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> 3. Rootfinding

Calculating the roots of an equation

f(x) = 0 (7.1)

is a common problem in applied mathematics.

We will

explore some simple numerical methods for solving this equation,
and also will

consider some possible difficulties
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> 3. Rootfinding

The function f(x) of the equation (7.1)

will usually have at least one continuous derivative, and often

we will have some estimate of the root that is being sought.

By using this information, most numerical methods for (7.1) compute
a sequence of increasingly accurate estimates of the root.

These methods are called iteration methods.

We will study three different methods

1 the bisection method

2 Newton’s method

3 secant method

and give a general theory for one-point iteration methods.
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> 3. Rootfinding > 3.1 The bisection method

In this chapter we assume that f : R→ R i.e.,
f(x) is a function that is real valued and that x is a real variable.

Suppose that

f(x) is continuous on an interval [a, b], and

f(a)f(b) < 0 (7.2)

Then f(x) changes sign on [a, b], and f(x) = 0 has at least one root on the
interval.

Definition

The simplest numerical procedure for finding a root is to repeatedly halve the
interval [a, b], keeping the half for which f(x) changes sign. This procedure is
called the bisection method, and is guaranteed to converge to a root,
denoted here by α.

3. Rootfinding Math 1070



> 3. Rootfinding > 3.1 The bisection method

Suppose that we are given an interval [a, b] satisfying (7.2) and an error
tolerance ε > 0.
The bisection method consists of the following steps:

B1 Define c = a+b
2 .

B2 If b− c ≤ ε, then accept c as the root and stop.

B3 If sign[f(b)] · sign[f(c)] ≤ 0, then set a = c.
Otherwise, set b = c. Return to step B1.

The interval [a, b] is halved with each loop through steps B1 to B3.
The test B2 will be satisfied eventually, and with it the condition |α− c| ≤ ε
will be satisfied.

Notice that in the step B3 we test the sign of sign[f(b)] · sign[f(c)] in order

to avoid the possibility of underflow or overflow in the multiplication of f(b)
and f(c).
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> 3. Rootfinding > 3.1 The bisection method

Example

Find the largest root of

f(x) ≡ x6 − x− 1 = 0 (7.3)

accurate to within ε = 0.001.

With a graph, it is easy to check that 1 < α < 2

We choose a = 1, b = 2; then f(a) = −1, f(b) = 61, and (7.2) is satisfied.
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> 3. Rootfinding > 3.1 The bisection method

Use bisect.m

The results of the algorithm B1 to B3:

n a b c b− c f(c)
1 1.0000 2.0000 1.5000 0.5000 8.8906
2 1.0000 1.5000 1.2500 0.2500 1.5647
3 1.0000 1.2500 1.1250 0.1250 -0.0977
4 1.1250 1.2500 1.1875 0.0625 0.6167
5 1.1250 1.1875 1.1562 0.0312 0.2333
6 1.1250 1.1562 1.1406 0.0156 0.0616
7 1.1250 1.1406 1.1328 0.0078 -0.0196
8 1.1328 1.1406 1.1367 0.0039 0.0206
9 1.1328 1.1367 1.1348 0.0020 0.0004
10 1.1328 1.1348 1.1338 0.00098 -0.0096

Table: Bisection Method for (7.3)

The entry n indicates that the associated row corresponds to iteration

number n of steps B1 to B3.
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> 3. Rootfinding > 3.1.1 Error bounds

Let an, bn and cn denote the nth computed values of a, b and c:

bn+1 − an+1 =
1
2
(bn − an), n ≥ 1

and

bn − an =
1

2n−1
(b− a) (7.4)

where b− a denotes the length of the original interval with which we started.
Since the root α ∈ [an, cn] or α ∈ [cn, bn], we know that

|α− cn| ≤ cn − an = bn − cn =
1
2
(bn − an) (7.5)

This is the error bound for cn that is used in step B2.
Combining it with (7.4), we obtain the further bound

|α − cn| ≤
1

2n
(b − a).

This shows that the iterates cn → α as n→∞.
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> 3. Rootfinding > 3.1.1 Error bounds

To see how many iterations will be necessary, suppose we want to have
|α− cn| ≤ ε

This will be satisfied if
1
2n

(b− a) ≤ ε

Taking logarithms of both sides, we can solve this to give

n ≥
log
(
b−a
ε

)
log 2

For the previous example (7.3), this results in

n ≥
log
(

1
0.001

)
log 2

·= 9.97

i.e., we need n = 10 iterates, exactly the number computed.
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> 3. Rootfinding > 3.1.1 Error bounds

There are several advantages to the bisection method

It is guaranteed to converge.

The error bound (7.5) is guaranteed to decrease by one-half with each
iteration

Many other numerical methods have variable rates of decrease for the error,
and these may be worse than the bisection method for some equations.

The principal disadvantage of the bisection method is that

generally converges more slowly than most other methods.

For functions f(x) that have a continuous derivative, other methods are

usually faster. These methods may not always converge; when they do

converge, however, they are almost always much faster than the bisection

method.
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> 3. Rootfinding > 3.2 Newton’s method

Figure: The schematic for Newton’s method
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> 3. Rootfinding > 3.2 Newton’s method

There is usually an estimate of the root α, denoted x0.
To improve it, consider the tangent to the graph at the point
(x0, f(x0)).
If x0 is near α, then the tangent line ≈ the graph of y = f(x) for
points about α.
Then the root of the tangent line should nearly equal α, denoted x1.
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> 3. Rootfinding > 3.2 Newton’s method

The line tangent to the graph of y = f(x) at (x0, f(x0)) is the graph
of the linear Taylor polynomial:

p1(x) = f(x0) + f ′(x0)(x− x0)

The root of p1(x) is x1:

f(x0) + f ′(x0)(x1 − x0) = 0

i.e.,

x1 = x0 −
f(x0)
f ′(x0)

.
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> 3. Rootfinding > 3.2 Newton’s method

Since x1 is expected to be an improvement over x0 as an estimate of α, we
repeat the procedure with x1 as initial guess:

x2 = x1 −
f(x1)
f ′(x1)

.

Repeating this process, we obtain a sequence of numbers, iterates,
x1, x2, x3, . . . hopefully approaching the root α.

The iteration formula

xn+1 = xn −
f(xn)
f ′(xn)

, n = 0, 1, 2, . . . (7.6)

is referred to as the Newton’s method, or Newton-Raphson, for solving

f(x) = 0.
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> 3. Rootfinding > 3.2 Newton’s method

Example

Using Newton’s method, solve (7.3) used earlier for the bisection method.

Here
f(x) = x6 − x− 1, f ′(x) = 6x5 − 1

and the iteration

xn+1 = xn −
x6
n − xn − 1
6x5

n − 1
, n ≥ 0 (7.7)

The true root is α
·= 1.134724138, and x6

·= α to nine significant digits.

Newton’s method may converge slowly at first. However, as the iterates come
closer to the root, the speed of convergence increases.
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> 3. Rootfinding > 3.2 Newton’s method

Use newton.m

n xn f(xn) xn − xn−1 α− xn−1

0 1.500000000 8.89E+1
1 1.300490880 2.54E+10 -2.00E-1 -3.65E-1
2 1.181480420 5.38E−10 -1.19E-1 -1.66E-1
3 1.139455590 4.92E−20 -4.20E-2 -4.68E-2
4 1.134777630 5.50E−40 -4.68E-3 -4.73E-3
5 1.134724150 7.11E−80 -5.35E-5 -5.35E-5
6 1.134724140 1.55E−15 -6.91E-9 -6.91E-9

1.134724138

Table: Newton’s Method for x6 − x− 1 = 0

Compare these results with the results for the bisection method.
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> 3. Rootfinding > 3.2 Newton’s method

Example

One way to compute a
b on early computers (that had hardware arithmetic for

addition, subtraction and multiplication) was by multiplying a and 1
b , with 1

b
approximated by Newton’s method.

f(x) ≡ b− 1
x

= 0

where we assume b > 0. The root is α = 1
b , the derivative is

f ′(x) =
1
x2

and Newton’s method is given by

xn+1 = xn −
b− 1

xn

1
x2

n

,

i.e.,

xn+1 = xn(2− bxn), n ≥ 0 (7.8)
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> 3. Rootfinding > 3.2 Newton’s method

This involves only multiplication and subtraction.
The initial guess should be chosen x0 > 0.
For the error it can be shown

Rel(xn+1) = [Rel(xn)]2, n ≥ 0 (7.9)

where

Rel(xn) =
α− xn
α

the relative error when considering xn as an approximation to α = 1/b. From
(7.9) we must have

|Rel(x0)| < 1

Otherwise, the error in xn will not decrease to zero as n increases.
This contradiction means

−1 <
1
b − x0

1
b

< 1

equivalently

0 < x0 <
2
b

(7.10)
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> 3. Rootfinding > 3.2 Newton’s method

The iteration (7.8), xn+1 = xn(2− bxn), n ≥ 0, converges to α = 1
b if and

only if the initial guess x0 satisfies
0 < x0 <

2
b

Figure: The iterative solution of b− 1
x = 0
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> 3. Rootfinding > 3.2 Newton’s method

If the condition on the initial guess is violated, the calculated value of
x1 and all further iterates would be negative.

The result (7.9) shows that the convergence is very rapid, once we
have a somewhat accurate initial guess.

For example, suppose |Rel(x0)| = 0.1, which corresponds to a 10%
error in x0. Then from (7.9)

Rel(x1) = 10−2, Rel(x2) = 10−4

Rel(x3) = 10−8, Rel(x4) = 10−16
(7.11)

Thus, x3 or x4 should be sufficiently accurate for most purposes.
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> 3. Rootfinding > 3.2.1 Error Analysis

Error analysis

Assume that f ∈ C2 in some interval about the root α, and

f ′(α) 6= 0, (7.12)

i.e., the graph y = f(x) is not tangent to the x-axis when the graph
intersects it at x = α. The case in which f ′(α) = 0 is treated in Section 3.5.
Note that combining (7.12) with the continuity of f ′(x) implies that
f ′(x) 6= 0 for all x near α.
By Taylor’s theorem

f(α) = f(xn) + (α− xn)f ′(xn) +
1
2
(α− xn)2f ′′(cn)

with cn an unknown point between α and xn.
Note that f(α) = 0 by assumption, and then divide by f ′(xn) to obtain

0 =
f(xn)
f ′(xn)

+ α− xn + (α− xn)2
f ′′(cn)
2f ′(xn)

.
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> 3. Rootfinding > 3.2.1 Error Analysis

Quadratic convergence of Newton’s method

Solving for α− xn+1, we have

α− xn+1 = (α− xn)2
[
−f ′′(cn)
2f ′(xn)

]
(7.13)

This formula says that the error in xn+1 is nearly proportional to the
square of the error in xn.
When the initial error is sufficiently small, this shows that the error in
the succeeding iterates will decrease very rapidly, just as in (7.11).

Formula (7.13) can also be used to give a formal mathematical proof
of the convergence of Newton’s method.
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> 3. Rootfinding > 3.2.1 Error Analysis

Example

For the earlier iteration (7.7), i.e., xn+1 = xn − x6
n−xn−1
6x5

n−1 , n ≥ 0, we have

f ′′(x) = 30x4. If we are near the root α, then

−f ′′(cn)
2f ′(cn)

≈ −f
′′(α)

2f ′(α)
=

−30α4

2(6α5 − 1)
·= −2.42

Thus for the error in (7.7),

α− xn+1 ≈ −2.42(α− xn)2 (7.14)

This explains the rapid convergence of the final iterates in table.
For example, consider the case of n = 3, with α− x3

·= −.73E − 3. Then
(7.14) predicts

α− x4
·= 2.42(4.73E − 3)3 ·= −5.42E − 5

which compares well to the actual error of α− x4
·= 5.35E − 5.
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> 3. Rootfinding > 3.2.1 Error Analysis

If we assume that the iterate xn is near the root α, the multiplier on the RHS

of (7.13), i.e., α− xn+1 = (α− xn)2
[
−f ′′(cn)
2f ′(xn)

]
can be written as

−f ′′(cn)
2f ′(xn)

≈ −2f ′′(α)
2f ′(α)

≡M. (7.15)

Thus,

α− xn+1 ≈M(α− xn)2, n ≥ 0

Multiply both sides by M to get

M(α− xn+1) ≈ [M(α− xn)]2

Assuming that all of the iterates are near α, then inductively we can show that

M(α− xn) ≈ [M(α− x0)]2
n

, n ≥ 0
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> 3. Rootfinding > 3.2.1 Error Analysis

Since we want α− xn to converge to zero, this says that we must have

|M(α− x0)| < 1

|α− x0| <
1
|M |

=
∣∣∣∣2f ′(α)
f ′′(α)

∣∣∣∣ (7.16)

If the quantity |M | is very large, then x0 will have to be chosen very close to
α to obtain convergence. In such situation, the bisection method is probably
an easier method to use.
The choice of x0 can be very important in determining whether
Newton’s method will converge.

Unfortunately, there is no single strategy that is always effective in choosing x0.

In most instances, a choice of x0 arises from physical situation that led
to the rootfinding problem.

In other instances, graphing y = f(x) will probably be needed, possibly
combined with the bisection method for a few iterates.
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> 3. Rootfinding > 3.2.2 Error estimation

We are computing sequence of iterates xn, and we would like to estimate
their accuracy to know when to stop the iteration.
To estimate α− xn, note that, since f(α) = 0, we have

f(xn) = f(xn)− f(α) = f ′(ξn)(xn − α)

for some ξn between xn and α, by the mean-value theorem.
Solving for the error, we obtain

α− xn =
−f(xn)
f ′(ξn)

≈ −f(xn)
f ′(xn)

provided that xn is so close to α that f ′(xn)
·= f ′(ξn). From the

Newton-Raphson method (7.6), i.e., xn+1 = xn − f(xn)
f ′(xn) , this becomes

α− xn ≈ xn+1 − xn (7.17)

This is the standard error estimation formula for Newton’s method, and it is
usually fairly accurate.

However, this formula is not valid if f ′(α) = 0, a case that is discussed in Section 3.5.
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> 3. Rootfinding > 3.2.2 Error estimation

Example

Consider the error in the entry x3 of the previous table.

α− x3
·= −4.73E − 3

x4 − x3
·= −4.68E − 3

This illustrates the accuracy of (7.17) for that case.
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> 3. Rootfinding > Error Analysis - linear convergence

Linear convergence of Newton’s method

Example

Use Newton’s Method to find a root of f(x) = x2.

xn+1 = xn − f(xn)
f ′(xn) = xn − x2

n

2xn
= xn

2 .

So the method converges to the root α = 0, but the convergence is only linear

en+1 =
en
2
.

Example

Use Newton’s Method to find a root of f(x) = xm.

xn+1 = xn − xm
n

mxm−1
= m−1

m xn.

The method converges to the root α = 0, again with linear convergence

en+1 =
m− 1
m

en.
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> 3. Rootfinding > Error Analysis - linear convergence

Linear convergence of Newton’s method

Theorem

Assume f ∈ Cm+1[a, b] and has a multiplicity m root α. Then Newton’s
Method is locally convergent to α, and the absolute error en satisfies

lim
n→∞

en+1

en
=
m− 1
m

. (7.18)
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> 3. Rootfinding > Error Analysis - linear convergence

Linear convergence of Newton’s method

Example

Find the multiplicity of the root α = 0 of f(x) = sinx+ x2 cosx− x2 − x,
and estimate the number of steps in NM for convergence to 6 correct decimal
places (use x0 = 1).

f(x) = sinx+ x2 cosx− x2 − x ⇒ f(0) = 0
f ′(x) = cosx+ 2x cosx− x2 sinx− 2x− 1 ⇒ f ′(0) = 0
f ′′(x) = − sinx+ 2 cosx− 4x sinx− x2 cosx− 2 ⇒ f ′′(0) = 0
f ′′′(x) = − cosx− 6 sinx− 6x cosx+ x2 sinx ⇒ f ′′′(0) = −1

Hence α = 0 is a triple root, m = 3; so en+1 ≈ 2
3en.

Since e0 = 1, we need to solve(
2
3

)n
< 0.5× 10−6, n >

log10 .5− 6
log10 2/3

≈ 35.78.
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> 3. Rootfinding > Modified Newton’s Method

Modified Newton’s Method

If the multiplicity of a root is known in advance, convergence of Newton’s
Method can be improved.

Theorem

Assume f ∈ Cm+1[a, b] which contains a root α of multiplicity m > 1. Then
Modified Newton’s Method

xn+1 = xn −m
f(xn)
f ′(xn)

(7.19)

converges locally and quadratically to α.

Proof. MNM: mf(xn) = (xn − xn+1)f ′(xn).
Taylor’s formula:

0 = xn−xn+1
m f ′(xn) + (α− xn)f ′(xn) + f ′′(c) (α−xn)2

2!

= α−xn+1
m f ′(xn) + (α− xn)f ′(xn)

(
1− 1

m

)
+ f ′′(c) (α−xn)2

2!

= α−xn+1
m f ′(xn) + (α− xn)2

(
1− 1

m

)
f ′′(ξ) + (α− xn)2 f

′′(c)
2!
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> 3. Rootfinding > Nonconvergent behaviour of Newton’s Method

Failure of Newton’s Method

Example

Apply Newton’s Method to f(x) = −x4 + 3x2 + 2 with starting guess x0 = 1.

The Newton formula is

xn+1 = xn − −x4+3x2
n+2

−4x3
n+6xn

,

which gives

x1 = −1, x2 = 1, . . .
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> 3. Rootfinding > Nonconvergent behaviour of Newton’s Method

Failure of Newton’s Method
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> 3. Rootfinding > 3.3 The secant method

The Newton method is based on approximating the graph of y = f(x) with a
tangent line and on then using a root of this straight line as an approximation
to the root α of f(x).
From this perspective,
other straight-line approximation to y = f(x) would also lead to methods of
approximating a root of f(x). One such straight-line approximation leads to
the secant method.

Assume that two initial guesses to α are known and denote them by
x0 and x1.

They may occur

on opposite sides of α, or

on the same side of α.
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> 3. Rootfinding > 3.3 The secant method

Figure: A schematic of the secant method: x1 < α < x0
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> 3. Rootfinding > 3.3 The secant method

Figure: A schematic of the secant method: α < x1 < x0
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> 3. Rootfinding > 3.3 The secant method

To derive a formula for x2, we proceed in a manner similar to that used to
derive Newton’s method:

Find the equation of the line and then find its root x2.
The equation of the line is given by

y = p(x) ≡ f(x1) + (x− x1) ·
f(x1)− f(x0)

x1 − x0

Solving p(x2) = 0, we obtain

x2 = x1 − f(x1) ·
x1 − x0

f(x1)− f(x0)
.

Having found x2, we can drop x0 and use x1, x2 as a new set of approximate
values for α. This leads to an improved values x3; and this can be continued
indefinitely. Doing so, we obtain the general formula for the secant method

xn+1 = xn −
xn − xn−1

f(xn) − f(xn−1)
, n ≥ 1. (7.20)

It is called a two-point method, since two approximate values are needed to

obtain an improved value. The bisection method is also a two-point method,

but the secant method will almost always converge faster than bisection.
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> 3. Rootfinding > 3.3 The secant method

Two steps of the secant method for f(x) = x3 + x− 1, x0 = 0, x1 = 1
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> 3. Rootfinding > 3.3 The secant method

Use secant.m

Example

We solve the equation f(x) ≡ x6 − x− 1 = 0.
n xn f(xn) xn − xn−1 α− xn−1

0 2.0 61.0
1 1.0 -1.0 -1.0
2 1.01612903 -9.15E-1 1.61E-2 1.35E-1
3 1.19057777 6.57E-1 1.74E-1 1.19E-1
4 1.11765583 -1.68E-1 -7.29E-2 -5.59E-2
5 .113253155 -2.24E-2 -2.24E-2 1.71E-2
6 1.13481681 9.54E-4 2.29E-3 2.19E-3
7 1.13472365 -5.07E-6 -9.32E-5 -9.27E-5
8 1.13472414 -1.13E-9 4.92E-7 4.92E-7

The iterate x8 equals α rounded to nine significant digits.

As with the Newton method (7.7) for this equation, the initial iterates do not

converge rapidly. But as the iterates become closer to α, the speed of

convergence increases.
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> 3. Rootfinding > 3.3.1 Error Analysis

By using techniques from calculus and some algebraic manipulation, it
is possible to show that the iterates xn of (7.20) satisfy

α − xn+1 = (α − xn)(α − xn−1)
−f ′′(ξn)

2f ′(ζn)
. (7.21)

The unknown number ζn is between xn and xn−1, and the unknown
number ξn is between the largest and the smallest of the numbers
α, xn and xn−1. The error formula closely resembles the Newton error
formula (7.13). This should be expected, since the secant method can
be considered as an approximation of Newton’s method, based on using

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
.

Check that the use of this in the Newton formula (7.6) will yield (7.20).
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> 3. Rootfinding > 3.3.1 Error Analysis

The formula (7.21) can be used to obtain the further error result that
if x0 and x1 are chosen sufficiently close to α, then we have
convergence and

lim
n→∞

|α− xn+1|
|α− xn|r

=
∣∣∣∣ f ′′(α)
2f ′(α)

∣∣∣∣r−1

≡ c

where r =
√

5+1
2

·= 1.62. Thus,

|α − xn+1| ≈ c|α − xn|1.62 (7.22)

as xn approaches α. Compare this with the Newton estimate (7.15), in
which the exponent is 2 rather then 1.62. Thus, Newton’s method
converges more rapidly than the secant method. Also, the constant c
in (7.22) plays the same role as M in (7.15), and they are related by

c = |M |r−1.

The restriction (7.16) on the initial guess for Newton’s method can be
replaced by a similar one for the secant iterates, but we omit it.
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> 3. Rootfinding > 3.3.1 Error Analysis

Finally, the result (7.22) can be used to justify the error estimate

α− xn−1 ≈ xn − xn−1

for iterates xn that are sufficiently close to the root.

Example

For the iterate x5 in the previous Table

α− x5
·= 2.19E − 3

x6 − x5
·= 2.29E − 3

(7.23)
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> 3. Rootfinding > 3.3.2 Comparison of Newton and Secant methods

From the foregoing discussion, Newton’s method converges more rapidly
than the secant method. Thus,
Newton’s method should require fewer iterations to attain a given
error tolerance.

However, Newton’s method requires two function evaluations per
iteration, that of f(xn) and f ′(xn). And the secant method requires
only one evaluation, f(xn), if it is programed carefully to retain the
value of f(xn−1) from the preceding iteration. Thus,
the secant method will require less time per iteration than the
Newton method.

The decision as to which method should be used will depend on the factors
just discussed, including the difficulty or expense of evaluating f ′(xn);
and it will depend on intangible human factors, such as convenience of use.

Newton’s method is very simple to program and to understand; but for many

problems with a complicated f ′(x), the secant method will probably be faster

in actual running time on a computer.
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> 3. Rootfinding > 3.3.2 Comparison of Newton and Secant methods

General remarks

The derivation of both the Newton and secant methods illustrate a general
principle of numerical analysis.

When trying to solve a problem for which there is no direct or simple method
of solution, approximate it by another problem that you can solve more easily.

In both cases, we have replaced the solution of
f(x) = 0

with the solution of a much simpler rootfinding problem for a linear equation.

GENERAL OBSERVATION
When dealing with problems involving differentiable functions f(x),
move to a nearby problem by approximating each such f(x) with a
linear problem.

The linearization of mathematical problems is common throughout applied

mathematics and numerical analysis.

3. Rootfinding Math 1070



> 3. Rootfinding > 3.3 The MATLAB function fzero

MATLAB contains the rootfinding routine fzero that uses ideas
involved in the bisection method and the secant method. As with
many MATLAB programs, there are several possible calling sequences.

The command
root = fzero(f name, [a, b])

produces a root within [a, b], where it is assumed that
f(a)f(b) ≤ 0.

The command
root = fzero(f name, x0)

tries to find a root of the function near x0.

The default error tolerance is the maximum precision of the machine,
although this can be changed by the user.
This is an excellent rootfinding routine, combining guaranteed
convergence with high efficiency.

3. Rootfinding Math 1070



> 3. Rootfinding > Method of False Position

There are three generalization of the Secant method that are also
important. The Method of False Position, or Regula Falsi, is similar
to the Bisection Method, but where the midpoint is replaced by a
Secant Method-like approximation. Given an interval [a, b] that
brackets a root (assume that f(a)f(b) < 0), define the next point

c =
bf(a)− af(b)
f(a)− f(b)

as in the Secant Method, but unlike the Secant Method, the new point
is guaranteed to lie in [a, b], since the points (a, f(a)) and (b, f(b)) lie
on separate sides of the x-axis. The new interval, either [a, c] or [c, b],
is chosen according to whether f(a)f(c) < 0 or f(c)f(b) < 0,
respectively, and still brackets a root.
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> 3. Rootfinding > Method of False Position

Given interval [a, b] such that f(a)f(b) < 0
for i = 1, 2, 3, . . .

c =
bf(a)− af(b)
f(a)− f(b)

if f(c) = 0, stop, end

if f(a)f(c) < 0
b = c

else

a = c

end

end

The Method of False Position at first appears to be an improvement on both

the Bisection Method and the Secant Method, taking the best properties of

each. However, while the Bisection method guarantees cutting the

uncertainty by 1/2 on each step, False Position makes no such promise, and

for some examples can converge very slowly.
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> 3. Rootfinding > Method of False Position

Example

Apply the Method of False Position on initial interval [-1,1] to find the
root r = 1 of f(x) = x3 − 2x2 + 3

2x.

Given x0 = −1, x1 = 1 as the initial bracketing interval, we compute
the new point

x2 =
x1f(x0)− x0f(x1)
f(x0)− f(x1)

=
1(−9/2)− (−1)1/2
−9/2− 1/2

=
4
5
.

Since f(−1)f(4/5) < 0, the new bracketing interval is
[x0, x2] = [−1, 0.8]. This completes the first step. Note that the
uncertainty in the solution has decreased by far less than a factor of
1/2. As seen in the Figure, further steps continue to make slow
progress toward the root at x = 0.
Both the Secant Method and Method of False Position converge slowly
to the root r = 0.
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> 3. Rootfinding > Method of False Position

(a) The Secant Method converges slowly to the root r = 0.
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> 3. Rootfinding > Method of False Position

(b) The Method of False Position converges slowly to the root r = 0.
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> 3. Rootfinding > 3.4 Fixed point iteration

The Newton method (7.6)

xn+1 = xn −
f(xn)
f ′(xn)

, n = 0, 1, 2, . . .

and the secant method (7.20)

xn+1 = xn − f(xn) ·
xn − xn−1

f(xn)− f(xn−1)
n ≥ 1

are examples of one-point and two-point iteration methods,
respectively.

In this section we give a more general introduction to iteration
methods, presenting a general theory for one-point iteration formulae.
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> 3. Rootfinding > 3.4 Fixed point iteration

Solve the equation
x = g(x)

for a root α = g(α) by the iteration{
x0,
xn+1 = g(xn), n = 0, 1, 2, . . .

Example: Newton’s Method

xn+1 = xn −
f(xn)
f ′(xn)

:= g(xn)

where g(x) = x− f(x)
f ′(x) .

Definition

The solution α is called a fixed point of g.

The solution of f(x) = 0 can always be rewritten as a fixed point of g, e.g.,

x+ f(x) = x =⇒ g(x) = x+ f(x).
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> 3. Rootfinding > 3.4 Fixed point iteration

Example

As motivational example, consider solving the equation

x2 − 5 = 0 (7.24)

for the root α =
√

5 ·= 2.2361.

We give four methods to solve this equation

I1. xn+1 = 5 + xn − x2
n x = x+ c(x2 − a), c 6= 0

I2. xn+1 =
5
xn

x =
a

x

I3. xn+1 = 1 + xn −
1
5
x2
n x = x+ c(x2 − a), c 6= 0

I4. xn+1 =
1
2

(
xn +

5
xn

)
x =

1
2
(x+

a

x
)

All four iterations have the property that if the sequence {xn : n ≥ 0} has a

limit α, then α is a root of (7.24). For each equation, check this as follows:

Replace xn and xn+1 by α, and then show that this implies α = ±
√

5.
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> 3. Rootfinding > 3.4 Fixed point iteration

n xn:I1 xn:I2 xn :I3 xn :I4
0 2.5 2.5 2.5 2.5
1 1.25 2.0 2.25 2.25
2 4.6875 2.5 2.2375 2.2361
3 -12.2852 2.0 2.2362 2.2361

Table: The iterations I1 to I4
To explain these numerical results, we present a general theory for one-point
iteration formulae.
The iterations I1 to I4 all have the form

xn+1 = g(xn)

for appropriate continuous functions g(x). For example, with I1,
g(x) = 5 + x− x2. If the iterates xn converge to a point α, then

limn→∞ xn+1 = limn→∞ g(xn)
α = g(α)

Thus α is a solution of the equation x = g(x), and α is called a fixed point of

the function g.
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> 3. Rootfinding > 3.4 Fixed point iteration

Existence of a fixed point

In this section, a general theory is given to explain when the iteration
xn+1 = f(xn) will converge to a fixed point of g.
We begin with a lemma on existence of solutions of x = g(x).

Lemma

Let g ∈ C[a, b]. Assume that g([a, b]) ⊂ [a, b], i.e.,
∀x ∈ [a, b], g(x) ∈ [a, b].

Then x = g(x) has at least one solution α in the interval [a, b].

Proof. Define the function f(x) = x− g(x). It is continuous for a ≤ x ≤ b.
Moreover,

f(a) = a− g(a) ≤ 0
f(b) = b− g(b) ≥ 0

Intermediate value theorem ⇒ ∃x ∈ [a, b] such that f(x) = 0, i.e. x = g(x).
�

3. Rootfinding Math 1070



> 3. Rootfinding > 3.4 Fixed point iteration

0.5 1 1.5 2 2.5 3 3.5
0.5
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3.5

y=g(x)

y=x

y=g(x)

y=x

The solutions α are the x-coordinates of the intersection points of the
graphs of y = x and y = g(x).
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> 3. Rootfinding > 3.4 Fixed point iteration

Lipschitz continuous

Definition

Given g : [a, b]→ R, is called Lipschitz continuous with constant λ > 0
(denoted g ∈ Lipλ[a,b]) if ∃λ > 0 such that

|g(x)− g(y)| ≤ λ|x− y| ∀x, y ∈ [a, b].

Definition

g : [a, b]→ R is called contraction map if g ∈ Lipλ[a, b] with λ < 1.
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> 3. Rootfinding > 3.4 Fixed point iteration

Existence and uniqueness of a fixed point

Lemma

Let g ∈ Lipλ[a, b] with λ < 1 and g([a, b]) ⊂ [a, b].
Then x = g(x) has exactly one solution α. Moreover, for
xn+1 = g(xn), xn → α for any x0 ∈ [a, b] and

|α− xn| ≤
λn

1− λ
|x1 − x0|.

Proof.
Existence: follows from previous Lemma.
Uniqueness: assume ∃α, β solutions: α = g(α), β = g(β).

|α− β| = |g(α)− g(β)| ≤ λ|α− β|
(1− λ)︸ ︷︷ ︸

>0

|α− β| ≤ 0.
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> 3. Rootfinding > 3.4 Fixed point iteration

Convergence of the iterates

If xn ∈ [a, b] then g(xn) = xn+1 ∈ [a, b])⇒ {xn}n≥0 ⊂ [a, b].

Linear convergence with rate λ:

|α− xn| = |g(α)− g(xn)| ≤ λ|α− xn−1| ≤ . . . ≤ λn|α− x0| (7.25)

|x0 − α| = |x0 − x1 + x1 − α| ≤ |x0 − x1|+ |x1 − α|
≤ |x0 − x1|+ λ|x0 − α|

=⇒ |x0 − α| ≤
x0 − x1

1− λ
(7.26)

|xn − α| ≤ λn|x0 − α| ≤
λn

1− λ
|x1 − x0|

�
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> 3. Rootfinding > 3.4 Fixed point iteration

Error estimate

|α− xn| ≤ |α− xn+1|+ |xn+1 − xn| ≤ λ|α− xn|+ |xn+1 − xn|

|α− xn| ≤
1

1− λ
|xn − xn+1|

|α− xn+1| ≤ λ|α− xn|

=⇒ |α− xn+1| ≤
λ

1− λ
|xn+1 − xn|
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> 3. Rootfinding > 3.4 Fixed point iteration

Assume g′(x) exists on [a, b]. By the mean value theorem:

g(x)− g(y) = g′(ξ)(x− y), ξ ∈ [a, b],∀x, y ∈ [a, b]

Define
λ = max

x∈[a,b]
|g′(x)|.

Then g ∈ Lipλ[a, b]:

|g(x)− g(y)| ≤ |g′(ξ)||x− y| ≤ λ|x− y|.
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> 3. Rootfinding > 3.4 Fixed point iteration

Theorem 2.6

Assume g ∈ C1[a, b], g([a, b]) ⊂ [a, b] and maxx∈[a,] |g′(x)| < 1. Then

1 x = g(x) has a unique solution α in [a, b],
2 xn → α ∀x0 ∈ [a, b],

3 |α− xn| ≤
λn

1− λ
|x1 − x0|,

4 lim
n→∞

α− xn+1

α− xn
= g′(α).

Proof.

α− xn+1 = g(α)− g(xn)
= g′(ξn)(α− xn), ξn ∈ [α, xn].

�
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> 3. Rootfinding > 3.4 Fixed point iteration

Theorem 2.7

Assume α solves x = g(x), g ∈ C1[Iα], for some Iα 3 α, |g′(α)| < 1.
Then Theorem 2.6 holds for x0 close enough to α.

Proof.
Since |g′(α)| < 1 by continuity

|g′(x)| < 1 for x ∈ Iα = [α− ε, α+ ε].

Take x0 ∈ Iα close to x1 ∈ Iα

|x1 − α| = |g(x0)− g(α)| = |g′(ξ)(x0 − α)|
≤ |g′(ξ)||x0 − α| < |x0 − α| < ε

⇒ x1 ∈ Iα and, by induction, xn ∈ Iα.
⇒ Theorem 2.6 holds with [a, b] = Iα. �
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> 3. Rootfinding > 3.4 Fixed point iteration

Importance of |g′(α)| < 1:

If |g′(α)| > 1 : and xn is close to α then

|xn+1 − α| = |g′(ξn)||xn − α|
→ |xn+1 − α| > |xn − α|

=⇒ divergence

When g′(α) = 1, no conclusion can be drawn; and even if convergence
were to occur, the method would be far too slow for the iteration
method to be practical.
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> 3. Rootfinding > 3.4 Fixed point iteration

Examples

Recall α =
√

5.

1 g(x) = 5 + x− x2; , g′(x) = 1− 2x, g′(α) = 1− 2
√

5. Thus
the iteration will not converge to

√
5.

2 g(x) = 5/x, g′(x) = − 5
x2

; g′(α) = − 5
(
√

5)2
= −1.

We cannot conclude that the iteration converges or diverges.
From the Table, it is clear that the iterates will not converge to α.

3 g(x) = 1 + x− 1
5x

2, g′(x) = 1− 2
5x, g

′(α) = 1− 2
5

√
5 ·= 0.106,

i.e., the iteration will converge. Also,

|α− xn+1| ≈ 0.106|α− xn|

when xn is close to α. The errors will decrease by approximately a
factor of 0.1 with each iteration.

4 g(x) = 1
2

(
x+ 5

x

)
; g′(α) = 0 convergence

Note that this is Newton’s method for computing
√

5.
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> 3. Rootfinding > 3.4 Fixed point iteration
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> 3. Rootfinding > 3.4 Fixed point iteration
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> 3. Rootfinding > 3.4 Fixed point iteration
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> 3. Rootfinding > 3.4 Fixed point iteration

x = g(x), g(x) = x+ c(x2 − 3)

What value of c will give convergent iteration?

g′(x) = 1 + 2cx

α =
√

3
Need |g′(α)| < 1

−1 < 1 + 2c
√

3 < 1

Optimal choice: 1 + 2c
√

3 = 0 =⇒ c = − 1
2
√

3
.
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> 3. Rootfinding > 3.4 Fixed point iteration

The possible behaviour of the fixed point iterates xn for various sizes
of g′(α).
To see the convergence, consider the case of x1 = g(x0), the height of
the graph of y = g(x) at x0.
We bring the number x1 back to the x-axis by using the line y = x
and the height y = x1.
We continue this with each iterate, obtaining a stairstep behaviour
when g′(α) > 0.

When g′(α) < 0, the iterates oscillate around the fixed point α, as can
be seen.
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> 3. Rootfinding > 3.4 Fixed point iteration

Figure: 0 < g′(α) < 1
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> 3. Rootfinding > 3.4 Fixed point iteration

Figure: −1 < g′(α) < 0
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> 3. Rootfinding > 3.4 Fixed point iteration

Figure: 1 < g′(α)
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> 3. Rootfinding > 3.4 Fixed point iteration

Figure: g′(α) < −1
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> 3. Rootfinding > 3.4 Fixed point iteration

The results from the iteration for

g(x) = 1 + x− 1
5
x2, g′(α) ·= 0.106.

along with the ratios
rn =

α− xn
α− xn−1

. (7.27)

Empirically, the values of rn converge to g′(α) ·= 0.105573, which agrees with

lim
n→∞

α− xn+1

α
− xn = g′(α).

n xn α− xn rn
0 2.5 -2.64E-1
1 2.25 -1.39E-2 0.0528
2 2.2375 -1.43E-3 0.1028
3 2.23621875 -1.51E-4 0.1053
4 2.23608389 -1.59E-5 0.1055
5 2.23606966 -1.68E-6 0.1056
6 2.23606815 -1.77E-7 0.1056
7 2.23606800 -1.87E-8 0.1056

Table: The iteration xn+1 = 1 + xn − 1
5x

2
n
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> 3. Rootfinding > 3.4 Fixed point iteration

We need a more precise way to deal with the concept of the speed of
convergence of an iteration method.

Definition

We say that a sequence {xn : n ≥ 0} converges to α with an order of
convergence p ≥ 1 if

|α− xn+1| ≤ c|α− xn|p, n ≥ 0

for some constant c ≥ 0.

The cases p = 1, p = 2, p = 3 are referred to as linear convergence,
quadratic convergence and cubic convergence, respectively.

Newton’s method usually converges quadratically; and

the secant method has a order of convergence p = 1+
√

5
2 .

For linear convergence we make the additional requirement that
c < 1; as otherwise, the error α− xn need not converge to zero.
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> 3. Rootfinding > 3.4 Fixed point iteration

If g′(α) < 1, then formula

|α− xn+1| ≤ |g′(ξn)||α− xn|

shows that the iterates xn are linearly convergent.

If in addition g′(α) 6= 0, then formula

|α− xn+1| ≈ |g′(α)||α− xn|

proves that the convergence is exactly linear, with no higher order
of convergence being possible. In this case, we call the value of
g′(α) the linear rate of convergence.
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> 3. Rootfinding > 3.4 Fixed point iteration

High order one-point methods

Theorem 2.8

Assume g ∈ Cp(Iα) for some Iα containing α, and
g′(α) = g′′(α) = . . . = g(p−1)(α) = 0, p ≥ 2.

Then for x0 close enough to α, xn → α and

lim
n→∞

α− xn+1

(α− xn)p
= (−1)p−1 g

(p)(α)
p!

i.e. convergence is of order p.

Proof: xn+1 = g(xn)

= g(α)︸︷︷︸
=α

+(xn − α) g′(α)︸ ︷︷ ︸
=0

+ . . .+
(xn − α)p−1

(p− 1)!
g(p−1)(α)︸ ︷︷ ︸

=0

+
(xn − α)p

p!
g(p)(ξn)

α− xn+1 = − (xn − α)p

p!
g(p)(ξn).

α− xn+1

(α− xn)p
= (−1)p−1 g

(p)(ξn)
p!

−→ (−1)p−1 g
(p)(α)
p!

�

3. Rootfinding Math 1070



> 3. Rootfinding > 3.4 Fixed point iteration

Example: Newton’s method

xn+1 = xn −
f(xn)
f ′(xn)

, n > 0

= g(xn), g(xn) = x− f(x)
f ′(x)

;

g′(x) =
ff ′′

(f ′)2
g′(α) = 0

g′′(x) =
f ′f ′′ + ff ′′′

(f ′)2
− 2

ff ′′

(f ′)3
, g′′(α) =

f ′′(α)
f ′(α)

Theorem 2.8 with p = 2:

lim
n→∞

α− xn+1

(α− xn)2
= −g

′′(α)
2

= −1
2
f ′′(α)
f ′(α)

.
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> 3. Rootfinding > 3.4 Fixed point iteration

Parallel Chords Method (two step fixed point method)

xn+1 = xn − f(xn)
a

Ex.: a = f ′(x0).

xn+1 = xn − f(xn)
f ′(x0) = g(xn).

Need |g′(α)| < 1 for convergence:

∣∣∣∣1− f ′(α)
a

∣∣∣∣
Linear convergence wit rate 1− f ′(α)

a . (Thm 2.6.)

If a = f ′(x0) and x0 is close enough to α, then

∣∣∣∣1− f ′(α)
a

∣∣∣∣.
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

Aitken extrapolation for linearly convergent sequences

Recall

Theorem 2.6

xn+1 = g(xn)
xn → α

α− xn+1

α− xn
−→ g′(α)

Assuming linear convergence: g′(α) 6= 0.
Derive an estimate for the error and use it to accelerate convergence.
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

α− xn = (α− xn−1) + (xn−1 − xn) (7.28)

α− xn = g(α)− g(xn−1)
= g′(ξn−1)(α− xn−1)

α− xn−1 =
1

g′(ξn−1)
(α− xn) (7.29)

From (7.28)-(7.29)

α− xn =
1

g′(ξn−1)
(α− xn) + (xn−1 − xn)

α− xn =
g′(ξn−1)

1− g′(ξn−1)
(xn−1 − xn)
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

α− xn =
g′(ξn−1)

1− g′(ξn−1)
(xn−1 − xn)

g′(ξn−1)
1− g′(ξn−1)

≈ g′(α)
1− g′(α)

Need an estimate for g′(α).
Define

λn =
xn − xn−1

xn−1 − xn−2

and

α− xn+1 = g(α)− g(xn) = g′(ξn)(α− xn), ξn ∈ α, xn, n ≥ 0.
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

λn =
(α− xn−1)− (α− xn)

(α− xn−2)− (α− xn−1)

=
(α− xn−1)− g′(ξn−1)(α− xn−1)
(α− xn−1)/g′(ξn−2)− (α− xn−1)

=
1− g′(ξn−1)
1− g′(ξn−2)

g′(ξn−2)

λn → g′(α) as ξn → α : λn ≈ g′(α)
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

Aitken Error Formula

α− xn =
λn

1− λn
(xn − xn−1) (7.30)

From (7.30)

α ≈ xn +
λn

1− λn
(xn − xn−1) (7.31)

Define

Aitken Extrapolation Formula

x̂n = xn +
λn

1− λn
(xn − xn−1) (7.32)
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

Example

Repeat the example for I3.

The Table contains the differences xn − xn−1, the ratios λn, and the
estimated error from α− xn ≈ λn

1−λn
(xn − xn−1), given in the column

Estimate. Compare the column Estimate with the error column in the
previous Table.

n xn xn − xn−1 λn Estimate
0 2.5
1 2.25 -2.50E-1
2 2.2375 -1.25E-2 0.0500 -6.58E-4
3 2.23621875 -1.28E-3 0.1025 -1.46E-4
4 2.23608389 -1.35E-4 0.1053 -1.59E-5
5 2.23606966 -1.42E-5 0.1055 -1.68E-6
6 2.23606815 -1.50E-6 0.1056 -1.77E-7
7 2.23606800 -1.59E-7 0.1056 -1.87E-8

Table: The iteration xn+1 = 1 + xn − 1
5x

2
n and Aitken Error Estimation
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

Algorithm (Aitken)

Given g, x0, ε, root, assume |g′(α)| < 1 and xn → α linearly.

1 x1 = g(x0), x2 = g(x1)
2 x̂2 = x2 + λ2

1−λ2
(x2 − x1) where λ2 = x2−x1

x1−x0

3 if |x̂2 − x2| ≤ ε then root = x̂2; exit

4 set x0 = x̂2, go to (1)
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

General remarks

There are a number of reasons to perform theoretical error analyses of
numerical method. We want to better understand the method,

when it will perform well,

when it will perform poorly, and perhaps,

when it may not work at all.

With a mathematical proof, we convinced ourselves of the correctness
of a numerical method under precisely stated hypotheses on the
problem being solved. Finally, we often can improve on the
performance of a numerical method.
The use of the theorem to obtain the Aitken extrapolation formula is
an illustration of the following:

By understanding the behaviour of the error in a numerical method, it
is often possible to improve on that method and to obtain another
more rapidly convergent method.
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

Quasi-Newton Iterates

f(x) = 0

{
x0

xk+1 = xk − f(xk)
ak

, k = 0, 1, . . .

1 ak = f ′(xk)⇒ Newton’s Method

2 ak =
f(xk)− f(xk−1)

xk − xk−1
⇒ Secant Method

3 ak = a =constant (e.g. ak = f ′(x0)) ⇒ Parallel Chords Method

4 ak =
f(xk + hk)− f(xk)

hk
, hk > 0 ⇒ Finite Diff. Newton Method

If |hk| < c|f(xk)|, then the convergence is quadratic. Need
hk ≥ h ≈

√
δ
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> 3. Rootfinding > 3.4.1 Aitken Error Estimation and Extrapolation

Quasi-Newton Iterates

1 ak = f(xk+f(xk))−f(xk)
f(xk) ⇒ Steffensen Method. This is Finite

Difference Method with hk = f(xk)⇒ quadratic convergence.

2 ak = f(xk)−f(xk′ )
xk−xk′

where k′ is the largest index < k such that

f(xk)f(xk′) < 0⇒ Regula False
Need x0, x1 : f(x0)f(x1) < 0

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)

x3 = x2 − f(x2)
x2 − x0

f(x2)− f(x0)
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> 3. Rootfinding > 3.4.2 High-Order Iteration Methods

The convergence formula

α− xn+1 ≈ g′(α)(α− xn)

gives less information in the case g′(α) = 0, although the convergence is
clearly quite good. To improve on the results in the Theorem, consider the
Taylor expansion of g(xn) about α, assuming that g(x) is twice continuously
differentiable:

g(xn) = g(α) + (xn − α)g′(α) +
1
2
(xn − α)2g′′(cn) (7.33)

with cn between xn and α. Using xn+1 = g(xn), α = g(α), and g′(α) = 0,
we have

xn+1 = α+
1
2
(xn − α)2g′′(cn)

α− xn+1 = −1
2
(α− xn)2g′′(cn) (7.34)

lim
n→∞

α− xn+1

(α− xn)2
= −1

2
g′′(α) (7.35)

If g′′(α) 6= 0, then this formula shows that the iteration xn+1 = g(xn) is of

order 2 or is quadratically convergent.
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> 3. Rootfinding > 3.4.2 High-Order Iteration Methods

If also g′′(α) = 0, and perhaps also some high-order derivatives are
zero at α, then expand the Taylor series through higher-order terms in
(7.33), until the final error term contains a derivative of g that is not
nonzero at α. Thi leads to methods with an order of convergence
greater than 2.

As an example, consider Newton’s method as a fixed-point iteration:

xn+1 = g(xn), g(x) = x− f(x)
f ′(x)

. (7.36)

Then,

g′(x) =
f(x)f ′′(x)
[f ′(x)]2

and if f ′(α) 6= 0, then
g′(α) = 0.

Similarly, it can be shown that g′′(α) 6= 0 if moreover, f ′′(α) 6= 0. If
we use (7.35), these results shows that Newton’s method is of order 2,
provided that f ′(α) 6= 0 and f ′′(α) 6= 0.
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

We will examine two classes of problems for which the methods of
Sections 3.1 to 3.4 do not perform well. Often there is little that a
numerical analyst can do to improve these problems, but one should be
aware of their existence and of the reason for their ill-behaviour.

We begin with functions that have a multiple root. The root α of f(x)
is said to be of multiplicity m if

f(x) = (x− α)mh(x), h(α) 6= 0 (7.37)

for some continuous function h(x) with h(α) 6= 0, m a positive
integer. If we assume that f(x) is sufficiently differentiable, an
equivalent definition is that

f(α) = f ′(α) = · · · = f (m−1)(α) = 0, f (m)(α) 6= 0. (7.38)

A root of multiplicity m = 1 is called a simple root.
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

Example.

(a) f(x) = (x− 1)2(x+ 2) has two roots. The root α = 1 has
multiplicity 2, and α = −2 is a simple root.

(b) f(x) = x3 − 3x2 + 3x− 1 has α = 1 as a root of multiplicity 3.
To see this, note that

f(1) = f ′(1) = f ′′(1) = 0, f ′′′(1) = 6.

The result follows from (7.38).

(c) f(x) = 1− cos(x) has α = 0 as a root of multiplicity m = 2. To
see this, write

f(x) = x2

[
2 sin2(x2 )

x2

]
≡ x2h(x)

with h(0) = 1
2 . The function h(x) is continuous for all x.
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

When the Newton and secant methods are applied to the calculation of a
multiple root α, the convergence of α− xn to zero is much slower than it
would be for simple root. In addition, there is a large interval of uncertainty
as to where the root actually lies, because of the noise in evaluating f(x).
The large interval of uncertainty for a multiple root is the most serious
problem associated with numerically finding such a root.

Figure: Detailed graph of f(x) = x3 − 3x2 + 3x− 1 near x = 1
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

The noise in evaluating f(x) = (x− 1)3, which has α = 1 as a root of
multiplicity 3. The graph also illustrates the large interval of uncertainty in
finding α.

Example

To illustrate the effect of a multiple root on a rootfinding method, we use
Newton’s method to calculate the root α = 1.1 of

f(x) = (x− 1.1)3(x− 2.1)
2.7951 + x(−8.954 + x(10.56 + x(−5.4 + x))). (7.39)

The computer used is decimal with six digits in the significand, and it uses

rounding. The function f(x) is evaluated in the nested form of (7.39), and

f ′(x) is evaluated similarly. The results are given in the Table.
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

The column “ratio” gives the values of

α− xn
α− xn−1

(7.40)

and we can see that these values equal about 2
3 .

n xn f(xn) α− xn Ratio
0 0.800000 0.03510 0.300000
1 0.892857 0.01073 0.207143 0.690
2 0.958176 0.00325 0.141824 0.685
3 1.00344 0.00099 0.09656 0.681
4 1.03486 0.00029 0.06514 0.675
5 1.05581 0.00009 0.04419 0.678
6 1.07028 0.00003 0.02972 0.673
7 1.08092 0.0 0.01908 0.642

Table: Newton’s Method for (7.39)

The iteration is linearly convergent with a rate of 2
3 .

3. Rootfinding Math 1070



> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

It is possible to show that when we use Newton’s method to calculate
a root of multiplicity m, the ratios (7.40) will approach

λ =
m− 1
m

, m ≥ 1. (7.41)

Thus, as xn approaches α,

α− xn ≈ λ(α− xn−1) (7.42)

and the error decreases at about the constant rate. In our example,
λ = 2

3 , since the root has multiplicity m = 3, which corresponds to the
values in the last column of the table. The error formula (7.42) implies
a much slower rate of convergence than is usual for Newton’s method.
With any root of multiplicity m ≥ 2, the number λ ≥ 1

2 ; thus, the
bisection method is always at least as fast as Newton’s method for
multiple roots. Of course, m must be an odd integer to have f(x)
change sign at x = α, thus permitting the bisection method to be
applied.
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

Newton’ Method for Multiple Roots

xk+1 = xk −
f(xk)
f ′(xk)

f(x) = (x− α)ph(x), p ≥ 0

Apply the fixed point iteration theorem

f ′(x) = p(x− α)p−1h(x) + (x− α)ph′(x)

g(x) = x− (x− α)ph(x)
p(x− α)p−1h(x) + (x− α)ph′(x)
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

g(x) = x− (x− α)h(x)
ph(x) + (x− α)h′(x)

Differentiating

g′(x) = 1− h(x)
ph(x) + (x− α)h′(x)

−(x−α)
d

dx

[
h(x)

ph(x) + (x− α)h′(x)

]
and

g′(α) = 1− 1
p

=
p− 1
p
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

Quasi-Newton Iterates

If p = 1⇒ g′(α) = 0 Then by theorem 2.8 ⇒ quadratic convergence

xk+1 − α
(xk − α)2

k→∞−→ 1
2
g′′(α).

If p > 1 then by fixed point theory, theorem 2.6 ⇒ linear convergence

|xk+1 − α| ≤
p− 1
p
|xk − α|.

E.g. p = 2, p−1
p = 1

2 .
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

Acceleration of Newton’s Method for Multiple Roots

f(x) = (x− α)ph(x), h(α) 6= 0.

Assume p is known.

xk+1 = xk − p
f(xk)
f ′(xk)

xk+1 = g(xk)

g(x) = x− p f(x)
f ′(x)

g′(α) = 1− p

p
= 0

lim
k→∞

α− xk+1

(x− xk)2
=
g′′(α)

2
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> 3. Rootfinding > 3.5 The Numerical Evaluation of Multiple Roots

Can run several Newton iterations to estimate p:

look at

∣∣∣∣α− x+1

α− xk

∣∣∣∣ ≈ p− 1
p

.

One way to deal with uncertainties in multiple roots:

ϕ(x) = f (p−1)(x)
ϕ(x) = (x− α)ψ(x), ψ(α) 6= 0.

⇒ α is a simple root for ϕ(x).
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> 3. Rootfinding > Roots of polynomials

Roots of polynomials

p(x) = 0
p(x) = a0 + a1x+ . . .+ anx

n, an 6= 0.

Fundamental Theorem of Algebra:

p(x) = an(x− z1)(x− z2) . . . (x− zn), z1, . . . , zn ∈ C.
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> 3. Rootfinding > Roots of polynomials

Location of real roots:

1. Descarte’s rule of sign

Real coefficients

ν = # changes in sign of coefficients (ignore zero coefficients)

k = # positive roots

k ≤ ν and k − ν is even.

Example: p(x) = x5 + 2x4 − 3x3 − 5x2 − 1.
ν = 1⇒ k ≤ 1⇒ k = 0 or k = 1.

ν − k =
{

1, k = 0 not even
0, k = 1.
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> 3. Rootfinding > Roots of polynomials

For negative roots consider q(x) = p(−x).
Apply rule to q(x).

Ex.: q(x) = −x5 + 2x4 + 3x3 − 5x2 − 1.
ν = 2
k = 0 or 2.
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> 3. Rootfinding > Roots of polynomials

2. Cauchy

|ζi| ≤ 1 + max
0≤i≤n−1

∣∣∣∣ aian
∣∣∣∣

Book: Householder ”The numerical treatment of single nonlinear
equations”, 1970.

Cauchy: given p(x), consider

p1(x) = |an|xn + |an−1|xn−1 + . . .+ |a1|x− |a0| = 0

p2(x) = |an|xn − |an−1|xn−1 − . . .− |a1|x− |a0| = 0

By Descarte’s: pi has a single positive root ρi

ρ1 ≤ |ζj | ≤ ρ2.
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> 3. Rootfinding > Roots of polynomials

Nested multiplication (Horner’s method)

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n (7.43)

p(x) = a0 + x (a1 + x (a2 + . . .+ x (an−1 + anx)) . . .) (7.44)

(7.44) requires n multiplications and n additions.

(7.43) to form akx
k:

x · xk−1 : 1∗
ak · xk : 1∗

n+ and 2n− 1∗.
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> 3. Rootfinding > Roots of polynomials

For any ζ ∈ R define bk, k = 0, . . . , n.

bn = an

bk = ak + ζbk+1, k = n− 1, n− 2, . . . , 0

p(ζ) = a0 + ζ

a1 + . . .+ ζ (an−1 + anζ)︸ ︷︷ ︸
bn−1

. . .


︸ ︷︷ ︸

b1︸ ︷︷ ︸
b0
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> 3. Rootfinding > Roots of polynomials

Consider
q(x) = b1 + b2x+ . . .+ bnx

n−1.

Claim:

p(x) = b0 + (x− ζ)q(x).

Proof.

b0 + (x− ζ)q(x)
= b0 + (x− ζ)(b1 + b2x+ . . .+ bnx

n−1)

= b0 − ζb1︸ ︷︷ ︸
a0

+(b1 − b2ζ)︸ ︷︷ ︸
a1

x+ . . .+ (bn−1 − bnζ)︸ ︷︷ ︸
an−1

xn−1 + bn︸︷︷︸
an

xn

= a0 + a1x+ . . .+ anx
n = p(x). �

Note: if p(ζ) = 0, then b0 = 0 : p(x) = (x− ζ)q(x).
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> 3. Rootfinding > Roots of polynomials

Deflation

If ζ is found, continue with q(x) to find the rest of the roots.
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> 3. Rootfinding > Roots of polynomials

Newton’s method for p(x) = 0.

xk+1 = xk −
p(xk)
p′(xk)

, k = 0, 1, 2, . . .

To evaluate p and p′ at x = ζ:

p(ζ) = b0
p′(x) = q(x) + (x− ζ)q′(x)
p′(ζ) = q(ζ)
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> 3. Rootfinding > Roots of polynomials

Algorithm (Newton’s method for p(x) = 0)

Given: a = (a0, a1, . . . , an)
Output: b = b(b1, b2, . . . , bn): coefficients of deflated polynomial g(x);

root.

Newton(a, n, x0, ε, itmax, root, b, ierr)
itnum = 1
1. ζ := x0; bn := an; c := an

for k = n− 1, . . . , 1 bk := ak + ζbk+1; c := bk + ζc p′(ζ)
b0 := a0 + ζb1 p(ζ)

if c = 0, iter = 2, exit p′(ζ) = 0
x1 = x0 − b0/c x1 = x0 − p(x0)/p′(x0)
if |x0 − x1| ≤ ε, then ierr= 0: root = x, exit

it itnum = itmax, then ierr = 1, exit
itnum = itnum + 1, x0 := x1,
quad go to 1.
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> 3. Rootfinding > Roots of polynomials

Conditioning

p(x) = a0 + a1x+ . . .+ anx
n

roots: ζ1, . . . , ζn
Perturbation polynomial q(x) = b0 + b1x+ . . .+ bnx

n

Perturbed polynomial p(x, ε) = p(x) + εq(x)
= (a0 + εb0) + (a1 + εb1)x+ . . .+ (an + εbn)xn

roots: ζj(ε) - continuous functions of ε, ζi(0) = ζi.
(Absolute) Conditioning number

kζj = lim
ε→0

|ζj(ε)− ζj |
|ε|
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> 3. Rootfinding > Roots of polynomials

Example

(x− 1)3 = 0 ζ1 = ζ2 = ζ3 = 1

(x− 1)3 − ε = 0 (q(x) = −1)

Set y = x− 1 and a = ε1/3

p(x, ε) = y3 − ε = y3 − a3 = (y − a)(y2 + ya+ a2)
y1 = a

y2,3 =
−a±

√
−3a2

2
=
−a(1± i

√
3)

2

y2 = −aω, y3 = −aω2, ω =
1− i

√
3

2
, |ω| = 1
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> 3. Rootfinding > Roots of polynomials

ζ1(ε) = 1 + ε1/3

ζ2(ε) = 1− ωε1/3

ζ3(ε) = 1− ω2ε1/3

|ζj(ε)− 1| = ε1/3

Conditioning number

∣∣∣∣ζj(ε)− 1
ε

∣∣∣∣ = ε1/3

ε

ε→0−→∞

If ε = 0.001, ε1/3 = 0.1, |ζj(ε)− 1| = 0.1.
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> 3. Rootfinding > Roots of polynomials

General argument

p(x), Simple root ζ

p(ζ) = 0
p′(ζ) 6= 0
p(x, ε) : root ζ(ε)

ζ(ε) = ζ +
∞∑
`=1

γ`ε
`

= ζ︸︷︷︸
this is what matters

+γ1ε+ γ2ε
2 + . . .︸ ︷︷ ︸

negligeable if εis small

ζ(ε)− ζ
ε

= γ1 + γ2ε+ . . . −→
ε→∞

γ1
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> 3. Rootfinding > Roots of polynomials

To find γ1:

ζ ′(0) = γ1

p(ζ(ε), ε) = 0
p(ζ(ε)) + εq(ζ(ε)) = 0
p′(ζ(ε))ζ ′(ε) + q(ζ(ε)) + εq′(ζ(ε))ζ ′(ε) = 0
ε = 0

p′(ζ) ζ ′(0)︸︷︷︸
γ1

+q(ζ) = 0 =⇒ γ1 = − q(ζ)
p′(ζ)

kζ = |γ1| =
∣∣∣∣ q(ζ)p′(ζ)

∣∣∣∣
k is large if p′(ζ) is close to zero.
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> 3. Rootfinding > Roots of polynomials

Example

p(x) = W7 =
7∏
i=1

(x− i)

q(x) = x6, ε = −0.002

p′(ζj) =
7∏

`=1,` 6=j
(j − `) ζj = j

kζj =
∣∣∣∣ q(ζj)p′(ζj)

∣∣∣∣ = j6∏7
`=1(j − `)

In particular,

ζj(ε) ≈ j + ε
q(ζj)
p′(ζj)

= j + δ(j).
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> 3. Rootfinding > Systems of Nonlinear Equations

Systems of Nonlinear Equations


f1(x1, . . . , xm) = 0,
f2(x1, . . . , xm) = 0,
...
fm(x1, . . . , xm) = 0.

(7.45)

If we denote

F =


f1(x)
f2(x)
...
fm(x)

 : Rm → Rm,

then (7.45) is equivalent to writing

F(x) = 0. (7.46)
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> 3. Rootfinding > Systems of Nonlinear Equations

Fixed Point Iteration

x = G(x), G : Rm → Rm

Solution α: α = G(α) is called a fixed point of G.

Example: F(x) = 0
x = x−AF(x) for some A ∈ Rm×m, nonsingular matrix.

= G(x)

Iteration:

initial guess x0

xn+1 = G(xn), n = 0, 1, 2, . . .
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> 3. Rootfinding > Systems of Nonlinear Equations

Recall x ∈ Rm

‖x‖p =

(
m∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞,

‖x‖∞ = max
1≤i≤n

|xi|.

Matrix norms: operator induced

A ∈ Rm×m

‖A‖p = sup
x∈Rm,x6=0

‖Ax‖p
‖x‖p

, 1 ≤ p <∞

‖A‖∞ = max
1≤i≤m

‖Rowi(A)‖1

= max
1≤i≤m

m∑
j=1

|aij |
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> 3. Rootfinding > Systems of Nonlinear Equations

Recall x ∈ Rm

‖x‖p =

(
m∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞,

‖x‖∞ = max
1≤i≤n

|xi|.

Matrix norms: operator induced

A ∈ Rm×m

‖A‖p = sup
x∈Rm,x6=0

‖Ax‖p
‖x‖p

, 1 ≤ p <∞

‖A‖∞ = max
1≤i≤m

‖Rowi(A)‖1

= max
1≤i≤m

m∑
j=1

|aij |
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> 3. Rootfinding > Systems of Nonlinear Equations

Let ‖ · ‖ be any norm in Rm.

Definition

G : Rm → Rm is called a contractive mapping if

‖G(x)−G(y)‖ ≤ λ‖x− y‖, ∀x,y ∈ Rm,

for some λ < 1.
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Contractive mapping theorem

Theorem (Contractive mapping theorem)

Assume

1 D is a closed, bounded subset of Rm.

2 G : D → D is a contractive mapping.

Then

∃ unique α ∈ D such that α = G(α) (unique fixed point).

For any x0∈D,xn+1 =G(xn) converges linearly to α with rate λ.
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> 3. Rootfinding > Systems of Nonlinear Equations

Proof

We will show that ‖xn‖ → α.

‖xi+1 − xi‖ = ‖G(xi)−G(xi−1)‖ ≤ λ‖xi − xi−1‖
≤ . . . ≤ λi‖x1 − x0‖ (by induction)

‖xk − x0‖ = ‖
k−1∑
i=0

(xi+1 − xi)‖ ≤
k−1∑
i=0

‖xi+1 − xi‖

≤
k−1∑
i=0

λi‖x1 − x0‖ =
1− λk

1− λ
‖x1 − x0‖

<
1

1− λ
‖x1 − x0‖.
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> 3. Rootfinding > Systems of Nonlinear Equations

∀k, `:

‖xk+` − xk‖ = ‖G(xk+`−1)−G(xk−1)‖
≤ λ‖xk+`−1 − xk−1‖
≤ . . . ≤ λk‖x` − x0‖

<
λk

1− λ
‖x1 − x0‖ −→

k→∞
0

⇒ {xn} is a Cauchy sequence ⇒ {xn} → α.
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> 3. Rootfinding > Systems of Nonlinear Equations

xn+1 = G(xn)
↓n→∞

α = G(α)

⇒ α is a fixed point.
Uniqueness: Assume β = G(β)

‖α− β‖ = ‖G(α)−G(β)‖ ≤ λ‖α− β‖,
(1− λ)︸ ︷︷ ︸

>0

‖α− β‖ ≤ 0⇒ ‖α− β‖ = 0⇒ α = β.

Linear convergence with rate λ:

‖xn+1 −α‖ = ‖G(xn)−G(α)‖ ≤ λ‖xn −α‖.

�

3. Rootfinding Math 1070



> 3. Rootfinding > Systems of Nonlinear Equations

Jacobian matrix

Definition

F : Rm → Rm is continuously differentiable (F ∈ C1(Rm)) if, for every
x ∈ Rm,

∂fi(x)
∂xj

, i, j = 1, . . . ,m

exist.

F′(x)
def
:=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xm

...
...

∂fm(x)
∂x1

. . . ∂fm(x)
∂xm


m×m

(F′(x))ij = ∂fi(x)
∂xj

, i, j = 1, . . . ,m.
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> 3. Rootfinding > Systems of Nonlinear Equations

Mean Value Theorem

Theorem (Mean Value Theorem)

f : Rm → R,
f(x)− f(y) = ∇f(z)T (x− y)

for some z ∈ x,y, where ∇f(z) =


∂f(x)
∂x1
...

∂f(x)
∂x1

.

Proof: Follows immediately from Taylor’s theorem (linear Taylor
expansion). Since

∇f(z)T (x− y) =
∂f(z)
∂x1

(x1 − y1) + . . .+
∂f(z)
∂xm

(xm − ym).
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> 3. Rootfinding > Systems of Nonlinear Equations

No Mean Value Theorem for vector value functions

Note:

F(x) =

 f1(x)
...

fm(x)

,

fi(x)− fi(y) = ∇fi(zi)T (x− y), i = 1, . . . , n.

It is not true that
F(x)− F(y) = F′(z)(x− y)
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> 3. Rootfinding > Systems of Nonlinear Equations

Consider x = G(x), (xn+1 = G(xn)) with solution α = G(α).

αi − (xn+1)i = gi(α)− gi(xn)
MV T= ∇gi(zin)T (α− xn), i = 1, . . . ,m

α− xn+1 =

 ∇g1(z1)T
...

∇gm(zm)T


︸ ︷︷ ︸

Jn

(α− xn) zj ∈ α,xn

α− xn+1 = Jn(α− xn) (7.47)

If xn → α, Jn →

 ∇g1(α)T
...

∇gm(α)T

 = G′(α).

The size of G′(α) will affect convergence.
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Theorem 2.9

Assume

D is closed, bounded, convex subset of Rm.

G ∈ C1(D)
G(D) ⊂ D
λ = maxx∈D ‖G′(x)‖∞ < 1.

Then

(i) x = G(x) has a unique solution α ∈ D
(ii) ∀x0 ∈ D,xn+1 = G(xn) converges to α.

(iii) ‖α− xn+1‖∞ ≤ (‖G′(α)‖∞ + εn) ‖α− xn‖∞,
whenever εn −→

n→∞
0.
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> 3. Rootfinding > Systems of Nonlinear Equations

Proof: ∀x,y ∈ D

|gi(x)− gi(y)| ≤
∣∣∇gi(zi)T (x− y)

∣∣ , zi ∈ x,y

=

∣∣∣∣∣∣
m∑
j=1

∂gi(zi)
∂xj

(xj − yj)

∣∣∣∣∣∣ ≤
m∑
j=1

∣∣∣∣∂gi(zi)∂xj

∣∣∣∣ |xj − yj |
≤

m∑
j=1

∣∣∣∣∂gi(zi)∂xj

∣∣∣∣ ‖x− y‖∞ ≤ ‖G′(zi)‖∞‖x− y‖∞

⇒ ‖G(x)−G(y)‖∞ ≤ ‖G′(zi)‖∞‖x− y‖∞ ≤ λ‖x− y‖∞
⇒ G is a contractive mapping. ⇒ (i) and (ii).

To show (iii), from (7.47):

‖α− xn+1‖∞ ≤ ‖Jn‖∞‖α− xn‖∞

≤
(
‖Jn −G′(α)‖∞︸ ︷︷ ︸

εn −→
n→∞

0

+‖G′(α)‖∞
)
‖α− xn‖∞. �
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> 3. Rootfinding > Systems of Nonlinear Equations

Example (p.104)

Solve{
f1 ≡ 3x2

1 + 4x2
2 − 1 = 0

f2 ≡ x3
2 − 8x3

1 − 1 = 0
, for α near (x1, x2) = (−.5, .25).

Iteratively[
x1,n+1

x2,n+1

]
=
[
x1,n

x2,n

]
−
[
.016 −.17
.52 −.26

] [
3x2

1,n + 4x2
2,n − 1

x3
2,n − 8x3

1,n − 1

]
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Example (p.104)

xn+1 = xn −AF(xn)︸ ︷︷ ︸
G(x)

‖G′(α)‖∞ ≈ 0.04,
‖α− xn+1‖∞
‖α− xn‖∞

−→ 0.04, A =
(
F′(x0)

)−1

Why?

G′(x) = I−AF′(x), G′(α) = I−AF′(α)

Need

‖G′(α)‖∞ ≈ 0

A ≈
(
F′(α)

)−1
, A =

(
F′(x0)

)−1

m dimensional Parallel Chords Method

xn+1 = xn − (F′(x0))
−1 F(xn)
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Newton’s Method for F(x) = 0

xn+1 = xn − (F′(xn))
−1 F(xn), n = 0, 1, 2, . . .

Given initial guess:

fi(x) = fi(x0) +∇fi(x0)T (x− x0) +O
(
‖x− x0)‖2

)︸ ︷︷ ︸
neglect

F(x) ≈ F(x0) + F′(x0)(x− x0) ≡M0(x)

M0(x): linear model of F(x) around x0.
Set x1: M0(x1) = 0

F(x0) + F′(x0)(x1 − x0) = 0

x1 = x0 −
(
F′(x0)

)−1 F(x0)
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In general, Newton’s method:
xn+1 = xn − (F′(xn))

−1F(xn)
Geometric interpretation:

mi(x) = fi(x0) +∇fi(x0)T (x− x0), i = 1, . . . ,m
fi(x) : surface

mi(x) : tangent at x0.

In practice:

1 Solve a linear system F′(xn)δn = −F(xn)
2 Set xn+1 = xn + δn
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Convergence Analysis: 1. Use the fixed point iteration theorem

F(x) = 0, x = x− (F′(x))−1 F(x) = G(x), xn+1 = G(xn)

Assume F(α) = 0, F′(α) is nonsingular.
Then G′(α) = 0 (exercise !)

‖G′(α)‖∞ = 0

If G′ ∈ C1(Br(α)) where Br(α) = {y : ‖y −α‖ ≤ r}, by continuity:
‖G′(α)‖∞ < 1 for x ∈ Br(x)

for some r.
By Theorem 2.9 D = Br ⇒ linear convergence.
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Convergence Analysis: 2. Assume: F′(x) ∈ Lipγ(D)

(‖F′(x)− F′(y)‖ ≤ γ‖x− y‖ ∀x,y ∈ D)

Theorem

Assume

F′ ∈ C1(D)
∃α ∈ D such that F(α) = 0
F′(α) ∈ Lipγ(D)
∃ (F′(α))−1 and ‖F′(α)‖−1 ≤ β

Then ∃ε > 0 such that if ‖x0 −α‖ < ε,
=⇒ xn+1 =xn− (F′(xn))

−1F(xn)→ α and ‖xn+1−α‖≤βγ‖xn−α‖2.

(βγ: measure of nonlinearity)
So, need ε < 1

βγ .

Reference: Dennis & Schnabel, SIAM.
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Quasi - Newton Methods

xn+1 = xn −A−1
n F(xn), An ≈ F′(xn)

Ex.: Finite Difference Newton

An = aij =
fi(xn + hnej)− fi(xn)

hn
≈ ∂fi(xn)

∂xj
,

hn ≈
√
δ and ej = (0 . . . 0 1

↑
jthposition

0 . . . 0)T .
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Global Convergence

Newton’s method:

xn+1 = xn + sndn

when

dn = −(F(xn)
′)−1F(xn)

sn = 1

If Newton step sn not satisfactory, e.g. ‖F(xn+1)‖2 > ‖F(xn)‖2

sn ←− gsn for some g < 1 (backtracking)

We can choose sn such that

ϕ(s) = ‖F(xn + sdn)‖2

is minimized. Line Search
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In practice: minimize a quadratic model of ϕ(s).

Trust region

Set a region in which the model of the function is reliable. If Newton
step takes us outside this region, cut it to be inside the region

(See Optimization Toolbox of Matlab)
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> 3. Rootfinding > Matlab’s function fsolve

The MATLAB instruction
zero = fsolve(’fun’, x0)

allows the computation of one zero of a nonlinear system
f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,
...
fn(x1, x2, . . . , xn) = 0,

defined through the user function fun starting from the vector x0 as initial
guess.

The function fun returns the n values f1(x), . . . , fn(x) for any value of the

input vector x.

3. Rootfinding Math 1070



> 3. Rootfinding > Matlab’s function fsolve

For instance, let us consider the following system:{
x2 + y2 = 1,
sin(πx/2) + y3 = 0,

whose solutions are (0.4761, -0.8794) and (-0.4761,0.8794).
The corresponding Matlab user function, called systemnl, is defined as:

function fx=systemnl(x)
fx = [x(1)̂ 2+x(2)̂ 2-1;
fx = sin(pi*0.5*x(1) )+x(2)̂ 3;]

The Matlab instructions to solve this system are therefore:

>> x0 = [1 1];
>> options=optimset(’Display’,’iter’);
>> [alpha,fval] = fsolve(’systemnl’,x0,options)
alpha =

0.4761 -0.8794

Using this procedure we have found only one of the two roots. The other can
be computed starting from the initial datum -x0.
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> 3. Rootfinding > Unconstrained Minimization

f(x1, x2, . . . , xn) : Rn → R;
min
x∈Rn

f(x)

Theorem (first order necessary condition for a minimizer)

If f ∈ C1(D), D ⊂ Rn, and x ∈ D is a local minimizer then
∇f(x) = 0.

Solve:

∇f(x) = 0 with ∇f =


∂f
∂x1
...
∂f
∂xn

 . (7.48)
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Hamiltonian

Apply Newton’s method for (7.48) with F(x) = ∇f(x).
Need F′(x) = ∇2f(x) = H(x).

Hij =
∂2f

∂xi∂xj

xn+1 = xn −H(xn)−1∇f(xn)

If H(α) is nonsingular and is Lipγ , then xn → α quadratically.
Problems:

1 Not globally convergent.

2 Requires solving a linear system each iteration.

3 Requires ∇f and H.

4 May not converge to a minimum.

Could converge to a maximum or saddle point.
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1 Globalization strategy (Line Search, Trust Region).

2 Secant Approximation to H.

3 Finite Difference derivatives for ∇f not for H.

Theorem (necessary and sufficient conditions for a minimizer):

4 Assume f ∈ C2(D), D ⊂ R2, ∃x ∈ D such that ∇f(x) = 0. Then x
is a local minimum if and only if H(x) is symmetric positive
semidefinite (vTHv ≥ 0 ∀v ∈ Rn)

x is a local minimum f(x) ≤ f(y) for ∀y ∈ Br(x).
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Quadratic model for f(x)

Taylor:

mn(x) = f(xn) +∇f(xn)T (x− xn) +
1
2
(x− xn)TH(xn)(x− xn)

mn(x) ≈ f(x) for x near xn.

Newton’s method:

xn+1 such that ∇mn(xn+1) = 0
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We need to guarantee that Hessian of the quadratic model is
symmetric positive definite

∇2mn(xn) = H(xn).

Modify
xn+1 = xn − H̃−1(xn)∇f(xn)

where
H̃(xn) = H(xn) + µnI,

for some µn ≥ 0.
If λ1, . . . , λn eigenvalues of H(xn) and λ̃1, . . . , λ̃n eigenvalues of H̃.

λ̃i = λi + µn

Need: µn : λmm + µn > 0.
Ghershgorin Theorem: A = (aij), eigenvalues lie in circles with centers
aii and radius r =

∑n
j=1,j 6=i |aij |.
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Gershgorin Circles
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Descent Methods

xn+1 = xn −H(xn)
−1∇f(xn)

Definition

d is a descent direction for f(x) at point x0 if
f(x0) > f(x0 + αd) for 0 ≤ α < α0

Lemma

d is descent direction if and only if ∇f(x0)Td < 0.

Newton: xn+1 = xn + dn, dn = −H(xn)
−1∇f(xn).

dn is a descent direction if H(xn) is symmetric positive definite.

∇f(xn)Tdn = −∇f(xn)TH(xn)
−1∇f(xn) < 0

since H(xn) is symmetric positive definite.
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Method of Steepest Descent

xn+1 = xn + sndn, dn = −∇f(xn), sn = min
s>0

f(xn + sdn)

Level curve: C = {x|f(x) = f(x0)}.
If C is closed and contains α in the interior, then the method of
steepest descent converges to α. Convergence is linear.
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Weaknesses of gradient descent are:

1 The algorithm can take many iterations to converge towards a local
minimum, if the curvature in different directions is very different.

2 Finding the optimal sn per step can be time-consuming. Conversely,
using a fixed sn can yield poor results. Methods based on Newton’s
method and inversion of the Hessian using conjugate gradient
techniques are often a better alternative.
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