
Digital Image
Processing
Using MATLAB®

Second Edition

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
MedData Interactive

Steven L. Eddins
The MathWorks, Inc.

Gatesmark Publishing®
A Division of Gatesmark,® LLC
www.gatesmark.com

Library of Congress Cataloging-in-Publication Data on File

Library of Congress Control Number: 2009902793

© 2009 by Gatesmark, LLC

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, without written permission from the publisher.

Gatesmark Publishing® is a registered trademark of Gatesmark, LLC, www.gatesmark.com.

Gatesmark® is a registered trademark of Gatesmark, LLC, www.gatesmark.com.

MATLAB® is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA
01760-2098

The authors and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The authors and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these
programs.

Printed in the United States of America

10   9   8   7   6   5   4   3   2   1

ISBN 978-0-9820854-0-0

Gatesmark Publishing
A Division of Gatesmark, LLC
www.gatesmark.com

13

2 Fundamentals

Preview
As mentioned in the previous chapter, the power that MATLAB brings to
digital image processing is an extensive set of functions for processing mul-
tidimensional arrays of which images (two-dimensional numerical arrays)
are a special case. The Image Processing Toolbox is a collection of functions
that extend the capability of the MATLAB numeric computing environment.
These functions, and the expressiveness of the MATLAB language, make
image-processing operations easy to write in a compact, clear manner, thus
providing an ideal software prototyping environment for the solution of
image processing problems. In this chapter we introduce the basics of MATLAB
notation, discuss a number of fundamental toolbox properties and functions,
and begin a discussion of programming concepts. Thus, the material in this
chapter is the foundation for most of the software-related discussions in the
remainder of the book.

 2.1	 Digital Image Representation

An image may be defined as a two-dimensional function f x y(,), where x and
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi-
nates is called the intensity of the image at that point. The term gray level is used
often to refer to the intensity of monochrome images. Color images are formed
by a combination of individual images. For example, in the RGB color system
a color image consists of three individual monochrome images, referred to as
the red (R), green (G), and blue (B) primary (or component) images. For this
reason, many of the techniques developed for monochrome images can be ex-
tended to color images by processing the three component images individually.
Color image processing is the topic of Chapter 7. An image may be continuous

14 Chapter 2 ■ Fundamentals

with respect to the x- and y-coordinates, and also in amplitude. Converting such
an image to digital form requires that the coordinates, as well as the amplitude,
be digitized. Digitizing the coordinate values is called sampling; digitizing the
amplitude values is called quantization. Thus, when x, y, and the amplitude val-
ues of f are all finite, discrete quantities, we call the image a digital image.

2.1.1	 Coordinate Conventions
The result of sampling and quantization is a matrix of real numbers. We use two
principal ways in this book to represent digital images. Assume that an image
f x y(,) is sampled so that the resulting image has M rows and N columns. We
say that the image is of size M N* . The values of the coordinates are discrete
quantities. For notational clarity and convenience, we use integer values for
these discrete coordinates. In many image processing books, the image origin
is defined to be at (,) (,)x y = 0 0 . The next coordinate values along the first row
of the image are (,) (,)x y = 0 1 . The notation (,)0 1 is used to signify the second
sample along the first row. It does not mean that these are the actual values of
physical coordinates when the image was sampled. Figure 2.1(a) shows this
coordinate convention. Note that x ranges from 0 to M - 1 and y from 0 to
N - 1 in integer increments.

The coordinate convention used in the Image Processing Toolbox to denote
arrays is different from the preceding paragraph in two minor ways. First, in-
stead of using (,)x y , the toolbox uses the notation (,)r c to indicate rows and
columns. Note, however, that the order of coordinates is the same as the order
discussed in the previous paragraph, in the sense that the first element of a
coordinate tuple, (,)a b , refers to a row and the second to a column. The other
difference is that the origin of the coordinate system is at (,) (,)r c = 1 1 ; thus, r
ranges from 1 to M, and c from 1 to N, in integer increments. Figure 2.1(b) il-
lustrates this coordinate convention.

Image Processing Toolbox documentation refers to the coordinates in Fig.
2.1(b) as pixel coordinates. Less frequently, the toolbox also employs another
coordinate convention, called spatial coordinates, that uses x to refer to columns
and y to refers to rows. This is the opposite of our use of variables x and y. With

y
0

0
1
2
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
M  1

1 2 N  1

x
One pixel

c
1

1
2
3

M

2 3 N

r
One pixel

Origin Origin

a b
Figure 2.1
Coordinate
conventions used
(a) in many image
processing books,
and (b) in the
Image Processing
Toolbox.

 2.2 ■ Images as Matrices 15

a few exceptions, we do not use the toolbox’s spatial coordinate convention in
this book, but many MATLAB functions do, and you will definitely encounter
it in toolbox and MATLAB documentation.

2.1.2	 Images as Matrices
The coordinate system in Fig. 2.1(a) and the preceding discussion lead to the
following representation for a digitized image:

	 f x y

f f f N

f f f N

f M

(,)

(,) (,) (,)

(,) (,) (,)

(,

=

0 0 0 1 0 1

1 0 1 1 1 1

1




  

-

-

- 00 1 1 1 1) (,) (,)f M f M N- - -



















	

The right side of this equation is a digital image by definition. Each element
of this array is called an image element, picture element, pixel, or pel. The terms
image and pixel are used throughout the rest of our discussions to denote a
digital image and its elements.

A digital image can be represented as a MATLAB matrix:

	 f

f(1, 1) f(1, 2) f(1, N)
f(2, 1) f(2, 2) f(2, N)

f(M, 1) f(

=




  
MM, 2) f(M, N)



















	

where f(1, 1) = f (,)0 0 (note the use of a monospace font to denote MAT-
LAB quantities). Clearly, the two representations are identical, except for the
shift in origin. The notation f(p, q) denotes the element located in row p and
column q. For example, f(6, 2) is the element in the sixth row and second
column of matrix f. Typically, we use the letters M and N, respectively, to denote
the number of rows and columns in a matrix. A 1 N* matrix is called a row vec-
tor, whereas an M 1* matrix is called a column vector. A 1 1* matrix is a scalar.

Matrices in MATLAB are stored in variables with names such as A, a, RGB,
real_array, and so on. Variables must begin with a letter and contain only
letters, numerals, and underscores. As noted in the previous paragraph, all
MATLAB quantities in this book are written using monospace characters. We
use conventional Roman, italic notation, such as f x y(,), for mathematical ex-
pressions.

 2.2	 Reading Images

Images are read into the MATLAB environment using function imread, whose
basic syntax is

imread('filename')

MATLAB
documentation uses
the terms matrix and
array interchangeably.
However, keep in mind
that a matrix is two
dimensional, whereas an
array can have any finite
dimension.

Recall from Section 1.6
that we use margin icons
to highlight the first
use of a MATLAB or
toolbox function.

imread

16 Chapter 2 ■ Fundamentals

Here, filename is a string containing the complete name of the image file (in-
cluding any applicable extension). For example, the statement

>> f = imread('chestxray.jpg');

reads the image from the JPEG file chestxray into image array f. Note the
use of single quotes (') to delimit the string filename. The semicolon at the
end of a statement is used by MATLAB for suppressing output. If a semicolon
is not included, MATLAB displays on the screen the results of the operation(s)
specified in that line. The prompt symbol (>>) designates the beginning
of a command line, as it appears in the MATLAB Command Window (see
Fig. 1.1).

When, as in the preceding command line, no path information is included
in filename, imread reads the file from the Current Directory and, if that
fails, it tries to find the file in the MATLAB search path (see Section 1.7). The
simplest way to read an image from a specified directory is to include a full or
relative path to that directory in filename. For example,

>> f = imread('D:\myimages\chestxray.jpg');

reads the image from a directory called myimages in the D: drive, whereas

>> f = imread('.\myimages\chestxray.jpg');

reads the image from the myimages subdirectory of the current working direc-
tory. The MATLAB Desktop displays the path to the Current Directory on
the toolbar, which provides an easy way to change it. Table 2.1 lists some of
the most popular image/graphics formats supported by imread and imwrite
(imwrite is discussed in Section 2.4).

Typing size at the prompt gives the row and column dimensions of an
image:

>> size(f)

ans =

 1024 1024

More generally, for an array A having an arbitrary number of dimensions, a
statement of the form

[D1, D2,..., DK] = size(A)

returns the sizes of the first K dimensions of A. This function is particularly use-
ful in programming to determine automatically the size of a 2-D image:

>> [M, N] = size(f);

This syntax returns the number of rows (M) and columns (N) in the image. Simi-
larly, the command

semicolon(;)

prompt(>>)

In Windows, directories
are called folders.

size

 2.2 ■ Reading Images 17

>> M = size(f, 1);

gives the size of f along its first dimension, which is defined by MATLAB as
the vertical dimension. That is, this command gives the number of rows in f.
The second dimension of an array is in the horizontal direction, so the state-
ment size(f, 2) gives the number of columns in f. A singleton dimension is
any dimension, dim, for which size(A, dim) = 1.

The whos function displays additional information about an array. For
instance, the statement

>> whos f

gives

 Name Size Bytes Class Attributes

 f 1024x1024 1048576 uint8

The Workspace Browser in the MATLAB Desktop displays similar informa-
tion. The uint8 entry shown refers to one of several MATLAB data classes
discussed in Section 2.5. A semicolon at the end of a whos line has no effect, so
normally one is not used.

whos

Although not applicable
in this example,
attributes that might
appear under
Attributes include
terms such as global,
complex, and sparse.

† Supported by imread, but not by imwrite

Format
Name Description

Recognized
Extensions

BMP† Windows Bitmap .bmp

CUR Windows Cursor Resources .cur

FITS† Flexible Image Transport System .fts, .fits

GIF Graphics Interchange Format .gif

HDF Hierarchical Data Format .hdf

ICO† Windows Icon Resources .ico

JPEG Joint Photographic Experts Group .jpg, .jpeg

JPEG 2000† Joint Photographic Experts Group .jp2, .jpf, .jpx,
j2c, j2k

PBM Portable Bitmap .pbm

PGM Portable Graymap .pgm

PNG Portable Network Graphics .png

PNM Portable Any Map .pnm

RAS Sun Raster .ras

TIFF Tagged Image File Format .tif, .tiff

XWD X Window Dump .xwd

TABLE 2.1
Some of the
image/graphics
formats support-
ed by imread and
imwrite, starting
with MATLAB
7.6. Earlier
versions support
a subset of these
formats. See the
MATLAB docu-
mentation for a
complete list of
supported formats.

18 Chapter 2 ■ Fundamentals

 2.3	 Displaying Images

Images are displayed on the MATLAB desktop using function imshow, which
has the basic syntax:

imshow(f)

where f is an image array. Using the syntax

imshow(f, [low high])

displays as black all values less than or equal to low, and as white all values
greater than or equal to high. The values in between are displayed as interme-
diate intensity values. Finally, the syntax

imshow(f, [])

sets variable low to the minimum value of array f and high to its maximum
value. This form of imshow is useful for displaying images that have a low
dynamic range or that have positive and negative values.

■ The following statements read from disk an image called rose_512.tif,
extract information about the image, and display it using imshow:

>> f = imread('rose_512.tif');
>> whos f

 Name Size Bytes Class Attributes

 f 512x512 262144 uint8 array

>> imshow(f)

A semicolon at the end of an imshow line has no effect, so normally one is not
used. Figure 2.2 shows what the output looks like on the screen. The figure

imshow

Function imshow has a
number of other syntax
forms for performing
tasks such as controlling
image magnification.
Consult the help page for
imshow for additional
details.

EXAMPLE 2.1:
Reading and
displaying images.

FIGURE 2.2
Screen capture
showing how an
image appears
on the MATLAB
desktop. Note the
figure number on
the top, left of the
window. In most
of the examples
throughout the
book, only the
images
themselves are
shown.

 2.3 ■ Displaying Images 19

number appears on the top, left of the window. Note the various pull-down
menus and utility buttons. They are used for processes such as scaling, saving,
and exporting the contents of the display window. In particular, the Edit menu
has functions for editing and formatting the contents before they are printed
or saved to disk.

If another image, g, is displayed using imshow, MATLAB replaces the
image in the figure window with the new image. To keep the first image and
output a second image, use function figure, as follows:

>> figure, imshow(g)

Using the statement

>> imshow(f), figure, imshow(g)

displays both images. Note that more than one command can be written on a
line, provided that different commands are delimited by commas or semico-
lons. As mentioned earlier, a semicolon is used whenever it is desired to sup-
press screen outputs from a command line.

Finally, suppose that we have just read an image, h, and find that using
imshow(h) produces the image in Fig. 2.3(a). This image has a low dynamic range,
a condition that can be remedied for display purposes by using the statement

>> imshow(h, [])

Figure 2.3(b) shows the result. The improvement is apparent.	 ■

The Image Tool in the Image Processing Toolbox provides a more interac-
tive environment for viewing and navigating within images, displaying detailed
information about pixel values, measuring distances, and other useful opera-
tions. To start the Image Tool, use the imtool function. For example, the fol-
lowing statements read an image from a file and then display it using imtool:

>> f = imread('rose_1024.tif');
>> imtool(f)

figure

Function figure creates
a figure window. When
used without an
argument, as shown here,
it simply creates a new
figure window. Typing
figure(n) forces figure
number n to become
visible.

imtool

a b
FIGURE 2.3 (a) An
image, h, with low
dynamic range.
(b) Result of
scaling by using
imshow(h, []).
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University
Medical Center.)

20 Chapter 2 ■ Fundamentals

Figure 2.4 shows some of the windows that might appear when using the
Image Tool. The large, central window is the main view. In the figure, it is show-
ing the image pixels at 400% magnification, meaning that each image pixel is
rendered on a 4 4* block of screen pixels. The status text at the bottom of the
main window shows the column/row location (701, 360) and value (181) of the
pixel lying under the mouse cursor (the origin of the image is at the top, left).
The Measure Distance tool is in use, showing that the distance between the two
pixels enclosed by the small boxes is 25.65 units.

The Overview Window, on the left side of Fig. 2.4, shows the entire image
in a thumbnail view. The Main Window view can be adjusted by dragging the
rectangle in the Overview Window. The Pixel Region Window shows individual
pixels from the small square region on the upper right tip of the rose, zoomed
large enough to see the actual pixel values.

Table 2.2 summarizes the various tools and capabilities associated with
the Image Tool. In addition to the these tools, the Main and Overview Win-
dow toolbars provide controls for tasks such as image zooming, panning, and
scrolling.

Figure 2.4 The Image Tool. The Overview Window, Main Window, and Pixel Region tools are shown.

 2.4 ■ Writing Images 21

 2.4	 Writing Images
Images are written to the Current Directory using function imwrite, which
has the following basic syntax:

imwrite(f, 'filename')

With this syntax, the string contained in filename must include a recognized
file format extension (see Table 2.1). For example, the following command
writes f to a file called patient10_run1.tif:

>> imwrite(f, 'patient10_run1.tif')

Function imwrite writes the image as a TIFF file because it recognizes the
.tif extension in the filename.

Alternatively, the desired format can be specified explicitly with a third in-
put argument. This syntax is useful when the desired file does not use one of
the recognized file extensions. For example, the following command writes f to
a TIFF file called patient10.run1:

>> imwrite(f, 'patient10.run1', 'tif')

Function imwrite can have other parameters, depending on the file format
selected. Most of the work in the following chapters deals either with JPEG or
TIFF images, so we focus attention here on these two formats. A more general
imwrite syntax applicable only to JPEG images is

imwrite(f, 'filename.jpg', 'quality', q)

where q is an integer between 0 and 100 (the lower the number the higher
the degradation due to JPEG compression).

imwrite

Tool Description

Pixel Information Displays information about the pixel under the mouse pointer.

Pixel Region Superimposes pixel values on a zoomed-in pixel view.

Distance Measures the distance between two pixels.

Image Information Displays information about images and image files.

Adjust Contrast Adjusts the contrast of the displayed image.

Crop Image Defines a crop region and crops the image.

Display Range Shows the display range of the image data.

Overview Shows the currently visible image.

TABLE 2.2 Tools
associated with
the Image Tool.

22 Chapter 2 ■ Fundamentals

■ Figure 2.5(a) shows an image, f, typical of sequences of images resulting
from a given chemical process. It is desired to transmit these images on a rou-
tine basis to a central site for visual and/or automated inspection. In order to
reduce storage requirements and transmission time, it is important that the
images be compressed as much as possible, while not degrading their visual

EXAMPLE 2.2:
Writing an image
and using
function imfinfo.

c
a

e

b
d
f

FIGURE 2.5
(a) Original image.
(b) through (f)
Results of using
jpg quality values
q = 50, 25, 15, 5,
and 0, respectively.
False contouring
begins to be
noticeable for
q = 15 [image (d)]
and is quite
visible for q = 5
and q = 0.

See Example 2.11 for
a function that creates
all the images in Fig. 2.5
using a loop.

 2.4 ■ Writing Images 23

appearance beyond a reasonable level. In this case “reasonable” means no per-
ceptible false contouring. Figures 2.5(b) through (f) show the results obtained
by writing image f to disk (in JPEG format), with q = 50, 25, 15, 5, and 0,
respectively. For example, the applicable syntax for q = 25 is

>> imwrite(f, 'bubbles25.jpg', 'quality', 25)

The image for q = 15 [Fig. 2.5(d)] has false contouring that is barely vis-
ible, but this effect becomes quite pronounced for q = 5 and q = 0. Thus, an
acceptable solution with some margin for error is to compress the images with
q = 25. In order to get an idea of the compression achieved and to obtain other
image file details, we can use function imfinfo, which has the syntax

imfinfo filename

where filename is the file name of the image stored on disk. For example,

>> imfinfo bubbles25.jpg

outputs the following information (note that some fields contain no informa-
tion in this case):

	 Filename:	 'bubbles25.jpg'
	 FileModDate: 	 '04-Jan-2003 12:31:26'
	 FileSize: 	 13849
	 Format: 	 'jpg'
	 FormatVersion: 	 ''
	 Width: 	 714
	 Height: 	 682
	 BitDepth: 	 8
	 ColorType: 	 'grayscale'
	 FormatSignature: 	 ''
	 Comment: 	{}

where FileSize is in bytes. The number of bytes in the original image is com-
puted by multiplying Width by Height by BitDepth and dividing the result by
8. The result is 486948. Dividing this by FileSize gives the compression ratio:
() .486948 13849 35 16= . This compression ratio was achieved while main-
taining image quality consistent with the requirements of the application. In
addition to the obvious advantages in storage space, this reduction allows the
transmission of approximately 35 times the amount of uncompressed data per
unit time.

The information fields displayed by imfinfo can be captured into a so-
called structure variable that can be used for subsequent computations. Using
the preceding image as an example, and letting K denote the structure variable,
we use the syntax

>> K = imfinfo('bubbles25.jpg');

to store into variable K all the information generated by command imfinfo.

imfinfo

Recent versions of
MATLAB may show
more information in
the output of imfinfo,
particularly for images
captures using digital
cameras.

Structures are
discussed in Section
2.10.7.

24 Chapter 2 ■ Fundamentals

The information generated by imfinfo is appended to the structure variable
by means of fields, separated from K by a dot. For example, the image height
and width are now stored in structure fields K.Height and K.Width. As an
illustration, consider the following use of structure variable K to compute the
compression ratio for bubbles25.jpg:

>> K = imfinfo('bubbles25.jpg');
>> image_bytes = K.Width*K.Height*K.BitDepth/8;
>> compressed_bytes = K.FileSize;
>> compression_ratio = image_bytes/compressed_bytes

compression_ratio =

 35.1612

Note that imfinfo was used in two different ways. The first was to type
imfinfo bubbles25.jpg at the prompt, which resulted in the information being
displayed on the screen. The second was to type K = imfinfo('bubbles25.jpg'),
 which resulted in the information generated by imfinfo being stored in K.
These two different ways of calling imfinfo are an example of command-
function duality, an important concept that is explained in more detail in the
MATLAB documentation. 	 ■

A more general imwrite syntax applicable only to tif images has the
form

imwrite(g, 'filename.tif', 'compression', 'parameter', ...
			 'resolution', [colres rowres])

where 'parameter' can have one of the following principal values: 'none' indi-
cates no compression; 'packbits' (the default for nonbinary images), 'lwz',
'deflate', 'jpeg', 'ccitt' (binary images only; the default), 'fax3' (binary
images only), and 'fax4'. The 1 2* array [colres rowres] contains two
integers that give the column resolution and row resolution in dots-per-unit
(the default values are [72 72]). For example, if the image dimensions are in
inches, colres is the number of dots (pixels) per inch (dpi) in the vertical
direction, and similarly for rowres in the horizontal direction. Specifying the
resolution by a single scalar, res, is equivalent to writing [res res]. As you
will see in the following example, the TIFF resolution parameter can be used
to modify the size of an image in printed documents.

■ Figure 2.6(a) is an 8-bit X-ray image, f, of a circuit board generated dur-
ing quality inspection. It is in jpg format, at 200 dpi. The image is of size
450 450* pixels, so its printed dimensions are 2 25 2 25. .* inches. We want to
store this image in tif format, with no compression, under the name sf. In
addition, we want to reduce the printed size of the image to 1 5 1 5. .* inches
while keeping the pixel count at 450 450* .The following statement gives the
desired result:

To learn more about
command function
duality, consult the help
page on this topic. (See
Section 1.7.2 regarding
help pages.)

 ...

If a statement does not
fit on one line, use an
ellipsis (three periods),
followed by Return or
Enter, to indicate that
the statement continues
on the next line. There
are no spaces between
the periods.

EXAMPLE 2.3:
Using imwrite
parameters.

 2.4 ■ Writing Images 25

>> imwrite(f, 'sf.tif', 'compression', 'none', 'resolution', [300 300])

The values of the vector [colres rowres] were determined by multiplying
200 dpi by the ratio 2 25 1 5. . which gives 300 dpi. Rather than do the computa-
tion manually, we could write

>> res = round(200*2.25/1.5);
>> imwrite(f, 'sf.tif', 'compression', 'none' ,'resolution', res)

where function round rounds its argument to the nearest integer. It is impor-
tant to note that the number of pixels was not changed by these commands.
Only the printed size of the image changed. The original 450 450* image at
200 dpi is of size 2 25 2 25. .* inches. The new 300-dpi image [Fig. 2.6(b)] is
identical, except that its 450 450* pixels are distributed over a 1 5 1 5. .* -inch
area. Processes such as this are useful for controlling the size of an image in a
printed document without sacrificing resolution.	 ■

Sometimes, it is necessary to export images and plots to disk the way they
appear on the MATLAB desktop. The contents of a figure window can be
exported to disk in two ways. The first is to use the File pull-down menu in the
figure window (see Fig. 2.2) and then choose Save As. With this option, the

round

b
a

FIGURE 2.6
Effects of
changing the dpi
resolution while
keeping the
number of pixels
constant. (a) A
450  450 image
at 200 dpi
(size = 2.25  2.25
inches). (b) The
same image, but
at 300 dpi
(size = 1.5  1.5
inches). (Original
image courtesy of
Lixi, Inc.)

26 Chapter 2 ■ Fundamentals

user can select a location, file name, and format. More control over export
parameters is obtained by using the print command:

print −fno −dfileformat −rresno filename

where no refers to the figure number in the figure window of interest, file-
format refers to one of the file formats in Table 2.1, resno is the resolution
in dpi, and filename is the name we wish to assign the file. For example, to
export the contents of the figure window in Fig. 2.2 as a tif file at 300 dpi, and
under the name hi_res_rose, we would type

>> print −f1 −dtiff −r300 hi_res_rose

This command sends the file hi_res_rose.tif to the Current Directory. If
we type print at the prompt, MATLAB prints (to the default printer) the
contents of the last figure window displayed. It is possible also to specify other
options with print, such as a specific printing device.

 2.5	 Classes

Although we work with integer coordinates, the values (intensities) of pixels
are not restricted to be integers in MATLAB. Table 2.3 lists the various classes

supported by MATLAB and the Image Processing Toolbox† for representing
pixel values. The first eight entries in the table are referred to as numeric class-

print

Name Description

double Double-precision, floating-point numbers in the approximate
range ; 10308 (8 bytes per element).

single Single-precision floating-point numbers with values in the
approximate range ; 1038 (4 bytes per element).

uint8 Unsigned 8-bit integers in the range [0, 255] (1 byte per element).

uint16 Unsigned 16-bit integers in the range [0, 65535] (2 bytes per
element).

uint32 Unsigned 32-bit integers in the range [0, 4294967295] (4 bytes per
element).

int8 Signed 8-bit integers in the range [128, 127] (1 byte per element).

int16 Signed 16-bit integers in the range [32768, 32767] (2 bytes per
element).

int32 Signed 32-bit integers in the range [2147483648, 2147483647]
(4 bytes per element).

char Characters (2 bytes per element).

logical Values are 0 or 1 (1 byte per element).

TABLE 2.3
Classes used for
image processing
in MATLAB. The
first eight entries
are referred to as
numeric classes,
the ninth entry is
the char class, and
the last entry is
the logical class.

† MATLAB supports two other numeric classes not listed in Table 2.3, uint64 and int64. The toolbox does
not support these classes, and MATLAB arithmetic support for them is limited.

 2.6 ■ Image Types 27

es. The ninth entry is the char (character) class and, as shown, the last entry is
the logical class.

Classes uint8 and logical are used extensively in image processing, and
they are the usual classes encountered when reading images from image file
formats such as TIFF or JPEG. These classes use 1 byte to represent each pixel.
Some scientific data sources, such as medical imagery, require more dynamic
range than is provided by uint8, so the uint16 and int16 classes are used
often for such data. These classes use 2 bytes for each array element. The float-
ing-point classes double and single are used for computationally intensive
operations such as the Fourier transform (see Chapter 4). Double-precision
floating-point uses 8 bytes per array element, whereas single-precision float-
ing-point uses 4 bytes. The int8, uint32, and int32 classes, although support-
ed by the toolbox, are not used commonly for image processing.

 2.6	 Image Types

The toolbox supports four types of images:

	 •	 Gray-scale images
	 •	 Binary images
	 •	 Indexed images
	 •	 RGB images

Most monochrome image processing operations are carried out using binary
or gray-scale images, so our initial focus is on these two image types. Indexed
and RGB color images are discussed in Chapter 7.

2.6.1	 Gray-scale Images
A gray-scale image is a data matrix whose values represent shades of gray.
When the elements of a gray-scale image are of class uint8 or uint16, they
have integer values in the range [0, 255] or [0, 65535], respectively. If the image
is of class double or single, the values are floating-point numbers (see the
first two entries in Table 2.3). Values of double and single gray-scale images
normally are scaled in the range [0, 1], although other ranges can be used.

2.6.2	 Binary Images
Binary images have a very specific meaning in MATLAB. A binary image is a
logical array of 0s and 1s. Thus, an array of 0s and 1s whose values are of data
class, say, uint8, is not considered a binary image in MATLAB. A numeric
array is converted to binary using function logical. Thus, if A is a numeric
array consisting of 0s and 1s, we create a logical array B using the statement

B = logical(A)

If A contains elements other than 0s and 1s, the logical function converts all
nonzero quantities to logical 1s and all entries with value 0 to logical 0s. Using
relational and logical operators (see Section 2.10.2) also results in logical arrays.

Gray-scale images are
referred to as intensity
images in earlier versions
of the toolbox. In the
book, we use the two
terms interchangeably
when working with
monochrome images.

logical

28 Chapter 2 ■ Fundamentals

To test if an array is of class logical we use the islogical function:

islogical(C)

If C is a logical array, this function returns a 1. Otherwise it returns a 0. Logical
arrays can be converted to numeric arrays using the class conversion functions
discussed in Section 2.7.

2.6.3	 A Note on Terminology

Considerable care was taken in the previous two sections to clarify the use
of the terms class and image type. In general, we refer to an image as being a

“class image_type image,” where class is one of the entries from Table 2.3,
and image_type is one of the image types defined at the beginning of this sec-
tion. Thus, an image is characterized by both a class and a type. For instance, a
statement discussing an “uint8 gray-scale image” is simply referring to a gray-
scale image whose pixels are of class uint8. Some functions in the toolbox
support all the data classes listed in Table 2.3, while others are very specific as
to what constitutes a valid class.

 2.7	 Converting between Classes

Converting images from one class to another is a common operation. When
converting between classes, keep in mind the value ranges of the classes being
converted (see Table 2.3).

The general syntax for class conversion is

B = class_name(A)

where class_name is one of the names in the first column of Table 2.3. For
example, suppose that A is an array of class uint8. A double-precision array, B,
is generated by the command B = double(A). If C is an array of class double
in which all values are in the range [0, 255] (but possibly containing fractional
values), it can be converted to an uint8 array with the command D = uint8(C).
If an array of class double has any values outside the range [0, 255] and it is
converted to class uint8 in the manner just described, MATLAB converts to
0 all values that are less than 0, and converts to 255 all values that are greater
than 255. Numbers in between are rounded to the nearest integer. Thus, proper
scaling of a double array so that its elements are in the range [0, 255] is neces-
sary before converting it to uint8. As indicated in Section 2.6.2, converting
any of the numeric data classes to logical creates an array with logical 1s in
locations where the input array has nonzero values, and logical 0s in places
where the input array contains 0s.

The toolbox provides specific functions (Table 2.4) that perform the scaling
and other bookkeeping necessary to convert images from one class to another.
Function im2uint8, for example, creates a unit8 image after detecting the

See Table 2.9 for a list of
other functions based on
the is... construct.

islogical

To simplify terminology,
statements referring to
values of class double
are applicable also to the
single class, unless
stated otherwise. Both
refer to floating point
numbers, the only
difference between them
being precision and the
number of bytes needed
for storage.

 2.7 ■ Converting between Classes 29

data class of the input and performing all the necessary scaling for the toolbox
to recognize the data as valid image data. For example, consider the following
image f of class double, which could be the result of an intermediate computa-
tion:

f =

 − 0.5 0.5

  0.75 1.5

Performing the conversion

>> g = im2uint8(f)

yields the result

g =

 0 128

 191 255

from which we see that function im2uint8 sets to 0 all values in the input that
are less than 0, sets to 255 all values in the input that are greater than 1, and
multiplies all other values by 255. Rounding the results of the multiplication to
the nearest integer completes the conversion.

Function im2double converts an input to class double. If the input is of class
uint8, uint16, or logical, function im2double converts it to class double
with values in the range [0, 1]. If the input is of class single, or is already of class
double, im2double returns an array that is of class double, but is numerically
equal to the input. For example, if an array of class double results from com-
putations that yield values outside the range [0, 1], inputting this array into

im2uint8

im2double

Name Converts Input to: Valid Input Image Data Classes

im2uint8 uint8 logical, uint8, uint16, int16, single,
and double

im2uint16 uint16 logical, uint8, uint16, int16, single,
and double

im2double double logical, uint8, uint16, int16, single,
and double

im2single single logical, uint8, uint16, int16, single,
and double

mat2gray double in the range [0, 1] logical, uint8, int8, uint16, int16,
uint32, int32, single, and double

im2bw logical uint8, uint16, int16, single, and
double

TABLE 2.4
Toolbox functions
for converting
images from one
class to another.

30 Chapter 2 ■ Fundamentals

im2double will have no effect. As explained below, function mat2gray can be
used to convert an array of any of the classes in Table 2.4 to a double array
with values in the range [0, 1].

As an illustration, consider the class uint8 image

>> h = uint8([25 50; 128 200]);

Performing the conversion

>> g = im2double(h)

yields the result

g =

 0.0980 0.1961

 0.4706 0.7843

from which we infer that the conversion when the input is of class uint8 is
done simply by dividing each value of the input array by 255. If the input is of
class uint16 the division is by 65535.

Toolbox function mat2gray converts an image of any of the classes in Table 2.4
to an array of class double scaled to the range [0, 1]. The calling syntax is

 g = mat2gray(A, [Amin, Amax])

where image g has values in the range 0 (black) to 1 (white). The specified
parameters, Amin and Amax, are such that values less than Amin in A become 0
in g, and values greater than Amax in A correspond to 1 in g. The syntax

g = mat2gray(A)

sets the values of Amin and Amax to the actual minimum and maximum values
in A. The second syntax of mat2gray is a very useful tool because it scales the
entire range of values in the input to the range [0, 1], independently of the class
of the input, thus eliminating clipping.

Finally, we consider conversion to class logical. (Recall that the Image
Processing Toolbox treats logical matrices as binary images.) Function logical
converts an input array to a logical array. In the process, nonzero elements
in the input are converted to 1s, and 0s are converted to 0s in the output. An
alternative conversion procedure that often is more useful is to use a relational
operator, such as >, with a threshold value. For example, the syntax

g = f > T

produces a logical matrix containing 1s wherever the elements of f are greater
than T and 0s elsewhere.

Toolbox function im2bw performs this thresholding operation in a way that
automatically scales the specified threshold in different ways, depending on
the class of the input image. The syntax is

Section 2.8.2 explains the
use of square brackets
and semicolons to
specify matrices.

mat2gray

See Section 2.10.2
regarding logical and
relational operators.

 2.7 ■ Converting between Classes 31

g = im2bw(f, T)

Values specified for the threshold T must be in the range [0, 1], regardless of
the class of the input. The function automatically scales the threshold value
according to the input image class. For example, if f is uint8 and T is 0.4, then
im2bw thresholds the pixels in f by comparing them to 255 * 0.4 = 102.

■ We wish to convert the following small, double image

>> f = [1 2; 3 4]

f =

 1 2

 3 4

to binary, such that values 1 and 2 become 0 and the other two values become
1. First we convert it to the range [0, 1]:

>> g = mat2gray(f)

g =

 0 0.3333

 0.6667 1.0000

Then we convert it to binary using a threshold, say, of value 0.6:

>> gb = im2bw(g, 0.6)

gb =

 0 0

 1 1

As mentioned earlier, we can generate a binary array directly using relational
operators. Thus we get the same result by writing

>> gb = f > 2

gb =

 0 0

 1 1

Suppose now that we want to convert gb to a numerical array of 0s and 1s
of class double. This is done directly:

>> gbd = im2double(gb)

gbd =

 0 0

 1 1

im2bw

EXAMPLE 2.4:
Converting
between image
classes.

32 Chapter 2 ■ Fundamentals

If gb had been of class uint8, applying im2double to it would have resulted
in an array with values

 0 0

 0.0039 0.0039

because im2double would have divided all the elements by 255. This did not
happen in the preceding conversion because im2double detected that the
input was a logical array, whose only possible values are 0 and 1. If the
input in fact had been of class uint8 and we wanted to convert it to class
double while keeping the 0 and 1 values, we would have converted the array by
writing

>> gbd = double(gb)

gbd =

 0 0

 1 1

Finally, we point out that the output of one function can be passed directly as
the input to another, so we could have started with image f and arrived at the
same result by using the one-line statement

>> gbd = im2double(im2bw(mat2gray(f), 0.6));

or by using partial groupings of these functions. Of course, the entire process
could have been done in this case with a simpler command:

>> gbd = double(f > 2);

demonstrating again the compactness of the MATLAB language. 	 ■

As the first two entries in Table 2.3 show class numeric data of class double
requires twice as much storage as data of class single. In most image pro-
cessing applications in which numeric processing is used, single precision is
perfectly adequate. Therefore, unless a specific application or a MATLAB or
toolbox function requires class double, it is good practice to work with single
data to conserve memory. A consistent programming pattern that you will see
used throughout the book to change inputs to class single is as follows:

[fout, revertclass] = tofloat(f);
g = some_operation(fout)
g = revertclass(g);

Function tofloat (see Appendix C for the code) converts an input image f
to floating-point. If f is a double or single image, then fout equals f. Other-
wise, fout equals im2single(f). Output revertclass can be used to convert
back to the same class as f. In other words, the idea is to convert the input

tofloat

See function intrans
in Section 3.2.3 for an
example of how tofloat
is used.

Recall from Section 1.6
that we the a margin icon
to denote the first use of
a function developed in
the book.

 2.8 ■ Array Indexing 33

image to single, perform operations using single precision, and then, if so
desired, convert the final output image to the same class as the input. The valid
image classes for f are those listed in the third column of the first four entries
in Table 2.4: logical, uint8, unint16, int16, double, and single.

 2.8	 Array Indexing

MATLAB supports a number of powerful indexing schemes that simplify
array manipulation and improve the efficiency of programs. In this section we
discuss and illustrate basic indexing in one and two dimensions (i.e., vectors
and matrices), as well as indexing techniques useful with binary images.

2.8.1	 Indexing Vectors
As discussed in Section 2.1.2, an array of dimension 1 N* is called a row vector.
The elements of such a vector can be accessed using a single index value (also
called a subscript). Thus, v(1) is the first element of vector v, v(2) is its second
element, and so forth. Vectors can be formed in MATLAB by enclosing the
elements, separated by spaces or commas, within square brackets. For exam-
ple,

>> v = [1 3 5 7 9]

v =

 1 3 5 7 9

>> v(2)

ans =

 3

A row vector is converted to a column vector (and vice versa) using the trans-
pose operator (.'):

>> w = v.'

w =

 1

 3

 5

 7

 9

To access blocks of elements, we use MATLAB’s colon notation. For example,
to access the first three elements of v we write

>> v(1:3)

ans =

 1 3 5

Using a single quote
without the period
computes the conjugate
transpose. When the data
are real, both transposes
can be used interchange-
ably. See Table 2.5.

transpose
(.')

colon (:)

34 Chapter 2 ■ Fundamentals

Similarly, we can access the second through the fourth elements

>> v(2:4)

ans =

 3 5 7

or all the elements from, say, the third through the last element:

>> v(3:end)

ans =

 5 7 9

where end signifies the last element in the vector.
Indexing is not restricted to contiguous elements. For example,

>> v(1:2:end)

ans =

 1 5 9

The notation 1:2:end says to start at 1, count up by 2, and stop when the count
reaches the last element. The steps can be negative:

>> v(end:−2:1)

ans =

 9 5 1

Here, the index count started at the last element, decreased by 2, and stopped
when it reached the first element.

Function linspace, with syntax

x = linspace(a, b, n)

generates a row vector x of n elements linearly-spaced between, and including,
a and b. We use this function in several places in later chapters. A vector can
even be used as an index into another vector. For example, we can select the
first, fourth, and fifth elements of v using the command

>> v([1 4 5])

ans =

 1 7 9

As we show in the following section, the ability to use a vector as an index into
another vector also plays a key role in matrix indexing.

end

linspace

 2.8 ■ Array Indexing 35

2.8.2	 Indexing Matrices
Matrices can be represented conveniently in MATLAB as a sequence of row
vectors enclosed by square brackets and separated by semicolons. For example,
typing

>> A = [1 2 3; 4 5 6; 7 8 9]

gives the 3 3* matrix

A =

 1 2 3

 4 5 6

 7 8 9

Note that the use of semicolons inside square brackets is different from their
use mentioned earlier to suppress output or to write multiple commands in a
single line. We select elements in a matrix just as we did for vectors, but now we
need two indices: one to establish a row location, and the other for the corre-
sponding column. For example, to extract the element in the second row, third
column of matrix A, we write

>> A(2, 3)

ans =

 6

A submatrix of A can be extracted by specifying a vector of values for both
the row and the column indices. For example, the following statement extracts
the submatrix of A containing rows 1 and 2 and columns 1, 2, and 3:

>> T2 = A([1 2], [1 2 3])

T2 =

 1 2 3

 4 5 6

Because the expression 1:K creates a vector of integer values from 1 through
K, the preceding statement could be written also as:

>> T2 = A(1:2, 1:3)

T2 =

 1 2 3

 4 5 6

The row and column indices do not have to be contiguous, nor do they have to
be in ascending order. For example,

36 Chapter 2 ■ Fundamentals

>> E = A([1 3], [3 2])

E =

 3 2

 9 8

The notation A([a b], [c d]) selects the elements in A with coordinates
(a, c), (a, d), (b, c), and (b, d). Thus, when we let E = A([1 3], [3 2]),
we are selecting the following elements in A: A(1, 3), A(1, 2), A(3, 3), and
A(3, 2).

The row or column index can also be a single colon. A colon in the row
index position is shorthand notation for selecting all rows. Similarly, a colon
in the column index position selects all columns. For example, the following
statement selects the entire 3rd column of A:

>> C3 = A(:, 3)

C3 =

 3

 6

 9

Similarly, this statement extracts the second row:

>> R2 = A(2, :)

R2 =

 4 5 6

Any of the preceding forms of indexing can be used on the left-hand side of
an assignment statement. The next two statements create a copy, B, of matrix A,
and then assign the value 0 to all elements in the 3rd column of B.

>> B = A;

>> B(:, 3) = 0

B =

 1 2 0

 4 5 0

 7 8 0

The keyword end, when it appears in the row index position, is shorthand nota-
tion for the last row. When end appears in the column index position, it indi-
cates the last column. For example, the following statement finds the element
in the last row and last column of A:

 2.8 ■ Array Indexing 37

>> A(end, end)

ans =

 9

When used for indexing, the end keyword can be mixed with arithmetic opera-
tions, as well as with the colon operator. For example:

>> A(end, end − 2)

ans =

 7

>> A(2:end, end:–2:1)

ans =

 6 4

 9 7

2.8.3	 Indexing with a Single Colon
The use of a single colon as an index into a matrix selects all the elements of
the array and arranges them (in column order) into a single column vector. For
example, with reference to matrix T2 in the previous section,

>> v = T2(:)

v =

 1

 4

 2

 5

 3

 6

This use of the colon is helpful when, for example, we want to find the sum of
all the elements of a matrix. One approach is to call function sum twice:

>> col_sums = sum(A)

col_sums =

 111 15 112

Function sum computes the sum of each column of A, storing the results into a
row vector. Then we call sum again, passing it the vector of column sums:

>> total_sum = sum(col_sums)

total_sum =

 238

sum

38 Chapter 2 ■ Fundamentals

An easier procedure is to use single-colon indexing to convert A to a column
vector, and pass the result to sum:

>> total_sum = sum(A(:))

total_sum =

 238

2.8.4	 Logical Indexing
Another form of indexing that you will find quite useful is logical indexing. A
logical indexing expression has the form A(D), where A is an array and D is a
logical array of the same size as A. The expression A(D) extracts all the ele-
ments of A corresponding to the 1-valued elements of D. For example,

>> D = logical([1 0 0; 0 0 1; 0 0 0])

D =

 1 0 0

 0 0 1

 0 0 0

>> A(D)

ans =

 1

 6

where A is as defined at the beginning of Section 2.8.2. The output of this meth-
od of logical indexing always is a column vector.

Logical indexing can be used also on the left-hand side of an assignment
statement. For example, using the same D as above,

>> A(D) = [30 40]

A =

 30 2 3

 4 5 40

 7 8 9

In the preceding assignment, the number of elements on the right-hand side
matched the number of 1-valued elements of D. Alternatively, the right-hand
side can be a scalar, like this:

>> A(D) = 100

A =

 2.8 ■ Array Indexing 39

 100 2 3

 4 5 100

 7 8 9

Because binary images are represented as logical arrays, they can be used
directly in logical indexing expressions to extract pixel values in an image
that correspond to 1-valued pixels in a binary image. You will see numerous
examples later in the book that use binary images and logical indexing.

2.8.5	 Linear Indexing
The final category of indexing useful for image processing is linear indexing.
A linear indexing expression is one that uses a single subscript to index a ma-
trix or higher-dimensional array. To illustrate the concept we will use a 4 4*
Hilbert matrix as an example:

>> H = hilb(4)

H =

 1.0000 0.5000 0.3333 0.2500

 0.5000 0.3333 0.2500 0.2000

 0.3333 0.2500 0.2000 0.1667

 0.2500 0.2000 0.1667 0.1429

H([2 11]) is an example of a linear indexing expression:

>> H([2 11])

ans =

 0.5000 0.2000

To see how this type of indexing works, number the elements of H from the first
to the last column in the order shown:

1.00001 0.50005 0.33339 0.250013

0.50002 0.33336 0.250010 0.200014

0.33333 0.25007 0.200011 0.166715

0.25004 0.20008 0.166712 0.142916

Here you can see that H([2  11]) extracts the 2nd and 11th elements of H,
based on the preceding numbering scheme.

In image processing, linear indexing is useful for extracting a set of pixel val-
ues from arbitrary locations. For example, suppose we want an expression that
extracts the values of H at row-column coordinates (1, 3), (2, 4), and (4, 3):

hilb

40 Chapter 2 ■ Fundamentals

>> r = [1 2 4];
>> c = [3 4 3];

Expression H(r, c) does not do what we want, as you can see:

>> H(r, c)

ans =

 0.3333 0.2500 0.3333

 0.2500 0.2000 0.2500

 0.1667 0.1429 0.1667

Instead, we convert the row-column coordinates to linear index values, as fol-
lows:

>> M = size(H, 1);
>> linear_indices = M*(c − 1) + r

linear_indices =

 9 14 12

>> H(linear_indices)

ans =

 0.3333 0.2000 0.1667

MATLAB functions sub2ind and ind2sub convert back and forth between
row-column subscripts and linear indices. For example,

>> linear_indices = sub2ind(size(H), r, c)

linear_indices =

 9 14 12

>> [r, c] = ind2sub(size(H), linear_indices)

r =

 1 2 4

c =

 3 4 3

Linear indexing is a basic staple in vectorizing loops for program optimization,
as discussed in Section 2.10.5.

■ The image in Fig. 2.7(a) is a 1024 1024* gray-scale image, f, of class uint8.
The image in Fig. 2.7(b) was flipped vertically using the statement

>> fp = f(end:−1:1, :);

sub2ind

ind2sub

EXAMPLE 2.5:
Some simple
image operations
using array
indexing.

 2.8 ■ Array Indexing 41

The image in Fig. 2.7(c) is a section out of image (a), obtained using the com-
mand

>> fc = f(257:768, 257:768);

Similarly, Fig. 2.7(d) shows a subsampled image obtained using the statement

>> fs = f(1:2:end, 1:2:end);

Finally, Fig. 2.7(e) shows a horizontal scan line through the middle of Fig. 2.7(a),
obtained using the command

>> plot(f(512, :))

Function plot is discussed in Section 3.3.1. 	 ■

plot

0 200 400 600 800 1000
0

50

100

150

200

250

300

c
a

d

b

e
FIGURE 2.7
Results obtained
using array
indexing.
(a) Original
image. (b) Image
flipped vertically.
(c) Cropped
image.
(d) Subsampled
image. (e) A
horizontal scan
line through the
middle of the
image in (a).

42 Chapter 2 ■ Fundamentals

2.8.6	 Selecting Array Dimensions
Operations of the form

operation(A, dim)

where operation denotes an applicable MATLAB operation, A is an array,
and dim is a scalar, are used frequently in this book. For example, if A is a 2-D
array, the statement

>> k = size(A, 1);

gives the size of A along its first dimension (i.e., it gives the number of rows in
A). Similarly, the second dimension of an array is in the horizontal direction,
so the statement size(A, 2) gives the number of columns in A. Using these
concepts, we could have written the last command in Example 2.5 as

>> plot(f(size(f, 1)/2, :))

MATLAB does not restrict the number of dimensions of an array, so being
able to extract the components of an array in any dimension is an important
feature. For the most part, we deal with 2-D arrays, but there are several in-
stances (as when working with color or multispectral images) when it is neces-
sary to be able to “stack” images along a third or higher dimension. We deal
with this in Chapters 7, 8, 12, and 13. Function ndims, with syntax

d = ndims(A)

gives the number of dimensions of array A. Function ndims never returns a
value less than 2 because even scalars are considered two dimensional, in the
sense that they are arrays of size 1 1* .

2.8.7	 Sparse Matrices
When a matrix has a large number of 0s, it is advantageous to express it in
sparse form to reduce storage requirements. Function sparse converts a ma-
trix to sparse form by “squeezing out” all zero elements. The basic syntax for
this function is

S = sparse(A)

For example, if

>> A = [1 0 0; 0 3 4; 0 2 0]

A =

 1 0 0
 0 3 4
 0 2 0

ndims

sparse

 2.9 ■ Some Important Standard Arrays 43

Then

>> S = sparse(A)

S =

 (1,1) 1
 (2,2) 3
 (3,2) 2
 (2,3) 4

from which we see that S contains only the (row, col) locations of nonzero ele-
ments (note that the elements are sorted by columns). To recover the original
(full) matrix, we use function full:

>> Original = full(S)

Original =

 1 0 0
 0 3 4
 0 2 0

A syntax used sometimes with function sparse has five inputs:

S = sparse(r, c, s, m, n)

where r and c are vectors containing, respectively, the row and column indi-
ces of the nonzero elements of the matrix we wish to express in sparse form.
Parameter s is a vector containing the values corresponding to index pairs
(r, c), and m and n are the row and column dimensions of the matrix. For
instance, the preceding matrix S can be generated directly using the com-
mand

>> S = sparse([1 2 3 2], [1 2 2 3], [1 3 2 4], 3, 3)

S =

 (1,1) 1
 (2,2) 3
 (3,2) 2
 (2,3) 4

Arithmetic and other operations (Section 2.10.2) on sparse matrices are car-
ried out in exactly the same way as with full matrices. There are a number of
other syntax forms for function sparse, as detailed in the help page for this
function.

 2.9	 Some Important Standard Arrays
Sometimes, it is useful to be able to generate image arrays with known charac-
teristics to try out ideas and to test the syntax of functions during development.
In this section we introduce eight array-generating functions that are used in

full

The syntax sparse(A)
requires that there be
enough memory to
hold the entire matrix.
When that is not the
case, and the location
and values of all nonzero
elements are known, the
alternate syntax shown
here provides a solution
for generating a sparse
matrix.

44 Chapter 2 ■ Fundamentals

later chapters. If only one argument is included in any of the following func-
tions, the result is a square array.

	 •	 zeros(M, N) generates an M * N matrix of 0s of class double.
	 •	 ones(M, N) generates an M * N matrix of 1s of class double.
	 •	 true(M, N) generates an M * N logical matrix of 1s.
	 •	 false(M, N) generates an M * N logical matrix of 0s.
	 •	 magic(M) generates an M * M “magic square.” This is a square array in which

the sum along any row, column, or main diagonal, is the same. Magic
squares are useful arrays for testing purposes because they are easy to
generate and their numbers are integers.

	 •	 eye(M) generates an M * M identity matrix.
	 •	 rand(M, N) generates an M * N matrix whose entries are uniformly distrib-

uted random numbers in the interval [0, 1].
	 •	 randn(M, N) generates an M * N matrix whose numbers are normally distrib-

uted (i.e., Gaussian) random numbers with mean 0 and variance 1.

For example,

>> A = 5*ones(3, 3)

A =

 5 5 5

 5 5 5

 5 5 5

>> magic(3)

ans =

 8 1 6

 3 5 7

 4 9 2

>> B = rand(2, 4)

B =

 0.2311 0.4860 0.7621 0.0185

 0.6068 0.8913 0.4565 0.8214

 2.10	 Introduction to M-Function Programming

One of the most powerful features of MATLAB is the capability it provides
users to program their own new functions. As you will learn shortly, MATLAB
function programming is flexible and particularly easy to learn.

2.10.1	 M-Files
M-files in MATLAB (see Section 1.3) can be scripts that simply execute a
series of MATLAB statements, or they can be functions that can accept argu-
ments and can produce one or more outputs. The focus of this section in on M-

 2.10 ■ Introduction to M-Function Programming 45

file functions. These functions extend the capabilities of both MATLAB and
the Image Processing Toolbox to address specific, user-defined applications.

M-files are created using a text editor and are stored with a name of the
form filename.m, such as average.m and filter.m. The components of a
function M-file are

	 •	 The function definition line
	 •	 The H1 line
	 •	 Help text
	 •	 The function body
	 •	 Comments

The function definition line has the form

function [outputs] = name(inputs)

For example, a function to compute the sum and product (two different out-
puts) of two images would have the form

function [s, p] = sumprod(f, g)

where f and g are the input images, s is the sum image, and p is the product im-
age. The name sumprod is chosen arbitrarily (subject to the constraints at the
end of this paragraph), but the word function always appears on the left, in
the form shown. Note that the output arguments are enclosed by square brack-
ets and the inputs are enclosed by parentheses. If the function has a single
output argument, it is acceptable to list the argument without brackets. If the
function has no output, only the word function is used, without brackets or
equal sign. Function names must begin with a letter, and the remaining char-
acters can be any combination of letters, numbers, and underscores. No spaces
are allowed. MATLAB recognizes function names up to 63 characters long.
Additional characters are ignored.

Functions can be called at the command prompt. For example,

>> [s, p] = sumprod(f, g);

or they can be used as elements of other functions, in which case they become
subfunctions. As noted in the previous paragraph, if the output has a single
argument, it is acceptable to write it without the brackets, as in

>> y = sum(x);

The H1 line is the first text line. It is a single comment line that follows the
function definition line. There can be no blank lines or leading spaces between
the H1 line and the function definition line. An example of an H1 line is

%SUMPROD Computes the sum and product of two images.

It is customary to omit
the space between %
and the first word in the
H1 line.

46 Chapter 2 ■ Fundamentals

The H1 line is the first text that appears when a user types

>> help function_name

at the MATLAB prompt. Typing lookfor keyword displays all the H1 lines
containing the string keyword. This line provides important summary informa-
tion about the M-file, so it should be as descriptive as possible.

Help text is a text block that follows the H1 line, without any blank lines
in between the two. Help text is used to provide comments and on-screen
help for the function. When a user types help function_name at the prompt,
MATLAB displays all comment lines that appear between the function defini-
tion line and the first noncomment (executable or blank) line. The help system
ignores any comment lines that appear after the Help text block.

The function body contains all the MATLAB code that performs computa-
tions and assigns values to output arguments. Several examples of MATLAB
code are given later in this chapter.

All lines preceded by the symbol “%” that are not the H1 line or Help text
are considered function comment lines and are not considered part of the Help
text block. It is permissible to append comments to the end of a line of code.

M-files can be created and edited using any text editor and saved with the
extension .m in a specified directory, typically in the MATLAB search path.
Another way to create or edit an M-file is to use the edit function at the
prompt. For example,

>> edit sumprod

opens for editing the file sumprod.m if the file exists in a directory that is in
the MATLAB path or in the Current Directory. If the file cannot be found,
MATLAB gives the user the option to create it. The MATLAB editor window
has numerous pull-down menus for tasks such as saving, viewing, and debug-
ging files. Because it performs some simple checks and uses color to differen-
tiate between various elements of code, the MATLAB text editor is recom-
mended as the tool of choice for writing and editing M-functions.

2.10.2	 Operators
MATLAB operators are grouped into three main categories:

	 •	 Arithmetic operators that perform numeric computations
	 •	 Relational operators that compare operands quantitatively
	 •	 Logical operators that perform the functions AND, OR, and NOT

These are discussed in the remainder of this section.

Arithmetic Operators

MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic opera-
tions are carried out element by element and can be used with multidimen-
sional arrays. The period (dot) character (.) distinguishes array operations

help

lookfor

edit

. dot
notation

 2.10 ■ Introduction to M-Function Programming 47

from matrix operations. For example, A*B indicates matrix multiplication in
the traditional sense, whereas A.*B indicates array multiplication, in the sense
that the result is an array, the same size as A and B, in which each element is the
product of corresponding elements of A and B. In other words, if C = A.*B, then
C(I, J) = A(I, J)*B(I, J). Because matrix and array operations are the same
for addition and subtraction, the character pairs .+ and .– are not used.

When writing an expression such as B = A, MATLAB makes a “note” that
B is equal to A, but does not actually copy the data into B unless the contents
of A change later in the program. This is an important point because using
different variables to “store” the same information sometimes can enhance
code clarity and readability. Thus, the fact that MATLAB does not duplicate
information unless it is absolutely necessary is worth remembering when writ-
ing MATLAB code. Table 2.5 lists the MATLAB arithmetic operators, where A
and B are matrices or arrays and a and b are scalars. All operands can be real or
complex. The dot shown in the array operators is not necessary if the operands
are scalars. Because images are 2-D arrays, which are equivalent to matrices,
all the operators in the table are applicable to images.

The difference between array and matrix operations is important. For
example, consider the following:

Throughout the book, we
use the term array
operations interchange-
ably with the terminol-
ogy operations between
pairs of corresponding
elements, and also
elementwise operations.

Operator Name Comments and Examples

+ Array and matrix addition a + b, A + B, or a + A.
− Array and matrix subtraction a − b, A − B, A − a, or a − A.

.* Array multiplication Cv= A.*B, C(I, J) = A(I, J)*B(I, J).

* Matrix multiplication A*B, standard matrix multiplication, or a*A, multiplication
of a scalar times all elements of A.

./ Array right division† C = A./B, C(I, J) = A(I, J)/B(I, J).

.\ Array left division† C = A.\B, C(I, J) = B(I, J)/A(I, J).

/ Matrix right division A/B is the preferred way to compute A*inv(B).

\ Matrix left division A\B is the preferred way to compute inv(A)*B.

.^ Array power If C = A.^B, then C(I, J) = A(I, J)^B(I, J).

^ Matrix power See help for a discussion of this operator.

.' Vector and matrix transpose A.', standard vector and matrix transpose.

' Vector and matrix complex
conjugate transpose

A', standard vector and matrix conjugate transpose. When A
is real A.' = A'.

+ Unary plus +A is the same as 0 + A.
− Unary minus  −A is the same as 0 − A or −1*A.
: Colon Discussed in Section 2.8.1.

TABLE 2.5 Array and matrix arithmetic operators. Characters a and b are scalars.

† In division, if the denominator is 0, MATLAB reports the result as Inf (denoting infinity). If both the numerator and denomina-
tor are 0, the result is reported as NaN (Not a Number).

48 Chapter 2 ■ Fundamentals

A =
a1 a2
a3 a4

B =
b1 b2
b3 b4



















and

The array product of A and B gives the result

A.*B =
a1b1 a2b2
a3b3 a4b4











whereas the matrix product yields the familiar result:

A* B =
a1b1+ a2b3 a1b2 + a2b4
a3b1+ a4b3 a3b2 + a4b4











Most of the arithmetic, relational, and logical operations involving images are
array operations.

Example 2.6, to follow, uses functions max and min. The former function has
the syntax forms

C = max(A)
C = max(A, B)
C = max(A, [], dim)
[C, I] = max(...)

In the first form, if A is a vector, max(A) returns its largest element; if A is
a matrix, then max(A) treats the columns of A as vectors and returns a row
vector containing the maximum element from each column. In the second
form, max(A, B) returns an array the same size as A and B with the largest
elements taken from A or B. In the third form, max(A, [], dim) returns the
largest elements along the dimension of A specified by scalar dim. For example,
max(A, [], 1) produces the maximum values along the first dimension (the
rows) of A. Finally, [C, I] = max(...) also finds the indices of the maximum
values of A, and returns them in output vector I. If there are duplicate maxi-
mum values, the index of the first one found is returned. The dots indicate the
syntax used on the right of any of the previous three forms. Function min has
the same syntax forms just described for max.

■ Suppose that we want to write an M-function, call it imblend, that forms
a new image as an equally-weighted sum of two input images. The function
should output the new image, as well as the maximum and minimum values of
the new image. Using the MATLAB editor we write the desired function as
follows:

function [w, wmax, wmin] = imblend(f, g)
%IMBLEND Weighted sum of two images.
% [W, WMAX, WMIN] = IMBLEND(F, G) computes a weighted sum (W) of
% two input images, F and G. IMBLEND also computes the maximum
% (WMAX) and minimum (WMIN) values of W. F and G must be of
% the same size and numeric class. The output image is of the
% same class as the input images.

The syntax forms shown
for max apply also to
function min.

max
min

EXAMPLE 2.6:
Illustration of
arithmetic
operators and
functions max and
min.

 2.10 ■ Introduction to M-Function Programming 49

w1 = 0.5 * f;
w2 = 0.5 * g;
w = w1 + w2;

wmax = max(w(:));
wmin = min(w(:));

Observe the use of single-colon indexing, as discussed in Section 2.8.1, to
compute the minimum and maximum values. Suppose that f = [1 2; 3 4] and
g = [1 2; 2 1]. Calling imblend with these inputs results in the following out-
put:

>> [w, wmax, wmin] = imblend(f, g)

w =

 1.0000 2.0000

 2.5000 2.5000

wmax =

 2.5000

wmin =

 1

Note in the code for imblend that the input images, f and g, were multiplied
by the weights (0.5) first before being added together. Instead, we could have
used the statement

>> w = 0.5 * (f + g);

However, this expression does not work well for integer classes because when
MATLAB evaluates the subexpression (f + g), it saturates any values that
overflow the range of the class of f and g. For example, consider the following
scalars:

>> f = uint8(100);
>> g = uint8(200);
>> t = f + g

t =

 255

Instead of getting a sum of 300, the computed sum saturated to the maximum
value for the uint8 class. So, when we multiply the sum by 0.5, we get an incor-
rect result:

>> d = 0.5 * t

d =

 128

50 Chapter 2 ■ Fundamentals

Compare this with the result when we multiply by the weights first before add-
ing:

>> e1 = 0.5 * f

e1 =

 50

>> e2 = 0.5 * g

e2 =

 100

>> e = w1 + w2

e =

 150

A good alternative is to use the image arithmetic function imlincomb, which
computes a weighted sum of images, for any set of weights and any number of
images. The calling syntax for this function is

g = imlincomb(k1, f1, k2, f2,...)

For example, using the previous scalar values,

>> w = imlincomb(0.5, f, 0.5, g)

w =

 150

Typing help imblend at the command prompt results in the following output:

%IMBLEND Weighted sum of two images.
% [W, WMAX, WMIN] = IMBLEND(F, G) computes a weighted sum (W) of
% two input images, F and G. IMBLEND also computes the maximum
% (WMAX) and minimum (WMIN) values of W. F and G must be of
% the same size and numeric class. The output image is of the

% same class as the input images.	 ■

Relational Operators

MATLAB’s relational operators are listed in Table 2.6. These are array opera-
tors; that is, they compare corresponding pairs of elements in arrays of equal
dimensions.

■ Although the key use of relational operators is in flow control (e.g., in if
statements), which is discussed in Section 2.10.3, we illustrate briefly how these
operators can be used directly on arrays. Consider the following:

>> A = [1 2 3; 4 5 6; 7 8 9]

imlincomb

EXAMPLE 2.7:
Relational
operators.

