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ABSTRACT

scikit-image is an image processing library that implements algorithms and utilities
for use in research, education and industry applications. It is released under the
liberal “Modified BSD” open source license, provides a well-documented API in the
Python programming language, and is developed by an active, international team of
collaborators. In this paper we highlight the advantages of open source to achieve the
goals of the scikit-image library, and we showcase several real-world image processing
applications that use scikit-image.
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INTRODUCTION
In our data-rich world, images represent a significant subset of all measurements made.
Examples include DNA microarrays, microscopy slides, astronomical observations,
satellite maps, robotic vision capture, synthetic aperture radar images, and higher-
dimensional images such as 3-D magnetic resonance or computed tomography imaging.
Exploring these rich data sources requires sophisticated software tools that should be
easy to use, free of charge and restrictions, and able to address all the challenges posed
by such a diverse field of analysis.

This paper describes scikit-image, a collection of image processing algorithms
implemented in the Python programming language by an active community of volunteers
and available under the liberal BSD Open Source license. The rising popularity of Python
as a scientific programming language, together with the increasing availability of a large
eco-system of complementary tools, make it an ideal environment in which to produce
an image processing toolkit.

The project aims are:

*Distributed under Creative Commons CC-BY 4.0, DOI 10.7717/peerj.453
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1. To provide high quality, well-documented and easy-to-use implementations of
common image processing algorithms.

Such algorithms are essential building blocks in many areas of scientific research,
algorithmic comparisons and data exploration. In the context of reproducible
science, it is important to be able to inspect any source code used for algorith-
mic flaws or mistakes. Additionally, scientific research often requires custom
modification of standard algorithms, further emphasizing the importance of open
source.

2. To facilitate education in image processing.

The library allows students in image processing to learn algorithms in a hands-on
fashion by adjusting parameters and modifying code. In addition, a novice
module is provided, not only for teaching programming in the “turtle graphics”
paradigm, but also to familiarize users with image concepts such as color and
dimensionality. Furthermore, the project takes part in the yearly Google Summer
of Code program 1, where students learn about image processing and software
engineering through contributing to the project.

3. To address industry challenges.

High quality reference implementations of trusted algorithms provide industry
with a reliable way of attacking problems, without having to expend significant
energy in re-implementing algorithms already available in commercial packages.
Companies may use the library entirely free of charge, and have the option of
contributing changes back, should they so wish.

GETTING STARTED
One of the main goals of scikit-image is to make it easy for any user to get started
quickly–especially users already familiar with Python’s scientific tools. To that end, the
basic image is just a standard NumPy array, which exposes pixel data directly to the
user. A new user can simply the load an image from disk (or use one of scikit-image’s
sample images), process that image with one or more image filters, and quickly display
the results:

from skimage import data, io, filter

image = data.coins() # or any NumPy a r r a y !
edges = filter.sobel(image)
io.imshow(edges)

The above demonstration loads data.coins, an example image shipped with
scikit-image. For a more complete example, we import NumPy for array manipulation
and matplotlib for plotting (van der Walt et al., 2011; Hunter, 2007). At each step, we
add the picture or the plot to a matplotlib figure shown in Figure 1.

1https://developers.google.com/open-source/soc, Accessed: 2014-03-30
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Figure 1. Illustration of several functions available in scikit-image: adaptive threshold,
local maxima, edge detection and labels. The use of NumPy arrays as our data container
also enables the use of NumPy’s built-in histogram function.

import numpy as np
import matplotlib.pyplot as plt

# Load a s m a l l s e c t i o n o f t h e image .
image = data.coins()[0:95, 70:370]

fig, axes = plt.subplots(ncols=2, nrows=3,
figsize=(8, 4))
ax0, ax1, ax2, ax3, ax4, ax5 = axes.flat
ax0.imshow(image, cmap=plt.cm.gray)
ax0.set_title(’Original’, fontsize=24)
ax0.axis(’off’)

Since the image is represented by a NumPy array, we can easily perform operations
such as building an histogram of the intensity values.

# His togram .
values, bins = np.histogram(image,
bins=np.arange(256))

ax1.plot(bins[:−1], values, lw=2, c=’k’)
ax1.set_xlim(xmax=256)
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ax1.set_yticks([0, 400])
ax1.set_aspect(.2)
ax1.set_title(’Histogram’, fontsize=24)

To divide the foreground and background, we threshold the image to produce a binary
image. Several threshold algorithms are available. Here, we employ
filter.threshold_adaptive where the threshold value is the weighted mean
for the local neighborhood of a pixel.

# Apply t h r e s h o l d .
from skimage.filter import threshold_adaptive

bw = threshold_adaptive(image, 95, offset=−15)

ax2.imshow(bw, cmap=plt.cm.gray)
ax2.set_title(’Adaptive threshold’, fontsize=24)
ax2.axis(’off’)

We can easily detect interesting features, such as local maxima and edges. The
function feature.peak_local_max can be used to return the coordinates of local
maxima in an image.

# Find maxima .
from skimage.feature import peak_local_max

coordinates = peak_local_max(image, min_distance=20)

ax3.imshow(image, cmap=plt.cm.gray)
ax3.autoscale(False)
ax3.plot(coordinates[:, 1],
coordinates[:, 0], c=’r.’)
ax3.set_title(’Peak local maxima’, fontsize=24)
ax3.axis(’off’)

Next, a Canny filter (filter.canny) (Canny, 1986) detects the edge of each
coin.

# D e t e c t edges .
from skimage import filter

edges = filter.canny(image, sigma=3,
low_threshold=10,
high_threshold=80)

ax4.imshow(edges, cmap=plt.cm.gray)
ax4.set_title(’Edges’, fontsize=24)
ax4.axis(’off’)
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Then, we attribute to each coin a label (morphology.label) that can be used to
extract a sub-picture. Finally, physical information such as the position, area, eccentricity,
perimeter, and moments can be extracted using measure.regionprops.

# Labe l image r e g i o n s .
from skimage.measure import regionprops
import matplotlib.patches as mpatches
from skimage.morphology import label

label_image = label(edges)

ax5.imshow(image, cmap=plt.cm.gray)
ax5.set_title(’Labeled items’, fontsize=24)
ax5.axis(’off’)

for region in regionprops(label_image):
# Draw r e c t a n g l e around segmented c o i n s .
minr, minc, maxr, maxc = region.bbox
rect = mpatches.Rectangle((minc, minr),
maxc − minc,
maxr − minr,
fill=False,
edgecolor=’red’,
linewidth=2)
ax5.add_patch(rect)

plt.tight_layout()
plt.show()

scikit-image thus makes it possible to perform sophisticated image processing tasks
with only a few function calls.

LIBRARY OVERVIEW
The scikit-image project started in August of 2009 and has received contributions from
more than 100 individuals2. The package can be installed on all major platforms (e.g.
BSD, GNU/Linux, OS X, Windows) from, amongst other sources, the Python Package
Index (PyPI)3, Continuum Analytics Anaconda4, Enthought Canopy5, Python(x,y)6,
NeuroDebian (Halchenko and Hanke, 2012) and GNU/Linux distributions such as
Ubuntu7. In March 2014 alone, the package was downloaded more than 5000 times
from PyPI8.

2https://www.ohloh.net/p/scikit-image
3http://pypi.python.org
4https://store.continuum.io/cshop/anaconda
5https://www.enthought.com/products/canopy
6https://code.google.com/p/pythonxy
7http://packages.ubuntu.com
8http://pypi.python.org/pypi/scikit-image, Accessed 2014-03-30
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As of version 0.10, the package contains the following sub-modules:

∙ color: Color space conversion.

∙ data: Test images and example data.

∙ draw: Drawing primitives (lines, text, etc.) that operate on NumPy arrays.

∙ exposure: Image intensity adjustment, e.g., histogram equalization, etc.

∙ feature: Feature detection and extraction, e.g., texture analysis, corners, etc.

∙ filter: Sharpening, edge finding, rank filters, thresholding, etc.

∙ graph: Graph-theoretic operations, e.g., shortest paths.

∙ io: Wraps various libraries for reading, saving, and displaying images and video,
such as Pillow9 and FreeImage10.

∙ measure: Measurement of image properties, e.g., similarity and contours.

∙ morphology: Morphological operations, e.g., opening or skeletonization.

∙ novice: Simplified interface for teaching purposes.

∙ restoration: Restoration algorithms, e.g., deconvolution algorithms, denoising,
etc.

∙ segmentation: Partitioning an image into multiple regions.

∙ transform: Geometric and other transforms, e.g., rotation or the Radon transform.

∙ viewer: A simple graphical user interface for visualizing results and exploring
parameters.

For further details on each module, we refer readers to the API documentation
online11.

DATA FORMAT AND PIPELINING
scikit-image represents images as NumPy arrays (van der Walt et al., 2011), the de facto
standard for storage of multi-dimensional data in scientific Python. Each array has a
dimensionality, such as 2 for a 2-D grayscale image, 3 for a 2-D multi-channel image,
or 4 for a 3-D multi-channel image; a shape, such as (M,N,3) for an RGB color image
with M vertical and N horizontal pixels; and a numeric data type, such as float for
continuous-valued pixels and uint8 for 8-bit pixels. Our use of NumPy arrays as the
fundamental data structure maximizes compatibility with the rest of the scientific Python

9http://pillow.readthedocs.org/en/latest/, Accessed 2015-05-30
10http://freeimage.sourceforge.net/, Accessed 2015-05-15
11http://scikit-image.org/docs/dev/api/api.html
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ecosystem. Data can be passed as-is to other tools such as NumPy, SciPy, matplotlib,
scikit-learn (Pedregosa et al., 2011), Mahotas (Coelho, 2013), OpenCV, and more.

Images of differing data-types can complicate the construction of pipelines. scikit-
image follows an "Anything In, Anything Out" approach, whereby all functions are
expected to allow input of an arbitrary data-type but, for efficiency, also get to choose
their own output format. Data-type ranges are clearly defined. Floating point images are
expected to have values between 0 and 1 (unsigned images) or -1 and 1 (signed images),
while 8-bit images are expected to have values in {0, 1, 2, ..., 255}. We provide utility
functions, such as img_as_float, to easily convert between data-types.

DEVELOPMENT PRACTICES
The purpose of scikit-image is to provide a high-quality library of powerful, diverse im-
age processing tools free of charge and restrictions. These principles are the foundation
for the development practices in the scikit-image community.

The library is licensed under the Modified BSD license, which allows unrestricted
redistribution for any purpose as long as copyright notices and disclaimers of warranty
are maintained (Regents of the University of California, 1999). It is compatible with
GPL licenses, so users of scikit-image can choose to make their code available under
the GPL. However, unlike the GPL, it does not require users to open-source derivative
work (BSD is not a so-called copyleft license). Thus, scikit-image can also be used in
closed-source, commercial environments.

The development team of scikit-image is an open community that collaborates on
the GitHub platform for issue tracking, code review, and release management12. Google
Groups is used as a public discussion forum for user support, community development,
and announcements13.

scikit-image complies with the PEP8 coding style standard (van Rossum et al., 2001)
and the NumPy documentation format (Gommers, 2010) in order to provide a consistent,
familiar user experience across the library similar to other scientific Python packages. As
mentioned earlier, the data representation used is n-dimensional NumPy arrays, which
ensures broad interoperability within the scientific Python ecosystem. The majority of
the scikit-image API is intentionally designed as a functional interface which allows
one to simply apply one function to the output of another. This modular approach also
lowers the barrier of entry for new contributors, since one only needs to master a small
part of the entire library in order to make an addition.

We ensure high code quality by a thorough review process using the pull request
interface on GitHub14. This enables the core developers and other interested parties
to comment on specific lines of proposed code changes, and for the proponents of
the changes to update their submission accordingly. Once all the changes have been
approved, they can be merged automatically. This process applies not just to outside
contributions, but also to the core developers.

The source code is mainly written in Python, although certain performance critical

12https://github.com/scikit-image
13https://groups.google.com/group/scikit-image
14https://help.github.com/articles/using-pull-requests, Accessed 2014-05-

15.
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sections are implemented in Cython, an optimising static compiler for Python (Behnel
et al., 2011). scikit-image aims to achieve full unit test coverage, which is above 87% as
of release 0.10 and continues to rise. A continuous integration system15 automatically
checks each commit for unit test coverage and failures on both Python 2 and Python 3.
Additionally, the code is analyzed by flake8 (Cordasco, 2010) to ensure compliance with
the PEP8 coding style standards (van Rossum et al., 2001). Finally, the properties of
each public function are documented thoroughly in an API reference guide, embedded as
Python docstrings and accessible through the official project homepage or an interactive
Python console. Short usage examples are typically included inside the docstrings, and
new features are accompanied by longer, self-contained example scripts added to the
narrative documentation and compiled to a gallery on the project website. We use Sphinx
(Brandl, 2007) to automatically generate both library documentation and the website.

The development master branch is fully functional at all times and can be obtained
from GitHub. The community releases major updates as stable versions approximately
every six months. Major releases include new features, while minor releases typically
contain only bug fixes. Going forward, users will be notified about API-breaking changes
through deprecation warnings for two full major releases before the changes are applied.

USAGE EXAMPLES
Research
Often, a disproportionately large component of research involves dealing with various
image data-types, color representations, and file format conversion. scikit-image offers
robust tools for converting between image data-types (Microsoft, 1995; Munshi and
Leech, 2010; Paeth, 1990) and to do file input/output (I/O) operations. Our purpose is
to allow investigators to focus their time on research, instead of expending effort on
mundane low-level tasks.

The package includes a number of algorithms with broad applications across image
processing research, from computer vision to medical image analysis. We refer the
reader to the current API documentation for a full listing of current capabilities16. In
this section we illustrate two real-world usage examples of scikit-image in scientific
research.

First, we consider the analysis of a large stack of images, each representing drying
droplets containing nanoparticles (see Figure 2). As the drying proceeds, cracks propa-
gate from the edge of the drop to its center. The aim is to understand crack patterns by
collecting statistical information about their positions, as well as their time and order of
appearance. To improve the speed at which data is processed, each experiment, consti-
tuting an image stack, is automatically analysed without human intervention. The con-
tact line is detected by a circular Hough transform (transform.hough_circle)
providing the drop radius and its center. Then, a smaller concentric circle is drawn
(draw.circle_perimeter) and used as a mask to extract intensity values from
the image. Repeating the process on each image in the stack, collected pixels can be
assembled to make a space-time diagram. As a result, a complex stack of images is
reduced to a single image summarizing the underlying dynamic process.

15https://travis-ci.org, https://coveralls.io, Accessed 2014-03-30
16http://scikit-image.org/docs/dev, Accessed 2014-03-30
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Figure 2. scikit-image is used to track the propagation of cracks (black lines) in a
drying colloidal droplet. The sequence of pictures shows the temporal evolution of the
system with the drop contact line, in green, detected by the Hough transform and the
circle, in white, used to extract an annulus of pixel intensities. The result shown
illustrates the angular position of cracks and their time of appearance.

Next, in regenerative medicine research, scikit-image is used to monitor the regener-
ation of spinal cord cells in zebrafish embryos (Figure 3). This process has important
implications for the treatment of spinal cord injuries in humans (Bhatt et al., 2004;
Thuret et al., 2006).

To understand how spinal cords regenerate in these animals, injured cords are
subjected to different treatments. Neuronal precursor cells (labeled green in Figure 3,
left panel) are normally uniformly distributed across the spinal cord. At the wound site,
they have been removed. We wish to monitor the arrival of new cells at the wound site
over time. In Figure 3, we see an embryo two days after wounding, with precursor
cells beginning to move back into the wound site (the site of minimum fluorescence).
The measure.profile_line function measures the fluorescence along the cord,
directly proportional to the number of cells. We can thus monitor the recovery process
and determine which treatments prevent or accelerate recovery.
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Figure 3. The measure.profile_line function being used to track recovery in
spinal cord injuries. (a): an image of fluorescently-labeled nerve cells in an injured
zebrafish embryo. (b): the automatically determined region of interest. The SciPy
library was used to determine the region extent (Oliphant, 2007; Jones et al., 2001), and
functions from the scikit-image draw module were used to draw it. (c): the image
intensity along the line of interest, averaged over the displayed width.

Education
scikit-image’s simple, well-documented application programming interface (API) makes
it ideal for educational use, either via self-taught exploration or formal training sessions.

The online gallery of examples not only provides an overview of the functionality
available in the package but also introduces many of the algorithms commonly used
in image processing. This visual index also helps beginners overcome a common
entry barrier: locating the class (denoising, segmentation, etc.) and name of operation
desired, without being proficient with image processing jargon. For many functions, the
documentation includes links to research papers or Wikipedia pages to further guide the
user.

Demonstrating the broad utility of scikit-image in education, thirteen-year-old Rishab
Gargeya of the Harker School won the Synopsys Silicon Valley Science and Technology
Championship using scikit-image in his project, “A software based approach for auto-
mated pathology diagnosis of diabetic retinopathy in the human retina” (science-fair.org,
2014).

We have delivered image processing tutorials using scikit-image at various annual
scientific Python conferences, such as PyData 2012, SciPy India 2012, and EuroSciPy
2013. Course materials for some of these sessions are found in Haenel et al. (2014)
and are licensed under the permissive CC-BY license (Creative Commons, 2013).
These typically include an introduction to the package and provide intuitive, hands-
on introductions to image processing concepts. The well documented application
programming interface (API) along with tools that facilitate visualization contribute to
the learning experience, and make it easy to investigate the effect of different algorithms
and parameters. For example, when investigating denoising, it is easy to observe the
difference between applying a median filter (filter.rank.median) and a Gaussian
filter (filter.gaussian_filter), demonstrating that a median filter preserves
straight lines much better.

Finally, easy access to readable source code gives users an opportunity to learn how
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algorithms are implemented and gives further insight into some of the intricacies of a
fast Python implementation, such as indexing tricks and look-up tables.

Industry
Due to the breadth and maturity of its code base, as well as the its commercial-friendly
license, scikit-image is well suited for industrial applications.

BT Imaging (btimaging.com) designs and builds tools that use photolumines-
cence (PL) imaging for photovoltaic applications. PL imaging can characterize the
quality of multicrystalline silicon wafers by illuminating defects that are not visible
under standard viewing conditions. The left panel of Figure 4 shows an optical image
of a silicon wafer, and the center panel shows the same wafer using PL imaging. In
the right panel, the wafer defects and impurities have been detected through automated
image analysis. scikit-image plays a key role in the image processing pipeline. For
example, a Hough transform (transform.hough_line) finds the wafer edges in
order to segment the wafer from the background. scikit-image is also used for feature
extraction. Crystal defects (dislocations) are detected using a band-pass filter, which is
implemented as a Difference of Gaussians (filter.gaussian_filter).

The image processing results are input to machine learning algorithms, which assess
intrinsic wafer quality. Solar cell manufacturers can use this information to reject
poor quality wafers and thereby increase the fraction of solar cells that have high solar
conversion efficiency.

Figure 4. (a): An image of an as-cut silicon wafer before it has been processed into a
solar cell. (b): A PL image of the same wafer. Wafer defects, which have a negative
impact solar cell efficiency, are visible as dark regions. (c): Image processing results.
Defects in the crystal growth (dislocations) are colored blue, while red indicates the
presence of impurities.

scikit-image is also applied in a commercial setting for biometric security applica-
tions. AICBT Ltd uses multispectral imaging to detect when a person attempts to conceal
their identity using a facial mask17. scikit-image performs file I/O (io.imread), his-
togram equalization (exposure.equalize_hist), and aligns a visible wavelength
image with a thermal image (transform.AffineTransform). The system deter-

17http://www.aicbt.com/disguise-detection, Accessed 2014-03-30
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mines the surface temperature of a subject’s skin and detects situations where the face is
being obscured.

EXAMPLE: IMAGE REGISTRATION AND STITCHING
This section gives a step-by-step outline of how to perform panorama stitching using the
primitives found in scikit-image. The full source code is at https://github.com/
scikit-image/scikit-image-demos.

Data loading
The “ImageCollection” class provides an easy way of representing multiple images on
disk. For efficiency, images are not read until accessed.

from skimage import io
ic = io.ImageCollection(’data/*’)

Figure 5(a) shows the Petra dataset, which displays the same facade from two
different angles. For this demonstration, we will estimate a projective transformation that
relates the two images. Since the outer parts of these photographs do not comform well
to such a model, we select only the central parts. To further speed up the demonstration,
images are downscaled to 25% of their original size.

from skimage.color import rgb2gray
from skimage import transform

image0 = rgb2gray(ic[0][:, 500:500+1987, :])
image1 = rgb2gray(ic[1][:, 500:500+1987, :])

image0 = transform.rescale(image0, 0.25)
image1 = transform.rescale(image1, 0.25)

Feature detection and matching
“Oriented FAST and rotated BRIEF” (ORB) features (Rublee et al., 2011) are detected in
both images. Each feature yields a binary descriptor; those are used to find the putative
matches shown in Figure 5(b).

from skimage.feature import ORB, match_descriptors

orb = ORB(n_keypoints=1000, fast_threshold=0.05)

orb.detect_and_extract(image0)
keypoints1 = orb.keypoints
descriptors1 = orb.descriptors

orb.detect_and_extract(image1)
keypoints2 = orb.keypoints
descriptors2 = orb.descriptors
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matches12 = match_descriptors(descriptors1 ,
descriptors2 ,
cross_check=True)

Transform estimation
To filter the matches, we apply RANdom SAmple Consensus (RANSAC) (Fischler and
Bolles, 1981), a common method for outlier rejection. This iterative process estimates
transformation models based on randomly chosen subsets of matches, finally selecting
the model which corresponds best with the majority of matches. The new matches are
shown in Figure 5(c).

from skimage.measure import ransac

# S e l e c t k e y p o i n t s from t h e s o u r c e ( image t o be
# r e g i s t e r e d ) and t a r g e t ( r e f e r e n c e image ) .

src = keypoints2[matches12[:, 1]][:, ::−1]
dst = keypoints1[matches12[:, 0]][:, ::−1]

model_robust , inliers = \
ransac((src, dst), ProjectiveTransform ,
min_samples=4, residual_threshold=2)

Warping
Next, we produce the panorama itself. The first step is to find the shape of the output
image by considering the extents of all warped images.

r, c = image1.shape[:2]

# Note t h a t t r a n s f o r m a t i o n s t a k e c o o r d i n a t e s i n
# ( x , y ) format , n o t ( row , column ) , i n o r d e r t o be
# c o n s i s t e n t w i t h most l i t e r a t u r e .
corners = np.array([[0, 0],

[0, r],
[c, 0],

[c, r]])

# Warp t h e image c o r n e r s t o t h e i r new p o s i t i o n s .
warped_corners = model_robust(corners)

# Find t h e e x t e n t s o f bo th t h e r e f e r e n c e image and
# t h e warped t a r g e t image .
all_corners = np.vstack((warped_corners , corners))

corner_min = np.min(all_corners , axis=0)
corner_max = np.max(all_corners , axis=0)
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output_shape = (corner_max − corner_min)
output_shape = np.ceil(output_shape[::−1])

The images are now warped according to the estimated transformation model. Values
outside the input images are set to -1 to distinguish the “background”.

A shift is added to ensure that both images are visible in their entirety. Note that
warp takes the inverse mapping as input.

from skimage.color import gray2rgb
from skimage.exposure import rescale_intensity
from skimage.transform import warp
from skimage.transform import SimilarityTransform

offset = SimilarityTransform(translation=−corner_min)

image0_ = warp(image0, offset.inverse,
output_shape=output_shape , cval=−1)

image1_ = warp(image1, (model_robust + offset).inverse,
output_shape=output_shape , cval=−1)

An alpha channel is added to the warped images before merging them into a single
image:

def add_alpha(image, background=−1):
" " " Add an a lpha l a y e r t o t h e image .

The a lpha l a y e r i s s e t t o 1 f o r f o r e g r o u n d
and 0 f o r background .
" " "
rgb = gray2rgb(image)
alpha = (image != background)
return np.dstack((rgb, alpha))

image0_alpha = add_alpha(image0_)
image1_alpha = add_alpha(image1_)

merged = (image0_alpha + image1_alpha)
alpha = merged[..., 3]

# The summed a lpha l a y e r s g i v e us an i n d i c a t i o n o f
# how many images were combined t o make up each
# p i x e l . D i v i d e by t h e number o f images t o g e t
# an average .
merged /= np.maximum(alpha, 1)[..., np.newaxis]
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Figure 5. An example application of scikit-image: image registration and warping to
combine overlapping images. (a): Photographs taken in Petra, Jordan by François
Malan. License: CC-BY. (b): Putative matches computed from ORB binary features.
(c): Matches filtered using RANSAC. (d): The second input frame (middle) is warped to
align with the first input frame (left), yielding the averaged image shown on the right.
(e): The final panorama image, registered and warped using scikit-image, blended with
Enblend.

The merged image is shown in Figure 5(d). Note that, while the columns are well
aligned, the color intensities at the boundaries are not well matched.

Blending
To blend images smoothly we make use of the open source package Enblend (Dersch,
2010), which in turn employs multi-resolution splines and Laplacian pyramids (Burt
and Adelson, 1983b,a). The final panorama is shown in Figure 5(e).

DISCUSSION
Related work
In this section, we describe other libraries with similar goals to ours.

Within the scientific Python ecosystem, Mahotas contains many similar functions,
and is furthermore also designed to work with NumPy arrays (Coelho, 2013). The
major philosophical difference between Mahotas and scikit-image is that Mahotas is
almost exclusively written in templated C++, while scikit-image is written in Python
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and Cython. We feel that our choice lowers the barrier of entry for new contributors.
However, thanks to the interoperability between the two provided by the NumPy array
data format, users don’t have to choose between them, and can simply use the best
components of each.

ImageJ and its batteries-included Fiji distribution are probably the most popular
open-source tools for image analysis (Schneider et al., 2012; Schindelin et al., 2012).
Although Fiji’s breadth of functionality is unparalleled, it is centered around interactive,
GUI use. For many developers, then, scikit-image offers several advantages. Although
Fiji offers a programmable macro mode that supports many scripting languages, many
of the macro functions activate GUI elements and cannot run in headless mode. This
is problematic for data analysis in high-performance computing cluster environments
or web backends, for example. Additionally, Fiji’s inclusive plugin policy results in an
inconsistent API and variable documentation quality. Using scikit-image to develop
new functionality or to build batch applications for distributed computing is often much
simpler, thanks to its consistent API and the wide distribution of the scientific Python
stack.

In many respects, the image processing toolbox of the Matlab environment is quite
similar to scikit-image. For example, its API is mostly functional and applies to generic
multidimensional numeric arrays. However, Matlab’s commercial licensing can be a
significant nuisance to users. Additionally, the licensing cost increases dramatically
for parallel computing, with per-worker pricing18. Finally, the closed source nature
of the toolbox prevents users from learning from the code or modifying it for specific
purposes, which is a common necessity in scientific research. We refer readers back
to the Development Practices section for a summary of the practical and philosophical
advantages of our open-source licensing.

OpenCV is a BSD-licensed open-source library focused on computer vision, with a
separate module for image processing (Bradski, 2000). It is developed in C/C++ and
the project’s main aim is to provide implementations for real-time applications. This
results in fast implementations with a comparatively high barrier of entry for code study
and modification. The library provides interfaces for several high-level programming
languages, including Python through the NumPy-array data-type for images. The Python
interface is essentially a one-to-one copy of the underlying C/C++ API, and thus image
processing pipelines have to follow an imperative programming style. In contrast, scikit-
image provides a Pythonic interface with the option to follow an imperative or functional
approach. Beyond that, OpenCV’s image processing module is traditionally limited to
2-dimensional imagery.

The choice of image processing package depends on several factors, including speed,
code quality and correctness, community support, ecosystem, feature richness, and
users’ ability to contribute. Sometimes, advantages in one factor come at the cost
of another. For example, our approach of writing code in a high-level language may
affect performance, or our strict code review guidelines may hamper the number of
features we ultimately provide. We motivate our design decisions for scikit-image in
the Development Practices section, and leave readers to decide which library is right for

18http://www.mathworks.com.au/products/distriben/description3.html,
Accessed 2014-05-09
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them.

Roadmap
In many open source projects, decisions about future development are made through
“rough consensus and working code” (Bradner, 1998). In scikit-image there are two
ways to propose new ideas: through discussion on the mailing list, or as pull requests.
The latter route has the advantage of a concrete implementation to guide the conversa-
tion, and often mailing list discussions also result in a request for a proof of concept
implementation. While conversations are usually led by active developers, the entire
community is invited to participate. Once general agreement is reached that the proposed
idea aligns with the current project goals and is feasible, work is divided on a volunteer
basis. As such, the schedule for completion is often flexible.

The following goals have been identified for the next release of scikit-image:

∙ Obtain full test coverage.

∙ Overhaul the functions for image reading/writing.

∙ Improve the project infrastructure, e.g. create an interactive gallery of examples.

∙ Add support for graph-based operations.

∙ Significantly extend higher dimensional (multi-layer) support.

We also invite readers to submit their own feature requests to the mailing list for
further discussion.

CONCLUSION
scikit-image provides easy access to a powerful array of image processing functionality.
Over the past few years, it has seen significant growth in both adoption and contribu-
tion19, and the team is excited to collaborate with others to see it grow even further, and
to establish it the de facto library for image processing in Python.
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