grayscale image would be low.

For each pixel location, we compute the energy by summing up the X and Y
derivatives at that point. We compute the derivatives by taking the difference
between the current pixel and its neighbors. If you recall, we did something similar
to this when we were doing edge detection using Sobel Filter in Chapter 1, Detecting
Edges and Applying Image Filters. Once we compute these values, we store them in a
matrix called the energy matrix.

Chapter 6

[199]

How do we compute the seams?
Now that we have the energy matrix, we are ready to compute the seams. We need
to find the path through the image with the least energy. Computing all the possible
paths is prohibitively expensive, so we need to find a smarter way to do this. This is
where dynamic programming comes into the picture. In fact, seam carving is a direct
application of dynamic programming. We need to start with each pixel in the first
row and find our way to the last row. In order to find the path of least energy, we
compute and store the best paths to each pixel in a table. Once we've construct this
table, the path to a particular pixel can be found by backtracking through the rows
in that table.

For each pixel in the current row, we calculate the energy of three possible pixel
locations in the next row that we can move to, that is, bottom left, bottom, and
bottom right. We keep repeating this process until we reach the bottom. Once we
reach the bottom, we take the one with the least cumulative value and backtrack
our way to the top. This will give us the path of least energy. Every time we remove
a seam, the width of the image decreases by 1. So we need to keep removing these
seams until we arrive at the required image size.

Let's consider our ducks image again. If you compute the first 30 seams, it will look
something like this:

Seam Carving

[200]

These green lines indicate the paths of least importance. As we can see here, they
carefully go around the ducks to make sure that the interesting regions are not
touched. In the upper half of the image, the seams go around the twigs so that the
quality is preserved. Technically speaking, the twigs are also "interesting". If you
continue and remove the first 100 seams, it will look something like this:

Now, compare this with the naively resized image. Doesn't it look much better?
The ducks look nice in this image.

Let's take a look at the code and see how to do it:

import sys

import cv2
import numpy as np

Draw vertical seam on top of the image
def overlay_vertical_seam(img, seam):
 img_seam_overlay = np.copy(img) x

 # Extract the list of points from the seam
 x_coords, y_coords = np.transpose([(i,int(j)) for i,j in
enumerate(seam)])

 # Draw a green line on the image using the list of points
 img_seam_overlay[x_coords, y_coords] = (0,255,0)

Chapter 6

[201]

 return img_seam_overlay

Compute the energy matrix from the input image
def compute_energy_matrix(img):
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # Compute X derivative of the image
 sobel_x = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=3)

 # Compute Y derivative of the image
 sobel_y = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=3)

 abs_sobel_x = cv2.convertScaleAbs(sobel_x)
 abs_sobel_y = cv2.convertScaleAbs(sobel_y)

 # Return weighted summation of the two images i.e. 0.5*X +
0.5*Y
 return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0)

Find vertical seam in the input image
def find_vertical_seam(img, energy):
 rows, cols = img.shape[:2]

 # Initialize the seam vector with 0 for each element
 seam = np.zeros(img.shape[0])

 # Initialize distance and edge matrices
 dist_to = np.zeros(img.shape[:2]) + sys.maxint
 dist_to[0,:] = np.zeros(img.shape[1])
 edge_to = np.zeros(img.shape[:2])

 # Dynamic programming; iterate using double loop and compute
the paths efficiently
 for row in xrange(rows-1):
 for col in xrange(cols):
 if col != 0:
 if dist_to[row+1, col-1] > dist_to[row, col] +
energy[row+1, col-1]:
 dist_to[row+1, col-1] = dist_to[row, col] +
energy[row+1, col-1]
 edge_to[row+1, col-1] = 1

 if dist_to[row+1, col] > dist_to[row, col] +
energy[row+1, col]:

Seam Carving

[202]

 dist_to[row+1, col] = dist_to[row, col] +
energy[row+1, col]
 edge_to[row+1, col] = 0

 if col != cols-1:
 if dist_to[row+1, col+1] > dist_to[row, col] +
energy[row+1, col+1]:
 dist_to[row+1, col+1] = dist_to[row, col] +
energy[row+1, col+1]
 edge_to[row+1, col+1] = -1

 # Retracing the path
 seam[rows-1] = np.argmin(dist_to[rows-1, :])
 for i in (x for x in reversed(xrange(rows)) if x > 0):
 seam[i-1] = seam[i] + edge_to[i, int(seam[i])]

 return seam

Remove the input vertical seam from the image
def remove_vertical_seam(img, seam):
 rows, cols = img.shape[:2]

 # To delete a point, move every point after it one step
towards the left
 for row in xrange(rows):
 for col in xrange(int(seam[row]), cols-1):
 img[row, col] = img[row, col+1]

 # Discard the last column to create the final output image
 img = img[:, 0:cols-1]
 return img

if __name__=='__main__':
 # Make sure the size of the input image is reasonable.
 # Large images take a lot of time to be processed.
 # Recommended size is 640x480.
 img_input = cv2.imread(sys.argv[1])

 # Use a small number to get started. Once you get an
 # idea of the processing time, you can use a bigger number.
 # To get started, you can set it to 20.
 num_seams = int(sys.argv[2])

Chapter 6

[203]

 img = np.copy(img_input)
 img_overlay_seam = np.copy(img_input)
 energy = compute_energy_matrix(img)

 for i in xrange(num_seams):
 seam = find_vertical_seam(img, energy)
 img_overlay_seam = overlay_vertical_seam(img_overlay_seam,
seam)
 img = remove_vertical_seam(img, seam)
 energy = compute_energy_matrix(img)
 print 'Number of seams removed =', i+1

 cv2.imshow('Input', img_input)
 cv2.imshow('Seams', img_overlay_seam)
 cv2.imshow('Output', img)
 cv2.waitKey()

Can we expand an image?
We know that we can use seam carving to reduce the width of an image without
deteriorating the interesting regions. So naturally, we need to ask ourselves if we
can expand an image without deteriorating the interesting regions? As it turns out,
we can do it using the same logic. When we compute the seams, we just need to
add an extra column instead of deleting it.

If you expand the ducks image naively, it will look something like this:

Seam Carving

[204]

If you do it in a smarter way, that is, by using seam carving, it will look something
like this:

As you can see here, the width of the image has increased and the ducks don't look
stretched. Following is the code to do it:

import sys

import cv2
import numpy as np

Compute the energy matrix from the input image
def compute_energy_matrix(img):
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
 sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
 abs_sobel_x = cv2.convertScaleAbs(sobel_x)
 abs_sobel_y = cv2.convertScaleAbs(sobel_y)
 return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0)

Find the vertical seam
def find_vertical_seam(img, energy):
 rows, cols = img.shape[:2]

 # Initialize the seam vector with 0 for each element
 seam = np.zeros(img.shape[0])

Chapter 6

[205]

 # Initialize distance and edge matrices
 dist_to = np.zeros(img.shape[:2]) + sys.maxint
 dist_to[0,:] = np.zeros(img.shape[1])
 edge_to = np.zeros(img.shape[:2])

 # Dynamic programming; iterate using double loop and compute
 #the paths efficiently
 for row in xrange(rows-1):
 for col in xrange(cols):
 if col != 0:
 if dist_to[row+1, col-1] > dist_to[row, col] +
 energy[row+1, col-1]:
 dist_to[row+1, col-1] = dist_to[row, col] +
 energy[row+1, col-1]
 edge_to[row+1, col-1] = 1

 if dist_to[row+1, col] > dist_to[row, col] +
 energy[row+1, col]:
 dist_to[row+1, col] = dist_to[row, col] +
 energy[row+1, col]
 edge_to[row+1, col] = 0

 if col != cols-1:
 if dist_to[row+1, col+1] > dist_to[row, col] +
 energy[row+1, col+1]:
 dist_to[row+1, col+1] = dist_to[row, col] +
 energy[row+1, col+1]
 edge_to[row+1, col+1] = -1

 # Retracing the path
 seam[rows-1] = np.argmin(dist_to[rows-1, :])
 for i in (x for x in reversed(xrange(rows)) if x > 0):
 seam[i-1] = seam[i] + edge_to[i, int(seam[i])]

 return seam

Add a vertical seam to the image
def add_vertical_seam(img, seam, num_iter):
 seam = seam + num_iter
 rows, cols = img.shape[:2]
 zero_col_mat = np.zeros((rows,1,3), dtype=np.uint8)
 img_extended = np.hstack((img, zero_col_mat))

Seam Carving

[206]

 for row in xrange(rows):
 for col in xrange(cols, int(seam[row]), -1):
 img_extended[row, col] = img[row, col-1]

 # To insert a value between two columns, take the average
 # value of the neighbors. It looks smooth this way and we
 # can avoid unwanted artifacts.
 for i in range(3):
 v1 = img_extended[row, int(seam[row])-1, i]
 v2 = img_extended[row, int(seam[row])+1, i]
 img_extended[row, int(seam[row]), i] =
 (int(v1)+int(v2))/2

 return img_extended

Remove vertical seam from the image
def remove_vertical_seam(img, seam):
 rows, cols = img.shape[:2]
 for row in xrange(rows):
 for col in xrange(int(seam[row]), cols-1):
 img[row, col] = img[row, col+1]

 img = img[:, 0:cols-1]
 return img

if __name__=='__main__':
 img_input = cv2.imread(sys.argv[1])
 num_seams = int(sys.argv[2])
 img = np.copy(img_input)
 img_output = np.copy(img_input)
 energy = compute_energy_matrix(img)

 for i in xrange(num_seams):
 seam = find_vertical_seam(img, energy)
 img = remove_vertical_seam(img, seam)
 img_output = add_vertical_seam(img_output, seam, i)
 energy = compute_energy_matrix(img)
 print 'Number of seams added =', i+1

 cv2.imshow('Input', img_input)
 cv2.imshow('Output', img_output)
 cv2.waitKey()

We added an extra function, add_vertical_seam, in this code. We use it to add
vertical seams so that the image looks natural.

Chapter 6

[207]

Can we remove an object completely?
This is perhaps the most interesting application of seam carving. We can make an
object completely disappear from an image. Let's consider the following image:

Let's select the region of interest:

Seam Carving

[208]

After you remove the chair on the right, it will look something like this:

It's as if the chair never existed! Before we look at the code, it's important to know
that this takes a while to run. So, just wait for a couple of minutes to get an idea of
the processing time. You can adjust the input image size accordingly! Let's take a
look at the code:

import sys

import cv2
import numpy as np

Draw rectangle on top of the input image
def draw_rectangle(event, x, y, flags, params):
 global x_init, y_init, drawing, top_left_pt, bottom_right_pt,
 img_orig

 # Detecting a mouse click
 if event == cv2.EVENT_LBUTTONDOWN:
 drawing = True
 x_init, y_init = x, y

 # Detecting mouse movement
 elif event == cv2.EVENT_MOUSEMOVE:
 if drawing:
 top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)
 img[y_init:y, x_init:x] = 255 - img_orig[y_init:y,
 x_init:x]

Chapter 6

[209]

 cv2.rectangle(img, top_left_pt, bottom_right_pt,
 (0,255,0), 2)

 # Detecting the mouse button up event
 elif event == cv2.EVENT_LBUTTONUP:
 drawing = False
 top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)

 # Create the "negative" film effect for the selected
 # region
 img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]

 # Draw rectangle around the selected region
 cv2.rectangle(img, top_left_pt, bottom_right_pt,
 (0,255,0), 2)
 rect_final = (x_init, y_init, x-x_init, y-y_init)

 # Remove the object in the selected region
 remove_object(img_orig, rect_final)

Computing the energy matrix using modified algorithm
def compute_energy_matrix_modified(img, rect_roi):
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # Compute the X derivative
 sobel_x = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=3)

 # Compute the Y derivative
 sobel_y = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=3)
 abs_sobel_x = cv2.convertScaleAbs(sobel_x)
 abs_sobel_y = cv2.convertScaleAbs(sobel_y)

 # Compute weighted summation i.e. 0.5*X + 0.5*Y
 energy_matrix = cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y,
 0.5, 0)
 x,y,w,h = rect_roi

 # We want the seams to pass through this region, so make sure the
energy values in this region are set to 0
 energy_matrix[y:y+h, x:x+w] = 0

 return energy_matrix

Seam Carving

[210]

Compute energy matrix
def compute_energy_matrix(img):
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # Compute X derivative
 sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)

 # Compute Y derivative
 sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
 abs_sobel_x = cv2.convertScaleAbs(sobel_x)
 abs_sobel_y = cv2.convertScaleAbs(sobel_y)

 # Return weighted summation i.e. 0.5*X + 0.5*Y
 return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0)

Find the vertical seam
def find_vertical_seam(img, energy):
 rows, cols = img.shape[:2]

 # Initialize the seam vector
 seam = np.zeros(img.shape[0])

 # Initialize the distance and edge matrices
 dist_to = np.zeros(img.shape[:2]) + sys.maxint
 dist_to[0,:] = np.zeros(img.shape[1])
 edge_to = np.zeros(img.shape[:2])

 # Dynamic programming; using double loop to compute the paths
 for row in xrange(rows-1):
 for col in xrange(cols):
 if col != 0:
 if dist_to[row+1, col-1] > dist_to[row, col] +
 energy[row+1, col-1]:
 dist_to[row+1, col-1] = dist_to[row, col] +
 energy[row+1, col-1]
 edge_to[row+1, col-1] = 1

 if dist_to[row+1, col] > dist_to[row, col] +
 energy[row+1, col]:
 dist_to[row+1, col] = dist_to[row, col] +
 energy[row+1, col]
 edge_to[row+1, col] = 0

Chapter 6

[211]

 if col != cols-1:
 if dist_to[row+1, col+1] > dist_to[row, col] +
 energy[row+1, col+1]:
 dist_to[row+1, col+1] = dist_to[row, col] +
 energy[row+1, col+1]
 edge_to[row+1, col+1] = -1

 # Retracing the path
 seam[rows-1] = np.argmin(dist_to[rows-1, :])
 for i in (x for x in reversed(xrange(rows)) if x > 0):
 seam[i-1] = seam[i] + edge_to[i, int(seam[i])]

 return seam

Add vertical seam to the input image
def add_vertical_seam(img, seam, num_iter):
 seam = seam + num_iter
 rows, cols = img.shape[:2]
 zero_col_mat = np.zeros((rows,1,3), dtype=np.uint8)
 img_extended = np.hstack((img, zero_col_mat))

 for row in xrange(rows):
 for col in xrange(cols, int(seam[row]), -1):
 img_extended[row, col] = img[row, col-1]

 # To insert a value between two columns, take the average
 # value of the neighbors. It looks smooth this way and we
 # can avoid unwanted artifacts.
 for i in range(3):
 v1 = img_extended[row, int(seam[row])-1, i]
 v2 = img_extended[row, int(seam[row])+1, i]
 img_extended[row, int(seam[row]), i] = (int(v1)+int(v2))/2

 return img_extended

Remove vertical seam
def remove_vertical_seam(img, seam):
 rows, cols = img.shape[:2]
 for row in xrange(rows):
 for col in xrange(int(seam[row]), cols-1):
 img[row, col] = img[row, col+1]

 img = img[:, 0:cols-1]
 return img

Seam Carving

[212]

Remove the object from the input region of interest
def remove_object(img, rect_roi):
 num_seams = rect_roi[2] + 10
 energy = compute_energy_matrix_modified(img, rect_roi)

 # Start a loop and remove one seam at a time
 for i in xrange(num_seams):
 # Find the vertical seam that can be removed
 seam = find_vertical_seam(img, energy)

 # Remove that vertical seam
 img = remove_vertical_seam(img, seam)
 x,y,w,h = rect_roi

 # Compute energy matrix after removing the seam
 energy = compute_energy_matrix_modified(img, (x,y,w-i,h))
 print 'Number of seams removed =', i+1

 img_output = np.copy(img)

 # Fill up the region with surrounding values so that the size
 # of the image remains unchanged
 for i in xrange(num_seams):
 seam = find_vertical_seam(img, energy)
 img = remove_vertical_seam(img, seam)
 img_output = add_vertical_seam(img_output, seam, i)
 energy = compute_energy_matrix(img)
 print 'Number of seams added =', i+1

 cv2.imshow('Input', img_input)
 cv2.imshow('Output', img_output)
 cv2.waitKey()

if __name__=='__main__':
 img_input = cv2.imread(sys.argv[1])

 drawing = False
 img = np.copy(img_input)
 img_orig = np.copy(img_input)

 cv2.namedWindow('Input')
 cv2.setMouseCallback('Input', draw_rectangle)

Chapter 6

[213]

 while True:
 cv2.imshow('Input', img)
 c = cv2.waitKey(10)
 if c == 27:
 break

 cv2.destroyAllWindows()

How did we do it?
The basic logic remains the same here. We are using seam carving to remove an
object. Once we select the region of interest, we make all the seams pass through
this region. We do this by manipulating the energy matrix after every iteration.
We have added a new function called compute_energy_matrix_modified to
achieve this. Once we compute the energy matrix, we assign a value of 0 to this
region of interest. This way, we force all the seams to pass through this area.
After we remove all the seams related to this region, we keep adding the seams
until we expand the image to its original width.

Summary
In this chapter, we learned about content-aware image resizing. We discussed
how to quantify interesting and uninteresting regions in an image. We learned
how to compute seams in an image and how to use dynamic programming to
do it efficiently. We discussed how to use seam carving to reduce the width of an
image, and how we can use the same logic to expand an image. We also learned
how to remove an object from an image completely.

In the next chapter, we are going to discuss how to do shape analysis and image
segmentation. We will see how to use those principles to find the exact boundaries
of an object of interest in the image.

[215]

Detecting Shapes and
Segmenting an Image

In this chapter, we are going to learn about shape analysis and image segmentation.
We will learn how to recognize shapes and estimate the exact boundaries. We will
discuss how to segment an image into its constituent parts using various methods.
We will learn how to separate the foreground from the background as well.

By the end of this chapter, you will know:

• What is contour analysis and shape matching
• How to match shapes
• What is image segmentation
• How to segment an image into its constituent parts
• How to separate the foreground from the background
• How to use various techniques to segment an image

Contour analysis and shape matching
Contour analysis is a very useful tool in the field of computer vision. We deal with a
lot of shapes in the real world and contour analysis helps in analyzing those shapes
using various algorithms. When we convert an image to grayscale and threshold it,
we are left with a bunch of lines and contours. Once we understand the properties
of different shapes, we will be able to extract detailed information from an image.

Detecting Shapes and Segmenting an Image

[216]

Let's say we want to identify the boomerang shape in the following image:

In order to do that, we first need to know what a regular boomerang looks like:

Now using the above image as a reference, can we identify what shape in our
original image corresponds to a boomerang? If you notice, we cannot use a simple
correlation based approach because the shapes are all distorted. This means that an
approach where we look for an exact match won't work! We need to understand
the properties of this shape and match the corresponding properties to identify the
boomerang shape. OpenCV provides a nice shape matcher function that we can use
to achieve this. The matching is based on the concept of Hu moment, which in turn
is related to image moments. You can refer to the following paper to learn more
about moments: http://zoi.utia.cas.cz/files/chapter_moments_color1.pdf.
The concept of "image moments" basically refers to the weighted and power-raised
summation of the pixels within a shape.

0

N
k

i i
i

I w p
=

=∑

http://zoi.utia.cas.cz/files/chapter_moments_color1.pdf

Chapter 7

[217]

In the above equation, p refers to the pixels inside the contour, w refers to the
weights, N refers to the number of points inside the contour, k refers to the power,
and I refers to the moment. Depending on the values we choose for w and k, we can
extract different characteristics from that contour.

Perhaps the simplest example is to compute the area of the contour. To do this, we
need to count the number of pixels within that region. So mathematically speaking,
in the weighted and power raised summation form, we just need to set w to 1 and k
to 0. This will give us the area of the contour. Depending on how we compute these
moments, they will help us in understanding these different shapes. This also gives rise
to some interesting properties that help us in determining the shape similarity metric.

If we match the shapes, you will see something like this:

Let's take a look at the code to do this:

import sys

import cv2
import numpy as np

Detecting Shapes and Segmenting an Image

[218]

Extract reference contour from the image
def get_ref_contour(img):
 ref_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 ret, thresh = cv2.threshold(ref_gray, 127, 255, 0)

 # Find all the contours in the thresholded image. The values
 # for the second and third parameters are restricted to a
 # certain number of possible values. You can learn more
 # 'findContours' function here: http://docs.opencv.org/modules/
imgproc/doc/structural_analysis_and_shape_descriptors.html
 contours, hierarchy = cv2.findContours(thresh, 1, 2)

 # Extract the relevant contour based on area ratio. We use the
 # area ratio because the main image boundary contour is
 # extracted as well and we don't want that. This area ratio
 # threshold will ensure that we only take the contour inside
 # the image.
 for contour in contours:
 area = cv2.contourArea(contour)
 img_area = img.shape[0] * img.shape[1]
 if 0.05 < area/float(img_area) < 0.8:
 return contour

Extract all the contours from the image
def get_all_contours(img):
 ref_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 ret, thresh = cv2.threshold(ref_gray, 127, 255, 0)
 contours, hierarchy = cv2.findContours(thresh, 1, 2)
 return contours

if __name__=='__main__':
 # Boomerang reference image
 img1 = cv2.imread(sys.argv[1])

 # Input image containing all the different shapes
 img2 = cv2.imread(sys.argv[2])

 # Extract the reference contour
 ref_contour = get_ref_contour(img1)

 # Extract all the contours from the input image
 input_contours = get_all_contours(img2)

 closest_contour = input_contours[0]
 min_dist = sys.maxint

Chapter 7

[219]

 # Finding the closest contour
 for contour in input_contours:
 # Matching the shapes and taking the closest one
 ret = cv2.matchShapes(ref_contour, contour, 1, 0.0)
 if ret < min_dist:
 min_dist = ret
 closest_contour = contour

 cv2.drawContours(img2, [closest_contour], -1, (0,0,0), 3)
 cv2.imshow('Output', img2)
 cv2.waitKey()

Approximating a contour
A lot of contours that we encounter in real life are noisy. This means that the contours
don't look smooth, and hence our analysis takes a hit. So how do we deal with this?
One way to go about this would be to get all the points on the contour and then
approximate it with a smooth polygon.

Let's consider the boomerang image again. If you approximate the contours using
various thresholds, you will see the contours changing their shapes. Let's start with
a factor of 0.05:

Detecting Shapes and Segmenting an Image

[220]

If you reduce this factor, the contours will get smoother. Let's make it 0.01:

If you make it really small, say 0.00001, then it will look like the original image:

Chapter 7

[221]

Identifying the pizza with the slice
taken out
The title might be slightly misleading, because we will not be talking about pizza
slices. But let's say you are in a situation where you have an image containing
different types of pizzas with different shapes. Now, somebody has taken a slice
out of one of those pizzas. How would we automatically identify this?

We cannot take the approach we took earlier because we don't know what the shape
looks like. So we don't have any template. We are not even sure what shape we are
looking for, so we cannot build a template based on any prior information. All we
know is the fact that a slice has been taken from one of the pizzas. Let's consider the
following image:

It's not exactly a real image, but you get the idea. You know what shape we are
talking about. Since we don't know what we are looking for, we need to use some
of the properties of these shapes to identify the sliced pizza. If you notice, all the
other shapes are nicely closed. As in, you can take any two points within those
shapes and draw a line between them, and that line will always lie within that
shape. These kinds of shapes are called convex shapes.

Detecting Shapes and Segmenting an Image

[222]

If you look at the sliced pizza shape, we can choose two points such that the line
between them goes outside the shape as shown in the figure that follows:

So, all we need to do is detect the non-convex shape in the image and we'll be done.
Let's go ahead and do that:

import sys

import cv2
import numpy as np

Input is a color image
def get_contours(img):
 # Convert the image to grayscale
 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # Threshold the input image
 ret, thresh = cv2.threshold(img_gray, 127, 255, 0)

 # Find the contours in the above image
 contours, hierarchy = cv2.findContours(thresh, 2, 1)

 return contours

if __name__=='__main__':
 img = cv2.imread(sys.argv[1])

Chapter 7

[223]

 # Iterate over the extracted contours
 for contour in get_contours(img):
 # Extract convex hull from the contour
 hull = cv2.convexHull(contour, returnPoints=False)

 # Extract convexity defects from the above hull
 defects = cv2.convexityDefects(contour, hull)

 if defects is None:
 continue

 # Draw lines and circles to show the defects
 for i in range(defects.shape[0]):
 start_defect, end_defect, far_defect, _ = defects[i,0]
 start = tuple(contour[start_defect][0])
 end = tuple(contour[end_defect][0])
 far = tuple(contour[far_defect][0])
 cv2.circle(img, far, 5, [128,0,0], -1)
 cv2.drawContours(img, [contour], -1, (0,0,0), 3)

 cv2.imshow('Convexity defects',img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

If you run the above code, you will see something like this:

Detecting Shapes and Segmenting an Image

[224]

Wait a minute, what happened here? It looks so cluttered. Did we do something
wrong? As it turns out, the curves are not really smooth. If you observe closely,
there are tiny ridges everywhere along the curves. So, if you just run your convexity
detector, it's not going to work. This is where contour approximation comes in really
handy. Once we've detected the contours, we need to smoothen them so that the
ridges do not affect them. Let's go ahead and do that:

import sys

import cv2
import numpy as np

Input is a color image
def get_contours(img):
 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
 contours, hierarchy = cv2.findContours(thresh, 2, 1)
 return contours

if __name__=='__main__':
 img = cv2.imread(sys.argv[1])

 # Iterate over the extracted contours
 for contour in get_contours(img):
 orig_contour = contour
 epsilon = 0.01 * cv2.arcLength(contour, True)
 contour = cv2.approxPolyDP(contour, epsilon, True)

 # Extract convex hull and the convexity defects
 hull = cv2.convexHull(contour, returnPoints=False)
 defects = cv2.convexityDefects(contour,hull)

 if defects is None:
 continue

 # Draw lines and circles to show the defects
 for i in range(defects.shape[0]):
 start_defect, end_defect, far_defect, _ = defects[i,0]
 start = tuple(contour[start_defect][0])
 end = tuple(contour[end_defect][0])
 far = tuple(contour[far_defect][0])
 cv2.circle(img, far, 7, [255,0,0], -1)
 cv2.drawContours(img, [orig_contour], -1, (0,0,0), 3)

 cv2.imshow('Convexity defects',img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

Chapter 7

[225]

If you run the preceding code, the output will look like the following:

How to censor a shape?
Let's say you are dealing with images and you want to block out a particular shape.
Now, you might say that you will use shape matching to identify the shape and
then just block it out, right? But the problem here is that we don't have any template
available. So, how do we go about doing this? Shape analysis comes in various forms,
and we need to build our algorithm depending on the situation. Let's consider the
following figure:

Detecting Shapes and Segmenting an Image

[226]

Let's say we want to identify all the boomerang shapes and then block them out
without using any template images. As you can see, there are various other weird
shapes in that image and the boomerang shapes are not really smooth. We need
to identify the property that's going to differentiate the boomerang shape from
the other shapes present. Let's consider the convex hull. If you take the ratio of
the area of each shape to the area of the convex hull, we can see that this can be
a distinguishing metric. This metric is called solidity factor in shape analysis.
This metric will have a lower value for the boomerang shapes because of the
empty area that will be left out, as shown in the following figure:

The black boundaries represent the convex hulls. Once we compute these values
for all the shapes, how do separate them out? Can we just use a fixed threshold to
detect the boomerang shapes? Not really! We cannot have a fixed threshold value
because you never know what kind of shape you might encounter later. So, a better
approach would be to use K-Means clustering. K-Means is an unsupervised learning
technique that can be used to separate out the input data into K classes. You can
quickly brush up on K-Means before proceeding further at http://docs.opencv.
org/master/de/d4d/tutorial_py_kmeans_understanding.html.

http://docs.opencv.org/master/de/d4d/tutorial_py_kmeans_understanding.html
http://docs.opencv.org/master/de/d4d/tutorial_py_kmeans_understanding.html

Chapter 7

[227]

We know that we want to separate the shapes into two groups, that is, boomerang
shapes and other shapes. So, we know what our K will be in K-Means. Once we use
that and cluster the values, we pick the cluster with the lowest solidity factor and
that will give us our boomerang shapes. Bear in mind that this approach works only
in this particular case. If you are dealing with other kinds of shapes, then you will
have to use some other metrics to make sure that the shape detection works. As we
discussed earlier, it depends heavily on the situation. If you detect the shapes and
block them out, it will look like this:

Following is the code to do it:

import sys

import cv2
import numpy as np

def get_all_contours(img):
 ref_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Detecting Shapes and Segmenting an Image

[228]

 ret, thresh = cv2.threshold(ref_gray, 127, 255, 0)
 contours, hierarchy = cv2.findContours(thresh, 1, 2)
 return contours

if __name__=='__main__':
 # Input image containing all the shapes
 img = cv2.imread(sys.argv[1])

 img_orig = np.copy(img)
 input_contours = get_all_contours(img)
 solidity_values = []

 # Compute solidity factors of all the contours
 for contour in input_contours:
 area_contour = cv2.contourArea(contour)
 convex_hull = cv2.convexHull(contour)
 area_hull = cv2.contourArea(convex_hull)
 solidity = float(area_contour)/area_hull
 solidity_values.append(solidity)

 # Clustering using KMeans
 criteria = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
 flags = cv2.KMEANS_RANDOM_CENTERS
 solidity_values = np.array(solidity_values).reshape((len(solidity_
values),1)).astype('float32')
 compactness, labels, centers = cv2.kmeans(solidity_values, 2,
criteria, 10, flags)

 closest_class = np.argmin(centers)
 output_contours = []
 for i in solidity_values[labels==closest_class]:
 index = np.where(solidity_values==i)[0][0]
 output_contours.append(input_contours[index])

 cv2.drawContours(img, output_contours, -1, (0,0,0), 3)
 cv2.imshow('Output', img)

 # Censoring
 for contour in output_contours:
 rect = cv2.minAreaRect(contour)
 box = cv2.cv.BoxPoints(rect)
 box = np.int0(box)
 cv2.drawContours(img_orig,[box],0,(0,0,0),-1)

 cv2.imshow('Censored', img_orig)
 cv2.waitKey()

Chapter 7

[229]

What is image segmentation?
Image segmentation is the process of separating an image into its constituent parts.
It is an important step in many computer vision applications in the real world. There
are many different ways of segmenting an image. When we segment an image, we
separate the regions based on various metrics such as color, texture, location, and so
on. All the pixels within each region have something in common, depending on the
metric we are using. Let's take a look at some of the popular approaches here.

To start with, we will be looking at a technique called GrabCut. It is an image
segmentation method based on a more generic approach called graph-cuts. In the
graph-cuts method, we consider the entire image to be a graph, and then we segment
the graph based on the strength of the edges in that graph. We construct the graph
by considering each pixel to be a node and edges are constructed between the nodes,
where edge weight is a function of the pixel values of those two nodes. Whenever
there is a boundary, the pixel values are higher. Hence, the edge weights will also be
higher. This graph is then segmented by minimizing the Gibss energy of the graph.
This is analogous to finding the maximum entropy segmentation. You can refer
to the original paper to learn more about it at http://cvg.ethz.ch/teaching/
cvl/2012/grabcut-siggraph04.pdf. Let's consider the following image:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Detecting Shapes and Segmenting an Image

[230]

Let's select the region of interest:

Once the image has been segmented, it will look something like this:

Chapter 7

[231]

Following is the code to do this:

import cv2
import numpy as np

Draw rectangle based on the input selection
def draw_rectangle(event, x, y, flags, params):
 global x_init, y_init, drawing, top_left_pt, bottom_right_pt,
 img_orig

 # Detecting mouse button down event
 if event == cv2.EVENT_LBUTTONDOWN:
 drawing = True
 x_init, y_init = x, y

 # Detecting mouse movement
 elif event == cv2.EVENT_MOUSEMOVE:
 if drawing:
 top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)
 img[y_init:y, x_init:x] = 255 - img_orig[y_init:y,
 x_init:x]
 cv2.rectangle(img, top_left_pt, bottom_right_pt,
 (0,255,0), 2)

 # Detecting mouse button up event
 elif event == cv2.EVENT_LBUTTONUP:
 drawing = False
 top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)
 img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]
 cv2.rectangle(img, top_left_pt, bottom_right_pt,
 (0,255,0), 2)
 rect_final = (x_init, y_init, x-x_init, y-y_init)

 # Run Grabcut on the region of interest
 run_grabcut(img_orig, rect_final)

Grabcut algorithm
def run_grabcut(img_orig, rect_final):
 # Initialize the mask
 mask = np.zeros(img_orig.shape[:2],np.uint8)

 # Extract the rectangle and set the region of
 # interest in the above mask
 x,y,w,h = rect_final

Detecting Shapes and Segmenting an Image

[232]

 mask[y:y+h, x:x+w] = 1

 # Initialize background and foreground models
 bgdModel = np.zeros((1,65), np.float64)
 fgdModel = np.zeros((1,65), np.float64)

 # Run Grabcut algorithm
 cv2.grabCut(img_orig, mask, rect_final, bgdModel, fgdModel, 5,
 cv2.GC_INIT_WITH_RECT)

 # Extract new mask
 mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')

 # Apply the above mask to the image
 img_orig = img_orig*mask2[:,:,np.newaxis]

 # Display the image
 cv2.imshow('Output', img_orig)

if __name__=='__main__':
 drawing = False
 top_left_pt, bottom_right_pt = (-1,-1), (-1,-1)

 # Read the input image
 img_orig = cv2.imread(sys.argv[1])
 img = img_orig.copy()

 cv2.namedWindow('Input')
 cv2.setMouseCallback('Input', draw_rectangle)

 while True:
 cv2.imshow('Input', img)
 c = cv2.waitKey(1)
 if c == 27:
 break

 cv2.destroyAllWindows()

Chapter 7

[233]

How does it work?
We start with the seed points specified by the user. This is the bounding box within
which we have the object of interest. Underneath the surface, the algorithm estimates
the color distribution of the object and the background. The algorithm represents
the color distribution of the image as a Gaussian Mixture Markov Random Field
(GMMRF). You can refer to the detailed paper to learn more about GMMRF at
http://research.microsoft.com/pubs/67898/eccv04-GMMRF.pdf. We need the
color distribution of both, the object and the background, because we will be using
this knowledge to separate the object. This information is used to find the maximum
entropy segmentation by applying the min-cut algorithm to the Markov Random Field.
Once we have this, we use the graph cuts optimization method to infer the labels.

Watershed algorithm
OpenCV comes with a default implementation of the watershed algorithm. It's pretty
famous and there are a lot of implementations available out there. You can read more
about it at http://docs.opencv.org/master/d3/db4/tutorial_py_watershed.
html. Since you already have access to the OpenCV source code, we will not be
looking at the code here.

We will just see what the output looks like. Consider the following image:

http://research.microsoft.com/pubs/67898/eccv04-GMMRF.pdf
http://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
http://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html

Detecting Shapes and Segmenting an Image

[234]

Let's select the regions:

If you run the watershed algorithm on this, the output will look something like
the following:

Chapter 7

[235]

Summary
In this chapter, we learned about contour analysis and image segmentation.
We learned how to match shapes based on a template. We learned about the
various different properties of shapes and how we can use them to identify
different kinds of shapes. We discussed image segmentation and how we can
use graph-based methods to segment regions in an image. We briefly discussed
watershed transformation as well.

In the next chapter, we are going to discuss how to track an object in a live video.

[237]

Object Tracking
In this chapter, we are going to learn about tracking an object in a live video. We will
discuss the different characteristics that can be used to track an object. We will also
learn about the different methods and techniques for object tracking.

By the end of this chapter, you will know:

• How to use frame differencing
• How to use colorspaces to track colored objects
• How to build an interactive object tracker
• How to build a feature tracker
• How to build a video surveillance system

Frame differencing
This is, possibly, the simplest technique we can use to see what parts of the video are
moving. When we consider a live video stream, the difference between successive
frames gives us a lot of information. The concept is fairly straightforward! We just
take the difference between successive frames and display the differences.

Object Tracking

[238]

If I move my laptop rapidly from left to right, we will see something like this:

If I rapidly move the TV remote in my hand, it will look something like this:

Chapter 8

[239]

As you can see from the previous images, only the moving parts in the video get
highlighted. This gives us a good starting point to see what areas are moving in the
video. Here is the code to do this:

import cv2

Compute the frame difference
def frame_diff(prev_frame, cur_frame, next_frame):
 # Absolute difference between current frame and next frame
 diff_frames1 = cv2.absdiff(next_frame, cur_frame)

 # Absolute difference between current frame and
 # previous frame
 diff_frames2 = cv2.absdiff(cur_frame, prev_frame)

 # Return the result of bitwise 'AND' between the
 # above two resultant images
 return cv2.bitwise_and(diff_frames1, diff_frames2)

Capture the frame from webcam
def get_frame(cap):
 # Capture the frame
 ret, frame = cap.read()

 # Resize the image
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 # Return the grayscale image
 return cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)

if __name__=='__main__':
 cap = cv2.VideoCapture(0)
 scaling_factor = 0.5

 prev_frame = get_frame(cap)
 cur_frame = get_frame(cap)
 next_frame = get_frame(cap)

 # Iterate until the user presses the ESC key
 while True:
 # Display the result of frame differencing
 cv2.imshow("Object Movement", frame_diff(prev_frame,
 cur_frame, next_frame))

Object Tracking

[240]

 # Update the variables
 prev_frame = cur_frame
 cur_frame = next_frame
 next_frame = get_frame(cap)

 # Check if the user pressed ESC
 key = cv2.waitKey(10)
 if key == 27:
 break

 cv2.destroyAllWindows()

Colorspace based tracking
Frame differencing gives us some useful information, but we cannot use it to build
anything meaningful. In order to build a good object tracker, we need to understand
what characteristics can be used to make our tracking robust and accurate. So, let's
take a step in that direction and see how we can use colorspaces to come up with
a good tracker. As we have discussed in previous chapters, HSVcolorspace is very
informative when it comes to human perception. We can convert an image to the
HSV space, and then use colorspacethresholding to track a given object.

Consider the following frame in the video:

Chapter 8

[241]

If you run it through the colorspace filter and track the object, you will see something
like this:

As we can see here, our tracker recognizes a particular object in the video, based
on the color characteristics. In order to use this tracker, we need to know the color
distribution of our target object. Following is the code:

import cv2
import numpy as np

Capture the input frame from webcam
def get_frame(cap, scaling_factor):
 # Capture the frame from video capture object
 ret, frame = cap.read()

 # Resize the input frame
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 return frame

if __name__=='__main__':
 cap = cv2.VideoCapture(0)
 scaling_factor = 0.5

 # Iterate until the user presses ESC key
 while True:
 frame = get_frame(cap, scaling_factor)

Object Tracking

[242]

 # Convert the HSV colorspace
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 # Define 'blue' range in HSV colorspace
 lower = np.array([60,100,100])
 upper = np.array([180,255,255])

 # Threshold the HSV image to get only blue color
 mask = cv2.inRange(hsv, lower, upper)

 # Bitwise-AND mask and original image
 res = cv2.bitwise_and(frame, frame, mask=mask)
 res = cv2.medianBlur(res, 5)

 cv2.imshow('Original image', frame)
 cv2.imshow('Color Detector', res)

 # Check if the user pressed ESC key
 c = cv2.waitKey(5)
 if c == 27:
 break

 cv2.destroyAllWindows()

Building an interactive object tracker
Colorspace based tracker gives us the freedom to track a colored object, but we
are also constrained to a predefined color. What if we just want to pick an object
at random? How do we build an object tracker that can learn the characteristics
of the selected object and just track it automatically? This is where the CAMShift
algorithm, which stands for Continuously Adaptive Meanshift, comes into the
picture. It's basically an improved version of the Meanshift algorithm.

Chapter 8

[243]

The concept of Meanshift is actually nice and simple. Let's say we select a region
of interest and we want our object tracker to track that object. In that region, we
select a bunch of points based on the color histogram and compute the centroid. If
the centroid lies at the center of this region, we know that the object hasn't moved.
But if the centroid is not at the center of this region, then we know that the object is
moving in some direction. The movement of the centroid controls the direction in
which the object is moving. So, we move our bounding box to a new location so that
the new centroid becomes the center of this bounding box. Hence, this algorithm is
called Meanshift, because the mean (i.e. the centroid) is shifting. This way, we keep
ourselves updated with the current location of the object.

But the problem with Meanshift is that the size of the bounding box is not allowed
to change. When you move the object away from the camera, the object will appear
smaller to the human eye, but Meanshift will not take this into account. The size of
the bounding box will remain the same throughout the tracking session. Hence, we
need to use CAMShift. The advantage of CAMShift is that it can adapt the size of the
bounding box to the size of the object. Along with that, it can also keep track of the
orientation of the object.

Let's consider the following frame in which the object is highlighted in orange
(the box in my hand):

Object Tracking

[244]

Now that we have selected the object, the algorithm computes the histogram
backprojection and extracts all the information. Let's move the object and
see how it's getting tracked:

Looks like the object is getting tracked fairly well. Let's change the orientation and
see if the tracking is maintained:

Chapter 8

[245]

As we can see, the bounding ellipse has changed its location as well as its orientation.
Let's change the perspective of the object and see if it's still able to track it:

We are still good! The bounding ellipse has changed the aspect ratio to reflect the fact
that the object looks skewed now (because of the perspective transformation).

Following is the code:

import sys

import cv2
import numpy as np

class ObjectTracker(object):
 def __init__(self):
 # Initialize the video capture object
 # 0 -> indicates that frame should be captured
 # from webcam
 self.cap = cv2.VideoCapture(0)

 # Capture the frame from the webcam
 ret, self.frame = self.cap.read()

 # Downsampling factor for the input frame
 self.scaling_factor = 0.5
 self.frame = cv2.resize(self.frame, None,
 fx=self.scaling_factor,

Object Tracking

[246]

 fy=self.scaling_factor,
 interpolation=cv2.INTER_AREA)

 cv2.namedWindow('Object Tracker')
 cv2.setMouseCallback('Object Tracker',
 self.mouse_event)

 self.selection = None
 self.drag_start = None
 self.tracking_state = 0

 # Method to track mouse events
 def mouse_event(self, event, x, y, flags, param):
 x, y = np.int16([x, y])

 # Detecting the mouse button down event
 if event == cv2.EVENT_LBUTTONDOWN:
 self.drag_start = (x, y)
 self.tracking_state = 0

 if self.drag_start:
 if flags & cv2.EVENT_FLAG_LBUTTON:
 h, w = self.frame.shape[:2]
 xo, yo = self.drag_start
 x0, y0 = np.maximum(0, np.minimum([xo, yo],
 [x, y]))
 x1, y1 = np.minimum([w, h],
 np.maximum([xo, yo], [x, y]))
 self.selection = None

 if x1-x0 > 0 and y1-y0 > 0:
 self.selection = (x0, y0, x1, y1)

 else:
 self.drag_start = None
 if self.selection is not None:
 self.tracking_state = 1

 # Method to start tracking the object
 def start_tracking(self):
 # Iterate until the user presses the Esc key
 while True:
 # Capture the frame from webcam
 ret, self.frame = self.cap.read()

Chapter 8

[247]

 # Resize the input frame
 self.frame = cv2.resize(self.frame, None,
 fx=self.scaling_factor,
 fy=self.scaling_factor,
 interpolation=cv2.INTER_AREA)

 vis = self.frame.copy()

 # Convert to HSV colorspace
 hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)

 # Create the mask based on predefined thresholds.
 mask = cv2.inRange(hsv, np.array((0., 60., 32.)),
 np.array((180., 255., 255.)))

 if self.selection:
 x0, y0, x1, y1 = self.selection
 self.track_window = (x0, y0, x1-x0, y1-y0)
 hsv_roi = hsv[y0:y1, x0:x1]
 mask_roi = mask[y0:y1, x0:x1]

 # Compute the histogram
 hist = cv2.calcHist([hsv_roi], [0], mask_roi,
 [16], [0, 180])

 # Normalize and reshape the histogram
 cv2.normalize(hist, hist, 0, 255,
 cv2.NORM_MINMAX);
 self.hist = hist.reshape(-1)

 vis_roi = vis[y0:y1, x0:x1]
 cv2.bitwise_not(vis_roi, vis_roi)
 vis[mask == 0] = 0

 if self.tracking_state == 1:
 self.selection = None

 # Compute the histogram back projection
 prob = cv2.calcBackProject([hsv], [0],
 self.hist, [0, 180], 1)

 prob &= mask
 term_crit = (cv2.TERM_CRITERIA_EPS |
 cv2.TERM_CRITERIA_COUNT, 10, 1)

Object Tracking

[248]

 # Apply CAMShift on 'prob'
 track_box, self.track_window = cv2.CamShift(prob,
 self.track_window, term_crit)

 # Draw an ellipse around the object
 cv2.ellipse(vis, track_box, (0, 255, 0), 2)

 cv2.imshow('Object Tracker', vis)

 c = cv2.waitKey(5)
 if c == 27:
 break

 cv2.destroyAllWindows()

if __name__ == '__main__':
 ObjectTracker().start_tracking()

Feature based tracking
Feature based tracking refers to tracking individual feature points across successive
frames in the video. We use a technique called optical flow to track these features.
Optical flow is one of the most popular techniques in computer vision. We choose a
bunch of feature points and track them through the video stream.

When we detect the feature points, we compute the displacement vectors and show
the motion of those keypoints between consecutive frames. These vectors are called
motion vectors. There are many ways to do this, but the Lucas-Kanade method is
perhaps the most popular of all these techniques. You can refer to their original
paper at http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf.
We start the process by extracting the feature points. For each feature point, we
create 3x3 patches with the feature point in the center. The assumption here is that
all the points within each patch will have a similar motion. We can adjust the size
of this window depending on the problem at hand.

For each feature point in the current frame, we take the surrounding 3x3 patch as our
reference point. For this patch, we look in its neighborhood in the previous frame to
get the best match. This neighborhood is usually bigger than 3x3 because we want
to get the patch that's closest to the patch under consideration. Now, the path from
the center pixel of the matched patch in the previous frame to the center pixel of
the patch under consideration in the current frame will become the motion vector.
We do that for all the feature points and extract all the motion vectors.

http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf

Chapter 8

[249]

Let's consider the following frame:

If I move in a horizontal direction, you will see the motion vectors in a horizontal
direction:

Object Tracking

[250]

If I move away from the webcam, you will see something like this:

So, if you want to play around with it, you can let the user select a region of interest
in the input video (like we did earlier). You can then extract feature points from this
region of interest and track the object by drawing the bounding box. It will be a
fun exercise!

Here is the code to perform optical flow based tracking:

import cv2
import numpy as np

def start_tracking():
 # Capture the input frame
 cap = cv2.VideoCapture(0)

 # Downsampling factor for the image
 scaling_factor = 0.5

 # Number of frames to keep in the buffer when you
 # are tracking. If you increase this number,
 # feature points will have more "inertia"
 num_frames_to_track = 5

 # Skip every 'n' frames. This is just to increase the speed.
 num_frames_jump = 2

Chapter 8

[251]

 tracking_paths = []
 frame_index = 0

 # 'winSize' refers to the size of each patch. These patches
 # are the smallest blocks on which we operate and track
 # the feature points. You can read more about the parameters
 # here: http://goo.gl/ulwqLk
 tracking_params = dict(winSize = (11, 11), maxLevel = 2,
 criteria = (cv2.TERM_CRITERIA_EPS |
 cv2.TERM_CRITERIA_COUNT, 10, 0.03))

 # Iterate until the user presses the ESC key
 while True:
 # read the input frame
 ret, frame = cap.read()

 # downsample the input frame
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 output_img = frame.copy()

 if len(tracking_paths) > 0:
 prev_img, current_img = prev_gray, frame_gray
 feature_points_0 = np.float32([tp[-1] for tp in
 tracking_paths]).reshape(-1, 1, 2)

 # Compute feature points using optical flow. You can
 # refer to the documentation to learn more about the
 # parameters here: http://goo.gl/t6P4SE
 feature_points_1, _, _ =
 cv2.calcOpticalFlowPyrLK(prev_img,
 current_img, feature_points_0,
 None, **tracking_params)
 feature_points_0_rev, _, _ =
 cv2.calcOpticalFlowPyrLK(current_img, prev_img,
 feature_points_1,
 None, **tracking_params)

 # Compute the difference of the feature points
 diff_feature_points = abs(feature_points_0-
 feature_points_0_rev).reshape(-1, 2).max(-1)

Object Tracking

[252]

 # threshold and keep the good points
 good_points = diff_feature_points < 1

 new_tracking_paths = []

 for tp, (x, y), good_points_flag in
 zip(tracking_paths,
 feature_points_1.reshape(-1, 2),
 good_points):
 if not good_points_flag:
 continue

 tp.append((x, y))

 # Using the queue structure i.e. first in,
 # first out
 if len(tp) > num_frames_to_track:
 del tp[0]

 new_tracking_paths.append(tp)

 # draw green circles on top of the output image
 cv2.circle(output_img, (x, y), 3, (0, 255, 0), -1)

 tracking_paths = new_tracking_paths

 # draw green lines on top of the output image
 cv2.polylines(output_img, [np.int32(tp) for tp in
 tracking_paths], False, (0, 150, 0))

 # 'if' condition to skip every 'n'th frame
 if not frame_index % num_frames_jump:
 mask = np.zeros_like(frame_gray)
 mask[:] = 255
 for x, y in [np.int32(tp[-1]) for tp in
 tracking_paths]:
 cv2.circle(mask, (x, y), 6, 0, -1)

 # Extract good features to track. You can learn more
 # about the parameters here: http://goo.gl/BI2Kml
 feature_points = cv2.goodFeaturesToTrack(frame_gray,
 mask = mask, maxCorners = 500,
 qualityLevel = 0.3,
 minDistance = 7, blockSize = 7)

Chapter 8

[253]

 if feature_points is not None:
 for x, y in np.float32(feature_points).reshape
 (-1, 2):
 tracking_paths.append([(x, y)])

 frame_index += 1
 prev_gray = frame_gray

 cv2.imshow('Optical Flow', output_img)

 # Check if the user pressed the ESC key
 c = cv2.waitKey(1)
 if c == 27:
 break

if __name__ == '__main__':
 start_tracking()
 cv2.destroyAllWindows()

Background subtraction
Background subtraction is very useful in video surveillance. Basically, background
subtraction technique performs really well for cases where we have to detect moving
objects in a static scene. As the name indicates, this algorithm works by detecting the
background and subtracting it from the current frame to obtain the foreground, that
is, moving objects. In order to detect moving objects, we need to build a model of the
background first. This is not the same as frame differencing because we are actually
modeling the background and using this model to detect moving objects. So, this
performs much better than the simple frame differencing technique. This technique
tries to detect static parts in the scene and then include it in the background model.
So, it's an adaptive technique that can adjust according to the scene.

Object Tracking

[254]

Let's consider the following image:

Now, as we gather more frames in this scene, every part of the image will gradually
become a part of the background model. This is what we discussed earlier as well.
If a scene is static, the model adapts itself to make sure the background model is
updated. This is how it looks in the beginning:

Chapter 8

[255]

Notice how a part of my face has already become a part of the background model
(the blackened region). The following screenshot shows what we'll see after a
few seconds:

If we keep going, everything eventually becomes part of the background model:

Object Tracking

[256]

Now, if we introduce a new moving object, it will be detected clearly, as shown next:

Here is the code to do this:

import cv2
import numpy as np

Capture the input frame
def get_frame(cap, scaling_factor=0.5):
 ret, frame = cap.read()

 # Resize the frame
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 return frame

if __name__=='__main__':
 # Initialize the video capture object
 cap = cv2.VideoCapture(0)

 # Create the background subtractor object
 bgSubtractor = cv2.BackgroundSubtractorMOG()

 # This factor controls the learning rate of the algorithm.
 # The learning rate refers to the rate at which your model

Chapter 8

[257]

 # will learn about the background. Higher value for
 # 'history' indicates a slower learning rate. You
 # can play with this parameter to see how it affects
 # the output.
 history = 100

 # Iterate until the user presses the ESC key
 while True:
 frame = get_frame(cap, 0.5)

 # Apply the background subtraction model to the
 # input frame
 mask = bgSubtractor.apply(frame,
 learningRate=1.0/history)

 # Convert from grayscale to 3-channel RGB
 mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

 cv2.imshow('Input frame', frame)
 cv2.imshow('Moving Objects', mask & frame)

 # Check if the user pressed the ESC key
 c = cv2.waitKey(10)
 if c == 27:
 break

 cap.release()
 cv2.destroyAllWindows()

Summary
In this chapter, we learned about object tracking. We learned how to get motion
information using frame differencing, and how it can be limiting when we want to
track different types of objects. We learned about colorspacethresholding and how
it can be used to track colored objects. We discussed clustering techniques for object
tracking and how we can build an interactive object tracker using the CAMShift
algorithm. We discussed how to track features in a video and how we can use
optical flow to achieve the same. We learned about background subtraction and
how it can be used for video surveillance.

In the next chapter, we are going to discuss object recognition, and how we can
build a visual search engine.

[259]

Object Recognition
In this chapter, we are going to learn about object recognition and how we can use
it to build a visual search engine. We will discuss feature detection, building feature
vectors, and using machine learning to build a classifier. We will learn how to use
these different blocks to build an object recognition system.

By the end of this chapter, you will know:

• What is the difference between object detection and object recognition
• What is a dense feature detector
• What is a visual dictionary
• How to build a feature vector
• What is supervised and unsupervised learning
• What are Support Vector Machines and how to use them to build a classifier
• How to recognize an object in an unknown image

Object detection versus object
recognition
Before we proceed, we need to understand what we are going to discuss in this
chapter. You must have frequently heard the terms "object detection" and "object
recognition", and they are often mistaken to be the same thing. There is a very
distinct difference between the two.

Object Recognition

[260]

Object detection refers to detecting the presence of a particular object in a given
scene. We don't know what the object might be. For instance, we discussed face
detection in Chapter 3, Detecting and Tracking Different Body Parts. During the
discussion, we only detected whether or not a face is present in the given image.
We didn't recognize the person! The reason we didn't recognize the person is
because we didn't care about that in our discussion. Our goal was to find the location
of the face in the given image. Commercial face recognition systems employ both
face detection and face recognition to identify a person. First, we need to locate the
face, and then, run the face recognizer on the cropped face.

Object recognition is the process of identifying an object in a given image. For instance,
an object recognition system can tell you if a given image contains a dress or a pair
of shoes. In fact, we can train an object recognition system to identify many different
objects. The problem is that object recognition is a really difficult problem to solve.
It has eluded computer vision researchers for decades now, and has become the holy
grail of computer vision. Humans can identify a wide variety of objects very easily.
We do it everyday and we do it effortlessly, but computers are unable to do it with
that kind of accuracy.

Let's consider the following image of a latte cup:

Chapter 9

[261]

An object detector will give you the following information:

Now, consider the following image of a teacup:

Object Recognition

[262]

If you run it through an object detector, you will see the following result:

As you can see, the object detector detects the presence of the teacup, but nothing
more than that. If you train an object recognizer, it will give you the following
information, as shown in the image below:

Chapter 9

[263]

If you consider the second image, it will give you the following information:

As you can see, a perfect object recognizer would give you all the information
associated with that object. An object recognizer functions more accurately if it
knows where the object is located. If you have a big image and the cup is a small
part of it, then the object recognizer might not be able to recognize it. Hence, the
first step is to detect the object and get the bounding box. Once we have that, we
can run an object recognizer to extract more information.

What is a dense feature detector?
In order to extract a meaningful amount of information from the images, we need to
make sure our feature extractor extracts features from all the parts of a given image.
Consider the following image:

Object Recognition

[264]

If you extract features using a feature extractor, it will look like this:

If you use Dense detector, it will look like this:

Chapter 9

[265]

We can control the density as well. Let's make it sparse:

By doing this, we can make sure that every single part in the image is processed.
Here is the code to do it:

import cv2
import numpy as np

class DenseDetector(object):
 def __init__(self, step_size=20, feature_scale=40,
 img_bound=20):
 # Create a dense feature detector
 self.detector = cv2.FeatureDetector_create("Dense")

 # Initialize it with all the required parameters
 self.detector.setInt("initXyStep", step_size)
 self.detector.setInt("initFeatureScale", feature_scale)
 self.detector.setInt("initImgBound", img_bound)

 def detect(self, img):
 # Run feature detector on the input image
 return self.detector.detect(img)

Object Recognition

[266]

if __name__=='__main__':
 input_image = cv2.imread(sys.argv[1])
 input_image_sift = np.copy(input_image)

 # Convert to grayscale
 gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

 keypoints = DenseDetector(20,20,5).detect(input_image)

 # Draw keypoints on top of the input image
 input_image = cv2.drawKeypoints(input_image, keypoints,
 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 # Display the output image
 cv2.imshow('Dense feature detector', input_image)

 # Initialize SIFT object
 sift = cv2.SIFT()

 # Detect keypoints using SIFT
 keypoints = sift.detect(gray_image, None)

 # Draw SIFT keypoints on the input image
 input_image_sift = cv2.drawKeypoints(input_image_sift,
 keypoints,
 flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 # Display the output image
 cv2.imshow('SIFT detector', input_image_sift)

 # Wait until user presses a key
 cv2.waitKey()

This gives us close control over the amount of information that gets extracted.
When we use a SIFT detector, some parts of the image are neglected. This works
well when we are dealing with the detection of prominent features, but when we
are building an object recognizer, we need to evaluate all parts of the image.
Hence, we use a dense detector and then extract features from those keypoints.

Chapter 9

[267]

What is a visual dictionary?
We will be using the Bag of Words model to build our object recognizer. Each image
is represented as a histogram of visual words. These visual words are basically the N
centroids built using all the keypoints extracted from training images. The pipeline is
as shown in the image that follows:

From each training image, we detect a set of keypoints and extract features for each
of those keypoints. Every image will give rise to a different number of keypoints.
In order to train a classifier, each image must be represented using a fixed length
feature vector. This feature vector is nothing but a histogram, where each bin
corresponds to a visual word.

When we extract all the features from all the keypoints in the training images, we
perform K-Means clustering and extract N centroids. This N is the length of the feature
vector of a given image. Each image will now be represented as a histogram, where
each bin corresponds to one of the 'N' centroids. For simplicity, let's say that N is set
to 4. Now, in a given image, we extract K keypoints. Out of these K keypoints, some
of them will be closest to the first centroid, some of them will be closest to the second
centroid, and so on. So, we build a histogram based on the closest centroid to each
keypoint. This histogram becomes our feature vector. This process is called
vector quantization.

Object Recognition

[268]

To understand vector quantization, let's consider an example. Assume we have an
image and we've extracted a certain number of feature points from it. Now our goal is
to represent this image in the form of a feature vector. Consider the following image:

As you can see, we have 4 centroids. Bear in mind that the points shown in the
figures represent the feature space and not the actual geometric locations of those
feature points in the image. It is shown this way in the preceding figure so that it's
easy to visualize. Points from many different geometric locations in an image can
be close to each other in the feature space. Our goal is to represent this image as a
histogram, where each bin corresponds to one of these centroids. This way, no matter
how many feature points we extract from an image, it will always be converted to
a fixed length feature vector. So, we "round off" each feature point to its nearest
centroid, as shown in the next image:

Chapter 9

[269]

If you build a histogram for this image, it will look like this:

Now, if you consider a different image with a different distribution of feature points,
it will look like this:

Object Recognition

[270]

The clusters would look like the following:

The histogram would look like this:

As you can see, the histograms are very different for the two images even though
the points seem to be randomly distributed. This is a very powerful technique and
it's widely used in computer vision and signal processing. There are many different
ways to do this and the accuracy depends on how fine-grained you want it to be. If
you increase the number of centroids, you will be able to represent the image better,
thereby increasing the uniqueness of your feature vector. Having said that, it's
important to mention that you cannot just keep increasing the number of centroids
indefinitely. If you do that, it will become too noisy and lose its power.

Chapter 9

[271]

What is supervised and unsupervised
learning?
If you are familiar with the basics of machine learning, you will certainly know
what supervised and unsupervised learning is all about. To give a quick refresher,
supervised learning refers to building a function based on labeled samples. For
example, if we are building a system to separate dress images from footwear images,
we first need to build a database and label it. We need to tell our algorithm what
images correspond to dresses and what images correspond to footwear. Based on
this data, the algorithm will learn how to identify dresses and footwear so that
when an unknown image comes in, it can recognize what's inside that image.

Unsupervised learning is the opposite of what we just discussed. There is no labeled
data available here. Let's say we have a bunch of images, and we just want to separate
them into three groups. We don't know what the criteria will be. So, an unsupervised
learning algorithm will try to separate the given set of data into 3 groups in the
best possible way. The reason we are discussing this is because we will be using
a combination of supervised and unsupervised learning to build our object
recognition system.

What are Support Vector Machines?
Support Vector Machines (SVM) are supervised learning models that are very
popular in the realm of machine learning. SVMs are really good at analyzing labeled
data and detecting patterns. Given a bunch of data points and the associated labels,
SVMs will build the separating hyperplanes in the best possible way.
Wait a minute, what are "hyperplanes"? To understand that, let's consider the
following figure:

Object Recognition

[272]

As you can see, the points are being separated by line boundaries that are equidistant
from the points. This is easy to visualize in 2 dimensions. If it were in 3 dimensions,
the separators would be planes. When we build features for images, the length
of the feature vectors is usually in the six-digit range. So, when we go to such a
high dimensional space, the equivalent of "lines" would be hyperplanes. Once the
hyperplanes are formulated, we use this mathematical model to classify unknown
data, based on where it falls on this map.

What if we cannot separate the data with
simple straight lines?
There is something called the kernel trick that we use in SVMs. Consider the
following image:

As we can see, we cannot draw a simple straight line to separate the red points
from the blue points. Coming up with a nice curvy boundary that will satisfy all
the points is prohibitively expensive. SVMs are really good at drawing "straight
lines". So, what's our answer here? The good thing about SVMs is that they can
draw these "straight lines" in any number of dimensions. So technically, if you
project these points into a high dimensional space, where they can separated by
a simple hyperplane, SVMs will come up with an exact boundary. Once we have
that boundary, we can project it back to the original space. The projection of this
hyperplane on our original lower dimensional space looks curvy, as we can see
in the next figure:

Chapter 9

[273]

The topic of SVMs is really deep and we will not be able to discuss it in detail here.
If you are really interested, there is a ton of material available online. You can go
through a simple tutorial to understand it better.

How do we actually implement this?
We have now arrived at the core. The discussion up until now was necessary
because it gives you the background required to build an object recognition system.
Now, let's build an object recognizer that can recognize whether the given image
contains a dress, a pair of shoes, or a bag. We can easily extend this system to detect
any number of items. We are starting with three distinct items so that you can start
experimenting with it later.

Before we start, we need to make sure that we have a set of training images.
There are many databases available online where the images are already arranged
into groups. Caltech256 is perhaps one of the most popular databases for object
recognition. You can download it from http://www.vision.caltech.edu/Image_
Datasets/Caltech256. Create a folder called images and create three subfolders
inside it, that is, dress, footwear, and bag. Inside each of those subfolders, add 20
images corresponding to that item. You can just download these images from the
internet, but make sure those images have a clean background.

http://www.vision.caltech.edu/Image_Datasets/Caltech256
http://www.vision.caltech.edu/Image_Datasets/Caltech256

Object Recognition

[274]

For example, a dress image would like this:

A footwear image would look like this:

Chapter 9

[275]

A bag image would look like this:

Now that we have 60 training images, we are ready to start. As a side note, object
recognition systems actually need tens of thousands of training images in order to
perform well in the real world. Since we are building an object recognizer to detect
3 types of objects, we will take only 20 training images per object. Adding more
training images will increase the accuracy and robustness of our system.

The first step here is to extract feature vectors from all the training images and build
the visual dictionary (also known as codebook). Here is the code:

import os
import sys
import argparse
import cPickle as pickle
import json

import cv2
import numpy as np
from sklearn.cluster import KMeans

Object Recognition

[276]

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Creates features
 for given images')
 parser.add_argument("--samples", dest="cls", nargs="+",
 action="append",
 required=True, help="Folders containing the training
 images. \
 The first element needs to be the class label.")
 parser.add_argument("--codebook-file", dest='codebook_file',
 required=True,
 help="Base file name to store the codebook")
 parser.add_argument("--feature-map-file",
 dest='feature_map_file', required=True,
 help="Base file name to store the feature map")

 return parser

Loading the images from the input folder
def load_input_map(label, input_folder):
 combined_data = []

 if not os.path.isdir(input_folder):
 raise IOError("The folder " + input_folder + " doesn't
 exist")

 # Parse the input folder and assign the labels
 for root, dirs, files in os.walk(input_folder):
 for filename in (x for x in files if x.endswith('.jpg')):
 combined_data.append({'label': label, 'image':
 os.path.join(root, filename)})

 return combined_data

class FeatureExtractor(object):
 def extract_image_features(self, img):
 # Dense feature detector
 kps = DenseDetector().detect(img)

 # SIFT feature extractor
 kps, fvs = SIFTExtractor().compute(img, kps)

 return fvs

Chapter 9

[277]

 # Extract the centroids from the feature points
 def get_centroids(self, input_map, num_samples_to_fit=10):
 kps_all = []

 count = 0
 cur_label = ''
 for item in input_map:
 if count >= num_samples_to_fit:
 if cur_label != item['label']:
 count = 0
 else:
 continue

 count += 1

 if count == num_samples_to_fit:
 print "Built centroids for", item['label']

 cur_label = item['label']
 img = cv2.imread(item['image'])
 img = resize_to_size(img, 150)

 num_dims = 128
 fvs = self.extract_image_features(img)
 kps_all.extend(fvs)

 kmeans, centroids = Quantizer().quantize(kps_all)
 return kmeans, centroids

 def get_feature_vector(self, img, kmeans, centroids):
 return Quantizer().get_feature_vector(img, kmeans,
 centroids)

def extract_feature_map(input_map, kmeans, centroids):
 feature_map = []

 for item in input_map:
 temp_dict = {}
 temp_dict['label'] = item['label']

 print "Extracting features for", item['image']
 img = cv2.imread(item['image'])
 img = resize_to_size(img, 150)

Object Recognition

[278]

 temp_dict['feature_vector'] =
 FeatureExtractor().get_feature_vector(
 img, kmeans, centroids)

 if temp_dict['feature_vector'] is not None:
 feature_map.append(temp_dict)

 return feature_map

Vector quantization
class Quantizer(object):
 def __init__(self, num_clusters=32):
 self.num_dims = 128
 self.extractor = SIFTExtractor()
 self.num_clusters = num_clusters
 self.num_retries = 10

 def quantize(self, datapoints):
 # Create KMeans object
 kmeans = KMeans(self.num_clusters,
 n_init=max(self.num_retries, 1),
 max_iter=10, tol=1.0)

 # Run KMeans on the datapoints
 res = kmeans.fit(datapoints)

 # Extract the centroids of those clusters
 centroids = res.cluster_centers_

 return kmeans, centroids

 def normalize(self, input_data):
 sum_input = np.sum(input_data)
 if sum_input > 0:
 return input_data / sum_input
 else:
 return input_data

 # Extract feature vector from the image
 def get_feature_vector(self, img, kmeans, centroids):
 kps = DenseDetector().detect(img)
 kps, fvs = self.extractor.compute(img, kps)
 labels = kmeans.predict(fvs)

Chapter 9

[279]

 fv = np.zeros(self.num_clusters)

 for i, item in enumerate(fvs):
 fv[labels[i]] += 1

 fv_image = np.reshape(fv, ((1, fv.shape[0])))
 return self.normalize(fv_image)

class DenseDetector(object):
 def __init__(self, step_size=20, feature_scale=40,
 img_bound=20):
 self.detector = cv2.FeatureDetector_create("Dense")
 self.detector.setInt("initXyStep", step_size)
 self.detector.setInt("initFeatureScale", feature_scale)
 self.detector.setInt("initImgBound", img_bound)

 def detect(self, img):
 return self.detector.detect(img)

class SIFTExtractor(object):
 def compute(self, image, kps):
 if image is None:
 print "Not a valid image"
 raise TypeError

 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 kps, des = cv2.SIFT().compute(gray_image, kps)
 return kps, des

Resize the shorter dimension to 'new_size'
while maintaining the aspect ratio
def resize_to_size(input_image, new_size=150):
 h, w = input_image.shape[0], input_image.shape[1]
 ds_factor = new_size / float(h)

 if w < h:
 ds_factor = new_size / float(w)

 new_size = (int(w * ds_factor), int(h * ds_factor))
 return cv2.resize(input_image, new_size)

if __name__=='__main__':
 args = build_arg_parser().parse_args()

Object Recognition

[280]

 input_map = []
 for cls in args.cls:

 assert len(cls) >= 2, "Format for classes is `<label>
 file`"
 label = cls[0]
 input_map += load_input_map(label, cls[1])

 # Building the codebook
 print "===== Building codebook ====="
 kmeans, centroids = FeatureExtractor().get_centroids(input_map)
 if args.codebook_file:
 with open(args.codebook_file, 'w') as f:
 pickle.dump((kmeans, centroids), f)

 # Input data and labels
 print "===== Building feature map ====="
 feature_map = extract_feature_map(input_map, kmeans,
 centroids)
 if args.feature_map_file:
 with open(args.feature_map_file, 'w') as f:
 pickle.dump(feature_map, f)

What happened inside the code?
The first thing we need to do is extract the centroids. This is how we are going to
build our visual dictionary. The get_centroids method in the FeatureExtractor
class is designed to do this. We keep collecting the image features extracted from
keypoints until we have a sufficient number of them. Since we are using a dense
detector, 10 images should be sufficient. The reason we are just taking 10 images
is because they will give rise to a large number of features. The centroids will not
change much even if you add more feature points.

Once we've extracted the centroids, we are ready to move on to the next step of
feature extraction. The set of centroids is our visual dictionary. The function, extract_
feature_map, will extract a feature vector from each image and associate it with the
corresponding label. The reason we do this is because we need this mapping to train
our classifier. We need a set of datapoints, and each datapoint should be associated
with a label. So, we start from an image, extract the feature vector, and then associate
it with the corresponding label (like bag, dress, or footwear).

Chapter 9

[281]

The Quantizer class is designed to achieve vector quantization and build the feature
vector. For each keypoint extracted from the image, the get_feature_vector method
finds the closest visual word in our dictionary. By doing this, we end up building
a histogram based on our visual dictionary. Each image is now represented as a
combination from a set of visual words. Hence the name, Bag of Words.

The next step is to train the classifier using these features. Here is the code:

import os
import sys
import argparse

import cPickle as pickle
import numpy as np
from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import LinearSVC
from sklearn import preprocessing

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Trains the
 classifier models')
 parser.add_argument("--feature-map-file",
 dest="feature_map_file", required=True,
 help="Input pickle file containing the feature map")
 parser.add_argument("--svm-file", dest="svm_file",
 required=False,
 help="Output file where the pickled SVM model will be
 stored")
 return parser

To train the classifier
class ClassifierTrainer(object):
 def __init__(self, X, label_words):
 # Encoding the labels (words to numbers)
 self.le = preprocessing.LabelEncoder()

 # Initialize One vs One Classifier using a linear kernel
 self.clf = OneVsOneClassifier(LinearSVC(random_state=0))

 y = self._encodeLabels(label_words)
 X = np.asarray(X)
 self.clf.fit(X, y)

Object Recognition

[282]

 # Predict the output class for the input datapoint
 def _fit(self, X):
 X = np.asarray(X)
 return self.clf.predict(X)

 # Encode the labels (convert words to numbers)
 def _encodeLabels(self, labels_words):
 self.le.fit(labels_words)
 return np.array(self.le.transform(labels_words),
 dtype=np.float32)

 # Classify the input datapoint
 def classify(self, X):
 labels_nums = self._fit(X)
 labels_words = self.le.inverse_transform([int(x) for x in
 labels_nums])
 return labels_words

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 feature_map_file = args.feature_map_file
 svm_file = args.svm_file

 # Load the feature map
 with open(feature_map_file, 'r') as f:
 feature_map = pickle.load(f)

 # Extract feature vectors and the labels
 labels_words = [x['label'] for x in feature_map]

 # Here, 0 refers to the first element in the
 # feature_map, and 1 refers to the second
 # element in the shape vector of that element
 # (which gives us the size)
 dim_size = feature_map[0]['feature_vector'].shape[1]

 X = [np.reshape(x['feature_vector'], (dim_size,)) for x in
 feature_map]

 # Train the SVM
 svm = ClassifierTrainer(X, labels_words)
 if args.svm_file:
 with open(args.svm_file, 'w') as f:
 pickle.dump(svm, f)

Chapter 9

[283]

How did we build the trainer?
We use the scikit-learn package to build the SVM model. You can install it,
as shown next:

$ pip install scikit-learn

We start with labeled data and feed it to the OneVsOneClassifier method. We have
a classify method that classifies an input image and associates a label with it.

Let's give this a trial run, shall we? Make sure you have a folder called images,
where you have the training images for the three classes. Create a folder called
models, where the learning models will be stored. Run the following commands
on your terminal to create the features and train the classifier:

$ python create_features.py --samples bag images/bag/ --samples dress
images/dress/ --samples footwear images/footwear/ --codebook-file
models/codebook.pkl --feature-map-file models/feature_map.pkl

$ python training.py --feature-map-file models/feature_map.pkl
--svm-file models/svm.pkl

Now that the classifier has been trained, we just need a module to classify the
input image and detect the object inside. Here is the code to do it:

import os
import sys
import argparse
import cPickle as pickle

import cv2
import numpy as np

import create_features as cf
from training import ClassifierTrainer

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Extracts
 features \
 from each line and classifies the data')
 parser.add_argument("--input-image", dest="input_image",
 required=True,
 help="Input image to be classified")
 parser.add_argument("--svm-file", dest="svm_file",
 required=True,
 help="File containing the trained SVM model")
 parser.add_argument("--codebook-file", dest="codebook_file",

Object Recognition

[284]

 required=True, help="File containing the codebook")
 return parser

Classifying an image
class ImageClassifier(object):
 def __init__(self, svm_file, codebook_file):
 # Load the SVM classifier
 with open(svm_file, 'r') as f:
 self.svm = pickle.load(f)

 # Load the codebook
 with open(codebook_file, 'r') as f:
 self.kmeans, self.centroids = pickle.load(f)

 # Method to get the output image tag
 def getImageTag(self, img):
 # Resize the input image
 img = cf.resize_to_size(img)

 # Extract the feature vector
 feature_vector =
 cf.FeatureExtractor().get_feature_vector(img, self.kmeans,
 self.centroids)

 # Classify the feature vector and get the output tag
 image_tag = self.svm.classify(feature_vector)

 return image_tag

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 svm_file = args.svm_file
 codebook_file = args.codebook_file
 input_image = cv2.imread(args.input_image)

 print "Output class:", ImageClassifier(svm_file,
 codebook_file).getImageTag(input_image)

We are all set! We just extract the feature vector from the input image and use it as
the input argument to the classifier. Let's go ahead and see if this works. Download a
random footwear image from the internet and make sure it has a clean background.
Run the following command by replacing new_image.jpg with the right filename:

$ python classify_data.py --input-image new_image.jpg --svm-file
models/svm.pkl --codebook-file models/codebook.pkl

Chapter 9

[285]

We can use the same technique to build a visual search engine. A visual search
engine looks at the input image and shows a bunch of images that are similar to
it. We can reuse the object recognition framework to build this. Extract the feature
vector from the input image, and compare it with all the feature vectors in the
training dataset. Pick out the top matches and display the results. This is a simple
way of doing things!

In the real world, we have to deal with billions of images. So, you cannot afford
to search through every single image before you display the output. There are a
lot of algorithms that are used to make sure that this is efficient and fast in the real
world. Deep Learning is being used extensively in this field and it has shown a lot of
promise in recent years. It is a branch of machine learning that focuses on learning
optimal representation of data, so that it becomes easier for the machines to learn
new tasks. You can learn more about it at http://deeplearning.net.

Summary
In this chapter, we learned how to build an object recognition system. The differences
between object detection and object recognition were discussed in detail. We learned
about the dense feature detector, visual dictionary, vector quantization, and how to use
these concepts to build a feature vector. The concepts of supervised and unsupervised
learning were discussed. We talked about Support Vector Machines and how we can
use them to build a classifier. We learned how to recognize an object in an unknown
image, and how we can extend that concept to build a visual search engine.

In the next chapter, we are going to discuss stereo imaging and 3D reconstruction.
We will talk about how we can build a depth map and extract the 3D information
from a given scene.

http://deeplearning.net

[287]

Stereo Vision and 3D
Reconstruction

In this chapter, we are going to learn about stereo vision and how we can reconstruct
the 3D map of a scene. We will discuss epipolar geometry, depth maps, and 3D
reconstruction. We will learn how to extract 3D information from stereo images
and build a point cloud.

By the end of this chapter, you will know:

• What is stereo correspondence
• What is epipolar geometry
• What is a depth map
• How to extract 3D information
• How to build and visualize the 3D map of a given scene

What is stereo correspondence?
When we capture images, we project the 3D world around us on a 2D image plane.
So technically, we only have 2D information when we capture those photos. Since
all the objects in that scene are projected onto a flat 2D plane, the depth information
is lost. We have no way of knowing how far an object is from the camera or how the
objects are positioned with respect to each other in the 3D space. This is where stereo
vision comes into the picture.

Stereo Vision and 3D Reconstruction

[288]

Humans are very good at inferring depth information from the real world. The
reason is that we have two eyes positioned a couple of inches from each other. Each
eye acts as a camera and we capture two images of the same scene from two different
viewpoints, that is, one image each using the left and right eyes. So, our brain takes
these two images and builds a 3D map using stereo vision. This is what we want to
achieve using stereo vision algorithms. We can capture two photos of the same scene
using different viewpoints, and then match the corresponding points to obtain the
depth map of the scene.

Let's consider the following image:

Now, if we capture the same scene from a different angle, it will look like this:

Chapter 10

[289]

As you can see, there is a large amount of movement in the positions of the objects
in the image. If you consider the pixel coordinates, the values of the initial position
and final position will differ by a large amount in these two images. Consider the
following image:

If we consider the same line of distance in the second image, it will look like this:

Stereo Vision and 3D Reconstruction

[290]

The difference between d1 and d2 is large. Now, let's bring the box closer to
 the camera:

Now, let's move the camera by the same amount as we did earlier, and capture the
same scene from this angle:

Chapter 10

[291]

As you can see, the movement between the positions of the objects is not much. If
you consider the pixel coordinates, you will see that the values are close to each
other. The distance in the first image would be:

If we consider the same line of distance in the second image, it will be as shown in
the following image:

Stereo Vision and 3D Reconstruction

[292]

The difference between d3 and d4 is small. We can say that the absolute difference
between d1 and d2 is greater than the absolute difference between d3 and d4. Even
though the camera moved by the same amount, there is a big difference between the
apparent distances between the initial and final positions. This happens because we
can bring the object closer to the camera; the apparent movement decreases when
you capture two images from different angles. This is the concept behind stereo
correspondence: we capture two images and use this knowledge to extract the depth
information from a given scene.

What is epipolar geometry?
Before discussing epipolar geometry, let's discuss what happens when we
capture two images of the same scene from two different viewpoints. Consider
the following figure:

Let's see how it happens in real life. Consider the following image:

Chapter 10

[293]

Now, let's capture the same scene from a different viewpoint:

Our goal is to match the keypoints in these two images to extract the scene
information. The way we do this is by extracting a matrix that can associate
the corresponding points between two stereo images. This is called the
fundamental matrix.

As we saw in the camera figure earlier, we can draw lines to see where they meet.
These lines are called epipolar lines. The point at which the epipolar lines converge
is called epipole. If you match the keypoints using SIFT, and draw the lines towards
the meeting point on the left image, it will look like this:

Stereo Vision and 3D Reconstruction

[294]

Following are the matching feature points in the right image:

The lines are epipolar lines. If you take the second image as the reference, they will
appear as shown in the next image:

Chapter 10

[295]

Following are the matching feature points in the first image:

It's important to understand epipolar geometry and how we draw these lines. If
two frames are positioned in 3D, then each epipolar line between the two frames
must intersect the corresponding feature in each frame and each of the camera
origins. This can be used to estimate the pose of the cameras with respect to the 3D
environment. We will use this information later on, to extract 3D information from
the scene. Let's take a look at the code:

import argparse

import cv2
import numpy as np

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Find fundamental
 matrix \
 using the two input stereo images and draw epipolar
 lines')
 parser.add_argument("--img-left", dest="img_left",
 required=True,
 help="Image captured from the left view")
 parser.add_argument("--img-right", dest="img_right",
 required=True,
 help="Image captured from the right view")
 parser.add_argument("--feature-type", dest="feature_type",

Stereo Vision and 3D Reconstruction

[296]

 required=True, help="Feature extractor that will be
 used; can be either 'sift' or 'surf'")
 return parser

def draw_lines(img_left, img_right, lines, pts_left, pts_right):
 h,w = img_left.shape
 img_left = cv2.cvtColor(img_left, cv2.COLOR_GRAY2BGR)
 img_right = cv2.cvtColor(img_right, cv2.COLOR_GRAY2BGR)

 for line, pt_left, pt_right in zip(lines, pts_left,
 pts_right):
 x_start,y_start = map(int, [0, -line[2]/line[1]])
 x_end,y_end = map(int, [w, -(line[2]+line[0]*w)/line[1]])
 color = tuple(np.random.randint(0,255,2).tolist())
 cv2.line(img_left, (x_start,y_start), (x_end,y_end),
 color,1)
 cv2.circle(img_left, tuple(pt_left), 5, color, -1)
 cv2.circle(img_right, tuple(pt_right), 5, color, -1)

 return img_left, img_right

def get_descriptors(gray_image, feature_type):
 if feature_type == 'surf':
 feature_extractor = cv2.SURF()

 elif feature_type == 'sift':
 feature_extractor = cv2.SIFT()

 else:
 raise TypeError("Invalid feature type; should be either
 'surf' or 'sift'")

 keypoints, descriptors = feature_extractor.detectAndCompute(gray_
image, None)
 return keypoints, descriptors

if __name__=='__main__':
 args = build_arg_parser().parse_args()
 img_left = cv2.imread(args.img_left,0) # left image
 img_right = cv2.imread(args.img_right,0) # right image
 feature_type = args.feature_type

 if feature_type not in ['sift', 'surf']:

Chapter 10

[297]

 raise TypeError("Invalid feature type; has to be either
 'sift' or 'surf'")

 scaling_factor = 1.0
 img_left = cv2.resize(img_left, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)
 img_right = cv2.resize(img_right, None, fx=scaling_factor,
 fy=scaling_factor, interpolation=cv2.INTER_AREA)

 kps_left, des_left = get_descriptors(img_left, feature_type)
 kps_right, des_right = get_descriptors(img_right, feature_type)

 # FLANN parameters
 FLANN_INDEX_KDTREE = 0
 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
 search_params = dict(checks=50)

 # Get the matches based on the descriptors
 flann = cv2.FlannBasedMatcher(index_params, search_params)
 matches = flann.knnMatch(des_left, des_right, k=2)

 pts_left_image = []
 pts_right_image = []

 # ratio test to retain only the good matches
 for i,(m,n) in enumerate(matches):
 if m.distance < 0.7*n.distance:
 pts_left_image.append(kps_left[m.queryIdx].pt)
 pts_right_image.append(kps_right[m.trainIdx].pt)

 pts_left_image = np.float32(pts_left_image)
 pts_right_image = np.float32(pts_right_image)
 F, mask = cv2.findFundamentalMat(pts_left_image,
 pts_right_image, cv2.FM_LMEDS)

 # Selecting only the inliers
 pts_left_image = pts_left_image[mask.ravel()==1]
 pts_right_image = pts_right_image[mask.ravel()==1]

 # Drawing the lines on left image and the corresponding feature
points on the right image
 lines1 = cv2.computeCorrespondEpilines
 (pts_right_image.reshape(-1,1,2), 2, F)
 lines1 = lines1.reshape(-1,3)

Stereo Vision and 3D Reconstruction

[298]

 img_left_lines, img_right_pts = draw_lines(img_left,
 img_right, lines1, pts_left_image, pts_right_image)

 # Drawing the lines on right image and the corresponding feature
points on the left image
 lines2 = cv2.computeCorrespondEpilines
 (pts_left_image.reshape(-1,1,2), 1,F)
 lines2 = lines2.reshape(-1,3)
 img_right_lines, img_left_pts = draw_lines(img_right,
 img_left, lines2, pts_right_image, pts_left_image)

 cv2.imshow('Epi lines on left image', img_left_lines)
 cv2.imshow('Feature points on right image', img_right_pts)
 cv2.imshow('Epi lines on right image', img_right_lines)
 cv2.imshow('Feature points on left image', img_left_pts)
 cv2.waitKey()
 cv2.destroyAllWindows()

Let's see what happens if we use the SURF feature extractor. The lines in the left
image will look like this:

Chapter 10

[299]

Following are the matching feature points in the right image:

If you take the second image as the reference, you will see something like the
following image:

Stereo Vision and 3D Reconstruction

[300]

These are the matching feature points in the first image:

Why are the lines different as compared to
SIFT?
SURF detects a different set of feature points, so the corresponding epipolar lines
differ as well. As you can see in the images, there are more feature points detected
when we use SURF. Since we have more information than before, the corresponding
epipolar lines will also change accordingly.

Building the 3D map
Now that we are familiar with epipolar geometry, let's see how to use it to build
a 3D map based on stereo images. Let's consider the following figure:

Chapter 10

[301]

The first step is to extract the disparity map between the two images. If you look at
the figure, as we go closer to the object from the cameras along the connecting lines,
the distance decreases between the points. Using this information, we can infer the
distance of each point from the camera. This is called a depth map. Once we find the
matching points between the two images, we can find the disparity by using epipolar
lines to impose epipolar constraints.

Let's consider the following image:

If we capture the same scene from a different position, we get the following image:

Stereo Vision and 3D Reconstruction

[302]

If we reconstruct the 3D map, it will look like this:

Bear in mind that these images were not captured using perfectly aligned stereo
cameras. That's the reason the 3D map looks so noisy! This is just to demonstrate
how we can reconstruct the real world using stereo images. Let's consider an image
pair captured using stereo cameras that are properly aligned. Following is the left
view image:

Chapter 10

[303]

Next is the corresponding right view image:

If you extract the depth information and build the 3D map, it will look like this:

Stereo Vision and 3D Reconstruction

[304]

Let's rotate it to see if the depth is right for the different objects in the scene:

You need a software called MeshLab to visualize the 3D scene. We'll discuss about
it soon. As we can see in the preceding images, the items are correctly aligned
according to their distance from the camera. We can intuitively see that they are
arranged in the right way, including the tilted position of the mask. We can use
this technique to build many interesting things.

Let's see how to do it in OpenCV-Python:

import argparse

import cv2
import numpy as np

def build_arg_parser():
 parser = argparse.ArgumentParser(description='Reconstruct the
 3D map from \
 the two input stereo images. Output will be saved in
 \'output.ply\'')
 parser.add_argument("--image-left", dest="image_left",
 required=True,
 help="Input image captured from the left")
 parser.add_argument("--image-right", dest="image_right",
 required=True,
 help="Input image captured from the right")
 parser.add_argument("--output-file", dest="output_file",
 required=True,

Chapter 10

[305]

 help="Output filename (without the extension) where
 the point cloud will be saved")
 return parser

def create_output(vertices, colors, filename):
 colors = colors.reshape(-1, 3)
 vertices = np.hstack([vertices.reshape(-1,3), colors])

 ply_header = '''ply
 format ascii 1.0
 element vertex %(vert_num)d
 property float x
 property float y
 property float z
 property uchar red
 property uchar green
 property uchar blue
 end_header
 '''

 with open(filename, 'w') as f:
 f.write(ply_header % dict(vert_num=len(vertices)))
 np.savetxt(f, vertices, '%f %f %f %d %d %d')

if __name__ == '__main__':
 args = build_arg_parser().parse_args()
 image_left = cv2.imread(args.image_left)
 image_right = cv2.imread(args.image_right)
 output_file = args.output_file + '.ply'

 if image_left.shape[0] != image_right.shape[0] or \
 image_left.shape[1] != image_right.shape[1]:
 raise TypeError("Input images must be of the same size")

 # downscale images for faster processing
 image_left = cv2.pyrDown(image_left)
 image_right = cv2.pyrDown(image_right)

 # disparity range is tuned for 'aloe' image pair
 win_size = 1
 min_disp = 16
 max_disp = min_disp * 9
 num_disp = max_disp - min_disp # Needs to be divisible by 16
 stereo = cv2.StereoSGBM(minDisparity = min_disp,

Stereo Vision and 3D Reconstruction

[306]

 numDisparities = num_disp,
 SADWindowSize = win_size,
 uniquenessRatio = 10,
 speckleWindowSize = 100,
 speckleRange = 32,
 disp12MaxDiff = 1,
 P1 = 8*3*win_size**2,
 P2 = 32*3*win_size**2,
 fullDP = True
)

 print "\nComputing the disparity map ..."
 disparity_map = stereo.compute(image_left,
image_right).astype(np.float32) / 16.0

 print "\nGenerating the 3D map ..."
 h, w = image_left.shape[:2]
 focal_length = 0.8*w

 # Perspective transformation matrix
 Q = np.float32([[1, 0, 0, -w/2.0],
 [0,-1, 0, h/2.0],
 [0, 0, 0, -focal_length],
 [0, 0, 1, 0]])

 points_3D = cv2.reprojectImageTo3D(disparity_map, Q)
 colors = cv2.cvtColor(image_left, cv2.COLOR_BGR2RGB)
 mask_map = disparity_map > disparity_map.min()
 output_points = points_3D[mask_map]
 output_colors = colors[mask_map]

 print "\nCreating the output file ...\n"
 create_output(output_points, output_colors, output_file)

To visualize the output, you need to download MeshLab from http://meshlab.
sourceforge.net.

Just open the output.ply file using MeshLab and you'll see the 3D image. You can
rotate it to get a complete 3D view of the reconstructed scene. Some of the alternatives
to MeshLab are Sketchup on OS X and Windows, and Blender on Linux.

http://meshlab.sourceforge.net
http://meshlab.sourceforge.net

Chapter 10

[307]

Summary
In this chapter, we learned about stereo vision and 3D reconstruction. We discussed
how to extract the fundamental matrix using different feature extractors. We learned
how to generate the disparity map between two images, and use it to reconstruct the
3D map of a given scene.

In the next chapter, we are going to discuss augmented reality, and how we can
build a cool application where we overlay graphics on top of real world objects
in a live video.

[309]

Augmented Reality
In this chapter, you are going to learn about augmented reality and how you can
use it to build cool applications. We will discuss pose estimation and plane tracking.
You will learn how to map the coordinates from 2D to 3D, and how we can overlay
graphics on top of a live video.

By the end of this chapter, you will know:

• What is the premise of augmented reality
• What is pose estimation
• How to track a planar object
• How to map coordinates from 3D to 2D
• How to overlay graphics on top of a video in real time

What is the premise of augmented
reality?
Before we jump into all the fun stuff, let's understand what augmented reality
means. You would have probably seen the term "augmented reality" being used in
a variety of contexts. So, we should understand the premise of augmented reality
before we start discussing the implementation details. Augmented Reality refers to
the superposition of computer-generated input such as imagery, sounds, graphics,
and text on top of the real world.

Augmented Reality

[310]

Augmented reality tries to blur the line between what's real and what's computer-
generated by seamlessly merging the information and enhancing what we see
and feel. It is actually closely related to a concept called mediated reality where a
computer modifies our view of the reality. As a result of this, the technology works
by enhancing our current perception of reality. Now the challenge here is to make
it look seamless to the user. It's easy to just overlay something on top of the input
video, but we need to make it look like it is part of the video. The user should feel
that the computer-generated input is closely following the real world. This is what
we want to achieve when we build an augmented reality system.

Computer vision research in this context explores how we can apply computer-
generated imagery to live video streams so that we can enhance the perception of
the real world. Augmented reality technology has a wide variety of applications
including, but not limited to, head-mounted displays, automobiles, data
visualization, gaming, construction, and so on. Now that we have powerful
smartphones and smarter machines, we can build high-end augmented reality
applications with ease.

What does an augmented reality system
look like?
Let's consider the following figure:

Chapter 11

[311]

As we can see here, the camera captures the real world video to get the reference
point. The graphics system generates the virtual objects that need to be overlaid
on top of the video. Now the video-merging block is where all the magic happens.
This block should be smart enough to understand how to overlay the virtual objects
on top of the real world in the best way possible.

Geometric transformations for
augmented reality
The outcome of augmented reality is amazing, but there are a lot of mathematical
things going on underneath. Augmented reality utilizes a lot of geometric
transformations and the associated mathematical functions to make sure everything
looks seamless. When talking about a live video for augmented reality, we need to
precisely register the virtual objects on top of the real world. To understand it better,
let's think of it as an alignment of two cameras—the real one through which we see
the world, and the virtual one that projects the computer generated graphical objects.

In order to build an augmented reality system, the following geometric
transformations need to be established:

• Object-to-scene: This transformation refers to transforming the 3D
coordinates of a virtual object and expressing them in the coordinate
frame of our real-world scene. This ensures that we are positioning the
virtual object in the right location.

• Scene-to-camera: This transformation refers to the pose of the camera
in the real world. By "pose", we mean the orientation and location of the
camera. We need to estimate the point of view of the camera so that we
know how to overlay the virtual object.

• Camera-to-image: This refers to the calibration parameters of the camera.
This defines how we can project a 3D object onto a 2D image plane.
This is the image that we will actually see in the end.

Augmented Reality

[312]

Consider the following image:

As we can see here, the car is trying to fit into the scene but it looks very artificial.
If we don't convert the coordinates in the right way, it looks unnatural. This is what
we were talking about in the object-to-scene transformation! Once we transform
the 3D coordinates of the virtual object into the coordinate frame of the real world,
we need to estimate the pose of the camera:

We need to understand the position and rotation of the camera because that's what
the user will see. Once we estimate the camera pose, we are ready to put this 3D
scene on a 2D image.

Chapter 11

[313]

Once we have these transformations, we can build the complete system.

What is pose estimation?
Before we proceed, we need to understand how to estimate the camera pose. This is
a very critical step in an augmented reality system and we need to get it right if we
want our experience to be seamless. In the world of augmented reality, we overlay
graphics on top of an object in real time. In order to do that, we need to know the
location and orientation of the camera, and we need to do it quickly. This is where
pose estimation becomes very important. If you don't track the pose correctly, the
overlaid graphics will not look natural.

Consider the following image:

Augmented Reality

[314]

The arrow line represents that the surface is normal. Let's say the object changes
its orientation:

Now even though the location is the same, the orientation has changed. We need to
have this information so that the overlaid graphics looks natural. We need to make
sure that it's aligned to this orientation as well as position.

How to track planar objects?
Now that you understand what pose estimation is, let's see how you can use it to
track planar objects. Let's consider the following planar object:

Chapter 11

[315]

Now if we extract feature points from this image, we will see something like this:

Let's tilt the cardboard:

Augmented Reality

[316]

As we can see, the cardboard is tilted in this image. Now if we want to make sure
our virtual object is overlaid on top of this surface, we need to gather this planar tilt
information. One way to do this is by using the relative positions of those feature
points. If we extract the feature points from the preceding image, it will look like this:

As you can see, the feature points got closer horizontally on the far end of the plane
as compared to the ones on the near end.

Chapter 11

[317]

So we can utilize this information to extract the orientation information from
the image. If you remember, we discussed perspective transformation in detail
when we were discussing geometric transformations as well as panoramic imaging.
All we need to do is use those two sets of points and extract the homography matrix.
This homography matrix will tell us how the cardboard turned.

Consider the following image:

We start by selecting the region of interest.

Augmented Reality

[318]

We then extract feature points from this region of interest. Since we are tracking planar
objects, the algorithm assumes that this region of interest is a plane. That was obvious,
but it's better to state it explicitly! So make sure you have a cardboard in your hand
when you select this region of interest. Also, it'll be better if the cardboard has a bunch
of patterns and distinctive points so that it's easy to detect and track the feature points
on it.

Let the tracking begin! We'll move the cardboard around to see what happens:

As you can see, the feature points are being tracked inside the region of interest.
Let's tilt it and see what happens:

Chapter 11

[319]

Looks like the feature points are being tracked properly. As we can see, the overlaid
rectangle is changing its orientation according to the surface of the cardboard.

Here is the code to do it:

import sys
from collections import namedtuple

import cv2
import numpy as np

class PoseEstimator(object):
 def __init__(self):
 # Use locality sensitive hashing algorithm
 flann_params = dict(algorithm = 6, table_number = 6,
 key_size = 12, multi_probe_level = 1)

 self.min_matches = 10
 self.cur_target = namedtuple('Current', 'image, rect,
 keypoints, descriptors, data')
 self.tracked_target = namedtuple('Tracked', 'target,
 points_prev, points_cur, H, quad')

 self.feature_detector = cv2.ORB(nfeatures=1000)
 self.feature_matcher = cv2.FlannBasedMatcher(flann_params,
{})
 self.tracking_targets = []

 # Function to add a new target for tracking
 def add_target(self, image, rect, data=None):
 x_start, y_start, x_end, y_end = rect
 keypoints, descriptors = [], []
 for keypoint, descriptor in zip(*self.detect_features(image)):
 x, y = keypoint.pt
 if x_start <= x <= x_end and y_start <= y <= y_end:
 keypoints.append(keypoint)
 descriptors.append(descriptor)

 descriptors = np.array(descriptors, dtype='uint8')
 self.feature_matcher.add([descriptors])
 target = self.cur_target(image=image, rect=rect,
 keypoints=keypoints,
 descriptors=descriptors, data=None)
 self.tracking_targets.append(target)

Augmented Reality

[320]

 # To get a list of detected objects
 def track_target(self, frame):
 self.cur_keypoints, self.cur_descriptors =
 self.detect_features(frame)
 if len(self.cur_keypoints) < self.min_matches:
 return []

 matches =
 self.feature_matcher.knnMatch(self.cur_descriptors, k=2)
 matches = [match[0] for match in matches if len(match) ==
 2 and
 match[0].distance < match[1].distance * 0.75]
 if len(matches) < self.min_matches:
 return []

 matches_using_index = [[] for _ in
 xrange(len(self.tracking_targets))]
 for match in matches:
 matches_using_index[match.imgIdx].append(match)

 tracked = []
 for image_index, matches in
 enumerate(matches_using_index):
 if len(matches) < self.min_matches:
 continue

 target = self.tracking_targets[image_index]
 points_prev = [target.keypoints[m.trainIdx].pt for m
 in matches]
 points_cur = [self.cur_keypoints[m.queryIdx].pt for m
 in matches]
 points_prev, points_cur = np.float32((points_prev,
 points_cur))
 H, status = cv2.findHomography(points_prev,
 points_cur, cv2.RANSAC, 3.0)
 status = status.ravel() != 0
 if status.sum() < self.min_matches:
 continue

 points_prev, points_cur = points_prev[status],
 points_cur[status]

 x_start, y_start, x_end, y_end = target.rect
 quad = np.float32([[x_start, y_start], [x_end,
 y_start], [x_end, y_end], [x_start, y_end]])

Chapter 11

[321]

 quad = cv2.perspectiveTransform(quad.reshape(1, -1,
 2), H).reshape(-1, 2)

 track = self.tracked_target(target=target,
 points_prev=points_prev,
 points_cur=points_cur, H=H, quad=quad)
 tracked.append(track)

 tracked.sort(key = lambda x: len(x.points_prev),
 reverse=True)
 return tracked

 # Detect features in the selected ROIs and return the keypoints
and descriptors
 def detect_features(self, frame):
 keypoints, descriptors = self.feature_detector.
detectAndCompute(frame, None)
 if descriptors is None:
 descriptors = []

 return keypoints, descriptors

 # Function to clear all the existing targets
 def clear_targets(self):
 self.feature_matcher.clear()
 self.tracking_targets = []

class VideoHandler(object):
 def __init__(self):
 self.cap = cv2.VideoCapture(0)
 self.paused = False
 self.frame = None
 self.pose_tracker = PoseEstimator()

 cv2.namedWindow('Tracker')
 self.roi_selector = ROISelector('Tracker', self.on_rect)

 def on_rect(self, rect):
 self.pose_tracker.add_target(self.frame, rect)

 def start(self):
 while True:
 is_running = not self.paused and self.roi_selector.
selected_rect is None

Augmented Reality

[322]

 if is_running or self.frame is None:
 ret, frame = self.cap.read()
 scaling_factor = 0.5
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor,
 interpolation=cv2.INTER_AREA)
 if not ret:
 break

 self.frame = frame.copy()

 img = self.frame.copy()
 if is_running:
 tracked =
 self.pose_tracker.track_target(self.frame)
 for item in tracked:
 cv2.polylines(img, [np.int32(item.quad)],
 True, (255, 255, 255), 2)
 for (x, y) in np.int32(item.points_cur):
 cv2.circle(img, (x, y), 2, (255, 255,
 255))

 self.roi_selector.draw_rect(img)
 cv2.imshow('Tracker', img)
 ch = cv2.waitKey(1)
 if ch == ord(' '):
 self.paused = not self.paused
 if ch == ord('c'):
 self.pose_tracker.clear_targets()
 if ch == 27:
 break

class ROISelector(object):
 def __init__(self, win_name, callback_func):
 self.win_name = win_name
 self.callback_func = callback_func
 cv2.setMouseCallback(self.win_name, self.on_mouse_event)
 self.selection_start = None
 self.selected_rect = None

 def on_mouse_event(self, event, x, y, flags, param):
 if event == cv2.EVENT_LBUTTONDOWN:
 self.selection_start = (x, y)

Chapter 11

[323]

 if self.selection_start:
 if flags & cv2.EVENT_FLAG_LBUTTON:
 x_orig, y_orig = self.selection_start
 x_start, y_start = np.minimum([x_orig, y_orig],
 [x, y])
 x_end, y_end = np.maximum([x_orig, y_orig], [x,
 y])
 self.selected_rect = None
 if x_end > x_start and y_end > y_start:
 self.selected_rect = (x_start, y_start, x_end,
 y_end)
 else:
 rect = self.selected_rect
 self.selection_start = None
 self.selected_rect = None
 if rect:
 self.callback_func(rect)

 def draw_rect(self, img):
 if not self.selected_rect:
 return False

 x_start, y_start, x_end, y_end = self.selected_rect
 cv2.rectangle(img, (x_start, y_start), (x_end, y_end), (0,
 255, 0), 2)
 return True

if __name__ == '__main__':
 VideoHandler().start()

What happened inside the code?
To start with, we have a PoseEstimator class that does all the heavy lifting here.
We need something to detect the features in the image and something to match
the features between successive images. So we use the ORB feature detector
and the Flann feature matcher. As we can see, we initialize the class with these
parameters in the constructor.

Whenever we select a region of interest, we call the add_target method to add that
to our list of tracking targets. This method just extracts the features from that region
of interest and stores in one of the class variables. Now that we have a target, we are
ready to track it!

Augmented Reality

[324]

The track_target method handles all the tracking. We take the current frame and
extract all the keypoints. However, we are not really interested in all the keypoints
in the current frame of the video. We just want the keypoints that belong to our
target object. So now, our job is to find the closest keypoints in the current frame.

We now have a set of keypoints in the current frame and we have another set of
keypoints from our target object in the previous frame. The next step is to extract
the homography matrix from these matching points. This homography matrix tells
us how to transform the overlaid rectangle so that it's aligned with the cardboard
surface. We just need to take this homography matrix and apply it to the overlaid
rectangle to obtain the new positions of all its points.

How to augment our reality?
Now that we know how to track planar objects, let's see how to overlay 3D objects on
top of the real world. The objects are 3D but the video on our screen is 2D. So the first
step here is to understand how to map those 3D objects to 2D surfaces so that it looks
realistic. We just need to project those 3D points onto planar surfaces.

Mapping coordinates from 3D to 2D
Once we estimate the pose, we project the points from the 3D to the 2D. Consider the
following image:

Chapter 11

[325]

As we can see here, the TV remote control is a 3D object but we are seeing it on a 2D
plane. Now if we move it around, it will look like this:

This 3D object is still on a 2D plane. The object has moved to a different location
and the distance from the camera has changed as well. How do we compute these
coordinates? We need a mechanism to map this 3D object onto the 2D surface.
This is where the 3D to 2D projection becomes really important.

We just need to estimate the initial camera pose to start with. Now, let's assume
that the intrinsic parameters of the camera are already known. So we can just use
the solvePnP function in OpenCV to estimate the camera's pose. This function
is used to estimate the object's pose using a set of points. You can read more
about it at http://docs.opencv.org/modules/calib3d/doc/camera_
calibration_and_3d_reconstruction.html#bool solvePnP(InputArray
objectPoints, InputArray imagePoints, InputArray cameraMatrix,
InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool
useExtrinsicGuess, int flags). Once we do this, we need to project these
points onto 2D. We use the OpenCV function projectPoints to do this. This
function calculates the projections of those 3D points onto the 2D plane.

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu

Augmented Reality

[326]

How to overlay 3D objects on a video?
Now that we have all the different blocks, we are ready to build the final system.
Let's say we want to overlay a pyramid on top of our cardboard as shown here:

Let's tilt the cardboard to see what happens:

Chapter 11

[327]

Looks like the pyramid is following the surface. Let's add a second target:

You can keep adding more targets and all those pyramids will be tracked nicely.
Let's see how to do this using OpenCV Python. Make sure to save the previous file as
pose_estimation.py because we will be importing a couple of classes from there:

import cv2
import numpy as np

from pose_estimation import PoseEstimator, ROISelector

class Tracker(object):
 def __init__(self):
 self.cap = cv2.VideoCapture(0)
 self.frame = None
 self.paused = False
 self.tracker = PoseEstimator()

 cv2.namedWindow('Augmented Reality')
 self.roi_selector = ROISelector('Augmented Reality',
 self.on_rect)

 self.overlay_vertices = np.float32([[0, 0, 0], [0, 1, 0],
 [1, 1, 0], [1, 0, 0],
 [0.5, 0.5, 4]])

Augmented Reality

[328]

 self.overlay_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
 (0,4), (1,4), (2,4), (3,4)]
 self.color_base = (0, 255, 0)
 self.color_lines = (0, 0, 0)

 def on_rect(self, rect):
 self.tracker.add_target(self.frame, rect)

 def start(self):
 while True:
 is_running = not self.paused and self.roi_selector.
selected_rect is None
 if is_running or self.frame is None:
 ret, frame = self.cap.read()
 scaling_factor = 0.5
 frame = cv2.resize(frame, None, fx=scaling_factor,
 fy=scaling_factor,
 interpolation=cv2.INTER_AREA)
 if not ret:
 break

 self.frame = frame.copy()

 img = self.frame.copy()
 if is_running:
 tracked = self.tracker.track_target(self.frame)
 for item in tracked:
 cv2.polylines(img, [np.int32(item.quad)],
 True, self.color_lines, 2)
 for (x, y) in np.int32(item.points_cur):
 cv2.circle(img, (x, y), 2,
 self.color_lines)

 self.overlay_graphics(img, item)

 self.roi_selector.draw_rect(img)
 cv2.imshow('Augmented Reality', img)
 ch = cv2.waitKey(1)
 if ch == ord(' '):
 self.paused = not self.paused
 if ch == ord('c'):
 self.tracker.clear_targets()
 if ch == 27:
 break

Chapter 11

[329]

 def overlay_graphics(self, img, tracked):
 x_start, y_start, x_end, y_end = tracked.target.rect
 quad_3d = np.float32([[x_start, y_start, 0], [x_end,
 y_start, 0],
 [x_end, y_end, 0], [x_start, y_end, 0]])
 h, w = img.shape[:2]
 K = np.float64([[w, 0, 0.5*(w-1)],
 [0, w, 0.5*(h-1)],
 [0, 0, 1.0]])
 dist_coef = np.zeros(4)
 ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K,
 dist_coef)
 verts = self.overlay_vertices * [(x_end-x_start),
 (y_end-y_start),
 -(x_end-x_start)*0.3] + (x_start, y_start, 0)
 verts = cv2.projectPoints(verts, rvec, tvec, K,
 dist_coef)[0].reshape(-1, 2)

 verts_floor = np.int32(verts).reshape(-1,2)
 cv2.drawContours(img, [verts_floor[:4]], -1,
 self.color_base, -3)
 cv2.drawContours(img, [np.vstack((verts_floor[:2],
 verts_floor[4:5]))],
 -1, (0,255,0), -3)
 cv2.drawContours(img, [np.vstack((verts_floor[1:3],
 verts_floor[4:5]))],
 -1, (255,0,0), -3)
 cv2.drawContours(img, [np.vstack((verts_floor[2:4],
 verts_floor[4:5]))],
 -1, (0,0,150), -3)
 cv2.drawContours(img, [np.vstack((verts_floor[3:4],
 verts_floor[0:1],
 verts_floor[4:5]))], -1, (255,255,0), -3)

 for i, j in self.overlay_edges:
 (x_start, y_start), (x_end, y_end) = verts[i],
 verts[j]
 cv2.line(img, (int(x_start), int(y_start)),
 (int(x_end), int(y_end)), self.color_lines, 2)

if __name__ == '__main__':
 Tracker().start()

Augmented Reality

[330]

Let's look at the code
The class Tracker is used to perform all the computations here. We initialize the
class with the pyramid structure that is defined using edges and vertices. The logic
that we use to track the surface is the same as we discussed earlier because we are
using the same class. We just need to use solvePnP and projectPoints to map the
3D pyramid to the 2D surface.

Let's add some movements
Now that we know how to add a virtual pyramid, let's see if we can add some
movements. Let's see how we can dynamically change the height of the pyramid.
When you start, the pyramid will look like this:

Chapter 11

[331]

If you wait for some time, the pyramid gets taller and it will look like this:

Let's see how to do it in OpenCV Python. Inside the augmented reality code that we
just discussed, add the following snippet at the end of the __init__ method in the
Tracker class:

self.overlay_vertices = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0],
[1, 0, 0], [0.5, 0.5, 4]])
self.overlay_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
 (0,4), (1,4), (2,4), (3,4)]
self.color_base = (0, 255, 0)
self.color_lines = (0, 0, 0)

self.graphics_counter = 0
self.time_counter = 0

Now that we have the structure, we need to add the code to dynamically change the
height. Replace the overlay_graphics() method with the following method:

def overlay_graphics(self, img, tracked):
 x_start, y_start, x_end, y_end = tracked.target.rect
 quad_3d = np.float32([[x_start, y_start, 0],
 [x_end, y_start, 0],

Augmented Reality

[332]

 [x_end, y_end, 0], [x_start, y_end, 0]])
 h, w = img.shape[:2]
 K = np.float64([[w, 0, 0.5*(w-1)],
 [0, w, 0.5*(h-1)],
 [0, 0, 1.0]])
 dist_coef = np.zeros(4)
 ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K,
 dist_coef)

 self.time_counter += 1
 if not self.time_counter % 20:
 self.graphics_counter = (self.graphics_counter + 1) % 8

 self.overlay_vertices = np.float32([[0, 0, 0], [0, 1, 0],
 [1, 1, 0], [1, 0, 0],
 [0.5, 0.5, self.graphics_counter]])

 verts = self.overlay_vertices * [(x_end-x_start),
 (y_end-y_start),
 -(x_end-x_start)*0.3] + (x_start, y_start, 0)
 verts = cv2.projectPoints(verts, rvec, tvec, K,
 dist_coef)[0].reshape(-1, 2)

 verts_floor = np.int32(verts).reshape(-1,2)
 cv2.drawContours(img, [verts_floor[:4]], -1,
 self.color_base, -3)
 cv2.drawContours(img, [np.vstack((verts_floor[:2],
 verts_floor[4:5]))],
 -1, (0,255,0), -3)
 cv2.drawContours(img, [np.vstack((verts_floor[1:3],
 verts_floor[4:5]))],
 -1, (255,0,0), -3)
 cv2.drawContours(img, [np.vstack((verts_floor[2:4],
 verts_floor[4:5]))],
 -1, (0,0,150), -3)
 cv2.drawContours(img, [np.vstack((verts_floor[3:4],
 verts_floor[0:1],
 verts_floor[4:5]))], -1, (255,255,0), -3)

 for i, j in self.overlay_edges:
 (x_start, y_start), (x_end, y_end) = verts[i], verts[j]
 cv2.line(img, (int(x_start), int(y_start)), (int(x_end),
 int(y_end)), self.color_lines, 2)

Chapter 11

[333]

Now that we know how to change the height, let's go ahead and make the pyramid
dance for us. We can make the tip of the pyramid oscillate in a nice periodic fashion.
So when you start, it will look like this:

If you wait for some time, it will look like this:

You can look at augmented_reality_motion.py for the implementation details.

Augmented Reality

[334]

In our next experiment, we will make the whole pyramid move around the region
of interest. We can make it move in any way we want. Let's start by adding linear
diagonal movement around our selected region of interest. When you start, it will
look like this:

After some time, it will look like this:

Chapter 11

[335]

Refer to augmented_reality_dancing.py to see how to change the overlay_
graphics() method to make it dance. Let's see if we can make the pyramid go
around in circles around our region of interest. When you start, it will look like this:

After some time, it will move to a new position:

Augmented Reality

[336]

You can refer to augmented_reality_circular_motion.py to see how to make this
happen. You can make it do anything you want. You just need to come up with the
right mathematical formula and the pyramid will literally dance to your tune! You can
also try out other virtual objects to see what you can with it. There are a lot of things
you can do with a lot of different objects. These examples provide a good reference
point, on top of which you can build many interesting augmented reality applications.

Summary
In this chapter, you learned about the premise of augmented reality and
understood what an augmented reality system looks like. We discussed the
geometric transformations required for augmented reality. You learned how to
use those transformations to estimate the camera pose. You learned how to track
planar objects. We discussed how we can add virtual objects on top of the real
world. You learned how to modify the virtual objects in different ways to add
cool effects. Remember that the world of computer vision is filled with endless
possibilities! This book is designed to teach you the necessary skills to get started
on a wide variety of projects. Now it's up to you and your imagination to use the
skills you have acquired here to build something unique and interesting.

[337]

Module 3

OpenCV with Python Blueprints

Design and develop advanced computer vision projects using OpenCV with Python

[339]

Fun with Filters
The goal of this chapter is to develop a number of image processing filters and apply
them to the video stream of a webcam in real time. These filters will rely on various
OpenCV functions to manipulate matrices through splitting, merging, arithmetic
operations, and applying lookup tables for complex functions.

The three effects are as follows:

• Black-and-white pencil sketch: To create this effect, we will make use of two
image blending techniques, known as dodging and burning

• Warming/cooling filters: To create these effects, we will implement our own
curve filters using a lookup table

• Cartoonizer: To create this effect, we will combine a bilateral filter, a median
filter, and adaptive thresholding

OpenCV is such an advanced toolchain that often the question is not how to
implement something from scratch, but rather which pre-canned implementation
to choose for your needs. Generating complex effects is not hard if you have a lot of
computing resources to spare. The challenge usually lies in finding an approach that
not only gets the job done, but also gets it done in time.

Instead of teaching the basic concepts of image manipulation through theoretical
lessons, we will take a practical approach and develop a single end-to-end app that
integrates a number of image filtering techniques. We will apply our theoretical
knowledge to arrive at a solution that not only works but also speeds up seemingly
complex effects so that a laptop can produce them in real time.

Fun with Filters

[340]

The following screenshot shows the final outcome of the three effects running
on a laptop:

All of the code in this book is targeted for OpenCV 2.4.9 and has been
tested on Ubuntu 14.04. Throughout this book, we will make extensive
use of the NumPy package (http://www.numpy.org). In addition,
this chapter requires the UnivariateSpline module of the SciPy
package (http://www.scipy.org) as well as the wxPython 2.8
graphical user interface (http://www.wxpython.org/download.
php) for cross-platform GUI applications. We will try to avoid further
dependencies wherever possible.

http://www.numpy.org
http://www.scipy.org
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php

Chapter 1

[341]

Planning the app
The final app will consist of the following modules and scripts:

• filters: A module comprising different classes for the three different image
effects. The modular approach will allow us to use the filters independently
of any graphical user interface (GUI).

• filters.PencilSketch: A class for applying the pencil sketch effect to an
RGB color image.

• filters.WarmingFilter: A class for applying the warming filter to an RGB
color image.

• filters.CoolingFilter: A class for applying the cooling filter to an RGB
color image.

• filters.Cartoonizer: A method for applying the cartoonizer effect to an
RGB color image.

• gui: A module that provides a wxPython GUI application to access the
webcam and display the camera feed, which we will make extensive use of
throughout the book.

• gui.BaseLayout: A generic layout from which more complicated layouts
can be built.

• chapter1: The main script for this chapter.
• chapter1.FilterLayout: A custom layout based on gui.BaseLayout that

displays the camera feed and a row of radio buttons that allows the user
to select from the available image filters to be applied to each frame of the
camera feed.

• chapter1.main: The main function routine for starting the GUI application
and accessing the webcam.

Creating a black-and-white pencil sketch
In order to obtain a pencil sketch (that is, a black-and-white drawing) of the camera
frame, we will make use of two image blending techniques, known as dodging and
burning. These terms refer to techniques employed during the printing process in
traditional photography; photographers would manipulate the exposure time of a
certain area of a darkroom print in order to lighten or darken it. Dodging lightens an
image, whereas burning darkens it.

Fun with Filters

[342]

Areas that were not supposed to undergo changes were protected with a mask.
Today, modern image editing programs, such as Photoshop and Gimp, offer ways to
mimic these effects in digital images. For example, masks are still used to mimic the
effect of changing exposure time of an image, wherein areas of a mask with relatively
intense values will expose the image more, thus lightening the image. OpenCV does
not offer a native function to implement these techniques, but with a little insight
and a few tricks, we will arrive at our own efficient implementation that can be used
to produce a beautiful pencil sketch effect.

If you search on the Internet, you might stumble upon the following common
procedure to achieve a pencil sketch from an RGB color image:

1. Convert the color image to grayscale.
2. Invert the grayscale image to get a negative.
3. Apply a Gaussian blur to the negative from step 2.
4. Blend the grayscale image from step 1 with the blurred negative from step 3

using a color dodge.

Whereas steps 1 to 3 are straightforward, step 4 can be a little tricky. Let's get that
one out of the way first.

OpenCV 3 comes with a pencil sketch effect right out of the
box. The cv2.pencilSketch function uses a domain filter
introduced in the 2011 paper Domain transform for edge-aware
image and video processing, by Eduardo Gastal and Manuel
Oliveira. However, for the purpose of this book, we will develop
our own filter.

Implementing dodging and burning in
OpenCV
In modern image editing tools, such as Photoshop, color dodging of an image A with
a mask B is implemented as the following ternary statement acting on every pixel
index, called idx:

((B[idx] == 255) ? B[idx] :
 min(255, ((A[idx] << 8) / (255-B[idx]))))

This essentially divides the value of an A[idx] image pixel by the inverse of the
B[idx] mask pixel value, while making sure that the resulting pixel value will be
in the range of [0, 255] and that we do not divide by zero.

Chapter 1

[343]

We could translate this into the following naïve Python function, which accepts two
OpenCV matrices (image and mask) and returns the blended image:

def dodgeNaive(image, mask):
 # determine the shape of the input image
 width,height = image.shape[:2]

 # prepare output argument with same size as image
 blend = np.zeros((width,height), np.uint8)

 for col in xrange(width):
 for row in xrange(height):

 # shift image pixel value by 8 bits
 # divide by the inverse of the mask
 tmp = (image[c,r] << 8) / (255.-mask)

 # make sure resulting value stays within bounds
 if tmp > 255:
 tmp = 255
 blend[c,r] = tmp
 return blend

As you might have guessed, although this code might be functionally correct, it will
undoubtedly be horrendously slow. Firstly, the function uses for loops, which are
almost always a bad idea in Python. Secondly, NumPy arrays (the underlying format
of OpenCV images in Python) are optimized for array calculations, so accessing and
modifying each image[c,r] pixel separately will be really slow.

Instead, we should realize that the <<8 operation is the same as multiplying the pixel
value with the number 2^8=256, and that pixel-wise division can be achieved with
the cv2.divide function. Thus, an improved version of our dodge function could
look like this:

import cv2

def dodgeV2(image, mask):
 return cv2.divide(image, 255-mask, scale=256)

We have reduced the dodge function to a single line! The dodgeV2 function produces
the same result as dodgeNaive but is orders of magnitude faster. In addition, cv2.
divide automatically takes care of division by zero, making the result 0 where 255-
mask is zero.

Fun with Filters

[344]

Now, it is straightforward to implement an analogous burning function,
which divides the inverted image by the inverted mask and inverts the result:

import cv2

def burnV2(image, mask):
 return 255 – cv2.divide(255-image, 255-mask, scale=256)

Pencil sketch transformation
With these tricks in our bag, we are now ready to take a look at the entire procedure.
The final code will be in its own class in the filters module. After we have converted
a color image to grayscale, we aim to blend this image with its blurred negative:

1. We import the OpenCV and numpy modules:
import cv2
import numpy as np

2. Instantiate the PencilSketch class:
class PencilSketch:
 def __init__(self, (width, height),
 bg_gray='pencilsketch_bg.jpg'):

The constructor of this class will accept the image dimensions as well as an
optional background image, which we will make use of in just a bit. If the file
exists, we will open it and scale it to the right size:

self.width = width
self.height = height

try to open background canvas (if it exists)
self.canvas = cv2.imread(bg_gray, cv2.CV_8UC1)
if self.canvas is not None:
 self.canvas = cv2.resize(self.canvas,
 (self.width, self.height))

3. Add a render method that will perform the pencil sketch:
def renderV2(self, img_rgb):

4. Converting an RGB image (imgRGB) to grayscale is straightforward:
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)

Note that it does not matter whether the input image is RGB or BGR.

Chapter 1

[345]

5. We then invert the image and blur it with a large Gaussian kernel of size
(21,21):
img_gray_inv = 255 – img_gray
img_blur = cv2.GaussianBlur(img_gray_inv, (21,21), 0, 0)

6. We use our dodgeV2 dodging function from the aforementioned code to
blend the original grayscale image with the blurred inverse:
img_blend = dodgeV2(mg_gray, img_blur)
return cv2.cvtColor(img_blend, cv2.COLOR_GRAY2RGB)

The resulting image looks like this:

Did you notice that our code can be optimized further?

A Gaussian blur is basically a convolution with a Gaussian function. One of the
beauties of convolutions is their associative property. This means that it does not
matter whether we first invert the image and then blur it, or first blur the image and
then invert it.

"Then what matters?" you might ask. Well, if we start with a blurred image and pass
its inverse to the dodgeV2 function, then within that function, the image will get
inverted again (the 255-mask part), essentially yielding the original image. If we get
rid of these redundant operations, an optimized render method would look like this:

def render(img_rgb):
 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
 img_blur = cv2.GaussianBlur(img_gray, (21,21), 0, 0)
 img_blend = cv2.divide(img_gray, img_blur, scale=256)
 return img_blend

Fun with Filters

[346]

For kicks and giggles, we want to lightly blend our transformed image (img_blend)
with a background image (self.canvas) that makes it look as if we drew the image
on a canvas:

if self.canvas is not None:
 img_blend = cv2.multiply(img_blend, self.canvas, scale=1./256)
return cv2.cvtColor(img_blend, cv2.COLOR_GRAY2BGR)

And we're done! The final output looks like what is shown here:

Generating a warming/cooling filter
When we perceive images, our brain picks up on a number of subtle clues to infer
important details about the scene. For example, in broad daylight, highlights may
have a slightly yellowish tint because they are in direct sunlight, whereas shadows
may appear slightly bluish due to the ambient light of the blue sky. When we view
an image with such color properties, we might immediately think of a sunny day.

This effect is no mystery to photographers, who sometimes purposely manipulate
the white balance of an image to convey a certain mood. Warm colors are generally
perceived as more pleasant, whereas cool colors are associated with night and
drabness.

To manipulate the perceived color temperature of an image, we will implement
a curve filter. These filters control how color transitions appear between different
regions of an image, allowing us to subtly shift the color spectrum without adding
an unnatural-looking overall tint to the image.

Chapter 1

[347]

Color manipulation via curve shifting
A curve filter is essentially a function, y = f(x), that maps an input pixel value x to
an output pixel value y. The curve is parameterized by a set of n+1 anchor points,
as follows: {(x_0,y_0), (x_1,y_1), ..., (x_n, y_n)}.

Each anchor point is a pair of numbers that represent the input and output pixel
values. For example, the pair (30, 90) means that an input pixel value of 30 is
increased to an output value of 90. Values between anchor points are interpolated
along a smooth curve (hence the name curve filter).

Such a filter can be applied to any image channel, be it a single grayscale channel or
the R, G, and B channels of an RGB color image. Thus, for our purposes, all values of
x and y must stay between 0 and 255.

For example, if we wanted to make a grayscale image slightly brighter, we could use
a curve filter with the following set of control points: {(0,0), (128, 192), (255,255)}. This
would mean that all input pixel values except 0 and 255 would be increased slightly,
resulting in an overall brightening effect of the image.

If we want such filters to produce natural-looking images, it is important to respect
the following two rules:

• Every set of anchor points should include (0,0) and (255,255). This is
important in order to prevent the image from appearing as if it has an
overall tint, as black remains black and white remains white.

• The function f(x) should be monotonously increasing. In other words,
with increasing x, f(x) either stays the same or increases (that is, it never
decreases). This is important for making sure that shadows remain shadows
and highlights remain highlights.

Implementing a curve filter by using lookup
tables
Curve filters are computationally expensive, because the values of f(x) must be
interpolated whenever x does not coincide with one of the prespecified anchor
points. Performing this computation for every pixel of every image frame that we
encounter would have dramatic effects on performance.

Fun with Filters

[348]

Instead, we make use of a lookup table. Since there are only 256 possible pixel
values for our purposes, we need to calculate f(x) only for all the 256 possible values
of x. Interpolation is handled by the UnivariateSpline function of the scipy.
interpolate module, as shown in the following code snippet:

from scipy.interpolate import UnivariateSpline

def _create_LUT_8UC1(self, x, y):
 spl = UnivariateSpline(x, y)
 return spl(xrange(256))

The return argument of the function is a 256-element list that contains the
interpolated f(x) values for every possible value of x.

All we need to do now is come up with a set of anchor points, (x_i, y_i), and we are
ready to apply the filter to a grayscale input image (img_gray):

import cv2
import numpy as np

x = [0, 128, 255]
y = [0, 192, 255]
myLUT = _create_LUT_8UC1(x, y)
img_curved = cv2.LUT(img_gray, myLUT).astype(np.uint8)

The result looks like this (the original image is on the left, and the transformed image
is on the right):

Designing the warming/cooling effect
With the mechanism to quickly apply a generic curve filter to any image channel
in place, we now turn to the question of how to manipulate the perceived color
temperature of an image. Again, the final code will have its own class in the filters
module.

Chapter 1

[349]

If you have a minute to spare, I advise you to play around with the different curve
settings for a while. You can choose any number of anchor points and apply the
curve filter to any image channel you can think of (red, green, blue, hue, saturation,
brightness, lightness, and so on). You could even combine multiple channels, or
decrease one and shift another to a desired region. What will the result look like?

However, if the number of possibilities dazzles you, take a more conservative
approach. First, by making use of our _create_LUT_8UC1 function developed in the
preceding steps, let's define two generic curve filters, one that (by trend) increases all
pixel values of a channel, and one that generally decreases them:

class WarmingFilter:

 def __init__(self):
 self.incr_ch_lut = _create_LUT_8UC1([0, 64, 128, 192, 256],
 [0, 70, 140, 210, 256])
 self.decr_ch_lut = _create_LUT_8UC1([0, 64, 128, 192, 256],
 [0, 30, 80, 120, 192])

The easiest way to make an image appear as if it was taken on a hot, sunny day
(maybe close to sunset), is to increase the reds in the image and make the colors
appear vivid by increasing the color saturation. We will achieve this in two steps:

1. Increase the pixel values in the R channel and decrease the pixel values in
the B channel of an RGB color image using incr_ch_lut and decr_ch_lut,
respectively:
def render(self, img_rgb):
 c_r, c_g, c_b = cv2.split(img_rgb)
 c_r = cv2.LUT(c_r, self.incr_ch_lut).astype(np.uint8)
 c_b = cv2.LUT(c_b, self.decr_ch_lut).astype(np.uint8)
 img_rgb = cv2.merge((c_r, c_g, c_b))

2. Transform the image into the HSV color space (H means hue, S means
saturation, and V means value), and increase the S channel using incr_ch_
lut. This can be achieved with the following function, which expects an RGB
color image as input:

c_b = cv2.LUT(c_b, decrChLUT).astype(np.uint8)

increase color saturation
c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb,
 cv2.COLOR_RGB2HSV))
c_s = cv2.LUT(c_s, self.incr_ch_lut).astype(np.uint8)
return cv2.cvtColor(cv2.merge((c_h, c_s, c_v)),
 cv2.COLOR_HSV2RGB)

Fun with Filters

[350]

The result looks like what is shown here:

Analogously, we can define a cooling filter that increases the pixel values in the B
channel, decreases the pixel values in the R channel of an RGB image, converts the
image into the HSV color space, and decreases color saturation via the S channel:

class CoolingFilter:

 def render(self, img_rgb):

 c_r, c_g, c_b = cv2.split(img_rgb)
 c_r = cv2.LUT(c_r, self.decr_ch_lut).astype(np.uint8)
 c_b = cv2.LUT(c_b, self.incr_ch_lut).astype(np.uint8)
 img_rgb = cv2.merge((c_r, c_g, c_b))

 # decrease color saturation
 c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb,
 cv2.COLOR_RGB2HSV))
 c_s = cv2.LUT(c_s, self.decr_ch_lut).astype(np.uint8)
 return cv2.cvtColor(cv2.merge((c_h, c_s, c_v)),
 cv2.COLOR_HSV2RGB)

Now, the result looks like this:

Chapter 1

[351]

Cartoonizing an image
Over the past few years, professional cartoonizer software has popped up all over
the place. In order to achieve the basic cartoon effect, all that we need is a bilateral
filter and some edge detection. The bilateral filter will reduce the color palette, or
the numbers of colors that are used in the image. This mimics a cartoon drawing,
wherein a cartoonist typically has few colors to work with. Then we can apply edge
detection to the resulting image to generate bold silhouettes. The real challenge,
however, lies in the computational cost of bilateral filters. We will thus use some
tricks to produce an acceptable cartoon effect in real time.

We will adhere to the following procedure to transform an RGB color image into
a cartoon:

1. Apply a bilateral filter to reduce the color palette of the image.
2. Convert the original color image into grayscale.
3. Apply a median blur to reduce image noise.
4. Use adaptive thresholding to detect and emphasize the edges in an

edge mask.
5. Combine the color image from step 1 with the edge mask from step 4.

Using a bilateral filter for edge-aware
smoothing
A strong bilateral filter is ideally suitable for converting an RGB image into a color
painting or a cartoon, because it smoothens flat regions while keeping edges sharp.
It seems that the only drawback of this filter is its computational cost, as it is orders
of magnitude slower than other smoothing operations, such as a Gaussian blur.

The first measure to take when we need to reduce the computational cost is to
perform an operation on an image of low resolution. In order to downscale an RGB
image (imgRGB) to a quarter of its size (reduce the width and height to half), we could
use cv2.resize:

import cv2

img_small = cv2.resize(img_rgb, (0,0), fx=0.5, fy=0.5)

A pixel value in the resized image will correspond to the pixel average of a small
neighborhood in the original image. However, this process may produce image
artifacts, which is also known as aliasing. While this is bad enough on its own, the
effect might be enhanced by subsequent processing, for example, edge detection.

Fun with Filters

[352]

A better alternative might be to use the Gaussian pyramid for downscaling (again to
a quarter of the original size). The Gaussian pyramid consists of a blur operation that
is performed before the image is resampled, which reduces aliasing effects:

img_small = cv2.pyrDown(img_rgb)

However, even at this scale, the bilateral filter might still be too slow to run in real
time. Another trick is to repeatedly (say, five times) apply a small bilateral filter to
the image instead of applying a large bilateral filter once:

num_iter = 5
for _ in xrange(num_iter):
 img_small = cv2.bilateralFilter(img_small, d=9, sigmaColor=9,
 sigmaSpace=7)

The three parameters in cv2.bilateralFilter control the diameter of the
pixel neighborhood (d) and the standard deviation of the filter in the color space
(sigmaColor) and coordinate space (sigmaSpace).

Don't forget to restore the image to its original size:

img_rgb = cv2.pyrUp(img_small)

The result looks like a blurred color painting of a creepy programmer, as follows:

Detecting and emphasizing prominent edges
Again, when it comes to edge detection, the challenge often does not lie in how the
underlying algorithm works, but instead which particular algorithm to choose for
the task at hand. You might already be familiar with a variety of edge detectors.
For example, Canny edge detection (cv2.Canny) provides a relatively simple and
effective method to detect edges in an image, but it is susceptible to noise.

Chapter 1

[353]

The Sobel operator (cv2.Sobel) can reduce such artifacts, but it is not rotationally
symmetric. The Scharr operator (cv2.Scharr) was targeted at correcting this, but
only looks at the first image derivative. If you are interested, there are even more
operators for you, such as the Laplacian or ridge operator (which includes the
second derivative), but they are far more complex. And in the end, for our specific
purposes, they might not look better, maybe because they are as susceptible to
lighting conditions as any other algorithm.

For the purpose of this project, we will choose a function that might not even be
associated with conventional edge detection—cv2.adaptiveThreshold. Like cv2.
threshold, this function uses a threshold pixel value to convert a grayscale image into
a binary image. That is, if a pixel value in the original image is above the threshold,
then the pixel value in the final image will be 255. Otherwise, it will be 0. However,
the beauty of adaptive thresholding is that it does not look at the overall properties
of the image. Instead, it detects the most salient features in each small neighborhood
independently, without regard to the global image optima. This makes the algorithm
extremely robust to lighting conditions, which is exactly what we want when we seek
to draw bold, black outlines around objects and people in a cartoon.

However, it also makes the algorithm susceptible to noise. To counteract this, we
will preprocess the image with a median filter. A median filter does what its name
suggests; it replaces each pixel value with the median value of all the pixels in a
small pixel neighborhood. We first convert the RGB image (img_rgb) to grayscale
(img_gray) and then apply a median blur with a seven-pixel local neighborhood:

convert to grayscale and apply median blur
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
img_blur = cv2.medianBlur(img_gray, 7)

After reducing the noise, it is now safe to detect and enhance the edges using
adaptive thresholding. Even if there is some image noise left, the cv2.ADAPTIVE_
THRESH_MEAN_C algorithm with blockSize=9 will ensure that the threshold is
applied to the mean of a 9 x 9 neighborhood minus C=2:

img_edge = cv2.adaptiveThreshold(img_blur, 255,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY, 9, 2)

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Fun with Filters

[354]

The result of the adaptive thresholding looks like this:

Combining colors and outlines to produce
a cartoon
The last step is to combine the two. Simply fuse the two effects together into a single
image using cv2.bitwise_and. The complete function is as follows:

def render(self, img_rgb):
 numDownSamples = 2 # number of downscaling steps
 numBilateralFilters = 7 # number of bilateral filtering steps

 # -- STEP 1 --
 # downsample image using Gaussian pyramid
 img_color = img_rgb
 for _ in xrange(numDownSamples):
 img_color = cv2.pyrDown(img_color)

 # repeatedly apply small bilateral filter instead of applying
 # one large filter
 for _ in xrange(numBilateralFilters):
 img_color = cv2.bilateralFilter(img_color, 9, 9, 7)

 # upsample image to original size
 for _ in xrange(numDownSamples):
 img_color = cv2.pyrUp(img_color)

 # -- STEPS 2 and 3 --
 # convert to grayscale and apply median blur
 img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
 img_blur = cv2.medianBlur(img_gray, 7)

Chapter 1

[355]

 # -- STEP 4 --
 # detect and enhance edges
 img_edge = cv2.adaptiveThreshold(img_blur, 255,
 cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)

 # -- STEP 5 --
 # convert back to color so that it can be bit-ANDed
 # with color image
 img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
 return cv2.bitwise_and(img_color, img_edge)

The result looks like what is shown here:

Putting it all together
Before we can make use of the designed image filter effects in an interactive way,
we need to set up the main script and design a GUI application.

Running the app
To run the application, we will turn to the chapter1.py. script, which we will start
by importing all the necessary modules:

import numpy as np

import wx
import cv2

Fun with Filters

[356]

We will also have to import a generic GUI layout (from gui) and all the designed
image effects (from filters):

from gui import BaseLayout
from filters import PencilSketch, WarmingFilter, CoolingFilter,
 Cartoonizer

OpenCV provides a straightforward way to access a computer's webcam or camera
device. The following code snippet opens the default camera ID (0) of a computer
using cv2.VideoCapture:

def main():
 capture = cv2.VideoCapture(0)

On some platforms, the first call to cv2.VideoCapture fails to open a channel.
In that case, we provide a workaround by opening the channel ourselves:

if not(capture.isOpened()):
 capture.open()

In order to give our application a fair chance to run in real time, we will limit the size
of the video stream to 640 x 480 pixels:

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

If you are using OpenCV 3, the constants that you are looking for
might be called cv3.CAP_PROP_FRAME_WIDTH and cv3.CAP_
PROP_FRAME_HEIGHT.

Then the capture stream can be passed to our GUI application, which is an instance
of the FilterLayout class:

 # start graphical user interface
 app = wx.App()
 layout = FilterLayout(None, -1, 'Fun with Filters', capture)
 layout.Show(True)
 app.MainLoop()

The only thing left to do now is design the said GUI.

The GUI base class
The FilterLayout GUI will be based on a generic, plain layout class called
BaseLayout, which we will be able to use in subsequent chapters as well.

Chapter 1

[357]

The BaseLayout class is designed as an abstract base class. You can think of this class
as a blueprint or recipe that will apply to all the layouts that we are yet to design—a
skeleton class, if you will, that will serve as the backbone for all of our future GUI code.
In order to use abstract classes, we need the following import statement:

from abc import ABCMeta, abstractmethod

We also include some other modules that will be helpful, especially the wx Python
module and OpenCV (of course):

import time

import wx
import cv2

The class is designed to be derived from the blueprint or skeleton, that is, the
wx.Frame class. We also mark the class as abstract by adding the __metaclass__
attribute:

class BaseLayout(wx.Frame):
 __metaclass__ = ABCMeta

Later on, when we write our own custom layout (FilterLayout), we will use the
same notation to specify that the class is based on the BaseLayout blueprint (or
skeleton) class, for example, in class FilterLayout(BaseLayout):. But for now,
let's focus on the BaseLayout class.

An abstract class has at least one abstract method. An abstract method is akin to
specifying that a certain method must exist, but we are not sure at that time what
it should look like. For example, suppose BaseLayout contains a method specified
as follows:

@abstractmethod
def _init_custom_layout(self):
 pass

Then any class deriving from it, such as FilterLayout, must specify a fully
fleshed-out implementation of a method with that exact signature. This will
allow us to create custom layouts, as you will see in a moment.

But first, let's proceed to the GUI constructor.

Fun with Filters

[358]

The GUI constructor
The BaseLayout constructor accepts an ID (-1), a title string ('Fun with Filters'),
a video capture object, and an optional argument that specifies the number of frames
per second. Then, the first thing to do in the constructor is try and read a frame from
the captured object in order to determine the image size:

def __init__(self, parent, id, title, capture, fps=10):
 self.capture = capture
 # determine window size and init wx.Frame
 _, frame = self.capture.read()
 self.imgHeight,self.imgWidth = frame.shape[:2]

We will use the image size to prepare a buffer that will store each video frame as
a bitmap, and to set the size of the GUI. Because we want to display a bunch of
control buttons below the current video frame, we set the height of the GUI to self.
imgHeight+20:

self.bmp = wx.BitmapFromBuffer(self.imgWidth,
 self.imgHeight, frame)
wx.Frame.__init__(self, parent, id, title,
 size=(self.imgWidth, self.imgHeight+20))

We then provide two methods to initialize some more parameters and create the
actual layout of the GUI:

self._init_base_layout()
self._create_base_layout()

Handling video streams
The video stream of the webcam is handled by a series of steps that begin with the
_init_base_layout method. These steps might appear overly complicated at first,
but they are necessary in order to allow the video to run smoothly, even at higher
frame rates (that is, to counteract flicker).

The wxPython module works with events and callback methods. When a certain
event is triggered, it can cause a certain class method to be executed (in other words,
a method can bind to an event). We will use this mechanism to our advantage and
display a new frame every so often using the following steps:

1. We create a timer that will generate a wx.EVT_TIMER event whenever 1000./
fps milliseconds have passed:
def _init_base_layout(self):
 self.timer = wx.Timer(self)
 self.timer.Start(1000./self.fps)

Chapter 1

[359]

2. Whenever the timer is up, we want the _on_next_frame method to be called.
It will try to acquire a new video frame:
self.Bind(wx.EVT_TIMER, self._on_next_frame)

3. The _on_next_frame method will process the new video frame and store the
processed frame in a bitmap. This will trigger another event, wx.EVT_PAINT.
We want to bind this event to the _on_paint method, which will paint the
display the new frame:
self.Bind(wx.EVT_PAINT, self._on_paint)

The _on_next_frame method grabs a new frame and, once done, sends the frame to
another method, __process_frame, for further processing:

def _on_next_frame(self, event):
 ret, frame = self.capture.read()
 if ret:
 frame = self._process_frame(cv2.cvtColor(frame,
 cv2.COLOR_BGR2RGB))

The processed frame (frame) is then stored in a bitmap buffer (self.bmp):

self.bmp.CopyFromBuffer(frame)

Calling Refresh triggers the aforementioned wx.EVT_PAINT event, which binds to
_on_paint:

self.Refresh(eraseBackground=False)

The paint method then grabs the frame from the buffer and displays it:

def _on_paint(self, event):
 deviceContext = wx.BufferedPaintDC(self.pnl)
 deviceContext.DrawBitmap(self.bmp, 0, 0)

A basic GUI layout
The creation of the generic layout is done by a method called _create_base_layout.
The most basic layout consists of only a large black panel that provides enough room
to display the video feed:

def _create_base_layout(self):
 self.pnl = wx.Panel(self, -1,
 size=(self.imgWidth, self.imgHeight))
 self.pnl.SetBackgroundColour(wx.BLACK)

Fun with Filters

[360]

In order for the layout to be extendable, we add it to a vertically arranged
wx.BoxSizer object:

self.panels_vertical = wx.BoxSizer(wx.VERTICAL)
self.panels_vertical.Add(self.pnl, 1, flag=wx.EXPAND)

Next, we specify an abstract method, _create_custom_layout, for which we will
not fill in any code. Instead, any user of our base class can make their own custom
modifications to the basic layout:

self._create_custom_layout()

Then, we just need to set the minimum size of the resulting layout and center it:

self.SetMinSize((self.imgWidth, self.imgHeight))
self.SetSizer(self.panels_vertical)
self.Centre()

A custom filter layout
Now we are almost done! If we want to use the BaseLayout class, we need to
provide code for the three methods that were left blank previously:

• _init_custom_layout: This is where we can initialize task-specific
parameters

• _create_custom_layout: This is where we can make task-specific
modifications to the GUI layout

• _process_frame: This is where we perform task-specific processing on each
captured frame of the camera feed

At this point, initializing the image filters is self-explanatory, as it only requires us to
instantiate the corresponding classes:

def _init_custom_layout(self):
 self.pencil_sketch = PencilSketch((self.imgWidth,
 self.imgHeight))
 self.warm_filter = WarmingFilter()
 self.cool_filter = CoolingFilter()
 self.cartoonizer = Cartoonizer()

To customize the layout, we arrange a number of radio buttons horizontally,
one button per image effect mode:

def _create_custom_layout(self):
 # create a horizontal layout with all filter modes
 pnl = wx.Panel(self, -1)

Chapter 1

[361]

 self.mode_warm = wx.RadioButton(pnl, -1, 'Warming Filter',
 (10, 10), style=wx.RB_GROUP)
 self.mode_cool = wx.RadioButton(pnl, -1, 'Cooling Filter',
 (10, 10))
 self.mode_sketch = wx.RadioButton(pnl, -1, 'Pencil Sketch',
 (10, 10))
 self.mode_cartoon = wx.RadioButton(pnl, -1, 'Cartoon',
 (10, 10))
 hbox = wx.BoxSizer(wx.HORIZONTAL)
 hbox.Add(self.mode_warm, 1)
 hbox.Add(self.mode_cool, 1)
 hbox.Add(self.mode_sketch, 1)
 hbox.Add(self.mode_cartoon, 1)
 pnl.SetSizer(hbox)

Here, the style=wx.RB_GROUP option makes sure that only one of these radio
buttons can be selected at a time.

To make these changes take effect, pnl needs to be added to list of existing panels:

self.panels_vertical.Add(pnl, flag=wx.EXPAND | wx.BOTTOM | wx.TOP,
 border=1)

The last method to be specified is _process_frame. Recall that this method is
triggered whenever a new camera frame is received. All that we need to do is
pick the right image effect to be applied, which depends on the radio button
configuration. We simply check which of the buttons is currently selected and call
the corresponding render method:

def _process_frame(self, frame_rgb):
 if self.mode_warm.GetValue():
 frame = self.warm_filter.render(frame_rgb)
 elif self.mode_cool.GetValue():
 frame = self.cool_filter.render(frame_rgb)
 elif self.mode_sketch.GetValue():
 frame = self.pencil_sketch.render(frame_rgb)
 elif self.mode_cartoon.GetValue():
 frame = self.cartoonizer.render(frame_rgb)

Don't forget to return the processed frame:

return frame

Fun with Filters

[362]

And we're done!

Here is the result:

Summary
In this chapter, we explored a number of interesting image processing effects. We
used dodging and burning to create a black-and-white pencil sketch effect, explored
lookup tables to arrive at an efficient implementation of curve filters, and got creative
to produce a cartoon effect.

In the next chapter, we will shift gears a bit and explore the use of depth sensors,
such as Microsoft Kinect 3D, to recognize hand gestures in real time.

[363]

Hand Gesture Recognition
Using a Kinect Depth Sensor

The goal of this chapter is to develop an app that detects and tracks simple hand
gestures in real time using the output of a depth sensor, such as that of a Microsoft
Kinect 3D sensor or an Asus Xtion. The app will analyze each captured frame to
perform the following tasks:

• Hand region segmentation: The user's hand region will be extracted in each
frame by analyzing the depth map output of the Kinect sensor, which is done
by thresholding, applying some morphological operations, and finding
connected components

• Hand shape analysis: The shape of the segmented hand region will be
analyzed by determining contours, convex hull, and convexity defects

• Hand gesture recognition: The number of extended fingers will be
determined based on the hand contour's convexity defects, and the gesture
will be classified accordingly (with no extended fingers corresponding to a
fist, and five extended fingers corresponding to an open hand)

Gesture recognition is an ever-popular topic in computer science. This is because
it not only enables humans to communicate with machines (human-machine
interaction or HMI), but also constitutes the first step for machines to begin
understanding human body language. With affordable sensors such as Microsoft
Kinect or Asus Xtion, and open source software such as OpenKinect and OpenNI, it
has never been easy to get started in the field yourself. So, what shall we do with all
this technology?

Hand Gesture Recognition Using a Kinect Depth Sensor

[364]

The beauty of the algorithm that we are going to implement in this chapter is that it
works well for a number of hand gestures, yet is simple enough to run in real time
on a generic laptop. Also, if we want, we can easily extend it to incorporate more
complicated hand pose estimations. The end product looks like this:

No matter how many fingers of my left hand I extend, the algorithm correctly
segments the hand region (white), draws the corresponding convex hull (the green
line surrounding the hand), finds all convexity defects that belong to the spaces
between fingers (large green points) while ignoring others (small red points), and
infers the correct number of extended fingers (the number in the bottom-right
corner), even for a fist.

This chapter assumes that you have a Microsoft Kinect 3D sensor
installed. Alternatively, you may install an Asus Xtion or any other
depth sensor for which OpenCV has built-in support. First, install
OpenKinect and libfreenect from http://www.openkinect.org/
wiki/Getting_Started. Then, you need to build (or rebuild)
OpenCV with OpenNI support. The GUI used in this chapter will
again be designed with wxPython, which can be obtained from
http://www.wxpython.org/download.php.

http://www.openkinect.org/wiki/Getting_Started
http://www.openkinect.org/wiki/Getting_Started
http://www.wxpython.org/download.php

Chapter 2

[365]

Planning the app
The final app will consist of the following modules and scripts:

• gestures: A module that consists of an algorithm for recognizing hand
gestures. We separate this algorithm from the rest of the application so that it
can be used as a standalone module without the need for a GUI.

• gestures.HandGestureRecognition: A class that implements the entire
process flow of hand-gesture recognition. It accepts a single-channel depth
image (acquired from the Kinect depth sensor) and returns an annotated
RGB color image with an estimated number of extended fingers.

• gui: A module that provides a wxPython GUI application to access the
capture device and display the video feed. This is the same module that we
used in the last chapter. In order to have it access the Kinect depth sensor
instead of a generic camera, we will have to extend some of the base class
functionality.

• gui.BaseLayout: A generic layout from which more complicated layouts
can be built.

• chapter2: The main script for the chapter.
• chapter2.KinectLayout: A custom layout based on gui.BaseLayout that

displays the Kinect depth sensor feed. Each captured frame is processed with
the HandGestureRecognition class described earlier.

• chapter2.main: The main function routine for starting the GUI application
and accessing the depth sensor.

Setting up the app
Before we can get down to the nitty-gritty of our gesture recognition algorithm, we
need to make sure that we can access the Kinect sensor and display a stream of depth
frames in a simple GUI.

Hand Gesture Recognition Using a Kinect Depth Sensor

[366]

Accessing the Kinect 3D sensor
Accessing Microsoft Kinect from within OpenCV is not much different from
accessing a computer's webcam or camera device. The easiest way to integrate a
Kinect sensor with OpenCV is by using an OpenKinect module called freenect.
For installation instructions, take a look at the preceding information box. The
following code snippet grants access to the sensor using cv2.VideoCapture:

import cv2
import freenect

device = cv2.cv.CV_CAP_OPENNI
capture = cv2.VideoCapture(device)

On some platforms, the first call to cv2.VideoCapture fails to open a capture
channel. In this case, we provide a workaround by opening the channel ourselves:

if not(capture.isOpened(device)):
 capture.open(device)

If you want to connect to your Asus Xtion, the device variable should be assigned
the cv2.cv.CV_CAP_OPENNI_ASUS value instead.

In order to give our app a fair chance of running in real time, we will limit the frame
size to 640 x 480 pixels:

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

If you are using OpenCV 3, the constants you are looking for might be
called cv3.CAP_PROP_FRAME_WIDTH and cv3.CAP_PROP_FRAME_
HEIGHT.

The read() method of cv2.VideoCapture is inappropriate when we need to
synchronize a set of cameras or a multihead camera, such as a Kinect. In this case, we
should use the grab() and retrieve() methods instead. An even easier approach
when working with OpenKinect is to use the sync_get_depth() and sync_get_
video()methods.

For the purpose of this chapter, we will need only the Kinect's depth map, which is a
single-channel (grayscale) image in which each pixel value is the estimated distance
from the camera to a particular surface in the visual scene. The latest frame can be
grabbed via this code:

depth, timestamp = freenect.sync_get_depth()

Chapter 2

[367]

The preceding code returns both the depth map and a timestamp. We will ignore
the latter for now. By default, the map is in 11-bit format, which is inadequate to be
visualized with cv2.imshow right away. Thus, it is a good idea to convert the image
to 8-bit precision first.

In order to reduce the range of depth values in the frame, we will clip the maximal
distance to a value of 1,023 (or 2**10-1). This will get rid of values that correspond
either to noise or distances that are far too large to be of interest to us:

np.clip(depth, 0, 2**10-1, depth)
depth >>= 2

Then, we will convert the image into 8-bit format and display it:

depth = depth.astype(np.uint8)
cv2.imshow("depth", depth)

Running the app
In order to run our app, we will need to execute a main function routine that accesses
the Kinect, generates the GUI, and executes the main loop of the app. This is done by
the main function of chapter2.py:

import numpy as np

import wx
import cv2
import freenect

from gui import BaseLayout
from gestures import HandGestureRecognition

def main():
 device = cv2.cv.CV_CAP_OPENNI
 capture = cv2.VideoCapture()
 if not(capture.isOpened()):
 capture.open(device)

 capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
 capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

Hand Gesture Recognition Using a Kinect Depth Sensor

[368]

As in the last chapter, we will design a suitable layout (KinectLayout) for the
current project:

 # start graphical user interface
 app = wx.App()
 layout = KinectLayout(None, -1, 'Kinect Hand Gesture
 Recognition', capture)
 layout.Show(True)
 app.MainLoop()

The Kinect GUI
The layout chosen for the current project (KinectLayout) is as plain as it gets.
It should simply display the live stream of the Kinect depth sensor at a comfortable
frame rate of 10 frames per second. Therefore, there is no need to further customize
BaseLayout:

class KinectLayout(BaseLayout):
 def _create_custom_layout(self):
 pass

The only parameter that needs to be initialized this time is the recognition class.
This will be useful in just a moment:

 def _init_custom_layout(self):
 self.hand_gestures = HandGestureRecognition()

Instead of reading a regular camera frame, we need to acquire a depth frame via
the freenect method sync_get_depth(). This can be achieved by overriding the
following method:

def _acquire_frame(self):

As mentioned earlier, by default this function returns a single-channel depth
image with 11-bit precision and a timestamp. However, we are not interested
in the timestamp, and we simply pass on the frame if the acquisition is successful:

 frame, _ = freenect.sync_get_depth()
 # return success if frame size is valid
 if frame is not None:
 return (True, frame)
 else:
 return (False, frame)

Chapter 2

[369]

The rest of the visualization pipeline is handled by the BaseLayout class. We only
need to make sure that we provide a _process_frame method. This method accepts
a depth image with 11-bit precision, processes it, and returns an annotated 8-bit RGB
color image. Conversion to a regular grayscale image is the same as mentioned in the
previous subsection:

def _process_frame(self, frame):
 # clip max depth to 1023, convert to 8-bit grayscale
 np.clip(frame, 0, 2**10 – 1, frame)
 frame >>= 2
 frame = frame.astype(np.uint8)

The resulting grayscale image can then be passed to the hand gesture recognizer,
which will return the estimated number of extended fingers (num_fingers) and the
annotated RGB color image mentioned earlier (img_draw):

num_fingers, img_draw = self.hand_gestures.recognize(frame)

In order to simplify the segmentation task of the HandGestureRecognition class,
we will instruct the user to place their hand in the center of the screen. To provide a
visual aid for this, let's draw a rectangle around the image center and highlight the
center pixel of the image in orange:

height, width = frame.shape[:2]
cv2.circle(img_draw, (width/2, height/2), 3, [255, 102, 0], 2)
cv2.rectangle(img_draw, (width/3, height/3), (width*2/3,
 height*2/3), [255, 102, 0], 2)

In addition, we will print num_fingers on the screen:

cv2.putText(img_draw, str(num_fingers), (30, 30),
 cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255))

return img_draw

Tracking hand gestures in real time
Hand gestures are analyzed by the HandGestureRecognition class, especially by its
recognize method. This class starts off with a few parameter initializations, which
will be explained and used later:

class HandGestureRecognition:
 def __init__(self):
 # maximum depth deviation for a pixel to be considered
 # within range

Hand Gesture Recognition Using a Kinect Depth Sensor

[370]

 self.abs_depth_dev = 14

 # cut-off angle (deg): everything below this is a
 convexity
 # point that belongs to two extended fingers
 self.thresh_deg = 80.0

The recognize method is where the real magic takes place. This method handles the
entire process flow, from the raw grayscale image all the way to a recognized hand
gesture. It implements the following procedure:

1. It extracts the user's hand region by analyzing the depth map (img_gray) and
returning a hand region mask (segment):
def recognize(self, img_gray):
 segment = self._segment_arm(img_gray)

2. It performs contour analysis on the hand region mask (segment). Then, it
returns the largest contour area found in the image (contours) and any
convexity defects (defects):
[contours, defects] = self._find_hull_defects(segment)

3. Based on the contours found and the convexity defects, it detects the number
of extended fingers (num_fingers) in the image. Then, it annotates the
output image (img_draw) with contours, defect points, and the number of
extended fingers:
img_draw = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)
[num_fingers, img_draw] =
 self._detect_num_fingers(contours,
 defects, img_draw)

4. It returns the estimated number of extended fingers (num_fingers), as well
as the annotated output image (img_draw):
return (num_fingers, img_draw)

Hand region segmentation
The automatic detection of an arm, and later the hand region, could be designed to
be arbitrarily complicated, maybe by combining information about the shape and
color of an arm or hand. However, using a skin color as a determining feature to
find hands in visual scenes might fail terribly in poor lighting conditions or when
the user is wearing gloves. Instead, we choose to recognize the user's hand by its
shape in the depth map. Allowing hands of all sorts to be present in any region of the
image unnecessarily complicates the mission of the present chapter, so we make two
simplifying assumptions:

Chapter 2

[371]

• We will instruct the user of our app to place their hand in front of the center
of the screen, orienting their palm roughly parallel to the orientation of the
Kinect sensor so that it is easier to identify the corresponding depth layer of
the hand.

• We will also instruct the user to sit roughly one to two meters away from the
Kinect, and to slightly extend their arm in front of their body so that the hand
will end up in a slightly different depth layer than the arm. However, the
algorithm will still work even if the full arm is visible.

In this way, it will be relatively straightforward to segment the image based on the
depth layer alone. Otherwise, we would have to come up with a hand detection
algorithm first, which would unnecessarily complicate our mission. If you feel
adventurous, feel free to do this on your own.

Finding the most prominent depth of the
image center region
Once the hand is placed roughly in the center of the screen, we can start finding all
image pixels that lie on the same depth plane as the hand.

To do this, we simply need to determine the most prominent depth value of the
center region of the image. The simplest approach would be as follows: look only
at the depth value of the center pixel:

width, height = depth.shape
center_pixel_depth = depth[width/2, height/2]

Then, create a mask in which all pixels at a depth of center_pixel_depth are white
and all others are black:

import numpy as np

depth_mask = np.where(depth == center_pixel_depth, 255,
 0).astype(np.uint8)

However, this approach will not be very robust, because chances are that it will be
compromised by the following:

• Your hand will not be placed perfectly parallel to the Kinect sensor
• Your hand will not be perfectly flat
• The Kinect sensor values will be noisy

Therefore, different regions of your hand will have slightly different depth values.

Hand Gesture Recognition Using a Kinect Depth Sensor

[372]

The _segment_arm method takes a slightly better approach; that is, looking at a small
neighborhood in the center of the image and determining the median (meaning the
most prominent) depth value. First, we find the center region (for example, 21 x
21 pixels) of the image frame:

def _segment_arm(self, frame):
 """ segments the arm region based on depth """
 center_half = 10 # half-width of 21 is 21/2-1
 lowerHeight = self.height/2 – center_half
 upperHeight = self.height/2 + center_half
 lowerWidth = self.width/2 – center_half
 upperWidth = self.width/2 + center_half
 center = frame[lowerHeight:upperHeight,
 lowerWidth:upperWidth]

We can then reshape the depth values of this center region into a one-dimensional
vector and determine the median depth value, med_val:

med_val = np.median(center)

We can now compare med_val with the depth value of all pixels in the image and
create a mask in which all pixels whose depth values are within a particular range
[med_val-self.abs_depth_dev, med_val+self.abs_depth_dev] are white, and
all other pixels are black. However, for reasons that will be come clear in a moment,
let's paint the pixels gray instead of white:

frame = np.where(abs(frame – med_val) <= self.abs_depth_dev,
 128, 0).astype(np.uint8)

Chapter 2

[373]

The result will look like this:

Applying morphological closing to smoothen
the segmentation mask
A common problem with segmentation is that a hard threshold typically results
in small imperfections (that is, holes, as in the preceding image) in the segmented
region. These holes can be alleviated by using morphological opening and closing.
Opening removes small objects from the foreground (assuming that the objects are
bright on a dark foreground), whereas closing removes small holes (dark regions).

This means that we can get rid of the small black regions in our mask by applying
morphological closing (dilation followed by erosion) with a small 3 x 3 pixel kernel:

 kernel = np.ones((3, 3), np.uint8)
 frame = cv2.morphologyEx(frame, cv2.MORPH_CLOSE, kernel)

Hand Gesture Recognition Using a Kinect Depth Sensor

[374]

The result looks a lot smoother, as follows:

Notice, however, that the mask still contains regions that do not belong to the hand
or arm, such as what appears to be one of my knees on the left and some furniture
on the right. These objects just happen to be on the same depth layer as my arm
and hand. If possible, we could now combine the depth information with another
descriptor, maybe a texture-based or skeleton-based hand classifier, that would
weed out all non-skin regions.

Finding connected components in a
segmentation mask
An easier approach is to realize that most of the time hands are not connected to
knees or furniture. We already know that the center region belongs to the hand,
so we can simply apply cv2.floodfill to find all the connected image regions.

Chapter 2

[375]

Before we do this, we want to be absolutely certain that the seed point for the flood
fill belongs to the right mask region. This can be achieved by assigning a grayscale
value of 128 to the seed point. However, we also want to make sure that the center
pixel does not, by any coincidence, lie within a cavity that the morphological
operation failed to close. So, let's set a small 7 x 7 pixel region with a grayscale
value of 128 instead:

small_kernel = 3
frame[self.height/2-small_kernel :
 self.height/2+small_kernel,
 self.width/2-small_kernel :
 self.width/2+small_kernel] = 128

As flood filling (as well as morphological operations) is potentially dangerous, later
OpenCV versions require the specification of a mask that avoids flooding the entire
image. This mask has to be 2 pixels wider and taller than the original image and has
to be used in combination with the cv2.FLOODFILL_MASK_ONLY flag. It can be very
helpful in constraining the flood filling to a small region of the image or a specific
contour so that we need not connect two neighboring regions that should have never
been connected in the first place. It's better to be safe than sorry, right?

Ah, screw it! Today, we feel courageous! Let's make the mask entirely black:

mask = np.zeros((self.height+2, self.width+2), np.uint8)

Then, we can apply the flood fill to the center pixel (the seed point) and paint all the
connected regions white:

flood = frame.copy()
cv2.floodFill(flood, mask, (self.width/2, self.height/2),
 255, flags=4 | (255 << 8))

At this point, it should be clear why we decided to start with a gray mask earlier.
We now have a mask that contains white regions (arm and hand), gray regions
(neither arm nor hand but other things in the same depth plane), and black regions
(all others). With this setup, it is easy to apply a simple binary threshold to highlight
only the relevant regions of the pre-segmented depth plane:

ret, flooded = cv2.threshold(flood, 129, 255, cv2.THRESH_BINARY)

Hand Gesture Recognition Using a Kinect Depth Sensor

[376]

This is what the resulting mask looks like:

The resulting segmentation mask can now be returned to the recognize method,
where it will be used as an input to _find_hull_defects, as well as a canvas for
drawing the final output image (img_draw).

Hand shape analysis
Now that we know (roughly) where the hand is located, we aim to learn something
about its shape.

Determining the contour of the segmented
hand region
The first step involves determining the contour of the segmented hand region.
Luckily, OpenCV comes with a pre-canned version of such an algorithm—cv2.
findContours. This function acts on a binary image and returns a set of points that
are believed to be part of the contour. As there might be multiple contours present
in the image, it is possible to retrieve an entire hierarchy of contours:

def _find_hull_defects(self, segment):
 contours, hierarchy = cv2.findContours(segment,
 cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

Chapter 2

[377]

Furthermore, because we do not know which contour we are looking for, we have
to make an assumption to clean up the contour result. Since it is possible that some
small cavities are left over even after the morphological closing—but we are fairly
certain that our mask contains only the segmented area of interest—we will assume
that the largest contour found is the one that we are looking for. Thus, we simply
traverse the list of contours, calculate the contour area (cv2.contourArea), and store
only the largest one (max_contour):

max_contour = max(contours, key=cv2.contourArea)

Finding the convex hull of a contour area
Once we have identified the largest contour in our mask, it is straightforward
to compute the convex hull of the contour area. The convex hull is basically the
envelope of the contour area. If you think of all the pixels that belong to the contour
area as a set of nails sticking out of a board, then the convex hull is the shape formed
by a tight rubber band that surrounds all the nails.

We can get the convex hull directly from our largest contour (max_contour):

hull = cv2.convexHull(max_contour, returnPoints=False)

As we now want to look at convexity deficits in this hull, we are instructed by the
OpenCV documentation to set the returnPoints optional flag to False.

The convex hull drawn in yellow around a segmented hand region looks like this:

Hand Gesture Recognition Using a Kinect Depth Sensor

[378]

Finding the convexity defects of a convex hull
As is evident from the preceding screenshot, not all points on the convex hull belong
to the segmented hand region. In fact, all the fingers and the wrist cause severe
convexity defects, that is, points of the contour that are far away from the hull.

We can find these defects by looking at both the largest contour (max_contour)
and the corresponding convex hull (hull):

defects = cv2.convexityDefects(max_contour, hull)

The output of this function (defects) is a 4-tuple that contains start_index (the
point of the contour where the defect begins), end_index (the point of the contour
where the defect ends), farthest_pt_index (the farthest from the convex hull point
within the defect), and fixpt_depth (the distance between the farthest point and the
convex hull). We will make use of this information in just a moment when we try to
extract the number of extended fingers.

For now though, our job is done. The extracted contour (max_contour) and
convexity defects (defects) can be passed to recognize, where they will be used as
inputs to _detect_num_fingers:

return (cnt,defects)

Hand gesture recognition
What remains to be done is to classify the hand gesture based on the number of
extended fingers. For example, if we find five extended fingers, we assume the hand
to be open, whereas no extended fingers implies a fist. All that we are trying to do is
count from zero to five and make the app recognize the corresponding number
of fingers.

This is actually trickier than it might seem at first. For example, people in Europe
might count to three by extending their thumb, index finger, and middle finger.
If you do that in the US, people there might get horrendously confused, because
they do not tend to use their thumbs when signaling the number two. This might
lead to frustration, especially in restaurants (trust me). If we could find a way to
generalize these two scenarios—maybe by appropriately counting the number of
extended fingers—we would have an algorithm that could teach simple hand gesture
recognition to not only a machine but also (maybe) to an average waitress.

Chapter 2

[379]

As you might have guessed, the answer is related to convexity defects. As mentioned
earlier, extended fingers cause defects in the convex hull. However, the inverse
is not true; that is, not all convexity defects are caused by fingers! There might be
additional defects caused by the wrist, as well as the overall orientation of the hand
or the arm. How can we distinguish between these different causes of defects?

Distinguishing between different causes of
convexity defects
The trick is to look at the angle between the farthest point from the convex hull
point within the defect (farthest_pt_index) and the start and end points of the
defect (start_index and end_index, respectively), as illustrated in the following
screenshot:

In this screenshot, the orange markers serve as a visual aid to center the hand in
the middle of the screen, and the convex hull is outlined in green. Each red dot
corresponds to the point farthest from the convex hull (farthest_pt_index) for
every convexity defect detected. If we compare a typical angle that belongs to two
extended fingers (such as θj) to an angle that is caused by general hand geometry
(such as θi), we notice that the former is much smaller than the latter. This is
obviously because humans can spread their fingers only a little, thus creating a
narrow angle made by the farthest defect point and the neighboring fingertips.

Hand Gesture Recognition Using a Kinect Depth Sensor

[380]

Therefore, we can iterate over all convexity defects and compute the angle between
the said points. For this, we will need a utility function that calculates the angle (in
radians) between two arbitrary, list-like vectors, v1 and v2:

def angle_rad(v1, v2):
 return np.arctan2(np.linalg.norm(np.cross(v1, v2)),
 np.dot(v1, v2))

This method uses the cross product to compute the angle, rather than doing it in the
standard way. The standard way of calculating the angle between two vectors v1
and v2 is by calculating their dot product and dividing it by the norm of v1 and the
norm of v2. However, this method has two imperfections:

• You have to manually avoid division by zero if either the norm of v1 or the
norm of v2 is zero

• The method returns relatively inaccurate results for small angles

Similarly, we provide a simple function to convert an angle from degrees to radians:

def deg2rad(angle_deg):
 return angle_deg/180.0*np.pi

Classifying hand gestures based on the
number of extended fingers
What remains to be done is actually to classify the hand gesture based on the
number of extended fingers. The _detect_num_fingers method will take as input
the detected contour (contours), the convexity defects (defects), and a canvas to
draw on (img_draw):

def _detect_num_fingers(self, contours, defects, img_draw):

Based on these parameters, it will then determine the number of extended fingers.

However, we first need to define a cut-off angle that can be used as a threshold to
classify convexity defects as being caused by extended fingers or not. Except for the
angle between the thumb and the index finger, it is rather hard to get anything close
to 90 degrees, so anything close to that number should work. We do not want the
cut-off angle to be too high, because that might lead to misclassifications:

self.thresh_deg = 80.0

Chapter 2

[381]

For simplicity, let's focus on the special cases first. If we do not find any convexity
defects, it means that we possibly made a mistake during the convex hull calculation,
or there are simply no extended fingers in the frame, so we return 0 as the number
of detected fingers:

if defects is None:
 return [0, img_draw]

However, we can take this idea even further. Due to the fact that arms are usually
slimmer than hands or fists, we can assume that the hand geometry will always
generate at least two convexity defects (which usually belong to the wrists). So, if
there are no additional defects, it implies that there are no extended fingers:

if len(defects) <= 2:
 return [0, img_draw]

Now that we have ruled out all special cases, we can begin counting real fingers.
If there is a sufficient number of defects, we will find a defect between every pair
of fingers. Thus, in order to get the number right (num_fingers), we should start
counting at 1:

num_fingers = 1

Then, we can start iterating over all convexity defects. For each defect, we will extract
the four elements and draw its hull for visualization purposes:

for i in range(defects.shape[0]):
 # each defect point is a 4-tuplestart_idx, end_idx,
 farthest_idx, _ == defects[i, 0]
 start = tuple(contours[start_idx][0])
 end = tuple(contours[end_idx][0])
 far = tuple(contours[farthest_idx][0])

 # draw the hull
 cv2.line(img_draw, start, end [0, 255, 0], 2)

Then, we will compute the angle between the two edges from far to start and from
far to end. If the angle is smaller than self.thresh_deg degrees, it means that we
are dealing with a defect that is most likely caused by two extended fingers. In such
cases, we want to increment the number of detected fingers (num_fingers), and
draw the point with green. Otherwise, we draw the point with red:

if angle is below a threshold, defect point belongs
to two extended fingers
if angle_rad(np.subtract(start, far),
 np.subtract(end, far))
 < deg2rad(self.thresh_deg):
 # increment number of fingers

Hand Gesture Recognition Using a Kinect Depth Sensor

[382]

 num_fingers = num_fingers + 1

 # draw point as green
 cv2.circle(img_draw, far, 5, [0, 255, 0], -1)
else:
 # draw point as red
 cv2.circle(img_draw, far, 5, [255, 0, 0], -1)

After iterating over all convexity defects, we pass the number of detected fingers and
the assembled output image to the recognize method:

return (min(5, num_fingers), img_draw)

This will make sure that we do not exceed the common number of fingers per hand.

The result can be seen in the following screenshots:

Interestingly, our app is able to detect the correct number of extended fingers in a
variety of hand configurations. Defect points between extended fingers are easily
classified as such by the algorithm, and others are successfully ignored.

Chapter 2

[383]

Summary
This chapter showed a relatively simple and yet surprisingly robust way of
recognizing a variety of hand gestures by counting the number of extended fingers.

The algorithm first shows how a task-relevant region of the image can be segmented
using depth information acquired from a Microsoft Kinect 3D Sensor, and how
morphological operations can be used to clean up the segmentation result. By
analyzing the shape of the segmented hand region, the algorithm comes up with a
way to classify hand gestures based on the types of convexity effects found in the
image. Once again, mastering our use of OpenCV to perform a desired task did not
require us to produce a large amount of code. Instead, we were challenged to gain an
important insight that made us use the built-in functionality of OpenCV in the most
effective way possible.

Gesture recognition is a popular but challenging field in computer science,
with applications in a large number of areas, such as human-computer interaction,
video surveillance, and even the video game industry. You can now use your
advanced understanding of segmentation and structure analysis to build your
own state-of-the-art gesture recognition system.

In the next chapter, we will continue to focus on detecting objects of interest in
visual scenes, but we will assume a much more complicated case—viewing the
object from an arbitrary perspective and distance. To do this, we will combine
perspective transformations with scale-invariant feature descriptors to develop
a robust feature-matching algorithm.

[385]

Finding Objects via
Feature Matching and

Perspective Transforms
The goal of this chapter is to develop an app that is able to detect and track an
object of interest in the video stream of a webcam, even if the object is viewed from
different angles or distances or under partial occlusion.

In this chapter, we will cover the following topics:

• Feature extraction
• Feature matching
• Feature tracking

In the previous chapter, you learned how to detect and track a simple object
(the silhouette of a hand) in a very controlled environment. To be more specific,
we instructed the user of our app to place the hand in the central region of the screen
and made assumptions about the size and shape of the object (the hand). But what
if we wanted to detect and track objects of arbitrary sizes, possibly viewed from a
number of different angles or under partial occlusion?

For this, we will make use of feature descriptors, which are a way of capturing the
important properties of our object of interest. We do this so that the object can be
located even when it is embedded in a busy visual scene. We will again apply our
algorithm to the live stream of a webcam, and do our best to keep the algorithm
robust yet simple enough to run in real time.

Finding Objects via Feature Matching and Perspective Transforms

[386]

Tasks performed by the app
The app will analyze each captured frame to perform the following tasks:

• Feature extraction: We will describe an object of interest with Speeded-Up
Robust Features (SURF), which is an algorithm used to find distinctive
keypoints in an image that are both scale invariant and rotation invariant.
These keypoints will help us make sure that we are tracking the right object
over multiple frames. Because the appearance of the object might change
from time to time, it is important to find keypoints that do not depend on
the viewing distance or viewing angle of the object (hence the scale and
rotation invariance).

• Feature matching: We will try to establish a correspondence between
keypoints using the Fast Library for Approximate Nearest Neighbors
(FLANN) to see whether a frame contains keypoints similar to the keypoints
from our object of interest. If we find a good match, we will mark the object
in each frame.

• Feature tracking: We will keep track of the located object of interest from
frame to frame using various forms of early outlier detection and outlier
rejection to speed up the algorithm.

• Perspective transform: We will then reverse any translations and rotations
that the object has undergone by warping the perspective so that the object
appears upright in the center of the screen. This creates a cool effect in which
the object seems frozen in a position while the entire surrounding scene
rotates around it.

An example of the first three steps is shown in the following image, which contains
a template image of our object of interest on the left, and me holding a printout of the
template image on the right. Matching features in the two frames are connected with
blue lines, and the located object is outlined in green on the right:

Chapter 3

[387]

The last step is transforming the located object so that it is projected onto the frontal
plane (which should look roughly like the original template image, appearing
close-up and roughly upright), while the entire scene seems to warp around it,
as shown in the following figure:

Finding Objects via Feature Matching and Perspective Transforms

[388]

Again, the GUI will be designed with wxPython 2.8, which
can be obtained from http://www.wxpython.org/
download.php. This chapter has been tested with OpenCV
2.4.9. Note that if you are using OpenCV 3, you may have to
obtain the so-called extra modules from https://github.
com/Itseez/opencv_contrib and install OpenCV 3 with
the OPENCV_EXTRA_MODULES_PATH variable set in order to
get SURF and FLANN installed. Also, note that you may have
to obtain a license to use SURF in commercial applications.

Planning the app
The final app will consist of a Python class for detecting, matching, and tracking
image features, as well as a wxPython GUI application that accesses the webcam
and displays each processed frame.

The project will contain the following modules and scripts:

• feature_matching: A module containing an algorithm for feature extraction,
feature matching, and feature tracking. We separate this algorithm from the
rest of the application so that it can be used as a standalone module without
the need for a GUI.

• feature_matching.FeatureMatching: A class that implements the entire
feature-matching process flow. It accepts an RGB camera frame and tries to
locate an object of interest in it.

• gui: A module that provides a wxPython GUI application to access the
capture device and display the video feed. This is the same module that we
used in previous chapters.

• gui.BaseLayout: A generic layout from which more complicated layouts can
be built. This chapter does not require any modifications to the basic layout.

• chapter3: The main script for the chapter.
• chapter3.FeatureMatchingLayout: A custom layout based on gui.

BaseLayout that displays the webcam video feed. Each captured frame
will be processed with the FeatureMatching class described earlier.

• chapter3.main: The main function routine for starting the GUI application
and accessing the depth sensor.

http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
https://github.com/Itseez/opencv_contrib
https://github.com/Itseez/opencv_contrib

Chapter 3

[389]

Setting up the app
Before we can get down to the nitty-gritty of our feature-matching algorithm, we need
to make sure that we can access the webcam and display the video stream in a simple
GUI. Luckily, we have already figured out how to do this in Chapter 1, Fun with Filters.

Running the app
In order to run our app, we will need to execute a main function routine that accesses
the webcam, generates the GUI, and executes the main loop of the app:

import cv2
import wx

from gui import BaseLayout
from feature_matching import FeatureMatching

def main():
 capture = cv2.VideoCapture(0)
 if not(capture.isOpened()):
 capture.open()

 capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
 capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

 # start graphical user interface
 app = wx.App()

 layout = FeatureMatchingLayout(None, -1, 'Feature Matching',
 capture)
 layout.Show(True)
 app.MainLoop()

If you are using OpenCV 3, the constants that you are
looking for might be called cv3.CAP_PROP_FRAME_
WIDTH and cv3.CAP_PROP_FRAME_HEIGHT.

Finding Objects via Feature Matching and Perspective Transforms

[390]

The FeatureMatching GUI
Analogous to the previous chapter, the layout chosen for the current project
(FeatureMatchingLayout) is as plain as it gets. It should simply display the video
feed of the webcam at a comfortable frame rate of 10 frames per second. Therefore,
there is no need to further customize BaseLayout:

class FeatureMatchingLayout(BaseLayout):
 def _create_custom_layout(self):
 pass

The only parameter that needs to be initialized this time is the feature-matching
class. We pass to it the path to a template (or training) file that depicts the object
of interest:

 def _init_custom_layout(self):
 self.matching = FeatureMatching
 (train_image='salinger.jpg')

The rest of the visualization pipeline is handled by the BaseLayout class. We only
need to make sure that we provide a _process_frame method. This method accepts a
RGB color image, processes it by means of the FeatureMatching method match, and
passes the processed image for visualization. If the object is detected in the current
frame, the match method will report success=True and we will return the processed
frame. If the match method is not successful, we will simply return the input frame:

 def _process_frame(self, frame):
 self.matching = FeatureMatching
 (train_image='salinger.jpg')
 # if object detected, display new frame, else old one
 success, new_frame = self.matching.match(frame)
 if success:
 return new_frame
 else:
 return frame

Chapter 3

[391]

The process flow
Features are extracted, matched, and tracked by the FeatureMatching class, especially
by its public match method. However, before we can begin analyzing the incoming
video stream, we have some homework to do. It might not be clear right away what
some of these things mean (especially for SURF and FLANN), but we will discuss
these steps in detail in the following sections. For now, we only have to worry
about initialization:

class FeatureMatching:
 def __init__(self, train_image='salinger.jpg'):

1. This sets up a SURF detector (see the next section for details) with a Hessian
threshold between 300 and 500:
self.min_hessian = 400
self.SURF = cv2.SURF(self.min_hessian)

2. We load a template of our object of interest (self.img_obj), or print an error
if it cannot be found:
self.img_obj = cv2.imread(train_image, cv2.CV_8UC1)
if self.img_obj is None:
 print "Could not find train image " + train_image
 raise SystemExit

3. Also, store the shape of the image (self.sh_train) for convenience:
self.sh_train = self.img_train.shape[:2] # rows, cols

For reasons that will soon be evidently clear, we will call the template image
the train image and every incoming frame a query image. The train image
has a size of 480 x 270 pixels and looks like this:

Finding Objects via Feature Matching and Perspective Transforms

[392]

4. Apply SURF to the object of interest. This can be done with a convenient
function call that returns both a list of keypoints and the descriptor (see the
next section for details):
self.key_train, self.desc_train =
 self.SURF.detectAndCompute(self.img_obj, None)

We will do the same with each incoming frame and compare lists of features
across images.

5. Set up a FLANN object (see the next section for details). This requires the
specification of some additional parameters via dictionaries, such as which
algorithm to use and how many trees to run in parallel:
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE,
 trees = 5)
search_params = dict(checks=50)
self.flann = cv2.FlannBasedMatcher(index_params,
 search_params)

6. Finally, initialize some additional bookkeeping variables. These will come
in handy when we want to make our feature tracking both quicker and
more accurate. For example, we will keep track of the latest computed
homography matrix and of the number of frames we have spent without
locating our object of interest (see the next section for details):
self.last_hinv = np.zeros((3,3))
self.num_frames_no_success = 0
self.max_frames_no_success = 5
self.max_error_hinv = 50.

Then, the bulk of the work is done by the FeatureMatching method match.
This method follows the procedure elaborated here:

1. It extracts interesting image features from each incoming video frame.
This is done in FeatureMatching._extract_features.

2. It matches features between the template image and the video frame.
This is done in FeatureMatching._match_features. If no such match
is found, it skips to the next frame.

3. It finds the corner points of the template image in the video frame. This is
done in FeatureMatching._detect_corner_points. If any of the corners
lies (significantly) outside the frame, it skips to the next frame.

4. It calculates the area of the quadrilateral that the four corner points span.
If the area is either too small or too large, it skips to the next frame.

5. It outlines the corner points of the template image in the current frame.

Chapter 3

[393]

6. It finds the perspective transform that is necessary to bring the located
object from the current frame to the frontoparallel plane. This is done in
FeatureMatching._warp_keypoints. If the result is significantly different
from the result we got recently for an earlier frame, it skips to the next frame.

7. It warps the perspective of the current frame to make the object of interest
appear centered and upright.

In the following sections, we will discuss these steps in detail.

Feature extraction
Generally speaking, a feature is an interesting area of an image. It is a measurable
property of an image that is very informative about what the image represents.
Usually, the grayscale value of an individual pixel (the raw data) does not tell us
a lot about the image as a whole. Instead, we need to derive a property that is
more informative.

For example, knowing that there are patches in the image that look like eyes, a nose,
and a mouth will allow us to reason about how likely it is that the image represents
a face. In this case, the number of resources required to describe the data (are we
seeing an image of a face?) is drastically reduced (does the image contain two eyes?
a nose? a mouth?).

More low-level features, such as the presence of edges, corners, blobs, or ridges, may
be more informative generally. Some features may be better than others, depending
on the application. Once we have made up our mind on how to describe our favorite
feature, we need to come up with a way to check whether or not the image contains
such features and where it contains them.

Feature detection
The process of finding areas of interest in an image is called feature detection.
OpenCV provides a whole range of feature detection algorithms, such as these:

• Harris corner detection: Knowing that edges are areas with high-intensity
changes in all directions, Harris and Stephens came up with a fast way of
finding such areas. This algorithm is implemented as cv2.cornerHarris
in OpenCV.

• Shi-Tomasi corner detection: Shi and Tomasi have their own idea of what
are good features to track, and they usually do better than Harris corner
detection by finding the N strongest corners. This algorithm is implemented
as cv2.goodFeaturesToTrack in OpenCV.

Finding Objects via Feature Matching and Perspective Transforms

[394]

• Scale-Invariant Feature Transform (SIFT): Corner detection is not sufficient
when the scale of the image changes. To this end, Lowe developed a method
to describe keypoints in an image that are independent of orientation and
size (hence the name scale invariant).The algorithm is implemented as
cv2.SIFT in OpenCV2, but was moved to the extra modules in OpenCV3
since its code is proprietary.

• Speeded-Up Robust Features (SURF): SIFT has proven to be really good,
but it is not fast enough for most applications. This is where SURF comes in,
which replaces the expensive Laplacian of a Gaussian from SIFT with a box
filter. The algorithm is implemented as cv2.SURF in OpenCV2, but, like SIFT,
it was moved to the extra modules in OpenCV3 since its code is proprietary.

OpenCV has support for even more feature descriptors, such as Features from
Accelerated Segment Test (FAST), Binary Robust Independent Elementary
Features (BRIEF), and Oriented FAST and Rotated BRIEF (ORB), the latter
being an open source alternative to SIFT or SURF.

Detecting features in an image with SURF
In the remainder of this chapter, we will make use of the SURF detector.

The SURF algorithm can be roughly divided into two distinctive steps: detecting points
of interest, and formulating a descriptor. SURF relies on the Hessian corner detector for
interest point detection, which requires the setting of a min_hessian threshold. This
threshold determines how large the output from the Hessian filter must be in order for
a point to be used as an interest point. A larger value results in fewer but (theoretically)
more salient interest points, whereas a smaller value results in more numerous but
less salient points. Feel free to experiment with different values. In this chapter, we
will choose a value of 400, as seen earlier in FeatureMatching.__init__, where we
created a SURF descriptor with the following code snippet:

self.min_hessian = 400
self.SURF = cv2.SURF(self.min_hessian)

Both the features and the descriptor can then be obtained in a single step,
for example, on an input image img_query without the use of a mask (None):

key_query, desc_query = self.SURF.detectAndCompute
 (img_query, None)

Chapter 3

[395]

In OpenCV 2.4.8 or later, we can now easily draw the keypoints with the
following function:

imgOut = cv2.drawKeypoints(img_query, key_query, None,
 (255, 0, 0), 4)
cv2.imshow(imgOut)

Make sure that you check len(keyQuery) first, as
SURF might return a large number of features. If you
care only about drawing the keypoints, try setting
min_hessian to a large value until the number of
returned keypoints is manageable.
If our OpenCV distribution is older than that, we might
have to write our own function. Note that SURF is
protected by patent laws. Therefore, if you wish to use
SURF in a commercial application, you will be required
to obtain a license.

Feature matching
Once we have extracted features and their descriptors from two (or more) images, we
can start asking whether some of these features show up in both (or all) images. For
example, if we have descriptors for both our object of interest (self.desc_train) and
the current video frame (desc_query), we can try to find regions of the current frame
that look like our object of interest. This is done by the following method, which makes
use of the Fast Library for Approximate Nearest Neighbors (FLANN):

good_matches = self._match_features(desc_query)

The process of finding frame-to-frame correspondences can be formulated as the
search for the nearest neighbor from one set of descriptors for every element of
another set.

The first set of descriptors is usually called the train set, because in machine learning,
these descriptors are used to train some model, such as the model of the object
that we want to detect. In our case, the train set corresponds to the descriptor
of the template image (our object of interest). Hence, we call our template image
the train image (self.img_train).

The second set is usually called the query set, because we continually ask whether it
contains our train image. In our case, the query set corresponds to the descriptor of
each incoming frame. Hence, we call a frame the query image (img_query).

Finding Objects via Feature Matching and Perspective Transforms

[396]

Features can be matched in any number of ways, for example, with the help of a
brute-force matcher (cv2.BFMatcher) that looks for each descriptor in the first set
and the closest descriptor in the second set by trying each one (exhaustive search).

Matching features across images with FLANN
The alternative is to use an approximate k-nearest neighbor (kNN) algorithm to find
correspondences, which is based on the fast third-party library FLANN. A FLANN
match is performed with the following code snippet, where we use kNN with k=2:

def _match_features(self, desc_frame):
 matches = self.flann.knnMatch(self.desc_train, desc_frame,
 k=2)

The result of flann.knnMatch is a list of correspondences between two sets of
descriptors, both contained in the matches variable. These are the train set, because it
corresponds to the pattern image of our object of interest, and the query set, because
it corresponds to the image in which we are searching for our object of interest.

The ratio test for outlier removal
The more the correct matches found (which means that more pattern-to-image
correspondences exist), the more the chances that the pattern is present in the image.
However, some matches might be false positives.

A well-known technique for removing outliers is called the ratio test. Since we
performed kNN-matching with k=2, the two nearest descriptors are returned
for each match. The first match is the closest neighbor and the second match is
the second closest neighbor. Intuitively, a correct match will have a much closer
first neighbor than its second closest neighbor. On the other hand, the two closest
neighbors will be at a similar distance from an incorrect match. Therefore, we can
find out how good a match is by looking at the difference between the distances.
The ratio test says that the match is good only if the distance ratio between the first
match and the second match is smaller than a given number (usually around 0.5); in
our case, this number chosen to be 0.7. To remove all matches that do not satisfy this
requirement, we filter the list of matches and store the good matches in the good_
matches variable:

discard bad matches, ratio test as per Lowe's paper
good_matches = filter(lambda x: x[0].distance<0.7*x[1].distance,
 matches)

Then we pass the matches we found to FeatureMatching.match so that they can be
processed further:

return good_matches

Chapter 3

[397]

Visualizing feature matches
In newer versions of OpenCV, we can easily draw matches using cv2.drawMatches
or cv3.drawMatchesKnn.

In older versions of OpenCV, we may need to write our own function. The goal is to
draw both the object of interest and the current video frame (in which we expect the
object to be embedded) next to each other:

def draw_good_matches(img1, kp1, img2, kp2, matches):
 # Create a new output image that concatenates the
 # two images together (a.k.a) a montage
 rows1, cols1 = img1.shape[:2]
 rows2, cols2 = img2.shape[:2]
 out = np.zeros((max([rows1, rows2]), cols1+cols2, 3),
 dtype='uint8')

In order to draw colored lines on the image, we create a three-channel RGB image:

 # Place the first image to the left, copy 3x for RGB
 out[:rows1, :cols1, :] = np.dstack([img1, img1, img1])

 # Place the next image to the right of it, copy 3x for RGB
 out[:rows2, cols1:cols1 + cols2, :] = np.dstack([img2, img2,
 img2])

Then, for each pair of points between both images, we draw small blue circles, and
we connect the two circles with a line. For this, we have to iterate over the list of
matching keypoints. The keypoints are stored as tuples in Python, with two entries
for the x and y coordinates. Each match, m, stores the index in the keypoint lists,
where m.trainIdx points to the index in the first keypoint list (kp1) and m.queryIdx
points to the index in the second keypoint list (kp2):

for m in matches:
 # Get the matching keypoints for each of the images
 c1, r1 = kp1[m.trainIdx].pt
 c2, r2 = kp2[m.queryIdx].pt

With the correct indices, we can now draw a circle at the correct location (with the
radius as 4, the color as blue, and the thickness as 1) and connect the circles with a line:

 radius = 4
 BLUE = (255, 0, 0)
 thickness = 1
 # Draw a small circle at both co-ordinates
 cv2.circle(out, (int(c1), int(r1)), radius, BLUE, thickness)

Finding Objects via Feature Matching and Perspective Transforms

[398]

 cv2.circle(out, (int(c2) + cols1, int(r2)), radius, BLUE,
 thickness

 # Draw a line in between the two points
 cv2.line(out, (int(c1), int(r1)), (int(c2) + cols1, int(r2)),
 BLUE, thickness)
 return out

Then, the returned image can be drawn with this code:

cv2.imshow('imgFlann', draw_good_matches(self.img_train,
 self.key_train, img_query, key_query, good_matches))

The blue lines connect the features in the object (left) to the features in the scenery
(right), as shown here:

This works fine in a simple example such as this, but what happens when there are
other objects in the scene? Since our object contains some lettering that seems highly
salient, what happens when there are other words present?

Chapter 3

[399]

As it turns out, the algorithm works even under such conditions, as you can see in
this screenshot:

Interestingly, the algorithm did not confuse the name of the author as seen on the
left with the black-on-white lettering next to the book in the scene, even though they
spell out the same name. This is because the algorithm found a description of the
object that does not rely purely on the grayscale representation. On the other hand,
an algorithm doing a pixel-wise comparison could have easily gotten confused.

Homography estimation
Since we are assuming that the object of our interest is planar (an image) and rigid,
we can find the homography transformation between the feature points of the two
images. Homography will calculate the perspective transformation required to bring
all feature points in the object image (self.key_train) into the same plane as all the
feature points in the current image frame (self.key_query). But first, we need to
find the image coordinates of all keypoints that are good matches:

def _detect_corner_points(self, key_frame, good_matches):
 src_points = [self.key_train[good_matches[i].trainIdx].pt
 for i in xrange(len(good_matches))]

Finding Objects via Feature Matching and Perspective Transforms

[400]

 dst_points = [keyQuery[good_matches[i].queryIdx].pt
 for i in xrange(len(good_matches))]

To find the correct perspective transformation (a homography matrix H), the
cv2.findHomography function will use the random sample consensus (RANSAC)
method to probe different subsets of input points:

H, _ = cv2.findHomography(np.array(src_points),
 np.array(dst_points), cv2.RANSAC)

The homography matrix H can then help us transform any point in the pattern into
the scenery, such as transforming a corner point in the training image to a corner
point in the query image. In other words, this means that we can draw the outline
of the book cover in the query image by transforming the corner points from the
training image! For this, we take the list of corner points of the training image
(src_corners) and see where they are projected in the query image by performing
a perspective transform:

self.sh_train = self.img_train.shape[:2] # rows, cols
src_corners = np.array([(0,0), (self.sh_train[1],0),
 (self.sh_train[1],self.sh_train[0]), (0,self.sh_train[0])],
 dtype=np.float32)
dst_corners = cv2.perspectiveTransform(src_corners[None, :, :],
 H)

The dst_corners return argument is a list of image points. All that we need to do is
draw a line between each point in dst_corners and the very next one, and we will
have an outline in the scenery. But first, in order to draw the line at the right image
coordinates, we need to offset the x coordinate by the width of the pattern image
(because we are showing the two images next to each other):

dst_corners = map(tuple,dst_corners[0])
dst_corners = [(np.int(dst_corners[i][0]+self.sh_train[1]),
 np.int(dst_corners[i][1]))

Then we can draw the lines from the ith point to the (i+1)-th point in the list
(wrapping around to 0):

for i in xrange(0,len(dst_corners)):
 cv2.line(img_flann, dst_corners[i], dst_corners[(i+1) % 4],
 (0, 255, 0), 3)

Chapter 3

[401]

Finally, we draw the outline of the book cover, like this:

This works even when the object is only partially visible, as follows:

Finding Objects via Feature Matching and Perspective Transforms

[402]

Warping the image
We can also do the opposite—going from the probed scenery to the training pattern
coordinates. This makes it possible for the book cover to be brought onto the frontal
plane, as if we were looking at it directly from above. To achieve this, we can simply
take the inverse of the homography matrix to get the inverse transformation:

Hinv = cv2.linalg.inverse(H)

However, this would map the top-left corner of the book cover to the origin of our
new image, which would cut off everything to the left of and above the book cover.
Instead, we want to roughly center the book cover in the image. Thus, we need to
calculate a new homography matrix. As input, we will have our pts_scene scenery
points. As output, we want an image that has the same shape as the pattern image:

dst_size = img_in.shape[:2] # cols, rows

The book cover should be roughly half of that size. We can come up with a scaling
factor and a bias term so that every keypoint in the scenery image is mapped to the
correct coordinate in the new image:

scale_row = 1./src_size[0]*dst_size[0]/2.
bias_row = dst_size[0]/4.
scale_col = 1./src_size[1]*dst_size[1]/2.
bias_col = dst_size[1]/4.

Next, we just need to apply this linear scaling to every keypoint in the list.
The easiest way to do this is with list comprehensions:

src_points = [key_frame[good_matches[i].trainIdx].pt
 for i in xrange(len(good_matches))]
dst_points = [self.key_train[good_matches[i].queryIdx].pt
 for i in xrange(len(good_matches))]
dst_points = [[x*scale_row+bias_row, y*scale_col+bias_col]
 for x, y in dst_points]

Then we can find the homography matrix between these points (make sure that the
list is converted to a NumPy array):

Hinv, _ = cv2.findHomography(np.array(src_points),
 np.array(dst_points), cv2.RANSAC)

After that, we can use the homography matrix to transform every pixel in the image
(this is also called warping the image):

img_warp = cv2.warpPerspective(img_query, Hinv, dst_size)

Chapter 3

[403]

The result looks like this (matching on the left and warped image on the right):

The image resulting from the perspective transformation might not be perfectly
aligned with the frontoparallel plane, because after all, the homography matrix is
only approximate. In most cases, however, our approach works just fine, such as in
the example shown in the following figure:

Feature tracking
Now that our algorithm works for single frames, how can we make sure that the
image found in one frame will also be found in the very next frame?

Finding Objects via Feature Matching and Perspective Transforms

[404]

In FeatureMatching.__init__, we created some bookkeeping variables that we
said we would use for feature tracking. The main idea is to enforce some coherence
while going from one frame to the next. Since we are capturing roughly 10 frames
per second, it is reasonable to assume that the changes from one frame to the next
will not be too radical. Therefore, we can be sure that the result we get in any given
frame has to be similar to the result we got in the previous frame. Otherwise, we
discard the result and move on to the next frame.

However, we have to be careful not to get stuck with a result that we think is
reasonable but is actually an outlier. To solve this problem, we keep track of
the number of frames we have spent without finding a suitable result. We use
self.num_frames_no_success; if this number is smaller than a certain threshold,
say self.max_frames_no_success, we do the comparison between the frames. If it
is greater than the threshold, we assume that too much time has passed since the last
result was obtained, in which case it would be unreasonable to compare the results
between the frames.

Early outlier detection and rejection
We can extend the idea of outlier rejection to every step in the computation. The goal
then becomes minimizing the workload while maximizing the likelihood that the
result we obtain is a good one.

The resulting procedure for early outlier detection and rejection is embedded in
FeatureMatching.match and looks as follows:

def match(self, frame):
 # create a working copy (grayscale) of the frame
 # and store its shape for convenience
 img_query = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 sh_query = img_query.shape[:2] # rows,cols

1. Find good matches between the feature descriptors of the pattern and the
query image:

key_query, desc_query = self._extract_features(img_query)
good_matches = self._match_features(descQuery)

In order for RANSAC to work in the very next step, we need at least four
matches. If fewer matches are found, we admit defeat and return False
right away:
if len(good_matches) < 4:
 self.num_frames_no_success=
 self.num_frames_no_success + 1
 return False, frame

Chapter 3

[405]

2. Find the corner points of the pattern in the query image (dst_corners):
dst_corners = self._detect_corner_points(key_query,
 good_matches)

If any of these points lies significantly outside the image (by 20 pixels in
our case), it means that either we are not looking at our object of interest,
or the object of interest is not entirely in the image. In both cases, we have
no interest in proceeding, and we return False:
if np.any(filter(lambda x: x[0] < -20 or x[1] < -20
 or x[0] > sh_query[1] + 20 or x[1] > sh_query[0] + 20,
 dst_corners)):
 self.num_frames_no_success =
 self.num_frames_no_success + 1
 return False, frame

3. If the four recovered corner points do not span a reasonable quadrilateral
(a polygon with four sides), it means that we are probably not looking at our
object of interest. The area of a quadrilateral can be calculated with this code:
area = 0
for i in xrange(0, 4):
 next_i = (i + 1) % 4
 area = area + (dst_corners[i][0]*dst_corners[next_i][1]
 - dst_corners[i][1]*dst_corners[next_i][0])/2.

If the area is either unreasonably small or unreasonably large, we discard the
frame and return False:

if area < np.prod(sh_query)/16. or area >
 np.prod(sh_query)/2.:
 self.num_frames_no_success=
 self.num_frames_no_success + 1
 return False, frame

4. If the recovered homography matrix is too different from the one that we
last recovered (self.last_hinv), it means that we are probably looking
at a different object, in which case we discard the frame and return False.
We compare the current homography matrix to the last one by calculating
the distance between the two matrices:
np.linalg.norm(Hinv – self.last_hinv)

However, we only want to consider self.last_hinv if it is fairly recent, say,
from within the last self.max_frames_no_success. This is why we keep
track of self.num_frames_no_success:
recent = self.num_frames_no_success <
 self.max_frames_no_success

Finding Objects via Feature Matching and Perspective Transforms

[406]

similar = np.linalg.norm(Hinv - self.last_hinv) <
 self.max_error_hinv
if recent and not similar:
 self.num_frames_no_success =
 self.num_frames_no_success + 1
 return False, frame

This will help us keep track of the one and the same object of interest over
time. If, for any reason, we lose track of the pattern image for more than
self.max_frames_no_success frames, we skip this condition and accept
whatever homography matrix was recovered up to that point. This makes sure that
we do not get stuck with some self.last_hinv matrix that is actually an outlier.

Otherwise, we can be fairly certain that we have successfully located the object of
interest in the current frame. In such a case, we store the homography matrix and
reset the counter:

self.num_frames_no_success = 0
self.last_hinv = Hinv

All that is left to do is warping the image and (for the first time) returning True along
with the warped image so that the image can be plotted:

img_out = cv2.warpPerspective(img_query, Hinv, dst_size)
img_out = cv2.cvtColor(img_out, cv2.COLOR_GRAY2RGB)
return True, imgOut

Seeing the algorithm in action
The result of the matching procedure in a live stream from my laptop's webcam
looks like this:

Chapter 3

[407]

As you can see, most of the keypoints in the pattern image were matched correctly
with their counterparts in the query image on the right. The printout of the pattern
can now be slowly moved around, tilted, and turned. As long as all the corner points
stay in the current frame, the homography matrix is updated accordingly and the
outline of the pattern image is drawn correctly.

This works even if the printout is upside down, as shown here:

In all cases, the warped image brings the pattern image to an upright, centered
position on the frontoparallel plane. This creates a cool effect of having the
pattern image frozen in place in the center of the screen, while the surroundings
twist and turn around it, like this:

Finding Objects via Feature Matching and Perspective Transforms

[408]

In most cases, the warped image looks fairly accurate, as seen in the one earlier. If,
for any reason, the algorithm accepts a wrong homography matrix that leads to an
unreasonably warped image, then the algorithm will discard the outlier and recover
within half a second (that is, within self.max_frames_no_success frames), leading
to accurate and efficient tracking throughout.

Summary
This chapter showed a robust feature tracking method that is fast enough to run in
real time when applied to the live stream of a webcam.

First, the algorithm shows you how to extract and detect important features in
an image independently of perspective and size, be it in a template of our object
of interest (train image) or a more complex scene in which we expect the object
of interest to be embedded (query image). A match between feature points in the
two images is then found by clustering the keypoints using a fast version of the
nearest neighbor algorithm. From there on, it is possible to calculate a perspective
transformation that maps one set of feature points to the other. With this information,
we can outline the train image as found in the query image and warp the query image
so that the object of interest appears upright in the center of the screen.

With this in hand, we now have a good starting point for designing a cutting-edge
feature tracking, image stitching, or augmented-reality application.

In the next chapter, we will continue studying the geometrical features of a scene,
but this time, we will be concentrating on motion. Specifically, we will study how to
reconstruct a scene in 3D by inferring its geometrical features from camera motion.
For this, we will have to combine our knowledge of feature matching with optic flow
and structure-from-motion techniques.

[409]

3D Scene Reconstruction
Using Structure from Motion

The goal of this chapter is to study how to reconstruct a scene in 3D by inferring the
geometrical features of the scene from camera motion. This technique is sometimes
referred to as structure from motion. By looking at the same scene from different
angles, we will be able to infer the real-world 3D coordinates of different features in
the scene. This process is known as triangulation, which allows us to reconstruct the
scene as a 3D point cloud.

In the previous chapter, you learned how to detect and track an object of interest in
the video stream of a webcam, even if the object is viewed from different angles or
distances, or under partial occlusion. Here, we will take the tracking of interesting
features a step further and consider what we can learn about the entire visual scene
by studying similarities between image frames. If we take two pictures of the same
scene from different angles, we can use feature matching or optic flow to estimate
any translational and rotational movement that the camera underwent between
taking the two pictures. However, in order for this to work, we will first have to
calibrate our camera.

The complete procedure involves the following steps:

1. Camera calibration: We will use a chessboard pattern to extract the intrinsic
camera matrix as well as the distortion coefficients, which are important for
performing the scene reconstruction.

3D Scene Reconstruction Using Structure from Motion

[410]

2. Feature matching: We will match points in two 2D images of the same visual
scene, either via Speeded-Up Robust Features (SURF) or via optic flow, as
seen in the following image:

3. Image rectification: By estimating the camera motion from a pair of images,
we will extract the essential matrix and rectify the images.

Chapter 4

[411]

4. Triangulation: We will reconstruct the 3D real-world coordinates of the
image points by making use of constraints from epipolar geometry.

5. 3D point cloud visualization: Finally, we will visualize the recovered
3D structure of the scene using scatterplots in matplotlib, which is most
compelling when studied using pyplot's Pan axes button. This button lets
you rotate and scale the point cloud in all three dimensions. It is a little
harder to visualize in still frames, as can be seen in the following figure (left
panel: standing slightly in front to the left side of the fountain, center panel:
looking down on the fountain, right panel: standing slightly in front to the
right of the fountain):

This chapter has been tested with OpenCV 2.4.9 and wxPython 2.8
(http://www.wxpython.org/download.php). It also requires
NumPy (http://www.numpy.org) and matplotlib (http://www.
matplotlib.org/downloads.html). Note that if you are using
OpenCV3, you may have to obtain the so-called extra modules from
https://github.com/Itseez/opencv_contrib and install
OpenCV3 with the OPENCV_EXTRA_MODULES_PATH variable set in
order to get SURF installed. Also note that you may have to obtain a
license to use SURF in commercial applications.

Planning the app
The final app will extract and visualize structure from motion on a pair of images.
We will assume that these two images have been taken with the same camera, whose
internal camera parameters we know. If these parameters are not known, they need
to be estimated first in a camera calibration process.

http://www.wxpython.org/download.php
http://www.numpy.org
http://www.matplotlib.org/downloads.html
http://www.matplotlib.org/downloads.html
https://github.com/Itseez/opencv_contrib

3D Scene Reconstruction Using Structure from Motion

[412]

The final app will then consist of the following modules and scripts:

• chapter4.main: This is the main function routine for starting the application.
• scene3D.SceneReconstruction3D: This is a class that contains a range

of functionalities for calculating and visualizing structure from motion.
It includes the following public methods:

 ° __init__: This constructor will accept the intrinsic camera matrix
and the distortion coefficients

 ° load_image_pair: A method used to load from the file, two images
that have been taken with the camera described earlier

 ° plot_optic_flow: A method used to visualize the optic flow
between the two image frames

 ° draw_epipolar_lines: A method used to draw the epipolar lines of
the two images

 ° plot_rectified_images: A method used to plot a rectified version
of the two images

• plot_point_cloud: This is a method used to visualize the recovered real-
world coordinates of the scene as a 3D point cloud. In order to arrive at a 3D
point cloud, we will need to exploit epipolar geometry. However, epipolar
geometry assumes the pinhole camera model, which no real camera follows.
We need to rectify our images to make them look as if they have come from a
pinhole camera. For that, we need to estimate the parameters of the camera,
which leads us to the field of camera calibration.

Camera calibration
So far, we have worked with whatever image came straight out of our webcam,
without questioning the way in which it was taken. However, every camera lens
has unique parameters, such as focal length, principal point, and lens distortion.
What happens behind the covers when a camera takes a picture, is that; light falls
through a lens, followed by an aperture, before falling on the surface of a light sensor.
This process can be approximated with the pinhole camera model. The process of
estimating the parameters of a real-world lens such that it would fit the pinhole camera
model is called camera calibration (or camera resectioning, and it should not be
confused with photometric camera calibration).

Chapter 4

[413]

The pinhole camera model
The pinhole camera model is a simplification of a real camera in which there is
no lens and the camera aperture is approximated by a single point (the pinhole).
When viewing a real-world 3D scene (such as a tree), light rays pass through the
point-sized aperture and fall on a 2D image plane inside the camera, as seen in the
following diagram:

In this model, a 3D point with coordinates (X,Y,Z) is mapped to a 2D point with
coordinates (x,y) that lies on the image plane. Note that this leads to the tree
appearing upside down on the image plane. The line that is perpendicular to the
image plane, and passes through the pinhole is called the principal ray, and its
length is called the focal length. The focal length is a part of the internal camera
parameters, as it may vary depending on the camera being used.

Hartley and Zisserman found a mathematical formula to describe how a 2D point
with coordinates (x,y) can be inferred from a 3D point with coordinates (X,Y,Z) and
the camera's intrinsic parameters, as follows:

0
0
0 0 1

x x

y y

x f c X
y f c Y
w Z

 =

3D Scene Reconstruction Using Structure from Motion

[414]

For now, let's focus on the 3 x 3 matrix in the preceding formula, which is the intrinsic
camera matrix—a matrix that compactly describes all internal camera parameters. The
matrix comprises focal lengths (fx and fy) and optical centers (cx and cy) expressed
in pixel coordinates. As mentioned earlier, the focal length is the distance between
the pinhole and the image plane. A true pinhole camera has only one focal length,
in which case fx = fy = f. However, in reality, these two values might differ,
maybe due to flaws in the digital camera sensor. The point at which the principal
ray intersects the image plane is called the principal point, and its relative position
on the image plane is captured by the optical center (or principal point offset).

In addition, a camera might be subject to radial or tangential distortion, leading to
a fish-eye effect. This is because of hardware imperfections and lens misalignments.
These distortions can be described with a list of the distortion coefficients.
Sometimes, radial distortions are actually a desired artistic effect. At other times,
they need to be corrected.

For more information on the pinhole camera model, there are many
good tutorials out there on the Web, such as http://ksimek.
github.io/2013/08/13/intrinsic.

Because these parameters are specific to the camera hardware (hence the name
intrinsic), we need to calculate them only once in the lifetime of a camera. This is
called camera calibration.

Estimating the intrinsic camera parameters
In OpenCV, camera calibration is fairly straightforward. The official documentation
provides a good overview of the topic and some sample C++ scripts at http://
docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_
calibration.html.

For educational purposes, we will develop our own calibration script in Python.
We will need to present a special pattern image, with a known geometry (chessboard
plate or black circles on a white background), to the camera we wish to calibrate.
Because we know the geometry of the pattern image, we can use feature detection to
study the properties of the internal camera matrix. For example, if the camera suffers
from undesired radial distortion, the different corners of the chessboard pattern
will appear distorted in the image and not lie on a rectangular grid. By taking about
10 to 20 snapshots of the chessboard pattern from different points of view, we can
collect enough information to correctly infer the camera matrix and the distortion
coefficients.

http://ksimek.github.io/2013/08/13/intrinsic
http://ksimek.github.io/2013/08/13/intrinsic
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

Chapter 4

[415]

For this, we will use the calibrate.py script. Analogous to previous chapters, we
will use a simple layout (CameraCalibration) based on BaseLayout that embeds
a webcam video stream. The main function of the script will generate the GUI and
execute the main loop of the app:

import cv2
import numpy as np
import wx

from gui import BaseLayout

 def main():
 capture = cv2.VideoCapture(0)
 if not(capture.isOpened()):
 capture.open()

 capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
 capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

 # start graphical user interface
 app = wx.App()
 layout = CameraCalibration(None, -1, 'Camera Calibration',
 capture)
 layout.Show(True)
 app.MainLoop()

If you are using OpenCV 3, the constants that you are looking
for might be called cv3.CAP_PROP_FRAME_WIDTH and cv3.
CAP_PROP_FRAME_HEIGHT.

The camera calibration GUI
The GUI is a customized version of the generic BaseLayout:

class CameraCalibration(BaseLayout):

The layout consists of only the current camera frame and a single button below it.
This button allows us to start the calibration process:

def _create_custom_layout(self):
 """Creates a horizontal layout with a single button"""
 pnl = wx.Panel(self, -1)
 self.button_calibrate = wx.Button(pnl,
 label='Calibrate Camera')

3D Scene Reconstruction Using Structure from Motion

[416]

 self.Bind(wx.EVT_BUTTON, self._on_button_calibrate)
 hbox = wx.BoxSizer(wx.HORIZONTAL)
 hbox.Add(self.button_calibrate)
 pnl.SetSizer(hbox)

For these changes to take effect, pnl needs to be added to the list of existing panels:

self.panels_vertical.Add(pnl, flag=wx.EXPAND | wx.BOTTOM |
 wx.TOP, border=1)

The rest of the visualization pipeline is handled by the BaseLayout class. We only
need to make sure that we provide the _init_custom_layout and _process_frame
methods.

Initializing the algorithm
In order to perform the calibration process, we need to do some bookkeeping. For
now, let's focus on a single 10 x 7 chessboard. The algorithm will detect all the 9 x
6 inner corners of the chessboard (referred to as object points) and store the detected
image points of these corners in a list. So, let's first initialize the chessboard size to
the number of inner corners:

def _init_custom_layout(self):
 """Initializes camera calibration"""
 # setting chessboard size
 self.chessboard_size = (9, 6)

Next, we need to enumerate all the object points and assign them object point
coordinates so that the first point has coordinates (0,0), the second one (top row)
has coordinates (1,0), and the last one has coordinates (8,5):

prepare object points
self.objp = np.zeros((np.prod(self.chessboard_size), 3),
 dtype=np.float32)
self.objp[:, :2] = np.mgrid[0:self.chessboard_size[0],
 0:self.chessboard_size[1]].T.reshape(-1, 2)

We also need to keep track of whether we are currently recording the object and
image points or not. We will initiate this process once the user clicks on the self.
button_calibrate button. After that, the algorithm will try to detect a chessboard
in all subsequent frames until a number of self.record_min_num_frames
chessboards have been detected:

 # prepare recording
 self.recording = False
 self.record_min_num_frames = 20
 self._reset_recording()

Chapter 4

[417]

Whenever the self.button_calibrate button is clicked on, we reset all the
bookkeeping variables, disable the button, and start recording:

def _on_button_calibrate(self, event):
 self.button_calibrate.Disable()
 self.recording = True
 self._reset_recording()

Resetting the bookkeeping variables involves clearing the lists of recorded object
and image points (self.obj_points and self.img_points) as well as resetting
the number of detected chessboards (self.recordCnt) to 0:

def _reset_recording(self):
 self.record_cnt = 0
 self.obj_points = []
 self.img_points = []

Collecting image and object points
The _process_frame method is responsible for doing the hard work of the
calibration technique. After the self.button_calibrate button has been clicked
on, this method starts collecting data until a total of self.record_min_num_frames
chessboards are detected:

def _process_frame(self, frame):
 """Processes each frame"""

 # if we are not recording, just display the frame
 if not self.recording:
 return frame

 # else we're recording
 img_gray = cv2.cvtColor(frame,
 cv2.COLOR_BGR2GRAY).astype(np.uint8)

 if self.record_cnt < self.record_min_num_frames:
 ret, corners = cv2.findChessboardCorners(img_gray,
 self.chessboard_size, None)

The cv2.findChessboardCorners function will parse a grayscale image (img_gray)
to find a chessboard of size self.chessboard_size. If the image indeed contains a
chessboard, the function will return true (ret) as well as a list of chessboard corners
(corners).

3D Scene Reconstruction Using Structure from Motion

[418]

Then, drawing the chessboard is straightforward:

if ret:
 cv2.drawChessboardCorners(frame,
 self.chessboard_size, corners, ret)

The result looks like this (drawing the chessboard corners in color for the effect):

We could now simply store the list of detected corners and move on to the next
frame. However, in order to make the calibration as accurate as possible, OpenCV
provides a function to refine the corner point measurement:

criteria = (cv2.TERM_CRITERIA_EPS +
 cv2.TERM_CRITERIA_MAX_ITER, 30, 0.01)
cv2.cornerSubPix(img_gray, corners, (9, 9), (-1, -1),
 criteria)

This will refine the coordinates of the detected corners to subpixel precision.
Now we are ready to append the object and image points to the list and advance
the frame counter:

self.obj_points.append(self.objp)
self.img_points.append(corners)
self.record_cnt += 1

Chapter 4

[419]

Finding the camera matrix
Once we have collected enough data (that is, once self.record_cnt reaches
the value of self.record_min_num_frames), the algorithm is ready to perform
the calibration. This process can be performed with a single call to cv2.
calibrateCamera:

else:
 print "Calibrating..."
 ret, K, dist, rvecs, tvecs =
 cv2.calibrateCamera(self.obj_points,
 self.img_points, (self.imgHeight, self.imgWidth),
 None, None)

The function returns true on success (ret), the intrinsic camera matrix (K), the
distortion coefficients (dist), as well as two rotation and translation matrices
(rvecs and tvecs). For now, we are mainly interested in the camera matrix and
the distortion coefficients, because these will allow us to compensate for any
imperfections of the internal camera hardware. We will simply print them on the
console for easy inspection:

print "K=", K
print "dist=", dist

For example, the calibration of my laptop's webcam recovered the following values:

K= [[3.36696445e+03 0.00000000e+00 2.99109943e+02]
 [0.00000000e+00 3.29683922e+03 2.69436829e+02]
 [0.00000000e+00 0.00000000e+00 1.00000000e+00]]
dist= [[9.87991355e-01 -3.18446968e+02 9.56790602e-02
 -3.42530800e-02 4.87489304e+03]]

This tells us that the focal lengths of my webcam are fx=3366.9644 pixels
and fy=3296.8392 pixels, with the optical center at cx=299.1099 pixels and
cy=269.4368 pixels.

A good idea might be to double-check the accuracy of the calibration process. This
can be done by projecting the object points onto the image using the recovered camera
parameters so that we can compare them with the list of image points we collected
with the cv2.findChessboardCorners function. If the two points are roughly the
same, we know that the calibration was successful. Even better, we can calculate the
mean error of the reconstruction by projecting every object point in the list:

mean_error = 0
for i in xrange(len(self.obj_points)):
 img_points2, _ = cv2.projectPoints(self.obj_points[i],
 rvecs[i], tvecs[i], K, dist)

3D Scene Reconstruction Using Structure from Motion

[420]

 error = cv2.norm(self.img_points[i], img_points2,
 cv2.NORM_L2)/len(img_points2)
 mean_error += error

print "mean error=", {} pixels".format(mean_error)

Performing this check on my laptop's webcam resulted in a mean error of 0.95 pixels,
which is fairly close to zero.

With the internal camera parameters recovered, we can now set out to take beautiful,
undistorted pictures of the world, possibly from different viewpoints so that we can
extract some structure from motion.

Setting up the app
Going forward, we will be using a famous open source dataset called fountain-P11.
It depicts a Swiss fountain viewed from various angles. An example of this is shown
in the following image:

Chapter 4

[421]

The dataset consists of 11 high-resolution images and can be downloaded from
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html. Had we taken the
pictures ourselves, we would have had to go through the entire camera calibration
procedure to recover the intrinsic camera matrix and the distortion coefficients.
Luckily, these parameters are known for the camera that took the fountain dataset,
so we can go ahead and hardcode these values in our code.

The main function routine
Our main function routine will consist of creating and interacting with an instance of
the SceneReconstruction3D class. This code can be found in the chapter4.py file,
which imports all the necessary modules and instantiates the class:

import numpy as np

from scene3D import SceneReconstruction3D

def main():
 # camera matrix and distortion coefficients
 # can be recovered with calibrate.py
 # but the examples used here are already undistorted, taken
 # with a camera of known K
 K = np.array([[2759.48/4, 0, 1520.69/4, 0, 2764.16/4,
 1006.81/4, 0, 0, 1]]).reshape(3, 3)
 d = np.array([0.0, 0.0, 0.0, 0.0, 0.0]).reshape(1, 5)

Here, the K matrix is the intrinsic camera matrix for the camera that took the fountain
dataset. According to the photographer, these images are already distortion free,
so we set all the distortion coefficients (d) to zero.

Note that if you want to run the code presented in this chapter on
a dataset other than fountain-P11, you will have to adjust the
intrinsic camera matrix and the distortion coefficients.

Next, we load a pair of images to which we would like to apply our structure-from-
motion techniques. I downloaded the dataset into a subdirectory called fountain_
dense:

load a pair of images for which to perform SfM
scene = SceneReconstruction3D(K, d)
scene.load_image_pair("fountain_dense/0004.png",
 "fountain_dense/0005.png")

http://cvlabwww.epfl.ch/data/multiview/denseMVS.html

3D Scene Reconstruction Using Structure from Motion

[422]

Now we are ready to perform various computations, such as the following:

scene.plot_optic_flow()
scene.draw_epipolar_lines()
scene.plot_rectified_images()

draw 3D point cloud of fountain
use "pan axes" button in pyplot to inspect the cloud (rotate
and zoom to convince you of the result)
scene.plot_point_cloud()

The next sections will explain these functions in detail.

The SceneReconstruction3D class
All of the relevant 3D scene reconstruction code for this chapter can be found as part
of the SceneReconstruction3D class in the scene3D module. Upon instantiation, the
class stores the intrinsic camera parameters to be used in all subsequent calculations:

import cv2
import numpy as np
import sys

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

class SceneReconstruction3D:
 def __init__(self, K, dist):
 self.K = K
 self.K_inv = np.linalg.inv(K)
 self.d = dist

Then, the first step is to load a pair of images on which to operate:

def load_image_pair(self, img_path1, img_path2,
 downscale=True):
 self.img1 = cv2.imread(img_path1, cv2.CV_8UC3)
 self.img2 = cv2.imread(img_path2, cv2.CV_8UC3)

 # make sure images are valid
 if self.img1 is None:
 sys.exit("Image " + img_path1 + " could not be
 loaded.")
 if self.img2 is None:
 sys.exit("Image " + img_path2 + " could not be
 loaded.")

Chapter 4

[423]

If the loaded images are grayscale, the method will convert to them to BGR format,
because the other methods expect a three-channel image:

if len(self.img1.shape)==2:
 self.img1 = cv2.cvtColor(self.img1, cv2.COLOR_GRAY2BGR)
 self.img2 = cv2.cvtColor(self.img2, cv2.COLOR_GRAY2BGR)

In the case of the fountain sequence, all images are of a relatively high resolution.
If an optional downscale flag is set, the method will downscale the images to a
width of roughly 600 pixels:

scale down image if necessary
to something close to 600px wide
target_width = 600
if downscale and self.img1.shape[1]>target_width:
 while self.img1.shape[1] > 2*target_width:
 self.img1 = cv2.pyrDown(self.img1)
 self.img2 = cv2.pyrDown(self.img2)

Also, we need to compensate for the radial and tangential lens distortions using the
distortion coefficients specified earlier (if there are any):

self.img1 = cv2.undistort(self.img1, self.K, self.d)
self.img2 = cv2.undistort(self.img2, self.K, self.d)

Finally, we are ready to move on to the meat of the project—estimating the camera
motion and reconstructing the scene!

Estimating the camera motion from a pair
of images
Now that we have loaded two images (self.img1 and self.img2) of the same
scene, such as two examples from the fountain dataset, we find ourselves in a similar
situation as in the last chapter. We are given two images that supposedly show the
same rigid object or static scene, but from different viewpoints. However, this time
we want to go a step further; if the only thing that changes between taking the two
pictures is the location of the camera, can we infer the relative camera motion by
looking at the matching features?

Well, of course we can. Otherwise, this chapter would not make much sense, would
it? We will take the location and orientation of the camera in the first image as a
given and then find out how much we have to reorient and relocate the camera so
that its viewpoint matches that from the second image.

3D Scene Reconstruction Using Structure from Motion

[424]

In other words, we need to recover the essential matrix of the camera in the second
image. An essential matrix is a 4 x 3 matrix that is the concatenation of a 3 x 3
rotation matrix and a 3 x 1 translation matrix. It is often denoted as [R | t]. You can
think of it as capturing the position and orientation of the camera in the second
image relative to the camera in the first image.

The crucial step in recovering the essential matrix (as well as all other
transformations in this chapter) is feature matching. We can either reuse our code
from the last chapter and apply a speeded-up robust features (SURF) detector to
the two images, or calculate the optic flow between the two images. The user may
choose their favorite method by specifying a feature extraction mode, which will be
implemented by the following private method:

def ___extract_keypoints(self, feat_mode):
 if featMode == "SURF":
 # feature matching via SURF and BFMatcher
 self._extract_keypoints_surf()
 else:
 if feat_mode == "flow":
 # feature matching via optic flow
 self._extract_keypoints_flow()
 else:
 sys.exit("Unknown mode " + feat_mode
 + ". Use 'SURF' or 'FLOW'")

Point matching using rich feature descriptors
As we saw in the last chapter, a fast and robust way of extracting important features
from an image is by using a SURF detector. In this chapter, we want to use it for two
images, self.img1 and self.img2:

def _extract_keypoints_surf(self):
 detector = cv2.SURF(250)
 first_key_points, first_des =
 detector.detectAndCompute(self.img1, None)
 second_key_points, second_desc =
 detector.detectAndCompute(self.img2, None)

For feature matching, we will use a BruteForce matcher, but other matchers
(such as FLANN) can work as well:

matcher = cv2.BFMatcher(cv2.NORM_L1, True)
matches = matcher.match(first_desc, second_desc)

Chapter 4

[425]

For each of the matches, we need to recover the corresponding image coordinates.
These are maintained in the self.match_pts1 and self.match_pts2 lists:

first_match_points = np.zeros((len(matches), 2),
 dtype=np.float32)
second_match_points = np.zeros_like(first_match_points)
for i in range(len(matches)):
 first_match_points[i] =
 first_key_points[matches[i].queryIdx].pt
 second_match_points[i] =
 second_key_points[matches[i].trainIdx].pt

self.match_pts1 = first_match_points
self.match_pts2 = second_match_points

The following screenshot shows an example of the feature matcher applied to two
arbitrary frames of the fountain sequence:

Point matching using optic flow
An alternative to using rich features, is using optic flow. Optic flow is the process
of estimating motion between two consecutive image frames by calculating a
displacement vector. A displacement vector can be calculated for every pixel in the
image (dense) or only for selected points (sparse).

One of the most commonly used techniques for calculating dense optic flow is the
Lukas-Kanade method. It can be implemented in OpenCV with a single line of code,
by using the cv2.calcOpticalFlowPyrLK function.

3D Scene Reconstruction Using Structure from Motion

[426]

But before that, we need to select some points in the image that are worth tracking.
Again, this is a question of feature selection. If we were interested in getting an
exact result for only a few highly salient image points, we can use Shi-Tomasi's cv2.
goodFeaturesToTrack function. This function might recover features like this:

However, in order to infer structure from motion, we might need many more
features and not just the most salient Harris corners. An alternative would be to
detect the FAST features:

def _extract_keypoints_flow(self):
 fast = cv2.FastFeatureDetector()
 first_key_points = fast.detect(self.img1, None)

We can then calculate the optic flow for these features. In other words, we want to
find the points in the second image that most likely correspond to the first_key_
points from the first image. For this, we need to convert the keypoint list into a
NumPy array of (x,y) coordinates:

first_key_list = [i.pt for i in first_key_points]
first_key_arr = np.array(first_key_list).astype(np.float32)

Then the optic flow will return a list of corresponding features in the second image
(second_key_arr):

second_key_arr, status, err =
 cv2.calcOpticalFlowPyrLK(self.img1, self.img2,
 first_key_arr)

Chapter 4

[427]

The function also returns a vector of status bits (status), which indicate whether
the flow for a keypoint has been found or not, and a vector of estimated error values
(err). If we were to ignore these two additional vectors, the recovered flow field
could look something like this:

In this image, an arrow is drawn for each keypoint, starting at the image location of
the keypoint in the first image and pointing to the image location of the same keypoint
in the second image. By inspecting the flow image, we can see that the camera moved
mostly to the right, but there also seems to be a rotational component. However, some
of these arrows are really large, and some of them make no sense. For example, it
is very unlikely that a pixel in the bottom-right image corner actually moved all the
way to the top of the image. It is much more likely that the flow calculation for this
particular keypoint is wrong. Thus, we want to exclude all the keypoints for which the
status bit is zero or the estimated error is larger than some value:

condition = (status == 1) * (err < 5.)
concat = np.concatenate((condition, condition), axis=1)
first_match_points = first_key_arr[concat].reshape(-1, 2)
second_match_points = second_key_arr[concat].reshape(-1, 2)

self.match_pts1 = first_match_points
self.match_pts2 = second_match_points

3D Scene Reconstruction Using Structure from Motion

[428]

If we draw the flow field again with a limited set of keypoints, the image will look
like this:

The flow field can be drawn with the following public method, which first extracts
the keypoints using the preceding code and then draws the actual lines on the image:

def plot_optic_flow(self):
 self._extract_key_points("flow")

 img = self.img1
 for i in xrange(len(self.match_pts1)):
 cv2.line(img, tuple(self.match_pts1[i]),
 tuple(self.match_pts2[i]), color=(255, 0, 0))
 theta = np.arctan2(self.match_pts2[i][1] –
 self.match_pts1[i][1], self.match_pts2[i][0] –
 self.match_pts1[i][0])
 cv2.line(img, tuple(self.match_pts2[i]),
 (np.int(self.match_pts2[i][0] –
 6*np.cos(theta+np.pi/4)),
 np.int(self.match_pts2[i][1] –
 6*np.sin(theta+np.pi/4))), color=(255, 0, 0))
 cv2.line(img, tuple(self.match_pts2[i]),
 (np.int(self.match_pts2[i][0] –
 6*np.cos(theta-np.pi/4)),

Chapter 4

[429]

 np.int(self.match_pts2[i][1] –
 6*np.sin(theta-np.pi/4))), color=(255, 0, 0))
 for i in xrange(len(self.match_pts1)):
 cv2.line(img, tuple(self.match_pts1[i]),
 tuple(self.match_pts2[i]), color=(255, 0, 0))
 theta = np.arctan2(self.match_pts2[i][1] -
 self.match_pts1[i][1],
 self.match_pts2[i][0] - self.match_pts1[i][0])
 cv2.imshow("imgFlow",img)
 cv2.waitKey()

The advantage of using optic flow instead of rich features is that the process is
usually faster and can accommodate the matching of many more points, making
the reconstruction denser.

The caveat in working with optic flow is that it works best for consecutive images
taken by the same hardware, whereas rich features are mostly agnostic to this.

Finding the camera matrices
Now that we have obtained the matches between keypoints, we can calculate two
important camera matrices: the fundamental matrix and the essential matrix. These
matrices will specify the camera motion in terms of rotational and translational
components. Obtaining the fundamental matrix (self.F) is another OpenCV one-liner:

def _find_fundamental_matrix(self):
 self.F, self.Fmask = cv2.findFundamentalMat(self.match_pts1,
 self.match_pts2, cv2.FM_RANSAC, 0.1, 0.99)

The only difference between the fundamental matrix and the essential matrix is that
the latter operates on rectified images:

def _find_essential_matrix(self):
 self.E = self.K.T.dot(self.F).dot(self.K)

The essential matrix (self.E) can then be decomposed into rotational and translational
components, denoted as [R | t], using singular value decomposition (SVD):

def _find_camera_matrices(self):
 U, S, Vt = np.linalg.svd(self.E)
 W = np.array([0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
 1.0]).reshape(3, 3)

3D Scene Reconstruction Using Structure from Motion

[430]

Using the unitary matrices U and V in combination with an additional matrix, W,
we can now reconstruct [R | t]. However, it can be shown that this decomposition
has four possible solutions and only one of them is the valid second camera matrix.
The only thing we can do is check all four possible solutions and find the one that
predicts that all the imaged keypoints lie in front of both cameras.

But prior to that, we need to convert the keypoints from 2D image coordinates to
homogeneous coordinates. We achieve this by adding a z coordinate, which we set
to 1:

first_inliers = []
second_inliers = []
for i in range(len(self.Fmask)):
 if self.Fmask[i]:
 first_inliers.append(self.K_inv.dot(
 [self.match_pts1[i][0], self.match_pts1[i][1],
 1.0]))
 second_inliers.append(self.K_inv.dot(
 [self.match_pts2[i][0], self.match_pts2[i][1],
 1.0]))

We then iterate over the four possible solutions and choose the one that has _in_
front_of_both_cameras returning True:

First choice: R = U * Wt * Vt, T = +u_3 (See Hartley
& Zisserman 9.19)
R = U.dot(W).dot(Vt)
T = U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,
 second_inliers, R, T):
 # Second choice: R = U * W * Vt, T = -u_3
 T = - U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,
 second_inliers, R, T):
 # Third choice: R = U * Wt * Vt, T = u_3
 R = U.dot(W.T).dot(Vt)
 T = U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,
 second_inliers, R, T):
 # Fourth choice: R = U * Wt * Vt, T = -u_3
 T = - U[:, 2]

Chapter 4

[431]

Now, we can finally construct the [R | t] matrices of the two cameras. The first
camera is simply a canonical camera (no translation and no rotation):

self.Rt1 = np.hstack((np.eye(3), np.zeros((3, 1))))

The second camera matrix consists of [R | t] recovered earlier:

self.Rt2 = np.hstack((R, T.reshape(3, 1)))

The __InFrontOfBothCameras private method is a helper function that makes sure
that every pair of keypoints is mapped to 3D coordinates that make them lie in front
of both cameras:

def _in_front_of_both_cameras(self, first_points, second_points,
 rot, trans):
 rot_inv = rot
 for first, second in zip(first_points, second_points):
 first_z = np.dot(rot[0, :] - second[0]*rot[2, :], trans) /
 np.dot(rot[0, :] - second[0]*rot[2, :], second)
 first_3d_point = np.array([first[0] * first_z, second[0] *
 first_z, first_z])
 second_3d_point = np.dot(rot.T, first_3d_point) –
 np.dot(rot.T, trans)

If the function finds any keypoint that is not in front of both cameras, it will
return False:

if first_3d_point[2] < 0 or second_3d_point[2] < 0:
 return False
return True

Image rectification
Maybe, the easiest way to make sure that we have recovered the correct camera
matrices is to rectify the images. If they are rectified correctly, then; a point in the
first image, and a point in the second image that correspond to the same 3D world
point, will lie on the same vertical coordinate. In a more concrete example, such as in
our case, since we know that the cameras are upright, we can verify that horizontal
lines in the rectified image correspond to horizontal lines in the 3D scene.

First, we perform all the steps described in the previous subsections to obtain the
[R | t] matrix of the second camera:

def plot_rectified_images(self, feat_mode="SURF"):
 self._extract_keypoints(feat_mode)
 self._find_fundamental_matrix()
 self._find_essential_matrix()

3D Scene Reconstruction Using Structure from Motion

[432]

 self._find_camera_matrices_rt()

 R = self.Rt2[:, :3]
 T = self.Rt2[:, 3]

Then, rectification can be performed with two OpenCV one-liners that remap the
image coordinates to the rectified coordinates based on the camera matrix (self.K),
the distortion coefficients (self.d), the rotational component of the essential matrix
(R), and the translational component of the essential matrix (T):

 R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(self.K,
 self.d, self.K, self.d, self.img1.shape[:2], R, T,
 alpha=1.0)
 mapx1, mapy1 = cv2.initUndistortRectifyMap(self.K,
 self.d, R1, self.K, self.img1.shape[:2], cv2.CV_32F)
 mapx2, mapy2 = cv2.initUndistortRectifyMap(self.K, self.d, R2,
 self.K, self.img2.shape[:2], cv2.CV_32F)
 img_rect1 = cv2.remap(self.img1, mapx1, mapy1,
 cv2.INTER_LINEAR)
 img_rect2 = cv2.remap(self.img2, mapx2, mapy2,
 cv2.INTER_LINEAR)

To make sure that the rectification is accurate, we plot the two rectified images
(img_rect1 and img_rect2) next to each other:

total_size = (max(img_rect1.shape[0], img_rect2.shape[0]),
 img_rect1.shape[1] + img_rect2.shape[1], 3)
img = np.zeros(total_size, dtype=np.uint8)
img[:img_rect1.shape[0], :img_rect1.shape[1]] = img_rect1
img[:img_rect2.shape[0], img_rect1.shape[1]:] = img_rect2

We also draw horizontal blue lines after every 25 pixels, across the side-by-side
images to further help us visually investigate the rectification process:

for i in range(20, img.shape[0], 25):
 cv2.line(img, (0, i), (img.shape[1], i), (255, 0, 0))
 cv2.imshow('imgRectified', img)

Chapter 4

[433]

Now we can easily convince ourselves that the rectification was successful,
as shown here:

Reconstructing the scene
Finally, we can reconstruct the 3D scene by making use of a process called
triangulation. We are able to infer the 3D coordinates of a point because of the
way epipolar geometry works. By calculating the essential matrix, we get to know
more about the geometry of the visual scene than we might think. Because the two
cameras depict the same real-world scene, we know that most of the 3D real-world
points will be found in both images. Moreover, we know that the mapping from the
2D image points to the corresponding 3D real-world points, will follow the rules of
geometry. If we study a sufficiently large number of image points, we can construct,
and solve, a (large) system of linear equations to get the ground truth of the real-
world coordinates.

3D Scene Reconstruction Using Structure from Motion

[434]

Let's return to the Swiss fountain dataset. If we ask two photographers to take a picture
of the fountain from different viewpoints at the same time, it is not hard to realize
that the first photographer might show up in the picture of the second photographer,
and vice-versa. The point on the image plane where the other photographer is visible
is called the epipole or epipolar point. In more technical terms, the epipole is the
point on one camera's image plane onto which the center of projection of the other
camera projects. It is interesting to note that both the epipoles in their respective
image planes, and both the centers of projection, lie on a single 3D line. By looking at
the lines between the epipoles and image points, we can limit the number of possible
3D coordinates of the image points. In fact, if the projection point is known, then the
epipolar line (which is the line between the image point and the epipole) is known,
and in turn the same point projected onto the second image must lie on that particular
epipolar line. Confusing? I thought so. Let's just look at these images:

Each line here is the epipolar line of a particular point in the image. Ideally, all the
epipolar lines drawn in the left-hand-side image should intersect at a point, and that
point typically lies outside the image. If the calculation is accurate, then that point
should coincide with the location of the second camera as seen from the first camera.
In other words, the epipolar lines in the left-hand-side image tell us that the camera
that took the right-hand-side image is located to our (that is, the first camera's)
right-hand side. Analogously, the epipolar lines in the right-hand-side image tell us
that the camera that took the image on the left is located to our (that is, the second
camera's) left-hand side.

Moreover, for each point observed in one image, the same point must be observed in
the other image on a known epipolar line. This is known as epipolar constraint. We
can use this fact to show that if two image points correspond to the same 3D point,
then the projection lines of those two image points must intersect precisely at the 3D
point. This means that the 3D point can be calculated from two image points, which
is what we are going to do next.

Chapter 4

[435]

Luckily, OpenCV again provides a wrapper to solve an extensive set of linear
equations. First, we have to convert our list of matching feature points into a
NumPy array:

first_inliers = np.array(self.match_inliers1).reshape
 (-1, 3)[:, :2]
second_inliers = np.array(self.match_inliers2).reshape
 (-1, 3)[:, :2]

Triangulation is performed next, using the preceding two [R | t] matrices (self.Rt1
for the first camera and self.Rt2 for the second camera):

pts4D = cv2.triangulatePoints(self.Rt1, self.Rt2, first_inliers.T,
 second_inliers.T).T

This will return the triangulated real-world points using 4D homogeneous
coordinates. To convert them to 3D coordinates, we need to divide the (X,Y,Z)
coordinates by the fourth coordinate, usually referred to as W:

pts3D = pts4D[:, :3]/np.repeat(pts4D[:, 3], 3).reshape(-1, 3)

3D point cloud visualization
The last step is visualizing the triangulated 3D real-world points. An easy way of
creating 3D scatterplots is by using matplotlib. However, if you are looking for more
professional visualization tools, you may be interested in Mayavi (http://docs.
enthought.com/mayavi/mayavi), VisPy (http://vispy.org), or the Point Cloud
Library (http://pointclouds.org). Although the latter does not have Python
support for point cloud visualization yet, it is an excellent tool for point cloud
segmentation, filtering, and sample consensus model fitting. For more information,
head over to strawlab's GitHub repository at https://github.com/strawlab/
python-pcl.

Before we can plot our 3D point cloud, we obviously have to extract the [R | t]
matrix and perform the triangulation as explained earlier:

def plot_point_cloud(self, feat_mode="SURF"):
 self._extract_keypoints(feat_mode)
 self._find_fundamental_matrix()
 self._find_essential_matrix()
 self._find_camera_matrices_rt()

 # triangulate points
 first_inliers = np.array(
 self.match_inliers1).reshape(-1, 3)[:, :2]

http://docs.enthought.com/mayavi/mayavi
http://docs.enthought.com/mayavi/mayavi
http://vispy.org
http://pointclouds.org
https://github.com/strawlab/python-pcl
https://github.com/strawlab/python-pcl

3D Scene Reconstruction Using Structure from Motion

[436]

 second_inliers = np.array(
 self.match_inliers2).reshape(-1, 3)[:, :2]
 pts4D = cv2.triangulatePoints(self.Rt1, self.Rt2,
 first_inliers.T, second_inliers.T).T

 # convert from homogeneous coordinates to 3D
 pts3D = pts4D[:, :3]/np.repeat(pts4D[:, 3], 3).reshape(-1, 3)

Then, all we need to do is open a matplotlib figure and draw each entry of pts3D in
a 3D scatterplot:

 Ys = pts3D[:,0]
 Zs = pts3D[:,1]
 Xs = pts3D[:,2]

 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(Xs, Ys, Zs, c='r', marker='o')
 ax.set_xlabel('Y')
 ax.set_ylabel('Z')
 ax.set_zlabel('X')
 plt.show()

The result is most compelling when studied using pyplot's Pan axes button, which
lets you rotate and scale the point cloud in all three dimensions. This will make it
immediately clear that most of the points that you see lie on the same plane, namely
the wall behind the fountain, and that the fountain itself extends from that wall in
negative z coordinates. It is a little harder to draw this convincingly, but here we go:

Chapter 4

[437]

Each subplot shows the recovered 3D coordinates of the fountain as seen from a
different angle. In the top row, we are looking at the fountain from a similar angle
as the second camera in the previous images, that is, by standing to the right and
slightly in front of the fountain. You can see how most of the points are mapped
to a similar x coordinate, which corresponds to the wall behind the fountain. For a
subset of points concentrated between z coordinates -0.5 and -1.0, the x coordinate
is significantly different, which shows different keypoints that belong to the surface
of the fountain. The first two panels in the lower row look at the fountain from the
other side. The last panel shows a birds-eye view of the fountain, highlighting the
fountain's silhouette as a half-circle in the lower half of the image.

3D Scene Reconstruction Using Structure from Motion

[438]

Summary
In this chapter, we explored a way of reconstructing a scene in 3D—by inferring
the geometrical features of 2D images taken by the same camera. We wrote a script
to calibrate a camera, and you learned about fundamental and essential matrices.
We used this knowledge to perform triangulation. We then went on to visualize the
real-world geometry of the scene in a 3D point cloud. Using simple 3D scatterplots in
matplotlib, we found a way to convince ourselves that our calculations were accurate
and practical.

Going forward from here, it will be possible to store the triangulated 3D points in a file
that can be parsed by the Point Cloud Library, or to repeat the procedure for different
image pairs so that we can generate a denser and more accurate reconstruction.
Although we have covered a lot in this chapter, there is a lot more left to do. Typically,
when talking about a structure-from-motion pipeline, we include two additional steps
that we have not talked about so far: bundle adjustment and geometry fitting. One
of the most important steps in such a pipeline is to refine the 3D estimate in order to
minimize reconstruction errors. Typically, we would also want to get all points that do
not belong to our object of interest out of the cloud. But with the basic code in hand,
you can now go ahead and write your own advanced structure-from-motion pipeline!

In the next chapter, we will move away from rigid scenes and instead focus on
tracking visually salient and moving objects in a scene. This will give you an
understanding of how to deal with non-static scenes. We will also explore how
we can make an algorithm focus on what's important in a scene, quickly, which is a
technique known to speed up object detection, object recognition, object tracking,
and content-aware image editing.

[439]

Tracking Visually Salient
Objects

The goal of this chapter is to track multiple visually salient objects in a video
sequence at once. Instead of labeling the objects of interest in the video ourselves,
we will let the algorithm decide which regions of a video frame are worth tracking.

We have previously learned how to detect simple objects of interest (such as a
human hand) in tightly controlled scenarios or how to infer geometrical features
of a visual scene from camera motion. In this chapter, we ask what we can learn
about a visual scene by looking at the image statistics of a large number of frames.
By analyzing the Fourier spectrum of natural images we will build a saliency map,
which allows us to label certain statistically interesting patches of the image as
(potential or) proto-objects. We will then feed the location of all the proto- objects to a
mean-shift tracker that will allow us to keep track of where the objects move from
one frame to the next.

To build the app, we need to combine the following two main features:

• Saliency map: We will use Fourier analysis to get a general understanding
of natural image statistics, which will help us build a model of what general
image backgrounds look like. By comparing and contrasting the background
model to a specific image frame, we can locate sub-regions of the image that
pop out of their surroundings. Ideally, these sub-regions correspond to the
image patches that tend to grab our immediate attention when looking at the
image.

• Object tracking: Once all the potentially interesting patches of an image are
located, we will track their movement over many frames using a simple yet
effective method called mean-shift tracking. Because it is possible to have
multiple proto-objects in the scene that might change appearance over time,
we need to be able to distinguish between them and keep track of all of them.

Tracking Visually Salient Objects

[440]

Visual saliency is a technical term from cognitive psychology that tries to describe
the visual quality of certain objects or items that allows them to grab our immediate
attention. Our brains constantly drive our gaze towards the important regions of
the visual scene and keep track of them over time, allowing us to quickly scan our
surroundings for interesting objects and events while neglecting the less important
parts.

An example of a regular RGB image and its conversion to a saliency map, where the
statistically interesting pop-out regions appear bright and the others dark, is shown in
the following figure:

Traditional models might try to associate particular features with each target (much
like our feature matching approach in Chapter 3, Finding Objects via Feature Matching
and Perspective Transforms), which would convert the problem to the detection of
specific categories or objects. However, these models require manual labeling and
training. But what if the features or the number of the objects to track is not known?

Chapter 5

[441]

Instead, we will try to mimic what the brain does, that is, tune our algorithm to the
statistics of the natural images, so that we can immediately locate the patterns or
sub-regions that "grab our attention" in the visual scene (that is, patterns that deviate
from these statistical regularities) and flag them for further inspection. The result
is an algorithm that works for any number of proto-objects in the scene, such as
tracking all the players on a soccer field. Refer to the following image:

This chapter uses OpenCV 2.4.9, as well as the additional packages
NumPy (http://www.numpy.org), wxPython 2.8 (http://www.
wxpython.org/download.php), and matplotlib (http://www.
matplotlib.org/downloads.html). Although parts of the
algorithms presented in this chapter have been added to an optional
Saliency module of the OpenCV 3.0.0 release, there is currently no
Python API for it, so we will write our own code.

http://www.numpy.org
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
http://www.matplotlib.org/downloads.html
http://www.matplotlib.org/downloads.html

Tracking Visually Salient Objects

[442]

Planning the app
The final app will convert each RGB frame of a video sequence into a saliency map,
extract all the interesting proto-objects, and feed them to a mean-shift tracking
algorithm. To do this, we need the following components:

• main: The main function routine (in chapter5.py) to start the application.
• Saliency: A class that generates a saliency map from an RGB color image.

It includes the following public methods:
 ° Saliency.get_saliency_map: The main method to convert an RGB

color image to a saliency map
 ° Saliency.get_proto_objects_map: A method to convert a saliency

map into a binary mask containing all the proto-objects
 ° Saliency.plot_power_density: A method to display the 2D power

density of an RGB color image, which is helpful to understand the
Fourier transform

 ° Saliency.plot_power_spectrum: A method to display the radially
averaged power spectrum of an RGB color image, which is helpful to
understand natural image statistics

• MultiObjectTracker: A class that tracks multiple objects in a video using
mean-shift tracking. It includes the following public method, which itself
contains a number of private helper methods:

 ° MultiObjectTracker.advance_frame: A method to update the
tracking information for a new frame, combining bounding boxes
obtained from both the saliency map and mean-shift tracking

In the following sections, we will discuss these steps in detail.

Setting up the app
In order to run our app, we will need to execute a main function routine that reads
a frame of a video stream, generates a saliency map, extracts the location of the
proto-objects, and tracks these locations from one frame to the next.

Chapter 5

[443]

The main function routine
The main process flow is handled by the main function in chapter5.py, which
instantiates the two classes (Saliency and MultipleObjectTracker) and opens
a video file showing the number of soccer players on the field:

import cv2
import numpy as np
from os import path

from saliency import Saliency
from tracking import MultipleObjectsTracker

def main(video_file='soccer.avi', roi=((140, 100), (500, 600))):
 if path.isfile(video_file):
 video = cv2.VideoCapture(video_file)
 else:
 print 'File "' + video_file + '" does not exist.'
 raise SystemExit

 # initialize tracker
 mot = MultipleObjectsTracker()

The function will then read the video frame by frame, extract some meaningful
region of interest (for illustration purposes), and feed it to the Saliency module:

 while True:
 success, img = video.read()
 if success:
 if roi:
 # grab some meaningful ROI
 img = img[roi[0][0]:roi[1][0],
 roi[0][1]:roi[1][1]]
 # generate saliency map
 sal = Saliency(img, use_numpy_fft=False,
 gauss_kernel=(3, 3))

The Saliency will generate a map of all the interesting proto-objects and feed that into
the tracker module. The output of the tracker module is the input frame annotated
with bounding boxes as shown in the preceding figure.

cv2.imshow("tracker", mot.advance_frame(img,
 sal.get_proto_objects_map(use_otsu=False)))

Tracking Visually Salient Objects

[444]

The app will run through all the frames of the video until the end of the file is
reached or the user presses the q key:

if cv2.waitKey(100) & 0xFF == ord('q'):
 break

The Saliency class
The constructor of the Saliency class accepts a video frame, which can be either
grayscale or RGB, as well as some options such as whether to use NumPy's or
OpenCV's Fourier package:

def __init__(self, img, use_numpy_fft=True, gauss_kernel=(5, 5)):
 self.use_numpy_fft = use_numpy_fft
 self.gauss_kernel = gauss_kernel
 self.frame_orig = img

A saliency map will be generated from a down sampled version of the image,
and because the computation is relatively time-intensive, we will maintain a flag
need_saliency_map that makes sure we do the computations only once:

 self.small_shape = (64, 64)
 self.frame_small = cv2.resize(img, self.small_shape[1::-1])

 # whether we need to do the math (True) or it has already
 # been done (False)
 self.need_saliency_map = True

From then on, the user may call any of the class' public methods, which will all be
passed on the same image.

The MultiObjectTracker class
The constructor of the tracker class is straightforward. All it does is set up the
termination criteria for mean-shift tracking and store the conditions for the minimum
contour area (min_area) and minimum frame-by-frame drift (min_shift2) to be
considered in the subsequent computation steps:

Chapter 5

[445]

def __init__(self, min_area=400, min_shift2=5):
 self.object_roi = []
 self.object_box = []

 self.min_cnt_area = min_area
 self.min_shift2 = min_shift2

 # Setup the termination criteria, either 100 iteration or move
 # by at least 1 pt
 self.term_crit = (cv2.TERM_CRITERIA_EPS |
 cv2.TERM_CRITERIA_COUNT, 100, 1)

From then on, the user may call the advance_frame method to feed a new frame to
the tracker.

However, before we make use of all this functionality, we need to learn about image
statistics and how to generate a saliency map.

Visual saliency
As already mentioned in the introduction, visual saliency tries to describe the visual
quality of certain objects or items that allows them to grab our immediate attention.
Our brains constantly drive our gaze towards the important regions of the visual
scene, as if it were to shine a flashlight on different sub-regions of the visual world,
allowing us to quickly scan our surroundings for interesting objects and events while
neglecting the less important parts.

Tracking Visually Salient Objects

[446]

It is thought that this is an evolutionary strategy to deal with the constant information
overflow that comes with living in a visually rich environment. For example, if you
take a casual walk through a jungle, you want to be able to notice the attacking tiger in
the bush to your left before admiring the intricate color pattern on the butterfly's wings
in front of you. As a result, the visually salient objects have the remarkable quality of
popping out of their surroundings, much like the target bars in the following figure:

The visual quality that makes these targets pop out may not always be trivial though.
If you are viewing the image on the left in color, you may immediately notice the
only red bar in the image. However, if you look at the same image in grayscale, the
target bar will be hard to find (it is the fourth bar from the top, fifth bar from the
left). Similar to color saliency, there is a visually salient bar in the image on the right.
Although the target bar is of unique color in the left image and of unique orientation
in the right image, put the two characteristics together and suddenly the unique
target bar does not pop out anymore:

Chapter 5

[447]

In this preceding display, there is again one bar that is unique and different from all
the other ones. However, because of the way the distracting items were designed,
there is little salience to guide you towards the target bar. Instead, you find yourself
scanning the image, seemingly at random, looking for something interesting. (Hint:
The target is the only red and almost-vertical bar in the image, second row from the
top, third column from the left.)

What does this have to do with computer vision, you ask? Quite a lot, actually.
Artificial vision systems suffer from information overload much like you and me,
except that they know even less about the world than we do. What if we could extract
some insights from biology and use them to teach our algorithms something about the
world? Imagine a dashboard camera in your car that automatically focuses on the most
relevant traffic sign. Imagine a surveillance camera that is part of a wildlife observation
station that will automatically detect and track the sighting of the notoriously shy
platypus but will ignore everything else. How can we teach the algorithm what is
important and what is not? How can we make that platypus "pop out"?

Fourier analysis
To find the visually salient sub-regions of an image, we need to look at its frequency
spectrum. So far we have treated all our images and video frames in the spatial
domain; that is, by analyzing the pixels or studying how the image intensity changes
in different sub-regions of the image. However, the images can also be represented
in the frequency domain; that is, by analyzing the pixel frequencies or studying how
often and with what periodicity the pixels show up in the image.

Tracking Visually Salient Objects

[448]

An image can be transformed from the space domain into the frequency domain
by applying the Fourier transform. In the frequency domain, we no longer think in
terms of image coordinates (x,y). Instead, we aim to find the spectrum of an image.
Fourier's radical idea basically boils down to the following question: what if any
signal or image could be transformed into a series of circular paths (also called
harmonics)?

For example, think of a rainbow. Beautiful, isn't it? In a rainbow, white sunlight
(composed of many different colors or parts of the spectrum) is spread into its
spectrum. Here the color spectrum of the sunlight is exposed when the rays of light
pass through raindrops (much like white light passing through a glass prism). The
Fourier transform aims to do the same thing: to recover all the different parts of the
spectrum that are contained in the sunlight.

A similar thing can be achieved for arbitrary images. In contrast to rainbows,
where frequency corresponds to electromagnetic frequency, with images we consider
spatial frequency; that is, the spatial periodicity of the pixel values. In an image
of a prison cell, you can think of spatial frequency as (the inverse of) the distance
between two adjacent prison bars.

The insights that can be gained from this change of perspective are very powerful.
Without going into too much detail, let us just remark that a Fourier spectrum comes
with both a magnitude and a phase. While the magnitude describes the amount
of different frequencies in the image, the phase talks about the spatial location of
these frequencies. The following image shows a natural image on the left and the
corresponding Fourier magnitude spectrum (of the grayscale version) on the right:

The magnitude spectrum on the right tells us which frequency components are
the most prominent (bright) in the grayscale version of the image on the left. The
spectrum is adjusted so that the center of the image corresponds to zero frequency in
x and y. The further you move to the border of the image, the higher the frequency
gets. This particular spectrum is telling us that there are a lot of low-frequency
components in the image on the left (clustered around the center of the image).

Chapter 5

[449]

In OpenCV, this transformation can be achieved with the Discrete Fourier
Transform (DFT) using the plot_magnitude method of the Saliency class.
The procedure is as follows:

1. Convert the image to grayscale if necessary: Because the method accepts
both grayscale and RGB color images, we need to make sure we operate
on a single-channel image:
def plot_magnitude(self):
 if len(self.frame_orig.shape)>2:
 frame = cv2.cvtColor(self.frame_orig,
 cv2.COLOR_BGR2GRAY)
 else:
 frame = self.frame_orig

2. Expand the image to an optimal size: It turns out that the performance of a
DFT depends on the image size. It tends to be fastest for the image sizes that
are multiples of the number two. It is therefore generally a good idea to pad
the image with zeros:
rows, cols = self.frame_orig.shape[:2]
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
frame = cv2.copyMakeBorder(frame, 0, ncols-cols, 0,
 nrows-rows, cv2.BORDER_CONSTANT, value = 0)

3. Apply the DFT: This is a single function call in NumPy. The result is a 2D
matrix of complex numbers:
img_dft = np.fft.fft2(frame)

4. Transform the real and complex values to magnitude: A complex number has
a real (Re) and a complex (imaginary - Im) part. To extract the magnitude, we
take the absolute value:
magn = np.abs(img_dft)

5. Switch to a logarithmic scale: It turns out that the dynamic range of the
Fourier coefficients is usually too large to be displayed on the screen. We
have some small and some high changing values that we can't observe like
this. Therefore, the high values will all turn out as white points, and the small
ones as black points. To use the gray scale values for visualization, we can
transform our linear scale to a logarithmic one:
log_magn = np.log10(magn)

6. Shift quadrants: To center the spectrum on the image. This makes it easier to
visually inspect the magnitude spectrum:
spectrum = np.fft.fftshift(log_magn)

Tracking Visually Salient Objects

[450]

7. Return the result for plotting:
return spectrum/np.max(spectrum)*255

Natural scene statistics
The human brain figured out how to focus on visually salient objects a long time
ago. The natural world in which we live has some statistical regularities that makes
it uniquely natural, as opposed to a chessboard pattern or a random company logo.
Probably, the most commonly known statistical regularity is the 1/f law. It states that
the amplitude of the ensemble of natural images obeys a 1/f distribution, as shown
in the figure later This is sometimes also referred to as scale invariance.

A 1D power spectrum (as a function of frequency) of a 2D image can be visualized
with the plot_power_spectrum method of the Saliency class. We can use a similar
recipe as for the magnitude spectrum used previously, but we will have to make sure
that we correctly collapse the 2D spectrum onto a single axis.

1. Convert the image to grayscale if necessary (same as earlier):
def plot_power_spectrum(self):
 if len(self.frame_orig.shape)>2:
 frame = cv2.cvtColor(self.frame_orig,
 cv2.COLOR_BGR2GRAY)
 else:
 frame = self.frame_orig

2. Expand the image to optimal size (same as earlier):
rows, cols = self.frame_orig.shape[:2]
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
frame = cv2.copyMakeBorder(frame, 0, ncols-cols, 0,
 nrows-rows, cv2.BORDER_CONSTANT, value = 0)

Chapter 5

[451]

3. Apply the DFT and get the log spectrum: Here we give the user an option
(via flag use_numpy_fft) to use either NumPy's or OpenCV's Fourier tools:
if self.use_numpy_fft:
 img_dft = np.fft.fft2(frame)
 spectrum = np.log10(np.real(np.abs(img_dft))**2)
else:
 img_dft = cv2.dft(np.float32(frame),
 flags=cv2.DFT_COMPLEX_OUTPUT)
 spectrum = np.log10(img_dft[:,:,0]**2
 + img_dft[:,:,1]**2)

4. Perform radial averaging: This is the tricky part. It would be wrong to
simply average the 2D spectrum in the direction of x or y. What we are
interested in is a spectrum as a function of frequency, independent of the
exact orientation. This is sometimes also called the radially averaged power
spectrum (RAPS), and can be achieved by summing up all the frequency
magnitudes, starting at the center of the image, looking into all possible
(radial) directions, from some frequency r to r+dr. We use the binning
function of NumPy's histogram to sum up the numbers, and accumulate
them in the variable histo:
L = max(frame.shape)
freqs = np.fft.fftfreq(L)[:L/2]
dists = np.sqrt(np.fft.fftfreq(frame.shape[0])
 [:,np.newaxis]**2 + np.fft.fftfreq
 (frame.shape[1])**2)
dcount = np.histogram(dists.ravel(), bins=freqs)[0]
histo, bins = np.histogram(dists.ravel(), bins=freqs,
 weights=spectrum.ravel())

5. Plot the result: Finally, we can plot the accumulated numbers in histo, but
must not forget to normalize these by the bin size (dcount):

centers = (bins[:-1] + bins[1:]) / 2
plt.plot(centers, histo/dcount)
plt.xlabel('frequency')
plt.ylabel('log-spectrum')
plt.show()

Tracking Visually Salient Objects

[452]

The result is a function that is inversely proportional to the frequency. If you want
to be absolutely certain of the 1/f property, you could take np.log10 of all the x
values and make sure the curve is decreasing roughly linearly. On a linear x axis
and logarithmic y axis, the plot looks like the following:

This property is quite remarkable. It states that if we were to average all the spectra
of all the images ever taken of natural scenes (neglecting all the ones taken with
fancy image filters, of course), we would get a curve that would look remarkably like
the one shown in the preceding image.

Chapter 5

[453]

But going back to the image of a peaceful little boat on the Limmat river, what
about single images? We have just looked at the power spectrum of this image
and witnessed the 1/f property. How can we use our knowledge of natural image
statistics to tell an algorithm not to stare at the tree on the left, but instead focus on
the boat that is chugging in the water?

This is where we realize what saliency really means.

Generating a Saliency map with the spectral
residual approach
The things that deserve our attention in an image are not the image patches that
follow the 1/f law, but the patches that stick out of the smooth curves. In other
words, the statistical anomalies. These anomalies are termed the spectral residual
of an image, and correspond to the potentially interesting patches of an image
(or proto-objects). A map that shows these statistical anomalies as bright spots
is called a saliency map.

Tracking Visually Salient Objects

[454]

The spectral residual approach described here is based on the
original scientific publication by Xiaodi Hou and Liqing Zhang (2007).
Saliency Detection: A Spectral Residual Approach. IEEE Transactions on
Computer Vision and Pattern Recognition (CVPR), p.1-8. doi: 10.1109/
CVPR.2007.383267.

In order to generate a saliency map based on the spectral residual approach, we need
to process each channel of an input image separately (single channel in the case of a
grayscale input image, and three separate channels in the case of an RGB input image).

The saliency map of a single channel can be generated with the private method
Saliency._get_channel_sal_magn using the following recipe:

1. Calculate the (magnitude and phase of the) Fourier spectrum of an image,
by again using either the fft module of NumPy or OpenCV functionality:
def _get_channel_sal_magn(self, channel):
 if self.use_numpy_fft:
 img_dft = np.fft.fft2(channel)
 magnitude, angle = cv2.cartToPolar
 (np.real(img_dft), np.imag(img_dft))
 else:
 img_dft = cv2.dft(np.float32(channel),
 flags=cv2.DFT_COMPLEX_OUTPUT)
 magnitude, angle = cv2.cartToPolar
 (img_dft[:, :, 0], img_dft[:, :, 1])

2. Calculate the log amplitude of the Fourier spectrum. We will clip the lower
bound of magnitudes to 1e-9 in order to prevent a division by zero while
calculating the log:
log_ampl = np.log10(magnitude.clip(min=1e-9))

3. Approximate the averaged spectrum of a typical natural image by
convolving the image with a local averaging filter:
log_ampl_blur = cv2.blur(log_amlp, (3, 3))

4. Calculate the spectral residual. The spectral residual primarily contains the
nontrivial (or unexpected) parts of a scene.
magn = np.exp(log_amlp – log_ampl_blur)

5. Calculate the saliency map by using the inverse Fourier transform, again
either via the fft module in NumPy or with OpenCV:

 if self.use_numpy_fft:
 real_part, imag_part = cv2.polarToCart(residual,
 angle)

Chapter 5

[455]

 img_combined = np.fft.ifft2
 (real_part + 1j*imag_part)
 magnitude, _ = cv2.cartToPolar
 (np.real(img_combined), np.imag(img_combined))
 else:
 img_dft[:, :, 0], img_dft[:, :, 1] =
 cv2.polarToCart(
 residual, angle)
 img_combined = cv2.idft(img_dft)
 magnitude, _ = cv2.cartToPolar
 (img_combined[:, :, 0], img_combined[:, :, 1])
 return magnitude

The resulting single-channel saliency map (magnitude) is then returned to
Saliency.get_saliency_map, where the procedure is repeated for all channels
of the input image. If the input image is grayscale, we are pretty much done:

def get_saliency_map(self):
 if self.need_saliency_map:
 # haven't calculated saliency map for this frame yet
 num_channels = 1
 if len(self.frame_orig.shape)==2:
 # single channel
 sal = self._get_channel_sal_magn(self.frame_small)

However, if the input image has multiple channels, as is the case for an RGB color
image, we need to consider each channel separately:

 else:
 # consider each channel independently
 sal = np.zeros_like
 (self.frame_small).astype(np.float32)
 for c in xrange(self.frame_small.shape[2]):
 sal[:, :, c] = self._get_channel_sal_magn
 (self.frame_small[:, :, c])

The overall salience of a multi-channel image is then determined by the average over
all channels:

sal = np.mean(sal, 2)

Finally, we need to apply some post-processing, such as an optional blurring stage to
make the result appear smoother:

 if self.gauss_kernel is not None:
 sal = cv2.GaussianBlur(sal, self.gauss_kernel,
 sigmaX=8, sigmaY=0)

Tracking Visually Salient Objects

[456]

Also, we need to square the values in sal in order to highlight the regions of high
salience, as outlined by the authors of the original paper. In order to display the
image, we scale it back up to its original resolution and normalize the values, so that
the largest value is one:

 sal = sal**2
 sal = np.float32(sal)/np.max(sal)
 sal = cv2.resize(sal, self.frame_orig.shape[1::-1])

In order to avoid having to redo all these intense calculations, we store a local copy
of the saliency map for further reference and make sure to lower the flag:

 self.saliency_map = sal
 self.need_saliency_map = False

 return self.saliency_map

Then, when the user makes subsequent calls to class methods that rely on the
calculation of the saliency map under the hood, we can simply refer to the local
copy instead of having to do the calculations all over again.

The resulting saliency map then looks like the following image:

Now we can clearly spot the boat in the water (lower-left corner), which appears as
one of the most salient sub-regions of the image. There are other salient regions, too,
such as the Grossmünster on the right (have you guessed the city yet?).

Chapter 5

[457]

By the way, the reason these two areas are the most salient ones
in the image seems to be clear and undisputable evidence that the
algorithm is aware of the ridiculous number of church towers in
the city center of Zurich, effectively prohibiting any chance of them
being labeled as "salient".

Detecting proto-objects in a scene
In a sense, the saliency map is already an explicit representation of proto-objects, as it
contains only the interesting parts of an image. So now that we have done all the hard
work, all that is left to do in order to obtain a proto-object map is to threshold the
saliency map.

The only open parameter to consider here is the threshold. Setting the threshold
too low will result in labeling a lot of regions as proto-objects, including some that
might not contain anything of interest (false alarm). On the other hand, setting the
threshold too high will ignore most of the salient regions in the image and might
leave us with no proto-objects at all. The authors of the original spectral residual
paper chose to label only those regions of the image as proto-objects whose saliency
was larger than three-times the mean saliency of the image. We give the user the
choice to either implement this threshold, or to go with the Otsu threshold by setting
the input flag use_otsu to true:

def get_proto_objects_map(self, use_otsu=True):

We then retrieve the saliency map of the current frame and make sure to convert it to
uint8 precision, so that it can be passed to cv2.threshold:

 saliency = self.get_saliency_map()
 if use_otsu:
 _, img_objects = cv2.threshold(np.uint8(saliency*255),
 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Otherwise, we will use the threshold thresh:

 else:
 thresh = np.mean(saliency)*255
 _, img_objects = cv2.threshold(np.uint8(saliency*255),
 thresh, 255, cv2.THRESH_BINARY)
 return img_objects

Tracking Visually Salient Objects

[458]

The resulting proto-objects mask looks like the following image:

The proto-objects mask then serves as an input to the tracking algorithm.

Mean-shift tracking
It turns out that the salience detector discussed previously is already a great tracker
of proto-objects by itself. One could simply apply the algorithm to every frame of
a video sequence and get a good idea of the location of the objects. However, what
is getting lost is correspondence information. Imagine a video sequence of a busy
scene, such as from a city center or a sports stadium. Although a saliency map could
highlight all the proto-objects in every frame of a recorded video, the algorithm
would have no way to know which proto-objects from the previous frame are still
visible in the current frame. Also, the proto-objects map might contain some
false-positives, such as in the following example:

Chapter 5

[459]

Note that the bounding boxes extracted from the proto-objects map made (at least)
three mistakes in the preceding example: it missed highlighting a player (upper-left),
merged two players into the same bounding box, and highlighted some additional
arguably non-interesting (although visually salient) objects. In order to improve
these results, we want to make use of a tracking algorithm.

To solve the correspondence problem, we could use the methods we have learned
about previously, such as feature matching and optic flow. Or, we could use a
different technique called mean-shift tracking.

Mean-shift is a simple yet very effective technique for tracking arbitrary objects.
The intuition behind mean-shift is to consider the pixels in a small region of interest
(say, a bounding box of an object we want to track) as sampled from an underlying
probability density function that best describes a target.

Consider, for example, the following image:

Here, the small gray dots represent samples from a probability distribution. Assume
that the closer the dots, the more similar they are to each other. Intuitively speaking,
what mean-shift is trying to do is to find the densest region in this landscape and
draw a circle around it. The algorithm might start out centering a circle over a region
of the landscape that is not dense at all (dashed circle). Over time, it will slowly move
towards the densest region (solid circle) and anchor on it. If we design the landscape
to be more meaningful than dots (for example, by making the dots correspond to
color histograms in the small neighborhoods of an image), we can use mean-shift
tracking to find the objects of interest in the scene by finding the histogram that most
closely matches the histogram of a target object.

Tracking Visually Salient Objects

[460]

Mean-shift has many applications (such as clustering, or finding the mode of
probability density functions), but it is also particularly well-suited to target tracking.
In OpenCV, the algorithm is implemented in cv2.meanShift, but it requires some
pre-processing to function correctly. We can outline the procedure as follows:

1. Fix a window around each data point: For example, a bounding box around
an object or region of interest.

2. Compute the mean of data within the window: In the context of tracking,
this is usually implemented as a histogram of the pixel values in the region
of interest. For best performance on color images, we will convert to HSV
color space.

3. Shift the window to the mean and repeat until convergence: This is handled
transparently by cv2.meanShift. We can control the length and accuracy of
the iterative method by specifying termination criteria.

Automatically tracking all players on a soccer
field
For the remainder of this chapter, our goal is to combine the saliency detector with
mean-shift tracking to automatically track all the players on a soccer field. The
proto-objects identified by the salience detector will serve as input to the mean-shift
tracker. Specifically, we will focus on a video sequence from the Alfheim dataset,
which can be freely obtained from http://home.ifi.uio.no/paalh/dataset/
alfheim/.

The reason for combining the two algorithms (saliency map and mean-shift
tracking), is to remove false positives and improve the accuracy of the overall
tracking. This will be achieved in a two-step procedure:

1. Have both the saliency detector and mean-shift tracking assemble a list of
bounding boxes for all the proto-objects in a frame. The saliency detector will
operate on the current frame, whereas the mean-shift tracker will try to find
the proto-objects from the previous frame in the current frame.

2. Keep only those bounding boxes for which both algorithms agree on the
location and size. This will get rid of outliers that have been mislabeled as
proto-objects by one of the two algorithms.

http://home.ifi.uio.no/paalh/dataset/alfheim/
http://home.ifi.uio.no/paalh/dataset/alfheim/

Chapter 5

[461]

The hard work is done by the previously introduced MultiObjectTracker class
and its advance_frame method. This method relies on a few private worker
methods, which will be explained in detail next. The advance_frame method is
called whenever a new frame arrives, and accepts a proto-objects map as input:

def advance_frame(self, frame, proto_objects_map):
 self.tracker = copy.deepcopy(frame)

The method then builds a list of all the candidate bounding boxes, combining the
bounding boxes both from the saliency map of the current frame as well as the
mean-shift tracking results from the previous to the current frame:

build a list of all bounding boxes
box_all = []

append to the list all bounding boxes found from the
current proto-objects map
box_all = self._append_boxes_from_saliency(proto_objects_map,
 box_all)

 # find all bounding boxes extrapolated from last frame
 # via mean-shift tracking
 box_all = self._append_boxes_from_meanshift(frame, box_all)

The method then attempts to merge the candidate bounding boxes in order to
remove the duplicates. This can be achieved with cv2.groupRectangles, which will
return a single bounding box if group_thresh+1 or more bounding boxes overlap in
an image:

only keep those that are both salient and in mean shift
if len(self.object_roi)==0:
 group_thresh = 0 # no previous frame: keep all form
 # saliency
else:
 group_thresh = 1 # previous frame + saliency
box_grouped,_ = cv2.groupRectangles(box_all, group_thresh,
 0.1)

In order to make mean-shift work, we will have to do some bookkeeping, which will
be explained in detail in the following subsections:

update mean-shift bookkeeping for remaining boxes
self._update_mean_shift_bookkeeping(frame, box_grouped)

Tracking Visually Salient Objects

[462]

Then we can draw the list of unique bounding boxes on the input image and return
the image for plotting:

for (x, y, w, h) in box_grouped:
 cv2.rectangle(self.tracker, (x, y), (x + w, y + h),
 (0, 255, 0), 2)

return self.tracker

Extracting bounding boxes for proto-objects
The first private worker method is relatively straightforward. It takes a proto-objects
map as input as well as a (previously aggregated) list of bounding boxes. To this list,
it adds all the bounding boxes found from the contours of the proto-objects:

def _append_boxes_from_saliency(self, proto_objects_map, box_all):
 box_sal = []
 cnt_sal, _ = cv2.findContours(proto_objects_map, 1, 2)

However, it discards the bounding boxes that are smaller than some threshold,
self.min_cnt_area, which is set in the constructor:

for cnt in cnt_sal:
 # discard small contours
 if cv2.contourArea(cnt) < self.min_cnt_area:
 continue

The result is appended to the box_all list and passed up for further processing:

 # otherwise add to list of boxes found from saliency map
 box = cv2.boundingRect(cnt)
 box_all.append(box)

return box_all

Setting up the necessary bookkeeping for
mean-shift tracking
The second private worker method is concerned with setting up all the bookkeeping
that is necessary to perform mean-shift tracking. The method accepts an input image
and a list of bounding boxes for which to generate the bookkeeping information:

def _update_mean_shift_bookkeeping(self, frame, box_grouped):

Chapter 5

[463]

Bookkeeping mainly consists of calculating a histogram of the HSV color values of
each proto-object's bounding box. Thus the input RGB image is converted to HSV
right away:

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Then, every bounding box in box_grouped is parsed. We need to store both the
location and size of the bounding box (self.object_box), as well as a histogram of
the HSV color values (self.object_roi):

self.object_roi = []
self.object_box = []

The location and size of the bounding box is extracted from the list, and the region of
interest is cut out of the HSV image:

for box in box_grouped:
 (x, y, w, h) = box
 hsv_roi = hsv[y:y + h, x:x + w]

We then calculate a histogram of all the hue (H) values in the region of interest.
We also ignore the dim or the weakly pronounced areas of the bounding box by
using a mask, and normalize the histogram in the end:

mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),
 np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

We then store this information in the corresponding private member variables,
so that it will be available in the very next frame of the process loop, where we
will aim to locate the region of interest using the mean-shift algorithm:

self.object_roi.append(roi_hist)
self.object_box.append(box)

Tracking objects with the mean-shift
algorithm
Finally, the third private worker method tracks the proto-objects by using the
bookkeeping information stored earlier from the previous frame. Similar to
_append_boxes_from_meanshift, we build a list of all the bounding boxes
aggregated from mean-shift and pass it up for further processing. The method
accepts an input image and a previously aggregated list of bounding boxes:

def _append_boxes_from_meanshift(self, frame, box_all):
 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Tracking Visually Salient Objects

[464]

The method then parses all the previously stored proto-objects (from self.object_
roi and self.object_box):

for i in xrange(len(self.object_roi)):
 roi_hist = copy.deepcopy(self.object_roi[i])
 box_old = copy.deepcopy(self.object_box[i])

In order to find the new, shifted location of a region of interest recorded in the previous
image frame, we feed the back-projected region of interest to the mean-shift algorithm.
Termination criteria (self.term_crit) will make sure to try a sufficient number of
iterations (100) and look for mean-shifts of at least some number of pixels (1):

dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
ret, box_new = cv2.meanShift(dst, tuple(box_old),
 self.term_crit)

But, before we append the newly detected, shifted bounding box to the list, we want
to make sure that we are actually tracking the objects that move. The objects that
do not move are most likely false-positives, such as line markings or other visually
salient patches that are irrelevant to the task at hand.

In order to discard the irrelevant tracking results, we compare the location of the
bounding box from the previous frame (box_old) and the corresponding bounding
box from the current frame (box_new):

(xo, yo, wo, ho) = box_old
(xn, yn, wn, hn) = box_new

If their centers of mass did not shift at least sqrt(self.min_shift2) pixels, we do
not include the bounding box in the list:

co = [xo + wo/2, yo + ho/2]
cn = [xn + wn/2, yn + hn/2]
if (co[0] - cn[0])**2 + (co[1] - cn[1])**2 >= self.min_shift2:
 box_all.append(box_new)

The resulting list of bounding boxes is again passed up for further processing:

 return box_all

Chapter 5

[465]

Putting it all together
The result of our app can be seen in the following image:

Throughout the video sequence, the algorithm is able to pick up the location of the
players, successfully tracking them frame-by-frame by using mean-shift tracking,
and combining the resulting bounding boxes with the bounding boxes returned by
the salience detector.

It is only through the clever combination of the saliency map and tracking that we
can exclude false-positives such as line markings and artifacts of the saliency map.
The magic happens in cv2.groupRectangles, which requires a similar bounding
box to appear at least twice in the box_all list, otherwise it is discarded. This means
that a bounding box is only then kept in the list if both mean-shift tracking and the
saliency map (roughly) agree on the location and size of the bounding box.

Tracking Visually Salient Objects

[466]

Summary
In this chapter, we explored a way to label the potentially interesting objects in a
visual scene, even if their shape and number is unknown. We explored natural image
statistics using Fourier analysis, and implemented a state-of-the-art method for
extracting the visually salient regions in the natural scenes. Furthermore, we combined
the output of the salience detector with a tracking algorithm to track multiple objects of
unknown shape and number in a video sequence of a soccer game.

It would now be possible to extend our algorithm to feature more complicated feature
descriptions of proto-objects. In fact, mean-shift tracking might fail when the objects
rapidly change size, as would be the case if an object of interest were to come straight
at the camera. A more powerful tracker, which comes for free in OpenCV, is cv2.
CamShift. CAMShift stands for Continuously Adaptive Mean-Shift, and bestows
upon mean-shift the power to adaptively change the window size. Of course, it would
also be possible to simply replace the mean-shift tracker with a previously studied
technique such as feature matching or optic flow.

In the next chapter, we will move to the fascinating field of machine learning, which
will allow us to build more powerful descriptors of objects. Specifically, we will
focus on both detecting (where?) and identifying (what?) the street signs in images.
This will allow us to train a classifier that could be used in a dashboard camera in
your car, and will familiarize us with the important concepts of machine learning
and object recognition.

[467]

Learning to Recognize
Traffic Signs

The goal of this chapter is to train a multiclass classifier to recognize traffic signs.
In this chapter, we will cover the following topics:

• Supervised learning concepts
• The German Traffic Sign Recognition Benchmark (GTSRB) dataset feature

extraction
• Support vector machines (SVMs)

We have previously studied how to describe objects by means of keypoints and
features, and how to find the correspondence points in two different images of the
same physical object. However, our previous approaches were rather limited when it
comes to recognizing objects in real-world settings and assigning them to conceptual
categories. For example, in Chapter 2, Hand Gesture Recognition Using a Kinect Depth
Sensor, the required object in the image was a hand, and it had to be nicely placed in
the center of the screen. Wouldn't it be nice if we could remove these restrictions?

In this chapter, we will instead train a Support Vector Machine (SVM) to recognize all
sorts of traffic signs. Although SVMs are binary classifiers (that is, they can be used to
learn, at most, two categories: positives and negatives, animals and non-animals, and
so on), they can be extended to be used in multiclass classification. In order to achieve
good classification performance, we will explore a number of color spaces as well as
the Histogram of Oriented Gradients (HOG) feature. Then, classification performance
will be judged based on accuracy, precision, and recall. The following sections will
explain all of these terms in detail.

Learning to Recognize Traffic Signs

[468]

To arrive at such a multiclass classifier, we need to perform the following steps:

1. Preprocess the dataset: We need a way to load our dataset, extract the
regions of interest, and split the data into appropriate training and test sets.

2. Extract features: Chances are that raw pixel values are not the most
informative representation of the data. We need a way to extract meaningful
features from the data, such as features based on different color spaces and
HOG.

3. Train the classifier: We will train the multiclass classifier on the training data
in two different ways: the one-vs-all strategy (where we train a single SVM
per class, with the samples of that class as positive samples and all other
samples as negatives), and the one-vs-one strategy (where we train a single
SVM for every pair of classes, with the samples of the first class as positive
samples and the samples of the second class as negative samples).

4. Score the classifier: We will evaluate the quality of the trained ensemble
classifier by calculating different performance metrics, such as accuracy,
precision, and recall.

The end result will be an ensemble classifier that achieves a nearly perfect score in
classifying 10 different street sign categories:

Chapter 6

[469]

Planning the app
The final app will parse a dataset, train the ensemble classifier, assess its classification
performance, and visualize the result. This will require the following components:

• main: The main function routine (in chapter6.py) for starting the
application.

• datasets.gtsrb: A script for parsing the German Traffic Sign Recognition
Benchmark (GTSRB) dataset. This script contains the following functions:

 ° load_data: A function used to load the GTSRB dataset, extract a
feature of choice, and split the data into training and test sets.

 ° _extract_features: A function that is called by load_data to
extract a feature of choice from the dataset.

• classifiers.Classifier: An abstract base class that defines the common
interface for all classifiers.

• classifiers.MultiClassSVM: A class that implements an ensemble of
SVMs for multiclass classification using the following public methods:

 ° MultiClassSVM.fit: A method used to fit the ensemble of SVMs to
training data. It takes a matrix of training data as input, where each
row is a training sample and the columns contain feature values, and
a vector of labels.

 ° MultiClassSVM.evaluate: A method used to evaluate the ensemble
of SVMs by applying it to some test data after training. It takes a matrix
of test data as input, where each row is a test sample and the columns
contain feature values, and a vector of labels. The function returns
three different performance metrics: accuracy, precision, and recall.

In the following sections, we will discuss these steps in detail.

Supervised learning
An important subfield of machine learning is supervised learning. In supervised
learning, we try to learn from a set of labeled training data; that is, every data sample
has a desired target value or true output value. These target values could correspond
to the continuous output of a function (such as y in y = sin(x)), or to more abstract
and discrete categories (such as cat or dog). If we are dealing with continuous output,
the process is called regression, and if we are dealing with discrete output, the
process is called classification. Predicting housing prices from sizes of houses is
an example of regression. Predicting the species from the color of a fish would be
classification. In this chapter, we will focus on classification using SVMs.

Learning to Recognize Traffic Signs

[470]

The training procedure
As an example, we may want to learn what cats and dogs look like. To make this a
supervised learning task, we will have to create a database of pictures of both cats
and dogs (also called a training set), and annotate each picture in the database with
its corresponding label: cat or dog. The task of the program (in literature, it is often
referred to as the learner) is then to infer the correct label for each of these pictures
(that is, for each picture, predict whether it is a picture of a cat or a dog). Based on these
predictions, we derive a score of how well the learner performed. The score is then
used to change the parameters of the learner in order to improve the score over time.

This procedure is outlined in the following figure:

Training data is represented by a set of features. For real-life classification tasks,
these features are rarely the raw pixel values of an image, since these tend not to
represent the data well. Often, the process of finding the features that best describe
the data is an essential part of the entire learning task (also referred to as feature
selection or feature engineering). That is why it is always a good idea to deeply
study the statistics and appearances of the training set that you are working with
before even thinking about setting up a classifier.

As you are probably aware, there is an entire zoo of learners, cost functions, and
learning algorithms out there. These make up the core of the learning procedure.
The learner (for example, a linear classifier, support vector machine, or decision tree)
defines how input features are converted into a score or cost function (for example,
mean-squared error, hinge loss, or entropy), whereas the learning algorithm (for
example, gradient descent and backpropagation for neural networks) defines how
the parameters of the learner are changed over time.

Chapter 6

[471]

The training procedure in a classification task can also be thought of as finding an
appropriate decision boundary, which is a line that best partitions the training set
into two subsets, one for each class. For example, consider training samples with
only two features (x and y values) and a corresponding class label (positive, +, or
negative, –). At the beginning of the training procedure, the classifier tries to draw
a line to separate all positives from all negatives. As the training progresses, the
classifier sees more and more data samples. These are used to update the decision
boundary, as illustrated in the following figure:

Compared to this simple illustration, an SVM tries to find the optimal decision
boundary in a high-dimensional space, so the decision boundary can be more
complex than a straight line.

The testing procedure
In order for a trained classifier to be of any practical value, we need to know
how it performs when applied to a never-seen-before data sample (also called
generalization). To stick to our example shown earlier, we want to know which
class the classifier predicts when we present it with a previously unseen picture
of a cat or a dog.

Learning to Recognize Traffic Signs

[472]

More generally speaking, we want to know which class the ? sign in the following
figure corresponds to, based on the decision boundary we learned during the
training phase:

You can see why this is a tricky problem. If the location of the question mark
were more to the left, we would be certain that the corresponding class label is +.
However, in this case, there are several ways to draw the decision boundary such
that all the + signs are to the left of it and all the – signs are to the right of it, as
illustrated in this figure:

Chapter 6

[473]

The label of ? thus depends on the exact decision boundary that was derived during
training. If the ? sign in the preceding figure is actually a –, then only one decision
boundary (the leftmost) would get the correct answer. A common problem is that
training results in a decision boundary that works "too well" on the training set
(also known as overfitting), but makes a lot of mistakes when applied to unseen
data. In that case, it is likely that the learner imprinted details that are specific to the
training set on the decision boundary, instead of revealing general properties about
the data that might also be true for unseen data.

A common technique for reducing the effect of
overfitting is called regularization.

Long story short, the problem always comes back to finding the boundary that best
splits, not only the training, but also the test set. That is why the most important
metric for a classifier is its generalization performance (that is, how well it classifies
data not seen in the training phase).

A classifier base class
From the insights gained in the preceding content, you are now able to write a
simple base class suitable for all possible classifiers. You can think of this class as a
blueprint or recipe that will apply to all classifiers that we are yet to design (we did
this with the BaseLayout class in Chapter 1, Fun with Filters). In order to create an
abstract base class (ABC) in Python, we need to include the ABCMeta module:

from abc import ABCMeta

This allows us to register the class as a metaclass:

class Classifier:
 """Abstract base class for all classifiers"""
 __metaclass__ = ABCMeta

Recall that an abstract class has at least one abstract method. An abstract method
is akin to specifying that a certain method must exist, but we are not yet sure what
it should look like. We now know that a classifier in its most generic form should
contain a method for training, wherein a model is fitted to the training data, and for
testing, wherein the trained model is evaluated by applying it to the test data:

 @abstractmethod
 def fit(self, X_train, y_train):
 pass

Learning to Recognize Traffic Signs

[474]

 @abstractmethod
 def evaluate(self, X_test, y_test, visualize=False):
 pass

Here, X_train and X_test correspond to the training and test data, respectively,
where each row represents a sample, and each column is a feature value of that
sample. The training and test labels are passed as y_train and y_test vectors,
respectively.

The GTSRB dataset
In order to apply our classifier to traffic sign recognition, we need a suitable dataset.
A good choice might be the German Traffic Sign Recognition Benchmark (GTSRB),
which contains more than 50,000 images of traffic signs belonging to more than 40
classes. This is a challenging dataset that was used by professionals in a classification
challenge during the International Joint Conference on Neural Networks (IJCNN)
2011. The dataset can be freely obtained from http://benchmark.ini.rub.de/?sec
tion=gtsrb&subsection=dataset.

The GTSRB dataset is perfect for our purposes because it is large, organized, open
source, and annotated. However, for the purpose of this book, we will limit the
classification to data samples from a total of 10 classes.

Although the actual traffic sign is not necessarily a square, or centered, in each
image, the dataset comes with an annotation file that specifies the bounding boxes
for each sign.

A good idea before doing any sort of machine learning is usually to get a feeling of
the dataset, its qualities, and its challenges. If all the exemplars of the dataset are
stored in a list, X, then we can plot a few exemplars with the following script, where
we pick a fixed number (sample_size) of random indices (sample_idx) and display
each exemplar (X[sample_idx[sp-1]]) in a separate subplot:

sample_size = 15
sample_idx = np.random.randint(len(X), size=sample_size)
sp = 1
for r in xrange(3):
 for c in xrange(5):
 ax = plt.subplot(3,5,sp)
 sample = X[sample_idx[sp-1]]
 ax.imshow(sample.reshape((32,32)), cmap=cm.Greys_r)
 ax.axis('off')
 sp += 1
plt.show()

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

Chapter 6

[475]

The following screenshot shows some examples of this dataset:

Even from this small data sample, it is immediately clear that this is a challenging
dataset for any sort of classifier. The appearances of the signs change drastically based
on viewing angle (orientation), viewing distance (blurriness), and lighting conditions
(shadows and bright spots). For some of these signs, such as the rightmost sign in the
second row, it is difficult even for humans (at least for me) to tell the correct class label
right away. Good thing we are aspiring experts of machine learning!

Parsing the dataset
Luckily, the chosen dataset comes with a script for parsing the files (more
information can be found at http://benchmark.ini.rub.de/?section=gtsrb&sub
section=dataset#Codesnippets).

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Codesnippets
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Codesnippets

Learning to Recognize Traffic Signs

[476]

We spruce it up a bit and adjust it for our purposes. In particular, we want a function
that not only loads the dataset, but also extracts a certain feature of interest (via the
feature input argument), crops the sample to the hand-labeled Region of Interest
(ROI) containing solely the sample (cut_roi), and automatically splits the data into
a training and a test set (test_split). We also allow the specification of a random
seed number (seed), and plot some samples for visual inspection (plot_samples):

import cv2
import numpy as np
import csv

from matplotlib import cm
from matplotlib import pyplot as plt

def load_data(rootpath="datasets", feature="hog", cut_roi=True,
 test_split=0.2, plot_samples=False, seed=113):

Although the full dataset contains more than 50,000 examples belonging to 43
classes, for the purpose of this chapter, we will limit ourselves to 10 classes. For
easy access, we will hardcode the class labels to use here, but it is straightforward to
include more classes (note that you will have to download the entire dataset for this):

classes = np.array([0, 4, 8, 12, 16, 20, 24, 28, 32, 36])

We then need to iterate over all the classes so as to read all the training samples (to
be stored in X) and their corresponding class labels (to be stored in labels). Every
class has a CSV file containing all of the annotation information for every sample in
the class, which we will parse with csv.reader:

X = [] # images
labels = [] # corresponding labels

subdirectory for class
for c in xrange(len(classes)):
 prefix = rootpath + '/' + format(classes[c], '05d') + '/'

 # annotations file
 gt_file = open(prefix + 'GT-'+ format(classes[c], '05d')
 + '.csv')
 gt_reader = csv.reader(gt_file, delimiter=';')

Chapter 6

[477]

Every line of the file contains the annotation for one data sample. We skip the first
line (the header) and extract the sample's filename (row[0]) so that we can read in
the image:

 gt_reader.next() # skip header
 # loop over all images in current annotations file
 for row in gt_reader:
 # first column is filename
 im = cv2.imread(prefix + row[0])

Occasionally, the object in these samples is not perfectly cut out but is embedded
in its surroundings. If the cut_roi input argument is set, we will ignore the
background and cut out the object using the bounding boxes specified in the
annotation file:

 if cut_roi:
 im = im[np.int(row[4]):np.int(row[6]),
 np.int(row[3]):np.int(row[5]), :]

Then, we are ready to append the image (im) and its class label (c) to our list of
samples (X) and class labels (labels):

 X.append(im)
 labels.append(c)
 gt_file.close()

Often, it is desirable to perform some form of feature extraction, because raw image
data is rarely the best description of the data. We will defer this job to another
function, which we will discuss in detail in the next section:

if feature is not None:
 X = _extract_feature(X, feature)

As pointed out in the previous subsection, it is imperative to keep the samples that
we use to train our classifier, separate from the samples that we use to test it. For
this, we shuffle the data and split it into two separate sets such that the training set
contains a fraction (1-test_split) of all samples and the rest of the samples belong
to the test set:

np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(labels)

X_train = X[:int(len(X)*(1-test_split))]
y_train = labels[:int(len(X)*(1-test_split))]
X_test = X[int(len(X)*(1-test_split)):]
y_test = labels[int(len(X)*(1-test_split)):]

Learning to Recognize Traffic Signs

[478]

Finally, we can return the extracted data:

return (X_train, y_train), (X_test, y_test)

Feature extraction
Chances are, that raw pixel values are not the most informative way to represent the
data, as we have already realized in Chapter 3, Finding Objects via Feature Matching
and Perspective Transforms. Instead, we need to derive a measurable property of the
data that is more informative for classification.

However, often it is not clear which features would perform best. Instead, it is often
necessary to experiment with different features that the modeler finds appropriate.
After all, the choice of features might strongly depend on the specific dataset to
be analyzed or the specific classification task to be performed. For example, if you
have to distinguish between a stop sign and a warning sign, then the most telling
feature might be the shape of the sign or the color scheme. However, if you have to
distinguish between two warning signs, then color and shape will not help you at all,
and you will be required to come up with more sophisticated features.

In order to demonstrate how the choice of features affects classification performance,
we will focus on the following:

• A few simple color transformations, such as grayscale, RGB, and HSV.
Classification based on grayscale images will give us some baseline
performance for the classifier. RGB might give us slightly better performance
because of the distinct color schemes of some traffic signs. Even better
performance is expected from HSV. This is because it represents colors even
more robustly than RGB. Traffic signs tend to have very bright, saturated
colors that (ideally) are quite distinct from their surroundings.

• Speeded-Up Robust Features (SURF), which should appear very familiar to
you by now. We have previously recognized SURF as an efficient and robust
method of extracting meaningful features from an image, so can't we use this
technique to our advantage in a classification task?

• Histogram of Oriented Gradients (HOG), which is by far the most advanced
feature descriptor to be considered in this chapter. The technique counts
occurrences of gradient orientations along a dense grid laid out on the image,
and is well-suited for use with SVMs.

Feature extraction is performed by the gtsrb._extract_features function, which
is implicitly called by gtsrb.load_data. It extracts different features as specified by
the feature input argument.

Chapter 6

[479]

The easiest case is not to extract any features, instead simply resizing the image to a
suitable size:

def _extract_feature(X, feature):
 # operate on smaller image
 small_size = (32, 32)
 X = [cv2.resize(x, small_size) for x in X]

For most of the following features, we will be using the (already suitable)
default arguments in OpenCV. However, these values are not set in
stone, and even in real-world classification tasks, it is often necessary to
search across the range of possible values for both feature extracting and
learning parameters in a process called hyperparameter exploration.

Common preprocessing
There are three common forms of preprocessing that are almost always applied
to any data before classification: mean subtraction, normalization, and principal
component analysis (PCA). In this chapter, we will focus on the first two.

Mean subtraction is the most common form of preprocessing (sometimes also
referred to as zero-centering or de-meaning), where the mean value of every feature
dimension is calculated across all samples in a dataset. This feature-wise average
is then subtracted from every sample in the dataset. You can think of this process
as centering the cloud of data on the origin. Normalization refers to the scaling of
data dimensions so that they are of roughly the same scale. This can be achieved
by either dividing each dimension by its standard deviation (once it has been zero-
centered), or scaling each dimension to lie in the range of [-1, 1]. It makes sense to
apply this step only if you have reason to believe that different input features have
different scales or units. In the case of images, the relative scales of pixels are already
approximately equal (and in the range of [0, 255]), so it is not strictly necessary to
perform this additional preprocessing step.

In this chapter, the idea is to enhance the local intensity contrast of images so that we
do not focus on the overall brightness of an image:

normalize all intensities to be between 0 and 1
X = np.array(X).astype(np.float32) / 255

subtract mean
X = [x - np.mean(x) for x in X]

Learning to Recognize Traffic Signs

[480]

Grayscale features
The easiest feature to extract is probably the grayscale value of each pixel. Usually,
grayscale values are not very indicative of the data they describe, but we will include
them here for illustrative purposes (that is, to achieve baseline performance):

if feature == 'gray' or feature == 'surf':
 X = [cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) for x in X]

Color spaces
Alternatively, you might find that colors contain some information that raw
grayscale values cannot capture. Traffic signs often have a distinct color scheme, and
it might be indicative of the information it is trying to convey (that is, red for stop
signs and forbidden actions, green for informational signs, and so on). We could opt
for using the RGB images as input, in which case we do not have to do anything,
since the dataset is already RGB.

However, even RGB might not be informative enough. For example, a stop sign in
broad daylight might appear very bright and clear, but its colors might appear much
less vibrant on a rainy or foggy day. A better choice might be the HSV color space,
which rearranges RGB color values in a cylindrical coordinate space along the axes
of hue, saturation, and value (or brightness). The most telling feature of traffic signs
in this color space might be the hue (a more perceptually relevant description of
color or chromaticity), better distinguishing the color scheme of different sign types.
Saturation and value could be equally important, however, as traffic signs tend to
use relatively bright and saturated colors that do not typically appear in natural
scenes (that is, their surroundings).

In OpenCV, the HSV color space is only a single call to cv2.cvtColor away:

if feature == 'hsv':
 X = [cv2.cvtColor(x, cv2.COLOR_BGR2HSV) for x in X]

Speeded Up Robust Features
But wait a minute! In Chapter 3, Finding Objects via Feature Matching and Perspective
Transforms you learned that the SURF descriptor is one of the best and most robust
ways to describe images independent of scale or rotations. Can we use this technique
to our advantage in a classification task?

Chapter 6

[481]

Glad you asked! To make this work, we need to adjust SURF so that it returns a fixed
number of features per image. By default, the SURF descriptor is only applied to a
small list of interesting keypoints in the image, the number of which might differ on
an image-by-image basis. This is unsuitable for our current purposes, because we
want to find a fixed number of feature values per data sample.

Instead, we need to apply SURF to a fixed dense grid laid out over the image, which
can be achieved by creating a dense feature detector:

if feature == 'surf':
 # create dense grid of keypoints
 dense = cv2.FeatureDetector_create("Dense")
 kp = dense.detect(np.zeros(small_size).astype(np.uint8))

Then it is possible to obtain SURF descriptors for each point on the grid and append
that data sample to our feature matrix. We initialize SURF with a minHessian value
of 400 as we did before, and:

surf = cv2.SURF(400)
surf.upright = True
surf.extended = True

Keypoints and descriptors can then be obtained via this code:

kp_des = [surf.compute(x, kp) for x in X]

Because surf.compute has two output arguments, kp_des will actually be a
concatenation of both keypoints and descriptors. The second element in the kp_des
array is the descriptor that we care about. We select the first num_surf_features
from each data sample and add it back to the training set:

num_surf_features = 36
X = [d[1][:num_surf_features, :] for d in kp_des]

Histogram of Oriented Gradients
The last feature descriptor to consider is the Histogram of Oriented Gradients
(HOG). HOG features have previously been shown to work exceptionally well
in combination with SVMs, especially when applied to tasks such as pedestrian
recognition.

Learning to Recognize Traffic Signs

[482]

The essential idea behind HOG features is that the local shapes and appearance
of objects within an image can be described by the distribution of edge directions.
The image is divided into small connected regions, within which a histogram
of gradient directions (or edge directions) is compiled. Then, the descriptor is
assembled by concatenating the different histograms. For improved performance,
the local histograms can be contrast-normalized, which results in better invariance to
changes in illumination and shadowing. You can see why this sort of preprocessing
might just be the perfect fit for recognizing traffic signs under different viewing
angles and lighting conditions.

The HOG descriptor is fairly accessible in OpenCV by means of cv2.HOGDescriptor,
which takes the detection window size (32 x 32), the block size (16 x 16), the cell size
(8 x 8), and the cell stride (8 x 8), as input arguments. For each of these cells, the HOG
descriptor then calculates a histogram of oriented gradients using nine bins:

elif feature == 'hog':
 # histogram of oriented gradients
 block_size = (small_size[0] / 2, small_size[1] / 2)
 block_stride = (small_size[0] / 4, small_size[1] / 4)
 cell_size = block_stride
 num_bins = 9
 hog = cv2.HOGDescriptor(small_size, block_size,
 block_stride, cell_size, num_bins)

Applying the HOG descriptor to every data sample is then as easy as calling hog.
compute:

X = [hog.compute(x) for x in X]

After we have extracted all the features we want, we should remember to have
gtsrb._extract_features return the assembled list of data samples so that they
can be split into training and test sets:

X = [x.flatten() for x in X]
return X

Now, we are finally ready to train the classifier on the preprocessed dataset.

Chapter 6

[483]

Support Vector Machine
A Support Vector Machine (SVM) is a learner for binary classification (and regression)
that tries to separate examples from the two different class labels with a decision
boundary that maximizes the margin between the two classes.

Let's return to our example of positive and negative data samples, each of which has
exactly two features (x and y) and two possible decision boundaries, as follows:

Both of these decision boundaries get the job done. They partition all the samples of
positives and negatives with zero misclassifications. However, one of them seems
intuitively better. How can we quantify "better" and thus learn the "best" parameter
settings?

This is where SVMs come in. SVMs are also called maximal margin classifiers
because they can be used to do exactly that; they define the decision boundary
so as to make those two clouds of + and – as far apart as possible.

Learning to Recognize Traffic Signs

[484]

For the preceding example, an SVM would find two lines that pass through the
data points on the class margins (the dashed lines in the following figure), and then
make the line that passes through the center of the margins, the decision boundary
(the bold black line in the following figure):

It turns out that to find the maximal margin, it is only important to consider the data
points that lie on the class margins. These points are sometimes also called support
vectors.

In addition to performing linear classification (that is, when the decision
boundary is a straight line), SVMs can also perform a non-linear
classification using what is called the kernel trick, implicitly mapping
their inputs to high-dimensional feature spaces.

Using SVMs for Multi-class classification
Whereas some classification algorithms, such as neural networks, naturally lend
themselves to using more than two classes, SVMs are binary classifiers by nature.
They can, however, be turned into multiclass classifiers.

Chapter 6

[485]

Here, we will consider two different strategies:

• one-vs-all: The one-vs-all strategy involves training a single classifier
per class, with the samples of that class as positive samples and all other
samples as negatives. For k classes, this strategy thus requires the training
of k different SVMs. During testing, all classifiers can express a "+1" vote
by predicting that an unseen sample belongs to their class. In the end, an
unseen sample is classified by the ensemble as the class with the most votes.
Usually, this strategy is used in combination with confidence scores instead
of predicted labels so that in the end, the class with the highest confidence
score can be picked.

• one-vs-one: The one-vs-one strategy involves training a single classifier per
class pair, with the samples of the first class as positive samples and the
samples of the second class as negative samples. For k classes, this strategy
requires the training of k*(k-1)/2 classifiers. However, the classifiers have
to solve a significantly easier task, so there is a trade-off when considering
which strategy to use. During testing, all classifiers can express a "+1"
vote for either the first or the second class. In the end, an unseen sample is
classified by the ensemble as the class with the most votes.

Which strategy to use can be specified by the user via an input argument (mode) to
the MutliClassSVM class:

class MultiClassSVM(Classifier):
 """Multi-class classification using Support Vector Machines
 (SVMs) """
 def __init__(self, num_classes, mode="one-vs-all",
 params=None):
 self.num_classes = num_classes
 self.mode = mode
 self.params = params or dict()

As mentioned earlier, depending on the classification strategy, we will need
either k or k*(k-1)/2 SVM classifiers, for which we will maintain a list in self.
classifiers:

 # initialize correct number of classifiers
 self.classifiers = []
 if mode == "one-vs-one":
 # k classes: need k*(k-1)/2 classifiers
 for i in xrange(numClasses*(numClasses-1)/2):
 self.classifiers.append(cv2.SVM())
 elif mode == "one-vs-all":

Learning to Recognize Traffic Signs

[486]

 # k classes: need k classifiers
 for i in xrange(numClasses):
 self.classifiers.append(cv2.SVM())
 else:
 print "Unknown mode ",mode

Once the classifiers are correctly initialized, we are ready for training.

Training the SVM
Following the requirements defined by the Classifier base class, we need to
perform training in a fit method:

def fit(self, X_train, y_train, params=None):
 """ fit model to data """
 if params is None:
 params = self.params

The training will differ depending on the classification strategy that is being used.
The one-vs-one strategy requires us to train an SVM for each pair of classes:

if self.mode == "one-vs-one":
 svm_id=0
 for c1 in xrange(self.numClasses):
 for c2 in xrange(c1+1,self.numClasses):

Here we use svm_id to keep track of the number of SVMs we use. In contrast to the
one-vs-all strategy, we need to train a much larger number of SVMs here. However,
the training samples to consider per SVM include only samples of either class—c1 or
c2:

y_train_c1 = np.where(y_train==c1)[0]
y_train_c2 = np.where(y_train==c2)[0]

data_id = np.sort(np.concatenate((y_train_c1,
 y_train_c2), axis=0))
X_train_id = X_train[data_id,:]
y_train_id = y_train[data_id]

Because an SVM is a binary classifier, we need to convert our integer class labels into
0s and 1s. We assign label 1 to all samples of the c1 class, and label 0 to all samples
of the c2 class, again using the handy np.where function:

y_train_bin = np.where(y_train_id==c1, 1,
 0).flatten()

Chapter 6

[487]

Then we are ready to train the SVM:

self.classifiers[svm_id].train(X_train_id,
 y_train_bin, params=self.params)

Here, we pass a dictionary of training parameters, self.params, to the SVM. For
now, we only consider the (already suitable) default parameter values, but feel free
to experiment with different settings.

Don't forget to update svm_id so that you can move on to the next SVM in the list:

svm_id += 1

On the other hand, the one-vs-all strategy requires us to train a total of self.
numClasses SVMs, which makes indexing a lot easier:

elif self.mode == "one-vs-all":
 for c in xrange(self.numClasses):

Again, we need to convert integer labels to binary labels. In contrast to the one-vs-
one strategy, every SVM here considers all training samples. We assign label 1 to
all samples of the c class and label 0 to all other samples, and pass the data to the
classifier's training method:

y_train_bin = np.where(y_train==c,1,0).flatten()
self.classifiers[c].train(X_train, y_train_bin,
 params=self.params)

OpenCV will take care of the rest. What happens under the hood is that the SVM
training uses Lagrange multipliers to optimize some constraints that lead to the
maximum-margin decision boundary. The optimization process is usually performed
until some termination criteria are met, which can be specified via the SVM's
optional arguments:

params.term_crit = (cv2.TERM_CRITERIA_EPS +
 cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)

Testing the SVM
There are many ways to evaluate a classifier, but most often, we are simply interested
in the accuracy metric, that is, how many data samples from the test set were classified
correctly.

Learning to Recognize Traffic Signs

[488]

In order to arrive at this metric, we need to have each individual SVM predict the
labels of the test data, and assemble their consensus in a 2D voting matrix (Y_vote):

def evaluate(self, X_test, y_test, visualize=False):
 """Evaluates model performance"""
 Y_vote = np.zeros((len(y_test), self.numClasses))

For each sample in the dataset, the voting matrix will contain the number of times
the sample has been voted to belong to a certain class. Populating the voting matrix
will take a slightly different form depending on the classification strategy. In the case
of the one-vs-one strategy, we need to loop over all k*(k-1)/2 classifiers and obtain
a vector, called y_hat, that contains the predicted labels for all test samples that
belong to either the c1 class or the c2 class:

if self.mode == "one-vs-one":
 svm_id = 0
 for c1 in xrange(self.numClasses):
 for c2 in xrange(c1+ 1, self.numClasses):
 data_id = np.where((y_test==c1) + (y_test==c2))[0]
 X_test_id = X_test[data_id,:],:],:]
 y_test_id = y_test[data_id]

 # predict labels
 y_hat = self.classifiers[svm_id].predict_all
 (X_test_id)

The y_hat vector will contain 1s whenever the classifier believes that the sample
belongs to the c1 class, and 0s wherever the classifier believes that the sample
belongs to the c2 class. The tricky part is how to +1 the correct cell in the Y_vote
matrix. For example, if the ith entry in y_hat is 1 (meaning that we believe that the
ith sample belongs to the c1 class), we want to increment the value of the ith row
and c1th column in the Y_vote matrix. This will indicate that the present classifier
expressed a vote to classify the ith sample as belonging to the c1 class.

Since we know the indices of all test samples that belong to either class, c1 or c2
(stored in data_id), we know which rows of Y_vote to access. Because data_id
is used as an index for Y_vote, we only need to find the indices in data_id that
correspond to entries where y_hat is 1:

 # we vote for c1 where y_hat is 1, and for c2 where
 # y_hat is 0
 # np.where serves as the inner index into the
 # data_id array, which in turn serves as index
 # into the Y_vote matrix
 Y_vote[data_id[np.where(y_hat==1)[0]],c1] += 1

Chapter 6

[489]

Similarly, we can express a vote for the c2 class:

 Y_vote[data_id[np.where(y_hat==0)[0]],c2] += 1

Then we increment svm_id and move on to the next classifier:

 svm_id += 1

The one-vs-all strategy poses a different problem. Indexing in the Y_vote matrix
is less tricky, because we always consider all the test data samples. We repeat the
procedure of predicting labels for each data sample:

elif self.mode == "one-vs-all":
 for c in xrange(self.numClasses):
 # predict labels
 y_hat = self.classifiers[c].predict_all(X_test)

Wherever y_hat has a value of 1, the classifier expresses a vote that the data sample
belongs to class c, and we update the voting matrix:

 # we vote for c where y_hat is 1
 if np.any(y_hat):
 Y_vote[np.where(y_hat==1)[0], c] += 1

The tricky part now is, "What to do with entries of y_hat that have a value of 0?"
Since we classified one-vs-all, we only know that the sample is not of the c class
(that is, it belongs to the "rest"), but we do not know what the exact class label is
supposed to be. Thus, we cannot add these samples to the voting matrix.

Since we neglected to include samples that are consistently classified as belonging to
the "rest," it is possible that some rows in the Y_vote matrix will have all 0s. In such a
case, simply pick a class at random (unless you have a better idea):

 # find all rows without votes, pick a class at random
 no_label = np.where(np.sum(y_vote,axis=1)==0)[0]
 Y_vote[no_label,np.random.randint(self.numClasses,
 size=len(no_label))] = 1

Now, we are ready to calculate the desired performance metrics as described in
detail in later sections. For the purpose of this chapter, we choose to calculate
accuracy, precision, and recall, which are implemented in their own dedicated
private methods:

accuracy = self.__accuracy(y_test, Y_vote)
precision = self.__precision(y_test, Y_vote)
recall = self.__recall(y_test, Y_vote)

return (accuracy,precision,recall)

Learning to Recognize Traffic Signs

[490]

The scikit-learn machine learning package (http://scikit-
learn.org) supports the three metrics—accuracy, precision, and
recall (as well as others)—straight out of the box, and also comes
with a variety of other useful tools. For educational purposes (and to
minimize software dependencies), we will derive the three metrics
ourselves.

Confusion matrix
A confusion matrix is a 2D matrix of size equal to (self.numClasses, self.
numClasses), where the rows correspond to the predicted class labels, and columns
correspond to the actual class labels. Then, the [r,c] matrix element contains the
number of samples that were predicted to have label r, but in reality have label c.
Having access to a confusion matrix will allow us to calculate precision and recall.

The confusion matrix can be calculated from a vector of ground-truth labels (y_test)
and the voting matrix (Y_vote). We first convert the voting matrix into a vector of
predicted labels by picking the column index (that is, the class label) that received
the most votes:

def __confusion(self, y_test, Y_vote):
 y_hat = np.argmax(Y_vote, axis=1)

Then we need to loop twice over all classes and count the number of times a data
sample of the c_true ground-truth class was predicted as having the c_pred class:

 conf = np.zeros((self.numClasses,
 self.numClasses)).astype(np.int32)
 for c_true in xrange(self.numClasses):
 # looking at all samples of a given class, c_true
 # how many were classified as c_true? how many as others?
 for c_pred in xrange(self.numClasses):

All elements of interest in each iteration are thus the samples that have the c_true
label in y_test and the c_pred label in y_hat:

 y_this = np.where((y_test==c_true) * (y_hat==c_pred))

The corresponding cell in the confidence matrix is then the number of non-zero
elements in y_this:

 conf[c_pred,c_true] = np.count_nonzero(y_this)

After the nested loops complete, we pass the confusion matrix for further processing:

 return conf

http://scikit-learn.org
http://scikit-learn.org

Chapter 6

[491]

As you may have guessed already, the goal of a good classifier is to make the
confusion matrix diagonal, which would imply that the ground-truth class (c_true)
and the predicted class (c_pred) of every sample are the same.

The one-vs-one strategy, in combination with HOG features, actually performs
really well, which is evident from this resulting confusion matrix, wherein most
of the off-diagonal elements are zero:

Accuracy
The most straightforward metric to calculate is probably accuracy. This metric
simply counts the number of test samples that have been predicted correctly,
and returns the number as a fraction of the total number of test samples:

def __accuracy(self, y_test, y_vote):
 """ Calculates the accuracy based on a vector of ground-truth
 labels (y_test) and a 2D voting matrix (y_vote) of size
 (len(y_test),numClasses). """

The classification prediction (y_hat) can be extracted from the vote matrix by finding
out which class has received the most votes:

 y_hat = np.argmax(y_vote, axis=1)

The correctness of the prediction can be verified by comparing the predicted label of
a sample to its actual label:

 # all cases where predicted class was correct
 mask = (y_hat == y_test)

Learning to Recognize Traffic Signs

[492]

Accuracy is then calculated by counting the number of correct predictions (that is,
non-zero entries in mask) and normalizing that number by the total number of test
samples:

 return np.count_nonzero(mask)*1./len(y_test)

Precision
Precision in binary classification is a useful metric for measuring the fraction of
retrieved instances that are relevant (also called the positive predictive value).
In a classification task, the number of true positives is defined as the number of
items correctly labeled as belonging to the positive class. Precision is defined as the
number of true positives divided by the total number of positives. In other words,
out of all the pictures in the test set that a classifier thinks contain a cat, precision is
the fraction of pictures that actually contain a cat.

The total number of positives can also be calculated as the sum of true positives
and false positives, the latter being the number of samples incorrectly labeled as
belonging to a particular class. This is where the confusion matrix comes in handy,
because it will allow us to quickly calculate the number of false positives.

Again, we start by translating the voting matrix into a vector of predicted labels:

def __precision(self, y_test, Y_vote):
 """ precision extended to multi-class classification """
 # predicted classes
 y_hat = np.argmax(Y_vote, axis=1)

The procedure will differ slightly depending on the classification strategy.
The one-vs-one strategy requires us operating with the confusion matrix:

 if True or self.mode == "one-vs-one":
 # need confusion matrix
 conf = self.__confusion(y_test, y_vote)

 # consider each class separately
 prec = np.zeros(self.numClasses)
 for c in xrange(self.numClasses):

Since true positives are the samples that are predicted to have label c and also have
label c in reality, they correspond to the diagonal elements of the confusion matrix:

 # true positives: label is c, classifier predicted c
 tp = conf[c,c]

Chapter 6

[493]

Similarly, false positives correspond to the off-diagonal elements of the confusion
matrix that are in the same column as the true positive. The quickest way to calculate
that number is to sum up all the elements in column c but subtract the true positives:

 # false positives: label is c, classifier predicted
 # not c
 fp = np.sum(conf[:,c]) - conf[c,c]

Precision is the number of true positives divided by the sum of true positives and
false positives:

 if tp + fp != 0:
 prec[c] = tp*1./(tp+fp)

The one-vs-all strategy makes the math slightly easier. Since we always operate on
the full test set, we need to find only those samples that have a ground-truth label of
c in y_test and a predicted label of c in y_hat:

 elif self.mode == "one-vs-all":
 # consider each class separately
 prec = np.zeros(self.numClasses)
 for c in xrange(self.numClasses):
 # true positives: label is c, classifier predicted c
 tp = np.count_nonzero((y_test==c) * (y_hat==c))

Similarly, false positives have a ground-truth label of c in y_test and their predicted
label is not c in y_hat:

 # false positives: label is c, classifier predicted
 # not c
 fp = np.count_nonzero((y_test==c) * (y_hat!=c))

Again, precision is the number of true positives divided by the sum of true positives
and false positives:

 if tp + fp != 0:
 prec[c] = tp*1./(tp+fp)

After that, we pass the precision vector for visualization:
 return prec

Learning to Recognize Traffic Signs

[494]

Recall
Recall is similar to precision in the sense that it measures the fraction of relevant
instances that are retrieved (as opposed to the fraction of retrieved instances that are
relevant). In a classification task, the number of false negatives is the number of items
not labeled as belonging to the positive class but should have been labeled. Recall is
the number of true positives divided by the sum of true positives and false negatives.
In other words, out of all the pictures of cats in the world, recall is the fraction of
pictures that have been correctly identified as pictures of cats.

Again, we start off by translating the voting matrix into a vector of predicted labels:

def __recall(self, y_test, Y_vote):
 """ recall extended to multi-class classification """
 # predicted classes
 y_hat = np.argmax(Y_vote, axis=1)

The procedure is almost identical to calculating precision. The one-vs-one strategy
once again requires some arithmetic involving the confusion matrix:

 if True or self.mode == "one-vs-one":
 # need confusion matrix
 conf = self.__confusion(y_test, y_vote)

 # consider each class separately
 recall = np.zeros(self.numClasses)
 for c in xrange(self.numClasses):

True positives once again correspond to diagonal elements in the confusion matrix:

 # true positives: label is c, classifier predicted c
 tp = conf[c,c]

To get the number of false negatives, we sum up all the columns in the row c and
subtract the number of true positives for this row. This will give us the number
of samples for which the classifier predicted the class as c but that actually had a
ground-truth label other than c:

 # false negatives: label is not c, classifier
 # predicted c
 fn = np.sum(conf[c,:]) - conf[c,c]

Recall is the number of true positives divided by the sum of true positives and false
negatives:

 if tp + fn != 0:
 recall[c] = tp*1./(tp+fn)

Chapter 6

[495]

Again, the one-vs-all strategy makes the math slightly easier. Since we always
operate on the full test set, we need to find only those samples whose ground-truth
label is not c in y_test, and predicted label is c in y_hat:

 elif self.mode == "one-vs-all":
 # consider each class separately
 recall = np.zeros(self.numClasses)
 for c in xrange(self.numClasses):
 # true positives: label is c, classifier predicted c
 tp = np.count_nonzero((y_test==c) * (y_hat==c))

 # false negatives: label is not c, classifier
 # predicted c
 fn = np.count_nonzero((y_test!=c) * (y_hat==c))

 if tp + fn != 0:
 recall[c] = tp*1./(tp+fn)

After that, we pass the recall vector for visualization:
 return recall

Putting it all together
To run our app, we will need to execute the main function routine (in chapter6.py).
It loads the data, trains the classifier, evaluates its performance, and visualizes the
result.

But first, we need to import all the relevant modules and set up a main function:

import numpy as np

import matplotlib.pyplot as plt
from datasets import gtsrb
from classifiers import MultiClassSVM

def main():

Learning to Recognize Traffic Signs

[496]

Then, the goal is to compare classification performance across settings and feature
extraction methods. This includes running the task with both classification strategies,
one-vs-all and one-vs-one, as well as preprocessing the data with a list of different
feature extraction approaches:

 strategies = ['one-vs-one', 'one-vs-all']features = [None,
 'gray', 'rgb', 'hsv', 'surf', 'hog']

For each of these settings, we need to collect three performance metrics—accuracy,
precision, and recall:

 accuracy = np.zeros((2,len(features)))
 precision = np.zeros((2,len(features)))
 recall = np.zeros((2,len(features)))

A nested for loop will run the classifier with all of these settings and populate the
performance metric matrices. The outer loop is over all elements in the features
vector:

 for f in xrange(len(features)):
 (X_train,y_train), (X_test,y_test) = gtsrb.load_data(
 "datasets/gtsrb_training",
 feature=features[f], test_split=0.2)

Before passing the training data (X_train,y_train) and test data (X_test,y_test)
to the classifiers, we want to make sure that they are in the format that the classifier
expects; that is, each data sample is stored in a row of X_train or X_test, with the
columns corresponding to feature values:

X_train = np.squeeze(np.array(X_train)).astype(np.float32)
y_train = np.array(y_train)
X_test = np.squeeze(np.array(X_test)).astype(np.float32)
y_test = np.array(y_test)

We also need to know the number of class labels (since we did not load the complete
GTSRB dataset). This can be achieved by concatenating y_train and y_test and
extracting all unique labels in the combined list:

labels = np.unique(np.hstack((y_train,y_test)))

Next, the inner loop iterates over all the elements in the strategies vector, which
currently includes the two strategies, one-vs-all and one-vs-one:

for s in xrange(len(strategies)):

Chapter 6

[497]

Then we instantiate the MultiClassSVM class with the correct number of unique
labels and the corresponding classification strategy:

MCS = MultiClassSVM(len(labels),strategies[s])

Now we are all ready to apply the ensemble classifier to the training data and extract
the three performance metrics after training:

MCS.fit(X_train, y_train)
(accuracy[s,f],precision[s,f],recall[s,f]) =
 MCS.evaluate(X_test, y_test)

This ends the nested for loop. All that is left to do is to visualize the result. For this, we
choose matplotlib's bar plot functionality. The goal is to show the three performance
metrics (accuracy, precision, and recall) for all combinations of extracted features and
classification strategies. We will use one plotting window per classification strategy,
and arrange the corresponding data in a stacked bar plot:

f,ax = plt.subplots(2)
for s in xrange(len(strategies)):
 x = np.arange(len(features))
 ax[s].bar(x-0.2, accuracy[s,:], width=0.2, color='b',
 hatch='/', align='center')
 ax[s].bar(x, precision[s,:], width=0.2, color='r',
 hatch='\\', align='center')
 ax[s].bar(x+0.2, recall[s,:], width=0.2, color='g',
 hatch='x', align='center')

For the sake of visibility, the y axis is restricted to the relevant range:

ax[s].axis([-0.5, len(features) + 0.5, 0, 1.5])

Finally, we add some plot decorations:

ax[s].legend(('Accuracy','Precision','Recall'), loc=2,
 ncol=3, mode="expand")
ax[s].set_xticks(np.arange(len(features)))
ax[s].set_xticklabels(features)
ax[s].set_title(strategies[s])

Learning to Recognize Traffic Signs

[498]

Now the data is ready to be plotted!

plt.show()

This screenshot contains a lot of information, so let's break it down step by step:

• The most straightforward observation is that the HOG feature seems mighty
powerful! This feature has outperformed all other features, no matter what
the classification strategy is. Again, this highlights the importance of feature
extraction, which generally requires a deep understanding of the statistics of
the dataset under study.

• Interestingly, with the use of the one-vs-one strategy, all approaches led
to an accuracy north of 0.95, which might stem from the fact that a binary
classification task (with two possible class labels) is sometimes easier to learn
than a 10-class classification task. Unfortunately, the same cannot be said for
the one-vs-all approach. But to be fair, the one-vs-all approach had to operate
with only 10 SVMs, whereas the one-vs-one approach had 45 SVMs to work
with. This gap is only likely to increase if we add more object categories.

• The effect of de-meaning can be seen by comparing the result for None with
the result for rgb. These two settings were identical, except that the samples
under rgb were normalized. The difference in performance is evident,
especially for the one-vs-all strategy.

Chapter 6

[499]

• A little disappointing is the finding that none of the color transformations
(neither RGB nor HSV) were able to perform significantly better than the
simple grayscale transform. SURF did not help either.

Summary
In this chapter, we trained a multiclass classifier to recognize traffic signs from
the GTSRB database. We discussed the basics of supervised learning, explored the
intricacies of feature extraction, and extended SVMs so that they can be used for
multiclass classification.

Notably, we left out some details along the way, such as attempting to fine-tune
the hyperparameters of the learning algorithm. When we restrict the traffic sign
dataset to only 10 classes, the default values of the various function arguments along
the way, seem to be sufficient for performing exceptionally well (just look at the
perfect score achieved with the HOG feature and the one-vs-one strategy). With this
functional setup and a good understanding of the underlying methodology, you
can now try to classify the entire GTSRB dataset! It is definitely worth taking a look
at their website, where you will find classification results for a variety of classifiers.
Maybe, your own approach will soon be added to the list.

In the next (and last) chapter, we will move even deeper into the field of machine
learning. Specifically, we will focus on recognizing emotional expressions in human
faces using convolutional neural networks. This time, we will combine the classifier
with a framework for object detection, which will allow us to localize (where?)
a human face in an image, and then focus on identifying (what?) the emotional
expression contained in that face. This will conclude our quest into the depths of
machine learning, and provide you with all the necessary tools to develop your own
advanced OpenCV projects using the principles and concepts of computer vision.

[501]

Learning to Recognize
Emotions on Faces

We previously familiarized ourselves with the concepts of object detection and
object recognition, but we never combined them to develop an app that can do
both end-to-end. For the final chapter in this book, we will do exactly that.

The goal of this chapter is to develop an app that combines both face detection and
face recognition, with a focus on recognizing emotional expressions in the detected
face.

For this, we will touch upon two other classic algorithms that come bundled with
OpenCV: Haar Cascade Classifiers and multi-layer peceptrons (MLPs). While the
former can be used to rapidly detect (or locate, answering the question: where?)
objects of various sizes and orientations in an image, the latter can be used to
recognize them (or identify, answering the question: what?).

The end goal of the app will be to detect your own face in each captured frame of a
webcam live stream and label your emotional expression. To make this task feasible,
we will limit ourselves to the following possible emotional expressions: neutral,
happy, sad, surprised, angry, and disgusted.

To arrive at such an app, we need to solve the following two challenges:

• Face detection: We will use the popular Haar cascade classifier by Viola and
Jones, for which OpenCV provides a whole range of pre-trained exemplars.
We will make use of face cascades and eye cascades to reliably detect and
align facial regions from frame to frame.

Learning to Recognize Emotions on Faces

[502]

• Facial expression recognition: We will train a multi-layer perceptron to
recognize the six different emotional expressions listed earlier, in every
detected face. The success of this approach will crucially depend on the
training set that we assemble, and the preprocessing that we choose to
apply to each sample in the set. In order to improve the quality of our self-
recorded training set, we will make sure that all data samples are aligned
using affine transformations and reduce the dimensionality of the feature
space by applying Principal Component Analysis (PCA). The resulting
representation is sometimes also referred to as Eigenfaces.

The reliable recognition of faces and facial expressions is a challenging task for
artificial intelligence, yet humans are able to perform these kinds of tasks with
apparent ease. Today's state-of-the-art models range all the way from 3D deformable
face models fitting over convolutional neural networks, to deep learning algorithms.
Granted, these approaches are significantly more sophisticated than our approach.
Yet, MLPs are classic algorithms that helped transform the field of machine learning,
so for educational purposes, we will stick to a set of algorithms that come bundled
with OpenCV.

We will combine the algorithms mentioned earlier in a single end-to-end app that
annotates a detected face with the corresponding facial expression label in each
captured frame of a video live stream. The end result might look something like
the following image, capturing my reaction when the code first compiled:

Chapter 7

[503]

Planning the app
The final app will consist of a main script that integrates the process flow end-to-end,
from face detection to facial expression recognition, as well as some utility functions
to help along the way.

Thus, the end product will require several components:

• chapter7: The main script and entry-point for the chapter.
• chapter7.FaceLayout: A custom layout based on gui.BaseLayout that

operates in two different modes:
 ° Training mode: In the training mode, the app will collect image

frames, detect a face therein, assign a label depending on the facial
expression, and upon exiting, save all the collected data samples in a
file, so that it can be parsed by datasets.homebrew.

 ° Testing mode: In the testing mode, the app will detect a face in each
video frame and predict the corresponding class label by using a
pre-trained MLP.

• chapter3.main: The main function routine to start the GUI application.
• detectors.FaceDetector: A class for face detection.

 ° detect: A method to detect faces in a grayscale image. Optionally,
the image is downscaled for better reliability. Upon successful
detection, the method returns the extracted head region.

 ° align_head: A method to preprocess an extracted head region with
affine transformations such that the resulting face appears centered
and upright.

• classifiers.Classifier: An abstract base class that defines the common
interface for all classifiers (same as in Chapter 6, Learning to Recognize Traffic
Signs).

• classifiers.MultiLayerPerceptron: A class that implements an MLP by
using the following public methods:

 ° fit: A method to fit the MLP to the training data. It takes as input, a
matrix of the training data, where each row is a training sample, and
columns contain feature values, and a vector of labels.

 ° evaluate: A method to evaluate the MLP by applying it to some test
data after training. It takes as input, a matrix of test data, where each
row is a test sample and columns contain feature values, and a vector
of labels. The function returns three different performance metrics:
accuracy, precision, and recall.

Learning to Recognize Emotions on Faces

[504]

 ° predict: A method to predict the class labels of some test data. We
expose this method to the user so it can be applied to any number of
data samples, which will be helpful in the testing mode, when we do
not want to evaluate the entire dataset, but instead predict the label
of only a single data sample.

 ° save: A method to save a trained MLP to file.
 ° load: A method to load a pre-trained MLP from file.

• train_test_mlp: A script to train and test an MLP by applying it to our
self-recorded dataset. The script will explore different network architectures
and store the one with the best generalization performance in a file, so that
the pre-trained classifier can be loaded later.

• datasets.homebrew: A class to parse the self-recorded training set.
Analogously to the previous chapter, the class contains the following
methods:

 ° load_data: A method to load the training set, perform PCA on it via
the extract_features function, and split the data into the training
and test sets. Optionally, the preprocessed data can be stored in a file
so that we can load it later on without having to parse the data again.

 ° load_from_file: A method to load a previously stored preprocessed
dataset.

 ° extract_features: A method to extract a feature of choice (in
the present chapter: to perform PCA on the data). We expose this
function to the user so it can be applied to any number of data
samples, which will be helpful in the testing mode, when we do not
want to parse the entire dataset but instead predict the label of only a
single data sample.

• gui: A module providing a wxPython GUI application to access the capture
device and display the video feed. This is the same module that we used in
the previous chapters.

 ° gui.BaseLayout: A generic layout from which more complicated
layouts can be built. This chapter does not require any modifications
to the basic layout.

In the following sections, we will discuss these components in detail.

Chapter 7

[505]

Face detection
OpenCV comes preinstalled with a range of sophisticated classifiers for general-
purpose object detection. Perhaps, the most commonly known detector is the cascade
of Haar-based feature detectors for face detection, which was invented by Paul Viola
and Michael Jones.

Haar-based cascade classifiers
Every book on OpenCV should at least mention the Viola–Jones face detector.
Invented in 2001, this cascade classifier disrupted the field of computer vision,
as it finally allowed real-time face detection and face recognition.

The classifier is based on Haar-like features (similar to Haar basis functions), which
sum up the pixel intensities in small regions of an image, as well as capture the
difference between adjacent image regions. Some example rectangle features are
shown in the following figure, relative to the enclosing (light gray) detection window:

Here, the top row shows two examples of an edge feature, either vertically oriented
(left) or oriented at a 45 degree angle (right). The bottom row shows a line feature
(left) and a center-surround feature (right). The feature value for each of these is then
calculated by summing up all pixel values in the dark gray rectangle and subtracting
this value from the sum of all pixel values in the white rectangle. This procedure
allowed the algorithm to capture certain qualities of human faces, such as the fact
that eye regions are usually darker than the region surrounding the cheeks.

Learning to Recognize Emotions on Faces

[506]

Thus, a common Haar feature would have a dark rectangle (representing the eye
region) atop a bright rectangle (representing the cheek region). Combining this
feature with a bank of rotated and slightly more complicated wavelets, Viola and
Jones arrived at a powerful feature descriptor for human faces. In an additional act of
genius, these guys came up with an efficient way to calculate these features, making
it possible for the first time to detect faces in real-time.

Pre-trained cascade classifiers
Even better, this approach does not only work for faces but also for eyes, mouths,
full bodies, company logos, you name it. A number of pre-trained classifiers can be
found under the OpenCV install path in the data folder:

Cascade classifier type XML file name
Face detector (default) haarcascade_frontalface_default.

xml

Face detector (fast Haar) haarcascade_frontalface_alt2.xml

Eye detector haarcascade_lefteye_2splits.xml

haarcascade_righteye_2splits.xml

Mouth detector haarcascade_mcs_mouth.xml

Nose detector haarcascade_mcs_nose.xml

Full body detector haarcascade_fullbody.xml

In this chapter, we will use haarcascade_frontalface_default.xml,
haarcascade_lefteye_2splits.xml, and haarcascade_righteye_2splits.xml.

If you are wearing glasses, make sure to use haarcascade_eye_
tree_eyeglasses.xml on both eyes instead.

Using a pre-trained cascade classifier
A cascade classifier can be loaded and applied to a (grayscale!) image frame with the
following code:

import cv2

frame = cv2.imread('example_grayscale.jpg', cv2.CV_8UC1)
face_casc =
 cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
faces = face_casc.detectMultiScale(frame, scaleFactor=1.1,
 minNeighbors=3)

Chapter 7

[507]

The detectMultiScale function comes with a number of options:

• minFeatureSize: The minimum face size to consider (for example, 20 × 20
pixels).

• searchScaleFactor: Amount by which to rescale the image (scale pyramid).
For example, a value of 1.1 will gradually reduce the size of the input image
by 10 percent, making it more likely for a face to be found than a larger value.

• minNeighbors: The number of neighbors each candidate rectangle should
have to retain it. Typically, choose 3 or 5.

• flags: Options for old cascades (will be ignored by newer ones). For
example, whether to look for all faces or just the largest (cv2.cv.CASCADE_
FIND_BIGGEST_OBJECT).

If detection is successful, the function will return a list of bounding boxes (faces)
that contain the coordinates of the detected face regions:

for (x, y, w, h) in faces:
 # draw bounding box on frame
 cv2.rectangle(frame, (x, y), (x + w, y + h), (100, 255, 0), 2)

If your pre-trained face cascade does not detect anything, a common
reason is usually that the path to the pre-trained cascade file could not
be found. In this case, CascadeClassifier will fail silently. Thus,
it is always a good idea to check whether the returned classifier casc
= cv2.CascadeClassifier(filename) is empty, by checking
casc.empty().

The FaceDetector class
All relevant face detection code for this chapter can be found as part of the
FaceDetector class in the detectors module. Upon instantiation, this class loads
three different cascade classifiers that are needed for preprocessing: a face cascade
and two eye cascades.

import cv2
import numpy as np

class FaceDetector:
 def __init__(

Learning to Recognize Emotions on Faces

[508]

 self,
 face_casc='params/haarcascade_frontalface_default.xml',
 left_eye_casc='params/haarcascade_lefteye_2splits.xml',
 right_eye_casc='params/haarcascade_righteye_2splits.xml',
 scale_factor=4):

Because our preprocessing requires a valid face cascade, we make sure that the file
can be loaded. If not, we print an error message and exit the program:

 self.face_casc = cv2.CascadeClassifier(face_casc)
 if self.face_casc.empty():
 print 'Warning: Could not load face cascade:',
 face_casc
 raise SystemExit

For reasons that will become clear in just a moment, we also need two eye cascades,
for which we proceed analogously:

 self.left_eye_casc = cv2.CascadeClassifier(left_eye_casc)
 if self.left_eye_casc.empty():
 print 'Warning: Could not load left eye cascade:',
 left_eye_casc
 raise SystemExit
 self.right_eye_casc =
 cv2.CascadeClassifier(right_eye_casc)
 if self.right_eye_casc.empty():
 print 'Warning: Could not load right eye cascade:',
 right_eye_casc
 raise SystemExit

Face detection works best on low-resolution grayscale images. This is why we also
store a scaling factor (scale_factor) so that we can operate on downscaled versions
of the input image if necessary:

self.scale_factor = scale_factor

Detecting faces in grayscale images
Faces can then be detected using the detect method. Here, we ensure that we
operate on a downscaled grayscale image:

def detect(self, frame):
 frameCasc = cv2.cvtColor(cv2.resize(frame, (0, 0),
 fx=1.0 / self.scale_factor, fy=1.0 / self.scale_factor),
 cv2.COLOR_RGB2GRAY)
 faces = self.face_casc.detectMultiScale(frameCasc,
 scaleFactor=1.1, minNeighbors=3,
 flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT) *
 self.scale_factor

Chapter 7

[509]

If a face is found, we continue to extract the head region from the bounding box
information and store the result in head:

for (x, y, w, h) in faces:
 head = cv2.cvtColor(frame[y:y + h, x:x + w],
 cv2.COLOR_RGB2GRAY)

We also draw the bounding box onto the input image:

cv2.rectangle(frame, (x, y), (x + w, y + h), (100, 255, 0), 2)

In case of success, the method should return a Boolean indicating success (True),
the annotated input image (frame), and the extracted head region (head):

return True, frame, head

Otherwise, if no faces were detected, the method indicates failure with a Boolean
(False) and returns the unchanged input image (frame) and None for the head region:

return False, frame, None

Preprocessing detected faces
After a face has been detected, we might want to preprocess the extracted head
region before applying classification on it. Although the face cascade is fairly
accurate, for recognition, it is important that all the faces are upright and centered on
the image. This idea is best illustrated with an image. Consider a sad programmer
under a tree:

Learning to Recognize Emotions on Faces

[510]

Because of his emotional state, the programmer tends to keep his head slightly tilted
to the side while looking down. The facial region as extracted by the face cascade is
shown as the leftmost grayscale thumbnail on the right. In order to compensate for
the head orientation, we aim to rotate and scale the face so that all data samples will
be perfectly aligned. This is the job of the align_head method in the FaceDetector
class:

def align_head(self, head):
 height, width = head.shape[:2]

Fortunately, OpenCV comes with a few eye cascades that can detect both open
and closed eyes, such as haarcascade_lefteye_2splits.xml and haarcascade_
righteye_2splits.xml. This allows us to calculate the angle between the line that
connects the center of the two eyes and the horizon so that we can rotate the face
accordingly. In addition, adding eye detectors will reduce the risk of having false
positives in our dataset, allowing us to add a data sample only if both the head and
the eyes have been successfully detected.

After loading these eye cascades from file in the FaceDetector constructor, they are
applied to the input image (head):

 left_eye_region = head[0.2*height:0.5*height,
 0.1*width:0.5*width]
 left_eye = self.left_eye_casc.detectMultiScale(
 left_eye_region, scaleFactor=1.1, minNeighbors=3,
 flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT)

Here, it is important that we pass only a small, relevant region (left_eye_region;
compare small thumbnails in the top-right corner of the preceding figure) to the eye
cascades. For simplicity, we use hardcoded values that focus on the top half of the
facial region and assume the left eye to be in the left half.

If an eye is detected, we extract the coordinates of its center point:

left_eye_center = None
for (xl, yl, wl, hl) in left_eye:
 # find the center of the detected eye region
 left_eye_center = np.array([0.1 * width + xl + wl / 2,
 0.2 * height + yl + hl / 2])
 break # need only look at first, largest eye

Chapter 7

[511]

Then, we proceed to do the same for the right eye:

right_eye_region = head[0.2*height:0.5*height,
 0.5*width:0.9*width]
right_eye = self.right_eye_casc.detectMultiScale(
 right_eye_region, scaleFactor=1.1, minNeighbors=3,
 flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT)
right_eye_center = None
for (xr, yr, wr, hr) in right_eye:
 # find the center of the detected eye region
 right_eye_center = np.array([0.5 * width + xr + wr / 2,
 0.2 * height + yr + hr / 2])
 break # need only look at first, largest eye

As mentioned earlier, if we do not detect both the eyes, we discard the sample as a
false positive:

if left_eye_center is None or right_eye_center is None:
 return False, head

Now, this is where the magic happens. No matter how crooked the face that we
detected is, before we add it to the training set, we want the eyes to be exactly at 25
percent and 75 percent of the image width (so that the face is in the center) and at 20
percent of the image height:

desired_eye_x = 0.25
desired_eye_y = 0.2
desired_img_width = 200
desired_img_height = desired_img_width

This can be achieved by warping the image using cv2.warpAffine (remember
Chapter 3, Finding Objects via Feature Matching and Perspective Transforms?). First,
we calculate the angle (in degrees) between the line that connects the two eyes
and a horizontal line:

eye_center = (left_eye_center + right_eye_center) / 2
eye_angle_deg = np.arctan2(
 right_eye_center[1] – left_eye_center[1],
 right_eye_center[0] – left_eye_center[0]) *
 180.0 / cv2.cv.CV_PI

Learning to Recognize Emotions on Faces

[512]

Then, we derive a scaling factor that will scale the distance between the two eyes to
be exactly 50 percent of the image width:

eye_size_scale = (1.0 - desired_eye_x * 2) *
 desired_img_width / np.linalg.norm(
 right_eye_center – left_eye_center)

With these two parameters (eye_angle_deg and eye_size_scale) in hand, we can
now come up with a suitable rotation matrix that will transform our image:

rot_mat = cv2.getRotationMatrix2D(tuple(eye_center),
eye_angle_deg, eye_size_scale)

We make sure that the center of the eyes will be centered in the image:

rot_mat[0,2] += desired_img_width*0.5 – eye_center[0]
rot_mat[1,2] += desired_eye_y*desired_img_height –
 eye_center[1]

Finally, we arrive at an upright scaled version of the facial region that looks like the
lower-right thumbnail of the preceding image:

res = cv2.warpAffine(head, rot_mat,
 (desired_img_width, desired_img_height))
return True, res

Facial expression recognition
The facial expression recognition pipeline is encapsulated by chapter7.py. This file
consists of an interactive GUI that operates in two modes (training and testing), as
described earlier.

In order to arrive at our end-to-end app, we need to cover the following three steps:

1. Load the chapter7.py GUI in the training mode to assemble a training set.
2. Train an MLP classifier on the training set via train_test_mlp.py. Because

this step can take a long time, the process takes place in its own script. After
successful training, store the trained weights in a file, so that we can load the
pre-trained MLP in the next step.

3. Load the chapter7.py GUI in the testing mode to classify facial expressions
on a live video stream in real-time. This step involves loading several pre-
trained cascade classifiers as well as our pre-trained MLP classifier. These
classifiers will then be applied to every captured video frame.

Chapter 7

[513]

Assembling a training set
Before we can train an MLP, we need to assemble a suitable training set. Because
chances are, that your face is not yet part of any dataset out there (the NSA's private
collection doesn't count), we will have to assemble our own. This is done most easily
by returning to our GUI application from the previous chapters, which can access a
webcam, and operate on each frame of a video stream.

The GUI will present the user with the option of recording one of the following six
emotional expressions: neutral, happy, sad, surprised, angry, and disgusted. Upon
clicking a button, the app will take a snapshot of the detected facial region, and
upon exiting, it will store all collected data samples in a file. These samples can then
be loaded from file and used to train an MLP classifier in train_test_mlp.py, as
described in step two given earlier.

Running the screen capture
In order to run this app (chapter7.py), we need to set up a screen capture by using
cv2.VideoCapture and pass the handle to the FaceLayout class:

import time
import wx
from os import path
import cPickle as pickle

import cv2
import numpy as np

from datasets import homebrew
from detectors import FaceDetector
from classifiers import MultiLayerPerceptron
from gui import BaseLayout

def main():
 capture = cv2.VideoCapture(0)
 if not(capture.isOpened()):
 capture.open()

 capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
 capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

 # start graphical user interface
 app = wx.App()

Learning to Recognize Emotions on Faces

[514]

 layout = FaceLayout(None, -1, 'Facial Expression Recognition',
 capture)
 layout.init_algorithm()
 layout.Show(True)
 app.MainLoop()

if __name__ == '__main__':
 main()

If you happen to have installed some non-canonical releases of
OpenCV, the frame width and frame weight parameters might have a
slightly different name (for example, cv3.CAP_PROP_FRAME_WIDTH).
However, in newer releases, it is the easiest to access the old OpenCV1
sub-module cv and its variables cv2.cv.CV_CAP_PROP_FRAME_
WIDTH and cv2.cv.CV_CAP_PROP_FRAME_HEIGHT.

The GUI constructor
Analogous to the previous chapters, the GUI of the app is a customized version of
the generic BaseLayout:

class FaceLayout(BaseLayout):

We initialize the training samples and labels as empty lists, and make sure to call
the _on_exit method upon closing the window so that the training data is dumped
to file:

 def _init_custom_layout(self):
 # initialize data structure
 self.samples = []
 self.labels = []

 # call method to save data upon exiting
 self.Bind(wx.EVT_CLOSE, self._on_exit)

We also have to load several classifiers to make the preprocessing and (later on)
the real-time classification work. For convenience, default file names are provided:

 def init_algorithm(
 self,
 save_training_file='datasets/faces_training.pkl',
 load_preprocessed_data='datasets/faces_preprocessed.pkl',
 load_mlp='params/mlp.xml',
 face_casc='params/haarcascade_frontalface_default.xml',
 left_eye_casc='params/haarcascade_lefteye_2splits.xml',
 right_eye_casc='params/haarcascade_righteye_2splits.xml'):

Chapter 7

[515]

Here, save_training_file indicates the name of a pickle file in which to store all
training samples after data acquisition is complete:

 self.dataFile = save_training_file

The three cascades are passed to the FaceDetector class as explained in the
previous section:

 self.faces = FaceDetector(face_casc, left_eye_casc,
 right_eye_casc)

As their names suggest, the remaining two arguments (load_preprocessed_data
and load_mlp) are concerned with a real-time classification of the detected faces by
using the pre-trained MLP classifier:

 # load preprocessed dataset to access labels and PCA
 # params
 if path.isfile(load_preprocessed_data):
 (_, y_train), (_, y_test), self.pca_V, self.pca_m =
 homebrew.load_from_file(load_preprocessed_data)
 self.all_labels = np.unique(np.hstack((y_train,
 y_test)))

 # load pre-trained multi-layer perceptron
 if path.isfile(load_mlp):
 self.MLP = MultiLayerPerceptron(
 np.array([self.pca_V.shape[1],
 len(self.all_labels)]),
 self.all_labels)
 self.MLP.load(load_mlp)

If any of the parts required for the testing mode are missing, we print a warning
and disable the testing mode altogether:

 else:
 print "Warning: Testing is disabled"
 print "Could not find pre-trained MLP file ",
 load_mlp
 self.testing.Disable()
 else:
 print "Warning: Testing is disabled"
 print "Could not find preprocessed data file ",
 loadPreprocessedData
 self.testing.Disable()

Learning to Recognize Emotions on Faces

[516]

The GUI layout
Creation of the layout is again deferred to a method called _create_custom_layout.
We keep the layout as simple as possible: We create a panel for the acquired video
frame, and draw a row of buttons below it.

The idea is to then click one of the six radio buttons to indicate which facial
expression you are trying to record, then place your head within the bounding box,
and click the Take Snapshot button.

Below the current camera frame, we place two radio buttons to select either the
training or the testing mode, and tell the GUI that the two are mutually exclusive by
specifying style=wx.RB_GROUP:

def _create_custom_layout(self):
 # create horizontal layout with train/test buttons
 pnl1 = wx.Panel(self, -1)
 self.training = wx.RadioButton(pnl1, -1, 'Train', (10, 10),
 style=wx.RB_GROUP)
 self.testing = wx.RadioButton(pnl1, -1, 'Test')
 hbox1 = wx.BoxSizer(wx.HORIZONTAL)
 hbox1.Add(self.training, 1)
 hbox1.Add(self.testing, 1)
 pnl1.SetSizer(hbox1)

Also, we want the event of a button click to bind to the self._on_training
and self._on_testing methods, respectively:

self.Bind(wx.EVT_RADIOBUTTON, self._on_training,
 self.training)
self.Bind(wx.EVT_RADIOBUTTON, self._on_testing, self.testing)

The second row should contain similar arrangements for the six facial
expression buttons:

create a horizontal layout with all buttons
pnl2 = wx.Panel(self, -1)
self.neutral = wx.RadioButton(pnl2, -1, 'neutral',
 (10, 10), style=wx.RB_GROUP)
self.happy = wx.RadioButton(pnl2, -1, 'happy')
self.sad = wx.RadioButton(pnl2, -1, 'sad')
self.surprised = wx.RadioButton(pnl2, -1, 'surprised')
self.angry = wx.RadioButton(pnl2, -1, 'angry')
self.disgusted = wx.RadioButton(pnl2, -1, 'disgusted')
hbox2 = wx.BoxSizer(wx.HORIZONTAL)
hbox2.Add(self.neutral, 1)
hbox2.Add(self.happy, 1)

Chapter 7

[517]

hbox2.Add(self.sad, 1)
hbox2.Add(self.surprised, 1)
hbox2.Add(self.angry, 1)
hbox2.Add(self.disgusted, 1)
pnl2.SetSizer(hbox2)

The Take Snapshot button is placed below the radio buttons and will bind to the
_on_snapshot method:

pnl3 = wx.Panel(self, -1)
self.snapshot = wx.Button(pnl3, -1, 'Take Snapshot')
self.Bind(wx.EVT_BUTTON, self.OnSnapshot, self.snapshot)
hbox3 = wx.BoxSizer(wx.HORIZONTAL)
hbox3.Add(self.snapshot, 1)
pnl3.SetSizer(hbox3)

This will look like the following:

To make these changes take effect, the created panels need to be added to the list of
existing panels:

display the button layout beneath the video stream
self.panels_vertical.Add (pnl1, flag=wx.EXPAND | wx.TOP, border=1)
self.panels_vertical.Add(pnl2, flag=wx.EXPAND | wx.BOTTOM,
 border=1)
self.panels_vertical.Add(pnl3, flag=wx.EXPAND | wx.BOTTOM,
 border=1)

The rest of the visualization pipeline is handled by the BaseLayout class. Now,
whenever the user clicks the self.testing button, we no longer want to record
training samples, but instead switch to the testing mode. In the testing mode, none of
the training-related buttons should be enabled, as shown in the following image:

Learning to Recognize Emotions on Faces

[518]

This can be achieved with the following method that disables all the relevant
buttons:

def _on_testing(self, evt):
 """Whenever testing mode is selected, disable all
 training-related buttons"""
 self.neutral.Disable()
 self.happy.Disable()
 self.sad.Disable()
 self.surprised.Disable()
 self.angry.Disable()
 self.disgusted.Disable()
 self.snapshot.Disable()

Analogously, when we switch back to the training mode, the buttons should be
enabled again:

def _on_training(self, evt):
 """Whenever training mode is selected, enable all
 training-related buttons"""
 self.neutral.Enable()
 self.happy.Enable()
 self.sad.Enable()
 self.surprised.Enable()
 self.angry.Enable()
 self.disgusted.Enable()
 self.snapshot.Enable()

Processing the current frame
The rest of the visualization pipeline is handled by the BaseLayout class. We only
need to make sure to provide the _process_frame method. This method begins by
detecting faces in a downscaled grayscale version of the current frame, as explained
in the previous section:

def _process_frame(self, frame):
 success, frame, self.head = self.faces.detect(frame)

If a face is found, success is True, and the method has access to an annotated
version of the current frame (frame) and the extracted head region (self.head).
Note that we store the extracted head region for further reference, so that we can
access it in _on_snapshot.

We will return to this method when we talk about the testing mode, but for now,
this is all we need to know. Don't forget to pass the processed frame:

 return frame

Chapter 7

[519]

Adding a training sample to the training set
When the Take Snapshot button is clicked upon, the _on_snapshot method is
called. This method detects the emotional expression that we are trying to record by
checking the value of all radio buttons, and assigns a class label accordingly:

def _on_snapshot(self, evt):
 if self.neutral.GetValue():
 label = 'neutral'
 elif self.happy.GetValue():
 label = 'happy'
 elif self.sad.GetValue():
 label = 'sad'
 elif self.surprised.GetValue():
 label = 'surprised'
 elif self.angry.GetValue():
 label = 'angry'
 elif self.disgusted.GetValue():
 label = 'disgusted'

We next need to look at the detected facial region of the current frame (stored in
self.head by _process_frame), and align it with all the other collected frames.
That is, we want all the faces to be upright and the eyes to be aligned. Otherwise,
if we do not align the data samples, we run the risk of having the classifier compare
eyes to noses. Because this computation can be costly, we do not apply it on every
frame, but instead only upon taking a snapshot. The alignment takes place in the
following method:

 if self.head is None:
 print "No face detected"
 else:
 success, head = self.faces.align_head(self.head)

If this method returns True for success, indicating that the sample was successfully
aligned with all other samples, we add the sample to our dataset:

if success:
 print "Added sample to training set"
 self.samples.append(head.flatten())
 self.labels.append(label)
else:
 print "Could not align head (eye detection failed?)"

All that is left to do now is to make sure that we save the training set upon exiting.

Learning to Recognize Emotions on Faces

[520]

Dumping the complete training set to a file
Upon exiting the app (for example, by clicking the Close button of the window),
an event EVT_CLOSE is triggered, which binds to the _on_exit method. This method
simply dumps the collected samples and the corresponding class labels to file:

def _on_exit(self, evt):
 """Called whenever window is closed"""
 # if we have collected some samples, dump them to file
 if len(self.samples) > 0:

However, we want to make sure that we do not accidentally overwrite previously
stored training sets. If the provided filename already exists, we append a suffix and
save the data to the new filename instead:

 # make sure we don't overwrite an existing file
 if path.isfile(self.data_file):
 filename, fileext = path.splitext(self.data_file)
 offset = 0
 while True: # a do while loop
 file = filename + "-" + str(offset) + fileext
 if path.isfile(file):
 offset += 1
 else:
 break
 self.data_file = file

Once we have created an unused filename, we dump the data to file by making use
of the pickle module:

 f = open(self.dataFile, 'wb')
 pickle.dump(self.samples, f)
 pickle.dump(self.labels, f)
 f.close()

Upon exiting, we inform the user that a file was created and make sure that all data
structures are correctly deallocated:

 print "Saved", len(self.samples), "samples to", self.data_file
 self.Destroy()

Chapter 7

[521]

Here are some examples from the assembled training set I:

Feature extraction
We have previously made the point that, finding the features that best describe the
data is often an essential part of the entire learning task. We have also looked at
common preprocessing methods such as mean subtraction and normalization.
Here, we will look at an additional method that has a long tradition in face
recognition: principal component analysis (PCA).

Preprocessing the dataset
Analogous to Chapter 6, Learning to Recognize Traffic Signs, we write a new dataset
parser in dataset/homebrew.py that will parse our self-assembled training set.
We define a load_data function that will parse the dataset, perform feature
extraction, split the data into training and testing sets, and return the results:

import cv2
import numpy as np

import csv
from matplotlib import cm
from matplotlib import pyplot as plt

from os import path

Learning to Recognize Emotions on Faces

[522]

import cPickle as pickle

def load_data(load_from_file, test_split=0.2, num_components=50,
 save_to_file=None, plot_samples=False, seed=113):
 """load dataset from pickle """

Here, load_from_file specifies the path to the data file that we created in the
previous section. We can also specify another file called save_to_file, which will
contain the dataset after feature extraction. This will be helpful later on when we
perform real-time classification.

The first step is thus to try and open load_from_file. If the file exists, we use the
pickle module to load the samples and labels data structures; else, we throw an
error:

prepare lists for samples and labels
X = []
labels = []
if not path.isfile(load_from_file):
 print "Could not find file", load_from_file
 return (X, labels), (X, labels), None, None
else:
 print "Loading data from", load_from_file
 f = open(load_from_file, 'rb')
 samples = pickle.load(f)
 labels = pickle.load(f)
 print "Loaded", len(samples), "training samples"

If the file was successfully loaded, we perform PCA on all samples. The num_
components variable specifies the number of principal components that we want to
consider. The function also returns a list of basis vectors (V) and a mean value (m) for
every sample in the set:

perform feature extraction
returns preprocessed samples, PCA basis vectors & mean
X, V, m = extract_features(samples,
 num_components=num_components)

As pointed out earlier, it is imperative to keep the samples that we use to train our
classifier separate from the samples that we use to test it. For this, we shuffle the data
and split it into two separate sets, such that the training set contains a fraction (1 -
test_split) of all samples, and the rest of the samples belong to the test set:

shuffle dataset
np.random.seed(seed)
np.random.shuffle(X)

Chapter 7

[523]

np.random.seed(seed)
np.random.shuffle(labels)

split data according to test_split
X_train = X[:int(len(X)*(1-test_split))]
y_train = labels[:int(len(X)*(1-test_split))]

X_test = X[int(len(X)*(1-test_split)):]
y_test = labels[int(len(X)*(1-test_split)):]

If specified, we want to save the preprocessed data to file:

if save_to_file is not None:
 # dump all relevant data structures to file
 f = open(save_to_file, 'wb')
 pickle.dump(X_train, f)
 pickle.dump(y_train, f)
 pickle.dump(X_test, f)
 pickle.dump(y_test, f)
 pickle.dump(V, f)
 pickle.dump(m, f)
 f.close()
 print "Save preprocessed data to", save_to_file

Finally, we can return the extracted data:

return (X_train, y_train), (X_test, y_test), V, m

Principal component analysis
PCA is a dimensionality reduction technique that is helpful whenever we are
dealing with high-dimensional data. In a sense, you can think of an image as a point
in a high-dimensional space. If we flatten a 2D image of height m and width n (by
concatenating either all rows or all columns), we get a (feature) vector of length m
× n. The value of the i-th element in this vector is the grayscale value of the i-th
pixel in the image. To describe every possible 2D grayscale image with these exact
dimensions, we will need an m × n dimensional vector space that contains 256
raised to the power of m × n vectors. Wow! An interesting question that comes to
mind when considering these numbers is as follows: could there be a smaller, more
compact vector space (using less than m × n features) that describes all these images
equally well? After all, we have previously realized that grayscale values are not the
most informative measures of content.

Learning to Recognize Emotions on Faces

[524]

This is where PCA comes in. Consider a dataset from which we extracted exactly
two features. These features could be the grayscale values of pixels at some x and y
positions, but they could also be more complex than that. If we plot the dataset along
these two feature axes, the data might lie within some multivariate Gaussian, as
shown in the following image:

What PCA does is rotate all data points until the data lie aligned with the two axes
(the two inset vectors) that explain most of the spread of the data. PCA considers
these two axes to be the most informative, because if you walk along them, you
can see most of the data points separated. In more technical terms, PCA aims to
transform the data to a new coordinate system by means of an orthogonal linear
transformation. The new coordinate system is chosen such that if you project the
data onto these new axes, the first coordinate (called the first principal component)
observes the greatest variance. In the preceding image, the small vectors drawn
correspond to the eigenvectors of the covariance matrix, shifted so that their tails
come to lie at the mean of the distribution.

Fortunately, someone else has already figured out how to do all this in Python. In
OpenCV, performing PCA is as simple as calling cv2.PCACompute. Embedded in our
feature extraction method, the option reads as follows:

def extract_feature(X, V=None, m=None, num_components=50):

Chapter 7

[525]

Here, the function can be used to either perform PCA from scratch or use a
previously calculated set of basis vectors (V) and mean (m), which is helpful during
testing when we want to perform real-time classification. The number of principal
components to consider is specified via num_components. If we do not specify any of
the optional arguments, PCA is performed from scratch on all the data samples in X:

 if V is None or m is None:
 # need to perform PCA from scratch
 if num_components is None:
 num_components = 50

 # cols are pixels, rows are frames
 Xarr = np.squeeze(np.array(X).astype(np.float32))

 # perform PCA, returns mean and basis vectors
 m, V = cv2.PCACompute(Xarr)

The beauty of PCA is that the first principal component by definition explains
most of the variance of the data. In other words, the first principal component is
the most informative of the data. This means that we do not need to keep all of the
components to get a good representation of the data! We can limit ourselves to the
num_components most informative ones:

 # use only the first num_components principal components
 V = V[:num_components]

Finally, a compressed representation of the data is achieved by projecting the zero-
centered original data onto the new coordinate system:

 for i in xrange(len(X)):
 X[i] = np.dot(V, X[i] - m[0, i])

 return X, V, m

Multi-layer perceptrons
Multi-layer perceptrons (MLPs) have been around for a while. MLPs are artificial
neural networks (ANNs) used to convert a set of input data into a set of output data.
At the heart of an MLP is a perceptron, which resembles (yet overly simplifies) a
biological neuron. By combining a large number of perceptrons in multiple layers,
the MLP is able to make non-linear decisions about its input data. Furthermore,
MLPs can be trained with backpropagation, which makes them very interesting for
supervised learning.

Learning to Recognize Emotions on Faces

[526]

The perceptron
A perceptron is a binary classifier that was invented in the 1950s by Frank
Rosenblatt. A perceptron calculates a weighted sum of its inputs, and if this sum
exceeds a threshold, it outputs a 1; else, it outputs a 0. In some sense, a perceptron is
integrating evidence that its afferents signal the presence (or absence) of some object
instance, and if this evidence is strong enough, the perceptron will be active (or
silent). This is loosely connected to what researchers believe biological neurons are
doing (or can be used to do) in the brain, hence, the term artificial neural network.

A sketch of a perceptron is depicted in the following figure:

Here, a perceptron computes a weighted (w_i) sum of all its inputs (x_i), combined
with a bias term (b). This input is fed into a nonlinear activation function (θ) that
determines the output of the perceptron (y). In the original algorithm, the activation
function was the Heaviside step function. In modern implementations of ANNs,
the activation function can be anything ranging from sigmoid to hyperbolic tangent
functions. The Heaviside function and the sigmoid function are plotted in the
following image:

Chapter 7

[527]

Depending on the activation function, these networks might be able to perform
either classification or regression. Traditionally, one only talks of MLPs when nodes
use the Heaviside step function.

Deep architectures
Once you have the perceptron figured out, it would make sense to combine multiple
perceptrons to form a larger network. Multi-layer perceptrons usually consist of at
least three layers, where the first layer has a node (or neuron) for every input feature
of the dataset, and the last layer has a node for every class label. The layer in between
is called the hidden layer. An example of this feed-forward neural network is
shown in the following figure:

Learning to Recognize Emotions on Faces

[528]

In a feed-forward neural network, some or all of the nodes in the input layer are
connected to all the nodes in the hidden layer, and some or all of the nodes in the
hidden layer are connected to some or all of the nodes in the output layer. You would
usually choose the number of nodes in the input layer to be equal to the number of
features in the dataset, so that each node represents one feature. Analogously, the
number of nodes in the output layer is usually equal to the number of classes in the
data, so that when an input sample of class c is presented, the c-th node in the output
layer is active and all others are silent.

It is also possible to have multiple hidden layers of course. Often, it is not clear
beforehand what the optimal size of the network should be.

Typically, you will see the error rate on the training set decrease when you add more
neurons to the network, as is depicted in the following figure (thinner, red curve):

This is because the expressive power or complexity (also referred to as the
Vapnik–Chervonenkis or VC dimension) of the model increases with the increasing
size of the neural network. However, the same cannot be said for the error rate on
the test set (thicker, blue curve)! Instead, what you will find is that with increasing
model complexity, the test error goes through a minimum, and adding more
neurons to the network will not improve the generalization performance any more.
Therefore, you would want to steer the size of the neural network to what is labeled
the optimal range in the preceding figure, which is where the network achieves the
best generalization performance.

Chapter 7

[529]

You can think of it this way. A model of weak complexity (on the far left of the plot)
is probably too small to really understand the dataset that it is trying to learn, thus
yielding large error rates on both the training and the test sets. This is commonly
referred to as underfitting. On the other hand, a model on the far right of the plot is
probably so complex that it begins to memorize the specifics of each sample in the
training data, without paying attention to the general attributes that make a sample
stand apart from the others. Therefore, the model will fail when it has to predict data
that it is has never seen before, effectively yielding a large error rate on the test set.
This is commonly referred to as overfitting.

Instead, what you want is to develop a model that neither underfits nor overfits.
Often this can only be achieved by trial-and-error; that is, by considering the network
size as a hyperparameter that needs to be tweaked and tuned depending on the exact
task to be performed.

An MLP learns by adjusting its weights so that when an input sample of class c is
presented, the c-th node in the output layer is active and all the others are silent.
MLPs are trained by means of backpropagation, which is an algorithm to calculate
the partial derivative of a loss function with respect to any synaptic weight or
neuron bias in the network. These partial derivatives can then be used to update the
weights and biases in the network in order to reduce the overall loss step-by-step.

A loss function can be obtained by presenting training samples to the network and
by observing the network's output. By observing which output nodes are active
and which are silent, we can calculate the relative error between what the output
layer is doing and what it should be doing (that is, the loss function). We then make
corrections to all the weights in the network so that the error decreases over time.
It turns out that the error in the hidden layer depends on the output layer, and the
error in the input layer depends on the error in both the hidden layer and the output
layer. Thus, in a sense, the error (back)propagates through the network. In OpenCV,
backpropagation is used by specifying cv3.ANN_MLP_TRAIN_PARAMS_BACKPROP in
the training parameters.

Gradient descent comes in two common flavors: In stochastic gradient
descent, we update the weights after each presentation of a training
example, whereas in batch learning, we present training examples in
batches and update the weights only after each batch is presented. In
both scenarios, we have to make sure that we adjust the weights only
slightly per sample (by adjusting the learning rate) so that the network
slowly converges to a stable solution over time.

Learning to Recognize Emotions on Faces

[530]

An MLP for facial expression recognition
Analogous to Chapter 6, Learning to Recognize Traffic Signs, we will develop a multi-
layer perceptron class that is modeled after the classifier base class. The base
classifier contains a method for training, where a model is fitted to the training data,
and for testing, where the trained model is evaluated by applying it to the test data:

from abc import ABCMeta, abstractmethod

class Classifier:
 """Abstract base class for all classifiers"""
 __metaclass__ = ABCMeta

 @abstractmethod
 def fit(self, X_train, y_train):
 pass

 @abstractmethod
 def evaluate(self, X_test, y_test, visualize=False):
 pass

Here, X_train and X_test correspond to the training and the test data, respectively,
where each row represents a sample and each column is a feature value of this
sample. The training and test labels are passed as the y_train and y_test vectors,
respectively.

We thus define a new class, MultiLayerPerceptron, which derives from the
classifier base class:

class MultiLayerPerceptron(Classifier):

The constructor of this class accepts an array called layer_sizes that specifies the
number of neurons in each layer of the network and an array called class_labels
that spells out all available class labels. The first layer will contain a neuron for each
feature in the input, whereas the last layer will contain a neuron per output class:

 def __init__(self, layer_sizes, class_labels, params=None):
 self.num_features = layer_sizes[0]
 self.num_classes = layer_sizes[-1]
 self.class_labels = class_labels
 self.params = params or dict()

The constructor initializes the multi-layer perceptron by means of an OpenCV
module called cv2.ANN_MLP:

 self.model = cv2.ANN_MLP()
 self.model.create(layer_sizes)

Chapter 7

[531]

For the sake of convenience to the user, the MLP class allows operations on string
labels as enumerated via class_labels (for example, neutral, happy, and sad). Under
the hood, the class will convert back and forth from strings to integers and from
integers to strings, so that cv2.ANN_MLP will only be exposed to integers. These
transformations are handled by the following two private methods:

def _labels_str_to_num(self, labels):
 """ convert string labels to their corresponding ints """
 return np.array([int(np.where(self.class_labels == l)[0])
 for l in labels])

def _labels_num_to_str(self, labels):
 """Convert integer labels to their corresponding string
 names """
 return self.class_labels[labels]

Load and save methods provide simple wrappers for the underlying cv2.ANN_MLP
class:

def load(self, file):
 """ load a pre-trained MLP from file """
 self.model.load(file)

def save(self, file):
 """ save a trained MLP to file """
 self.model.save(file)

Training the MLP
Following the requirements defined by the Classifier base class, we need to
perform training in a fit method:

def fit(self, X_train, y_train, params=None):
 """ fit model to data """
 if params is None:
 params = self.params

Here, params is an optional dictionary that contains a number of options relevant
to training, such as the termination criteria (term_crit) and the learning algorithm
(train_method) to be used during training. For example, to use backpropagation
and terminate training either after 300 iterations or when the loss reaches values
smaller than 0.01, specify params as follows:

params = dict(
 term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
 train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP)

Learning to Recognize Emotions on Faces

[532]

Because the train method of the cv2.ANN_MLP module does not allow
integer-valued class labels, we need to first convert y_train into "one-hot" code,
consisting only of zeros and ones, which can then be fed to the train method:

y_train = self._labels_str_to_num(y_train)
y_train = self._one_hot(y_train).reshape(-1,
 self.num_classes)
 self.model.train(X_train, y_train, None, params=params)

The one-hot code is taken care of in _one_hot:

def _one_hot(self, y_train):
 """Convert a list of labels into one-hot code """

Each class label c in y_train needs to be converted into a self.num_classes-long
vector of zeros and ones, where all entries are zeros except the c-th, which is a one.
We prepare this operation by allocating a vector of zeros:

 num_samples = len(y_train)
 new_responses = np.zeros(num_samples * self.num_classes,
 np.float32)

Then, we identify the indices of the vector that correspond to all the c-th class labels:

 resp_idx = np.int32(y_train +
 np.arange(num_samples) self.num_classes)

The vector elements at these indices then need to be set to one:

 new_responses[resp_idx] = 1
 return new_responses

Testing the MLP
Following the requirements defined by the Classifier base class, we need to
perform training in an evaluate method:

def evaluate(self, X_test, y_test, visualize=False):
 """ evaluate model performance """

Analogous to the previous chapter, we will evaluate the performance of our classifier
in terms of accuracy, precision, and recall. To reuse our previous code, we again
need to come up with a 2D voting matrix, where each row stands for a data sample
in the testing set and the c-th column contains the number of votes for the c-th class.

Chapter 7

[533]

In the world of perceptrons, the voting matrix actually has a straightforward
interpretation: The higher the activity of the c-th neuron in the output layer, the
stronger the vote for the c-th class. So, all we need to do is to read out the activity of
the output layer and plug it into our accuracy method:

 ret, Y_vote = self.model.predict(X_test)
 y_test = self._labels_str_to_num(y_test)
 accuracy = self._accuracy(y_test, Y_vote)
 precision = self._precision(y_test, Y_vote)
 recall = self._recall(y_test, Y_vote)

 return (accuracy, precision, recall)

In addition, we expose the predict method to the user, so that it is possible to
predict the label of even a single data sample. This will be helpful when we perform
real-time classification, where we do not want to iterate over all test samples, but
instead only consider the current frame. This method simply predicts the label of an
arbitrary number of samples and returns the class label as a human-readable string:

def predict(self, X_test):
 """ predict the labels of test data """
 ret, Y_vote = self.model.predict(X_test)

 # find the most active cell in the output layer
 y_hat = np.argmax(Y_vote, 1)

 # return string labels
 return self._labels_num_to_str(y_hat)

Running the script
The MLP classifier can be trained and tested by using the train_test_mlp.py
script. The script first parses the homebrew dataset and extracts all class labels:

import cv2
import numpy as np

from datasets import homebrew
from classifiers import MultiLayerPerceptron

def main():
 # load training data
 # training data can be recorded using chapter7.py in training
 # mode
 (X_train, y_train),(X_test, y_test) =

Learning to Recognize Emotions on Faces

[534]

 homebrew.load_data("datasets/faces_training.pkl",
 num_components=50, test_split=0.2,
 save_to_file="datasets/faces_preprocessed.pkl",
 seed=42)
 if len(X_train) == 0 or len(X_test) == 0:
 print "Empty data"
 raise SystemExit

 # convert to numpy
 X_train = np.squeeze(np.array(X_train)).astype(np.float32)
 y_train = np.array(y_train)
 X_test = np.squeeze(np.array(X_test)).astype(np.float32)
 y_test = np.array(y_test)

 # find all class labels
 labels = np.unique(np.hstack((y_train, y_test)))

We also make sure to provide some valid termination criteria as described above:

 params = dict(term_crit = (cv2.TERM_CRITERIA_COUNT, 300,
 0.01), train_method=cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
 bp_dw_scale=0.001, bp_moment_scale=0.9)

Often, the optimal size of the neural network is not known a priori, but instead,
a hyperparameter needs to be tuned. In the end, we want the network that gives
us the best generalization performance (that is, the network with the best accuracy
measure on the test set). Since we do not know the answer, we will run a number of
different-sized MLPs in a loop and store the best in a file called saveFile:

 save_file = 'params/mlp.xml'
 num_features = len(X_train[0])
 num_classes = len(labels)

 # find best MLP configuration
 print "1-hidden layer networks"
 best_acc = 0.0 # keep track of best accuracy
 for l1 in xrange(10):
 # gradually increase the hidden-layer size
 layer_sizes = np.int32([num_features,
 (l1 + 1) * num_features / 5,
 num_classes])
 MLP = MultiLayerPerceptron(layer_sizes, labels)
 print layer_sizes

Chapter 7

[535]

The MLP is trained on X_train and tested on X_test:

 MLP.fit(X_train, y_train, params=params)
 (acc, _, _) = MLP.evaluate(X_train, y_train)
 print " - train acc = ", acc
 (acc, _, _) = MLP.evaluate(X_test, y_test)
 print " - test acc = ", acc

Finally, the best MLP is saved to file:

 if acc > best_acc:
 # save best MLP configuration to file
 MLP.save(saveFile)
 best_acc = acc

The saved params/mlp.xml file that contains the network configuration and learned
weights can then be loaded into the main GUI application (chapter7.py) by passing
loadMLP='params/mlp.xml' to the init_algorithm method of the FaceLayout
class. The default arguments throughout this chapter will make sure that everything
works straight out of the box.

Putting it all together
In order to run our app, we will need to execute the main function routine
(in chapter7.py) that loads the pre-trained cascade classifier and the pre-trained
multi-layer perceptron, and applies them to each frame of the webcam live stream.

However, this time, instead of collecting more training samples, we will select the
radio button that says Test. This will trigger an EVT_RADIOBUTTON event, which
binds to FaceLayout._on_testing, disabling all training-related buttons in the
GUI and switching the app to the testing mode. In this mode, the pre-trained MLP
classifier is applied to every frame of the live stream, trying to predict the current
facial expression.

As promised earlier, we now return to FaceLayout._process_frame:

def _process_frame(self, frame):
 """ detects face, predicts face label in testing mode """

Unchanged from what we discussed earlier, the method begins by detecting faces in
a downscaled grayscale version of the current frame:

 success, frame, self.head = self.faces.detect(frame)

Learning to Recognize Emotions on Faces

[536]

However, in the testing mode, there is more to the function:

 # in testing mode: predict label of facial expression
 if success and self.testing.GetValue():

In order to apply our pre-trained MLP classifier to the current frame, we need to
apply the same preprocessing to the current frame as we did with the entire training
set. After aligning the head region, we apply PCA by using the pre-loaded basis
vectors (self.pca_V) and mean values (self.pca_m):

 # if face found: preprocess (align)
 success, head = self.faces.align_head(self.head)
 if success:
 # extract features using PCA (loaded from file)
 X, _, _ = homebrew.extract_features(
 [head.flatten()], self.pca_V, self.pca_m)

Then, we are ready to predict the class label of the current frame:

 # predict label with pre-trained MLP
 label = self.MLP.predict(np.array(X))[0]

Since the predict method already returns a string label, all that is left to do is to
display it above the bounding box in the current frame:

 # draw label above bounding box
 cv2.putText(frame, str(label), (x,y-20),
 cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
 break # need only look at first, largest face

Finally, we are done!

 return frame

Chapter 7

[537]

The end result looks like the following:

Although the classifier has only been trained on (roughly) 100 training samples, it
reliably detects my various facial expressions in every frame of the live stream, no
matter how distorted my face seemed to be at the moment. This is a good indication
that the neural network that was learned neither underfits nor overfits the data, since
it is capable of predicting the correct class labels even for new data samples.

Summary
The final chapter of this book has really rounded up our experience and made
us combine a variety of our skills to arrive at an end-to-end app that consists of
both object detection and object recognition. We became familiar with a range
of pre-trained cascade classifiers that OpenCV has to offer, collected our very
own training dataset, learned about multi-layer perceptrons, and trained them
to recognize emotional expressions in faces. Well, at least my face.

The classifier was undoubtedly able to benefit from the fact that I was the only
subject in the dataset, but with all the knowledge and experience that you have
gathered with this book, it is now time to overcome these limitations! You can
start small and train the classifier on images of you indoors and outdoors, at night
and day, during summer and winter. Or, maybe, you are anxious to tackle a real-
world dataset and be part of Kaggle's Facial Expression Recognition challenge
(see https://www.kaggle.com/c/challenges-in-representation-learning-
facial-expression-recognition-challenge).

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge

Learning to Recognize Emotions on Faces

[538]

If you are into machine learning, you might already know that there is a variety of
accessible libraries out there, such as pylearn (https://github.com/lisa-lab/
pylearn2), scikit-learn (http://scikit-learn.org), and pycaffe (http://caffe.
berkeleyvision.org). Deep learning enthusiasts might want to look into Theano
(http://deeplearning.net/software/theano) or Torch (http://torch.ch).
Finally, if you find yourself stuck with all these algorithms and no datasets to apply
them to, make sure to stop by the UC Irvine Machine Learning Repository (http://
archive.ics.uci.edu/ml).

Congratulations! You are now an OpenCV expert.

https://github.com/lisa-lab/pylearn2
https://github.com/lisa-lab/pylearn2
http://scikit-learn.org
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
http://deeplearning.net/software/theano
http://torch.ch
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[539]

Bibliography
This course is a blend of text and quizzes, all packaged up keeping your journey in
mind. It includes content from the following Packt products:

• OpenCV Computer Vision with Python, Joseph Howse
• OpenCV with Python By Example, Prateek Joshi
• OpenCV with Python Blueprints, Michael Beyeler

Thank you for buying
OpenCV: Computer Vision Projects with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Preface
	Table of Contents
	Module 1: OpenCV Computer Vision with Python
	Chapter 1: Setting up OpenCV
	Choosing and using the right setup tools
	Running samples
	Finding documentation, help, and updates
	Summary

	Chapter 2: Handling Files, Cameras,
and GUIs
	Basic I/O scripts
	Project concept
	An object-oriented design
	Summary

	Chapter 3: Filtering Images
	Creating modules
	Channel mixing – seeing in Technicolor
	Curves – bending color space
	Highlighting edges
	Custom kernels – getting convoluted
	Modifying the application
	Summary

	Chapter 4: Tracking Faces with
Haar Cascades
	Conceptualizing Haar cascades
	Getting Haar cascade data
	Creating modules
	Defining a face as a hierarchy of rectangles
	Tracing, cutting, and pasting rectangles
	Adding more utility functions
	Tracking faces
	Modifying the application
	Summary

	Chapter 5: Detecting Foreground/Background Regions
and Depth
	Creating modules
	Capturing frames from a depth camera
	Creating a mask from a disparity map
	Masking a copy operation
	Modifying the application
	Summary

	Appendix A: Integrating with Pygame
	Installing Pygame
	Documentation and tutorials
	Subclassing managers.WindowManager
	Modifying the application
	Further uses of Pygame
	Summary

	Appendix B: Generating Haar Cascades for Custom Targets
	Gathering positive and negative training images
	Finding the training executables
	Creating the training sets and cascade
	Testing and improving <cascade>
	Summary

	Module 2: OpenCV with Python By Example
	Chapter 1: Detecting Edges and Applying Image Filters
	2D convolution
	Blurring
	Edge detection
	Motion blur
	Sharpening
	Embossing
	Erosion and dilation
	Creating a vignette filter
	Enhancing the contrast in an image
	Summary

	Chapter 2: Cartoonizing an Image
	Accessing the webcam
	Keyboard inputs
	Mouse inputs
	Interacting with a live video stream
	Cartoonizing an image
	Summary

	Chapter 3: Detecting and Tracking Different Body Parts
	Using Haar cascades to detect things
	What are integral images?
	Detecting and tracking faces
	Fun with faces
	Detecting eyes
	Fun with eyes
	Detecting ears
	Detecting a mouth
	It's time for a moustache
	Detecting a nose
	Detecting pupils
	Summary

	Chapter 4: Extracting Features from
an Image
	Why do we care about keypoints?
	What are keypoints?
	Detecting the corners
	Good Features To Track
	Scale Invariant Feature Transform (SIFT)
	Speeded Up Robust Features (SURF)
	Features from Accelerated Segment Test (FAST)
	Binary Robust Independent Elementary Features (BRIEF)
	Oriented FAST and Rotated BRIEF (ORB)
	Summary

	Chapter 5: Creating a Panoramic Image
	Matching keypoint descriptors
	Creating the panoramic image
	What if the images are at an angle
to each other?
	Summary

	Chapter 6: Seam Carving
	Why do we care about seam carving?
	How does it work?
	How do we define "interesting"?
	How do we compute the seams?
	Can we expand an image?
	Can we remove an object completely?
	Summary

	Chapter 7: Detecting Shapes and Segmenting an Image
	Contour analysis and shape matching
	Approximating a contour
	Identifying the pizza with the slice
taken out
	How to censor a shape?
	What is image segmentation?
	Watershed algorithm
	Summary

	Chapter 8: Object Tracking
	Frame differencing
	Colorspace based tracking
	Building an interactive object tracker
	Feature based tracking
	Background subtraction
	Summary

	Chapter 9: Object Recognition
	Object detection versus object recognition
	What is a dense feature detector?
	What is a visual dictionary?
	What is supervised and unsupervised learning?
	What are Support Vector Machines?
	How do we actually implement this?
	Summary

	Chapter 10: Stereo Vision and 3D Reconstruction
	What is stereo correspondence?
	What is epipolar geometry?
	Building the 3D map
	Summary

	Chapter 11: Augmented Reality
	What is the premise of augmented reality?
	What does an augmented reality system look like?
	Geometric transformations for augmented reality
	What is pose estimation?
	How to track planar objects?
	How to augment our reality?
	Let's add some movements
	Summary

	Module 3: OpenCV with Python Blueprints
	Chapter 1: Fun with Filters
	Planning the app
	Creating a black-and-white pencil sketch
	Generating a warming/cooling filter
	Cartoonizing an image
	Putting it all together
	Summary

	Chapter 2: Hand Gesture Recognition Using a Kinect Depth Sensor
	Planning the app
	Setting up the app
	Tracking hand gestures in real time
	Hand region segmentation
	Hand shape analysis
	Hand gesture recognition
	Summary

	Chapter 3: Finding Objects via
Feature Matching and Perspective Transforms
	Tasks performed by the app
	Planning the app
	Setting up the app
	The process flow
	Feature extraction
	Feature matching
	Feature tracking
	Seeing the algorithm in action
	Summary

	Chapter 4: 3D Scene Reconstruction Using Structure from Motion
	Planning the app
	Camera calibration
	Setting up the app
	Estimating the camera motion from a pair of images
	Reconstructing the scene
	3D point cloud visualization
	Summary

	Chapter 5: Tracking Visually Salient Objects
	Planning the app
	Setting up the app
	Visual saliency
	Mean-shift tracking
	Putting it all together
	Summary

	Chapter 6: Learning to Recognize
Traffic Signs
	Planning the app
	Supervised learning
	The GTSRB dataset
	Feature extraction
	Support Vector Machine
	Putting it all together
	Summary

	Chapter 7: Learning to Recognize Emotions on Faces
	Planning the app
	Face detection
	Facial expression recognition
	Putting it all together

	Bibliography
	Preface.pdf
	_GoBack

