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Preface
OpenCV is an open-source, cross-platform library that provides building blocks 
for computer vision experiments and applications. It provides high-level interfaces 
for capturing, processing, and presenting image data. For example, it abstracts 
details about camera hardware and array allocation. OpenCV is widely used in 
both academia and industry. Today, computer vision can reach consumers in many 
contexts via webcams, camera phones, and gaming sensors such as the Kinect. 
For better or worse, people love to be on camera, and as developers, we face a 
demand for applications that capture images, change their appearance, and extract 
information from them. OpenCV's Python bindings can help us explore solutions to 
these requirements in a high-level language and in a standardized data format that is 
interoperable with scientific libraries such as NumPy and SciPy.

Computer vision is found everywhere in modern technology. OpenCV for Python 
enables us to run computer vision algorithms in real time. With the advent of 
powerful machines, we are getting more processing power to work with. Using this 
technology, we can seamlessly integrate our computer vision applications into the 
cloud. Web developers can develop complex applications without having to reinvent 
the wheel.

This course is specifically designed to teach the following topics. First, we will 
learn how to get started with OpenCV and OpenCV 3's Python API, and develop 
a computer vision application that tracks body parts. Then, we will build amazing 
intermediate-level computer vision applications such as making an object disappear 
from an image, identifying different shapes, reconstructing a 3D map from images, 
and building an augmented reality application. Finally, we'll move to more advanced 
projects such as hand gesture recognition, tracking visually salient objects, as well as 
recognizing traffic signs and emotions on faces using support vector machines and 
multi-layer perceptron respectively.
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What this learning path covers
Module 1, OpenCV Computer Vision with Python, in this module you can have a 
development environment that links Python, OpenCV, depth camera libraries 
(OpenNI, SensorKinect), and general-purpose scientific libraries (NumPy, SciPy).

Module 2, OpenCV with Python By Example, this module covers various examples at 
different levels, teaching you about the different functions of OpenCV, and their 
actual implementations.

Module 3, OpenCV with Python Blueprints, this module intends to give the tools, 
knowledge, and skills you need to be OpenCV experts and this newly gained 
experience will allow you to develop your own advanced computer vision 
applications.

What you need for this learning path
This course provides setup instructions for all the relevant software, including package 
managers, build tools, Python, NumPy, SciPy, OpenCV, OpenNI, and SensorKinect. 
The setup instructions are tailored for Windows XP or later versions, Mac OS 10.6 
(Snow Leopard) or later versions, and Ubuntu 12.04 or later versions. Other Unix-like 
operating systems should work too if you are willing to do your own tailoring of the 
setup steps. You need a webcam for the projects described in the course. For additional 
features, some variants of the project use a second webcam or even an OpenNI-
compatible depth camera such as Microsoft Kinect or Asus Xtion PRO.

The hardware requirement being a webcam (or camera device), except for Chapter 
2, Hand Gesture Recognition Using a Kinect Depth Sensor , of the 3rd Module which 
instead requires access to a Microsoft Kinect 3D Sensor or an Asus Xtion.

The course contains projects with the following requirements.

All projects can run on any of Windows, Mac, or Linux, and they require the 
following software packages:

• OpenCV 2.4.9 or later: Recent 32-bit and 64-bit versions as well as 
installation instructions are available at http://opencv.org/downloads.
html. Platform-specific installation instructions can be found at http://
docs.opencv.org/doc/tutorials/introduction/table_of_content_
introduction/table_of_content_introduction.html.

• Python 2.7 or later: Recent 32-bit and 64-bit installers are available at 
https://www.python.org/downloads. The installation instructions can be 
found at https://wiki.python.org/moin/BeginnersGuide/Download.

http://opencv.org/downloads.html
http://opencv.org/downloads.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
http://docs.opencv.org/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html
https://www.python.org/downloads
https://wiki.python.org/moin/BeginnersGuide/Download
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• NumPy 1.9.2 or later: This package for scientific computing officially comes 
in 32-bit format only, and can be obtained from http://www.scipy.org/
scipylib/download.html. The installation instructions can be found at 
http://www.scipy.org/scipylib/building/index.html#building.

wxPython 2.8 or later: This GUI programming toolkit can be obtained from  
http://www.wxpython.org/download.php. Its installation instructions are given  
at http://wxpython.org/builddoc.php.

In addition, some chapters require the following free Python modules:

• SciPy 0.16.0 or later: This scientific Python library officially comes in 32-
bit only, and can be obtained from http://www.scipy.org/scipylib/
download.html. The installation instructions can be found at http://www.
scipy.org/scipylib/building/index.html#building.

• matplotlib 1.4.3 or later: This 2D plotting library can be obtained from 
http://matplotlib.org/downloads.html. Its installation instructions 
can be found by going http://matplotlib.org/faq/installing_faq.
html#how-to-install.

• libfreenect 0.5.2 or later: The libfreenect module by the OpenKinect project 
(http://www.openkinect.org) provides drivers and libraries for the 
Microsoft Kinect hardware, and can be obtained from https://github.
com/OpenKinect/libfreenect. Its installation instructions can be found at 
http://openkinect.org/wiki/Getting_Started.

Furthermore, the use of iPython (http://ipython.org/install.html) is highly 
recommended as it provides a flexible, interactive console interface.

Finally, if you are looking for help or get stuck along the way, you can go for several 
websites that provide excellent help, documentation, and tutorials:

• The official OpenCV API reference, user guide, and tutorials:  
http://docs.opencv.org

The official OpenCV forum: http://www.answers.opencv.org/questions

OpenCV-Python tutorials by Alexander Mordvintsev and Abid Rahman K:  
http://opencv-python-tutroals.readthedocs.org/en/latest

http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/building/index.html#building
http://www.wxpython.org/download.php
http://wxpython.org/builddoc.php
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/building/index.html#building
http://www.scipy.org/scipylib/building/index.html#building
http://matplotlib.org/downloads.html
http://matplotlib.org/faq/installing_faq.html#how-to-install
http://matplotlib.org/faq/installing_faq.html#how-to-install
http://www.openkinect.org
https://github.com/OpenKinect/libfreenect
https://github.com/OpenKinect/libfreenect
http://openkinect.org/wiki/Getting_Started
http://ipython.org/install.html
http://docs.opencv.org
http://www.answers.opencv.org/questions
http://opencv-python-tutroals.readthedocs.org/en/latest
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Who this learning path is for
This Learning Path is for someone who has a working knowledge of Python and 
wants to try out OpenCV. This Learning Path will take you from a beginner to an 
expert in computer vision applications using OpenCV.

OpenCV's applications are humongous and this Learning Path is the best resource to 
get yourself acquainted thoroughly with OpenCV.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this course—what you liked or disliked. Reader feedback is important for us as it 
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at 
http://www.packtpub.com. If you purchased this course elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
course's webpage at the Packt Publishing website. This page can be accessed by 
entering the course's name in the Search box. Please note that you need to be logged 
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.
com/PacktPublishing/OpenCV-Computer-Vision-Projects-with-Python. We 
also have other code bundles from our rich catalog of books, videos, and courses 
available at https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our courses—maybe a mistake in the text 
or the code—we would be grateful if you could report this to us. By doing so, you 
can save other readers from frustration and help us improve subsequent versions 
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata 
Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our 
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required 
information will appear under the Errata section.

https://github.com/PacktPublishing/OpenCV-Computer-Vision-Projects-with-Python
https://github.com/PacktPublishing/OpenCV-Computer-Vision-Projects-with-Python
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Module 1

OpenCV Computer Vision with Python

Learn to capture videos, manipulate images, and track objects with  
Python using the OpenCV Library





Setting up OpenCV
This chapter is a quick guide to setting up Python 2.7, OpenCV, and related libraries. 
After setup, we also look at OpenCV's Python sample scripts and documentation.

The following related libraries are covered:

• NumPy: This is a dependency of OpenCV's Python bindings. It provides 
numeric computing functionality, including efficient arrays.

• SciPy: This is a scientific computing library that is closely related to NumPy. 
It is not required by OpenCV but it is useful for manipulating the data in 
OpenCV images.

• OpenNI: This is an optional dependency of OpenCV. It adds support for 
certain depth cameras, such as Asus XtionPRO.

• SensorKinect: This is an OpenNI plugin and optional dependency of 
OpenCV. It adds support for the Microsoft Kinect depth camera.

For this book's purposes, OpenNI and SensorKinect can be considered optional. They 
are used throughout Chapter 5, Separating Foreground/Background Regions Depth, but 
are not used in the other chapters or appendices.

At the time of writing, OpenCV 2.4.3 is the latest version. On some operating 
systems, it is easier to set up an earlier version (2.3.1). The differences between these 
versions should not affect the project that we are going to build in this book.

Some additional information, particularly about OpenCV's build options and their 
dependencies, is available in the OpenCV wiki at http://opencv.willowgarage.
com/wiki/InstallGuide. However, at the time of writing, the wiki is not up-to-date 
with OpenCV 2.4.3.
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Choosing and using the right setup tools
We are free to choose among various setup tools, depending on our operating system 
and how much configuration we want to do. Let's take an overview of the tools for 
Windows, Mac, Ubuntu, and other Unix-like systems.

Making the choice on Windows XP, Windows 
Vista, Windows 7, or Windows 8
Windows does not come with Python preinstalled. However, installation wizards  
are available for precompiled Python, NumPy, SciPy, and OpenCV. Alternatively, 
we can build from source. OpenCV's build system uses CMake for configuration  
and either Visual Studio or MinGW for compilation.

If we want support for depth cameras including Kinect, we should first install 
OpenNI and SensorKinect, which are available as precompiled binaries with 
installation wizards. Then, we must build OpenCV from source.

The precompiled version of OpenCV does not offer support 
for depth cameras.

On Windows, OpenCV offers better support for 32-bit Python than 64-bit Python. 
Even if we are building from source, I recommend using 32-bit Python. Fortunately, 
32-bit Python works fine on either 32-bit or 64-bit editions of Windows.

Some of the following steps refer to editing the system's Path variable. 
This task can be done in the Environment Variables window of Control 
Panel.
On Windows Vista/Windows 7/Windows 8, open the Start menu and 
launch Control Panel. Now, go to System and Security | System | 
Advanced system settings. Click on the Environment Variables button.
On Windows XP, open the Start menu and go to Control Panel | System. 
Select the Advanced tab. Click on the Environment Variables button.
Now, under System variables, select Path and click on the Edit button. 
Make changes as directed. To apply the changes, click on all the OK 
buttons (until we are back in the main window of Control Panel). Then, 
log out and log back in (alternatively, reboot).
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Using binary installers (no support for depth 
cameras)
Here are the steps to set up 32-bit Python 2.7, NumPy, and OpenCV:

1. Download and install 32-bit Python 2.7.3 from http://www.python.org/
ftp/python/2.7.3/python-2.7.3.msi.

2. Download and install NumPy 1.6.2 from http://sourceforge.net/
projects/numpy/files/NumPy/1.6.2/numpy-1.6.2-win32-superpack-
python2.7.exe/download.

3. Download and install SciPy 11.0 from http://sourceforge.net/
projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-
python2.7.exe/download.

4. Download the self-extracting ZIP of OpenCV 2.4.3 from http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.3/
OpenCV-2.4.3.exe/download. Run the self-extracting ZIP and, when 
prompted, enter any destination folder, which we will refer to as <unzip_
destination>. A subfolder, <unzip_destination>\opencv, is created.

5. Copy <unzip_destination>\opencv\build\python\2.7\cv2.pyd to  
C:\Python2.7\Lib\site-packages (assuming we installed Python 2.7 to 
the default location). Now, the new Python installation can find OpenCV.

6. A final step is necessary if we want Python scripts to run using the new 
Python installation by default. Edit the system's Path variable and append 
;C:\Python2.7 (assuming we installed Python 2.7 to the default location). 
Remove any previous Python paths, such as ;C:\Python2.6. Log out and  
log back in (alternatively, reboot).

Using CMake and compilers
Windows does not come with any compilers or CMake. We need to install them. 
If we want support for depth cameras, including Kinect, we also need to install 
OpenNI and SensorKinect.

Let's assume that we have already installed 32-bit Python 2.7, NumPy, and SciPy 
either from binaries (as described previously) or from source. Now, we can 
proceed with installing compilers and CMake, optionally installing OpenNI and 
SensorKinect, and then building OpenCV from source:

1. Download and install CMake 2.8.9 from http://www.cmake.org/files/
v2.8/cmake-2.8.9-win32-x86.exe. When running the installer, select 
either Add CMake to the system PATH for all users or Add CMake to the 
system PATH for current user.
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2. Download and install Microsoft Visual Studio 2010, Microsoft Visual C++ 
Express 2010, or MinGW. Note that OpenCV 2.4.3 cannot be compiled with 
the more recent versions (Microsoft Visual Studio 2012 and Microsoft Visual 
Studio Express 2012). 
For Microsoft Visual Studio 2010, use any installation media you purchased. 
During installation, include any optional C++ components. Reboot after 
installation is complete.
For Microsoft Visual C++ Express 2010, get the installer from  
http://www.microsoft.com/visualstudio/eng/downloads.  
Reboot after installation is complete.
For MinGW get the installer from http://sourceforge.net/projects/
mingw/files/Installer/mingw-get-inst/mingw-get-inst-20120426/
mingw-get-inst-20120426.exe/download. When running the installer, 
make sure that the destination path does not contain spaces and that the 
optional C++ compiler is included. Edit the system's Path variable and 
append ;C:\MinGW\bin (assuming MinGW is installed to the default 
location.) Reboot the system.

3. Optionally, download and install OpenNI 1.5.4.0 from http://www.openni.
org/wp-content/uploads/2012/12/OpenNI-Win32-1.5.4.0-Dev1.zip 
(32 bit). Alternatively, for 64-bit Python, use http://www.openni.org/wp-
content/uploads/2012/12/OpenNI-Win64-1.5.4.0-Dev.zip (64 bit).

4. Optionally, download and install SensorKinect 0.93 from https://github.
com/avin2/SensorKinect/blob/unstable/Bin/SensorKinect093-Bin-
Win32-v5.1.2.1.msi?raw=true (32 bit). Alternatively, for 64-bit Python, 
use https://github.com/avin2/SensorKinect/blob/unstable/Bin/
SensorKinect093-Bin-Win64-v5.1.2.1.msi?raw=true (64 bit).

5. Download the self-extracting ZIP of OpenCV 2.4.3 from http://
sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.3/
OpenCV-2.4.3.exe/download. Run the self-extracting ZIP and, when 
prompted, enter any destination folder, which we will refer to as <unzip_
destination>. A subfolder, <unzip_destination>\opencv, is created.

6. Open Command Prompt and make another folder where our build will go:
> mkdir<build_folder>

Change directory to the build folder:
> cd <build_folder>
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7. Now, we are ready to configure our build. To understand all the options, we 
could read the code in <unzip_destination>\opencv\CMakeLists.txt. 
However, for this book's purposes, we only need to use the options that will 
give us a release build with Python bindings and, optionally, depth camera 
support via OpenNI and SensorKinect.
For Visual Studio 2010 or Visual C++ Express 2010, run:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G "Visual 
Studio 10" <unzip_destination>\opencv

Alternatively, for MinGW, run:
> cmake -D:CMAKE_BUILD_TYPE=RELEASE -D:WITH_OPENNI=ON -G 
"MinGWMakefiles" <unzip_destination>\opencv

If OpenNI is not installed, omit -D:WITH_OPENNI=ON. (In this case, depth 
cameras will not be supported.) If OpenNI and SensorKinect are installed 
to non-default locations, modify the command to include -D:OPENNI_
LIB_DIR=<openni_install_destination>\Lib -D:OPENNI_INCLUDE_
DIR=<openni_install_destination>\Include -D:OPENNI_PRIME_SENSOR_
MODULE_BIN_DIR=<sensorkinect_install_destination>\Sensor\Bin.
CMake might report that it has failed to find some dependencies. Many of 
OpenCV's dependencies are optional; so, do not be too concerned yet. If the 
build fails to complete or you run into problems later, try installing missing 
dependencies (often available as prebuilt binaries) and then rebuild OpenCV 
from this step.

8. Having configured our build system, we are ready to compile.
For Visual Studio or Visual C++ Express, open <build_folder>/OpenCV.
sln. Select Release configuration and build. If you get build errors, double-
check that Release configuration is selected.
Alternatively, for MinGW, run:
> mingw32-make.

9. Copy <build_folder>\lib\Release\cv2.pyd (from a Visual Studio build) 
or <build_folder>\lib\cv2.pyd (from a MinGW build) to C:\Python2.7\
Lib\site-packages (assuming Python 2.7 is installed to the default 
location). Now, the Python installation can find part of OpenCV.

10. Finally, we need to make sure that Python and other processes can find 
the rest of OpenCV. Edit the system's Path variable and append ;<build_
folder>/bin/Release (for a Visual Studio build) or ;<build_folder>/bin 
(for a MinGW build). Reboot your system.
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Making the choice on Mac OS X Snow 
Leopard, Mac OS X Lion, or Mac OS X 
Mountain Lion
Some versions of Mac come with Python 2.7 preinstalled. However, the preinstalled 
Python is customized by Apple for the system's internal needs. Normally, we should 
not install any libraries atop Apple's Python. If we do, our libraries might break 
during system updates or, worse, might conflict with preinstalled libraries that the 
system requires. Instead, we should install standard Python 2.7 and then install our 
libraries atop it.

For Mac, there are several possible approaches to obtaining standard Python 2.7, 
NumPy, SciPy, and OpenCV. All approaches ultimately require OpenCV to be 
compiled from source using Xcode Developer Tools. However, depending on the 
approach, this task is automated for us by third-party tools in various ways. We will 
look at approaches using MacPorts or Homebrew. These tools can potentially do 
everything that CMake can do, plus they help us resolve dependencies and separate 
our development libraries from the system libraries.

I recommend MacPorts, especially if you want to compile 
OpenCV with depth camera support via OpenNI and 
SensorKinect. Relevant patches and build scripts, including 
some that I maintain, are ready-made for MacPorts. By contrast, 
Homebrew does not currently provide a ready-made solution for 
compiling OpenCV with depth camera support.

Before proceeding, let's make sure that the Xcode Developer Tools are properly  
set up:

1. Download and install Xcode from the Mac App Store or http://connect.
apple.com/. During installation, if there is an option to install Command 
Line Tools, select it.

2. Open Xcode and accept the license agreement.
3. A final step is necessary if the installer did not give us the option to install 

Command Line Tools. Go to Xcode | Preferences | Downloads and click on 
the Install button next to Command Line Tools. Wait for the installation to 
finish and quit Xcode.

Now we have the required compilers for any approach.
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Using MacPorts with ready-made packages
We can use the MacPorts package manager to help us set up Python 2.7, NumPy, 
and OpenCV. MacPorts provides Terminal commands that automate the process 
of downloading, compiling, and installing various pieces of open source software 
(OSS). MacPorts also installs dependencies as needed. For each piece of software, the 
dependencies and build recipe are defined in a configuration file called a Portfile. A 
MacPorts repository is a collection of Portfiles.

Starting from a system where Xcode and its Command Line Tools are already set up, 
the following steps will give us an OpenCV installation via MacPorts:

1. Download and install MacPorts from  
http://www.macports.org/install.php.

2. If we want support for the Kinect depth camera, we need to tell MacPorts 
where to download some custom Portfiles that I have written. To do so, edit 
/opt/local/etc/macports/sources.conf (assuming MacPorts is installed 
to the default location). Just above the line rsync://rsync.macports.org/
release/ports/ [default], add the following line:
http://nummist.com/opencv/ports.tar.gz

Save the file. Now, MacPorts knows to search for Portfiles in my online 
repository first and, then, the default online repository.

3. Open Terminal and run the following command to update MacPorts:
$ sudo port selfupdate

When prompted, enter your password.

4. Now (if we are using my repository), run the following command to  
install OpenCV with Python 2.7 bindings and support for depth  
cameras including Kinect:
$ sudo port install opencv +python27 +openni_sensorkinect

Alternatively (with or without my repository), run the following command 
to install OpenCV with Python 2.7 bindings and support for depth cameras 
excluding Kinect:
$ sudo port install opencv +python27 +openni

Dependencies, including Python 2.7, NumPy, OpenNI, and (in the first 
example) SensorKinect, are automatically installed as well.
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By adding +python27 to the command, we are specifying that we want the 
opencv variant (build configuration) with Python 2.7 bindings. Similarly, 
+openni_sensorkinect specifies the variant with the broadest possible 
support for depth cameras via OpenNI and SensorKinect. You may omit 
+openni_sensorkinect if you do not intend to use depth cameras or you 
may replace it with +openni if you do intend to use OpenNI-compatible 
depth cameras but just not Kinect. To see the full list of available variants 
before installing, we can enter:
$ port variants opencv

Depending on our customization needs, we can add other variants to the 
install command. For even more flexibility, we can write our own variants 
(as described in the next section).

5. Also, run the following command to install SciPy:
$ sudo port install py27-scipy

6. The Python installation's executable is named python2.7. If we want to link 
the default python executable to python2.7, let's also run:
$ sudo port install python_select

$ sudo port select python python27

Using MacPorts with your own custom packages
With a few extra steps, we can change the way that MacPorts compiles OpenCV or 
any other piece of software. As previously mentioned, MacPorts' build recipes are 
defined in configuration files called Portfiles. By creating or editing Portfiles, we can 
access highly configurable build tools, such as CMake, while also benefitting from 
MacPorts' features, such as dependency resolution.

Let's assume that we already have MacPorts installed. Now, we can configure 
MacPorts to use custom Portfiles that we write:

1. Create a folder somewhere to hold our custom Portfiles. We will refer to this 
folder as <local_repository>.

2. Edit the file /opt/local/etc/macports/sources.conf (assuming MacPorts 
is installed to the default location). Just above the line rsync://rsync.
macports.org/release/ports/ [default], add this line:
file://<local_repository>

For example, if <local_repository> is /Users/Joe/Portfiles, add:
file:///Users/Joe/Portfiles
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Note the triple slashes.
Save the file. Now, MacPorts knows to search for Portfiles in  
<local_repository> first and, then, its default online repository.

3. Open Terminal and update MacPorts to ensure that we have the latest 
Portfiles from the default repository:
$ sudo port selfupdate

4. Let's copy the default repository's opencv Portfile as an example. We should 
also copy the directory structure, which determines how the package is 
categorized by MacPorts.
$ mkdir <local_repository>/graphics/
$ cp /opt/local/var/macports/sources/rsync.macports.org/release/
ports/graphics/opencv <local_repository>/graphics

Alternatively, for an example that includes Kinect support, we could download 
my online repository from http://nummist.com/opencv/ports.tar.gz, 
unzip it and copy its entire graphics folder into <local_repository>:
$ cp <unzip_destination>/graphics <local_repository>

5. Edit <local_repository>/graphics/opencv/Portfile. Note that this file 
specifies CMake configuration flags, dependencies, and variants. For details 
on Portfile editing, go to http://guide.macports.org/#development.
To see which CMake configuration flags are relevant to OpenCV, we  
need to look at its source code. Download the source code archive from 
http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.3/OpenCV-2.4.3.tar.bz2/download, unzip it to any location, 
and read <unzip_destination>/OpenCV-2.4.3/CMakeLists.txt.
After making any edits to the Portfile, save it.

6. Now, we need to generate an index file in our local repository so that 
MacPorts can find the new Portfile:
$ cd <local_repository>

$ portindex

7. From now on, we can treat our custom opencv just like any other MacPorts 
package. For example, we can install it as follows:
$ sudo port install opencv +python27 +openni_sensorkinect

Note that our local repository's Portfile takes precedence over the  
default repository's Portfile because of the order in which they are  
listed in /opt/local/etc/macports/sources.conf.
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Using Homebrew with ready-made packages  
(no support for depth cameras)
Homebrew is another package manager that can help us. Normally, MacPorts and 
Homebrew should not be installed on the same machine.

Starting from a system where Xcode and its Command Line Tools are already set up, 
the following steps will give us an OpenCV installation via Homebrew:

1. Open Terminal and run the following command to install Homebrew:
$ ruby -e "$(curl -fsSkLraw.github.com/mxcl/homebrew/go)"

2. Unlike MacPorts, Homebrew does not automatically put its executables in 
PATH. To do so, create or edit the file ~/.profile and add this line at the top:
export PATH=/usr/local/bin:/usr/local/sbin:$PATH

Save the file and run this command to refresh PATH:
$ source ~/.profile

Note that executables installed by Homebrew now take precedence over 
executables installed by the system.

3. For Homebrew's self-diagnostic report, run:
$ brew doctor

Follow any troubleshooting advice it gives.

4. Now, update Homebrew:
$ brew update

5. Run the following command to install Python 2.7:
$ brew install python

6. Now, we can install NumPy. Homebrew's selection of Python library 
packages is limited so we use a separate package management tool  
called pip, which comes with Homebrew's Python:
$ pip install numpy

7. SciPy contains some Fortran code, so we need an appropriate compiler.  
We can use Homebrew to install the gfortran compiler:
$ brew install gfortran

Now, we can install SciPy:
$ pip install scipy
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8. To install OpenCV on a 64-bit system (all new Mac hardware since late 2006), 
run:
$ brew install opencv

Alternatively, to install OpenCV on a 32-bit system, run:
$ brew install opencv --build32

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Using Homebrew with your own custom packages
Homebrew makes it easy to edit existing package definitions:

$ brew edit opencv

The package definitions are actually scripts in the Ruby programming language. 
Tips on editing them can be found in the Homebrew wiki at https://github.com/
mxcl/homebrew/wiki/Formula-Cookbook. A script may specify Make or CMake 
configuration flags, among other things.

To see which CMake configuration flags are relevant to OpenCV, we need to look at 
its source code. Download the source code archive from http://sourceforge.net/
projects/opencvlibrary/files/opencv-unix/2.4.3/OpenCV-2.4.3.tar.bz2/
download, unzip it to any location, and read <unzip_destination>/OpenCV-2.4.3/
CMakeLists.txt.

After making any edits to the Ruby script, save it.

The customized package can be treated as normal. For example, it can be installed  
as follows:

$ brew install opencv

Making the choice on Ubuntu 12.04 LTS or 
Ubuntu 12.10
Ubuntu comes with Python 2.7 preinstalled. The standard Ubuntu repository 
contains OpenCV 2.3.1 packages without support for depth cameras. Alternatively, 
OpenCV 2.4.3 can be built from source using CMake and GCC. When built from 
source, OpenCV can support depth cameras via OpenNI and SensorKinect, which 
are available as precompiled binaries with installation scripts.
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Using the Ubuntu repository (no support for depth 
cameras)
We can install OpenCV 2.3.1 and its dependencies using the Apt package manager:

1. Open Terminal and run this command to update Apt:
$ sudo apt-get update

2. Now, run these commands to install NumPy, SciPy, and OpenCV with 
Python bindings:
$ sudo apt-get install python-numpy

$ sudo apt-get install python-scipy

$ sudo apt-get install libopencv-*

$ sudo apt-get install python-opencv

Enter Y whenever prompted about package installation.

Equivalently, we could have used Ubuntu Software Center, which is Apt's  
graphical frontend.

Using CMake via a ready-made script that you may 
customize
Ubuntu comes with the GCC compilers preinstalled. However, we need to install the 
CMake build system. We also need to install or reinstall various other libraries, some 
of which need to be specially configured for compatibility with OpenCV. Because the 
dependencies are complex, I have written a script that downloads, configures, and 
builds OpenCV and related libraries so that the resulting OpenCV installation has 
support for depth cameras including Kinect:

1. Download my installation script from http://nummist.com/opencv/
install_opencv_ubuntu.sh and put it in any destination, say  
<script_folder>.

2. Optionally, edit the script to customize OpenCV's build configuration. To 
see which CMake configuration flags are relevant to OpenCV, we need to 
look at its source code. Download the source code archive from http://
sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.3/
OpenCV-2.4.3.tar.bz2/download, unzip it to any location, and read 
<unzip_destination>/OpenCV-2.4.3/CMakeLists.txt.
After making any edits to the script, save it.
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3. Open Terminal and run this command to update Apt:
$ sudo apt-get update

4. Change directory to <script_folder>:
$ cd <script_folder>

Set the script's permissions so that it is executable:
$ chmod +x install_opencv_ubuntu.sh

Execute the script:
$ ./install_opencv_ubuntu.sh

When prompted, enter your password. Enter Y whenever prompted about 
package installation.

5. The installation script creates a folder, <script_folder>/opencv, which 
contains downloads and built files that are temporarily used by the script. 
After the installation script terminates, <script_folder>/opencv may  
safely be deleted; although, first, you might want to look at OpenCV's  
Python samples in <script_folder>/opencv/samples/python and 
<script_folder>/opencv/samples/python2.

Making the choice on other Unix-like systems
The approaches for Ubuntu (as described previously) are likely to work on any 
Linux distribution derived from Ubuntu 12.04 LTS or Ubuntu 12.10, such as:

• Kubuntu 12.04 LTS or Kubuntu 12.10
• Xubuntu 12.04 LTS or Xubuntu 12.10
• Linux Mint 13 or Linux Mint 14

On Debian Linux and its derivatives, the Apt package manager works the same as on 
Ubuntu, though the available packages may differ.

On Gentoo Linux and its derivatives, the Portage package manager is similar to 
MacPorts (as described previously), though the available packages may differ.

On other Unix-like systems, the package manager and available packages may differ. 
Consult your package manager's documentation and search for any packages with 
opencv in their names. Remember that OpenCV and its Python bindings might be 
split into multiple packages.
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Also, look for any installation notes published by the system provider, the repository 
maintainer, or the community. Because OpenCV uses camera drivers and media 
codecs, getting all of its functionality to work can be tricky on systems with poor 
multimedia support. Under some circumstances, system packages might need to  
be reconfigured or reinstalled for compatibility. 

If packages are available for OpenCV, check their version number. OpenCV 2.3.1  
or greater is recommended for this book's purposes. Also check whether the 
packages offer Python bindings and whether they offer depth camera support 
via OpenNI and SensorKinect. Finally, check whether anyone in the developer 
community has reported success or failure in using the packages.

If instead we want to do a custom build of OpenCV from source, it might be helpful 
to refer to the installation script for Ubuntu (discussed previously) and adapt it to the 
package manager and packages that are present on another system.

Running samples
Running a few sample scripts is a good way to test that OpenCV is correctly set up. 
The samples are included in OpenCV's source code archive.

On Windows, we should have already downloaded and unzipped OpenCV's  
self-extracting ZIP. Find the samples in <unzip_destination>/opencv/samples.

On Unix-like systems, including Mac, download the source code archive from 
http://sourceforge.net/projects/opencvlibrary/files/opencv-
unix/2.4.3/OpenCV-2.4.3.tar.bz2/download and unzip it to any location 
(if we have not already done so). Find the samples in <unzip_destination>/
OpenCV-2.4.3/samples.

Some of the sample scripts require command-line arguments. However, the 
following scripts (among others) should work without any arguments:

• python/camera.py: This displays a webcam feed (assuming a webcam is 
plugged in).

• python/drawing.py: This draws a series of shapes, like a screensaver.
• python2/hist.py: This displays a photo. Press A, B, C, D, or E to see  

variations of the photo, along with a corresponding histogram of color  
or grayscale values.

• python2/opt_flow.py (missing from the Ubuntu package): This displays 
a webcam feed with a superimposed visualization of optical flow (direction 
of motion). For example, slowly wave your hand at the webcam to see the 
effect. Press 1 or 2 for alternative visualizations.
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To exit a script, press Esc (not the window's close button).

If we encounter the message, ImportError: No module named cv2.cv, then we 
are running the script from a Python installation that does not know anything about 
OpenCV. There are two possible explanations:

• Some steps in the OpenCV installation might have failed or been missed. Go 
back and review the steps.

• If we have multiple Python installations on the machine, we might be using 
the wrong Python to launch the script. For example, on Mac, it might be the 
case that OpenCV is installed for MacPorts Python but we are running the 
script with the system's Python. Go back and review the installation steps 
about editing the system path. Also, try launching the script manually from 
the command line using commands such as:

$ python python/camera.py

You can also use the following command:
$ python2.7 python/camera.py

As another possible means of selecting a different Python installation, try 
editing the sample script to remove #! lines. These lines might explicitly 
associate the script with the wrong Python installation (for our particular setup).

Finding documentation, help, and 
updates
OpenCV's documentation is online at http://docs.opencv.org/. The documentation 
includes a combined API reference for OpenCV's new C++ API, its new Python API 
(which is based on the C++ API), its old C API, and its old Python API (which is based 
on the C API). When looking up a class or function, be sure to read the section about 
the new Python API (cv2 module), not the old Python API (cv module).

The documentation entitled OpenCV 2.1 Python Reference  
(http://opencv.willowgarage.com/documentation/python/) 
might show up in Google searches for OpenCV Python API. Avoid 
this documentation, since it is out-of-date and covers only the old 
(C-like) Python API.
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The documentation is also available as several downloadable PDF files:

• API reference: http://docs.opencv.org/opencv2refman
• Tutorials: http://docs.opencv.org/opencv_tutorials  

(These tutorials use C++ code. For a Python port of the tutorials'  
code, see Abid Rahman K.'s repository at http://goo.gl/EPsD1.)

• User guide (incomplete): http://docs.opencv.org/opencv_user

If you write code on airplanes or other places without Internet access, you will 
definitely want to keep offline copies of the documentation.

If the documentation does not seem to answer your question, try talking to the 
OpenCV community. Here are some sites where you will find helpful people:

• Official OpenCV forum: http://www.answers.opencv.org/questions/
• Blog of David Millán Escrivá (one of this book's reviewers):  

http://blog.damiles.com/

• Blog of Abid Rahman K. (one of this book's reviewers):  
http://www.opencvpython.blogspot.com/

• My site for this book: http://nummist.com/opencv/

Last, if you are an advanced user who wants to try new features, bug-fixes, and 
sample scripts from the latest (unstable) OpenCV source code, have a look at the 
project's repository at https://github.com/Itseez/opencv/.

Summary
By now, we should have an OpenCV installation that can do everything we need for 
the project described in this book. Depending on which approach we took, we might 
also have a set of tools and scripts that are usable to reconfigure and rebuild OpenCV 
for our future needs.

We know where to find OpenCV's Python samples. These samples cover a different 
range of functionality than this book's project, but they are useful as additional 
learning aids.



Handling Files, Cameras,  
and GUIs

This chapter introduces OpenCV's I/O functionality. We also discuss a project 
concept and the beginnings of an object-oriented design for this project, which we 
will flesh out in subsequent chapters.

By starting with a look at I/O capabilities and design patterns, we are building our 
project in the same way we would make a sandwich: from the outside in. Bread slices 
and spread or endpoints and glue, come before fillings or algorithms. We choose this 
approach because computer vision is extroverted—it contemplates the real world 
outside our computer—and we want to apply all our subsequent, algorithmic work 
to the real world through a common interface.

All the finished code for this chapter can be downloaded from 
my website: http://nummist.com/opencv/3923_02.zip.

Basic I/O scripts
All CV applications need to get images as input. Most also need to produce images 
as output. An interactive CV application might require a camera as an input 
source and a window as a output destination. However, other possible sources 
and destinations include image files, video files, and raw bytes. For example, raw 
bytes might be received/sent via a network connection or might be generated by an 
algorithm if we are incorporating procedural graphics into our application. Let's look 
at each of these possibilities.
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Reading/Writing an image file
OpenCV provides the imread() and imwrite() functions that support various file 
formats for still images. The supported formats vary by system but should always 
include the BMP format. Typically, PNG, JPEG, and TIFF should be among the 
supported formats too. Images can be loaded from one file format and saved to 
another. For example, let's convert an image from PNG to JPEG:

import cv2

image = cv2.imread('MyPic.png')
cv2.imwrite('MyPic.jpg', image)

Most of the OpenCV functionality that we use is in the cv2 module. 
You might come across other OpenCV guides that instead rely on the 
cv or cv2.cv modules, which are legacy versions. We do use cv2.cv 
for certain constants that are not yet redefined in cv2.

By default, imread() returns an image in BGR color format, even if the file uses a 
grayscale format. BGR (blue-green-red) represents the same color space as RGB 
(red-green-blue) but the byte order is reversed.

Optionally, we may specify the mode of imread() to be CV_LOAD_IMAGE_COLOR 
(BGR), CV_LOAD_IMAGE_GRAYSCALE (grayscale), or CV_LOAD_IMAGE_UNCHANGED 
(either BGR or grayscale, depending on the file's color space). For example, let's load 
a PNG as a grayscale image (losing any color information in the process) and, then, 
save it as a grayscale PNG image:

import cv2

grayImage = cv2.imread('MyPic.png', cv2.CV_LOAD_IMAGE_GRAYSCALE)
cv2.imwrite('MyPicGray.png', grayImage)

Regardless of the mode, imread() discards any alpha channel (transparency). The 
imwrite() function requires an image to be in BGR or grayscale format with a 
number of bits per channel that the output format can support. For example, bmp 
requires 8 bits per channel while PNG allows either 8 or 16 bits per channel.
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Converting between an image and raw bytes
Conceptually, a byte is an integer ranging from 0 to 255. Throughout real-time 
graphics applications today, a pixel is typically represented by one byte per  
channel, though other representations are also possible.

An OpenCV image is a 2D or 3D array of type numpy.array. An 8-bit grayscale 
image is a 2D array containing byte values. A 24-bit BGR image is a 3D array, also 
containing byte values. We may access these values by using an expression like 
image[0, 0] or image[0, 0, 0]. The first index is the pixel's y coordinate, or row, 
0 being the top. The second index is the pixel's x coordinate, or column, 0 being the 
leftmost. The third index (if applicable) represents a color channel. 

For example, in an 8-bit grayscale image with a white pixel in the upper-left corner, 
image[0, 0] is 255. For a 24-bit BGR image with a blue pixel in the upper-left 
corner, image[0, 0] is [255, 0, 0].

As an alternative to using an expression like image[0, 0] or 
image[0, 0] = 128, we may use an expression like image.
item((0, 0)) or image.setitem((0, 0), 128). The latter 
expressions are more efficient for single-pixel operations. However, 
as we will see in subsequent chapters, we usually want to perform 
operations on large slices of an image rather than single pixels.

Provided that an image has 8 bits per channel, we can cast it to a standard Python 
bytearray, which is one-dimensional:

byteArray = bytearray(image)

Conversely, provided that bytearray contains bytes in an appropriate order, we can 
cast and then reshape it to get a numpy.array type that is an image:

grayImage = numpy.array(grayByteArray).reshape(height, width)
bgrImage = numpy.array(bgrByteArray).reshape(height, width, 3)

As a more complete example, let's convert bytearray containing random bytes to a 
grayscale image and a BGR image:

import cv2
import numpy
import os

# Make an array of 120,000 random bytes.
randomByteArray = bytearray(os.urandom(120000))
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flatNumpyArray = numpy.array(randomByteArray)

# Convert the array to make a 400x300 grayscale image.
grayImage = flatNumpyArray.reshape(300, 400)
cv2.imwrite('RandomGray.png', grayImage)

# Convert the array to make a 400x100 color image.
bgrImage = flatNumpyArray.reshape(100, 400, 3)
cv2.imwrite('RandomColor.png', bgrImage)

After running this script, we should have a pair of randomly generated images, 
RandomGray.png and RandomColor.png, in the script's directory.

Here, we use Python's standard os.urandom() function to generate 
random raw bytes, which we then convert to a Numpy array. Note 
that it is also possible to generate a random Numpy array directly 
(and more efficiently) using a statement such as numpy.random.
randint(0, 256, 120000).reshape(300, 400). The 
only reason we are using os.urandom() is to help demonstrate 
conversion from raw bytes.

Reading/Writing a video file
OpenCV provides the VideoCapture and VideoWriter classes that support various 
video file formats. The supported formats vary by system but should always include 
AVI. Via its read() method, a VideoCapture class may be polled for new frames until 
reaching the end of its video file. Each frame is an image in BGR format. Conversely, 
an image may be passed to the write() method of the VideoWriter class, which 
appends the image to the file in VideoWriter. Let's look at an example that reads 
frames from one AVI file and writes them to another AVI file with YUV encoding:

import cv2

videoCapture = cv2.VideoCapture('MyInputVid.avi')
fps = videoCapture.get(cv2.cv.CV_CAP_PROP_FPS)
size = (int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
        int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
    'MyOutputVid.avi', cv2.cv.CV_FOURCC('I','4','2','0'), fps, size)

success, frame = videoCapture.read()
while success: # Loop until there are no more frames.
    videoWriter.write(frame)
    success, frame = videoCapture.read()
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The arguments to VideoWriter class' constructor deserve special attention. 
The video's filename must be specified. Any preexisting file with that name is 
overwritten. A video codec must also be specified. The available codecs may vary 
from system to system. Options include:

• cv2.cv.CV_FOURCC('I','4','2','0'): This is an uncompressed YUV, 4:2:0 
chroma subsampled. This encoding is widely compatible but produces large 
files. The file extension should be avi.

• cv2.cv.CV_FOURCC('P','I','M','1'): This is MPEG-1. The file extension 
should be avi.

• cv2.cv.CV_FOURCC('M','J','P','G'): This is motion-JPEG. The file 
extension should be avi.

• cv2.cv.CV_FOURCC('T','H','E','O'): This is Ogg-Vorbis. The file 
extension should be ogv.

• cv2.cv.CV_FOURCC('F','L','V','1'): This is Flash video. The file 
extension should be flv.

A frame rate and frame size must be specified, too. Since we are copying from 
another video, these properties can be read from our get() method of the 
VideoCapture class.

Capturing camera frames
A stream of camera frames is represented by the VideoCapture class, too.  
However, for a camera, we construct a VideoCapture class by passing the  
camera's device index instead of a video's filename. Let's consider an example  
that captures 10 seconds of video from a camera and writes it to an AVI file:

import cv2

cameraCapture = cv2.VideoCapture(0)
fps = 30 # an assumption
size = (int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
        int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
    'MyOutputVid.avi', cv2.cv.CV_FOURCC('I','4','2','0'), fps, size)

success, frame = cameraCapture.read()
numFramesRemaining = 10 * fps - 1
while success and numFramesRemaining > 0:
    videoWriter.write(frame)
    success, frame = cameraCapture.read()
    numFramesRemaining -= 1
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Unfortunately, the get() method of a VideoCapture class does not return an 
accurate value for the camera's frame rate; it always returns 0. For the purpose of 
creating an appropriate VideoWriter class for the camera, we have to either make 
an assumption about the frame rate (as we did in the code previously) or measure it 
using a timer. The latter approach is better and we will cover it later in this chapter.

The number of cameras and their ordering is of course system-dependent. 
Unfortunately, OpenCV does not provide any means of querying the number of 
cameras or their properties. If an invalid index is used to construct a VideoCapture 
class, the VideoCapture class will not yield any frames; its read() method will 
return (false, None).

The read() method is inappropriate when we need to synchronize a set of cameras 
or a multi-head camera (such as a stereo camera or a Kinect). Then, we use the 
grab() and retrieve() methods instead. For a set of cameras:

success0 = cameraCapture0.grab()
success1 = cameraCapture1.grab()
if success0 and success1:
    frame0 = cameraCapture0.retrieve()
    frame1 = cameraCapture1.retrieve()

For a multi-head camera, we must specify a head's index as an argument  
to retrieve():

success = multiHeadCameraCapture.grab()
if success:
    frame0 = multiHeadCameraCapture.retrieve(channel = 0)
    frame1 = multiHeadCameraCapture.retrieve(channel = 1)

We will study multi-head cameras in more detail in Chapter 5, Detecting Foreground/
Background Regions and Depth.

Displaying camera frames in a window
OpenCV allows named windows to be created, redrawn, and destroyed using the 
namedWindow(), imshow(), and destroyWindow() functions. Also, any window 
may capture keyboard input via the waitKey() function and mouse input via the 
setMouseCallback() function. Let's look at an example where we show frames of 
live camera input:

import cv2

clicked = False
def onMouse(event, x, y, flags, param):
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    global clicked
    if event == cv2.cv.CV_EVENT_LBUTTONUP:
        clicked = True

cameraCapture = cv2.VideoCapture(0)
cv2.namedWindow('MyWindow')
cv2.setMouseCallback('MyWindow', onMouse)

print 'Showing camera feed. Click window or press any key to stop.'
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1 and not clicked:
    cv2.imshow('MyWindow', frame)
    success, frame = cameraCapture.read()

cv2.destroyWindow('MyWindow')

The argument to waitKey() is a number of milliseconds to wait for keyboard input. 
The return value is either -1 (meaning no key has been pressed) or an ASCII keycode, 
such as 27 for Esc. For a list of ASCII keycodes, see http://www.asciitable.com/. 
Also, note that Python provides a standard function, ord(), which can convert a 
character to its ASCII keycode. For example, ord('a') returns 97.

On some systems, waitKey() may return a value that encodes more 
than just the ASCII keycode. (A bug is known to occur on Linux when 
OpenCV uses GTK as its backend GUI library.) On all systems, we can 
ensure that we extract just the ASCII keycode by reading the last byte 
from the return value, like this:

keycode = cv2.waitKey(1)
if keycode != -1:
    keycode &= 0xFF

OpenCV's window functions and waitKey() are interdependent. OpenCV windows 
are only updated when waitKey() is called, and waitKey() only captures input 
when an OpenCV window has focus.

The mouse callback passed to setMouseCallback() should take five arguments, as 
seen in our code sample. The callback's param argument is set as an optional third 
argument to setMouseCallback(). By default, it is 0. The callback's event argument 
is one of the following:

• cv2.cv.CV_EVENT_MOUSEMOVE: Mouse movement
• cv2.cv.CV_EVENT_LBUTTONDOWN: Left button down
• cv2.cv.CV_EVENT_RBUTTONDOWN: Right button down



Handling Files, Cameras, and GUIs

[ 26 ]

• cv2.cv.CV_EVENT_MBUTTONDOWN: Middle button down
• cv2.cv.CV_EVENT_LBUTTONUP: Left button up
• cv2.cv.CV_EVENT_RBUTTONUP: Right button up
• cv2.cv.CV_EVENT_MBUTTONUP: Middle button up
• cv2.cv.CV_EVENT_LBUTTONDBLCLK: Left button double-click
• cv2.cv.CV_EVENT_RBUTTONDBLCLK: Right button double-click
• cv2.cv.CV_EVENT_MBUTTONDBLCLK: Middle button double-click

The mouse callback's flags argument may be some bitwise combination of  
the following:

• cv2.cv.CV_EVENT_FLAG_LBUTTON: The left button pressed
• cv2.cv.CV_EVENT_FLAG_RBUTTON: The right button pressed
• cv2.cv.CV_EVENT_FLAG_MBUTTON: The middle button pressed
• cv2.cv.CV_EVENT_FLAG_CTRLKEY: The Ctrl key pressed
• cv2.cv.CV_EVENT_FLAG_SHIFTKEY: The Shift key pressed
• cv2.cv.CV_EVENT_FLAG_ALTKEY: The Alt key pressed

Unfortunately, OpenCV does not provide any means of handling window events. 
For example, we cannot stop our application when the window's close button 
is clicked. Due to OpenCV's limited event handling and GUI capabilities, many 
developers prefer to integrate it with another application framework. Later in this 
chapter, we will design an abstraction layer to help integrate OpenCV into any 
application framework.

Project concept
OpenCV is often studied through a cookbook approach that covers a lot of 
algorithms but nothing about high-level application development. To an extent, this 
approach is understandable because OpenCV's potential applications are so diverse. 
For example, we could use it in a photo/video editor, a motion-controlled game, a 
robot's AI, or a psychology experiment where we log participants' eye movements. 
Across such different use cases, can we truly study a useful set of abstractions?

I believe we can and the sooner we start creating abstractions, the better. We will 
structure our study of OpenCV around a single application, but, at each step, we  
will design a component of this application to be extensible and reusable.
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We will develop an interactive application that performs face tracking and image 
manipulations on camera input in real time. This type of application covers a broad 
range of OpenCV's functionality and challenges us to create an efficient, effective 
implementation. Users would immediately notice flaws, such as a low frame rate 
or inaccurate tracking. To get the best results, we will try several approaches using 
conventional imaging and depth imaging.

Specifically, our application will perform real-time facial merging. Given two 
streams of camera input (or, optionally, prerecorded video input), the application 
will superimpose faces from one stream atop faces in the other. Filters and 
distortions will be applied to give the blended scene a unified look and feel. Users 
should have the experience of being engaged in a live performance where they enter 
another environment and another persona. This type of user experience is popular in 
amusement parks such as Disneyland.

We will call our application Cameo. A cameo is (in jewelry) a small portrait of a 
person or (in film) a very brief role played by a celebrity.

An object-oriented design
Python applications can be written in a purely procedural style. This is often done 
with small applications like our basic I/O scripts, discussed previously. However, 
from now on, we will use an object-oriented style because it promotes modularity 
and extensibility.

From our overview of OpenCV's I/O functionality, we know that all images are 
similar, regardless of their source or destination. No matter how we obtain a stream 
of images or where we send it as output, we can apply the same application-specific 
logic to each frame in this stream. Separation of I/O code and application code 
becomes especially convenient in an application like Cameo, which uses multiple 
I/O streams.

We will create classes called CaptureManager and WindowManager as high-level 
interfaces to I/O streams. Our application code may use a CaptureManager to 
read new frames and, optionally, to dispatch each frame to one or more outputs, 
including a still image file, a video file, and a window (via a WindowManager class). 
A WindowManager class lets our application code handle a window and events in an 
object-oriented style.

Both CaptureManager and WindowManager are extensible. We could make 
implementations that did not rely on OpenCV for I/O. Indeed, Appendix A, 
Integrating with Pygame uses a WindowManager subclass.
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Abstracting a video stream –  
managers.CaptureManager
As we have seen, OpenCV can capture, show, and record a stream of images from 
either a video file or a camera, but there are some special considerations in each 
case. Our CaptureManager class abstracts some of the differences and provides a 
higher-level interface for dispatching images from the capture stream to one or more 
outputs—a still image file, a video file, or a window.

A CaptureManager class is initialized with a VideoCapture class and has the 
enterFrame() and exitFrame() methods that should typically be called on every 
iteration of an application's main loop. Between a call to enterFrame() and a call 
to exitFrame(), the application may (any number of times) set a channel property 
and get a frame property. The channel property is initially 0 and only multi-head 
cameras use other values. The frame property is an image corresponding to the 
current channel's state when enterFrame() was called.

A CaptureManager class also has writeImage(), startWritingVideo(), and 
stopWritingVideo() methods that may be called at any time. Actual file writing 
is postponed until exitFrame(). Also during the exitFrame() method, the frame 
property may be shown in a window, depending on whether the application 
code provides a WindowManager class either as an argument to the constructor of 
CaptureManager or by setting a property, previewWindowManager.

If the application code manipulates frame, the manipulations are reflected in 
any recorded files and in the window. A CaptureManager class has a constructor 
argument and a property called shouldMirrorPreview, which should be True 
if we want frame to be mirrored (horizontally flipped) in the window but not in 
recorded files. Typically, when facing a camera, users prefer the live camera feed to 
be mirrored.

Recall that a VideoWriter class needs a frame rate, but OpenCV does not provide 
any way to get an accurate frame rate for a camera. The CaptureManager class works 
around this limitation by using a frame counter and Python's standard time.time() 
function to estimate the frame rate if necessary. This approach is not foolproof. 
Depending on frame rate fluctuations and the system-dependent implementation 
of time.time(), the accuracy of the estimate might still be poor in some cases. 
However, if we are deploying to unknown hardware, it is better than just assuming 
that the user's camera has a particular frame rate.
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Let's create a file called managers.py, which will contain our implementation of 
CaptureManager. The implementation turns out to be quite long. So, we will look at 
it in several pieces. First, let's add imports, a constructor, and properties, as follows:

import cv2
import numpy
import time

class CaptureManager(object):
    
    
    def __init__(self, capture, previewWindowManager = None,
                 shouldMirrorPreview = False):
        
        
        self.previewWindowManager = previewWindowManager
        self.shouldMirrorPreview = shouldMirrorPreview
        
        
        self._capture = capture
        self._channel = 0
        self._enteredFrame = False
        self._frame = None
        self._imageFilename = None
        self._videoFilename = None
        self._videoEncoding = None
        self._videoWriter = None
        
        self._startTime = None
        self._framesElapsed = long(0)
        self._fpsEstimate = None
    
    @property
    def channel(self):
        return self._channel
    
    @channel.setter
    def channel(self, value):
        if self._channel != value:
            self._channel = value
            self._frame = None
    
    @property
    def frame(self):
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        if self._enteredFrame and self._frame is None:
            _, self._frame = self._capture.retrieve( 
                channel = self.channel)
        return self._frame
    
    @property
    def isWritingImage (self):

        return self._imageFilename is not None
    
    @property
    def isWritingVideo(self):
        return self._videoFilename is not None

Note that most of the member variables are non-public, as denoted by the underscore 
prefix in variable names, such as self._enteredFrame. These non-public variables 
relate to the state of the current frame and any file writing operations. As previously 
discussed, application code only needs to configure a few things, which are 
implemented as constructor arguments and settable public properties: the camera 
channel, the window manager, and the option to mirror the camera preview.

By convention, in Python, variables that are prefixed with a single 
underscore should be treated as protected (accessed only within the 
class and its subclasses), while variables that are prefixed with a double 
underscore should be treated as private (accessed only within the class).

Continuing with our implementation, let's add the enterFrame() and exitFrame() 
methods to managers.py:

    def enterFrame(self):
        """Capture the next frame, if any."""
        
        # But first, check that any previous frame was exited.
        assert not self._enteredFrame, \
            'previous enterFrame() had no matching exitFrame()'
        
        if self._capture is not None:
            self._enteredFrame = self._capture.grab()
    
    def exitFrame (self):
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        """Draw to the window. Write to files. Release the frame."""
        
        # Check whether any grabbed frame is retrievable.
        # The getter may retrieve and cache the frame.
        if self.frame is None:
            self._enteredFrame = False
            return
        
        # Update the FPS estimate and related variables.
        if self._framesElapsed == 0:
            self._startTime = time.time()
        else:
            timeElapsed = time.time() - self._startTime
            self._fpsEstimate =  self._framesElapsed / timeElapsed
        self._framesElapsed += 1
        
        # Draw to the window, if any.
        if self.previewWindowManager is not None:
            if self.shouldMirrorPreview:
                mirroredFrame = numpy.fliplr(self._frame).copy()
                self.previewWindowManager.show(mirroredFrame)
            else:
                self.previewWindowManager.show(self._frame)
        
        # Write to the image file, if any.
        if self.isWritingImage:
            cv2.imwrite(self._imageFilename, self._frame)
            self._imageFilename = None
        
        # Write to the video file, if any.
        self._writeVideoFrame()
        
        # Release the frame.
        self._frame = None
        self._enteredFrame = False

Note that the implementation of enterFrame() only grabs (synchronizes) a frame, 
whereas actual retrieval from a channel is postponed to a subsequent reading of 
the frame variable. The implementation of exitFrame() takes the image from the 
current channel, estimates a frame rate, shows the image via the window manager  
(if any), and fulfills any pending requests to write the image to files.
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Several other methods also pertain to file writing. To finish our class implementation, 
let's add the remaining file-writing methods to managers.py:

    def writeImage(self, filename):
        """Write the next exited frame to an image file."""
        self._imageFilename = filename
    
    def startWritingVideo(
            self, filename,
            encoding = cv2.cv.CV_FOURCC('I','4','2','0')):
        """Start writing exited frames to a video file."""
        self._videoFilename = filename
        self._videoEncoding = encoding
    
    def stopWritingVideo (self):
        """Stop writing exited frames to a video file."""
        self._videoFilename = None
        self._videoEncoding = None
        self._videoWriter = None
    
    
def _writeVideoFrame(self):
        
        if not self.isWritingVideo:
            return
        
        if self._videoWriter is None:
            fps = self._capture.get(cv2.cv.CV_CAP_PROP_FPS)
            if fps == 0.0:
                # The capture's FPS is unknown so use an estimate.
                if self._framesElapsed < 20:
                    # Wait until more frames elapse so that the
                    # estimate is more stable.
                    return
                else:
                    fps = self._fpsEstimate
            size = (int(self._capture.get(
                        cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),
                    int(self._capture.get(
                        cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))
            self._videoWriter = cv2.VideoWriter(
                self._videoFilename, self._videoEncoding,
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                fps, size)
        
        self._videoWriter.write(self._frame)

The public methods, writeImage(), startWritingVideo(), and 
stopWritingVideo(), simply record the parameters for file writing operations, 
whereas the actual writing operations are postponed to the next call of exitFrame(). 
The non-public method, _writeVideoFrame(), creates or appends to a video file in 
a manner that should be familiar from our earlier scripts. (See the Reading/Writing a 
video file section.) However, in situations where the frame rate is unknown, we skip 
some frames at the start of the capture session so that we have time to build up an 
estimate of the frame rate.

Although our current implementation of CaptureManager relies on VideoCapture, we 
could make other implementations that do not use OpenCV for input. For example, 
we could make a subclass that was instantiated with a socket connection, whose byte 
stream could be parsed as a stream of images. Also, we could make a subclass that 
used a third-party camera library with different hardware support than what OpenCV 
provides. However, for Cameo, our current implementation is sufficient.

Abstracting a window and keyboard – 
managers.WindowManager
As we have seen, OpenCV provides functions that cause a window to be created, 
be destroyed, show an image, and process events. Rather than being methods of 
a window class, these functions require a window's name to pass as an argument. 
Since this interface is not object-oriented, it is inconsistent with OpenCV's general 
style. Also, it is unlikely to be compatible with other window or event handling 
interfaces that we might eventually want to use instead of OpenCV's.

For the sake of object-orientation and adaptability, we abstract this functionality 
into a WindowManager class with the createWindow(), destroyWindow(), 
show(), and processEvents() methods. As a property, a WindowManager class 
has a function object called keypressCallback, which (if not None) is called from 
processEvents() in response to any key press. The keypressCallback object must 
take a single argument, an ASCII keycode. 
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Let's add the following implementation of WindowManager to managers.py:

class WindowManager(object):
    
    
    def __init__(self, windowName, keypressCallback = None):
        self.keypressCallback = keypressCallback
        
        self._windowName = windowName
        self._isWindowCreated = False

    
    @property
    def isWindowCreated(self):
        return self._isWindowCreated
    
    def createWindow (self):
        cv2.namedWindow(self._windowName)
        self._isWindowCreated = True
    
    def show(self, frame):
        cv2.imshow(self._windowName, frame)
    
    def destroyWindow (self):
        cv2.destroyWindow(self._windowName)
        self._isWindowCreated = False
    
    def processEvents (self):
        keycode = cv2.waitKey(1)
        if self.keypressCallback is not None and keycode != -1:
            # Discard any non-ASCII info encoded by GTK.
            keycode &= 0xFF
            self.keypressCallback(keycode)

Our current implementation only supports keyboard events, which will be sufficient 
for Cameo. However, we could modify WindowManager to support mouse events too. 
For example, the class's interface could be expanded to include a mouseCallback 
property (and optional constructor argument) but could otherwise remain the same. 
With some event framework other than OpenCV's, we could support additional 
event types in the same way, by adding callback properties. 
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Appendix A, Integrating with Pygame, shows a WindowManager subclass that is 
implemented with Pygame's window handling and event framework instead of 
OpenCV's. This implementation improves on the base WindowManager class by 
properly handling quit events—for example, when the user clicks on the window's 
close button. Potentially, many other event types can be handled via Pygame too.

Applying everything – cameo.Cameo
Our application is represented by a class, Cameo, with two methods: run() and 
onKeypress(). On initialization, a Cameo class creates a WindowManager class with 
onKeypress() as a callback, as well as a CaptureManager class using a camera and 
the WindowManager class. When run() is called, the application executes a main 
loop in which frames and events are processed. As a result of event processing, 
onKeypress() may be called. The Space bar causes a screenshot to be taken, Tab 
causes a screencast (a video recording) to start/stop, and Esc causes the application 
to quit.

In the same directory as managers.py, let's create a file called cameo.py containing 
the following implementation of Cameo:

import cv2
from managers import WindowManager, CaptureManager

class Cameo(object):
    
    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        self._captureManager = CaptureManager(
            cv2.VideoCapture(0), self._windowManager, True)
    
    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            frame = self._captureManager.frame
            
            # TODO: Filter the frame (Chapter 3).
            
            self._captureManager.exitFrame()
            self._windowManager.processEvents()
    
    def onKeypress (self, keycode):
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        """Handle a keypress.
        
        space  -> Take a screenshot.
        tab    -> Start/stop recording a screencast.
        escape -> Quit.
        
        """
        if keycode == 32: # space
            self._captureManager.writeImage('screenshot.png')
        elif keycode == 9: # tab
            if not self._captureManager.isWritingVideo:
                self._captureManager.startWritingVideo(
                    'screencast.avi')
            else:
                self._captureManager.stopWritingVideo()
        elif keycode == 27: # escape
            self._windowManager.destroyWindow()

if __name__=="__main__":
    Cameo().run()

When running the application, note that the live camera feed is mirrored, while 
screenshots and screencasts are not. This is the intended behavior, as we pass True 
for shouldMirrorPreview when initializing the CaptureManager class.

So far, we do not manipulate the frames in any way except to mirror them for 
preview. We will start to add more interesting effects in Chapter 3, Filtering Images.

Summary
By now, we should have an application that displays a camera feed, listens for 
keyboard input, and (on command) records a screenshot or screencast. We are 
ready to extend the application by inserting some image-filtering code (Chapter 3, 
Filtering Images) between the start and end of each frame. Optionally, we are also 
ready to integrate other camera drivers or other application frameworks (Appendix A, 
Integrating with Pygame), besides the ones supported by OpenCV.



Filtering Images
This chapter presents some techniques for altering images. Our goal is to achieve 
artistic effects, similar to the filters that can be found in image editing applications, 
such as Photoshop or Gimp.

As we proceed with implementing filters, you can try applying them to any BGR 
image and then saving or displaying the result. To fully appreciate each effect, try 
it with various lighting conditions and subjects. By the end of this chapter, we will 
integrate filters into the Cameo application.

All the finished code for this chapter can be downloaded from 
my website: http://nummist.com/opencv/3923_03.zip.

Creating modules
Like our CaptureManager and WindowManager classes, our filters should be reusable 
outside Cameo. Thus, we should separate the filters into their own Python module  
or file.

Let's create a file called filters.py in the same directory as cameo.py. We need the 
following import statements in filters.py:

import cv2
import numpy
import utils

Let's also create a file called utils.py in the same directory. It should contain the 
following import statements:

import cv2
import numpy
import scipy.interpolate

http://nummist.com/opencv/3923_03.zip
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We will be adding filter functions and classes to filters.py, while more  
general-purpose math functions will go in utils.py.

Channel mixing – seeing in Technicolor
Channel mixing is a simple technique for remapping colors. The color at a 
destination pixel is a function of the color at the corresponding source pixel (only). 
More specifically, each channel's value at the destination pixel is a function of any or 
all channels' values at the source pixel. In pseudocode, for a BGR image:

dst.b = funcB(src.b, src.g, src.r)
dst.g = funcG(src.b, src.g, src.r)
dst.r = funcR(src.b, src.g, src.r)

We may define these functions however we please. Potentially, we can map a scene's 
colors much differently than a camera normally does or our eyes normally do.

One use of channel mixing is to simulate some other, smaller color space inside RGB 
or BGR. By assigning equal values to any two channels, we can collapse part of the 
color space and create the impression that our palette is based on just two colors of 
light (blended additively) or two inks (blended subtractively). This type of effect can 
offer nostalgic value because early color films and early digital graphics had more 
limited palettes than digital graphics today.

As examples, let's invent some notional color spaces that are reminiscent of 
Technicolor movies of the 1920s and CGA graphics of the 1980s. All of these notional 
color spaces can represent grays but none can represent the full color range of RGB:

• RC (red, cyan): Note that red and cyan can mix to make grays. This color 
space resembles Technicolor Process 2 and CGA Palette 3.

• RGV (red, green, value): Note that red and green cannot mix to make grays. 
So we need to specify value or whiteness as well. This color space resembles 
Technicolor Process 1.

• CMV (cyan, magenta, value): Note that cyan and magenta cannot mix to 
make grays. So we need to specify value or whiteness as well. This color 
space resembles CGA Palette 1.
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The following is a screenshot from The Toll of the Sea (1922), a movie shot in 
Technicolor Process 2:

The following image is from Commander Keen: Goodbye Galaxy (1991), a game that 
supports CGA Palette 1. (For color images, see the electronic edition of this book.):
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Simulating RC color space
RC color space is easy to simulate in BGR. Blue and green can mix to make cyan. By 
averaging the B and G channels and storing the result in both B and G, we effectively 
collapse these two channels into one, C. To support this effect, let's add the following 
function to filters.py:

def recolorRC(src, dst):
    """Simulate conversion from BGR to RC (red, cyan).
    
    The source and destination images must both be in BGR format.
    
    Blues and greens are replaced with cyans.
    
    Pseudocode:
    dst.b = dst.g = 0.5 * (src.b + src.g)
    dst.r = src.r
    
    """
    b, g, r = cv2.split(src)
    cv2.addWeighted(b, 0.5, g, 0.5, 0, b)
    cv2.merge((b, b, r), dst)

Three things are happening in this function:

1. Using split(), we extract our source image's channels as one-dimensional 
arrays. Having put the data in this format, we can write clear, simple channel 
mixing code.

2. Using addWeighted(), we replace the B channel's values with an average 
of B and G. The arguments to addWeighted() are (in order) the first source 
array, a weight applied to the first source array, the second source array, a 
weight applied to the second source array, a constant added to the result, and 
a destination array.

3. Using merge(), we replace the values in our destination image with the 
modified channels. Note that we use b twice as an argument because we 
want the destination's B and G channels to be equal.

Similar steps—splitting, modifying, and merging channels—can be applied to our 
other color space simulations as well.
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Simulating RGV color space
RGV color space is just slightly more difficult to simulate in BGR. Our intuition 
might say that we should set all B-channel values to 0 because RGV cannot represent 
blue. However, this change would be wrong because it would discard the blue 
component of lightness and, thus, turn grays and pale blues into yellows. Instead, 
we want grays to remain gray while pale blues become gray. To achieve this result, 
we should reduce B values to the per-pixel minimum of B, G, and R. Let's implement 
this effect in filters.py as the following function:

def recolorRGV(src, dst):
    """Simulate conversion from BGR to RGV (red, green, value).
    
    The source and destination images must both be in BGR format.
    
    Blues are desaturated.
    
    Pseudocode:
    dst.b = min(src.b, src.g, src.r)
    dst.g = src.g
    dst.r = src.r
    
    """
    b, g, r = cv2.split(src)
    cv2.min(b, g, b)
    cv2.min(b, r, b)
    cv2.merge((b, g, r), dst)

The min() function computes the per-element minimums of the first two arguments 
and writes them to the third argument.

Simulating CMV color space
Simulating CMV color space is quite similar to simulating RGV, except that the 
desaturated part of the spectrum is yellow instead of blue. To desaturate yellows, 
we should increase B values to the per-pixel maximum of B, G, and R. Here is an 
implementation that we can add to filters.py:

def recolorCMV(src, dst):
    """Simulate conversion from BGR to CMV (cyan, magenta, value).
    
    The source and destination images must both be in BGR format.
    
    Yellows are desaturated.
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    Pseudocode:
    dst.b = max(src.b, src.g, src.r)
    dst.g = src.g
    dst.r = src.r
    
    """
    b, g, r = cv2.split(src)
    cv2.max(b, g, b)
    cv2.max(b, r, b)
    cv2.merge((b, g, r), dst)

The max() function computes the per-element maximums of the first two arguments 
and writes them to the third argument.

By design, the three preceding effects tend to produce major color distortions, 
especially when the source image is colorful in the first place. If we want to craft subtle 
effects, channel mixing with arbitrary functions is probably not the best approach.

Curves – bending color space
Curves are another technique for remapping colors. Channel mixing and curves 
are similar insofar as the color at a destination pixel is a function of the color at the 
corresponding source pixel (only). However, in the specifics, channel mixing and 
curves are dissimilar approaches. With curves, a channel's value at a destination pixel 
is a function of (only) the same channel's value at the source pixel. Moreover, we do 
not define the functions directly; instead, for each function, we define a set of control 
points from which the function is interpolated. In pseudocode, for a BGR image:

dst.b = funcB(src.b) where funcB interpolates pointsB
dst.g = funcG(src.g) where funcG interpolates pointsG
dst.r = funcR(src.r) where funcR interpolates pointsR

The type of interpolation may vary between implementations, though it should 
avoid discontinuous slopes at control points and, instead, produce curves. We will 
use cubic spline interpolation whenever the number of control points is sufficient.
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Formulating a curve
Our first step toward curve-based filters is to convert control points to a function. 
Most of this work is done for us by a SciPy function called interp1d(), which takes 
two arrays (x and y coordinates) and returns a function that interpolates the points. 
As an optional argument to interp1d(), we may specify a kind of interpolation, 
which, in principle, may be linear, nearest, zero, slinear (spherical linear), 
quadratic, or cubic, though not all options are implemented in the current version 
of SciPy. Another optional argument, bounds_error, may be set to False to permit 
extrapolation as well as interpolation.

Let's edit utils.py and add a function that wraps interp1d() with a slightly 
simpler interface:

def createCurveFunc(points):
    """Return a function derived from control points."""
    if points is None:
        return None
    numPoints = len(points)
    if numPoints < 2:
        return None
    xs, ys = zip(*points)
    if numPoints < 4:
        kind = 'linear'
        # 'quadratic' is not implemented.
    else:
        kind = 'cubic'
    return scipy.interpolate.interp1d(xs, ys, kind,
                                      bounds_error = False)

Rather than two separate arrays of coordinates, our function takes an array of  
(x, y) pairs, which is probably a more readable way of specifying control  
points. The array must be ordered such that x increases from one index to the  
next. Typically, for natural-looking effects, the y values should increase too,  
and the first and last control points should be (0, 0) and (255, 255) in order  
to preserve black and white. Note that we will treat x as a channel's input value  
and y as the corresponding output value. For example, (128, 160) would  
brighten a channel's midtones.

Note that cubic interpolation requires at least four control points. If there are  
only two or three control points, we fall back to linear interpolation but, for  
natural-looking effects, this case should be avoided.
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Caching and applying a curve
Now we can get the function of a curve that interpolates arbitrary control points. 
However, this function might be expensive. We do not want to run it once per 
channel, per pixel (for example, 921,600 times per frame if applied to three channels 
of 640 x 480 video). Fortunately, we are typically dealing with just 256 possible input 
values (in 8 bits per channel) and we can cheaply precompute and store that many 
output values. Then, our per-channel, per-pixel cost is just a lookup of the cached 
output value.

Let's edit utils.py and add functions to create a lookup array for a given function 
and to apply the lookup array to another array (for example, an image):

def createLookupArray(func, length = 256):
    """Return a lookup for whole-number inputs to a function.
    
    The lookup values are clamped to [0, length - 1].
    
    """
    if func is None:
        return None
    lookupArray = numpy.empty(length)
    i = 0
    while i < length:
        func_i = func(i)
        lookupArray[i] = min(max(0, func_i), length - 1)
        i += 1
    return lookupArray

def applyLookupArray(lookupArray, src, dst):
    """Map a source to a destination using a lookup."""
    if lookupArray is None:
        return
    dst[:] = lookupArray[src]

Note that the approach in createLookupArray() is limited to whole-number input 
values, as the input value is used as an index into an array. The applyLookupArray() 
function works by using a  source array's values as indices into the lookup array. 
Python's slice notation ([:]) is used to copy the looked-up values into a destination 
array.
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Let's consider another optimization. What if we always want to apply two or more 
curves in succession? Performing multiple lookups is inefficient and may cause 
loss of precision. We can avoid this problem by combining two curve functions into 
one function before creating a lookup array. Let's edit utils.py again and add the 
following function that returns a composite of two given functions:

def createCompositeFunc(func0, func1):
    """Return a composite of two functions."""
    if func0 is None:
        return func1
    if func1 is None:
        return func0
    return lambda x: func0(func1(x))

The approach in createCompositeFunc() is limited to input functions that each 
take a single argument. The arguments must be of compatible types. Note the use of 
Python's lambda keyword to create an anonymous function.

Here is a final optimization issue. What if we want to apply the same curve to 
all channels of an image? Splitting and remerging channels is wasteful, in this 
case, because we do not need to distinguish between channels. We just need one-
dimensional indexing, as used by applyLookupArray(). Let's edit utils.py to add 
a function that returns a one-dimensional interface to a preexisting, given array that 
may be multidimensional:

def createFlatView(array):
    """Return a 1D view of an array of any dimensionality."""
    flatView = array.view()
    flatView.shape = array.size
    return flatView

The return type is numpy.view, which has much the same interface as numpy.array, 
but numpy.view only owns  a reference to the data, not a copy.

The approach in createFlatView() works for images with any number of channels. 
Thus, it allows us to abstract the difference between grayscale and color images in 
cases when we wish to treat all channels the same.
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Designing object-oriented curve filters
Since we cache a lookup array for each curve, our curve-based filters have data 
associated with them. Thus, they need to be classes, not just functions. Let's make 
a pair of curve filter classes, along with corresponding higher-level classes that can 
apply any function, not just a curve function:

• VFuncFilter: This is a class that is instantiated with a function, which it 
can later apply to an image using apply(). The function is applied to the V 
(value) channel of a grayscale image or to all channels of a color image.

• VcurveFilter: This is a subclass of VFuncFilter. Instead of being 
instantiated with a function, it is instantiated with a set of control points, 
which it uses internally to create a curve function.

• BGRFuncFilter: This is a class that is instantiated with up to four  
functions, which it can later apply to a BGR image using apply().  
One of the functions is applied to all channels and the other three  
functions are each applied to a single channel. The overall function  
is applied first and then the per-channel functions.

• BGRCurveFilter: this is a subclass of BGRFuncFilter. Instead of being 
instantiated with four functions, it is instantiated with four sets of control 
points, which it uses internally to create curve functions.

Additionally, all these classes accept a constructor argument that is a numeric type, 
such as numpy.uint8 for 8 bits per channel. This type is used to determine how 
many entries should be in the lookup array.

Let's first look at the implementations of VFuncFilter and VcurveFilter, which 
may both be added to filters.py:

class VFuncFilter(object):
    """A filter that applies a function to V (or all of BGR)."""
    
    def __init__(self, vFunc = None, dtype = numpy.uint8):
        length = numpy.iinfo(dtype).max + 1
        self._vLookupArray = utils.createLookupArray(vFunc, length)
    
    def apply(self, src, dst):
        """Apply the filter with a BGR or gray source/destination."""
        srcFlatView = utils.flatView(src)
        dstFlatView = utils.flatView(dst)
        utils.applyLookupArray(self._vLookupArray, srcFlatView,
                               dstFlatView)

class VCurveFilter(VFuncFilter):
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    """A filter that applies a curve to V (or all of BGR)."""
    
    def __init__(self, vPoints, dtype = numpy.uint8):
        VFuncFilter.__init__(self, utils.createCurveFunc(vPoints),
                             dtype)

Here, we are internalizing the use of several of our previous functions: 
createCurveFunc(), createLookupArray(), flatView(), and 
applyLookupArray(). We are also using numpy.iinfo() to determine  
the relevant range of lookup values, based on the given numeric type.

Now, let's look at the implementations of BGRFuncFilter and BGRCurveFilter, 
which may both be added to filters.py as well:

class BGRFuncFilter(object):
    """A filter that applies different functions to each of BGR."""
    
    def __init__(self, vFunc = None, bFunc = None, gFunc = None,
                 rFunc = None, dtype = numpy.uint8):
        length = numpy.iinfo(dtype).max + 1
        self._bLookupArray = utils.createLookupArray(
            utils.createCompositeFunc(bFunc, vFunc), length)
        self._gLookupArray = utils.createLookupArray(
            utils.createCompositeFunc(gFunc, vFunc), length)
        self._rLookupArray = utils.createLookupArray(
            utils.createCompositeFunc(rFunc, vFunc), length)
    
    def apply(self, src, dst):
        """Apply the filter with a BGR source/destination."""
        b, g, r = cv2.split(src)
        utils.applyLookupArray(self._bLookupArray, b, b)
        utils.applyLookupArray(self._gLookupArray, g, g)
        utils.applyLookupArray(self._rLookupArray, r, r)
        cv2.merge([b, g, r], dst)

class BGRCurveFilter(BGRFuncFilter):
    """A filter that applies different curves to each of BGR."""
    
    def __init__(self, vPoints = None, bPoints = None,
                 gPoints = None, rPoints = None, dtype = numpy.uint8):
        BGRFuncFilter.__init__(self,
                               utils.createCurveFunc(vPoints),
                               utils.createCurveFunc(bPoints),
                               utils.createCurveFunc(gPoints),
                               utils.createCurveFunc(rPoints), dtype)
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Again, we are internalizing the use of several of our previous functions: 
createCurveFunc(), createCompositeFunc(), createLookupArray(), and 
applyLookupArray(). We are also using iinfo(), split(), and merge().

These four classes can be used as is, with custom functions or control points being 
passed as arguments at instantiation. Alternatively, we can make further subclasses 
that hard-code certain functions or control points. Such subclasses could be 
instantiated without any arguments.

Emulating photo films
A common use of curves is to emulate the palettes that were common in pre-digital 
photography. Every type of photo film has its own, unique rendition of color  
(or grays) but we can generalize about some of the differences from digital sensors. 
Film tends to suffer loss of detail and saturation in shadows, whereas digital tends to 
suffer these failings in highlights. Also, film tends to have uneven saturation across 
different parts of the spectrum. So each film has certain colors that pop or jump out.

Thus, when we think of good-looking film photos, we may think of scenes  
(or renditions) that are bright and that have certain dominant colors. At the  
other extreme, we may remember the murky look of underexposed film that  
could not be improved much by the efforts of the lab technician.

We are going to create four different film-like filters using curves. They are inspired 
by three kinds of film and a processing technique:

• Kodak Portra, a family of films that are optimized for portraits and weddings
• Fuji Provia, a family of general-purpose films
• Fuji Velvia, a family of films that are optimized for landscapes
• Cross-processing, a nonstandard film processing technique, sometimes used 

to produce a grungy look in fashion and band photography

Each film emulation effect is a very simple subclass of BGRCurveFilter. We just 
override the constructor to specify a set of control points for each channel. The choice 
of control points is based on recommendations by photographer Petteri Sulonen. See 
his article on film-like curves at http://www.prime-junta.net/pont/How_to/100_
Curves_and_Films/_Curves_and_films.html.

The Portra, Provia, and Velvia effects should produce normal-looking images. The 
effect should not be obvious except in before-and-after comparisons.

http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
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Emulating Kodak Portra
Portra has a broad highlight range that tends toward warm (amber) colors,  
while shadows are cooler (more blue). As a portrait film, it tends to make people's 
complexions fairer. Also, it exaggerates certain common clothing colors, such as 
milky white (for example, a wedding dress) and dark blue (for example, a suit or 
jeans). Let's add this implementation of a Portra filter to filters.py:

class BGRPortraCurveFilter(BGRCurveFilter):
    """A filter that applies Portra-like curves to BGR."""
    
    def __init__(self, dtype = numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            vPoints = [(0,0),(23,20),(157,173),(255,255)],
            bPoints = [(0,0),(41,46),(231,228),(255,255)],
            gPoints = [(0,0),(52,47),(189,196),(255,255)],
            rPoints = [(0,0),(69,69),(213,218),(255,255)],
            dtype = dtype)

Emulating Fuji Provia
Provia has strong contrast and is slightly cool (blue) throughout most tones. Sky, 
water, and shade are enhanced more than sun. Let's add this implementation of a 
Provia filter to filters.py:

class BGRProviaCurveFilter(BGRCurveFilter):
    """A filter that applies Provia-like curves to BGR."""
    
    def __init__(self, dtype = numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            bPoints = [(0,0),(35,25),(205,227),(255,255)],
            gPoints = [(0,0),(27,21),(196,207),(255,255)],
            rPoints = [(0,0),(59,54),(202,210),(255,255)],
            dtype = dtype)
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Emulating Fuji Velvia
Velvia has deep shadows and vivid colors. It can often produce azure skies in 
daytime and crimson clouds at sunset. The effect is difficult to emulate but here  
is an attempt that we can add to filters.py:

class BGRVelviaCurveFilter(BGRCurveFilter):
    """A filter that applies Velvia-like curves to BGR."""
    
    def __init__(self, dtype = numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            vPoints = [(0,0),(128,118),(221,215),(255,255)],
            bPoints = [(0,0),(25,21),(122,153),(165,206),(255,255)],
            gPoints = [(0,0),(25,21),(95,102),(181,208),(255,255)],
            rPoints = [(0,0),(41,28),(183,209),(255,255)],
            dtype = dtype)

Emulating cross-processing
Cross-processing produces a strong, blue or greenish-blue tint in shadows and a 
strong, yellow or greenish-yellow in highlights. Black and white are not necessarily 
preserved. Also, contrast is very high. Cross-processed photos take on a sickly 
appearance. People look jaundiced, while inanimate objects look stained. Let's edit 
filters.py to add the following implementation of a cross-processing filter:

class BGRCrossProcessCurveFilter(BGRCurveFilter):
    """A filter that applies cross-process-like curves to BGR."""
    
    def __init__(self, dtype = numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            bPoints = [(0,20),(255,235)],
            gPoints = [(0,0),(56,39),(208,226),(255,255)],
            rPoints = [(0,0),(56,22),(211,255),(255,255)],
            dtype = dtype)
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Highlighting edges
Edges play a major role in both human and computer vision. We, as humans, can 
easily recognize many object types and their pose just by seeing a backlit silhouette 
or a rough sketch. Indeed, when art emphasizes edges and pose, it often seems to 
convey the idea of an archetype, like Rodin's The Thinker or Joe Shuster's Superman. 
Software, too, can reason about edges, poses, and archetypes. We will discuss these 
kinds of reasoning in later chapters.

For the moment, we are interested in a simple use of edges for artistic effect. We 
are going to trace an image's edges with bold, black lines. The effect should be 
reminiscent of a comic book or other illustration, drawn with a felt pen.

OpenCV provides many edge-finding filters, including Laplacian(), Sobel(), and 
Scharr(). These filters are supposed to turn non-edge regions to black while turning 
edge regions to white or saturated colors. However, they are prone to misidentifying 
noise as edges. This flaw can be mitigated by blurring an image before trying to find 
its edges. OpenCV also provides many blurring filters, including blur() (simple 
average), medianBlur(), and GaussianBlur(). The arguments to the edge-finding 
and blurring filters vary but always include ksize, an odd whole number that 
represents the width and height (in pixels) of the filter's kernel.

A kernel is a set of weights that are applied to a region in the source 
image to generate a single pixel in the destination image. For example, 
a ksize of 7 implies that 49 (7 x 7) source pixels are considered in 
generating each destination pixel. We can think of a kernel as a piece 
of frosted glass moving over the source image and letting through a 
diffused blend of the source's light.

For blurring, let's use medianBlur(), which is effective in removing digital 
video noise, especially in color images. For edge-finding, let's use Laplacian(), 
which produces bold edge lines, especially in grayscale images. After applying 
medianBlur(), but before applying Laplacian(), we should convert from BGR  
to grayscale.

Once we have the result of Laplacian(), we can invert it to get black edges on a 
white background. Then, we can normalize it (so that its values range from 0 to 1) 
and multiply it with the source image to darken the edges. Let's implement this 
approach in filters.py:

def strokeEdges(src, dst, blurKsize = 7, edgeKsize = 5):
    if blurKsize >= 3:
        blurredSrc = cv2.medianBlur(src, blurKsize)
        graySrc = cv2.cvtColor(blurredSrc, cv2.COLOR_BGR2GRAY)
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    else:
        graySrc = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
    cv2.Laplacian(graySrc, cv2.cv.CV_8U, graySrc, ksize = edgeKsize)
    normalizedInverseAlpha = (1.0 / 255) * (255 - graySrc)
    channels = cv2.split(src)
    for channel in channels:
        channel[:] = channel * normalizedInverseAlpha
    cv2.merge(channels, dst)

Note that we allow kernel sizes to be specified as arguments to strokeEdges(). 
The blurKsize argument is used as ksize for medianBlur(), while edgeKsize is 
used as ksize for Laplacian(). With my webcams, I find that a blurKsize value 
of 7 and edgeKsize value of 5 look best. Unfortunately, medianBlur() is expensive 
with a large ksize like 7. If you encounter performance problems when running 
strokeEdges(), try decreasing the blurKsize value. To turn off blur, set it to a 
value less than 3.

Custom kernels – getting convoluted
As we have just seen, many of OpenCV's predefined filters use a kernel. Remember 
that a kernel is a set of weights, which determine how each output pixel is calculated 
from a neighborhood of input pixels. Another term for a kernel is a convolution 
matrix. It mixes up or convolutes the pixels in a region. Similarly, a kernel-based filter 
may be called a convolution filter.

OpenCV provides a very versatile function, filter2D(), which applies any kernel 
or convolution matrix that we specify. To understand how to use this function, let's 
first learn the format of a convolution matrix. It is a 2D array with an odd number 
of rows and columns. The central element corresponds to a pixel of interest and the 
other elements correspond to that pixel's neighbors. Each element contains an integer 
or floating point value, which is a weight that gets applied to an input pixel's value. 
Consider this example:

kernel = numpy.array([[-1, -1, -1],
                      [-1,  9, -1],
                      [-1, -1, -1]])

Here, the pixel of interest has a weight of 9 and its immediate neighbors each have 
a weight of -1. For the pixel of interest, the output color will be nine times its input 
color, minus the input colors of all eight adjacent pixels. If the pixel of interest was 
already a bit different from its neighbors, this difference becomes intensified. The 
effect is that the image looks sharper as the contrast between neighbors is increased.
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Continuing our example, we can apply this convolution matrix to a source image 
and destination image as follows:

cv2.filter2D(src, -1, kernel, dst)

The second argument specifies the per-channel depth of the destination image  
(such as cv2.CV_8U for 8 bits per channel). A negative value (as used here) means 
that the destination image has the same depth as the source image.

For color images, note that filter2D() applies the kernel equally 
to each channel. To use different kernels on different channels, we 
would also have to use the split() and merge() functions, as 
we did in our earlier channel mixing functions. (See the section 
Simulating RC color space.)

Based on this simple example, let's add two classes to filters.py. One class, 
VConvolutionFilter, will represent a convolution filter in general. A subclass, 
SharpenFilter, will represent our sharpening filter specifically. Let's edit  
filters.py to implement these two new classes as follows:

class VConvolutionFilter(object):
    """A filter that applies a convolution to V (or all of BGR)."""
    
    def __init__(self, kernel):
        self._kernel = kernel
    
    def apply(self, src, dst):
        """Apply the filter with a BGR or gray source/destination."""
        cv2.filter2D(src, -1, self._kernel, dst)

class SharpenFilter(VConvolutionFilter):
    """A sharpen filter with a 1-pixel radius."""
    
    def __init__(self):
        kernel = numpy.array([[-1, -1, -1],
                              [-1,  9, -1],
                              [-1, -1, -1]])
        VConvolutionFilter.__init__(self, kernel)

The pattern is very similar to the VCurveFilter class and its subclasses. (See the 
section Designing object-oriented curve filters.)
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Note that the weights sum to 1. This should be the case whenever we want to leave 
the image's overall brightness unchanged. If we modify a sharpening kernel slightly, 
so that its weights sum to 0 instead, then we have an edge detection kernel that 
turns edges white and non-edges black. For example, let's add the following edge 
detection filter to filters.py:

class FindEdgesFilter(VConvolutionFilter):
    """An edge-finding filter with a 1-pixel radius."""
    
    def __init__(self):
        kernel = numpy.array([[-1, -1, -1],
                              [-1,  8, -1],
                              [-1, -1, -1]])
        VConvolutionFilter.__init__(self, kernel)

Next, let's make a blur filter. Generally, for a blur effect, the weights should sum  
to 1 and should be positive throughout the neighborhood. For example, we can  
take a simple average of the neighborhood, as follows:

class BlurFilter(VConvolutionFilter):
    """A blur filter with a 2-pixel radius."""
    
    def __init__(self):
        kernel = numpy.array([[0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04]])
        VConvolutionFilter.__init__(self, kernel)

Our sharpening, edge detection, and blur filters use kernels that are highly 
symmetric. Sometimes, though, kernels with less symmetry produce an interesting 
effect. Let's consider a kernel that blurs on one side (with positive weights) and 
sharpens on the other (with negative weights). It will produce a ridged or embossed 
effect. Here is an implementation that we can add to filters.py:

class EmbossFilter(VConvolutionFilter):
    """An emboss filter with a 1-pixel radius."""
    
    def __init__(self):
        kernel = numpy.array([[-2, -1, 0],
                              [-1,  1, 1],
                              [ 0,  1, 2]])
        VConvolutionFilter.__init__(self, kernel)
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This set of custom convolution filters is very basic. Indeed, it is more basic than 
OpenCV's ready-made set of filters. However, with a bit of experimentation, you 
should be able to write your own kernels that produce a unique look.

Modifying the application
Now that we have high-level functions and classes for several filters, it is trivial to 
apply any of them to the captured frames in Cameo. Let's edit cameo.py and add the 
lines that appear in bold face in the following excerpt:

import cv2
import filters
from managers import WindowManager, CaptureManager

class Cameo(object):
    
    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        self._captureManager = CaptureManager(
            cv2.VideoCapture(0), self._windowManager, True)
        self._curveFilter = filters.BGRPortraCurveFilter()
    
    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            frame = self._captureManager.frame
            
            # TODO: Track faces (Chapter 3).
            
            filters.strokeEdges(frame, frame)
            self._curveFilter.apply(frame, frame)
            
            self._captureManager.exitFrame()
            self._windowManager.processEvents()
    
    # ... The rest is the same as in Chapter 2.

Here, I have chosen to apply two effects: stroking the edges and emulating Portra 
film colors. Feel free to modify the code to apply any filters you like.
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Here is a screenshot from Cameo, with stroked edges and Portra-like colors:

Summary
At this point, we should have an application that displays a filtered camera feed. We 
should also have several more filter implementations that are easily swappable with 
the ones we are currently using. Now, we are ready to proceed with analyzing each 
frame for the sake of finding faces to manipulate in the next chapter.



Tracking Faces with  
Haar Cascades

This chapter introduces some of OpenCV's tracking functionality, along with the 
data files that define particular types of trackable objects. Specifically, we look at 
Haar cascade classifiers, which analyze contrast between adjacent image regions to 
determine whether or not a given image or subimage matches a known type. We 
consider how to combine multiple Haar cascade classifiers in a hierarchy, such that 
one classifier identifies a parent region (for our purposes, a face) and other classifiers 
identify child regions (eyes, nose, and mouth).

We also take a detour into the humble but important subject of rectangles.  
By drawing, copying, and resizing rectangular image regions, we can perform  
simple manipulations on image regions that we are tracking.

By the end of this chapter, we will integrate face tracking and rectangle 
manipulations into Cameo. Finally, we'll have some face-to-face interaction!

All the finished code for this chapter can be downloaded from 
my website: http://nummist.com/opencv/3923_04.zip.
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Conceptualizing Haar cascades
When we talk about classifying objects and tracking their location, what exactly are 
we hoping to pinpoint? What constitutes a recognizable part of an object?

Photographic images, even from a webcam, may contain a lot of detail for our 
(human) viewing pleasure. However, image detail tends to be unstable with respect to 
variations in lighting, viewing angle, viewing distance, camera shake, and digital noise. 
Moreover, even real differences in physical detail might not interest us for the purpose 
of classification. I was taught in school, that no two snowflakes look alike under a 
microscope. Fortunately, as a Canadian child, I had already learned how to recognize 
snowflakes without a microscope, as the similarities are more obvious in bulk.

Thus, some means of abstracting image detail is useful in producing stable 
classification and tracking results. The abstractions are called features, which are  
said to be extracted from the image data. There should be far fewer features than 
pixels, though any pixel might influence multiple features. The level of similarity 
between two images can be evaluated based on distances between the images' 
corresponding features. For example, distance might be defined in terms of spatial 
coordinates or color coordinates. Haar-like features are one type of feature that is  
often applied to real-time face tracking. They were first used for this purpose by 
Paul Viola and Michael Jones in 2001. Each Haar-like feature describes the pattern 
of contrast among adjacent image regions. For example, edges, vertices, and thin 
lines each generate distinctive features. For any given image, the features may vary 
depending on the regions' size, which may be called the window size. Two images 
that differ only in scale should be capable of yielding similar features, albeit for 
different window sizes. Thus, it is useful to generate features for multiple window 
sizes. Such a collection of features is called a cascade. We may say a Haar cascade 
is scale-invariant or, in other words, robust to changes in scale. OpenCV provides 
a classifier and tracker for scale-invariant Haar cascades, which it expects to be in 
a certain file format. Haar cascades, as implemented in OpenCV, are not robust to 
changes in rotation. For example, an upside-down face is not considered similar to 
an upright face and a face viewed in profile is not considered similar to a face viewed 
from the front. A more complex and more resource-intensive implementation could 
improve Haar cascades' robustness to rotation by considering multiple transformations 
of images as well as multiple window sizes. However, we will confine ourselves to the 
implementation in OpenCV.
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Getting Haar cascade data
As part of your OpenCV setup, you probably have a directory called haarcascades. 
It contains cascades that are trained for certain subjects using tools that come with 
OpenCV. The directory's full path depends on your system and method of setting up 
OpenCV, as follows:

• Build from source archive: <unzip_destination>/data/haarcascades
• Windows with self-extracting ZIP: <unzip_destination>/data/

haarcascades

• Mac with MacPorts: /opt/local/share/OpenCV/haarcascades
• Mac with Homebrew: The haarcascades file is not included; to get it, 

download the source archive
• Ubuntu with apt or Software Center: The haarcascades file is not included; 

to get it, download the source archive

If you cannot find haarcascades, then download the source archive 
from http://sourceforge.net/projects/opencvlibrary/
files/opencv-unix/2.4.3/OpenCV-2.4.3.tar.bz2/
download (or the Windows self-extracting ZIP from http://
sourceforge.net/projects/opencvlibrary/files/opencv-
win/2.4.3/OpenCV-2.4.3.exe/download), unzip it, and look for 
<unzip_destination>/data/haarcascades.

Once you find haarcascades, create a directory called cascades in the same folder 
as cameo.py and copy the following files from haarcascades into cascades:

haarcascade_frontalface_alt.xml
haarcascade_eye.xml
haarcascade_mcs_nose.xml
haarcascade_mcs_mouth.xml

As their names suggest, these cascades are for tracking faces, eyes, noses, and 
mouths. They require a frontal, upright view of the subject. We will use them later 
when building a high-level tracker. If you are curious about how these data sets are 
generated, refer to Appendix B, Generating Haar Cascades for Custom Targets. With a lot 
of patience and a powerful computer, you can make your own cascades, trained for 
various types of objects.
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Creating modules
We should continue to maintain good separation between application-specific code 
and reusable code. Let's make new modules for tracking classes and their helpers.

A file called trackers.py should be created in the same directory as cameo.py  
(and, equivalently, in the parent directory of cascades). Let's put the following 
import statements at the start of trackers.py:

import cv2
import rects
import utils

Alongside trackers.py and cameo.py, let's make another file called rects.py 
containing the following import statement:

import cv2

Our face tracker and a definition of a face will go in trackers.py, while various 
helpers will go in rects.py and our preexisting utils.py file.

Defining a face as a hierarchy of 
rectangles
Before we start implementing a high-level tracker, we should define the type of 
tracking result that we want to get. For many applications, it is important to estimate 
how objects are posed in real, 3D space. However, our application is about image 
manipulation. So we care more about 2D image space. An upright, frontal view of a 
face should occupy a roughly rectangular region in the image. Within such a region, 
eyes, a nose, and a mouth should occupy rough rectangular subregions. Let's open 
trackers.py and add a class containing the relevant data:

class Face(object):
    """Data on facial features: face, eyes, nose, mouth."""
    
    def __init__(self):
        self.faceRect = None
        self.leftEyeRect = None
        self.rightEyeRect = None
        self.noseRect = None
        self.mouthRect = None
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Whenever our code contains a rectangle as a property or a function 
argument, we will assume it is in the format (x, y, w, h) 
where the unit is pixels, the upper-left corner is at (x, y), and 
the lower-right corner at (x+w, y+h). OpenCV sometimes uses 
a compatible representation but not always. So we must be careful 
when sending/receiving rectangles to/from OpenCV. For example, 
sometimes OpenCV requires the upper-left and lower-right corners 
as coordinate pairs.

Tracing, cutting, and pasting rectangles
When I was in primary school, I was poor at crafts. I often had to take my unfinished 
craft projects home, where my mother volunteered to finish them for me so that I 
could spend more time on the computer instead. I shall never cut and paste a sheet 
|of paper, nor an array of bytes, without thinking of those days.

Just as in crafts, mistakes in our graphics program are easier to see if we first draw 
outlines. For debugging purposes, Cameo will include an option to draw lines 
around any rectangles represented by a Face. OpenCV provides a rectangle() 
function for drawing. However, its arguments represent a rectangle differently  
than Face does. For convenience, let's add the following wrapper of rectangle()  
to rects.py:

def outlineRect(image, rect, color):
    if rect is None:
        return
    x, y, w, h = rect
    cv2.rectangle(image, (x, y), (x+w, y+h), color)

Here, color should normally be either a BGR triplet (of values ranging from 0 to 255) 
or a grayscale value (ranging from 0 to 255), depending on the image's format.

Next, Cameo must support copying one rectangle's contents into another rectangle. 
We can read or write a rectangle within an image by using Python's slice notation. 
Remembering that an image's first index is the y coordinate or row, we can specify a 
rectangle as image[y:y+h, x:x+w]. For copying, a complication arises if the source 
and destination of rectangles are of different sizes. Certainly, we expect two faces to 
appear at different sizes, so we must address this case. OpenCV provides a resize() 
function that allows us to specify a destination size and an interpolation method. 
Combining slicing and resizing, we can add the following implementation of a copy 
function to rects.py:

def copyRect(src, dst, srcRect, dstRect,
             interpolation = cv2.INTER_LINEAR):
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    """Copy part of the source to part of the destination."""
    
    x0, y0, w0, h0 = srcRect
    x1, y1, w1, h1 = dstRect
    
    # Resize the contents of the source sub-rectangle.
    # Put the result in the destination sub-rectangle.
    dst[y1:y1+h1, x1:x1+w1] = \
        cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
                   interpolation = interpolation)

OpenCV supports the following options for interpolation:

• cv2.INTER_NEAREST: This is nearest-neighbor interpolation, which is cheap 
but produces blocky results

• cv2.INTER_LINEAR: This is bilinear interpolation (the default), which offers a 
good compromise between cost and quality in real-time applications

• cv2.INTER_AREA: This is pixel area relation, which may offer a better 
compromise between cost and quality when downscaling but produces 
blocky results when upscaling

• cv2.INTER_CUBIC: This is bicubic interpolation over a 4 x 4 pixel 
neighborhood, a high-cost, high-quality approach

• cv2.INTER_LANCZOS4: This is Lanczos interpolation over an 8 x 8 pixel 
neighborhood, the highest-cost, highest-quality approach

Copying becomes more complicated if we want to support swapping of two or more 
rectangles' contents. Consider the following approach, which is wrong:

copyRect(image, image, rect0, rect1) # overwrite rect1
copyRect(image, image, rect1, rect0) # copy from rect1
# Oops! rect1 was already overwritten by the time we copied from it!

Instead, we need to copy one of the rectangles to a temporary array before 
overwriting anything. Let's edit rects.py to add the following function, which 
swaps the contents of two or more rectangles in a single source image:

def swapRects(src, dst, rects,
              interpolation = cv2.INTER_LINEAR):
    """Copy the source with two or more sub-rectangles swapped."""
    
    if dst is not src:
        dst[:] = src
    
    numRects = len(rects)
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    if numRects < 2:
        return
    
    # Copy the contents of the last rectangle into temporary storage.
    x, y, w, h = rects[numRects - 1]
    temp = src[y:y+h, x:x+w].copy()
    
    # Copy the contents of each rectangle into the next.
    i = numRects - 2
    while i >= 0:
        copyRect(src, dst, rects[i], rects[i+1], interpolation)
        i -= 1
    
    # Copy the temporarily stored content into the first rectangle.
    copyRect(temp, dst, (0, 0, w, h), rects[0], interpolation)

The swap is circular, such that it can support any number of rectangles. Each 
rectangle's content is destined for the next rectangle, except that the last rectangle's 
content is destined for the first rectangle.

This approach should serve us well enough for Cameo, but it is still not  
entirely foolproof. Intuition might tell us that the following code should  
leave image unchanged:

swapRects(image, image, rect0, rect1)
swapRects(image, image, rect1, rect0)

However, if rect0 and rect1 overlap, our intuition may be incorrect. If you see 
strange-looking results, then investigate the possibility that you are swapping 
overlapping rectangles.

Adding more utility functions
Last chapter, we created a module called utils for some miscellaneous helper 
functions. A couple of extra helper functions will make it easier for us to write  
a tracker.

First, it may be useful to know whether an image is in grayscale or color. We can 
tell based on the dimensionality of the image. Color images are 3D arrays, while 
grayscale images have fewer dimensions. Let's add the following function to utils.
py to test whether an image is in grayscale:

def isGray(image):
    """Return True if the image has one channel per pixel."""
    return image.ndim < 3
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Second, it may be useful to know an image's dimensions and to divide these 
dimensions by a given factor. An image's (or other array's) height and width, 
respectively, are the first two entries in its shape property. Let's add the following 
function to utils.py to get an image's dimensions, divided by a value:

def widthHeightDividedBy(image, divisor):
    """Return an image's dimensions, divided by a value."""
    h, w = image.shape[:2]
    return (w/divisor, h/divisor)

Now, let's get back on track with this chapter's main subject, tracking.

Tracking faces
The challenge in using OpenCV's Haar cascade classifiers is not just getting a 
tracking result; it is getting a series of sensible tracking results at a high frame rate. 
One kind of common sense that we can enforce is that certain tracked objects should 
have a hierarchical relationship, one being located relative to the other. For example, 
a nose should be in the middle of a face. By attempting to track both a whole face and 
parts of a face, we can enable application code to do more detailed manipulations 
and to check how good a given tracking result is. A face with a nose is a better result 
than one without. At the same time, we can support some optimizations, such as 
only looking for faces of a certain size and noses in certain places.

We are going to implement an optimized, hierarchical tracker in a class called 
FaceTracker, which offers a simple interface. A FaceTracker may be initialized 
with certain optional configuration arguments that are relevant to the tradeoff 
between tracking accuracy and performance. At any given time, the latest tracking 
results of FaceTracker are stored in a property called faces, which is a list of Face 
instances. Initially, this list is empty. It is refreshed via an update() method that 
accepts an image for the tracker to analyze. Finally, for debugging purposes, the 
rectangles of faces may be drawn via a drawDebugRects() method, which accepts 
an image as a drawing surface. Every frame, a real-time face-tracking application 
would call update(), read faces, and perhaps call drawDebugRects().

Internally, FaceTracker uses an OpenCV class called CascadeClassifier. 
A CascadeClassifier is initialized with a cascade data file, such as the ones 
that we found and copied earlier. For our purposes, the important method of 
CascadeClassifier is detectMultiScale(), which performs tracking that may be 
robust to variations in scale. The possible arguments to detectMultiScale() are:

• image: This is an image to be analyzed. It must have 8 bits per channel.
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• scaleFactor: This scaling factor separates the window sizes in two 
successive passes. A higher value improves performance but diminishes 
robustness with respect to variations in scale.

• minNeighbors: This value is one less than the minimum number of  
regions that are required in a match. (A match may merge multiple 
neighboring regions.)

• flags: There are several flags but not all combinations are valid. The valid 
standalone flags and valid combinations include:

 ° cv2.cv.CV_HAAR_SCALE_IMAGE: Scales each windowed image region 
to match the feature data. (The default approach is the opposite: scale 
the feature data to match the window.) Scaling the image allows for 
certain optimizations on modern hardware. This flag must not be 
combined with others.

 ° cv2.cv.CV_HAAR_DO_CANNY_PRUNING: Eagerly rejects regions that 
contain too many or too few edges to match the object type. This 
flag should not be combined with cv2.cv.CV_HAAR_FIND_BIGGEST_
OBJECT.

 ° cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT: Accepts, at most, one 
match (the biggest).

 ° cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT | cv2.cv.HAAR_DO_
ROUGH SEARCH: Accepts, at most, one match (the biggest) and skips 
some steps that would refine (shrink) the region of this match. The 
minNeighbors argument should be greater than 0.

• minSize: A pair of pixel dimensions representing the minimum object size 
being sought. A higher value improves performance.

• maxSize: A pair of pixel dimensions representing the maximum object size 
being sought. A lower value improves performance.

The return value of detectMultiScale() is a list of matches, each expressed as a 
rectangle in the format [x, y, w, h].

Similarly, the initializer of FaceTracker accepts scaleFactor, minNeighbors, and 
flags as arguments. The given values are passed to all detectMultiScale() calls 
that a FaceTracker makes internally. Also during initialization, a FaceTracker 
creates CascadeClassifiers using face, eye, nose, and mouth data. Let's add the 
following implementation of the initializer and the faces property to trackers.py:

class FaceTracker(object):
    """A tracker for facial features: face, eyes, nose, mouth."""
    
    def __init__(self, scaleFactor = 1.2, minNeighbors = 2,
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                 flags = cv2.cv.CV_HAAR_SCALE_IMAGE):
        
        self.scaleFactor = scaleFactor
        self.minNeighbors = minNeighbors
        self.flags = flags
        
        self._faces = []
        
        self._faceClassifier = cv2.CascadeClassifier(
            'cascades/haarcascade_frontalface_alt.xml')
        self._eyeClassifier = cv2.CascadeClassifier(
            'cascades/haarcascade_eye.xml')
        self._noseClassifier = cv2.CascadeClassifier(
            'cascades/haarcascade_mcs_nose.xml')
        self._mouthClassifier = cv2.CascadeClassifier(
            'cascades/haarcascade_mcs_mouth.xml')
    
    @property
    def faces(self):
        """The tracked facial features."""
        return self._faces

The update() method of FaceTracker first creates an equalized, grayscale variant 
of the given image. Equalization, as implemented in OpenCV's equalizeHist() 
function, normalizes an image's brightness and increases its contrast. Equalization as 
a preprocessing step makes our tracker more robust to variations in lighting, while 
conversion to grayscale improves performance. Next, we feed the preprocessed image 
to our face classifier. For each matching rectangle, we search certain subregions for a left 
and right eye, nose, and mouth. Ultimately, the matching rectangles and subrectangles 
are stored in Face instances in faces. For each type of tracking, we specify a minimum 
object size that is proportional to the image size. Our implementation of FaceTracker 
should continue with the following code for update():

    def update(self, image):
        """Update the tracked facial features."""
        
        self._faces = []
        
        if utils.isGray(image):
            image = cv2.equalizeHist(image)
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        else:
            image = cv2.cvtColor(image, cv2.cv.CV_BGR2GRAY)
            cv2.equalizeHist(image, image)
        
        minSize = utils.widthHeightDividedBy(image, 8)
        
        faceRects = self._faceClassifier.detectMultiScale(
            image, self.scaleFactor, self.minNeighbors, self.flags,
            minSize)
        
        if faceRects is not None:
            for faceRect in faceRects:
                
                face = Face()
                face.faceRect = faceRect
                
                x, y, w, h = faceRect
                
                # Seek an eye in the upper-left part of the face.
                searchRect = (x+w/7, y, w*2/7, h/2)
                face.leftEyeRect = self._detectOneObject(
                    self._eyeClassifier, image, searchRect, 64)
                
                # Seek an eye in the upper-right part of the face.
                searchRect = (x+w*4/7, y, w*2/7, h/2)
                face.rightEyeRect = self._detectOneObject(
                    self._eyeClassifier, image, searchRect, 64)
                
                # Seek a nose in the middle part of the face.
                searchRect = (x+w/4, y+h/4, w/2, h/2)
                face.noseRect = self._detectOneObject(
                    self._noseClassifier, image, searchRect, 32)
                
                # Seek a mouth in the lower-middle part of the face.
                searchRect = (x+w/6, y+h*2/3, w*2/3, h/3)
                face.mouthRect = self._detectOneObject(
                    self._mouthClassifier, image, searchRect, 16)
                
                self._faces.append(face)
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Note that update() relies on utils.isGray() and utils.
widthHeightDividedBy(), both implemented earlier in this chapter. Also, it relies 
on a private helper method, _detectOneObject(), which is called several times 
in order to handle the repetitious work of tracking several subparts of the face. 
As arguments, _detectOneObject() requires a classifier, image, rectangle, and 
minimum object size. The rectangle is the image subregion that the given classifier 
should search. For example, the nose classifier should search the middle of the face. 
Limiting the search area improves performance and helps eliminate false positives. 
Internally, _detectOneObject() works by running the classifier on a slice of the 
image and returning the first match (or None if there are no matches). This approach 
works whether or not we are using the cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT 
flag. Our implementation of FaceTracker should continue with the following code 
for _detectOneObject():

    def _detectOneObject(self, classifier, image, rect,
                          imageSizeToMinSizeRatio):
        
        x, y, w, h = rect
        
        minSize = utils.widthHeightDividedBy(
            image, imageSizeToMinSizeRatio)
        
        subImage = image[y:y+h, x:x+w]
        
        subRects = classifier.detectMultiScale(
            subImage, self.scaleFactor, self.minNeighbors,
            self.flags, minSize)
        
        if len(subRects) == 0:
            return None
        
        subX, subY, subW, subH = subRects[0]
        return (x+subX, y+subY, subW, subH)

Lastly, FaceTracker should offer basic drawing functionality so that its tracking 
results can be displayed for debugging purposes. The following method 
implementation simply defines colors, iterates over Face instances, and draws 
rectangles of each Face to a given image using our rects.outlineRect() function:

def drawDebugRects(self, image):
        """Draw rectangles around the tracked facial features."""
        
        if utils.isGray(image):
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            faceColor = 255
            leftEyeColor = 255
            rightEyeColor = 255
            noseColor = 255
            mouthColor = 255
        else:
            faceColor = (255, 255, 255) # white
            leftEyeColor = (0, 0, 255) # red
            rightEyeColor = (0, 255, 255) # yellow
            noseColor = (0, 255, 0) # green
            mouthColor = (255, 0, 0) # blue
        
        for face in self.faces:
            rects.outlineRect(image, face.faceRect, faceColor)
            rects.outlineRect(image, face.leftEyeRect, leftEyeColor)
            rects.outlineRect(image, face.rightEyeRect,
                              rightEyeColor)
            rects.outlineRect(image, face.noseRect, noseColor)
            rects.outlineRect(image, face.mouthRect, mouthColor)

Now, we have a high-level tracker that hides the details of Haar cascade classifiers 
while allowing application code to supply new images, fetch data about tracking 
results, and ask for debug drawing.

Modifying the application
Let's look at two approaches to integrating face tracking and swapping into Cameo. 
The first approach uses a single camera feed and swaps face rectangles found within 
this camera feed. The second approach uses two camera feeds and copies face 
rectangles from one camera feed to the other.

For now, we will limit ourselves to manipulating faces as a whole and not 
subelements such as eyes. However, you could modify the code to swap only eyes, 
for example. If you try this, be careful to check that the relevant subrectangles of the 
face are not None.



Tracking Faces with Haar Cascades

[ 70 ]

Swapping faces in one camera feed
For the single-camera version, the modifications are quite straightforward. On 
initialization of Cameo, we create a FaceTracker and a Boolean variable indicating 
whether debug rectangles should be drawn for the FaceTracker. The Boolean is 
toggled in onKeypress() in response to the X key. As part of the main loop in run(), 
we update our FaceTracker with the current frame. Then, the resulting FaceFace 
objects (in the faces property) are fetched and their faceRects are swapped using 
rects.swapRects(). Also, depending on the Boolean value, we may draw debug 
rectangles that reflect the original positions of facial elements before any swap.

import cv2
import filters
from managers import WindowManager, CaptureManager
import rects
from trackers import FaceTracker

class Cameo(object):
    
    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        self._captureManager = CaptureManager(
            cv2.VideoCapture(0), self._windowManager, True)
        self._faceTracker = FaceTracker()
        self._shouldDrawDebugRects = False
        self._curveFilter = filters.BGRPortraCurveFilter()
    
    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            frame = self._captureManager.frame
            
            self._faceTracker.update(frame)
            faces = self._faceTracker.faces
            rects.swapRects(frame, frame,
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                            [face.faceRect for face in faces])
            
            filters.strokeEdges(frame, frame)
            self._curveFilter.apply(frame, frame)
            
            if self._shouldDrawDebugRects:
                self._faceTracker.drawDebugRects(frame)
            
            self._captureManager.exitFrame()
            self._windowManager.processEvents()
    
    def onKeypress(self, keycode):
        """Handle a keypress.
        
        space  -> Take a screenshot.
        tab    -> Start/stop recording a screencast.
        x      -> Start/stop drawing debug rectangles around faces.
        escape -> Quit.
        
        """
        if keycode == 32: # space
            self._captureManager.writeImage('screenshot.png')
        elif keycode == 9: # tab
            if not self._captureManager.isWritingVideo:
                self._captureManager.startWritingVideo(
                    'screencast.avi')
            else:
                self._captureManager.stopWritingVideo()
        elif keycode == 120: # x
            self._shouldDrawDebugRects = \
                not self._shouldDrawDebugRects
        elif keycode == 27: # escape
            self._windowManager.destroyWindow()

if __name__=="__main__":
   Cameo().run()
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The following screenshot is from Cameo. Face regions are outlined after the user 
presses X:

The following screenshot is from Cameo. American businessman Bill Ackman 
performs a takeover of the author's face:
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Copying faces between camera feeds
For the two-camera version, let's create a new class, CameoDouble, which is a 
subclass of Cameo. On initialization, a CameoDouble invokes the constructor of 
Cameo and also creates a second CaptureManager. During the main loop in run(), a 
CameoDouble gets new frames from both cameras and then gets face tracking results 
for both frames. Faces are copied from one frame to the other using copyRect(). 
Then, the destination frame is displayed, optionally with debug rectangles drawn 
overtop it. We can implement CameoDouble in cameo.py as follows:

For some models of MacBook, OpenCV has problems using 
the built-in camera when an external webcam is plugged in. 
Specifically, the application may become deadlocked while waiting 
for the built-in camera to supply a frame. If you encounter this 
issue, use two external cameras and do not use the built-in camera.

class CameoDouble(Cameo):
    
    def __init__(self):
        Cameo.__init__(self)
        self._hiddenCaptureManager = CaptureManager(
            cv2.VideoCapture(1))
    
    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            self._hiddenCaptureManager.enterFrame()
            frame = self._captureManager.frame
            hiddenFrame = self._hiddenCaptureManager.frame
            
            self._faceTracker.update(hiddenFrame)
            hiddenFaces = self._faceTracker.faces
            self._faceTracker.update(frame)
            faces = self._faceTracker.faces
            
            i = 0
            while i < len(faces) and i < len(hiddenFaces):
                rects.copyRect(
                    hiddenFrame, frame, hiddenFaces[i].faceRect,
                    faces[i].faceRect)
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                i += 1
            
            filters.strokeEdges(frame, frame)
            self._curveFilter.apply(frame, frame)
            
            if self._shouldDrawDebugRects:
                self._faceTracker.drawDebugRects(frame)
            
            self._captureManager.exitFrame()
            self._hiddenCaptureManager.exitFrame()
            self._windowManager.processEvents()

To run a CameoDouble instead of a Cameo, we just need to modify our  
if __name__=="__main__" block, as follows:

if __name__=="__main__":
    #Cameo().run() # uncomment for single camera
    CameoDouble().run() # uncomment for double camera

Summary
We now have two versions of Cameo. One version tracks faces in a single camera 
feed and, when faces are found, swaps them by copying and resizing. The other 
version tracks faces in two camera feeds and, when faces are found in each, copies 
and resizes faces from one feed to replace faces in the other. Additionally, in both 
versions, one camera feed is made visible and effects are applied to it.

These versions of Cameo demonstrate the basic functionality that we proposed two 
chapters ago. The user can displace his or her face onto another body, and the result 
can be stylized to give it a more unified feel. However, the transplanted faces are 
still just rectangular cutouts. So far, no effort is made to cut away non-face parts of 
the rectangle or to align superimposed and underlying components such as eyes. 
The next chapter examines some more sophisticated techniques for facial blending, 
particularly using depth vision.



Detecting Foreground/
Background Regions  

and Depth
This chapter shows how to use data from a depth camera to identify foreground 
and background regions, such that we can limit an effect to only the foreground or 
only the background. As prerequisites, we need a depth camera, such as Microsoft 
Kinect, and we need to build OpenCV with support for our depth camera. For build 
instructions, see Chapter 1, Setting up OpenCV.

Creating modules
Our code for capturing and manipulating depth-camera data will be reusable 
outside Cameo.py. So we should separate it into a new module. Let's create a file 
called depth.py in the same directory as Cameo.py. We need the following import 
statement in depth.py:

import numpy

We will also need to modify our preexisting rects.py file so that our copy 
operations can be limited to a non-rectangular sub region of a rectangle.  
To support the changes we are going to make, let's add the following  
import statements to rects.py:

import numpy
import utils
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Finally, the new version of our application will use depth-related functionality.  
So, let's add the following import statement to Cameo.py:

import depth

Now, let's get deeper into the subject of depth.

Capturing frames from a depth camera
Back in Chapter 2, Handling Files, Cameras, and GUIs, we discussed the concept that 
a computer can have multiple video capture devices and each device can have 
multiple channels. Suppose a given device is a stereo camera. Each channel might 
correspond to a different lens and sensor. Also, each channel might correspond to 
a different kind of data, such as a normal color image versus a depth map. When 
working with OpenCV's VideoCapture class or our wrapper CaptureManager, 
we can choose a device on initialization and we can read one or more channels 
from each frame of that device. Each device and channel is identified by an integer. 
Unfortunately, the numbering of devices and channels is unintuitive. The C++ 
version of OpenCV defines some constants for the identifiers of certain devices and 
channels. However, these constants are not defined in the Python version. To remedy 
this situation, let's add the following definitions in depth.py:

# Devices.
CV_CAP_OPENNI = 900 # OpenNI (for Microsoft Kinect)
CV_CAP_OPENNI_ASUS = 910 # OpenNI (for Asus Xtion)
# Channels of an OpenNI-compatible depth generator.
CV_CAP_OPENNI_DEPTH_MAP = 0 # Depth values in mm (CV_16UC1)
CV_CAP_OPENNI_POINT_CLOUD_MAP = 1 # XYZ in meters (CV_32FC3)
CV_CAP_OPENNI_DISPARITY_MAP = 2 # Disparity in pixels (CV_8UC1)
CV_CAP_OPENNI_DISPARITY_MAP_32F = 3 # Disparity in pixels (CV_32FC1)
CV_CAP_OPENNI_VALID_DEPTH_MASK = 4 # CV_8UC1
# Channels of an OpenNI-compatible RGB image generator.
CV_CAP_OPENNI_BGR_IMAGE = 5
CV_CAP_OPENNI_GRAY_IMAGE = 6

The depth-related channels require some explanation, as given in the following list:

• A depth map is a grayscale image in which each pixel value is the estimated 
distance from the camera to a surface. Specifically, an image from the 
CV_CAP_OPENNI_DEPTH_MAP channel gives the distance as a floating-point 
number of millimeters.
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• A point cloud map is a color image in which each color corresponds to 
a spatial dimension (x, y, or z). Specifically, the CV_CAP_OPENNI_POINT_
CLOUD_MAP channel yields a BGR image where B is x (blue is right), G is y 
(green is up), and R is z (red is deep), from the camera's perspective. The 
values are in meters.

• A disparity map is a grayscale image in which each pixel value is the stereo 
disparity of a surface. To conceptualize stereo disparity, let's suppose we 
overlay two images of a scene, shot from different viewpoints. The result 
would be like seeing double images. For points on any pair of twin objects 
in the scene, we can measure the distance in pixels. This measurement is the 
stereo disparity. Nearby objects exhibit greater stereo disparity than far-off 
objects. Thus, nearby objects appear brighter in a disparity map.

• A valid depth mask shows whether the depth information at a given pixel 
is believed to be valid (shown by a non-zero value) or invalid (shown by 
a value of zero). For example, if the depth camera depends on an infrared 
illuminator (an infrared flash), then depth information is invalid in regions 
that are occluded (shadowed) from this light.

The following screenshot shows a point-cloud map of a man sitting behind a 
sculpture of a cat:
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The following screenshot has a disparity map of a man sitting behind a sculpture  
of a cat:

A valid depth mask of a man sitting behind a sculpture of a cat is shown in the 
following screenshot:
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Creating a mask from a disparity map
For the purposes of Cameo, we are interested in disparity maps and valid depth 
masks. They can help us refine our estimates of facial regions.

Using our FaceTracker function and a normal color image, we can obtain 
rectangular estimates of facial regions. By analyzing such a rectangular region in the 
corresponding disparity map, we can tell that some pixels within the rectangle are 
outliers—too near or too far to really be a part of the face. We can refine the facial 
region to exclude these outliers. However, we should only apply this test where the 
data are valid, as indicated by the valid depth mask.

Let's write a function to generate a mask whose values are 0 for rejected regions of 
the facial rectangle and 1 for accepted regions. This function should take a disparity 
map, a valid depth mask, and a rectangle as arguments. We can implement it in 
depth.py as follows:

def createMedianMask(disparityMap, validDepthMask, rect = None):
    """Return a mask selecting the median layer, plus shadows."""
    if rect is not None:
        x, y, w, h = rect
        disparityMap = disparityMap[y:y+h, x:x+w]
        validDepthMask = validDepthMask[y:y+h, x:x+w]
    median = numpy.median(disparityMap)
    return numpy.where((validDepthMask == 0) | \
                       (abs(disparityMap - median) < 12),
                       1.0, 0.0)

To identify outliers in the disparity map, we first find the median using numpy.
median(), which takes an array as an argument. If the array is of odd length, 
median() returns the value that would lie in the middle of the array if the array  
were sorted. If the array is of even length, median() returns the average of the two 
values that would be sorted nearest to the middle of the array.

To generate the mask based on per-pixel Boolean operations, we use numpy.where() 
with three arguments. As the first argument, where() takes an array whose elements 
are evaluated for truth or falsity. An output array of like dimensions is returned. 
Wherever an element in the input array is true, the where() function's second 
argument is assigned to the corresponding element in the output array. Conversely, 
wherever an element in the input array is false, the where() function's third 
argument is assigned to the corresponding element in the output array.
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Our implementation treats a pixel as an outlier when it has a valid disparity  
value that deviates from the median disparity value by 12 or more. I chose the  
value 12 just by experimentation. Feel free to tweak this value later based on the 
results you encounter when running Cameo with your particular camera setup.

Masking a copy operation
As part of the previous chapter's work, we wrote copyRect() as a copy operation 
that limits itself to given rectangles of the source and destination images. Now, we 
want to apply further limits to this copy operation. We want to use a given mask that 
has the same dimensions as the source rectangle. We shall copy only those pixels in 
the source rectangle where the mask's value is not zero. Other pixels shall retain their 
old values from the destination image. This logic, with an array of conditions and 
two arrays of possible output values, can be expressed concisely with the numpy.
where() function that we have recently learned. 

Let's open rects.py and edit copyRect() to add a new argument, mask. This 
argument may be None, in which case we fall back to our old implementation of the 
copy operation. Otherwise, we next ensure that mask and the images have the same 
number of channels. We assume that mask has one channel but the images may have 
three channels (BGR). We can add duplicate channels to mask using the repeat() 
and reshape() methods of numpy.array. Finally, we perform the copy operation 
using where(). The complete implementation is as follows:

def copyRect(src, dst, srcRect, dstRect, mask = None,
             interpolation = cv2.INTER_LINEAR):
    """Copy part of the source to part of the destination."""
    
    x0, y0, w0, h0 = srcRect
    x1, y1, w1, h1 = dstRect
    
    # Resize the contents of the source sub-rectangle.
    # Put the result in the destination sub-rectangle.
    if mask is None:
        dst[y1:y1+h1, x1:x1+w1] = \
            cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
                       interpolation = interpolation)
    else:
        if not utils.isGray(src):
            # Convert the mask to 3 channels, like the image.
            mask = mask.repeat(3).reshape(h0, w0, 3)
        # Perform the copy, with the mask applied.
        dst[y1:y1+h1, x1:x1+w1] = \
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            numpy.where(cv2.resize(mask, (w1, h1),
                                   interpolation = \
                                   cv2.INTER_NEAREST),
                        cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
                                   interpolation = interpolation),
                        dst[y1:y1+h1, x1:x1+w1])

We also need to modify our swapRects() function, which uses copyRect()  
to perform a circular swap of a list of rectangular regions. The modifications  
to swapRects() are quite simple. We just need to add a new argument, masks,  
which is a list of masks whose elements are passed to the respective copyRect() 
calls. If the given masks is None, we pass None to every copyRect() call. The 
following is the full implementation:

def swapRects(src, dst, rects, masks = None,
              interpolation = cv2.INTER_LINEAR):
    """Copy the source with two or more sub-rectangles swapped."""
    
    if dst is not src:
        dst[:] = src
    
    numRects = len(rects)
    if numRects < 2:
        return
    
    if masks is None:
        masks = [None] * numRects
    
    # Copy the contents of the last rectangle into temporary storage.
    x, y, w, h = rects[numRects - 1]
    temp = src[y:y+h, x:x+w].copy()
    
    # Copy the contents of each rectangle into the next.
    i = numRects - 2
    while i >= 0:
        copyRect(src, dst, rects[i], rects[i+1], masks[i],
                 interpolation)
        i -= 1
    
    # Copy the temporarily stored content into the first rectangle.
    copyRect(temp, dst, (0, 0, w, h), rects[0], masks[numRects - 1],
             interpolation)
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Note that the mask in copyRect() and masks in swapRects() both default to  
None. Thus, our new versions of these functions are backward-compatible with  
our previous versions of Cameo.

Modifying the application
For the depth-camera version of Cameo, let's create a new class, CameoDepth, as a 
subclass of Cameo. On initialization, a CameoDepth class creates a CaptureManager 
class that uses a depth camera device (either CV_CAP_OPENNI for Microsoft Kinect 
or CV_CAP_OPENNI_ASUS for Asus Xtion, depending on our setup). During the main 
loop in run(), a CameoDepth function gets a disparity map, a valid depth mask, 
and a normal color image in each frame. The normal color image is used to estimate 
facial rectangles, while the disparity map and valid depth mask are used to refine the 
estimate of the facial region using createMedianMask(). Faces in the normal color 
image are swapped using copyRect(), with the faces' respective masks applied. 
Then, the destination frame is displayed, optionally with debug rectangles drawn 
overtop it. We can implement CameoDepth in cameo.py as follows:

class CameoDepth(Cameo):
    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        device = depth.CV_CAP_OPENNI # uncomment for Microsoft Kinect
        #device = depth.CV_CAP_OPENNI_ASUS # uncomment for Asus Xtion
        self._captureManager = CaptureManager(
            cv2.VideoCapture(device), self._windowManager, True)
        self._faceTracker = FaceTracker()
        self._shouldDrawDebugRects = False
        self._curveFilter = filters.BGRPortraCurveFilter()
    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            self._captureManager.channel = \
                depth.CV_CAP_OPENNI_DISPARITY_MAP
            disparityMap = self._captureManager.frame
            self._captureManager.channel = \
                depth.CV_CAP_OPENNI_VALID_DEPTH_MASK
            validDepthMask = self._captureManager.frame
            self._captureManager.channel = \
                depth.CV_CAP_OPENNI_BGR_IMAGE
            frame = self._captureManager.frame
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            self._faceTracker.update(frame)
            faces = self._faceTracker.faces
            masks = [
                depth.createMedianMask(
                    disparityMap, validDepthMask, face.faceRect) \
                for face in faces
            ]
            rects.swapRects(frame, frame,
                            [face.faceRect for face in faces], masks)
            filters.strokeEdges(frame, frame)
            self._curveFilter.apply(frame, frame)
            if self._shouldDrawDebugRects:
                self._faceTracker.drawDebugRects(frame)
            self._captureManager.exitFrame()
            self._windowManager.processEvents()

To run a CameoDepth function instead of a Cameo or CameoDouble function, we just 
need to modify our if __name__=="__main__" block, as follows:

if __name__=="__main__":
    #Cameo().run() # uncomment for single camera
    #CameoDouble().run() # uncomment for double camera
    CameoDepth().run() # uncomment for depth camera

The following is a screenshot showing the CameoDepth class in action. Note that our 
mask gives the copied regions some irregular edges, as intended. The effect is more 
successful on the left and right sides of the faces (where they meet the background) 
than on the top and bottom (where they meet hair and neck regions of similar depth):
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Summary
We now have an application that uses a depth camera, facial tracking, copy 
operations, masks, and image filters. By developing this application, we have  
gained practice in leveraging the functionality of OpenCV, NumPy, and other 
libraries. We have also practiced wrapping this functionality in a high-level, 
reusable, and object-oriented design.

Congratulations! You now have the skill to develop computer vision applications 
in Python using OpenCV. Still, there is always more to learn and do! If you liked 
working with NumPy and OpenCV, please check out these other titles from  
Packt Publishing:

• NumPy Cookbook, Ivan Idris
• OpenCV 2 Computer Vision Application Programming Cookbook, Robert Laganière, 

which uses OpenCV's C++ API for desktops
• Mastering OpenCV with Practical Computer Vision Projects, (by multiple authors), 

which uses OpenCV's C++ API for multiple platforms
• The upcoming book, OpenCV for iOS How-to, which uses OpenCV's C++ API 

for iPhone and iPad
• OpenCV Android Application Programming, my upcoming book, which uses 

OpenCV's Java API for Android

Here ends of our tour of OpenCV's Python bindings. I hope you are able to use this 
book and its codebase as a starting point for rewarding work in computer vision. Let 
me know what you are studying or developing next!



Integrating with Pygame
This appendix shows how to set up the Pygame library and how to use Pygame 
for window management in an OpenCV application. Also, the appendix gives an 
overview of Pygame's other functionality and some resources for learning Pygame.

All the finished code for this chapter can be downloaded from my 
website: http://nummist.com/opencv/3923_06.zip.

Installing Pygame
Let's assume that we already have Python set up according to one of the approaches 
described in Chapter 1, Setting up OpenCV. Depending on our existing setup, we can 
install Pygame in one of the following ways:

• Windows with 32-bit Python: Download and install Pygame 1.9.1 from 
http://pygame.org/ftp/pygame-1.9.1.win32-py2.7.msi.

• Windows with 64-bit Python: Download and install Pygame 1.9.2 preview 
from http://www.lfd.uci.edu/~gohlke/pythonlibs/2k2kdosm/pygame-
1.9.2pre.win-amd64-py2.7.exe.

• Mac with Macports: Open Terminal and run the following command:
$ sudo port install py27-game

• Mac with Homebrew: Open Terminal and run the following commands to 
install Pygame's dependencies and, then, Pygame itself:
$ brew install sdl sdl_image sdl_mixer sdl_ttf smpeg portmidi

$ /usr/local/share/python/pip install \

> hg+http://bitbucket.org/pygame/pygame
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• Ubuntu and its derivatives: Open Terminal and run the following command:
$ sudo apt-get install python-pygame

• Other Unix-like systems: Pygame is available in the standard repositories of 
many systems. Typical package names include pygame, pygame27, py-game, 
py27-game, python-pygame, and python27-pygame.

Now, Pygame should be ready for use.

Documentation and tutorials
Pygame's API documentation and some tutorials can be found online at  
http://www.pygame.org/docs/.

Al Sweigart's Making Games With Python and Pygame is a cookbook for recreating 
several classic games in Pygame 1.9.1. The free electronic version is available online 
at http://inventwithpython.com/pygame/chapters/ or as a downloadable PDF 
file at http://inventwithpython.com/makinggames.pdf.

Subclassing managers.WindowManager
As discussed in Chapter 2, Handling Cameras, Files and GUIs, our object-oriented 
design allows us to easily swap OpenCV's HighGUI window manager for another 
window manager, such as Pygame. To do so, we just need to subclass our managers.
WindowManager class and override four methods: createWindow(), show(), 
destroyWindow(), and processEvents(). Also, we need to import some  
new dependencies.

To proceed, we need the managers.py file from Chapter 2, Handling Cameras, Files, 
and GUIs and the utils.py file from Chapter 4, Tracking Faces with Haar Cascades. 
From utils.py, we only need one function, isGray(), which we implemented 
in Chapter 4, Tracking Faces with Haar Cascades. Let's edit managers.py to add the 
following imports:

import pygame
import utils

Also in managers.py, somewhere after our WindowManager implementation, we 
want to add our new subclass called PygameWindowManager:

class PygameWindowManager(WindowManager):
    def createWindow(self):
        pygame.display.init()
        pygame.display.set_caption(self._windowName)



Appendix A

[ 87 ]

        self._isWindowCreated = True
    def show(self, frame):
        # Find the frame's dimensions in (w, h) format.
        frameSize = frame.shape[1::-1]
        # Convert the frame to RGB, which Pygame requires.
        if utils.isGray(frame):
            conversionType = cv2.COLOR_GRAY2RGB
        else:
            conversionType = cv2.COLOR_BGR2RGB
        rgbFrame = cv2.cvtColor(frame, conversionType)
        # Convert the frame to Pygame's Surface type.
        pygameFrame = pygame.image.frombuffer(
            rgbFrame.tostring(), frameSize, 'RGB')
        # Resize the window to match the frame.
        displaySurface = pygame.display.set_mode(frameSize)
        # Blit and display the frame.
        displaySurface.blit(pygameFrame, (0, 0))
        pygame.display.flip()
    def destroyWindow(self):
        pygame.display.quit()
        self._isWindowCreated = False
    def processEvents(self):
        for event in pygame.event.get():
            if event.type == pygame.KEYDOWN and \
                    self.keypressCallback is not None:
                self.keypressCallback(event.key)
            elif event.type == pygame.QUIT:
                self.destroyWindow()
                return

Note that we are using two Pygame modules: pygame.display and pygame.event.

A window is created by calling pygame.display.init() and destroyed by calling 
pygame.display.quit(). Repeated calls to display.init() have no effect, as 
Pygame is intended for single-window applications only. The Pygame window has a 
drawing surface of type pygame.Surface. To get a reference to this Surface, we can 
call pygame.display.get_surface() or pygame.display.set_mode(). The latter 
function modifies the Surface entity's properties before returning it. A Surface 
entity has a blit() method, which takes, as arguments, another Surface and a 
coordinate pair where the latter Surface should be "blitted" (drawn) onto the first. 
When we are done updating the window's Surface for the current frame, we should 
display it by calling pygame.display.flip().
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Events, such as keypresses, are polled by calling pygame.event.get(), which 
returns the list of all events that have occurred since the last call. Each event is of type 
pygame.event.Event and has the property type, which indicates the category of an 
event such as pygame.KEYDOWN for keypresses and pygame.QUIT for the window's 
Close button being clicked. Depending on the value of type, an Event entity may have 
other properties, such as key (an ASCII key code) for the KEYDOWN events.

Relative to the base WindowManager that uses HighGUI, PygameWindowManager 
incurs some overhead cost by converting between OpenCV's image format and 
Pygame's Surface format of each frame. However, PygameWindowManager offers 
normal window closing behavior, whereas the base WindowManager does not.

Modifying the application
Let's modify the cameo.py file to use PygameWindowManager instead of 
WindowManager. Find the following line in cameo.py:

from managers import WindowManager, CaptureManager

Replace it with:

from managers import PygameWindowManager as WindowManager, \
                     CaptureManager

That's all! Now cameo.py uses a Pygame window that should close when the 
standard Close button is clicked.

Further uses of Pygame
We have used only some basic functions of the pygame.display and pygame.event 
modules. Pygame provides much more functionality, including:

• Drawing 2D geometry
• Drawing text
• Managing groups of drawable AI entities (sprites)
• Capturing various input events relating to the window, keyboard, mouse, 

and joysticks/gamepads
• Creating custom events
• Playback and synthesis of sounds and music

For example, Pygame might be a suitable backend for a game that uses computer 
vision, whereas HighGUI would not be.
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Summary
By now, we should have an application that uses OpenCV for capturing (and possibly 
manipulating) images, while using Pygame for displaying the images and catching 
events. Starting from this basic integration example, you might want to expand 
PygameWindowManager to wrap additional Pygame functionality or you might want to 
create another WindowManager subclass to wrap another library.





Generating Haar Cascades 
for Custom Targets

This appendix shows how to generate Haar cascade XML files like the ones used 
in Chapter 4, Tracking Faces with Haar Cascades. By generating our own cascade 
files, we can potentially track any pattern or object, not just faces. However, good 
results might not come quickly. We must carefully gather images, configure 
script parameters, perform real-world tests, and iterate. A lot of human time and 
processing time might be involved.

Gathering positive and negative training 
images
Do you know the flashcard pedagogy? It is a method of teaching words and 
recognition skills to small children. The teacher shows the class a series of  
pictures and says the following:

"This is a cow. Moo! This is a horse. Neigh!"

The way that cascade files are generated is analogous to the flashcard pedagogy.  
To learn how to recognize cows, the computer needs positive training images that 
are pre-identified as cows and negative training images that are pre-identified as  
non-cows. Our first step, as trainers, is to gather these two sets of images.
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When deciding how many positive training images to use, we need to consider the 
various ways in which our users might view the target. The ideal, simplest case is 
that the target is a 2D pattern that is always on a flat surface. In this case, one positive 
training image might be enough. However, in other cases, hundreds or even thousands 
of training images might be required. Suppose that the target is your country's flag. 
When printed on a document, the flag might have a predictable appearance but when 
printed on a piece of fabric that is blowing in the wind, the flag's appearance is highly 
variable. A natural, 3D target, such as a human face, might range even more widely 
in appearance. Ideally, our set of positive training images should be representative of 
the many variations our camera may capture. Optionally, any of our positive training 
images may contain multiple instances of the target.

For our negative training set, we want a large number of images that do not contain 
any instances of the target but do contain other things that our camera is likely to 
capture. For example, if a flag is our target, our negative training set might include 
photos of the sky in various weather conditions. (The sky is not a flag but is often 
seen behind a flag.) Do not assume too much though. If the camera's environment is 
unpredictable and the target occurs in many settings, use a wide variety of negative 
training images. Consider building a set of generic environmental images that you 
can reuse across multiple training scenarios.

Finding the training executables
To automate cascade training as much as possible, OpenCV provides two 
executables. Their names and locations depend on the operating system and  
the particular setup of OpenCV, as described in the following two sections.

On Windows
The two executables on Windows are called ONopencv_createsamples.exe and 
ONopencv_traincascade.exe. They are not prebuilt. Rather, they are present only 
if you compiled OpenCV from source. Their parent folder is one of the following, 
depending on the compilation approach you chose in Chapter 1, Setting up OpenCV:

• MinGW: <unzip_destination>\bin
• Visual Studio or Visual C++ Express: <unzip_destination>\bin\Release

If you want to add the executables' folder to the system's Path variable, refer back 
to the instructions in the information box in the Making the choice on Windows XP, 
Windows Vista, Windows 7, and Windows 8 section of Chapter 1, Setting up OpenCV. 
Otherwise, take note of the executables' full path because we will need to use it in 
running them.
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On Mac, Ubuntu, and other Unix-like systems
The two executables on Mac, Ubuntu, and other Unix-like systems are called 
opencv_createsamples and opencv_traincascade. Their parent folder is one  
of the following, depending on your system and the approach that you chose in 
Chapter 1, Setting up OpenCV: 

• Mac with MacPorts: /opt/local/bin
• Mac with Homebrew: /opt/local/bin or /opt/local/sbin
• Ubuntu with Apt: /usr/bin
• Ubuntu with my custom installation script: /usr/local/bin
• Other Unix-like systems: /usr/bin and /usr/local/bin

Except in the case of Mac with Homebrew, the executables' folder should be in  
PATH by default. For Homebrew, if you want to add the relevant folders to PATH,  
see the instructions in the second step of the Using Homebrew with ready-made packages 
(no support for depth cameras) section of Chapter 1, Setting up OpenCV. Otherwise, note 
the executables' full path because we will need to use it in running them.

Creating the training sets and cascade
Hereafter, we will refer to the two executables as <opencv_createsamples> and 
<opencv_traincascade>. Remember to substitute the path and filename that are 
appropriate to your system and setup.

These executables have certain data files as inputs and outputs. Following is a typical 
approach to generating these data files:

1. Manually create a text file that describes the set of negative training images. 
We will refer to this file as <negative_description>.

2. Manually create a text file that describes the set of positive training images. 
We will refer to this file as <positive_description>.

3. Run <opencv_createsamples> with <negative_description> and 
<positive_description> as arguments. The executable creates a  
binary file describing the training data. We will refer to the latter  
file as <binary_description>.

4. Run <opencv_traincascade> with <binary_description> as an  
argument. The executable creates the binary cascade file, which we  
will refer to as <cascade>.
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The actual names and paths of <negative_description>, <positive_description>, 
<binary_description>, and <cascade> may be anything we choose.

Now, let's look at each of the three steps in detail.

Creating <negative_description>
<negative_description> is a text file listing the relative paths to all negative 
training images. The paths should be separated by line breaks. For example, suppose 
we have the following directory structure, where <negative_description> is 
negative/desc.txt:

negative
    desc.txt
    images
        negative 0.png
        negative 1.png

Then, the contents of negative/desc.txt could be as follows:

"images/negative 0.png"
"images/negative 1.png"

For a small number of images, we can write such a file by hand. For a large number 
of images, we should instead use the command line to find relative paths matching 
a certain pattern and to output these matches to a file. Continuing our example, 
we could generate negative/desc.txt by running the following commands on 
Windows in Command Prompt:

> cd negative

> forfiles /m images\*.png /c "cmd /c echo @relpath" > desc.txt

Note that in this case, relative paths are formatted as .\images\negative 0.png, 
which is acceptable.

Alternatively, in a Unix-like shell, such as Terminal on Mac or Ubuntu, we could run 
the following commands:

$ cd negative

$ find images/*.png | sed -e "s/^/\"/g;s/$/\"/g" > desc.txt
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Creating <positive_description>
<positive_description> is needed if we have more than one positive training 
image. Otherwise, proceed to the next section. <positive_description> is a 
text file listing the relative paths to all positive training images. After each path, 
<positive_description> also contains a series of numbers indicating how many 
instances of the target are found in the image and which sub-rectangles contain those 
instances of the target. For each sub-rectangle, the numbers are in this order: x, y, 
width, and height. Consider the following example:

"images/positive 0.png"  1  120 160 40 40
"images/positive 1.png"  2  200 120 40 60  80 60 20 20

Here, images/positive 0.png contains one instance of the target in a sub-rectangle 
whose upper-left corner is at (120, 160) and whose lower-right corner is at (160, 
200). Meanwhile, images/positive 1.png contains two instances of the target. 
One instance is in a sub-rectangle whose upper-left corner is at (200, 120) and whose 
lower-right corner is at (240, 180). The other instance is in a sub-rectangle whose 
upper-left corner is at (80, 60) and whose lower-right corner is at (100, 80).

To create such a file, we can start by generating the list of image paths in the same 
manner as for <negative_description>. Then, we must manually add data about 
target instances based on an expert (human) analysis of the images.

Creating <binary_description> by running 
<opencv_createsamples>
Assuming we have multiple positive training images and, thus, we created 
<positive_description>, we can now generate <binary_description> by 
running the following command:

$ <opencv_createsamples> -vec <binary_description> -info <positive_
description> -bg <negative_description>

Alternatively, if we have a single positive training image, which we will refer to as 
<positive_image>, we should run the following command instead:

$ <opencv_createsamples> -vec <binary_description> -image <positive_
image> -bg <negative_description>

For other (optional) flags of <opencv_createsamples>, see the official documentation 
at http://docs.opencv.org/doc/user_guide/ug_traincascade.html.
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Creating <cascade> by running  
<opencv_traincascade>
Finally, we can generate <cascade> by running the following command:

$ <opencv_traincascade> -data <cascade> -vec <binary_description> -bg 
<negative_description>

For other (optional) flags of <opencv_traincascade>, see the official documentation 
at http://docs.opencv.org/doc/user_guide/ug_traincascade.html.

Vocalizations
For good luck, make an imitative sound when running 
<opencv_traincascade>. For example, say "Moo!" if 
the positive training images are cows.

Testing and improving <cascade>
<cascade> is an XML file that is compatible with the constructor for OpenCV's 
CascadeClassifier class. For an example of how to use CascadeClassifier, refer 
back to our implementation of FaceTracker in Chapter 4, Tracking Faces with Haar 
Cascades. By copying and modifying FaceTracker and Cameo, you should be able 
to create a simple test application that draws rectangles around tracked instances of 
your custom target.

Perhaps in your first attempts at cascade training, you will not get reliable tracking 
results. To improve your training results, do the following:

• Consider making your classification problem more specific. For example, a 
bald, shaven, male face without glasses cascade might be easier to 
train than a general face cascade. Later, as your results improve, you can try 
to expand your problem again.

• Gather more training images, many more!
• Ensure that <negative_description> contains all the negative training 

images and only the negative training images.
• Ensure that <positive_description> contains all the positive training 

images and only the positive training images.
• Ensure that the sub-rectangles specified in <positive_description>  

are accurate.
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• Review and experiment with the optional flags to <opencv_createsamples> 
and <opencv_traincascade>. The flags are described in the official 
documentation at http://docs.opencv.org/doc/user_guide/ug_
traincascade.html.

Good luck and good image-hunting!

Summary
We have discussed the data and executables that are used in generating cascade 
files that are compatible with OpenCV's CascadeClassifier. Now, you can start 
gathering images of your favorite things and training classifiers for them!
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Module 2

OpenCV with Python By Example

Build real-world computer vision applications and develop  
cool demos using OpenCV for Python
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Detecting Edges and 
Applying Image Filters

In this chapter, we are going to see how to apply cool visual effects to images.  
We will learn how to use fundamental image processing operators. We are going  
to discuss edge detection and how we can use image filters to apply various effects  
on photos.

By the end of this chapter, you will know:

• What is 2D convolution and how to use it
• How to blur an image
• How to detect edges in an image
• How to apply motion blur to an image
• How to sharpen and emboss an image
• How to erode and dilate an image
• How to create a vignette filter
• How to enhance image contrast

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register 
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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2D convolution
Convolution is a fundamental operation in image processing. We basically apply a 
mathematical operator to each pixel and change its value in some way. To apply this 
mathematical operator, we use another matrix called a kernel. The kernel is usually 
much smaller in size than the input image. For each pixel in the image, we take the 
kernel and place it on top such that the center of the kernel coincides with the pixel 
under consideration. We then multiply each value in the kernel matrix with the 
corresponding values in the image, and then sum it up. This is the new value that 
will be substituted in this position in the output image.

Here, the kernel is called the "image filter" and the process of applying this kernel 
to the given image is called "image filtering". The output obtained after applying 
the kernel to the image is called the filtered image. Depending on the values in the 
kernel, it performs different functions like blurring, detecting edges, and so on.  
The following figure should help you visualize the image filtering operation:
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Let's start with the simplest case which is identity kernel. This kernel doesn't really 
change the input image. If we consider a 3x3 identity kernel, it looks something like 
the following:

Blurring
Blurring refers to averaging the pixel values within a neighborhood. This is also 
called a low pass filter. A low pass filter is a filter that allows low frequencies and 
blocks higher frequencies. Now, the next question that comes to our mind is—What 
does "frequency" mean in an image? Well, in this context, frequency refers to the 
rate of change of pixel values. So we can say that the sharp edges would be high 
frequency content because the pixel values change rapidly in that region. Going  
by that logic, plain areas would be low frequency content. Going by this definition,  
a low pass filter would try to smoothen the edges.

A simple way to build a low pass filter is by uniformly averaging the values in the 
neighborhood of a pixel. We can choose the size of the kernel depending on how 
much we want to smoothen the image, and it will correspondingly have different 
effects. If you choose a bigger size, then you will be averaging over a larger area.  
This tends to increase the smoothening effect. Let's see what a 3x3 low pass filter 
kernel looks like:
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We are dividing the matrix by 9 because we want the values to sum up to 1. This is 
called normalization, and it's important because we don't want to artificially increase 
the intensity value at that pixel's location. So you should normalize the kernel before 
applying it to an image. Normalization is a really important concept, and it is used 
in a variety of scenarios, so you should read a couple of tutorials online to get a good 
grasp on it.

Here is the code to apply this low pass filter to an image:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
rows, cols = img.shape[:2]

kernel_identity = np.array([[0,0,0], [0,1,0], [0,0,0]])
kernel_3x3 = np.ones((3,3), np.float32) / 9.0
kernel_5x5 = np.ones((5,5), np.float32) / 25.0

cv2.imshow('Original', img)

output = cv2.filter2D(img, -1, kernel_identity)
cv2.imshow('Identity filter', output)

output = cv2.filter2D(img, -1, kernel_3x3)
cv2.imshow('3x3 filter', output)

output = cv2.filter2D(img, -1, kernel_5x5)
cv2.imshow('5x5 filter', output)

cv2.waitKey(0)
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If you run the preceding code, you will see something like this:

The size of the kernel versus the blurriness
In the preceding code, we are generating different kernels in the code which are 
kernel_identity, kernel_3x3, and kernel_5x5. We use the function, filter2D,  
to apply these kernels to the input image. If you look at the images carefully, you can 
see that they keep getting blurrier as we increase the kernel size. The reason for this 
is because when we increase the kernel size, we are averaging over a larger area.  
This tends to have a larger blurring effect.

An alternative way of doing this would be by using the OpenCV function, blur. 
If you don't want to generate the kernels yourself, you can just use this function 
directly. We can call it using the following line of code:

output = cv2.blur(img, (3,3))

This will apply the 3x3 kernel to the input and give you the output directly.
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Edge detection
The process of edge detection involves detecting sharp edges in the image and 
producing a binary image as the output. Typically, we draw white lines on a black 
background to indicate those edges. We can think of edge detection as a high pass 
filtering operation. A high pass filter allows high frequency content to pass through and 
blocks the low frequency content. As we discussed earlier, edges are high frequency 
content. In edge detection, we want to retain these edges and discard everything else. 
Hence, we should build a kernel that is the equivalent of a high pass filter.

Let's start with a simple edge detection filter known as the Sobel filter. Since edges 
can occur in both horizontal and vertical directions, the Sobel filter is composed of 
the following two kernels:

The kernel on the left detects horizontal edges and the kernel on the right detects 
vertical edges. OpenCV provides a function to directly apply the Sobel filter to a 
given image. Here is the code to use Sobel filters to detect edges:

import cv2
import numpy as np

img = cv2.imread('input_shapes.png', cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape

sobel_horizontal = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5)
sobel_vertical = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5)

cv2.imshow('Original', img)
cv2.imshow('Sobel horizontal', sobel_horizontal)
cv2.imshow('Sobel vertical', sobel_vertical)

cv2.waitKey(0)
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The output will look something like the following:

In the preceding figure, the image in the middle is the output of horizontal edge 
detector, and the image on the right is the vertical edge detector. As we can see here, 
the Sobel filter detects edges in either a horizontal or vertical direction and it doesn't 
give us a holistic view of all the edges. To overcome this, we can use the Laplacian 
filter. The advantage of using this filter is that it uses double derivative in both 
directions. You can call the function using the following line:

laplacian = cv2.Laplacian(img, cv2.CV_64F)

The output will look something like the following screenshot:
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Even though the Laplacian kernel worked great in this case, it doesn't always work 
well. It gives rise to a lot of noise in the output, as shown in the screenshot that follows. 
This is where the Canny edge detector comes in handy:
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As we can see in the above images, the Laplacian kernel gives rise to a noisy output 
and this is not exactly useful. To overcome this problem, we use the Canny edge 
detector. To use the Canny edge detector, we can use the following function:

canny = cv2.Canny(img, 50, 240)

As we can see, the quality of the Canny edge detector is much better. It takes two 
numbers as arguments to indicate the thresholds. The second argument is called the 
low threshold value, and the third argument is called the high threshold value. If 
the gradient value is above the high threshold value, it is marked as a strong edge. 
The Canny Edge Detector starts tracking the edge from this point and continues the 
process until the gradient value falls below the low threshold value. As you increase 
these thresholds, the weaker edges will be ignored. The output image will be cleaner 
and sparser. You can play around with the thresholds and see what happens as you 
increase or decrease their values. The overall formulation is quite deep. You can 
learn more about it at http://www.intelligence.tuc.gr/~petrakis/courses/
computervision/canny.pdf

Motion blur
When we apply the motion blurring effect, it will look like you captured the picture 
while moving in a particular direction. For example, you can make an image look 
like it was captured from a moving car.

The input and output images will look like the following ones:

http://www.intelligence.tuc.gr/~petrakis/courses/computervision/canny.pdf
http://www.intelligence.tuc.gr/~petrakis/courses/computervision/canny.pdf
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Following is the code to achieve this motion blurring effect:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
cv2.imshow('Original', img)

size = 15

# generating the kernel
kernel_motion_blur = np.zeros((size, size))
kernel_motion_blur[int((size-1)/2), :] = np.ones(size)
kernel_motion_blur = kernel_motion_blur / size

# applying the kernel to the input image
output = cv2.filter2D(img, -1, kernel_motion_blur)

cv2.imshow('Motion Blur', output)
cv2.waitKey(0)

Under the hood
We are reading the image as usual. We are then constructing a motion blur kernel. 
A motion blur kernel averages the pixel values in a particular direction. It's like a 
directional low pass filter. A 3x3 horizontal motion-blurring kernel would look this:

This will blur the image in a horizontal direction. You can pick any direction and it will 
work accordingly. The amount of blurring will depend on the size of the kernel. So, if 
you want to make the image blurrier, just pick a bigger size for the kernel. To see the 
full effect, we have taken a 15x15 kernel in the preceding code. We then use filter2D 
to apply this kernel to the input image, to obtain the motion-blurred output.
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Sharpening
Applying the sharpening filter will sharpen the edges in the image. This filter is 
very useful when we want to enhance the edges in an image that's not crisp. Here are 
some images to give you an idea of what the image sharpening process looks like:

As you can see in the preceding figure, the level of sharpening depends on the type of 
kernel we use. We have a lot of freedom to customize the kernel here, and each kernel 
will give you a different kind of sharpening. To just sharpen an image, like we are 
doing in the top right image in the preceding picture, we would use a kernel like this:
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If we want to do excessive sharpening, like in the bottom left image, we would use 
the following kernel:

But the problem with these two kernels is that the output image looks artificially 
enhanced. If we want our images to look more natural, we would use an Edge 
Enhancement filter. The underlying concept remains the same, but we use an 
approximate Gaussian kernel to build this filter. It will help us smoothen the image 
when we enhance the edges, thus making the image look more natural.

Here is the code to achieve the effects applied in the preceding screenshot:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
cv2.imshow('Original', img)

# generating the kernels
kernel_sharpen_1 = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
kernel_sharpen_2 = np.array([[1,1,1], [1,-7,1], [1,1,1]])
kernel_sharpen_3 = np.array([[-1,-1,-1,-1,-1],
                             [-1,2,2,2,-1],
                             [-1,2,8,2,-1],
                             [-1,2,2,2,-1],
                             [-1,-1,-1,-1,-1]]) / 8.0

# applying different kernels to the input image
output_1 = cv2.filter2D(img, -1, kernel_sharpen_1)
output_2 = cv2.filter2D(img, -1, kernel_sharpen_2)
output_3 = cv2.filter2D(img, -1, kernel_sharpen_3)

cv2.imshow('Sharpening', output_1)
cv2.imshow('Excessive Sharpening', output_2)
cv2.imshow('Edge Enhancement', output_3)
cv2.waitKey(0)
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If you noticed, in the preceding code, we didn't divide the first two kernels by a 
normalizing factor. The reason is because the values inside the kernel already sum 
up to 1, so we are implicitly dividing the matrices by 1.

Understanding the pattern
You must have noticed a common pattern in image filtering code examples.  
We build a kernel and then use filter2D to get the desired output. That's exactly 
what's happening in this code example as well! You can play around with the values 
inside the kernel and see if you can get different visual effects. Make sure that you 
normalize the kernel before applying it, or else the image will look too bright because 
you are artificially increasing the pixel values in the image.

Embossing
An embossing filter will take an image and convert it into an embossed image.  
We basically take each pixel and replace it with a shadow or a highlight. Let's say  
we are dealing with a relatively plain region in the image. Here, we need to replace  
it with plain gray color because there's not much information there. If there is a lot  
of contrast in a particular region, we will replace it with a white pixel (highlight),  
or a dark pixel (shadow), depending on the direction in which we are embossing.

This is what it will look like:
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Let's take a look at the code and see how to do this:

import cv2
import numpy as np

img_emboss_input = cv2.imread('input.jpg')

# generating the kernels
kernel_emboss_1 = np.array([[0,-1,-1],
                            [1,0,-1],
                            [1,1,0]])
kernel_emboss_2 = np.array([[-1,-1,0],
                            [-1,0,1],
                            [0,1,1]])
kernel_emboss_3 = np.array([[1,0,0],
                            [0,0,0],
                            [0,0,-1]])

# converting the image to grayscale
gray_img = cv2.cvtColor(img_emboss_input,cv2.COLOR_BGR2GRAY)

# applying the kernels to the grayscale image and adding the offset
output_1 = cv2.filter2D(gray_img, -1, kernel_emboss_1) + 128
output_2 = cv2.filter2D(gray_img, -1, kernel_emboss_2) + 128
output_3 = cv2.filter2D(gray_img, -1, kernel_emboss_3) + 128

cv2.imshow('Input', img_emboss_input)
cv2.imshow('Embossing - South West', output_1)
cv2.imshow('Embossing - South East', output_2)
cv2.imshow('Embossing - North West', output_3)
cv2.waitKey(0)

If you run the preceding code, you will see that the output images are embossed. 
As we can see from the kernels above, we are just replacing the current pixel value 
with the difference of the neighboring pixel values in a particular direction. The 
embossing effect is achieved by offsetting all the pixel values in the image by 128. 
This operation adds the highlight/shadow effect to the picture.
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Erosion and dilation
Erosion and dilation are morphological image processing operations. Morphological 
image processing basically deals with modifying geometric structures in the image. 
These operations are primarily defined for binary images, but we can also use them 
on grayscale images. Erosion basically strips out the outermost layer of pixels in a 
structure, where as dilation adds an extra layer of pixels on a structure.

Let's see what these operations look like:

Following is the code to achieve this:

import cv2
import numpy as np

img = cv2.imread('input.png', 0)

kernel = np.ones((5,5), np.uint8)

img_erosion = cv2.erode(img, kernel, iterations=1)
img_dilation = cv2.dilate(img, kernel, iterations=1)

cv2.imshow('Input', img)
cv2.imshow('Erosion', img_erosion)
cv2.imshow('Dilation', img_dilation)

cv2.waitKey(0)
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Afterthought
OpenCV provides functions to directly erode and dilate an image. They are called 
erode and dilate, respectively. The interesting thing to note is the third argument in 
these two functions. The number of iterations will determine how much you want 
to erode/dilate a given image. It basically applies the operation successively to the 
resultant image. You can take a sample image and play around with this parameter 
to see what the results look like.

Creating a vignette filter
Using all the information we have, let's see if we can create a nice vignette filter. 
The output will look something like the following:

Here is the code to achieve this effect:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
rows, cols = img.shape[:2]

# generating vignette mask using Gaussian kernels
kernel_x = cv2.getGaussianKernel(cols,200)
kernel_y = cv2.getGaussianKernel(rows,200)
kernel = kernel_y * kernel_x.T
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mask = 255 * kernel / np.linalg.norm(kernel)
output = np.copy(img)

# applying the mask to each channel in the input image
for i in range(3):
    output[:,:,i] = output[:,:,i] * mask

cv2.imshow('Original', img)
cv2.imshow('Vignette', output)
cv2.waitKey(0)

What's happening underneath?
The Vignette filter basically focuses the brightness on a particular part of the 
image and the other parts look faded. In order to achieve this, we need to filter out 
each channel in the image using a Gaussian kernel. OpenCV provides a function 
to do this, which is called getGaussianKernel. We need to build a 2D kernel 
whose size matches the size of the image. The second parameter of the function, 
getGaussianKernel, is interesting. It is the standard deviation of the Gaussian  
and it controls the radius of the bright central region. You can play around with  
this parameter and see how it affects the output.

Once we build the 2D kernel, we need to build a mask by normalizing this kernel 
and scaling it up, as shown in the following line:

 mask = 255 * kernel / np.linalg.norm(kernel)

This is an important step because if you don't scale it up, the image will look black. 
This happens because all the pixel values will be close to 0 after you superimpose  
the mask on the input image. After this, we iterate through all the color channels  
and apply the mask to each channel.
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How do we move the focus around?
We now know how to create a vignette filter that focuses on the center of the 
image. Let's say we want to achieve the same vignette effect, but we want to focus 
on a different region in the image, as shown in the following figure:

All we need to do is build a bigger Gaussian kernel and make sure that the peak 
coincides with the region of interest. Following is the code to achieve this:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
rows, cols = img.shape[:2]

# generating vignette mask using Gaussian kernels
kernel_x = cv2.getGaussianKernel(int(1.5*cols),200)
kernel_y = cv2.getGaussianKernel(int(1.5*rows),200)
kernel = kernel_y * kernel_x.T
mask = 255 * kernel / np.linalg.norm(kernel)
mask = mask[int(0.5*rows):, int(0.5*cols):]
output = np.copy(img)
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# applying the mask to each channel in the input image
for i in range(3):
    output[:,:,i] = output[:,:,i] * mask

cv2.imshow('Input', img)
cv2.imshow('Vignette with shifted focus', output)

cv2.waitKey(0)

Enhancing the contrast in an image
Whenever we capture images in low-light conditions, the images turn out to be 
dark. This typically happens when you capture images in the evening or in a dimly 
lit room. You must have seen this happen many times! The reason this happens is 
because the pixel values tend to concentrate near 0 when we capture the images 
under such conditions. When this happens, a lot of details in the image are not 
clearly visible to the human eye. The human eye likes contrast, and so we need to 
adjust the contrast to make the image look nice and pleasant. A lot of cameras and 
photo applications implicitly do this already. We use a process called Histogram 
Equalization to achieve this.

To give an example, this is what it looks like before and after contrast enhancement:
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As we can see here, the input image on the left is really dark. To rectify this, we need 
to adjust the pixel values so that they are spread across the entire spectrum of values, 
that is, between 0 and 255.

Following is the code for adjusting the pixel values:

import cv2
import numpy as np

img = cv2.imread('input.jpg', 0)

# equalize the histogram of the input image
histeq = cv2.equalizeHist(img)

cv2.imshow('Input', img)
cv2.imshow('Histogram equalized', histeq)
cv2.waitKey(0)

Histogram equalization is applicable to grayscale images. OpenCV provides a 
function, equalizeHist, to achieve this effect. As we can see here, the code is pretty 
straightforward, where we read the image and equalize its histogram to adjust the 
contrast of the image.

How do we handle color images?
Now that we know how to equalize the histogram of a grayscale image, you might 
be wondering how to handle color images. The thing about histogram equalization 
is that it's a nonlinear process. So, we cannot just separate out the three channels in 
an RGB image, equalize the histogram separately, and combine them later to form 
the output image. The concept of histogram equalization is only applicable to the 
intensity values in the image. So, we have to make sure not to modify the color 
information when we do this.

In order to handle the histogram equalization of color images, we need to convert it to 
a color space where intensity is separated from the color information. YUV is a good 
example of such a color space. Once we convert it to YUV, we just need to equalize  
the Y-channel and combine it with the other two channels to get the output image.
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Following is an example of what it looks like:

Here is the code to achieve histogram equalization for color images:

import cv2
import numpy as np

img = cv2.imread('input.jpg')

img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

# equalize the histogram of the Y channel
img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])

# convert the YUV image back to RGB format
img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)

cv2.imshow('Color input image', img)
cv2.imshow('Histogram equalized', img_output)

cv2.waitKey(0)
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Summary
In this chapter, we learned how to use image filters to apply cool visual effects to 
images. We discussed the fundamental image processing operators and how we 
can use them to build various things. We learnt how to detect edges using various 
methods. We understood the importance of 2D convolution and how we can use it  
in different scenarios. We discussed how to smoothen, motion-blur, sharpen, emboss, 
erode, and dilate an image. We learned how to create a vignette filter, and how we 
can change the region of focus as well. We discussed contrast enhancement and how 
we can use histogram equalization to achieve it. In the next chapter, we will discuss 
how to cartoonize a given image.
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Cartoonizing an Image
In this chapter, we are going to learn how to convert an image into a cartoon-like 
image. We will learn how to access the webcam and take keyboard/mouse inputs 
during a live video stream. We will also learn about some advanced image filters  
and see how we can use them to cartoonize an image.

By the end of this chapter, you will know:

• How to access the webcam
• How to take keyboard and mouse inputs during a live video stream
• How to create an interactive application
• How to use advanced image filters
• How to cartoonize an image

Accessing the webcam
We can build very interesting applications using the live video stream from the 
webcam. OpenCV provides a video capture object which handles everything related 
to opening and closing of the webcam. All we need to do is create that object and 
keep reading frames from it.

The following code will open the webcam, capture the frames, scale them down by a 
factor of 2, and then display them in a window. You can press the Esc key to exit.

import cv2

cap = cv2.VideoCapture(0)

# Check if the webcam is opened correctly
if not cap.isOpened():
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    raise IOError("Cannot open webcam")

while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=0.5, fy=0.5, interpolation=cv2.
INTER_AREA)
    cv2.imshow('Input', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()

Under the hood
As we can see in the preceding code, we use OpenCV's VideoCapture function to 
create the video capture object cap. Once it's created, we start an infinite loop and 
keep reading frames from the webcam until we encounter a keyboard interrupt.  
In the first line within the while loop, we have the following line:

ret, frame = cap.read()

Here, ret is a Boolean value returned by the read function, and it indicates whether 
or not the frame was captured successfully. If the frame is captured correctly, it's 
stored in the variable frame. This loop will keep running until we press the Esc key. 
So we keep checking for a keyboard interrupt in the following line:

if c == 27:

As we know, the ASCII value of Esc is 27. Once we encounter it, we break the loop 
and release the video capture object. The line cap.release() is important because  
it gracefully closes the webcam.

Keyboard inputs
Now that we know how to capture a live video stream from the webcam, let's see 
how to use the keyboard to interact with the window displaying the video stream.

import argparse

import cv2

def argument_parser():
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    parser = argparse.ArgumentParser(description="Change color space 
of the \
            input video stream using keyboard controls. The control 
keys are: \
            Grayscale - 'g', YUV - 'y', HSV - 'h'")
    return parser

if __name__=='__main__':
    args = argument_parser().parse_args()

    cap = cv2.VideoCapture(0)

    # Check if the webcam is opened correctly
    if not cap.isOpened():
        raise IOError("Cannot open webcam")

    cur_char = -1
    prev_char = -1

    while True:
        # Read the current frame from webcam
        ret, frame = cap.read()

        # Resize the captured image
        frame = cv2.resize(frame, None, fx=0.5, fy=0.5, 
interpolation=cv2.INTER_AREA)

        c = cv2.waitKey(1)

        if c == 27:
            break

        if c > -1 and c != prev_char:
            cur_char = c
        prev_char = c

        if cur_char == ord('g'):
            output = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        elif cur_char == ord('y'):
            output = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV)

        elif cur_char == ord('h'):
            output = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
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        else:
            output = frame

        cv2.imshow('Webcam', output)

    cap.release()
    cv2.destroyAllWindows()

Interacting with the application
This program will display the input video stream and wait for the keyboard input 
to change the color space. If you run the previous program, you will see the window 
displaying the input video stream from the webcam. If you press G, you will see that 
the color space of the input stream gets converted to grayscale. If you press Y, the 
input stream will be converted to YUV color space. Similarly, if you press H, you will 
see the image being converted to HSV color space.

As we know, we use the function waitKey() to listen to the keyboard events. As and 
when we encounter different keystrokes, we take appropriate actions. The reason we 
are using the function ord() is because waitKey() returns the ASCII value of the 
keyboard input; thus, we need to convert the characters into their ASCII form before 
checking their values.

Mouse inputs
In this section, we will see how to use the mouse to interact with the display 
window. Let's start with something simple. We will write a program that will detect 
the quadrant in which the mouse click was detected. Once we detect it, we will 
highlight that quadrant.

import cv2
import numpy as np

def detect_quadrant(event, x, y, flags, param):
    if event == cv2.EVENT_LBUTTONDOWN:
        if x > width/2:
            if y > height/2:
                point_top_left = (int(width/2), int(height/2))
                point_bottom_right = (width-1, height-1)
            else:
                point_top_left = (int(width/2), 0)
                point_bottom_right = (width-1, int(height/2))



Chapter 2

[ 127 ]

        else:
            if y > height/2:
                point_top_left = (0, int(height/2))
                point_bottom_right = (int(width/2), height-1)
            else:
                point_top_left = (0, 0)
                point_bottom_right = (int(width/2), int(height/2))

        cv2.rectangle(img, (0,0), (width-1,height-1), (255,255,255), 
-1)
        cv2.rectangle(img, point_top_left, point_bottom_right, 
(0,100,0), -1)

if __name__=='__main__':
    width, height = 640, 480
    img = 255 * np.ones((height, width, 3), dtype=np.uint8)
    cv2.namedWindow('Input window')
    cv2.setMouseCallback('Input window', detect_quadrant)

    while True:
        cv2.imshow('Input window', img)
        c = cv2.waitKey(10)
        if c == 27:
            break

    cv2.destroyAllWindows()

The output will look something like the following image:



Cartoonizing an Image

[ 128 ]

What's happening underneath?
Let's start with the main function in this program. We create a white image on which 
we are going to click using the mouse. We then create a named window and bind 
the mouse callback function to this window. Mouse callback function is basically the 
function that will be called when a mouse event is detected. There are many kinds of 
mouse events such as clicking, double-clicking, dragging, and so on. In our case, we 
just want to detect a mouse click. In the function detect_quadrant, we check the first 
input argument event to see what action was performed. OpenCV provides a set of 
predefined events, and we can call them using specific keywords. If you want to see  
a list of all the mouse events, you can go to the Python shell and type the following:

>>> import cv2
>>> print [x for x in dir(cv2) if x.startswith('EVENT')]

The second and third arguments in the function detect_quadrant provide the X 
and Y coordinates of the mouse click event. Once we know these coordinates, it's 
pretty straightforward to determine what quadrant it's in. With this information, we 
just go ahead and draw a rectangle with the specified color, using cv2.rectangle(). 
This is a very handy function that takes the top left point and the bottom right point 
to draw a rectangle on an image with the specified color.

Interacting with a live video stream
Let's see how we can use the mouse to interact with live video stream from the 
webcam. We can use the mouse to select a region and then apply the "negative film" 
effect on that region, as shown next:
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In the following program, we will capture the video stream from the webcam, select 
a region of interest with the mouse, and then apply the effect:

import cv2
import numpy as np

def draw_rectangle(event, x, y, flags, params):
    global x_init, y_init, drawing, top_left_pt, bottom_right_pt

    if event == cv2.EVENT_LBUTTONDOWN:
        drawing = True
        x_init, y_init = x, y

    elif event == cv2.EVENT_MOUSEMOVE:
        if drawing:
            top_left_pt = (min(x_init, x), min(y_init, y))
            bottom_right_pt = (max(x_init, x), max(y_init, y))
            img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]

    elif event == cv2.EVENT_LBUTTONUP:
        drawing = False
        top_left_pt = (min(x_init, x), min(y_init, y))
        bottom_right_pt = (max(x_init, x), max(y_init, y))
        img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]

if __name__=='__main__':
    drawing = False
    top_left_pt, bottom_right_pt = (-1,-1), (-1,-1)

    cap = cv2.VideoCapture(0)

    # Check if the webcam is opened correctly
    if not cap.isOpened():
        raise IOError("Cannot open webcam")

    cv2.namedWindow('Webcam')
    cv2.setMouseCallback('Webcam', draw_rectangle)

    while True:
        ret, frame = cap.read()
        img = cv2.resize(frame, None, fx=0.5, fy=0.5, 
interpolation=cv2.INTER_AREA)
        (x0,y0), (x1,y1) = top_left_pt, bottom_right_pt
        img[y0:y1, x0:x1] = 255 - img[y0:y1, x0:x1]
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        cv2.imshow('Webcam', img)

        c = cv2.waitKey(1)
        if c == 27:
            break

    cap.release()
    cv2.destroyAllWindows()

If you run the preceding program, you will see a window displaying the video 
stream. You can just draw a rectangle on the window using your mouse and you will 
see that region being converted to its "negative".

How did we do it?
As we can see in the main function of the program, we initialize a video capture 
object. We then bind the function draw_rectangle with the mouse callback in the 
following line:

cv2.setMouseCallback('Webcam', draw_rectangle)

We then start an infinite loop and start capturing the video stream. Let's see what is 
happening in the function draw_rectangle. Whenever we draw a rectangle using 
the mouse, we basically have to detect three types of mouse events: mouse click, 
mouse movement, and mouse button release. This is exactly what we do in this 
function. Whenever we detect a mouse click event, we initialize the top left point of 
the rectangle. As we move the mouse, we select the region of interest by keeping the 
current position as the bottom right point of the rectangle.

Once we have the region of interest, we just invert the pixels to apply the "negative 
film" effect. We subtract the current pixel value from 255 and this gives us the 
desired effect. When the mouse movement stops and button-up event is detected, we 
stop updating the bottom right position of the rectangle. We just keep displaying this 
image until another mouse click event is detected.

Cartoonizing an image
Now that we know how to handle the webcam and keyboard/mouse inputs, let's 
go ahead and see how to convert a picture into a cartoon-like image. We can either 
convert an image into a sketch or a colored cartoon image.
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Following is an example of what a sketch will look like:

If you apply the cartoonizing effect to the color image, it will look something like this 
next image:
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Let's see how to achieve this:

import cv2
import numpy as np

def cartoonize_image(img, ds_factor=4, sketch_mode=False):
    # Convert image to grayscale
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Apply median filter to the grayscale image
    img_gray = cv2.medianBlur(img_gray, 7)

    # Detect edges in the image and threshold it
    edges = cv2.Laplacian(img_gray, cv2.CV_8U, ksize=5)
    ret, mask = cv2.threshold(edges, 100, 255, cv2.THRESH_BINARY_INV)

    # 'mask' is the sketch of the image
    if sketch_mode:
        return cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

    # Resize the image to a smaller size for faster computation
    img_small = cv2.resize(img, None, fx=1.0/ds_factor, fy=1.0/ds_
factor, interpolation=cv2.INTER_AREA)
    num_repetitions = 10
    sigma_color = 5
    sigma_space = 7
    size = 5

    # Apply bilateral filter the image multiple times
    for i in range(num_repetitions):
        img_small = cv2.bilateralFilter(img_small, size, sigma_color, 
sigma_space)

    img_output = cv2.resize(img_small, None, fx=ds_factor, fy=ds_
factor, interpolation=cv2.INTER_LINEAR)

    dst = np.zeros(img_gray.shape)

    # Add the thick boundary lines to the image using 'AND' operator
    dst = cv2.bitwise_and(img_output, img_output, mask=mask)
    return dst
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if __name__=='__main__':
    cap = cv2.VideoCapture(0)

    cur_char = -1
    prev_char = -1

    while True:
        ret, frame = cap.read()
        frame = cv2.resize(frame, None, fx=0.5, fy=0.5, 
interpolation=cv2.INTER_AREA)

        c = cv2.waitKey(1)
        if c == 27:
            break

        if c > -1 and c != prev_char:
            cur_char = c
        prev_char = c

        if cur_char == ord('s'):
            cv2.imshow('Cartoonize', cartoonize_image(frame, sketch_
mode=True))
        elif cur_char == ord('c'):
            cv2.imshow('Cartoonize', cartoonize_image(frame, sketch_
mode=False))
        else:
            cv2.imshow('Cartoonize', frame)

    cap.release()
    cv2.destroyAllWindows()

Deconstructing the code
When you run the preceding program, you will see a window with a video stream 
from the webcam. If you press S, the video stream will change to sketch mode and you 
will see its pencil-like outline. If you press C, you will see the color-cartoonized version 
of the input stream. If you press any other key, it will return to the normal mode.
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Let's look at the function cartoonize_image and see how we did it. We first convert 
the image to a grayscale image and run it through a median filter. Median filters are 
very good at removing salt and pepper noise. This is the kind of noise where you 
see isolated black or white pixels in the image. It is common in webcams and mobile 
cameras, so we need to filter it out before we proceed further. To give an example, 
look at the following images:

As we see in the input image, there are a lot of isolated green pixels. They are 
lowering the quality of the image and we need to get rid of them. This is where the 
median filter comes in handy. We just look at the NxN neighborhood around each 
pixel and pick the median value of those numbers. Since the isolated pixels in this 
case have high values, taking the median value will get rid of these values and also 
smoothen the image. As you can see in the output image, the median filter got rid of 
all those isolated pixels and the image looks clean. Following is the code to do it:

import cv2
import numpy as np

img = cv2.imread('input.png')
output = cv2.medianBlur(img, 7)
cv2.imshow('Input', img)
cv2.imshow('Median filter', output)
cv2.waitKey()
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The code is pretty straightforward. We just use the function medianBlur to apply the 
median filter to the input image. The second argument in this function specifies the 
size of the kernel we are using. The size of the kernel is related to the neighborhood 
size that we need to consider. You can play around with this parameter and see how 
it affects the output.

Coming back to cartoonize_image, we proceed to detect the edges on the grayscale 
image. We need to know where the edges are so that we can create the pencil-line 
effect. Once we detect the edges, we threshold them so that things become black and 
white, both literally and metaphorically!

In the next step, we check if the sketch mode is enabled. If it is, then we just convert 
it into a color image and return it. What if we want the lines to be thicker? Let's say 
we want to see something like the following image:

As you can see, the lines are thicker than before. To achieve this, replace the if code 
block with the following piece of code:

if sketch_mode:
    img_sketch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
    kernel = np.ones((3,3), np.uint8)
    img_eroded = cv2.erode(img_sketch, kernel, iterations=1)
    return cv2.medianBlur(img_eroded, 5)
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We are using the erode function with a 3x3 kernel here. The reason we have this in 
place is because it gives us a chance to play with the thickness of the line drawing. 
Now you might ask that if we want to increase the thickness of something, shouldn't 
we be using dilation? Well, the reasoning is right, but there is a small twist here. Note 
that the foreground is black and the background is white. Erosion and dilation treat 
white pixels as foreground and black pixels as background. So if we want to increase 
the thickness of the black foreground, we need to use erosion. After we apply erosion, 
we just use the median filter to clear out the noise and get the final output.

In the next step, we use bilateral filtering to smoothen the image. Bilateral filtering 
is an interesting concept and its performance is much better than a Gaussian filter. 
The good thing about bilateral filtering is that it preserves the edges, whereas the 
Gaussian filter smoothens everything out equally. To compare and contrast, let's  
look at the following input image:
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Let's apply the Gaussian filter to the previous image:

Now, let's apply the bilateral filter to the input image:

As you can see, the quality is better if we use the bilateral filter. The image looks 
smooth and the edges look nice and sharp! The code to achieve this is given next:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
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img_gaussian = cv2.GaussianBlur(img, (13,13), 0)
img_bilateral = cv2.bilateralFilter(img, 13, 70, 50)

cv2.imshow('Input', img)
cv2.imshow('Gaussian filter', img_gaussian)
cv2.imshow('Bilateral filter', img_bilateral)
cv2.waitKey()

If you closely observe the two outputs, you can see that the edges in the Gaussian 
filtered image look blurred. Usually, we just want to smoothen the rough areas in 
the image and keep the edges intact. This is where the bilateral filter comes in handy. 
The Gaussian filter just looks at the immediate neighborhood and averages the pixel 
values using a Gaussian kernel. The bilateral filter takes this concept to the next level 
by averaging only those pixels that are similar to each other in intensity. It also takes 
a color neighborhood metric to see if it can replace the current pixel that is similar in 
intensity as well. If you look the function call:

img_small = cv2.bilateralFilter(img_small, size, sigma_color,  
sigma_space)

The last two arguments here specify the color and space neighborhood. This is the 
reason the edges look crisp in the output of the bilateral filter. We run this filter 
multiple times on the image to smoothen it out, to make it look like a cartoon.  
We then superimpose the pencil-like mask on top of this color image to create a 
cartoon-like effect.

Summary
In this chapter, we learnt how to access the webcam. We discussed how to take the 
keyboard and mouse inputs during live video stream. We used this knowledge to 
create an interactive application. We discussed the median and bilateral filters, and 
talked about the advantages of the bilateral filter over the Gaussian filter. We used 
all these principles to convert the input image into a sketch-like image, and then 
cartoonized it.

In the next chapter, we will learn how to detect different body parts in static images 
as well as in live videos.
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Detecting and Tracking 
Different Body Parts

In this chapter, we are going to learn how to detect and track different body parts in 
a live video stream. We will start by discussing the face detection pipeline and how 
it's built from the ground up. We will learn how to use this framework to detect and 
track other body parts, such as eyes, ears, mouth, and nose.

By the end of this chapter, you will know:

• How to use Haar cascades
• What are integral images
• What is adaptive boosting
• How to detect and track faces in a live video stream
• How to detect and track eyes in a live video stream
• How to automatically overlay sunglasses on top of a person's face
• How to detect ears, nose, and mouth
• How to detect pupils using shape analysis

Using Haar cascades to detect things
When we say Haar cascades, we are actually talking about cascade classifiers based 
on Haar features. To understand what this means, we need to take a step back and 
understand why we need this in the first place. Back in 2001, Paul Viola and Michael 
Jones came up with a very effective object detection method in their seminal paper.  
It has become one of the major landmarks in the field of machine learning.
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In their paper, they have described a machine learning technique where a boosted 
cascade of simple classifiers is used to get an overall classifier that performs really 
well. This way, we can circumvent the process of building a single complex classifier 
that performs with high accuracy. The reason this is so amazing is because building a 
robust single-step classifier is a computationally intensive process. Besides, we need 
a lot of training data to build such a classifier. The model ends up becoming complex 
and the performance might not be up to the mark.

Let's say we want to detect an object like, say, a pineapple. To solve this, we need 
to build a machine learning system that will learn what a pineapple looks like. 
It should be able to tell us if an unknown image contains a pineapple or not. To 
achieve something like this, we need to train our system. In the realm of machine 
learning, we have a lot of methods available to train a system. It's a lot like training 
a dog, except that it won't fetch the ball for you! To train our system, we take a lot 
of pineapple and non-pineapple images, and then feed them into the system. Here, 
pineapple images are called positive images and the non-pineapple images are called 
negative images.

As far as the training is concerned, there are a lot of routes available. But all the 
traditional techniques are computationally intensive and result in complex models. 
We cannot use these models to build a real time system. Hence, we need to keep the 
classifier simple. But if we keep the classifier simple, it will not be accurate. The trade 
off between speed and accuracy is common in machine learning. We overcome this 
problem by building a set of simple classifiers and then cascading them together to 
form a unified classifier that's robust. To make sure that the overall classifier works 
well, we need to get creative in the cascading step. This is one of the main reasons 
why the Viola-Jones method is so effective.

Coming to the topic of face detection, let's see how to train a system to detect faces. 
If we want to build a machine learning system, we first need to extract features from 
all the images. In our case, the machine learning algorithms will use these features to 
learn what a face looks like. We use Haar features to build our feature vectors. Haar 
features are simple summations and differences of patches across the image. We do 
this at multiple image sizes to make sure our system is scale invariant.

If you are curious, you can learn more about the formulation 
at http://www.cs.ubc.ca/~lowe/425/slides/13-
ViolaJones.pdf

Once we extract these features, we pass it through a cascade of classifiers. We just 
check all the different rectangular sub-regions and keep discarding the ones that 
don't have faces in them. This way, we arrive at the final answer quickly to see if a 
given rectangle contains a face or not.

http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf
http://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf
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What are integral images?
If we want to compute Haar features, we will have to compute the summations of 
many different rectangular regions within the image. If we want to effectively build 
the feature set, we need to compute these summations at multiple scales. This is a 
very expensive process! If we want to build a real time system, we cannot spend so 
many cycles in computing these sums. So we use something called integral images.

To compute the sum of any rectangle in the image, we don't need to go through 
all the elements in that rectangular area. Let's say AP indicates the sum of all the 
elements in the rectangle formed by the top left point and the point P in the image as 
the two diagonally opposite corners. So now, if we want to compute the area of the 
rectangle ABCD, we can use the following formula:

Area of the rectangle ABCD = AC – (AB + AD - AA)

Why do we care about this particular formula? As we discussed earlier, extracting 
Haar features includes computing the areas of a large number of rectangles in the 
image at multiple scales. A lot of those computations are repetitive and the overall 
process is very slow. In fact, it is so slow that we cannot afford to run anything in real 
time. That's the reason we use this formulation! The good thing about this approach 
is that we don't have to recalculate anything. All the values for the areas on the right 
hand side of this equation are already available. So we just use them to compute the 
area of any given rectangle and extract the features.
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Detecting and tracking faces
OpenCV provides a nice face detection framework. We just need to load the cascade 
file and use it to detect the faces in an image. Let's see how to do it:

import cv2
import numpy as np

face_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_frontalface_alt.
xml')

cap = cv2.VideoCapture(0)
scaling_factor = 0.5

while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=scaling_factor,  
fy=scaling_factor, interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x,y,w,h) in face_rects:
        cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)

    cv2.imshow('Face Detector', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()
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If you run the above code, it will look something like the following image:

Understanding it better
We need a classifier model that can be used to detect the faces in an image. 
OpenCV provides an xml file that can be used for this purpose. We use the function 
CascadeClassifier to load the xml file. Once we start capturing the input frames 
from the webcam, we convert it to grayscale and use the function detectMultiScale 
to get the bounding boxes for all the faces in the current image. The second argument 
in this function specifies the jump in the scaling factor. As in, if we don't find an 
image in the current scale, the next size to check will be, in our case, 1.3 times bigger 
than the current size. The last parameter is a threshold that specifies the number of 
adjacent rectangles needed to keep the current rectangle. It can be used to increase 
the robustness of the face detector.
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Fun with faces
Now that we know how to detect and track faces, let's have some fun with it. When 
we capture a video stream from the webcam, we can overlay funny masks on top of 
our faces. It will look something like this next image:

If you are a fan of Hannibal, you can try this next one:
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Let's look at the code to see how to overlay the skull mask on top of the face in the 
input video stream:

import cv2
import numpy as np

face_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_frontalface_alt.
xml')

face_mask = cv2.imread('mask_hannibal.png')
h_mask, w_mask = face_mask.shape[:2]

if face_cascade.empty():
    raise IOError('Unable to load the face cascade classifier  
xml file')

cap = cv2.VideoCapture(0)
scaling_factor = 0.5

while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=scaling_factor,  
fy=scaling_factor, interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
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    face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x,y,w,h) in face_rects:
        if h > 0 and w > 0:
            # Adjust the height and weight parameters depending  
on the sizes and the locations. You need to play around with  
these to make sure you get it right.
            h, w = int(1.4*h), int(1.0*w)
            y -= 0.1*h

            # Extract the region of interest from the image
            frame_roi = frame[y:y+h, x:x+w]
            face_mask_small = cv2.resize(face_mask, (w, h),  
interpolation=cv2.INTER_AREA)

            # Convert color image to grayscale and threshold it
            gray_mask = cv2.cvtColor(face_mask_small, cv2.COLOR_
BGR2GRAY)
            ret, mask = cv2.threshold(gray_mask, 180, 255,  
cv2.THRESH_BINARY_INV)

            # Create an inverse mask
            mask_inv = cv2.bitwise_not(mask)

            # Use the mask to extract the face mask region of  
interest
            masked_face = cv2.bitwise_and(face_mask_small, face_mask_
small, mask=mask)

            # Use the inverse mask to get the remaining part of  
the image
            masked_frame = cv2.bitwise_and(frame_roi,  
frame_roi, mask=mask_inv)

            # add the two images to get the final output
            frame[y:y+h, x:x+w] = cv2.add(masked_face,  
masked_frame)

    cv2.imshow('Face Detector', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()
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Under the hood
Just like before, we first load the face cascade classifier xml file. The face detection 
steps work as usual. We start the infinite loop and keep detecting the face in every 
frame. Once we know where the face is, we need to modify the coordinates a 
bit to make sure the mask fits properly. This manipulation process is subjective 
and depends on the mask in question. Different masks require different levels of 
adjustments to make it look more natural. We extract the region-of-interest from the 
input frame in the following line:

frame_roi = frame[y:y+h, x:x+w]

Now that we have the required region-of-interest, we need to overlay the mask on 
top of this. So we resize the input mask to make sure it fits in this region-of-interest. 
The input mask has a white background. So if we just overlay this on top of the 
region-of-interest, it will look unnatural because of the white background. We need 
to overlay only the skull-mask pixels and the remaining area should be transparent.

So in the next step, we create a mask by thresholding the skull image. Since the 
background is white, we threshold the image so that any pixel with an intensity 
value greater than 180 becomes 0, and everything else becomes 255. As far as the 
frame region-of-interest is concerned, we need to black out everything in this mask 
region. We can do that by simply using the inverse of the mask we just created. Once 
we have the masked versions of the skull image and the input region-of-interest, we 
just add them up to get the final image.

Detecting eyes
Now that we understand how to detect faces, we can generalize the concept to detect 
other body parts too. It's important to understand that Viola-Jones framework can be 
applied to any object. The accuracy and robustness will depend on the uniqueness of 
the object. For example, a human face has very unique characteristics, so it's easy to 
train our system to be robust. On the other hand, an object like towel is too generic, 
and there are no distinguishing characteristics as such; so it's more difficult to build a 
robust towel detector.

Let's see how to build an eye detector:

import cv2
import numpy as np

face_cascade = cv2.CascadeClassifier('./cascade_files/haarcascade_
frontalface_alt.xml')
eye_cascade = cv2.CascadeClassifier('./cascade_files/haarcascade_eye.
xml')
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if face_cascade.empty():
  raise IOError('Unable to load the face cascade classifier xml file')

if eye_cascade.empty():
  raise IOError('Unable to load the eye cascade classifier xml file')

cap = cv2.VideoCapture(0)
ds_factor = 0.5

while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor, 
interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x,y,w,h) in faces:
        roi_gray = gray[y:y+h, x:x+w]
        roi_color = frame[y:y+h, x:x+w]
        eyes = eye_cascade.detectMultiScale(roi_gray)
        for (x_eye,y_eye,w_eye,h_eye) in eyes:
            center = (int(x_eye + 0.5*w_eye), int(y_eye + 0.5*h_eye))
            radius = int(0.3 * (w_eye + h_eye))
            color = (0, 255, 0)
            thickness = 3
            cv2.circle(roi_color, center, radius, color, thickness)

    cv2.imshow('Eye Detector', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()
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If you run this program, the output will look something like the following image:

Afterthought
If you notice, the program looks very similar to the face detection program. Along 
with loading the face detection cascade classifier, we load the eye detection cascade 
classifier as well. Technically, we don't need to use the face detector. But we know 
that eyes are always on somebody's face. We use this information and search for eyes 
only in the relevant region of interest, that is the face. We first detect the face, and 
then run the eye detector on this sub-image. This way, it's faster and more efficient.
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Fun with eyes
Now that we know how to detect eyes in an image, let's see if we can do something 
fun with it. We can do something like what is shown in the following screenshot:

Let's look at the code to see how to do something like this:

import cv2
import numpy as np

face_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_frontalface_alt.
xml')
eye_cascade = cv2.CascadeClassifier('./cascade_files/haarcascade_eye.
xml')

if face_cascade.empty():
  raise IOError('Unable to load the face cascade classifier  
xml file')

if eye_cascade.empty():
  raise IOError('Unable to load the eye cascade classifier xml  
file')

img = cv2.imread('input.jpg')
sunglasses_img = cv2.imread('sunglasses.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

centers = []
faces = face_cascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in faces:
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    roi_gray = gray[y:y+h, x:x+w]
    roi_color = img[y:y+h, x:x+w]
    eyes = eye_cascade.detectMultiScale(roi_gray)
    for (x_eye,y_eye,w_eye,h_eye) in eyes:
        centers.append((x + int(x_eye + 0.5*w_eye), y +  
int(y_eye + 0.5*h_eye)))

if len(centers) > 0:
    # Overlay sunglasses; the factor 2.12 is customizable  
depending on the size of the face
    sunglasses_width = 2.12 * abs(centers[1][0] -  
centers[0][0])
    overlay_img = np.ones(img.shape, np.uint8) * 255
    h, w = sunglasses_img.shape[:2]
    scaling_factor = sunglasses_width / w
    overlay_sunglasses = cv2.resize(sunglasses_img, None,  
fx=scaling_factor,
            fy=scaling_factor, interpolation=cv2.INTER_AREA)

    x = centers[0][0] if centers[0][0] < centers[1][0] else  
centers[1][0]

    # customizable X and Y locations; depends on the size of  
the face
    x -= 0.26*overlay_sunglasses.shape[1]
    y += 0.85*overlay_sunglasses.shape[0]

    h, w = overlay_sunglasses.shape[:2]
    overlay_img[y:y+h, x:x+w] = overlay_sunglasses

    # Create mask
    gray_sunglasses = cv2.cvtColor(overlay_img,  
cv2.COLOR_BGR2GRAY)
    ret, mask = cv2.threshold(gray_sunglasses, 110, 255,  
cv2.THRESH_BINARY)
    mask_inv = cv2.bitwise_not(mask)
    temp = cv2.bitwise_and(img, img, mask=mask)
    temp2 = cv2.bitwise_and(overlay_img, overlay_img,  
mask=mask_inv)
    final_img = cv2.add(temp, temp2)

    cv2.imshow('Eye Detector', img)
    cv2.imshow('Sunglasses', final_img)
    cv2.waitKey()
    cv2.destroyAllWindows()
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Positioning the sunglasses
Just like we did earlier, we load the image and detect the eyes. Once we detect the eyes, 
we resize the sunglasses image to fit the current region of interest. To create the region 
of interest, we consider the distance between the eyes. We resize the image accordingly 
and then go ahead to create a mask. This is similar to what we did with the skull mask 
earlier. The positioning of the sunglasses on the face is subjective. So you will have to 
tinker with the weights if you want to use a different pair of sunglasses.

Detecting ears
Since we know how the pipeline works, let's just jump into the code:

import cv2
import numpy as np

left_ear_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_leftear.xml')
right_ear_cascade = cv2.CascadeClassifier('./cascade_files/
haarcascade_mcs_rightear.xml')

if left_ear_cascade.empty():
  raise IOError('Unable to load the left ear cascade  
classifier xml file')

if right_ear_cascade.empty():
  raise IOError('Unable to load the right ear cascade classifier xml 
file')

img = cv2.imread('input.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

left_ear = left_ear_cascade.detectMultiScale(gray, 1.3, 5)
right_ear = right_ear_cascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in left_ear:
    cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 3)

for (x,y,w,h) in right_ear:
    cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 3)

cv2.imshow('Ear Detector', img)
cv2.waitKey()
cv2.destroyAllWindows()
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If you run the above code on an image, you should see something like the following 
screenshot:

Detecting a mouth
Following is the code:

import cv2
import numpy as np

mouth_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_mouth.xml')

if mouth_cascade.empty():
  raise IOError('Unable to load the mouth cascade classifier  
xml file')

cap = cv2.VideoCapture(0)
ds_factor = 0.5
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while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,  
interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    mouth_rects = mouth_cascade.detectMultiScale(gray, 1.7, 11)
    for (x,y,w,h) in mouth_rects:
        y = int(y - 0.15*h)
        cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
        break

    cv2.imshow('Mouth Detector', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()

Following is what the output looks like:
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It's time for a moustache
Let's overlay a moustache on top:

import cv2
import numpy as np

mouth_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_mouth.xml')

moustache_mask = cv2.imread('../images/moustache.png')
h_mask, w_mask = moustache_mask.shape[:2]

if mouth_cascade.empty():
  raise IOError('Unable to load the mouth cascade classifier  
xml file')

cap = cv2.VideoCapture(0)
scaling_factor = 0.5

while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=scaling_factor,  
fy=scaling_factor, interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    mouth_rects = mouth_cascade.detectMultiScale(gray, 1.3, 5)
    if len(mouth_rects) > 0:
        (x,y,w,h) = mouth_rects[0]
        h, w = int(0.6*h), int(1.2*w)
        x -= 0.05*w
        y -= 0.55*h
        frame_roi = frame[y:y+h, x:x+w]
        moustache_mask_small = cv2.resize(moustache_mask, (w,  
h), interpolation=cv2.INTER_AREA)

        gray_mask = cv2.cvtColor(moustache_mask_small,  
cv2.COLOR_BGR2GRAY)
        ret, mask = cv2.threshold(gray_mask, 50, 255,  
cv2.THRESH_BINARY_INV)
        mask_inv = cv2.bitwise_not(mask)
        masked_mouth = cv2.bitwise_and(moustache_mask_small,  
moustache_mask_small, mask=mask)
        masked_frame = cv2.bitwise_and(frame_roi, frame_roi,  
mask=mask_inv)
        frame[y:y+h, x:x+w] = cv2.add(masked_mouth,  
masked_frame)
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    cv2.imshow('Moustache', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()

Here's what it looks like:

Detecting a nose
The following program shows how you detect a nose:

import cv2
import numpy as np

nose_cascade =  
cv2.CascadeClassifier('./cascade_files/haarcascade_mcs_nose.xml')

if nose_cascade.empty():
  raise IOError('Unable to load the nose cascade classifier  
xml file')
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cap = cv2.VideoCapture(0)
ds_factor = 0.5

while True:
    ret, frame = cap.read()
    frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,  
interpolation=cv2.INTER_AREA)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    nose_rects = nose_cascade.detectMultiScale(gray, 1.3, 5)
    for (x,y,w,h) in nose_rects:
        cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
        break

    cv2.imshow('Nose Detector', frame)

    c = cv2.waitKey(1)
    if c == 27:
        break

cap.release()
cv2.destroyAllWindows()

The output looks something like the following image:
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Detecting pupils
We are going to take a different approach here. Pupils are too generic to take the 
Haar cascade approach. We will also get a sense of how to detect things based on 
their shape. Following is what the output will look like:

Let's see how to build the pupil detector:

import math

import cv2
import numpy as np

img = cv2.imread('input.jpg')
scaling_factor = 0.7

img = cv2.resize(img, None, fx=scaling_factor,  
fy=scaling_factor, interpolation=cv2.INTER_AREA)
cv2.imshow('Input', img)
gray = cv2.cvtColor(~img, cv2.COLOR_BGR2GRAY)
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ret, thresh_gray = cv2.threshold(gray, 220, 255,  
cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh_gray,  
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

for contour in contours:
    area = cv2.contourArea(contour)
    rect = cv2.boundingRect(contour)
    x, y, width, height = rect
    radius = 0.25 * (width + height)

    area_condition = (100 <= area <= 200)
    symmetry_condition = (abs(1 - float(width)/float(height))  
<= 0.2)
    fill_condition = (abs(1 - (area / (math.pi * math.pow(radius, 
2.0)))) <= 0.3)

    if area_condition and symmetry_condition and fill_condition:
        cv2.circle(img, (int(x + radius), int(y + radius)), 
int(1.3*radius), (0,180,0), -1)

cv2.imshow('Pupil Detector', img)

c = cv2.waitKey()
cv2.destroyAllWindows()

If you run this program, you will see the output as shown earlier.

Deconstructing the code
As we discussed earlier, we are not going to use Haar cascade to detect pupils. If we 
can't use a pre-trained classifier, then how are we going to detect the pupils? Well, 
we can use shape analysis to detect the pupils. We know that pupils are circular, so 
we can use this information to detect them in the image. We invert the input image 
and then convert it into grayscale image as shown in the following line:

gray = cv2.cvtColor(~img, cv2.COLOR_BGR2GRAY)

As we can see here, we can invert an image using the tilde operator. Inverting 
the image is helpful in our case because the pupil is black in color, and black 
corresponds to a low pixel value. We then threshold the image to make sure that 
there are only black and white pixels. Now, we have to find out the boundaries of all 
the shapes. OpenCV provides a nice function to achieve this, that is findContours. 
We will discuss more about this in the upcoming chapters. But for now, all we need 
to know is that this function returns the set of boundaries of all the shapes that are 
found in the image.
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The next step is to identify the shape of the pupil and discard the rest. We will use 
certain properties of the circle to zero-in on this shape. Let's consider the ratio of width 
to height of the bounding rectangle. If the shape is a circle, this ratio will be 1. We can 
use the function boundingRect to obtain the coordinates of the bounding rectangle. 
Let's consider the area of this shape. If we roughly compute the radius of this shape 
and use the formula for the area of the circle, then it should be close to the area of this 
contour. We can use the function contourArea to compute the area of any contour in 
the image. So we can use these conditions and filter out the shapes. After we do that, 
we are left with two pupils in the image. We can refine it further by limiting the search 
region to the face or the eyes. Since you know how to detect faces and eyes, you can 
give it a try and see if you can get it working for a live video stream.

Summary
In this chapter, we discussed Haar cascades and integral images. We understood 
how the face detection pipeline is built. We learnt how to detect and track faces in 
a live video stream. We discussed how to use the face detection pipeline to detect 
various body parts like eyes, ears, nose, and mouth. We learnt how to overlay masks 
on top on the input image using the results of body parts detection. We used the 
principles of shape analysis to detect the pupils.

In the next chapter, we are going to discuss feature detection and how it can be used 
to understand the image content.
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Extracting Features from  
an Image

In this chapter, we are going to learn how to detect salient points, also known as 
keypoints, in an image. We will discuss why these keypoints are important and 
how we can use them to understand the image content. We will talk about different 
techniques that can be used to detect these keypoints, and understand how we can 
extract features from a given image.

By the end of this chapter, you will know:

• What are keypoints and why do we care about them
• How to detect keypoints
• How to use keypoints for image content analysis
• The different techniques to detect keypoints
• How to build a feature extractor

Why do we care about keypoints?
Image content analysis refers to the process of understanding the content of an 
image so that we can take some action based on that. Let's take a step back and 
talk about how humans do it. Our brain is an extremely powerful machine that 
can do complicated things very quickly. When we look at something, our brain 
automatically creates a footprint based on the "interesting" aspects of that image.  
We will discuss what interesting means as we move along this chapter. 
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For now, an interesting aspect is something that's distinct in that region. If we call 
a point interesting, then there shouldn't be another point in its neighborhood that 
satisfies the constraints. Let's consider the following image:

Now close your eyes and try to visualize this image. Do you see something specific? 
Can you recollect what's in the left half of the image? Not really! The reason for this 
is that the image doesn't have any interesting information. When our brain looks at 
something like this, there's nothing to make note of. So it tends to wander around! 
Let's take a look at the following image:
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Now close your eyes and try to visualize this image. You will see that the recollection 
is vivid and you remember a lot of details about this image. The reason for this is that 
there are a lot of interesting regions in the image. The human eye is more sensitive to 
high frequency content as compared to low frequency content. This is the reason we 
tend to recollect the second image better than the first one. To further demonstrate 
this, let's look at the following image:

If you notice, your eye immediately went to the TV remote, even though it's not at 
the center of the image. We automatically tend to gravitate towards the interesting 
regions in the image because that is where all the information is. This is what our 
brain needs to store in order to recollect it later.

When we build object recognition systems, we need to detect these "interesting" 
regions to create a signature for the image. These interesting regions are 
characterized by keypoints. This is why keypoint detection is critical in many 
modern computer vision systems.
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What are keypoints?
Now that we know that keypoints refer to the interesting regions in the image, let's 
dig a little deeper. What are keypoints made of? Where are these points? When we 
say "interesting", it means that something is happening in that region. If the region 
is just uniform, then it's not very interesting. For example, corners are interesting 
because there is sharp change in intensity in two different directions. Each corner is 
a unique point where two edges meet. If you look at the preceding images, you will 
see that the interesting regions are not completely made up of "interesting" content. 
If you look closely, we can still see plain regions within busy regions. For example, 
consider the following image:
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If you look at the preceding object, the interior parts of the interesting regions are 
"uninteresting".

So, if we were to characterize this object, we would need to make sure that we picked 
the interesting points. Now, how do we define "interesting points"? Can we just say 
that anything that's not uninteresting can be an interesting point? Let's consider the 
following example:
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Now, we can see that there is a lot of high frequency content in this image along the 
edge. But we cannot call the whole edge "interesting". It is important to understand 
that "interesting" doesn't necessarily refer to color or intensity values. It can be 
anything, as long as it is distinct. We need to isolate the points that are unique in 
their neighborhood. The points along the edge are not unique with respect to their 
neighbors. So, now that we know what we are looking for, how do we pick an 
interesting point?

What about the corner of the table? That's pretty interesting, right? It's unique with 
respect to its neighbors and we don't have anything like that in its vicinity. Now this 
point can be chosen as one of our keypoints. We take a bunch of these keypoints to 
characterize a particular image.

When we do image analysis, we need to convert it into a numerical form before we 
deduce something. These keypoints are represented using a numerical form and a 
combination of these keypoints is then used to create the image signature. We want 
this image signature to represent a given image in the best possible way.

Detecting the corners
Since we know that the corners are "interesting", let's see how we can detect them. 
In computer vision, there is a popular corner detection technique called Harris 
Corner Detector. We basically construct a 2x2 matrix based on partial derivatives 
of the grayscale image, and then analyze the eigenvalues. This is actually an 
oversimplification of the actual algorithm, but it covers the gist. So, if you want to 
understand the underlying mathematical details, you can look into the original paper 
by Harris and Stephens at http://www.bmva.org/bmvc/1988/avc-88-023.pdf. A 
corner point is a point where both the eigenvalues would have large values.

Let's consider the following image:

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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If you run the Harris corner detector on this image, you will see something like this:

As you can see, all the black dots correspond to the corners in the image. If you 
notice, the corners at the bottom of the box are not detected. The reason for this is 
that the corners are not sharp enough. You can adjust the thresholds in the corner 
detector to identify these corners. The code to do this is as follows:

import cv2
import numpy as np

img = cv2.imread('box.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)

dst = cv2.cornerHarris(gray, 4,5, 0.04)      # to detect only  
sharp corners
#dst = cv2.cornerHarris(gray, 14, 5, 0.04)    # to detect soft  
corners

# Result is dilated for marking the corners
dst = cv2.dilate(dst,None)

# Threshold for an optimal value, it may vary depending on the  
image.
img[dst > 0.01*dst.max()] = [0,0,0]

cv2.imshow('Harris Corners',img)
cv2.waitKey()
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Good Features To Track
Harris corner detector performs well in many cases, but it misses out on a few things. 
Around six years after the original paper by Harris and Stephens, Shi-Tomasi came 
up with a better corner detector. You can read the original paper at http://www.
ai.mit.edu/courses/6.891/handouts/shi94good.pdf. They used a different 
scoring function to improve the overall quality. Using this method, we can find the 
'N' strongest corners in the given image. This is very useful when we don't want to 
use every single corner to extract information from the image.

If you apply the Shi-Tomasi corner detector to the image shown earlier, you will see 
something like this:

Following is the code:

import cv2
import numpy as np

img = cv2.imread('box.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

corners = cv2.goodFeaturesToTrack(gray, 7, 0.05, 25)
corners = np.float32(corners)

http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
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for item in corners:
    x, y = item[0]
    cv2.circle(img, (x,y), 5, 255, -1)

cv2.imshow("Top 'k' features", img)
cv2.waitKey()

Scale Invariant Feature Transform (SIFT)
Even though corner features are "interesting", they are not good enough to characterize 
the truly interesting parts. When we talk about image content analysis, we want the 
image signature to be invariant to things such as scale, rotation, illumination, and so 
on. Humans are very good at these things. Even if I show you an image of an apple 
upside down that's dimmed, you will still recognize it. If I show you a really enlarged 
version of that image, you will still recognize it. We want our image recognition 
systems to be able to do the same.

Let's consider the corner features. If you enlarge an image, a corner might stop being 
a corner as shown below.
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In the second case, the detector will not pick up this corner. And, since it was picked 
up in the original image, the second image will not be matched with the first one. It's 
basically the same image, but the corner features based method will totally miss it. 
This means that corner detector is not exactly scale invariant. This is why we need  
a better method to characterize an image.

SIFT is one of the most popular algorithms in all of computer vision. You can read 
David Lowe's original paper at http://www.cs.ubc.ca/~lowe/papers/ijcv04.
pdf. We can use this algorithm to extract keypoints and build the corresponding 
feature descriptors. There is a lot of good documentation available online, so we will 
keep our discussion brief. To identify a potential keypoint, SIFT builds a pyramid 
by downsampling an image and taking the difference of Gaussian. This means that 
we run a Gaussian filter at each level and take the difference to build the successive 
levels in the pyramid. In order to see if the current point is a keypoint, it looks at 
the neighbors as well as the pixels at the same location in neighboring levels of the 
pyramid. If it's a maxima, then the current point is picked up as a keypoint. This 
ensures that we keep the keypoints scale invariant.

Now that we know how it achieves scale invariance, let's see how it achieves rotation 
invariance. Once we identify the keypoints, each keypoint is assigned an orientation. 
We take the neighborhood around each keypoint and compute the gradient magnitude 
and direction. This gives us a sense of the direction of that keypoint. If we have this 
information, we will be able to match this keypoint to the same point in another image 
even if it's rotated. Since we know the orientation, we will be able to normalize those 
keypoints before making the comparisons.

Once we have all this information, how do we quantify it? We need to convert it 
to a set of numbers so that we can do some kind of matching on it. To achieve this, 
we just take the 16x16 neighborhood around each keypoint, and divide it into 16 
blocks of size 4x4. For each block, we compute the orientation histogram with 8 bins. 
So, we have a vector of length 8 associated with each block, which means that the 
neighborhood is represented by a vector of size 128 (8x16). This is the final keypoint 
descriptor that will be used. If we extract N keypoints from an image, then we will 
have N descriptors of length 128 each. This array of N descriptors characterizes the 
given image.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Consider the following image:

If you extract the keypoint locations using SIFT, you will see something like the 
following, where the size of the circle indicates the strength of the keypoints,  
and the line inside the circle indicates the orientation:
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Before we look at the code, it is important to know that SIFT is patented and it's not 
freely available for commercial use. Following is the code to do it:

import cv2
import numpy as np

input_image = cv2.imread('input.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT()
keypoints = sift.detect(gray_image, None)

input_image = cv2.drawKeypoints(input_image, keypoints,  
flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('SIFT features', input_image)
cv2.waitKey()

We can also compute the descriptors. OpenCV lets us do it separately or we can 
combine the detection and computation parts in the same step by using the following:

keypoints, descriptors = sift.detectAndCompute(gray_image,  
None)

Speeded Up Robust Features (SURF)
Even though SIFT is nice and useful, it's computationally intensive. This means 
that it's slow and we will have a hard time implementing a real-time system if it 
uses SIFT. We need a system that's fast and has all the advantages of SIFT. If you 
remember, SIFT uses the difference of Gaussian to build the pyramid and this 
process is slow. So, to overcome this, SURF uses a simple box filter to approximate 
the Gaussian. The good thing is that this is really easy to compute and it's reasonably 
fast. There's a lot of documentation available online on SURF at http://opencv-
python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/
py_surf_intro/py_surf_intro.html?highlight=surf. So, you can go through  
it to see how they construct a descriptor. You can refer to the original paper at 
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf. It is important to know  
that SURF is also patented and it is not freely available for commercial use.

http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html?highlight=surf
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html?highlight=surf
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html?highlight=surf
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
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If you run the SURF keypoint detector on the earlier image, you will see something 
like the following one:

Here is the code:

import cv2
import numpy as np

img = cv2.imread('input.jpg')
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

surf = cv2.SURF()

# This threshold controls the number of keypoints
surf.hessianThreshold = 15000

kp, des = surf.detectAndCompute(gray, None)

img = cv2.drawKeypoints(img, kp, None, (0,255,0), 4)

cv2.imshow('SURF features', img)
cv2.waitKey()
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Features from Accelerated Segment Test 
(FAST)
Even though SURF is faster than SIFT, it's just not fast enough for a real-time 
system, especially when there are resource constraints. When you are building 
a real-time application on a mobile device, you won't have the luxury of using 
SURF to do computations in real time. We need something that's really fast and 
computationally inexpensive. Hence, Rosten and Drummond came up with FAST. 
As the name indicates, it's really fast!

Instead of going through all the expensive calculations, they came up with a high-
speed test to quickly determine if the current point is a potential keypoint. We need 
to note that FAST is just for keypoint detection. Once keypoints are detected, we 
need to use SIFT or SURF to compute the descriptors. Consider the following image:

If we run the FAST keypoint detector on this image, you will see something like this:
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If we clean it up and suppress the unimportant keypoints, it will look like this:

Following is the code for this:

import cv2
import numpy as np

gray_image = cv2.imread('input.jpg', 0)

fast = cv2.FastFeatureDetector()

# Detect keypoints
keypoints = fast.detect(gray_image, None)
print "Number of keypoints with non max suppression:",  
len(keypoints)

# Draw keypoints on top of the input image
img_keypoints_with_nonmax = cv2.drawKeypoints(gray_image,  
keypoints, color=(0,255,0))
cv2.imshow('FAST keypoints - with non max suppression',  
img_keypoints_with_nonmax)

# Disable nonmaxSuppression
fast.setBool('nonmaxSuppression', False)

# Detect keypoints again
keypoints = fast.detect(gray_image, None)
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print "Total Keypoints without nonmaxSuppression:",  
len(keypoints)

# Draw keypoints on top of the input image
img_keypoints_without_nonmax = cv2.drawKeypoints(gray_image,  
keypoints, color=(0,255,0))
cv2.imshow('FAST keypoints - without non max suppression',  
img_keypoints_without_nonmax)
cv2.waitKey()

Binary Robust Independent Elementary 
Features (BRIEF)
Even though we have FAST to quickly detect the keypoints, we still have to use 
SIFT or SURF to compute the descriptors. We need a way to quickly compute the 
descriptors as well. This is where BRIEF comes into the picture. BRIEF is a method 
for extracting feature descriptors. It cannot detect the keypoints by itself, so we need 
to use it in conjunction with a keypoint detector. The good thing about BRIEF is that 
it's compact and fast.

Consider the following image:
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BRIEF takes the list of input keypoints and outputs an updated list. So if you run 
BRIEF on this image, you will see something like this:

Following is the code:

import cv2
import numpy as np

gray_image = cv2.imread('input.jpg', 0)

# Initiate FAST detector
fast = cv2.FastFeatureDetector()

# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")
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# find the keypoints with STAR
keypoints = fast.detect(gray_image, None)

# compute the descriptors with BRIEF
keypoints, descriptors = brief.compute(gray_image, keypoints)

gray_keypoints = cv2.drawKeypoints(gray_image, keypoints,  
color=(0,255,0))
cv2.imshow('BRIEF keypoints', gray_keypoints)
cv2.waitKey()

Oriented FAST and Rotated BRIEF (ORB)
So, now we have arrived at the best combination out of all the combinations that we 
have discussed so far. This algorithm came out of the OpenCV Labs. It's fast, robust, 
and open-source! Both SIFT and SURF algorithms are patented and you can't use 
them for commercial purposes. This is why ORB is good in many ways.

If you run the ORB keypoint extractor on one of the images shown earlier, you will 
see something like the following:
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Here is the code:

import cv2
import numpy as np

input_image = cv2.imread('input.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

# Initiate ORB object
orb = cv2.ORB()

# find the keypoints with ORB
keypoints = orb.detect(gray_image, None)

# compute the descriptors with ORB
keypoints, descriptors = orb.compute(gray_image, keypoints)

# draw only the location of the keypoints without size or  
orientation
final_keypoints = cv2.drawKeypoints(input_image, keypoints,  
color=(0,255,0), flags=0)

cv2.imshow('ORB keypoints', final_keypoints)
cv2.waitKey()

Summary
In this chapter, we learned about the importance of keypoints and why we need 
them. We discussed various algorithms to detect keypoints and compute feature 
descriptors. We will be using these algorithms in all the subsequent chapters in 
various different contexts. The concept of keypoints is central to computer vision, 
and plays an important role in many modern systems.

In the next chapter, we are going to discuss how to stitch multiple images of the 
same scene together to create a panoramic image.
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Creating a Panoramic Image
In this chapter, we are going to learn how to stitch multiple images of the same scene 
together to create a panoramic image.

By the end of this chapter, you will know:

• How to match keypoint descriptors between multiple images
• How to find overlapping regions between images
• How to warp images based on the matching keypoints
• How to stitch multiple images to create a panoramic image

Matching keypoint descriptors
In the last chapter, we learned how to extract keypoints using various methods. The 
reason that we extract keypoints is because we can use them for image matching. 
Let's consider the following image:
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As you can see, it's the picture of a school bus. Now, let's take a look at the  
following image:

The preceding image is a part of the school bus image and it's been rotated 
anticlockwise by 90 degrees. We could easily recognize this because our brain 
is invariant to scaling and rotation. Our goal here is to find the matching points 
between these two images. If you do that, it would look something like this:
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Following is the code to do this:

import sys

import cv2
import numpy as np

def draw_matches(img1, keypoints1, img2, keypoints2, matches):
    rows1, cols1 = img1.shape[:2]
    rows2, cols2 = img2.shape[:2]

    # Create a new output image that concatenates the two images  
together
    output_img = np.zeros((max([rows1,rows2]), cols1+cols2, 3),  
dtype='uint8')
    output_img[:rows1, :cols1, :] = np.dstack([img1, img1, img1])
    output_img[:rows2, cols1:cols1+cols2, :] = np.dstack([img2, img2, 
img2])

    # Draw connecting lines between matching keypoints
    for match in matches:
        # Get the matching keypoints for each of the images
        img1_idx = match.queryIdx
        img2_idx = match.trainIdx

        (x1, y1) = keypoints1[img1_idx].pt
        (x2, y2) = keypoints2[img2_idx].pt

        # Draw a small circle at both co-ordinates and then draw a  
line
        radius = 4
        colour = (0,255,0)   # green
        thickness = 1
        cv2.circle(output_img, (int(x1),int(y1)), radius, colour,  
thickness)
        cv2.circle(output_img, (int(x2)+cols1,int(y2)), radius,  
colour, thickness)
        cv2.line(output_img, (int(x1),int(y1)),  
(int(x2)+cols1,int(y2)), colour, thickness)

    return output_img

if __name__=='__main__':
    img1 = cv2.imread(sys.argv[1], 0)   # query image (rotated  
subregion)
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    img2 = cv2.imread(sys.argv[2], 0)   # train image (full image)

    # Initialize ORB detector
    orb = cv2.ORB()

    # Extract keypoints and descriptors
    keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
    keypoints2, descriptors2 = orb.detectAndCompute(img2, None)

    # Create Brute Force matcher object
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

    # Match descriptors
    matches = bf.match(descriptors1, descriptors2)

    # Sort them in the order of their distance
    matches = sorted(matches, key = lambda x:x.distance)

    # Draw first 'n' matches
    img3 = draw_matches(img1, keypoints1, img2, keypoints2,  
matches[:30])

    cv2.imshow('Matched keypoints', img3)
    cv2.waitKey()

How did we match the keypoints?
In the preceding code, we used the ORB detector to extract the keypoints. Once we 
extracted the keypoints, we used the Brute Force matcher to match the descriptors. 
Brute Force matching is pretty straightforward! For every descriptor in the first 
image, we match it with every descriptor in the second image and take the closest 
one. To compute the closest descriptor, we use the Hamming distance as the metric, 
as shown in the following line:

bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

You can read more about the Hamming distance at https://en.wikipedia.org/
wiki/Hamming_distance. The second argument in the preceding line is a Boolean 
variable. If this is true, then the matcher returns only those keypoints that are closest 
to each other in both directions. This means that if we get (i, j) as a match, then we 
can be sure that the i-th descriptor in the first image has the j-th descriptor in the 
second image as its closest match and vice versa. This increases the consistency  
and robustness of descriptor matching.

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
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Understanding the matcher object
Let's consider the following line again:

matches = bf.match(descriptors1, descriptors2)

Here, the variable matches is a list of DMatch objects. You can read more about it 
in the OpenCV documentation. We just need to quickly understand what it means 
because it will become increasingly relevant in the upcoming chapters. If we are 
iterating over this list of DMatch objects, then each item will have the following 
attributes:

• item.distance: This attribute gives us the distance between the descriptors.  
A lower distance indicates a better match.

• item.trainIdx: This attribute gives us the index of the descriptor in the list  
of train descriptors (in our case, it's the list of descriptors in the full image).

• item.queryIdx: This attribute gives us the index of the descriptor in the list 
of query descriptors (in our case, it's the list of descriptors in the rotated 
subimage).

• item.imgIdx: This attribute gives us the index of the train image.

Drawing the matching keypoints
Now that we know how to access different attributes of the matcher object, let's see 
how we can use them to draw the matching keypoints. OpenCV 3.0 provides a direct 
function to draw the matching keypoints, but we will not be using that. It's better to 
take a peek inside to see what's happening underneath.

We need to create a big output image that can fit both the images side by side.  
So, we do that in the following line:

output_img = np.zeros((max([rows1,rows2]), cols1+cols2, 3),  
dtype='uint8')

As we can see here, the number of rows is set to the bigger of the two values and  
the number of columns is simply the sum of both the values. For each item in the list 
of matches, we extract the locations of the matching keypoints, as we can see in the 
following lines:

(x1, y1) = keypoints1[img1_idx].pt
(x2, y2) = keypoints2[img2_idx].pt

Once we do that, we just draw circles on those points to indicate their locations and 
then draw a line connecting the two points.
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Creating the panoramic image
Now that we know how to match keypoints, let's go ahead and see how we can stitch 
multiple images together. Consider the following image:

Let's say we want to stitch the following image with the preceding image:
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If we stitch these images, it will look something like the following one:

Now let's say we captured another part of this house, as seen in the following image:
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If we stitch the preceding image with the stitched image we saw earlier, it will look 
something like this:

We can keep stitching images together to create a nice panoramic image. Let's take a 
look at the code:

import sys
import argparse

import cv2
import numpy as np

def argument_parser():
    parser = argparse.ArgumentParser(description='Stitch two  
images together')
    parser.add_argument("--query-image", dest="query_image",  
required=True,
            help="First image that needs to be stitched")
    parser.add_argument("--train-image", dest="train_image",  
required=True,
            help="Second image that needs to be stitched")
    parser.add_argument("--min-match-count",  
dest="min_match_count", type=int,
            required=False, default=10, help="Minimum number of  
matches required")
    return parser
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# Warp img2 to img1 using the homography matrix H
def warpImages(img1, img2, H):
    rows1, cols1 = img1.shape[:2]
    rows2, cols2 = img2.shape[:2]

    list_of_points_1 = np.float32([[0,0], [0,rows1],  
[cols1,rows1], [cols1,0]]).reshape(-1,1,2)
    temp_points = np.float32([[0,0], [0,rows2], [cols2,rows2],  
[cols2,0]]).reshape(-1,1,2)
    list_of_points_2 = cv2.perspectiveTransform(temp_points, H)
    list_of_points = np.concatenate((list_of_points_1,  
list_of_points_2), axis=0)

    [x_min, y_min] = np.int32(list_of_points.min(axis=0).ravel() -  
0.5)
    [x_max, y_max] = np.int32(list_of_points.max(axis=0).ravel() +  
0.5)
    translation_dist = [-x_min,-y_min]
    H_translation = np.array([[1, 0, translation_dist[0]], [0, 1,  
translation_dist[1]], [0,0,1]])

    output_img = cv2.warpPerspective(img2, H_translation.dot(H),  
(x_max-x_min, y_max-y_min))
    output_img[translation_dist[1]:rows1+translation_dist[1],  
translation_dist[0]:cols1+translation_dist[0]] = img1
    
    return output_img

if __name__=='__main__':
    args = argument_parser().parse_args()
    img1 = cv2.imread(args.query_image, 0)
    img2 = cv2.imread(args.train_image, 0)
    min_match_count = args.min_match_count

    cv2.imshow('Query image', img1)
    cv2.imshow('Train image', img2)

    # Initialize the SIFT detector
    sift = cv2.SIFT()

    # Extract the keypoints and descriptors
    keypoints1, descriptors1 = sift.detectAndCompute(img1, None)
    keypoints2, descriptors2 = sift.detectAndCompute(img2, None)
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    # Initialize parameters for Flann based matcher
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks = 50)

    # Initialize the Flann based matcher object
    flann = cv2.FlannBasedMatcher(index_params, search_params)

    # Compute the matches
    matches = flann.knnMatch(descriptors1, descriptors2, k=2)

    # Store all the good matches as per Lowe's ratio test
    good_matches = []
    for m1,m2 in matches:
        if m1.distance < 0.7*m2.distance:
            good_matches.append(m1)

    if len(good_matches) > min_match_count:
        src_pts = np.float32([ keypoints1[good_match.queryIdx].pt  
for good_match in good_matches ]).reshape(-1,1,2)
        dst_pts = np.float32([ keypoints2[good_match.trainIdx].pt  
for good_match in good_matches ]).reshape(-1,1,2)

        M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,  
5.0)
        result = warpImages(img2, img1, M)
        cv2.imshow('Stitched output', result)

        cv2.waitKey()

    else:
        print "We don't have enough number of matches between the  
two images."
        print "Found only %d matches. We need at least %d  
matches." % (len(good_matches), min_match_count)

Finding the overlapping regions
The goal here is to find the matching keypoints so that we can stitch the images 
together. So, the first step is to get these matching keypoints. As discussed in the 
previous section, we use a keypoint detector to extract the keypoints, and then  
use a Flann based matcher to match the keypoints.



Chapter 5

[ 191 ]

You can learn more about Flann at http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&t
ype=pdf.

The Flann based matcher is faster than Brute Force matching because it doesn't 
compare each point with every single point on the other list. It only considers the 
neighborhood of the current point to get the matching keypoint, thereby making it 
more efficient.

Once we get a list of matching keypoints, we use Lowe's ratio test to keep only 
the strong matches. David Lowe proposed this ratio test in order to increase the 
robustness of SIFT.

You can read more about this at http://www.cs.ubc.ca/~lowe/
papers/ijcv04.pdf.

Basically, when we match the keypoints, we reject the matches in which the ratio 
of the distances to the nearest neighbor and the second nearest neighbor is greater 
than a certain threshold. This helps us in discarding the points that are not distinct 
enough. So, we use that concept here to keep only the good matches and discard 
the rest. If we don't have sufficient matches, we don't proceed further. In our case, 
the default value is 10. You can play around with this input parameter to see how it 
affects the output.

If we have a sufficient number of matches, then we extract the list of keypoints in 
both the images and extract the homography matrix. If you remember, we have 
already discussed homography in the first chapter. So if you have forgotten about it, 
you may want to take a quick look. We basically take a bunch of points from both  
the images and extract the transformation matrix.

Stitching the images
Now that we have the transformation, we can go ahead and stitch the images. We 
will use the transformation matrix to transform the second list of points. We keep the 
first image as the frame of reference and create an output image that's big enough to 
hold both the images. We need to extract information about the transformation of the 
second image. We need to move it into this frame of reference to make sure it aligns 
with the first image. So, we have to extract the translation information and then warp 
it. We then add the first image into this and construct the final output. It is worth 
mentioning that this works for images with different aspect ratios as well. So, if you 
get a chance, try it out and see what the output looks like.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.5378&rep=rep1&type=pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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What if the images are at an angle  
to each other?
Until now, we were looking at images that were on the same plane. Stitching those 
images was straightforward and we didn't have to deal with any artifacts. In real 
life, you cannot capture multiple images on exactly the same plane. When you are 
capturing multiple images of the same scene, you are bound to tilt your camera and 
change the plane. So the question is, will our algorithm work in that scenario? As it 
turns out, it can handle those cases as well.

Let's consider the following image:

Now, let's consider another image of the same scene. It's at an angle with respect to 
the first image, and it's partially overlapping as well:



Chapter 5

[ 193 ]

Let's consider the first image as our reference. If we stitch these images using our 
algorithm, it will look something like this:
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If we keep the second image as our reference, it will look something like this:

Why does it look stretched?
If you observe, a portion of the output image corresponding to the query image looks 
stretched. It's because the query image is transformed and adjusted to fit into our 
frame of reference. The reason it looks stretched is because of the following lines in 
our code:

M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = warpImages(img2, img1, M)

Since the images are at an angle with respect to each other, the query image will have 
to undergo a perspective transformation in order to fit into the frame of reference. 
So, we transform the query image first, and then stitch it into our main image to form 
the panoramic image.

Summary
In this chapter, we learned how to match keypoints among multiple images.  
We discussed how to stitch multiple images together to create a panoramic image. 
We learned how to deal with images that are not on the same plane.

In the next chapter, we are going to discuss how to do content-aware image resizing 
by detecting "interesting" regions in the image.
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Seam Carving
In this chapter, we are going to learn about content-aware image resizing, which is 
also known as seam carving. We will discuss how to detect "interesting" parts in an 
image and how to use that information to resize a given image without deteriorating 
those interesting parts.

By the end of this chapter, you will know:

• What is content awareness
• How to quantify "interesting" parts in an image
• How to use dynamic programming for image content analysis
• How to increase and decrease the width of an image without deteriorating 

the interesting regions while keeping the height constant
• How to make an object disappear from an image
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Why do we care about seam carving?
Before we start our discussion about seam carving, we need to understand why it is 
needed in the first place. Why should we care about the image content? Why can't 
we just resize the given image and move on with our lives? Well, to answer that 
question, let's consider the following image:

Now, let's say we want to reduce the width of this image while keeping the height 
constant. If you do that, it will look something like this:
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As you can see, the ducks in the image look skewed, and there's degradation in the 
overall quality of the image. Intuitively speaking, we can say that the ducks are the 
"interesting" parts in the image. So when we resize it, we want the ducks to be intact. 
This is where seam carving comes into the picture. Using seam carving, we can detect 
these interesting regions and make sure they don't get degraded.

How does it work?
We have been talking about image resizing and how we should consider the image's 
content when we resize it. So, why on earth is it called seam carving? It should just 
be called content-aware image resizing, right? Well, there are many different terms 
that are used to describe this process, such as image retargeting, liquid scaling, seam 
carving, and so on. The reason it's called seam carving is because of the way we 
resize the image. The algorithm was proposed by Shai Avidan and Ariel Shamir. You 
can refer to the original paper at http://dl.acm.org/citation.cfm?id=1276390.

We know that the goal is to resize the given image and keep the interesting content 
intact. So, we do that by finding the paths of least importance in that image. These 
paths are called seams. Once we find these seams, we remove them from the image 
to obtain a rescaled image. This process of removing, or "carving", will eventually 
result in a resized image. This is the reason we call it "seam carving". Consider the 
image that follows:

http://dl.acm.org/citation.cfm?id=1276390
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In the preceding image, we can see how we can roughly divide the image into 
interesting and uninteresting parts. We need to make sure that our algorithm detects 
these uninteresting parts and removes them. Let's consider the ducks image and the 
constraints we have to work with. We need to keep the height constant. This means 
that we need to find vertical seams in the image and remove them. These seams start at 
the top and end at the bottom (or vice versa). If we were dealing with vertical resizing, 
then the seams would start on the left-hand side and end on the right. A vertical seam 
is just a bunch of connected pixels starting at the top row and ending at the last row in 
the image.

How do we define "interesting"?
Before we start computing the seams, we need to find out what metric we will 
be using to compute these seams. We need a way to assign "importance" to each 
pixel so that we can find out the paths that are least important. In computer vision 
terminology, we say that we need to assign an energy value to each pixel so that  
we can find the path of minimum energy. Coming up with a good way to assign  
the energy value is very important because it will affect the quality of the output.

One of the metrics that we can use is the value of the derivative at each point. This is 
a good indicator of the level of activity in that neighborhood. If there is some activity, 
then the pixel values will change rapidly. Hence the value of the derivative at that 
point would be high. On the other hand, if the region were plain and uninteresting, 
then the pixel values wouldn't change as rapidly. So, the value of the derivative at 
that point in the grayscale image would be low.

For each pixel location, we compute the energy by summing up the X and Y 
derivatives at that point. We compute the derivatives by taking the difference 
between the current pixel and its neighbors. If you recall, we did something similar 
to this when we were doing edge detection using Sobel Filter in Chapter 1, Detecting 
Edges and Applying Image Filters. Once we compute these values, we store them in a 
matrix called the energy matrix.
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How do we compute the seams?
Now that we have the energy matrix, we are ready to compute the seams. We need 
to find the path through the image with the least energy. Computing all the possible 
paths is prohibitively expensive, so we need to find a smarter way to do this. This is 
where dynamic programming comes into the picture. In fact, seam carving is a direct 
application of dynamic programming. We need to start with each pixel in the first 
row and find our way to the last row. In order to find the path of least energy, we 
compute and store the best paths to each pixel in a table. Once we've construct this 
table, the path to a particular pixel can be found by backtracking through the rows  
in that table.

For each pixel in the current row, we calculate the energy of three possible pixel 
locations in the next row that we can move to, that is, bottom left, bottom, and 
bottom right. We keep repeating this process until we reach the bottom. Once we 
reach the bottom, we take the one with the least cumulative value and backtrack 
our way to the top. This will give us the path of least energy. Every time we remove 
a seam, the width of the image decreases by 1. So we need to keep removing these 
seams until we arrive at the required image size.

Let's consider our ducks image again. If you compute the first 30 seams, it will look 
something like this:
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These green lines indicate the paths of least importance. As we can see here, they 
carefully go around the ducks to make sure that the interesting regions are not 
touched. In the upper half of the image, the seams go around the twigs so that the 
quality is preserved. Technically speaking, the twigs are also "interesting". If you 
continue and remove the first 100 seams, it will look something like this:

Now, compare this with the naively resized image. Doesn't it look much better?  
The ducks look nice in this image.

Let's take a look at the code and see how to do it:

import sys

import cv2
import numpy as np

# Draw vertical seam on top of the image
def overlay_vertical_seam(img, seam):
    img_seam_overlay = np.copy(img) x

    # Extract the list of points from the seam
    x_coords, y_coords = np.transpose([(i,int(j)) for i,j in  
enumerate(seam)])

    # Draw a green line on the image using the list of points
    img_seam_overlay[x_coords, y_coords] = (0,255,0)
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    return img_seam_overlay

# Compute the energy matrix from the input image
def compute_energy_matrix(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Compute X derivative of the image
    sobel_x = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=3)

    # Compute Y derivative of the image
    sobel_y = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=3)

    abs_sobel_x = cv2.convertScaleAbs(sobel_x)
    abs_sobel_y = cv2.convertScaleAbs(sobel_y)

    # Return weighted summation of the two images i.e. 0.5*X +  
0.5*Y
    return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0)

# Find vertical seam in the input image
def find_vertical_seam(img, energy):
    rows, cols = img.shape[:2]

    # Initialize the seam vector with 0 for each element
    seam = np.zeros(img.shape[0])

    # Initialize distance and edge matrices
    dist_to = np.zeros(img.shape[:2]) + sys.maxint
    dist_to[0,:] = np.zeros(img.shape[1])
    edge_to = np.zeros(img.shape[:2])

    # Dynamic programming; iterate using double loop and compute  
the paths efficiently
    for row in xrange(rows-1):
        for col in xrange(cols):
            if col != 0:
                if dist_to[row+1, col-1] > dist_to[row, col] +  
energy[row+1, col-1]:
                    dist_to[row+1, col-1] = dist_to[row, col] +  
energy[row+1, col-1]
                    edge_to[row+1, col-1] = 1

            if dist_to[row+1, col] > dist_to[row, col] +  
energy[row+1, col]:
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                dist_to[row+1, col] = dist_to[row, col] +  
energy[row+1, col]
                edge_to[row+1, col] = 0

            if col != cols-1:
                if dist_to[row+1, col+1] > dist_to[row, col] +  
energy[row+1, col+1]:
                    dist_to[row+1, col+1] = dist_to[row, col] +  
energy[row+1, col+1]
                    edge_to[row+1, col+1] = -1

    # Retracing the path
    seam[rows-1] = np.argmin(dist_to[rows-1, :])
    for i in (x for x in reversed(xrange(rows)) if x > 0):
        seam[i-1] = seam[i] + edge_to[i, int(seam[i])]

    return seam

# Remove the input vertical seam from the image
def remove_vertical_seam(img, seam):
    rows, cols = img.shape[:2]

    # To delete a point, move every point after it one step  
towards the left
    for row in xrange(rows):
        for col in xrange(int(seam[row]), cols-1):
            img[row, col] = img[row, col+1]

    # Discard the last column to create the final output image
    img = img[:, 0:cols-1]
    return img

if __name__=='__main__':
    # Make sure the size of the input image is reasonable.
    # Large images take a lot of time to be processed.
    # Recommended size is 640x480.
    img_input = cv2.imread(sys.argv[1])

    # Use a small number to get started. Once you get an
    # idea of the processing time, you can use a bigger number.
    # To get started, you can set it to 20.
    num_seams = int(sys.argv[2])
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    img = np.copy(img_input)
    img_overlay_seam = np.copy(img_input)
    energy = compute_energy_matrix(img)

    for i in xrange(num_seams):
        seam = find_vertical_seam(img, energy)
        img_overlay_seam = overlay_vertical_seam(img_overlay_seam,  
seam)
        img = remove_vertical_seam(img, seam)
        energy = compute_energy_matrix(img)
        print 'Number of seams removed =', i+1

    cv2.imshow('Input', img_input)
    cv2.imshow('Seams', img_overlay_seam)
    cv2.imshow('Output', img)
    cv2.waitKey()

Can we expand an image?
We know that we can use seam carving to reduce the width of an image without 
deteriorating the interesting regions. So naturally, we need to ask ourselves if we  
can expand an image without deteriorating the interesting regions? As it turns out, 
we can do it using the same logic. When we compute the seams, we just need to  
add an extra column instead of deleting it.

If you expand the ducks image naively, it will look something like this:
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If you do it in a smarter way, that is, by using seam carving, it will look something 
like this:

As you can see here, the width of the image has increased and the ducks don't look 
stretched. Following is the code to do it:

import sys

import cv2
import numpy as np

# Compute the energy matrix from the input image
def compute_energy_matrix(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
    sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
    abs_sobel_x = cv2.convertScaleAbs(sobel_x)
    abs_sobel_y = cv2.convertScaleAbs(sobel_y)
    return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0)

# Find the vertical seam
def find_vertical_seam(img, energy):
    rows, cols = img.shape[:2]

    # Initialize the seam vector with 0 for each element
    seam = np.zeros(img.shape[0])
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    # Initialize distance and edge matrices
    dist_to = np.zeros(img.shape[:2]) + sys.maxint
    dist_to[0,:] = np.zeros(img.shape[1])
    edge_to = np.zeros(img.shape[:2])

    # Dynamic programming; iterate using double loop and compute
    #the paths efficiently
    for row in xrange(rows-1):
        for col in xrange(cols):
            if col != 0:
                if dist_to[row+1, col-1] > dist_to[row, col] +  
                energy[row+1, col-1]:
                    dist_to[row+1, col-1] = dist_to[row, col] +  
                    energy[row+1, col-1]
                    edge_to[row+1, col-1] = 1

            if dist_to[row+1, col] > dist_to[row, col] +  
            energy[row+1, col]:
                dist_to[row+1, col] = dist_to[row, col] +  
                energy[row+1, col]
                edge_to[row+1, col] = 0

            if col != cols-1:
                if dist_to[row+1, col+1] > dist_to[row, col] +  
                energy[row+1, col+1]:
                    dist_to[row+1, col+1] = dist_to[row, col] +  
                    energy[row+1, col+1]
                    edge_to[row+1, col+1] = -1

    # Retracing the path
    seam[rows-1] = np.argmin(dist_to[rows-1, :])
    for i in (x for x in reversed(xrange(rows)) if x > 0):
        seam[i-1] = seam[i] + edge_to[i, int(seam[i])]

    return seam

# Add a vertical seam to the image
def add_vertical_seam(img, seam, num_iter):
    seam = seam + num_iter
    rows, cols = img.shape[:2]
    zero_col_mat = np.zeros((rows,1,3), dtype=np.uint8)
    img_extended = np.hstack((img, zero_col_mat))
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    for row in xrange(rows):
        for col in xrange(cols, int(seam[row]), -1):
            img_extended[row, col] = img[row, col-1]

        # To insert a value between two columns, take the average  
        # value of the neighbors. It looks smooth this way and we  
        # can avoid unwanted artifacts.
        for i in range(3):
            v1 = img_extended[row, int(seam[row])-1, i]
            v2 = img_extended[row, int(seam[row])+1, i]
            img_extended[row, int(seam[row]), i] =  
            (int(v1)+int(v2))/2

    return img_extended

# Remove vertical seam from the image
def remove_vertical_seam(img, seam):
    rows, cols = img.shape[:2]
    for row in xrange(rows):
        for col in xrange(int(seam[row]), cols-1):
            img[row, col] = img[row, col+1]

    img = img[:, 0:cols-1]
    return img

if __name__=='__main__':
    img_input = cv2.imread(sys.argv[1])
    num_seams = int(sys.argv[2])
    img = np.copy(img_input)
    img_output = np.copy(img_input)
    energy = compute_energy_matrix(img)

    for i in xrange(num_seams):
        seam = find_vertical_seam(img, energy)
        img = remove_vertical_seam(img, seam)
        img_output = add_vertical_seam(img_output, seam, i)
        energy = compute_energy_matrix(img)
        print 'Number of seams added =', i+1

    cv2.imshow('Input', img_input)
    cv2.imshow('Output', img_output)
    cv2.waitKey()

We added an extra function, add_vertical_seam, in this code. We use it to add 
vertical seams so that the image looks natural.
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Can we remove an object completely?
This is perhaps the most interesting application of seam carving. We can make an 
object completely disappear from an image. Let's consider the following image:

Let's select the region of interest:
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After you remove the chair on the right, it will look something like this:

It's as if the chair never existed! Before we look at the code, it's important to know 
that this takes a while to run. So, just wait for a couple of minutes to get an idea of 
the processing time. You can adjust the input image size accordingly! Let's take a 
look at the code:

import sys

import cv2
import numpy as np

# Draw rectangle on top of the input image
def draw_rectangle(event, x, y, flags, params):
    global x_init, y_init, drawing, top_left_pt, bottom_right_pt,  
    img_orig

    # Detecting a mouse click
    if event == cv2.EVENT_LBUTTONDOWN:
        drawing = True
        x_init, y_init = x, y

    # Detecting mouse movement
    elif event == cv2.EVENT_MOUSEMOVE:
        if drawing:
            top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)
            img[y_init:y, x_init:x] = 255 - img_orig[y_init:y,  
            x_init:x]
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            cv2.rectangle(img, top_left_pt, bottom_right_pt,  
            (0,255,0), 2)

    # Detecting the mouse button up event
    elif event == cv2.EVENT_LBUTTONUP:
        drawing = False
        top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)

        # Create the "negative" film effect for the selected  
        # region
        img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]

        # Draw rectangle around the selected region
        cv2.rectangle(img, top_left_pt, bottom_right_pt,  
        (0,255,0), 2)
        rect_final = (x_init, y_init, x-x_init, y-y_init)

        # Remove the object in the selected region
        remove_object(img_orig, rect_final)

# Computing the energy matrix using modified algorithm
def compute_energy_matrix_modified(img, rect_roi):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Compute the X derivative
    sobel_x = cv2.Sobel(gray,cv2.CV_64F,1,0,ksize=3)

    # Compute the Y derivative
    sobel_y = cv2.Sobel(gray,cv2.CV_64F,0,1,ksize=3)
    abs_sobel_x = cv2.convertScaleAbs(sobel_x)
    abs_sobel_y = cv2.convertScaleAbs(sobel_y)

    # Compute weighted summation i.e. 0.5*X + 0.5*Y
    energy_matrix = cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y,  
    0.5, 0)
    x,y,w,h = rect_roi

    # We want the seams to pass through this region, so make sure the 
energy values in this region are set to 0
    energy_matrix[y:y+h, x:x+w] = 0

    return energy_matrix
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# Compute energy matrix
def compute_energy_matrix(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Compute X derivative
    sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)

    # Compute Y derivative
    sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
    abs_sobel_x = cv2.convertScaleAbs(sobel_x)
    abs_sobel_y = cv2.convertScaleAbs(sobel_y)

    # Return weighted summation i.e. 0.5*X + 0.5*Y
    return cv2.addWeighted(abs_sobel_x, 0.5, abs_sobel_y, 0.5, 0)

# Find the vertical seam
def find_vertical_seam(img, energy):
    rows, cols = img.shape[:2]

    # Initialize the seam vector
    seam = np.zeros(img.shape[0])

    # Initialize the distance and edge matrices
    dist_to = np.zeros(img.shape[:2]) + sys.maxint
    dist_to[0,:] = np.zeros(img.shape[1])
    edge_to = np.zeros(img.shape[:2])

    # Dynamic programming; using double loop to compute the paths
    for row in xrange(rows-1):
        for col in xrange(cols):
            if col != 0:
                if dist_to[row+1, col-1] > dist_to[row, col] +  
                energy[row+1, col-1]:
                    dist_to[row+1, col-1] = dist_to[row, col] +  
                    energy[row+1, col-1]
                    edge_to[row+1, col-1] = 1

            if dist_to[row+1, col] > dist_to[row, col] +  
            energy[row+1, col]:
                dist_to[row+1, col] = dist_to[row, col] +  
                energy[row+1, col]
                edge_to[row+1, col] = 0
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            if col != cols-1:
                if dist_to[row+1, col+1] > dist_to[row, col] +  
                energy[row+1, col+1]:
                    dist_to[row+1, col+1] = dist_to[row, col] +  
                    energy[row+1, col+1]
                    edge_to[row+1, col+1] = -1

    # Retracing the path
    seam[rows-1] = np.argmin(dist_to[rows-1, :])
    for i in (x for x in reversed(xrange(rows)) if x > 0):
        seam[i-1] = seam[i] + edge_to[i, int(seam[i])]

    return seam

# Add vertical seam to the input image
def add_vertical_seam(img, seam, num_iter):
    seam = seam + num_iter
    rows, cols = img.shape[:2]
    zero_col_mat = np.zeros((rows,1,3), dtype=np.uint8)
    img_extended = np.hstack((img, zero_col_mat))

    for row in xrange(rows):
        for col in xrange(cols, int(seam[row]), -1):
            img_extended[row, col] = img[row, col-1]

        # To insert a value between two columns, take the average  
        # value of the neighbors. It looks smooth this way and we  
        # can avoid unwanted artifacts.
        for i in range(3):
            v1 = img_extended[row, int(seam[row])-1, i]
            v2 = img_extended[row, int(seam[row])+1, i]
            img_extended[row, int(seam[row]), i] = (int(v1)+int(v2))/2

    return img_extended

# Remove vertical seam
def remove_vertical_seam(img, seam):
    rows, cols = img.shape[:2]
    for row in xrange(rows):
        for col in xrange(int(seam[row]), cols-1):
            img[row, col] = img[row, col+1]

    img = img[:, 0:cols-1]
    return img
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# Remove the object from the input region of interest
def remove_object(img, rect_roi):
    num_seams = rect_roi[2] + 10
    energy = compute_energy_matrix_modified(img, rect_roi)

    # Start a loop and remove one seam at a time
    for i in xrange(num_seams):
        # Find the vertical seam that can be removed
        seam = find_vertical_seam(img, energy)

        # Remove that vertical seam
        img = remove_vertical_seam(img, seam)
        x,y,w,h = rect_roi

        # Compute energy matrix after removing the seam
        energy = compute_energy_matrix_modified(img, (x,y,w-i,h))
        print 'Number of seams removed =', i+1

    img_output = np.copy(img)

    # Fill up the region with surrounding values so that the size  
    # of the image remains unchanged
    for i in xrange(num_seams):
        seam = find_vertical_seam(img, energy)
        img = remove_vertical_seam(img, seam)
        img_output = add_vertical_seam(img_output, seam, i)
        energy = compute_energy_matrix(img)
        print 'Number of seams added =', i+1

    cv2.imshow('Input', img_input)
    cv2.imshow('Output', img_output)
    cv2.waitKey()

if __name__=='__main__':
    img_input = cv2.imread(sys.argv[1])

    drawing = False
    img = np.copy(img_input)
    img_orig = np.copy(img_input)

    cv2.namedWindow('Input')
    cv2.setMouseCallback('Input', draw_rectangle)
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    while True:
        cv2.imshow('Input', img)
        c = cv2.waitKey(10)
        if c == 27:
            break

    cv2.destroyAllWindows()

How did we do it?
The basic logic remains the same here. We are using seam carving to remove an 
object. Once we select the region of interest, we make all the seams pass through  
this region. We do this by manipulating the energy matrix after every iteration.  
We have added a new function called compute_energy_matrix_modified to 
achieve this. Once we compute the energy matrix, we assign a value of 0 to this 
region of interest. This way, we force all the seams to pass through this area.  
After we remove all the seams related to this region, we keep adding the seams  
until we expand the image to its original width.

Summary
In this chapter, we learned about content-aware image resizing. We discussed  
how to quantify interesting and uninteresting regions in an image. We learned  
how to compute seams in an image and how to use dynamic programming to  
do it efficiently. We discussed how to use seam carving to reduce the width of an 
image, and how we can use the same logic to expand an image. We also learned  
how to remove an object from an image completely.

In the next chapter, we are going to discuss how to do shape analysis and image 
segmentation. We will see how to use those principles to find the exact boundaries  
of an object of interest in the image.
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Detecting Shapes and 
Segmenting an Image

In this chapter, we are going to learn about shape analysis and image segmentation. 
We will learn how to recognize shapes and estimate the exact boundaries. We will 
discuss how to segment an image into its constituent parts using various methods. 
We will learn how to separate the foreground from the background as well.

By the end of this chapter, you will know:

• What is contour analysis and shape matching
• How to match shapes
• What is image segmentation
• How to segment an image into its constituent parts
• How to separate the foreground from the background
• How to use various techniques to segment an image

Contour analysis and shape matching
Contour analysis is a very useful tool in the field of computer vision. We deal with a 
lot of shapes in the real world and contour analysis helps in analyzing those shapes 
using various algorithms. When we convert an image to grayscale and threshold it, 
we are left with a bunch of lines and contours. Once we understand the properties  
of different shapes, we will be able to extract detailed information from an image.
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Let's say we want to identify the boomerang shape in the following image:

In order to do that, we first need to know what a regular boomerang looks like:

Now using the above image as a reference, can we identify what shape in our 
original image corresponds to a boomerang? If you notice, we cannot use a simple 
correlation based approach because the shapes are all distorted. This means that an 
approach where we look for an exact match won't work! We need to understand 
the properties of this shape and match the corresponding properties to identify the 
boomerang shape. OpenCV provides a nice shape matcher function that we can use 
to achieve this. The matching is based on the concept of Hu moment, which in turn 
is related to image moments. You can refer to the following paper to learn more 
about moments: http://zoi.utia.cas.cz/files/chapter_moments_color1.pdf. 
The concept of "image moments" basically refers to the weighted and power-raised 
summation of the pixels within a shape.
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In the above equation, p refers to the pixels inside the contour, w refers to the 
weights, N refers to the number of points inside the contour, k refers to the power, 
and I refers to the moment. Depending on the values we choose for w and k, we can 
extract different characteristics from that contour.

Perhaps the simplest example is to compute the area of the contour. To do this, we 
need to count the number of pixels within that region. So mathematically speaking, 
in the weighted and power raised summation form, we just need to set w to 1 and k 
to 0. This will give us the area of the contour. Depending on how we compute these 
moments, they will help us in understanding these different shapes. This also gives rise 
to some interesting properties that help us in determining the shape similarity metric.

If we match the shapes, you will see something like this:

Let's take a look at the code to do this:

import sys

import cv2
import numpy as np
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# Extract reference contour from the image
def get_ref_contour(img):
    ref_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(ref_gray, 127, 255, 0)

    # Find all the contours in the thresholded image. The values
    # for the second and third parameters are restricted to a  
    # certain number of possible values. You can learn more  
    # 'findContours' function here: http://docs.opencv.org/modules/
imgproc/doc/structural_analysis_and_shape_descriptors.html
    contours, hierarchy = cv2.findContours(thresh, 1, 2)

    # Extract the relevant contour based on area ratio. We use the  
    # area ratio because the main image boundary contour is  
    # extracted as well and we don't want that. This area ratio  
    # threshold will ensure that we only take the contour inside  
    # the image.
    for contour in contours:
        area = cv2.contourArea(contour)
        img_area = img.shape[0] * img.shape[1]
        if 0.05 < area/float(img_area) < 0.8:
            return contour

# Extract all the contours from the image
def get_all_contours(img):
    ref_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(ref_gray, 127, 255, 0)
    contours, hierarchy = cv2.findContours(thresh, 1, 2)
    return contours

if __name__=='__main__':
    # Boomerang reference image
    img1 = cv2.imread(sys.argv[1])

    # Input image containing all the different shapes
    img2 = cv2.imread(sys.argv[2])

    # Extract the reference contour
    ref_contour = get_ref_contour(img1)

    # Extract all the contours from the input image
    input_contours = get_all_contours(img2)

    closest_contour = input_contours[0]
    min_dist = sys.maxint
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    # Finding the closest contour
    for contour in input_contours:
        # Matching the shapes and taking the closest one
        ret = cv2.matchShapes(ref_contour, contour, 1, 0.0)
        if ret < min_dist:
            min_dist = ret
            closest_contour = contour

    cv2.drawContours(img2, [closest_contour], -1, (0,0,0), 3)
    cv2.imshow('Output', img2)
    cv2.waitKey()

Approximating a contour
A lot of contours that we encounter in real life are noisy. This means that the contours 
don't look smooth, and hence our analysis takes a hit. So how do we deal with this? 
One way to go about this would be to get all the points on the contour and then 
approximate it with a smooth polygon.

Let's consider the boomerang image again. If you approximate the contours using 
various thresholds, you will see the contours changing their shapes. Let's start with  
a factor of 0.05:
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If you reduce this factor, the contours will get smoother. Let's make it 0.01:

If you make it really small, say 0.00001, then it will look like the original image:
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Identifying the pizza with the slice  
taken out
The title might be slightly misleading, because we will not be talking about pizza 
slices. But let's say you are in a situation where you have an image containing 
different types of pizzas with different shapes. Now, somebody has taken a slice  
out of one of those pizzas. How would we automatically identify this?

We cannot take the approach we took earlier because we don't know what the shape 
looks like. So we don't have any template. We are not even sure what shape we are 
looking for, so we cannot build a template based on any prior information. All we 
know is the fact that a slice has been taken from one of the pizzas. Let's consider the 
following image:

It's not exactly a real image, but you get the idea. You know what shape we are 
talking about. Since we don't know what we are looking for, we need to use some  
of the properties of these shapes to identify the sliced pizza. If you notice, all the 
other shapes are nicely closed. As in, you can take any two points within those 
shapes and draw a line between them, and that line will always lie within that  
shape. These kinds of shapes are called convex shapes.
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If you look at the sliced pizza shape, we can choose two points such that the line 
between them goes outside the shape as shown in the figure that follows:

So, all we need to do is detect the non-convex shape in the image and we'll be done. 
Let's go ahead and do that:

import sys

import cv2
import numpy as np

# Input is a color image
def get_contours(img):
    # Convert the image to grayscale
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Threshold the input image
    ret, thresh = cv2.threshold(img_gray, 127, 255, 0)

    # Find the contours in the above image
    contours, hierarchy = cv2.findContours(thresh, 2, 1)

    return contours

if __name__=='__main__':
    img = cv2.imread(sys.argv[1])
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    # Iterate over the extracted contours
    for contour in get_contours(img):
        # Extract convex hull from the contour
        hull = cv2.convexHull(contour, returnPoints=False)

        # Extract convexity defects from the above hull
        defects = cv2.convexityDefects(contour, hull)

        if defects is None:
            continue

        # Draw lines and circles to show the defects
        for i in range(defects.shape[0]):
            start_defect, end_defect, far_defect, _ = defects[i,0]
            start = tuple(contour[start_defect][0])
            end = tuple(contour[end_defect][0])
            far = tuple(contour[far_defect][0])
            cv2.circle(img, far, 5, [128,0,0], -1)
            cv2.drawContours(img, [contour], -1, (0,0,0), 3)

    cv2.imshow('Convexity defects',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

If you run the above code, you will see something like this:
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Wait a minute, what happened here? It looks so cluttered. Did we do something 
wrong? As it turns out, the curves are not really smooth. If you observe closely, 
there are tiny ridges everywhere along the curves. So, if you just run your convexity 
detector, it's not going to work. This is where contour approximation comes in really 
handy. Once we've detected the contours, we need to smoothen them so that the 
ridges do not affect them. Let's go ahead and do that:

import sys

import cv2
import numpy as np

# Input is a color image
def get_contours(img):
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
    contours, hierarchy = cv2.findContours(thresh, 2, 1)
    return contours

if __name__=='__main__':
    img = cv2.imread(sys.argv[1])

    # Iterate over the extracted contours
    for contour in get_contours(img):
        orig_contour = contour
        epsilon = 0.01 * cv2.arcLength(contour, True)
        contour = cv2.approxPolyDP(contour, epsilon, True)

        # Extract convex hull and the convexity defects
        hull = cv2.convexHull(contour, returnPoints=False)
        defects = cv2.convexityDefects(contour,hull)

        if defects is None:
            continue

        # Draw lines and circles to show the defects
        for i in range(defects.shape[0]):
            start_defect, end_defect, far_defect, _ = defects[i,0]
            start = tuple(contour[start_defect][0])
            end = tuple(contour[end_defect][0])
            far = tuple(contour[far_defect][0])
            cv2.circle(img, far, 7, [255,0,0], -1)
            cv2.drawContours(img, [orig_contour], -1, (0,0,0), 3)

    cv2.imshow('Convexity defects',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
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If you run the preceding code, the output will look like the following:

How to censor a shape?
Let's say you are dealing with images and you want to block out a particular shape. 
Now, you might say that you will use shape matching to identify the shape and 
then just block it out, right? But the problem here is that we don't have any template 
available. So, how do we go about doing this? Shape analysis comes in various forms, 
and we need to build our algorithm depending on the situation. Let's consider the 
following figure:
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Let's say we want to identify all the boomerang shapes and then block them out 
without using any template images. As you can see, there are various other weird 
shapes in that image and the boomerang shapes are not really smooth. We need  
to identify the property that's going to differentiate the boomerang shape from  
the other shapes present. Let's consider the convex hull. If you take the ratio of  
the area of each shape to the area of the convex hull, we can see that this can be  
a distinguishing metric. This metric is called solidity factor in shape analysis.  
This metric will have a lower value for the boomerang shapes because of the  
empty area that will be left out, as shown in the following figure:

The black boundaries represent the convex hulls. Once we compute these values 
for all the shapes, how do separate them out? Can we just use a fixed threshold to 
detect the boomerang shapes? Not really! We cannot have a fixed threshold value 
because you never know what kind of shape you might encounter later. So, a better 
approach would be to use K-Means clustering. K-Means is an unsupervised learning 
technique that can be used to separate out the input data into K classes. You can 
quickly brush up on K-Means before proceeding further at http://docs.opencv.
org/master/de/d4d/tutorial_py_kmeans_understanding.html.

http://docs.opencv.org/master/de/d4d/tutorial_py_kmeans_understanding.html
http://docs.opencv.org/master/de/d4d/tutorial_py_kmeans_understanding.html
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We know that we want to separate the shapes into two groups, that is, boomerang 
shapes and other shapes. So, we know what our K will be in K-Means. Once we use 
that and cluster the values, we pick the cluster with the lowest solidity factor and 
that will give us our boomerang shapes. Bear in mind that this approach works only 
in this particular case. If you are dealing with other kinds of shapes, then you will 
have to use some other metrics to make sure that the shape detection works. As we 
discussed earlier, it depends heavily on the situation. If you detect the shapes and 
block them out, it will look like this:

Following is the code to do it:

import sys

import cv2
import numpy as np

def get_all_contours(img):
    ref_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
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    ret, thresh = cv2.threshold(ref_gray, 127, 255, 0)
    contours, hierarchy = cv2.findContours(thresh, 1, 2)
    return contours

if __name__=='__main__':
    # Input image containing all the shapes
    img = cv2.imread(sys.argv[1])

    img_orig = np.copy(img)
    input_contours = get_all_contours(img)
    solidity_values = []

    # Compute solidity factors of all the contours
    for contour in input_contours:
        area_contour = cv2.contourArea(contour)
        convex_hull = cv2.convexHull(contour)
        area_hull = cv2.contourArea(convex_hull)
        solidity = float(area_contour)/area_hull
        solidity_values.append(solidity)

    # Clustering using KMeans
    criteria = (cv2.TERM_CRITERIA_EPS +  
cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    flags = cv2.KMEANS_RANDOM_CENTERS
    solidity_values = np.array(solidity_values).reshape((len(solidity_
values),1)).astype('float32')
    compactness, labels, centers = cv2.kmeans(solidity_values, 2,  
criteria, 10, flags)

    closest_class = np.argmin(centers)
    output_contours = []
    for i in solidity_values[labels==closest_class]:
        index = np.where(solidity_values==i)[0][0]
        output_contours.append(input_contours[index])

    cv2.drawContours(img, output_contours, -1, (0,0,0), 3)
    cv2.imshow('Output', img)

    # Censoring
    for contour in output_contours:
        rect = cv2.minAreaRect(contour)
        box = cv2.cv.BoxPoints(rect)
        box = np.int0(box)
        cv2.drawContours(img_orig,[box],0,(0,0,0),-1)

    cv2.imshow('Censored', img_orig)
    cv2.waitKey()
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What is image segmentation?
Image segmentation is the process of separating an image into its constituent parts. 
It is an important step in many computer vision applications in the real world. There 
are many different ways of segmenting an image. When we segment an image, we 
separate the regions based on various metrics such as color, texture, location, and so 
on. All the pixels within each region have something in common, depending on the 
metric we are using. Let's take a look at some of the popular approaches here.

To start with, we will be looking at a technique called GrabCut. It is an image 
segmentation method based on a more generic approach called graph-cuts. In the 
graph-cuts method, we consider the entire image to be a graph, and then we segment 
the graph based on the strength of the edges in that graph. We construct the graph 
by considering each pixel to be a node and edges are constructed between the nodes, 
where edge weight is a function of the pixel values of those two nodes. Whenever 
there is a boundary, the pixel values are higher. Hence, the edge weights will also be 
higher. This graph is then segmented by minimizing the Gibss energy of the graph. 
This is analogous to finding the maximum entropy segmentation. You can refer 
to the original paper to learn more about it at http://cvg.ethz.ch/teaching/
cvl/2012/grabcut-siggraph04.pdf. Let's consider the following image:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Let's select the region of interest:

Once the image has been segmented, it will look something like this:
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Following is the code to do this:

import cv2
import numpy as np

# Draw rectangle based on the input selection
def draw_rectangle(event, x, y, flags, params):
    global x_init, y_init, drawing, top_left_pt, bottom_right_pt,  
    img_orig

    # Detecting mouse button down event
    if event == cv2.EVENT_LBUTTONDOWN:
        drawing = True
        x_init, y_init = x, y

    # Detecting mouse movement
    elif event == cv2.EVENT_MOUSEMOVE:
        if drawing:
            top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)
            img[y_init:y, x_init:x] = 255 - img_orig[y_init:y,  
            x_init:x]
            cv2.rectangle(img, top_left_pt, bottom_right_pt,  
            (0,255,0), 2)

    # Detecting mouse button up event
    elif event == cv2.EVENT_LBUTTONUP:
        drawing = False
        top_left_pt, bottom_right_pt = (x_init,y_init), (x,y)
        img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]
        cv2.rectangle(img, top_left_pt, bottom_right_pt,  
        (0,255,0), 2)
        rect_final = (x_init, y_init, x-x_init, y-y_init)

        # Run Grabcut on the region of interest
        run_grabcut(img_orig, rect_final)

# Grabcut algorithm
def run_grabcut(img_orig, rect_final):
    # Initialize the mask
    mask = np.zeros(img_orig.shape[:2],np.uint8)

    # Extract the rectangle and set the region of
    # interest in the above mask
    x,y,w,h = rect_final
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    mask[y:y+h, x:x+w] = 1

    # Initialize background and foreground models
    bgdModel = np.zeros((1,65), np.float64)
    fgdModel = np.zeros((1,65), np.float64)

    # Run Grabcut algorithm
    cv2.grabCut(img_orig, mask, rect_final, bgdModel, fgdModel, 5,  
    cv2.GC_INIT_WITH_RECT)

    # Extract new mask
    mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')

    # Apply the above mask to the image
    img_orig = img_orig*mask2[:,:,np.newaxis]

    # Display the image
    cv2.imshow('Output', img_orig)

if __name__=='__main__':
    drawing = False
    top_left_pt, bottom_right_pt = (-1,-1), (-1,-1)

    # Read the input image
    img_orig = cv2.imread(sys.argv[1])
    img = img_orig.copy()

    cv2.namedWindow('Input')
    cv2.setMouseCallback('Input', draw_rectangle)

    while True:
        cv2.imshow('Input', img)
        c = cv2.waitKey(1)
        if c == 27:
            break

    cv2.destroyAllWindows()
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How does it work?
We start with the seed points specified by the user. This is the bounding box within 
which we have the object of interest. Underneath the surface, the algorithm estimates 
the color distribution of the object and the background. The algorithm represents 
the color distribution of the image as a Gaussian Mixture Markov Random Field 
(GMMRF). You can refer to the detailed paper to learn more about GMMRF at 
http://research.microsoft.com/pubs/67898/eccv04-GMMRF.pdf. We need the 
color distribution of both, the object and the background, because we will be using 
this knowledge to separate the object. This information is used to find the maximum 
entropy segmentation by applying the min-cut algorithm to the Markov Random Field. 
Once we have this, we use the graph cuts optimization method to infer the labels.

Watershed algorithm
OpenCV comes with a default implementation of the watershed algorithm. It's pretty 
famous and there are a lot of implementations available out there. You can read more 
about it at http://docs.opencv.org/master/d3/db4/tutorial_py_watershed.
html. Since you already have access to the OpenCV source code, we will not be 
looking at the code here.

We will just see what the output looks like. Consider the following image:

http://research.microsoft.com/pubs/67898/eccv04-GMMRF.pdf
http://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
http://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
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Let's select the regions:

If you run the watershed algorithm on this, the output will look something like  
the following:



Chapter 7

[ 235 ]

Summary
In this chapter, we learned about contour analysis and image segmentation.  
We learned how to match shapes based on a template. We learned about the  
various different properties of shapes and how we can use them to identify  
different kinds of shapes. We discussed image segmentation and how we can 
use graph-based methods to segment regions in an image. We briefly discussed 
watershed transformation as well.

In the next chapter, we are going to discuss how to track an object in a live video.
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Object Tracking
In this chapter, we are going to learn about tracking an object in a live video. We will 
discuss the different characteristics that can be used to track an object. We will also 
learn about the different methods and techniques for object tracking.

By the end of this chapter, you will know:

• How to use frame differencing
• How to use colorspaces to track colored objects
• How to build an interactive object tracker
• How to build a feature tracker
• How to build a video surveillance system

Frame differencing
This is, possibly, the simplest technique we can use to see what parts of the video are 
moving. When we consider a live video stream, the difference between successive 
frames gives us a lot of information. The concept is fairly straightforward! We just 
take the difference between successive frames and display the differences.
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If I move my laptop rapidly from left to right, we will see something like this:

If I rapidly move the TV remote in my hand, it will look something like this:
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As you can see from the previous images, only the moving parts in the video get 
highlighted. This gives us a good starting point to see what areas are moving in the 
video. Here is the code to do this:

import cv2

# Compute the frame difference
def frame_diff(prev_frame, cur_frame, next_frame):
    # Absolute difference between current frame and next frame
    diff_frames1 = cv2.absdiff(next_frame, cur_frame)

    # Absolute difference between current frame and  
    # previous frame
    diff_frames2 = cv2.absdiff(cur_frame, prev_frame)

    # Return the result of bitwise 'AND' between the  
    # above two resultant images
    return cv2.bitwise_and(diff_frames1, diff_frames2)

# Capture the frame from webcam
def get_frame(cap):
    # Capture the frame
    ret, frame = cap.read()

    # Resize the image
    frame = cv2.resize(frame, None, fx=scaling_factor,
            fy=scaling_factor, interpolation=cv2.INTER_AREA)

    # Return the grayscale image
    return cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)

if __name__=='__main__':
    cap = cv2.VideoCapture(0)
    scaling_factor = 0.5

    prev_frame = get_frame(cap)
    cur_frame = get_frame(cap)
    next_frame = get_frame(cap)

    # Iterate until the user presses the ESC key
    while True:
        # Display the result of frame differencing
        cv2.imshow("Object Movement", frame_diff(prev_frame,  
        cur_frame, next_frame))
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        # Update the variables
        prev_frame = cur_frame
        cur_frame = next_frame
        next_frame = get_frame(cap)

        # Check if the user pressed ESC
        key = cv2.waitKey(10)
        if key == 27:
            break

    cv2.destroyAllWindows()

Colorspace based tracking
Frame differencing gives us some useful information, but we cannot use it to build 
anything meaningful. In order to build a good object tracker, we need to understand 
what characteristics can be used to make our tracking robust and accurate. So, let's 
take a step in that direction and see how we can use colorspaces to come up with 
a good tracker. As we have discussed in previous chapters, HSVcolorspace is very 
informative when it comes to human perception. We can convert an image to the 
HSV space, and then use colorspacethresholding to track a given object.

Consider the following frame in the video:
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If you run it through the colorspace filter and track the object, you will see something 
like this:

As we can see here, our tracker recognizes a particular object in the video, based 
on the color characteristics. In order to use this tracker, we need to know the color 
distribution of our target object. Following is the code:

import cv2
import numpy as np

# Capture the input frame from webcam
def get_frame(cap, scaling_factor):
    # Capture the frame from video capture object
    ret, frame = cap.read()

    # Resize the input frame
    frame = cv2.resize(frame, None, fx=scaling_factor,
            fy=scaling_factor, interpolation=cv2.INTER_AREA)

    return frame

if __name__=='__main__':
    cap = cv2.VideoCapture(0)
    scaling_factor = 0.5

    # Iterate until the user presses ESC key
    while True:
        frame = get_frame(cap, scaling_factor)
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        # Convert the HSV colorspace
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

        # Define 'blue' range in HSV colorspace
        lower = np.array([60,100,100])
        upper = np.array([180,255,255])

        # Threshold the HSV image to get only blue color
        mask = cv2.inRange(hsv, lower, upper)

        # Bitwise-AND mask and original image
        res = cv2.bitwise_and(frame, frame, mask=mask)
        res = cv2.medianBlur(res, 5)

        cv2.imshow('Original image', frame)
        cv2.imshow('Color Detector', res)

        # Check if the user pressed ESC key
        c = cv2.waitKey(5)
        if c == 27:
            break

    cv2.destroyAllWindows()

Building an interactive object tracker
Colorspace based tracker gives us the freedom to track a colored object, but we 
are also constrained to a predefined color. What if we just want to pick an object 
at random? How do we build an object tracker that can learn the characteristics 
of the selected object and just track it automatically? This is where the CAMShift 
algorithm, which stands for Continuously Adaptive Meanshift, comes into the 
picture. It's basically an improved version of the Meanshift algorithm.
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The concept of Meanshift is actually nice and simple. Let's say we select a region 
of interest and we want our object tracker to track that object. In that region, we 
select a bunch of points based on the color histogram and compute the centroid. If 
the centroid lies at the center of this region, we know that the object hasn't moved. 
But if the centroid is not at the center of this region, then we know that the object is 
moving in some direction. The movement of the centroid controls the direction in 
which the object is moving. So, we move our bounding box to a new location so that 
the new centroid becomes the center of this bounding box. Hence, this algorithm is 
called Meanshift, because the mean (i.e. the centroid) is shifting. This way, we keep 
ourselves updated with the current location of the object.

But the problem with Meanshift is that the size of the bounding box is not allowed 
to change. When you move the object away from the camera, the object will appear 
smaller to the human eye, but Meanshift will not take this into account. The size of 
the bounding box will remain the same throughout the tracking session. Hence, we 
need to use CAMShift. The advantage of CAMShift is that it can adapt the size of the 
bounding box to the size of the object. Along with that, it can also keep track of the 
orientation of the object.

Let's consider the following frame in which the object is highlighted in orange  
(the box in my hand):
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Now that we have selected the object, the algorithm computes the histogram 
backprojection and extracts all the information. Let's move the object and  
see how it's getting tracked:

Looks like the object is getting tracked fairly well. Let's change the orientation and 
see if the tracking is maintained:
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As we can see, the bounding ellipse has changed its location as well as its orientation. 
Let's change the perspective of the object and see if it's still able to track it:

We are still good! The bounding ellipse has changed the aspect ratio to reflect the fact 
that the object looks skewed now (because of the perspective transformation).

Following is the code:

import sys

import cv2
import numpy as np

class ObjectTracker(object):
    def __init__(self):
        # Initialize the video capture object
        # 0 -> indicates that frame should be captured
        # from webcam
        self.cap = cv2.VideoCapture(0)

        # Capture the frame from the webcam
        ret, self.frame = self.cap.read()

        # Downsampling factor for the input frame
        self.scaling_factor = 0.5
        self.frame = cv2.resize(self.frame, None,  
        fx=self.scaling_factor,
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                    fy=self.scaling_factor,  
                    interpolation=cv2.INTER_AREA)

        cv2.namedWindow('Object Tracker')
        cv2.setMouseCallback('Object Tracker',  
        self.mouse_event)

        self.selection = None
        self.drag_start = None
        self.tracking_state = 0

    # Method to track mouse events
    def mouse_event(self, event, x, y, flags, param):
        x, y = np.int16([x, y])

        # Detecting the mouse button down event
        if event == cv2.EVENT_LBUTTONDOWN:
            self.drag_start = (x, y)
            self.tracking_state = 0

        if self.drag_start:
            if flags & cv2.EVENT_FLAG_LBUTTON:
                h, w = self.frame.shape[:2]
                xo, yo = self.drag_start
                x0, y0 = np.maximum(0, np.minimum([xo, yo],  
                [x, y]))
                x1, y1 = np.minimum([w, h],  
                np.maximum([xo, yo], [x, y]))
                self.selection = None

                if x1-x0 > 0 and y1-y0 > 0:
                    self.selection = (x0, y0, x1, y1)

            else:
                self.drag_start = None
                if self.selection is not None:
                    self.tracking_state = 1

    # Method to start tracking the object
    def start_tracking(self):
        # Iterate until the user presses the Esc key
        while True:
            # Capture the frame from webcam
            ret, self.frame = self.cap.read()
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            # Resize the input frame
            self.frame = cv2.resize(self.frame, None,  
            fx=self.scaling_factor,
                        fy=self.scaling_factor,  
                        interpolation=cv2.INTER_AREA)

            vis = self.frame.copy()

            # Convert to HSV colorspace
            hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)

            # Create the mask based on predefined thresholds.
            mask = cv2.inRange(hsv, np.array((0., 60., 32.)),
                        np.array((180., 255., 255.)))

            if self.selection:
                x0, y0, x1, y1 = self.selection
                self.track_window = (x0, y0, x1-x0, y1-y0)
                hsv_roi = hsv[y0:y1, x0:x1]
                mask_roi = mask[y0:y1, x0:x1]

                # Compute the histogram
                hist = cv2.calcHist( [hsv_roi], [0], mask_roi,  
                [16], [0, 180] )

                # Normalize and reshape the histogram
                cv2.normalize(hist, hist, 0, 255,  
                cv2.NORM_MINMAX);
                self.hist = hist.reshape(-1)

                vis_roi = vis[y0:y1, x0:x1]
                cv2.bitwise_not(vis_roi, vis_roi)
                vis[mask == 0] = 0

            if self.tracking_state == 1:
                self.selection = None

                # Compute the histogram back projection
                prob = cv2.calcBackProject([hsv], [0],  
                self.hist, [0, 180], 1)

                prob &= mask
                term_crit = ( cv2.TERM_CRITERIA_EPS |  
                cv2.TERM_CRITERIA_COUNT, 10, 1 )
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                # Apply CAMShift on 'prob'
                track_box, self.track_window = cv2.CamShift(prob,  
                self.track_window, term_crit)

                # Draw an ellipse around the object
                cv2.ellipse(vis, track_box, (0, 255, 0), 2)

            cv2.imshow('Object Tracker', vis)

            c = cv2.waitKey(5)
            if c == 27:
                break

        cv2.destroyAllWindows()

if __name__ == '__main__':
    ObjectTracker().start_tracking()

Feature based tracking
Feature based tracking refers to tracking individual feature points across successive 
frames in the video. We use a technique called optical flow to track these features. 
Optical flow is one of the most popular techniques in computer vision. We choose a 
bunch of feature points and track them through the video stream.

When we detect the feature points, we compute the displacement vectors and show 
the motion of those keypoints between consecutive frames. These vectors are called 
motion vectors. There are many ways to do this, but the Lucas-Kanade method is 
perhaps the most popular of all these techniques. You can refer to their original 
paper at http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf. 
We start the process by extracting the feature points. For each feature point, we 
create 3x3 patches with the feature point in the center. The assumption here is that  
all the points within each patch will have a similar motion. We can adjust the size  
of this window depending on the problem at hand.

For each feature point in the current frame, we take the surrounding 3x3 patch as our 
reference point. For this patch, we look in its neighborhood in the previous frame to 
get the best match. This neighborhood is usually bigger than 3x3 because we want  
to get the patch that's closest to the patch under consideration. Now, the path from 
the center pixel of the matched patch in the previous frame to the center pixel of  
the patch under consideration in the current frame will become the motion vector. 
We do that for all the feature points and extract all the motion vectors.

http://cseweb.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
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Let's consider the following frame:

If I move in a horizontal direction, you will see the motion vectors in a horizontal 
direction:



Object Tracking

[ 250 ]

If I move away from the webcam, you will see something like this:

So, if you want to play around with it, you can let the user select a region of interest 
in the input video (like we did earlier). You can then extract feature points from this 
region of interest and track the object by drawing the bounding box. It will be a  
fun exercise!

Here is the code to perform optical flow based tracking:

import cv2
import numpy as np

def start_tracking():
    # Capture the input frame
    cap = cv2.VideoCapture(0)

    # Downsampling factor for the image
    scaling_factor = 0.5

    # Number of frames to keep in the buffer when you
    # are tracking. If you increase this number,
    # feature points will have more "inertia"
    num_frames_to_track = 5

    # Skip every 'n' frames. This is just to increase the speed.
    num_frames_jump = 2
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    tracking_paths = []
    frame_index = 0

    # 'winSize' refers to the size of each patch. These patches
    # are the smallest blocks on which we operate and track
    # the feature points. You can read more about the parameters
    # here: http://goo.gl/ulwqLk
    tracking_params = dict(winSize  = (11, 11), maxLevel = 2,
            criteria = (cv2.TERM_CRITERIA_EPS |  
            cv2.TERM_CRITERIA_COUNT, 10, 0.03))

    # Iterate until the user presses the ESC key
    while True:
        # read the input frame
        ret, frame = cap.read()

        # downsample the input frame
        frame = cv2.resize(frame, None, fx=scaling_factor,
                fy=scaling_factor, interpolation=cv2.INTER_AREA)

        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        output_img = frame.copy()

        if len(tracking_paths) > 0:
            prev_img, current_img = prev_gray, frame_gray
            feature_points_0 = np.float32([tp[-1] for tp in  
            tracking_paths]).reshape(-1, 1, 2)

            # Compute feature points using optical flow. You can
            # refer to the documentation to learn more about the
            # parameters here: http://goo.gl/t6P4SE
            feature_points_1, _, _ =  
            cv2.calcOpticalFlowPyrLK(prev_img,  
            current_img, feature_points_0,
                    None, **tracking_params)
            feature_points_0_rev, _, _ =  
            cv2.calcOpticalFlowPyrLK(current_img, prev_img,  
            feature_points_1,
                    None, **tracking_params)

            # Compute the difference of the feature points
            diff_feature_points = abs(feature_points_0-  
            feature_points_0_rev).reshape(-1, 2).max(-1)
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            # threshold and keep the good points
            good_points = diff_feature_points < 1

            new_tracking_paths = []

            for tp, (x, y), good_points_flag in  
            zip(tracking_paths,
                        feature_points_1.reshape(-1, 2),  
                        good_points):
                if not good_points_flag:
                    continue

                tp.append((x, y))

                # Using the queue structure i.e. first in,
                # first out
                if len(tp) > num_frames_to_track:
                    del tp[0]

                new_tracking_paths.append(tp)

                # draw green circles on top of the output image
                cv2.circle(output_img, (x, y), 3, (0, 255, 0), -1)

            tracking_paths = new_tracking_paths

            # draw green lines on top of the output image
            cv2.polylines(output_img, [np.int32(tp) for tp in  
            tracking_paths], False, (0, 150, 0))

        # 'if' condition to skip every 'n'th frame
        if not frame_index % num_frames_jump:
            mask = np.zeros_like(frame_gray)
            mask[:] = 255
            for x, y in [np.int32(tp[-1]) for tp in  
            tracking_paths]:
                cv2.circle(mask, (x, y), 6, 0, -1)

            # Extract good features to track. You can learn more
            # about the parameters here: http://goo.gl/BI2Kml
            feature_points = cv2.goodFeaturesToTrack(frame_gray,
                    mask = mask, maxCorners = 500,  
                    qualityLevel = 0.3,
                    minDistance = 7, blockSize = 7)
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            if feature_points is not None:
                for x, y in np.float32(feature_points).reshape  
                (-1, 2):
                    tracking_paths.append([(x, y)])

        frame_index += 1
        prev_gray = frame_gray

        cv2.imshow('Optical Flow', output_img)

        # Check if the user pressed the ESC key
        c = cv2.waitKey(1)
        if c == 27:
            break

if __name__ == '__main__':
    start_tracking()
    cv2.destroyAllWindows()

Background subtraction
Background subtraction is very useful in video surveillance. Basically, background 
subtraction technique performs really well for cases where we have to detect moving 
objects in a static scene. As the name indicates, this algorithm works by detecting the 
background and subtracting it from the current frame to obtain the foreground, that 
is, moving objects. In order to detect moving objects, we need to build a model of the 
background first. This is not the same as frame differencing because we are actually 
modeling the background and using this model to detect moving objects. So, this 
performs much better than the simple frame differencing technique. This technique 
tries to detect static parts in the scene and then include it in the background model. 
So, it's an adaptive technique that can adjust according to the scene.
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Let's consider the following image:

Now, as we gather more frames in this scene, every part of the image will gradually 
become a part of the background model. This is what we discussed earlier as well. 
If a scene is static, the model adapts itself to make sure the background model is 
updated. This is how it looks in the beginning:
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Notice how a part of my face has already become a part of the background model 
(the blackened region). The following screenshot shows what we'll see after a  
few seconds:

If we keep going, everything eventually becomes part of the background model:
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Now, if we introduce a new moving object, it will be detected clearly, as shown next:

Here is the code to do this:

import cv2
import numpy as np

# Capture the input frame
def get_frame(cap, scaling_factor=0.5):
    ret, frame = cap.read()

    # Resize the frame
    frame = cv2.resize(frame, None, fx=scaling_factor,
            fy=scaling_factor, interpolation=cv2.INTER_AREA)

    return frame

if __name__=='__main__':
    # Initialize the video capture object
    cap = cv2.VideoCapture(0)

    # Create the background subtractor object
    bgSubtractor = cv2.BackgroundSubtractorMOG()

    # This factor controls the learning rate of the algorithm.
    # The learning rate refers to the rate at which your model
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    # will learn about the background. Higher value for
    # 'history' indicates a slower learning rate. You
    # can play with this parameter to see how it affects
    # the output.
    history = 100

    # Iterate until the user presses the ESC key
    while True:
        frame = get_frame(cap, 0.5)

        # Apply the background subtraction model to the  
        # input frame
        mask = bgSubtractor.apply(frame,  
        learningRate=1.0/history)

        # Convert from grayscale to 3-channel RGB
        mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

        cv2.imshow('Input frame', frame)
        cv2.imshow('Moving Objects', mask & frame)

        # Check if the user pressed the ESC key
        c = cv2.waitKey(10)
        if c == 27:
            break

    cap.release()
    cv2.destroyAllWindows()

Summary
In this chapter, we learned about object tracking. We learned how to get motion 
information using frame differencing, and how it can be limiting when we want to 
track different types of objects. We learned about colorspacethresholding and how 
it can be used to track colored objects. We discussed clustering techniques for object 
tracking and how we can build an interactive object tracker using the CAMShift 
algorithm. We discussed how to track features in a video and how we can use  
optical flow to achieve the same. We learned about background subtraction and  
how it can be used for video surveillance.

In the next chapter, we are going to discuss object recognition, and how we can  
build a visual search engine.
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Object Recognition
In this chapter, we are going to learn about object recognition and how we can use 
it to build a visual search engine. We will discuss feature detection, building feature 
vectors, and using machine learning to build a classifier. We will learn how to use 
these different blocks to build an object recognition system.

By the end of this chapter, you will know:

• What is the difference between object detection and object recognition
• What is a dense feature detector
• What is a visual dictionary
• How to build a feature vector
• What is supervised and unsupervised learning
• What are Support Vector Machines and how to use them to build a classifier
• How to recognize an object in an unknown image

Object detection versus object 
recognition
Before we proceed, we need to understand what we are going to discuss in this 
chapter. You must have frequently heard the terms "object detection" and "object 
recognition", and they are often mistaken to be the same thing. There is a very 
distinct difference between the two.
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Object detection refers to detecting the presence of a particular object in a given 
scene. We don't know what the object might be. For instance, we discussed face 
detection in Chapter 3, Detecting and Tracking Different Body Parts. During the 
discussion, we only detected whether or not a face is present in the given image.  
We didn't recognize the person! The reason we didn't recognize the person is 
because we didn't care about that in our discussion. Our goal was to find the location 
of the face in the given image. Commercial face recognition systems employ both 
face detection and face recognition to identify a person. First, we need to locate the 
face, and then, run the face recognizer on the cropped face.

Object recognition is the process of identifying an object in a given image. For instance, 
an object recognition system can tell you if a given image contains a dress or a pair 
of shoes. In fact, we can train an object recognition system to identify many different 
objects. The problem is that object recognition is a really difficult problem to solve.  
It has eluded computer vision researchers for decades now, and has become the holy 
grail of computer vision. Humans can identify a wide variety of objects very easily.  
We do it everyday and we do it effortlessly, but computers are unable to do it with  
that kind of accuracy.

Let's consider the following image of a latte cup:
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An object detector will give you the following information:

Now, consider the following image of a teacup:



Object Recognition

[ 262 ]

If you run it through an object detector, you will see the following result:

As you can see, the object detector detects the presence of the teacup, but nothing 
more than that. If you train an object recognizer, it will give you the following 
information, as shown in the image below:
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If you consider the second image, it will give you the following information:

As you can see, a perfect object recognizer would give you all the information 
associated with that object. An object recognizer functions more accurately if it 
knows where the object is located. If you have a big image and the cup is a small  
part of it, then the object recognizer might not be able to recognize it. Hence, the  
first step is to detect the object and get the bounding box. Once we have that, we  
can run an object recognizer to extract more information.

What is a dense feature detector?
In order to extract a meaningful amount of information from the images, we need to 
make sure our feature extractor extracts features from all the parts of a given image. 
Consider the following image:



Object Recognition

[ 264 ]

If you extract features using a feature extractor, it will look like this:

If you use Dense detector, it will look like this:
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We can control the density as well. Let's make it sparse:

By doing this, we can make sure that every single part in the image is processed. 
Here is the code to do it:

import cv2
import numpy as np

class DenseDetector(object):
    def __init__(self, step_size=20, feature_scale=40,  
    img_bound=20):
        # Create a dense feature detector
        self.detector = cv2.FeatureDetector_create("Dense")

        # Initialize it with all the required parameters
        self.detector.setInt("initXyStep", step_size)
        self.detector.setInt("initFeatureScale", feature_scale)
        self.detector.setInt("initImgBound", img_bound)

    def detect(self, img):
        # Run feature detector on the input image
        return self.detector.detect(img)
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if __name__=='__main__':
    input_image = cv2.imread(sys.argv[1])
    input_image_sift = np.copy(input_image)

    # Convert to grayscale
    gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)

    keypoints = DenseDetector(20,20,5).detect(input_image)

    # Draw keypoints on top of the input image
    input_image = cv2.drawKeypoints(input_image, keypoints,
            flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    # Display the output image
    cv2.imshow('Dense feature detector', input_image)

    # Initialize SIFT object
    sift = cv2.SIFT()

    # Detect keypoints using SIFT
    keypoints = sift.detect(gray_image, None)

    # Draw SIFT keypoints on the input image
    input_image_sift = cv2.drawKeypoints(input_image_sift,
            keypoints,  
            flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    # Display the output image
    cv2.imshow('SIFT detector', input_image_sift)

    # Wait until user presses a key
    cv2.waitKey()

This gives us close control over the amount of information that gets extracted.  
When we use a SIFT detector, some parts of the image are neglected. This works  
well when we are dealing with the detection of prominent features, but when we  
are building an object recognizer, we need to evaluate all parts of the image.  
Hence, we use a dense detector and then extract features from those keypoints.
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What is a visual dictionary?
We will be using the Bag of Words model to build our object recognizer. Each image 
is represented as a histogram of visual words. These visual words are basically the N 
centroids built using all the keypoints extracted from training images. The pipeline is 
as shown in the image that follows:

From each training image, we detect a set of keypoints and extract features for each 
of those keypoints. Every image will give rise to a different number of keypoints. 
In order to train a classifier, each image must be represented using a fixed length 
feature vector. This feature vector is nothing but a histogram, where each bin 
corresponds to a visual word.

When we extract all the features from all the keypoints in the training images, we 
perform K-Means clustering and extract N centroids. This N is the length of the feature 
vector of a given image. Each image will now be represented as a histogram, where 
each bin corresponds to one of the 'N' centroids. For simplicity, let's say that N is set 
to 4. Now, in a given image, we extract K keypoints. Out of these K keypoints, some 
of them will be closest to the first centroid, some of them will be closest to the second 
centroid, and so on. So, we build a histogram based on the closest centroid to each 
keypoint. This histogram becomes our feature vector. This process is called  
vector quantization.
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To understand vector quantization, let's consider an example. Assume we have an 
image and we've extracted a certain number of feature points from it. Now our goal is 
to represent this image in the form of a feature vector. Consider the following image:

As you can see, we have 4 centroids. Bear in mind that the points shown in the 
figures represent the feature space and not the actual geometric locations of those 
feature points in the image. It is shown this way in the preceding figure so that it's 
easy to visualize. Points from many different geometric locations in an image can 
be close to each other in the feature space. Our goal is to represent this image as a 
histogram, where each bin corresponds to one of these centroids. This way, no matter 
how many feature points we extract from an image, it will always be converted to 
a fixed length feature vector. So, we "round off" each feature point to its nearest 
centroid, as shown in the next image:
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If you build a histogram for this image, it will look like this:

Now, if you consider a different image with a different distribution of feature points, 
it will look like this:
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The clusters would look like the following:

The histogram would look like this:

As you can see, the histograms are very different for the two images even though 
the points seem to be randomly distributed. This is a very powerful technique and 
it's widely used in computer vision and signal processing. There are many different 
ways to do this and the accuracy depends on how fine-grained you want it to be. If 
you increase the number of centroids, you will be able to represent the image better, 
thereby increasing the uniqueness of your feature vector. Having said that, it's 
important to mention that you cannot just keep increasing the number of centroids 
indefinitely. If you do that, it will become too noisy and lose its power.
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What is supervised and unsupervised 
learning?
If you are familiar with the basics of machine learning, you will certainly know 
what supervised and unsupervised learning is all about. To give a quick refresher, 
supervised learning refers to building a function based on labeled samples. For 
example, if we are building a system to separate dress images from footwear images, 
we first need to build a database and label it. We need to tell our algorithm what 
images correspond to dresses and what images correspond to footwear. Based on 
this data, the algorithm will learn how to identify dresses and footwear so that  
when an unknown image comes in, it can recognize what's inside that image.

Unsupervised learning is the opposite of what we just discussed. There is no labeled 
data available here. Let's say we have a bunch of images, and we just want to separate 
them into three groups. We don't know what the criteria will be. So, an unsupervised 
learning algorithm will try to separate the given set of data into 3 groups in the  
best possible way. The reason we are discussing this is because we will be using  
a combination of supervised and unsupervised learning to build our object  
recognition system.

What are Support Vector Machines?
Support Vector Machines (SVM) are supervised learning models that are very 
popular in the realm of machine learning. SVMs are really good at analyzing labeled 
data and detecting patterns. Given a bunch of data points and the associated labels, 
SVMs will build the separating hyperplanes in the best possible way.
Wait a minute, what are "hyperplanes"? To understand that, let's consider the 
following figure:
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As you can see, the points are being separated by line boundaries that are equidistant 
from the points. This is easy to visualize in 2 dimensions. If it were in 3 dimensions, 
the separators would be planes. When we build features for images, the length 
of the feature vectors is usually in the six-digit range. So, when we go to such a 
high dimensional space, the equivalent of "lines" would be hyperplanes. Once the 
hyperplanes are formulated, we use this mathematical model to classify unknown 
data, based on where it falls on this map.

What if we cannot separate the data with 
simple straight lines?
There is something called the kernel trick that we use in SVMs. Consider the 
following image:

As we can see, we cannot draw a simple straight line to separate the red points 
from the blue points. Coming up with a nice curvy boundary that will satisfy all 
the points is prohibitively expensive. SVMs are really good at drawing "straight 
lines". So, what's our answer here? The good thing about SVMs is that they can 
draw these "straight lines" in any number of dimensions. So technically, if you 
project these points into a high dimensional space, where they can separated by 
a simple hyperplane, SVMs will come up with an exact boundary. Once we have 
that boundary, we can project it back to the original space. The projection of this 
hyperplane on our original lower dimensional space looks curvy, as we can see  
in the next figure:
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The topic of SVMs is really deep and we will not be able to discuss it in detail here. 
If you are really interested, there is a ton of material available online. You can go 
through a simple tutorial to understand it better.

How do we actually implement this?
We have now arrived at the core. The discussion up until now was necessary 
because it gives you the background required to build an object recognition system. 
Now, let's build an object recognizer that can recognize whether the given image 
contains a dress, a pair of shoes, or a bag. We can easily extend this system to detect 
any number of items. We are starting with three distinct items so that you can start 
experimenting with it later.

Before we start, we need to make sure that we have a set of training images. 
There are many databases available online where the images are already arranged 
into groups. Caltech256 is perhaps one of the most popular databases for object 
recognition. You can download it from http://www.vision.caltech.edu/Image_
Datasets/Caltech256. Create a folder called images and create three subfolders 
inside it, that is, dress, footwear, and bag. Inside each of those subfolders, add 20 
images corresponding to that item. You can just download these images from the 
internet, but make sure those images have a clean background.

http://www.vision.caltech.edu/Image_Datasets/Caltech256
http://www.vision.caltech.edu/Image_Datasets/Caltech256
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For example, a dress image would like this:

A footwear image would look like this:
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A bag image would look like this:

Now that we have 60 training images, we are ready to start. As a side note, object 
recognition systems actually need tens of thousands of training images in order to 
perform well in the real world. Since we are building an object recognizer to detect 
3 types of objects, we will take only 20 training images per object. Adding more 
training images will increase the accuracy and robustness of our system.

The first step here is to extract feature vectors from all the training images and build 
the visual dictionary (also known as codebook). Here is the code:

import os
import sys
import argparse
import cPickle as pickle
import json

import cv2
import numpy as np
from sklearn.cluster import KMeans
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def build_arg_parser():
    parser = argparse.ArgumentParser(description='Creates features  
    for given images')
    parser.add_argument("--samples", dest="cls", nargs="+",  
    action="append",
            required=True, help="Folders containing the training  
            images. \
            The first element needs to be the class label.")
    parser.add_argument("--codebook-file", dest='codebook_file',  
    required=True,
            help="Base file name to store the codebook")
    parser.add_argument("--feature-map-file",  
    dest='feature_map_file', required=True,
            help="Base file name to store the feature map")

    return parser

# Loading the images from the input folder
def load_input_map(label, input_folder):
    combined_data = []

    if not os.path.isdir(input_folder):
        raise IOError("The folder " + input_folder + " doesn't  
        exist")

    # Parse the input folder and assign the  labels
    for root, dirs, files in os.walk(input_folder):
        for filename in (x for x in files if x.endswith('.jpg')):
            combined_data.append({'label': label, 'image':  
            os.path.join(root, filename)})

    return combined_data

class FeatureExtractor(object):
    def extract_image_features(self, img):
        # Dense feature detector
        kps = DenseDetector().detect(img)

        # SIFT feature extractor
        kps, fvs = SIFTExtractor().compute(img, kps)

        return fvs
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    # Extract the centroids from the feature points
    def get_centroids(self, input_map, num_samples_to_fit=10):
        kps_all = []

        count = 0
        cur_label = ''
        for item in input_map:
            if count >= num_samples_to_fit:
                if cur_label != item['label']:
                    count = 0
                else:
                    continue

            count += 1

            if count == num_samples_to_fit:
                print "Built centroids for", item['label']

            cur_label = item['label']
            img = cv2.imread(item['image'])
            img = resize_to_size(img, 150)

            num_dims = 128
            fvs = self.extract_image_features(img)
            kps_all.extend(fvs)

        kmeans, centroids = Quantizer().quantize(kps_all)
        return kmeans, centroids

    def get_feature_vector(self, img, kmeans, centroids):
        return Quantizer().get_feature_vector(img, kmeans,  
        centroids)

def extract_feature_map(input_map, kmeans, centroids):
    feature_map = []

    for item in input_map:
        temp_dict = {}
        temp_dict['label'] = item['label']

        print "Extracting features for", item['image']
        img = cv2.imread(item['image'])
        img = resize_to_size(img, 150)
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        temp_dict['feature_vector'] =  
        FeatureExtractor().get_feature_vector(
                    img, kmeans, centroids)

        if temp_dict['feature_vector'] is not None:
            feature_map.append(temp_dict)

    return feature_map

# Vector quantization
class Quantizer(object):
    def __init__(self, num_clusters=32):
        self.num_dims = 128
        self.extractor = SIFTExtractor()
        self.num_clusters = num_clusters
        self.num_retries = 10

    def quantize(self, datapoints):
        # Create KMeans object
        kmeans = KMeans(self.num_clusters,
                        n_init=max(self.num_retries, 1),
                        max_iter=10, tol=1.0)

        # Run KMeans on the datapoints
        res = kmeans.fit(datapoints)

        # Extract the centroids of those clusters
        centroids = res.cluster_centers_

        return kmeans, centroids

    def normalize(self, input_data):
        sum_input = np.sum(input_data)
        if sum_input > 0:
            return input_data / sum_input
        else:
            return input_data

    # Extract feature vector from the image
    def get_feature_vector(self, img, kmeans, centroids):
        kps = DenseDetector().detect(img)
        kps, fvs = self.extractor.compute(img, kps)
        labels = kmeans.predict(fvs)
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        fv = np.zeros(self.num_clusters)

        for i, item in enumerate(fvs):
            fv[labels[i]] += 1

        fv_image = np.reshape(fv, ((1, fv.shape[0])))
        return self.normalize(fv_image)

class DenseDetector(object):
    def __init__(self, step_size=20, feature_scale=40,  
    img_bound=20):
        self.detector = cv2.FeatureDetector_create("Dense")
        self.detector.setInt("initXyStep", step_size)
        self.detector.setInt("initFeatureScale", feature_scale)
        self.detector.setInt("initImgBound", img_bound)

    def detect(self, img):
        return self.detector.detect(img)

class SIFTExtractor(object):
    def compute(self, image, kps):
        if image is None:
            print "Not a valid image"
            raise TypeError

        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        kps, des = cv2.SIFT().compute(gray_image, kps)
        return kps, des

# Resize the shorter dimension to 'new_size'
# while maintaining the aspect ratio
def resize_to_size(input_image, new_size=150):
    h, w = input_image.shape[0], input_image.shape[1]
    ds_factor = new_size / float(h)

    if w < h:
        ds_factor = new_size / float(w)

    new_size = (int(w * ds_factor), int(h * ds_factor))
    return cv2.resize(input_image, new_size)

if __name__=='__main__':
    args = build_arg_parser().parse_args()
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    input_map = []
    for cls in args.cls:

        assert len(cls) >= 2, "Format for classes is `<label>  
        file`"
        label = cls[0]
        input_map += load_input_map(label, cls[1])

    # Building the codebook
    print "===== Building codebook ====="
    kmeans, centroids = FeatureExtractor().get_centroids(input_map)
    if args.codebook_file:
        with open(args.codebook_file, 'w') as f:
            pickle.dump((kmeans, centroids), f)

    # Input data and labels
    print "===== Building feature map ====="
    feature_map = extract_feature_map(input_map, kmeans,  
    centroids)
    if args.feature_map_file:
        with open(args.feature_map_file, 'w') as f:
            pickle.dump(feature_map, f)

What happened inside the code?
The first thing we need to do is extract the centroids. This is how we are going to 
build our visual dictionary. The get_centroids method in the FeatureExtractor 
class is designed to do this. We keep collecting the image features extracted from 
keypoints until we have a sufficient number of them. Since we are using a dense 
detector, 10 images should be sufficient. The reason we are just taking 10 images 
is because they will give rise to a large number of features. The centroids will not 
change much even if you add more feature points.

Once we've extracted the centroids, we are ready to move on to the next step of 
feature extraction. The set of centroids is our visual dictionary. The function, extract_
feature_map, will extract a feature vector from each image and associate it with the 
corresponding label. The reason we do this is because we need this mapping to train 
our classifier. We need a set of datapoints, and each datapoint should be associated 
with a label. So, we start from an image, extract the feature vector, and then associate  
it with the corresponding label (like bag, dress, or footwear).
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The Quantizer class is designed to achieve vector quantization and build the feature 
vector. For each keypoint extracted from the image, the get_feature_vector method 
finds the closest visual word in our dictionary. By doing this, we end up building 
a histogram based on our visual dictionary. Each image is now represented as a 
combination from a set of visual words. Hence the name, Bag of Words.

The next step is to train the classifier using these features. Here is the code:

import os
import sys
import argparse

import cPickle as pickle
import numpy as np
from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import LinearSVC
from sklearn import preprocessing

def build_arg_parser():
    parser = argparse.ArgumentParser(description='Trains the  
    classifier models')
    parser.add_argument("--feature-map-file",  
    dest="feature_map_file", required=True,
            help="Input pickle file containing the feature map")
    parser.add_argument("--svm-file", dest="svm_file",  
    required=False,
            help="Output file where the pickled SVM model will be  
            stored")
    return parser

# To train the classifier
class ClassifierTrainer(object):
    def __init__(self, X, label_words):
        # Encoding the labels (words to numbers)
        self.le = preprocessing.LabelEncoder()

        # Initialize One vs One Classifier using a linear kernel
        self.clf = OneVsOneClassifier(LinearSVC(random_state=0))

        y = self._encodeLabels(label_words)
        X = np.asarray(X)
        self.clf.fit(X, y)
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    # Predict the output class for the input datapoint
    def _fit(self, X):
        X = np.asarray(X)
        return self.clf.predict(X)

    # Encode the labels (convert words to numbers)
    def _encodeLabels(self, labels_words):
        self.le.fit(labels_words)
        return np.array(self.le.transform(labels_words),  
        dtype=np.float32)

    # Classify the input datapoint
    def classify(self, X):
        labels_nums = self._fit(X)
        labels_words = self.le.inverse_transform([int(x) for x in  
        labels_nums])
        return labels_words

if __name__=='__main__':
    args = build_arg_parser().parse_args()
    feature_map_file = args.feature_map_file
    svm_file = args.svm_file

    # Load the feature map
    with open(feature_map_file, 'r') as f:
        feature_map = pickle.load(f)

    # Extract feature vectors and the labels
    labels_words = [x['label'] for x in feature_map]

    # Here, 0 refers to the first element in the
    # feature_map, and 1 refers to the second
    # element in the shape vector of that element
    # (which gives us the size)
    dim_size = feature_map[0]['feature_vector'].shape[1]

    X = [np.reshape(x['feature_vector'], (dim_size,)) for x in  
    feature_map]

    # Train the SVM
    svm = ClassifierTrainer(X, labels_words)
    if args.svm_file:
        with open(args.svm_file, 'w') as f:
            pickle.dump(svm, f)
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How did we build the trainer?
We use the scikit-learn package to build the SVM model. You can install it,  
as shown next:

$ pip install scikit-learn

We start with labeled data and feed it to the OneVsOneClassifier method. We have 
a classify method that classifies an input image and associates a label with it.

Let's give this a trial run, shall we? Make sure you have a folder called images, 
where you have the training images for the three classes. Create a folder called 
models, where the learning models will be stored. Run the following commands  
on your terminal to create the features and train the classifier:

$ python create_features.py --samples bag images/bag/ --samples dress  
images/dress/ --samples footwear images/footwear/ --codebook-file  
models/codebook.pkl --feature-map-file models/feature_map.pkl

$ python training.py --feature-map-file models/feature_map.pkl  
--svm-file models/svm.pkl

Now that the classifier has been trained, we just need a module to classify the  
input image and detect the object inside. Here is the code to do it:

import os
import sys
import argparse
import cPickle as pickle

import cv2
import numpy as np

import create_features as cf
from training import ClassifierTrainer

def build_arg_parser():
    parser = argparse.ArgumentParser(description='Extracts  
    features \
            from each line and classifies the data')
    parser.add_argument("--input-image", dest="input_image",  
    required=True,
            help="Input image to be classified")
    parser.add_argument("--svm-file", dest="svm_file",  
    required=True,
            help="File containing the trained SVM model")
    parser.add_argument("--codebook-file", dest="codebook_file",
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            required=True, help="File containing the codebook")
    return parser

# Classifying an image
class ImageClassifier(object):
    def __init__(self, svm_file, codebook_file):
        # Load the SVM classifier
        with open(svm_file, 'r') as f:
            self.svm = pickle.load(f)

        # Load the codebook
        with open(codebook_file, 'r') as f:
            self.kmeans, self.centroids = pickle.load(f)

    # Method to get the output image tag
    def getImageTag(self, img):
        # Resize the input image
        img = cf.resize_to_size(img)

        # Extract the feature vector
        feature_vector =  
        cf.FeatureExtractor().get_feature_vector(img, self.kmeans,  
        self.centroids)

        # Classify the feature vector and get the output tag
        image_tag = self.svm.classify(feature_vector)

        return image_tag

if __name__=='__main__':
    args = build_arg_parser().parse_args()
    svm_file = args.svm_file
    codebook_file = args.codebook_file
    input_image = cv2.imread(args.input_image)

    print "Output class:", ImageClassifier(svm_file,  
    codebook_file).getImageTag(input_image)

We are all set! We just extract the feature vector from the input image and use it as 
the input argument to the classifier. Let's go ahead and see if this works. Download a 
random footwear image from the internet and make sure it has a clean background. 
Run the following command by replacing new_image.jpg with the right filename:

$ python classify_data.py --input-image new_image.jpg --svm-file  
models/svm.pkl --codebook-file models/codebook.pkl
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We can use the same technique to build a visual search engine. A visual search 
engine looks at the input image and shows a bunch of images that are similar to 
it. We can reuse the object recognition framework to build this. Extract the feature 
vector from the input image, and compare it with all the feature vectors in the 
training dataset. Pick out the top matches and display the results. This is a simple 
way of doing things!

In the real world, we have to deal with billions of images. So, you cannot afford 
to search through every single image before you display the output. There are a 
lot of algorithms that are used to make sure that this is efficient and fast in the real 
world. Deep Learning is being used extensively in this field and it has shown a lot of 
promise in recent years. It is a branch of machine learning that focuses on learning 
optimal representation of data, so that it becomes easier for the machines to learn 
new tasks. You can learn more about it at http://deeplearning.net.

Summary
In this chapter, we learned how to build an object recognition system. The differences 
between object detection and object recognition were discussed in detail. We learned 
about the dense feature detector, visual dictionary, vector quantization, and how to use 
these concepts to build a feature vector. The concepts of supervised and unsupervised 
learning were discussed. We talked about Support Vector Machines and how we can 
use them to build a classifier. We learned how to recognize an object in an unknown 
image, and how we can extend that concept to build a visual search engine.

In the next chapter, we are going to discuss stereo imaging and 3D reconstruction. 
We will talk about how we can build a depth map and extract the 3D information 
from a given scene.

http://deeplearning.net
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Stereo Vision and 3D 
Reconstruction

In this chapter, we are going to learn about stereo vision and how we can reconstruct 
the 3D map of a scene. We will discuss epipolar geometry, depth maps, and 3D 
reconstruction. We will learn how to extract 3D information from stereo images  
and build a point cloud.

By the end of this chapter, you will know:

• What is stereo correspondence
• What is epipolar geometry
• What is a depth map
• How to extract 3D information
• How to build and visualize the 3D map of a given scene

What is stereo correspondence?
When we capture images, we project the 3D world around us on a 2D image plane. 
So technically, we only have 2D information when we capture those photos. Since 
all the objects in that scene are projected onto a flat 2D plane, the depth information 
is lost. We have no way of knowing how far an object is from the camera or how the 
objects are positioned with respect to each other in the 3D space. This is where stereo 
vision comes into the picture.
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Humans are very good at inferring depth information from the real world. The 
reason is that we have two eyes positioned a couple of inches from each other. Each 
eye acts as a camera and we capture two images of the same scene from two different 
viewpoints, that is, one image each using the left and right eyes. So, our brain takes 
these two images and builds a 3D map using stereo vision. This is what we want to 
achieve using stereo vision algorithms. We can capture two photos of the same scene 
using different viewpoints, and then match the corresponding points to obtain the 
depth map of the scene.

Let's consider the following image:

Now, if we capture the same scene from a different angle, it will look like this:
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As you can see, there is a large amount of movement in the positions of the objects 
in the image. If you consider the pixel coordinates, the values of the initial position 
and final position will differ by a large amount in these two images. Consider the 
following image:

If we consider the same line of distance in the second image, it will look like this:
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The difference between d1 and d2 is large. Now, let's bring the box closer to 
 the camera:

Now, let's move the camera by the same amount as we did earlier, and capture the 
same scene from this angle:
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As you can see, the movement between the positions of the objects is not much. If 
you consider the pixel coordinates, you will see that the values are close to each 
other. The distance in the first image would be:

If we consider the same line of distance in the second image, it will be as shown in 
the following image:
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The difference between d3 and d4 is small. We can say that the absolute difference 
between d1 and d2 is greater than the absolute difference between d3 and d4. Even 
though the camera moved by the same amount, there is a big difference between the 
apparent distances between the initial and final positions. This happens because we 
can bring the object closer to the camera; the apparent movement decreases when 
you capture two images from different angles. This is the concept behind stereo 
correspondence: we capture two images and use this knowledge to extract the depth 
information from a given scene.

What is epipolar geometry?
Before discussing epipolar geometry, let's discuss what happens when we  
capture two images of the same scene from two different viewpoints. Consider  
the following figure:

Let's see how it happens in real life. Consider the following image:
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Now, let's capture the same scene from a different viewpoint:

Our goal is to match the keypoints in these two images to extract the scene 
information. The way we do this is by extracting a matrix that can associate  
the corresponding points between two stereo images. This is called the  
fundamental matrix.

As we saw in the camera figure earlier, we can draw lines to see where they meet. 
These lines are called epipolar lines. The point at which the epipolar lines converge 
is called epipole. If you match the keypoints using SIFT, and draw the lines towards 
the meeting point on the left image, it will look like this:
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Following are the matching feature points in the right image:

The lines are epipolar lines. If you take the second image as the reference, they will 
appear as shown in the next image:
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Following are the matching feature points in the first image:

It's important to understand epipolar geometry and how we draw these lines. If 
two frames are positioned in 3D, then each epipolar line between the two frames 
must intersect the corresponding feature in each frame and each of the camera 
origins. This can be used to estimate the pose of the cameras with respect to the 3D 
environment. We will use this information later on, to extract 3D information from 
the scene. Let's take a look at the code:

import argparse

import cv2
import numpy as np

def build_arg_parser():
    parser = argparse.ArgumentParser(description='Find fundamental  
    matrix \
            using the two input stereo images and draw epipolar  
            lines')
    parser.add_argument("--img-left", dest="img_left",  
    required=True,
            help="Image captured from the left view")
    parser.add_argument("--img-right", dest="img_right",  
    required=True,
            help="Image captured from the right view")
    parser.add_argument("--feature-type", dest="feature_type",
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            required=True, help="Feature extractor that will be  
            used; can be either 'sift' or 'surf'")
    return parser

def draw_lines(img_left, img_right, lines, pts_left, pts_right):
    h,w = img_left.shape
    img_left = cv2.cvtColor(img_left, cv2.COLOR_GRAY2BGR)
    img_right = cv2.cvtColor(img_right, cv2.COLOR_GRAY2BGR)

    for line, pt_left, pt_right in zip(lines, pts_left,  
    pts_right):
        x_start,y_start = map(int, [0, -line[2]/line[1] ])
        x_end,y_end = map(int, [w, -(line[2]+line[0]*w)/line[1] ])
        color = tuple(np.random.randint(0,255,2).tolist())
        cv2.line(img_left, (x_start,y_start), (x_end,y_end),  
        color,1)
        cv2.circle(img_left, tuple(pt_left), 5, color, -1)
        cv2.circle(img_right, tuple(pt_right), 5, color, -1)

    return img_left, img_right

def get_descriptors(gray_image, feature_type):
    if feature_type == 'surf':
        feature_extractor = cv2.SURF()

    elif feature_type == 'sift':
        feature_extractor = cv2.SIFT()

    else:
        raise TypeError("Invalid feature type; should be either  
        'surf' or 'sift'")

    keypoints, descriptors = feature_extractor.detectAndCompute(gray_
image, None)
    return keypoints, descriptors

if __name__=='__main__':
    args = build_arg_parser().parse_args()
    img_left = cv2.imread(args.img_left,0)  # left image
    img_right = cv2.imread(args.img_right,0)  # right image
    feature_type = args.feature_type

    if feature_type not in ['sift', 'surf']:
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        raise TypeError("Invalid feature type; has to be either  
        'sift' or 'surf'")

    scaling_factor = 1.0
    img_left = cv2.resize(img_left, None, fx=scaling_factor,
                fy=scaling_factor, interpolation=cv2.INTER_AREA)
    img_right = cv2.resize(img_right, None, fx=scaling_factor,
                fy=scaling_factor, interpolation=cv2.INTER_AREA)

    kps_left, des_left = get_descriptors(img_left, feature_type)
    kps_right, des_right = get_descriptors(img_right, feature_type)

    # FLANN parameters
    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
    search_params = dict(checks=50)

    # Get the matches based on the descriptors
    flann = cv2.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des_left, des_right, k=2)

    pts_left_image = []
    pts_right_image = []

    # ratio test to retain only the good matches
    for i,(m,n) in enumerate(matches):
        if m.distance < 0.7*n.distance:
            pts_left_image.append(kps_left[m.queryIdx].pt)
            pts_right_image.append(kps_right[m.trainIdx].pt)

    pts_left_image = np.float32(pts_left_image)
    pts_right_image = np.float32(pts_right_image)
    F, mask = cv2.findFundamentalMat(pts_left_image,  
    pts_right_image, cv2.FM_LMEDS)

    # Selecting only the inliers
    pts_left_image = pts_left_image[mask.ravel()==1]
    pts_right_image = pts_right_image[mask.ravel()==1]

    # Drawing the lines on left image and the corresponding feature 
points on the right image
    lines1 = cv2.computeCorrespondEpilines  
    (pts_right_image.reshape(-1,1,2), 2, F)
    lines1 = lines1.reshape(-1,3)
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    img_left_lines, img_right_pts = draw_lines(img_left,  
    img_right, lines1, pts_left_image, pts_right_image)

    # Drawing the lines on right image and the corresponding feature 
points on the left image
    lines2 = cv2.computeCorrespondEpilines  
    (pts_left_image.reshape(-1,1,2), 1,F)
    lines2 = lines2.reshape(-1,3)
    img_right_lines, img_left_pts = draw_lines(img_right,  
    img_left, lines2, pts_right_image, pts_left_image)

    cv2.imshow('Epi lines on left image', img_left_lines)
    cv2.imshow('Feature points on right image', img_right_pts)
    cv2.imshow('Epi lines on right image', img_right_lines)
    cv2.imshow('Feature points on left image', img_left_pts)
    cv2.waitKey()
    cv2.destroyAllWindows()

Let's see what happens if we use the SURF feature extractor. The lines in the left 
image will look like this:
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Following are the matching feature points in the right image:

If you take the second image as the reference, you will see something like the 
following image:



Stereo Vision and 3D Reconstruction

[ 300 ]

These are the matching feature points in the first image:

Why are the lines different as compared to 
SIFT?
SURF detects a different set of feature points, so the corresponding epipolar lines 
differ as well. As you can see in the images, there are more feature points detected 
when we use SURF. Since we have more information than before, the corresponding 
epipolar lines will also change accordingly.

Building the 3D map
Now that we are familiar with epipolar geometry, let's see how to use it to build  
a 3D map based on stereo images. Let's consider the following figure:
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The first step is to extract the disparity map between the two images. If you look at 
the figure, as we go closer to the object from the cameras along the connecting lines, 
the distance decreases between the points. Using this information, we can infer the 
distance of each point from the camera. This is called a depth map. Once we find the 
matching points between the two images, we can find the disparity by using epipolar 
lines to impose epipolar constraints.

Let's consider the following image:

If we capture the same scene from a different position, we get the following image:
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If we reconstruct the 3D map, it will look like this:

Bear in mind that these images were not captured using perfectly aligned stereo 
cameras. That's the reason the 3D map looks so noisy! This is just to demonstrate 
how we can reconstruct the real world using stereo images. Let's consider an image 
pair captured using stereo cameras that are properly aligned. Following is the left 
view image:



Chapter 10

[ 303 ]

Next is the corresponding right view image:

If you extract the depth information and build the 3D map, it will look like this:
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Let's rotate it to see if the depth is right for the different objects in the scene:

You need a software called MeshLab to visualize the 3D scene. We'll discuss about 
it soon. As we can see in the preceding images, the items are correctly aligned 
according to their distance from the camera. We can intuitively see that they are 
arranged in the right way, including the tilted position of the mask. We can use  
this technique to build many interesting things.

Let's see how to do it in OpenCV-Python:

import argparse

import cv2
import numpy as np

def build_arg_parser():
    parser = argparse.ArgumentParser(description='Reconstruct the  
    3D map from \
            the two input stereo images. Output will be saved in  
            \'output.ply\'')
    parser.add_argument("--image-left", dest="image_left",  
    required=True,
            help="Input image captured from the left")
    parser.add_argument("--image-right", dest="image_right",  
    required=True,
            help="Input image captured from the right")
    parser.add_argument("--output-file", dest="output_file",  
    required=True,
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            help="Output filename (without the extension) where  
            the point cloud will be saved")
    return parser

def create_output(vertices, colors, filename):
    colors = colors.reshape(-1, 3)
    vertices = np.hstack([vertices.reshape(-1,3), colors])

    ply_header = '''ply
        format ascii 1.0
        element vertex %(vert_num)d
        property float x
        property float y
        property float z
        property uchar red
        property uchar green
        property uchar blue
        end_header
    '''

    with open(filename, 'w') as f:
        f.write(ply_header % dict(vert_num=len(vertices)))
        np.savetxt(f, vertices, '%f %f %f %d %d %d')

if __name__ == '__main__':
    args = build_arg_parser().parse_args()
    image_left = cv2.imread(args.image_left)
    image_right = cv2.imread(args.image_right)
    output_file = args.output_file + '.ply'

    if image_left.shape[0] != image_right.shape[0] or \
            image_left.shape[1] != image_right.shape[1]:
        raise TypeError("Input images must be of the same size")

    # downscale images for faster processing
    image_left = cv2.pyrDown(image_left)
    image_right = cv2.pyrDown(image_right)

    # disparity range is tuned for 'aloe' image pair
    win_size = 1
    min_disp = 16
    max_disp = min_disp * 9
    num_disp = max_disp - min_disp   # Needs to be divisible by 16
    stereo = cv2.StereoSGBM(minDisparity = min_disp,
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        numDisparities = num_disp,
        SADWindowSize = win_size,
        uniquenessRatio = 10,
        speckleWindowSize = 100,
        speckleRange = 32,
        disp12MaxDiff = 1,
        P1 = 8*3*win_size**2,
        P2 = 32*3*win_size**2,
        fullDP = True
    )

    print "\nComputing the disparity map ..."
    disparity_map = stereo.compute(image_left,  
image_right).astype(np.float32) / 16.0

    print "\nGenerating the 3D map ..."
    h, w = image_left.shape[:2]
    focal_length = 0.8*w

    # Perspective transformation matrix
    Q = np.float32([[1, 0, 0, -w/2.0],
                    [0,-1, 0,  h/2.0],
                    [0, 0, 0, -focal_length],
                    [0, 0, 1, 0]])

    points_3D = cv2.reprojectImageTo3D(disparity_map, Q)
    colors = cv2.cvtColor(image_left, cv2.COLOR_BGR2RGB)
    mask_map = disparity_map > disparity_map.min()
    output_points = points_3D[mask_map]
    output_colors = colors[mask_map]

    print "\nCreating the output file ...\n"
    create_output(output_points, output_colors, output_file)

To visualize the output, you need to download MeshLab from http://meshlab.
sourceforge.net.

Just open the output.ply file using MeshLab and you'll see the 3D image. You can 
rotate it to get a complete 3D view of the reconstructed scene. Some of the alternatives 
to MeshLab are Sketchup on OS X and Windows, and Blender on Linux.

http://meshlab.sourceforge.net
http://meshlab.sourceforge.net
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Summary
In this chapter, we learned about stereo vision and 3D reconstruction. We discussed 
how to extract the fundamental matrix using different feature extractors. We learned 
how to generate the disparity map between two images, and use it to reconstruct the 
3D map of a given scene.

In the next chapter, we are going to discuss augmented reality, and how we can 
build a cool application where we overlay graphics on top of real world objects  
in a live video.





[ 309 ]

Augmented Reality
In this chapter, you are going to learn about augmented reality and how you can 
use it to build cool applications. We will discuss pose estimation and plane tracking. 
You will learn how to map the coordinates from 2D to 3D, and how we can overlay 
graphics on top of a live video.

By the end of this chapter, you will know:

• What is the premise of augmented reality
• What is pose estimation
• How to track a planar object
• How to map coordinates from 3D to 2D
• How to overlay graphics on top of a video in real time

What is the premise of augmented 
reality?
Before we jump into all the fun stuff, let's understand what augmented reality 
means. You would have probably seen the term "augmented reality" being used in 
a variety of contexts. So, we should understand the premise of augmented reality 
before we start discussing the implementation details. Augmented Reality refers to 
the superposition of computer-generated input such as imagery, sounds, graphics, 
and text on top of the real world.
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Augmented reality tries to blur the line between what's real and what's computer-
generated by seamlessly merging the information and enhancing what we see 
and feel. It is actually closely related to a concept called mediated reality where a 
computer modifies our view of the reality. As a result of this, the technology works 
by enhancing our current perception of reality. Now the challenge here is to make 
it look seamless to the user. It's easy to just overlay something on top of the input 
video, but we need to make it look like it is part of the video. The user should feel 
that the computer-generated input is closely following the real world. This is what 
we want to achieve when we build an augmented reality system.

Computer vision research in this context explores how we can apply computer-
generated imagery to live video streams so that we can enhance the perception of 
the real world. Augmented reality technology has a wide variety of applications 
including, but not limited to, head-mounted displays, automobiles, data 
visualization, gaming, construction, and so on. Now that we have powerful 
smartphones and smarter machines, we can build high-end augmented reality 
applications with ease.

What does an augmented reality system 
look like?
Let's consider the following figure:



Chapter 11

[ 311 ]

As we can see here, the camera captures the real world video to get the reference 
point. The graphics system generates the virtual objects that need to be overlaid  
on top of the video. Now the video-merging block is where all the magic happens. 
This block should be smart enough to understand how to overlay the virtual objects 
on top of the real world in the best way possible.

Geometric transformations for 
augmented reality
The outcome of augmented reality is amazing, but there are a lot of mathematical 
things going on underneath. Augmented reality utilizes a lot of geometric 
transformations and the associated mathematical functions to make sure everything 
looks seamless. When talking about a live video for augmented reality, we need to 
precisely register the virtual objects on top of the real world. To understand it better, 
let's think of it as an alignment of two cameras—the real one through which we see 
the world, and the virtual one that projects the computer generated graphical objects.

In order to build an augmented reality system, the following geometric 
transformations need to be established:

• Object-to-scene: This transformation refers to transforming the 3D 
coordinates of a virtual object and expressing them in the coordinate  
frame of our real-world scene. This ensures that we are positioning the 
virtual object in the right location.

• Scene-to-camera: This transformation refers to the pose of the camera  
in the real world. By "pose", we mean the orientation and location of the 
camera. We need to estimate the point of view of the camera so that we  
know how to overlay the virtual object.

• Camera-to-image: This refers to the calibration parameters of the camera. 
This defines how we can project a 3D object onto a 2D image plane.  
This is the image that we will actually see in the end.
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Consider the following image:

As we can see here, the car is trying to fit into the scene but it looks very artificial.  
If we don't convert the coordinates in the right way, it looks unnatural. This is what 
we were talking about in the object-to-scene transformation! Once we transform  
the 3D coordinates of the virtual object into the coordinate frame of the real world, 
we need to estimate the pose of the camera:

We need to understand the position and rotation of the camera because that's what 
the user will see. Once we estimate the camera pose, we are ready to put this 3D 
scene on a 2D image.
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Once we have these transformations, we can build the complete system.

What is pose estimation?
Before we proceed, we need to understand how to estimate the camera pose. This is 
a very critical step in an augmented reality system and we need to get it right if we 
want our experience to be seamless. In the world of augmented reality, we overlay 
graphics on top of an object in real time. In order to do that, we need to know the 
location and orientation of the camera, and we need to do it quickly. This is where 
pose estimation becomes very important. If you don't track the pose correctly, the 
overlaid graphics will not look natural.

Consider the following image:
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The arrow line represents that the surface is normal. Let's say the object changes  
its orientation:

Now even though the location is the same, the orientation has changed. We need to 
have this information so that the overlaid graphics looks natural. We need to make 
sure that it's aligned to this orientation as well as position.

How to track planar objects?
Now that you understand what pose estimation is, let's see how you can use it to 
track planar objects. Let's consider the following planar object:
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Now if we extract feature points from this image, we will see something like this:

Let's tilt the cardboard:
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As we can see, the cardboard is tilted in this image. Now if we want to make sure 
our virtual object is overlaid on top of this surface, we need to gather this planar tilt 
information. One way to do this is by using the relative positions of those feature 
points. If we extract the feature points from the preceding image, it will look like this:

As you can see, the feature points got closer horizontally on the far end of the plane 
as compared to the ones on the near end.
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So we can utilize this information to extract the orientation information from  
the image. If you remember, we discussed perspective transformation in detail  
when we were discussing geometric transformations as well as panoramic imaging. 
All we need to do is use those two sets of points and extract the homography matrix. 
This homography matrix will tell us how the cardboard turned.

Consider the following image:

We start by selecting the region of interest.
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We then extract feature points from this region of interest. Since we are tracking planar 
objects, the algorithm assumes that this region of interest is a plane. That was obvious, 
but it's better to state it explicitly! So make sure you have a cardboard in your hand 
when you select this region of interest. Also, it'll be better if the cardboard has a bunch 
of patterns and distinctive points so that it's easy to detect and track the feature points 
on it.

Let the tracking begin! We'll move the cardboard around to see what happens:

As you can see, the feature points are being tracked inside the region of interest.  
Let's tilt it and see what happens:
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Looks like the feature points are being tracked properly. As we can see, the overlaid 
rectangle is changing its orientation according to the surface of the cardboard.

Here is the code to do it:

import sys
from collections import namedtuple

import cv2
import numpy as np

class PoseEstimator(object):
    def __init__(self):
        # Use locality sensitive hashing algorithm
        flann_params = dict(algorithm = 6, table_number = 6,
                key_size = 12, multi_probe_level = 1)

        self.min_matches = 10
        self.cur_target = namedtuple('Current', 'image, rect,  
        keypoints, descriptors, data')
        self.tracked_target = namedtuple('Tracked', 'target,  
        points_prev, points_cur, H, quad')

        self.feature_detector = cv2.ORB(nfeatures=1000)
        self.feature_matcher = cv2.FlannBasedMatcher(flann_params,  
{})
        self.tracking_targets = []

    # Function to add a new target for tracking
    def add_target(self, image, rect, data=None):
        x_start, y_start, x_end, y_end = rect
        keypoints, descriptors = [], []
        for keypoint, descriptor in zip(*self.detect_features(image)):
            x, y = keypoint.pt
            if x_start <= x <= x_end and y_start <= y <= y_end:
                keypoints.append(keypoint)
                descriptors.append(descriptor)

        descriptors = np.array(descriptors, dtype='uint8')
        self.feature_matcher.add([descriptors])
        target = self.cur_target(image=image, rect=rect,  
        keypoints=keypoints,
                    descriptors=descriptors, data=None)
        self.tracking_targets.append(target)
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    # To get a list of detected objects
    def track_target(self, frame):
        self.cur_keypoints, self.cur_descriptors =  
        self.detect_features(frame)
        if len(self.cur_keypoints) < self.min_matches:
            return []

        matches =  
        self.feature_matcher.knnMatch(self.cur_descriptors, k=2)
        matches = [match[0] for match in matches if len(match) ==  
        2 and
                    match[0].distance < match[1].distance * 0.75]
        if len(matches) < self.min_matches:
            return []

        matches_using_index = [[] for _ in  
        xrange(len(self.tracking_targets))]
        for match in matches:
            matches_using_index[match.imgIdx].append(match)

        tracked = []
        for image_index, matches in  
        enumerate(matches_using_index):
            if len(matches) < self.min_matches:
                continue

            target = self.tracking_targets[image_index]
            points_prev = [target.keypoints[m.trainIdx].pt for m  
            in matches]
            points_cur = [self.cur_keypoints[m.queryIdx].pt for m  
            in matches]
            points_prev, points_cur = np.float32((points_prev,  
            points_cur))
            H, status = cv2.findHomography(points_prev,  
            points_cur, cv2.RANSAC, 3.0)
            status = status.ravel() != 0
            if status.sum() < self.min_matches:
                continue

            points_prev, points_cur = points_prev[status],  
            points_cur[status]

            x_start, y_start, x_end, y_end = target.rect
            quad = np.float32([[x_start, y_start], [x_end,  
            y_start], [x_end, y_end], [x_start, y_end]])
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            quad = cv2.perspectiveTransform(quad.reshape(1, -1,  
            2), H).reshape(-1, 2)

            track = self.tracked_target(target=target,  
            points_prev=points_prev,
                        points_cur=points_cur, H=H, quad=quad)
            tracked.append(track)

        tracked.sort(key = lambda x: len(x.points_prev),  
        reverse=True)
        return tracked

    # Detect features in the selected ROIs and return the keypoints 
and descriptors
    def detect_features(self, frame):
        keypoints, descriptors = self.feature_detector.
detectAndCompute(frame, None)
        if descriptors is None:
            descriptors = []

        return keypoints, descriptors

    # Function to clear all the existing targets
    def clear_targets(self):
        self.feature_matcher.clear()
        self.tracking_targets = []

class VideoHandler(object):
    def __init__(self):
        self.cap = cv2.VideoCapture(0)
        self.paused = False
        self.frame = None
        self.pose_tracker = PoseEstimator()

        cv2.namedWindow('Tracker')
        self.roi_selector = ROISelector('Tracker', self.on_rect)

    def on_rect(self, rect):
        self.pose_tracker.add_target(self.frame, rect)

    def start(self):
        while True:
            is_running = not self.paused and self.roi_selector.
selected_rect is None
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            if is_running or self.frame is None:
                ret, frame = self.cap.read()
                scaling_factor = 0.5
                frame = cv2.resize(frame, None, fx=scaling_factor,  
                fy=scaling_factor,
                        interpolation=cv2.INTER_AREA)
                if not ret:
                    break

                self.frame = frame.copy()

            img = self.frame.copy()
            if is_running:
                tracked =  
                self.pose_tracker.track_target(self.frame)
                for item in tracked:
                    cv2.polylines(img, [np.int32(item.quad)],  
                    True, (255, 255, 255), 2)
                    for (x, y) in np.int32(item.points_cur):
                        cv2.circle(img, (x, y), 2, (255, 255,  
                        255))

            self.roi_selector.draw_rect(img)
            cv2.imshow('Tracker', img)
            ch = cv2.waitKey(1)
            if ch == ord(' '):
                self.paused = not self.paused
            if ch == ord('c'):
                self.pose_tracker.clear_targets()
            if ch == 27:
                break

class ROISelector(object):
    def __init__(self, win_name, callback_func):
        self.win_name = win_name
        self.callback_func = callback_func
        cv2.setMouseCallback(self.win_name, self.on_mouse_event)
        self.selection_start = None
        self.selected_rect = None

    def on_mouse_event(self, event, x, y, flags, param):
        if event == cv2.EVENT_LBUTTONDOWN:
            self.selection_start = (x, y)
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        if self.selection_start:
            if flags & cv2.EVENT_FLAG_LBUTTON:
                x_orig, y_orig = self.selection_start
                x_start, y_start = np.minimum([x_orig, y_orig],  
                [x, y])
                x_end, y_end = np.maximum([x_orig, y_orig], [x,  
                y])
                self.selected_rect = None
                if x_end > x_start and y_end > y_start:
                    self.selected_rect = (x_start, y_start, x_end,  
                    y_end)
            else:
                rect = self.selected_rect
                self.selection_start = None
                self.selected_rect = None
                if rect:
                    self.callback_func(rect)

    def draw_rect(self, img):
        if not self.selected_rect:
            return False

        x_start, y_start, x_end, y_end = self.selected_rect
        cv2.rectangle(img, (x_start, y_start), (x_end, y_end), (0,  
        255, 0), 2)
        return True

if __name__ == '__main__':
    VideoHandler().start()

What happened inside the code?
To start with, we have a PoseEstimator class that does all the heavy lifting here.  
We need something to detect the features in the image and something to match  
the features between successive images. So we use the ORB feature detector  
and the Flann feature matcher. As we can see, we initialize the class with these 
parameters in the constructor.

Whenever we select a region of interest, we call the add_target method to add that 
to our list of tracking targets. This method just extracts the features from that region 
of interest and stores in one of the class variables. Now that we have a target, we are 
ready to track it!
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The track_target method handles all the tracking. We take the current frame and 
extract all the keypoints. However, we are not really interested in all the keypoints  
in the current frame of the video. We just want the keypoints that belong to our 
target object. So now, our job is to find the closest keypoints in the current frame.

We now have a set of keypoints in the current frame and we have another set of 
keypoints from our target object in the previous frame. The next step is to extract 
the homography matrix from these matching points. This homography matrix tells 
us how to transform the overlaid rectangle so that it's aligned with the cardboard 
surface. We just need to take this homography matrix and apply it to the overlaid 
rectangle to obtain the new positions of all its points.

How to augment our reality?
Now that we know how to track planar objects, let's see how to overlay 3D objects on 
top of the real world. The objects are 3D but the video on our screen is 2D. So the first 
step here is to understand how to map those 3D objects to 2D surfaces so that it looks 
realistic. We just need to project those 3D points onto planar surfaces.

Mapping coordinates from 3D to 2D
Once we estimate the pose, we project the points from the 3D to the 2D. Consider the 
following image:
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As we can see here, the TV remote control is a 3D object but we are seeing it on a 2D 
plane. Now if we move it around, it will look like this:

This 3D object is still on a 2D plane. The object has moved to a different location 
and the distance from the camera has changed as well. How do we compute these 
coordinates? We need a mechanism to map this 3D object onto the 2D surface.  
This is where the 3D to 2D projection becomes really important.

We just need to estimate the initial camera pose to start with. Now, let's assume  
that the intrinsic parameters of the camera are already known. So we can just use  
the solvePnP function in OpenCV to estimate the camera's pose. This function  
is used to estimate the object's pose using a set of points. You can read more  
about it at http://docs.opencv.org/modules/calib3d/doc/camera_
calibration_and_3d_reconstruction.html#bool solvePnP(InputArray 
objectPoints, InputArray imagePoints, InputArray cameraMatrix, 
InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool 
useExtrinsicGuess, int flags). Once we do this, we need to project these  
points onto 2D. We use the OpenCV function projectPoints to do this. This 
function calculates the projections of those 3D points onto the 2D plane.

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool solvePnP(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec, bool useExtrinsicGu
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How to overlay 3D objects on a video?
Now that we have all the different blocks, we are ready to build the final system. 
Let's say we want to overlay a pyramid on top of our cardboard as shown here:

Let's tilt the cardboard to see what happens:
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Looks like the pyramid is following the surface. Let's add a second target:

You can keep adding more targets and all those pyramids will be tracked nicely. 
Let's see how to do this using OpenCV Python. Make sure to save the previous file as 
pose_estimation.py because we will be importing a couple of classes from there:

import cv2
import numpy as np

from pose_estimation import PoseEstimator, ROISelector

class Tracker(object):
    def __init__(self):
        self.cap = cv2.VideoCapture(0)
        self.frame = None
        self.paused = False
        self.tracker = PoseEstimator()

        cv2.namedWindow('Augmented Reality')
        self.roi_selector = ROISelector('Augmented Reality',  
        self.on_rect)

        self.overlay_vertices = np.float32([[0, 0, 0], [0, 1, 0],  
        [1, 1, 0], [1, 0, 0],
                               [0.5, 0.5, 4]])
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        self.overlay_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
                    (0,4), (1,4), (2,4), (3,4)]
        self.color_base = (0, 255, 0)
        self.color_lines = (0, 0, 0)

    def on_rect(self, rect):
        self.tracker.add_target(self.frame, rect)

    def start(self):
        while True:
            is_running = not self.paused and self.roi_selector.
selected_rect is None
            if is_running or self.frame is None:
                ret, frame = self.cap.read()
                scaling_factor = 0.5
                frame = cv2.resize(frame, None, fx=scaling_factor,  
                fy=scaling_factor,
                        interpolation=cv2.INTER_AREA)
                if not ret:
                    break

                self.frame = frame.copy()

            img = self.frame.copy()
            if is_running:
                tracked = self.tracker.track_target(self.frame)
                for item in tracked:
                    cv2.polylines(img, [np.int32(item.quad)],  
                    True, self.color_lines, 2)
                    for (x, y) in np.int32(item.points_cur):
                        cv2.circle(img, (x, y), 2,  
                        self.color_lines)

                    self.overlay_graphics(img, item)

            self.roi_selector.draw_rect(img)
            cv2.imshow('Augmented Reality', img)
            ch = cv2.waitKey(1)
            if ch == ord(' '):
                self.paused = not self.paused
            if ch == ord('c'):
                self.tracker.clear_targets()
            if ch == 27:
                break
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    def overlay_graphics(self, img, tracked):
        x_start, y_start, x_end, y_end = tracked.target.rect
        quad_3d = np.float32([[x_start, y_start, 0], [x_end,  
        y_start, 0],
                    [x_end, y_end, 0], [x_start, y_end, 0]])
        h, w = img.shape[:2]
        K = np.float64([[w, 0, 0.5*(w-1)],
                        [0, w, 0.5*(h-1)],
                        [0, 0, 1.0]])
        dist_coef = np.zeros(4)
        ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K,  
        dist_coef)
        verts = self.overlay_vertices * [(x_end-x_start),  
        (y_end-y_start),
                    -(x_end-x_start)*0.3] + (x_start, y_start, 0)
        verts = cv2.projectPoints(verts, rvec, tvec, K,  
        dist_coef)[0].reshape(-1, 2)

        verts_floor = np.int32(verts).reshape(-1,2)
        cv2.drawContours(img, [verts_floor[:4]], -1,  
        self.color_base, -3)
        cv2.drawContours(img, [np.vstack((verts_floor[:2],  
        verts_floor[4:5]))],
                    -1, (0,255,0), -3)
        cv2.drawContours(img, [np.vstack((verts_floor[1:3],  
        verts_floor[4:5]))],
                    -1, (255,0,0), -3)
        cv2.drawContours(img, [np.vstack((verts_floor[2:4],  
        verts_floor[4:5]))],
                    -1, (0,0,150), -3)
        cv2.drawContours(img, [np.vstack((verts_floor[3:4],  
        verts_floor[0:1],
                    verts_floor[4:5]))], -1, (255,255,0), -3)

        for i, j in self.overlay_edges:
            (x_start, y_start), (x_end, y_end) = verts[i],  
            verts[j]
            cv2.line(img, (int(x_start), int(y_start)),  
            (int(x_end), int(y_end)), self.color_lines, 2)

if __name__ == '__main__':
    Tracker().start()
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Let's look at the code
The class Tracker is used to perform all the computations here. We initialize the 
class with the pyramid structure that is defined using edges and vertices. The logic 
that we use to track the surface is the same as we discussed earlier because we are 
using the same class. We just need to use solvePnP and projectPoints to map the 
3D pyramid to the 2D surface.

Let's add some movements
Now that we know how to add a virtual pyramid, let's see if we can add some 
movements. Let's see how we can dynamically change the height of the pyramid. 
When you start, the pyramid will look like this:
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If you wait for some time, the pyramid gets taller and it will look like this:

Let's see how to do it in OpenCV Python. Inside the augmented reality code that we 
just discussed, add the following snippet at the end of the __init__ method in the 
Tracker class:

self.overlay_vertices = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], 
[1, 0, 0], [0.5, 0.5, 4]])
self.overlay_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
            (0,4), (1,4), (2,4), (3,4)]
self.color_base = (0, 255, 0)
self.color_lines = (0, 0, 0)

self.graphics_counter = 0
self.time_counter = 0

Now that we have the structure, we need to add the code to dynamically change the 
height. Replace the overlay_graphics() method with the following method:

def overlay_graphics(self, img, tracked):
    x_start, y_start, x_end, y_end = tracked.target.rect
    quad_3d = np.float32([[x_start, y_start, 0],  
    [x_end, y_start, 0],
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                [x_end, y_end, 0], [x_start, y_end, 0]])
    h, w = img.shape[:2]
    K = np.float64([[w, 0, 0.5*(w-1)],
                    [0, w, 0.5*(h-1)],
                    [0, 0, 1.0]])
    dist_coef = np.zeros(4)
    ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K,  
    dist_coef)

    self.time_counter += 1
    if not self.time_counter % 20:
        self.graphics_counter = (self.graphics_counter + 1) % 8

    self.overlay_vertices = np.float32([[0, 0, 0], [0, 1, 0],  
    [1, 1, 0], [1, 0, 0],
                           [0.5, 0.5, self.graphics_counter]])

    verts = self.overlay_vertices * [(x_end-x_start),  
    (y_end-y_start),
                -(x_end-x_start)*0.3] + (x_start, y_start, 0)
    verts = cv2.projectPoints(verts, rvec, tvec, K,  
    dist_coef)[0].reshape(-1, 2)

    verts_floor = np.int32(verts).reshape(-1,2)
    cv2.drawContours(img, [verts_floor[:4]], -1,  
    self.color_base, -3)
    cv2.drawContours(img, [np.vstack((verts_floor[:2],  
    verts_floor[4:5]))],
                -1, (0,255,0), -3)
    cv2.drawContours(img, [np.vstack((verts_floor[1:3],  
    verts_floor[4:5]))],
                -1, (255,0,0), -3)
    cv2.drawContours(img, [np.vstack((verts_floor[2:4],  
    verts_floor[4:5]))],
                -1, (0,0,150), -3)
    cv2.drawContours(img, [np.vstack((verts_floor[3:4],  
    verts_floor[0:1],
                verts_floor[4:5]))], -1, (255,255,0), -3)

    for i, j in self.overlay_edges:
        (x_start, y_start), (x_end, y_end) = verts[i], verts[j]
        cv2.line(img, (int(x_start), int(y_start)), (int(x_end),  
        int(y_end)), self.color_lines, 2)
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Now that we know how to change the height, let's go ahead and make the pyramid 
dance for us. We can make the tip of the pyramid oscillate in a nice periodic fashion. 
So when you start, it will look like this:

If you wait for some time, it will look like this:

You can look at augmented_reality_motion.py for the implementation details.
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In our next experiment, we will make the whole pyramid move around the region 
of interest. We can make it move in any way we want. Let's start by adding linear 
diagonal movement around our selected region of interest. When you start, it will 
look like this:

After some time, it will look like this:
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Refer to augmented_reality_dancing.py to see how to change the overlay_
graphics() method to make it dance. Let's see if we can make the pyramid go 
around in circles around our region of interest. When you start, it will look like this:

After some time, it will move to a new position:
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You can refer to augmented_reality_circular_motion.py to see how to make this 
happen. You can make it do anything you want. You just need to come up with the 
right mathematical formula and the pyramid will literally dance to your tune! You can 
also try out other virtual objects to see what you can with it. There are a lot of things 
you can do with a lot of different objects. These examples provide a good reference 
point, on top of which you can build many interesting augmented reality applications.

Summary
In this chapter, you learned about the premise of augmented reality and 
understood what an augmented reality system looks like. We discussed the 
geometric transformations required for augmented reality. You learned how to 
use those transformations to estimate the camera pose. You learned how to track 
planar objects. We discussed how we can add virtual objects on top of the real 
world. You learned how to modify the virtual objects in different ways to add 
cool effects. Remember that the world of computer vision is filled with endless 
possibilities! This book is designed to teach you the necessary skills to get started 
on a wide variety of projects. Now it's up to you and your imagination to use the 
skills you have acquired here to build something unique and interesting.
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Module 3

OpenCV with Python Blueprints

Design and develop advanced computer vision projects using OpenCV with Python
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Fun with Filters
The goal of this chapter is to develop a number of image processing filters and apply 
them to the video stream of a webcam in real time. These filters will rely on various 
OpenCV functions to manipulate matrices through splitting, merging, arithmetic 
operations, and applying lookup tables for complex functions.

The three effects are as follows:

• Black-and-white pencil sketch: To create this effect, we will make use of two 
image blending techniques, known as dodging and burning

• Warming/cooling filters: To create these effects, we will implement our own 
curve filters using a lookup table

• Cartoonizer: To create this effect, we will combine a bilateral filter, a median 
filter, and adaptive thresholding

OpenCV is such an advanced toolchain that often the question is not how to 
implement something from scratch, but rather which pre-canned implementation 
to choose for your needs. Generating complex effects is not hard if you have a lot of 
computing resources to spare. The challenge usually lies in finding an approach that 
not only gets the job done, but also gets it done in time.

Instead of teaching the basic concepts of image manipulation through theoretical 
lessons, we will take a practical approach and develop a single end-to-end app that 
integrates a number of image filtering techniques. We will apply our theoretical 
knowledge to arrive at a solution that not only works but also speeds up seemingly 
complex effects so that a laptop can produce them in real time.
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The following screenshot shows the final outcome of the three effects running  
on a laptop:

All of the code in this book is targeted for OpenCV 2.4.9 and has been 
tested on Ubuntu 14.04. Throughout this book, we will make extensive 
use of the NumPy package (http://www.numpy.org). In addition, 
this chapter requires the UnivariateSpline module of the SciPy 
package (http://www.scipy.org) as well as the wxPython 2.8 
graphical user interface (http://www.wxpython.org/download.
php) for cross-platform GUI applications. We will try to avoid further 
dependencies wherever possible.

http://www.numpy.org
http://www.scipy.org
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
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Planning the app
The final app will consist of the following modules and scripts:

• filters: A module comprising different classes for the three different image 
effects. The modular approach will allow us to use the filters independently 
of any graphical user interface (GUI).

• filters.PencilSketch: A class for applying the pencil sketch effect to an 
RGB color image.

• filters.WarmingFilter: A class for applying the warming filter to an RGB 
color image.

• filters.CoolingFilter: A class for applying the cooling filter to an RGB 
color image.

• filters.Cartoonizer: A method for applying the cartoonizer effect to an 
RGB color image.

• gui: A module that provides a wxPython GUI application to access the 
webcam and display the camera feed, which we will make extensive use of 
throughout the book.

• gui.BaseLayout: A generic layout from which more complicated layouts 
can be built.

• chapter1: The main script for this chapter.
• chapter1.FilterLayout: A custom layout based on gui.BaseLayout that 

displays the camera feed and a row of radio buttons that allows the user 
to select from the available image filters to be applied to each frame of the 
camera feed.

• chapter1.main: The main function routine for starting the GUI application 
and accessing the webcam.

Creating a black-and-white pencil sketch
In order to obtain a pencil sketch (that is, a black-and-white drawing) of the camera 
frame, we will make use of two image blending techniques, known as dodging and 
burning. These terms refer to techniques employed during the printing process in 
traditional photography; photographers would manipulate the exposure time of a 
certain area of a darkroom print in order to lighten or darken it. Dodging lightens an 
image, whereas burning darkens it. 
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Areas that were not supposed to undergo changes were protected with a mask. 
Today, modern image editing programs, such as Photoshop and Gimp, offer ways to 
mimic these effects in digital images. For example, masks are still used to mimic the 
effect of changing exposure time of an image, wherein areas of a mask with relatively 
intense values will expose the image more, thus lightening the image. OpenCV does 
not offer a native function to implement these techniques, but with a little insight 
and a few tricks, we will arrive at our own efficient implementation that can be used 
to produce a beautiful pencil sketch effect.

If you search on the Internet, you might stumble upon the following common 
procedure to achieve a pencil sketch from an RGB color image:

1. Convert the color image to grayscale.
2. Invert the grayscale image to get a negative.
3. Apply a Gaussian blur to the negative from step 2.
4. Blend the grayscale image from step 1 with the blurred negative from step 3 

using a color dodge.

Whereas steps 1 to 3 are straightforward, step 4 can be a little tricky. Let's get that 
one out of the way first.

OpenCV 3 comes with a pencil sketch effect right out of the 
box. The cv2.pencilSketch function uses a domain filter 
introduced in the 2011 paper Domain transform for edge-aware 
image and video processing, by Eduardo Gastal and Manuel 
Oliveira. However, for the purpose of this book, we will develop 
our own filter.

Implementing dodging and burning in 
OpenCV
In modern image editing tools, such as Photoshop, color dodging of an image A with 
a mask B is implemented as the following ternary statement acting on every pixel 
index, called idx:

((B[idx] == 255) ? B[idx] :  
    min(255, ((A[idx] << 8) / (255-B[idx]))))

This essentially divides the value of an A[idx] image pixel by the inverse of the 
B[idx] mask pixel value, while making sure that the resulting pixel value will be  
in the range of [0, 255] and that we do not divide by zero.
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We could translate this into the following naïve Python function, which accepts two 
OpenCV matrices (image and mask) and returns the blended image:

def dodgeNaive(image, mask):
    # determine the shape of the input image
    width,height = image.shape[:2]

    # prepare output argument with same size as image
    blend = np.zeros((width,height), np.uint8)

    for col in xrange(width):
        for row in xrange(height):

            # shift image pixel value by 8 bits
            # divide by the inverse of the mask
            tmp = (image[c,r] << 8) / (255.-mask)

            # make sure resulting value stays within bounds
            if tmp > 255:
                tmp = 255
            blend[c,r] = tmp
    return blend

As you might have guessed, although this code might be functionally correct, it will 
undoubtedly be horrendously slow. Firstly, the function uses for loops, which are 
almost always a bad idea in Python. Secondly, NumPy arrays (the underlying format 
of OpenCV images in Python) are optimized for array calculations, so accessing and 
modifying each image[c,r] pixel separately will be really slow.

Instead, we should realize that the <<8 operation is the same as multiplying the pixel 
value with the number 2^8=256, and that pixel-wise division can be achieved with 
the cv2.divide function. Thus, an improved version of our dodge function could 
look like this:

import cv2

def dodgeV2(image, mask):
    return cv2.divide(image, 255-mask, scale=256)

We have reduced the dodge function to a single line! The dodgeV2 function produces 
the same result as dodgeNaive but is orders of magnitude faster. In addition, cv2.
divide automatically takes care of division by zero, making the result 0 where 255-
mask is zero.
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Now, it is straightforward to implement an analogous burning function,  
which divides the inverted image by the inverted mask and inverts the result:

import cv2

def burnV2(image, mask):
    return 255 – cv2.divide(255-image, 255-mask, scale=256)

Pencil sketch transformation
With these tricks in our bag, we are now ready to take a look at the entire procedure. 
The final code will be in its own class in the filters module. After we have converted 
a color image to grayscale, we aim to blend this image with its blurred negative:

1. We import the OpenCV and numpy modules:
import cv2
import numpy as np

2. Instantiate the PencilSketch class:
class PencilSketch:
    def __init__(self, (width, height),  
        bg_gray='pencilsketch_bg.jpg'):

The constructor of this class will accept the image dimensions as well as an 
optional background image, which we will make use of in just a bit. If the file 
exists, we will open it and scale it to the right size:

self.width = width
self.height = height

# try to open background canvas (if it exists)
self.canvas = cv2.imread(bg_gray, cv2.CV_8UC1)
if self.canvas is not None:
    self.canvas = cv2.resize(self.canvas,  
        (self.width, self.height))

3. Add a render method that will perform the pencil sketch:
def renderV2(self, img_rgb):

4. Converting an RGB image (imgRGB) to grayscale is straightforward:
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)

Note that it does not matter whether the input image is RGB or BGR.
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5. We then invert the image and blur it with a large Gaussian kernel of size 
(21,21):
img_gray_inv = 255 – img_gray
img_blur = cv2.GaussianBlur(img_gray_inv, (21,21), 0, 0)

6. We use our dodgeV2 dodging function from the aforementioned code to 
blend the original grayscale image with the blurred inverse:
img_blend = dodgeV2(mg_gray, img_blur)
return cv2.cvtColor(img_blend, cv2.COLOR_GRAY2RGB)

The resulting image looks like this:

Did you notice that our code can be optimized further?

A Gaussian blur is basically a convolution with a Gaussian function. One of the 
beauties of convolutions is their associative property. This means that it does not 
matter whether we first invert the image and then blur it, or first blur the image and 
then invert it.

"Then what matters?" you might ask. Well, if we start with a blurred image and pass 
its inverse to the dodgeV2 function, then within that function, the image will get 
inverted again (the 255-mask part), essentially yielding the original image. If we get 
rid of these redundant operations, an optimized render method would look like this:

def render(img_rgb):
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.GaussianBlur(img_gray, (21,21), 0, 0)
    img_blend = cv2.divide(img_gray, img_blur, scale=256)
    return img_blend
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For kicks and giggles, we want to lightly blend our transformed image (img_blend) 
with a background image (self.canvas) that makes it look as if we drew the image 
on a canvas:

if self.canvas is not None:
    img_blend = cv2.multiply(img_blend, self.canvas, scale=1./256)
return cv2.cvtColor(img_blend, cv2.COLOR_GRAY2BGR)

And we're done! The final output looks like what is shown here:

Generating a warming/cooling filter
When we perceive images, our brain picks up on a number of subtle clues to infer 
important details about the scene. For example, in broad daylight, highlights may 
have a slightly yellowish tint because they are in direct sunlight, whereas shadows 
may appear slightly bluish due to the ambient light of the blue sky. When we view 
an image with such color properties, we might immediately think of a sunny day.

This effect is no mystery to photographers, who sometimes purposely manipulate 
the white balance of an image to convey a certain mood. Warm colors are generally 
perceived as more pleasant, whereas cool colors are associated with night and 
drabness.

To manipulate the perceived color temperature of an image, we will implement 
a curve filter. These filters control how color transitions appear between different 
regions of an image, allowing us to subtly shift the color spectrum without adding  
an unnatural-looking overall tint to the image.
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Color manipulation via curve shifting
A curve filter is essentially a function, y = f(x), that maps an input pixel value x to  
an output pixel value y. The curve is parameterized by a set of n+1 anchor points,  
as follows: {(x_0,y_0), (x_1,y_1), ..., (x_n, y_n)}.

Each anchor point is a pair of numbers that represent the input and output pixel 
values. For example, the pair (30, 90) means that an input pixel value of 30 is 
increased to an output value of 90. Values between anchor points are interpolated 
along a smooth curve (hence the name curve filter).

Such a filter can be applied to any image channel, be it a single grayscale channel or 
the R, G, and B channels of an RGB color image. Thus, for our purposes, all values of 
x and y must stay between 0 and 255.

For example, if we wanted to make a grayscale image slightly brighter, we could use 
a curve filter with the following set of control points: {(0,0), (128, 192), (255,255)}. This 
would mean that all input pixel values except 0 and 255 would be increased slightly, 
resulting in an overall brightening effect of the image.

If we want such filters to produce natural-looking images, it is important to respect 
the following two rules:

• Every set of anchor points should include (0,0) and (255,255). This is 
important in order to prevent the image from appearing as if it has an  
overall tint, as black remains black and white remains white.

• The function f(x) should be monotonously increasing. In other words, 
with increasing x, f(x) either stays the same or increases (that is, it never 
decreases). This is important for making sure that shadows remain shadows 
and highlights remain highlights.

Implementing a curve filter by using lookup 
tables
Curve filters are computationally expensive, because the values of f(x) must be 
interpolated whenever x does not coincide with one of the prespecified anchor 
points. Performing this computation for every pixel of every image frame that we 
encounter would have dramatic effects on performance.
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Instead, we make use of a lookup table. Since there are only 256 possible pixel 
values for our purposes, we need to calculate f(x) only for all the 256 possible values 
of x. Interpolation is handled by the UnivariateSpline function of the scipy.
interpolate module, as shown in the following code snippet:

from scipy.interpolate import UnivariateSpline

def _create_LUT_8UC1(self, x, y):
  spl = UnivariateSpline(x, y)
  return spl(xrange(256))

The return argument of the function is a 256-element list that contains the 
interpolated f(x) values for every possible value of x.

All we need to do now is come up with a set of anchor points, (x_i, y_i), and we are 
ready to apply the filter to a grayscale input image (img_gray):

import cv2
import numpy as np

x = [0, 128, 255]
y = [0, 192, 255]
myLUT = _create_LUT_8UC1(x, y)
img_curved = cv2.LUT(img_gray, myLUT).astype(np.uint8)

The result looks like this (the original image is on the left, and the transformed image 
is on the right):

Designing the warming/cooling effect
With the mechanism to quickly apply a generic curve filter to any image channel 
in place, we now turn to the question of how to manipulate the perceived color 
temperature of an image. Again, the final code will have its own class in the filters 
module.
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If you have a minute to spare, I advise you to play around with the different curve 
settings for a while. You can choose any number of anchor points and apply the 
curve filter to any image channel you can think of (red, green, blue, hue, saturation, 
brightness, lightness, and so on). You could even combine multiple channels, or 
decrease one and shift another to a desired region. What will the result look like?

However, if the number of possibilities dazzles you, take a more conservative 
approach. First, by making use of our _create_LUT_8UC1 function developed in the 
preceding steps, let's define two generic curve filters, one that (by trend) increases all 
pixel values of a channel, and one that generally decreases them:

class WarmingFilter:

  def __init__(self):
    self.incr_ch_lut = _create_LUT_8UC1([0, 64, 128, 192, 256],
      [0, 70, 140, 210, 256])
    self.decr_ch_lut = _create_LUT_8UC1([0, 64, 128, 192, 256],
      [0, 30,  80, 120, 192])

The easiest way to make an image appear as if it was taken on a hot, sunny day 
(maybe close to sunset), is to increase the reds in the image and make the colors 
appear vivid by increasing the color saturation. We will achieve this in two steps:

1. Increase the pixel values in the R channel and decrease the pixel values in 
the B channel of an RGB color image using incr_ch_lut and decr_ch_lut, 
respectively:
def render(self, img_rgb):
    c_r, c_g, c_b = cv2.split(img_rgb)
    c_r = cv2.LUT(c_r, self.incr_ch_lut).astype(np.uint8)
    c_b = cv2.LUT(c_b, self.decr_ch_lut).astype(np.uint8)
    img_rgb = cv2.merge((c_r, c_g, c_b))

2. Transform the image into the HSV color space (H means hue, S means 
saturation, and V means value), and increase the S channel using incr_ch_
lut. This can be achieved with the following function, which expects an RGB 
color image as input:

c_b = cv2.LUT(c_b, decrChLUT).astype(np.uint8)

# increase color saturation
c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb, 
    cv2.COLOR_RGB2HSV))
c_s = cv2.LUT(c_s, self.incr_ch_lut).astype(np.uint8)
return cv2.cvtColor(cv2.merge((c_h, c_s, c_v)), 
    cv2.COLOR_HSV2RGB)
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The result looks like what is shown here:

Analogously, we can define a cooling filter that increases the pixel values in the B 
channel, decreases the pixel values in the R channel of an RGB image, converts the 
image into the HSV color space, and decreases color saturation via the S channel:

class CoolingFilter:

    def render(self, img_rgb):

        c_r, c_g, c_b = cv2.split(img_rgb)
        c_r = cv2.LUT(c_r, self.decr_ch_lut).astype(np.uint8)
        c_b = cv2.LUT(c_b, self.incr_ch_lut).astype(np.uint8)
        img_rgb = cv2.merge((c_r, c_g, c_b))

        # decrease color saturation
        c_h, c_s, c_v = cv2.split(cv2.cvtColor(img_rgb,  
            cv2.COLOR_RGB2HSV))
        c_s = cv2.LUT(c_s, self.decr_ch_lut).astype(np.uint8)
        return cv2.cvtColor(cv2.merge((c_h, c_s, c_v)),  
            cv2.COLOR_HSV2RGB)

Now, the result looks like this:
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Cartoonizing an image
Over the past few years, professional cartoonizer software has popped up all over 
the place. In order to achieve the basic cartoon effect, all that we need is a bilateral 
filter and some edge detection. The bilateral filter will reduce the color palette, or 
the numbers of colors that are used in the image. This mimics a cartoon drawing, 
wherein a cartoonist typically has few colors to work with. Then we can apply edge 
detection to the resulting image to generate bold silhouettes. The real challenge, 
however, lies in the computational cost of bilateral filters. We will thus use some 
tricks to produce an acceptable cartoon effect in real time.

We will adhere to the following procedure to transform an RGB color image into  
a cartoon:

1. Apply a bilateral filter to reduce the color palette of the image.
2. Convert the original color image into grayscale.
3. Apply a median blur to reduce image noise.
4. Use adaptive thresholding to detect and emphasize the edges in an  

edge mask.
5. Combine the color image from step 1 with the edge mask from step 4.

Using a bilateral filter for edge-aware 
smoothing
A strong bilateral filter is ideally suitable for converting an RGB image into a color 
painting or a cartoon, because it smoothens flat regions while keeping edges sharp.  
It seems that the only drawback of this filter is its computational cost, as it is orders 
of magnitude slower than other smoothing operations, such as a Gaussian blur.

The first measure to take when we need to reduce the computational cost is to 
perform an operation on an image of low resolution. In order to downscale an RGB 
image (imgRGB) to a quarter of its size (reduce the width and height to half), we could 
use cv2.resize:

import cv2

img_small = cv2.resize(img_rgb, (0,0), fx=0.5, fy=0.5)

A pixel value in the resized image will correspond to the pixel average of a small 
neighborhood in the original image. However, this process may produce image 
artifacts, which is also known as aliasing. While this is bad enough on its own, the 
effect might be enhanced by subsequent processing, for example, edge detection.



Fun with Filters

[ 352 ]

A better alternative might be to use the Gaussian pyramid for downscaling (again to 
a quarter of the original size). The Gaussian pyramid consists of a blur operation that 
is performed before the image is resampled, which reduces aliasing effects:

img_small = cv2.pyrDown(img_rgb)

However, even at this scale, the bilateral filter might still be too slow to run in real 
time. Another trick is to repeatedly (say, five times) apply a small bilateral filter to 
the image instead of applying a large bilateral filter once:

num_iter = 5
for _ in xrange(num_iter):
    img_small = cv2.bilateralFilter(img_small, d=9, sigmaColor=9,  
        sigmaSpace=7)

The three parameters in cv2.bilateralFilter control the diameter of the 
pixel neighborhood (d) and the standard deviation of the filter in the color space 
(sigmaColor) and coordinate space (sigmaSpace).

Don't forget to restore the image to its original size:

img_rgb = cv2.pyrUp(img_small)

The result looks like a blurred color painting of a creepy programmer, as follows:

Detecting and emphasizing prominent edges
Again, when it comes to edge detection, the challenge often does not lie in how the 
underlying algorithm works, but instead which particular algorithm to choose for 
the task at hand. You might already be familiar with a variety of edge detectors. 
For example, Canny edge detection (cv2.Canny) provides a relatively simple and 
effective method to detect edges in an image, but it is susceptible to noise. 
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The Sobel operator (cv2.Sobel) can reduce such artifacts, but it is not rotationally 
symmetric. The Scharr operator (cv2.Scharr) was targeted at correcting this, but 
only looks at the first image derivative. If you are interested, there are even more 
operators for you, such as the Laplacian or ridge operator (which includes the 
second derivative), but they are far more complex. And in the end, for our specific 
purposes, they might not look better, maybe because they are as susceptible to 
lighting conditions as any other algorithm.

For the purpose of this project, we will choose a function that might not even be 
associated with conventional edge detection—cv2.adaptiveThreshold. Like cv2.
threshold, this function uses a threshold pixel value to convert a grayscale image into 
a binary image. That is, if a pixel value in the original image is above the threshold, 
then the pixel value in the final image will be 255. Otherwise, it will be 0. However, 
the beauty of adaptive thresholding is that it does not look at the overall properties 
of the image. Instead, it detects the most salient features in each small neighborhood 
independently, without regard to the global image optima. This makes the algorithm 
extremely robust to lighting conditions, which is exactly what we want when we seek 
to draw bold, black outlines around objects and people in a cartoon.

However, it also makes the algorithm susceptible to noise. To counteract this, we 
will preprocess the image with a median filter. A median filter does what its name 
suggests; it replaces each pixel value with the median value of all the pixels in a 
small pixel neighborhood. We first convert the RGB image (img_rgb) to grayscale 
(img_gray) and then apply a median blur with a seven-pixel local neighborhood:

# convert to grayscale and apply median blur
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
img_blur = cv2.medianBlur(img_gray, 7)

After reducing the noise, it is now safe to detect and enhance the edges using 
adaptive thresholding. Even if there is some image noise left, the cv2.ADAPTIVE_
THRESH_MEAN_C algorithm with blockSize=9 will ensure that the threshold is 
applied to the mean of a 9 x 9 neighborhood minus C=2:

img_edge = cv2.adaptiveThreshold(img_blur, 255,  
                                 cv2.ADAPTIVE_THRESH_MEAN_C,  
                                 cv2.THRESH_BINARY, 9, 2)

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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The result of the adaptive thresholding looks like this:

Combining colors and outlines to produce  
a cartoon
The last step is to combine the two. Simply fuse the two effects together into a single 
image using cv2.bitwise_and. The complete function is as follows:

def render(self, img_rgb):
    numDownSamples = 2 # number of downscaling steps
    numBilateralFilters = 7  # number of bilateral filtering steps

    # -- STEP 1 --
    # downsample image using Gaussian pyramid
    img_color = img_rgb
    for _ in xrange(numDownSamples):
        img_color = cv2.pyrDown(img_color)

    # repeatedly apply small bilateral filter instead of applying
    # one large filter
    for _ in xrange(numBilateralFilters):
        img_color = cv2.bilateralFilter(img_color, 9, 9, 7)

    # upsample image to original size
    for _ in xrange(numDownSamples):
        img_color = cv2.pyrUp(img_color)

    # -- STEPS 2 and 3 --
    # convert to grayscale and apply median blur
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
    img_blur = cv2.medianBlur(img_gray, 7)
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    # -- STEP 4 --
    # detect and enhance edges
    img_edge = cv2.adaptiveThreshold(img_blur, 255,
        cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 2)

    # -- STEP 5 --
    # convert back to color so that it can be bit-ANDed
    # with color image
    img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB)
    return cv2.bitwise_and(img_color, img_edge)

The result looks like what is shown here:

Putting it all together
Before we can make use of the designed image filter effects in an interactive way,  
we need to set up the main script and design a GUI application.

Running the app
To run the application, we will turn to the chapter1.py. script, which we will start 
by importing all the necessary modules:

import numpy as np

import wx
import cv2
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We will also have to import a generic GUI layout (from gui) and all the designed 
image effects (from filters):

from gui import BaseLayout
from filters import PencilSketch, WarmingFilter, CoolingFilter,  
    Cartoonizer

OpenCV provides a straightforward way to access a computer's webcam or camera 
device. The following code snippet opens the default camera ID (0) of a computer 
using cv2.VideoCapture:

def main():
    capture = cv2.VideoCapture(0)

On some platforms, the first call to cv2.VideoCapture fails to open a channel.  
In that case, we provide a workaround by opening the channel ourselves:

if not(capture.isOpened()):
    capture.open() 

In order to give our application a fair chance to run in real time, we will limit the size 
of the video stream to 640 x 480 pixels:

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

If you are using OpenCV 3, the constants that you are looking for 
might be called cv3.CAP_PROP_FRAME_WIDTH and cv3.CAP_
PROP_FRAME_HEIGHT.

Then the capture stream can be passed to our GUI application, which is an instance 
of the FilterLayout class:

    # start graphical user interface
    app = wx.App()
    layout = FilterLayout(None, -1, 'Fun with Filters', capture)
    layout.Show(True)
    app.MainLoop()

The only thing left to do now is design the said GUI.

The GUI base class
The FilterLayout GUI will be based on a generic, plain layout class called 
BaseLayout, which we will be able to use in subsequent chapters as well.
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The BaseLayout class is designed as an abstract base class. You can think of this class 
as a blueprint or recipe that will apply to all the layouts that we are yet to design—a 
skeleton class, if you will, that will serve as the backbone for all of our future GUI code. 
In order to use abstract classes, we need the following import statement:

from abc import ABCMeta, abstractmethod

We also include some other modules that will be helpful, especially the wx Python 
module and OpenCV (of course):

import time

import wx
import cv2

The class is designed to be derived from the blueprint or skeleton, that is, the 
wx.Frame class. We also mark the class as abstract by adding the __metaclass__ 
attribute:

class BaseLayout(wx.Frame):
    __metaclass__ = ABCMeta

Later on, when we write our own custom layout (FilterLayout), we will use the 
same notation to specify that the class is based on the BaseLayout blueprint (or 
skeleton) class, for example, in class FilterLayout(BaseLayout):. But for now, 
let's focus on the BaseLayout class.

An abstract class has at least one abstract method. An abstract method is akin to 
specifying that a certain method must exist, but we are not sure at that time what  
it should look like. For example, suppose BaseLayout contains a method specified  
as follows:

@abstractmethod
def _init_custom_layout(self): 
    pass

Then any class deriving from it, such as FilterLayout, must specify a fully  
fleshed-out implementation of a method with that exact signature. This will  
allow us to create custom layouts, as you will see in a moment.

But first, let's proceed to the GUI constructor.
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The GUI constructor
The BaseLayout constructor accepts an ID (-1), a title string ('Fun with Filters'), 
a video capture object, and an optional argument that specifies the number of frames 
per second. Then, the first thing to do in the constructor is try and read a frame from 
the captured object in order to determine the image size:

def __init__(self, parent, id, title, capture, fps=10):
    self.capture = capture
    # determine window size and init wx.Frame
    _, frame = self.capture.read()
    self.imgHeight,self.imgWidth = frame.shape[:2]

We will use the image size to prepare a buffer that will store each video frame as 
a bitmap, and to set the size of the GUI. Because we want to display a bunch of 
control buttons below the current video frame, we set the height of the GUI to self.
imgHeight+20:

self.bmp = wx.BitmapFromBuffer(self.imgWidth, 
    self.imgHeight, frame)
wx.Frame.__init__(self, parent, id, title, 
        size=(self.imgWidth, self.imgHeight+20))

We then provide two methods to initialize some more parameters and create the 
actual layout of the GUI:

self._init_base_layout()
self._create_base_layout()

Handling video streams
The video stream of the webcam is handled by a series of steps that begin with the 
_init_base_layout method. These steps might appear overly complicated at first, 
but they are necessary in order to allow the video to run smoothly, even at higher 
frame rates (that is, to counteract flicker).

The wxPython module works with events and callback methods. When a certain 
event is triggered, it can cause a certain class method to be executed (in other words, 
a method can bind to an event). We will use this mechanism to our advantage and 
display a new frame every so often using the following steps:

1. We create a timer that will generate a wx.EVT_TIMER event whenever 1000./
fps milliseconds have passed:
def _init_base_layout(self):
    self.timer = wx.Timer(self)
    self.timer.Start(1000./self.fps)
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2. Whenever the timer is up, we want the _on_next_frame method to be called. 
It will try to acquire a new video frame:
self.Bind(wx.EVT_TIMER, self._on_next_frame)

3. The _on_next_frame method will process the new video frame and store the 
processed frame in a bitmap. This will trigger another event, wx.EVT_PAINT. 
We want to bind this event to the _on_paint method, which will paint the 
display the new frame:
self.Bind(wx.EVT_PAINT, self._on_paint)

The _on_next_frame method grabs a new frame and, once done, sends the frame to 
another method, __process_frame, for further processing:

def _on_next_frame(self, event):
    ret, frame = self.capture.read()
    if ret:
        frame = self._process_frame(cv2.cvtColor(frame, 
            cv2.COLOR_BGR2RGB))

The processed frame (frame) is then stored in a bitmap buffer (self.bmp):

self.bmp.CopyFromBuffer(frame)

Calling Refresh triggers the aforementioned wx.EVT_PAINT event, which binds to 
_on_paint:

self.Refresh(eraseBackground=False)

The paint method then grabs the frame from the buffer and displays it:

def _on_paint(self, event):
    deviceContext = wx.BufferedPaintDC(self.pnl)
    deviceContext.DrawBitmap(self.bmp, 0, 0)

A basic GUI layout
The creation of the generic layout is done by a method called _create_base_layout. 
The most basic layout consists of only a large black panel that provides enough room 
to display the video feed:

def _create_base_layout(self):
    self.pnl = wx.Panel(self, -1,
                        size=(self.imgWidth, self.imgHeight))
    self.pnl.SetBackgroundColour(wx.BLACK)
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In order for the layout to be extendable, we add it to a vertically arranged 
wx.BoxSizer object:

self.panels_vertical = wx.BoxSizer(wx.VERTICAL)
self.panels_vertical.Add(self.pnl, 1, flag=wx.EXPAND)

Next, we specify an abstract method, _create_custom_layout, for which we will 
not fill in any code. Instead, any user of our base class can make their own custom 
modifications to the basic layout:

self._create_custom_layout()

Then, we just need to set the minimum size of the resulting layout and center it:

self.SetMinSize((self.imgWidth, self.imgHeight))
self.SetSizer(self.panels_vertical)
self.Centre()

A custom filter layout
Now we are almost done! If we want to use the BaseLayout class, we need to 
provide code for the three methods that were left blank previously:

• _init_custom_layout: This is where we can initialize task-specific 
parameters

• _create_custom_layout: This is where we can make task-specific 
modifications to the GUI layout

• _process_frame: This is where we perform task-specific processing on each 
captured frame of the camera feed

At this point, initializing the image filters is self-explanatory, as it only requires us to 
instantiate the corresponding classes:

def _init_custom_layout(self):
    self.pencil_sketch = PencilSketch((self.imgWidth, 
        self.imgHeight))
    self.warm_filter = WarmingFilter()
    self.cool_filter = CoolingFilter()
    self.cartoonizer = Cartoonizer()

To customize the layout, we arrange a number of radio buttons horizontally,  
one button per image effect mode:

def _create_custom_layout(self):
    # create a horizontal layout with all filter modes
    pnl = wx.Panel(self, -1 )
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    self.mode_warm = wx.RadioButton(pnl, -1, 'Warming Filter',
        (10, 10), style=wx.RB_GROUP)
    self.mode_cool = wx.RadioButton(pnl, -1, 'Cooling Filter', 
        (10, 10))
    self.mode_sketch = wx.RadioButton(pnl, -1, 'Pencil Sketch',
        (10, 10))
    self.mode_cartoon = wx.RadioButton(pnl, -1, 'Cartoon',
        (10, 10))
    hbox = wx.BoxSizer(wx.HORIZONTAL)
    hbox.Add(self.mode_warm, 1)
    hbox.Add(self.mode_cool, 1)
    hbox.Add(self.mode_sketch, 1)
    hbox.Add(self.mode_cartoon, 1)
    pnl.SetSizer(hbox)

Here, the style=wx.RB_GROUP option makes sure that only one of these radio 
buttons can be selected at a time.

To make these changes take effect, pnl needs to be added to list of existing panels:

self.panels_vertical.Add(pnl, flag=wx.EXPAND | wx.BOTTOM | wx.TOP,  
            border=1)

The last method to be specified is _process_frame. Recall that this method is 
triggered whenever a new camera frame is received. All that we need to do is 
pick the right image effect to be applied, which depends on the radio button 
configuration. We simply check which of the buttons is currently selected and call 
the corresponding render method:

def _process_frame(self, frame_rgb):
    if self.mode_warm.GetValue():
        frame = self.warm_filter.render(frame_rgb)
    elif self.mode_cool.GetValue():
        frame = self.cool_filter.render(frame_rgb)
    elif self.mode_sketch.GetValue():
        frame = self.pencil_sketch.render(frame_rgb)
    elif self.mode_cartoon.GetValue():
        frame = self.cartoonizer.render(frame_rgb)

Don't forget to return the processed frame:

return frame
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And we're done!

Here is the result:

Summary
In this chapter, we explored a number of interesting image processing effects. We 
used dodging and burning to create a black-and-white pencil sketch effect, explored 
lookup tables to arrive at an efficient implementation of curve filters, and got creative 
to produce a cartoon effect.

In the next chapter, we will shift gears a bit and explore the use of depth sensors, 
such as Microsoft Kinect 3D, to recognize hand gestures in real time.
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Hand Gesture Recognition 
Using a Kinect Depth Sensor

The goal of this chapter is to develop an app that detects and tracks simple hand 
gestures in real time using the output of a depth sensor, such as that of a Microsoft 
Kinect 3D sensor or an Asus Xtion. The app will analyze each captured frame to 
perform the following tasks:

• Hand region segmentation: The user's hand region will be extracted in each 
frame by analyzing the depth map output of the Kinect sensor, which is done 
by thresholding, applying some morphological operations, and finding 
connected components

• Hand shape analysis: The shape of the segmented hand region will be 
analyzed by determining contours, convex hull, and convexity defects

• Hand gesture recognition: The number of extended fingers will be 
determined based on the hand contour's convexity defects, and the gesture 
will be classified accordingly (with no extended fingers corresponding to a 
fist, and five extended fingers corresponding to an open hand)

Gesture recognition is an ever-popular topic in computer science. This is because 
it not only enables humans to communicate with machines (human-machine 
interaction or HMI), but also constitutes the first step for machines to begin 
understanding human body language. With affordable sensors such as Microsoft 
Kinect or Asus Xtion, and open source software such as OpenKinect and OpenNI, it 
has never been easy to get started in the field yourself. So, what shall we do with all 
this technology?
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The beauty of the algorithm that we are going to implement in this chapter is that it 
works well for a number of hand gestures, yet is simple enough to run in real time 
on a generic laptop. Also, if we want, we can easily extend it to incorporate more 
complicated hand pose estimations. The end product looks like this:

No matter how many fingers of my left hand I extend, the algorithm correctly 
segments the hand region (white), draws the corresponding convex hull (the green 
line surrounding the hand), finds all convexity defects that belong to the spaces 
between fingers (large green points) while ignoring others (small red points), and 
infers the correct number of extended fingers (the number in the bottom-right 
corner), even for a fist.

This chapter assumes that you have a Microsoft Kinect 3D sensor 
installed. Alternatively, you may install an Asus Xtion or any other 
depth sensor for which OpenCV has built-in support. First, install 
OpenKinect and libfreenect from http://www.openkinect.org/
wiki/Getting_Started. Then, you need to build (or rebuild) 
OpenCV with OpenNI support. The GUI used in this chapter will 
again be designed with wxPython, which can be obtained from 
http://www.wxpython.org/download.php.

http://www.openkinect.org/wiki/Getting_Started
http://www.openkinect.org/wiki/Getting_Started
http://www.wxpython.org/download.php
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Planning the app
The final app will consist of the following modules and scripts:

• gestures: A module that consists of an algorithm for recognizing hand 
gestures. We separate this algorithm from the rest of the application so that it 
can be used as a standalone module without the need for a GUI.

• gestures.HandGestureRecognition: A class that implements the entire 
process flow of hand-gesture recognition. It accepts a single-channel depth 
image (acquired from the Kinect depth sensor) and returns an annotated 
RGB color image with an estimated number of extended fingers.

• gui: A module that provides a wxPython GUI application to access the 
capture device and display the video feed. This is the same module that we 
used in the last chapter. In order to have it access the Kinect depth sensor 
instead of a generic camera, we will have to extend some of the base class 
functionality.

• gui.BaseLayout: A generic layout from which more complicated layouts 
can be built.

• chapter2: The main script for the chapter.
• chapter2.KinectLayout: A custom layout based on gui.BaseLayout that 

displays the Kinect depth sensor feed. Each captured frame is processed with 
the HandGestureRecognition class described earlier.

• chapter2.main: The main function routine for starting the GUI application 
and accessing the depth sensor.

Setting up the app
Before we can get down to the nitty-gritty of our gesture recognition algorithm, we 
need to make sure that we can access the Kinect sensor and display a stream of depth 
frames in a simple GUI.
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Accessing the Kinect 3D sensor
Accessing Microsoft Kinect from within OpenCV is not much different from 
accessing a computer's webcam or camera device. The easiest way to integrate a 
Kinect sensor with OpenCV is by using an OpenKinect module called freenect.  
For installation instructions, take a look at the preceding information box. The 
following code snippet grants access to the sensor using cv2.VideoCapture:

import cv2
import freenect

device = cv2.cv.CV_CAP_OPENNI
capture = cv2.VideoCapture(device)

On some platforms, the first call to cv2.VideoCapture fails to open a capture 
channel. In this case, we provide a workaround by opening the channel ourselves:

if not(capture.isOpened(device)):
    capture.open(device)

If you want to connect to your Asus Xtion, the device variable should be assigned 
the cv2.cv.CV_CAP_OPENNI_ASUS value instead.

In order to give our app a fair chance of running in real time, we will limit the frame 
size to 640 x 480 pixels:

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

If you are using OpenCV 3, the constants you are looking for might be 
called cv3.CAP_PROP_FRAME_WIDTH and cv3.CAP_PROP_FRAME_
HEIGHT.

The read() method of cv2.VideoCapture is inappropriate when we need to 
synchronize a set of cameras or a multihead camera, such as a Kinect. In this case, we 
should use the grab() and retrieve() methods instead. An even easier approach 
when working with OpenKinect is to use the sync_get_depth() and sync_get_
video()methods.

For the purpose of this chapter, we will need only the Kinect's depth map, which is a 
single-channel (grayscale) image in which each pixel value is the estimated distance 
from the camera to a particular surface in the visual scene. The latest frame can be 
grabbed via this code:

depth, timestamp = freenect.sync_get_depth()
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The preceding code returns both the depth map and a timestamp. We will ignore 
the latter for now. By default, the map is in 11-bit format, which is inadequate to be 
visualized with cv2.imshow right away. Thus, it is a good idea to convert the image 
to 8-bit precision first.

In order to reduce the range of depth values in the frame, we will clip the maximal 
distance to a value of 1,023 (or 2**10-1). This will get rid of values that correspond 
either to noise or distances that are far too large to be of interest to us:

np.clip(depth, 0, 2**10-1, depth)
depth >>= 2

Then, we will convert the image into 8-bit format and display it:

depth = depth.astype(np.uint8)
cv2.imshow("depth", depth)

Running the app
In order to run our app, we will need to execute a main function routine that accesses 
the Kinect, generates the GUI, and executes the main loop of the app. This is done by 
the main function of chapter2.py:

import numpy as np

import wx
import cv2
import freenect

from gui import BaseLayout
from gestures import HandGestureRecognition

def main():
    device = cv2.cv.CV_CAP_OPENNI
    capture = cv2.VideoCapture()
    if not(capture.isOpened()):
        capture.open(device)

    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)
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As in the last chapter, we will design a suitable layout (KinectLayout) for the 
current project:

    # start graphical user interface
    app = wx.App()
    layout = KinectLayout(None, -1, 'Kinect Hand Gesture  
        Recognition', capture)
    layout.Show(True)
    app.MainLoop()

The Kinect GUI
The layout chosen for the current project (KinectLayout) is as plain as it gets.  
It should simply display the live stream of the Kinect depth sensor at a comfortable 
frame rate of 10 frames per second. Therefore, there is no need to further customize 
BaseLayout:

class KinectLayout(BaseLayout):
    def _create_custom_layout(self):
        pass

The only parameter that needs to be initialized this time is the recognition class.  
This will be useful in just a moment:

    def _init_custom_layout(self):
        self.hand_gestures = HandGestureRecognition()

Instead of reading a regular camera frame, we need to acquire a depth frame via 
the freenect method sync_get_depth(). This can be achieved by overriding the 
following method:

def _acquire_frame(self):

As mentioned earlier, by default this function returns a single-channel depth  
image with 11-bit precision and a timestamp. However, we are not interested  
in the timestamp, and we simply pass on the frame if the acquisition is successful:

        frame, _ = freenect.sync_get_depth()
        # return success if frame size is valid
        if frame is not None:
            return (True, frame)
        else:
            return (False, frame)
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The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure that we provide a _process_frame method. This method accepts 
a depth image with 11-bit precision, processes it, and returns an annotated 8-bit RGB 
color image. Conversion to a regular grayscale image is the same as mentioned in the 
previous subsection:

def _process_frame(self, frame):
    # clip max depth to 1023, convert to 8-bit grayscale
    np.clip(frame, 0, 2**10 – 1, frame)
    frame >>= 2
    frame = frame.astype(np.uint8)

The resulting grayscale image can then be passed to the hand gesture recognizer, 
which will return the estimated number of extended fingers (num_fingers) and the 
annotated RGB color image mentioned earlier (img_draw):

num_fingers, img_draw = self.hand_gestures.recognize(frame)

In order to simplify the segmentation task of the HandGestureRecognition class, 
we will instruct the user to place their hand in the center of the screen. To provide a 
visual aid for this, let's draw a rectangle around the image center and highlight the 
center pixel of the image in orange:

height, width = frame.shape[:2]
cv2.circle(img_draw, (width/2, height/2), 3, [255, 102, 0], 2)
cv2.rectangle(img_draw, (width/3, height/3), (width*2/3,  
            height*2/3), [255, 102, 0], 2)

In addition, we will print num_fingers on the screen:

cv2.putText(img_draw, str(num_fingers), (30, 30),  
            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255))

return img_draw

Tracking hand gestures in real time
Hand gestures are analyzed by the HandGestureRecognition class, especially by its 
recognize method. This class starts off with a few parameter initializations, which 
will be explained and used later:

class HandGestureRecognition:
    def __init__(self):
        # maximum depth deviation for a pixel to be considered  
            # within range
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        self.abs_depth_dev = 14

        # cut-off angle (deg): everything below this is a  
            convexity 
        # point that belongs to two extended fingers
        self.thresh_deg = 80.0

The recognize method is where the real magic takes place. This method handles the 
entire process flow, from the raw grayscale image all the way to a recognized hand 
gesture. It implements the following procedure:

1. It extracts the user's hand region by analyzing the depth map (img_gray) and 
returning a hand region mask (segment):
def recognize(self, img_gray):
    segment = self._segment_arm(img_gray)

2. It performs contour analysis on the hand region mask (segment). Then, it 
returns the largest contour area found in the image (contours) and any 
convexity defects (defects):
[contours, defects] = self._find_hull_defects(segment)

3. Based on the contours found and the convexity defects, it detects the number 
of extended fingers (num_fingers) in the image. Then, it annotates the 
output image (img_draw) with contours, defect points, and the number of 
extended fingers:
img_draw = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)
[num_fingers, img_draw] =  
    self._detect_num_fingers(contours,
        defects, img_draw)

4. It returns the estimated number of extended fingers (num_fingers), as well 
as the annotated output image (img_draw):
return (num_fingers, img_draw)

Hand region segmentation
The automatic detection of an arm, and later the hand region, could be designed to 
be arbitrarily complicated, maybe by combining information about the shape and 
color of an arm or hand. However, using a skin color as a determining feature to 
find hands in visual scenes might fail terribly in poor lighting conditions or when 
the user is wearing gloves. Instead, we choose to recognize the user's hand by its 
shape in the depth map. Allowing hands of all sorts to be present in any region of the 
image unnecessarily complicates the mission of the present chapter, so we make two 
simplifying assumptions:
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• We will instruct the user of our app to place their hand in front of the center 
of the screen, orienting their palm roughly parallel to the orientation of the 
Kinect sensor so that it is easier to identify the corresponding depth layer of 
the hand.

• We will also instruct the user to sit roughly one to two meters away from the 
Kinect, and to slightly extend their arm in front of their body so that the hand 
will end up in a slightly different depth layer than the arm. However, the 
algorithm will still work even if the full arm is visible.

In this way, it will be relatively straightforward to segment the image based on the 
depth layer alone. Otherwise, we would have to come up with a hand detection 
algorithm first, which would unnecessarily complicate our mission. If you feel 
adventurous, feel free to do this on your own.

Finding the most prominent depth of the 
image center region
Once the hand is placed roughly in the center of the screen, we can start finding all 
image pixels that lie on the same depth plane as the hand.

To do this, we simply need to determine the most prominent depth value of the 
center region of the image. The simplest approach would be as follows: look only  
at the depth value of the center pixel:

width, height = depth.shape
center_pixel_depth = depth[width/2, height/2]

Then, create a mask in which all pixels at a depth of center_pixel_depth are white 
and all others are black:

import numpy as np

depth_mask = np.where(depth == center_pixel_depth, 255,  
    0).astype(np.uint8)

However, this approach will not be very robust, because chances are that it will be 
compromised by the following:

• Your hand will not be placed perfectly parallel to the Kinect sensor
• Your hand will not be perfectly flat
• The Kinect sensor values will be noisy

Therefore, different regions of your hand will have slightly different depth values.
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The _segment_arm method takes a slightly better approach; that is, looking at a small 
neighborhood in the center of the image and determining the median (meaning the 
most prominent) depth value. First, we find the center region (for example, 21 x  
21 pixels) of the image frame:

def _segment_arm(self, frame):
    """ segments the arm region based on depth """
    center_half = 10 # half-width of 21 is 21/2-1
    lowerHeight = self.height/2 – center_half
    upperHeight = self.height/2 + center_half
    lowerWidth = self.width/2 – center_half
    upperWidth = self.width/2 + center_half
    center = frame[lowerHeight:upperHeight,  
        lowerWidth:upperWidth]

We can then reshape the depth values of this center region into a one-dimensional 
vector and determine the median depth value, med_val:

med_val = np.median(center)

We can now compare med_val with the depth value of all pixels in the image and 
create a mask in which all pixels whose depth values are within a particular range 
[med_val-self.abs_depth_dev, med_val+self.abs_depth_dev] are white, and 
all other pixels are black. However, for reasons that will be come clear in a moment, 
let's paint the pixels gray instead of white:

frame = np.where(abs(frame – med_val) <= self.abs_depth_dev, 
        128, 0).astype(np.uint8)
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The result will look like this:

Applying morphological closing to smoothen 
the segmentation mask
A common problem with segmentation is that a hard threshold typically results 
in small imperfections (that is, holes, as in the preceding image) in the segmented 
region. These holes can be alleviated by using morphological opening and closing. 
Opening removes small objects from the foreground (assuming that the objects are 
bright on a dark foreground), whereas closing removes small holes (dark regions).

This means that we can get rid of the small black regions in our mask by applying 
morphological closing (dilation followed by erosion) with a small 3 x 3 pixel kernel:

        kernel = np.ones((3, 3), np.uint8)
        frame = cv2.morphologyEx(frame, cv2.MORPH_CLOSE, kernel)
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The result looks a lot smoother, as follows:

Notice, however, that the mask still contains regions that do not belong to the hand 
or arm, such as what appears to be one of my knees on the left and some furniture 
on the right. These objects just happen to be on the same depth layer as my arm 
and hand. If possible, we could now combine the depth information with another 
descriptor, maybe a texture-based or skeleton-based hand classifier, that would  
weed out all non-skin regions.

Finding connected components in a 
segmentation mask
An easier approach is to realize that most of the time hands are not connected to 
knees or furniture. We already know that the center region belongs to the hand,  
so we can simply apply cv2.floodfill to find all the connected image regions.
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Before we do this, we want to be absolutely certain that the seed point for the flood 
fill belongs to the right mask region. This can be achieved by assigning a grayscale 
value of 128 to the seed point. However, we also want to make sure that the center 
pixel does not, by any coincidence, lie within a cavity that the morphological 
operation failed to close. So, let's set a small 7 x 7 pixel region with a grayscale  
value of 128 instead:

small_kernel = 3
frame[self.height/2-small_kernel :
            self.height/2+small_kernel,  
            self.width/2-small_kernel :  
            self.width/2+small_kernel] = 128

As flood filling (as well as morphological operations) is potentially dangerous, later 
OpenCV versions require the specification of a mask that avoids flooding the entire 
image. This mask has to be 2 pixels wider and taller than the original image and has 
to be used in combination with the cv2.FLOODFILL_MASK_ONLY flag. It can be very 
helpful in constraining the flood filling to a small region of the image or a specific 
contour so that we need not connect two neighboring regions that should have never 
been connected in the first place. It's better to be safe than sorry, right?

Ah, screw it! Today, we feel courageous! Let's make the mask entirely black:

mask = np.zeros((self.height+2, self.width+2), np.uint8)

Then, we can apply the flood fill to the center pixel (the seed point) and paint all the 
connected regions white:

flood = frame.copy()
cv2.floodFill(flood, mask, (self.width/2, self.height/2),  
    255, flags=4 | (255 << 8))

At this point, it should be clear why we decided to start with a gray mask earlier. 
We now have a mask that contains white regions (arm and hand), gray regions 
(neither arm nor hand but other things in the same depth plane), and black regions 
(all others). With this setup, it is easy to apply a simple binary threshold to highlight 
only the relevant regions of the pre-segmented depth plane:

ret, flooded = cv2.threshold(flood, 129, 255, cv2.THRESH_BINARY)
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This is what the resulting mask looks like:

The resulting segmentation mask can now be returned to the recognize method, 
where it will be used as an input to _find_hull_defects, as well as a canvas for 
drawing the final output image (img_draw).

Hand shape analysis
Now that we know (roughly) where the hand is located, we aim to learn something 
about its shape.

Determining the contour of the segmented 
hand region
The first step involves determining the contour of the segmented hand region. 
Luckily, OpenCV comes with a pre-canned version of such an algorithm—cv2.
findContours. This function acts on a binary image and returns a set of points that 
are believed to be part of the contour. As there might be multiple contours present  
in the image, it is possible to retrieve an entire hierarchy of contours:

def _find_hull_defects(self, segment):
    contours, hierarchy = cv2.findContours(segment,  
        cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
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Furthermore, because we do not know which contour we are looking for, we have 
to make an assumption to clean up the contour result. Since it is possible that some 
small cavities are left over even after the morphological closing—but we are fairly 
certain that our mask contains only the segmented area of interest—we will assume 
that the largest contour found is the one that we are looking for. Thus, we simply 
traverse the list of contours, calculate the contour area (cv2.contourArea), and store 
only the largest one (max_contour):

max_contour = max(contours, key=cv2.contourArea)

Finding the convex hull of a contour area
Once we have identified the largest contour in our mask, it is straightforward 
to compute the convex hull of the contour area. The convex hull is basically the 
envelope of the contour area. If you think of all the pixels that belong to the contour 
area as a set of nails sticking out of a board, then the convex hull is the shape formed 
by a tight rubber band that surrounds all the nails.

We can get the convex hull directly from our largest contour (max_contour):

hull = cv2.convexHull(max_contour, returnPoints=False)

As we now want to look at convexity deficits in this hull, we are instructed by the 
OpenCV documentation to set the returnPoints optional flag to False.

The convex hull drawn in yellow around a segmented hand region looks like this:
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Finding the convexity defects of a convex hull
As is evident from the preceding screenshot, not all points on the convex hull belong 
to the segmented hand region. In fact, all the fingers and the wrist cause severe 
convexity defects, that is, points of the contour that are far away from the hull.

We can find these defects by looking at both the largest contour (max_contour)  
and the corresponding convex hull (hull):

defects = cv2.convexityDefects(max_contour, hull)

The output of this function (defects) is a 4-tuple that contains start_index (the 
point of the contour where the defect begins), end_index (the point of the contour 
where the defect ends), farthest_pt_index (the farthest from the convex hull point 
within the defect), and fixpt_depth (the distance between the farthest point and the 
convex hull). We will make use of this information in just a moment when we try to 
extract the number of extended fingers.

For now though, our job is done. The extracted contour (max_contour) and 
convexity defects (defects) can be passed to recognize, where they will be used as 
inputs to _detect_num_fingers:

return (cnt,defects)

Hand gesture recognition
What remains to be done is to classify the hand gesture based on the number of 
extended fingers. For example, if we find five extended fingers, we assume the hand 
to be open, whereas no extended fingers implies a fist. All that we are trying to do is 
count from zero to five and make the app recognize the corresponding number  
of fingers.

This is actually trickier than it might seem at first. For example, people in Europe 
might count to three by extending their thumb, index finger, and middle finger. 
If you do that in the US, people there might get horrendously confused, because 
they do not tend to use their thumbs when signaling the number two. This might 
lead to frustration, especially in restaurants (trust me). If we could find a way to 
generalize these two scenarios—maybe by appropriately counting the number of 
extended fingers—we would have an algorithm that could teach simple hand gesture 
recognition to not only a machine but also (maybe) to an average waitress.



Chapter 2

[ 379 ]

As you might have guessed, the answer is related to convexity defects. As mentioned 
earlier, extended fingers cause defects in the convex hull. However, the inverse 
is not true; that is, not all convexity defects are caused by fingers! There might be 
additional defects caused by the wrist, as well as the overall orientation of the hand 
or the arm. How can we distinguish between these different causes of defects?

Distinguishing between different causes of 
convexity defects
The trick is to look at the angle between the farthest point from the convex hull 
point within the defect (farthest_pt_index) and the start and end points of the 
defect (start_index and end_index, respectively), as illustrated in the following 
screenshot:

In this screenshot, the orange markers serve as a visual aid to center the hand in 
the middle of the screen, and the convex hull is outlined in green. Each red dot 
corresponds to the point farthest from the convex hull (farthest_pt_index) for 
every convexity defect detected. If we compare a typical angle that belongs to two 
extended fingers (such as θj) to an angle that is caused by general hand geometry 
(such as θi), we notice that the former is much smaller than the latter. This is 
obviously because humans can spread their fingers only a little, thus creating a 
narrow angle made by the farthest defect point and the neighboring fingertips.
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Therefore, we can iterate over all convexity defects and compute the angle between 
the said points. For this, we will need a utility function that calculates the angle (in 
radians) between two arbitrary, list-like vectors, v1 and v2:

def angle_rad(v1, v2):
    return np.arctan2(np.linalg.norm(np.cross(v1, v2)),  
        np.dot(v1, v2))

This method uses the cross product to compute the angle, rather than doing it in the 
standard way. The standard way of calculating the angle between two vectors v1 
and v2 is by calculating their dot product and dividing it by the norm of v1 and the 
norm of v2. However, this method has two imperfections:

• You have to manually avoid division by zero if either the norm of v1 or the 
norm of v2 is zero

• The method returns relatively inaccurate results for small angles

Similarly, we provide a simple function to convert an angle from degrees to radians:

def deg2rad(angle_deg):
    return angle_deg/180.0*np.pi

Classifying hand gestures based on the 
number of extended fingers
What remains to be done is actually to classify the hand gesture based on the  
number of extended fingers. The _detect_num_fingers method will take as input 
the detected contour (contours), the convexity defects (defects), and a canvas to 
draw on (img_draw):

def _detect_num_fingers(self, contours, defects, img_draw):

Based on these parameters, it will then determine the number of extended fingers.

However, we first need to define a cut-off angle that can be used as a threshold to 
classify convexity defects as being caused by extended fingers or not. Except for the 
angle between the thumb and the index finger, it is rather hard to get anything close 
to 90 degrees, so anything close to that number should work. We do not want the 
cut-off angle to be too high, because that might lead to misclassifications:

self.thresh_deg = 80.0
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For simplicity, let's focus on the special cases first. If we do not find any convexity 
defects, it means that we possibly made a mistake during the convex hull calculation, 
or there are simply no extended fingers in the frame, so we return 0 as the number  
of detected fingers:

if defects is None:
    return [0, img_draw]

However, we can take this idea even further. Due to the fact that arms are usually 
slimmer than hands or fists, we can assume that the hand geometry will always 
generate at least two convexity defects (which usually belong to the wrists). So, if 
there are no additional defects, it implies that there are no extended fingers:

if len(defects) <= 2:
    return [0, img_draw]

Now that we have ruled out all special cases, we can begin counting real fingers. 
If there is a sufficient number of defects, we will find a defect between every pair 
of fingers. Thus, in order to get the number right (num_fingers), we should start 
counting at 1:

num_fingers = 1

Then, we can start iterating over all convexity defects. For each defect, we will extract 
the four elements and draw its hull for visualization purposes:

for i in range(defects.shape[0]):
    # each defect point is a 4-tuplestart_idx, end_idx,  
        farthest_idx, _ == defects[i, 0]
    start = tuple(contours[start_idx][0])
    end = tuple(contours[end_idx][0])
    far = tuple(contours[farthest_idx][0])

    # draw the hull
    cv2.line(img_draw, start, end [0, 255, 0], 2)

Then, we will compute the angle between the two edges from far to start and from 
far to end. If the angle is smaller than self.thresh_deg degrees, it means that we 
are dealing with a defect that is most likely caused by two extended fingers. In such 
cases, we want to increment the number of detected fingers (num_fingers), and 
draw the point with green. Otherwise, we draw the point with red:

# if angle is below a threshold, defect point belongs
# to two extended fingers
if angle_rad(np.subtract(start, far),  
        np.subtract(end, far))
        < deg2rad(self.thresh_deg):
    # increment number of fingers
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    num_fingers = num_fingers + 1

    # draw point as green
    cv2.circle(img_draw, far, 5, [0, 255, 0], -1)
else:
    # draw point as red
    cv2.circle(img_draw, far, 5, [255, 0, 0], -1)

After iterating over all convexity defects, we pass the number of detected fingers and 
the assembled output image to the recognize method:

return (min(5, num_fingers), img_draw)

This will make sure that we do not exceed the common number of fingers per hand.

The result can be seen in the following screenshots:

Interestingly, our app is able to detect the correct number of extended fingers in a 
variety of hand configurations. Defect points between extended fingers are easily 
classified as such by the algorithm, and others are successfully ignored.
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Summary
This chapter showed a relatively simple and yet surprisingly robust way of 
recognizing a variety of hand gestures by counting the number of extended fingers.

The algorithm first shows how a task-relevant region of the image can be segmented 
using depth information acquired from a Microsoft Kinect 3D Sensor, and how 
morphological operations can be used to clean up the segmentation result. By 
analyzing the shape of the segmented hand region, the algorithm comes up with a 
way to classify hand gestures based on the types of convexity effects found in the 
image. Once again, mastering our use of OpenCV to perform a desired task did not 
require us to produce a large amount of code. Instead, we were challenged to gain an 
important insight that made us use the built-in functionality of OpenCV in the most 
effective way possible.

Gesture recognition is a popular but challenging field in computer science,  
with applications in a large number of areas, such as human-computer interaction, 
video surveillance, and even the video game industry. You can now use your 
advanced understanding of segmentation and structure analysis to build your  
own state-of-the-art gesture recognition system.

In the next chapter, we will continue to focus on detecting objects of interest in  
visual scenes, but we will assume a much more complicated case—viewing the  
object from an arbitrary perspective and distance. To do this, we will combine 
perspective transformations with scale-invariant feature descriptors to develop  
a robust feature-matching algorithm.
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Finding Objects via  
Feature Matching and 

Perspective Transforms
The goal of this chapter is to develop an app that is able to detect and track an 
object of interest in the video stream of a webcam, even if the object is viewed from 
different angles or distances or under partial occlusion.

In this chapter, we will cover the following topics:

• Feature extraction
• Feature matching
• Feature tracking

In the previous chapter, you learned how to detect and track a simple object  
(the silhouette of a hand) in a very controlled environment. To be more specific,  
we instructed the user of our app to place the hand in the central region of the screen 
and made assumptions about the size and shape of the object (the hand). But what 
if we wanted to detect and track objects of arbitrary sizes, possibly viewed from a 
number of different angles or under partial occlusion?

For this, we will make use of feature descriptors, which are a way of capturing the 
important properties of our object of interest. We do this so that the object can be 
located even when it is embedded in a busy visual scene. We will again apply our 
algorithm to the live stream of a webcam, and do our best to keep the algorithm 
robust yet simple enough to run in real time.
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Tasks performed by the app
The app will analyze each captured frame to perform the following tasks:

• Feature extraction: We will describe an object of interest with Speeded-Up 
Robust Features (SURF), which is an algorithm used to find distinctive 
keypoints in an image that are both scale invariant and rotation invariant. 
These keypoints will help us make sure that we are tracking the right object 
over multiple frames. Because the appearance of the object might change 
from time to time, it is important to find keypoints that do not depend on  
the viewing distance or viewing angle of the object (hence the scale and 
rotation invariance).

• Feature matching: We will try to establish a correspondence between 
keypoints using the Fast Library for Approximate Nearest Neighbors 
(FLANN) to see whether a frame contains keypoints similar to the keypoints 
from our object of interest. If we find a good match, we will mark the object 
in each frame.

• Feature tracking: We will keep track of the located object of interest from 
frame to frame using various forms of early outlier detection and outlier 
rejection to speed up the algorithm.

• Perspective transform: We will then reverse any translations and rotations 
that the object has undergone by warping the perspective so that the object 
appears upright in the center of the screen. This creates a cool effect in which 
the object seems frozen in a position while the entire surrounding scene 
rotates around it.

An example of the first three steps is shown in the following image, which contains  
a template image of our object of interest on the left, and me holding a printout of the 
template image on the right. Matching features in the two frames are connected with 
blue lines, and the located object is outlined in green on the right:
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The last step is transforming the located object so that it is projected onto the frontal 
plane (which should look roughly like the original template image, appearing  
close-up and roughly upright), while the entire scene seems to warp around it,  
as shown in the following figure:
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Again, the GUI will be designed with wxPython 2.8, which 
can be obtained from http://www.wxpython.org/
download.php. This chapter has been tested with OpenCV 
2.4.9. Note that if you are using OpenCV 3, you may have to 
obtain the so-called extra modules from https://github.
com/Itseez/opencv_contrib and install OpenCV 3 with 
the OPENCV_EXTRA_MODULES_PATH variable set in order to 
get SURF and FLANN installed. Also, note that you may have 
to obtain a license to use SURF in commercial applications.

Planning the app
The final app will consist of a Python class for detecting, matching, and tracking 
image features, as well as a wxPython GUI application that accesses the webcam  
and displays each processed frame.

The project will contain the following modules and scripts:

• feature_matching: A module containing an algorithm for feature extraction, 
feature matching, and feature tracking. We separate this algorithm from the 
rest of the application so that it can be used as a standalone module without 
the need for a GUI.

• feature_matching.FeatureMatching: A class that implements the entire 
feature-matching process flow. It accepts an RGB camera frame and tries to 
locate an object of interest in it.

• gui: A module that provides a wxPython GUI application to access the 
capture device and display the video feed. This is the same module that we 
used in previous chapters.

• gui.BaseLayout: A generic layout from which more complicated layouts can 
be built. This chapter does not require any modifications to the basic layout.

• chapter3: The main script for the chapter.
• chapter3.FeatureMatchingLayout: A custom layout based on gui.

BaseLayout that displays the webcam video feed. Each captured frame  
will be processed with the FeatureMatching class described earlier.

• chapter3.main: The main function routine for starting the GUI application 
and accessing the depth sensor.

http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
https://github.com/Itseez/opencv_contrib
https://github.com/Itseez/opencv_contrib
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Setting up the app
Before we can get down to the nitty-gritty of our feature-matching algorithm, we need 
to make sure that we can access the webcam and display the video stream in a simple 
GUI. Luckily, we have already figured out how to do this in Chapter 1, Fun with Filters.

Running the app
In order to run our app, we will need to execute a main function routine that accesses 
the webcam, generates the GUI, and executes the main loop of the app:

import cv2
import wx

from gui import BaseLayout
from feature_matching import FeatureMatching

def main():
    capture = cv2.VideoCapture(0)
    if not(capture.isOpened()):
        capture.open()

    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

    # start graphical user interface
    app = wx.App()

    layout = FeatureMatchingLayout(None, -1, 'Feature Matching',  
        capture)
    layout.Show(True)
    app.MainLoop()

If you are using OpenCV 3, the constants that you are 
looking for might be called cv3.CAP_PROP_FRAME_
WIDTH and cv3.CAP_PROP_FRAME_HEIGHT.
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The FeatureMatching GUI
Analogous to the previous chapter, the layout chosen for the current project 
(FeatureMatchingLayout) is as plain as it gets. It should simply display the video 
feed of the webcam at a comfortable frame rate of 10 frames per second. Therefore, 
there is no need to further customize BaseLayout:

class FeatureMatchingLayout(BaseLayout):
    def _create_custom_layout(self):
        pass

The only parameter that needs to be initialized this time is the feature-matching 
class. We pass to it the path to a template (or training) file that depicts the object  
of interest:

    def _init_custom_layout(self):
        self.matching = FeatureMatching 
            (train_image='salinger.jpg')

The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure that we provide a _process_frame method. This method accepts a 
RGB color image, processes it by means of the FeatureMatching method match, and 
passes the processed image for visualization. If the object is detected in the current 
frame, the match method will report success=True and we will return the processed 
frame. If the match method is not successful, we will simply return the input frame:

    def _process_frame(self, frame):
        self.matching = FeatureMatching 
            (train_image='salinger.jpg')
        # if object detected, display new frame, else old one
        success, new_frame = self.matching.match(frame)
        if success:
            return new_frame
        else:
            return frame
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The process flow
Features are extracted, matched, and tracked by the FeatureMatching class, especially 
by its public match method. However, before we can begin analyzing the incoming 
video stream, we have some homework to do. It might not be clear right away what 
some of these things mean (especially for SURF and FLANN), but we will discuss 
these steps in detail in the following sections. For now, we only have to worry  
about initialization:

class FeatureMatching:
     def __init__(self, train_image='salinger.jpg'):

1. This sets up a SURF detector (see the next section for details) with a Hessian 
threshold between 300 and 500:
self.min_hessian = 400
self.SURF = cv2.SURF(self.min_hessian)

2. We load a template of our object of interest (self.img_obj), or print an error 
if it cannot be found:
self.img_obj = cv2.imread(train_image, cv2.CV_8UC1)
if self.img_obj is None:
    print "Could not find train image " + train_image 
        raise SystemExit

3. Also, store the shape of the image (self.sh_train) for convenience:
self.sh_train = self.img_train.shape[:2]  # rows, cols

For reasons that will soon be evidently clear, we will call the template image 
the train image and every incoming frame a query image. The train image 
has a size of 480 x 270 pixels and looks like this:
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4. Apply SURF to the object of interest. This can be done with a convenient 
function call that returns both a list of keypoints and the descriptor (see the 
next section for details):
self.key_train, self.desc_train =  
    self.SURF.detectAndCompute(self.img_obj, None)

We will do the same with each incoming frame and compare lists of features 
across images.

5. Set up a FLANN object (see the next section for details). This requires the 
specification of some additional parameters via dictionaries, such as which 
algorithm to use and how many trees to run in parallel:
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, 
    trees = 5)
search_params = dict(checks=50)
self.flann = cv2.FlannBasedMatcher(index_params,  
    search_params)

6. Finally, initialize some additional bookkeeping variables. These will come 
in handy when we want to make our feature tracking both quicker and 
more accurate. For example, we will keep track of the latest computed 
homography matrix and of the number of frames we have spent without 
locating our object of interest (see the next section for details):
self.last_hinv = np.zeros((3,3))
self.num_frames_no_success = 0
self.max_frames_no_success = 5
self.max_error_hinv = 50.

Then, the bulk of the work is done by the FeatureMatching method match.  
This method follows the procedure elaborated here:

1. It extracts interesting image features from each incoming video frame.  
This is done in FeatureMatching._extract_features.

2. It matches features between the template image and the video frame.  
This is done in FeatureMatching._match_features. If no such match  
is found, it skips to the next frame.

3. It finds the corner points of the template image in the video frame. This is 
done in FeatureMatching._detect_corner_points. If any of the corners 
lies (significantly) outside the frame, it skips to the next frame.

4. It calculates the area of the quadrilateral that the four corner points span.  
If the area is either too small or too large, it skips to the next frame.

5. It outlines the corner points of the template image in the current frame.



Chapter 3

[ 393 ]

6. It finds the perspective transform that is necessary to bring the located 
object from the current frame to the frontoparallel plane. This is done in 
FeatureMatching._warp_keypoints. If the result is significantly different 
from the result we got recently for an earlier frame, it skips to the next frame.

7. It warps the perspective of the current frame to make the object of interest 
appear centered and upright.

In the following sections, we will discuss these steps in detail.

Feature extraction
Generally speaking, a feature is an interesting area of an image. It is a measurable 
property of an image that is very informative about what the image represents. 
Usually, the grayscale value of an individual pixel (the raw data) does not tell us  
a lot about the image as a whole. Instead, we need to derive a property that is  
more informative.

For example, knowing that there are patches in the image that look like eyes, a nose, 
and a mouth will allow us to reason about how likely it is that the image represents 
a face. In this case, the number of resources required to describe the data (are we 
seeing an image of a face?) is drastically reduced (does the image contain two eyes?  
a nose? a mouth?).

More low-level features, such as the presence of edges, corners, blobs, or ridges, may 
be more informative generally. Some features may be better than others, depending 
on the application. Once we have made up our mind on how to describe our favorite 
feature, we need to come up with a way to check whether or not the image contains 
such features and where it contains them.

Feature detection
The process of finding areas of interest in an image is called feature detection. 
OpenCV provides a whole range of feature detection algorithms, such as these:

• Harris corner detection: Knowing that edges are areas with high-intensity 
changes in all directions, Harris and Stephens came up with a fast way of 
finding such areas. This algorithm is implemented as cv2.cornerHarris  
in OpenCV.

• Shi-Tomasi corner detection: Shi and Tomasi have their own idea of what 
are good features to track, and they usually do better than Harris corner 
detection by finding the N strongest corners. This algorithm is implemented 
as cv2.goodFeaturesToTrack in OpenCV.
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• Scale-Invariant Feature Transform (SIFT): Corner detection is not sufficient 
when the scale of the image changes. To this end, Lowe developed a method 
to describe keypoints in an image that are independent of orientation and 
size (hence the name scale invariant).The algorithm is implemented as  
cv2.SIFT in OpenCV2, but was moved to the extra modules in OpenCV3 
since its code is proprietary.

• Speeded-Up Robust Features (SURF): SIFT has proven to be really good, 
but it is not fast enough for most applications. This is where SURF comes in, 
which replaces the expensive Laplacian of a Gaussian from SIFT with a box 
filter. The algorithm is implemented as cv2.SURF in OpenCV2, but, like SIFT, 
it was moved to the extra modules in OpenCV3 since its code is proprietary.

OpenCV has support for even more feature descriptors, such as Features from 
Accelerated Segment Test (FAST), Binary Robust Independent Elementary 
Features (BRIEF), and Oriented FAST and Rotated BRIEF (ORB), the latter  
being an open source alternative to SIFT or SURF.

Detecting features in an image with SURF
In the remainder of this chapter, we will make use of the SURF detector.

The SURF algorithm can be roughly divided into two distinctive steps: detecting points 
of interest, and formulating a descriptor. SURF relies on the Hessian corner detector for 
interest point detection, which requires the setting of a min_hessian threshold. This 
threshold determines how large the output from the Hessian filter must be in order for 
a point to be used as an interest point. A larger value results in fewer but (theoretically) 
more salient interest points, whereas a smaller value results in more numerous but 
less salient points. Feel free to experiment with different values. In this chapter, we 
will choose a value of 400, as seen earlier in FeatureMatching.__init__, where we 
created a SURF descriptor with the following code snippet:

self.min_hessian = 400
self.SURF = cv2.SURF(self.min_hessian)

Both the features and the descriptor can then be obtained in a single step,  
for example, on an input image img_query without the use of a mask (None):

key_query, desc_query = self.SURF.detectAndCompute 
    (img_query, None)



Chapter 3

[ 395 ]

In OpenCV 2.4.8 or later, we can now easily draw the keypoints with the  
following function:

imgOut = cv2.drawKeypoints(img_query, key_query, None,  
    (255, 0, 0), 4)
cv2.imshow(imgOut)

Make sure that you check len(keyQuery) first, as 
SURF might return a large number of features. If you 
care only about drawing the keypoints, try setting 
min_hessian to a large value until the number of 
returned keypoints is manageable.
If our OpenCV distribution is older than that, we might 
have to write our own function. Note that SURF is 
protected by patent laws. Therefore, if you wish to use 
SURF in a commercial application, you will be required 
to obtain a license.

Feature matching
Once we have extracted features and their descriptors from two (or more) images, we 
can start asking whether some of these features show up in both (or all) images. For 
example, if we have descriptors for both our object of interest (self.desc_train) and 
the current video frame (desc_query), we can try to find regions of the current frame 
that look like our object of interest. This is done by the following method, which makes 
use of the Fast Library for Approximate Nearest Neighbors (FLANN):

good_matches = self._match_features(desc_query)

The process of finding frame-to-frame correspondences can be formulated as the 
search for the nearest neighbor from one set of descriptors for every element of 
another set.

The first set of descriptors is usually called the train set, because in machine learning, 
these descriptors are used to train some model, such as the model of the object  
that we want to detect. In our case, the train set corresponds to the descriptor  
of the template image (our object of interest). Hence, we call our template image  
the train image (self.img_train).

The second set is usually called the query set, because we continually ask whether it 
contains our train image. In our case, the query set corresponds to the descriptor of 
each incoming frame. Hence, we call a frame the query image (img_query).
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Features can be matched in any number of ways, for example, with the help of a 
brute-force matcher (cv2.BFMatcher) that looks for each descriptor in the first set 
and the closest descriptor in the second set by trying each one (exhaustive search).

Matching features across images with FLANN
The alternative is to use an approximate k-nearest neighbor (kNN) algorithm to find 
correspondences, which is based on the fast third-party library FLANN. A FLANN 
match is performed with the following code snippet, where we use kNN with k=2:

def _match_features(self, desc_frame):
    matches = self.flann.knnMatch(self.desc_train, desc_frame,  
        k=2)

The result of flann.knnMatch is a list of correspondences between two sets of 
descriptors, both contained in the matches variable. These are the train set, because it 
corresponds to the pattern image of our object of interest, and the query set, because 
it corresponds to the image in which we are searching for our object of interest.

The ratio test for outlier removal
The more the correct matches found (which means that more pattern-to-image 
correspondences exist), the more the chances that the pattern is present in the image. 
However, some matches might be false positives.

A well-known technique for removing outliers is called the ratio test. Since we 
performed kNN-matching with k=2, the two nearest descriptors are returned 
for each match. The first match is the closest neighbor and the second match is 
the second closest neighbor. Intuitively, a correct match will have a much closer 
first neighbor than its second closest neighbor. On the other hand, the two closest 
neighbors will be at a similar distance from an incorrect match. Therefore, we can 
find out how good a match is by looking at the difference between the distances. 
The ratio test says that the match is good only if the distance ratio between the first 
match and the second match is smaller than a given number (usually around 0.5); in 
our case, this number chosen to be 0.7. To remove all matches that do not satisfy this 
requirement, we filter the list of matches and store the good matches in the good_
matches variable:

# discard bad matches, ratio test as per Lowe's paper
good_matches = filter(lambda x: x[0].distance<0.7*x[1].distance, 
    matches)

Then we pass the matches we found to FeatureMatching.match so that they can be 
processed further:

return good_matches
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Visualizing feature matches
In newer versions of OpenCV, we can easily draw matches using cv2.drawMatches 
or cv3.drawMatchesKnn.

In older versions of OpenCV, we may need to write our own function. The goal is to 
draw both the object of interest and the current video frame (in which we expect the 
object to be embedded) next to each other:

def draw_good_matches(img1, kp1, img2, kp2, matches):
    # Create a new output image that concatenates the
    # two images together (a.k.a) a montage
    rows1, cols1 = img1.shape[:2]
    rows2, cols2 = img2.shape[:2]
    out = np.zeros((max([rows1, rows2]), cols1+cols2, 3),  
        dtype='uint8')

In order to draw colored lines on the image, we create a three-channel RGB image:

    # Place the first image to the left, copy 3x for RGB
    out[:rows1, :cols1, :] = np.dstack([img1, img1, img1])

    # Place the next image to the right of it, copy 3x for RGB
    out[:rows2, cols1:cols1 + cols2, :] = np.dstack([img2, img2, 
        img2])

Then, for each pair of points between both images, we draw small blue circles, and 
we connect the two circles with a line. For this, we have to iterate over the list of 
matching keypoints. The keypoints are stored as tuples in Python, with two entries 
for the x and y coordinates. Each match, m, stores the index in the keypoint lists, 
where m.trainIdx points to the index in the first keypoint list (kp1) and m.queryIdx 
points to the index in the second keypoint list (kp2):

for m in matches:
    # Get the matching keypoints for each of the images
    c1, r1 = kp1[m.trainIdx].pt
    c2, r2 = kp2[m.queryIdx].pt

With the correct indices, we can now draw a circle at the correct location (with the 
radius as 4, the color as blue, and the thickness as 1) and connect the circles with a line:

    radius = 4
    BLUE = (255, 0, 0)
    thickness = 1
    # Draw a small circle at both co-ordinates
    cv2.circle(out, (int(c1), int(r1)), radius, BLUE, thickness)
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    cv2.circle(out, (int(c2) + cols1, int(r2)), radius, BLUE,  
        thickness

    # Draw a line in between the two points
    cv2.line(out, (int(c1), int(r1)), (int(c2) + cols1, int(r2)),  
        BLUE, thickness)
    return out

Then, the returned image can be drawn with this code:

cv2.imshow('imgFlann', draw_good_matches(self.img_train,  
    self.key_train, img_query, key_query, good_matches))

The blue lines connect the features in the object (left) to the features in the scenery 
(right), as shown here:

This works fine in a simple example such as this, but what happens when there are 
other objects in the scene? Since our object contains some lettering that seems highly 
salient, what happens when there are other words present?
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As it turns out, the algorithm works even under such conditions, as you can see in 
this screenshot:

Interestingly, the algorithm did not confuse the name of the author as seen on the 
left with the black-on-white lettering next to the book in the scene, even though they 
spell out the same name. This is because the algorithm found a description of the 
object that does not rely purely on the grayscale representation. On the other hand, 
an algorithm doing a pixel-wise comparison could have easily gotten confused.

Homography estimation
Since we are assuming that the object of our interest is planar (an image) and rigid, 
we can find the homography transformation between the feature points of the two 
images. Homography will calculate the perspective transformation required to bring 
all feature points in the object image (self.key_train) into the same plane as all the 
feature points in the current image frame (self.key_query). But first, we need to 
find the image coordinates of all keypoints that are good matches:

def _detect_corner_points(self, key_frame, good_matches):
    src_points = [self.key_train[good_matches[i].trainIdx].pt
        for i in xrange(len(good_matches))]
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    dst_points = [keyQuery[good_matches[i].queryIdx].pt
        for i in xrange(len(good_matches))]

To find the correct perspective transformation (a homography matrix H), the  
cv2.findHomography function will use the random sample consensus (RANSAC) 
method to probe different subsets of input points:

H, _ = cv2.findHomography(np.array(src_points),  
    np.array(dst_points), cv2.RANSAC)

The homography matrix H can then help us transform any point in the pattern into 
the scenery, such as transforming a corner point in the training image to a corner 
point in the query image. In other words, this means that we can draw the outline 
of the book cover in the query image by transforming the corner points from the 
training image! For this, we take the list of corner points of the training image  
(src_corners) and see where they are projected in the query image by performing  
a perspective transform:

self.sh_train = self.img_train.shape[:2]  # rows, cols
src_corners = np.array([(0,0), (self.sh_train[1],0),  
    (self.sh_train[1],self.sh_train[0]), (0,self.sh_train[0])],  
    dtype=np.float32)
dst_corners = cv2.perspectiveTransform(src_corners[None, :, :],  
    H)

The dst_corners return argument is a list of image points. All that we need to do is 
draw a line between each point in dst_corners and the very next one, and we will 
have an outline in the scenery. But first, in order to draw the line at the right image 
coordinates, we need to offset the x coordinate by the width of the pattern image 
(because we are showing the two images next to each other):

dst_corners = map(tuple,dst_corners[0])
dst_corners = [(np.int(dst_corners[i][0]+self.sh_train[1]), 
    np.int(dst_corners[i][1]))

Then we can draw the lines from the ith point to the (i+1)-th point in the list 
(wrapping around to 0):

for i in xrange(0,len(dst_corners)):
    cv2.line(img_flann, dst_corners[i], dst_corners[(i+1) % 4], 
        (0, 255, 0), 3)
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Finally, we draw the outline of the book cover, like this:

This works even when the object is only partially visible, as follows:
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Warping the image
We can also do the opposite—going from the probed scenery to the training pattern 
coordinates. This makes it possible for the book cover to be brought onto the frontal 
plane, as if we were looking at it directly from above. To achieve this, we can simply 
take the inverse of the homography matrix to get the inverse transformation:

Hinv = cv2.linalg.inverse(H)

However, this would map the top-left corner of the book cover to the origin of our 
new image, which would cut off everything to the left of and above the book cover. 
Instead, we want to roughly center the book cover in the image. Thus, we need to 
calculate a new homography matrix. As input, we will have our pts_scene scenery 
points. As output, we want an image that has the same shape as the pattern image:

dst_size = img_in.shape[:2]  # cols, rows

The book cover should be roughly half of that size. We can come up with a scaling 
factor and a bias term so that every keypoint in the scenery image is mapped to the 
correct coordinate in the new image:

scale_row = 1./src_size[0]*dst_size[0]/2.
bias_row = dst_size[0]/4.
scale_col = 1./src_size[1]*dst_size[1]/2.
bias_col = dst_size[1]/4.

Next, we just need to apply this linear scaling to every keypoint in the list.  
The easiest way to do this is with list comprehensions:

src_points = [key_frame[good_matches[i].trainIdx].pt
    for i in xrange(len(good_matches))]
dst_points = [self.key_train[good_matches[i].queryIdx].pt
    for i in xrange(len(good_matches))]
dst_points = [[x*scale_row+bias_row, y*scale_col+bias_col]
    for x, y in dst_points]

Then we can find the homography matrix between these points (make sure that the 
list is converted to a NumPy array):

Hinv, _ = cv2.findHomography(np.array(src_points),  
    np.array(dst_points), cv2.RANSAC)

After that, we can use the homography matrix to transform every pixel in the image 
(this is also called warping the image):

img_warp = cv2.warpPerspective(img_query, Hinv, dst_size)
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The result looks like this (matching on the left and warped image on the right):

The image resulting from the perspective transformation might not be perfectly 
aligned with the frontoparallel plane, because after all, the homography matrix is 
only approximate. In most cases, however, our approach works just fine, such as in 
the example shown in the following figure:

Feature tracking
Now that our algorithm works for single frames, how can we make sure that the 
image found in one frame will also be found in the very next frame?
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In FeatureMatching.__init__, we created some bookkeeping variables that we 
said we would use for feature tracking. The main idea is to enforce some coherence 
while going from one frame to the next. Since we are capturing roughly 10 frames 
per second, it is reasonable to assume that the changes from one frame to the next 
will not be too radical. Therefore, we can be sure that the result we get in any given 
frame has to be similar to the result we got in the previous frame. Otherwise, we 
discard the result and move on to the next frame.

However, we have to be careful not to get stuck with a result that we think is 
reasonable but is actually an outlier. To solve this problem, we keep track of  
the number of frames we have spent without finding a suitable result. We use  
self.num_frames_no_success; if this number is smaller than a certain threshold, 
say self.max_frames_no_success, we do the comparison between the frames. If it 
is greater than the threshold, we assume that too much time has passed since the last 
result was obtained, in which case it would be unreasonable to compare the results 
between the frames.

Early outlier detection and rejection
We can extend the idea of outlier rejection to every step in the computation. The goal 
then becomes minimizing the workload while maximizing the likelihood that the 
result we obtain is a good one.

The resulting procedure for early outlier detection and rejection is embedded in 
FeatureMatching.match and looks as follows:

def match(self, frame):
    # create a working copy (grayscale) of the frame
    # and store its shape for convenience
    img_query = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    sh_query = img_query.shape[:2]  # rows,cols

1. Find good matches between the feature descriptors of the pattern and the 
query image:

key_query, desc_query = self._extract_features(img_query)
good_matches = self._match_features(descQuery)

In order for RANSAC to work in the very next step, we need at least four 
matches. If fewer matches are found, we admit defeat and return False  
right away:
if len(good_matches) < 4:
    self.num_frames_no_success= 
        self.num_frames_no_success + 1
    return False, frame
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2. Find the corner points of the pattern in the query image (dst_corners):
dst_corners = self._detect_corner_points(key_query,  
    good_matches)

If any of these points lies significantly outside the image (by 20 pixels in  
our case), it means that either we are not looking at our object of interest,  
or the object of interest is not entirely in the image. In both cases, we have  
no interest in proceeding, and we return False:
if np.any(filter(lambda x: x[0] < -20 or x[1] < -20
    or x[0] > sh_query[1] + 20 or x[1] > sh_query[0] + 20,
    dst_corners)):
        self.num_frames_no_success = 
            self.num_frames_no_success + 1
        return False, frame

3. If the four recovered corner points do not span a reasonable quadrilateral  
(a polygon with four sides), it means that we are probably not looking at our 
object of interest. The area of a quadrilateral can be calculated with this code:
area = 0
for i in xrange(0, 4):
    next_i = (i + 1) % 4
    area = area + (dst_corners[i][0]*dst_corners[next_i][1] 
        - dst_corners[i][1]*dst_corners[next_i][0])/2.

If the area is either unreasonably small or unreasonably large, we discard the 
frame and return False:

if area < np.prod(sh_query)/16. or area > 
    np.prod(sh_query)/2.:
        self.num_frames_no_success= 
            self.num_frames_no_success + 1
        return False, frame

4. If the recovered homography matrix is too different from the one that we  
last recovered (self.last_hinv), it means that we are probably looking  
at a different object, in which case we discard the frame and return False. 
We compare the current homography matrix to the last one by calculating 
the distance between the two matrices:
np.linalg.norm(Hinv – self.last_hinv)

However, we only want to consider self.last_hinv if it is fairly recent, say, 
from within the last self.max_frames_no_success. This is why we keep 
track of self.num_frames_no_success:
recent = self.num_frames_no_success <  
    self.max_frames_no_success
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similar = np.linalg.norm(Hinv - self.last_hinv) <  
    self.max_error_hinv
if recent and not similar:
    self.num_frames_no_success =  
        self.num_frames_no_success + 1
    return False, frame

This will help us keep track of the one and the same object of interest over  
time. If, for any reason, we lose track of the pattern image for more than  
self.max_frames_no_success frames, we skip this condition and accept  
whatever homography matrix was recovered up to that point. This makes sure that 
we do not get stuck with some self.last_hinv matrix that is actually an outlier.

Otherwise, we can be fairly certain that we have successfully located the object of 
interest in the current frame. In such a case, we store the homography matrix and 
reset the counter:

self.num_frames_no_success = 0
self.last_hinv = Hinv

All that is left to do is warping the image and (for the first time) returning True along 
with the warped image so that the image can be plotted:

img_out = cv2.warpPerspective(img_query, Hinv, dst_size)
img_out = cv2.cvtColor(img_out, cv2.COLOR_GRAY2RGB)
return True, imgOut

Seeing the algorithm in action
The result of the matching procedure in a live stream from my laptop's webcam 
looks like this:
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As you can see, most of the keypoints in the pattern image were matched correctly 
with their counterparts in the query image on the right. The printout of the pattern 
can now be slowly moved around, tilted, and turned. As long as all the corner points 
stay in the current frame, the homography matrix is updated accordingly and the 
outline of the pattern image is drawn correctly.

This works even if the printout is upside down, as shown here:

In all cases, the warped image brings the pattern image to an upright, centered 
position on the frontoparallel plane. This creates a cool effect of having the 
pattern image frozen in place in the center of the screen, while the surroundings 
twist and turn around it, like this:
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In most cases, the warped image looks fairly accurate, as seen in the one earlier. If, 
for any reason, the algorithm accepts a wrong homography matrix that leads to an 
unreasonably warped image, then the algorithm will discard the outlier and recover 
within half a second (that is, within self.max_frames_no_success frames), leading 
to accurate and efficient tracking throughout.

Summary
This chapter showed a robust feature tracking method that is fast enough to run in 
real time when applied to the live stream of a webcam.

First, the algorithm shows you how to extract and detect important features in 
an image independently of perspective and size, be it in a template of our object 
of interest (train image) or a more complex scene in which we expect the object 
of interest to be embedded (query image). A match between feature points in the 
two images is then found by clustering the keypoints using a fast version of the 
nearest neighbor algorithm. From there on, it is possible to calculate a perspective 
transformation that maps one set of feature points to the other. With this information, 
we can outline the train image as found in the query image and warp the query image 
so that the object of interest appears upright in the center of the screen.

With this in hand, we now have a good starting point for designing a cutting-edge 
feature tracking, image stitching, or augmented-reality application.

In the next chapter, we will continue studying the geometrical features of a scene, 
but this time, we will be concentrating on motion. Specifically, we will study how to 
reconstruct a scene in 3D by inferring its geometrical features from camera motion. 
For this, we will have to combine our knowledge of feature matching with optic flow 
and structure-from-motion techniques.
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3D Scene Reconstruction 
Using Structure from Motion

The goal of this chapter is to study how to reconstruct a scene in 3D by inferring the 
geometrical features of the scene from camera motion. This technique is sometimes 
referred to as structure from motion. By looking at the same scene from different 
angles, we will be able to infer the real-world 3D coordinates of different features in 
the scene. This process is known as triangulation, which allows us to reconstruct the 
scene as a 3D point cloud.

In the previous chapter, you learned how to detect and track an object of interest in 
the video stream of a webcam, even if the object is viewed from different angles or 
distances, or under partial occlusion. Here, we will take the tracking of interesting 
features a step further and consider what we can learn about the entire visual scene 
by studying similarities between image frames. If we take two pictures of the same 
scene from different angles, we can use feature matching or optic flow to estimate 
any translational and rotational movement that the camera underwent between 
taking the two pictures. However, in order for this to work, we will first have to 
calibrate our camera.

The complete procedure involves the following steps:

1. Camera calibration: We will use a chessboard pattern to extract the intrinsic 
camera matrix as well as the distortion coefficients, which are important for 
performing the scene reconstruction.
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2. Feature matching: We will match points in two 2D images of the same visual 
scene, either via Speeded-Up Robust Features (SURF) or via optic flow, as 
seen in the following image:

3. Image rectification: By estimating the camera motion from a pair of images, 
we will extract the essential matrix and rectify the images.
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4. Triangulation: We will reconstruct the 3D real-world coordinates of the 
image points by making use of constraints from epipolar geometry.

5. 3D point cloud visualization: Finally, we will visualize the recovered 
3D structure of the scene using scatterplots in matplotlib, which is most 
compelling when studied using pyplot's Pan axes button. This button lets 
you rotate and scale the point cloud in all three dimensions. It is a little 
harder to visualize in still frames, as can be seen in the following figure (left 
panel: standing slightly in front to the left side of the fountain, center panel: 
looking down on the fountain, right panel: standing slightly in front to the 
right of the fountain):

This chapter has been tested with OpenCV 2.4.9 and wxPython 2.8 
(http://www.wxpython.org/download.php). It also requires 
NumPy (http://www.numpy.org) and matplotlib (http://www.
matplotlib.org/downloads.html). Note that if you are using 
OpenCV3, you may have to obtain the so-called extra modules from 
https://github.com/Itseez/opencv_contrib and install 
OpenCV3 with the OPENCV_EXTRA_MODULES_PATH variable set in 
order to get SURF installed. Also note that you may have to obtain a 
license to use SURF in commercial applications.

Planning the app
The final app will extract and visualize structure from motion on a pair of images. 
We will assume that these two images have been taken with the same camera, whose 
internal camera parameters we know. If these parameters are not known, they need 
to be estimated first in a camera calibration process.

http://www.wxpython.org/download.php
http://www.numpy.org
http://www.matplotlib.org/downloads.html
http://www.matplotlib.org/downloads.html
https://github.com/Itseez/opencv_contrib
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The final app will then consist of the following modules and scripts:

• chapter4.main: This is the main function routine for starting the application.
• scene3D.SceneReconstruction3D: This is a class that contains a range  

of functionalities for calculating and visualizing structure from motion.  
It includes the following public methods:

 ° __init__: This constructor will accept the intrinsic camera matrix 
and the distortion coefficients

 ° load_image_pair: A method used to load from the file, two images 
that have been taken with the camera described earlier

 ° plot_optic_flow: A method used to visualize the optic flow 
between the two image frames

 ° draw_epipolar_lines: A method used to draw the epipolar lines of 
the two images

 ° plot_rectified_images: A method used to plot a rectified version 
of the two images

• plot_point_cloud: This is a method used to visualize the recovered real-
world coordinates of the scene as a 3D point cloud. In order to arrive at a 3D 
point cloud, we will need to exploit epipolar geometry. However, epipolar 
geometry assumes the pinhole camera model, which no real camera follows. 
We need to rectify our images to make them look as if they have come from a 
pinhole camera. For that, we need to estimate the parameters of the camera, 
which leads us to the field of camera calibration.

Camera calibration
So far, we have worked with whatever image came straight out of our webcam, 
without questioning the way in which it was taken. However, every camera lens 
has unique parameters, such as focal length, principal point, and lens distortion. 
What happens behind the covers when a camera takes a picture, is that; light falls 
through a lens, followed by an aperture, before falling on the surface of a light sensor. 
This process can be approximated with the pinhole camera model. The process of 
estimating the parameters of a real-world lens such that it would fit the pinhole camera 
model is called camera calibration (or camera resectioning, and it should not be 
confused with photometric camera calibration).
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The pinhole camera model
The pinhole camera model is a simplification of a real camera in which there is 
no lens and the camera aperture is approximated by a single point (the pinhole). 
When viewing a real-world 3D scene (such as a tree), light rays pass through the 
point-sized aperture and fall on a 2D image plane inside the camera, as seen in the 
following diagram:

In this model, a 3D point with coordinates (X,Y,Z) is mapped to a 2D point with 
coordinates (x,y) that lies on the image plane. Note that this leads to the tree 
appearing upside down on the image plane. The line that is perpendicular to the 
image plane, and passes through the pinhole is called the principal ray, and its 
length is called the focal length. The focal length is a part of the internal camera 
parameters, as it may vary depending on the camera being used.

Hartley and Zisserman found a mathematical formula to describe how a 2D point 
with coordinates (x,y) can be inferred from a 3D point with coordinates (X,Y,Z) and 
the camera's intrinsic parameters, as follows:

0
0
0 0 1

x x

y y

x f c X
y f c Y
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For now, let's focus on the 3 x 3 matrix in the preceding formula, which is the intrinsic 
camera matrix—a matrix that compactly describes all internal camera parameters. The 
matrix comprises focal lengths (fx and fy) and optical centers (cx and cy) expressed  
in pixel coordinates. As mentioned earlier, the focal length is the distance between  
the pinhole and the image plane. A true pinhole camera has only one focal length,  
in which case fx = fy = f. However, in reality, these two values might differ,  
maybe due to flaws in the digital camera sensor. The point at which the principal  
ray intersects the image plane is called the principal point, and its relative position  
on the image plane is captured by the optical center (or principal point offset).

In addition, a camera might be subject to radial or tangential distortion, leading to 
a fish-eye effect. This is because of hardware imperfections and lens misalignments. 
These distortions can be described with a list of the distortion coefficients. 
Sometimes, radial distortions are actually a desired artistic effect. At other times, 
they need to be corrected.

For more information on the pinhole camera model, there are many 
good tutorials out there on the Web, such as http://ksimek.
github.io/2013/08/13/intrinsic.

Because these parameters are specific to the camera hardware (hence the name 
intrinsic), we need to calculate them only once in the lifetime of a camera. This is 
called camera calibration.

Estimating the intrinsic camera parameters
In OpenCV, camera calibration is fairly straightforward. The official documentation 
provides a good overview of the topic and some sample C++ scripts at http://
docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_
calibration.html.

For educational purposes, we will develop our own calibration script in Python.  
We will need to present a special pattern image, with a known geometry (chessboard 
plate or black circles on a white background), to the camera we wish to calibrate. 
Because we know the geometry of the pattern image, we can use feature detection to 
study the properties of the internal camera matrix. For example, if the camera suffers 
from undesired radial distortion, the different corners of the chessboard pattern 
will appear distorted in the image and not lie on a rectangular grid. By taking about 
10 to 20 snapshots of the chessboard pattern from different points of view, we can 
collect enough information to correctly infer the camera matrix and the distortion 
coefficients.

http://ksimek.github.io/2013/08/13/intrinsic
http://ksimek.github.io/2013/08/13/intrinsic
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
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For this, we will use the calibrate.py script. Analogous to previous chapters, we 
will use a simple layout (CameraCalibration) based on BaseLayout that embeds 
a webcam video stream. The main function of the script will generate the GUI and 
execute the main loop of the app:

import cv2
import numpy as np
import wx

from gui import BaseLayout

    def main():
        capture = cv2.VideoCapture(0)
        if not(capture.isOpened()):
            capture.open()

        capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
        capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

        # start graphical user interface
        app = wx.App()
        layout = CameraCalibration(None, -1, 'Camera Calibration',  
            capture)
        layout.Show(True)
        app.MainLoop()

If you are using OpenCV 3, the constants that you are looking 
for might be called cv3.CAP_PROP_FRAME_WIDTH and cv3.
CAP_PROP_FRAME_HEIGHT.

The camera calibration GUI
The GUI is a customized version of the generic BaseLayout:

class CameraCalibration(BaseLayout):

The layout consists of only the current camera frame and a single button below it. 
This button allows us to start the calibration process:

def _create_custom_layout(self):
    """Creates a horizontal layout with a single button"""
    pnl = wx.Panel(self, -1)
    self.button_calibrate = wx.Button(pnl, 
        label='Calibrate Camera')
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    self.Bind(wx.EVT_BUTTON, self._on_button_calibrate)
    hbox = wx.BoxSizer(wx.HORIZONTAL)
    hbox.Add(self.button_calibrate)
    pnl.SetSizer(hbox)

For these changes to take effect, pnl needs to be added to the list of existing panels:

self.panels_vertical.Add(pnl, flag=wx.EXPAND | wx.BOTTOM |  
    wx.TOP, border=1)

The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure that we provide the _init_custom_layout and _process_frame 
methods.

Initializing the algorithm
In order to perform the calibration process, we need to do some bookkeeping. For 
now, let's focus on a single 10 x 7 chessboard. The algorithm will detect all the 9 x 
6 inner corners of the chessboard (referred to as object points) and store the detected 
image points of these corners in a list. So, let's first initialize the chessboard size to 
the number of inner corners:

def _init_custom_layout(self):
    """Initializes camera calibration"""
    # setting chessboard size
    self.chessboard_size = (9, 6)

Next, we need to enumerate all the object points and assign them object point 
coordinates so that the first point has coordinates (0,0), the second one (top row)  
has coordinates (1,0), and the last one has coordinates (8,5):

# prepare object points
self.objp = np.zeros((np.prod(self.chessboard_size), 3),  
    dtype=np.float32)
self.objp[:, :2] = np.mgrid[0:self.chessboard_size[0], 
    0:self.chessboard_size[1]].T.reshape(-1, 2)

We also need to keep track of whether we are currently recording the object and 
image points or not. We will initiate this process once the user clicks on the self.
button_calibrate button. After that, the algorithm will try to detect a chessboard 
in all subsequent frames until a number of self.record_min_num_frames 
chessboards have been detected:

    # prepare recording
    self.recording = False
    self.record_min_num_frames = 20
    self._reset_recording()
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Whenever the self.button_calibrate button is clicked on, we reset all the 
bookkeeping variables, disable the button, and start recording:

def _on_button_calibrate(self, event):
    self.button_calibrate.Disable()
    self.recording = True
    self._reset_recording()

Resetting the bookkeeping variables involves clearing the lists of recorded object  
and image points (self.obj_points and self.img_points) as well as resetting  
the number of detected chessboards (self.recordCnt) to 0:

def _reset_recording(self):
    self.record_cnt = 0
    self.obj_points = []
    self.img_points = []

Collecting image and object points
The _process_frame method is responsible for doing the hard work of the 
calibration technique. After the self.button_calibrate button has been clicked 
on, this method starts collecting data until a total of self.record_min_num_frames 
chessboards are detected:

def _process_frame(self, frame):
    """Processes each frame"""

    # if we are not recording, just display the frame
    if not self.recording:
        return frame

    # else we're recording
    img_gray = cv2.cvtColor(frame,  
        cv2.COLOR_BGR2GRAY).astype(np.uint8)

    if self.record_cnt < self.record_min_num_frames:
        ret, corners = cv2.findChessboardCorners(img_gray,  
            self.chessboard_size, None)

The cv2.findChessboardCorners function will parse a grayscale image (img_gray) 
to find a chessboard of size self.chessboard_size. If the image indeed contains a 
chessboard, the function will return true (ret) as well as a list of chessboard corners 
(corners).
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Then, drawing the chessboard is straightforward:

if ret:
    cv2.drawChessboardCorners(frame,  
        self.chessboard_size, corners, ret)

The result looks like this (drawing the chessboard corners in color for the effect):

We could now simply store the list of detected corners and move on to the next 
frame. However, in order to make the calibration as accurate as possible, OpenCV 
provides a function to refine the corner point measurement:

criteria = (cv2.TERM_CRITERIA_EPS + 
        cv2.TERM_CRITERIA_MAX_ITER, 30, 0.01)
cv2.cornerSubPix(img_gray, corners, (9, 9), (-1, -1),
        criteria)

This will refine the coordinates of the detected corners to subpixel precision.  
Now we are ready to append the object and image points to the list and advance  
the frame counter:

self.obj_points.append(self.objp)
self.img_points.append(corners)
self.record_cnt += 1
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Finding the camera matrix
Once we have collected enough data (that is, once self.record_cnt reaches 
the value of self.record_min_num_frames), the algorithm is ready to perform 
the calibration. This process can be performed with a single call to cv2.
calibrateCamera:

else:
    print "Calibrating..."
    ret, K, dist, rvecs, tvecs =  
        cv2.calibrateCamera(self.obj_points,  
            self.img_points, (self.imgHeight, self.imgWidth),  
            None, None)

The function returns  true on success (ret), the intrinsic camera matrix (K), the 
distortion coefficients (dist), as well as two rotation and translation matrices 
(rvecs and tvecs). For now, we are mainly interested in the camera matrix and 
the distortion coefficients, because these will allow us to compensate for any 
imperfections of the internal camera hardware. We will simply print them on the 
console for easy inspection:

print "K=", K
print "dist=", dist

For example, the calibration of my laptop's webcam recovered the following values:

K= [[ 3.36696445e+03 0.00000000e+00 2.99109943e+02]
    [ 0.00000000e+00 3.29683922e+03 2.69436829e+02]
    [ 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
dist= [[ 9.87991355e-01 -3.18446968e+02 9.56790602e-02  
        -3.42530800e-02 4.87489304e+03]]

This tells us that the focal lengths of my webcam are fx=3366.9644 pixels 
and fy=3296.8392 pixels, with the optical center at cx=299.1099 pixels and 
cy=269.4368 pixels.

A good idea might be to double-check the accuracy of the calibration process. This 
can be done by projecting the object points onto the image using the recovered camera 
parameters so that we can compare them with the list of image points we collected 
with the cv2.findChessboardCorners function. If the two points are roughly the 
same, we know that the calibration was successful. Even better, we can calculate the 
mean error of the reconstruction by projecting every object point in the list:

mean_error = 0
for i in xrange(len(self.obj_points)):
    img_points2, _ = cv2.projectPoints(self.obj_points[i],  
        rvecs[i], tvecs[i], K, dist)
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    error = cv2.norm(self.img_points[i], img_points2,  
        cv2.NORM_L2)/len(img_points2)
    mean_error += error

print "mean error=",  {} pixels".format(mean_error)

Performing this check on my laptop's webcam resulted in a mean error of 0.95 pixels, 
which is fairly close to zero.

With the internal camera parameters recovered, we can now set out to take beautiful, 
undistorted pictures of the world, possibly from different viewpoints so that we can 
extract some structure from motion.

Setting up the app
Going forward, we will be using a famous open source dataset called fountain-P11. 
It depicts a Swiss fountain viewed from various angles. An example of this is shown 
in the following image:



Chapter 4

[ 421 ]

The dataset consists of 11 high-resolution images and can be downloaded from 
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html. Had we taken the 
pictures ourselves, we would have had to go through the entire camera calibration 
procedure to recover the intrinsic camera matrix and the distortion coefficients. 
Luckily, these parameters are known for the camera that took the fountain dataset,  
so we can go ahead and hardcode these values in our code.

The main function routine
Our main function routine will consist of creating and interacting with an instance of 
the SceneReconstruction3D class. This code can be found in the chapter4.py file, 
which imports all the necessary modules and instantiates the class:

import numpy as np

from scene3D import SceneReconstruction3D

def main():
    # camera matrix and distortion coefficients
    # can be recovered with calibrate.py
    # but the examples used here are already undistorted, taken 
    # with a camera of known K
    K = np.array([[2759.48/4, 0, 1520.69/4, 0, 2764.16/4, 
        1006.81/4, 0, 0, 1]]).reshape(3, 3)
    d = np.array([0.0, 0.0, 0.0, 0.0, 0.0]).reshape(1, 5)

Here, the K matrix is the intrinsic camera matrix for the camera that took the fountain 
dataset. According to the photographer, these images are already distortion free,  
so we set all the distortion coefficients (d) to zero.

Note that if you want to run the code presented in this chapter on 
a dataset other than fountain-P11, you will have to adjust the 
intrinsic camera matrix and the distortion coefficients.

Next, we load a pair of images to which we would like to apply our structure-from-
motion techniques. I downloaded the dataset into a subdirectory called fountain_
dense:

# load a pair of images for which to perform SfM
scene = SceneReconstruction3D(K, d)
scene.load_image_pair("fountain_dense/0004.png",  
    "fountain_dense/0005.png")

http://cvlabwww.epfl.ch/data/multiview/denseMVS.html
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Now we are ready to perform various computations, such as the following:

scene.plot_optic_flow()
scene.draw_epipolar_lines()
scene.plot_rectified_images()

# draw 3D point cloud of fountain
# use "pan axes" button in pyplot to inspect the cloud (rotate 
# and zoom to convince you of the result)
scene.plot_point_cloud()

The next sections will explain these functions in detail.

The SceneReconstruction3D class
All of the relevant 3D scene reconstruction code for this chapter can be found as part 
of the SceneReconstruction3D class in the scene3D module. Upon instantiation, the 
class stores the intrinsic camera parameters to be used in all subsequent calculations:

import cv2
import numpy as np
import sys

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

class SceneReconstruction3D:
    def __init__(self, K, dist):
        self.K = K
        self.K_inv = np.linalg.inv(K)
        self.d = dist

Then, the first step is to load a pair of images on which to operate: 

def load_image_pair(self, img_path1, img_path2, 
        downscale=True):
    self.img1 = cv2.imread(img_path1, cv2.CV_8UC3)
    self.img2 = cv2.imread(img_path2, cv2.CV_8UC3)

    # make sure images are valid
    if self.img1 is None:
        sys.exit("Image " + img_path1 + " could not be  
            loaded.")
    if self.img2 is None:
        sys.exit("Image " + img_path2 + " could not be  
            loaded.")
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If the loaded images are grayscale, the method will convert to them to BGR format, 
because the other methods expect a three-channel image:

if len(self.img1.shape)==2:
    self.img1 = cv2.cvtColor(self.img1, cv2.COLOR_GRAY2BGR)
    self.img2 = cv2.cvtColor(self.img2, cv2.COLOR_GRAY2BGR)

In the case of the fountain sequence, all images are of a relatively high resolution.  
If an optional downscale flag is set, the method will downscale the images to a  
width of roughly 600 pixels:

# scale down image if necessary
# to something close to 600px wide
target_width = 600
if downscale and self.img1.shape[1]>target_width:
    while self.img1.shape[1] > 2*target_width:
        self.img1 = cv2.pyrDown(self.img1)
        self.img2 = cv2.pyrDown(self.img2)

Also, we need to compensate for the radial and tangential lens distortions using the 
distortion coefficients specified earlier (if there are any):

self.img1 = cv2.undistort(self.img1, self.K, self.d)
self.img2 = cv2.undistort(self.img2, self.K, self.d)

Finally, we are ready to move on to the meat of the project—estimating the camera 
motion and reconstructing the scene!

Estimating the camera motion from a pair 
of images
Now that we have loaded two images (self.img1 and self.img2) of the same 
scene, such as two examples from the fountain dataset, we find ourselves in a similar 
situation as in the last chapter. We are given two images that supposedly show the 
same rigid object or static scene, but from different viewpoints. However, this time 
we want to go a step further; if the only thing that changes between taking the two 
pictures is the location of the camera, can we infer the relative camera motion by 
looking at the matching features?

Well, of course we can. Otherwise, this chapter would not make much sense, would 
it? We will take the location and orientation of the camera in the first image as a 
given and then find out how much we have to reorient and relocate the camera so 
that its viewpoint matches that from the second image.



3D Scene Reconstruction Using Structure from Motion

[ 424 ]

In other words, we need to recover the essential matrix of the camera in the second 
image. An essential matrix is a 4 x 3 matrix that is the concatenation of a 3 x 3 
rotation matrix and a 3 x 1 translation matrix. It is often denoted as [R | t]. You can 
think of it as capturing the position and orientation of the camera in the second 
image relative to the camera in the first image.

The crucial step in recovering the essential matrix (as well as all other 
transformations in this chapter) is feature matching. We can either reuse our code 
from the last chapter and apply a speeded-up robust features (SURF) detector to 
the two images, or calculate the optic flow between the two images. The user may 
choose their favorite method by specifying a feature extraction mode, which will be 
implemented by the following private method:

def ___extract_keypoints(self, feat_mode):
    if featMode == "SURF":
        # feature matching via SURF and BFMatcher
        self._extract_keypoints_surf()
    else:
        if feat_mode == "flow":
            # feature matching via optic flow
            self._extract_keypoints_flow()
        else:
            sys.exit("Unknown mode " + feat_mode 
                + ". Use 'SURF' or 'FLOW'")

Point matching using rich feature descriptors
As we saw in the last chapter, a fast and robust way of extracting important features 
from an image is by using a SURF detector. In this chapter, we want to use it for two 
images, self.img1 and self.img2:

def _extract_keypoints_surf(self):
    detector = cv2.SURF(250)
    first_key_points, first_des =  
        detector.detectAndCompute(self.img1, None)
    second_key_points, second_desc =  
        detector.detectAndCompute(self.img2, None)

For feature matching, we will use a BruteForce matcher, but other matchers  
(such as FLANN) can work as well:

matcher = cv2.BFMatcher(cv2.NORM_L1, True)
matches = matcher.match(first_desc, second_desc)
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For each of the matches, we need to recover the corresponding image coordinates. 
These are maintained in the self.match_pts1 and self.match_pts2 lists:

first_match_points = np.zeros((len(matches), 2),  
    dtype=np.float32)
second_match_points = np.zeros_like(first_match_points)
for i in range(len(matches)):
    first_match_points[i] = 
        first_key_points[matches[i].queryIdx].pt
    second_match_points[i] = 
        second_key_points[matches[i].trainIdx].pt

self.match_pts1 = first_match_points
self.match_pts2 = second_match_points

The following screenshot shows an example of the feature matcher applied to two 
arbitrary frames of the fountain sequence:

Point matching using optic flow
An alternative to using rich features, is using optic flow. Optic flow is the process 
of estimating motion between two consecutive image frames by calculating a 
displacement vector. A displacement vector can be calculated for every pixel in the 
image (dense) or only for selected points (sparse).

One of the most commonly used techniques for calculating dense optic flow is the 
Lukas-Kanade method. It can be implemented in OpenCV with a single line of code, 
by using the cv2.calcOpticalFlowPyrLK function.
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But before that, we need to select some points in the image that are worth tracking. 
Again, this is a question of feature selection. If we were interested in getting an 
exact result for only a few highly salient image points, we can use Shi-Tomasi's cv2.
goodFeaturesToTrack function. This function might recover features like this:

However, in order to infer structure from motion, we might need many more 
features and not just the most salient Harris corners. An alternative would be to 
detect the FAST features:

def _extract_keypoints_flow(self):
    fast = cv2.FastFeatureDetector()
    first_key_points = fast.detect(self.img1, None)

We can then calculate the optic flow for these features. In other words, we want to 
find the points in the second image that most likely correspond to the first_key_
points from the first image. For this, we need to convert the keypoint list into a 
NumPy array of (x,y) coordinates:

first_key_list = [i.pt for i in first_key_points]
first_key_arr = np.array(first_key_list).astype(np.float32)

Then the optic flow will return a list of corresponding features in the second image 
(second_key_arr):

second_key_arr, status, err =  
    cv2.calcOpticalFlowPyrLK(self.img1, self.img2,  
        first_key_arr)
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The function also returns a vector of status bits (status), which indicate whether 
the flow for a keypoint has been found or not, and a vector of estimated error values 
(err). If we were to ignore these two additional vectors, the recovered flow field 
could look something like this:

In this image, an arrow is drawn for each keypoint, starting at the image location of 
the keypoint in the first image and pointing to the image location of the same keypoint 
in the second image. By inspecting the flow image, we can see that the camera moved 
mostly to the right, but there also seems to be a rotational component. However, some 
of these arrows are really large, and some of them make no sense. For example, it 
is very unlikely that a pixel in the bottom-right image corner actually moved all the 
way to the top of the image. It is much more likely that the flow calculation for this 
particular keypoint is wrong. Thus, we want to exclude all the keypoints for which the 
status bit is zero or the estimated error is larger than some value:

condition = (status == 1) * (err < 5.)
concat = np.concatenate((condition, condition), axis=1)
first_match_points = first_key_arr[concat].reshape(-1, 2)
second_match_points = second_key_arr[concat].reshape(-1, 2)

self.match_pts1 = first_match_points
self.match_pts2 = second_match_points
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If we draw the flow field again with a limited set of keypoints, the image will look 
like this:

The flow field can be drawn with the following public method, which first extracts 
the keypoints using the preceding code and then draws the actual lines on the image:

def plot_optic_flow(self):
    self._extract_key_points("flow")

    img = self.img1
    for i in xrange(len(self.match_pts1)):
        cv2.line(img, tuple(self.match_pts1[i]),  
            tuple(self.match_pts2[i]), color=(255, 0, 0))
        theta = np.arctan2(self.match_pts2[i][1] –  
            self.match_pts1[i][1], self.match_pts2[i][0] –  
            self.match_pts1[i][0])
        cv2.line(img, tuple(self.match_pts2[i]),
             (np.int(self.match_pts2[i][0] –  
             6*np.cos(theta+np.pi/4)),
             np.int(self.match_pts2[i][1] – 
             6*np.sin(theta+np.pi/4))), color=(255, 0, 0))
        cv2.line(img, tuple(self.match_pts2[i]),  
            (np.int(self.match_pts2[i][0] – 
            6*np.cos(theta-np.pi/4)), 
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            np.int(self.match_pts2[i][1] – 
            6*np.sin(theta-np.pi/4))), color=(255, 0, 0))
    for i in xrange(len(self.match_pts1)):
        cv2.line(img, tuple(self.match_pts1[i]),  
            tuple(self.match_pts2[i]), color=(255, 0, 0))
        theta = np.arctan2(self.match_pts2[i][1] - 
            self.match_pts1[i][1], 
            self.match_pts2[i][0] - self.match_pts1[i][0])
    cv2.imshow("imgFlow",img)
    cv2.waitKey()

The advantage of using optic flow instead of rich features is that the process is 
usually faster and can accommodate the matching of many more points, making  
the reconstruction denser.

The caveat in working with optic flow is that it works best for consecutive images 
taken by the same hardware, whereas rich features are mostly agnostic to this.

Finding the camera matrices
Now that we have obtained the matches between keypoints, we can calculate two 
important camera matrices: the fundamental matrix and the essential matrix. These 
matrices will specify the camera motion in terms of rotational and translational 
components. Obtaining the fundamental matrix (self.F) is another OpenCV one-liner:

def _find_fundamental_matrix(self):
    self.F, self.Fmask = cv2.findFundamentalMat(self.match_pts1,  
        self.match_pts2, cv2.FM_RANSAC, 0.1, 0.99)

The only difference between the fundamental matrix and the essential matrix is that 
the latter operates on rectified images:

def _find_essential_matrix(self):
    self.E = self.K.T.dot(self.F).dot(self.K)

The essential matrix (self.E) can then be decomposed into rotational and translational 
components, denoted as [R | t], using singular value decomposition (SVD):

def _find_camera_matrices(self):
    U, S, Vt = np.linalg.svd(self.E)
    W = np.array([0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,  
        1.0]).reshape(3, 3)
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Using the unitary matrices U and V in combination with an additional matrix, W, 
we can now reconstruct [R | t]. However, it can be shown that this decomposition 
has four possible solutions and only one of them is the valid second camera matrix. 
The only thing we can do is check all four possible solutions and find the one that 
predicts that all the imaged keypoints lie in front of both cameras.

But prior to that, we need to convert the keypoints from 2D image coordinates to 
homogeneous coordinates. We achieve this by adding a z coordinate, which we set  
to 1:

first_inliers = []
second_inliers = []
for i in range(len(self.Fmask)):
    if self.Fmask[i]:
        first_inliers.append(self.K_inv.dot( 
            [self.match_pts1[i][0], self.match_pts1[i][1],  
            1.0]))
        second_inliers.append(self.K_inv.dot( 
            [self.match_pts2[i][0], self.match_pts2[i][1],  
            1.0]))

We then iterate over the four possible solutions and choose the one that has _in_
front_of_both_cameras returning True:

# First choice: R = U * Wt * Vt, T = +u_3 (See Hartley 
# & Zisserman 9.19)
R = U.dot(W).dot(Vt)
T = U[:, 2]

if not self._in_front_of_both_cameras(first_inliers, 
        second_inliers, R, T):
    # Second choice: R = U * W * Vt, T = -u_3
    T = - U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,  
        second_inliers, R, T):
    # Third choice: R = U * Wt * Vt, T = u_3
    R = U.dot(W.T).dot(Vt)
    T = U[:, 2]

if not self._in_front_of_both_cameras(first_inliers,  
        second_inliers, R, T):
    # Fourth choice: R = U * Wt * Vt, T = -u_3
    T = - U[:, 2]
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Now, we can finally construct the [R | t] matrices of the two cameras. The first 
camera is simply a canonical camera (no translation and no rotation):

self.Rt1 = np.hstack((np.eye(3), np.zeros((3, 1))))

The second camera matrix consists of [R | t] recovered earlier:

self.Rt2 = np.hstack((R, T.reshape(3, 1)))

The __InFrontOfBothCameras private method is a helper function that makes sure 
that every pair of keypoints is mapped to 3D coordinates that make them lie in front 
of both cameras:

def _in_front_of_both_cameras(self, first_points, second_points,  
        rot, trans):
    rot_inv = rot
    for first, second in zip(first_points, second_points):
        first_z = np.dot(rot[0, :] - second[0]*rot[2, :], trans) /  
            np.dot(rot[0, :] - second[0]*rot[2, :], second)
        first_3d_point = np.array([first[0] * first_z, second[0] *  
            first_z, first_z])
        second_3d_point = np.dot(rot.T, first_3d_point) –  
            np.dot(rot.T, trans)

If the function finds any keypoint that is not in front of both cameras, it will  
return False:

if first_3d_point[2] < 0 or second_3d_point[2] < 0:
    return False
return True

Image rectification
Maybe, the easiest way to make sure that we have recovered the correct camera 
matrices is to rectify the images. If they are rectified correctly, then; a point in the 
first image, and a point in the second image that correspond to the same 3D world 
point, will lie on the same vertical coordinate. In a more concrete example, such as in 
our case, since we know that the cameras are upright, we can verify that horizontal 
lines in the rectified image correspond to horizontal lines in the 3D scene.

First, we perform all the steps described in the previous subsections to obtain the  
[R | t] matrix of the second camera:

def plot_rectified_images(self, feat_mode="SURF"):
    self._extract_keypoints(feat_mode)
    self._find_fundamental_matrix()
    self._find_essential_matrix()
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    self._find_camera_matrices_rt()

    R = self.Rt2[:, :3]
    T = self.Rt2[:, 3]

Then, rectification can be performed with two OpenCV one-liners that remap the 
image coordinates to the rectified coordinates based on the camera matrix (self.K), 
the distortion coefficients (self.d), the rotational component of the essential matrix 
(R), and the translational component of the essential matrix (T):

    R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(self.K,  
        self.d, self.K, self.d, self.img1.shape[:2], R, T,
        alpha=1.0)
    mapx1, mapy1 = cv2.initUndistortRectifyMap(self.K,  
        self.d, R1, self.K, self.img1.shape[:2], cv2.CV_32F)
    mapx2, mapy2 = cv2.initUndistortRectifyMap(self.K, self.d, R2,  
        self.K, self.img2.shape[:2], cv2.CV_32F)
    img_rect1 = cv2.remap(self.img1, mapx1, mapy1,  
        cv2.INTER_LINEAR)
    img_rect2 = cv2.remap(self.img2, mapx2, mapy2,  
        cv2.INTER_LINEAR)

To make sure that the rectification is accurate, we plot the two rectified images  
(img_rect1 and img_rect2) next to each other:

total_size = (max(img_rect1.shape[0], img_rect2.shape[0]),  
    img_rect1.shape[1] + img_rect2.shape[1], 3)
img = np.zeros(total_size, dtype=np.uint8)
img[:img_rect1.shape[0], :img_rect1.shape[1]] = img_rect1
img[:img_rect2.shape[0], img_rect1.shape[1]:] = img_rect2

We also draw horizontal blue lines after every 25 pixels, across the side-by-side 
images to further help us visually investigate the rectification process:

for i in range(20, img.shape[0], 25):
    cv2.line(img, (0, i), (img.shape[1], i), (255, 0, 0))
    cv2.imshow('imgRectified', img)
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Now we can easily convince ourselves that the rectification was successful,  
as shown here:

Reconstructing the scene
Finally, we can reconstruct the 3D scene by making use of a process called 
triangulation. We are able to infer the 3D coordinates of a point because of the 
way epipolar geometry works. By calculating the essential matrix, we get to know 
more about the geometry of the visual scene than we might think. Because the two 
cameras depict the same real-world scene, we know that most of the 3D real-world 
points will be found in both images. Moreover, we know that the mapping from the 
2D image points to the corresponding 3D real-world points, will follow the rules of 
geometry. If we study a sufficiently large number of image points, we can construct, 
and solve, a (large) system of linear equations to get the ground truth of the real-
world coordinates.
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Let's return to the Swiss fountain dataset. If we ask two photographers to take a picture 
of the fountain from different viewpoints at the same time, it is not hard to realize 
that the first photographer might show up in the picture of the second photographer, 
and vice-versa. The point on the image plane where the other photographer is visible 
is called the epipole or epipolar point. In more technical terms, the epipole is the 
point on one camera's image plane onto which the center of projection of the other 
camera projects. It is interesting to note that both the epipoles in their respective 
image planes, and both the centers of projection, lie on a single 3D line. By looking at 
the lines between the epipoles and image points, we can limit the number of possible 
3D coordinates of the image points. In fact, if the projection point is known, then the 
epipolar line (which is the line between the image point and the epipole) is known, 
and in turn the same point projected onto the second image must lie on that particular 
epipolar line. Confusing? I thought so. Let's just look at these images:

Each line here is the epipolar line of a particular point in the image. Ideally, all the 
epipolar lines drawn in the left-hand-side image should intersect at a point, and that 
point typically lies outside the image. If the calculation is accurate, then that point 
should coincide with the location of the second camera as seen from the first camera. 
In other words, the epipolar lines in the left-hand-side image tell us that the camera 
that took the right-hand-side image is located to our (that is, the first camera's) 
right-hand side. Analogously, the epipolar lines in the right-hand-side image tell us 
that the camera that took the image on the left is located to our (that is, the second 
camera's) left-hand side.

Moreover, for each point observed in one image, the same point must be observed in 
the other image on a known epipolar line. This is known as epipolar constraint. We 
can use this fact to show that if two image points correspond to the same 3D point, 
then the projection lines of those two image points must intersect precisely at the 3D 
point. This means that the 3D point can be calculated from two image points, which 
is what we are going to do next.
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Luckily, OpenCV again provides a wrapper to solve an extensive set of linear 
equations. First, we have to convert our list of matching feature points into a  
NumPy array:

first_inliers = np.array(self.match_inliers1).reshape 
    (-1, 3)[:, :2]
second_inliers = np.array(self.match_inliers2).reshape 
    (-1, 3)[:, :2]

Triangulation is performed next, using the preceding two [R | t] matrices (self.Rt1 
for the first camera and self.Rt2 for the second camera):

pts4D = cv2.triangulatePoints(self.Rt1, self.Rt2, first_inliers.T, 
    second_inliers.T).T

This will return the triangulated real-world points using 4D homogeneous 
coordinates. To convert them to 3D coordinates, we need to divide the (X,Y,Z) 
coordinates by the fourth coordinate, usually referred to as W:

pts3D = pts4D[:, :3]/np.repeat(pts4D[:, 3], 3).reshape(-1, 3)

3D point cloud visualization
The last step is visualizing the triangulated 3D real-world points. An easy way of 
creating 3D scatterplots is by using matplotlib. However, if you are looking for more 
professional visualization tools, you may be interested in Mayavi (http://docs.
enthought.com/mayavi/mayavi), VisPy (http://vispy.org), or the Point Cloud 
Library (http://pointclouds.org). Although the latter does not have Python 
support for point cloud visualization yet, it is an excellent tool for point cloud 
segmentation, filtering, and sample consensus model fitting. For more information, 
head over to strawlab's GitHub repository at https://github.com/strawlab/
python-pcl.

Before we can plot our 3D point cloud, we obviously have to extract the [R | t] 
matrix and perform the triangulation as explained earlier:

def plot_point_cloud(self, feat_mode="SURF"):
    self._extract_keypoints(feat_mode)
    self._find_fundamental_matrix()
    self._find_essential_matrix()
    self._find_camera_matrices_rt()

    # triangulate points
    first_inliers = np.array( 
        self.match_inliers1).reshape(-1, 3)[:, :2]

http://docs.enthought.com/mayavi/mayavi
http://docs.enthought.com/mayavi/mayavi
http://vispy.org
http://pointclouds.org
https://github.com/strawlab/python-pcl
https://github.com/strawlab/python-pcl
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    second_inliers = np.array( 
        self.match_inliers2).reshape(-1, 3)[:, :2]
    pts4D = cv2.triangulatePoints(self.Rt1, self.Rt2, 
        first_inliers.T, second_inliers.T).T

    # convert from homogeneous coordinates to 3D
    pts3D = pts4D[:, :3]/np.repeat(pts4D[:, 3], 3).reshape(-1, 3)

Then, all we need to do is open a matplotlib figure and draw each entry of pts3D in 
a 3D scatterplot:

    Ys = pts3D[:,0]
    Zs = pts3D[:,1]
    Xs = pts3D[:,2]
    
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(Xs, Ys, Zs, c='r', marker='o')
    ax.set_xlabel('Y')
    ax.set_ylabel('Z')
    ax.set_zlabel('X')
    plt.show()

The result is most compelling when studied using pyplot's Pan axes button, which 
lets you rotate and scale the point cloud in all three dimensions. This will make it 
immediately clear that most of the points that you see lie on the same plane, namely 
the wall behind the fountain, and that the fountain itself extends from that wall in 
negative z coordinates. It is a little harder to draw this convincingly, but here we go:



Chapter 4

[ 437 ]

Each subplot shows the recovered 3D coordinates of the fountain as seen from a 
different angle. In the top row, we are looking at the fountain from a similar angle 
as the second camera in the previous images, that is, by standing to the right and 
slightly in front of the fountain. You can see how most of the points are mapped 
to a similar x coordinate, which corresponds to the wall behind the fountain. For a 
subset of points concentrated between z coordinates -0.5 and -1.0, the x coordinate 
is significantly different, which shows different keypoints that belong to the surface 
of the fountain. The first two panels in the lower row look at the fountain from the 
other side. The last panel shows a birds-eye view of the fountain, highlighting the 
fountain's silhouette as a half-circle in the lower half of the image.



3D Scene Reconstruction Using Structure from Motion

[ 438 ]

Summary
In this chapter, we explored a way of reconstructing a scene in 3D—by inferring  
the geometrical features of 2D images taken by the same camera. We wrote a script 
to calibrate a camera, and you learned about fundamental and essential matrices. 
We used this knowledge to perform triangulation. We then went on to visualize the 
real-world geometry of the scene in a 3D point cloud. Using simple 3D scatterplots in 
matplotlib, we found a way to convince ourselves that our calculations were accurate 
and practical.

Going forward from here, it will be possible to store the triangulated 3D points in a file 
that can be parsed by the Point Cloud Library, or to repeat the procedure for different 
image pairs so that we can generate a denser and more accurate reconstruction. 
Although we have covered a lot in this chapter, there is a lot more left to do. Typically, 
when talking about a structure-from-motion pipeline, we include two additional steps 
that we have not talked about so far: bundle adjustment and geometry fitting. One 
of the most important steps in such a pipeline is to refine the 3D estimate in order to 
minimize reconstruction errors. Typically, we would also want to get all points that do 
not belong to our object of interest out of the cloud. But with the basic code in hand, 
you can now go ahead and write your own advanced structure-from-motion pipeline!

In the next chapter, we will move away from rigid scenes and instead focus on 
tracking visually salient and moving objects in a scene. This will give you an 
understanding of how to deal with non-static scenes. We will also explore how 
we can make an algorithm focus on what's important in a scene, quickly, which is a 
technique known to speed up object detection, object recognition, object tracking, 
and content-aware image editing.
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Tracking Visually Salient 
Objects

The goal of this chapter is to track multiple visually salient objects in a video 
sequence at once. Instead of labeling the objects of interest in the video ourselves,  
we will let the algorithm decide which regions of a video frame are worth tracking.

We have previously learned how to detect simple objects of interest (such as a 
human hand) in tightly controlled scenarios or how to infer geometrical features 
of a visual scene from camera motion. In this chapter, we ask what we can learn 
about a visual scene by looking at the image statistics of a large number of frames. 
By analyzing the Fourier spectrum of natural images we will build a saliency map, 
which allows us to label certain statistically interesting patches of the image as 
(potential or) proto-objects. We will then feed the location of all the proto- objects to a 
mean-shift tracker that will allow us to keep track of where the objects move from 
one frame to the next.

To build the app, we need to combine the following two main features:

• Saliency map: We will use Fourier analysis to get a general understanding 
of natural image statistics, which will help us build a model of what general 
image backgrounds look like. By comparing and contrasting the background 
model to a specific image frame, we can locate sub-regions of the image that 
pop out of their surroundings. Ideally, these sub-regions correspond to the 
image patches that tend to grab our immediate attention when looking at the 
image.

• Object tracking: Once all the potentially interesting patches of an image are 
located, we will track their movement over many frames using a simple yet 
effective method called mean-shift tracking. Because it is possible to have 
multiple proto-objects in the scene that might change appearance over time, 
we need to be able to distinguish between them and keep track of all of them.
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Visual saliency is a technical term from cognitive psychology that tries to describe 
the visual quality of certain objects or items that allows them to grab our immediate 
attention. Our brains constantly drive our gaze towards the important regions of 
the visual scene and keep track of them over time, allowing us to quickly scan our 
surroundings for interesting objects and events while neglecting the less important 
parts.

An example of a regular RGB image and its conversion to a saliency map, where the 
statistically interesting pop-out regions appear bright and the others dark, is shown in 
the following figure:

Traditional models might try to associate particular features with each target (much 
like our feature matching approach in Chapter 3, Finding Objects via Feature Matching 
and Perspective Transforms), which would convert the problem to the detection of 
specific categories or objects. However, these models require manual labeling and 
training. But what if the features or the number of the objects to track is not known?
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Instead, we will try to mimic what the brain does, that is, tune our algorithm to the 
statistics of the natural images, so that we can immediately locate the patterns or 
sub-regions that "grab our attention" in the visual scene (that is, patterns that deviate 
from these statistical regularities) and flag them for further inspection. The result 
is an algorithm that works for any number of proto-objects in the scene, such as 
tracking all the players on a soccer field. Refer to the following image:

This chapter uses OpenCV 2.4.9, as well as the additional packages 
NumPy (http://www.numpy.org), wxPython 2.8 (http://www.
wxpython.org/download.php), and matplotlib (http://www.
matplotlib.org/downloads.html). Although parts of the 
algorithms presented in this chapter have been added to an optional 
Saliency module of the OpenCV 3.0.0 release, there is currently no 
Python API for it, so we will write our own code.

http://www.numpy.org
http://www.wxpython.org/download.php
http://www.wxpython.org/download.php
http://www.matplotlib.org/downloads.html
http://www.matplotlib.org/downloads.html
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Planning the app
The final app will convert each RGB frame of a video sequence into a saliency map, 
extract all the interesting proto-objects, and feed them to a mean-shift tracking 
algorithm. To do this, we need the following components:

• main: The main function routine (in chapter5.py) to start the application.
• Saliency: A class that generates a saliency map from an RGB color image.  

It includes the following public methods:
 ° Saliency.get_saliency_map: The main method to convert an RGB 

color image to a saliency map
 ° Saliency.get_proto_objects_map: A method to convert a saliency 

map into a binary mask containing all the proto-objects
 ° Saliency.plot_power_density: A method to display the 2D power 

density of an RGB color image, which is helpful to understand the 
Fourier transform

 ° Saliency.plot_power_spectrum: A method to display the radially 
averaged power spectrum of an RGB color image, which is helpful to 
understand natural image statistics

• MultiObjectTracker: A class that tracks multiple objects in a video using 
mean-shift tracking. It includes the following public method, which itself 
contains a number of private helper methods:

 ° MultiObjectTracker.advance_frame: A method to update the 
tracking information for a new frame, combining bounding boxes 
obtained from both the saliency map and mean-shift tracking

In the following sections, we will discuss these steps in detail.

Setting up the app
In order to run our app, we will need to execute a main function routine that reads  
a frame of a video stream, generates a saliency map, extracts the location of the 
proto-objects, and tracks these locations from one frame to the next.
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The main function routine
The main process flow is handled by the main function in chapter5.py, which 
instantiates the two classes (Saliency and MultipleObjectTracker) and opens  
a video file showing the number of soccer players on the field:

import cv2
import numpy as np
from os import path

from saliency import Saliency
from tracking import MultipleObjectsTracker

def main(video_file='soccer.avi', roi=((140, 100), (500, 600))):
    if path.isfile(video_file):
        video = cv2.VideoCapture(video_file)
    else:
        print 'File "' + video_file + '" does not exist.'
        raise SystemExit

    # initialize tracker
    mot = MultipleObjectsTracker()

The function will then read the video frame by frame, extract some meaningful 
region of interest (for illustration purposes), and feed it to the Saliency module:

    while True:
        success, img = video.read()
        if success:
            if roi:
                # grab some meaningful ROI
                img = img[roi[0][0]:roi[1][0],  
                    roi[0][1]:roi[1][1]]
            # generate saliency map
            sal = Saliency(img, use_numpy_fft=False,  
                gauss_kernel=(3, 3))

The Saliency will generate a map of all the interesting proto-objects and feed that into 
the tracker module. The output of the tracker module is the input frame annotated 
with bounding boxes as shown in the preceding figure.

cv2.imshow("tracker", mot.advance_frame(img,  
            sal.get_proto_objects_map(use_otsu=False)))
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The app will run through all the frames of the video until the end of the file is 
reached or the user presses the q key:

if cv2.waitKey(100) & 0xFF == ord('q'):
    break

The Saliency class
The constructor of the Saliency class accepts a video frame, which can be either 
grayscale or RGB, as well as some options such as whether to use NumPy's or 
OpenCV's Fourier package:

def __init__(self, img, use_numpy_fft=True, gauss_kernel=(5, 5)):
    self.use_numpy_fft = use_numpy_fft
    self.gauss_kernel = gauss_kernel
    self.frame_orig = img

A saliency map will be generated from a down sampled version of the image,  
and because the computation is relatively time-intensive, we will maintain a flag 
need_saliency_map that makes sure we do the computations only once:

    self.small_shape = (64, 64)
    self.frame_small = cv2.resize(img, self.small_shape[1::-1])

    # whether we need to do the math (True) or it has already
    # been done (False)
    self.need_saliency_map = True

From then on, the user may call any of the class' public methods, which will all be 
passed on the same image.

The MultiObjectTracker class
The constructor of the tracker class is straightforward. All it does is set up the 
termination criteria for mean-shift tracking and store the conditions for the minimum 
contour area (min_area) and minimum frame-by-frame drift (min_shift2) to be 
considered in the subsequent computation steps:
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def __init__(self, min_area=400, min_shift2=5):
    self.object_roi = []
    self.object_box = []

    self.min_cnt_area = min_area
    self.min_shift2 = min_shift2

    # Setup the termination criteria, either 100 iteration or move
    # by at least 1 pt
    self.term_crit = (cv2.TERM_CRITERIA_EPS |  
        cv2.TERM_CRITERIA_COUNT, 100, 1) 

From then on, the user may call the advance_frame method to feed a new frame to 
the tracker.

However, before we make use of all this functionality, we need to learn about image 
statistics and how to generate a saliency map.

Visual saliency
As already mentioned in the introduction, visual saliency tries to describe the visual 
quality of certain objects or items that allows them to grab our immediate attention. 
Our brains constantly drive our gaze towards the important regions of the visual 
scene, as if it were to shine a flashlight on different sub-regions of the visual world, 
allowing us to quickly scan our surroundings for interesting objects and events while 
neglecting the less important parts.
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It is thought that this is an evolutionary strategy to deal with the constant information 
overflow that comes with living in a visually rich environment. For example, if you 
take a casual walk through a jungle, you want to be able to notice the attacking tiger in 
the bush to your left before admiring the intricate color pattern on the butterfly's wings 
in front of you. As a result, the visually salient objects have the remarkable quality of 
popping out of their surroundings, much like the target bars in the following figure:

The visual quality that makes these targets pop out may not always be trivial though. 
If you are viewing the image on the left in color, you may immediately notice the 
only red bar in the image. However, if you look at the same image in grayscale, the 
target bar will be hard to find (it is the fourth bar from the top, fifth bar from the 
left). Similar to color saliency, there is a visually salient bar in the image on the right. 
Although the target bar is of unique color in the left image and of unique orientation 
in the right image, put the two characteristics together and suddenly the unique 
target bar does not pop out anymore:
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In this preceding display, there is again one bar that is unique and different from all 
the other ones. However, because of the way the distracting items were designed, 
there is little salience to guide you towards the target bar. Instead, you find yourself 
scanning the image, seemingly at random, looking for something interesting. (Hint: 
The target is the only red and almost-vertical bar in the image, second row from the 
top, third column from the left.)

What does this have to do with computer vision, you ask? Quite a lot, actually. 
Artificial vision systems suffer from information overload much like you and me, 
except that they know even less about the world than we do. What if we could extract 
some insights from biology and use them to teach our algorithms something about the 
world? Imagine a dashboard camera in your car that automatically focuses on the most 
relevant traffic sign. Imagine a surveillance camera that is part of a wildlife observation 
station that will automatically detect and track the sighting of the notoriously shy 
platypus but will ignore everything else. How can we teach the algorithm what is 
important and what is not? How can we make that platypus "pop out"?

Fourier analysis
To find the visually salient sub-regions of an image, we need to look at its frequency 
spectrum. So far we have treated all our images and video frames in the spatial 
domain; that is, by analyzing the pixels or studying how the image intensity changes 
in different sub-regions of the image. However, the images can also be represented 
in the frequency domain; that is, by analyzing the pixel frequencies or studying how 
often and with what periodicity the pixels show up in the image.
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An image can be transformed from the space domain into the frequency domain 
by applying the Fourier transform. In the frequency domain, we no longer think in 
terms of image coordinates (x,y). Instead, we aim to find the spectrum of an image. 
Fourier's radical idea basically boils down to the following question: what if any 
signal or image could be transformed into a series of circular paths (also called 
harmonics)?

For example, think of a rainbow. Beautiful, isn't it? In a rainbow, white sunlight 
(composed of many different colors or parts of the spectrum) is spread into its 
spectrum. Here the color spectrum of the sunlight is exposed when the rays of light 
pass through raindrops (much like white light passing through a glass prism). The 
Fourier transform aims to do the same thing: to recover all the different parts of the 
spectrum that are contained in the sunlight.

A similar thing can be achieved for arbitrary images. In contrast to rainbows,  
where frequency corresponds to electromagnetic frequency, with images we consider 
spatial frequency; that is, the spatial periodicity of the pixel values. In an image 
of a prison cell, you can think of spatial frequency as (the inverse of) the distance 
between two adjacent prison bars.

The insights that can be gained from this change of perspective are very powerful. 
Without going into too much detail, let us just remark that a Fourier spectrum comes 
with both a magnitude and a phase. While the magnitude describes the amount 
of different frequencies in the image, the phase talks about the spatial location of 
these frequencies. The following image shows a natural image on the left and the 
corresponding Fourier magnitude spectrum (of the grayscale version) on the right:

The magnitude spectrum on the right tells us which frequency components are 
the most prominent (bright) in the grayscale version of the image on the left. The 
spectrum is adjusted so that the center of the image corresponds to zero frequency in 
x and y. The further you move to the border of the image, the higher the frequency 
gets. This particular spectrum is telling us that there are a lot of low-frequency 
components in the image on the left (clustered around the center of the image).
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In OpenCV, this transformation can be achieved with the Discrete Fourier 
Transform (DFT) using the plot_magnitude method of the Saliency class.  
The procedure is as follows:

1. Convert the image to grayscale if necessary: Because the method accepts 
both grayscale and RGB color images, we need to make sure we operate  
on a single-channel image:
def plot_magnitude(self):
    if len(self.frame_orig.shape)>2:
        frame = cv2.cvtColor(self.frame_orig,  
            cv2.COLOR_BGR2GRAY)
    else:
        frame = self.frame_orig

2. Expand the image to an optimal size: It turns out that the performance of a 
DFT depends on the image size. It tends to be fastest for the image sizes that 
are multiples of the number two. It is therefore generally a good idea to pad 
the image with zeros:
rows, cols = self.frame_orig.shape[:2]
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
frame = cv2.copyMakeBorder(frame, 0, ncols-cols, 0,  
    nrows-rows, cv2.BORDER_CONSTANT, value = 0)

3. Apply the DFT: This is a single function call in NumPy. The result is a 2D 
matrix of complex numbers:
img_dft = np.fft.fft2(frame)

4. Transform the real and complex values to magnitude: A complex number has 
a real (Re) and a complex (imaginary - Im) part. To extract the magnitude, we 
take the absolute value:
magn = np.abs(img_dft)

5. Switch to a logarithmic scale: It turns out that the dynamic range of the 
Fourier coefficients is usually too large to be displayed on the screen. We 
have some small and some high changing values that we can't observe like 
this. Therefore, the high values will all turn out as white points, and the small 
ones as black points. To use the gray scale values for visualization, we can 
transform our linear scale to a logarithmic one:
log_magn = np.log10(magn)

6. Shift quadrants: To center the spectrum on the image. This makes it easier to 
visually inspect the magnitude spectrum:
spectrum = np.fft.fftshift(log_magn)
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7. Return the result for plotting:
return spectrum/np.max(spectrum)*255

Natural scene statistics
The human brain figured out how to focus on visually salient objects a long time 
ago. The natural world in which we live has some statistical regularities that makes 
it uniquely natural, as opposed to a chessboard pattern or a random company logo. 
Probably, the most commonly known statistical regularity is the 1/f law. It states that 
the amplitude of the ensemble of natural images obeys a 1/f distribution, as shown 
in the figure later This is sometimes also referred to as scale invariance.

A 1D power spectrum (as a function of frequency) of a 2D image can be visualized 
with the plot_power_spectrum method of the Saliency class. We can use a similar 
recipe as for the magnitude spectrum used previously, but we will have to make sure 
that we correctly collapse the 2D spectrum onto a single axis.

1. Convert the image to grayscale if necessary (same as earlier):
def plot_power_spectrum(self):
    if len(self.frame_orig.shape)>2:
        frame = cv2.cvtColor(self.frame_orig,  
            cv2.COLOR_BGR2GRAY)
    else:
        frame = self.frame_orig

2. Expand the image to optimal size (same as earlier):
rows, cols = self.frame_orig.shape[:2]
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
frame = cv2.copyMakeBorder(frame, 0, ncols-cols, 0,  
    nrows-rows, cv2.BORDER_CONSTANT, value = 0)
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3. Apply the DFT and get the log spectrum: Here we give the user an option 
(via flag use_numpy_fft) to use either NumPy's or OpenCV's Fourier tools:
if self.use_numpy_fft:
    img_dft = np.fft.fft2(frame)
    spectrum = np.log10(np.real(np.abs(img_dft))**2)
else:
    img_dft = cv2.dft(np.float32(frame),  
        flags=cv2.DFT_COMPLEX_OUTPUT)
    spectrum = np.log10(img_dft[:,:,0]**2  
        + img_dft[:,:,1]**2)

4. Perform radial averaging: This is the tricky part. It would be wrong to 
simply average the 2D spectrum in the direction of x or y. What we are 
interested in is a spectrum as a function of frequency, independent of the 
exact orientation. This is sometimes also called the radially averaged power 
spectrum (RAPS), and can be achieved by summing up all the frequency 
magnitudes, starting at the center of the image, looking into all possible 
(radial) directions, from some frequency r to r+dr. We use the binning 
function of NumPy's histogram to sum up the numbers, and accumulate 
them in the variable histo:
L = max(frame.shape)
freqs = np.fft.fftfreq(L)[:L/2]
dists = np.sqrt(np.fft.fftfreq(frame.shape[0]) 
    [:,np.newaxis]**2 + np.fft.fftfreq 
        (frame.shape[1])**2)
dcount = np.histogram(dists.ravel(), bins=freqs)[0]
histo, bins = np.histogram(dists.ravel(), bins=freqs, 
    weights=spectrum.ravel())

5. Plot the result: Finally, we can plot the accumulated numbers in histo, but 
must not forget to normalize these by the bin size (dcount):

centers = (bins[:-1] + bins[1:]) / 2
plt.plot(centers, histo/dcount)
plt.xlabel('frequency')
plt.ylabel('log-spectrum')
plt.show()
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The result is a function that is inversely proportional to the frequency. If you want  
to be absolutely certain of the 1/f property, you could take np.log10 of all the x 
values and make sure the curve is decreasing roughly linearly. On a linear x axis  
and logarithmic y axis, the plot looks like the following:

This property is quite remarkable. It states that if we were to average all the spectra 
of all the images ever taken of natural scenes (neglecting all the ones taken with 
fancy image filters, of course), we would get a curve that would look remarkably like 
the one shown in the preceding image.
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But going back to the image of a peaceful little boat on the Limmat river, what 
about single images? We have just looked at the power spectrum of this image 
and witnessed the 1/f property. How can we use our knowledge of natural image 
statistics to tell an algorithm not to stare at the tree on the left, but instead focus on 
the boat that is chugging in the water?

This is where we realize what saliency really means.

Generating a Saliency map with the spectral 
residual approach
The things that deserve our attention in an image are not the image patches that 
follow the 1/f law, but the patches that stick out of the smooth curves. In other 
words, the statistical anomalies. These anomalies are termed the spectral residual  
of an image, and correspond to the potentially interesting patches of an image  
(or proto-objects). A map that shows these statistical anomalies as bright spots  
is called a saliency map.
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The spectral residual approach described here is based on the 
original scientific publication by Xiaodi Hou and Liqing Zhang (2007). 
Saliency Detection: A Spectral Residual Approach. IEEE Transactions on 
Computer Vision and Pattern Recognition (CVPR), p.1-8. doi: 10.1109/
CVPR.2007.383267.

In order to generate a saliency map based on the spectral residual approach, we need 
to process each channel of an input image separately (single channel in the case of a 
grayscale input image, and three separate channels in the case of an RGB input image).

The saliency map of a single channel can be generated with the private method 
Saliency._get_channel_sal_magn using the following recipe:

1. Calculate the (magnitude and phase of the) Fourier spectrum of an image,  
by again using either the fft module of NumPy or OpenCV functionality:
def _get_channel_sal_magn(self, channel):
    if self.use_numpy_fft:
        img_dft = np.fft.fft2(channel)
        magnitude, angle = cv2.cartToPolar 
            (np.real(img_dft), np.imag(img_dft))
    else:
        img_dft = cv2.dft(np.float32(channel),  
            flags=cv2.DFT_COMPLEX_OUTPUT)
        magnitude, angle = cv2.cartToPolar 
            (img_dft[:, :, 0], img_dft[:, :, 1])

2. Calculate the log amplitude of the Fourier spectrum. We will clip the lower 
bound of magnitudes to 1e-9 in order to prevent a division by zero while 
calculating the log:
log_ampl = np.log10(magnitude.clip(min=1e-9))

3. Approximate the averaged spectrum of a typical natural image by 
convolving the image with a local averaging filter:
log_ampl_blur = cv2.blur(log_amlp, (3, 3))

4. Calculate the spectral residual. The spectral residual primarily contains the 
nontrivial (or unexpected) parts of a scene.
magn = np.exp(log_amlp – log_ampl_blur)

5. Calculate the saliency map by using the inverse Fourier transform, again 
either via the fft module in NumPy or with OpenCV:

    if self.use_numpy_fft:
        real_part, imag_part = cv2.polarToCart(residual,
            angle)
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        img_combined = np.fft.ifft2 
            (real_part + 1j*imag_part)
        magnitude, _ = cv2.cartToPolar 
            ( np.real(img_combined), np.imag(img_combined))
    else:
        img_dft[:, :, 0], img_dft[:, :, 1] =  
            cv2.polarToCart(  
                residual, angle)
        img_combined = cv2.idft(img_dft)
        magnitude, _ = cv2.cartToPolar 
            (img_combined[:, :, 0], img_combined[:, :, 1])
    return magnitude

The resulting single-channel saliency map (magnitude) is then returned to 
Saliency.get_saliency_map, where the procedure is repeated for all channels  
of the input image. If the input image is grayscale, we are pretty much done:

def get_saliency_map(self):
    if self.need_saliency_map:
        # haven't calculated saliency map for this frame yet
        num_channels = 1
        if len(self.frame_orig.shape)==2:
            # single channel
            sal = self._get_channel_sal_magn(self.frame_small)

However, if the input image has multiple channels, as is the case for an RGB color 
image, we need to consider each channel separately:

        else:
            # consider each channel independently
            sal = np.zeros_like 
                (self.frame_small).astype(np.float32)
            for c in xrange(self.frame_small.shape[2]):
                sal[:, :, c] = self._get_channel_sal_magn 
                    (self.frame_small[:, :, c])

The overall salience of a multi-channel image is then determined by the average over 
all channels:

sal = np.mean(sal, 2)

Finally, we need to apply some post-processing, such as an optional blurring stage to 
make the result appear smoother:

        if self.gauss_kernel is not None:
            sal = cv2.GaussianBlur(sal, self.gauss_kernel, 
                sigmaX=8, sigmaY=0)
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Also, we need to square the values in sal in order to highlight the regions of high 
salience,  as outlined by the authors of the original paper. In order to display the 
image, we scale it back up to its original resolution and normalize the values, so that 
the largest value is one:

        sal = sal**2
        sal = np.float32(sal)/np.max(sal)
        sal = cv2.resize(sal, self.frame_orig.shape[1::-1])

In order to avoid having to redo all these intense calculations, we store a local copy 
of the saliency map for further reference and make sure to lower the flag:

        self.saliency_map = sal
        self.need_saliency_map = False

    return self.saliency_map

Then, when the user makes subsequent calls to class methods that rely on the 
calculation of the saliency map under the hood, we can simply refer to the local  
copy instead of having to do the calculations all over again.

The resulting saliency map then looks like the following image:

Now we can clearly spot the boat in the water (lower-left corner), which appears as 
one of the most salient sub-regions of the image. There are other salient regions, too, 
such as the Grossmünster on the right (have you guessed the city yet?).
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By the way, the reason these two areas are the most salient ones 
in the image seems to be clear and undisputable evidence that the 
algorithm is aware of the ridiculous number of church towers in 
the city center of Zurich, effectively prohibiting any chance of them 
being labeled as "salient".

Detecting proto-objects in a scene
In a sense, the saliency map is already an explicit representation of proto-objects, as it 
contains only the interesting parts of an image. So now that we have done all the hard 
work, all that is left to do in order to obtain a proto-object map is to threshold the 
saliency map.

The only open parameter to consider here is the threshold. Setting the threshold 
too low will result in labeling a lot of regions as proto-objects, including some that 
might not contain anything of interest (false alarm). On the other hand, setting the 
threshold too high will ignore most of the salient regions in the image and might 
leave us with no proto-objects at all. The authors of the original spectral residual 
paper chose to label only those regions of the image as proto-objects whose saliency 
was larger than three-times the mean saliency of the image. We give the user the 
choice to either implement this threshold, or to go with the Otsu threshold by setting 
the input flag use_otsu to true:

def get_proto_objects_map(self, use_otsu=True):

We then retrieve the saliency map of the current frame and make sure to convert it to 
uint8 precision, so that it can be passed to cv2.threshold:

    saliency = self.get_saliency_map()
    if use_otsu:
        _, img_objects = cv2.threshold(np.uint8(saliency*255),  
            0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

Otherwise, we will use the threshold thresh:

    else:
        thresh = np.mean(saliency)*255
        _, img_objects = cv2.threshold(np.uint8(saliency*255),  
            thresh, 255, cv2.THRESH_BINARY)
    return img_objects
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The resulting proto-objects mask looks like the following image:

The proto-objects mask then serves as an input to the tracking algorithm.

Mean-shift tracking
It turns out that the salience detector discussed previously is already a great tracker 
of proto-objects by itself. One could simply apply the algorithm to every frame of 
a video sequence and get a good idea of the location of the objects. However, what 
is getting lost is correspondence information. Imagine a video sequence of a busy 
scene, such as from a city center or a sports stadium. Although a saliency map could 
highlight all the proto-objects in every frame of a recorded video, the algorithm 
would have no way to know which proto-objects from the previous frame are still 
visible in the current frame. Also, the proto-objects map might contain some  
false-positives, such as in the following example:
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Note that the bounding boxes extracted from the proto-objects map made (at least) 
three mistakes in the preceding example: it missed highlighting a player (upper-left), 
merged two players into the same bounding box, and highlighted some additional 
arguably non-interesting (although visually salient) objects. In order to improve 
these results, we want to make use of a tracking algorithm.

To solve the correspondence problem, we could use the methods we have learned 
about previously, such as feature matching and optic flow. Or, we could use a 
different technique called mean-shift tracking.

Mean-shift is a simple yet very effective technique for tracking arbitrary objects. 
The intuition behind mean-shift is to consider the pixels in a small region of interest 
(say, a bounding box of an object we want to track) as sampled from an underlying 
probability density function that best describes a target.

Consider, for example, the following image:

Here, the small gray dots represent samples from a probability distribution. Assume 
that the closer the dots, the more similar they are to each other. Intuitively speaking, 
what mean-shift is trying to do is to find the densest region in this landscape and 
draw a circle around it. The algorithm might start out centering a circle over a region 
of the landscape that is not dense at all (dashed circle). Over time, it will slowly move 
towards the densest region (solid circle) and anchor on it. If we design the landscape 
to be more meaningful than dots (for example, by making the dots correspond to 
color histograms in the small neighborhoods of an image), we can use mean-shift 
tracking to find the objects of interest in the scene by finding the histogram that most 
closely matches the histogram of a target object.
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Mean-shift has many applications (such as clustering, or finding the mode of 
probability density functions), but it is also particularly well-suited to target tracking. 
In OpenCV, the algorithm is implemented in cv2.meanShift, but it requires some 
pre-processing to function correctly. We can outline the procedure as follows:

1. Fix a window around each data point: For example, a bounding box around 
an object or region of interest.

2. Compute the mean of data within the window: In the context of tracking, 
this is usually implemented as a histogram of the pixel values in the region  
of interest. For best performance on color images, we will convert to HSV 
color space.

3. Shift the window to the mean and repeat until convergence: This is handled 
transparently by cv2.meanShift. We can control the length and accuracy of 
the iterative method by specifying termination criteria.

Automatically tracking all players on a soccer 
field
For the remainder of this chapter, our goal is to combine the saliency detector with 
mean-shift tracking to automatically track all the players on a soccer field. The 
proto-objects identified by the salience detector will serve as input to the mean-shift 
tracker. Specifically, we will focus on a video sequence from the Alfheim dataset, 
which can be freely obtained from http://home.ifi.uio.no/paalh/dataset/
alfheim/.

The reason for combining the two algorithms (saliency map and mean-shift 
tracking), is to remove false positives and improve the accuracy of the overall 
tracking. This will be achieved in a two-step procedure:

1. Have both the saliency detector and mean-shift tracking assemble a list of 
bounding boxes for all the proto-objects in a frame. The saliency detector will 
operate on the current frame, whereas the mean-shift tracker will try to find 
the proto-objects from the previous frame in the current frame.

2. Keep only those bounding boxes for which both algorithms agree on the 
location and size. This will get rid of outliers that have been mislabeled as 
proto-objects by one of the two algorithms.

http://home.ifi.uio.no/paalh/dataset/alfheim/
http://home.ifi.uio.no/paalh/dataset/alfheim/
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The hard work is done by the previously introduced MultiObjectTracker class  
and its advance_frame method. This method relies on a few private worker 
methods, which will be explained in detail next. The advance_frame method is 
called whenever a new frame arrives, and accepts a proto-objects map as input:

def advance_frame(self, frame, proto_objects_map):
    self.tracker = copy.deepcopy(frame)

The method then builds a list of all the candidate bounding boxes, combining the 
bounding boxes both from the saliency map of the current frame as well as the  
mean-shift tracking results from the previous to the current frame:

# build a list of all bounding boxes
box_all = []

# append to the list all bounding boxes found from the
# current proto-objects map
box_all = self._append_boxes_from_saliency(proto_objects_map, 
    box_all)

    # find all bounding boxes extrapolated from last frame
    # via mean-shift tracking
    box_all = self._append_boxes_from_meanshift(frame, box_all)

The method then attempts to merge the candidate bounding boxes in order to 
remove the duplicates. This can be achieved with cv2.groupRectangles, which will 
return a single bounding box if group_thresh+1 or more bounding boxes overlap in 
an image:

# only keep those that are both salient and in mean shift
if len(self.object_roi)==0:
    group_thresh = 0    # no previous frame: keep all form 
    # saliency
else:
    group_thresh = 1 # previous frame + saliency
box_grouped,_ = cv2.groupRectangles(box_all, group_thresh,  
    0.1)

In order to make mean-shift work, we will have to do some bookkeeping, which will 
be explained in detail in the following subsections:

# update mean-shift bookkeeping for remaining boxes
self._update_mean_shift_bookkeeping(frame, box_grouped)
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Then we can draw the list of unique bounding boxes on the input image and return 
the image for plotting:

for (x, y, w, h) in box_grouped:
    cv2.rectangle(self.tracker, (x, y), (x + w, y + h), 
        (0, 255, 0), 2)

return self.tracker

Extracting bounding boxes for proto-objects
The first private worker method is relatively straightforward. It takes a proto-objects 
map as input as well as a (previously aggregated) list of bounding boxes. To this list, 
it adds all the bounding boxes found from the contours of the proto-objects:

def _append_boxes_from_saliency(self, proto_objects_map, box_all):
    box_sal = []
    cnt_sal, _ = cv2.findContours(proto_objects_map, 1, 2)

However, it discards the bounding boxes that are smaller than some threshold, 
self.min_cnt_area, which is set in the constructor:

for cnt in cnt_sal:
    # discard small contours
    if cv2.contourArea(cnt) < self.min_cnt_area:
        continue

The result is appended to the box_all list and passed up for further processing:

    # otherwise add to list of boxes found from saliency map
    box = cv2.boundingRect(cnt)
    box_all.append(box)

return box_all

Setting up the necessary bookkeeping for 
mean-shift tracking
The second private worker method is concerned with setting up all the bookkeeping 
that is necessary to perform mean-shift tracking. The method accepts an input image 
and a list of bounding boxes for which to generate the bookkeeping information:

def _update_mean_shift_bookkeeping(self, frame, box_grouped):
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Bookkeeping mainly consists of calculating a histogram of the HSV color values of 
each proto-object's bounding box. Thus the input RGB image is converted to HSV 
right away:

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Then, every bounding box in box_grouped is parsed. We need to store both the 
location and size of the bounding box (self.object_box), as well as a histogram of 
the HSV color values (self.object_roi):

self.object_roi = []
self.object_box = []

The location and size of the bounding box is extracted from the list, and the region of 
interest is cut out of the HSV image:

for box in box_grouped:
    (x, y, w, h) = box
    hsv_roi = hsv[y:y + h, x:x + w]

We then calculate a histogram of all the hue (H) values in the region of interest.  
We also ignore the dim or the weakly pronounced areas of the bounding box by 
using a mask, and normalize the histogram in the end:

mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)),  
        np.array((180., 255., 255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

We then store this information in the corresponding private member variables,  
so that it will be available in the very next frame of the process loop, where we  
will aim to locate the region of interest using the mean-shift algorithm:

self.object_roi.append(roi_hist)
self.object_box.append(box)

Tracking objects with the mean-shift 
algorithm
Finally, the third private worker method tracks the proto-objects by using the 
bookkeeping information stored earlier from the previous frame. Similar to 
_append_boxes_from_meanshift, we build a list of all the bounding boxes 
aggregated from mean-shift and pass it up for further processing. The method 
accepts an input image and a previously aggregated list of bounding boxes:

def _append_boxes_from_meanshift(self, frame, box_all):
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
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The method then parses all the previously stored proto-objects (from self.object_
roi and self.object_box):

for i in xrange(len(self.object_roi)):
    roi_hist = copy.deepcopy(self.object_roi[i])
    box_old = copy.deepcopy(self.object_box[i])

In order to find the new, shifted location of a region of interest recorded in the previous 
image frame, we feed the back-projected region of interest to the mean-shift algorithm. 
Termination criteria (self.term_crit) will make sure to try a sufficient number of 
iterations (100) and look for mean-shifts of at least some number of pixels (1):

dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
ret, box_new = cv2.meanShift(dst, tuple(box_old),  
    self.term_crit)

But, before we append the newly detected, shifted bounding box to the list, we want 
to make sure that we are actually tracking the objects that move. The objects that 
do not move are most likely false-positives, such as line markings or other visually 
salient patches that are irrelevant to the task at hand.

In order to discard the irrelevant tracking results, we compare the location of the 
bounding box from the previous frame (box_old) and the corresponding bounding 
box from the current frame (box_new):

(xo, yo, wo, ho) = box_old
(xn, yn, wn, hn) = box_new

If their centers of mass did not shift at least sqrt(self.min_shift2) pixels, we do 
not include the bounding box in the list:

co = [xo + wo/2, yo + ho/2]
cn = [xn + wn/2, yn + hn/2]
if (co[0] - cn[0])**2 + (co[1] - cn[1])**2 >= self.min_shift2:
    box_all.append(box_new)

The resulting list of bounding boxes is again passed up for further processing:

        return box_all
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Putting it all together
The result of our app can be seen in the following image:

Throughout the video sequence, the algorithm is able to pick up the location of the 
players, successfully tracking them frame-by-frame by using mean-shift tracking, 
and combining the resulting bounding boxes with the bounding boxes returned by 
the salience detector.

It is only through the clever combination of the saliency map and tracking that we 
can exclude false-positives such as line markings and artifacts of the saliency map. 
The magic happens in cv2.groupRectangles, which requires a similar bounding 
box to appear at least twice in the box_all list, otherwise it is discarded. This means 
that a bounding box is only then kept in the list if both mean-shift tracking and the 
saliency map (roughly) agree on the location and size of the bounding box.
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Summary
In this chapter, we explored a way to label the potentially interesting objects in a 
visual scene, even if their shape and number is unknown. We explored natural image 
statistics using Fourier analysis, and implemented a state-of-the-art method for 
extracting the visually salient regions in the natural scenes. Furthermore, we combined 
the output of the salience detector with a tracking algorithm to track multiple objects of 
unknown shape and number in a video sequence of a soccer game.

It would now be possible to extend our algorithm to feature more complicated feature 
descriptions of proto-objects. In fact, mean-shift tracking might fail when the objects 
rapidly change size, as would be the case if an object of interest were to come straight 
at the camera. A more powerful tracker, which comes for free in OpenCV, is cv2.
CamShift. CAMShift stands for Continuously Adaptive Mean-Shift, and bestows 
upon mean-shift the power to adaptively change the window size. Of course, it would 
also be possible to simply replace the mean-shift tracker with a previously studied 
technique such as feature matching or optic flow.

In the next chapter, we will move to the fascinating field of machine learning, which 
will allow us to build more powerful descriptors of objects. Specifically, we will 
focus on both detecting (where?) and identifying (what?) the street signs in images. 
This will allow us to train a classifier that could be used in a dashboard camera in 
your car, and will familiarize us with the important concepts of machine learning 
and object recognition.
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Learning to Recognize  
Traffic Signs

The goal of this chapter is to train a multiclass classifier to recognize traffic signs.  
In this chapter, we will cover the following topics:

• Supervised learning concepts
• The German Traffic Sign Recognition Benchmark (GTSRB) dataset feature 

extraction
• Support vector machines (SVMs)

We have previously studied how to describe objects by means of keypoints and 
features, and how to find the correspondence points in two different images of the 
same physical object. However, our previous approaches were rather limited when it 
comes to recognizing objects in real-world settings and assigning them to conceptual 
categories. For example, in Chapter 2, Hand Gesture Recognition Using a Kinect Depth 
Sensor, the required object in the image was a hand, and it had to be nicely placed in 
the center of the screen. Wouldn't it be nice if we could remove these restrictions?

In this chapter, we will instead train a Support Vector Machine (SVM) to recognize all 
sorts of traffic signs. Although SVMs are binary classifiers (that is, they can be used to 
learn, at most, two categories: positives and negatives, animals and non-animals, and 
so on), they can be extended to be used in multiclass classification. In order to achieve 
good classification performance, we will explore a number of color spaces as well as 
the Histogram of Oriented Gradients (HOG) feature. Then, classification performance 
will be judged based on accuracy, precision, and recall. The following sections will 
explain all of these terms in detail.
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To arrive at such a multiclass classifier, we need to perform the following steps:

1. Preprocess the dataset: We need a way to load our dataset, extract the 
regions of interest, and split the data into appropriate training and test sets.

2. Extract features: Chances are that raw pixel values are not the most 
informative representation of the data. We need a way to extract meaningful 
features from the data, such as features based on different color spaces and 
HOG.

3. Train the classifier: We will train the multiclass classifier on the training data 
in two different ways: the one-vs-all strategy (where we train a single SVM 
per class, with the samples of that class as positive samples and all other 
samples as negatives), and the one-vs-one strategy (where we train a single 
SVM for every pair of classes, with the samples of the first class as positive 
samples and the samples of the second class as negative samples).

4. Score the classifier: We will evaluate the quality of the trained ensemble 
classifier by calculating different performance metrics, such as accuracy, 
precision, and recall.

The end result will be an ensemble classifier that achieves a nearly perfect score in 
classifying 10 different street sign categories:
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Planning the app
The final app will parse a dataset, train the ensemble classifier, assess its classification 
performance, and visualize the result. This will require the following components:

• main: The main function routine (in chapter6.py) for starting the 
application.

• datasets.gtsrb: A script for parsing the German Traffic Sign Recognition 
Benchmark (GTSRB) dataset. This script contains the following functions:

 ° load_data: A function used to load the GTSRB dataset, extract a 
feature of choice, and split the data into training and test sets.

 ° _extract_features: A function that is called by load_data to 
extract a feature of choice from the dataset.

• classifiers.Classifier: An abstract base class that defines the common 
interface for all classifiers.

• classifiers.MultiClassSVM: A class that implements an ensemble of 
SVMs for multiclass classification using the following public methods:

 ° MultiClassSVM.fit: A method used to fit the ensemble of SVMs to 
training data. It takes a matrix of training data as input, where each 
row is a training sample and the columns contain feature values, and 
a vector of labels.

 ° MultiClassSVM.evaluate: A method used to evaluate the ensemble 
of SVMs by applying it to some test data after training. It takes a matrix 
of test data as input, where each row is a test sample and the columns 
contain feature values, and a vector of labels. The function returns 
three different performance metrics: accuracy, precision, and recall.

In the following sections, we will discuss these steps in detail.

Supervised learning
An important subfield of machine learning is supervised learning. In supervised 
learning, we try to learn from a set of labeled training data; that is, every data sample 
has a desired target value or true output value. These target values could correspond 
to the continuous output of a function (such as y in y = sin(x)), or to more abstract 
and discrete categories (such as cat or dog). If we are dealing with continuous output, 
the process is called regression, and if we are dealing with discrete output, the 
process is called classification. Predicting housing prices from sizes of houses is 
an example of regression. Predicting the species from the color of a fish would be 
classification. In this chapter, we will focus on classification using SVMs.



Learning to Recognize Traffic Signs

[ 470 ]

The training procedure
As an example, we may want to learn what cats and dogs look like. To make this a 
supervised learning task, we will have to create a database of pictures of both cats 
and dogs (also called a training set), and annotate each picture in the database with 
its corresponding label: cat or dog. The task of the program (in literature, it is often 
referred to as the learner) is then to infer the correct label for each of these pictures 
(that is, for each picture, predict whether it is a picture of a cat or a dog). Based on these 
predictions, we derive a score of how well the learner performed. The score is then 
used to change the parameters of the learner in order to improve the score over time.

This procedure is outlined in the following figure:

Training data is represented by a set of features. For real-life classification tasks, 
these features are rarely the raw pixel values of an image, since these tend not to 
represent the data well. Often, the process of finding the features that best describe 
the data is an essential part of the entire learning task (also referred to as feature 
selection or feature engineering). That is why it is always a good idea to deeply 
study the statistics and appearances of the training set that you are working with 
before even thinking about setting up a classifier.

As you are probably aware, there is an entire zoo of learners, cost functions, and 
learning algorithms out there. These make up the core of the learning procedure. 
The learner (for example, a linear classifier, support vector machine, or decision tree) 
defines how input features are converted into a score or cost function (for example, 
mean-squared error, hinge loss, or entropy), whereas the learning algorithm (for 
example, gradient descent and backpropagation for neural networks) defines how 
the parameters of the learner are changed over time.
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The training procedure in a classification task can also be thought of as finding an 
appropriate decision boundary, which is a line that best partitions the training set 
into two subsets, one for each class. For example, consider training samples with 
only two features (x and y values) and a corresponding class label (positive, +, or 
negative, –). At the beginning of the training procedure, the classifier tries to draw 
a line to separate all positives from all negatives. As the training progresses, the 
classifier sees more and more data samples. These are used to update the decision 
boundary, as illustrated in the following figure:

Compared to this simple illustration, an SVM tries to find the optimal decision 
boundary in a high-dimensional space, so the decision boundary can be more 
complex than a straight line.

The testing procedure
In order for a trained classifier to be of any practical value, we need to know 
how it performs when applied to a never-seen-before data sample (also called 
generalization). To stick to our example shown earlier, we want to know which  
class the classifier predicts when we present it with a previously unseen picture  
of a cat or a dog.
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More generally speaking, we want to know which class the ? sign in the following 
figure corresponds to, based on the decision boundary we learned during the 
training phase:

You can see why this is a tricky problem. If the location of the question mark 
were more to the left, we would be certain that the corresponding class label is +. 
However, in this case, there are several ways to draw the decision boundary such 
that all the + signs are to the left of it and all the – signs are to the right of it, as 
illustrated in this figure:
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The label of ? thus depends on the exact decision boundary that was derived during 
training. If the ? sign in the preceding figure is actually a –, then only one decision 
boundary (the leftmost) would get the correct answer. A common problem is that 
training results in a decision boundary that works "too well" on the training set  
(also known as overfitting), but makes a lot of mistakes when applied to unseen 
data. In that case, it is likely that the learner imprinted details that are specific to the 
training set on the decision boundary, instead of revealing general properties about 
the data that might also be true for unseen data.

A common technique for reducing the effect of 
overfitting is called regularization.

Long story short, the problem always comes back to finding the boundary that best 
splits, not only the training, but also the test set. That is why the most important 
metric for a classifier is its generalization performance (that is, how well it classifies 
data not seen in the training phase).

A classifier base class
From the insights gained in the preceding content, you are now able to write a 
simple base class suitable for all possible classifiers. You can think of this class as a 
blueprint or recipe that will apply to all classifiers that we are yet to design (we did 
this with the BaseLayout class in Chapter 1, Fun with Filters). In order to create an 
abstract base class (ABC) in Python, we need to include the ABCMeta module:

from abc import ABCMeta

This allows us to register the class as a metaclass:

class Classifier:
    """Abstract base class for all classifiers"""
    __metaclass__ = ABCMeta

Recall that an abstract class has at least one abstract method. An abstract method 
is akin to specifying that a certain method must exist, but we are not yet sure what 
it should look like. We now know that a classifier in its most generic form should 
contain a method for training, wherein a model is fitted to the training data, and for 
testing, wherein the trained model is evaluated by applying it to the test data:

    @abstractmethod
    def fit(self, X_train, y_train):
        pass
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    @abstractmethod
    def evaluate(self, X_test, y_test, visualize=False):
        pass

Here, X_train and X_test correspond to the training and test data, respectively, 
where each row represents a sample, and each column is a feature value of that 
sample. The training and test labels are passed as y_train and y_test vectors, 
respectively.

The GTSRB dataset
In order to apply our classifier to traffic sign recognition, we need a suitable dataset. 
A good choice might be the German Traffic Sign Recognition Benchmark (GTSRB), 
which contains more than 50,000 images of traffic signs belonging to more than 40 
classes. This is a challenging dataset that was used by professionals in a classification 
challenge during the International Joint Conference on Neural Networks (IJCNN) 
2011. The dataset can be freely obtained from http://benchmark.ini.rub.de/?sec
tion=gtsrb&subsection=dataset.

The GTSRB dataset is perfect for our purposes because it is large, organized, open 
source, and annotated. However, for the purpose of this book, we will limit the 
classification to data samples from a total of 10 classes.

Although the actual traffic sign is not necessarily a square, or centered, in each 
image, the dataset comes with an annotation file that specifies the bounding boxes 
for each sign.

A good idea before doing any sort of machine learning is usually to get a feeling of 
the dataset, its qualities, and its challenges. If all the exemplars of the dataset are 
stored in a list, X, then we can plot a few exemplars with the following script, where 
we pick a fixed number (sample_size) of random indices (sample_idx) and display 
each exemplar (X[sample_idx[sp-1]]) in a separate subplot:

sample_size = 15
sample_idx = np.random.randint(len(X), size=sample_size)
sp = 1
for r in xrange(3):
    for c in xrange(5):
        ax = plt.subplot(3,5,sp)
        sample = X[sample_idx[sp-1]]
        ax.imshow(sample.reshape((32,32)), cmap=cm.Greys_r)
            ax.axis('off')
        sp += 1
plt.show()

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
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The following screenshot shows some examples of this dataset:

Even from this small data sample, it is immediately clear that this is a challenging 
dataset for any sort of classifier. The appearances of the signs change drastically based 
on viewing angle (orientation), viewing distance (blurriness), and lighting conditions 
(shadows and bright spots). For some of these signs, such as the rightmost sign in the 
second row, it is difficult even for humans (at least for me) to tell the correct class label 
right away. Good thing we are aspiring experts of machine learning!

Parsing the dataset
Luckily, the chosen dataset comes with a script for parsing the files (more 
information can be found at http://benchmark.ini.rub.de/?section=gtsrb&sub
section=dataset#Codesnippets).

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Codesnippets
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Codesnippets
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We spruce it up a bit and adjust it for our purposes. In particular, we want a function 
that not only loads the dataset, but also extracts a certain feature of interest (via the 
feature input argument), crops the sample to the hand-labeled Region of Interest 
(ROI) containing solely the sample (cut_roi), and automatically splits the data into 
a training and a test set (test_split). We also allow the specification of a random 
seed number (seed), and plot some samples for visual inspection (plot_samples):

import cv2
import numpy as np
import csv

from matplotlib import cm
from matplotlib import pyplot as plt

def load_data(rootpath="datasets", feature="hog", cut_roi=True, 
    test_split=0.2, plot_samples=False, seed=113):

Although the full dataset contains more than 50,000 examples belonging to 43 
classes, for the purpose of this chapter, we will limit ourselves to 10 classes. For 
easy access, we will hardcode the class labels to use here, but it is straightforward to 
include more classes (note that you will have to download the entire dataset for this):

classes = np.array([0, 4, 8, 12, 16, 20, 24, 28, 32, 36])

We then need to iterate over all the classes so as to read all the training samples (to 
be stored in X) and their corresponding class labels (to be stored in labels). Every 
class has a CSV file containing all of the annotation information for every sample in 
the class, which we will parse with csv.reader:

X = [] # images
labels =  []  # corresponding labels

# subdirectory for class
for c in xrange(len(classes)):
    prefix = rootpath + '/' + format(classes[c], '05d') + '/'

    # annotations file
    gt_file = open(prefix + 'GT-'+ format(classes[c], '05d') 
        + '.csv')
    gt_reader = csv.reader(gt_file, delimiter=';')
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Every line of the file contains the annotation for one data sample. We skip the first 
line (the header) and extract the sample's filename (row[0]) so that we can read in 
the image:

    gt_reader.next() # skip header
    # loop over all images in current annotations file
    for row in gt_reader:
        # first column is filename
        im = cv2.imread(prefix + row[0])

Occasionally, the object in these samples is not perfectly cut out but is embedded 
in its surroundings. If the cut_roi input argument is set, we will ignore the 
background and cut out the object using the bounding boxes specified in the 
annotation file:

    if cut_roi:
        im = im[np.int(row[4]):np.int(row[6]), 
            np.int(row[3]):np.int(row[5]), :]

Then, we are ready to append the image (im) and its class label (c) to our list of 
samples (X) and class labels (labels):

    X.append(im)
    labels.append(c)
    gt_file.close()

Often, it is desirable to perform some form of feature extraction, because raw image 
data is rarely the best description of the data. We will defer this job to another 
function, which we will discuss in detail in the next section:

if feature is not None:
    X = _extract_feature(X, feature)

As pointed out in the previous subsection, it is imperative to keep the samples that 
we use to train our classifier, separate from the samples that we use to test it. For 
this, we shuffle the data and split it into two separate sets such that the training set 
contains a fraction (1-test_split) of all samples and the rest of the samples belong 
to the test set:

np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(labels)

X_train = X[:int(len(X)*(1-test_split))]
y_train = labels[:int(len(X)*(1-test_split))]
X_test = X[int(len(X)*(1-test_split)):]
y_test = labels[int(len(X)*(1-test_split)):]
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Finally, we can return the extracted data:

return (X_train, y_train), (X_test, y_test)

Feature extraction
Chances are, that raw pixel values are not the most informative way to represent the 
data, as we have already realized in Chapter 3, Finding Objects via Feature Matching 
and Perspective Transforms. Instead, we need to derive a measurable property of the 
data that is more informative for classification.

However, often it is not clear which features would perform best. Instead, it is often 
necessary to experiment with different features that the modeler finds appropriate. 
After all, the choice of features might strongly depend on the specific dataset to 
be analyzed or the specific classification task to be performed. For example, if you 
have to distinguish between a stop sign and a warning sign, then the most telling 
feature might be the shape of the sign or the color scheme. However, if you have to 
distinguish between two warning signs, then color and shape will not help you at all, 
and you will be required to come up with more sophisticated features.

In order to demonstrate how the choice of features affects classification performance, 
we will focus on the following:

• A few simple color transformations, such as grayscale, RGB, and HSV. 
Classification based on grayscale images will give us some baseline 
performance for the classifier. RGB might give us slightly better performance 
because of the distinct color schemes of some traffic signs. Even better 
performance is expected from HSV. This is because it represents colors even 
more robustly than RGB. Traffic signs tend to have very bright, saturated 
colors that (ideally) are quite distinct from their surroundings.

• Speeded-Up Robust Features (SURF), which should appear very familiar to 
you by now. We have previously recognized SURF as an efficient and robust 
method of extracting meaningful features from an image, so can't we use this 
technique to our advantage in a classification task?

• Histogram of Oriented Gradients (HOG), which is by far the most advanced 
feature descriptor to be considered in this chapter. The technique counts 
occurrences of gradient orientations along a dense grid laid out on the image, 
and is well-suited for use with SVMs.

Feature extraction is performed by the gtsrb._extract_features function, which 
is implicitly called by gtsrb.load_data. It extracts different features as specified by 
the feature input argument.
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The easiest case is not to extract any features, instead simply resizing the image to a 
suitable size:

def _extract_feature(X, feature):
    # operate on smaller image
    small_size = (32, 32)
    X = [cv2.resize(x, small_size) for x in X]

For most of the following features, we will be using the (already suitable) 
default arguments in OpenCV. However, these values are not set in 
stone, and even in real-world classification tasks, it is often necessary to 
search across the range of possible values for both feature extracting and 
learning parameters in a process called hyperparameter exploration.

Common preprocessing
There are three common forms of preprocessing that are almost always applied 
to any data before classification: mean subtraction, normalization, and principal 
component analysis (PCA). In this chapter, we will focus on the first two.

Mean subtraction is the most common form of preprocessing (sometimes also 
referred to as zero-centering or de-meaning), where the mean value of every feature 
dimension is calculated across all samples in a dataset. This feature-wise average 
is then subtracted from every sample in the dataset. You can think of this process 
as centering the cloud of data on the origin. Normalization refers to the scaling of 
data dimensions so that they are of roughly the same scale. This can be achieved 
by either dividing each dimension by its standard deviation (once it has been zero-
centered), or scaling each dimension to lie in the range of [-1, 1]. It makes sense to 
apply this step only if you have reason to believe that different input features have 
different scales or units. In the case of images, the relative scales of pixels are already 
approximately equal (and in the range of [0, 255]), so it is not strictly necessary to 
perform this additional preprocessing step.

In this chapter, the idea is to enhance the local intensity contrast of images so that we 
do not focus on the overall brightness of an image:

# normalize all intensities to be between 0 and 1
X = np.array(X).astype(np.float32) / 255

# subtract mean
X = [x - np.mean(x) for x in X]
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Grayscale features
The easiest feature to extract is probably the grayscale value of each pixel. Usually, 
grayscale values are not very indicative of the data they describe, but we will include 
them here for illustrative purposes (that is, to achieve baseline performance):

if feature == 'gray' or feature == 'surf':
    X = [cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) for x in X]

Color spaces
Alternatively, you might find that colors contain some information that raw 
grayscale values cannot capture. Traffic signs often have a distinct color scheme, and 
it might be indicative of the information it is trying to convey (that is, red for stop 
signs and forbidden actions, green for informational signs, and so on). We could opt 
for using the RGB images as input, in which case we do not have to do anything, 
since the dataset is already RGB.

However, even RGB might not be informative enough. For example, a stop sign in 
broad daylight might appear very bright and clear, but its colors might appear much 
less vibrant on a rainy or foggy day. A better choice might be the HSV color space, 
which rearranges RGB color values in a cylindrical coordinate space along the axes 
of hue, saturation, and value (or brightness). The most telling feature of traffic signs 
in this color space might be the hue (a more perceptually relevant description of 
color or chromaticity), better distinguishing the color scheme of different sign types. 
Saturation and value could be equally important, however, as traffic signs tend to 
use relatively bright and saturated colors that do not typically appear in natural 
scenes (that is, their surroundings).

In OpenCV, the HSV color space is only a single call to cv2.cvtColor away:

if feature == 'hsv':
    X = [cv2.cvtColor(x, cv2.COLOR_BGR2HSV) for x in X]

Speeded Up Robust Features
But wait a minute! In Chapter 3, Finding Objects via Feature Matching and Perspective 
Transforms you learned that the SURF descriptor is one of the best and most robust 
ways to describe images independent of scale or rotations. Can we use this technique 
to our advantage in a classification task?
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Glad you asked! To make this work, we need to adjust SURF so that it returns a fixed 
number of features per image. By default, the SURF descriptor is only applied to a 
small list of interesting keypoints in the image, the number of which might differ on 
an image-by-image basis. This is unsuitable for our current purposes, because we 
want to find a fixed number of feature values per data sample.

Instead, we need to apply SURF to a fixed dense grid laid out over the image, which 
can be achieved by creating a dense feature detector:

if feature == 'surf':
    # create dense grid of keypoints
    dense = cv2.FeatureDetector_create("Dense")
    kp = dense.detect(np.zeros(small_size).astype(np.uint8))

Then it is possible to obtain SURF descriptors for each point on the grid and append 
that data sample to our feature matrix. We initialize SURF with a minHessian value 
of 400 as we did before, and:

surf = cv2.SURF(400)
surf.upright = True
surf.extended = True

Keypoints and descriptors can then be obtained via this code:

kp_des = [surf.compute(x, kp) for x in X]

Because surf.compute has two output arguments, kp_des will actually be a 
concatenation of both keypoints and descriptors. The second element in the kp_des 
array is the descriptor that we care about. We select the first num_surf_features 
from each data sample and add it back to the training set:

num_surf_features = 36
X = [d[1][:num_surf_features, :] for d in kp_des]

Histogram of Oriented Gradients
The last feature descriptor to consider is the Histogram of Oriented Gradients 
(HOG). HOG features have previously been shown to work exceptionally well 
in combination with SVMs, especially when applied to tasks such as pedestrian 
recognition.
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The essential idea behind HOG features is that the local shapes and appearance  
of objects within an image can be described by the distribution of edge directions. 
The image is divided into small connected regions, within which a histogram 
of gradient directions (or edge directions) is compiled. Then, the descriptor is 
assembled by concatenating the different histograms. For improved performance, 
the local histograms can be contrast-normalized, which results in better invariance to 
changes in illumination and shadowing. You can see why this sort of preprocessing 
might just be the perfect fit for recognizing traffic signs under different viewing 
angles and lighting conditions.

The HOG descriptor is fairly accessible in OpenCV by means of cv2.HOGDescriptor, 
which takes the detection window size (32 x 32), the block size (16 x 16), the cell size 
(8 x 8), and the cell stride (8 x 8), as input arguments. For each of these cells, the HOG 
descriptor then calculates a histogram of oriented gradients using nine bins:

elif feature == 'hog':
    # histogram of oriented gradients
    block_size = (small_size[0] / 2, small_size[1] / 2)
    block_stride = (small_size[0] / 4, small_size[1] / 4)
    cell_size = block_stride
    num_bins = 9
    hog = cv2.HOGDescriptor(small_size, block_size,  
        block_stride, cell_size, num_bins)

Applying the HOG descriptor to every data sample is then as easy as calling hog.
compute:

X = [hog.compute(x) for x in X]

After we have extracted all the features we want, we should remember to have 
gtsrb._extract_features return the assembled list of data samples so that they 
can be split into training and test sets:

X = [x.flatten() for x in X]
return X

Now, we are finally ready to train the classifier on the preprocessed dataset.
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Support Vector Machine
A Support Vector Machine (SVM) is a learner for binary classification (and regression) 
that tries to separate examples from the two different class labels with a decision 
boundary that maximizes the margin between the two classes.

Let's return to our example of positive and negative data samples, each of which has 
exactly two features (x and y) and two possible decision boundaries, as follows:

Both of these decision boundaries get the job done. They partition all the samples of 
positives and negatives with zero misclassifications. However, one of them seems 
intuitively better. How can we quantify "better" and thus learn the "best" parameter 
settings?

This is where SVMs come in. SVMs are also called maximal margin classifiers 
because they can be used to do exactly that; they define the decision boundary  
so as to make those two clouds of + and – as far apart as possible. 
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For the preceding example, an SVM would find two lines that pass through the  
data points on the class margins (the dashed lines in the following figure), and then 
make the line that passes through the center of the margins, the decision boundary 
(the bold black line in the following figure):

It turns out that to find the maximal margin, it is only important to consider the data 
points that lie on the class margins. These points are sometimes also called support 
vectors.

In addition to performing linear classification (that is, when the decision 
boundary is a straight line), SVMs can also perform a non-linear 
classification using what is called the kernel trick, implicitly mapping 
their inputs to high-dimensional feature spaces.

Using SVMs for Multi-class classification
Whereas some classification algorithms, such as neural networks, naturally lend 
themselves to using more than two classes, SVMs are binary classifiers by nature. 
They can, however, be turned into multiclass classifiers.
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Here, we will consider two different strategies:

• one-vs-all: The one-vs-all strategy involves training a single classifier 
per class, with the samples of that class as positive samples and all other 
samples as negatives. For k classes, this strategy thus requires the training 
of k different SVMs. During testing, all classifiers can express a "+1" vote 
by predicting that an unseen sample belongs to their class. In the end, an 
unseen sample is classified by the ensemble as the class with the most votes. 
Usually, this strategy is used in combination with confidence scores instead 
of predicted labels so that in the end, the class with the highest confidence 
score can be picked.

• one-vs-one: The one-vs-one strategy involves training a single classifier per 
class pair, with the samples of the first class as positive samples and the 
samples of the second class as negative samples. For k classes, this strategy 
requires the training of k*(k-1)/2 classifiers. However, the classifiers have 
to solve a significantly easier task, so there is a trade-off when considering 
which strategy to use. During testing, all classifiers can express a "+1" 
vote for either the first or the second class. In the end, an unseen sample is 
classified by the ensemble as the class with the most votes.

Which strategy to use can be specified by the user via an input argument (mode) to 
the MutliClassSVM class:

class MultiClassSVM(Classifier):
    """Multi-class classification using Support Vector Machines  
       (SVMs) """
    def __init__(self, num_classes, mode="one-vs-all",  
        params=None):
        self.num_classes = num_classes
        self.mode = mode
        self.params = params or dict()

As mentioned earlier, depending on the classification strategy, we will need 
either k or k*(k-1)/2 SVM classifiers, for which we will maintain a list in self.
classifiers: 

        # initialize correct number of classifiers
        self.classifiers = []
        if mode == "one-vs-one":
            # k classes: need k*(k-1)/2 classifiers
            for i in xrange(numClasses*(numClasses-1)/2):
                self.classifiers.append(cv2.SVM())
        elif mode == "one-vs-all":
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            # k classes: need k classifiers
            for i in xrange(numClasses):
                self.classifiers.append(cv2.SVM())
        else:
            print "Unknown mode ",mode

Once the classifiers are correctly initialized, we are ready for training.

Training the SVM
Following the requirements defined by the Classifier base class, we need to 
perform training in a fit method:

def fit(self, X_train, y_train, params=None):
    """ fit model to data """
    if params is None:
        params = self.params

The training will differ depending on the classification strategy that is being used. 
The one-vs-one strategy requires us to train an SVM for each pair of classes:

if self.mode == "one-vs-one":
    svm_id=0
    for c1 in xrange(self.numClasses):
        for c2 in xrange(c1+1,self.numClasses):

Here we use svm_id to keep track of the number of SVMs we use. In contrast to the 
one-vs-all strategy, we need to train a much larger number of SVMs here. However, 
the training samples to consider per SVM include only samples of either class—c1 or 
c2:

y_train_c1 = np.where(y_train==c1)[0]
y_train_c2 = np.where(y_train==c2)[0]

data_id = np.sort(np.concatenate((y_train_c1,  
    y_train_c2), axis=0))
X_train_id = X_train[data_id,:]
y_train_id = y_train[data_id]

Because an SVM is a binary classifier, we need to convert our integer class labels into 
0s and 1s. We assign label 1 to all samples of the c1 class, and label 0 to all samples 
of the c2 class, again using the handy np.where function:

y_train_bin = np.where(y_train_id==c1, 1,  
    0).flatten()
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Then we are ready to train the SVM:

self.classifiers[svm_id].train(X_train_id,  
    y_train_bin, params=self.params)

Here, we pass a dictionary of training parameters, self.params, to the SVM. For 
now, we only consider the (already suitable) default parameter values, but feel free 
to experiment with different settings.

Don't forget to update svm_id so that you can move on to the next SVM in the list:

svm_id += 1

On the other hand, the one-vs-all strategy requires us to train a total of self.
numClasses SVMs, which makes indexing a lot easier:

elif self.mode == "one-vs-all":
    for c in xrange(self.numClasses):

Again, we need to convert integer labels to binary labels. In contrast to the one-vs-
one strategy, every SVM here considers all training samples. We assign label 1 to 
all samples of the c class and label 0 to all other samples, and pass the data to the 
classifier's training method:

y_train_bin = np.where(y_train==c,1,0).flatten()
self.classifiers[c].train(X_train, y_train_bin,  
    params=self.params)

OpenCV will take care of the rest. What happens under the hood is that the SVM 
training uses Lagrange multipliers to optimize some constraints that lead to the 
maximum-margin decision boundary. The optimization process is usually performed 
until some termination criteria are met, which can be specified via the SVM's 
optional arguments:

params.term_crit = (cv2.TERM_CRITERIA_EPS +  
    cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)

Testing the SVM
There are many ways to evaluate a classifier, but most often, we are simply interested 
in the accuracy metric, that is, how many data samples from the test set were classified 
correctly.
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In order to arrive at this metric, we need to have each individual SVM predict the 
labels of the test data, and assemble their consensus in a 2D voting matrix (Y_vote):

def evaluate(self, X_test, y_test, visualize=False):
    """Evaluates model performance"""
    Y_vote = np.zeros((len(y_test), self.numClasses))

For each sample in the dataset, the voting matrix will contain the number of times 
the sample has been voted to belong to a certain class. Populating the voting matrix 
will take a slightly different form depending on the classification strategy. In the case 
of the one-vs-one strategy, we need to loop over all k*(k-1)/2 classifiers and obtain 
a vector, called y_hat, that contains the predicted labels for all test samples that 
belong to either the c1 class or the c2 class:

if self.mode == "one-vs-one":
    svm_id = 0
    for c1 in xrange(self.numClasses):
        for c2 in xrange(c1+  1, self.numClasses):
            data_id = np.where((y_test==c1) + (y_test==c2))[0]
            X_test_id = X_test[data_id,:],:],:] 
            y_test_id = y_test[data_id]

            # predict labels
            y_hat = self.classifiers[svm_id].predict_all 
                ( X_test_id)

The y_hat vector will contain 1s whenever the classifier believes that the sample 
belongs to the c1 class, and 0s wherever the classifier believes that the sample 
belongs to the c2 class. The tricky part is how to +1 the correct cell in the Y_vote 
matrix. For example, if the ith entry in y_hat is 1 (meaning that we believe that the 
ith sample belongs to the c1 class), we want to increment the value of the ith row 
and c1th column in the Y_vote matrix. This will indicate that the present classifier 
expressed a vote to classify the ith sample as belonging to the c1 class.

Since we know the indices of all test samples that belong to either class, c1 or c2 
(stored in data_id), we know which rows of Y_vote to access. Because data_id 
is used as an index for Y_vote, we only need to find the indices in data_id that 
correspond to entries where y_hat is 1:

            # we vote for c1 where y_hat is 1, and for c2 where 
            # y_hat is 0
            # np.where serves as the inner index into the 
            # data_id array, which in turn serves as index 
            # into the Y_vote matrix
            Y_vote[data_id[np.where(y_hat==1)[0]],c1] += 1
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Similarly, we can express a vote for the c2 class:

            Y_vote[data_id[np.where(y_hat==0)[0]],c2] += 1

Then we increment svm_id and move on to the next classifier:

             svm_id += 1

The one-vs-all strategy poses a different problem. Indexing in the Y_vote matrix 
is less tricky, because we always consider all the test data samples. We repeat the 
procedure of predicting labels for each data sample:

elif self.mode == "one-vs-all":
    for c in xrange(self.numClasses):
        # predict labels
        y_hat = self.classifiers[c].predict_all(X_test)

Wherever y_hat has a value of 1, the classifier expresses a vote that the data sample 
belongs to class c, and we update the voting matrix:

        # we vote for c where y_hat is 1
        if np.any(y_hat):
            Y_vote[np.where(y_hat==1)[0], c] += 1

The tricky part now is, "What to do with entries of y_hat that have a value of 0?" 
Since we classified one-vs-all, we only know that the sample is not of the c class  
(that is, it belongs to the "rest"), but we do not know what the exact class label is 
supposed to be. Thus, we cannot add these samples to the voting matrix.

Since we neglected to include samples that are consistently classified as belonging to 
the "rest," it is possible that some rows in the Y_vote matrix will have all 0s. In such a 
case, simply pick a class at random (unless you have a better idea):

        # find all rows without votes, pick a class at random
        no_label = np.where(np.sum(y_vote,axis=1)==0)[0]
        Y_vote[no_label,np.random.randint(self.numClasses,  
            size=len(no_label))] = 1

Now, we are ready to calculate the desired performance metrics as described in 
detail in later sections. For the purpose of this chapter, we choose to calculate 
accuracy, precision, and recall, which are implemented in their own dedicated 
private methods:

accuracy = self.__accuracy(y_test, Y_vote)
precision = self.__precision(y_test, Y_vote)
recall = self.__recall(y_test, Y_vote)

return (accuracy,precision,recall)
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The scikit-learn machine learning package (http://scikit-
learn.org) supports the three metrics—accuracy, precision, and 
recall (as well as others)—straight out of the box, and also comes 
with a variety of other useful tools. For educational purposes (and to 
minimize software dependencies), we will derive the three metrics 
ourselves.

Confusion matrix
A confusion matrix is a 2D matrix of size equal to (self.numClasses, self.
numClasses), where the rows correspond to the predicted class labels, and columns 
correspond to the actual class labels. Then, the [r,c] matrix element contains the 
number of samples that were predicted to have label r, but in reality have label c. 
Having access to a confusion matrix will allow us to calculate precision and recall.

The confusion matrix can be calculated from a vector of ground-truth labels (y_test) 
and the voting matrix (Y_vote). We first convert the voting matrix into a vector of 
predicted labels by picking the column index (that is, the class label) that received 
the most votes:

def __confusion(self, y_test, Y_vote):
    y_hat = np.argmax(Y_vote, axis=1)

Then we need to loop twice over all classes and count the number of times a data 
sample of the c_true ground-truth class was predicted as having the c_pred class:

    conf = np.zeros((self.numClasses,  
        self.numClasses)).astype(np.int32)
    for c_true in xrange(self.numClasses):
        # looking at all samples of a given class, c_true
        # how many were classified as c_true? how many as others?
        for c_pred in xrange(self.numClasses):

All elements of interest in each iteration are thus the samples that have the c_true 
label in y_test and the c_pred label in y_hat:

            y_this = np.where((y_test==c_true) * (y_hat==c_pred))

The corresponding cell in the confidence matrix is then the number of non-zero 
elements in y_this:

            conf[c_pred,c_true] = np.count_nonzero(y_this)

After the nested loops complete, we pass the confusion matrix for further processing:

    return conf

http://scikit-learn.org
http://scikit-learn.org
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As you may have guessed already, the goal of a good classifier is to make the 
confusion matrix diagonal, which would imply that the ground-truth class (c_true) 
and the predicted class (c_pred) of every sample are the same.

The one-vs-one strategy, in combination with HOG features, actually performs  
really well, which is evident from this resulting confusion matrix, wherein most  
of the off-diagonal elements are zero:

Accuracy
The most straightforward metric to calculate is probably accuracy. This metric 
simply counts the number of test samples that have been predicted correctly,  
and returns the number as a fraction of the total number of test samples:

def __accuracy(self, y_test, y_vote):
    """ Calculates the accuracy based on a vector of ground-truth  
        labels (y_test) and a 2D voting matrix (y_vote) of size  
        (len(y_test),numClasses). """

The classification prediction (y_hat) can be extracted from the vote matrix by finding 
out which class has received the most votes:

    y_hat = np.argmax(y_vote, axis=1)

The correctness of the prediction can be verified by comparing the predicted label of 
a sample to its actual label:

    # all cases where predicted class was correct
    mask = (y_hat == y_test)
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Accuracy is then calculated by counting the number of correct predictions (that is, 
non-zero entries in mask) and normalizing that number by the total number of test 
samples:

    return np.count_nonzero(mask)*1./len(y_test)

Precision
Precision in binary classification is a useful metric for measuring the fraction of 
retrieved instances that are relevant (also called the positive predictive value). 
In a classification task, the number of true positives is defined as the number of 
items correctly labeled as belonging to the positive class. Precision is defined as the 
number of true positives divided by the total number of positives. In other words, 
out of all the pictures in the test set that a classifier thinks contain a cat, precision is 
the fraction of pictures that actually contain a cat.

The total number of positives can also be calculated as the sum of true positives 
and false positives, the latter being the number of samples incorrectly labeled as 
belonging to a particular class. This is where the confusion matrix comes in handy, 
because it will allow us to quickly calculate the number of false positives.

Again, we start by translating the voting matrix into a vector of predicted labels:

def __precision(self, y_test, Y_vote):
    """ precision extended to multi-class classification """
    # predicted classes
    y_hat = np.argmax(Y_vote, axis=1)

The procedure will differ slightly depending on the classification strategy.  
The one-vs-one strategy requires us operating with the confusion matrix:

    if True or self.mode == "one-vs-one":
        # need confusion matrix
        conf = self.__confusion(y_test, y_vote)

        # consider each class separately
        prec = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):

Since true positives are the samples that are predicted to have label c and also have 
label c in reality, they correspond to the diagonal elements of the confusion matrix:

            # true positives: label is c, classifier predicted c
            tp = conf[c,c]
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Similarly, false positives correspond to the off-diagonal elements of the confusion 
matrix that are in the same column as the true positive. The quickest way to calculate 
that number is to sum up all the elements in column c but subtract the true positives:

            # false positives: label is c, classifier predicted 
            # not c
            fp = np.sum(conf[:,c]) - conf[c,c]

Precision is the number of true positives divided by the sum of true positives and 
false positives:

    if tp + fp != 0:
        prec[c] = tp*1./(tp+fp)

The one-vs-all strategy makes the math slightly easier. Since we always operate on 
the full test set, we need to find only those samples that have a ground-truth label of 
c in y_test and a predicted label of c in y_hat:

    elif self.mode == "one-vs-all":
        # consider each class separately
        prec = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):
            # true positives: label is c, classifier predicted c
            tp = np.count_nonzero((y_test==c) * (y_hat==c))

Similarly, false positives have a ground-truth label of c in y_test and their predicted 
label is not c in y_hat:

            # false positives: label is c, classifier predicted 
            # not c
            fp = np.count_nonzero((y_test==c) * (y_hat!=c))

Again, precision is the number of true positives divided by the sum of true positives 
and false positives:

            if tp + fp != 0:
                prec[c] = tp*1./(tp+fp)

After that, we pass the precision vector for visualization:
    return prec



Learning to Recognize Traffic Signs

[ 494 ]

Recall
Recall is similar to precision in the sense that it measures the fraction of relevant 
instances that are retrieved (as opposed to the fraction of retrieved instances that are 
relevant). In a classification task, the number of false negatives is the number of items 
not labeled as belonging to the positive class but should have been labeled. Recall is 
the number of true positives divided by the sum of true positives and false negatives. 
In other words, out of all the pictures of cats in the world, recall is the fraction of 
pictures that have been correctly identified as pictures of cats.

Again, we start off by translating the voting matrix into a vector of predicted labels:

def __recall(self, y_test, Y_vote):
    """ recall extended to multi-class classification """
    # predicted classes
    y_hat = np.argmax(Y_vote, axis=1)

The procedure is almost identical to calculating precision. The one-vs-one strategy 
once again requires some arithmetic involving the confusion matrix:

    if True or self.mode == "one-vs-one":
        # need confusion matrix
        conf = self.__confusion(y_test, y_vote)

        # consider each class separately
        recall = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):

True positives once again correspond to diagonal elements in the confusion matrix:

            # true positives: label is c, classifier predicted c
            tp = conf[c,c]

To get the number of false negatives, we sum up all the columns in the row c and 
subtract the number of true positives for this row. This will give us the number 
of samples for which the classifier predicted the class as c but that actually had a 
ground-truth label other than c:

            # false negatives: label is not c, classifier
            # predicted c
            fn = np.sum(conf[c,:]) - conf[c,c]

Recall is the number of true positives divided by the sum of true positives and false 
negatives:

            if tp + fn != 0:
                recall[c] = tp*1./(tp+fn)
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Again, the one-vs-all strategy makes the math slightly easier. Since we always 
operate on the full test set, we need to find only those samples whose ground-truth 
label is not c in y_test, and predicted label is c in y_hat:

    elif self.mode == "one-vs-all":
        # consider each class separately
        recall = np.zeros(self.numClasses)
        for c in xrange(self.numClasses):
            # true positives: label is c, classifier predicted c
            tp = np.count_nonzero((y_test==c) * (y_hat==c))

            # false negatives: label is not c, classifier
            # predicted c
            fn = np.count_nonzero((y_test!=c) * (y_hat==c))

            if tp + fn != 0:
                recall[c] = tp*1./(tp+fn)

After that, we pass the recall vector for visualization:
    return recall

Putting it all together
To run our app, we will need to execute the main function routine (in chapter6.py). 
It loads the data, trains the classifier, evaluates its performance, and visualizes the 
result.

But first, we need to import all the relevant modules and set up a main function:

import numpy as np

import matplotlib.pyplot as plt
from datasets import gtsrb
from classifiers import MultiClassSVM

def main():
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Then, the goal is to compare classification performance across settings and feature 
extraction methods. This includes running the task with both classification strategies, 
one-vs-all and one-vs-one, as well as preprocessing the data with a list of different 
feature extraction approaches:

    strategies = ['one-vs-one', 'one-vs-all']features = [None, 
        'gray', 'rgb', 'hsv', 'surf', 'hog']

For each of these settings, we need to collect three performance metrics—accuracy, 
precision, and recall:

    accuracy = np.zeros((2,len(features)))
    precision = np.zeros((2,len(features)))
    recall = np.zeros((2,len(features)))

A nested for loop will run the classifier with all of these settings and populate the 
performance metric matrices. The outer loop is over all elements in the features 
vector:

    for f in xrange(len(features)):
        (X_train,y_train), (X_test,y_test) = gtsrb.load_data(  
            "datasets/gtsrb_training",  
            feature=features[f], test_split=0.2)

Before passing the training data (X_train,y_train) and test data (X_test,y_test) 
to the classifiers, we want to make sure that they are in the format that the classifier 
expects; that is, each data sample is stored in a row of X_train or X_test, with the 
columns corresponding to feature values:

X_train = np.squeeze(np.array(X_train)).astype(np.float32)
y_train = np.array(y_train)
X_test = np.squeeze(np.array(X_test)).astype(np.float32)
y_test = np.array(y_test)

We also need to know the number of class labels (since we did not load the complete 
GTSRB dataset). This can be achieved by concatenating y_train and y_test and 
extracting all unique labels in the combined list:

labels = np.unique(np.hstack((y_train,y_test)))

Next, the inner loop iterates over all the elements in the strategies vector, which 
currently includes the two strategies, one-vs-all and one-vs-one:

for s in xrange(len(strategies)):



Chapter 6

[ 497 ]

Then we instantiate the MultiClassSVM class with the correct number of unique 
labels and the corresponding classification strategy:

MCS = MultiClassSVM(len(labels),strategies[s])

Now we are all ready to apply the ensemble classifier to the training data and extract 
the three performance metrics after training:

MCS.fit(X_train, y_train)
(accuracy[s,f],precision[s,f],recall[s,f]) =  
    MCS.evaluate(X_test, y_test)

This ends the nested for loop. All that is left to do is to visualize the result. For this, we 
choose matplotlib's bar plot functionality. The goal is to show the three performance 
metrics (accuracy, precision, and recall) for all combinations of extracted features and 
classification strategies. We will use one plotting window per classification strategy, 
and arrange the corresponding data in a stacked bar plot:

f,ax = plt.subplots(2)
for s in xrange(len(strategies)):
    x = np.arange(len(features))
    ax[s].bar(x-0.2, accuracy[s,:], width=0.2, color='b',  
        hatch='/', align='center')
    ax[s].bar(x, precision[s,:], width=0.2, color='r',  
        hatch='\\', align='center')
    ax[s].bar(x+0.2, recall[s,:], width=0.2, color='g',  
        hatch='x', align='center')

For the sake of visibility, the y axis is restricted to the relevant range:

ax[s].axis([-0.5, len(features) + 0.5, 0, 1.5])

Finally, we add some plot decorations:

ax[s].legend(('Accuracy','Precision','Recall'), loc=2,  
    ncol=3, mode="expand")
ax[s].set_xticks(np.arange(len(features)))
ax[s].set_xticklabels(features)
ax[s].set_title(strategies[s])
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Now the data is ready to be plotted!

plt.show()

This screenshot contains a lot of information, so let's break it down step by step:

• The most straightforward observation is that the HOG feature seems mighty 
powerful! This feature has outperformed all other features, no matter what 
the classification strategy is. Again, this highlights the importance of feature 
extraction, which generally requires a deep understanding of the statistics of 
the dataset under study.

• Interestingly, with the use of the one-vs-one strategy, all approaches led 
to an accuracy north of 0.95, which might stem from the fact that a binary 
classification task (with two possible class labels) is sometimes easier to learn 
than a 10-class classification task. Unfortunately, the same cannot be said for 
the one-vs-all approach. But to be fair, the one-vs-all approach had to operate 
with only 10 SVMs, whereas the one-vs-one approach had 45 SVMs to work 
with. This gap is only likely to increase if we add more object categories.

• The effect of de-meaning can be seen by comparing the result for None with 
the result for rgb. These two settings were identical, except that the samples 
under rgb were normalized. The difference in performance is evident, 
especially for the one-vs-all strategy.
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• A little disappointing is the finding that none of the color transformations 
(neither RGB nor HSV) were able to perform significantly better than the 
simple grayscale transform. SURF did not help either.

Summary
In this chapter, we trained a multiclass classifier to recognize traffic signs from 
the GTSRB database. We discussed the basics of supervised learning, explored the 
intricacies of feature extraction, and extended SVMs so that they can be used for 
multiclass classification.

Notably, we left out some details along the way, such as attempting to fine-tune 
the hyperparameters of the learning algorithm. When we restrict the traffic sign 
dataset to only 10 classes, the default values of the various function arguments along 
the way, seem to be sufficient for performing exceptionally well (just look at the 
perfect score achieved with the HOG feature and the one-vs-one strategy). With this 
functional setup and a good understanding of the underlying methodology, you 
can now try to classify the entire GTSRB dataset! It is definitely worth taking a look 
at their website, where you will find classification results for a variety of classifiers. 
Maybe, your own approach will soon be added to the list.

In the next (and last) chapter, we will move even deeper into the field of machine 
learning. Specifically, we will focus on recognizing emotional expressions in human 
faces using convolutional neural networks. This time, we will combine the classifier 
with a framework for object detection, which will allow us to localize (where?) 
a human face in an image, and then focus on identifying (what?) the emotional 
expression contained in that face. This will conclude our quest into the depths of 
machine learning, and provide you with all the necessary tools to develop your own 
advanced OpenCV projects using the principles and concepts of computer vision.
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Learning to Recognize 
Emotions on Faces

We previously familiarized ourselves with the concepts of object detection and  
object recognition, but we never combined them to develop an app that can do  
both end-to-end. For the final chapter in this book, we will do exactly that.

The goal of this chapter is to develop an app that combines both face detection and 
face recognition, with a focus on recognizing emotional expressions in the detected 
face.

For this, we will touch upon two other classic algorithms that come bundled with 
OpenCV: Haar Cascade Classifiers and multi-layer peceptrons (MLPs). While the 
former can be used to rapidly detect (or locate, answering the question: where?) 
objects of various sizes and orientations in an image, the latter can be used to 
recognize them (or identify, answering the question: what?).

The end goal of the app will be to detect your own face in each captured frame of a 
webcam live stream and label your emotional expression. To make this task feasible, 
we will limit ourselves to the following possible emotional expressions: neutral, 
happy, sad, surprised, angry, and disgusted.

To arrive at such an app, we need to solve the following two challenges:

• Face detection: We will use the popular Haar cascade classifier by Viola and 
Jones, for which OpenCV provides a whole range of pre-trained exemplars. 
We will make use of face cascades and eye cascades to reliably detect and 
align facial regions from frame to frame.
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• Facial expression recognition: We will train a multi-layer perceptron to 
recognize the six different emotional expressions listed earlier, in every 
detected face. The success of this approach will crucially depend on the 
training set that we assemble, and the preprocessing that we choose to 
apply to each sample in the set. In order to improve the quality of our self-
recorded training set, we will make sure that all data samples are aligned 
using affine transformations and reduce the dimensionality of the feature 
space by applying Principal Component Analysis (PCA). The resulting 
representation is sometimes also referred to as Eigenfaces.

The reliable recognition of faces and facial expressions is a challenging task for 
artificial intelligence, yet humans are able to perform these kinds of tasks with 
apparent ease. Today's state-of-the-art models range all the way from 3D deformable 
face models fitting over convolutional neural networks, to deep learning algorithms. 
Granted, these approaches are significantly more sophisticated than our approach. 
Yet, MLPs are classic algorithms that helped transform the field of machine learning, 
so for educational purposes, we will stick to a set of algorithms that come bundled 
with OpenCV.

We will combine the algorithms mentioned earlier in a single end-to-end app that 
annotates a detected face with the corresponding facial expression label in each 
captured frame of a video live stream. The end result might look something like  
the following image, capturing my reaction when the code first compiled:
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Planning the app
The final app will consist of a main script that integrates the process flow end-to-end, 
from face detection to facial expression recognition, as well as some utility functions 
to help along the way.

Thus, the end product will require several components:

• chapter7: The main script and entry-point for the chapter.
• chapter7.FaceLayout: A custom layout based on gui.BaseLayout that 

operates in two different modes:
 ° Training mode: In the training mode, the app will collect image 

frames, detect a face therein, assign a label depending on the facial 
expression, and upon exiting, save all the collected data samples in a 
file, so that it can be parsed by datasets.homebrew.

 ° Testing mode: In the testing mode, the app will detect a face in each 
video frame and predict the corresponding class label by using a  
pre-trained MLP.

• chapter3.main: The main function routine to start the GUI application.
• detectors.FaceDetector: A class for face detection.

 °  detect: A method to detect faces in a grayscale image. Optionally, 
the image is downscaled for better reliability. Upon successful 
detection, the method returns the extracted head region.

 ° align_head: A method to preprocess an extracted head region with 
affine transformations such that the resulting face appears centered 
and upright.

• classifiers.Classifier: An abstract base class that defines the common 
interface for all classifiers (same as in Chapter 6, Learning to Recognize Traffic 
Signs).

• classifiers.MultiLayerPerceptron: A class that implements an MLP by 
using the following public methods:

 ° fit: A method to fit the MLP to the training data. It takes as input, a 
matrix of the training data, where each row is a training sample, and 
columns contain feature values, and a vector of labels.

 ° evaluate: A method to evaluate the MLP by applying it to some test 
data after training. It takes as input, a matrix of test data, where each 
row is a test sample and columns contain feature values, and a vector 
of labels. The function returns three different performance metrics: 
accuracy, precision, and recall.



Learning to Recognize Emotions on Faces

[ 504 ]

 ° predict: A method to predict the class labels of some test data. We 
expose this method to the user so it can be applied to any number of 
data samples, which will be helpful in the testing mode, when we do 
not want to evaluate the entire dataset, but instead predict the label 
of only a single data sample.

 ° save: A method to save a trained MLP to file.
 ° load: A method to load a pre-trained MLP from file.

• train_test_mlp: A script to train and test an MLP by applying it to our  
self-recorded dataset. The script will explore different network architectures 
and store the one with the best generalization performance in a file, so that 
the pre-trained classifier can be loaded later.

• datasets.homebrew: A class to parse the self-recorded training set. 
Analogously to the previous chapter, the class contains the following 
methods:

 ° load_data: A method to load the training set, perform PCA on it via 
the extract_features function, and split the data into the training 
and test sets. Optionally, the preprocessed data can be stored in a file 
so that we can load it later on without having to parse the data again.

 ° load_from_file: A method to load a previously stored preprocessed 
dataset.

 ° extract_features: A method to extract a feature of choice (in 
the present chapter: to perform PCA on the data). We expose this 
function to the user so it can be applied to any number of data 
samples, which will be helpful in the testing mode, when we do not 
want to parse the entire dataset but instead predict the label of only a 
single data sample.

• gui: A module providing a wxPython GUI application to access the capture 
device and display the video feed. This is the same module that we used in 
the previous chapters.

 ° gui.BaseLayout: A generic layout from which more complicated 
layouts can be built. This chapter does not require any modifications 
to the basic layout.

In the following sections, we will discuss these components in detail.
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Face detection
OpenCV comes preinstalled with a range of sophisticated classifiers for general-
purpose object detection. Perhaps, the most commonly known detector is the cascade 
of Haar-based feature detectors for face detection, which was invented by Paul Viola 
and Michael Jones.

Haar-based cascade classifiers
Every book on OpenCV should at least mention the Viola–Jones face detector. 
Invented in 2001, this cascade classifier disrupted the field of computer vision,  
as it finally allowed real-time face detection and face recognition.

The classifier is based on Haar-like features (similar to Haar basis functions), which 
sum up the pixel intensities in small regions of an image, as well as capture the 
difference between adjacent image regions. Some example rectangle features are 
shown in the following figure, relative to the enclosing (light gray) detection window:

Here, the top row shows two examples of an edge feature, either vertically oriented 
(left) or oriented at a 45 degree angle (right). The bottom row shows a line feature 
(left) and a center-surround feature (right). The feature value for each of these is then 
calculated by summing up all pixel values in the dark gray rectangle and subtracting 
this value from the sum of all pixel values in the white rectangle. This procedure 
allowed the algorithm to capture certain qualities of human faces, such as the fact 
that eye regions are usually darker than the region surrounding the cheeks. 
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Thus, a common Haar feature would have a dark rectangle (representing the eye 
region) atop a bright rectangle (representing the cheek region). Combining this 
feature with a bank of rotated and slightly more complicated wavelets, Viola and 
Jones arrived at a powerful feature descriptor for human faces. In an additional act of 
genius, these guys came up with an efficient way to calculate these features, making 
it possible for the first time to detect faces in real-time.

Pre-trained cascade classifiers
Even better, this approach does not only work for faces but also for eyes, mouths, 
full bodies, company logos, you name it. A number of pre-trained classifiers can be 
found under the OpenCV install path in the data folder:

Cascade classifier type XML file name
Face detector (default) haarcascade_frontalface_default.

xml

Face detector (fast Haar) haarcascade_frontalface_alt2.xml

Eye detector haarcascade_lefteye_2splits.xml

haarcascade_righteye_2splits.xml

Mouth detector haarcascade_mcs_mouth.xml

Nose detector haarcascade_mcs_nose.xml

Full body detector haarcascade_fullbody.xml

In this chapter, we will use haarcascade_frontalface_default.xml, 
haarcascade_lefteye_2splits.xml, and haarcascade_righteye_2splits.xml.

If you are wearing glasses, make sure to use haarcascade_eye_
tree_eyeglasses.xml on both eyes instead.

Using a pre-trained cascade classifier
A cascade classifier can be loaded and applied to a (grayscale!) image frame with the 
following code:

import cv2

frame = cv2.imread('example_grayscale.jpg', cv2.CV_8UC1) 
face_casc =  
    cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
faces = face_casc.detectMultiScale(frame, scaleFactor=1.1, 
    minNeighbors=3)
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The detectMultiScale function comes with a number of options:

• minFeatureSize: The minimum face size to consider (for example, 20 × 20 
pixels).

• searchScaleFactor: Amount by which to rescale the image (scale pyramid). 
For example, a value of 1.1 will gradually reduce the size of the input image 
by 10 percent, making it more likely for a face to be found than a larger value.

• minNeighbors: The number of neighbors each candidate rectangle should 
have to retain it. Typically, choose 3 or 5.

• flags: Options for old cascades (will be ignored by newer ones). For 
example, whether to look for all faces or just the largest (cv2.cv.CASCADE_
FIND_BIGGEST_OBJECT).

If detection is successful, the function will return a list of bounding boxes (faces) 
that contain the coordinates of the detected face regions:

for (x, y, w, h) in faces:
    # draw bounding box on frame
    cv2.rectangle(frame, (x, y), (x + w, y + h), (100, 255, 0), 2)

If your pre-trained face cascade does not detect anything, a common 
reason is usually that the path to the pre-trained cascade file could not 
be found. In this case, CascadeClassifier will fail silently. Thus, 
it is always a good idea to check whether the returned classifier casc 
= cv2.CascadeClassifier(filename) is empty, by checking 
casc.empty().

The FaceDetector class
All relevant face detection code for this chapter can be found as part of the 
FaceDetector class in the detectors module. Upon instantiation, this class loads 
three different cascade classifiers that are needed for preprocessing: a face cascade 
and two eye cascades.

import cv2
import numpy as np

class FaceDetector:
    def __init__(
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        self,  
        face_casc='params/haarcascade_frontalface_default.xml', 
        left_eye_casc='params/haarcascade_lefteye_2splits.xml', 
        right_eye_casc='params/haarcascade_righteye_2splits.xml', 
        scale_factor=4):

Because our preprocessing requires a valid face cascade, we make sure that the file 
can be loaded. If not, we print an error message and exit the program:

        self.face_casc = cv2.CascadeClassifier(face_casc)
        if self.face_casc.empty():
            print 'Warning: Could not load face cascade:', 
                face_casc
            raise SystemExit

For reasons that will become clear in just a moment, we also need two eye cascades, 
for which we proceed analogously:

        self.left_eye_casc = cv2.CascadeClassifier(left_eye_casc)
        if self.left_eye_casc.empty():
            print 'Warning: Could not load left eye cascade:',  
                left_eye_casc
            raise SystemExit
        self.right_eye_casc = 
            cv2.CascadeClassifier(right_eye_casc)
        if self.right_eye_casc.empty():
            print 'Warning: Could not load right eye cascade:',  
                right_eye_casc
            raise SystemExit

Face detection works best on low-resolution grayscale images. This is why we also 
store a scaling factor (scale_factor) so that we can operate on downscaled versions 
of the input image if necessary:

self.scale_factor = scale_factor

Detecting faces in grayscale images
Faces can then be detected using the detect method. Here, we ensure that we 
operate on a downscaled grayscale image:

def detect(self, frame):
    frameCasc = cv2.cvtColor(cv2.resize(frame, (0, 0),  
        fx=1.0 / self.scale_factor, fy=1.0 / self.scale_factor),  
        cv2.COLOR_RGB2GRAY)
    faces = self.face_casc.detectMultiScale(frameCasc, 
        scaleFactor=1.1, minNeighbors=3,  
        flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT) *  
        self.scale_factor
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If a face is found, we continue to extract the head region from the bounding box 
information and store the result in head:

for (x, y, w, h) in faces:
    head = cv2.cvtColor(frame[y:y + h, x:x + w],  
        cv2.COLOR_RGB2GRAY)

We also draw the bounding box onto the input image:

cv2.rectangle(frame, (x, y), (x + w, y + h), (100, 255, 0), 2)

In case of success, the method should return a Boolean indicating success (True),  
the annotated input image (frame), and the extracted head region (head):

return True, frame, head

Otherwise, if no faces were detected, the method indicates failure with a Boolean 
(False) and returns the unchanged input image (frame) and None for the head region:

return False, frame, None

Preprocessing detected faces
After a face has been detected, we might want to preprocess the extracted head 
region before applying classification on it. Although the face cascade is fairly 
accurate, for recognition, it is important that all the faces are upright and centered on 
the image. This idea is best illustrated with an image. Consider a sad programmer 
under a tree:
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Because of his emotional state, the programmer tends to keep his head slightly tilted 
to the side while looking down. The facial region as extracted by the face cascade is 
shown as the leftmost grayscale thumbnail on the right. In order to compensate for 
the head orientation, we aim to rotate and scale the face so that all data samples will 
be perfectly aligned. This is the job of the align_head method in the FaceDetector 
class:

def align_head(self, head):
    height, width = head.shape[:2]

Fortunately, OpenCV comes with a few eye cascades that can detect both open 
and closed eyes, such as haarcascade_lefteye_2splits.xml and haarcascade_
righteye_2splits.xml. This allows us to calculate the angle between the line that 
connects the center of the two eyes and the horizon so that we can rotate the face 
accordingly. In addition, adding eye detectors will reduce the risk of having false 
positives in our dataset, allowing us to add a data sample only if both the head and 
the eyes have been successfully detected.

After loading these eye cascades from file in the FaceDetector constructor, they are 
applied to the input image (head):

    left_eye_region = head[0.2*height:0.5*height,  
        0.1*width:0.5*width]
    left_eye = self.left_eye_casc.detectMultiScale( 
        left_eye_region, scaleFactor=1.1, minNeighbors=3,  
        flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT)

Here, it is important that we pass only a small, relevant region (left_eye_region; 
compare small thumbnails in the top-right corner of the preceding figure) to the eye 
cascades. For simplicity, we use hardcoded values that focus on the top half of the 
facial region and assume the left eye to be in the left half.

If an eye is detected, we extract the coordinates of its center point:

left_eye_center = None
for (xl, yl, wl, hl) in left_eye:
    # find the center of the detected eye region
    left_eye_center = np.array([0.1 * width + xl + wl / 2,  
        0.2 * height + yl + hl / 2])
    break # need only look at first, largest eye
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Then, we proceed to do the same for the right eye:

right_eye_region = head[0.2*height:0.5*height,  
    0.5*width:0.9*width]
right_eye = self.right_eye_casc.detectMultiScale( 
    right_eye_region, scaleFactor=1.1, minNeighbors=3, 
    flags=cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT)
right_eye_center = None
for (xr, yr, wr, hr) in right_eye:
    # find the center of the detected eye region
    right_eye_center = np.array([0.5 * width + xr + wr / 2,  
        0.2 * height + yr + hr / 2])
    break  # need only look at first, largest eye

As mentioned earlier, if we do not detect both the eyes, we discard the sample as a 
false positive:

if left_eye_center is None or right_eye_center is None:
    return False, head

Now, this is where the magic happens. No matter how crooked the face that we 
detected is, before we add it to the training set, we want the eyes to be exactly at 25 
percent and 75 percent of the image width (so that the face is in the center) and at 20 
percent of the image height:

desired_eye_x = 0.25
desired_eye_y = 0.2
desired_img_width = 200
desired_img_height = desired_img_width

This can be achieved by warping the image using cv2.warpAffine (remember 
Chapter 3, Finding Objects via Feature Matching and Perspective Transforms?). First,  
we calculate the angle (in degrees) between the line that connects the two eyes  
and a horizontal line:

eye_center = (left_eye_center + right_eye_center) / 2
eye_angle_deg = np.arctan2(
    right_eye_center[1] – left_eye_center[1],
    right_eye_center[0] – left_eye_center[0]) * 
    180.0 / cv2.cv.CV_PI
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Then, we derive a scaling factor that will scale the distance between the two eyes to 
be exactly 50 percent of the image width:

eye_size_scale = (1.0 - desired_eye_x * 2) *  
    desired_img_width / np.linalg.norm( 
    right_eye_center – left_eye_center)

With these two parameters (eye_angle_deg and eye_size_scale) in hand, we can 
now come up with a suitable rotation matrix that will transform our image:

rot_mat = cv2.getRotationMatrix2D(tuple(eye_center),  
eye_angle_deg, eye_size_scale)

We make sure that the center of the eyes will be centered in the image:

rot_mat[0,2] += desired_img_width*0.5 – eye_center[0]
rot_mat[1,2] += desired_eye_y*desired_img_height –  
    eye_center[1]

Finally, we arrive at an upright scaled version of the facial region that looks like the 
lower-right thumbnail of the preceding image:

res = cv2.warpAffine(head, rot_mat,  
    (desired_img_width, desired_img_height))
return True, res

Facial expression recognition
The facial expression recognition pipeline is encapsulated by chapter7.py. This file 
consists of an interactive GUI that operates in two modes (training and testing), as 
described earlier.

In order to arrive at our end-to-end app, we need to cover the following three steps:

1. Load the chapter7.py GUI in the training mode to assemble a training set.
2. Train an MLP classifier on the training set via train_test_mlp.py. Because 

this step can take a long time, the process takes place in its own script. After 
successful training, store the trained weights in a file, so that we can load the 
pre-trained MLP in the next step.

3. Load the chapter7.py GUI in the testing mode to classify facial expressions 
on a live video stream in real-time. This step involves loading several pre-
trained cascade classifiers as well as our pre-trained MLP classifier. These 
classifiers will then be applied to every captured video frame.
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Assembling a training set
Before we can train an MLP, we need to assemble a suitable training set. Because 
chances are, that your face is not yet part of any dataset out there (the NSA's private 
collection doesn't count), we will have to assemble our own. This is done most easily 
by returning to our GUI application from the previous chapters, which can access a 
webcam, and operate on each frame of a video stream.

The GUI will present the user with the option of recording one of the following six 
emotional expressions: neutral, happy, sad, surprised, angry, and disgusted. Upon 
clicking a button, the app will take a snapshot of the detected facial region, and 
upon exiting, it will store all collected data samples in a file. These samples can then 
be loaded from file and used to train an MLP classifier in train_test_mlp.py, as 
described in step two given earlier.

Running the screen capture
In order to run this app (chapter7.py), we need to set up a screen capture by using 
cv2.VideoCapture and pass the handle to the FaceLayout class:

import time
import wx
from os import path
import cPickle as pickle

import cv2
import numpy as np

from datasets import homebrew
from detectors import FaceDetector
from classifiers import MultiLayerPerceptron
from gui import BaseLayout

def main():
    capture = cv2.VideoCapture(0)
    if not(capture.isOpened()):
        capture.open()

    capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)

    # start graphical user interface
    app = wx.App()
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    layout = FaceLayout(None, -1, 'Facial Expression Recognition',  
        capture)
    layout.init_algorithm()
    layout.Show(True)
    app.MainLoop()

if __name__ == '__main__':
    main()

If you happen to have installed some non-canonical releases of 
OpenCV, the frame width and frame weight parameters might have a 
slightly different name (for example, cv3.CAP_PROP_FRAME_WIDTH). 
However, in newer releases, it is the easiest to access the old OpenCV1 
sub-module cv and its variables cv2.cv.CV_CAP_PROP_FRAME_
WIDTH and cv2.cv.CV_CAP_PROP_FRAME_HEIGHT.

The GUI constructor
Analogous to the previous chapters, the GUI of the app is a customized version of 
the generic BaseLayout:

class FaceLayout(BaseLayout):

We initialize the training samples and labels as empty lists, and make sure to call  
the _on_exit method upon closing the window so that the training data is dumped 
to file:

    def _init_custom_layout(self):
        # initialize data structure
        self.samples = []
        self.labels = []

        # call method to save data upon exiting
        self.Bind(wx.EVT_CLOSE, self._on_exit)

We also have to load several classifiers to make the preprocessing and (later on)  
the real-time classification work. For convenience, default file names are provided:

    def init_algorithm(
        self,  
        save_training_file='datasets/faces_training.pkl', 
        load_preprocessed_data='datasets/faces_preprocessed.pkl', 
        load_mlp='params/mlp.xml',
        face_casc='params/haarcascade_frontalface_default.xml', 
        left_eye_casc='params/haarcascade_lefteye_2splits.xml', 
        right_eye_casc='params/haarcascade_righteye_2splits.xml'):
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Here, save_training_file indicates the name of a pickle file in which to store all 
training samples after data acquisition is complete:

        self.dataFile = save_training_file

The three cascades are passed to the FaceDetector class as explained in the  
previous section:

        self.faces = FaceDetector(face_casc, left_eye_casc,  
            right_eye_casc)

As their names suggest, the remaining two arguments (load_preprocessed_data 
and load_mlp) are concerned with a real-time classification of the detected faces by 
using the pre-trained MLP classifier:

        # load preprocessed dataset to access labels and PCA 
        # params
        if path.isfile(load_preprocessed_data):
            (_, y_train), (_, y_test), self.pca_V, self.pca_m = 
                homebrew.load_from_file(load_preprocessed_data)
            self.all_labels = np.unique(np.hstack((y_train, 
                y_test)))

            # load pre-trained multi-layer perceptron
            if path.isfile(load_mlp):
                self.MLP = MultiLayerPerceptron(  
                    np.array([self.pca_V.shape[1],  
                    len(self.all_labels)]),  
                    self.all_labels)
                self.MLP.load(load_mlp)

If any of the parts required for the testing mode are missing, we print a warning  
and disable the testing mode altogether:

            else:
                print "Warning: Testing is disabled"
                print "Could not find pre-trained MLP file ", 
                    load_mlp
                self.testing.Disable()
        else:
            print "Warning: Testing is disabled"
            print "Could not find preprocessed data file ",  
                loadPreprocessedData
        self.testing.Disable()
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The GUI layout
Creation of the layout is again deferred to a method called _create_custom_layout. 
We keep the layout as simple as possible: We create a panel for the acquired video 
frame, and draw a row of buttons below it.

The idea is to then click one of the six radio buttons to indicate which facial 
expression you are trying to record, then place your head within the bounding box, 
and click the Take Snapshot button.

Below the current camera frame, we place two radio buttons to select either the 
training or the testing mode, and tell the GUI that the two are mutually exclusive by 
specifying style=wx.RB_GROUP:

def _create_custom_layout(self):
    # create horizontal layout with train/test buttons
    pnl1 = wx.Panel(self, -1)
    self.training = wx.RadioButton(pnl1, -1, 'Train', (10, 10),  
        style=wx.RB_GROUP)
    self.testing = wx.RadioButton(pnl1, -1, 'Test')
    hbox1 = wx.BoxSizer(wx.HORIZONTAL)
    hbox1.Add(self.training, 1)
    hbox1.Add(self.testing, 1)
    pnl1.SetSizer(hbox1)

Also, we want the event of a button click to bind to the self._on_training  
and self._on_testing methods, respectively:

self.Bind(wx.EVT_RADIOBUTTON, self._on_training,  
    self.training)
self.Bind(wx.EVT_RADIOBUTTON, self._on_testing, self.testing)

The second row should contain similar arrangements for the six facial  
expression buttons:

# create a horizontal layout with all buttons
pnl2 = wx.Panel(self, -1 )
self.neutral = wx.RadioButton(pnl2, -1, 'neutral',  
    (10, 10), style=wx.RB_GROUP)
self.happy = wx.RadioButton(pnl2, -1, 'happy')
self.sad = wx.RadioButton(pnl2, -1, 'sad')
self.surprised = wx.RadioButton(pnl2, -1, 'surprised')
self.angry = wx.RadioButton(pnl2, -1, 'angry')
self.disgusted = wx.RadioButton(pnl2, -1, 'disgusted')
hbox2 = wx.BoxSizer(wx.HORIZONTAL)
hbox2.Add(self.neutral, 1)
hbox2.Add(self.happy, 1)
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hbox2.Add(self.sad, 1)
hbox2.Add(self.surprised, 1)
hbox2.Add(self.angry, 1)
hbox2.Add(self.disgusted, 1)
pnl2.SetSizer(hbox2)

The Take Snapshot button is placed below the radio buttons and will bind to the 
_on_snapshot method:

pnl3 = wx.Panel(self, -1)
self.snapshot = wx.Button(pnl3, -1, 'Take Snapshot')
self.Bind(wx.EVT_BUTTON, self.OnSnapshot, self.snapshot)
hbox3 = wx.BoxSizer(wx.HORIZONTAL)
hbox3.Add(self.snapshot, 1)
pnl3.SetSizer(hbox3)

This will look like the following:

To make these changes take effect, the created panels need to be added to the list of 
existing panels:

# display the button layout beneath the video stream
self.panels_vertical.Add (pnl1, flag=wx.EXPAND | wx.TOP, border=1)
self.panels_vertical.Add(pnl2, flag=wx.EXPAND | wx.BOTTOM,  
    border=1)
self.panels_vertical.Add(pnl3, flag=wx.EXPAND | wx.BOTTOM,  
    border=1)

The rest of the visualization pipeline is handled by the BaseLayout class. Now, 
whenever the user clicks the self.testing button, we no longer want to record 
training samples, but instead switch to the testing mode. In the testing mode, none of 
the training-related buttons should be enabled, as shown in the following image:
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This can be achieved with the following method that disables all the relevant 
buttons:

def _on_testing(self, evt):
    """Whenever testing mode is selected, disable all  
        training-related buttons"""
    self.neutral.Disable()
    self.happy.Disable()
    self.sad.Disable()
    self.surprised.Disable()
    self.angry.Disable()
    self.disgusted.Disable()
    self.snapshot.Disable()

Analogously, when we switch back to the training mode, the buttons should be 
enabled again:

def _on_training(self, evt):
    """Whenever training mode is selected, enable all 
        training-related buttons"""
    self.neutral.Enable()
    self.happy.Enable()
    self.sad.Enable()
    self.surprised.Enable()
    self.angry.Enable()
    self.disgusted.Enable()
    self.snapshot.Enable()

Processing the current frame
The rest of the visualization pipeline is handled by the BaseLayout class. We only 
need to make sure to provide the _process_frame method. This method begins by 
detecting faces in a downscaled grayscale version of the current frame, as explained 
in the previous section:

def _process_frame(self, frame):
    success, frame, self.head = self.faces.detect(frame)

If a face is found, success is True, and the method has access to an annotated 
version of the current frame (frame) and the extracted head region (self.head). 
Note that we store the extracted head region for further reference, so that we can 
access it in _on_snapshot.

We will return to this method when we talk about the testing mode, but for now,  
this is all we need to know. Don't forget to pass the processed frame:

    return frame
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Adding a training sample to the training set
When the Take Snapshot button is clicked upon, the _on_snapshot method is 
called. This method detects the emotional expression that we are trying to record by 
checking the value of all radio buttons, and assigns a class label accordingly:

def _on_snapshot(self, evt):
    if self.neutral.GetValue():
        label = 'neutral'
    elif self.happy.GetValue():
        label = 'happy'
    elif self.sad.GetValue():
        label = 'sad'
    elif self.surprised.GetValue():
        label = 'surprised'
    elif self.angry.GetValue():
        label = 'angry'
    elif self.disgusted.GetValue():
        label = 'disgusted'

We next need to look at the detected facial region of the current frame (stored in 
self.head by _process_frame), and align it with all the other collected frames.  
That is, we want all the faces to be upright and the eyes to be aligned. Otherwise,  
if we do not align the data samples, we run the risk of having the classifier compare 
eyes to noses. Because this computation can be costly, we do not apply it on every 
frame, but instead only upon taking a snapshot. The alignment takes place in the 
following method:

    if self.head is None:
        print "No face detected"
    else:
        success, head = self.faces.align_head(self.head)

If this method returns True for success, indicating that the sample was successfully 
aligned with all other samples, we add the sample to our dataset:

if success:
    print "Added sample to training set"
    self.samples.append(head.flatten())
    self.labels.append(label)
else:
    print "Could not align head (eye detection failed?)"

All that is left to do now is to make sure that we save the training set upon exiting.
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Dumping the complete training set to a file
Upon exiting the app (for example, by clicking the Close button of the window),  
an event EVT_CLOSE is triggered, which binds to the _on_exit method. This method 
simply dumps the collected samples and the corresponding class labels to file:

def _on_exit(self, evt):
    """Called whenever window is closed"""
    # if we have collected some samples, dump them to file
    if len(self.samples) > 0:

However, we want to make sure that we do not accidentally overwrite previously 
stored training sets. If the provided filename already exists, we append a suffix and 
save the data to the new filename instead:

    # make sure we don't overwrite an existing file
    if path.isfile(self.data_file):
        filename, fileext = path.splitext(self.data_file)
        offset = 0
        while True: # a do while loop
            file = filename + "-" + str(offset) + fileext
            if path.isfile(file):
                offset += 1
            else:
                break
        self.data_file = file

Once we have created an unused filename, we dump the data to file by making use 
of the pickle module:

    f = open(self.dataFile, 'wb')
    pickle.dump(self.samples, f)
    pickle.dump(self.labels, f)
    f.close()

Upon exiting, we inform the user that a file was created and make sure that all data 
structures are correctly deallocated:

    print "Saved", len(self.samples), "samples to", self.data_file
    self.Destroy()
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Here are some examples from the assembled training set I:

Feature extraction
We have previously made the point that, finding the features that best describe the 
data is often an essential part of the entire learning task. We have also looked at 
common preprocessing methods such as mean subtraction and normalization.  
Here, we will look at an additional method that has a long tradition in face 
recognition: principal component analysis (PCA).

Preprocessing the dataset
Analogous to Chapter 6, Learning to Recognize Traffic Signs, we write a new dataset 
parser in dataset/homebrew.py that will parse our self-assembled training set.  
We define a load_data function that will parse the dataset, perform feature 
extraction, split the data into training and testing sets, and return the results:

import cv2
import numpy as np

import csv
from matplotlib import cm
from matplotlib import pyplot as plt

from os import path
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import cPickle as pickle

def load_data(load_from_file, test_split=0.2, num_components=50, 
    save_to_file=None, plot_samples=False, seed=113):
    """load dataset from pickle """

Here, load_from_file specifies the path to the data file that we created in the 
previous section. We can also specify another file called save_to_file, which will 
contain the dataset after feature extraction. This will be helpful later on when we 
perform real-time classification.

The first step is thus to try and open load_from_file. If the file exists, we use the 
pickle module to load the samples and labels data structures; else, we throw an 
error:

# prepare lists for samples and labels
X = []
labels = []
if not path.isfile(load_from_file):
    print "Could not find file", load_from_file
    return (X, labels), (X, labels), None, None
else:
    print "Loading data from", load_from_file
    f = open(load_from_file, 'rb')
    samples = pickle.load(f)
    labels = pickle.load(f)
    print "Loaded", len(samples), "training samples"

If the file was successfully loaded, we perform PCA on all samples. The num_
components variable specifies the number of principal components that we want to 
consider. The function also returns a list of basis vectors (V) and a mean value (m) for 
every sample in the set:

# perform feature extraction
# returns preprocessed samples, PCA basis vectors & mean
X, V, m = extract_features(samples,  
    num_components=num_components)

As pointed out earlier, it is imperative to keep the samples that we use to train our 
classifier separate from the samples that we use to test it. For this, we shuffle the data 
and split it into two separate sets, such that the training set contains a fraction (1 - 
test_split) of all samples, and the rest of the samples belong to the test set:

# shuffle dataset
np.random.seed(seed)
np.random.shuffle(X)
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np.random.seed(seed)
np.random.shuffle(labels)

# split data according to test_split
X_train = X[:int(len(X)*(1-test_split))]
y_train = labels[:int(len(X)*(1-test_split))]

X_test = X[int(len(X)*(1-test_split)):]
y_test = labels[int(len(X)*(1-test_split)):]

If specified, we want to save the preprocessed data to file:

if save_to_file is not None:
    # dump all relevant data structures to file
    f = open(save_to_file, 'wb')
    pickle.dump(X_train, f)
    pickle.dump(y_train, f)
    pickle.dump(X_test, f)
    pickle.dump(y_test, f)
    pickle.dump(V, f)
    pickle.dump(m, f)
    f.close()
    print "Save preprocessed data to", save_to_file

Finally, we can return the extracted data:

return (X_train, y_train), (X_test, y_test), V, m

Principal component analysis
PCA is a dimensionality reduction technique that is helpful whenever we are 
dealing with high-dimensional data. In a sense, you can think of an image as a point 
in a high-dimensional space. If we flatten a 2D image of height m and width n (by 
concatenating either all rows or all columns), we get a (feature) vector of length m 
× n. The value of the i-th element in this vector is the grayscale value of the i-th 
pixel in the image. To describe every possible 2D grayscale image with these exact 
dimensions, we will need an m × n dimensional vector space that contains 256 
raised to the power of m × n vectors. Wow! An interesting question that comes to 
mind when considering these numbers is as follows: could there be a smaller, more 
compact vector space (using less than m × n features) that describes all these images 
equally well? After all, we have previously realized that grayscale values are not the 
most informative measures of content.
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This is where PCA comes in. Consider a dataset from which we extracted exactly 
two features. These features could be the grayscale values of pixels at some x and y 
positions, but they could also be more complex than that. If we plot the dataset along 
these two feature axes, the data might lie within some multivariate Gaussian, as 
shown in the following image:

What PCA does is rotate all data points until the data lie aligned with the two axes 
(the two inset vectors) that explain most of the spread of the data. PCA considers 
these two axes to be the most informative, because if you walk along them, you 
can see most of the data points separated. In more technical terms, PCA aims to 
transform the data to a new coordinate system by means of an orthogonal linear 
transformation. The new coordinate system is chosen such that if you project the 
data onto these new axes, the first coordinate (called the first principal component) 
observes the greatest variance. In the preceding image, the small vectors drawn 
correspond to the eigenvectors of the covariance matrix, shifted so that their tails 
come to lie at the mean of the distribution.

Fortunately, someone else has already figured out how to do all this in Python. In 
OpenCV, performing PCA is as simple as calling cv2.PCACompute. Embedded in our 
feature extraction method, the option reads as follows:

def extract_feature(X, V=None, m=None, num_components=50):
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Here, the function can be used to either perform PCA from scratch or use a 
previously calculated set of basis vectors (V) and mean (m), which is helpful during 
testing when we want to perform real-time classification. The number of principal 
components to consider is specified via num_components. If we do not specify any of 
the optional arguments, PCA is performed from scratch on all the data samples in X:

    if V is None or m is None:
        # need to perform PCA from scratch
        if num_components is None:
            num_components = 50
 
        # cols are pixels, rows are frames
        Xarr = np.squeeze(np.array(X).astype(np.float32))

        # perform PCA, returns mean and basis vectors
        m, V = cv2.PCACompute(Xarr)

The beauty of PCA is that the first principal component by definition explains 
most of the variance of the data. In other words, the first principal component is 
the most informative of the data. This means that we do not need to keep all of the 
components to get a good representation of the data! We can limit ourselves to the 
num_components most informative ones:

    # use only the first num_components principal components
    V = V[:num_components]

Finally, a compressed representation of the data is achieved by projecting the zero-
centered original data onto the new coordinate system:

    for i in xrange(len(X)):
        X[i] = np.dot(V, X[i] - m[0, i])

    return X, V, m

Multi-layer perceptrons
Multi-layer perceptrons (MLPs) have been around for a while. MLPs are artificial 
neural networks (ANNs) used to convert a set of input data into a set of output data. 
At the heart of an MLP is a perceptron, which resembles (yet overly simplifies) a 
biological neuron. By combining a large number of perceptrons in multiple layers, 
the MLP is able to make non-linear decisions about its input data. Furthermore, 
MLPs can be trained with backpropagation, which makes them very interesting for 
supervised learning.
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The perceptron
A perceptron is a binary classifier that was invented in the 1950s by Frank 
Rosenblatt. A perceptron calculates a weighted sum of its inputs, and if this sum 
exceeds a threshold, it outputs a 1; else, it outputs a 0. In some sense, a perceptron is 
integrating evidence that its afferents signal the presence (or absence) of some object 
instance, and if this evidence is strong enough, the perceptron will be active (or 
silent). This is loosely connected to what researchers believe biological neurons are 
doing (or can be used to do) in the brain, hence, the term artificial neural network.

A sketch of a perceptron is depicted in the following figure:

Here, a perceptron computes a weighted (w_i) sum of all its inputs (x_i), combined 
with a bias term (b). This input is fed into a nonlinear activation function (θ) that 
determines the output of the perceptron (y). In the original algorithm, the activation 
function was the Heaviside step function. In modern implementations of ANNs, 
the activation function can be anything ranging from sigmoid to hyperbolic tangent 
functions. The Heaviside function and the sigmoid function are plotted in the 
following image:
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Depending on the activation function, these networks might be able to perform 
either classification or regression. Traditionally, one only talks of MLPs when nodes 
use the Heaviside step function.

Deep architectures
Once you have the perceptron figured out, it would make sense to combine multiple 
perceptrons to form a larger network. Multi-layer perceptrons usually consist of at 
least three layers, where the first layer has a node (or neuron) for every input feature 
of the dataset, and the last layer has a node for every class label. The layer in between 
is called the hidden layer. An example of this feed-forward neural network is 
shown in the following figure:
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In a feed-forward neural network, some or all of the nodes in the input layer are 
connected to all the nodes in the hidden layer, and some or all of the nodes in the 
hidden layer are connected to some or all of the nodes in the output layer. You would 
usually choose the number of nodes in the input layer to be equal to the number of 
features in the dataset, so that each node represents one feature. Analogously, the 
number of nodes in the output layer is usually equal to the number of classes in the 
data, so that when an input sample of class c is presented, the c-th node in the output 
layer is active and all others are silent.

It is also possible to have multiple hidden layers of course. Often, it is not clear 
beforehand what the optimal size of the network should be.

Typically, you will see the error rate on the training set decrease when you add more 
neurons to the network, as is depicted in the following figure (thinner, red curve):

This is because the expressive power or complexity (also referred to as the  
Vapnik–Chervonenkis or VC dimension) of the model increases with the increasing 
size of the neural network. However, the same cannot be said for the error rate on 
the test set (thicker, blue curve)! Instead, what you will find is that with increasing 
model complexity, the test error goes through a minimum, and adding more 
neurons to the network will not improve the generalization performance any more. 
Therefore, you would want to steer the size of the neural network to what is labeled 
the optimal range in the preceding figure, which is where the network achieves the 
best generalization performance.
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You can think of it this way. A model of weak complexity (on the far left of the plot) 
is probably too small to really understand the dataset that it is trying to learn, thus 
yielding large error rates on both the training and the test sets. This is commonly 
referred to as underfitting. On the other hand, a model on the far right of the plot is 
probably so complex that it begins to memorize the specifics of each sample in the 
training data, without paying attention to the general attributes that make a sample 
stand apart from the others. Therefore, the model will fail when it has to predict data 
that it is has never seen before, effectively yielding a large error rate on the test set. 
This is commonly referred to as overfitting.

Instead, what you want is to develop a model that neither underfits nor overfits. 
Often this can only be achieved by trial-and-error; that is, by considering the network 
size as a hyperparameter that needs to be tweaked and tuned depending on the exact 
task to be performed.

An MLP learns by adjusting its weights so that when an input sample of class c is 
presented, the c-th node in the output layer is active and all the others are silent. 
MLPs are trained by means of backpropagation, which is an algorithm to calculate 
the partial derivative of a loss function with respect to any synaptic weight or 
neuron bias in the network. These partial derivatives can then be used to update the 
weights and biases in the network in order to reduce the overall loss step-by-step.

A loss function can be obtained by presenting training samples to the network and 
by observing the network's output. By observing which output nodes are active 
and which are silent, we can calculate the relative error between what the output 
layer is doing and what it should be doing (that is, the loss function). We then make 
corrections to all the weights in the network so that the error decreases over time. 
It turns out that the error in the hidden layer depends on the output layer, and the 
error in the input layer depends on the error in both the hidden layer and the output 
layer. Thus, in a sense, the error (back)propagates through the network. In OpenCV, 
backpropagation is used by specifying cv3.ANN_MLP_TRAIN_PARAMS_BACKPROP in 
the training parameters.

Gradient descent comes in two common flavors: In stochastic gradient 
descent, we update the weights after each presentation of a training 
example, whereas in batch learning, we present training examples in 
batches and update the weights only after each batch is presented. In 
both scenarios, we have to make sure that we adjust the weights only 
slightly per sample (by adjusting the learning rate) so that the network 
slowly converges to a stable solution over time.
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An MLP for facial expression recognition
Analogous to Chapter 6, Learning to Recognize Traffic Signs, we will develop a multi-
layer perceptron class that is modeled after the classifier base class. The base 
classifier contains a method for training, where a model is fitted to the training data, 
and for testing, where the trained model is evaluated by applying it to the test data:

from abc import ABCMeta, abstractmethod

class Classifier:
    """Abstract base class for all classifiers"""
    __metaclass__ = ABCMeta

    @abstractmethod
    def fit(self, X_train, y_train):
        pass

    @abstractmethod
    def evaluate(self, X_test, y_test, visualize=False):
        pass

Here, X_train and X_test correspond to the training and the test data, respectively, 
where each row represents a sample and each column is a feature value of this 
sample. The training and test labels are passed as the y_train and y_test vectors, 
respectively.

We thus define a new class, MultiLayerPerceptron, which derives from the 
classifier base class:

class MultiLayerPerceptron(Classifier):

The constructor of this class accepts an array called layer_sizes that specifies the 
number of neurons in each layer of the network and an array called class_labels 
that spells out all available class labels. The first layer will contain a neuron for each 
feature in the input, whereas the last layer will contain a neuron per output class:

    def __init__(self, layer_sizes, class_labels, params=None):
        self.num_features = layer_sizes[0]
        self.num_classes = layer_sizes[-1]
        self.class_labels = class_labels
        self.params = params or dict()

The constructor initializes the multi-layer perceptron by means of an OpenCV 
module called cv2.ANN_MLP:

        self.model = cv2.ANN_MLP()
        self.model.create(layer_sizes)
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For the sake of convenience to the user, the MLP class allows operations on string 
labels as enumerated via class_labels (for example, neutral, happy, and sad). Under 
the hood, the class will convert back and forth from strings to integers and from 
integers to strings, so that cv2.ANN_MLP will only be exposed to integers. These 
transformations are handled by the following two private methods:

def _labels_str_to_num(self, labels):
    """ convert string labels to their corresponding ints """
    return np.array([int(np.where(self.class_labels == l)[0])  
        for l in labels])

def _labels_num_to_str(self, labels):
    """Convert integer labels to their corresponding string  
        names """
    return self.class_labels[labels]

Load and save methods provide simple wrappers for the underlying cv2.ANN_MLP 
class:

def load(self, file):
    """ load a pre-trained MLP from file """
    self.model.load(file)

def save(self, file):
    """ save a trained MLP to file """
    self.model.save(file)

Training the MLP
Following the requirements defined by the Classifier base class, we need to 
perform training in a fit method:

def fit(self, X_train, y_train, params=None):
    """ fit model to data """
    if params is None:
        params = self.params

Here, params is an optional dictionary that contains a number of options relevant 
to training, such as the termination criteria (term_crit) and the learning algorithm 
(train_method) to be used during training. For example, to use backpropagation 
and terminate training either after 300 iterations or when the loss reaches values 
smaller than 0.01, specify params as follows:

params = dict(
    term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),  
    train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP)
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Because the train method of the cv2.ANN_MLP module does not allow  
integer-valued class labels, we need to first convert y_train into "one-hot" code, 
consisting only of zeros and ones, which can then be fed to the train method:

y_train = self._labels_str_to_num(y_train)
y_train = self._one_hot(y_train).reshape(-1,  
    self.num_classes)
    self.model.train(X_train, y_train, None, params=params)

The one-hot code is taken care of in _one_hot:

def _one_hot(self, y_train):
    """Convert a list of labels into one-hot code """

Each class label c in y_train needs to be converted into a self.num_classes-long 
vector of zeros and ones, where all entries are zeros except the c-th, which is a one. 
We prepare this operation by allocating a vector of zeros:

    num_samples = len(y_train)
    new_responses = np.zeros(num_samples * self.num_classes,  
        np.float32)

Then, we identify the indices of the vector that correspond to all the c-th class labels:

    resp_idx = np.int32(y_train + 
        np.arange(num_samples)  self.num_classes)

The vector elements at these indices then need to be set to one:

    new_responses[resp_idx] = 1
    return new_responses

Testing the MLP
Following the requirements defined by the Classifier base class, we need to 
perform training in an evaluate method:

def evaluate(self, X_test, y_test, visualize=False):
    """ evaluate model performance """

Analogous to the previous chapter, we will evaluate the performance of our classifier 
in terms of accuracy, precision, and recall. To reuse our previous code, we again 
need to come up with a 2D voting matrix, where each row stands for a data sample 
in the testing set and the c-th column contains the number of votes for the c-th class.
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In the world of perceptrons, the voting matrix actually has a straightforward 
interpretation: The higher the activity of the c-th neuron in the output layer, the 
stronger the vote for the c-th class. So, all we need to do is to read out the activity of 
the output layer and plug it into our accuracy method:

    ret, Y_vote = self.model.predict(X_test)
    y_test = self._labels_str_to_num(y_test)
    accuracy = self._accuracy(y_test, Y_vote)
    precision = self._precision(y_test, Y_vote)
    recall = self._recall(y_test, Y_vote)

    return (accuracy, precision, recall)

In addition, we expose the predict method to the user, so that it is possible to 
predict the label of even a single data sample. This will be helpful when we perform 
real-time classification, where we do not want to iterate over all test samples, but 
instead only consider the current frame. This method simply predicts the label of an 
arbitrary number of samples and returns the class label as a human-readable string:

def predict(self, X_test):
    """ predict the labels of test data """
    ret, Y_vote = self.model.predict(X_test)

    # find the most active cell in the output layer
    y_hat = np.argmax(Y_vote, 1)

    # return string labels
    return self._labels_num_to_str(y_hat)

Running the script
The MLP classifier can be trained and tested by using the train_test_mlp.py 
script. The script first parses the homebrew dataset and extracts all class labels:

import cv2
import numpy as np

from datasets import homebrew
from classifiers import MultiLayerPerceptron

def main():
    # load training data
    # training data can be recorded using chapter7.py in training 
    # mode
    (X_train, y_train),(X_test, y_test) =
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        homebrew.load_data("datasets/faces_training.pkl",  
        num_components=50, test_split=0.2,  
        save_to_file="datasets/faces_preprocessed.pkl",  
        seed=42)
    if len(X_train) == 0 or len(X_test) == 0:
        print "Empty data"
    raise SystemExit

    # convert to numpy
    X_train = np.squeeze(np.array(X_train)).astype(np.float32)
    y_train = np.array(y_train)
    X_test = np.squeeze(np.array(X_test)).astype(np.float32)
    y_test = np.array(y_test)

    # find all class labels
    labels = np.unique(np.hstack((y_train, y_test)))

We also make sure to provide some valid termination criteria as described above:

    params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300,  
        0.01), train_method=cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,  
        bp_dw_scale=0.001, bp_moment_scale=0.9 )

Often, the optimal size of the neural network is not known a priori, but instead,  
a hyperparameter needs to be tuned. In the end, we want the network that gives 
us the best generalization performance (that is, the network with the best accuracy 
measure on the test set). Since we do not know the answer, we will run a number of 
different-sized MLPs in a loop and store the best in a file called saveFile:

    save_file = 'params/mlp.xml'
    num_features = len(X_train[0])
    num_classes = len(labels)

    # find best MLP configuration
    print "1-hidden layer networks"
    best_acc = 0.0 # keep track of best accuracy
    for l1 in xrange(10):
        # gradually increase the hidden-layer size
        layer_sizes = np.int32([num_features, 
            (l1 + 1) * num_features / 5, 
            num_classes])
    MLP = MultiLayerPerceptron(layer_sizes, labels)
    print layer_sizes
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The MLP is trained on X_train and tested on X_test:

    MLP.fit(X_train, y_train, params=params)
    (acc, _, _) = MLP.evaluate(X_train, y_train)
    print " - train acc = ", acc
    (acc, _, _) = MLP.evaluate(X_test, y_test)
    print " - test acc = ", acc

Finally, the best MLP is saved to file:

    if acc > best_acc:
        # save best MLP configuration to file
        MLP.save(saveFile)
    best_acc = acc

The saved params/mlp.xml file that contains the network configuration and learned 
weights can then be loaded into the main GUI application (chapter7.py) by passing 
loadMLP='params/mlp.xml' to the init_algorithm method of the FaceLayout 
class. The default arguments throughout this chapter will make sure that everything 
works straight out of the box.

Putting it all together
In order to run our app, we will need to execute the main function routine  
(in chapter7.py) that loads the pre-trained cascade classifier and the pre-trained 
multi-layer perceptron, and applies them to each frame of the webcam live stream.

However, this time, instead of collecting more training samples, we will select the 
radio button that says Test. This will trigger an EVT_RADIOBUTTON event, which 
binds to FaceLayout._on_testing, disabling all training-related buttons in the 
GUI and switching the app to the testing mode. In this mode, the pre-trained MLP 
classifier is applied to every frame of the live stream, trying to predict the current 
facial expression.

As promised earlier, we now return to FaceLayout._process_frame:

def _process_frame(self, frame):
    """ detects face, predicts face label in testing mode """

Unchanged from what we discussed earlier, the method begins by detecting faces in 
a downscaled grayscale version of the current frame:

    success, frame, self.head = self.faces.detect(frame)



Learning to Recognize Emotions on Faces

[ 536 ]

However, in the testing mode, there is more to the function:

    # in testing mode: predict label of facial expression
    if success and self.testing.GetValue():

In order to apply our pre-trained MLP classifier to the current frame, we need to 
apply the same preprocessing to the current frame as we did with the entire training 
set. After aligning the head region, we apply PCA by using the pre-loaded basis 
vectors (self.pca_V) and mean values (self.pca_m):

    # if face found: preprocess (align)
    success, head = self.faces.align_head(self.head)
    if success:
        # extract features using PCA (loaded from file)
        X, _, _ = homebrew.extract_features( 
            [head.flatten()], self.pca_V, self.pca_m)

Then, we are ready to predict the class label of the current frame:

    # predict label with pre-trained MLP
    label = self.MLP.predict(np.array(X))[0]

Since the predict method already returns a string label, all that is left to do is to 
display it above the bounding box in the current frame:

    # draw label above bounding box
    cv2.putText(frame, str(label), (x,y-20),  
        cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
    break # need only look at first, largest face

Finally, we are done!

    return frame
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The end result looks like the following:

Although the classifier has only been trained on (roughly) 100 training samples, it 
reliably detects my various facial expressions in every frame of the live stream, no 
matter how distorted my face seemed to be at the moment. This is a good indication 
that the neural network that was learned neither underfits nor overfits the data, since 
it is capable of predicting the correct class labels even for new data samples.

Summary
The final chapter of this book has really rounded up our experience and made  
us combine a variety of our skills to arrive at an end-to-end app that consists of  
both object detection and object recognition. We became familiar with a range  
of pre-trained cascade classifiers that OpenCV has to offer, collected our very  
own training dataset, learned about multi-layer perceptrons, and trained them  
to recognize emotional expressions in faces. Well, at least my face.

The classifier was undoubtedly able to benefit from the fact that I was the only 
subject in the dataset, but with all the knowledge and experience that you have 
gathered with this book, it is now time to overcome these limitations! You can 
start small and train the classifier on images of you indoors and outdoors, at night 
and day, during summer and winter. Or, maybe, you are anxious to tackle a real-
world dataset and be part of Kaggle's Facial Expression Recognition challenge 
(see https://www.kaggle.com/c/challenges-in-representation-learning-
facial-expression-recognition-challenge).

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge
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If you are into machine learning, you might already know that there is a variety of 
accessible libraries out there, such as pylearn (https://github.com/lisa-lab/
pylearn2), scikit-learn (http://scikit-learn.org), and pycaffe (http://caffe.
berkeleyvision.org). Deep learning enthusiasts might want to look into Theano 
(http://deeplearning.net/software/theano) or Torch (http://torch.ch). 
Finally, if you find yourself stuck with all these algorithms and no datasets to apply 
them to, make sure to stop by the UC Irvine Machine Learning Repository (http://
archive.ics.uci.edu/ml).

Congratulations! You are now an OpenCV expert.

https://github.com/lisa-lab/pylearn2
https://github.com/lisa-lab/pylearn2
http://scikit-learn.org
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
http://deeplearning.net/software/theano
http://torch.ch
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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