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MEMOIR OF THE LIFE AND CHARACTER OF EULER
BY THE LATE FRANCIS HORNER, ESQ., M. P.

Leonard Euler was the son of a clergyman in the neighborhood of Basil, and was born on the 15th of April,
1707. His natural turn for mathematics soon appeared from the eagerness and facility with which he became
master of the elements under the instructions of his father, by whom he was sent to the University of Basil at an
early age. There, his abilities and his application were so distinguished that he attracted the particular notice of
John Bernoulli. That excellent mathematician seemed to look forward to the youth’s future achievements in
science, while his own kind care strengthened the powers by which they were to be accomplished. In order to
superintend his studies, which far outstripped the usual routine of the public lecture, he gave him a private
lesson regularly once a week; when they conversed together on the acquisitions which the pupil had been
making since their last interview, considered whatever difficulties might have occurred in his progress, and
arranged the reading and exercises for the ensuing week.

Under such eminent advantages, the capacity of Euler did not fail to make rapid improvements; and in his
seventeenth year, the degree of Master of Arts was conferred on him. On this occasion, he received high
applause for his probationary discourse, the subject of which was a comparison between the Cartesian and
Newtonian system.

His father, having all along intended him for his successor, enjoined him now to relinquish his mathematical
studies and to prepare himself by those of theology, and general erudition, for the ministerial functions. After
some time, however, had been consumed, this plan was given up. The father, himself a man of learning and
liberality, abandoned his own views for those to which the inclination and talents of his son were of themselves
so powerfully directed; persuaded that in thwarting the propensities of genius, there is a sort of impiety against
nature, and that there would be real injustice to mankind in smothering those abilities which were evidently
destined to extend the boundaries of science. Leonard was permitted, therefore, to resume his favorite pursuits;
and, at the age of nineteen, transmitting two dissertations to the Academy of Sciences at Paris, one on the
masting of ships, and the other on the philosophy of sound, he commenced that splendid career which
continued for so long a period, the admiration and the glory of Europe.

About the same time, he stood candidate for a vacant professorship in the university of Basil; but having lost
the election, he resolved, in consequence of this disappointment to leave his native country; and in 1727 he set
out for Petersburg where his friends, the young Bernoullis, had settled about two years before, and where he
flattered himself with prospects of literary success under the patronage of Catherine I. Those prospects,
however, were not immediately realised; nor was it till after he had been frequently and long disappointed that
he obtained any preferment. His first appointment appears to have been to the chair of natural philosophy; and
when Daniel Bernoulli removed from Petersburg, Euler succeeded him as professor of mathematics.

In this situation he remained for several years, engaged in the most laborious researches enriching the
academical collections of the continent with papers of the highest value, and producing almost daily
improvements in the various branches of physical, and, more particularly, analytical science. In 1741, he
complied with a very pressing invitation from Frederic the Great and resided at Berlin till 1766. Throughout
this period, he continued the same literary labors, directed by the same wonderful sagacity and comprehension
of intellect. As he advanced with his own discoveries and inventions, the field of knowledge seemed to widen
before his view and new subjects still multiplied on him for further speculation. The toils of intense study, with
him, seemed only to invigorate his future exertions. Nor did the energies of Euler’s mind give way, even when
the organs of the body were overpowered: for in the year 1735, having completed, in three days, certain
astronomical calculations, which the academy called for in haste; but which several mathematicians of
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eminence had declared could not be performed within a shorter period than some months, the intense
application threw him into a fever in which he lost the sight of one eye.

Shortly after his return to Petersburg, in 1766, he became totally blind. His passion for science, however,
suffered no decline; the powers of his mind were not impaired and he continued as indefatigable as ever.
Though the distresses of age likewise were now crowding fast upon him, for he had passed his sixtieth year; yet
it was in this latter period of his life, under infirmity, bodily pain, and loss of sight, that he produced some of
his most valuable works; such as command our astonishment, independently of the situation of the author,
from the labor and originality which they display. In fact, his habits of study and composition, his inventions
and discoveries, closed only with his life. The very day on which he died, he had been engaged in calculating
the orbit of Herschel’s planet, and the motions of aerostatic machines. His death happened suddenly in
September 1783, from a fit of apoplexy, when he was in the seventy-sixth year of his age.

Such is the short history of this illustrious man. The incidents of his life, like that of most other laborious
students, afford very scanty materials for biography; little more than a journal of studies and a catalogue of
publications: but curiosity may find ample compensation in surveying the character of his mind. An object of
such magnitude, so far elevated above the ordinary range of human intellect, cannot be approached without
reverence, nor nearly inspected, perhaps, without some degree of presumption. Should an apology be necessary,
therefore, for attempting the following estimate of Euler’s character, let it be considered that we can neither feel
that admiration, nor offer that homage, which is worthy of genius, unless, aiming at something more than the
dazzled sensations of mere wonder, we subject it to actual examination, and compare it with the standards of
human nature in general.

Whoever is acquainted with the memoirs of those great men, to whom the human race is indebted for the
progress of knowledge, must have perceived that, while mathematical genius is distinct from the other
departments of intellectual excellence, it likewise admits in itself of much diversity. The subjects of its
speculation are become so extensive and so various, especially in modern times, and present so many
interesting aspects that it is natural for a person whose talents are of this cast to devote his principal curiosity
and attention to particular views of the science. When this happens, the faculties of the mind acquire a superior
facility of operation, with respect to the objects towards which they are most frequently directed, and the
invention becomes habitually most active and most acute in that channel of inquiry.

The truth of these observations is strikingly illustrated by the character of Euler. His studies and discoveries
lay not among the lines and figures of geometry, those characters, to use an expression of Galileo in which the
great book of the universe is written; nor does he appear to have had a turn for philosophising by experiment,
and advancing to discovery through the rules of inductive investigation. The region in which he delighted to
speculate was that of pure intellect. He surveyed the properties and affections of quantity under their most
abstracted forms. With the same rapidity of perception, as a geometrician ascertains the relative position of
portions of extension, Euler ranges among those of abstract quantity, unfolding their most involved
combinations, and tracing their most intricate proportions. That admirable system of mathematical logic and
language, which at once teaches the rules of just inference, and furnishes an instrument for prosecuting
deductions, free from the defects which obscure and often falsify our reasonings on other subjects; the different
species of quantity, whether formed in the understanding by its own abstractions, or derived from modifications
of the representative system of signs; the investigation of the various properties of these, their laws of genesis,
the limits of comparison among the different species, and the method of applying all this to the solution of
physical problems; these were the researches on which the mind of Euler delighted to dwell, and in which he
never engaged without finding new objects of curiosity, detecting sources of inquiry, which had passed
unobserved, and exploring fields of speculation and discovery, which before were unknown.
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The subjects, which we have here slightly enumerated, form, when taken together, what is called the Modern
Analysis: a science eminent for the profound discoveries which it has revealed; for the refined artifices that
have been devised, in order to bring the most abstruse parts of mathematics within the compass of our
reasoning powers, and for applying them to the solution of actual phenomena, as well as for the remarkable
degree of systematic simplicity, with which the various methods of investigation are employed and combined,
so as to confirm and throw light on one another. The materials, indeed, had been collecting for years from about
the middle of the seventeenth century; the foundations had been laid by Newton, Leibnitz, the elder Bernoullis,
and a few others; but Euler raised the superstructure: it was reserved for him to work upon the materials and to
arrange this noble monument of human industry and genius in its present symmetry. Through the whole course
of his scientific labors, the ultimate and the constant aim on which he set his mind was the perfection of
Calculus and Analysis. Whatever physical inquiry he began with, this always came in view, and very frequently
received more of his attention than that which was professedly the main subject. His ideas ran so naturally in
this train that even in the perusal of Virgil’s poetry, he met with images that would recall the associations of his
more familiar studies, and lead him back from the fairy scenes of fiction to mathematical abstraction as to the
element, most congenial to his nature.

That the sources of analysis might be ascertained in their full extent, as well as the various modifications of
form and restrictions of rule that become necessary in applying it to different views of nature; he appears to
have nearly gone through a complete course of philosophy. The theory of rational mechanics, the whole range
of physical astronomy, the vibrations of elastic fluids, as well as the movements of those which are
incompressible, naval architecture and tactics, the doctrine of chances, probabilities, and political arithmetic,
were successively subjected to the analytical method; and all these sciences received from him fresh
confirmation and further improvement!!..

It cannot be denied that, in general, his attention is more occupied with the analysis itself than with the subject
to which he is applying it; and that he seems more taken up with his instruments than with the work, which they
are to assist him in executing. But this can hardly be made a ground of censure, or regret, since it is the very
circumstance to which we owe the present perfection of those instruments; a perfection to which he could never
have brought them, but by the unremitted attention and enthusiastic preference which he gave to his favorite
object. If he now and then exercised his ingenuity on a physical, or perhaps metaphysical, hypothesis, he must
have been aware, as well as any one, that his conclusions would of course perish with that from which they
were derived. What he regarded, was the proper means of arriving at those conclusions; the new views of
analysis, which the investigation might open; and the new expedients of calculus, to which it might eventually
give birth. This was his uniform pursuit; all other inquiries were prosecuted with reference to it; and in this
consisted the peculiar character of his mathematical genius.

The faculties that are subservient to invention he possessed in a very remarkable degree. His memory was at
once so retentive and so ready that he had perfectly at command all those numerous and complex formulas
which enunciate the rules and more important theorems of analysis. As is reported of Leibnitz, he could also
repeat the Aeneid from beginning to end; and could trust his recollection for the first and last lines in every
page of the edition which he had been accustomed to use. These are instances of a kind of memory more
frequently to be found where the capacity is inferior to the ordinary standard than accompanying original,
scientific genius. But in Euler, they seem to have been not so much the result of natural constitution, as of his
most wonderful attention; a faculty, which, if we consider the testimony of Newton' sufficient evidence, is the
great constituent of inventive power. It is that complete retirement of the mind within itself during which the
senses are locked up; that intense meditation on which no extraneous idea can intrude; that firm, straight-
forward progress of thought, deviating into no irregular sally, which can alone place mathematical objects in a
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light sufficiently strong to illuminate them fully, and preserve the perceptions of “the mind’s eye” in the same
order that it moves along.

Two of Euler’s pupils (we are told by M. Fuss, a pupil himself) had calculated a converging series as far as the
seventeenth term; but found, on comparing the written results, that they differed one unit at the fiftieth figure:
they communicated this difference to their master, who went over the whole calculation by head, and his
decision was found to be the true one. For the purpose of exercising his little grandson in the extraction of
roots, he has been known to form to himself the table of the six first powers of all numbers, from 1 to 100, and
to have preserved it actually in his memory.

The dexterity which he had acquired in analysis and calculation is remarkably exemplified by the manner in
which he manages formulas of the greatest length and intricacy. He perceives, almost at a glance, the factors
from which they may have been composed; the particular system of factors belonging to the question under
present consideration; the various artifices by which that system may be simplified and reduced; and the
relation of the several factors to the conditions of the hypothesis. His expertness in this particular probably
resulted, in a great measure, from the ease with which he performed mathematical investigations by head. He
had always accustomed himself to that exercise; and having practised it with assiduity, even before the loss of
sight, which afterwards rendered it a matter of necessity, he is an instance to what an astonishing degree of
perfection that talent may be cultivated, and how much it improves the intellectual powers. No other discipline
is so effectual in strengthening the faculty of attention; it gives a facility of apprehension, an accuracy and
steadiness to the conceptions; and, what is a still more valuable acquisition, it habituates the mind to
arrangement in its reasonings and reflections.

If the reader wants a further commentary on its advantages, let him proceed to the work of Euler, of which
we here offer a Translation; and if he has any taste for the beauties of method, and of what is properly called
composition, we venture to promise him the highest satisfaction and pleasure. The subject is so aptly divided,
the order is so luminous, the connected parts seem so truly to grow one out of the other, and are disposed
altogether in a manner so suitable to their relative importance, and so conducive to their mutual illustration that,
when added to the precision, as well as clearness with which everything is explained, and the judicious
selection of examples, we do not hesitate to consider it, next to Fuclid’s Geometry, the most perfect model of
elementary writing, of which the scientific world is in possession.

When our reader shall have studied so much of these volumes as to relish their admirable style, he will be the
better qualified to reflect on the circumstances under which they were composed. They were drawn up soon
after our author was deprived of sight, and were dictated to his servant, who had originally been a tailor’s
apprentice; and, without being distinguished for more than ordinary parts, was completely ignorant of
mathematics. But Euler, blind as he was, had a mind to teach his amanuensis, as he went on with the subject.
Perhaps, he undertook this task by way of exercise, with the view of conforming the operation of his faculties to
the change, which the loss of sight had produced. Whatever was the motive, his Treatise had the advantage of
being composed under an immediate experience of the method best adapted to the natural progress of a
learner’s ideas: from the want of which, men of the most profound knowledge are often awkward and
unsatisfactory, when they attempt elementary instruction. It is not improbable that we may be farther indebted
to the circumstance of our Author’s blindness; for the loss of this sense is generally succeeded by the
improvement of other faculties. As the surviving organs, in particular, acquire a degree of sensibility which
they did not previously possess; so the most charming visions of poetical fancy have been the offspring of
minds on which external scenes had long been closed. And perhaps a philosopher, familiarly acquainted with
Euler’s writings, might trace some improvement in perspicuity of method, and in the flowing progress of his
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deductions, after this calamity had befallen him; which, leaving “an universal blank of nature’s works,” favors
that entire seclusion of the mind, which concentrates attention and gives liveliness and vigor to the conceptions.

In men devoted to study, we are not to look for those strong, complicated passions, which are contracted
amidst the vicissitudes and tumult of public life. To delineate the character of Euler requires no contrasts of
coloring. Sweetness of disposition, moderation in the passions, and simplicity of manners, were his leading
features. Susceptible of the domestic affections, he was open to all their amiable impressions, and was
remarkably fond of children. His manners were simple, without being singular, and seemed to flow naturally
from a heart that could dispense with those habits, by which many must be trained to artificial mildness, and
with the forms that are often necessary for concealment. Nor did the equability and calmness of his temper
indicate any defect of energy, but the serenity of a soul that overlooked the frivolous provocations, the petulant
caprices, and jarring humours of ordinary mortals.

Possessing a mind of such wonderful comprehension and dispositions so admirably formed to virtue and to
happiness, Euler found no difficulty in being a Christian: accordingly, “his faith was unfeigned,” and his love
“was that of a pure and undefiled heart.” The advocates for the truth of revealed religion, therefore, may rejoice
to add to the bright catalogue, which already claims a Bacon, a Newton, a Locke, and a Hale, the illustrious
name of Euler. But, on this subject, we shall permit one of his learned and grateful pupils® to sum up the
character of his venerable master:

His piety was rational and sincere, his devotion
was fervent. He was fully persuaded of the
truth of Christianity; he felt its importance to
the dignity and happiness of human nature;
and looked upon its detractors, and opposers, as
the most pernicious enemies of man.

The length to which this account has been extended may require some apology; but the character of Euler is an
object so interesting that, when reflections are once indulged, it is difficult to prescribe limits to them. One is
attracted by a sentiment of admiration that rises almost to the emotion of sublimity; and curiosity becomes
eager to examine what talents and qualities and habits belonged to a mind of such superior power. We hope,
therefore, the student will not deem this an improper introduction to the work which he is about to peruse; as
we trust he is prepared to enter on it with that temper and disposition which will open his mind both to the
perception of excellence and to the ambition of emulating what he cannot but admire.
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PREFACE BY THE EDITORS OF
THE ORIGINAL, IN GERMAN

We present to the lovers of Algebra a work of which a Russian translation appeared two years ago. The object
of the celebrated author was to compose an Elementary Treatise, by which a beginner, without any other
assistance, might make himself complete master of Algebra. The loss of sight had suggested the idea to him,
and his activity of mind did not suffer him to defer the execution of it. For this purpose M. Euler pitched on a
young man whom he had engaged as a servant on his departure from Berlin, sufficiently master of arithmetic,
but in other respects without the least knowledge of mathematics. He had learned the trade of a tailor; and, with
regard to his capacity, was not above mediocrity. This young man, however, has not only retained what his
illustrious master taught and dictated to him, but in a short time was able to perform the most difficult algebraic
calculations and to resolve with readiness whatever analytical questions were proposed to him.

This fact must be a strong recommendation of the manner in which this work is composed, as the young man
who wrote it down, who performed the calculations, and whose proficiency was so striking, received no
instructions whatever but from this master, a superior one indeed, but deprived of sight.

Independently of so great an advantage, men of science will perceive with pleasure and admiration the manner
in which the doctrine of logarithms is explained, and its connection with other branches of calculus pointed out,
as well as the methods which are given for resolving equations of the third and fourth degrees.

Lastly, those who are fond of Diophantine problems will be pleased to find in the last Section of the Second
Part, all these problems reduced to a system, and all the processes of calculation, which are necessary for the
solution of them, fully explained.
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PREFACE BY M. BERNOULLI, THE
FRENCH TRANSLATOR

The Treatise of Algebra, which I have undertaken to translate, was published in German, 1770, by the Royal
Academy of Sciences at Petersburg. To praise its merits would almost be injurious to the celebrated name of its
author; it is sufficient to read a few pages to perceive, from the perspicuity with which everything is explained,
what advantage beginners may derive from it. Other subjects are the purpose of this preface.

I have departed from the division which is followed in the original, by introducing, in the first volume of the
French translation, the first Section of the Second Volume of the original because it completes the analysis of
determinate quantities. The reason for this change is obvious: it not only favors the natural division of Algebra
into determinate and indeterminate analysis; but it was necessary to preserve some equality in the size of the
two volumes on account of the additions which are subjoined to the Second Part.

The reader will easily perceive that those additions come from the pen of M. De La Grange; indeed, they
formed one of the principal reasons that engaged me in this translation. I am happy in being the first to show
more generally to mathematicians, to what a pitch of perfection two of our most illustrious mathematicians
have lately carried a branch of analysis but little known, the researches of which are attended with many
difficulties and, on the confession even of these great men, present the most difficult problems that they have
ever resolved.

I have endeavoured to translate this algebra in the style best suited to works of the kind. My chief anxiety was
to enter into the sense of the original and to render it with the greatest perspicuity. Perhaps I may presume to
give my translation some superiority over the original because that work having been dictated, and admitting of
no revision from the author himself, it is easy to conceive that in many passages it would stand in need of
correction. If I have not submitted to translate literally, I have not failed to follow my author step by step; I
have preserved the same divisions in the articles, and it is only in so few places that I have taken the liberty of
suppressing some details of calculation and inserting one or two lines of illustration in the text that I believe it
unnecessary to enter into an explanation of the reasons by which I was justified in doing so.

Nor shall I take any more notice of the notes which I have added to the first part. They are not so numerous as
to make me fear the reproach of having unnecessarily increased the volume; and they may throw light on
several points of mathematical history, as well as make known a great number of Tables that are of subsidiary
utility.

With respect to the correctness of the press, I believe it will not yield to that of the original. I have carefully
compared all the calculations, and having repeated a great number of them myself, have by those means been
enabled to correct several faults beside those which are indicated in the Errata.
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Elements of Algebra

PART I - Containing the Analysis of Determinate Quantities
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Section I — Of the different Methods of calculating Simple Quantities
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Chapter I — Of Mathematics in general

1. Whatever is capable of increase or diminution is called magnitude, or quantity.

A sum of money therefore is a quantity, since we may increase it or diminish it. It is the same with a weight,
and other things of this nature.

2. From this definition, it is evident that the different kinds of magnitude must be so various, as to render it
difficult to enumerate them: and this is the origin of the different branches of the Mathematics, each being
employed on a particular kind of magnitude. Mathematics, in general, is the science of quantity; or, the science
which investigates the means of measuring quantity.

3. Now, we cannot measure or determine any quantity, except by considering some other quantity of the same
kind as known, and pointing out their mutual relation. If it were proposed, for example, to determine the
quantity of a sum of money, we should take some known piece of money, as a louis, a crown, a ducat, or some
other coin, and show how many of these pieces are contained in the given sum. In the same manner, if it were
proposed to determine the quantity of a weight, we should take a certain known weight; for example, a pound,
an ounce, etc. and then show how many times one of these weights is contained in that which we are
endeavouring to ascertain. If we wished to measure any length or extension, we should make use of some
known length, such as a foot.

4. So that the determination, or the measure of magnitude of all kinds, is reduced to this: fix at pleasure upon
any one known magnitude of the same species with that which is to be determined, and consider it as the
measure or unit, then, determine the proportion of the proposed magnitude to this known measure. This
proportion is always expressed by numbers; so that a number is nothing but the proportion of one magnitude to
another arbitrarily assumed as the unit.

5. From this it appears that all magnitudes may be expressed by numbers; and that the foundation of all the
Mathematical Sciences must be laid in a complete treatise on the science of Numbers, and in an accurate
examination of the different possible methods of calculation.

This fundamental part of mathematics is called Analysis, or Algebra'®.
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Chapter II — Explanation of the Signs + Plus and — Minus

8. When we have to add one given number to another, this is indicated by the sign +, which is placed before the
second number, and is read plus. Thus 5 + 3 signifies that we must add 3 to the number 5, in which case,
everyone knows that the result is 8; in the same manner 12 + 7 make 19; 25 + 16 make 41; the sum of 25 + 41
is 60, etc.

9. We also make use of the same sign + plus, to connect several numbers together; for example, 7 + 5 + 9
signifies that to the number 7 we must add 5, and also 9, which make 21. The reader will therefore understand
what is meant by

8+5+13+11+1+3+10,
namely, the sum of all these numbers, which is 51.

10. All this is evident; and we have only to mention that in Algebra, in order to generalise numbers, we re-
present them by letters, as a, b, ¢, d, etc. Thus, the expression a + b, signifies the sum of two numbers, which
we express by a and b, and these numbers may be either very great, or very small. In the same manner,
f +m+ b + x, signifies the sum of the numbers represented by these four letters.

If we know therefore the numbers that are represented by letters, we shall at all times be able to find, by
arithmetic, the sum or value of such expressions.

11. When it is required, on the contrary, to subtract one given number from another, this operation is denoted
by the sign —, which signifies minus, and is placed before the number to be subtracted: thus, 8 — 5 signifies that
the number 5 is to be taken from the number 8; which being done, there remain 3. In like manner 12 — 7 is the
same as 5; and 20 — 14 is the same as 6, etc.

12. Sometimes also we may have several numbers to subtract from a single one; as, for instance, 50 —1 -3 -5
— 7 — 9. This signifies, first, take 1 from 50, and there remain 49; take 3 from that remainder, and there will
remain 46; take away 5, and 41 remain; take away 7, and 34 remain; lastly, from that take 9, and there remain
25: this last remainder is the value of the expression. But as the numbers 1, 3, 5, 7, 9, are all to be subtracted, it
is the same thing if we subtract their sum, which is 25, at once from 50, and the remainder will be 25 as before.

13. It is also easy to determine the value of similar expressions, in which both the signs + plus and — minus are
found. For example,

12—3—-5+2—11s the same as 5.

We have only to collect separately the sum of the numbers that have the sign + before them, and subtract from
it the sum of those that have the sign — Thus, the sum of 12 and 2 is 14; and that of 3, 5, and 1, is 9; hence 9
being taken from 14, there remain 5.

14. 1t will be perceived, from these examples, that the order in which we write the numbers is perfectly
indifferent and arbitrary, provided the proper sign of each be preserved. We might with equal propriety have
arranged the expression in the preceding article thus: 12+2—-5—-3—-1,0r2—1-3-5+12,0r2+12-3—-1
— 5, or in still different orders; where it must be observed that in the arrangement first proposed, the sign + is
supposed to be placed before the number 12.
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15. It will not be attended with any more difficulty if, in order to generalise these operations, we make use of
letters instead of real numbers. It is evident, for example, that

a-b-c+d-e

signifies that we have numbers expressed by a and d, and that from these numbers, or from their sum, we must
subtract the numbers expressed by the letters b, ¢, e, which have before them the sign —

16. Hence it is absolutely necessary to consider what sign is prefixed to each number: for in Algebra, simple
quantities are numbers considered with regard to the signs which precede, or affect them. Farther, we call those
positive quantities, before which the sign + is found; and those are called negative quantities, which are
affected by the sign —.

17. The manner in which we generally calculate a person’s property, is an apt illustration of what has just been
said. For we denote what a man really possesses by positive numbers, using, or understanding the sign +;
whereas his debts are represented by negative numbers, or by using the sign — Thus, when it is said of any one
that he has 100 crowns, but owes 50, this means that his real possession amounts to 100 — 50; or, which is the
same thing, + 100 — 50, that is to say, 50.

18. Since negative numbers may be considered as debts, because positive numbers represent real possessions,
we may say that negative numbers are less than nothing. Thus, when a man has nothing of his own, and owes
50 crowns, it is certain that he has 50 crowns less than nothing; for if any one were to make him a present of 50
crowns to pay his debts, he would still be only at the point nothing, though really richer than before.

19. In the same manner, therefore, as positive numbers are incontestably greater than nothing, negative numbers
are less than nothing. Now, we obtain positive numbers by adding 1 to 0, that is to say, 1 to nothing; and by
continuing always to increase thus from unity. This is the origin of the series of numbers called natural
numbers; the following being the leading terms of this series:

0,+1,+2,+3,+4,+5,+6,+7,+8,+9,+ 10, and so on to infinity.

But if, instead of continuing this series by successive additions, we continued it in the opposite direction, by
perpetually subtracting unity, we should have the following series of negative numbers:

0,-1,-2,-3,-4,-5,-6,—7,—8,—9,— 10, and so on to infinity.

20. All these numbers, whether positive or negative, have the known appellation of whole numbers, or integers,
which consequently are either greater or less than nothing. We call them integers, to distinguish them from
fractions, and from several other kinds of numbers of which we shall hereafter speak. For instance, 50 being
greater by an entire unit than 49, it is easy to comprehend that there may be, between 49 and 50, an infinity of
intermediate numbers, all greater than 49, and yet all less than 50. We need only imagine two lines, one 50 feet,
the other 49 feet long, and it is evident that an infinite number of lines may be drawn, all longer than 49 feet,
and yet shorter than 50.

21. It. is of the utmost importance through the whole of Algebra that a precise idea should be formed of those
negative quantities, about which we have been speaking. I shall, however, content myself with remarking here
that all such expressions as

+1-1,+2-2,+3-3,+4—4, etc.

are equal to 0, or nothing. And that
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+2 —5is equal to — 3:
for if a person has 2 crowns, and owes 5, he has not only nothing, but still owes 3 crowns. In the same manner,
7 — 12 is equal to — 5, and 25 — 40 is equal to — 15.

22. The same observations hold true, when, to make the expression more general, letters are used instead of
numbers; thus 0, or nothing, will always be the value of +a — a; but if we wish to know the value +a — b,
two cases are to be considered.

The first is when a is greater than b; b must then be subtracted from a, and the remainder (before which is
placed, or understood to be placed, the sign +) shows the value sought.

The second case is that in which a is less than b: here a is to be subtracted from b, and the remainder being
made negative, by placing before it the sign —, will be the value sought.
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Chapter III — Of the Multiplication of Simple Quantities

23. When there are two or more equal numbers to be added together, the expression of their sum may be
abridged: for example,

a + aisthesameas?2 X a,
a + a + aisthesameas3 X a,
a+ a+ a+ aisthesameas4 X a, and so on;

where % is the sign of multiplication. In this manner we may form an idea of multiplication; and it is to be
observed that,

2 X a signifies 2 times, or twice a
3 X a signifies 3 times, or thrice a
4 X a signifies 4 times a, etc.

24, If therefore a number expressed by a letter is to be multiplied by any other number, we simply put that
number before the letter, thus;

a multiplied by 20 is expressed by 20a, and
b multiplied by 30 is expressed by 30b, etc.

It is evident, also that ¢ taken once, or 1c, is the same as c.
25. Farther, it is extremely easy to multiply such products again by other numbers; for example:

2 times, or twice 3a, makes 6a
3 times, or thrice 4b, makes 12b
5 times 7x; makes 35x,

and these products may be still multiplied by other numbers at pleasure.

26. When the number by which we are to multiply is also represented by a letter, we place it immediately
before the other letter; thus, in multiplying b by a, the product is written ab; and pq will be the product of the
multiplication of the number g by p. Also, if we multiply this pq again by a, we shall obtain apgq.

27. It may be farther remarked here that the order in which the letters are joined together is indifferent; thus ab
is the same thing as ba; for b multiplied by a is the same as a multiplied by b. To understand this, we have
only to substitute, for a and b, known numbers, as 3 and 4; and the truth will be self-evident; for 3 times 4 is
the same as 4 times 3.

28. It will not be difficult to perceive that when we substitute numbers for letters joined together, in the manner
we have described, they cannot be written in the same way by putting them one after the other. For, if we were
to write 34 for 3 times 4, we should have 34, and not 12. When therefore it is required to multiply common
numbers, we must separate them by the sign x, or by a point: thus, 3 X 4, or 3 - 4, signifies 3 times 4; that is,
12.S0,1 X 2isequalto 2;and 1 X 2 X 3 makes 6. In like manner, 1 X 2 X 3 X 4 X 56 makes 1344;
and1 X 2 X 3 X4 X5 X6 X7 X 8XxX9 x 10is equal to 3628800, etc.

29. In the same manner, we may discover the value of an expression of this form, 5 -7 - 8 - abcd. It shows that
5 must be multiplied by 7, and that this product is to be again multiplied by 8; that we are then to multiply this
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product of the three numbers by a, next by b, then by c, and lastly by d. It may be observed, also that instead of
5.7 -8, we may write its value 280; for we obtain this number when we multiply 35, (the product of 5 by 7)
by 8.

30. The results which arise from the multiplication of two or more numbers are called products; and the
numbers, or individual letters, are called factors.

31. Hitherto we have considered only positive numbers; and there can be no doubt but that the products which
we have seen arise are positive also: + a by + b must necessarily give + ab. But we must separately examine

what the multiplication of 4+ a by — b, and of - a by - b, will produce.

32. Let us begin by multiplying — a by 3 or + 3. Now, since — a may be considered as a debt, it is evident that
if we take that debt three times, it must thus become three times greater, and consequently the required product
is — 3a. So if we multiply — a by + b, we shall obtain — ba, or, which is the same thing, — ab. Hence we
conclude that if a positive quantity be multiplied by a negative quantity, the product will be negative; and it
may be laid down as a rule that + by + makes + or plus; and that, on the contrary, + by —, or — by +, gives —, or
minus.

33. It remains to resolve the case in which — is multiplied by —; or, for example, — a by — b. It is evident, at
first sight with regard to the letters, that the product will be ab; but it is doubtful whether the sign +, or the sign
—, is to be placed before it; all we know is that it must be one or the other of these signs. Now, I say that it
cannot be the sign —: for —a by + b gives — ab, and — a by — b cannot produce the same result as — a by
+ b; but must produce a contrary result, that is to say, + ab; consequently, we have the following rule: —
multiplied by — produces +, that is, the same as + multiplied by + ',

34. The rules which we have explained are expressed more briefly as follows:

Like signs, multiplied together, give +; unlike or contrary signs give — Thus, when it is required to multiply the
following numbers: + a, — b, — ¢, + d; we have first + a multiplied by — b, which makes — ab; this by — c,
gives + abc; and this by + d, gives + abcd.

35. The difficulties with respect to the signs being removed, we have only to show how to multiply numbers
that are themselves products. If we were, for instance, to multiply the number ab by the number cd, the product
would be abcd, and it is obtained by multiplying first ab by c, and then the result of that multiplication by d.
Or, if we had to multiply 36 by 12; since 12 is equal to 3 times 4, we should only multiply 36 first by 3, and
then the product 108 by 4, in order to have the whole product of the multiplication of 12 by 36, which is
consequently 432.

36. But if we wished to multiply 5ab by 3cd, we might write 3cd X 5ab. However, as in the present instance
the order of the numbers to be multiplied is indifferent, it will be better, as is also the custom, to place the
common numbers before the letters, and to express the product thus: 5 X 3abcd, or 15abcd; since 5 times 3 is
15. So if we had to multiply 12pqr by 7xy, we should obtain 12 X 7pqrxy, or 84pqrxy.
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Chapter IV — Of the Nature of whole Numbers, or Integers, with respect to their
Factors

37. We have observed that a product is generated by the multiplication of two or more numbers together, and
that these numbers are called factors. Thus, the numbers a, b, c, d, are the factors of the product abcd.

38. If, therefore, we consider all whole numbers as products of two or more numbers multiplied together, we
shall soon find that some of them cannot result from such a multiplication, and consequently have not any
factors; while others may be the products of two or more numbers multiplied together, and may consequently
have two or more factors. Thus 4 is produced by 2 X 2; 6 by 2 X 3;8by 2 X 2 X 2;27by 3 X 3 X 3;
and 10 by 2 x 5, etc.

39. But on the other hand, the numbers 2, 3,5, 7, 11, 13, 17, etc. cannot be represented in the same manner by
factors, unless for that purpose we make use of unity, and represent 2, for instance, by 1 X 2. But the numbers
which are multiplied by 1 remaining the same, it is not proper to reckon unity as a factor.

All numbers, therefore, such as 2, 3, 5, 7, 11, 13, 17, etc. which cannot be represented by factors, are called
simple, or prime numbers; whereas others, as 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, etc. which may be represented
by factors, are called composite numbers.

40. Simple or prime numbers deserve therefore particular attention, since they do not result from the
multiplication of two or more numbers. It is also particularly worthy of observation that if we write these
numbers in succession as they follow each other, thus,

2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, etc.!®

we can trace no regular order; their increments being sometimes greater, sometimes less; and hitherto no one
has been able to discover whether they follow any certain law or not.

41. All composite numbers, which may be represented by factors, result from the prime numbers above
mentioned; that is to say, all their factors are prime numbers. For, if we find a factor which is not a prime
number, it may always be decomposed and represented by two or more prime numbers. When we have
represented, for instance, the number 30 by 5 X 6, it is evident that 6 not being a prime number, but being
produced by 2 X 3, we might have represented 30 by 5 X 2 X 3,orby 2 X 3 X 5 thatis to say, by factors
which are all prime numbers.

42. If we now consider those composite numbers which may be resolved into prime factors, we shall observe a
great difference among them; thus we shall find that some have only two factors, that others have three, and
others a still greater number. We have already seen, for example, that

4 is the same as 2 X 2,

6 is the same as 2 X 3,
8isthesameas?2 X 2 X 2,
9 is the same as 3 X 3,
10 is the same as 2 X 5,
12 isthesameas 2 X 3 X 2,
14 isthesameas 2 X 7,
15 isthesameas 3 X 5,
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16 isthesameas 2 X 2 X 2 X 2,
and so on.

43. Hence, it is easy to find a method for analysing any number, or resolving it into its simple factors. Let there
be proposed, for instance, the number 360; we shall represent it first by 2 X 180. Now 180 is equal to
2 X 90, and

90 2 X 45
45; is the same as {3 x 15
15 3 x5

So that the number 360 may be represented by these simple factors, 2 X 2 X 2 X 3 X 3 X 5; since all
these numbers multiplied together produce 360"

44, This shows that prime numbers cannot be divided by other numbers; and, on the other hand, that the simple
factors of compound numbers are found most conveniently, and with the greatest certainty, by seeking the
simple, or prime numbers, by which those compound numbers are divisible. But for this Division is necessary;
we shall therefore explain the rules of that operation in the following chapter.
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Chapter V — Of the Division of Simple Quantities

45. When a number is to be separated into two, three, or more equal parts, it is done by means of division,
which enables us to determine the magnitude of one of those parts. When we wish, for example, to separate the
number 12 into three equal parts, we find by division that each of those parts is equal to 4.

The following terms are made use of in this operation. The number which is to be decompounded, or divided,
is called the dividend; the number of equal parts sought is called the divisor; the magnitude of one of those
parts, determined by the division, is called the quotient: thus, in the above example,

12 is the dividend,
3 is the divisor, and
4 is the quotient.

46. It follows from this that if we divide a number by 2, or into two equal parts, one of those parts, or the
quotient, taken twice, makes exactly the number proposed; and, in the same manner, if we have a number to
divide by 3, the quotient taken thrice must give the same number again. In general, the multiplication of the
quotient by the divisor must always reproduce the dividend.

47. 1t is for this reason that division is said to be a rule, which teaches us to find a number or quotient, which,
being multiplied by the divisor, will exactly produce the dividend. For example, if 35 is to be divided by 5, we
seek for a number, which multiplied by 5, will produce 35. Now, this number is 7, since 5 times 7 is 35. The
manner of expression employed in this reasoning, is: 5 in 35 goes 7 times; and 5 times 7 makes 35.

48. The dividend therefore may be considered as a product, of which one of the factors is the divisor, and the
other the quotient. Thus, supposing we have 63 to divide by 7, we endeavour to find such a product that, taking
7 for one of its factors, the other factor multiplied by this may exactly give 63. Now 7 X 9 is such a product;
and consequently 9 is the quotient obtained when we divide 63 by 7.

49. In general, if we have to divide a number ab by a, it is evident that the quotient will be b; for a multiplied
by b gives the dividend ab. It is clear also that if we had to divide ab by b, the quotient would be a. And in all
examples of division that can be proposed, if we divide the dividend by the quotient, we shall again obtain the
divisor; for as 24 divided by 4 gives 6, so 24 divided by 6 will give 4.

50. As the whole operation consists in representing the dividend by two factors, of which one may be equal to
the divisor, and the other to the quotient, the following examples will be easily understood. I say first that the
dividend abc, divided by a, gives bc; for a, multiplied by bc, produces abc: in the same manner abc, being
divided by b, we shall have ac; and abc, divided by ac, gives b. It is also plain that 12mn divided by 3m gives
4n; for 3m, multiplied by 4n, makes 12mn. But if this same number 12mn had been divided by 12, we should
have obtained the quotient mn.

51. Since every number a may be expressed by 1a, or a, it is evident that if we had to divide a, or 1a, by 1, the
quotient would be the same number a. And, on the contrary, if the same number a, or 1a, is to be divided by a,
the quotient will be 1.

52. It often happens that we cannot represent the dividend as the product of two factors, of which one is equal
to the divisor; hence, in this case, the division cannot be performed in the manner we have described.
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When we have, for example, 24 to divide by 7, it is at first sight obvious that the number 7 is not a factor of
24; for the product of 7 X 3 is only 21, and consequently too small; and 7 X 4 makes 28, which is greater
than 24. We discover, however, from this, that the quotient must be greater than 3, and less than 4. In order
therefore to determine it exactly, we employ another species of numbers, which are called fractions, and which
we shall consider in one of the following chapters.

53. Before we proceed to the use of fractions, it is usual to be satisfied with the whole number which
approaches nearest to the true quotient, but at the same time paying attention to the remainder which is left; thus
we say, 7 in 24 goes 3 times, and the remainder is 3 because 3 times 7 produces only 21, which is 3 less than
24. We may also consider the following examples in the same manner:

5

6| 34
30

4

that is to say, the divisor is 6, the dividend 34, the quotient 5, and the remainder 4.

4

91 41

36

5

here the divisor is 9, the dividend 41, the quotient 4, and the remainder 5.
The following rule is to be observed in examples where there is a remainder.

54. Multiply the divisor by the quotient, and to the product add the remainder, and the result will be the
dividend. This is the method of proving the division, and of discovering whether the calculation is right or not.
Thus, in the first of the two last examples, if we multiply 6 by 5, and to the product 30 add the remainder 4, we
obtain 34, or the dividend. And in the last example, if we multiply the divisor 9 by the quotient 4, and to the
product 36 add the remainder 5, we obtain the dividend 41.

55. Lastly, it is necessary to remark here, with regard to the signs + plus and — minus, that if we divide + ab by
+ a, the quotient will be + b, which is evident. But if we divide + ab by — a, the quotient will be — b; because
—a X — b gives + ab. If the dividend is — ab, and is to be divided by the divisor + a, the quotient will be
— b; because it is — b which, multiplied by + a, makes — ab. Lastly, if we have to divide the dividend — ab
by the divisor — a, the quotient will be + b; for the dividend — ab is the product of — a by + b.

56. With regard, therefore, to the signs + and —, division requires the same rules to be observed that we have
seen take place in multiplication; that is to say,

+ by + makes +; + by — makes —;
— by + makes —; — by — makes +;

or, in few words, like signs give plus, and unlike signs give minus.

57. Thus when we divide 18pq by — 3p, the quotient is — 6q. Farther,

— 30xy divided by + 6y gives — 5x, and
— 54abc divided by — 9b gives + 6ac;
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for, in this last example, — 9b multiplied by + 6ac makes — 6 X 9abc, or — 54abc. But enough has been said
on the division of simple quantities; we shall therefore hasten to the explanation of fractions, after having added
some further remarks on the nature of numbers, with respect to their divisors.
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Chapter VI — Of the Properties of Integers, with respect to their Divisors

58. As we have seen that some numbers are divisible by certain divisors, while others are not; it will be proper,
in order to obtain a more particular knowledge of numbers, that this difference should be carefully observed,
both by distinguishing the numbers that are divisible by divisors from those which are not, and by considering
the remainder that is left in the division of the latter. For this purpose, let us examine the divisors

2,3,4,5,6,7,8,9,10, ...

59. First let the divisor be 2; the numbers divisible by it are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, etc. which, it
appears, increase always by two. These numbers, as far as they can be continued, are called even numbers. But
there are other numbers, namely,

1,3,5,7,9,11,13, 15,17, 19, ...

which are uniformly less or greater than the former by unity, and which cannot be divided by 2, without the
remainder 1; these are called odd numbers.

The even numbers may all be contained in the general expression 2a; for they are all obtained by successively
substituting for a the integers 1, 2, 3, 4, 5, 6, 7, etc. and hence it follows that the odd numbers are all contained
in the expression 2a + 1 because 2a + 1 is greater by unity than the even number 2a.

60. In the second place, let the number 3 be the divisor; the numbers divisible by it are,
3,6,9,12,15, 18, 21, 24, 27, 30, and so on;

which numbers may be represented by the expression 3a; for 3a, divided by 3, gives the quotient a without a
remainder. All other numbers which we would divide by 3 will give 1 or 2 for a remainder, and are
consequently of two kinds. Those which after the division leave the remainder 1, are

1,4,7,10,13,16,19, ...
and are contained in the expression 3a + 1; but the other kind, where the numbers give the remainder 2, are
2,5,8,11, 14,17, 20, ...

which may be generally represented by 3a + 2; so that all numbers may be expressed either by 3a, or by
3a + 1,orby3a + 2.

61. Let us now suppose that 4 is the divisor under consideration; then the numbers which it divides are
4,8,12, 16, 20, 24, ...

which increase uniformly by 4, and are contained in the expression 4a. All other numbers, that is, those which
are not divisible by 4, may either leave the remainder 1, or be greater than the former by 1; as,

1,5,9,13,17,21, 25, ...
and consequently may be contained in the expression 4a + 1: or they may give the remainder 2; as,

2,6,10, 14, 18, 22, 26, ...
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and be expressed by 4a + 2; or, lastly, they may give the remainder 3; as,
3,7,11, 15,19, 23, 27, ...
and may then be represented by the expression 4a + 3.
All possible integer numbers are contained therefore in one or other of these four expressions:
4a,4a + 1,4a + 2,4a + 3.

62. It is also nearly the same when the divisor is 5; for all numbers which can be divided by it are contained in
the expression 5a, and those which cannot be divided by 5, are reducible to one of the following expressions:

5a + 1,5a + 2,5a + 3,5a + 4;
and in the same manner we may continue, and consider any greater divisor.

63. It is here proper to recollect what has been already said on the resolution of numbers into their simple
factors; for every number, among the factors of which is found

2,0or3,or4, or5,or?7,

or any other number, will be divisible by those numbers. For example; 60 being equalto 2 X 2 X 3 X 5, itis
evident that 60 is divisible by 2, and by 3, and by 5.

64. Farther, as the general expression abcd is not only divisible by a, and b, and ¢, and d, but also by

ab, ac, ad, bc, bd, cd, and by
abc, abd, acd, bcd, and lastly by
abcd, that is to say, its own value;

it follows that 60, or 2 X 2 X 3 X 5, may be divided not only by these simple numbers, but also by those
which are composed of any two of them; that is to say, by 4, 6, 10, 15: and also by those which are composed
of any three of its simple factors; that is to say, by 12, 20, 30, and lastly also, by 60 itself.

65. When, therefore, we have represented any number assumed at pleasure, by its simple factors, it will be very
easy to exhibit all the numbers by which it is divisible. For we have only, first, to take the simple factors one by
one, and then to multiply them together two by two, three by three, four by four, etc. till we arrive at the
number proposed.

66. It must here be particularly observed that every number is divisible by 1; and also that every number is
divisible by itself; so that every number has at least two factors, or divisors, the number itself, and unity: but
every number which has no other divisor than these two, belongs to the class of numbers, which we have before
called simple, or prime numbers.

Except these simple numbers, all other numbers have, beside unity and themselves, other divisors, as may be
1]

seen from the following Table, in which are placed under each number all its divisors
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112345678 |9]|10]11 |12 )13 |14 ]15|16|17 18|19 |20

11171111 1 11]1]1 1 1 1 1 1 1 1 1 11

2|32 |52 |72 |32 |11|2|13] 2 312 (17| 2 |19 2

4 3 4|19 |5 3 7 15| 4 3 4

6 8 10 4 14 | 15| 8 6 5

6 16 9 10

12 18 20

11212324243 |4]|]2]|]6|2 |44 |5]|2]|]6]|2]6
P.|P. | P P. P. P. P. P. P.

Note: P. indicates a prime number.

67. Lastly, it ought to be observed that 0, or nothing, may be considered as a number which has the property of
being divisible by all possible numbers; because by whatever number a we divide 0, the quotient is always 0;
for it must be remarked that the multiplication of any number by nothing produces nothing, and therefore 0
times a, or Oa, is 0.



30 Elements of Algebra

Chapter VII — Of Fractions in General

68. When a number, as 7, for instance, is said not to be divisible by another number, let us suppose by 3, this
only means that the quotient cannot be expressed by an integer number; but it must not by any means be
thought that it is impossible to form an idea of that quotient. Only imagine a line of 7 feet in length; nobody can
doubt the possibility of dividing this line into 3 equal parts, and of forming a notion of the length of one of
those parts.

69. Since therefore we may form a precise idea of the quotient obtained in similar cases, though that quotient
may not be an integer number, this leads us to consider a particular species of numbers, called fractions, or
broken numbers; of which the instance adduced furnishes an illustration. For if we have to divide 7 by 3, we

easily conceive the quotient which should result, and express it by g; placing the divisor under the dividend, and

separating the two numbers by a stroke, or line.

70. So, in general, when the number a is to be divided by the number b, we represent the quotient by %, and call

this form of expression a fraction. We cannot therefore give a better idea of a fraction % than by saying that it

expresses the quotient resulting from the division of the upper number by the lower. We must remember also
that in all fractions the lower number is called the denominator; and that above the line the numerator.

71. In the above fraction g, which we read seven thirds, 7 is the numerator, and 3 the denominator. We must

also read g, two thirds; Z, three fourths; z, three eighths;%, twelve hundredths; and %, one half; etc.

72. In order to obtain a more perfect knowledge of the nature of fractions, we shall begin by considering the
case in which the numerator is equal to the denominator, as in % Now, since this expresses the quotient
obtained by dividing a by a, it is evident that this quotient is exactly unity, and that consequently the fraction %

is of the same value as 1, or one integer; for the same reason, all the following fractions,

2345678

2’3’4’5°6’7'8" "
are equal to one another, each being equal to 1, or one integer.

73. We have seen that a fraction, whose numerator is equal to the denominator, is equal to unity. All fractions
therefore whose numerators are less than the denominators, have a value less than unity: for if I have a number
to divide by another, which is greater than itself, the result must necessarily be less than 1. If we cut a line, for
example, two feet long, into three equal parts, one of those parts will undoubtedly be shorter than a foot: it is

evident then that 2 1s less than 1, for the same reason; that is, the numerator 2 is less than the denominator 3.

74. If the numerator, on the contrary, be greater than the denominator, the value of the fraction is greater than
: 3. 3. 2 1 2. 3.
unity. Thus 5 18 greater than 1, for 518 equal to 3 together with > Now 518 exactly 1; consequently 518 equal to
1 : . 4. 15 2 7 1 .
1+ > that is, to an integer and a half. In the same manner, 318 equal to 1 >3 to 15, and 3 to 25. And, in

general, it is sufficient in such cases to divide the upper number by the lower, and to add to the quotient a
fraction, having the remainder for the numerator, and the divisor for the denominator. If the given fraction, for
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43 . .
example, were o We should have for the quotient 3, and 7 for the remainder; whence we should conclude that

43, 7
— is the same as 3 —.
12 12

75. Thus we see how fractions, whose numerators are greater than the denominators, are resolved into two
members; one of which is an integer, and the other a fractional number, having the numerator less than the
denominator. Such fractions as contain one or more integers, are called improper fractions, to distinguish them
from fractions properly so called, which having the numerator less than the denominator, are less than unity, or
than an integer.

76. The nature of fractions is frequently considered in another way, which may throw additional light on the

subject. If, for example, we consider the fraction %, it is evident that it is three times greater than i. Now, this
fraction i means that if we divide 1 into 4 equal parts, this will be the value of one of those parts; it is obvious

then that by taking 3 of those parts we shall have the value of the fraction %.

In the same manner we may consider every other fraction; for example, Py, if we divide unity into 12 equal

parts, 7 of those parts will be equal to the fraction proposed.

77. From this manner of considering fractions, the expressions numerator and denominator are derived. For, as
in the preceding fraction é, the number under the line shows that 12 is the number of parts into which unity is

to be divided; and as it may be said to denote, or name, the parts, it has not improperly been called the
denominator.

Farther, as the upper number, namely 7, shows that, in order to have the value of the fraction, we must take, or
collect, 7 of those parts, and therefore may be said to reckon or number them, it has been thought proper to call
the number above the line the numerator.

78. As it is easy to understand what Z is, when we know the signification of i, we may consider the fractions

whose numerator is unity as the foundation of all others. Such are the fractions,

1171111111 1 1

and it is observable that these fractions go on continually diminishing: for the more you divide an integer, or the

greater the number of parts into which you distribute it, the less does each of those parts become. Thus, ﬁ is
1
10000

less than %; ﬁ is less than Flo; and is less than ﬁ, etc.

79. As we have seen that the more we increase the denominator of such fractions the less their values become, it
may be asked, whether it is not possible to make the denominator so great that the fraction shall be reduced to
nothing? [ answer, no; for into whatever number of parts unity (the length of a foot, for instance) is divided; let
those parts be ever so small, they will still preserve a certain magnitude, and therefore can never be absolutely
reduced to nothing.

80. It is true, if we divide the length of a foot into 1000 parts, those parts will not easily fall under the
cognizance of our senses; but view them through a good microscope, and each of them will appear large
enough to be still subdivided into 100 parts, and more.
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At present, however, we have nothing to do with what depends on ourselves, or with what we are really
capable of performing, and what our eyes can perceive; the question is rather what is possible in itself: and, in
this sense, it is certain that however great we suppose the denominator, the fraction will never entirely vanish,
or become equal to 0.

81. We can never therefore arrive completely at 0, or nothing, however great the denominator may be; and,
consequently, as those fractions must always preserve a certain quantity, we may continue the series of
fractions in the 78" article without interruption. This circumstance has introduced the expression that the
denominator must be infinite, or infinitely great, in order that the fraction may be reduced to 0, or to nothing;
hence the word infinite in reality signifies here that we can never arrive at the end of the series of the above-
mentioned fraction.

82. To express this idea, according to the sense of it above-mentioned, we make use of the sign oo, which
consequently indicates a number infinitely great; and we may therefore say that this fraction i is in reality

nothing; because a fraction cannot be reduced to nothing, until the denominator has been increased to infinity.

83. It is the more necessary to pay attention to this idea of infinity, as it is derived from the first elements of our
knowledge, and as it will be of the greatest importance in the following part of this treatise.

We may here deduce from it a few consequences that are extremely curious, and worthy of attention. The

fraction é represents the quotient resulting from the division of the dividend 1 by the divisor co. Now, we know

that if we divide the dividend 1 by the quotient é, which is equal to nothing, we obtain again the divisor oo:

hence we acquire a new idea of infinity; and learn that it arises from the division of 1 by 0; so that we are
thence authorised in saying that 1 divided by 0 expresses a number infinitely great, or co.

84. It may be necessary also, in this place, to correct the mistake of those who assert that a number infinitely
great is not susceptible of increase. This opinion is inconsistent with the just principles which we have laid

down; for % signifying a number infinitely great, and % being incontestably the double of %, it is evident that a

number, though infinitely great, may still become twice, thrice, or any number of times greater!'").
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Chapter VIII — Of the Properties of Fractions

85. We have already seen that each of the fractions,

2345678

235678
makes an integer, and that consequently they are all equal to one another. The same equality prevails in the
following fractions,

246810 12

each of them making two integers; for the numerator of each, divided by its denominator, gives 2. So all the
fractions

369 12 15 18

are equal to one another, since 3 is their common value.

86. We may likewise represent the value of any fraction in an infinite variety of ways. For if we multiply both
the numerator and the denominator of a fraction by the same number, which may be assumed at pleasure, this
fraction will still preserve the same value. For this reason, all the fractions

12345 6 7 8 9 10

2°4’6’8°10°12'14°16°18°20"
are equal, the value of each being % Also,

1234 5 6 7 8 9 10

3'6’9°12°15'18'21°24°27°30" "
are equal fractions, the value of each being % The fractions

24 8 10 12 14 16

3'6°12°15°18°21°24"
have likewise all the same value. Hence we may conclude, in general, that the fraction % may be represented by

any of the following expressions, each of which is equal to %; that is to say,

a 2a 3a 4a 5a 6a 7a

b’2b’3b’4b’5b’6b°7b"
87. To be convinced of this, we have only to write for the value of the fraction % a certain letter c, representing

by this letter ¢ the quotient of the division of a by b; and to recollect that the multiplication of the quotient ¢ by
the divisor b must give the dividend. For since ¢ multiplied by b gives a, it is evident that ¢ multiplied by 2b
will give 2a, that ¢ multiplied by 3b will give 3a, and that, in general, ¢ multiplied by mb will give ma. Now,
changing this into an example of division, and dividing the product ma by mb, one of the factors, the quotient

must be equal to the other factor c; but ma divided by mb gives also the fraction %, which is consequently
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equal to c; and this is what was to be proved: for ¢ having been assumed as the value of the fraction %, it is

evident that this fraction is equal to the fraction %, whatever be the value of m.

88. We have seen that every fraction may be represented in an infinite number of forms, each of which contains
the same value; and it is evident that of all these forms, that which is composed of the least numbers, will be

most easily understood. For example, we may substitute, instead of g, the following fractions,

46 8 10 12

6'9°12°15°18" "
but of all these expressions 2 is that of which it is easiest to form an idea. Here therefore a problem arises, how

a fraction, such as %, which is not expressed by the least possible numbers, may be reduced to its simplest

. : . 2
form, or to its least terms; that is to say, in our present example, to >

89. It will be easy to resolve this problem, if we consider that a fraction still preserves its value, when we
multiply both its terms, or its numerator and denominator, by the same number. For from this it also follows
that if we divide the numerator and denominator of a fraction by the same number, the fraction will still

preserve the same value. This is made more evident by means of the general expression %; for if we divide
both the numerator ma and the denominator mb by the number m, we obtain the fraction %, which, as was

before proved, is equal to %.

90. In order therefore to reduce a given fraction to its least terms, it is required to find a number, by which both
the numerator and denominator may be divided. Such a number is called a common divisor; and as long as we
can find a common divisor to the numerator and the denominator, it is certain that the fraction may be reduced
to a lower form; but, on the contrary, when we see that, except unity, no other common divisor can be found,
this shows that the fraction is already in its simplest form.

91. To make this more clear, let us consider the fraction %. We see immediately that both the terms are

divisible by 2, and that there results the fraction %; which may also be divided by 2, and reduced to %; and as

this likewise has 2 for a common divisor, it is evident that it may be reduced to %. But now we easily perceive
that the numerator and denominator are still divisible by 3; performing this division, therefore, we obtain the
fraction é, which is equal to the fraction proposed, and gives the simplest expression to which it can be reduced;

for 2 and 5 have no common divisor but 1, which cannot diminish these numbers any farther.

92. This property of fractions preserving an invariable value, whether we divide or multiply the numerator and
denominator by the same number, is of the greatest importance, and is the principal foundation of the doctrine
of fractions. For example, we can seldom add together two fractions, or subtract the one from the other, before
we have, by means of this property, reduced them to other forms; that is to say, to expressions whose
denominators are equal. Of this we shall treat in the following chapter.

93. We will conclude the present, however, by remarking that all whole numbers may also be represented by

. ) 6 .. .
fractions. For example, 6 is the same as i because 6 divided by 1 makes 6; we may also, in the same manner,

. 12 18 24 36 . . .
express the number 6 by the fractions 3 e e and an infinite number of others, which have the same

value.



Leonard Euler 35

Questions for Practice

cx+x? .
1. Reduce ——— to its lowest terms.
ca“+a“x

X
Ans. =
a
3 2
x>—b°x .
2. Reduce ———— to its lowest terms.
x%+2bx+ b
2
x“—bx
Ans.
x+b
x*— p* .
3. Reduce ———; to its lowest terms.
x5—b2x3
2 2
x“+b
Ans. —;
X
x?-y% .
4. Reduce —/—=; to its lowest terms.
x*-y
1
Ans. ——
x“+y
4
- X .
5. Reduce —————— to its lowest terms.
a3-a?x—ax?+x
2 2
a“+x
Ans
a—x
5a5+ 10a*x+5a3x? .
6. Reduce — o) to its lowest terms.
adx +2a%x2+2ax3+x*
5a*+5a3x

" aZx+ax2+x3
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Chapter IX — Of the Addition and Subtraction of Fractions

94. When fractions have equal denominators, there is no difficulty in adding and subtracting them; for % + ; is

5 2. 2 . . .. .
equal to > and %—; is equal to > In this case, therefore, either for addition or subtraction, we alter only the

numerators, and place the common denominator under the line, thus;

7 9 12 15 20

100 T 100 100 100 T 100 S edualto 155
24 7 12 31 [, 36 18
50 50 50 T 50 \Sequalto z5, 0T 5es
163 11 14 b 16 _

20 20 20 T 20 \Sequalto 55,0 5

1. 2. 3 . . 2 3 . 0 . .
also 3 + 31 equal to 3O 1, that is to say, an integer; and Pl i is equal to " that is to say, nothing, or 0.

95. But when fractions have not equal denominators, we can always change them into other fractions that have
the same denominator. For example, when it is proposed to add together the fractions % and %, we must consider
that % is the same as % and that é is equivalent to 2; we have therefore, instead of the two fractions proposed,
§+ 2, the sum of which is 2. And if the two fractions were united by the sign minus, as %—%, we should have

1

3 2
=-= 0r-.
6 6 6

. 5 . . .
As another example let the fractions proposed be E ty Here, since % is the same as g, this value may be

substituted for and we may then say o + makes , Or 1 =

4 1_ 3
Suppose farther that the sum of = and were required, | say that it 1s for 3T and PPy therefore
42,3 _7
12 12 12
12345
96. We may have a greater number of fractions to reduce to a common denominator; for example, PP In

this case, the whole depends on finding a number that shall be divisible by all the denominators of those
fractions. In this instance, 60 is the number Which has that property, and which consequently becomes the

common denominator. We shall therefore have 1nstead of 1nstead of il 1nstead of 1nstead of -

30 40 45 48

5
and — 1nstead of =. If now it be required to add together all these fractions, — 50’ 50° 50 80’ and £; we have only

to add all the numerators, and under the sum place the common denominator 60; that is to say, we shall have

13 . . . 33 1 11
o OF 3 integers, and the fractional remainder, = T 20" 3 20"

97. The whole of this operation consists, as we before stated, in changing fractions, whose denominators are
unequal, into others whose denominators are equal. In order, therefore, to perform it generally, let % and % be

the fractions proposed. First, multiply the two terms of the first fraction by d, and we shall have the fraction %

equal to 2' next multiply the two terms of the second fraction by b, and we shall have an equivalent value of it

expressed by ®. thus the two denominators are become equal. Now, if the sum of the two proposed fractions be
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. . . ... ad+b . o .. ad-b
required, we may immediately answer that it is b:z %, and if their difference be asked, we say that it is ———.

. 5 7 . . 45 56 .
If the fractions 3 and e for example, were proposed, we should obtain, in their stead, P and — of which the

sum is —= and the difference —.""!

72 72
98. To this part of the subject belongs also the question, Of two proposed fractions which is the greater or the
less? For, to resolve this, we have only to reduce the two fractions to the same denominator. Let us take, for

.2 5 . !
example, the two fractions 3 and > when reduced to the same denominator, the first becomes %, and the second

15 o 5 .
L where it is evident that the second, or s the greater, and exceeds the former by %

Again, if the fractions g and g be proposed, we shall have to substitute for them i—§ and %; whence we may

conclude that g exceeds g, but only by ﬁ.

99. When it is required to subtract a fraction from an integer, it is sufficient to change one of the units of that
integer into a fraction, which has the same denominator as that which is to be subtracted; then in the rest of the

operation there is no difficulty. If it be required, for example, to subtract 3 from 1, we write % instead of 1, and

. 5
say that § taken from z leaves the remainder % So > subtracted from 1, leaves %

If it were required to subtractz from 2, we should write 1 and % instead of 2, and should then immediately see

that after the subtraction there must remain 1 i: 2 —z =1+ %—% =1+ i =1 i.

100. It happens also sometimes that having added two or more fractions together, we obtain more than an
integer; that is to say, a numerator greater than the denominator: this is a case which has already occurred, and
deserves attention.

We found, for example (see Article 96), that the sum of the five fractions =, Z, =, =, — was %, and remarked

. 33 11 . . 2 3 8 9 17 5
that the value of this sum was 3 = O 3 20" Likewise, 3 + 2 o' + > makes o of 1 o We have therefore

only to perform the actual division of the numerator by the denominator, to see how many integers there are for
the quotient, and to set down the remainder.

Nearly the same must be done to add together numbers compounded of integers and fractions; we first add the
fractions, and if the sum produces one or more integers, these are added to the other integers. If it be proposed,

for example, to add B%and 2%; we first take the sum of%and g, or of zand %, which is g, or 1&; and thus we
find the total sum to be 6 3=+ 22=3 + 2 +++2=5 +-42=5+2=541+-=6 ++=
6“2 3 2 3 2 3 6 6 6

62,
6
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Questions for Practice

2x b .
1. Reduce - and p to a common denominator.

a a+b .
2. Reduce 5 and - to a common denominator.

3x 2b . . .
3. Reduce 20’ 30 and d to fractions having a common denominator.

3 2x 2x .
4. Reduce e and a + - to a common denominator.

x%+ a?
x+a

1 a? .
5. Reduce >3 and to a common denominator.

Ans
b ¢ d .
6. Reduce —, — and — to a common denominator.
2a<” 2a a
2a?b 2a3c
Ans. ——,—
4a*’ 4a*

2cx

ab
Ans. — and —
ac ac

ac ab+b?
Ans. — and
c bc
9cx 4ab 6acd
Ans. —,— —_—
6ac’ 6ac 6ac
9a 8ax 12a%+24x
Ans. —,— and ———
12a " 12a 12a
3x+3a 2a?x+2a3 6x%+6a?
‘6x+6a’ 6x+6a 6x+6a
4a3d b ac 2ad
nd —- or —,— and ——
4a 2a2’ 2a? 2a?
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Chapter X — Of the Multiplication and Division of Fractions

101. The rule for the multiplication of a fraction by an integer, or whole number, is to multiply the numerator
only by the given number, and not to change the denominator: thus,
. .1 2 .
2 times, or twice > makes 5 Of 1 integer;
. .1 2
2 times, or twice 3 makes > and
. L1 3
3 times, or thrice g makes g or -

4 times % makes , Or 1 , Or 1 >

But, instead of this rule, we may use that of dividing the denominator by the given integer, which is

preferable, when it can be done, because it shortens the operation. Let it be required, for example, to multiply g
by 3; if we multiply the numerator by the given integer we obtain %4, which product we must reduce to g. But if
we do not change the numerator, and divide the denominator by the integer we find immediately g, or 2 g, for

the given product; and, in the same manner, multlplled by 6 glves , Or 3 -

102. In general, therefore, the product of the multiplication of a fraction % by c is %; and here it may be

remarked, when the integer is exactly equal to the denominator, that the product must be equal to the
numerator.

1
> taken twice, gives 1

(
I
2
So that { — taken thrice, gives 2
I
t taken four times, gives 3

3

4

And, in general, if we multiply the fraction % by the number b, the product must be a, as we have already
shown; for since % expresses the quotient resulting from the division of the dividend a by the divisor b, and

because it has been demonstrated that the quotient multiplied by the divisor will give the dividend, it is evident

that % multiplied by b must produce a.

103. Having thus shown how a fraction is to be multiplied by an integer; let us now consider also how a fraction
is to be divided by an integer. This inquiry is necessary, before we proceed to the multiplication of fractions by

fractions. It is evident, if we have to divide the fraction g by 2, that the result must be %; and that the quotient of

g divided by 3 is ; The rule therefore is, to divide the numerator by the integer without changing the

denominator. Thus:
12 .. . ) 6
e divided by 2 gives 7

% divided by 3 gives %; and
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% divided by 4 gives %, etc.

104. This rule may be easily practised, provided the numerator be divisible by the number proposed; but very
often it is not: it must therefore be observed that a fraction may be transformed into an infinite number of other
expressions, and in that number there must be some, by which the numerator might be divided by the given

integer. If it were required, for example, to divide % by 2, we should change the fraction into g, and then

dividing the numerator by 2, we should immediately have % for the quotient sought.

In general, if it be proposed to divide the fraction = by ¢, we change it 1nt0 and then dividing the numerator

ac by c, write E for the quotient sought.

105. When therefore a fraction % is to be divided by an integer ¢, we have only to multiply the denominator by

that number, and leave the numerator as it is. Thus, = d1V1ded by 3 glyes and d1V1ded by 5 gives %

This operation becomes easier when the numerator itself is divisible by the integer as we have supposed in

Article 103. For example d1v1ded by 3 would give, accordmg to our last rule but by the first rule, which

is applicable here, we obtam Tg an expression equivalent to but more simple.

106. We shall now be able to understand how one fraction % may be multiplied by another fraction 2. For this
purpose, we have only to consider that 2 means that ¢ is divided by d; and on this principle we shall first
multiply the fraction % by ¢, which produces the result %; after which we shall divide by d, which gives %.
Hence the following rule for multiplying fractions. Multiply the numerators together for a numerator, and the
denominators together for a denominator.
Thus = by glves the product
3 by S makes E;

3 5 15 5
= by — produces —, or —; etc.
47 12 48’ 16

107. It now remains to show how one fraction may be divided by another. Here we remark first that if the two
fractions have the same number for a denominator, the division takes place only with respect to the numerators;

.. . 3 . . . 9 . . . . .
for it is evident that T are contained as many times in 7 as 3 is contained in 9, that is to say, three times; and,
. . .. 8 9 .. . . 8
in the same manner, in order to divide o by o e have only to divide 8 by 9, which gives 5 We shall also

. 49 . 7. 6 6
have — 1n 3 times; — in —, 7 times; — in —, -, etc.
100 100 25 25’7

108. But when the fractions have not equal denominators, we must have recourse to the method already

mentioned for reducing them to a common denominator. Let there be, for example, the fraction % to be divided
. . d . b . .
by the fraction 2. We first reduce them to the same denominator, and there results Z—d to be divided by Z—b; it is

now evident that the quotient must be represented simply by the division of ad by bc; which gives %.
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Hence the following rule: Multiply the numerator of the dividend by the denominator of the divisor, and the
denominator of the dividend by the numerator of the divisor; then the first product will be the numerator of the
quotient, and the second will be its denominator.

: : o 5 . 5 o .
109. Applying this rule to the division of 3 by g, we shall have the quotient 1—6; also the division of % by % will
give E, or2or1 l; and 2 by 2 will give @, or 2.

¥ 2 2 48 7 6 240’ 8
110. This rule for division is often expressed in a manner that is more easily remembered, as follows: Invert the
terms of the divisor, so that the denominator may be in the place of the numerator, and the latter be written

under the line; then multiply the fraction, which is the dividend by this inverted fraction, and the product will be

the quotient sought. Thus, % divided by % is the same as %multiplied by %, which makes %, or1l % Also g divided

by 2 is the same as > multiplied by 3, which is E; or 2 divided by 2 gives the same as 2 multiplied by E, the
3 8 2 16>~ 48 6 48 5

1 5

. . . 150
product of which is —, or =.
240’ 8

We see then, in general, that to divide by the fraction % is the same as to multiply by %, or 2; and that dividing

by§ amounts to multiplying by %, or by 3, etc.

111. The number 100 divided by > will give 200; and 1000 divided by = will give 3000. Farther, if it were

required to divide 1 by 5 the quotient would be 1000; and dividing 1 by L the quotient is 100000.

1

100 100000
This enables us to conceive that, when any number is divided by 0, the result must be a number indefinitely
great; for even the division of 1 by the small fraction

1000000000.

S — gives for the quotient the very great number
1000000000

112. Every number, when divided by itself, producing unity, it is evident that a fraction divided by itself must

also give 1 for the quotient; and the same follows from our rule: for, in order to divide % by %, we must multiply
% by g, in which case we obtain %, or 1; and if it be required to divide % by %, we multiply % by Z; where the

b .
product Z—b is also equal to 1.

113. We have still to explain an expression which is frequently used. It may be asked, for example, what is the

half of Z? This means that we must multiply z by % So likewise, if the value of g of g were required, we should

. 5, 2 . 10 3 .9 . 9 . 3 .. 27
multiply 3 by 7 which produces o and " of o s the same as T multiplied by e which produces "

114. Lastly, we must here observe, with respect to the signs + and —, the same rules that we before laid down

for integers. Thus +% multiplied by —g, makes —%; and —g multiplied by - %3 gives + %. Farther —g divided by

+ E, gives - E; and -2 divided by —E, gives + E, or+ 1.
3 16 4 4 12
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Questions for Practice

1. Required the product of % and %x.

Ans. 32(—7
2. Required the product of g, %x and 120—1x.
3
Ans. %
3. Required the product of = and iy
a a+c
n x2+ax
a’?+ac
4. Required the product of %x and 37(1.
9ax
Ans. —
2b
2
5. Required the product of Z?X and 32%
3
Ans. 35%
6. Required the product of Z—x, 39D and 3%,
a’ ¢ 2b
Ans.9ax
7. Required the product of b + %x and %
Ans ab+bx
Tox
2_ 2 2
8. Required the product of 2D and 22
bc b+c
x4—_ b4—
Ans. bZc+bc?
9. Required the product of x, 1 and 22
a a+b
x3-x
Ans a?+ab
10. Required the quotient of g divided by %x.
Ans. 12
2

11. Required the quotient of %a divided by %.
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ad
Ans. The
. . x+a .. x+b
12. Required the quotient of 2D divided by vy
5x%+6ax+a?
Ans 2x2-2b?
. . 2x? . . x
13. Required the quotient of Y divided by g
y 2x?%+2ax
ns x3+a3
14. Required the quotient of Z* divided by ==
91x
Ans. a
2
15. Required the quotient of 4% divided by 5x.
Ans. 2
35
16. Required the quotient of xTH divided by Z?x
x+1
Ans. ?
. . x=b . . 3cx
17. Required the quotient of Sod divided by R
Ans x_zb
6Ccex
. . x*—b* .. x2%+bx
18. Required the quotient of e divided by -
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Chapter XI — Of Square Numbers

115. The product of a number, when multiplied by itself, is called a square; and, for this reason, the number,
considered in relation to such a product, is called a square root. For example, when we multiply 12 by 12, the
product 144 is a square, of which the root is 12.

The origin of this term is borrowed from geometry, which teaches us that the contents of a square are found by
multiplying its side by itself.

116. Square numbers are found therefore by multiplication; that is to say, by multiplying the root by itself: thus,
1 is the square of 1, since 1 multiplied by 1 makes 1; likewise, 4 is the square of 2; and 9 the square of 3; 2
also is the root of 4, and 3 is the root of 9.

We shall begin by considering the squares of natural numbers; and for this purpose shall give the following

small Table, on the first line of which several numbers, or roots, are ranged, and on the second their squares''?..

Numbers | 1 | 2 [ 3[4 |5|6 |7 8|9 |10 11 |12 | 13
Squares 11419 ]16[25[36[49|64[81]100] 121|144 |169

117. Here it will be readily perceived that the series of square numbers thus arranged has a singular property;
namely, that if each of them be subtracted from that which immediately follows, the remainders always increase
by 2, and form this series:

3,5,7,9,11,13,15,17, 19, 21, etc.
which is that of the odd numbers.

118. The squares of fractions are found in the same manner, by multiplying any given fraction by itself. For

1. 1 1. 12. 41. 1 3. 9
example, the square of - is -, the square of =is =; = is —; = is —; = is —, etc.
27 4 3°9°3°9°4 16’4 16

We have only therefore to divide the square of the numerator by the square of the denominator, and the

. . oL . . . 5. 5
fraction which expresses that division will be the square of the given fraction; thus, 2—4 is the square of > and

5.

. 25
reciprocally, 318 the root of P

119. When the square of a mixed number, or a number composed of an integer and a fraction, is required, we
have only to reduce it to a single fraction, and then take the square of that fraction. Let it be required, for

example, to find the square of 2%; we first express this mixed number by 3, and taking the square of that
fraction, we have %, or 6&, for the value of the square of 2 % Also to obtain the square of 3 i, we say 3% 18

13 . . 169 9
equal to - therefore its square is equal to <o Or to 10 e The squares of the numbers between 3 and 4,

supposing them to increase by one fourth, are as follows:

1
Numbers | 3 | 3 " 3 3 3— 4

Squares |9 | 10— | 12 16

|
—_
i
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From this small Table we may infer that if a root contains a fraction, its square also contains one. Let the root,

5 . . : : .
for example, be 1 5 its square is %, or 2 ﬁ; that is to say, a little greater than the integer 2.

120. Let us now proceed to general expressions. First, when the root is a, the square must be aa; if the root be
2a, the square is 4aa; which shows that by doubling the root, the square becomes 4 times greater; also, if the
root be 3a, the square is 9aa; and if the root be 4a, the square is 16aa. Farther, if the root be ab, the square is

aabb; and if the root be abc, the square is aabbcc; or a?bh?c?.

121. Thus, when the root is composed of two or more factors, we multiply their squares together; and,
reciprocally, if a square be composed of two, or more factors, of which each is a square, we have only to
multiply together the roots of those squares, to obtain the complete root of the square proposed. Thus, 2304 is
equal to 4 X 16 X 36, the square root of whichis 2 X 4 X 6, or 48; and 48 is found to be the true square
root of 2304 because 48 X 48 gives 2304.

122. Let us now consider what must be observed on this subject with regard to the signs + and —. First, it is
evident that if the root have the sign +, that is to say, if it be a positive number, its square must necessarily be a
positive number also because + multiplied by + makes +: hence the square of + a will be + aa; but if the root
be a negative number, as — a, the square is still positive, for it is — aa. We may therefore conclude that 4+ aa is
the square both of 4+ a and of — a, and that consequently every square has two roots, one positive, and the other
negative. The square root of 25, for example, is both + 5 and — 5 because — 5 multiplied by — 5 gives 25, as
well as + 5 by + 5.
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Chapter XII — Of Square Roots, and of Irrational Numbers resulting from them

123. What we have said in the preceding chapter amounts to this: that the square root of a given number is that
number whose square is equal to the given number; and that we may put before those roots either the positive,
or the negative sign.

124. So that when a square number is given, provided we retain in our memory a sufficient number of square
numbers, it is easy to find its root. If 196, for example, be the given number, we know that its square root is 14.

Fractions, likewise, are easily managed in the same way. It is evident, for example, that - is the square root of

25

25 10 be convinced of which, we have only to take the square root of the numerator and that of the

denominator.

If the number proposed be a mixed number, as 12 i, we reduce it to a single fraction, which, in this case, will

be 2—9; and from this we immediately perceive that %’ or3 i, must be the square root of 12 i.

125. But when the given number is not a square, as 12, for example, it is not possible to extract its square root;
or to find a number, which, multiplied by itself, will give the product 12. We know, however, that the square
root of 12 must be greater than 3 because 3 X 3 produces only 9; and less than 4 because 4 X 4 produces 16,

which is more than 12; we know also that this root is less than 3 %, for we have seen that the square of 3 %, or %,

is 12 %; and we may approach still nearer to this root, by comparing it with 3 %; for the square of 3 %, or of i—i,

is %, or 12 %; so that this fraction is still greater than the root required, though but very little so, as the
difference of the two squares is only %.

126. We may suppose that as 3% and 3 1—75 are numbers greater than the root of 12, it might be possible to add to

3 a fraction a little less than é, and precisely such, that the square of the sum would be equal to 12.

Let us therefore try with 3 %, since % is a little less than % Now 3; is equal to %, the square of which is %6,
and consequently less by g than 12, which may be expressed by %. It is, therefore, proved that 3% is less, and
that 3 % is greater than the root required. Let us then try a number a little greater than 3 %, but yet less than 3 %;
for example, 3%; this number, which is equal to %, has for its square %; and by reducing 12 to this
denominator, we obtain % which shows that 3% is still less than the root of 12, namely, by %; let us
therefore substitute for % the fraction 1—63, which is a little greater, and see what will be the result of the

comparison of the square of 3 %, with the proposed number 12. Here the square of 3 % is %; and 12 reduced

. . 2028 6 . . 3 . 7
to the same denominator is e SO that 3 s still too small, though only by Teo’ whilst 3 = has been found

too great.

127. 1t is evident, therefore, that whatever fraction is joined to 3, the square of that sum must always contain a
fraction, and can never be exactly equal to the integer 12. Thus, although we know that the square root of 12 is

6 7 . . . .
greater than 3 re and less than 3 1o yet we are unable to assign an intermediate fraction between these two,
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which, at the same time, if added to 3, would express exactly the square root of 12; but notwithstanding this,
we are not to assert that the square root of 12 is absolutely and in itself indeterminate: it only follows from what
has been said that this root, though it necessarily has a determinate magnitude, cannot be expressed by
fractions.

128. There is therefore a sort of numbers, which cannot be assigned by fractions, but which are nevertheless
determinate quantities; as, for instance, the square root of 12: and we call this new species of numbers,
irrational numbers. They occur whenever we endeavour to find the square root of a number which is not a
square; thus, 2 not being a perfect square, the square root of 2, or the number which multiplied by itself would
produce 2, is an irrational quantity. These numbers are also called surd quantities or incommensurables.

129. These irrational quantities, though they cannot be expressed by fractions, are nevertheless magnitudes of
which we may form an accurate idea; since, however concealed the square root of 12, for example, may appear,
we are not ignorant that it must be a number, which, when multiplied by itself, would exactly produce 12; and
this property is sufficient to give us an idea of the number because it is in our power to approximate towards its
value continually.

130. As we are therefore sufficiently acquainted with the nature of irrational numbers, under our present
consideration, a particular sign has been agreed on to express the square roots of all numbers that are not perfect

squares; which sign is written thus v and is read square root. Thus, V12 represents the square root of 12, or the
number which, multiplied by itself, produces 12; and V2 represents the square root of 2; V3 the square root of

3; \E that of 23 and, in general, Va, or Va, represents the square root of the number a. Whenever, therefore, we

would express the square root of a number, which is not a square, we need only make use of the mark v by
placing it before the number.

131. The explanation which we have given of irrational numbers will readily enable us to apply to them the
known methods of calculation. For knowing that the square root of 2, multiplied by itself, must produce 2; we

know also that the multiplication of V2 by V2 must necessarily produce 2; that, in the same manner, the
multiplication of V3 by v/3 must give 3; that V5 by V5 makes 5; that \E by \E makes g; and, in general, that

va multiplied by va produces a.

132. But when it is required to multiply vVa by Vb, the product is Vab; for we have already shown that if a
square has two or more factors, its root must be composed of the roots of those factors; we therefore find the

square root of the product ab, which is Vab, by multiplying the square root of a, or va, by the square root of b,
or Vb; etc. It is evident from this that if b were equal to a, we should have vaa for the product of va by vb.
But vaa is evidently a, since aa is the square of a.

133. In division, if it were required, for example, to divide Va by \/E, we obtain \/%; and, in this instance, the
T S . . . .. |18 S
irrationality may vanish in the quotient. Thus, having to divide ¥18 by /8, the quotient is \/;, which is

9 3 9. 3
reduced to \/;, and consequently to 3 because 218 the square of >
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134. When the number before which we have placed the radical sign V, is itself a square, its root is expressed in
the usual way; thus, V4 is the same as 2; V9 is the same as 3; V36 the same as 6; and f12 i, the same as %, or

1 . T .
3 > In these instances, the irrationality is only apparent, and vanishes of course.

135. It is easy also to multiply irrational numbers by ordinary numbers; thus, for example, 2 multiplied by V5
makes 2v/5; and 3 times V2 makes 3v2. In the second example, however, as 3 is equal to V9, we may also
express 3 times V2 by v/9 multiplied by 2, or by v/18; also 2+/a is the same as v/4a, and 3v/a the same as v9a;

and, in general, hv/a has the same value as the square root of bba, or Vbba: whence we infer reciprocally that
when the number which is preceded by the radical sign contains a square, we may take the root of that square,

and put it before the sign, as we should do in writing bv/a instead of Vbba, After this, the following reductions
will be easily understood"!:

V8orv2 -4 ) (22
V12 orV3 -4 23
Visorv2-9 | . 3v2
> is equal to <
V2dorvea | o1 26
V32 orv2-16 42
V75 or V3 - 25/ 5v3

and so on.

136. Division is founded on the same principles; as va divided by Vb gives %, or \/%. In the same manner,

V8 ar
ﬁ E,or \/Z,orZ
18 > isequalto < 18 9 or3
S —,or or
\/E 2 ) )
\/ 12
% ?,or 4 or?2
3 L\‘
Farther,
2 ([ va 4
\/z E,OT E,OT'\/E
3 V9 9
— > isequal to < = Z
3 q ﬁ,or\/;,or\/g
12 V144 144
- ,or ,or V24
V6 L V6 6

or V6 X 4,or lastly 21/6.
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137. There is nothing in particular to be observed in addition and subtraction because we only connect the
numbers by the signs + and —: for example, V2 added to V3 is written V2 + v/3; and V3 subtracted from V5 is
written V5 — v/3.

138. We may observe, lastly, that in order to distinguish the irrational numbers, we call all other numbers, both
integral and fractional, rational numbers; so that, whenever we speak of rational numbers, we understand
integers, or fractions.
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Chapter XIII — Of Impossible, or Imaginary Quantities, which arise from the same
source

139. We have already seen that the squares of numbers, negative as well as positive, are always positive, or
affected by the sign +; having shown that — ¢ multiplied by — a gives + aa, the same as the product of + a by
+ a: wherefore, in the preceding chapter, we supposed that all the numbers, of which it was required to extract
the square roots, were positive.

140. When it is required, therefore, to extract the root of a negative number, a great difficulty arises; since there
is no assignable number, the square of which would be a negative quantity. Suppose, for example, that we
wished to extract the root of — 4; we here require such a number as, when multiplied by itself, would produce
—4: now, this number is neither 4+ 2 nor — 2 because the square both of + 2 and of — 2, is + 4, and not — 4.

141. We must therefore conclude that the square root of a negative number cannot be either a positive number
or a negative number, since the squares of negative numbers also take the sign plus: consequently, the root in
question must belong to an entirely distinct species of numbers; since it cannot be ranked either among positive
or negative numbers.

142. Now, we before remarked that positive numbers are all greater than nothing, or 0, and that negative
numbers are all less than nothing, or 0; so that whatever exceeds 0 is expressed by positive numbers, and
whatever is less than 0 is expressed by negative numbers. The square roots of negative numbers, therefore, are
neither greater nor less than nothing; yet we cannot say that they are 0; for multiplied by 0 produces 0, and
consequently does not give a negative number.

143. And, since all numbers which it is possible to conceive, are either greater or less than 0, or are 0 itself, it is
evident that we cannot rank the square root of a negative number amongst possible numbers, and we must
therefore say that it is an impossible quantity. In this manner we are led to the idea of numbers, which from
their nature are impossible; and therefore they are usually called imaginary quantities because they exist merely
in the imagination.

144. All such expressions, as V—1,v/=2, V=3, V—4, etc. are consequently impossible, or imaginary numbers,
since they represent roots of negative quantities; and of such numbers we may truly assert that they are neither
nothing, nor greater than nothing, nor less than nothing; which necessarily constitutes them imaginary, or
impossible.

145. But notwithstanding this, these numbers present themselves to the mind; they exist in our imagination, and

we still have a sufficient idea of them; since we know that by v—4 is meant a number which, multiplied by
itself, produces — 4; for this reason also, nothing prevents us from making use of these imaginary numbers, and
employing them in calculation.

146. The first idea that occurs on the present subject is that the square of v —3, for example, or the product of
V=3 by v—3, must be — 3; that the product of v—1 by v—1, is — 1; and, in general, that by multiplying v—a
by v—a, or by taking the square of v—a we obtain — a.

147. Now, as — a is equal to + a multiplied by — 1, and as the square root of a product is found by multiplying
together the roots of its factors, it follows that the root of a times — 1, or v—a, is equal to va multiplied by

v/—1; but Va is a possible or real number, consequently the whole impossibility of an imaginary quantity may
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be always reduced to v/—1; for this reason, v—4 is equal to V4 multiplied by v—1, or equal to 2v/—1 because
V4 is equal to 2; likewise V=9 is reduced to V9 x V=1, or 3v/—1; and v—16 is equal to 4v/—1.

148. Moreover, as v/a multiplied by Vb makes Vab, we shall have V6 for the value of v—2 multiplied by v—3;

and V4, or 2, for the value of the product of v—1 by vV—4. Thus we see that two imaginary numbers, multiplied
together, produce a real, or possible one.

But, on the contrary, a possible number, multiplied by an impossible number, gives always an imaginary

product: thus, v—3 by v+5, gives v—15.
149. 1t is the same with regard to division; for va divided by Vb making \/g, it is evident that v—4 divided by

v—1 will make V+4, or 2; that vV+3 divided by v—3 will give v—1; and that 1 divided by v—1 gives E, or
v—1; because 1 is equal to vV+1.

150. We have before observed that the square root of any number has always two values, one positive and the
other negative; that v/4, for example, is both + 2 and — 2, and that, in general, we may take —va as well as
++/a for the square root of a. This remark applies also to imaginary numbers; the square root of — a is both

++v—a and —v—a; but we must not confound the signs + and —, which are before the radical sign v, with the
sign which comes after it.

151. It remains for us to remove any doubt, which may be entertained concerning the utility of the numbers of
which we have been speaking; for those numbers being impossible, it would not be surprising if they were
thought entirely useless, and the object only of an unfounded speculation. This, however, would be a mistake;
for the calculation of imaginary quantities is of the greatest importance, as questions frequently arise, of which
we cannot immediately say whether they include anything real and possible, or not; but when the solution of
such a question leads to imaginary numbers, we are certain that what is required is impossible.

In order to illustrate what we have said by an example, suppose it were proposed to divide the number 12 into
two such parts that the product of those parts may be 40. If we resolve this question by the ordinary rules, we

find for the parts sought 6 + v—4 and 6 —+v—4; but these numbers being imaginary, we conclude that it is
impossible to resolve the question.

The difference will be easily perceived, if we suppose the question had been to divide 12 into two parts which
multiplied together would produce 35; for it is evident that those parts must be 7 and 5.



52 Elements of Algebra

Chapter XIV — Of Cubic Numbers

152. When a number has been multiplied twice by itself, or, which is the same thing, when the square of a
number has been multiplied once more by that number, we obtain a product which is called a cube or a cubic
number. Thus, the cube of a is aaa, since it is the product obtained by multiplying a by itself, or by a, and that
square aa again by a.

The cubes of the natural numbers, therefore, succeed each other in the following order'*:

Numbers | 1 | 2 | 3 | 4 5 6 7 8 9 10
Cubes 1|8 |27 |64 |125| 216|343 |512 | 729 | 1000

153. If we consider the differences of those cubes, as we did of the squares, by subtracting each cube from that
which comes after it, we obtain the following series of numbers:

7,19,37,61,91, 127,169, 217, 271.

Where we do not at first observe any regularity in them; but if we take the respective differences of these
numbers, we find the following series:

12, 18, 24, 30, 36, 42, 48, 54, 60;
in which the terms, it is evident, increase always by 6.

154. After the definition we have given of a cube, it will not be difficult to find the cubes of fractional numbers;

thus, % is the cube of %; % is the cube of g; and % is the cube of § In the same manner, we have only to take the

cube of the numerator and that of the denominator separately, and we shall have g for the cube of %.

155. If it be required to find the cube of a mixed number, we must first reduce it to a single fraction, and then

proceed in the manner that has been described. To find, for example; the cube of 1 %, we must take that of g,

L. 27 3 1 . . 5 . 125 61 1 13 .
which is 5 o 3 s also the cube of 1 2 Or of the single fraction B is—-or 1 o and the cube of 3 2 Or of > 18
2197 21
——or 34 —.

64 64

156. Since aaa is the cube of a, that of ab will be aaabbb; whence we see that if a number has two or more
factors, we may find its cube by multiplying together the cubes of those factors. For example, as 12 is equal to
3 X 4, we multiply the cube of 3, which is 27, by the cube of 4, which is 64, and we obtain 1728, the cube of
12; and farther, the cube of 2a is 8aaa, and consequently 8 times greater than the cube of a: likewise, the cube
of 3a is 27aaa; that is to say, 27 times greater than the cube of a.

157. Let us attend here also to the signs + and —. It is evident that the cube of a positive number + a must also
be positive, that is, + aaa; but if it be required to cube a negative number — a, it is found by first taking the
square, which is + aa, and then multiplying, according to the rule, this square by — a, which gives for the cube
required — aaa. In this respect, therefore, it is not the same with cubic numbers as with squares, since the latter
are always positive: whereas the cube of — 1 is — 1, that of — 2 is — 8, that of — 3 is — 27, and so on.
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Chapter XV — Of Cube Roots, and of Irrational Numbers resulting from them

158. As we can, in the manner already explained, find the cube of a given number, so, when a number is
proposed, we may also reciprocally find a number, which, multiplied twice by itself, will produce that number.
The number here sought is called, with relation to the other, the cube root; so that the cube root of a given
number is the number whose cube is equal to that given number.

159. It is easy therefore to determine the cube root, when the number proposed is a real cube; such as in the
examples in the last chapter; for we easily perceive that the cube root of 1 is 1; that of 8 is 2; that of 27 is 3;
that of 64 is 4, and so on. And, in the same manner, the cube root of — 27 is — 3; and that of — 125 is — 5.

. . 8 . 2 64 .

Farther, if the proposed number be a fraction, as pot the cube root of it must be > and that of i is %, Lastly,
. 0 0. 6

the cube root of a mixed number, such as 2 ;—7, must be g, or1l g; because 2 ;—7 is equal to ﬁ.

160. But if the proposed number be not a cube, its cube root cannot be expressed either in integers, or in
fractional numbers. For example, 43 is not a cubic number; therefore it is impossible to assign any number,
either integer or fractional, whose cube shall be exactly 43. We may however affirm that the cube root of that
number is greater than 3, since the cube of 3 is only 27; and less than 4 because the cube of 4 is 64: we know,
therefore, that the cube root required is necessarily contained between the numbers 3 and 4.

161. Since the cube root of 43 is greater than 3, if we add a fraction to 3, it is certain that we may approximate
still nearer and nearer to the true value of this root: but we can never assign the number which expresses the
value exactly; because the cube of a mixed number can never be perfectly equal to an integer, such as 43. If we

were to suppose, for example, 3 %, or % to be the cube root required, the error would be %; for the cube of % is

only %, or 42 g.

162. This therefore shows that the cube root of 43 cannot be expressed in any way, either by integers or by
fractions. However, we have a distinct idea of the magnitude of this root; and therefore we use, in order to

represent it, the sign ¥/, which we place before the proposed number, and which is read cube root, to distinguish

it from the square root, which is often called simply the root; thus V43 means the cube root of 43; that is to
say, the number whose cube is 43, or which, multiplied by itself, and then by itself again, produces 43.

163. Now, it is evident that such expressions cannot belong to rational quantities, but that they rather form a
particular species of irrational quantities. They have nothing in common with square roots, and it is not possible

to express such a cube root by a square root; as, for example, by v12; for the square of V12 being 12, its cube
will be 1212, consequently still irrational, and therefore it cannot be equal to 43.

164. If the proposed number be a real cube, our expressions become rational. Thus, V1 is equal to 1; V8 is
equal to 2; /27 is equal to 3; and, generally, /aaa is equal to a.

165. If it were proposed to multiply one cube root, 3/a, by another, ¥b the product must be ¥ab; for we know
that the cube root of a product ab is found by multiplying together the cube roots of the factors. Hence, also, if

we divide ¥/a by Vb, the quotient will be 3\/%.
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166. We farther perceive that 23/a is equal to /8a, because 2 is equivalent to V/8; that 3¥/a is equal to ¥27a,
b¥/a is equal to Yabbb; and, reciprocally, if the number under the radical sign has a factor which is a cube, we
may make it disappear by placing its cube root before the sign; for example, instead of 1/64a we may write
43/a; and 5%/a instead of ¥125a: hence /16 is equal to 23/2 because 16 is equal to 8 X 2.

167. When a number proposed is negative, its cube root is not subject to the same difficulties that occurred in
treating of square roots; for, since the cubes of negative numbers are negative, it follows that the cube roots of
negative numbers are also negative; thus 3/—8 is equal to — 2, and 3/—27 to — 3. It follows also that ¥/—12 is
the same as —3/12, and that ¥/—a maybe expressed by —3/a. Whence we see that the sign —, when it is found
after the sign of the cube root, might also have been placed before it. We are not therefore led here to
impossible, or imaginary numbers, which happened in considering the square roots of negative numbers.
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Chapter XVI — Of Powers in general

168. The product which we obtain by multiplying a number once, or several times by itself, is called a power.
Thus, a square which arises from the multiplication of a number by itself, and a cube which we obtain by
multiplying a number twice by itself, are powers. We say also, in the former case, that the number is raised to
the second degree, or to the second power; and in the latter, that the number is raised to the third degree, or to
the third power.

169. We distinguish these powers from one another by the number of times that the given number has been
multiplied by itself. For example, a square is called the second power because a certain given number has been
multiplied by itself; and if a number has been multiplied twice by itself we call the product the third power,
which therefore means the same as the cube; also if we multiply a number three times by itself we obtain its
fourth power, or what is commonly called the biquadrate: and thus it will be easy to understand what is meant
by the fifth, sixth, seventh, etc. power of a number. I shall only add that powers, after the fourth degree, cease to
have any other but these numeral distinctions.

170. To illustrate this still better, we may observe, in the first place, that the powers of 1 remain always the
same; because, whatever number of times we multiply 1 by itself, the product is found to be always 1. We shall
therefore begin by representing the powers of 2 and of 3, which succeed each other as in the following order:

Powers | Of the Number 2 | Of the Number 3
1 2 3
oM 4 9
39 8 27
4™ 16 81
5t 32 243
6" 64 729
7% 128 2187
gt 256 6561
9t 512 19683
10" 1024 59049
1" 2048 177147
12" 4096 531441
13" 8192 1594323
140 16384 4782969
150 32768 14348907
160 65536 43046721
170 131072 129140163
18™ 262144 387420489

But the powers of the number 10 are the most remarkable: for on these powers the system of our arithmetic is
founded. A few of them ranged in order, and beginning with the first power, are as follow:

1 st 2nd 31’d 4th Sth 6th
10 | 100 | 1000 | 10000 | 100000 | 1000000

171. In, order to Illustrate this subject, and to consider it in a more general manner, we may observe that the
powers of any number, a, succeed each other in the following order:
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1 st 2nd 3rd 4th Sth 6th
a aa aaa | aaaa | aaaaa | aaaaaa

But we soon feel the inconvenience attending this manner of writing the powers, which consists in the
necessity of repeating the same letter very often, to express high powers; and the reader also would have no less
trouble, if he were obliged to count all the letters, to know what power is intended to be represented. The
hundredth power, for example, could not be conveniently written in this manner; and it would be equally
difficult to read it.

172. To avoid this inconvenience, a much more commodious method of expressing such powers has been
devised, which, from its extensive use, deserves to be carefully explained. Thus, for example, to express the
hundredth power, we simply write the number 100 above the quantity, whose hundredth power we would
express, and a little towards the right-hand; thus, a'°® represents a raised to the 100™ power, or the hundredth
power of a. It must be observed, also that the name exponent is given to the number written above that whose
power, or degree, it represents, which, in the present instance, is 100.

173. In the same manner, a® signifies a raised to the second power, or the second power of a, which we
represent sometimes also by aa, because both these expressions are written and understood with equal facility;
but to express the cube, or the third power aaa, we write a3, according to the rule, that we may occupy less
room; so a* signifies the fourth, a® the fifth, and a® the sixth power of a.

174. In a word, the different powers of a will be represented by a, a?, a3, a*, a°, a®, a’, a8, a°, a'?, etc.
Hence we see that in this manner we might very properly have written a® instead of a for the first term, to show
the order of the series more clearly. In fact, a® is no more than a, as this unit shows that the letter a is to be
written only once. Such a series of powers is called also a geometrical progression because each term is greater
by one-time, or term, than the preceding.

175. As in this series of powers each term is found by multiplying the preceding term by a, which increases the
exponent by 1; so when any term is given, we may also find the preceding term, if we divide by a, because this

diminishes the exponent by 1. This shows that the term which precedes the first term a! must necessarily be %,

or 1; and, if we proceed according to the exponents, we immediately conclude that the term which precedes the
first must be a®; and hence we deduce this remarkable property that a® is always equal to 1, however great or
small the value of the number a may be, and even when a is nothing; that is to say, a® is equal to 1.

176. We may also continue our series of powers in a retrograde order, and that in two different ways; first, by
dividing always by a; and secondly, by diminishing the exponent by unity; and it is evident that, whether we
follow the one or the other, the terms are still perfectly equal. This decreasing series is represented in both
forms in the following table, which must be read backwards, or from right to left:

1 1 1 1
- — — - 1 a

aaaaaa aaaaa aaaa aaa aa a

1 1 1 1 1 1

26 a5 o 3 ) al
a~° a”> a4 a3 a2 a’t a® al

177. We are now come to the knowledge of powers whose exponents are negative, and are enabled to assign
the precise value of those powers. Thus from what has been said, it appears that:
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0 1
aa_l\l 1/a
a2l . 1/aa or 1/a?
= } is equal to « 1/aaa or 1/a3
a“*J 1/aaaa or 1/a*
a=® \1/aaaaa or 1/a’®

178. It will also be easy, from the foregoing notation, to find the powers of a product, ab; for they must
evidently be ab, or a'b', a?b?, a®b3, a*b*, a®b>, etc. and the powers of fractions will be found in the same

a
manner; for example, those of , are:

BB BB B b
179. Lastly, we have to consider the powers of negative numbers. Suppose the given number to be — a; then its
powers will form the following series:

—a,+a? —a3, +a* —a®, +a°b, ...

Where we may observe that those powers only become negative, whose exponents are odd numbers, and that,
on the contrary, all the powers, which have an even number for the exponent, are positive. So that the third,
fifth, seventh, ninth, etc. powers have all the sign —; and the second, fourth, sixth, eighth, etc. powers are
affected by the sign +.
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Chapter XVII — Of the Calculation of Powers

180. We have nothing particular to observe with regard to the Addition and Subtraction of powers; for we only
represent those operations by means of the signs + and —, when the powers are different. For example, a® + a?
is the sum of the second and third powers of a; and a® — a* is what remains when we subtract the fourth
power of a from the fifth; and neither of these results can be abridged: but when we have powers of the same
kind or degree, it is evidently unnecessary to connect them by signs; as a® + a2 becomes 2a3, etc.

181. But in the Multiplication of powers, several circumstances require attention.

First, when it is required to multiply any power of a by a, we obtain the succeeding power; that is to say, the
power whose exponent is greater by an unit. Thus, a?, multiplied by a, produces a®; and a® multiplied by a,
produces a*. In the same manner, when it is required to multiply by a the powers of any number represented by

a, having negative exponents, we have only to add 1 to the exponent. Thus, a~! multiplied by a produces a®,

or 1; which is made more evident by considering that a~! is equal to i, and that the product of i by a being %, it

1 10

is consequently equal to 1; likewise a~2 multiplied by a, produces a~
a™?, and so on. [See Article 175, 176.]

, or i; and a™ " multiplied by a gives

182. Next, if it be required to multiply any power of a by a?, or the second power, I say that the exponent
becomes greater by 2. Thus, the product of a? by a? is a*; that of a? by a® is a®; that of a* by a? is a®; and
more generally, a™ multiplied by a? makes a™*2. With regard to negative exponents, we shall have a', or a, for

the product of a~! by a?; for a™! being equal to i, it is the same as if we had divided aa by a; consequently,

2 3

the product required is aa—a, or a; also a™?, multiplied by a?, produces a®, or 1; and a~3, multiplied by a?,

produces a™ 1.

183. It is no less evident that to multiply any power of a by a® we must increase its exponent by three units;
consequently, the product of a™ by a3 is a™*3. And whenever it is required to multiply together two powers of
a, the product will be also a power of a, and such that its exponent will be the sum of those of the two given
powers. For example, a* multiplied by a® will make a°, and a'? multiplied by a’ will produce a*®, etc.

184. From these considerations we may easily determine the highest powers. To find, for instance, the twenty-
fourth power of 2, I multiply the twelfth power by the twelfth power because 22 is equal to 212 x 212, Now,
we have already seen (see the Table in Article 170) that 22 is 4096; I say therefore that the number
16777216, or the product of 4096 by 4096, expresses the power required, namely, 224,

185. Let us now proceed to division. We shall remark, in the first place, that to divide a power of a by a, we

must subtract 1 from the exponent, or diminish it by unity; thus, a® divided by a gives a*; and a°, or 1, divided

1 -3 g - . -
L or =; also a™3 divided by a gives a™.
a

by a, is equal to a™
186. If we have to divide a given power of a by a? we must diminish the exponent by 2; and if by a3 we must
subtract 3 units from the exponent of the power proposed; and, in general, whatever power of a it is required to
divide by any other power of a, the rule is always to subtract the exponent of the second from the exponent of
the first of those powers: thus a'® divided by a” will give a®; a® divided by a” will give a™*; and a™3 divided

by a* will give a™7.
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187. From what has been said, it is easy to understand the method of finding the powers of powers, this being
done by multiplication. When we seek, for example, the square, or the second power of a3, we find a®; and in
the same manner we find a'? for the third power or the cube, of a*. To obtain the square of a power, we have
only to double its exponent; for its cube, we must triple the exponent; and so on. Thus, the square of a™ is a?™;
the cube of a™ is a3™ ; the seventh power of a™ is a’", etc.

188. The square of a?, or the square of the square of a, being a*, we see why the fourth power is called the
biquadrate: also, the square of a3 being a®, the sixth power has received the name of the square-cubed.

Lastly, the cube of a3 being a®, we call the ninth power the cubo-cube: after this, no other denominations of
this kind have been introduced for powers; and, indeed, the two last are very little used.
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Chapter XVIII — Of Roots, with relation to Powers in general

189. Since the square root of a given number is a number, whose square is equal to that given number; and
since the cube root of a given number is a number, whose cube is equal to that given number; it follows that any
number whatever being given, we may always suppose such roots of it, that the fourth, or the fifth, or any other
power of them, respectively, may be equal to the given number. To distinguish these different kinds of roots
better, we shall call the square root, the second root; and the cube root, the third root; because, according to this
denomination, we may call the fourth root, that whose biquadrate is equal to a given number; and the fifth root,
that whose fifth power is equal to a given number, etc.

190. As the square, or second root, is marked by the sign +/, and the cubic, or third root, by the sign ¥, so the
fourth root is represented by the sign ¥; and so on. It is evident that, according to this method of expression, the
sign of the square root ought to be 3/x: but as of all roots this occurs most frequently, it has been agreed, for the
sake of brevity, to omit the number 2 as the sign of this root. So that when the radical sign has no number
prefixed to it, this always shows that the square root is meant.

191. To explain this matter still better, we shall here exhibit the different roots of the number a, with their
respective values:

Va) (2nd) (a,

%I | 3rd | la,

‘{/HE is the 4 4th E root of Qa,

Yal | 5¢h | la,

<) U6th) \a

So that, conversely,

The 2nd\ (Va) (a,
The 3rd | ! ?{/al la,
The 4th & power of { ‘{/E# is equal to ga,
The 5th | | 3/a | la,
The 6th) t%} ka

192. Whether the number a therefore be great or small, we know what value to affix to all these roots of
different degrees.

It must be remarked also that if we substitute unity for a, all those roots remain constantly 1; because all the
powers of 1 have unity for their value. If the number a be greater than 1, all its roots will also exceed unity.
Lastly, if that number be less than 1, all its roots will also be less than unity.

193. When the number a is positive, we know from what was before said of the square and cube roots, that all
the other roots may also be determined and will be real and possible numbers.

But if the number a be negative, its second, fourth, sixth, and all its even roots, become impossible, or
imaginary numbers; because all the powers of an even order, whether of positive or of negative numbers, are
affected by the sign +: whereas the third, fifth, seventh, and all its odd roots, become negative, but rational;
because the odd powers of negative numbers are also negative.
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194. We have here also an inexhaustible source of new kinds of surds, or irrational quantities; for whenever the
number a is not really such a power, as some one of the foregoing indices represents, or seems to require, it is
impossible to express that root either in whole numbers or in fractions; and, consequently, it must be classed
among the numbers which are called irrational.
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Chapter XIX — Of the Method of representing Irrational Numbers by Fractional
Exponents

195. We have shown in the preceding chapter that the square of any power is found by doubling the exponent
of that power; or that, in general, the square, or the second power, of a”, is a®™; and the converse also follows,
namely, that the square root of the power a?" is a™, which is found by taking half the exponent of that power,
or dividing it by 2.

196. Thus, the square root of a? is a® or a; that of a* is a?; that of a® is a3; and so on: and, as this is general,

3/2

the square root of a® must necessarily be a®/? , and that of a® must be a®/2; consequently, we shall in the same

1/2

manner have a'/? for the square root of a'. Whence we see that a'/? is equal to va; which new method of

representing the square root demands particular attention.

197. We have also shown that, to find the cube of a power, as a”, we must multiply its exponent by 3, and
consequently that cube is a3™.

Hence, conversely, when it is required to find the third, or cube root, of the power a3", we have only to divide
that exponent by 3, and may therefore with certainty conclude that the root required is a™: consequently a' or
a, is the cube root of a3; a? is the cube root of a®; a3 of a®; and so on.

198. There is nothing to prevent us from applying the same reasoning to those cases, in which the exponent is

2/3

not divisible by 3, or from concluding that the cube root of a? is a?/3, and that the cube root of a* is a*/3 or

1
a's; consequently, the third, or cube root of a, or a®, must be a'/3: whence also, it appears, that al/3 is the

same as %Qi

1
199. It is the same with roots of a higher degree: thus, the fourth root of a will be a'/#, or as, which expression
1
has the same value as Y/a; the fifth root of a will be a'/5, or as, which is consequently equivalent to Ya; and

the same observation may be extended to all roots of a higher degree.

200. We may therefore entirely reject the radical signs at present made use of, and employ in their stead the
fractional exponents which we have just explained: but as we have been long accustomed to those signs, and
meet with them in most books of Algebra, it might be wrong to banish them entirely from calculation; there is,
however, sufficient reason also to employ, as is now frequently done, the other method of notation because it

manifestly corresponds with the nature of the thing. In fact, we see immediately that a'/? is the square root of a

1/2 'is equal to a® or a.

because we know that the square of al/?, that is to say, a*/? multiplied by a
201. What has been now said is sufficient to show how we are to understand all other fractional exponents that

may occur. If we have, for example, a*/3

4/3

this means that we must first take the fourth power of @, and then

extract its cube, or third root; so that a*/° is the same as the common expression Va*. Hence, to find the value

3/4

of a3/*, we must first take the cube, or the third power of a, which is a3, and then extract the fourth root of that

power; so that a3/* is the same as Va2 and a*/5 is equal to Va?, etc.

202. When the fraction which represents the exponent exceeds unity, we may express the value of the given

1
quantity in another way: for instance, suppose it to be a5/?; this quantity is equivalent to a®z, which is the

1/2 5/2 10/3

product of a® by a'/?: now a'/? being equal to v/a, it is evident that a®/? is equal to a?a; also a or
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1 3
a%, is equal to a3¥/a; and a%/#, that is, a’, expresses a3Va3. These examples are sufficient to illustrate the
great utility of fractional exponents.

203. Their use extends also to fractional numbers: for if there be given —, we know that this quantity is equal to

\/—’
—; and we have seen already that a fraction of the form i — may be expressed by a
aZ

™. 5o that instead of = we

\/—

may use the expression a~%/?; and, in the same manner is equal to a=1/3 . Again, if the quantity ‘%/_ be

37

proposed; let it be transformed into this, 3, Whrch is the product of a? by a
a4-

~3/%; now this product is equivalent

1
to a5/*, or to alZ, or lastly, to a¥/a. Practice will render similar reductions easy.

204. We shall observe in the last place, that each root may be represented in a variety of ways; for v/a being the

234 5
same as a'/ and berng transformable into the fractions, T g o E etc. it is evident that v/a is equal to

Va? or to Ya3, or to ¥a*, and so on. In the same manner, /a, which is equal to a'/? , will be equal to Va2, or

to Va3 or to 'Va*. Hence also we see that the number a, or a® might be represented by the following radical
expressions:

205. This property is of great use in multiplication and division; for if we have, for example, to multiply 3/a, by
Va, we write ¥a3, for 3/a, and Ya? instead of 3/a,; so that in this manner we obtain the same radical sign for

both, and the multiplication being now performed gives the product a5, The same result is also deduced from
1 1
az"3, which is the product of az multiplied by a3 for - % is 2, and consequently the product required is a®/®,

or Yas.

1 11
On the contrary, if it were required to divide /a, or az by ¥a, or a3, we should have for the quotient az "3, or
3 2
as s, that is to say, a6 or Ya.
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Questions for Practice Respecting Surds

1. Reduce 6 to the form of V/5.

2. Reduce a + b to the form of Vbc.

3. Reduce — to the form of Vd.
bvVc

4. Reduce a? and b3/2 to the common index é

5. Reduce V48 to its simplest form.

6. Reduce va3x — a?x? to its simplest form.

3 3p3 . .
7. Reduce / 27907 40 its simplest form.
8b—8a

8. Add V6 to 2v/6; and V8 to V/50.

9. Add V4a to Va®.

1 3

10. Add (2)5 to (£)".

11. Subtract v4a from Yab.

Ans. \36

Ans.Vaa + 2ab + bb

aa
Ans. |—
bbc

Ans. a®/3 and p9/2)/3

Ans. 43

Ans. avax — x2
Ans. 3abs| 1
2 b—a

Ans. 36 and 7v2

Ans. (a + 2)Va

(b?%+c?)

" b\bc

Ans. (a — 2)Va



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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N

Subtract (%)E from (g) .

Multiply /% by /%.

Multiply Vd by Vab.
Multiply vV4a — 3x by 2a.

Multiply %\/a —x by (c — d)Vax.

Divide a?/® by a'/#; and a'/™ by a'/™.

Divide acz_bad Va?x — ax? by%\/a —X.
Divide a® —ad — b + dVb by a —b.
What is the cube of v2?

What is the square of 3¥Ybc2?

2a

What is the fourth power of Z |29
2b [ c-b

What is the square of 3 + V/5?

65

(b2=c?)
Ans ovbe
ns 3a?d

Ans. Ya?b2d3

Ans. V16a3 — 12a%x

ac—ad
Ans. 5 a’x — ax?

Ans. a%/12; and g(m—m/mn

Ans. (c — d)Vax

Ans.a+ Vb —d

Ans. \/§, or 2v/2

Ans. 9¢Vb2c

ab

Ans. ————
4b*(c%-2bc+b?)

Ans. 14 + 6V5
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24. What is the square root of a3?

25. What is the cube root of Va2 — x2?

26. What multiplier will render a + +/3 rational?

27. What multiplier will render v/a — Vb rational?

rational?

28. What multiplier will render the denominator of the fraction G
V7+V3

Ans. a3/? or Va3

6
Ans. V a? — x2

Ans.a — V3

Ans. \/E+\/E

Ans. N7 =3
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Chapter XX — Of the different Methods of Calculation, and of their mutual
Connection

206. Hitherto we have only explained the different methods of calculation: namely, addition, subtraction,
multiplication, and division; the involution of powers, and the extraction of roots. It will not be improper,
therefore, in this place, to trace back the origin of these different methods, and to explain the connection which
subsists among them; in order that we may satisfy ourselves whether it be possible or not for other operations of
the same kind to exist. This inquiry will throw new light on the subjects which we have considered.

In prosecuting this design, we shall make use of a new character, which may be employed instead of the
expression that has been so often repeated, is equal to; this sign is =, which is read is equal to: thus, when I
write a = b, this means that a is equal to b: so, for example, 3 X 5 = 15.

207. The first mode of calculation that presents itself to the mind, is undoubtedly addition, by which we add
two numbers together and find their sum: let therefore a and b be the two given numbers, and let their sum be
expressed by the letter ¢, then we shall have a + b = c; so that when we know the two numbers a and b,
addition teaches us to find the number c.

208. Preserving this comparison a + b = c, let us reverse the question by asking, how we are to find the
number b, when we know the numbers a and c.

It is here required therefore to know what number must be added to a, in order that the sum may be the
number c: suppose, for example, a = 3 and ¢ = 8; so that we must have 3 + b = 8; then b will evidently
be found by subtracting 3 from 8: and, in general, to find b, we must subtract a from ¢, whence arises b =

¢ - a; for, by adding a to both sides again, we have b + a = ¢ - a + a, that is to say, = ¢, as we supposed.

209. Subtraction therefore takes place, when we invert the question which gives rise to addition. But the
number which it is required to subtract may happen to be greater than that from which it is to be subtracted; as,
for example, if it were required to subtract 9 from 5: this instance therefore furnishes us with the idea of a new
kind of numbers, which we call negative numbers, because 5 — 9 = — 4.

210. When several numbers are to be added together, which are all equal, their sum is found by multiplication,
and is called a product. Thus, ab means the product arising from the multiplication of a by b, or from the
addition of the number a, b number of times; and if we represent this product by the letter ¢, we shall have
ab = c; thus multiplication teaches us how to determine the number c, when the numbers a and b are known.

211. Let us now propose the following question: the numbers a and ¢ being known, to find the number b.
Suppose, for example, a = 3, and ¢ = 15, so that 3b = 15, and let us inquire by what number 3 must be
multiplied, in order that the product may be 15; for the question proposed is reduced to this. This is a case of
division; and the number required is found by dividing 15 by 3; and, in general, the number b is found by

dividing c by a; from which results the equation b = 5.

212. Now, as it frequently happens that the number ¢ cannot be really divided by the number a, while the letter
b must however have a determinate value, another new kind of numbers present themselves, which are called
fractions. For example, suppose a = 4, and ¢ = 3, so that ab = c implies 4b = 3; then it is evident that b

. . 3
cannot be an integer, but a fraction, and that we shall have b = "
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213. We have seen that multiplication arises from addition; that is to say, from the addition of several equal
quantities: and if we now proceed farther, we shall perceive that, from the multiplication of several equal
quantities together, powers are derived; which powers are represented in a general manner by the expression
a®. This signifies that the number a must be multiplied as many times by itself, minus 1, as is indicated by the
number b. And we know from what has been already said that, in the present instance, a is called the root, b the
exponent, and a® the power.

214. Farther, if we represent this power also by the letter ¢, we have a? =

¢, an equation in which three letters
a, b, c, are found; and we have shown in treating of powers, how to find the power itself, that is, the letter c,
when a root a and its exponent b are given. Suppose, for example, a = 5,and b = 3, so that ¢ = 53: then it

is evident that we must take the third power of 5, which is 125, so that in this case ¢ = 125.

215. We have now seen how to determine the power ¢, by means of the root a and the exponent b; but if we
wish to reverse the question, we shall find that this may be done in two ways, and that there are two different
cases to be considered: for if two of these three numbers a, b, c, were given, and it were required to find the
third, we should immediately perceive that this question would admit of three different suppositions, and
consequently of three solutions. We have considered the case in which a and b were the given numbers; we
may therefore suppose farther that ¢ and a, or ¢ and b, are known, and that it is required to determine the third
letter. But, before we proceed any farther, let us point out a very essential distinction between involution and
the two operations which lead to it. When, in addition, we reversed the question, it could be done only in one
way; it was a matter of indifference whether we took ¢ and a, or ¢ and b, for the given numbers, because we
might indifferently write @ + b, or b + a; and it was also the same with multiplication; we could at pleasure
take the letters a and b for each other, the equation ab = c¢ being exactly the same as ba = c: but in the
calculation of powers, the same thing does not take place, and we can by no means write b instead of a?; as a
single example will be sufficient to illustrate: for let @ = 5, and b = 3; then we shall have a? = 5% = 125;
but b* = 3° = 243: which are two very different results.

216. It is evident then that we may propose two questions more: one, to find the root a by means of the given
power ¢, and the exponent b; the other, to find the exponent b, supposing the power ¢ and the root a to be
known.

217. It may be said, indeed, that the former of these questions has been resolved in the chapter on the extraction
of roots; since if b = 2, for example, and a? = ¢, we know by this means, that a is a number whose square is
equal to ¢, and consequently that a = Vc. In the same manner, if b = 3 and a® = ¢, we know that the cube of
a must be equal to the given number c, and consequently that a = ¥/c. It is therefore easy to conclude,
generally, from this, how to determine the letter a by means of the letters ¢ and b; for we must necessarily have

a=14.

218. We have already remarked also the consequence which follows, when the given number is not a real
power; a case which very frequently occurs; rarely, that then the required root, a, can neither be expressed by
integers, nor by fractions; yet since this root must necessarily have a determinate value, the same consideration
led us to a new kind of numbers, which, as we observed, are called surds, or irrational numbers; and which we
have seen are divisible into an infinite number of different sorts, on account of the great variety of roots. Lastly,
by the same inquiry, we were led to the knowledge of another particular kind of numbers, which have been
called imaginary numbers.

219. It remains now to consider the second question, which was to determine the exponent, the power c, and the
root a, both being known. On this question, which has not yet occurred, is founded the important theory of
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Logarithms, the use of which is so extensive through the whole compass of mathematics that scarcely any long
calculation can be carried on without their assistance; and we shall find, in the following chapter, for which we
reserve this theory, that it will lead us to another kind of numbers entirely new, as they cannot be ranked among
the irrational numbers before mentioned.
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Chapter XXI — Of Logarithms in general

220. Resuming the equation a? = ¢, we shall begin by remarking that, in the doctrine of Logarithms, we
assume for the root a, a certain number taken at pleasure, and suppose this root to preserve invariably its
assumed value. This being laid down, we take the exponent b such that the power a” becomes equal to a given
number ¢; in which case this exponent b is said to be the logarithm of the number c. To express this, we shall
use the letter L. or the initial letters log. Thus, by b = L.c, or b = log.c [modern notation: b = log(c)], we
mean that b is equal to the logarithm of the number c, or that the logarithm of ¢ is b.

221. We see then that the value of the root a being once established, the logarithm of any number, c, is nothing
more than the exponent of that power of a, which is equal to c: so that ¢ being = a®, b is the logarithm of the
power a®. If, for the present, we suppose b = 1, we have 1 for the logarithm of a', and consequently log.a =
1; but if we suppose b = 2, we have 2 for the logarithm of a?; that is to say, log.a? = 2, and we may, in the
same manner, obtain log.a® = 3, log.a* = 4, log.a® = 5, and so on.

222. If we make b = 0, it is evident that 0 will be the logarithm of a®; but a® = 1; consequently log.1 = 0,
whatever be the value of the root a.

Suppose b = — 1, then — 1 will be the logarithm of a™1; but a™! = i; so that we have log. (%) = -1, and

in the same manner, we shall have log. (a—lz) = —2; log. (%) = —3; log. (ﬁ) = —4, etc.

223. It is evident, then, how we may represent the logarithms of all the powers of a, and even those of fractions,
which have unity for the numerator, and for the denominator a power of a. We see also that in all those cases
the logarithms are integers; but it must be observed that if b were a fraction, it would be the logarithm of an

irrational number: if we suppose, for example, b = %, it follows that % is the logarithm of a'/2, or of Va;

consequently we have also log.(va) = %; and we shall find, in the same manner, that log.(Ya) = %,
log.(Va) = i, etc.

224. But if it be required to find the logarithm of another number c, it will be readily perceived that it can
neither be an integer, nor a fraction; yet there must be such an exponent b that the power a” may become equal
to the number proposed; we have therefore b = log. c; and generally, a*¢ = c [or, a'°9¢ = c].

225. Let us now consider another number d, whose logarithm has been represented in a similar manner by
log.d; so that a®% = d. Here if we multiply this expression by the preceding one al = ¢, we shall have
alc*tLd = cd; hence, the exponent is always the logarithm of the power; consequently, log.c + log.d =
log. cd. But if, instead of multiplying, we divide the former expression by the latter, we shall obtain al-¢~%4 =

2; and, consequently, log.c - log.d = log.g.

226. This leads us to the two principal properties of logarithms, which are contained in the equations, log.c +
log.d = log.cd, and log.c - log.d = log.g. The former of these equations teaches us that the logarithm
of a product, as cd, is found by adding together the logarithms of the factors; and the latter shows us this

property, namely, that the logarithm of a fraction may be determined by subtracting the logarithm of the
denominator from that of the numerator.
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227. 1t also follows from this that when it is required to multiply, or divide, two numbers by one another, we
have only to add, or subtract, their logarithms; and this is what constitutes the singular utility of logarithms in
calculation: for it is evidently much easier to add, or subtract, than to multiply, or divide, particularly when the
question involves large numbers.

228. Logarithms are attended with still greater advantages, in the involution of powers, and in the extraction of
roots; for if d = c, we have, by the first property, log.c + log.c = log.cc, or c?; consequently, log.cc =

2log.c; and, in the same manner, we obtain log.c® = 3log.c; log.c* = 4log.c; and, generally,

log.c™ = nlog.c. If we now substitute fractional numbers for n, we shall have, for example, log.c'/?, that is

to say, log.\c = %lo g.c; and lastly, if we suppose 7 to represent negative numbers, we shall have log.c™ 1, or

2

log.% = —log.c; log.c™*, or log.ci2 = — 2log.c, and so on; which follows not only from the equation log.

c" = nlog.c, butalso from log.1 = 0, as we have already seen.

229. If therefore we had Tables, in which logarithms were calculated for all numbers, we might certainly derive
from them very great assistance in performing the most prolix calculations; such, for instance, as require
frequent multiplications, divisions, involutions, and extractions of roots: for, in such Tables, we should have not
only the logarithms of all numbers, but also the numbers answering to all logarithms. If it were required, for
example, to find the square root of the number ¢, we must first find the logarithm of c, that is, log. ¢, and next

taking the half of that logarithm, or %lo g- ¢, we should have the logarithm of the square root required: we have

therefore only to look in the Tables for the number answering to that logarithm, in order to obtain the root
required.

230. We have already seen that the numbers, 1, 2, 3, 4, 5, 6, ctc. that is to say, all positive numbers, are
logarithms of the root a, and of its positive powers; consequently, logarithms of numbers greater than unity:

and, on the contrary, that the negative numbers, as — 1, — 2, etc. are logarithms of the fractions %, ﬁ, etc. which

are less than unity, but yet greater than nothing.

Hence, it follows that, if the logarithm be positive, the number is always greater than unity: but if the
logarithm be negative, the number is always less than unity, and yet greater than 0; consequently, we cannot
express the logarithms of negative numbers: we must therefore conclude that the logarithms of negative
numbers are impossible, and that they belong to the class of imaginary quantities.

231. In order to illustrate this more fully, it will be proper to fix on a determinate number for the root a. Let us
make choice of that, on which the common Logarithmic Tables are formed, that is, the number 10, which has
been preferred because it is the foundation of our Arithmetic. But it is evident that any other number, provided
it were greater than unity, would answer the same purpose: and the reason why we cannot suppose a = unity, or
1, is manifest; because all the powers ab

equal to another given number, c.

would then be constantly equal to unity, and could never become
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Chapter XXII — Of the Logarithmic Tables now in use

232. In those Tables, as we have already mentioned, we begin with the supposition that the root a is = 10; so
that the logarithm of any number, c, is the exponent to which we must raise the number 10, in order that the
power resulting from it may be equal to the number c; or if we denote the logarithm of ¢ by L.c, we shall
always have 104 = ¢ [or 10'°9€ = ¢].

233. We have already observed that the logarithm of the number 1 is always 0; and we have also 10° = 1;
consequently, log.1 = 0; log.10 = 1;log.100 = 2;log.1000 = 3;log.10000 = 4; log.100000 = 5;

log.1000000 = 6. Farther, log.% = —1; log.ﬁ = —2; log.ﬁ = —3;log. 10(1)00 = —4;log

100000

1
= —6.
1000000

—5; log.

234. The logarithms of the principal numbers, therefore, are easily determined; but it is much more difficult to
find the logarithms of all the other intervening numbers; and yet they must be inserted in the Tables. This
however is not the place to lay down all the rules that are necessary for such an inquiry; we shall therefore at
present content ourselves with a general view only of the subject.

23S. First, since log.1 = 0 and log.10 = 1, it is evident that the logarithms of all numbers between 1 and
10 must be included between and unity; and, consequently, be greater than 0, and less than 1. It will therefore
be sufficient to consider the single number 2; the logarithm of which is certainly greater than 0, but less than
unity: and if we represent this logarithm by the letter x, so that log.2 = x, the value of that letter must be such
as to give exactly 10* = 2.

We easily perceive, also that x must be considerably less than %, or which amounts to the same thing, 10%/2 is

greater than 2; for if we square both sides, the square of 10/2 = 10, and the square of 2 = 4. Now, this latter

is much less than the former; and, in the same manner, we see that x is also less than %; that is to say, 10%/3 is

greater than 2: for the cube of 10%/3 is 10, and that of 2 is only 8. But, on the contrary, by making x = %, we

give it too small a value; because the fourth power of 10*/# being 10, and that of 2 being 16, it is evident that

10/* is less than 2. Thus, we see that x, or the log. 2, is less than %, but greater than i: and, in the same

. . . . 1 1 .
manner, we may determine, with respect to every fraction contained between " and > whether it be too great or

too small.

In making trial, for example, with %, which is less than g, and greater than i, 10%, or 10%/7, ought to be = 2;
or the seventh power of 102/7 that is to say, 102, or 100, ought to be equal to the seventh power of 2, or 128;
which is consequently greater than 100. We see, therefore, that ; is less than log. 2, and that log. 2, which was

1. 2
found less than 318 however greater than >

Let us try another fraction, which, in consequence of what we have already found, must be contained between

2 1 . . . .3 . . .
- and 7 Such a fraction between these limits is o and it is therefore required to find, whether 103/10 = 2 if

this be the case, the tenth powers of those numbers are also equal: but the tenth power of 103/10 is 103 =
1000, and the tenth power of 2 is 1024; we conclude therefore that 103/19 s less than 2, and, consequently,

3 . . 1. 3
that To s too small a fraction; and therefore the log. 2, though less than 7 1s yet greater than o
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236. This discussion serves to prove that log.2 has a determinate value, since we know that it is certainly
3 1 P . .
greater than o but less than 3 we shall not however proceed any farther in this investigation at present. Being
therefore still ignorant of its true value, we shall represent it by x, so that log.2 = x; and endeavour to show
how, if it were known, we could deduce from it the logarithms of an infinity of other numbers. For this purpose,

we shall make use of the equation already mentioned, namely, log.cd = log.c + log.d, which contains the
property that the logarithm of a product is found by adding together the logarithms of the factors.

237. First, as log.2 = x, and log.10 = 1, we shall have log.20 = x + 1, log.200 = x + 2,
log.2000 = x + 3,log.20000 = x + 4,1l0og.200000 = x + 5,l0og.2000000 = x + 6, etc.

238. Farther, as log. ¢ = 2log.c, and log. ¢ = 3log.c, and log. c* = 4 log.c, etc. we have log.4 =
2x;1log.8 = 3x;log.16 = 4x;log.32 = 5x;log.64 = 6x, etc. Hence we find also that

log.40 = 2x + 1 log.400 = 2x + 2
log.4000 =2x + 3 log.40000 = 2x + 4,etc.
log.80 = 3x + 1 log.800 = 3x + 2
log.8000 = 3x + 3 log.80000 = 3x + 4,etc.
log.160 = 4x +1 log.1600 = 4x

log.16000 = 4x + 3 log. 160000 = 4x + 4, etc.

239. Let us resume also the other fundamental equation, lo g.g = log.c — log.d, and let us suppose ¢ = 10,

and d = 2; since log.10 = 1, and log.2 = x, we shall have log.?, or log.5 =1 - x, and shall deduce

from hence the following equations:

log.50 = 2-«x log.500 = 3- x

log.5000 = 4 - x log.50000 = 5 - x,etc.
log.25 = 2- 2x log. 125 = 3- 3x

log.625 = 4 - 4x log.3125 = 5 - 5x,etc.
log.250 = 3- 2x log.2500 = 4 - 2x
log.25000 = 5- 2x log.250000 = 6- 2x,etc.
log.1250 = 4 - 3x log. 12500 = 5- 3x;
log.125000 = 6 - 3x log.1250000 = 7 - 3x,etc.
log.6250 = 5- 4x log. 62500 = 6- 4x

log. 625000 = 7 - 4x log. 6250000 = 8 - 4x,etc.

240. If we knew the logarithm of 3, this would be the means also of determining a number of other logarithms;
as appears from the following examples. Let the log. 3 be represented by the letter y: then,

log.30 =y + 1 log.300 = y + 2
log.3000 = y + 3 log.30000 = y + 4, etc.

log.9 = 2y,log.27 = 3y,log.81 = 4y, etc.
We shall also have,

log.6 = x + y,log.12 = 2x + y,log.18 = x + 2y,log.15 = log.3 + log.5 = y + 1-x
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241. We have already seen that all numbers arise from the multiplication of prime numbers. If therefore we
only knew the logarithms of all the prime numbers, we could find the logarithms of all the other numbers by
simple additions. The number 210, for example, being formed by the factors 2, 3, 5, 7, its logarithm will be
log. 2 + log.3 + log.5 + log.7. In the same manner, since 360 = 2 X 2 X 2 X 3 X 3 X 5 = 23 x
32 x 5, we have log.360 = 3log.2 + 21log.3 + log.5. It is evident, therefore, that by means of the
logarithms of the prime numbers, we may determine those of all others; and that we must first apply to the
determination of the former, if we would construct Tables of Logarithms.
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Chapter XXIII — Of the Method of expressing Logarithms

242. We have seen that the logarithm of 2 is greater than %, and less than g, and that, consequently, the

exponent of 10 must fall between those two fractions, in order that the power may become 2. Now, although
we know this, yet whatever fraction we assume on this condition, the power resulting from it will be always an
irrational number, greater or less than 2; and, consequently, the logarithm of 2 cannot be accurately expressed
by such a fraction: therefore we must content ourselves with determining the value of that logarithm by such an
approximation as may render the error of little or no importance; for which purpose, we employ what are called
decimal fractions, the nature and properties of which ought to be explained as clearly as possible.

243, It is well known that, in the ordinary way of writing numbers by means of the ten figures, or characters,
0,1,2,3,4,5,6,7,8,9

the first figure on the right alone has its natural signification; that the figures in the second place have ten times
the value which they would have had in the first; that the figures in the third place have a hundred times the
value; and those in the fourth a thousand times, and so on: so that as they advance towards the left, they acquire
a value ten times greater than they had in the preceding rank. Thus, in the number 1765, the figure 5 is in the
first place on the right, and is just equal to 5; in the second place is 6; but this figure, instead of 6, represents
10 X 6, or 60; the figure 7 is in the third place, and represents 100 X 7, or 700; and lastly, the 1, which is in
the fourth place, becomes 1000; so that we read the given number thus:

One thousand, seven hundred, and sixty-five.

244. As the value of figures becomes always ten times greater, as we go from the right towards the left, and as
it consequently becomes continually ten times less as we go from the left towards the right; we may, in
conformity with this law, advance still farther towards the right, and obtain figures whose value will continue to
become ten times less than in the preceding place: but it must be observed that the place where the figures have
their natural value is marked by a point. So that if we meet, for example, with the number 36.54892, it is to be
understood in this manner: the figure 6, in the first place, has its natural value; and the figure 3, which is in the

second place to the left, means 30. But the figure 5, which comes after the point, expresses only %; and the 4 is
4 . 8 . 9 . 2
To0° the figure 8 is equal to To00° the figure 9 is equal to T5000° and the figure 2 is equal to 100000"

We see then that the more those figures advance towards the right, the more their values diminish; and at last,
those values become so small that they may be considered as nothing!">.

equal only to

245. This is the kind of numbers which we call decimal fractions, and in this manner logarithms are represented
in the Tables. The logarithm of 2, for example, is expressed by 0.3010300; in which we see: first, that since

o L1

. . . . . . . . 3
there is 0 before the point, this logarithm does not contain an integer; second, that its value is o T 700 T 1000

0 3 0
10000 = 100000 = 1000000 = 10000000’
the logarithm in question contains none of those parts, which have 1000000 and 10000000 for the

denominator. It is however to be understood that, by continuing the series, we might have found still smaller

We might have left out the two last ciphers, but they serve to show that

parts; but with regard to these, they are neglected, on account of their extreme minuteness.

246. The logarithm of 3 is expressed in the Table by 0.4771213; we see, therefore, that it contains no integer,

7 7 1 2 1 3 But
100 1000 10000 100000 1000000 10000000° ’

and that it is composed of the following fractions: % +
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we must not suppose that the logarithm is thus expressed with the utmost exactness; we are only certain that the

error is less than 100010000; which is certainly so small that it may very well be neglected in most calculations.
247. According to this method of expressing logarithms, that of 1 must be represented by 0.0000000, since it is
really = 0: the logarithm of 10 is 1.0000000, where it evidently is exactly = 1: the logarithm of 100 is
2.0000000, or 2. And hence we may conclude that the logarithms of all numbers, which are included between
10 and 100, and consequently composed of two figures, are contained between 1 and 2, and therefore must be

expressed by 1 plus a decimal fraction, as log.50 = 1.6989700; its value therefore is unity, plus % + % +

8 9 0 0 . . . :
+——+ + : and it will be also easily perceived that the logarithms of numbers,
1000 = 10000 ' 100000 = 1000000 ~ 10000000

between 100 and 1000, are expressed by the integer 2 with a decimal fraction: those of numbers between 1000
and 10000, by 3 plus a decimal fraction: those of numbers between 10000 and 100000, by 4 integers plus a
decimal fraction, and so on. Thus, the log. 800, for example, is 2.9030900; that of 2290 is 3.3598355, etc.

248. On the other hand, the logarithms of numbers which are less than 10, or expressed by a single figure, do
not contain an integer, and for this reason we find before the point: so that we have two parts to consider in a
logarithm. First, that which precedes the point, or the integral part; and the other, the decimal fractions that are
to be added to the former. The integral part of a logarithm, which is usually called the characteristic, is easily
determined from what we have said in the preceding article. Thus, it is 0, for all the numbers which have but
one figure; it is 1, for those which have two; it is 2, for those which have three; and, in general, it is always one
less than the number of figures. If therefore the logarithm of 1766 be required, we already know that the first
part, or that of the integers, is necessarily 3.

249. So reciprocally, we know at the first sight of the integer part of a logarithm, how many figures compose
the number answering to that logarithm; since the number of those figures always exceed the integer part of the
logarithm by unity. Suppose, for example, the number answering to the logarithm 6.4771213 were required,
we know immediately that that number must have seven figures, and be greater than 1000000. And in fact this
number is 3000000; for log.3000000 = log.3 + log.1000000. Now log.3 = 0.4771213, and
log.1000000 = 6, and the sum of those two logarithms is 6.4771213.

250. The principal consideration therefore with respect to each logarithm is the decimal fraction which follows
the point, and even that, when once known, serves for several numbers. In order to prove this, let us consider
the logarithm of the number 365; its first part is undoubtedly 2; with respect to the other, or the decimal
fraction, let us at present represent it by the letter x; we shall have log.365 = 2 + x; then multiplying
continually by 10, we shall have log.3650 = 3 + x;log.36500 = 4 + x;log.365000 = 5 + x, and so
on.

But we can also go back, and continually divide by 10; which will give us log.36.5 = 1 + x; log.3.65 =
0 + x;109.0.365 =-1 + x;l0g.0.0365 =- 2 + x;log.0.00365 =- 3 + x, and so on.

251. All those numbers then which arise from the figures 365, whether preceded, or followed, by ciphers, have
always the same decimal fraction for the second part of the logarithm: and the whole difference lies in the
integer before the point, which, as we have seen, may become negative; namely, when the number proposed is
less than 1. Now, as ordinary calculators find a difficulty in managing negative numbers, it is usual, in those
cases, to increase the integers of the logarithm by 10, that is, to write 10 instead of 0 before the point; so that
instead of — 1 we have 9; instead of — 2 we have 8; instead of — 3 we have 7, etc.; but then we must
remember that the characteristic has been taken ten units too great, and by no means suppose that the number
consists of 10, 9, or 8 figures. It is likewise easy to conceive that, if in the case we speak of, this characteristic
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be less than 10, we must write the figures of the number after a point, to show that they are decimals: for
example, if the characteristic be 9, we must begin at the first place after a point; if it be 8, we must also place a
cipher in the first row, and not begin to write the figures till the second: thus 9.5622929 would be the
logarithm of 0.365, and 8.5622929 the log.0.0365. But this manner of writing logarithms is principally
employed in Tables of sines.

252. In the common Tables, the decimals of logarithms are usually carried to seven places of figures, the last of

which consequently represents the part, and we are sure that they are never erroneous by the whole of

10000000
this part, and that therefore the error cannot be of any importance. There are, however, calculations in which we

require still greater exactness; and then we employ the large Tables of Vlacq, where the logarithms are
calculated to ten decimal places!'®.

253. As the first part, or characteristic of a logarithm, is subject to no difficulty, it is seldom expressed in the
Tables; the second part only is written, or the seven figures of the decimal fraction. There is a set of English
Tables in which we find the logarithms of all numbers from 1 to 100000, and even those of greater numbers;
for small additional Tables show what is to be added to the logarithms, in proportion to the figures, which the
proposed numbers have more than those in the Tables. We easily find, for example, the logarithm of 379456,
by means of that of 37945 and the small Tables of which we speak!'”).

254. From what has been said, it will easily be perceived, how we are to obtain from the Tables the number
corresponding to any logarithm which may occur. Thus, in multiplying the numbers 343 and 2401; since we
must add together the logarithms of those numbers, the calculation will be as follows:

log.343 + log.2401 = 2.5352941 + 3.3803922 = 5.9156863
And, the log. 823540 = 5.9156847 (nearest tabular logarithm with a difference of . 0000016),

which in the Table of Differences answers to 3; this therefore being used instead of the cipher, gives 823543
(= 823540 + 3) for the product sought: for the sum is the logarithm of the product required; and its
characteristic 5 shows that the product is composed of 6 figures; which are found as above.

255. But it is in the extraction of roots that logarithms are of the greatest service; we shall therefore give an
example of the manner in which they are used in calculations of this kind. Suppose, for example, it were
required to extract the square root of 10. Here we have only to divide the logarithm of 10, which is 1.0000000
by 2; and the quotient 0.5000000 is the logarithm of the root required. Now, the number in the Tables which
answers to that logarithm is 3.16228, the square of which is very nearly equal to 10, being only one hundred
thousandth part too great!'®.
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Section II — Of the different Methods of calculating Compound Quantities



Leonard Euler 79

Chapter I — Of the Addition of Compound Quantities

256. When two or more expressions, consisting of several terms, are to be added together, the operation is
frequently represented merely by signs, placing each expression between two parentheses, and connecting it
with the rest by means of the sign + . Thus, for example, if it be required to add the expressions a + b + ¢
andd + e + f, werepresentthesumby (a + b + ¢c) + (d + e + f).

257. It is evident that this is not to perform addition, but only to represent it. We see, however, at the same time,
that in order to perform it actually, we have only to leave out the parentheses; for as the number d + e + f is
to be added to a + b + ¢, we know that this is done by joining to it first + d, then + e, and then + f; which
therefore gives the sumby a + b + ¢ + d + e + f; and the same method is to be observed, if any of the
terms are affected by the sign —; as they must be connected in the same way, by means of their proper sign.

258. To make this more evident, we shall consider an example in pure numbers, proposing to add the
expression 15 - 6 to 12 - 8. Here, if we begin by adding 15, we shall have 12 — 8 + 15; but this is adding
too much, since we had only to add 15 — 6, and it is evident that 6 is the number which we have added too
much; let us therefore take this 6 away by writing it with the negative sign, and we shall have the true sum,
12 — 8 4+ 15 — 6; which shows that the sums are found by writing all the terms, each with its proper sign.

259. If it were required therefore to add the expression d - e- f to a- b + ¢, we should express the sum
thus,

a—b+c+d—e—f

remarking, however, that it is of no consequence in what order we write these terms; for their places may be
changed at pleasure, provided their signs be preserved; so that this sum might have been written thus;

c—e+a—f+d-0»

260. It is evident, therefore, that addition is attended with no difficulty, whatever be the form of the terms to be

added, thus, if it were necessary to add together the expressions 2a> + 6vb — 4log.c and 53a — 7c, we
should write them

2a3 + 6Vb — 4log.c + 53a — 7c

either in this or in any other order of the terms; for if the signs are not changed, the sum will always be the
same.

261. But it frequently happens that the sums represented in this manner may be considerably abridged, as is the
case when two or more terms destroy each other; for example, if we find in the same sum the terms + a — a, or
3a — 4a + a; or when two or more terms may be reduced to one, etc. Thus, in the following examples:

3a + 2a = 5a 7b- 3b = +4b

- 6¢c + 10c = +4c 4d - 2d = 2d

5a- 8a =- 3a -7b + b =-6b
-3c-4c =-T7c -3d-5d = 8d
2a-5a + a =- 2a -3b-5b + 2b =-6b
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Whenever two or more terms, therefore, are entirely the same with regard to letters, their sum may be abridged;
but those cases must not be confounded with such as these, 2a? + 3a, or 2b® — b*, which admit of no
abridgment.

262. Let us consider now some other examples of reduction, as the following, which will lead us immediately

to an important truth. Suppose it were required to add together the expressions a + b and a - b; our rule gives
a+b+a—b;nowa+ a = 2a, and b — b = 0; the sum therefore is 2a: consequently, if we add
together the sum of two numbers (a + b) and their difference (a — b), we obtain the double of the greater of
those two numbers.

This will be better understood perhaps from the following examples:
(Ba—-2b—c)+(5b—6c+a)=4a+3b—-T7c
(a® — 2a?b + 2ab?) + (—a?b + 2ab? — b3) = a® — 3a?b + 4ab? — b3
(4a? =3b+2¢) + (3a?+2b—12¢) = 7a®> —b — 10c

(a* + 2ab + b3) + (—a* — 2a?b + 3b3) = —2a?b + 2ab + 4b3
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Chapter 1I — Of the Subtraction of Compound Quantities

263. If we wish merely to represent subtraction, we enclose each expression within two parentheses, joining, by
the sign —, the expression which is to be subtracted, to that from which we have to subtract it.

When we subtract, for example, the expression d — e + f from the expression a — b + ¢, we write the
remainder thus:

(a-b+c)—d—-—e+ )

and this method of representing it sufficiently shows which of the two expressions is to be subtracted from the
other.

264. But if we wish to perform the actual subtraction, we must observe, first, that when we subtract a positive
quantity + b from another quantity a, we obtain a — b: and secondly, when we subtract a negative quantity
— b from a, we obtain a + b; because to free a person from a debt is the same as to give him something.

265. Suppose now it were required to subtract the expression b — d from a — c. We first take away b, which
gives a — ¢ — b: but this is taking away too much by the quantity d, since we had to subtract only b — d; we
must therefore restore the value of d, and then shall have a — ¢ — b + d; whence it is evident that the terms
of the expression to be subtracted must change their signs, and then be joined, with those contrary signs, to the
terms of the other expression.

266. Subtraction is therefore easily performed by this rule, since we have only to write the expression from
which we are to subtract, joining the other to it without any change beside that of the signs. Thus, in the first
example, where it was required to subtract the expression d — e + f froma— b + ¢, we obtain a — b +
c—d+e—f.

An example in numbers will render this still more clear; for if we subtract 6 — 2 + 4 from 9 — 3 + 2, we
evidently obtain

9-34+2-6+2—-4=0
for9— 3 4+ 2 = 8;also,6— 2 + 4 = 8;and8— 8 = 0.

267. Subtraction being therefore subject to no difficulty, we have only to remark that if there are found in the
remainder two or more terms, which are entirely similar with regard to the letters, that remainder may be
reduced to an abridged form, by the same rules that we have given in addition.

268. Suppose we have to subtract a — b from a + b; that is, to take the difference of two numbers from their
sum: we shall then have (a + b) — (a— b); buta— a = 0, and b + b = 2b; the remainder sought is
therefore 2b; that is to say, the double of the less of the two quantities.

269. The following examples will supply the place of further illustrations [subtract the second row from the first
row]:

a®? +ab + b* 3a —4b + 5¢ a®+3a*b+3ab*+b* | Ja+2Vb
—a*+ab+b* | 2b+4c—6a a®—3a*b+3ab®>-b* | \Ja—3Vb
2a? 9a —6b +c 6a?b + 2b* 5vVb
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Chapter III — Of the Multiplication of Compound Quantities

270. When it is only required to represent multiplication, we put each of the expressions that are to be
multiplied together, within two parentheses, and join them to each other, sometimes without any sign, and
sometimes placing the sign x between them. Thus, for example, to represent the product of the two expressions
a—b + candd — e + f, we write

(a-b+c)yx(d-e+ f)
or equivalently, (a— b + c)(d— e + f)

which method of expressing products is much used because it immediately exhibits the factors of which they
are composed.

271. But in order to show how multiplication is actually performed, we may remark, in the first place, that to
multiply a quantity, such as a — b + c, by 2, for example, each term of it is separately multiplied by that
number; so that the product is

2a— 2b + 2c

And the like takes place with regard to all other numbers; for if d were the number by which it was required to
multiply the same expression, we should obtain

ad — bd + cd

272. In the last article, we have supposed d to be a positive number; but if the multiplier were a negative
number, as —e, the rule formerly given must be applied; namely, that unlike signs multiplied together produce —
and like signs +. Thus we should have

—ae+ be—ce

273. Now, in order to show how a quantity, 4, is to be multiplied by a compound quantity, d — e; let us first
consider an example in numbers, supposing that A is to be multiplied by 7 — 3. Here it is evident that we are
required to take the quadruple of A: for if we first take a seven times, it will then be necessary to subtract 34
from that product.

In general, therefore, if it be required to multiply A by d — e, we multiply the quantity A first by d, and then
by e, and subtract this last product from the first: whence results dA — eA.

If we now suppose A = a — b, and that this is the quantity to be multiplied by d — e; we shall have dA =
ad — bd,eA = ae — be whence dA — eA = ad — bd — ae + be is the product required.

274. Since therefore we know accurately the product (a — b) X (d — e), we shall now exhibit the same
example of multiplication under the following form:

a—b>b
d—e
ad — bd — ae + be
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Which shows that we must multiply each term of the upper expression by each term of the lower, and that, with
regard to the signs, we must strictly observe the rule before given; a rule which this circumstance would
completely confirm, if it admitted of the least doubt.

275. 1t will be easy, therefore, according to this method, to calculate the following example, which is, to
multiply a + b by a — b:

a+b
a—0>b
a’ 4+ ab — ab — b? = a? — b?

276. Now, we may substitute for a and b any numbers whatever; so that the above example will furnish the
following theore: The sum of two numbers, multiplied by their difference, is equal to the difference of the
squares of those numbers, which may be expressed as:

(a+b) x(a—>b) =a®—b?

And from this another theorem may be derived; namely, The difference of two square numbers is always a
product, and divisible both by the sum and by the difference of the roots of those two squares; consequently, the
difference of two squares can never be a prime number!™.

277. Let us now calculate some other examples:

2a—3
a+?2
2a°—-3a+4a —6
=2a’+a —6

4a? — 6a +9
2a+ 3
8a3® —12a? + 18a + 12a%? — 18a + 27
= 8a3 + 27

3a? — 2ab
2a —4b
6a3 — 4a’b — 12a?b + 8ab?
= 6a® — 16a*b + 8ab?

a® + ab?
a* —a3b3
a® + a®b® —a®bh3 — a*b®
— ab — atb®

a® + 2ab + 2b?
a® — 2ab + 2b?
a* +2a3b + 2a?b? — 2a3b — 4a®b? — 4ab?
+ 2a%b? + 4ab® + 4b*
=a*+ b*
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a’?+b?+c?>—ab —ac— bc
a+b+c
a® + ab? + ac® — a’b — a’c — abc + a®b + b3
+ bc? — ab? — abc — b%c
+ a?c + b?c + ¢ — abc — ac?
— bc?
=a® —3abc+ b3+ 3

278. When we have more than two quantities to multiply together, it will easily be understood that, after having
multiplied two of them together, we must then multiply that product by one of those which remain, and so on:
but it is indifferent what order is observed in those multiplications.

Let it be proposed, for example, to find the value, or product, of the four following factors, namely,

L IL. III. IV.
(a+b) (a® + ab + b?) (a — b) (a? — ab + b?)

First, the product of the factors I. and II.:

a’? +ab + b?
a+b
a® + a?b + ab? + a?b + ab? + b3
=a®+ 2a’b + 2ab? + b3

Second, the product of the factors III. and I'V.:

a? —ab + b?
a—>b
a® —a?b + ab? — a?b + ab? — b3
=a® —2a’b + 2ab?* — b?

It remains now to multiply the first product I. and II. by this second product III. and I'V.:

a® + 2a?b + 2ab? + b3
a® —2a?b + 2ab? - b3
— a6 _ b6

which is the product required.

279. Now let us resume the same example, but change the order of it, first multiplying the factors 1. and III.,
and then II. and IV. together:

a+b
a—b>b
=a2_b2
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a’+ ab + b?
a’ —ab + b?
= a* + a®*b® + b*

Then multiplying the two products L. III. and II. IV.:

a* + a?b? + p*
a? — b?
— a6_b6

which is the product required.

280. We may perform this calculation in a manner still more concise, by first multiplying the first factor by the
fourth, and then the second by the third.

a® —ab + b?
a+b
= a3+ b3

a’+ab + b?
a—0>b
=a3 - b3

It remains to multiply the product I. IV. by that of II. and III.:

a’®+ b3
a® —b3
=a6_b6

the same result as before.

281. It will be proper to illustrate this example by a numerical application. For this purpose, let us make a = 3
and b = 2, weshall thenhavea + b = 5,and a — b = 1; farther, a® =9, ab = 6, and b? = 4: therefore
a? + ab + b? = 19 and a? — ab + b? = 7: so that the product required is that of 5 X 19 x 1 X 7, which is
665.

Now, a® =729, and b® = 64; consequently, the product required is a® — b® = 665, as we have already
seen.
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Chapter IV — Of the Division of Compound Quantities

282. When we wish simply to represent division, we make use of the usual mark of fractions; which is, to write
the denominator under the numerator, separating them by a line; or to enclose each quantity between
parentheses, placing two points between the divisor and dividend, and a line between them. Thus, if it were

required, for example, to divide a + b by ¢ + d, we should represent the quotient thus: %, according to the

former method; and thus,
(a+b)+(c+d)
according to the latter, where each expression is read a + b divided by ¢ + d.

283. When it is required to divide a compound quantity by a simple one, we divide each term separately, as in
the following examples:

(6a—8b+4c)+~2=3a—4b+ 2c
(a® —2ab) ~a=a—2b
(a® —2ab + 3ab?) ~a = a®> — 2b + 3b?
(4a® — 6a’c + 8abc) + 2a = 2a — 3ac + 4bc
(9a®bc — 12ab?c + 15abc?) + 3abc = 3a — 4b + 5¢

284. If it should happen that a term of the dividend is not divisible by the divisor, the quotient is represented by

a fraction, as in the division of a + b by a, which gives 1 + g. Likewise,
2
a?—ab+b2+a?=1-242
a a

. .. . b .
In the same manner, if we divide 2a + b by 2, we obtain a + e and here it may be remarked that we may
. . b . . b . b. b
write %b, mstead of 3 because % times b is equal to py and, in the same manner, 318 the same as %b, and 2? the

2
same as - b, etc.

285. But when the divisor is itself a compound quantity, division becomes more difficult. This frequently
occurs where we least expect it:, and when it cannot be performed, we must content ourselves with representing
the quotient by a fraction, in the manner already described. At present, we will begin by considering some cases
in which actual division takes place.

286. Suppose, for example, it were required to divide ac — bc by a — b, the quotient must here be such as,
when multiplied by the divisor a — b, will produce the dividend ac — bc. Now, it is evident that this quotient
must include c, since without it we could not obtain ac; in order therefore to try whether c¢ is the whole
quotient, we have only to multiply it by the divisor, and see if that multiplication produces the whole dividend,
or only a part of it. In the present case, if we multiply a — b by c, we have ac — bc, which is exactly the
dividend; so that c is the whole quotient. It is no less evident that

(a*+ab)=(a+b)=a;
(3a? —2ab) ~ (3a — 2b) = a;
(6a? —9ab) +~ (2a — 3b) = 3aq, etc.
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287. We cannot fail, in this way, to find a part of the quotient; if, therefore, what we have found, when
multiplied by the divisor, does not exhaust the dividend, we have only to divide the remainder again by the
divisor, in order to obtain a second part of the quotient; and to continue the same method, until we have found
the whole.

Let us, as an example, divide a® + 3ab + 2b? by a + b. Itis evident, in the first place, that the quotient will
include the term a, since otherwise we should not obtain a?. Now, from the multiplication of the divisor a + b
by a, arises a? + ab; which quantity being subtracted from the dividend, leaves the remainder, 2ab + 2b?;
and this remainder must also be divided by a + b, where it is evident that the quotient of this division must
contain the term 2b. Now, 2b, multiplied by a + b, produces 2ab + 2b?; consequently, a + 2b is the
quotient required; which multiplied by the divisor a + b, ought to produce the dividend a? + 3ab + 2b?.
See the operation:

a+ 2b
a+ b|a®+ 3ab + 2b2
a’? + ab
2ab + 2b?
2ab + 2b?
0

288. This operation will be considerably facilitated by choosing one of the terms of the divisor, which contains
the highest power, to be written first; and then, in arranging the terms of the dividend, begin with the highest
powers of that first term of the divisor, continuing it according to the powers of that letter. This term in the
preceding example was a. The following examples will render the process more perspicuous.

a’? - 2ab + b?
a-b | a3- 3a%b + 3ab?- b3 a—b
a3— ab a+ b |a% b2
- 2a*b + 3ab? a’ + ab
- 2a’b + 2ab? - ab - b
b2 - b3 - ab - b?
ab? - b3 0
0
6a + 4b a*- ab + b*
3a-2b | 18a?- 8b? a+b|a+ b3
18a? - 12ab ad+ a?b
12ab - 8b? —a?b + b3
12ab - 8b? - a’b - ab?
0 ab? + b3
ab? + b3

0
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4a?> + 2ab + b? a® - 2ab + b?
2a-b|8a3- b3 a®- 2ab+ b? | a*- 4a®b + 6a%b% - 4ab3® + b*
8a® - 4a®b a* - 2a3b + a®b?

4a’b - b3 - 2a3b + 5a®b? - 4ab?

4a’b - 2ab? - 2a®b + 4a®b? - 2ab3

2ab? - b3 a’b? - 2ab® + b*

2ab? - b3 a’b? - 2ab® + b*

0 0

a’?+ 2ab + 4b?
a® - 2ab + 4b% | a* + 4a%b* + 16b*
a* - 2a®b + 4a’b?
2a3b + 16b*
2a3b - 4a%b? + 8ab?
16b*
4a’b?
4a?b? - 8ab® + 16b*
4a?b? - 8ab® + 16b*
0

a? + 2ab + 2b?
a’- 2ab + 2b* |a* + 4b*
a*- 2a3b + 2a®b?
2a3b - 2a%b? + 4b*
2a3b - 4a%b? + 4ab?
2a’b? - 4ab® + 4b*
2a’b? - 4ab® + 4b*
0

1-3x + 3x2% -3
1-2x + x% | 1-5x + 10x2 - 10x3 +5x* - x5
1-2x + x?
- 3x + 9x? - 10x3
- 3x + 6x2% - 3x3
3x% - 7x3 + 5x*
3x% - 6x3 + 3x*
-x3 + 2x* - x°
-x3 + 2x* - x°
0
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Chapter V — Of the Resolution of Fractions into Infinite Series'*"!

289. When the dividend is not divisible by the divisor, the quotient is expressed, as we have already observed,
by a fraction: thus, if we have to divide 1 by 1 — a, we obtain the fraction 1+ This, however, does not

prevent us from attempting the division according to the rules that have been given, nor from continuing it as
far as we please; and we shall not fail thus to find the true quotient, though under different forms.

290. To prove this, let us actually divide the dividend 1 by the divisor 1 — a, thus:

1 +a/(1-a)
1-al1
1-a

remainder a
or,

1+a+ a’/(1-a)

1-a|1
1-a
a
a- a?

remainder a?

To find a greater number of forms, we have only to continue dividing the remainder a® by 1 — a:

a’ + a®/(1- a)
1-a|a?

a?- ad

remainder a3

then,

a® + a*/(1- a)
1-a|ad

a®- a*

remainder a*

and again,

a* + a®/(1- a)
1-a|a*

a*- a

remainder a

5

5
and so on.

291. This shows that the fraction Tla may be exhibited under all the following forms:
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1+ a4
I. 1—a
a2
L. 1+a+
1—a
3
0L 14+a+a? +
1—a
4
Iv. l+a+a*+a® +
1—a
5
V. 1+a+a?+ad®+a* +
1—a

Now, by considering the first of these expressions, which is 1 + ﬁ, and remembering that 1 is the same as

1-a
——, we have:
1-a

a 1—a a l1—a+a 1
1+ = = =

= -
l1-a 1—a 1-a 1—a 1—a
2
If we follow the same process, with regard to the second expression, 1 + a + 1a_—a, that is to say, if we reduce

—a? 2
the integral part 1 + a to the same denominator, 1 — a, we shall have %, to which if we add +1a_—a, we
2 2
shall have ﬂ, that is to say, S
1-a 1-a

3 _ .3
In the third expression, 1 + a + a? + 1a_—a, the integers reduced to the denominator 1 — a make 11_—';; and

3
if we add to that the fraction 1a_—a, we have ﬁ, as before; therefore, all these expressions arc equal in value to

ﬁ, the proposed fraction.
292. This being the case, we may continue the series as far as we please, without being under the necessity of
performing any more calculations; and thus we shall have

8

1
——=1+a+a*+a®+a*+a*+a®+a’ +
1-a 1—a

or we might continue this farther, and still go on without end; for which reason it may be said that the proposed
fraction has been resolved into an infinite series, whichis, 1 +a +a?> +a® +a*+a®>+a®+a’ +a® +a° +
a'® + a! + a2, etc. to infinity: and there are sufficient grounds to maintain that the value of this infinite series

) ) 1
1s the same as that of the fraction P

293. What we have said may at first appear strange; but the consideration of some particular cases will make it
easily understood. Let us suppose, in the first place, a = 1; our series will become 1 + 1 + 1 + 1 + 1 +

. 1 D 1 1
1 4+ 1, etc.; and the fraction T to which it must be equal, becomes T O Now, we have before

remarked that Jisa number infinitely great; which is therefore here confirmed in a satisfactory manner. See
Article 83 and 84.
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Again, if we suppose a = 2, our series becomes 1 + 2 + 4 + 8 + 16 + 32 + 64, etc. to infinity, and

. 1 : 1 . : : .
its value must be the same as Y that is to say 0=- 1; which at first sight will appear absurd. But it must be

remarked that if we wish to stop at any term of the above series, we cannot do so without annexing to it the

fraction which remains. Suppose, for example, we were to stop at 64, after having written 1 + 2 + 4 + 8 +

16 + 32 + 64, we must add the fraction %, or %, or — 128; we shall therefore have 127 — 128, that is,

in fact, — 1.

Were we to continue the series without intermission, the fraction would be no longer considered; but, in that
case, the series would still so on.

294. These are the considerations which are necessary, when we assume for a numbers greater than unity; but if

we suppose a less than 1, the whole becomes more intelligible: for example, let a = %; and we shall then have
1 1 1 . . . . 1 1 1 1 1 1 1

T 1—_% = g = 2, which will be equal to the following series 1 + Statetet o tat o cc 0

infinity. Now, if we take only two terms of this series, we shall have 1 + %, and it wants % of being equal to

1

T 2. If we take three terms, it wants i; for the sum is 1%. If we take four terms, we have 1%, and the

deficiency is only i. Therefore, the more terms we take, the less the difference becomes; and, consequently, if
we continue the series to infinity, there will be no difference at all between its sum and the value of the fraction

1
—, or 2.
1-a

295, Let a = g; and our fraction % will then be = ﬁ = g = 1%, which, reduced to an infinite series,
3

becomes 1 + = 4=+ —+ —+ L, etc. which is consequently equal to =
39 27 81 243 1-a

Here, if we take two terms, we have 1 g, and there wants %. If we take three terms, we have 1 g, and there will

still be wanting %. If we take four terms, we shall have 1 g, and the difference will be i; since, therefore, the

error always becomes three times less, it must evidently vanish at last.

296. Suppose a = E; we shall have —— = iz =3=1+ 2 + 2 + 2 + 10 + ﬁ, etc. to infinity; and here, by
3 1-a 1-2 3 9 27 81 243

. 2 . 1 . . 1 . 8 .
taking first 1 7 the error is 1 7 taking three terms, which make 2 > the error is > taking four terms, we have
11 . 16
2 —, and the error is —.
27 27

297. If a = i, the fraction is il =

- , etc. The first two
4

1 . 1.1 1 1
= 1-; and the series becomes 1 +-+—+—+—
3 4 16 64 256

alw ik

1 . . 1 . 5 .
terms are equal to 1 > which gives o for the error; and taking one term more, we have 1 o that is to say, only

1
an error of —.
48

298. In the same manner we may resolve the fraction oo into an infinite series by actually dividing the

numerator 1 by the denominator 1 + a, as follows*'):
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1-a + a?-a® + a* etc.

1+al1l
1+ a
-a
- a-a?
a2
a’? + a3
- a3
-a® + a*
a4—
a* + a°
- a®, etc.

Whence it follows that the fraction ﬁ is equal to the series,

l—a+a?—a®>+a*—a®+a®—a’, etc.

299. If we make a = 1, we have this remarkable comparison:

1ia = % =1-1+1-14+1-1+ 1- 1, etc. to infinity; which appears rather contradictory; for if we

stop at — 1, the series gives 0; and if we finish at 4+ 1, it gives 1; but this is precisely what solves the difficult;

for since we must go on to infinity, without stopping either at — 1 or at + 1, it is evident that the sum can

neither be 0 nor 1, but that this result must lie between these two, and therefore be %.[22]

300. Let us now make a = %, and our fraction will be % = g, which must therefore express the value of the
2

series 1 —% + i—% + i—% + i, etc. to infinity; here if we take only the two leading terms of this series, we
have %, which is too small by %; if we take three terms, we have %, which is too much by %; if we take four
terms, we have g, which is too small by i, etc.

301. Suppose again a = é, our fraction will then be i = %’ which must be equal to this series 1 —% + %—% +

3

é— i + ?19, etc. continued to infinity. Now, by considering only two terms, we have §> which is too small by

1 7 L 1 .20 L 1
Py, three terms make e which is too much by e four terms give ot which is too small by To5’ and so on.

302. The fraction ﬁ may also be resolved into an infinite series another way; namely, by dividing 1 by

a + 1, as follows:

1/a- 1/a* + 1/a3, etc.

a+ 11
1+ 1/a
-1/a
- 1/a- 1/a?
1/a?
1/a®> + 1/a3

- 1/a3, etc.
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1. e .
, 1s equal to the infinite series

Consequently, our fraction —

1 1 1 1 1 1

+ — +t—=——,etc.
a a? a3 a* a® af’

Let us make a = 1, and we shall have the series 1-1 + 1-1 + 1-1, etc. a = %, as before: and if we

— gt l,1 t o1t _ 1
suppose a = 2, weshallhavetheserles2 2t et ot =3

303. In the same manner, by resolving the general fraction ﬁ into an infinite series, we shall have.

c/a- bc/a? + b%*c/a® - b3c/a*, etc.

a+b | c
c + bc/a

- bc/a

- bc/a - b%*c/a?
b?c/a?
b?c/a* + b3c/a®

- b3c/a?
. c . . ¢ bc  b?c bic . .
Whence it appears that we may compare p—— with the series STt et to infinity.

Leta = 2,b = 4,c = 3, and we shall have,

c 3 3. 1.3 Sl 1ze
a+b 2+4 6 2 2 ete

Ifa = 10,b = 1,and ¢ = 11, we shall have,

c . m _ 1 un u 1
a+b 10+1 10 100 " 1000 10000’ ¢

. . . 11 . . 1 .
Here if we consider only one term of the series, we have T which is too much by o if we take two terms, we

99 D 1 . 1001 ;. , . 1
have —, which is too small by —; if we take three terms, we have —— which is too much by —, ete.?¥
100 100 1000 1000

304. When there are more than two terms in the divisor, we may also continue the division to infinity in the
same manner. Thus, if the fraction a1 a2 vere proposed, the infinite series, to which it is equal, will be found
as follows:

1+ a-a®-a* + ab etc.
1-a+a® |1

1-a + a?
a- a?
a-a’® + a®
- a3
-a® + a*-ad

-a*+ a°
—a*+ad°-a
26

6
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—a’+ a8
7_ 8

a

a
a’-a®+ a

-a

-a

We have therefore the equation:

1

m=1+a—a3—a4+a5+a6+a7,etc.

where, if we makea = 1, wehavel = 1 4+ 1-1-1 4+ 1 4+ 1- 1- 1, etc. which series contains twice

the series found above 1- 1 + 1- 1 + 1, etc. Now, as we have found this to be %, it is not extraordinary that

we should find %, or 1, for the value of that which we have just determined.

1 4 1 1 1 1 1 1
By making a = =, we shall have the equation + 3 =3= 1+ 275 16 T aat 125 " 51g
1 . 1 9 1 1 1 1 . .
If a = =, we shall have the equation - ==-= 1 4+ --—-— 4 —, etc. and if we take the four leading terms
3 > 7 3 27 81 729
of this series, we have Wthh is only — less than = p
Suppose again a = =, we shall have 7 = g =1+ g—%— i % etc. This series is therefore equal to the

el

preceding one; and, by subtracting the one from the other, we obtam = %_E + % etc. which is necessarily
= 0.

305. The method, which we have here explained, serves to resolve, generally, all fractions into infinite series;
which is often found to be of the greatest utility. It is also remarkable that an infinite series, though it never
ceases, may have a determinate value. It should likewise be observed that, from this branch of mathematics,
inventions of the utmost importance have been derived; on which account the subject deserves to be studied
with the greatest attention.
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Questions for Practice Respecting Surds

ax . . . .
1. Resolve — into an infinite series.

b . . . .
2. Resolve P into an infinite series.

2
a . . . .
3. Resolve P into an infinite series.

4. Resolve %

a2

(a +x)?

5. Resolve

X . . . .
into an infinite series.
X

into an infinite series.

xZ X3 x4
Ans. x + —+ = + —, etc.
a a? a3

b x  x? x3
Ans.;(l —;+;—;+),etc.

2 2 3
Ans. & 1- b + b-_ b +), etc.
X X

x2 ;
Ans. 14 2x + 2x% + 2x3 + 2x*, etc.

4x3

2x | 3x2
Ans. 1 ——+ — — —, etc.
a a? a3
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Chapter VI — Of the Squares of Compound Quantities

306. When it is required to find the square of a compound quantity, we have only to multiply it by itself, and
the product will be the square required.

For example, the square of a + b is found in the following manner:

a+b
a+b
a’ + ab
ab + b?
= a? + 2ab + b?

307. When the root consists of two terms added together, as a + b, the square contains, first, the squares of
each term, namely, a?® and b?; and secondly, twice the product of the two terms, namely, 2ab: so that the sum
a? + 2ab + b? is the square of a + b. Let, for example, a = 10, and b = 3; that is to say, let it be required
to find the square of 10 + 3, or 13, and we shall have 100 + 60 + 9, or 169.

308. We may easily find, by means of this formula, the squares of numbers, however great, if we divide them
into two parts. Thus, for example, the square of 57, if we consider that this number is the same as 50 + 7, will
be found = 2500 + 700 + 49 = 3249.

309. Hence it is evident that the square of @ + 1 will be a? + 2a + 1: for since the square of a is a?, we find
the square of a + 1 by adding to that square 2a + 1; and it must be observed that this 2a + 1 is the sum of
the two roots a, and a + 1.

Thus, as the square of 10 is 100, that of 11 will be 100 + 21: the square of 57 being 3249, that of 58 is
3249 + 115 = 3364; the square of 59 = 3364 + 117 = 3481; the square of 60 = 3481 + 119 =
3600, etc.

310. The square of a compound quantity, as a + b, is represented in this manner: (a + b)?. We have
therefore (a + b)? = a? + 2ab + b?, whence we deduce the following equations:

(a+1)?=a*’+2a+1 |(a+2)2=a’+4a+4
(@a+3)2=a*+6a+9 |(a+4)?= a*+8a+16

311. If the root be a — b, the square of it is a®> — 2ab + b?, which contains also the squares of the two terms,
but in such a manner that we must take from their sum twice the product of those two terms. Let, for example,

a =10,and b = — 1, then the square of 9 will be found equal to 100 - 20 + 1 = 81.

312. Since we have the equation (a — b)? = a? — 2ab + b?, we shall have (a — 1)? = a? — 2a + 1. The
square of a — 1 is found, therefore, by subtracting from a? the sum of the two roots a and a — 1, namely,

2a — 1. Thus, for example, if a = 50, we have a? = 2500, and 2a- 1 = 99; therefore 49% =
2500 - 99 = 2401.

313. What we have said here may be also confirmed and illustrated by fractions; for if we take as the root

3 2 . 9 4 12 25
§+§_1’ thesquarew1llbe,g+g+ —= 1.

25 25
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111 . 11

Farther, the square of =-==-willbe---+-=—.
2 3 6 4 3 9 36

314. When the root consists of a greater number of terms, the method of determining the square is the same. Let

us find, for example, the square of a +b + c:
a+b+c
a+b+c
a’+ab + ac
ab + b? + bc
ac + bc + c?
= a? + 2ab + 2ac + b? + 2bc + c?

We see that it contains, first, the square of each term of the root, and beside that, the double products of those

terms multiplied two by two.
315. To illustrate this by an example, let us divide the number 256 into, three parts, 200 4+ 50 + 6; its square

will then be composed of the following parts:
200% = 40000
502 = 2500
6% =36

2 (50 x 200) = 20000
2 (6 X 200) = 2400
2 (6 X 50) = 600
65536 = 256 X 256 = 2562

316. When some terms of the root are negative, the square is still found by the same rule; only we must be

careful what signs we prefix to the double products. Thus, (a — b — ¢)? = a? + b? + ¢ — 2ab — 2ac — 2bc;

and if we represent the number 256 by 300 - 40 - 4, we shall have,
Negative Parts

Positive Parts
300% = 90000
40% = 1600 2 (40 x 300) = 24000
2 (40 x4) =320 2 (4 x 300) = 2400
4 =16 —26400
91936
91936 — 26400 = 65536, the square of 256 as before.
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Chapter VII — Of the Extraction of Roots applied to Compound Quantities

317. In order to give a certain rule for this operation, we must consider attentively the square of the root a + b,
which is a® + 2ab + b?, in order that we may reciprocally find the root of a given square.

318. We must consider therefore, first, that as the square, a® + 2ab + b? is composed of several terms, it is
certain that the root also will comprise more than one term; and that if we write the terms of the square in such
a manner that the powers of one of the letters, as a, may go on continually diminishing, the first term will be the
square of the first term of the root; and since, in the present case, the first term of the square is a?, the first term
of the root must be a.

319. Having therefore found the first term of the root, that is to say, a, we must consider the rest of the square,
namely, 2ab + b2, to see if we can derive from it the second part of the root, which is b. Now, this remainder,
2ab + b%, may be represented by the product, (2a + b)b; wherefore the remainder having two factors,
(2a + b), and b, it is evident that we shall find the latter, b, which is the second part of the root, by dividing
the remainder, 2ab + b?, by 2a + b.

320. So that the quotient, arising from the division of the above remainder by 2a + b, is the second term of the
root required; and in this division we observe that 2a is the double of the first term a, which is already
determined: so that although the second term is yet unknown, and it is necessary, for the present, to leave its
place empty, we may nevertheless attempt the division, since in it we attend only to the first term 2a; but as
soon as the quotient is found, which in the present case is b, we must put it in the vacant place, and thus render
the division complete.

321. The calculation, therefore, by which we find the root of the square a? + 2ab + b%, may be represented
thus:

a+b
| a% + 2ab + b2
a2
2a + b | 2ab + b*
2ab + b?
0

322. We may, also, in the same manner, find the square root of other compound quantities, provided they are
squares, as will appear from the following examples:

a+3b 2a-b
2 2
|a2+6ab+9b |4a2—4ab+b2
2 3b|a 6ab + 9b2 4a”
a + ao +
6ab + 9b> tabf - dab+ b8
0 - 4ab + b?

0
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3p + 4q 5x- 6
| 9p2 + 24pq + 1642 [25x2 — 60x + 36
9p® 25x2
6p +4q |  24pq + 16> 10x-6[ _60x + 36
24pq + 16q° ~ 60x + 36
0 0

323. When there is a remainder after the division, it is a proof that the root is composed of more than two terms.
We must in that case consider the two terms already found as forming the first part, and endeavour to derive the

other from the remainder, in the same manner as we found the second term of the root from the first. The
following examples will render this operation more clear.

a+b-c
| a2 + 2ab — 2ac — 2bc + b? + 2
a2
2a + b | 2ab — 2ac — 2bc + b? + c?
2ab + b

2a + 2b - ¢ | —2ac — 2bc + ¢?
—2ac — 2bc + c?
0

a* +a+1
| a* +2a3 +3a>+2a+1
a
2a® + a | 2a3 + 3a?
2a® + a2
202 +2a+1|2a®>+2a+1
20> +2a+1
0

a? - 2ab - 2b?
| a* — 4a3b + 8ab3 + 4b*
a4—
2a? - 2ab | —4a3b + 8ab3 + 4b*

- 4a3b + 4a?b?

2a? - 4ab - 2b% | —4a2b? + 8ab3 + 4b*
—4a?b? + 8ab® + 4b*

0

a® - 3a?b + 3ab? - b3
| a® — 6a5b + 15a*b? — 20a3b® + 15a2 b* — 6ab5 + b°
a6
2a® - 3a%b | —6a%b + 15a*b>
—6a®b + 9a*b?
2a3 - 6a%b + 3ab? | 6a*b? — 20a3b3 + 15a2b*

6a*b? — 18a3b3 + 9a?b*

2a3 - 6a%b + 6ab®- b3 | —2a3b3 + 6a*b* — 6ab® + b®
—2a3b® + 6a%b* — 6ab> + b°®

0
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324. We easily deduce from the rule which we have explained, the method which is taught in books of
arithmetic for the extraction of the square root, as will appear from the following examples in numbers:

23 48
529 V2304
4 16
43) 129 88) 704
129 704
0 0
6 4 98
V4096 V9604
36 81
124) 496 188) 1504
496 1504
0 0
125 999
V15625 V998001
1 81
22) 56 189) 1880
44 1701
245) 1225 1989) 17901
1225 17901
0 0

325. But when there is a remainder after all the figures have been used, it is a proof that the number proposed is
not a square; and, consequently, that its root cannot be assigned. In such cases, the radical sign, which we
before employed, is made use of. This is written before the quantity, and the quantity itself is placed between

parentheses, or under a line: thus, the square root of a? + b? is represented by V(a? + b?), or by Va2 + b?;
and V| (1 —x?%), or V1 — x2, expresses the square root of 1 - x2. Instead of this radical sign, we may use the

1
fractional exponent %, and represent the square root of a® + b?, for instance, by (a® + b?)z, or by
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Chapter VIII — Of the Calculation of Irrational Quantities

326. When it is required to add together two or more irrational quantities, this is to be done, according to the
method before laid down, by writing all the terms in succession, each with its proper sign: and, with regard to
abbreviations, we must remark that, instead of va + va, for example, we may write 2v/a; and that vVa — va =
0 because these two terms destroy one another. Thus, the quantities 3 + v2 and 1 + v/2, added together, make
4 4+ 2+/2, or 4 + V/8; the sum of 5 + v/3 and 4 — /3, is 9; and that of 2+/3 + 3v2 and V3 — V2, is 3v3 + 2V/2.

327. Subtraction also is very easy, since we have only to add the proposed numbers, after having changed their
signs; as will be readily seen in the following example, by subtracting the lower line from the upper:

4 -2+ 23 -3V5+ 46
14 2v2 —2vV/3-5V5 + 6V6
3-3vV2+4V3+2V5-2V6

328. In multiplication, we must recollect that v/a multiplied by va produces a; and that if the numbers which

follow the sign V are different, as a and b, we have vab for the product of va multiplied by vb. After this, it
will be easy to calculate the following examples:

142 4+ 22
14++2 2 -2
14++/2 8 + 42
V242 —42 — 4
14+2V242=34+2V2 8—-4=4

329. What we have said applies also to imaginary quantities; we shall only observe farther, that v—a

multiplied by v —a produces — a. If it were required to find the cube of —1 + +—3, we should take the square
of that number, and then multiply that square by the same number; as in the following operation:

—1++v-3
—1++v-3
1-v=3
—V3-3
1-2V-3-3 = -2-2V-3
X —1+vV=3
2+2V=3
—2V-3+6
2+6=28

330. In the division of surds, we have only to express the proposed quantities in the form of a fraction; which
may be then changed into another expression having a rational denominator; for if the denominator be a + Vb,
for example, and we multiply both this and the numerator by a — Vb, the new denominator will be a? — b, in

which there is no radical sign. Let it be proposed, for example, to divide 3 + 2v/2 by 1 ++/2: we shall first

have 31:2\}/5; then multiplying the two terms of the fraction by 1 — /2, we shall have for the numerator:
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3+2v2
1-+2
3+2V2
-3V2 -4
3—-V2—-4=—2-1

and for the denominator:

142
1—+2
14++2
—V2 -2
1-2=-1

Our new fraction therefore is

_\/_51_1; and if we again multiply the two terms by — 1, we shall have for the

numerator \/_ 2 + 1, and for the denominator + 1. Now, it is easy to show that /2 + 1 is equal to the proposed

fo V2 + 1 being multiplied by the divisor 1 + v/2, thus,

fraction > \/_ ;
1442
1+V2
1++2
V2 +2
1+2V2+2=3+2V2

Another example. Let 8 — 5+/2 be divided by 3 — 2+/2. This, in the first instance, 1s

the two terms of this fraction by 3 + 2v/2, we have for the numerator,

8 —5v2
34+ 2V2
24 — 152
16v2 — 20
24 +V2-20=4+2

and for the denominator,

3-2V2

34 2V2

9 —6v2
6v2 —8

9-8=1

\/_
\/— ’

and multiplying

Consequently, the quotient will be 4 + v/2. The truth of this may be proved, as before, by multiplication; thus,
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4 +2
3-242
12 + 32
—8v2 — 4
12-5V2—-4=8-5V2

331. In the same manner, we may transform irrational fractions into others that have rational denominators. If
1

5-2v6’
=5+ 26 ; in like manner, the fraction

and multiply its numerator and denominator by 5+ 2v6; we

. 242v=3
assumes this form, — =

we have, for example, the fraction

5+2v6

. . 2
transform it into this, 143

1+v-3 V6+V5 _ 11+42v30
; also N T =11+ 2+v30.

332. When the denominator contains several terms, we may, in the same manner, make the radical signs in it
. . . 1 .
vanish one by one. Thus, if the fraction NeTNG AN be proposed, we first multiply these two terms by v10 +

v/2 4+ +/3, and obtain the fraction ‘/1_‘;%‘2/%‘/5;

have 5v10 + 11v2 + 9v3 + 21/60.

then multiplying its numerator and denominator by 5 + 26, we
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Chapter IX — Of Cubes, and of the Extraction of Cube Roots

333. To find the cube of a + b, we have only to multiply its square, a® + 2ab + b?, againby a + b, thus,

a? + 2ab + b?
a+b
a® + 2a?b + ab?
a’b + 2ab? + b3
and the cube will be a® + 3a%b + 3ab? + b3

We see therefore that it contains the cubes of the two parts of the root, and, beside that, 3a?b + 3ab?; which
quantity is equal to (3ab) X (a + b); that is, the triple product of the two parts, a and b, multiplied by their
sum.

334. So that whenever a root is composed of two terms, it is easy to find its cube by this rule: for example, the
number 5 = 3 + 2;its cube is therefore 27 + 8 + (18 X 5) = 125.

Andif 7 + 3 = 10 be the root; then the cube will be 343 + 27 + (63 X 10) = 1000.

To find the cube of 36, let us suppose the root 36 = 30 + 6, and we have for the cube required, 27000 +
216 + (540 x 36) = 46656.

335. But if, on the other hand, the cube be given, namely, a® + 3a?b + 3ab? + b3, and it be required to find its
root, we must premise the following remarks:

First, when the cube is arranged according to the powers of one letter, we easily know by the leading term a3,
the first term a of the root, since the cube of it is a3; if, therefore, we subtract that cube from the cube proposed,
we obtain the remainder, 3a?b + 3ab? + b3, which must furnish the second term of the root.

336. But as we already know, from Article 333, that the second term is + b, we have principally to discover
how it may be derived from the above remainder. Now, that remainder may be expressed by two factors, thus,
(3a? + 3ab + b?) x (b) ; if, therefore, we divide by 3a? + 3ab + b?, we obtain the second part of the root
+ b, which is required.

337. But as this second term is supposed to be unknown, the divisor also is unknown; nevertheless we have the
first term of that divisor, which is sufficient: for it is 3a?, that is, thrice the square of the first term already
found; and by means of this, it is not difficult to find also the other part, b, and then to complete the divisor
before we perform the division; for this purpose, it will be necessary to join to 3a? thrice the product of the two
terms, or 3ab and b?, or the square of the second term of the root.

338. Let us apply what we have said to two examples of other given cubes.

a+ 4
| a® +12a2 + 48a + 64
a3
3a® + 12a + 16 | 12a? + 48a + 64
12a?% + 48a + 64
0
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a’-2a + 1
| a® — 6a® + 15a* — 20a3 + 15a% — 6a + 1
a6
3a* - 6a3 + 4a? | —6a5 + 15a* — 2043

—6a® + 12a* — 8a3
3a*- 12a3 + 12a% + 3a?- 6a + 13 | 3a* — 1243 + 15a2 — 6a + 1

3a* — 12a3 + 15a® —6a + 1

0

339. The analysis which we have given is the foundation of the common rule for the extraction of the cube root
in numbers. See the following example of the operation in the number 2197:

2197 (10 + 3 = 13

1000

300 | 1197
90
9
399 | 1197

Let us also extract the cube root of 34965783:

34965783 (300 + 20 + 7,01 327

27000000

270000 | 7965783

18000
400
288400 | 5768000
307200 | 2197783
6720
49
313969 | 2197783
0
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Chapter X — Of the higher Powers of Compound Quantities

340. After squares and cubes, we must consider higher powers, or powers of a greater number of degrees;
which are generally represented by exponents in the manner before explained: we have only to remember, when
the root is compound, to enclose it in a parenthesis: thus, (a + b)°® means that a + b is raised to the fifth
power, and (a — b)® represents the sixth power of a — b, and so on. We shall in this chapter explain the nature
of these powers.

341. Let a + b be the root, or the first power, and the higher powers will be found, by multiplication, in the
following manner:

(a+b)'= a+b
a+b
a’ + ab
ab + b?
(a+b)? = a?+ 2ab + b?
a+b
a3+ 2a®b + ab?
a’b + 2ab? + b3
(a+b)® = a®+3a?b + 3ab?+ b3
a+b
a* +3a3b + 3a?b? + ab?
a3b + 3a?b? + 3ab3 + b*
(a+b)* = a*+4a®b + 6a?b? + 4ab® + b*
a+b
a® + 4a*b + 6a3b? + 4a?b3 + ab*
a*b + 4a3b? + 6a?b3® + 4ab* + b°
(a+b)° = a®+5a*h +10a3b? + 10a?b® + 5ab* + b°>
a+b
a® + 5a®b + 10a*b? + 10a3b3 + 5a%b* + a°b
a®b + 5a*b? + 10a3b® + 10a?b* + 5ab> + b®
(a+b)® = a®+6a®b + 15a*b? + 20a3b?® + 15a?b* + 6ab® + b®, etc.

342. The powers of the root a — b are found in the same manner; and we shall immediately perceive that they
do not differ from the preceding, excepting that the second, fourth, sixth, etc. terms are affected by the sign
minus.
(a—b)* a—b
a—>b
a’ —ab
—ab + b?

a? — 2ab + b?
a—>b
a® — 2a®b + ab?

—a’b + 2ab? + b3
a® + 3a’b + 3ab? — b3
a—>b
a* —3a3b + 3a*b? — ab®

—a3b + 3a%b? — 3ab® + b*

(a—b)?

(a—b)?
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(a—b)* = a*—4ad3b + 6a*b? — 4ab® + b*
a—b>b
a® — 4a*b + 6a3b? — 4a?*b® + ab*
—a*b + 4a®b? — 6a%b® + 4ab* — b°
(a—b)°* = a®—5a*b +10a3b? — 10a?b3® + 5ab* — b°
a—>b
a® —5a°b + 10a*bh? — 10a3b3 + 5a%b* — ab®
—a®b + 5a*b? — 10a3b3 + 10a?b* — 5ab> + b°
(a—b)6 = a®—6a’b+ 15a*b? — 20a3b® + 15a?b* — 6ab® + b°, etc.

Here we see that all the odd powers of b have the sign —, while the even powers retain the sign + . The reason
of this is evident; for since — b 1is a term of the root, the powers of that letter will ascend in the following
series, —b, +b?, —b3, +b* —b>, +b®, etc. which clearly shows that the even powers must be affected by the
sign +, and the odd ones by the contrary sign —.

343. An important question occurs in this place; namely, how we may find, without being obliged to perform
the same calculation, all the powers either of @ + b, ora — b.

We must remark, in the first place, that if we can assign all the powers of a + b, those of a — b are also
found; since we have only to change the signs of the even terms, that is to say, of the second, the fourth, the
sixth, etc. The business then is to establish a rule, by which any power of a 4+ b, however high, may be
determined without the necessity of calculating all the preceding powers.

344. Now, if from the powers which we have already determined we take away the numbers that precede each
term, which are called the coefficients, we observe in all the terms a singular order: first, we see the first term a
of the root raised to the power which is required; in the following terms, the powers of a diminish continually
by unity, and the powers of b increase in the same proportion; so that the sum of the exponents of a and of b is
always the same, and always equal to the exponent of the power required; and, lastly, we find the term b by
itself raised to the same power. If therefore the tenth power of a + b were required, we are certain that the
terms, without their coefficients, would succeed each other in the following order: a®, a®b, a®b?, a’ b3, a®b*,
a®b®, a*b®, a3b’?, a®b®, ab®, b1°.

345. It remains therefore to show how we are to determine the coefficients, which belong to those terms, or the
numbers by which they are to be multiplied. Now, with respect to the first term, its coefficient is always unity;
and, as to the second, its coefficient is constantly the exponent of the power. With regard to the other terms, it is
not so easy to observe any order in their coefficients; but, if we continue those coefficients, we shall not fail to
discover the law by which they are formed; as will appear from the following Table:

Powers Coefficients
1 1,1
o 1,2, 1
34 1,3,3,1
4t 1,4,6,4,1
5t 1,5,10,10,5, 1
6" 1,6, 15,20, 15,6, 1
7 1,7,21,35,35,21,7,1
gt 1, 8, 28, 56, 70, 56, 28, 8, 1
gt 1,9, 36, 84, 126, 126, 84, 36, 9, 1

10" 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
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We see then that the tenth power of a + b will be a'® + 10a’bh + 45a®bh? + 120a’b® + 210a®b* +
252a°b® + 210a*bh® + 120a3b” + 45a?b® + 10ab® + b'°.

346. Now, with regard to the coefficients, it must be observed that for each power their sum must be equal to
the number 2 raised to the same power; for let @ = 1 and b = 1, then each term, without the coefficients, will
be 1; consequently, the value of the power will be simply the sum of the coefficients. This sum, in the
preceding example, is 1024, and accordingly (1 + 1)1° = 210 = 1024. It is the same with respect to all
other powers; thus, we have for the

1 st
2nd
3 rd
4th
5th
6th
7th

O g T S G S =Y
+ 4+ + +++ +
NO UL WN -
+ 4+ + 4+
N R ROy PN

»—xcno+
+4++ -+

6 +1=264=2°
21+ 7+ 1 =128 =27

347. Another necessary remark, with regard to the coefficients, is, that they increase from the beginning to the
middle, and then decrease in the same order. In the even powers, the greatest coefficient is exactly in the
middle; but in the odd powers, two coefficients, equal and greater than the others, are found in the middle,
belonging to the mean terms.

The order of the coefficients likewise deserves particular attention; for it is in this order that we discover the
means of determining them for any power whatever, without calculating all the preceding powers. We shall
here explain this method, reserving the demonstration however for the next chapter.

348. In order to find the coefficients of any power proposed, the seventh for example, let us write the following
fractions one after the other:

7654321

1'2'3'4’5'6’7
In this arrangement, we perceive that the numerators begin by the exponent of the power required, and that they
diminish successively by unity; while the denominators follow in the natural order of the numbers, 1, 2, 3, 4,
etc. Now, the first coefficient being always 1, the first fraction gives the second coefficient; the product of the
first two fractions, multiplied together, represents the third coefficient; the product of the three first fractions
represents the fourth coefficient, and so on. Thus, the

1" coefficientis 1 =1

2nd 7 =7
1

3 76 =21

4th

=N =
Nl N
Wl
Il
w
Ul
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5th 7654 - 35
1-2 -3 -4

6" 7:6:54-3 =21
1-2:3:4-5

7t 7:6:5:4-3:2 =7
1-2:3:4-5-6

gt 7:6:5:4-3-2:1 =1
1-2:3:4-5:6-7

349. So that we have, for the second power, the fractions %, %; whence the first coefficient is 1, the second % =

2, and the third 2 x% =1.

The third power furnishes the fractions % % § wherefore the
1¥ coefficient = 1; ond :% =3
=3 x2=3; and 4" =2x2x2=1
2 1 2 3
We have, for the fourth power, the fractions % g g i, consequently, the
1* coefficient = 1;
=2y 3=2x3_¢
43 2 I
gh="xxZ=4; and 5= Zx2xZx==1
17273 1727374

350. This rule evidently renders it unnecessary to find the coefficients of the preceding powers, as it enables us

to discover immediately the coefﬁcients which belong to any one proposed. Thus, for the tenth power, we write
98765432

the fractions ,—,—,—,—,—,—,—,—, by means of which we find the
2’3’4’5°6’7’8’9’ 10

1* coefficient = 1;

2" =2 = 10; 7" = 252 x2 = 210;
39— 10 x§=45; 8h = 210 ><§=120;
4 = 45 xg = 120; 9h = 120 x% = 45;

5h= 120 xZ = 210: 100 = 45 xg = 10;

6" = 210 x2

c = 252; and 11" = 10 ><—=1

351. We may also write these fractions as they are, without computing their value; and in this manner it is easy

100 100x99 100x99x98
to express any power of a + b. Thus, (a + b)1°0 = a100 + —a%p +Wa98b2 +Wa97b3 +
100x99x98X97 g6, 4

Tx2x3xa + -1 Whence the law of the succeeding terms may be easily deduced.
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Chapter XI — Of the Transposition of the Letters, on which the demonstration of
the preceding Rule is founded

352. If we trace back the origin of the coefficients which we have been considering, we shall find, that each
term is presented as many times as it is possible to transpose the letters of which that term is composed; or, to
express the same thing differently, the coefficient of each term is equal to the number of transpositions which
the letters composing that term admit of. In the second power, for example, the term ab is taken twice, that is to
say, its coefficient is 2; and in fact we may change the order of the letters which compose that term twice, since
we may write ab and ba. The term aa, on the contrary, is found only once, and here the order of the letters can
undergo no change, or transposition. In the third power of a + b, the term aab may be written in three
different ways; thus, aab, aba, baa; the coefficient therefore is 3. In the fourth power, the term a3b or aaab
admits of four different arrangements, aaab, aaba, abaa, baaa; and consequently the coefficient is 4. The
term aabb admits of six transpositions, aabb, abba, baba, abab, bbaa, baab, and its coefficient is 6. It is the
same in all other cases.

353. In fact, if we consider that the fourth power, for example, of any root consisting of more than two terms, as
(a + b + ¢ + d)*, is found by the multiplication of the four factors, (a + b + ¢ + d)(a + b + ¢ +
dy(a+b+c+d(a+ b+ c+ d), we readily see, that each letter of the first factor must be
multiplied by each letter of the second, then by each letter of the third, and, lastly, by each letter of the fourth.
So that every term is not only composed of four letters, but it also presents itself, or enters into the sum, as
many times as those letters can be differently arranged with respect to each other; and hence arises its
coefficient.

354. It is therefore of great importance to know, in how many different ways a given number of letters may be
arranged; but, in this inquiry, we must particularly consider, whether the letters in question are the same, or
different: for when they are the same, there can be no transposition of them; and for this reason the simple
powers, as a2, a3, a*, etc. have all unity for their coefficients.

355. Let us first suppose all the letters different; and, beginning with the simplest case of two letters, or ab, we
immediately discover that two transpositions may take place, namely, ab and ba.

If we have three letters, abc, to consider, we observe that each of the three may take the first place, while the
two others will admit of two transpositions; thus, if a be the first letter, we have two arrangements abc, ach; if
b be in the first place, we have the arrangements bac, bca; lastly, if ¢ occupy the first place, we have also two
arrangements, namely, cab, cba; consequently the whole number of arrangements is 3 X 2 = 6.

If there be four letters abcd, each may occupy the first place; and in every case the three others may form six
different arrangements, as we have just seen; therefore the whole number of transpositions is 4 X 6 = 24 =
4 x3x2x1.

If we have five letters, abcde, each of the five may be the first, and the four others will admit of twenty-four
transpositions; so that the whole number of transpositions willbe 5 X 24 = 120 = 5 X 4 X 3 X 2 X 1.

356. Consequently, however great the number of letters may be, it is evident, provided they are all different,
that we may easily determine the number of transpositions, and, for this purpose, may make use of the
following Table:
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Number of Letters Number of Transpositions

=1

2

6

24

120

720
5040
40320
362880
= 3628800
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X X X X X
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X X X X X X X
WWwWwwwwww

X X X X X X X X
NN DN
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S VU U UGN

7
7
7
7

X X X X

8 x
9 x 8 X
10 X 9 X 8 X
357. But, as we have intimated, the numbers in this Table can be made use of only when all the letters are
different; for if two or more of them are alike, the number of transpositions becomes much less; and if all the

letters are the same, we have only one arrangement: we shall therefore now show how the numbers in the Table
are to be diminished, according to the number of letters that are alike.

358. When two letters are given, and those letters are the same, the two arrangements are reduced to one, and
consequently the number, which we have found above, is reduced to the half; that is to say, it must be divided
by 2. If we have three letters alike, the six transpositions are reduced to one; whence it follows that the numbers
in the Table must be divided by 6 = 3 X 2 X 1; and, for the same reason, if four letters are alike, we must
divide the numbers found by 24, 0or4 X 3 X 2 X 1, etc.

It is easy therefore to find how many transpositions the letters aaabbc, for example, may undergo. They are in
number 6, and consequently, if they were all different, they would admit of 6 X 5 X 4 X 3 X 2 X 1
transpositions; but since a is found thrice in those letters, we must divide that number of transpositions by
3 X 2 X 1; and since b occurs twice, we must again divide it by 2 X 1: the number of transpositions required
will therefore be

6X5 X4 x3 x2x1

=0 X4 X5= .
3 x2x1x2x1 5 x4 x3=060

359. We may now readily determine the coefficients of all the terms of any power; as for example of the
seventh power, (a + b)”.

The first term is a’, which occurs only once; and as all the other terms have each seven letters, it follows that
the number of transpositions for each term would be 7 X 6 X 5 X 4 X 3 X 2 X 1, if all the letters were

different; but since in the second term, a®h, we find six letters alike, we must divide the above product by
6 X5 X 4 x 3 x 2 % 1, whence it follows that the coefficient is % = %, or7.

In the third term, a®b?, we find the same letter a five times, and the same letter b twice; we must therefore

divide that number first by 5 X 4 X 3 X 2 X 1, and then by 2 X 1; whence results the coefficient
7:6:5:4:3:2:1 _ 76
o> rie s %o q
5-4:3-2:1-2-1  1-2

The fourth term a*b? contains the letter a four times, and the letter b thrice; consequently, the whole number

of the transpositions of the seven letters, must be divided, in the first place, by 4 X 3 X 2 X 1, and secondly,
7-6°5-4-3:2-1 _ 7-6-5

= = 35.
4-3-2-1-3-2-1  1-2-3

by 3 X 2 X 1, and the coefficient becomes =



112 Elements of Algebra

In the same manner, we find % for the coefficient of the fifth term, and so of the rest; by which the rule
before given is demonstrated®..
360. These considerations carry us farther, and show us also how to find all the powers of roots composed of
more than two terms*”. We shall apply them to the third power of @ + b + c; the terms of which must be
formed by all the possible combinations of three letters, each term having for its coefficient the number of its
transpositions, as shown, Article 352.

Here, without performing the multiplication, the third power of a + b + ¢ will be, a® + 3a?b + 3a’c +
3ab? + 6abc + 3ac? + b3 + 3b% + 3bc? + 3.

Suppose a = 1, b = 1,c = 1, thecubeof 1 + 1 + 1, orof 3, willbe 1 + 3 +3 +3 + 6 + 3 +
1 +3 + 3 + 1= 27; which result is accurate, and confirms the rule. But if we had supposed a = 1,
b = 1,and ¢ = — 1, we should have found for the cube of 1 + 1 — 1, thatis of 1,

1+3-3+3-6+3+1-3+3-1=1

which is a still further confirmation of the rule.
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Chapter XII — Of the Expression of Irrational Powers by Infinite Series

361. As we have shown the method of finding any power of the root a + b, however great the exponent may
be, we are able to express, generally, the power of a + b, whose exponent is undetermined; for it is evident
that if we represent that exponent by n, we shall have by the rule already given (Article 348 and the following):

S nx(n-1) . axm-Dxn-2) .,
(a + b) a"+7a b+—1><2 a™“b* + K a™>b
nxmn-1)xn-2)xn-3
+ ( ) X ) x{ )a”‘4b4+---

1xXx2%x3%x4
+n><(n—1)x(n—2)x(n—3) -1

1X2X3X4X:-Xn

le

362. If the same power of the root a — b were required, we need only change the signs of the second, fourth,
sixth, etc. terms, and should have

T R nxn-1) 2_n><(n—1)><(n—2) N33
(a— b) a 1@ b+—1><2 a™“b TX2 %3 a™3b
nxn—-1D)xn-2)x(n-3) a4
+ 1X2X3X4 @bt =

nxn—-1Dxnh-2)xn-3) -1

bn
1X2X3X4X:-Xn

363. These formulas are remarkably useful, since they serve also to express all kinds of radicals; for we have
shown that all irrational quantities may assume the form of powers whose exponents are fractional, and that

Ya = a'?,3/a = a'/3,and Ya = al/*, etc.: we have, therefore,
Ya+b=(a+b)"?;Ya+b=(a+b)"/3and Ya+b = (a+ b)"*; etc.

Consequently, if we wish to find the square root of a + b, we have only to substitute for the exponent n the
fraction %, in the general formula, Article 361, and we shall have first, for the coefficients, %z %,nT_l =
1n-2_ 3n3_ 5mn-4_ 7 n-5_ 9

4’3~ 6 a4 8 5 10 6 12

1 1 1 )
Then, a® = a/2 =Vaanda® ! = =;a" %2 = —;a" 3 = ——=; etc., or we might express those powers of
: Va’ ava’ arya O it exp P
. . _ Va _ a  Va _ a™  +a _ a™  VJa
1 W1 : = ; =—; =—=—; =—=—; =—=— .
a in the following manner: a” = Va;a™! a2 a3 at* etc
a a? a? a3 a3 at at

364. This being laid down, the square root of a + b may be expressed in the following manner:

1 va 11 +va 113 _.vJa 1135 Va
Va+b= b S i R p* = ete
atb=vatsbm—ge bt ot o el m o gy et

365. If a therefore be a square number, we may assign the value of v/a, and, consequently, the square root of
a + b may be expressed by an infinite series, without any radical sign.

Let, for example, a = c?, we shall have Va = c; then

JETT Jlb 1B 1B 5 bt
¢ TCT T8 3 16 5 128 ¢ ¢¢
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We see, therefore, that there is no number, whose square root we may not extract in this manner; since every
number may be resolved into two parts, one of which is a square represented by c?. If, for example, the square
root of 6 be required, we make 6 = 4 + 2, consequently, c2 = 4,¢ = 2,b = 2; whence results

1 1 5

1
\/6_2+5_E 64 1024 °¢

If we take only the two leading terms of this series, we shall have 2% = 2, the square of which, %, is i greater

. . 39 . 521 . ... 15
than 6; but if we consider three terms, we have 2 1—76 =I5 the square of which, %, is still 215—6 too small.

366. Since, in this example, g approaches very nearly to the true value of v/6, we shall take for 6 the equivalent

. 25 1 25 5 1 . . 5,1
quantity —=-—; thus ¢? = =3 b= ’ and calculating only the two leading terms, we find V6 = Stoe
1 1
-2 5 1 7 5 1 49 . . . 2401 . 1
St =-—-rf=-——=—;th re of which fraction being —, it ex h re of V6 onl —
g s g >~ 50 = 7o the square of which fractio be €00 ite ceeds the square of V6 o yby400.
2401 1 49 1 . . .
Now, making 6 = ——-——, so that ¢ = — and b =-—; and still taking only the two leading terms, we
400 400 20 400
1 1
49 1 Zoo0 49 1 4801 . . 23049601
have V6 —+— ﬂ=———-%°=——— = ——, the square of which is =————; and 6, when
= 20 2 2220 1960 1960 3841600

23049600
3841600

reduced to the same denominator, is = ; the error therefore is only

3841600°

367. In the same manner, we may express the cube root of a + b by an infinite series; for since Ya + b =

1
(a + b)3, we shall have in the general formula, n = %, and for the coefficients,

n_l'n—l_ 1n—2_ 5'n—3_ 2'n—4_ 11'1:
1 ~7373 TT9' 4 T 7375 T 15

and, with regard to the powers of a, we shall have

then

3 3 3 3
a 1 a 5 va 10 Vva
Ya+b= YVa+-= b———-bz— 23—t Y e
at e 9 @tV m a3 aete

368. If a therefore be a cube, or a c3, we have 3/a = c, and the radical signs will vanish; for we shall have

1 b 10b% 5 b3 10 b
3/.3
3t b= e e~ b= .4 ete
¢ CT3' 279 5781 8 243 11 €

369. We have therefore arrived at a formula, which will enable us to find, by approximation, the cube root of
any number; since every number may be resolved into two parts, as ¢ + b, the first of which is a cube.

If we wish, for example, to determine the cube root of 2, we represent 2by 1 + 1, so that c =1landb = 1;

consequently, 32 = 1 + === + ,etc. The two leading terms of this series make 1 == the cube of which

4 10

= — = - 3 = —
27 "7 We have ¢ = 3 2 and b 27, and consequently 2

6— is too great by 22 let us therefore make 2 =
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[
(=]

1 % . 4 5 91 ., . 753571 746496 .
-+ —%-: these two terms give —--— = —, the cube of which is ———: bu = so that the error is
3 18 ese two terms give 3 72 72 373248 ? 373248’
9
7075 . . . . . . .
373248;21nd in this way we might still approximate the faster in proportion as we take a greater number of
(28]

terms
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Chapter XIII — Of the Resolution of Negative Powers

1

370. We have already shown, that 1/a may be expressed by a™*; we may therefore express ﬁ also by

(a + b)7%; so that the fraction a—ib may be considered as a power of a + b, namely, that power whose

exponent is —1; from which it follows that the series already found as the value of (a + b)™ extends also to
this case.

371. Since, therefore a—ib is the same as (a + b)71, let us suppose, in the general formula, (Article 361),

n = —1; and we shall first have, for the coefficients,

at=ql=1;gnl=g2=1;gm2=21,;gn3 =21 ¢
a a? a3 a*
so that
., 1 1 b b* b b* b
(a+bh)yt=—"=-———=+ — etc.

= —_———t— -,
a+b a a* a® a* a® a®
which is the same series that we found before by division.

1

372. Farther, ZETSE being the same with (a + b)72, let us reduce this quantity also to an infinite series. For this
purpose, we must suppose n = — 2, and we shall first have, for the coefficients,

n  2n—-1  3n-2  4n-3 5 .

1~ 172 " 273 T34 T ysc

and, for the powers of a, we obtain

n _ l n-1 l n-2 i n-3 _l t
at = et =—gatt =g a =g5etc
We have therefore
(@+b)? = 1 1 2-b+2-3-b2 2-3-4-b3+2-3-4-5-b4 .
¢ “(a+b)? a2 1-a® 1-2-a*t 1-2:3-a5 1-2:3-4-a5°°7
Now,E = 2;E = 3;m = 4; 2345 = 5, etc. and consequently,
1 12 1-2:3 1-2:3-4
! 1 2b+3b2 4b$+5b4 6b5+7b6 t
(a+b)? a2 a3 a* a’ a® a’ a8’ ¢
373. Let us proceed, and suppose n = — 3, and we shall have a series expressing the value of ﬁ, or of

(a + b)~3. Here the coefficients will be
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n_  3n—-1 4n-2 5 .
1~ 172 ~ 2773 T3
and the powers of a become,
1 1 1
a = E,a“‘lzg;a”‘2= =, etc
which gives
1 1 3-b_|_3-4-b2 3-4-5-b3_|_3-4-5-6-b4
(a+b)® a3 1-a* 1:2-a5 1-2-3-a% 1-2-3-4-a’
1 b? b3 b* b® b®
=g—3F+6$—1OE+15?—21$+285,615C.
If now we make n = — 4; we shall have for the coefficients
n_ 4n-1_ 5_n—2_ 6 n-3 7 .
1~ 172 273 374 4%
And for the powers,
1 1 1 1 1
a”=g,a”1=E;a"2=E,an3—;;a”4=5,etc.
whence we obtain,
1 1 4-b 4-5-b* 4-5-6-b3 1 b b? b3 b* b®

—_— = - o=——=4—+4+10——-20—+ 35— — 56— +, etc.
(a+b)* a* 1-a5-|_1-2-a6 1-2-3-a7+ a* a5+ ab a7+ a8 a9+ec
374. The different cases that have been considered enable us to conclude with certainty that we shall have,
generally, for any negative power of a + b:

1 1 mb m-(m—-1)-b* m-(m—-1)-(m—-2)b3
(a+b)m_am 1-qgmtl 1-2.qmt2 1-2-3.-qm+3

,etc.

And, by means of this formula, we may transform all such fractions into infinite series, substituting fractions
also, or fractional exponents, for m, in order to express irrational quantities.

375. The following considerations will illustrate this subject still farther: for we have seen that,

1 1 b b*> b®> b* b
———6+,etc.
a

= +—=——+
a+b a a? a3 a* ad

If, therefore, we multiply this series by a + b, the product ought to be = 1; and this is found to be true, as
will be seen by performing the multiplication:

1 b b2 b® b* b

—_———t— — —+, etc.
a a? a3 a* a5 af
a+b

b b% b3 b* b°
1l——+———+———++,¢etc
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b b* b3 b* b°

+E—E+E—a4 +;—,etc
where all the terms but the first cancel each other.
376. We have also found that
1 1 b b? b3 b* b® b®

= 2 43— —4—+5——6—+7—,etc.
(a+b)2 a2 a3 a* as ab a’ a8

And if we multiply this series by (a + b)?, the product ought also to be equal to 1. Now, (a + b)? = a? +
2ab + b?, and

1 b b? b3 b* b> b®
2$+ 3E—4$+ 55-65%- 75,81‘6.

-
a® + 2ab + b?

2b  3b%* 4b%® 5b* 6b°
=t~ T g hete
2b  4b* 6b3® 8b* 10b°

@ @B e e e
b%? 2b3® 3b* 4b°
Tt s ke

which gives 1 for the product, as the nature of the thing required.

377. If we multiply the series which we found for the value of m, by a + b only, the product ought to
2 3 4
answer to the fraction 1/(a + b), or be equal to the series already found, namely, i— % + % - % + %, etc.

and this the actual multiplication will confirm:

1 b b? b3 b* b® b®

F— - 35—4 5+5a6_6_7+7 8,€tC.
a+b
1 2b 3b*> 4b® 5b* 6b°

— 4t ———-——+———++,etc
a a? ad a* as at ’

b 2b* 3b3 4b*
PERPEP PR
1 b b*> b® b*

———+
a a? a3 a* ad

etc

as required.
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Section III — Of Ratios and Proportions
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Chapter I — Of Arithmetical Ratio, or of the Difference between two Numbers

378. Two quantities are either equal to one another, or they are not. In the latter case, where one is greater than
the other, we may consider their inequality under two different points of view: we may ask how much one of
the quantities is greater than the other? Or we may ask, how many times the one is greater than the other? The
results which constitute the answers to these two questions are both called relations or ratios. We usually call
the former an arithmetical ratio, and the latter a geometrical ratio, without however these denominations
having any connection with the subject itself. The adoption of these expressions is entirely arbitrary.

379. It is evident that the quantities of which we speak must be of one and the same kind; otherwise we could
not determine anything with regard to their equality, or inequality: for it would be absurd to ask if two pounds
and three ells[a former unit of measurement the length of a man’s arm from the elbow] are equal quantities. So
that in what follows, quantities of the same kind only are to be considered; and as they may always be
expressed by numbers, it is of numbers only that we shall treat, as was mentioned at the beginning,

380. When of two given numbers, therefore, it is required how much the one is greater than the other, the
answer to this question determines the arithmetical ratio of the two numbers; but since this answer consists in
giving the difference of the two numbers, it follows that an arithmetical ratio is nothing but the difference
between two numbers; and as this appears to be a better expression, we shall reserve the words ratio and
relation to express geometrical ratios.

381. As the difference between two numbers is found by subtracting the less from the greater, nothing can be
easier than resolving the question how much one is greater than the other: so that when the numbers are equal,
the difference being nothing, if it be required how much one of the numbers is greater than the other, we
answer, by nothing; for example, 6 being equal to 2 X 3, the difference between 6 and 2 X 3 is 0.

382. But when the two numbers are not equal, as 5 and 3, and it is required how much 5 is greater than 3, the
answer is 2; which is obtained by subtracting 3 from 5. Likewise 15 is greater than 5 by 10; and 20 exceeds 8
by 12.

383. We have therefore three things to consider on this subject; first, the greater of the two numbers; second,
the less; and third, the difference: and these three quantities are so connected together, that any two of the three
being given, we may always determine the third.

Let the greater number be a, the less b, and the difference d; then d will be found by subtracting b from a, so
that d = a — b; whence we see how to find d, when a and b are given.

384. But if the difference and the less of the two numbers, that is, if d and b were given, we might determine
the greater number by adding together the difference and the less number, which gives a = b + d; for if we
take from b + d the less number b, there remains d, which is the known difference: suppose, for example, the
less number is 12, and the difference 8, then the greater number will be 20.

385. Lastly, if beside the difference d, the greater number a be given, the other number b is found by
subtracting the difference from the greater number, which gives b = a — d; for if the number a — d be taken
from the greater number a, there remains d, which is the given difference.

386. The connection, therefore, among the numbers, a, b, d, is of such a nature as to give the three following
results: first, d = a — b; second, a = b + d; third, b = a — d; and if one of these three comparisons be
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just, the others must necessarily be so also; therefore, generally, if z = x + y, it necessarily follows that
y=2z— x,andx = z— y.

387. With regard to these arithmetical ratios we must remark that if we add to the two numbers a and b, any
number ¢, assumed at pleasure, or subtract it from them, the difference remains the same; that is, if d is the
difference between a and b, that number d will also be the difference between a + cand b + ¢, and between
a — c and b — c. Thus, for example, the difference between the numbers 20 and 12 being 8, that difference
will remain the same, whatever number we add to, or subtract from, the numbers 20 and 12.

388. The proof of this is evident: for a — b = d, we have also (a + ¢) — (b + ¢) = d; and likewise
(a—c)—(b—0¢) = d.

389. And if we double the two numbers a and b, the difference will also become double; thus, when a — b =
d, we shall have 2a — 2b = 2d; and, generally, na — nb = nd, whatever value we give to n.



122 Elements of Algebra

Chapter II — Of Arithimetical Proportion

390. When two arithmetical ratios, or relations, are equal, this equality is called an arithmetical proportion.

Thus, whena — b = d,and p — q = d, so that the difference is the same between the numbers p and g, as
between the numbers a and b, we say that these four numbers form an arithmetical proportion; which we write
thus,a — b = p — q, expressing clearly by this, that the difference between a and b is equal to the difference
between p and q.

391. An arithmetical proportion consists therefore of four terms, which must be such, that if we subtract the
second from the first, the remainder is the same as when we subtract the fourth from the third; thus, the four
numbers 12, 7, 9, 4, form an arithmetical proportion because 12 — 7 = 9 — 4.

392. When we have an arithmetical proportion, as a — b = p — q, we may make the second and third terms
change places, writing a — p = b — q: and this equality will be no less true; for, sincea — b = p — ¢, add
b to both sides, and we have a = b + p — q: then subtract p from both sides, and we havea— p = b — q.

In the same manner, as 12 — 7 = 9 — 4,s0also 12— 9 = 7 — 4%,

393. We may in every arithmetical proportion put the second term also in the place of the first, if we make the
same transposition of the third and fourth; that is, if a— b = p— q, we have also b — a = q— p; for
b — a is the negative of a — b, and g — p is also the negative of p — ¢; and thus, since 12 — 7 = 9 — 4, we
havealso,7— 12 = 4 — 9.

394. But the most interesting property of every arithmetical proportion is this, that the sum of the second and
third term is always equal to the sum of the first and fourth. This property, which we must particularly consider,
is expressed also by saying that the sum of the means is equal to the sum of the extremes. Thus, since 12 —
7 =9—4,wehave 7 + 9 = 12 + 4, the sum being in both cases 16.

395. In order to demonstrate this principal property, let a — b = p — q; then if we add to both b + g, we
have a + q = b + p; that is, the sum of the first and fourth terms is equal to the sum of the second and third:
and, inversely, if four numbers, a, b, p, g, are such that the sum of the second and third is equal to the sum of
the first and fourth; that is, if b + p = a + g, we conclude, without a possibility of mistake, that those
numbers are in arithmetical proportion, and that a — b = p — q; for, since a + ¢ = b + p, if we subtract
from both sides b + g, weobtaina— b = p— q.

Thus, the numbers 18, 13, 15, 10, being such, that the sum of the means 13 + 15 = 28 is equal to the sum
of the extremes 18 + 10 = 28, it is certain that they also form an arithmetical proportion; and, consequently,
that 18 — 13 = 15— 10.

396. It is easy, by means of this property, to resolve the following question. The first three terms of an
arithmetical proportion being given, to find the fourth. Let a, b, p be the first three terms, and let us express the
fourth by q, which it is required to determine, then a + q = b + p; by subtracting a from both sides, we
obtaing = b + p— a.

Thus, the fourth term is found by adding together the second and third, and subtracting the first from that sum.
Suppose, for example, that 19, 28, 13, are the three first given terms, the sum of the second and third is 41; and
taking from it the first, which is 19, there remains 22 for the fourth term sought, and the arithmetical proportion
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will be represented by 19 — 28 = 13 — 22, or by 28 — 19 = 22 — 13, or, lastly, by 28 — 22 = 19 —
13.

397. When, in an arithmetical proportion, the second term is equal to the third, we have only three numbers; the
property of which is this, that the first, minus the second, is equal to the second, minus the third; or that the
difference between the first and second number is equal to the difference between the second and third. The
three numbers 19, 15, 11, are of this kind, since 19 — 15 = 15— 11.

398. Three such numbers are said to form a continued arithmetical proportion, which is sometimes written thus,
19 : 15: 11. Such proportions are also called arithmetical progressions, particularly if a greater number of
terms follow each other according to the same law.

An arithmetical progression may be cither increasing, or decreasing. The former distinction is applied when
the terms go on increasing; that is to say, when the second exceeds the first, and the third exceeds the second by
the same quantity; as in the numbers 4, 7, 10; and the decreasing progression is that in which the terms go on
always diminishing by the same quantity, such as the numbers 9, 5, 1.

399. Let us suppose the numbers a, b, c, to be in arithmetical progression; then a — b = b — ¢, whence it,
follows, from the equality between the sum of the extremes and that of the means, that 2b = a + c; and if we
subtract a from both, we have 2b — a = c.

400. So that when the first two terms a, b, of an arithmetical progression are given, the third is found by taking
the first from twice the second. Let 1 and 3 be the first two terms of an arithmetical progression, the third will
thenbe 2 X 3 — 1 = 5; and these three numbers 1, 3, 5, give the proportion

1-3=3-5

401. By following the same method, we may pursue the arithmetical progression as far as we please; we have
only to find the fourth term by means of the second and third, in the same manner as we determined the third by
means of the first and second, and so on. Let a be the first term, and b the second, the third will be 2b — a, the
fourth 4b — 2a — b = 3b — 2a, the fifth 6b — 4a — 2b + a = 4b — 3a, the sixth 8b — 6a — 3b +
2a = 5b — 4a, the seventh 10b — 8a — 4b + 3a = 6b — 5a, etc.
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Chapter III — Of Arithmetical Progressions

402. We have already remarked that a series of numbers composed of any number of terms, which always
increase, or decrease, by the same quantity, is called an arithmetical progression.

Thus, the natural numbers written in their order, as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. form an arithmetical
progression because they constantly increase by unity; and the series 25, 22, 19, 16, 13, 10, 7, 4, 1, etc. is also
such a progression, since the numbers constantly decrease by 3.

403. The number, or quantity, by which the terms of an arithmetical progression become greater or less, is
called the difference; so that when the first term and the difference are given, we may continue the arithmetical
progression to any length.

For example, if the first term be 2, and the difference 3, we shall have the following increasing progression: 2,
5, 8, 11, 14, 17, 20, 23, 26, 29, etc. in which each term is found by adding the difference to the preceding
term.

404. It is usual to write the natural numbers, 1, 2, 3, 4, 5, etc. above the terms of such an arithmetical
progression, in order that we may immediately perceive the rank which any term holds in the progression,
which numbers, when written above the terms, are called indices; thus, the above example will be written as
follows:

4 5 6 7 8 9 10

Indices. 3
8 11 14 17 20 23 26 29

1 2
Arith. Prog. 2 5

where we see that 29 is the tenth term.
405. Let a be the first term, and d the difference, the arithmetical progression will go on in the following order:

1 2 3 4 5 6 7
at+td at2d a+3d at+4d a +5d a + 6d

according as the series is increasing, or decreasing; whence it appears that any term of the progression might be
easily found, without the necessity of finding all the preceding ones, by means only of the first term a and the
difference d; thus, for example, the tenth term will be a + 9d, the hundredth term a + 99d, and, generally,
the n™ term willbe a + (n — 1)d.

406. When we stop at any point of the progression, it is of importance to attend to the first and the last term,
since the index of the last term will represent the number of terms. If, therefore, the first term be a, the
difference d, and the number of terms n, we shall have for the last term a &+ (n — 1)d, according as the series
is increasing or decreasing; which is consequently found by multiplying the difference by the number of terms
minus one, and adding, or subtracting, that product from the first term. Suppose, for example, in an ascending
arithmetical progression of a hundred terms, the first term is 4, and the difference 3; then the last term will be

4 4+ 99 x 3 = 301.

407. When we know the first term a, and the last z, with the number of terms n, we can find the difference d;
for, since the last term z = a X (n — 1)d, if we subtract a from both sides, we obtain z — a = (n— 1)d.
So that by taking the difference between the first and last term, we have the product of the difference multiplied
by the number of terms minus 1; we have therefore only to divide z — a by n — 1 in order to obtain the
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required value of the difference d, which will be % This result furnishes the following rule: Subtract the first

term from the last, divide the remainder by the number of terms minus 1, and the quotient will be the common
difference; by means of which we may write the whole progression.

408. Suppose, for example, that we have an increasing arithmetical progression of nine terms, whose first is 2,
and last 26, and that it is required to find the difference. We must subtract the first term 2 from the last 26, and
divide the remainder, which is 24, by 9 — 1, that is, by 8; the quotient 3 will be equal to the difference
required, and the whole progression will be:

123 4 5 6 7 8 9
2 5 8 11 14 17 20 23 26

To give another example, let us suppose that the first term is 1, the last 2, the number of terms 10, and that the
arithmetical progression, answering to these suppositions, is required; we shall immediately have for the

. 2-1 1 .
difference oo = and thence conclude that the progression is:

1 2 3 4 5 6 7 8 9 10
1 1% 12 12 12 12 18 12 418
9 9 9 9 9 9 9 9

Another example. Let the first term be 2 %, the last term 12 %, and the number of terms 7; the difference will be

12%-% 10% 61 25 .
——2 = —%=— =1— and consequently the progression:
7-1 6 36 36

1 2 3 4 5 6 7

22 4L 518 75 9l 192 131
3 36 18 12 9 36 2

409. If now the first term a, the last term z, and the difference d, are given, we may from them find the number
of terms n; for since z— a = (n— 1)d, by dividing both sides by d, we have ? =n—1; also n being
greater by 1 than n — 1, we have n = ? + 1; consequently, the number of terms is found by dividing the
difference between the first and the last term, or z — a, by the difference of the progression, and adding unity

to the quotient.

100—-4
12

For example, let the first term be 4, the last 100, and the difference 12, the number of terms will be +

1 = 9; and these nine terms will be,

1 2 3 4 5 6 7 8 9
4 16 28 40 52 64 76 88 100

If the first term be 2, the last 6, and the difference 1 é, the number of terms will be 111 + 1 = 4; and these four
3

terms will be,

1 2 3 4
1,2
2 35 45 6
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S22 a1
Again, let the first term be 3 é, the last 7§, and the difference 1 g, the number of terms will be % +1=4;
9
which are,

1 2 3 4
31 47 g2 72
3 9 9 3

410. It must be observed, however, that as the number of terms is necessarily an integer, if we had not obtained
such a number for n, in the examples of the preceding article, the questions would have been absurd.

Whenever we do not obtain an integer number for the value of ?, it will be impossible to resolve the

question; and consequently, in order that questions of this kind may be possible, z — a must be divisible by d.

411. From what has been said, it may be concluded, that we have always four quantities, or things, to consider
in an arithmetical progression:

1: The first term, a;

2: The last term, z;

3: The difference, d; and
4: The number of terms, n.

The relations of these quantities to each other are such, that if we know three of them, we are able to determine
the fourth; for,

1. Ifa,d, and n, are known, wehave z = a + (n— 1)d,
2. Ifz,d,and n, are known, we havea = z— (n— 1)d,

Z-a
3. Ifa, z, and n, are known, we have d = —

4. Ifa,z,and d, are known, we have n = % + 1.
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Chapter IV — Of the Summation of Arithmetical Progressions

412. It is often necessary also to find the sum of an arithmetical progression. This might be done by adding all
the terms together; but as the addition would be very tedious, when the progression consisted of a great number
of terms, a rule has been devised, by which the sum may be more readily obtained.

413. We shall first consider a particular given progression, in which the first term is 2, the difference 3, the last
term 29, and the number of terms 10;

123 4 5 6 7 8 9 10
2 5 8 11 14 17 20 23 26 29

In this progression, we see that the sum of the first and last term is 31; the sum of the second and the last but
one 31; the sum of the third and the last but two 31, and so on: hence we conclude that the sum of any two
terms equally distant, the one from the first, and the other from the last, is always equal to the sum of the first
and the last term.

414. The reason of this may be easily traced; for if we suppose the first to be a, the last z, and the difference d,
the sum of the first and the last term is a + z; and the second term being a + d, and the last but one z — d,
the sum of these two terms is also a + z. Farther, the third term being a + 2d, and the last but two z — 2d, it
is evident that these two terms also, when added together, make a + z; and the demonstration may be easily
extended to any other two terms equally distant from the first and last.

415. To determine, therefore, the sum of the progression proposed, let us write the same progression term by
term, inverted, and add the corresponding terms together, as follows:

24+ 5+ 8+ 11+ 14+ 17+ 20+ 23 + 26 + 29
29 + 26+ 23+ 20+ 17+ 14+ 11+ 84+ 5+ 2
31+ 31+ 31+ 31+ 31+ 31+ 31+ 31+ 31+ 31

This series of equal terms is evidently equal to twice the sum of the given progression: now, the number of
those equal terms is 10, as in the progression, and their sum consequently is equal to 10 X 31 = 310. Hence,
as this sum is twice the sum of the arithmetical progression, the sum required must be 155.

416. If we proceed in the same manner with respect to any arithmetical progression, the first term of which is a,
the last z, and the number of terms n, writing under the given progression the same progression inverted, and
adding term to term, we shall have a series of n terms, each of which will be expressed by a + z; therefore the

sum of this series will be n(a + z), which is twice the sum of the proposed arithmetical progression; the latter,

therefore, will be represented by natz)

417. This result furnishes an easy method of finding the sum of any arithmetical progression; and may be
reduced to the following rule:

Multiply the sum of the first and the last term by the number of terms, and half the product will be the sum of
the whole progression. Or, which amounts to the same, multiply the sum of the first and the last term by half the
number of terms. Or, multiply half the sum of the first and the last term by the whole number of terms.

418. It will be necessary to illustrate this rule by some examples.
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First, let it be required to find the sum of the progression of the natural numbers, 1, 2, 3, ..., 100. This will be,

by the first rule, 100x101 _ 19199 _ 5050.

If it were required to tell how many strokes a clock strikes in twelve hours; we must add together the numbers
12X13 — 6 x 13 = 78. If we wished to know the

sum of the same progression continued to 1000, we should find it to be 500500; and the sum of this
progression, continued to 10000, would be 50005000.

1, 2, 3, as far as 12; now this sum is found immediately to be

419. Suppose a person buys a horse, on condition that for the first nail [in the horseshoe] he shall pay 5 pence,
for the second 8 pence, for the third 11 pence, and so on, always increasing 3 pence more for each nail, the
whole number of which is 32; required the purchase of the horse?

In this question it is required to find the sum of an arithmetical progression, the first term of which is 5, the
difference 3, and the number of terms 32; we must therefore begin by determining the last term; which is found

by the rule, in Articles 406 and 411, tobe 5 + (31 X 3) = 98; after which the sum required is easily found

to be 1032—X32 = 103 X 16; whence we conclude that the horse costs 1648 pence, or 6l.17s.4d. [or 6 pounds,

17 shillings, 4 pennies].

420. Generally, let the first term be a, the difference d, and the number of terms n; and let it be required to find,
by means of these data, the sum of the whole progression. As the last term must be a + (n — 1)d, the sum of

the first and the last will be 2a + (n — 1)d; and multiplying this sum by the number of terms n, we have

2na + n(n — 1)d; the sum required therefore will be na + —n(ngl)d-

Now, this formula, if applied to the preceding example, or toa = 5,d = 3, and n = 32, gives 5 X 32 +
32313 — 160 + 1488 = 1648; the same sum that we obtained before.

421. If it be required to add together all the natural numbers from 1 to n, we have, for finding this sum, the first

. . n? 1
term 1, the last term n, and the number of terms n; therefore the sum required is "Zj = n(nTH

n = 1766, the sum of all the numbers, from 1 to 1766, will be 883, or half the number of terms, multiplied
by 1767 = 1560261.

. If we make

422. Let the progression of uneven numbers be proposed, such as 1, 3, 5, 7, etc. continued to n terms, and let
the sum of it be required. Here the first term is 1, the difference 2, the number of terms n; the last term will
thereforebe 1 + 2(n — 1) = 2n — 1, and consequently the sum required is n?.

The whole therefore consists in multiplying the number of terms by itself; so that whatever number of terms of
this progression we add together, the sum will be always a square, namely, the square of the number of terms;
which we shall exemplify as follows:

Indices. 1 2 3 4 5 6 7 8 9 10
Arith. Prog. 1 3 5 7 9 11 13 15 17 19
Sum 1 4 9 16 25 36 49 64 81 100

423. Let the first term be 1, the difference 3, and the number of terms n; we shall have the progression 1, 4, 7,

10, etc. the last term of which will be 1 + 3(n — 1) = 3n — 2; wherefore the sum of the first and the last

. . . 3n-1 3n?—
term is 3n — 1, and consequently the sum of this progression is equal to nGn-l) _3non

n = 20, the sum will be 10 X 59 = 590.

; and it we suppose
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424. Again, let the first term be 1, the difference d, and the number of terms n; then the last term will be

1 + (n— 1)d, to which adding the first, we have 2 + (n — 1)d, and multiplying by the number of terms, we

have 2n + n(n — 1)d; whence we deduce the sum of the progression n + nn-1d

And by making d successively equal to 1, 2, 3, 4, etc., we obtain the following particular values, as shown in
the subjoined Table:

_ 2
Ifd = 1, thesumis n(n 1):n +n

2 2
d=2 ... e o
2
— 2 _
d=3 ... 3n(n 1):3n n
2 2
inn—1
d=4  ..... +¥:2n2—n
- 2 _
d=5 ... . +5n(n 1) _ 5n° —3n
2 2
en(n—1
d:6, ..... n-}—%:gnz—Zn
- 2 _
d=7 .. .. +7n(n 1) _ 7n° —5n
2 2
8n(n—1
d=28 ..... n-l—%:zl-nz—?,n
- 2 _
d=09 .. .. +9n(n 1) :9n n
2 2
d =10,  ..... n+—10n(n_1):5n2—4n

2
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Questions for Practice

1. Required the sum of an increasing arithmetical progression, having 3 for its first term, 2 for the common
difference, and the number of terms 20.

Ans. 440.
2. Required the sum of a decreasing arithmetical progression, having 10 for its first term, % for the common
difference, and the number of terms 21.

Ans. 140.
3. Required the number of all the strokes of a clock in twelve hours, that is, a complete revolution of the index.

Ans. 78.

4. The clocks of Italy go on to 24 hours; how many strokes do they strike in a complete revolution of the index?

Ans. 300.

5. One hundred stones being placed on the ground, in a straight line, at the distance of a yard from each other,
how far will a person travel who shall bring them one by one to a basket, which is placed one yard from the first
stone?

Ans. 5 miles and 1300 yards.
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Chapter V — Of Figurate[30], or Polygonal Numbers

425. The summation of arithmetical progressions, which begin by 1, and the difference of which is 1, 2, 3, or
any other integer, leads to the theory of polygonal numbers, which are formed by adding together the terms of
any such progression.

426. Suppose the difference to be 1; then, since the first term is 1 also, we shall have the arithmetical
progression, 1, 2, 3,4,5,6,7, 8,9, 10, 11, 12, etc. and if in this progression we take the sum of one, of two,
of three, etc. terms, the following series of numbers will arise:

1, 3,6, 10, 15, 21, 28, 36, 45, 55, 66, etc.
forl =1,1+2=3,1+2+3=6,1+2+ 3 + 4 = 10, etc.

Which numbers are called triangular, or trigonal numbers, because we may always arrange as many points in
the form of a triangle as they contain units, thus:

1 3 6 10 15

427. In all these triangles, we see how many points each side contains. In the first triangle there is only one
point; in the second there are two; in the third there are three; in the fourth there are four, etc.: so that the
triangular numbers, or the number of points, which is simply called the triangle, are arranged according to the
number of points which the side contains, which number is called the side; that is, the third triangular number,
or the third triangle, is that whose side has three points; the fourth, that whose side has four; and so on; which
may be represented thus:

Slde . e o e o o e o o o

Triangle . .+ . ¢ o ¢ o o o

428. A question therefore presents itself here, which is, how to determine the triangle when the side is given?
and, after what has been said, this may be easily resolved.

2

n“+n

For if the side be n, the triangle willbe 1 + 2 + 3 + 4 + ---+ n. Now, the sum of this progression is

b

2
consequently the value of the triangle is ——— ']



132 Elements of Algebra

n 1, 1

. n =2, . . 3
Thus, if n=3 the triangle is 6
n =4 10

)

and so on: and when n = 100, the triangle will be 5050.

2
429, This formula nzi is called the general formula of triangular numbers; because by it we find the triangular

number, or the triangle, which answers to any side indicated by n.

n(n+1),

This may be transformed into ; which serves also to facilitate the calculation; since one of the two

numbers n or n + 1, must always be an even number, and consequently divisible by 2.

12x13
2

15X16
2

So, if n = 12, the triangle is =6x 13 =78; and if n = 15, the triangle is =15%x8 =120,

etc.
430. Let us now suppose the difference to be 2, and we shall have the following arithmetical progression:
1,3,5,7,9,11,13,15,17,19, 21, etc.
the sums of which, taking successively one, two, three, four terms, etc. form the following series:
1,4,9,16,25,36,49,64,81,100,121, etc.

the terms of which are called quadrangular numbers, or squares; since they represent the squares of the natural
numbers, as we have already seen; and this denomination is the more suitable from this circumstance, that we
can always form a square with the number of points which those terms indicate, thus:

1 4 9 16 25

431. We see here, that the side of any square contains precisely the number of points which the square root
indicates. Thus, for example, the side of the square 16 consists of 4 points; that of the square 25 consists of 5
points; and, in general, if the side be n, that is, if the number of the terms of the progression, 1, 3, 5, 7, etc.
which we have taken, be expressed by n, the square, or the quadrangular number, will be equal to the sum of
those terms; that is to n?, as we have already seen. Article 422; but it is unnecessary to extend our
consideration of square numbers any farther having already treated them at length.

432. If now we call the difference 3, and take the sums in the same manner as before, we obtain numbers which
are called pentagons, or pentagonal numbers, though they cannot be so well represented by points>.

Indices. 1 2 3 4 5 6 7 8 9
Arith. Prog. 1 4 7 10 13 16 19 22 25
Pentagon 1 5 12 22 35 51 70 92 117
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the indices showing the side of each pentagon.

2_ -
433. It follows from this, that if we make the side n, the pentagonal number will be 3n2 == n(3721 D

Let, for example, n = 7, the pentagon will be 70; and if the pentagon, whose side is 100, be required, we
make n = 100, and obtain 14950 for the number sought.

434. If we suppose the difference to be 4, we arrive at hexagonal numbers, as we see by the following
progressions:

Indices. 1 2 3 4 5 6 7 8 9
Arith. Prog. 1 5 9 13 17 21 25 29 33
Hexagon 1 6 15 28 45 66 91 120 153

where the indices still show the side of each hexagon.

435. So that when the side is n, the hexagonal number is 2n? — n = n(2n — 1); and we have farther to
remark that all the hexagonal numbers are also triangular; since, if we take of these last the first, the third, the
fifth, etc. we have precisely the series of hexagons.

436. In the same manner, we may find the numbers which are heptagonal, octagonal, etc. It will be sufficient
therefore to exhibit the following Table of formulas for all numbers that are contained under the general name
of polygonal numbers.

Supposing the side to be represented is n, we then have the following:

Triangle: n’+n_ n(n+1)

2 2
Square: 2 +0n
=N
V-gon: 3> —n_n(BBn-1)
2 2
VI-gon: 4n? —2n
TZZnZ—nzn(Zn—l)
VIl-gon: ~ 5n° —3n _ n(5n— 3)
2 2
VIIl-gon:  6n? —4n
T:3n2—2n=n(3n—2)
IX-gon: 7n* —5n _ n(7n—5)
2 2
X-gon: 8n? —6n
T=4n2—3n=n(4n—3)

XI-gon: 9n*—7n n(9n-7)
22
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XIl-gon:  10n% — 8n
————=5n?—4n=n(5n—4)

2
XX-gon:  18n? — 16n
#=9n2—8n=n(9n—8)
XXV-gon: 23n* —21n _ n(23n - 21)
2 B 2

m-gon”:  (m—2)n%? — (m —4)n
2

(m—2)n*—(m-4)n_

2 2
deduce all the possible polygonal numbers which have the side n. Thus, for example, if the bigonal numbers
were required, we should have m = 2, and consequently the number sought = n; that is to say, the bigonal

437. So that the side being n, the m-gonal number will be represented by whence we may

numbers are the natural numbers, 1, 2, 3, etc.
n?+n . .
If we make m = 3, we have —— for the triangular number required.

If we make m = 4, we have the square number n?, etc.

438. To illustrate this rule by examples, suppose that the XXV-gonal number, whose side is 36, were required;
2_
we look first in the Table for the XXV-gonal number, whose side is n, and it is found to be w Then

making; n = 36, we find 14526 for the number sought.

439. Question. A person bought a house, and he is asked how much he paid for it. He answers that the 365"-
gonal number of 12 is the number of crowns which it cost him.

In order to find this number, we make m = 365, and n = 12; and substituting these values in the general
formula, we find for the price of the house 23970 crowns**..
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Chapter VI — Of Geometrical Ratio

440. The Geometrical ratio of two numbers is found by resolving the question, How many times is one of those
numbers greater than the other? This is done by dividing the one by the other; and the quotient will express the
ratio required.

441. We have here three things to consider; first, the first of the two given numbers, which is called the
antecedent; second, the other number, which is called the consequent; third, the ratio of the two numbers, or the
quotient arising from the division of the antecedent by the consequent. For example, if the relation of the
numbers 18 and 12 be required, 18 is the antecedent, 12 is the consequent, and the ratio will be % = 1%

whence we see that the antecedent contains the consequent once and a half.

442. It is usual to represent geometrical relation by two points, placed one above the other, between the
antecedent and the consequent. Thus, a : b means the geometrical relation of these two numbers, or the ratio of
atob.

135

We have already remarked that this sign is employed to represent division>!, and for this reason we make use

of it here; because, in order to know the ratio, we must divide a by b; the relation expressed by this sign being
read simply, a is to b.

443. Relation therefore is expressed by a fraction, whose numerator is the antecedent, and whose denominator
is the consequent; but perspicuity requires that this fraction should be always reduced to its lowest terms: which
is done, as we have already shown, by dividing both the numerator and denominator by their greatest common

divisor. Thus, the fraction % becomes g, by dividing both terms by 6.

444. So that relations only differ according as their ratios are different; and there are as many different kinds of
geometrical relations as we can conceive different ratios.

The first kind is undoubtedly that in which the ratio becomes unity. This case happens when the two numbers
areequal,asin3: 3::4: 4::a: a;theratiois here 1, and for this reason we call it the relation of equality.

Next follow those relations in which the ratio is another whole number. Thus, 4 : 2 the ratio is 2, and is called
double ratio; 12: 4 the ratio is 3, and is called triple ratio; 24 : 6 the ratio is 4, and is called quadruple ratio,
etc.

We may next consider those relations whose ratios are expressed by fractions; such as 12 : 9, where the ratio
.4 1 .2 C . . .
is 2, or 15; and 18 : 27, where the ratio is > etc. We may also distinguish those relations in which the

consequent contains exactly twice, thrice, etc. the antecedent: such are the relations 6 : 12, 5: 15, etc. the
ratio of which some call subduple, subtriple, etc. ratios.

Farther, we call that ratio rational which is an expressible number; the antecedent and consequent being
integers, such as 11 : 7, 8 : 15, etc. and we call that an irrational or surd ratio, which can neither be exactly

expressed by integers, nor by fractions, such as v/5 : 8, or 4 : V/3.

445. Let a be the antecedent, b the consequent, and d the ratio. We know already, that a and b being given, we

findd = %z if the consequent b were given with the ratio, we should find the antecedent a = bd because bd
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divided by b gives d: and lastly, when the antecedent a is given, and the ratio d, we find the consequent b = %;

for, dividing the antecedent a by the consequent %, we obtain the quotient d, that is to say, the ratio.

446. Every relation a : b remains the same, if we multiply or divide the antecedent and consequent by the same

number because the ratio is the same: thus, for example, let d be the ratio of a : b, we have d = %; now the

. . . . b. .. .
ratio of the relation na : nb is also % = d, and that of the relation %:; is likewise % = d.

447. When a ratio has been reduced to its lowest terms, it is easy to perceive and enunciate the relation. For

example, when the ratio % been reduced to the fraction g, wesaya: b =p:q,ora: b::p: q, which is

read, a is to b as p is to q. Thus, the ratio of 6 : 3 being %, or 2, wesay 6: 3::2: 1. We have likewise

18: 12::3: 2, and 24 : 18::4: 3, and 30: 45::2: 3, etc. But if the ratio cannot be abridged, the
relation will not become more evident; for we do not simplify it by saying9: 7::9: 7.

448. On the other hand, we may sometimes change the relation of two very great numbers into one that shall be
more simple and evident, by reducing both to their lowest terms. Thus, for example, we can say 28844 :
14422 ::2:1;0r,10566 : 7044 ::3: 2;0r,57600: 25200::16: 7.

449, In order, therefore, to express any relation in the clearest manner, it is necessary to reduce it to the smallest
possible numbers; which is easily done, by dividing the two terms of it by their greatest common divisor. Thus,
to reduce the relation 57600 : 25200 to that of 16 : 7, we have only to perform the single operation of
dividing the numbers 57600 and 25200 by 3600, which is their greatest common divisor.

450. It is important, therefore, to know how to find the greatest common divisor of two given numbers; but this
requires a Rule, which we shall explain in the following chapter.
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Chapter VII — Of the Greatest Common Divisor of two given Numbers

451. There are some numbers which have no other common divisor than unity; and when the numerator and
B3 The two
numbers 48 and 35, for example, have no common divisor, though each has its own divisors; for which reason,
we cannot express the relation 48 : 35 more simply because the division of two numbers by 1 does not
diminish them.

denominator of a fraction are of this nature, it cannot be reduced to a more convenient form

452. But when the two numbers have a common divisor, it is found, and even the greatest which they have, by
the following Rule:

Divide the greater of the two numbers by the less; next, divide the preceding divisor by the remainder; what
remains in this second division will afterwards become a divisor for a third division, in which the remainder of
the preceding divisor will be the dividend. We must continue this operation till we arrive at a division that
leaves no remainder; and this last divisor will be the greatest common divisor of the two given numbers.

Thus, for the two numbers 576 and 252:

2
252 | 576

504
72
3
72| 252
216
36
2
36| 72
72
0

So that, in this instance, the greatest common divisor is 36.

453. It will be proper to illustrate this rule by some other examples; and, for this purpose, let the greatest
common divisor of the numbers 504 and 312 be required.

1

312 | 504
312
192

1

192 | 312
192
120

1

120 | 192
120

72

1

72 | 120
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72
48
1
48 | 72
48
24
2
24 | 48
48
0

So that 24 is the greatest common divisor; and consequently the relation 504 : 312 is reduced to the form
21: 13.

454. Let the relation 625 : 529 be given, and the greatest common divisor of these two numbers be required.

1
529 | 625

529
96

5

96 | 529
480
49

1

49 | 96
49
47

1

47 | 49
47

2

23
2|47
46

1

2
1|2
2

0

Wherefore 1 is, in this case, the greatest common divisor, and consequently we cannot express the relation
625 : 529 by less numbers, nor reduce it to simpler terms.

455. It may be necessary, in this place, to give a demonstration of the foregoing Rule. In order to this, let a be
the greater, and b the less of the given numbers; and let d be one of their common divisors; it is evident that a
and b being divisible by d we may also divide the quantities, a — b, a — 2b, a — 3b, and, in general, a — nb
by d.
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456. The converse is no less true: that is, if the numbers b and a — nb are divisible by d, the number a will
also be divisible by d; for nb being divisible by d, we could not divide a — nb by d, if a were not also
divisible by d.

457. We observe farther, that if d be the greatest common divisor of two numbers, b, and a — nb, it will also
be the greatest common divisor of the two numbers a and b; for if a greater common divisor than d could be
found for these numbers a and b, that number would also be a common divisor of b and a — nb; and
consequently d would not be the greatest common divisor of these two numbers: but we have supposed d to be
the greatest divisor common to b and a — nb; therefore d must also be the greatest common divisor of a and b.

458. These things being laid down, let us divide, according to the rule, the greater number a by the less b; and
let us suppose the quotient to be n; then the remainder will be a — nb""), which must necessarily be less than
b; and this remainder a — nb having the same greatest common divisor with b, as the given numbers a and b,
we have only to repeat the division, dividing the preceding divisor b by the remainder a — nb; and the new
remainder which we obtain will still have, with the preceding divisor, the same greatest common divisor, and so
on.

459. We proceed, in the same manner, till we arrive at a division without a remainder; that is, in which the
remainder is nothing. Let therefore p be the last divisor, contained exactly a certain number of times in its
dividend; this dividend will evidently be divisible by p, and will have the form mp so that the numbers p and
mp are both divisible by p: and it is also evident that they have no greater common divisor because no number
can actually be divided by a number greater than itself; consequently, this last divisor is also the greatest
common divisor of the given numbers a and b.

460. We will now give another example of the same rule, requiring the greatest common divisor of the numbers
1728 and 2304. The operation is as follows:

1

1728 | 2304
1728

576

3
576 | 1728

1728
0

Hence it follows that 576 is the greatest common divisor, and that the relation 1728 : 2304 is reduced to
3:4; that is to say, 1728 is to 2304 in the same relation as 3 is to 4.
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Chapter VIII — Of Geometrical Proportions

46l. Two geometrical relations are equal when their ratios are equal; and this equality of two relations is called
a geometrical proportion. Thus, for example, we write a: b = c: d,ora: b::c: d, to indicate that the
relation a : b is equal to the relation ¢ : d; but this is more simply expressed by saying a is to b as ¢ to d. The

following is such a proportion, 8 : 4 ::12 : 6; for the ratio of the relation 8 : 4 is %, or 2, and this is also the

ratio of the relation 12 : 6.

462. So that a: b::c: d being a geometrical proportion, the ratio must be the same on both sides,

consequently% = 2; and, reciprocally, if the fractions % = 2, wehavea: b::c: d.

463. A geometrical proportion consists therefore of four terms, such, that the first divided by the second gives
the same quotient as the third divided by the fourth; and hence we deduce an important property, common to all
geometrical proportions, which is, that the product of the first and the last term is always equal to the product of
the second and third; or, more simply, that the product of the extremes is equal to the product of the means.

464. In order to demonstrate this property, let us take the geometrical proportion a : b ::c : d, so that % = i.

Now, if we multiply both these fractions by b, we obtain a = %, and multiplying both sides farther by d we

have ad = bc; but ad is the product of the extreme terms, and bc is that of the means, which two products are
found to be equal.

465. Reciprocally, if the four numbers, a, b, ¢, d, are such, that the product of the two extremes, a and d, is

equal to the product of the two means, b and c, we are certain that they form a geometrical proportion: for,
. .. . . . d _ b
since ad = bc, we have only to divide both sides by bd which gives us Z—d = i, or==25

a:b::c: d.

S =7 and consequently

466. The four terms of a geometrical proportion, as a: b ::c: d, may be transposed in different ways,
without destroying the proportion; for the rule being always that the product of the extremes is equal to the
product of the means, or ad = bc, we may say,

1% b:a::d: c
2" a:c::b:d
3% d:b::c:a
4" d:c::b:a

467. Beside these four geometrical proportions, we may deduce some others from the same proportion,
a: b::c: d;forwemaysay,a + b: a::c + d: c, or the first term plus the second, is to the first, as the
third plus the fourth, is to the third; thatis,a + b: a::c + d: c.

We may farther say, the first minus the second, is to the first, as the third minus the fourth, is to the third, or a

a-b:a::c-d: c. For, if we take the product of the extremes and the means, we have ac — bc = ac —
ad, which evidently leads to the equality ad = bc.

And, in the same manner, we may demonstrate thata + b: b::c + d: d;andthata— b: b::c— d:
d.

468. All the proportions which we have deduced from a : b : : c : d may be represented generally as follows:
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ma + nb: pa + qgb::mc + nd: pc + qd

For the product of the extreme terms is mpac + npbc + mqgad + ngbd; which, since ad = bc, becomes
mpac + npbc + mgbc + nqbd; also the product of the mean terms is mpac + mqbc + npad + nqbd;
or, since ad = bc, it is mpac + mqbc + npbc + nqbd: so that the two products are equal.

469. It is evident, therefore, that a geometrical proportion being given, for example, 6 : 3 : : 10 : 5, an infinite
number of others may be deduced from it. We shall, however, give only a few:

0
5

9:6::15: 10

6::5: 10 6
: 9:3::15:5

3: :10::3: 5
3:3::5:5 9:15::3:5
470. Since in every geometrical proportion the product of the extremes is equal to the product of the means, we
may, when the three first terms are known, find the fourth from them. Thus, let the three first terms be 24 :
15 :: 40 to the fourth term: here, as the product of the means is 600, the fourth term multiplied by the first,
that is by 24, must also make 600; consequently, by dividing 600 by 24 the quotient 25 will be the fourth term
required, and the whole proportion will be 24 : 15 ::40 : 25. In general, therefore, if the three first terms are

a: b::c, weput d for the unknown fourth letter; and since ad = bc, we divide both sides by a, and have
d = %; so that the fourth term is %, which is found by multiplying the second term by the third, and dividing
that product by the first.

471. This is the foundation of the celebrated Rule of Three in Arithmetic; for in that rule we suppose three
numbers given, and seek a fourth, in geometrical proportion with those three; so that the first may be to the
second, as the third is to the fourth.

472. But here it will be necessary to pay attention to some particular circumstances. First, if in two proportions
the first and the third terms are the same, asina: b::c: d,anda: f::c: g, then the two second and the
two fourth terms will also be in geometrical proportion, so that b : d :: f : g; for the first proportion being
transformed into this, a : ¢ ::b : d, and the second into this, a : ¢ :: f : g, it follows that the relations b : d
and f : g are equal, since each of them is equal to the relation a : c. Thus, for example, if 5: 100 ::2 : 40,
and5: 15::2: 6, we must have 100 : 40 ::15: 6.

473. But if the two proportions are such that the mean terms are the same in both, I say that the first terms will
be in an inverse proportion to the fourth terms: that is, if a: b::c: d,and f: b::c: g, it follows that
a: f::g: d. Let the proportions be, for example, 24: 8::9: 3, and 6: 8::9: 12, we have 24 : 6:
:12 : 3; the reason is evident; for the first proportion gives ad = bc; and the second gives fg = bc;
thereforead = fganda: f::g: d,ofa: g::f: d.

474. Two proportions being given, we may always produce a new one by separately multiplying the first term
of the one by the first term of the other, the second by the second, and so on with respect to the other terms.
Thus, the proportions a: b::c: d, and e: f::g: h will furnish this, ae : bf :: cg : dh; for the first
giving ad = bc, and the second giving eh = fg, we have also adeh = bcfg; but now adeh is the product
of the extremes, and bcfg is the product of the means in the new proportion: so that the two products being
equal, the proportion is true.

475. Let the two proportions be 6: 4::15: 10, and 9: 12 ::15: 20, their combination will give the
proportion 6 X 9: 4 x 12::15 X 15: 10 X 20,0r54 : 48::225: 200,0r9: 8::9: 8.
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476. We shall observe, lastly, that if two products are equal, ad = bc, we may reciprocally convert this
equality into a geometrical proportion; for we shall always have one of the factors of the first product in the
same proportion to one of the factors of the second product, as the other factor of the second product is to the
other factor of the first product: that is, in the present case, a: c::b: d,ora: b::c: d. Let 3 X 8 =
4 X 6, and we may form from it this proportion, 8 : 4::6: 3, orthis, 3: 4::6: 8. Likewise, if 3 X 5 =
1 X 15, weshallhave3: 15::1: 5,or5: 1::15: 3,0or3: 1::15: 5.
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Chapter IX — Observations on the Rules of Proportion and their Utility

477. This theory is so useful in the common occurrences of life that scarcely any person can do without it.
There is always a proportion between prices and commodities; and when different kinds of money are the
subject of exchange, the whole consists in determining their mutual relations. The examples furnished by these
reflections will be very proper for illustrating the principles of proportion, and showing their utility by the
application of them.

478. If we wished to know, for example, the relation between two kinds of money; suppose an old louis d’or
and a ducat: we must first know the value of those pieces when compared with others of the same kind. Thus,
an old louis being, at Berlin, worth 5 rixdollars and 8 drachms, and a ducat being worth 3 rixdollars, we may
reduce these two values to one denomination; either to rixdollars, which gives the proportion 1L : 1D :
:5% R: 3R, or ::16: 9; or to drachms, in which case we have 1L : 1D ::128: 72 ::16: 9; which
proportions evidently give the true relation of the old louis to the ducat; for the equality of the products of the
extremes and the means gives, in both cases, 9 louis = 16 ducats; and, by means of this comparison, we may
change any sum of old louis into ducats, and vice-versa. Thus, suppose it were required to find how many
ducats there are in 1000 old louis, we have this proportion:

Louis D’Or | Louis D’Or | Ducat Ducat
9: 1000 :: 16: | 1777 g, the number sought

If, on the contrary, it were required to find how many old louis d’or there are in 1000 ducats, we have the
following proportion:

Ducat | Ducat | Louis D’Or Louis D’Or
16 : | 1000 :: 9: 562 %, the number sought

479. At Petersburgh the value of the ducat varies, and depends on the course of exchange; which course
determines the value of the ruble in stivers, or Dutch halfpence, 105 of which make a ducat. So that when the
exchange is at 45 stivers per ruble, we have this proportion:

As45: 105::3: 7;

and hence this equality, 7 rubles = 3 ducats. Hence again we shall find the value of a ducat in rubles; for

Ducat | Ducat | Rubles | Rubles
3: 1:: 7 2§rubles

that is, 1 ducat is equal to 2 § rubles.

But if the exchange were at 50 stivers, the proportion would be,
As50: 105::10: 21;

which would give 21 rubles = 10 ducats; whence 1 ducat = 2 % rubles. Lastly, when the exchange is at 44

stivers, we have
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As44: 105::1: ZErubleS;

which is equal to 2 rubles, 38 1—71 copecks.

480. It follows also from this that we may compare different kinds of money, which we have frequently
occasion to do in bills of exchange.

Suppose, for example, that a person of Petersburgh has 1000 rubles to be paid to him at Berlin, and that he
wishes to know the value of this sum in ducats at Berlin.
The exchange is at 47 %; that is to say, one ruble makes 47% stivers; and in Holland, 20 stivers make a florin;

2% Dutch florins make a Dutch dollar: also, the exchange of Holland with Berlin is at 142; that is to say, for
100 Dutch dollars, 142 dollars are paid at Berlin; and lastly, the ducat is worth 3 dollars at Berlin.

481. To resolve the question proposed, let us proceed step by step. Beginning therefore with the stivers, since 1

ruble = 47% stivers, or 2 rubles = 95 stivers, we shall have

Rubles | Rubles | Stivers Stivers
2 1000 :: 95: | 47500 stivers

then again,

Stivers | Stivers | Florins Florins
20: | 47500 :: 1: 2375 florins

Also, since 2% florins = 1 Dutch dollar, or 5 florins = 2 Dutch dollars; we shall have

Florins | Florins | Dutch Dollars Dutch Dollars
5: 2375 :: 2: 950 Dutch dollars

Then, taking the dollars of Berlin, according to the exchange, at 142, we shall have

Dutch Dollars | Dutch Dollars | Dollars | Dollars
100 : 950 :: 142 : | 1349 Berlin dollars

And lastly,

Dollars | Dollars | Ducats | Ducats
3: [1349:=| 1: 449§ducats

which is the number sought.

482. Now, in order to render these calculations still more complete, let us suppose that the Berlin banker
refuses, under some pretext or other, to pay this sum, and to accept the bill of exchange without five percent
discount; that is, paying only 100 instead of 105. In that case, we must make use of the following proportion:

As 105 : 100 : :449?: 4zsgducats;

which is the answer under those conditions.



Leonard Euler 145

483. We have shown that six operations are necessary in making use of the Rule of Three; but we can greatly
abridge those calculations by a rule which is called the Rule of Reduction, or Double Rule of Three. To explain
which, we shall first consider the two antecedents of each of the six preceding operations:

1% 2 rubles : 95 stivers

2" 20 stivers : 1 Dutch florin
3" 5 Dutch florins : 2 Dutch dollars
4™ 100 Dutch dollars : 142 dollars

5% 3 dollars : 1 ducat

6™ 105 ducats : 100 ducats

If we now look over the preceding calculations, we shall observe that we have always multiplied the given
sum by the third terms, or second antecedents, and divided the products by the first: it is evident, therefore, that
we shall arrive at the same results by multiplying at once the sum proposed by the product of all the third terms,
and dividing by the product of all the first terms: or, which amounts to the same thing, that we have only to
make the following proportion: As the product of all the first terms, is to the given number of rubles, so is the
product of all the second terms, to the number of ducats payable at Berlin.

484. This calculation is abridged still more, when amongst the first terms some are found that have common
divisors with the second or third terms; for, in this case, we destroy those terms, and substitute the quotient
arising from the division by that common divisor. The preceding example will, in this manner, assume the
following form:

1000 x 95 x 2 x 142 x 100
2X20%x5x%x 100 x3x 105

(2x20%x5x%x100 % 3x105):1000 ::(95 % 2x 142 x 100):

. .. . . L 10X19x142
and after canceling the common divisors in the numerator and denominator, this will become o
26980 16
e 428 p ducats, as before.

485. The method which must be observed in using the Rule of Reduction is this: we begin with the kind of
money in question, and compare it with another which is to begin the next relation, in which we compare this
second kind with a third, and so on. Each relation, therefore, begins with the same kind as the preceding
relation ended with; and the operation is continued till we arrive at the kind of money which the answer
requires; at the end of which we must reckon the fractional remainders.

486. Let us give some other examples, in order to facilitate the practice of this calculation.

If ducats gain at Hamburgh 1 percent on two dollars banco; that is to say, if 50 ducats are worth, not 100, but
101 dollars banco; and if the exchange between Hamburgh and Konigsberg is 119 drachms of Poland; that is,
if 1 dollar banco is equal to 119 Polish drachms; how many Polish florins are equivalent to 1000 ducats?

It being understood that 30 Polish drachms make 1 Polish florin, here

1 : 1000 : 2 dollars banco

100 -—- 101 dollars banco
1 -—- 119 Polish drachms
30 -—- 1 Polish florin

therefore,
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1000 x 2 x 101 x 119 2 x 101 x 119

X : Hs X X H
(100 x 30) : 1000 :: (2 x 101 x 119) 100 X 30 3

2
= 8012 3 Polish florins

487. We will propose another example, which may still farther illustrate this method.

Ducats of Amsterdam are brought to Leipsic, having in the former city the value of 5 flor. 4 stivers current;
that is to say, 1 ducat is worth 104 stivers, and 5 ducats are worth 26 Dutch florins. If, therefore, the agio of the
bank at Amsterdam is 5 percent; that is, if 105 currency are equal to 100 banco; and if the exchange from

Leipsic to Amsterdam, in bank money, is 133& percent; that is, if for 100 dollars we pay at Leipsic 133%

dollars; and lastly, 2 Dutch dollars making 5 Dutch florins; it is required to determine how many dollars we
must pay at Leipsic, according to these exchanges, for 1000 ducats?

By the rule,
5 : 1000 : 26 florins Dutch curr.
105 --- 100 florins Dutch banco
400 --- 533 dollars of Leipsic
5 - 2 dollars banco
therefore,

1000><26><100><533><2_4><26><533
5x 105 X 400 X 5 B 21

(5% 105 x 400 x 5) : 1000 :: (26 x 100 x 533 x 2):

13
= 2639 1 dollars, the number sought.
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Chapter X — Of Compound Relations

488. Compound Relations are obtained by multiplying the terms of two or more relations, the antecedents by
the antecedents, and the consequents by the consequents; we then say that the relation between those two
products is compounded of the relations given.

Thus the relations a : b, c: d, e: f, give the compound relation ace : bdf P,

489. A relation continuing always the same, when we divide both its terms by the same number, in order to
abridge it, we may greatly facilitate the above composition by comparing the antecedents and the consequents,
for the purpose of making such reductions as we performed in the last chapter.

For example, we find the compound relation of the following given relations thus:

Relations given
12: 25, 28: 33, and 55: 56

Which becomes (12 X 28 X 55): (25 X 33 X 56) = 2: 5 by cancelling the common divisors.
So that 2 : 5 is the compound relation required.

490. The same operation is to be performed when it is required to calculate generally by letters; and the most
remarkable case is that in which each antecedent is equal to the consequent of the preceding relation. If the
given relations are

D QU O T Q
Q o & a T

the compound relationis 1 : 1.

491. The utility of these principles will be perceived when it is observed that the relation between two square
fields is compounded of the relations of the lengths and the breadths.

Let the two fields, for example, be A and B; A having 500 feet in length by 60 feet in breadth; the length of B
being 360 feet, and its breadth 100 feet; the relation of the lengths will be 500 : 360, and that of the breadths
60 : 100. So that we have

(500 x 60): (360 x 100) = 5: 6

wherefore the field A is to the field B, as 5 to 6.

492. Again, let the field A be 720 feet long, 88 feet broad; and let the field B be 660 feet long, and 90 feet
broad; the relations will be compounded in the following manner:

Relation of the lengths 720 : 660
Relation of the breadths 88 : 90

and by cancelling, the
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Relation of the fields 4 and B is 16 : 15.

493. Farther, if it be required to compare two rooms with respect to the space, or contents, we observe that that
relation is compounded of three relations; namely, that of the lengths, breadths, and heights. Let there be, for
example, a room A, whose length is 36 feet, breadth 16 feet, and height 14 feet, and a room B, whose length is
42 feet, breadth 24 feet, and height 10 feet; we shall have these three relations:

For the length 36 : 42
For the breadth 16 : 24
For the height 14 : 10

And cancelling the common measures, these become 4 : 5. So that the contents of the room A, is to the
contents of the room B, as 4 to 5.

494. When the relations which we compound in this manner are equal, there result multiplicate relations.
Namely, two equal rations give a duplicate ratio, or ratio of the squares; three equal relations produce the
triplicate ratio or ratio of the cubes; and so on. For example, the relations a : b and a : b give the compound
relation a? : b?; wherefore we say that the squares are in the duplicate ratio of their roots. And the ratio a : b
multiplied twice, giving the ratio a® : b3, we say that the cubes are in the triplicate ratio of their roots.

495. Geometry teaches that two circular spaces are in the duplicate relation of their diameters; this means, that
they are to each other as the squares of their diameters.

Let A be such a space, having its diameter 45 feet, and B another circular space, whose diameter is 30 feet;
the first space will be to the second as 45 X 45 is to 30 X 30; or, compounding these two equal relations, as
9 : 4. Therefore the two areas are to each other as 9 to 4.

496. It is also demonstrated that the solid contents of spheres are in the ratio of the cubes of their diameters: so
that the diameter of a globe A being 1 foot, and the diameter of a globe B being 2 feet, the solid content of A
will be to that of B, as 13 : 23; or as 1 to 8. If, therefore, the spheres are formed of the same substance, the
latter will weigh 8 times as much as the former.

497. 1t is evident that we may in this manner find the weight of cannon balls, their diameters, and the weight of
one, being given. For example, let there be the ball A whose diameter is 2 inches and weight 5 pounds; and if
the weight of another ball be required, whose diameter is 8 inches, we have this proportion,

23:8%3::5: 320 pounds,
which gives the weight of the ball B: and for another ball C, whose diameter is 15 inches, we should have,
2%: 153 ::5: 21092 Ib,

498. When the ratio of two fractions, as %:2, is required, we may always express it in integer numbers; for we

have only to multiply the two fractions by bd in order to obtain the ratio ad : bc, which is equal to the other;

and from hence results the proportion %:2: :ad : bc. If, therefore, ad and bc have common divisors, the ratio
5.2 (15 % 36) : (24 x 25) 9 : 10.

may be reduced to fewer terms. Thus 22 3¢
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. . . 1
499, If we wished to know the ratio of the fractions - and , it is evident that we should have —:=:1:b: a;
which is expressed by saying, that two fractions, which have unlty for their numerator, are in the reczprocal, or

inverse ratio of their denominators: and the same thing is said of two fractions which have any common

numerator; for = Z :b: a. But if two fractions have their denominators equal, as —:= they are in the direct

ratio or the numerators; namely, as a : b. Thus, Z 136' 166 v ,or6:3::2:1, ndE E :10:15,0r 2: 3.

500. It has been observed, in the free descent of bodies, that a body falls about 16 English feet in a second, that
in two seconds of time it falls from the height of 64 feet, and in three seconds it falls 144 feet. Hence it is
concluded, that the heights are to each other as the squares of the times; and, reciprocally, that the times are in
the subduplicate ratio of the heights, or as the square roots of the heights"*”!

If, therefore, it be required to determine how long a stone will be in falling from the height of 2304 feet; we
have 16 : 2304 ::1: 144, the square of the time; and consequently the time required is 12 seconds.

501. If it be required to determine how far, or through what height, a stone will pass by descending for the
space of an hour, or 3600 seconds; we must say,

As 1% : 3600% ::16 : 207360000 feet,
the height required.

Which being reduced is found equal to 39272 miles; and consequently nearly five times greater than the
diameter of the earth.

502. It is the same with regard to the price of precious stones, which are not sold in the proportion of their
weight; everybody knows that their prices follow a much greater ratio. The rule for diamonds is that the price is
in the duplicate ratio of the weight; that is to say, the ratio of the prices is equal to the square of the ratio of the
weights. The weight of diamonds is expressed in carats, and a carat is equivalent to 4 grains; if, therefore, a
diamond of one carat is worth 10 livres, a diamond of 100 carats will be worth as many times 10 livres as the
square of 100 contains 1; so that we shall have, according to the Rule of Three,

As1: 10000 ::10: 100000 livres
There is a diamond in Portugal which weighs 1680 carats; its price will be found, therefore, by making
1% : 16807% :: 10 : 28224000 livres.

503. The posts, or mode of travelling, in France, furnish sufficient examples of compound ratios because the
price is regulated by the compound ratio of the number of horses, and the number of leagues, or posts. Thus, for

example, if one horse cost 20 sous per post, it is required to find how much must be paid for 28 horses for 4%

posts.

We write first the ratio of the horses 1 : 28
Under this ratio we put that of the stages 2 : 9
And, compounding the two ratios, we have 2 : 252

Or, by abridging the two terms, 1 : 126 : : 1 liv. to 126 ft. or 42 crowns.
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Again, if | pay a ducat for eight horses for 3 miles, how much must I pay for thirty horses for four miles? The
calculation is as follows:

8: 30
3:4
By compounding these two ratios, and abridging,
1: 5::1 duc.: 5 ducats; the sum required.

504. The same composition occurs when workmen are to be paid, since those payments generally follow the
ratio compounded of the number of workmen and that of the days which they have been employed.

If, for example, 25 sous per day be given to one mason, and it is required what must be paid to 24 masons
who have worked for 50 days, we state the calculation thus:

1: 24
1:50
1: 1200 ::25: 30000 sous, or 1500 francs.

In these examples, five things being given, the rule which serves to resolve them is called, in books of
arithmetic, The Rule of Five, or Double Rule of Three.
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Chapter XI — Of Geometrical Progressions

505. A series of numbers which are always becoming a certain number of times greater, or less, is called a
geometrical progression because each term is constantly to the following one in the same geometrical ratio: and
the number which expresses how many times each term is greater than the preceding, is called the exponent, or
ratio. Thus, when the first term is 1 and the exponent, or ratio, is 2, the geometrical progression becomes:

Terms

1 2 4 5 6 7 8 9
Prog. 1 2 8

3
4 16 32 64 128 256

The numbers 1, 2, 3, etc. always marking the place which each term holds in the progression.

506. If we suppose, in general, the first term to be a and the ratio b, we have the following geometrical
progression:

1 2 3 4 5 6 7 8 n
Prog. a ab ab? ab® ab* ab®> ab® ab’ .. ab™?!

So that, when this progression consists of n terms, the last term is ab™ . We must, however, remark here that
if the ratio b be greater than unity, the terms increase continually; if b = 1, the terms are all equal; lastly, if b

be less than 1, or a fraction, the terms continually decrease. Thus, when a = 1, and b = %, we have this

geometrical progression:

11711 1 1 1
1,-,— o, — == tc.

507. Here, therefore, we have to consider:

1. The first term, which we have called a

2. The exponent, which we call b

3. The number of terms, which we have expressed by n

4. And the last term, which, we have already seen, is ab™ !

So that when the first three of these are given, the last term is found by multiplying the n - 1 power of b, or
b™~1, by the first term a.

If, therefore, the 50™ term of the geometrical progression 1, 2, 4, 8, etc. were required, we should have a =
1, b = 2, and n = 50; consequently the 50" term would be 2%°; and as 2° = 512, we shall have 2'° =
1024; wherefore the square of 2% or 22° = 1048576, and the square of this number, which is
1099511627776 = 2*°. Multiplying therefore this value of 2%° by 2° or 512, we have
249 = 562949953421312 for the 50" term.

508. One of the principal questions which occurs on this subject is to find the sum of all the terms of a
geometrical progression; we shall therefore explain the method of doing this. Let there be given, first, the
following progression, consisting of ten terms:

1,2,4,8, 16, 32, 64, 128, 256, 512,

the sum of which we shall represent by s, so that
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s=14+2+4+8+ 16 + 32 + 64 + 128 + 256 + 512;
doubling both sides, we shall have

2s =2+ 4+8+ 16 + 32 + 64 + 128 + 256 + 512 + 1024;

and subtracting from this the progression represented by s, there remains s = 1024 - 1 = 1023; wherefore
the sum required is 1023.

509. Suppose now, in the same progression, that the number of terms is undetermined, that is, let them be
generally represented by n, so that the sum, s, in question is

s=1+2+2%2+2%+2%+ ... 4271
If we multiply by 2, we have
2s = 24 224 234 2%+ 254 o 4 27

then subtracting from this equation the preceding one, we have s = 2° — 1; or, generally, s = 2" — 1, It is
evident, therefore, that the sum required is found, by multiplying the last term, 2"~ by the exponent 2, in order
to have 2™, and subtracting unity from that product.

510. This is made still more evident by the following examples, in which we substitute successively for n, the
numbers, 1, 2, 3, 4, etc.

1 =1;
14+ 2 =3
1+2+4=7
1+ 2+ 4+ 8 =15
14+2+44+8+ 16 = 31;
1+2+4+8+16+ 32 =32x%x2-1= 63.

511. On this subject, the following question is generally proposed, A man offers to sell his horse on the
following condition; that is, he demands 1 penny for the first nail, 2 for the second, 4 for the third, 8 for the
fourth, and so on, doubling the price of each succeeding nail. It is required to find the price of the horse, the
nails being 32 in number?

This question is evidently reduced to finding the sum of all the terms of the geometrical progression 1, 2, 4, 8,
16, etc. continued to the 32™ term. Now, that last term is 23'; and, as we have already found 22° = 1048576,
and 21% = 1024, we shall have 22° x 210 = 230 = 1073741824; and multiplying again by 2, the last term
231 = 2147483648; doubling therefore this number, and subtracting unity from the product, the sum required
becomes 4294967295 pence; which being reduced, we have 178956971. 1s. 3d. for the price of the horse.

512. Let the ratio now be 3, and let it be required to find the sum of the geometrical progression 1, 3, 9, 27, 81,
243, 729, consisting of 7 terms.

Calling the sum s as before, we have
s=1+3+9+ 27 + 81 + 243 + 729.

And multiplying by 3,
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3s =3+ 9+ 27 + 81 + 243 + 729 + 2187.

Then subtracting the former series from the latter, we have 2s = 2187 — 1 = 2186: so that the double of the
sum is 2186, and consequently the sum required is 1093.

513. In the same progression, let the number of terms be 7, and the sum s; so that
s=1+3+324+ 33+ 3+ .. 4+ 3"L
If now we multiply by 3, we have
3s = 3 + 3%+ 334 3%+ . + 3™

Then subtracting from this expression the value of s, as before, we shall have 2s = 3™ - 1; therefore s =

n_
%. So that the sum required is found by multiplying the last term by 3, subtracting 1 from the product, and

dividing the remainder by 2; as will appear, also, from the following particular cases:

1 (1x3)—-1 = 1
2

143 (3x3)—1 = 4
2

1+3+9 (3x9)—-1 = 13
2

14+ 349+ 27 (Bx27)—1 = 40
2

1+3+9+27+81 3x81)—-1 = 121
2

514. Let us now suppose, generally, the first term to be a, the ratio b, the number of terms n, and their sum s,
so that

s =a+ ab + ab*+ ab®+ ab*+ - + ab™?
If we multiply by b, we have
bs = ab + ab? + ab®+ ab*+ ab® + -+ + ab™

and taking the difference between this and the above equation, there remains (b — 1)s = ab™ — a; whence
we easily deduce the sum required s = %. Consequently, the sum of any geometrical progression is
found, by multiplying the last term by the ratio, or exponent of the progression, and dividing the difference

between this product and the first term, by the difference between 1 and the ratio.

515. Let there be a geometrical progression of seven terms, of which the first is 3; and let the ratio be 2; we
shall then have a = 3, b = 2, and n = 7; therefore the last term is 3 X 2% or 3 X 64 = 192; and the
whole progression will be

3,6,12, 24, 48, 96, 192.

Farther, if we multiply the last term 192 by the ratio 2, we have 384; subtracting the first term, there remains
381; and dividing this by b — 1, or by 1, we have 381 for the sum of the whole progression.



154 Elements of Algebra

516. Again, let there be a geometrical progression of six terms, of which the first is 4; and let the ratio be ;:

then the progression is

469 27 81 243
1112)4) 8

If we multiply the last term by the ratio, we shall have %; and subtracting the first term = i—;}, the remainder is

665
8

665

o which, dividedby b -1 = %, gives = 83% for the sum of the series.

517. When the exponent is less than 1, and, consequently, when the terms of the progression continually
diminish, the sum of such a decreasing progression, carried on to infinity, may be accurately expressed.

For example, let the first term be 1, the ratio %, and the sum s, so that:

o, lt1o1 1
STttt T e TR et

If we multiply by 2, we have

SORPRPNE SHE S S SR
S=2+ldo+ ottt

and subtracting the preceding progression, there remains s = 2 for the sum of the proposed infinite
progression.

518. If the first term be 1, the ratio g, and the sum s; so that

ST L
STAT3T9T 7 T

Then multiplying the whole by 3, we have

3 =341 4ot oty
5= 379727

and subtracting the value of s, there remains 2s = 3; wherefore thesums = 1 %

519. Let there be a progression whose sum is s, the first term 2, and the ratio z; so that

_,,3,9,27 81
ST ATy T8 32T 128

Multiplying by g, we have

4 8 3.9 27 8
3°73 2787327128

. . . 1 8 L
and subtracting from this progression s, there remains 35 =3 wherefore the sum required is 8.
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. : . b . .
520. If we suppose, in general, the first term to be a, and the ratio of the progression to be ~, 80 that this fraction

may be less than 1, and consequently ¢ greater than b; the sum of the progression, carried on ad infinitum, will
be found, thus let

ab ab? ab® ab*

s=at—+—+—+—+
c c? c3 c*

Then multiplying by g, we shall have

b ab ab?* ab® ab*
- = — —_—
c c c? c3 c*

. . . . . b
and subtracting this equation from the preceding, there remains (1 - ?) s=a.

Consequently, s = ﬁ = %, by multiplying both the numerator and denominator by c.
c

The sum of the infinite geometrical progression proposed is, therefore, found by dividing the first term a by 1
minus the ratio, or by multiplying the first term a by the denominator of the ratio, and dividing the product by
the same denominator diminished by the numerator of the ratio.

521. In the same manner we find the sums of progressions, the terms of which are alternately affected by the
signs + and —. Suppose, for example,

Multiplying by g, we have,

b ab ab? ab® ab*
—_S = — — — _——— ...

c c c? c3 c*

And, adding this equation to the preceding, we obtain (1 + g) s = a: whence we deduce the sum required,

a ac
S=—p, 0r s =—.
14— c+b

c

522. It 1s evident, therefore, that if the first term a = z, and the ratio be g, thatis tosay, b = 2,andc = 5, we
shall find the sum of the progression z + % + % + % + -+ = 1; since, by subtracting the ratio from 1, there

remains E, and by dividing the first term by that remainder, the quotient is 1.

It is also evident, if the terms be alternately positive and negative, and the progression assume this form:

3 6 12 24

5 25 125 s

that the sum will be
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3
@« _5_3
LI
523. Again: let there be proposed the infinite progression,
3 3 3 3 3

10 " 100 T 1000 " 0000 T Tooooo T

The first term is here %, and the ratio is 1—10; therefore subtracting this last from 1, there remains %, and, if we
divide the first term by this fraction, we have é for the sum of the given progression. So that taking only one

. 3 1
term of the progression, namely, o the error would be o
3 _ 33

. 3
And taking two terms, — + =—,
10 ' 100 ~ 100

there would still be wanting ﬁ to make the sum, which we have seen
.1
is -
3
524. Let there now be given the infinite progression,

R I S
10 © 100 ' 1000 ' 10000

The first term is 9, and the ratio is %. So that 1 minus the ratio is 1%; and % = 10, the sum required: which

10
series is expressed by a decimal fraction, thus, 9.9999999, etc.
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Questions for Practice

1. A servant agreed with a master to serve him eleven years without any other reward for his service than the
produce of one grain of wheat for the first year; and that product to be sown the second year, and so on from
year to year till the end of the time, allowing the increase to be only in a tenfold proportion. What was the sum
of the whole produce?

Ans. 111111111110 grains.

N. B. It is farther required, to reduce this number of grains to the proper measures of capacity, and then by
supposing an average price of wheat to compute the value of the corns in money.

2. A servant agreed with a gentleman to serve him twelve months, provided he would give him a farthing for
his first month’s service, a penny for the second, and 4d. for the third, etc. What did his wages amount to?

Ans. 58251. 8s. Sid.

3. One Sessa, an Indian, having first invented the game of chess, showed it to his prince, who was so delighted
with it that he promised him any reward he should ask; upon which Sessa requested that he might be allowed
one grain of wheat for the first square on the chess board, two for the second, and so on, doubling continually,
to 64, the whole number of squares. Now, supposing a pint to contain 7680 of those grains, and one quarter to
be worth 11. 7s. 6d., it is required to compute the value of the whole sum of grains.

Ans. 644814882961.
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Chapter XII — Of Infinite Decimal Fractions

525. We have already seen, in logarithmic calculations, that Decimal Fractions are employed instead o Vulgar
Fractions: the same are also advantageously employed in other calculations. It will therefore be very necessary
to show how a vulgar fraction may be transformed into a decimal fraction; and, conversely, how we may
express the value of a decimal, by a vulgar fraction.

526. Let it be required, in general, to change the fraction %, into a decimal. As this fraction expresses the

quotient of the division of the numerator a by the denominator b, let us write, instead of a, the quantity
a.0000000, whose value does not at all differ from that of a, since it contains neither tenth parts, hundredth
parts, nor any other parts whatever. If we now divide the quantity by the number b, according to the common
rules of division, observing to put the point in the proper place, which separates the decimal and the integers,
we shall obtain the decimal sought. This is the whole of the operation, which we shall illustrate by some
examples.

Let there be given first the fraction %, and the division in decimals will assume this form:

0.5000000

2 | 1.0000000 -1
2

Hence it appears that % is equal to 0.5000000 or to 0.5; which is sufficiently evident, since this decimal

. 5 L . 1
fraction represents o which is equivalent to >

527. Let now § be the given fraction, and we shall have,

0.3333333

3 | 1.0000000 -1
3

This shows that the decimal fraction, whose value is %, cannot, strictly, ever be discontinued, but that it goes

on, ad infinitum, repeating always the number 3; which agrees with what has been already shown, Article 523;
namely, that the fractions

3 3 3 3 1

10 " 700 T 1000 T 10000 T T3

The decimal fraction which expresses the value of 318 also continued ad infinitum; for we have

0.6666666

3 | 2.0000000 -2
3

Which is also evident from what we have just said because g is the double of %

528. If i be the fraction proposed, we have
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0.2500000
20 5 25 _ 1

4 | 1.0000000 -1
4

So that 1 is equal to 0.2500000, or to 0.25: which is evidently true, since 1, or—+—=—=-,
4 10>~ 100 = 100 100 4

In like manner, we should have for the fraction %’

0.7500000

4 | 3.0000000 -3
4

So that% = (0.75: and in fact

7 5 75 3

107100 100 4
The fraction Z is changed into a decimal fraction, by making
1.2500000

4 | 5.0000000 -3
4

25 _ 5
Now,1 +—="-.
100 4

= 1.2, etc.

[S20 o))

529. In the same manner, % will be found equal to 0.2; E =04, g = 0.6; g =0.8; g =1;

When the denominator is 6, we ﬁnd% = 0.1666666, etc. which is equal to 0.666666 — 0.5: but 0.666666 =

1 4 3 1

E, and 0.5 = 1, wherefore 0.1666666 = Z——; or---=-,
3 2 3 22 6 6 6

1

VVeﬁnd,amo,E::0333333,ao::g;butgbeunna;05000000::5;amo,gzza833333::0333333 +

. 1,1 2 ,3_5
0.5, thatis to say, - + s or -+ ==~

530. When the denominator is 7, the decimal fractions become more complicated. For example, we find

% = 0.142857; however it must be observed that these six figures are continually repeated. To be convinced,

therefore, that this decimal fraction precisely expresses the value of ~» We may transform it into a geometrical

142857
1000000’

; and consequently, the sum is

L 1
the ratio being
1000000

progression, whose first term is

142857

1000000 _ 142857 _ 1
11 © 999999 7
1000000

(by multiplying both terms by 1000000) = % (See Article 520.)
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531. We may prove, in a manner still more easy, that the decimal fraction, which we have found, is exactly

1 o .
equal to > for, by substituting for its value the letter s, we have

s = 0.142857142857142857, etc.
10s = 1.42857142857142857, etc.

100s = 14.2857142857142857, etc.
1000s = 142.857142857142857, etc.
10000s = 1428.57142857142857, etc.
100000s = 14285.7142857142857, etc.

1000000s = 142857.142857142857, etc.
Subtracts = 0.142857142857142857, etc.
999999s = 142857

142857 1 . ) .
999999 — 7' Wherefore the decimal fraction, which was represented

And, dividing by 999999, we have s =
1

bys,1s=7

532. In the same manner, % may be transformed into a decimal fraction, which will be 0.28571428, etc. and

this enables us to find more easily the value of the decimal fraction which we have represented by s; because
0.28571428, etc. must be the double of it, and, consequently, = 2s. Now we have seen that

100s = 14.28571428571, etc.

So that subtracting 2s = 0.28571428571, etc.
there remains 98s = 14
wherefore s = 1#_1
98 7

We also ﬁnd% = 0.42857142857, etc. which, according to our supposition, must be equal to 3s; and we have
found that

10s = 1.42857142857, etc.

So that subtracting 3s = 0.42857142857, etc.
we have 75 =
wherefore s =

NR =

So that subtracting 3s = 0.42857142857, etc. we have 7s = 1, wherefore s = %

533. When a proposed fraction, therefore, has the denominator 7, the decimal fraction is infinite, and 6 figures
are continually repeated; the reason of which is easy to perceive, namely, that when we continue the division, a
remainder must return, sooner or later, which we have had already. Now, in this division, 6 different numbers
only can form the remainder, namely, 1, 2, 3, 4, 5, 6; so that, at least, after the sixth division, the same figures
must return; but when the denominator is such as to lead to a division without remainder, these cases do not
happen.

534. Suppose now that 8 is the denominator of the fraction proposed: we shall find the following decimal

fractions: =~ = 0.125:% = 0.25:> = 0.375:2 = 0.5:2 = 0.625:% = 0.75:~ = 0.875, etc.
8 8 8 8 8 8 8

535. If the denominator be 9, we haveé = 0.111, etc.; g = 0.222, etc.; % = (0.333, etc.
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And if the denominator be 10, we have % = 0.1;% = 0.2;% = 0.3. This is evident from the nature of

decimals, as also that — = 0.01; ~= = 0.37; 222 = 0.256; —— = 0.0024, etc.
100 100 1000 10000

536. If 11 be the denominator of the given fraction, we shall have ﬁ = 0.090909, etc. Now, suppose it were
required to find the value of this decimal fraction: let us call it s, and we shall have
s = 0.090909, etc.

10s 00.909090, etc.
100s 9.09090, etc.

If, therefore, we subtract from the last the value of s, we shall have 99s = 9, and consequently s = 91 ==

thus, also,

2 _ 0.181818, etc.
11

3 _ 0.272727,etc.
11

6 _ 0.545454,etc.
11

537. There are a great number of decimal fractions, therefore, in which one, two, or more figures constantly
recur, and which continue thus to infinity. Such fractions are curious, and we shall show how their values may
be easily found“’.

Let us first suppose that a single figure is constantly repeated, and let us represent it by a, so that s =
0.aaaaaaa. We have

10s = a.aaaaaaa,etc.

and subtracting s = 0.aaaaaaaq,etc.
we have 9s =
wherefore s =

olaQ

538. When two figures are repeated, as ab, we have s = 0.ababab. Therefore 100s = ab.ababab; and if

. . b
we subtract s from it, there remains 99s = ab; consequently, s = 2—9.

When three figures, as abc, are found repeated, we have s = 0.abcabcabc; consequently, 1000s =

. . . abc
abcabcabc; and subtracting s from it, there remains 999s = abc; wherefore s = 599° and so on.

Whenever, therefore, a decimal fraction of this kind occurs, it is easy to find its value. Let there be given, for

8

example, 0.296296: its value will be i —, by dividing both its terms by 37.
999 27

This fraction ought to give again the decimal fraction proposed; and we may easily be convinced that this is
the real result, by dividing 8 by 9, and then that quotient by 3, because 27 = 3 X 9: thus, we have

0.8888888

9 | 8.0000000

0.296296

3 | 0.8888888
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which is the decimal fraction that was proposed.

539. Suppose it were required to reduce the fraction

would be as follows:

1

0.50000000000000

1X2X3X4X5X6X7x%X8x9x%x10’

2 | 1.00000000000000

0.16666666666666

3 | 0.50000000000000

0.04166666666666

4] 0.16666666666666

0.00833333333333

5| 0.04166666666666

0.00138888888888

6 | 0.00833333333333

0.00019841269841

7 | 0.00138888888888

0.00002480158730

8 | 0.00019841269841

0.00000275573192

9 | 0.00002480158730

0.00000027557319

10 | 0.00000275573192

to a decimal. The operation
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Chapter XIII — Of the Calculation of Interest'!!

540. We are accustomed to express the interest of any principal by percents, signifying how much interest is
annually paid for the sum of 100 pounds. And it is very usual to put out the principal sum at 5 percent; that is,
on such terms, that we receive 5 pounds interest for every 100 pounds principal. Nothing therefore is more easy
than to calculate the interest for any sum; for we have only to say, according to the Rule of Three:

As 100 is to the principal proposed, so is the rate percent to the interest required. Let the principal, for
example, be 860L., its annual interest is found by this proportion:

As100: 5::860: 43.
Therefore 431. is the annual interest.

541. We shall not dwell any longer on examples of Simple Interest, but pass on immediately to the calculation
of Compound Interest; in which the chief subject of inquiry is, to what sum does a given principal amount, after
a certain number of years, the interest being annually added to the principal. In order to resolve this question,
we begin with the consideration that 100!. placed out at 5 percent, becomes, at the end of a year, a principal of
1051.: therefore let the principal be a; its amount, at the end of the year, will be found, by saying; As 100 is to
a, so is 105 to the answer; which gives

105a 2la 21 1

100 20 ~207%=at3p¢

542. So that, when we add to the original principal its twentieth part, we obtain the amount of the principal at
the end of the first year: and adding to this its twentieth part, we know the amount of the given principal at the
end of two years, and so on. It is easy, therefore, to compute the successive and annual increases of the
principal, and to continue this calculation to any length.

543. Suppose, for example, that a principal, which is at present 1000l., is put out at five percent; that the
interest is added every year to the principal; and that it were required to find its amount at any time. As this
calculation must lead to fractions, we shall employ decimals, but without carrying them farther than the
thousandth parts of a pound, since smaller parts do not at present enter into consideration.

The given principal of 1000!. will be worth

after 1 year: 10501.
52.5

after 2 years: 1102.5
55.125

after 3 years: 1157.625
57.881

after 4 years: 1215.506
60.775

after 5 years: 1276.281

which sums are formed by always adding % of the preceding principal.

544. We may continue the same method, for any number of years; but when this number is very great, the
calculation becomes long and tedious; but it may always be abridged, in the following manner:
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Let the present principal be a, and since a principal of 201. amounts to 21!. at the end of a year, the principal a

. 21 . . . 212
will amount to 2o @ at the end of a year; and the same principal will amount, the following year, to 702 =

2 3
(%) a. Also, this principal of two years will amount to (%) a, the year after: which will therefore be the

4
principal of three years; and still increasing in the same manner, the given principal will amount to (ﬁ) a at

5 100
the end of four years; to (%) a, at the end of five years; and after a century, it will amount to G—O) a; so

n
that, in general, (%) a will be the amount of this principal, after n years; and this formula will serve to

determine the amount of the principal, after any number of years.

545. The fraction %, which is used in this calculation, depends on the interest having been reckoned at 5

percent, and on % being equal to %. But if the interest were estimated at 6 percent, the principal a would

2 n
10 106 06
amount to —102 a at the end of a year; to (—100) a at the end of two years; and to (—100) a at the end of n years.

n
If the interest is only at 4 percent, the principal a will amount only to (%) a after n years.

546. When the principal a, as well as the number of years, is given, it is easy to resolve these formulas by
n
logarithms. For if the question be according to our first supposition, we shall take the logarithm of (%) a,

n n n
which is = log (%) + log a; because the given formula is the product of (%) and a. Also, as (%) is a

n
power, we shall have log (%) = nlog(%): so that the logarithm of the amount required is n log(%) +loga;

and farther, the logarithm of the fraction % = log.21 - log. 20.

547. Let now the principal be 10001. and let it be required to find how much this principal will amount to at the
end of 100 years, reckoning the interest at 5 percent.

Here we have n = 100; and, consequently, the logarithm of the amount required will be 10010g%+

log 1000, which is calculated thus:

log.21= 1.3222193
subtracting log.20 = 1.3010300
log.(21/20) = 0.0211893
multiplying by 100

100 log. (21/20) = 2.1189300
adding log.1000 3.0000000
gives 5.1189300

which is the logarithm of the principal required.

We perceive, from the characteristic of this logarithm, that the principal required will be a number consisting
of six figures, and it is found to be 1315011.

548. Again, suppose a principal of 34521. were put out at 6 percent, what would it amount to at the end of 64
years?
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We have here a = 3452, and n = 64. Wherefore the logarithm of the amount sought is 64 log.§+
log. 3452, which is calculated thus:

log.53 = 1.7242759
subtracting log.50 = 1.6989700
log.(53/50) = 0.0253059
multiplying by 64

64 log.(53/50) = 1.6195776
adding log.3452 3.5380708
Gives 5.1576484

And taking the number of this logarithm, we find the amount required equal to 143763l.

549. When the number of years is very great, as it is required to multiply this number by the logarithm of a
fraction, a considerable error might arise from the logarithms in the Tables not being calculated beyond 7
figures of decimals; for which reason it will be necessary to employ logarithms carried to a greater number of
figures, as in the following example.

A principal of 1l. being placed at 5 percent, compound interest, for 500 years, it is required to find to what
sum this principal will amount, at the end of that period.

We have here a = 1 and n = 500; consequently, the logarithm of the principal sought is equal to

500 log% + log 1, which produces this calculation:

log.21= 1.322219294733919
subtracting log.20 =  1.301029995663981
log.(21/20) = 0.021189299069938
multiplying by 500

500 log.(21/20) = 10.594649534969000
adding log.1  0.000000000000000

Gives 10.594649534969000

the logarithm of the amount required; which will be found equal to 39323200000!.

550. If we not only add the interest annually to the principal, but also increase it every year by a new sum b, the
original principal, which we call a, would increase each year in the following manner:

21

after 1 year: 0% +b

(B arBpis
after 2 years: 20 a 20

21y’ 21\ 21
after 3 years: (_) a+ (_) b+ %b +b

20 20
after 4 years: (21)4 4 (21)3 b+ (21)2 b+ 21 b+b
20) 7 \20 20 20

n—-1 n-2 2

B ar (@) o (E) bt () brins
after n years: 20 a 20 20 20 20
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. . . . . (21\" .
This amount evidently consists of two parts, of which the first is (E) a; and the other, taken inversely, forms

. 21 212 213 21\t . S . .
the series b + Eb + (5) b + (5) b+-+ (%) b; which series is evidently a geometrical progression,

n-1

the ratio of which is equal to %, and we shall therefore find its sum, by first multiplying the last term (2—(1)) b
21 . . 21\" . . 21\"
by the exponent 2 which gives (5) b. Then, subtracting the first term b, there remains (5) b — b; and,

n
lastly, dividing by the exponent minus 1, that is to say by %, we shall find the sum required to be 20 (2—(1)) -

n n n
20b; therefore the amount sought is (%) a+ 20 (%) b —20b = (%) X (a + 20b) — 20b .

n
551. The resolution of this formula requires us to calculate, separately, its first term (z—;) X (a + 20b), which

is nlo g.% + log.(a + 20b); for the number which answers to this logarithm in the Tables will be the first

term; and if from this we subtract 20b, we shall have the amount sought.

552. A person has a principal of 1000!l. placed out at five percent, compound interest, to which he adds
annually 100!. beside the interest: what will be the amount of this principal at the end of twenty-five years?

We have herea = 1000; b = 100; n = 25; the operation is therefore as follows:

log.(21/20)= 0.021189299
multiplying by 25
251og.(21/20) = 0.5297324750
log.(a + 20b) = 3.4771213135
And the sum= 4.0068537885

So that the first part, or the number which answers to this logarithm, is 10159.1, and if we subtract 20b =
2000, we find that the principal in question, after twenty-five years, will amount to 8159.11.

553. Since then this principal of 1000 is always increasing, and after twenty-five years amounts to 8159 %l.

we may require, in how many years it will amount to 10000001.
Let n be the number of years required: and, since a = 1000, b = 100, the principal will be, at the end of n

n
years, (%) % (3000) — 2000, which sum must make 1000000; from it therefore results this equation;

n

21
3000 x (%) — 2000 = 1000000

And adding 2000 to both sides, we have

n

21
3000 x (—) = 1002000
20

n
Then dividing both sides by 3000, we have (%) = 334.
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Taking the logarithms, nlo g.% = log.334; and dividing by log. (%), we obtain n = l(;g' 32314. Now,
Og%
log.334 = 2.5237465, and log. (%) = 0.0211893; therefore n = %; and, lastly, if we multiply the

two terms of this fraction by 10000000, we shall have n = 25237465
0.0211893

the time, in which the principal of 1000 will be increased to 1000000!.

= 119 years, 1 month, 7 days; and this is

554. But if we supposed that a person, instead of annually increasing his principal by a certain fixed sum,
diminished it, by spending a certain sum every year, we should have the following gradations, as the values of
that principal a, year after year, supposing it put out at 5 percent, compound interest, and representing the sum
which is annually taken from it by b:

21
after 1 year: 0%~ b
21\ 21
after 2 years: (%) a-— %b —b

21\° 21\ 21
after 3 years: (2—) a-— (—) b — %b -b

n-1 n-2

21\ 21 21 21\ 21
after n years: (2—) a—(%) b—(%) b—---—(%) b—%b—b

n
555. This principal consists of two parts, one of which is (%) a, and the other, which must be subtracted from

it, taking the terms inversely, forms the following geometrical progression:

n-1

R T o e
20 20 20 20

n
Now we have already found (Article 550) that the sum of this progression is 20 (%) b — 20b; if, therefore,
n
we subtract this quantity from (%) a, we shall have for the principal required, after n years =

21\

(55) * (a—200) + 200

556. We might have deduced this formula immediately from that of Article 550. For, in the same manner as we
annually added the sum b, in the former supposition; so, in the present, we subtract the same sum b every year.
We have therefore only to put in the former formula, — b everywhere, instead of + b. But it must here be
particularly remarked that if 20b is greater than a, the first part becomes negative, and, consequently, the
principal will continually diminish. This will be easily perceived; for if we annually take away from the
principal more than is added to it by the interest, it is evident that this principal must continually become less,
and at last it will be absolutely reduced to nothing; as will appear from the following example:

557. A person puts out a principal of 1000001. at 5 percent interest; but he spends annually 6000!.; which is
more than the interest of his principal, the latter being only 5000!.; consequently, the principal will continually
diminish; and it is required to determine, in what time it will be all spent.
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Let us suppose the number of years to be n, and since a = 100000, and b = 6000, we know that after n

n n
years the amount of the principal will be —20000 (%) + 120000, or 120000 — 20000 (%) , Where the
factor, —20000, is the result of a — 20b; or 100000 — 120000.

n n
So that the principal will become nothing, when 20000 (%) amounts to 120000; or when 20000 (2—(1)) =

n
120000. Now, dividing both sides by 20000, we have (%) = 6; and taking the logarithm, we have

log. 6 _0.7781513

21 C g 21
n log.g = log. 6; then dividing by log. (%), we have n = @, orn =y and, consequently,

n = 36 years, 8 months, 22 days; at the end of which time, no part of the principal will remain.

558. It will here be proper also to show how, from the same principles, we may calculate interest for times

n
shorter than whole years. For this purpose, we make use of the formula (2—;) a already found, which expresses

the amount of a principal, at 5 percent, compound interest, at the end of n years; for if the time be less than a
year, the exponent n becomes a fraction, and the calculation is performed by logarithms as before. If, for

example, the amount of a principal at the end of one day were required, we should make n = ﬁ; if after two

2
days, n = —, and so on.
365

559. Suppose the amount of 1000001!. for 8 days were required, the interest being at 5 percent.

8

21

Here a = 100000, and n = % consequently, the amount sought is (5)E x 100000; the logarithm of

5,

8
which quantity is log (%)’ +10g 10000 = ——log > +10g 100000. Now, log= = 0.0211893, which,

3:%5, gives 0.0004644, to which adding log.100000 = 5, the sum is 5.0004644. The natural

number of this logarithm is found to be 100107. So that, subtracting the principal, 100000 from this amount,
the interest, for eight days, is 1071.

multiplied by

560. To this subject belongs also the calculation of the present value of a sum of money, which is payable only
after a term of years. For as 20L., in ready money, amounts to 21[. in a year; so, reciprocally, a sum of 211.,
which cannot be received till the end of one year, is really worth only 201. If, therefore, we express, by a, a sum

whose payment is due at the end of a year, the present value of this sum is (%) a; and therefore to find the
present worth of a principal a, payable a year hence, we must multiply it by 2; to find its value two years
2
before the time of payment, we multiply it by (%) a; and in general, its value, n years before the time of
n
payment, will be expressed by (2) a.
561. Suppose, for example, a man has to receive for five successive years, an annual rent of 100![. and that he

wishes to give it up for ready money, the interest being at 5 percent; it is required to find how much he is to
receive.

Here the calculations may be made in the following manner. For 100!. due,
after 1 year: He receives 95.239

after 2 years: 90.704
after 3 years: 86.385
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after 4 years: 82.272
after 5 years: 78.355
Sum of the 5 terms = 432.955

So that the possessor of the rent can claim, in ready money, only 432.955l.

562. If such a rent were to last a greater number of years, the calculation, in the manner we have performed it,
would become very tedious; but in that case it may be facilitated as follows:

Let the annual rent be a, which commencing at present, and lasting n years, will be actually worth

+(2o) +(2o)2 +(20)3 +(20)4 N +(20)”
aT\21)%7\31) 27 \31) 2T \51) ¢ 21) ¢

This is a geometrical progression, and the whole is reduced to finding its sum. We therefore multiply the last

n+1
term by the exponent, the product of which is (g) a; then, substracting the first term, there remains

1

7 O which amounts to the same,

n+1
(%) a — a; and, lastly, dividing by the exponent minus 1, that is, by —

multiplying by - 21, we shall have the sum required,
n+1 2 n+1

—21(5) a+ 21a or 21a—21(ﬁ) a

and the value of the second term, which it is required to subtract, is easily calculated by logarithms.
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Questions for Practice

1. What will 3751. 10s. amount to in 9 years at 6 percent, compound interest?
Ans. 6341.8s.
2. What is the interest of 1l. for one day, at the rate of 5 percent?
Ans. 0.0001369863 parts of a pound.
3. What will 3651. amount to in 875 days, at the rate of 4 percent?
Ans. 400L.

4. What will 256!. 10s. amount to in seven 7 years, at the rate of 6 percent, compound interest?
Ans. 3851.13s.7d.

5. What will 5631. amount to in 7 years and 99 days, at the rate of 6 percent compound interest?

Ans. 8601.

6. What is the amount of 4001., at the end of 3 % years, at 6 percent, compound interest?

Ans. 4901.115.7~ d.
7. What will 3201. 10s. amount to in four years, at 5 percent, compound interest?

Ans. 3891 115.4~d.
8. What will 650I. amount to in 5 years, at 5 percent compound interest?

Ans. 8291.115.7 5 d.

9. What will 5501. 10s. amount to in 3 years and 6 months, at 6 percent, compound interest?

Ans. 6751.6s.5d.

10. What will 15.. 10s. amount to in 9 years, at 3 % percent, compound interest?

Ans. 211, 25.4§d.

11. What is the amount of 5501. at 4 percent, in seven months?
Ans. 5621.16s.8d.
12. What is the amount of 1001. at 7.37 percent, in nine years and nine months?

Ans. 2001.
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13. If a principal x be put out at compound interest for x years, at x percent, required the time in which it will
gain X.

Ans. 8.49824 years.

14. What sum, in ready money, is equivalent to 600l. due nine months hence, reckoning the interest at 5
percent?

Ans. 5781. 6s. 3§d.

15. What sum, in ready money, is equivalent to an annuity of 70l. to commence 6 years hence, and then to
continue for 21 years at 5 percent?

Ans. 6691, 145.2 d.

16. A man puts out a sum of money, at 6 percent, to continue 40 years; and then both principal and interest are
to sink. What is that percent to continue forever?

Ans. 52 percent.
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Section IV — Of Algebraic Equations, and the Resolution of them
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Chapter I - Of the Solution of Problems in general

563. The principal object of Algebra, as well as of all the other branches of Mathematics, is to determine the
value of quantities that were before unknown; and this is obtained by considering attentively the conditions
given, which are always expressed in known numbers. For this reason, Algebra has been defined, The science
which teaches how to determine unknown quantities by means of those that are known.

564. The above definition agrees with all that has been hitherto laid down: for we have always seen that the
knowledge of certain quantities leads to that of other quantities, which before might have been considered as
unknown.

Of this, Addition will readily furnish an example; for, in order to find the sum of two or more given numbers,
we had to seek for an unknown number, which should be equal to those known numbers taken together. In
Subtraction, we sought for a number which should be equal to the difference of two known numbers. A
multitude of other examples are presented by multiplication, division, the involution of powers, and the
extraction of roots; the question being always reduced to finding, by means of known quantities, other
quantities which are unknown.

565. In the last section, also, different questions were resolved, in which it was required to determine a number
that could not be deduced from the knowledge of other given numbers, except under certain conditions. All
those questions were reduced to finding, by the aid of some given numbers, a new number, which should have a
certain connection with them; and this connection was determined by certain conditions, or properties, which
were to agree with the quantity sought.

566. In Algebra, when we have a question to resolve, we represent the number sought by one of the last letters
of the alphabet, and then consider in what manner the given conditions can form an equality between two
quantities. This equality is represented by a kind of formula, called an equation, which enables us finally to
determine the value of the number sought, and consequently to resolve the question. Sometimes several
numbers are sought; but they are found in the same manner by equations.

567. Let us endeavour to explain this farther by an example. Suppose the following question, or problem, was
proposed:

Twenty persons, men and women, dine at a tavern; the share of the reckoning for one man is 8 shillings, for
one woman 7 shillings, and the whole reckoning amounts to 7..5s. Required the number of men and women
separately?

In order to resolve this question, let us suppose that the number of men is = x; and, considering this number
as known, we shall proceed in the same manner as if we wished to try whether it corresponded with the
conditions of the question. Now, the number of men being = x, and the men and women making together
twenty persons, it is easy to determine the number of the women, having only to subtract that of the men from
20, that is to say, the number of women must be 20 — x.

But each man spends 8 shillings; therefore x number of men must spend 8x shillings. And since each woman
spends 7 shillings, 20 — x women must spend 140 — 7x shillings. So that adding together 8x and 140 — 7x,
we see that the whole 20 persons must spend 140 + x shillings. Now, we know already how much they have
spent; namely, 71.5s., or 145s.; there must be an equality, therefore, between 140 + x and 145; that is to say,
we have the equation 140 + x = 145, and thence we easily deduce x = 5, and consequently 20 — x =
20 — 5 = 15; so that the company consisted of 5 men, and 15 women.
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568. Again, suppose twenty persons, men and women, go to a tavern; the men spend 24 shillings, and the
women as much: but it is found that the men have spent 1 shilling each more than the women. Required the
number of men and women separately?

Let the number of men be represented by x. Then the women will be 20 — x.

Now, the x men having spent 24 shillings, the share of each man is 274. The 20 — x women having also spent

24 shillings, the share of each woman is 2;—:{.

But we know that the share of each woman is one shilling less than that of each man; if, therefore, we subtract
1 from the share of a man, we must obtain that of a woman; and consequently 2;4 —-1= zs_fx‘ This, therefore, is
the equation, from which we are to deduce the value of x. This value is not found with the same ease as in the

preceding question; but we shall afterwards see that x = 8, which value answers to the equation; for 2?4 -1=

i—: includes the equality 2 = 2.

569. It is evident therefore how essential it is, in all problems, to consider the circumstances of the question
attentively, in order to deduce from it an equation that shall express by letters the numbers sought, or unknown.
After that, the whole art consists in resolving those equations, or deriving from them the values of the unknown
numbers; and this shall be the subject of the present section.

570. We must remark, in the first place, the diversity which subsists among the questions themselves. In some,
we seek only for one unknown quantity; in others, we have to find two, or more; and, it is to be observed, with
regard to this last case, that in order to determine them all, we must deduce from the circumstances, or the
conditions of the problem, as many equations as there are unknown quantities.

571. It must have already been perceived that an equation consists of two parts separated by the sign of
equality, =, to show that those two quantities are equal to one another; and we are often obliged to perform a
great number of transformations on those two parts, in order to deduce from them the value of the unknown
quantity: but these transformations must be all founded on the following principles; namely, That two equal
quantities remain equal, whether we add to them, or subtract from them, equal quantities; whether we multiply
them, or divide them, by the same number; whether we raise them both to the same power, or extract their roots
of the same degree; or lastly, whether we take the logarithms of those quantities, as wo have already done in the
preceding section.

572. The equations which are most easily resolved, are those in which the unknown quantity does not exceed
the first power, after the terms of the equation have been properly arranged; and these are called simple
equations, or equations of the first degree. But if, after having reduced an equation, we find in it the square, or
the second power, of the unknown quantity, it is called an equation of the second degree, which is more
difficult to resolve. Equations of the third degree are those which contain the cube of the unknown quantity,
and so on. We shall treat of all these in the present section.
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Chapter II — Of the Resolution of Simple Equations, or Equations of the First
Degree

573. When the number sought, or the unknown quantity, is represented by the letter x, and the equation we
have obtained is such that one side contains only that x, and the other simply a known number, as, for example,
x = 25, the value of x is already known. We must always endeavour, therefore, to arrive at such a form,
however complicated the equation may be when first obtained: and, in the course of this section, the rules shall
be given, and explained, which serve to facilitate these reductions.

574. Let us begin with the simplest cases, and suppose, first, that we have arrived at the equation x + 9 = 16.
Here we see immediately that x = 7 and, in general, if we have found x + a = b, where a and b express

any known numbers, we have only to subtract a from both sides, to obtain the equation x = b - a, which
indicates the value of x.

575. If we have the equation x - a = b, we must add a to both sides, and shall obtain the value of x = b +
a. We must proceed in the same manner, if the equation have this form, x — a = a? + 1: for we shall
immediately findx = a? + a + 1.

In the equation x — 8a = 20 — 6a, we find

x = 20— 6a + 8a or x = 20 + 2a
And in this, x + 6a = 20 + 3a, we have

x =20+ 3a—6a or x = 20— 3a

576. If the original equation have this form, x — a + b = ¢, we may begin by adding a to both sides, which
will give x + b = ¢ + a; and then subtracting b from both sides, we shall find x = ¢ + a — b. But we

might also add + a — b at once to both sides; and thus obtain immediately x = ¢ + a- b.
So likewise in the following examples:

Ifx — 2a + 3b = 0, wehave x = 2a — 3b.
Ifx—3a + 2b = 25 + a + 2b, wehavex = 25 + 4a.
Ifx— 9 + 6a = 25 + 2a,wehave x = 34 — 4a.

577. When the given equation has the form ax = b, we only divide the two sides by a, to obtain x = S. But if

the equation has the form ax + b — ¢ = d, we must first make the terms that accompany ax vanish, by

adding to both sides — b + c¢; and then dividing the new equation ax = d — b + ¢ by a, we shall have
d-b+c

a

The same value of x would have been found by subtracting + b — ¢ from the given equation; that is, we
d—b+c

should have had, in the same form, ax =d — b 4+ c,and x = . Hence,

If2x + 5 = 17, wehave 2x = 12,and x = 6.
If3x— 8 = 7, wehave 3x = 15,andx = 5.
If4x — 5— 3a = 15 + 9a, we have 4x = 20 + 12a, and consequently x = 5 + 3a.
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578. When the first equation has the forrn% = b, we multiply both sides by a, in order to have x = ab.

But if it is§+b — ¢ = d, we must first make% = d — b + c; after which we find
x=(d—-b+c)a=ad—ab+ac

Let%x—3=4,then%x=7, and x = 14.
Let%x—1+2a=3+a,then§x=4—a,andx = 12 — 3a.

Let——1=aqa,then—=a+1,andx = a%- 1.
a-1 a-1

579. When we have arrived at such an equation as %x = c,we first multiply by b, in order to have ax = bc, and
then dividing by a, we find x = =

If 2 — ¢ = d, we begin by giving the equation this form % = d + c; after which we obtain the value of

b
ax = bd + bc, and then that of x = bd:bc.

Let%x—4= 1, then%x =5, and 2x = 15; whence x =§or 7%.
If%x+%=5,wehave%x=5—%=§;when063x = 18,and x = 6.

580. Let us now consider a case, which may frequently occur; that is, when two or more terms contain the letter
x, either on one side of the equation, or on both.

If those terms are all on the same side, as in the equation x +%x + 5=11, we have x + %x = 6; or

3x = 12; and lastly, x = 4.

Let x + %x + éx = 44, be an equation, in which the value of x is required. If we first multiply by 3, we have

4x + %x = 132; then multiplying by 2, we have 11x = 264; wherefore x = 24. We might have proceeded
in a more concise manner, by beginning with the reduction of the three terms which contain x to the single term

%x; and then dividing the equation %x = 44 by 11. This would have given %x =4, and x = 24, as before.

Let%x - %x + %x = 1. We shall have, by reduction, %x =1,5x = 12,and x = 2%.

And, generally, let ax — bx 4+ cx = d; which is the same as (a — b + ¢)x = d, and, by division, we

derive x = .
a—-b+c

581. When there are terms containing x on both sides of the equation, we begin by making such terms vanish
from that side from which it is most easily expunged; that is to say, in which there are the fewest terms so

involved.

If we have, for example, the equation 3x + 2 = x + 10, we must first subtract x from both sides, which
gives 2x + 2 = 10; wherefore 2x = 8,and x = 4.

Letx + 4 = 20 — x; here it is evident that 2x + 4 = 20; and consequently 2x = 16,and x = 8.
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Letx + 8 = 32 — 3x, this givesus 4x + 8 = 32; or 4x = 24, whencex = 6.

Let 15— x = 20 — 2x, here we shall have 15 + x = 20,and x = 5.

Letl +x =5 —%x; this becomes 1 + gx =5, or%x = 4; therefore 3x = 8; and lastly, x = g = 2%,

1 1 1

1 1 . .1 1,1 . .
If ST X =5 % we must add 3% which gives =3 + 5 subtracting §7 and transposing the terms, there

remains %x = ﬁ; then multiplying by 12, we obtain x = 2.

2

If1i-
2 3

x = % + %x, we add gx, which gives 1% = §+ %x; then subtracting i, and transposing, we have
%x =1 %, whence we deduce x = 1 1—14 = E by multiplying by 6 and dividing by 7.
582. If we have an equation in which the unknown number x is a denominator, we must make the fraction

vanish by multiplying the whole equation by that denominator.
100 _
X

becomes 100 = 20x; lastly, dividing by 20, we find x = 5.

Suppose that we have found 8 = 12, then, adding 8, we have 1;& = 20; and multiplying by x, it

Let now % = 7; here multiplying by x - 1, we have 5x + 3 = 7x — 7; and subtracting 5x, there remains

3 = 2x — 7;then adding 7, we have 2x = 10; whence x = 5.

583. Sometimes, also, radical signs are found in equations of the first degree. For example, A number x below
100 is required such that the square root of 100 — x may be equal to 8; or V100 — x = 8. The square of both
sides will give 100 — x = 64, and adding x, we have 100 = 64 + x; whence we obtain x = 100 — 64 =
36.

Or, since 100 — x = 64, we might have subtracted 100 from both sides; which would have given —x =
— 36; or, multiplying by — 1, x = 36.

584. Lastly, the unknown number x is sometimes found as an exponent, of which we have already seen some
examples; and, in this case, we must have recourse to logarithms.

Thus, when we have 2* = 512, we take the logarithms of both sides; whence we obtain x log.2 = log.512;
log 512 2.7092700 _ 270927
log2 * 0.3010300 30103

and dividing by log. 2, we find x = The Tables then give, x =
Let 5 X 32* — 100 = 305; we add 100, which gives 5 X 32* = 405; dividing by 5, we have 3%* = 81; and
log 81 log 81
0 =
2log3 log9

taking the logarithms, 2x log.3 = log. 81, and dividing by 2 log. 3, we have x = ; whence

19084850 _ 19084850
T 0.9542425 9542425
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

.Ifa—§=c,thenwi11x=i?

Questions for Practice

Ifx— 4 + 6 = 8, thenwillx = 6?
If4x — 8 = 3x + 20, thenwill x = 287
Ufax = ab— a,thenwillx = b— 1?
Af2x + 4 = 16, thenwill x = 6?

Ifax + 2ba = 3c? then will x = 37‘2 —2b?

If£=5+43, thenwillx = 16?

5=

.Ifz?x—2=6+4,thenwi112x— 6 = 189

If5x — 15 = 2x + 6,thenwillx = 7?
(If40 — 6x — 16 = 120 — 14x, then will x = 122
If £—24+Z =10, then will x = 24?

2 3 4

71 then will x = 2322
2 4

If /§x+5=7, then will x = 62

x-3

If=4+Z=20-
2 3

2 2 — Z—az H — lr)

Ifx +va*+x — then will x a\/;.

If 3ax + 2 — 3 = bx — a, then will x = 229
2 6a—2b

IfV12 4+ x = 2 + Vx, then will x = 42

2
Ify+a?+y? =J%, then will y =§a\/§?
If 224222 = 16 — 222 then willy = 13?
2a . a
IfVx + Va+x = e then will x —5‘?
1fvaZ + 7 = Vb + 7, then will x = 222

2
Ify =va?+ Vb2+x2—a,thenwillx=:—a—a?



Leonard Euler

22 1f 222 = 22 thenwill x = 12?
3x—4 5x—6

23 1F 25 = 22X thenwill x = 8?
xX—2 x-3

24. 1= = 27 thenwill x = 67
2x+3 4x-5

x?-12 _ x?-4

25.If . " ,thenwill x = 6?

26. If 615x — 7x3 = 48x, then will x = 9?

179
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Chapter III — Of the Solution of Questions relating to the preceding Chapter

58S. Question 1. To divide 7 into two such parts that the greater may exceed the less by 3.

Let the greater part be x, then the less willbe 7 — x;sothatx = 7— x + 3,orx = 10 — x. Adding x, we
have 2x = 10; and dividing by 2, x = 5.

The two parts therefore are 5 and 2.
Question 2. It is required to divide a into two parts, so that the greater may exceed the less by b.

Let the greater part be x, then the other will be a — x; so that x = a — x + b. Adding x, we have 2x =
a+b
.

a + b; and dividing by 2, x =

Another method of solution. Let the greater part = x; which as it exceeds the less by b, it is evident that this is
less than the other by b, and therefore must be = x — b. Now, these two parts, taken together, ought to make

a; so that 2x — b = a; adding b, we have 2x = a + b, wherefore x = asz’ which is the value of the

a+b 2b a-b
——, Or .
2 2

greater part; and that or the less will be # — b, or

586. Question 3. A father leaves 1600 pounds to be divided among his three sons in the following manner: the
eldest is to have 200 pounds more than the second, and the second 100 pounds more than the youngest.
Required the share of each.

Let the share of the third son be x.
Then the second’s will be x + 100; and
The first son’s share x + 300.

Now, these three sums together make 16001.; we have, therefore,

3x + 400 = 1600
3x = 1200
and x = 400

The share of the youngest is 400!. That of the second is 5001. That of the eldest is 700I.

587. Question 4. A father leaves to his four sons 8600!. and, according to the will, the share of the eldest is to
be double that of the second, minus 100..; the second is to receive three times as much as the third, minus
200!.; and the third is to receive four times as much as the fourth, minus 300/. What are the respective portions
of these four sons?

Call the youngest son’s share x
Then the third son’s is 4x — 300
The second son’s is 12x — 1100
And the eldest’s 24x — 2300

Now, the sum of these four shares must make 8600.. We have, therefore, 41x — 3700 = 8600, or 41x =
12300, and x = 300.
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Therefore the youngest’s share is 3001. The third son’s 900L. The second’s 2500!. The eldest’s 4900..

588. Question 5. A man leaves 11000 crowns to be divided between his widow, two sons, and three daughters.
He intends that the mother should receive twice the share of a son, and that each son should receive twice as
much as a daughter. Required how much each of them is to receive.

Suppose the share of each daughter to be x
Then each son’s is consequently 2x
And the widow’s 4x

The whole inheritance, therefore, is 3x + 4x + 4x;or 11x = 11000, and, consequently, x = 1000.

Each daughter, therefore, is to receive 1000 crowns; So that the three receive in all 3000. Each son receives
2000; So that the two sons receive 4000. And the mother receives 4000. The sum is 11000 crowns.

589. Question 6. A father intends by his will that his three sons should share his property in the following
manner: the eldest is to receive 1000 crowns less than half the whole fortune; the second is to receive 800
crowns less than the third of the whole; and the third is to have 600 crowns less than the fourth of the whole.
Required the sum of the whole fortune, and the portion of each son.

Let the fortune be expressed by x:
The share of the first son is %x —1000.
That of the second %x —800.
That of the third § x — 600,

So that the three sons receive in all %x +§x +ix — 2400, and this sum must be equal to x. We have,
therefore, the equation gx — 2400 = x; and subtracting x, there remains %x — 2400 = 0; then adding 2400,
we have %x = 2400; and, lastly, multiplying by 12, we obtain x = 28800.

The fortune, therefore, consists of 28800 crowns; of which the eldest son receives 13400 crowns, the second
8800, and the youngest 6600 crowns.

590. Question 7. A father leaves four sons, who share his property in the following manner: the first takes the
half of the fortune, minus 3000!.; the second takes the third, minus 1000L.; the third takes exactly the fourth of
the property; and the fourth takes 600!., and the fifth part of the property. What was the whole fortune, and how
much did each son receive?

Let the whole fortune be represented by x:
Then the eldest son will have %x —3000.
The second gx —1000.

The third .
The youngest %x + 600.

And the four will have received in all %x + éx + %x + %x — 3400, which must be equal to x.
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Whence results the equation %x — 3400 = x; then subtracting x, we have %x — 3400 = 0; adding 3400,
we obtain %x = 3400; then dividing by 17, we have %x = 200; and multiplying by 60, gives x = 12000.

The fortune therefore consisted of 120001. The first son received 3000, the second 3000, the third 3000, and
the fourth 3000.

591. Question 8. To find a number such that if we add to it its half, the sum exceeds 60 by as much as the
number itself is less than 65.

Let the number be represented by x:

Then x +%x —60=65—x, or %x — 60 = 65 — x. Now, by adding x, we have %x — 60 = 65; adding 60,

we have gx = 125; dividing by 5, gives %x = 25, and multiplying by 2, we have x = 50. Consequently, the

number sought is 50.

592. Question 9. To divide 32 into two such parts that if the less be divided by 6 and the greater by 5, the two
quotients taken together may make 6.

Let the less of the two parts sought be x; then the greater will be 32 — x. The first, divided by 6, gives E; and

X 32—-x

the second, divided by 5, gives R’ZT_X Now -t

= 6: so that multiplying by 5, we have zx +32—-x =30,
or —%x + 32 = 30; adding %x, we have 32 = 30 +§x; subtracting 30, there remains 2 = %x; and lastly,

multiplying by 6, we have x = 12.
So that the less part is 12, and the greater part is 20.

593. Question 10. To find such a number that if multiplied by 5, the product shall be as much less than 40 as
the number itself is less than 12.

Let the number be x; which is less than 12 by 12 — x; then taking the number x five times, we have 5x,

which is less than 40 by 40 - 5x, and this quantity must be equal to 12 — x.

We have, therefore, 40 — 5x = 12 — x. Adding 5x, we have 40 = 12 + 4x; and subtracting 12, we
obtain 28 = 4x; lastly, dividing by 4, we have x = 7, the number sought.

594. Question 11. To divide 25 into two such parts that the greater may be equal to 49 times the less.

Let the less part be x, then the greater will be 25 — x; and the latter divided by the former ought to give the
25—x

quotient 49: we have therefore = 49. Multiplying by x, we have 25 — x = 49x; adding x, we have

1

25 = 50x; and dividing by 50, gives x = 2

The less of the two numbers is %, and the greater is 24 %; dividing therefore the latter by %, or multiplying by 2,

we obtain 49.

595. Question 12. To divide 48 into nine parts, so that every part may be always % greater than the part which

precedes fit.
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Let the first, or least part be x, then the second will be x + %, the third x + 1, etc.

Now, these parts form an arithmetical progression, whose first term is x; therefore the ninth and last term will
be x + 4. Adding those two terms together, we have 2x + 4; multiplying this quantity by the number of
terms, or by 9, we have 18x + 36; and dividing this product by 2, we obtain the sum of all the nine parts
= 9x + 18; which ought to be equal to 48. We have, therefore, 9x + 18 = 48; subtracting 18, there

remains 9x = 30; and dividing by 9, we have x = 3 §
The first part, therefore, is 3 é, and the nine parts will succeed in the following order:

31+35+4-1+4-5+51+55+61+65+71
3 6 3 6 3 6 3 6 3

Which together make 48.

596. Question 13. To find an arithmetical progression, whose first term is 5, the last term 10, and the entire sum
60.

Here we know neither the difference nor the number of terms; but we know that the first and the last term
would enable us to express the sum of the progression, provided only the number of terms were given. We shall

therefore suppose this number to be x, and express the sum of the progression by 1579: We know also that this
sum is 60; so that% = 60; or%x =4,andx = 8.
Now, since the number of terms is 8, if we suppose the difference to be z, we have only to seek for the eighth

term upon this supposition, and to make it equal to 10. The second term is 5 + z, the third is 5 + 2z and the
eighthis 5 + 7z, so that

5+ 7z =10
7z =5

5

and z = =.

7

) ) .5 . )
The difference of the progression, therefore, is > and the number of terms is 8; consequently, the progression
is

5+55+63+71+76+84+92+10
7 7 7 7 7 7

the sum of which is 60.

597. Question 14. To find such a number that if 1 be subtracted from its double, and the remainder be doubled,
from which if 2 be subtracted, and the remainder divided by 4, the number resulting from these operations shall
be 1 less than the number sought.

Suppose this number to be x; the double is 2x; subtracting 1, there remains 2x — 1; doubling this, we have
4x — 2; subtracting 2, there remains 4x — 4; dividing by 4, we have x — 1; and this must be 1 less than x; so
that

x—1=x-1
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But this is what is called an identical equation; and shows that x is indeterminate; or that any number
whatever may be substituted for it.

598. Question 15. 1 bought some ells of cloth at the rate of 7 crowns for 5 ells, which I sold again at the rate of
11 crowns for 7 ells, and I gained 100 crowns by the transaction. How much cloth was there?

Supposing the number of ells to be x, we must first see how much the cloth cost; which is found by the
following proportion:

As5: x::7: 7?xtheprice of the ells

This being the expenditure; let us now see the receipt: in order to which, we must make the following
proportion:

E. C. E.

11
As7 |11 | x: 7x crowns

and this receipt ought to exceed the expenditure by 100 crowns. We have, therefore, this equation:

W T 4100
7 X~ 5%

Subtracting gx, there remains %x = 100; therefore 6x = 3500, and x = 583 %

There were, therefore, 583§ bought for 816% crowns, and sold again for 916§ crowns; by which means the

profit was 100 crowns.

599. Question 16. A person buys 12 pieces of cloth for 140L.; of which two are white, three are black, and
seven are blue: also, a piece of the black cloth costs two pounds more than a piece of the white, and a piece of
the blue cloth costs three pounds more than a piece of the black. Required the price of each kind.

Let the price of a white piece be x pounds; then the two pieces of this kind will cost 2x; also, a black piece
costing x + 2, the three pieces of this color will cost 3x + 6; and lastly, as a blue piece costs x + 5, the
seven blue pieces will cost 7x + 35: so that the twelve pieces amount in all to 12x + 41.

Now, the known price of these twelve pieces is 140 pounds; we have, therefore, 12x + 41 = 140, and
12x = 99; wherefore x = 8%. So that

A piece of white cloth costs 8 i L.
A piece of black cloth costs 10 i L.

A piece of blue cloth costs 13 i L.

600. Question 17. A man having bought some nutmegs, says that three of them cost as much more than one
penny, as four cost him more than two pence halfpenny. Required the price of the nutmegs.

Let x be the excess of the price of three nutmegs above one penny, or four farthings. Now, if three nutmegs
cost x + 4 farthings, four will cost, by the condition of the question, x + 10 farthings; but the price of three
nutmegs gives that of four in another way, namely, by the Rule of Three. Thus,
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4x + 16
3:x+4::4:T

4x+16
3

So that

=x+ 10; or, 4x + 16 = 3x + 30; therefore x + 16 = 30, and x = 14.

Three nutmegs, therefore, cost 4% d., and four cost 6d.: wherefore each costs 1 % d.

601. Question 18. A certain person has two silver cups, and only one cover for both. The first cup weighs 12
ounces; and if the cover be put on it, it weighs twice as much as the other cup: but when the other cup has the
cover, it weighs three times as much as the first. Required the weight of the second cup, and that of the cover.

Suppose the weight of the cover to be x ounces; then the first cup being covered, it will weigh x + 12; this

weight being double that of the second, the second cup must weigh %x + 6; and, with the cover, it will weigh
x + %x + 6, or %x + 6; which weight ought to be the triple of 12; that is, three times the weight of the first cup.

We shall therefore have the equation Sx + 6 =36, or Sx = 30; so that %x =10and x = 20.

The cover, therefore, weighs 20 ounces, and the second cup weighs 16 ounces.

602. Question 19. A banker has two kinds of change: there must be a pieces of the first to make a crown; and b
pieces of the second to make the same. Now, a person wishes to have ¢ pieces for a crown. How many pieces of
each kind must the banker give him?

Suppose the banker gives x pieces of the first kind; it is evident that he will give ¢ — x pieces of the other

kind; but the x pieces of the first are worth g crown, by the proportion a : x ::1: i; and the ¢ — x pieces of the

. c—x c—x x c—x bx
second kind are worth =, crown because wehave b:c—x :1: - So that, " + - = 1; or - +c—x=b;
ab—-ac a(b—c
or bx+ ac—ax =ab; or rather bx —ax = ab— ac; whence we have x = g Or X = %;
bc—ab _ b(c-a)

b—a  b-a

consequently, ¢ - x, the pieces of the second kind, must be =

The banker must therefore give % pieces of the first kind, and

b(c—a)
b

- pieces of the second kind.

Remark. These two numbers are easily found by the Rule of Three, when it is required to apply the results

which we have obtained. Thus, to find the first we say, b —a:a ::b —c: a;b__ac); and the second number is
found thus, b —a: b :ic—a: béc__;).

It ought to be observed also that a is less than b, and that c is less than b; but at the same time greater than a,
as the nature of the thing requires.

603. Question 20. A banker has two kinds of change; 10 pieces of one make a crown, and 20 pieces of the other
make a crown; and a person wishes to change a crown into 17 pieces of money: how many of each sort must he
have?

Wehave herea = 10, b = 20, and ¢ = 17, which furnishes the following proportions:

First, 10 : 10 : : 3 : 3, so that the number of pieces of the first kind is 3.
Secondly, 10 : 20 :: 7 : 14, and the number of the second kind is 14.



186 Elements of Algebra

604. Question 21. A father leaves at his death several children, who share his property in the following manner:
namely, the first receives a hundred pounds, and the tenth part of the remainder; the second receives two
hundred pounds, and the tenth part of the remainder; the third takes three hundred pounds, and the tenth part of
what remains; and the fourth takes four hundred pounds, and the tenth part of what then remains; and so on.
And it is found that the property has thus been divided equally among all the children. Required how much it
was, how many children there were, and how much each received?

This question is rather of a singular nature, and therefore deserves particular attention. In order to resolve it
more easily, we shall suppose the whole fortune to be z pounds; and since all the children receive the same

sum, let the share of each be x, by which means the number of children will be expressed by i Now, this being

laid down, we may proceed to the solution of the question, as follows:

Sum, or Order of
property to the Portion of each Differences
be divided | children
, 1 100 + z—100
= 10
I nd _200+Z—x—200 100 x—100_0
= 10 0
7 - 2x 3ud _300+Z—2x—300 100 x—100_0
= 10 0
z—3x—400 x — 100
-3 4t = I — - =
z X x =400 + 10 100 10 0
7 dor cih _500+Z—4x—500 100 x—100_0
x= 10 0
z — 5x — 600 x — 100
-5 6" = - - — =
z - 5x x =600 + 10 100 10 0

We have inserted, in the last column, the differences which we obtain by subtracting each portion from that
which follows; but all the portions being equal, each of the differences must be equal to 0. As it happens also

that all these differences are expressed exactly alike, it will be sufficient to make one of them equal to nothing,

and we shall have the equation 100 — x—100

= 0. Here, multiplying by 10, we have 1000 - x - 100 = 0, or
900 - x = 0; and, consequently, x = 900.
We know now, therefore, that the share of each child was 900; so that taking any one of the equations of the

z—100
10

third column, the first for example, it becomes, by substituting the value of x, 900 = 100 + , Wwhence we

immediately obtain the value of z; for we have
9000 = 1000 + z- 100 or 9000 = 900 + z;

therefore z = 8100; and consequentlyi =0,

So that the number of children was 9; the fortune left by the father was 8100 pounds; and the share of each
child was 900 pounds.
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Questions for Practice

1. To find a number, to which if there be added a half, a third, and a fourth of itself, the sum will be 50.

Ans. 24.

2. A person being asked what his age was, replied that % of his age multiplied by % of his age gives a product
equal to his age. What was his age?

Ans. 16.

3. The sum of 660!. was raised for a particular purpose by four persons, A, B, C, and D; B advanced twice as
much as A; C as much as A and B together; and D as much as B and C. What did each contribute?

Ans. 601., 1201., 1801., and 3001.

4. To find that number whose % part exceeds its i part by 12.

Ans. 144.
5. What sum of money is that whose % part, i part, and % part, added together, shall amount to 94 pounds?

Ans. 1201.

6. In a mixture of copper, tin, and lead, one half of the whole — 16lb. was copper; one-third of the whole
— 121b. tin; and one-fourth of the whole + 41b. lead: what quantity of each was there in the composition?

Ans. 128lb. of copper, 841b. of tin, and 761b. of lead.

7. A bill of 120l. was paid in guineas and moidores, and the number of pieces of both sorts was just 100; to
find how many there were of each.

Ans. 50.

8. To find two numbers in the proportion of 2 to 1, so that if 4 be added to each, the two sums shall be in the
proportion of 3 to 2.

Ans. 4 and 8.

9. A trader allows 100!. per annum for the expenses of his family, and yearly augments that part of his stock
which is not so expended, by a third part of it; at the end of three years, his original stock was doubled: what
had he at first?

Ans. 14801.

10. A fish was caught whose tall weighed 9lb. His head weighed as much as his tail and % his body; and his
body weighed as much as his head and tail: what did the whole fish weigh?

Ans. 721b.
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11. One has a lease for 99 years; and being asked how much of it was already expired, answered that two-thirds
of the time past was equal to four-fifths of the time to come: required the time past.

Ans. 54 years.

12. It is required to divide the number 48 into two such parts that the one part may be three times as much
above 20, as the other wants of 20.

Ans. 32 and 16.

13. One rents 25 acres of land at 7 pounds 12 shillings per annum; this land consisting of two sorts, he rents the
better sort at 8 shillings per acre, and the worse at 5: required the number of acres of the better sort.

Ans. 9 of the better.

14. A certain cistern, which would be filled in 12 minutes by two pipes running into it, would be filled in 20
minutes by one alone. Required in what time it would be filled by the other alone.

Ans. 30 minutes.

15. Required two numbers, whose sum may be s, and their proportion as a to b.

16. A privateer, running at the rate of 10 miles an hour, discovers a ship 18 miles off making way at the rate of
8 miles an hour: it is demanded how many miles the ship can run before she will be overtaken?

Ans. 72.

17. A gentleman distributing money among some poor people, found that he wanted 10s. to be able to give 5s.
to each; therefore he gives 4s. only, and finds that he has 5s. left: required the number of shillings and of poor
people.

Ans. 15 poor, and 65 shillings.

18. There are two numbers whose sum is the sixth part of their product, and the greater is to the less as 3 to 2.
Required those numbers.

Ans. 15 and 10.
N. B. This question may be solved by means of one unknown letter.

19. To find three numbers, so that the first, with half the other two, the second with one-third of the other two,
and the third with one-fourth of the other two, may be equal to 34.

Ans. 26, 22, and 10.

20. To find a number consisting of three places, whose digits are in arithmetical progression: if this number be
divided by the sum of its digits, the quotients will be 48; and if from the number 198 be subtracted, the digits
will be inverted.

Ans. 432.
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21. To find three numbers, so that % the first, é of the second, and i of the third, shall be equal to 62: % of the
first, i of the second, and é of the third, equal to 47; and i of the first, % of the second, and % of the third, equal
to 38.

Ans. 24, 60, 120.

22. If A and B, together, can perform a piece of work in 8 days; A and C together in 9 days; and B and C in 10
days; how many days will it take each person, alone, to perform the same work.?

Ans. 142172, 23 L.
49 41 31

23. What is that fraction which will become equal to i, if an unit be added to the numerator; but on the contrary,

if an unit be added to the denominator, it will be equal to i .

4
Ans. —.
15

24. The dimensions of a certain rectangular floor are such that if it had been 2 feet broader, and 3 feet longer, it
would have been 64 square feet larger; but if it had been 3 feet broader and 2 feet longer, it would then have
been 68 square feet larger: required the length and breadth of the floor.

Ans. Length 14 feet, and breadth 10 feet.

25. A hare is 50 leaps before a greyhound, and takes 4 leaps to the greyhound’s 3; but two of the greyhound’s
leaps are as much as three of the hare’s: how many leaps must the greyhound take to catch the hare?

Ans. 300.
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Chapter IV — Of the Resolution of two or more Equations of the First Degree

605. It frequently happens that we are obliged to introduce into algebraic calculations two or more unknown
quantities, represented by the letters x, y, z: and if the question is determinate, we are brought to the same
number of equations as there are unknown quantities; from which it is then required to deduce those quantities.
As we consider, at present, those equations only, which contain no powers of an unknown quantity higher than
the first, and no products of two or more unknown quantities, it is evident that all those equations have the form

az+by+cx=d

606. Beginning therefore with two equations, we shall endeavour to find from them the value of x and y: and,
in order that we may consider this case in a general manner, let the two equations be,

ax+by=c and fx+gy=nh

in which, a, b, ¢, and f, g, h, are known numbers. It is required, therefore, to obtain, from these two equations,
the two unknown quantities x and y.

607. The most natural method of proceeding will readily present itself to the mind; which is, to determine, from
both equations, the value of one of the unknown quantities, as for example x, and to consider the equality of
those two values; for then we shall have an equation, in which the unknown quantity y will be found by itself,
and may be determined by the rules already given. Then, knowing y, we shall have only to substitute its value
in one of the quantities that express x.

608. According to this rule, we obtain from the first equation, x = %, and from the second, x = h_fﬂ: then
putting these values equal to each other, we have this new equation:
c—by h-gy
a  f

multiplying by a, the product is ¢ — by = @; and then by f, the product is fc — fby = ah — agy; adding

agy, we have fc — fby + agy = ah; subtracting fc, gives —fby + agy = ah — fc; or (ag — bf)y = ah —
fc; lastly, dividing by ag - bf, we have

_ah—fc
YT ag—bf

In order now to substitute this value of y in one of the two values which we have found of x, as in the first,

c-b abh—bc abh—bc acg—bcf—abh+bc
where x = 22 we shall first have —by = — f; whence ¢ — by =c — f = acg=bef f =
a ag—-bf ag-bf ag—-bf
acg—abh . g c—by cg—bh
; and, dividingby a, x = —= = ——.
ag-bf ’ > goya, a ag-bf

609. Question 1. To illustrate this method by examples, let it be proposed to find two numbers, whose sum may
be 15, and difference 7.

Let us call the greater number x, and the less y: then we shall have

x+y=15andx—-y =7
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The first equation gives x = 15 — y, and the second, x = 7 + y; whence results this equation, 15—y =
7 +y.Sothat 15 = 7 4+ 2y; 2y = 8,and y = 4; by which means we find x = 11.

So that the less number is 4, and the greater is 11.

610. Question 2. We may also generalise the preceding question, by requiring two numbers, whose sum may be
a, and the difference b.

Let the greater of the two numbers be expressed by x, and the less by y; we shall then have x + y = a, and
xX—y = b.

Here the first equation gives x = a — y, and thesecondx = b + y.
Therefore,a— y = b + y;a = b + 2y;2y = a— b;lastly,y = a;—b, and, consequently,

a—b_a+b
2 2

x=a—-y=a-

. a+b . a-b .
Thus, we find the greater number, or x, is - and the less, or y, is 5 or, which comes to the same,

x = %a + ;b, andy = %a — % b. Hence we derive the following theorem: When the sum of any two numbers is

a, and their difference is b, the greater of the two numbers will be equal to half the sum plus half the difference;
and the less of the two numbers will be equal to half the sum minus half the difference.

611. We may resolve the same question in the following manner:

Since the two equations are,

XxX+y=a
x—y=5»>
if we add the one to the other, we have 2x = a + b.
a+b

Therefore x = —

Lastly, subtracting the same equations from each other, we have 2y = a — b; and therefore

612. Question 3. A mule and an ass were carrying burdens amounting to several hundred weight. The ass
complained of his, and said to the mule, I need only one hundred weight of your load, to make mine twice as
heavy as yours; to which the mule answered, But if you give me a hundred weight of yours, I shall be loaded
three times as much as you will be. How many hundred weight did each carry?

Suppose the mule’s load to be x hundred weight, and that of the ass to be y hundred weight. If the mule gives
one hundred weight to the ass, the one will have y + 1, and there will remain for the other x — 1; and since, in
this case, the ass is loaded twice as much as the mule, we have y + 1 = 2x — 2.

Farther, if the ass gives a hundred weight to the mule, the latter has x + 1, and the ass retains y — 1; but the
burden of the former being now three times that of the latter, we have x + 1 = 3y — 3.
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Consequently our two equations will be,
y+1=2x—2 and x + 1 =3y—3

3 . . 3
From the first, x = %, and the second gives x = 3y — 4; whence we have the new equation % =3y — 4,

which gives y = %: this also determines the value of x, which becomes 2 S

The mule therefore carried 2 % hundred weight, and the ass 2 i hundred weight.

613. When there are three unknown numbers, and as many equations; as, for example,

x+y—z=28
x+z—y=9
y+z—x =10

we begin, as before, by deducing a value of x from each, and have, from the

1™ x=8+4+z—y
2" x =9+ y—z
3% x=y+2z—-10

Comparing the first of these values with the second, and after that with the third, we have the following
equations:

8+z—-y=9+y—2z
8+z—y=y+z-10

Now, the first gives 2z — 2y = 1, and, by the second, 2y = 18, or y = 9; if therefore we substitute this
value of y in 2z — 2y = 1, we have 2z — 18 = 1, or 2z = 19, so that z = 9%; it remains, therefore, only
to determine x, which is easily found = 8 %

Here it happens that the letter z vanishes in the last equation, and that the value of y is found immediately; but

if this had not been the case, we should have had two equations between z and y, to be resolved by the
preceding rule.

614. Suppose we had found the three following equations:

3x + 5y-4z = 25
5x — 2y + 3z = 46
3y + 5z— x = 62

If we deduce from each the value of x, we shall have from the

" 25—5y+4z

1" x=—
3

nd 46 + 2y — 3z

2: xzf

3% x=3y+5z—62
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Comparing these three values together, and first the third with the first, we have

25—-5y+4z

3y +5z—62 = >

multiplying by 3, gives 9y + 15z — 186 = 25 — 5y + 4z; so that 9y + 15z = 211 — 5y + 4z, and 14y +
11z = 211.

Comparing also the third with the second, we have

46 + 2y — 3z

3 5z —-62 =
y+ oz z

or 46 + 2y — 3z = 15y + 25z — 310, which, when reduced, becomes 356 = 13y + 28z.

We shall now deduce, from these two new equations, the value of y:

211-11z

14
356—28z

13

1" 14y + 11z =211 or 14y =211-11z and y =

2": 13y + 28z =356 or 13y =356—28z and y =

These two values form the new equation

211—11z 356 — 28z
14 B 13

whence, 2743 — 143z = 4984 — 392z, or 249z = 2241,andz = 9.

This value being substituted in one of the two equations of y and z, we find y = 8; and, lastly, a similar
substitution in one of the three values of x, will give x = 7.

615. If there were more than three unknown quantities to determine, and as many equations to resolve, we
should proceed in the same manner; but the calculations would often prove very tedious.

It is proper, therefore, to remark that, in each particular case, means may always be discovered of greatly
facilitating the solution; which consist in introducing into the calculation, beside the principal unknown
quantities, a new unknown quantity arbitrarily assumed, such as, for example, the sum of all the rest; and when
a person is a little accustomed to such calculations, he easily perceives what is most proper to be done**, The
following examples may serve to facilitate the application of these artifices.

616. Question 4. Three persons, A, B, and C, play together; and, in the first game, A loses to each of the other
two, as much money as each of them has. In the next game, B loses to each of the other two, as much money as
they then had. Lastly, in the third game, A and B gain each, from C, as much money as they had before. On
leaving off, they find that each has an equal sum, namely, 24 guineas. Required, with how much money each
sat down to play?

Suppose that the stake of the first person was x, that of the second y, and that of the third z: also, let us make
the sum of all the stakes, or x + y + z = s. Now, A losing in the first game as much money as the other two

have, he loses s - x (for he himself having had x, the two others must have had s - x); therefore there will

remain to him 2x - s; also B will have 2y, and C will have 2z.

So that, after the first game, each will have as follows: A = 2x - 5, B= 2y,and C = 2z.
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In the second game, B, who has now 2y, loses as much money as the other two have, that is to say, s — 2y; so
that he has left 4y — s. With regard to the other two, they will each have double what they had; so that after the
second game, the three persons have as follows: A = 4x — 25, B= 4y — s,and C = 4z.

In the third game, C, who has now 4z, is the loser; he loses to A, 4x — 2s, and to B, 4y — s; consequently,
after this game, they will have: A = 8x — 4s,B= 8y — 2s,andC= 8z — s.

Now, each having at the end of this game 24 guineas, we have three equations, the first of which immediately
gives x, the second y, and the third z; farther, s is known to be 72, since the three persons have in all 72
guineas at the end of the last game; but it is not necessary to attend to this at first; since we have

1% 8x — 4s = 24 or 8x =24 +4s or x=3+§s

2":8y — 25 =24 or 8y =24+2s or y:3+is

3%:8z—s=24 or 82=24+5s or z:3+%s
and adding these three values, we have

7
x+y+z=9+§s

So that,sincex + y + z = s, wehaves =9 + %s; and, consequently, %s =9,ands = 72.

If we now substitute this value of s in the expressions which we have found for x, y, and z, we shall find that,
before they began to play, A had 39 guineas, B 21, and C 12.

This solution shows that, by means of an expression for the sum of the three unknown quantities, we may
overcome the difficulties which occur in the ordinary method.

617. Although the preceding question appears difficult at first, it may be resolved even without algebra, by
proceeding inversely. For since the players, when they left off, had each 24 guineas, and, in the third game, A
and B doubled their money, they must have had before that last game, as follows:

A= 12,B= 12,and C = 48.
In the second game, A and C doubled their money; so that before that game they had:
A= 6,B= 42, and C = 24.

Lastly, in the first game, B and C gained each as much money as they began with; so that at first the three
persons had:

A=39,B= 21,C= 12.
The same result as we obtained by the former solution.

618. Question 5. Two persons owe conjointly 29 pistoles; they have both money, but neither of them enough to
enable him, singly, to discharge this conmion debt: the first debtor says therefore to the second, If you give me

% of your money, I can immediately pay the debt; and the second answers that he also could discharge the debt,

if the other would give him 2 of his money. Required, how many pistoles each had?
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Suppose that the first has x pistoles, and that the second has y pistoles.

Then we shall first have, x + gy = 29; and also, y + %x = 29.

The first equation gives x = 29 — gy, and the second x = 1163—4y; so that 29 — %y = 1163_4y.

From which equation, we obtain y = 14%; Therefore x = 19 §

Hence the first person had 19 é pistoles, and the second had 14% pistoles.

619. Question 6. Three brothers bought a vineyard for a hundred guineas. The youngest says that he could pay
for it alone, if the second gave him half the money which he had; the second says that if the eldest would give
him only the third of his money, he could pay for the vineyard singly; lastly, the eldest asks only a fourth part of
the money of the youngest to pay for the vineyard himself. How much money had each?

Suppose the first had x guineas; the second, y guineas; the third, z guineas; we shall then have the three
following equations:

1

—v=1
x+2y 00
+1 =100
+1 =100
z+7x=

two of which only give the value of x, namely,

1% x = 100 -2y
39 x = 400 — 4z

So that we have the equation, 100 — %y =400 — 4z,0r 4z — %y = 300, which must be combined with the
second, in order to determine y and z. Now, the second equation was y + %Z = 100: we therefore deduce from

it y =100 —gz; and the equation found last being 4z —%y = 300, we have y = 8z — 600. The final

equation, therefore, becomes
1
100 —§Z =8z — 600

so that 8§Z = 700, or %Z = 700, and z = 84. Consequently,
y=100—-28=72 and x =64
The youngest therefore had 64 guineas, the second had 72 guineas, and the eldest had 84 guineas.

620. As, in this example, each equation contains only two unknown quantities, we may obtain the solution
required in an easier way.
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The first equation gives y = 200 — 2x, so that y is determined by x; and if we substitute this value in the
second equation, we have

1 1
200 — 2x + §z = 100;therefore§Z = 2x — 100,and z = 6x — 300

So that z is also determined by x; and if we introduce this value into the third equation, we obtain 6x — 300 +
%x =100, in which x stands alone, and which, when reduced to 25x — 1600 =0, gives x = 64.

Consequently,
y=200—-128 =72 and z =384 — 300 = 84

621. We may follow the same method when we have a greater number of equations. Suppose, for example, that
we have in general:

lL.u+>=n 2.x+2=n
a b
z u
3.y+;—n 4.z+E—n
or, destroying the fractions, these equations become,

l.au+x=an 2.bx+y=bn
3.cy+z=cn 4.dz4+u=dn

Here, the first gives immediately x = an — au, and, this value being substituted in the second, we have
abn— abu + y = bn; so that y = bn — abn + abu; and the substitution of this value, in the third
equation, gives bcn — abcn + abcu + z = cn; therefore

z = cn—bcn + abcen — abcu
Substituting this in the fourth equation, we have
cdn — bcdn + abcdn — abcdu + u = dn

So that dn— cdn + bcdn — abcdn = abcdu— u, or (abcd — 1)u = abcdn — bcdn + cdn — dn;
whence we have

_abcdn—bcdn + cdn —dn _ n(abcd — bed + cd — d)
“= abcd — 1 B abcd — 1

And, consequently, by substituting this value of u in the equation, x = an — au, we have

abcdn —acdn + adn —an _ n(abcd —acd + ad — a)

x= abcd — 1 B abcd — 1
_abcdn —abdn + abn—bn n(abcd — abd + ab — b)
y= abcd — 1 - abcd — 1
_abcdn —aben+ben —cn n(abed — abe + be —¢)
Z= abcd — 1 - abcd — 1
abcdn — becdn + cdn —dn  n(abcd — bed + cd — d)
u= =

abcd — 1 - abcd — 1
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622. Question 7. A captain has three companies, one of Swiss, another of Swabians, and a third of Saxons. He
wishes to storm with part of these troops, and he promises a reward of 901 crowns, on the following condition;
namely, that each soldier of the company, which assaults, shall receive 1 crown, and that the rest of the money
shall be equally distributed among the two other companies. Now, it is found that if the Swiss make the assault,
each soldier of the other companies will receive half-a-crown; that, if the Swabians assault, each of the others

will receive % of a crown; and, lastly, if the Saxons make the assault, each of the others will receive % of a
crown. Required the number of men in each company?

Let us suppose the number of Swiss to be x, that of Swabians y, and that of Saxons z. And let us also make
x + y + z = s because it is easy to see that, by this, we abridge the calculation considerably. If, therefore,

the Swiss make the assault, their number being x, that of the other will be s — x: now, the former receive 1
crown, and the latter half-a-crown; so that we shall have,

+1 ! =901
X+os—gx=

In the same manner, if the Swabians make the assault, we have

+1 ! =901

And, lastly, if the Saxons make the assault, we have

+1 ! =901
Z+gSs—3Z=

Each of these three equations will enable us to determine one of the unknown quantities, x, y, and z;

For the first gives: x = 1802 — s
the second: 2y = 2703 — s
the third: 3z = 3604 — s

And if we now take the values of 6x, 6y, and 6z, and write those values one above the other, we shall have

6x = 10812 — 65
6y = 8109 — 3s
6z = 7208 — 2s
6s = 26129 — 11s

or, 17s = 26129, so thats = 1537; which is the whole number of soldiers. By this means we find,

x = 1802 — 1537 = 265;
2y = 2703 — 1537 = 1166 or y = 583;
3z = 3604 — 1537 = 2067 or z = 689

The company of Swiss therefore has 265 men; that of Swabians 583; and that of Saxons 689.
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Chapter V — Of the Resolution of Pure Quadratic Equations

623. An equation is said to be of the second degree, when it contains the square, or the second power, of the
unknown quantity, without any of its higher powers; and an equation, containing likewise the third power of the
unknown quantity, belongs to cubic equations, and its resolution requires particular rules.

624. There are, therefore, only three kinds of terms in an equation of the second degree:

1. The terms in which the unknown quantity is not found at all, or which is composed only of known numbers.
2. The terms in which we find only the first power of the unknown quantity.
3. The terms which contain the square, or the second power, of the unknown quantity.

So that x representing an unknown quantity, and the letters a, b, c, d, etc. the known quantities, the terms of
the first kind will have the form a, the terms of the second kind will have the form bx, and the terms of the third
kind will have the form cx?.

625. We have already seen how two or more terms of the same kind may be united together and considered as a
single term.

For example, we may consider the formula ax? — bx? + cx? a single term, representing it thus, (a — b +
c)x?; since, in fact, (a — b + ¢) is a known quantity.

And also, when such terms are found on both sides of the sign =, we have seen how they may be brought to
one side. and then reduced to a single term. Let us take, for example, the equation,

2x* —3x+4=5x*—-8x +11
we first subtract 2x2, and there remains
—3x+4=3x*-8x+11
then adding 8x, we obtain,
5x + 4 =3x% + 11
lastly, subtracting 11, there remains 3x% = 5x — 7.

626. We may also bring all the terms to one side of the sign =, so as to leave zero, or 0, on the other; but it must
be remembered that when terms are transposed from one side to the other, their signs must be changed.

Thus, the above equation will assume this form, 3x? — 5x + 7 = 0; and, for this reason also, the following
general formula represents all equations of the second degree:

ax*+bx+c=0

in which the sign * is read plus or minus, and indicates that such terms as it stands before may be sometimes
positive, and sometimes negative.

627. Whatever therefore be the original form of a quadratic equation, it may always be reduced to this formula
of three terms. If we have, for example, the equation
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ax+b ex+f
cx+d gx+h

we may, first, destroy the fractions; multiplying, for this purpose, by cx + d, which gives

cex? + cfx +edx + fd
gx+h

ax+ b =

and then by gx + h, we have
agx? + bgx + ahx + bh = cex? + cfx + edx + fd

which is an equation of the second degree, reducible to the three following terms, which we shall transpose by
arranging them in the usual manner:

+bg
ag) - +ah {+bh}_
_Ce}x + —cf x + _fd =0
—ed

We may exhibit this equation also in the following form, which is still more clear:
(ag — ce)x? + (bg + ah — cf —ed)x + (bh— fd) =0

628. Equations of the second degree, in which all the three kinds of terms are found, are called complete, and
the resolution of them is attended with greater difficulties; for which reason we shall first consider those, in
which one of the terms is wanting.

Now, if the term x? were not found in the equation, it would not be a quadratic, but would belong to those of
which we have already treated; and if the term, which contains only known numbers, were wanting, the
equation would have this form, ax? + bx = 0, which being divisible by x, may be reduced to ax + b = 0,
which is likewise a simple equation, and belongs not to the present class.

629. But when the middle term, which contains the first power of x, is wanting, the equation assumes this form,
ax? + ¢ = 0,orax? = 7F c; as the sign of ¢ may be either positive, or negative.

We shall call such an equation a pure equation of the second degree, and the resolution of it is attended with

2:

no difficulty; for we have only to divide by a, which gives x E; and taking the square root of both sides, we

find x = \/g; by which means the equation is resolved.

630. But there are three cases to be considered here. In the first, when 2 is a square number (of which we can
therefore really assign the root) we obtain for the value of x a rational number, which may be either integral, or

fractional. For example, the equation x? = 144, gives x = 12. And x? = 1’;6, gives x = %.

The second case is when 2 is not a square, in which case we must therefore be contented with the sign V. If,

for example, x2 = 12, we have x = /12, the value of which may be determined by approximation, as we
have already shown.
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The third case is that, in which 2 becomes a negative a number: the value of x is then altogether impossible

and imaginary; and this result proves that the question, which leads to such an equation, is in itself impossible.

631. We shall also observe, before proceeding farther that whenever it is required to extract the square root of a
number, that root, as we have already remarked, has always two values, the one positive and the other negative.
Suppose, for example, we have the equation x> = 49, the value of x will be not only + 7, but also - 7, which
is expressed by x = =+ 7. So that all those questions admit of a double answer; but it will be easily perceived
that in several cases, as those which relate to a certain number of men, the negative value cannot exist.

632. In such equations, also, as ax? = bx, where the known quantity ¢ is wanting, there may be two values of
x, though we find only one if we divide by x. In the equation x> = 3x, for example, in which it is required to
assign such a value of x that x2 may become equal to 3x, this is done by supposing x = 3, a value which is
found by dividing the equation by x; but, beside this value, there is also another, which is equally satisfactory,
namely, x = 0; for then x> = 0, and 3x = 0. Equations therefore of the second degree, in general, admit of
two solutions, whilst simple equations admit only of one.

We shall now illustrate what we have said with regard to pure equations of the second degree by some
examples.

633. Question 1. Required a number, the half of which multiplied by the third, may produce 24.

Let this number be x; then by the question %x, multiplied by %x, must give 24; we shall therefore have the

.1
equation Exz = 24.

Multiplying by 6, we have x? = 144; and the extraction of the root gives x = + 12. We put +; for if x = +

12, we have %x = 6, and gx = 4: now, the product of these two numbers is 24; and if x = — 12, we have

%x = —6, and gx = —4, the product of which is likewise 24.

634. Question 2. Required a number such that being increased by 5 and diminished by 5, the product of the sum
by the difference may be 96.

Let this number be x, then x + 5, multiplied by x — 5, must give 96; whence results the equation,
x?—25=96

Adding 25, we have x> = 121; and extracting the root, we have x = 11. Thusx + 5 = 16,alsox — 5 =
6; and, lastly, 6 X 16 = 96.

635. Question 3. Required a number such that by adding it to 10 and subtracting it from 10, the sum, multiplied
by the difference, will give 51.

Let x be this number; then 10 + x multiplied by 10 — x, must make 51, so that 100 — x> = 51. Adding
x? and subtracting 51, we have x? = 49, the square root of which gives x = 7.

636. Question 4. Three persons, who had been playing, leave off; the first, with as many times 7 crowns, as the
second has three crowns; and the second, with as many times 17 crowns, as the third has 5 crowns. Farther, if
we multiply the money of the first by the money of the second, and the money of the second by the money of
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the third, and, lastly, the money of the third by that of the first, the sum of these three products will be 3830 %

How much money has each?

Suppose that the first player has x crowns; and since he has as many times 7 crowns, as the second has 3
crowns, we know that his money is to that of the second, in the ratio of 7 : 3.

We shall therefore have 7 : 3 :: x : %x, the money of the second player.

Also, as the money of the second player is to that of the third in the ratio of 17 : 5, we shall have 17 : 5 :

: %x : 11—159 x, the money of the third player.

Multiplying x, or the money of the first player, by %x, the money of the second, we have the product %xz
then, %x, the money of the second, multiplied by the money of the third, or by %x, gives %xz; and, lastly,
the money of the third, or £x multiplied by x, or the money of the first, gives %xz. Now, the sum of these
three products is Ex + x + = x2 ; and reducing these fractions to the same denominator, we find their

119

sum ZTx which must be equal to the number 3830 =

We have therefore, ~ x2 = 3830 2.
833 3

9572836
1521

So that —x = 11492, and 1521x? being equal to 9572836, dividing by 1521, we have x? ; and

taking its root, we find x = %. This fraction is reducible to lower terms, if we divide by 13; so that x = 22—8 =

79 §3 and hence we conclude that %x = 34, and %x = 10.

The first player therefore has 79§ crowns, the second has 34 crowns, and the third 10 crowns.

Remark. This calculation may be performed in an easier manner; namely, by taking the factors of the numbers
which present themselves, and attending chiefly to the squares of those factors.

It is evident that 507 = 3 X 169, and that 169 is the square of 13; then, that 833 = 7 x 119, and
119 = 7 X 17: therefore 2= x X199 x2 = 11492. Let us

resolve this number also into its factors; and we readily perceive that the first is 4; that is to say, that 11492 =
4 x 2873. Farther, 2873 is divisible by 17, so that 2873 = 17 X 169. Consequently, our equation will

22 x? = 4 x 17 X 169, which, divided by 169, is reduced to ——x? = 4 x 17;
4X289X49

3830— and if we multiply by 3, we have

assume the following form,

multiplying also by 17 X 49, and dividing by 9, we have x? , in which all the factors are squares;

2x17x7 _ 238 1
=5 = 79 3 as before.

whence we have, without any further calculation, the root x =

637. Question 5. A company of merchants appoint a factor at Archangel. Each of them contributes for the trade,
which they have in view, ten times as many crowns as there are partnerS' and the profit of the factor is fixed at

twice as many crowns, percent, as there are partners. Also, 1f 5 part of his total gain be multiplied by 2 =, it

will give the number of partners. That number is required.
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Let it be x; and since each partner has contributed 10x, the whole capital is 10x2. Now, for every hundred

crowns, the factor gains 2x, so that with the capital of 10x? his profit will be %xe’. The ﬁ part of his gain is

L 3. inlvi 2 20 20 3 or 43 i
200X multiplying by 29, or by 5> We have 7500 X OF 52 X7, and this must be equal to the number of

partners, or x.

We have, therefore, the equation if‘ = x, or x3 = 225x; which appears, at first, to be of the third degree;

but as we may divide by x, it is reduced to the quadratic x> = 225; whence x = 15.

So that there are fifteen partners, and each contributed 150 crowns.
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Questions for Practice

1. To find a number to which 20 being added, and from which 10 being subtracted, the square of the sum,
added to twice the square of the remainder, shall be 17475.

Ans. 75.

2. What two numbers are those, which are to one another in the ratio of 3 to 5, and whose squares, added
together, make 1666?

Ans. 21 and 35.
3. The sum 2a, and the sum of the squares 2b, of two numbers being given; to find the numbers.
Ans.a —\b — a2, and a + Vb — a2.
4. To divide the number 100 into two such parts that the sum of their square roots may be 14.
Ans. 64, and 36.

5. To find three such numbers that the sum of the first and second multiplied into the third, may be equal to 63;
and the sum of the second and third multiplied into the first, may be equal to 28; also that the sum of the first
and third multiplied into the second, may be equal to 55.

Ans. 2,5,09.

6. What two numbers are those whose sum is to the greater as 11 to 7; the difference of their squares being
132?

Ans. 14, and 8.
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Chapter VI — Of the Resolution of Mixt Equations of the Second Degree

638. An equation of the second degree is said to be mixt, or complete, when three terms are found in it; namely,
that which contains the square of the unknown quantity, as ax?; that, in which the unknown quantity is found
only in the first power, as bx; and, lastly, the term which is composed of only known quantities. And since we
may unite two or more terms of the same kind into one, and bring all the terms to one side of the sign =, the
general form of a mixt equation of the second degree will be

ax?+bx+c=0

In this chapter, we shall show how the value of x may be derived from such equations; and it will be seen that
there are two methods of obtaining it.

639. An equation of the kind that we are now considering may be reduced, by division, to such a form that the
first term will contain only the square, x2, of the unknown quantity x. We shall leave the second term on the
same side with x, and transpose the known term to the other side of the sign =. By these means, our equation
will assume the form of x? + px = =+ ¢q, in which p and q represent any known numbers, positive or
negative; and the whole is at present reduced to determining the true value of x. We shall begin by remarking
that if x2 + px were a real square, the resolution would be attended with no difficulty because it would only
be required to take the square root of both sides.

640. But it is evident that x> + px cannot be a square; since we have already seen, (Article 307) that if a root
consists of two terms, for example, x + n, its square always contains three terms, namely, twice the product of
the two parts, beside the square of each part; that is to say, the square of x + n is x> + 2nx + n?. Now, we
have already on one side x?> + px; we may, therefore, consider x? as the square of the first part of the root,
and in this case px must represent twice the product of x, the first part of the root, by the second part:

consequently, this second part must be %p and in fact the square of x + %p, is found to be

1
x% + px + sz.

641. Now x% + px +ip2 being a real square, which has for its root x + %p, if we resume our equation

x%? + px = q, we have only to add ipz to both sides, which gives us x> + px + ipz =q + ipz, the first
side being actually a square, and the other containing only known quantities. If, therefore, we take the square
root of both sides, we find

R S EN
ve Zp_ 4p Q;

.1 .
subtracting 5P, we obtain
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and, as every square root may be taken either positively, or negatively, we shall have for x two values expressed

thus:
e
X 2p_ 4p q .

642. This formula contains the rule by which all quadratic equations may be resolved; and it will be proper to
commit it to memory, that it may not be necessary, every time, to repeat the whole operation which we have
gone through. We may always arrange the equation in such a manner that the pure square x> may be found on
one side, and the above equation have the form x> = —px + g, where we see immediately that

I L

643. The general rule, therefore, which we deduce from that, in order to resolve the equation x> = —px + q,
is founded on this consideration: that the unknown quantity x is equal to half the coefficient, or multiplier of x
on the other side of the equation, plus or minus the square root of the square of this number, and the known
quantity which forms the third term of the equation.

Thus, if we had the equation x> = 6x + 7, we should immediately say that
x=3xV9+7 =314

whence we have these two values of x, namely, x = 7, and x = — 1. In the same manner, the equation
x? = 10x — 9, would give

x=5+Vv25-9 =5+4
that is to say, the two values of x are 9 and 1.

644. This rule will be still better understood, by distinguishing the following cases:

1. when p is an even number;
2. when p is an odd number;
3. and when p is a fractional number.

First, let p be an even number, and the equation such that x> = 2px + q; we shall, in this case, have

x=p i ra.

Second, let p be an odd number, and the equation x> = px + q; we shall here have

x_Zp_ 4P q;

p* +4q
4

and since

1
22 —
4P +q
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we may extract the square root of the denominator, and write

1  Jp*+4q pxp*+4q

= —p+ =
X=oPET 2

Lastly, if p is a fraction, the equation may be resolved in the following manner. Let the equation be ax? =

bx + c,orx? = %x + 2, and we shall have, by the rule,

b2

YT 207 a2

+

Q|0

Now,

b? ¢ 3 b? + 4ac

4_az+a T 4q2

the denominator of which is a square; so that

b + Vb?% + 4ac
2a '

X =

645. The other method of resolving mixt quadratic equations is to transform them into pure equations; which is
done by substitution: for example, in the equation x? = px + q, instead of the unknown quantity x, we may

write another unknown quantity, y, such that x =y + %p; by which means, when we have determined y, we

may immediately find the value of x.

If we make this substitution of y +%p instead of x, we have x? = y? + py +ip2, and px = py +%p2;

consequently, our equation will become

2 1. 1
y +P)’+ZP :PJ’+§P +q
which is first reduced, by subtracting py, to

1 1
24292 ="p24
y 4P 2P q

and then, by subtracting ipz, to y? = ipz + q. This is a pure quadratic equation, which immediately gives

/1
=+ |-p2
y== [7p*+q
R L
x=5pt 7p°+q

as before. It only remains, therefore, to illustrate this rule by some examples.

. 1
Now, since x =y + S P, we have
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646. Question 1. There are two numbers; the one exceeds the other by 6, and their product is 91: what are those
numbers?

If the less be x, the other will be x + 6, and their product x? + 6x = 91. Subtracting 6x, there remains
x% = 91 — 6x, and the rule gives

x=-3xVv9+91=-3%+10
sothatx = 7orx = —13.
The question therefore admits of two solutions:

By the one, the less number x = 7, and the greater x + 6 = 13.
By the other, the less number x = — 13, and the greater x + 6 = — 7.

647. Question 2. To find a number such that if 9 be taken from its square, the remainder may be a number, as
much greater than 100, as the number itself is less than 23.

Let the number sought be x. We know that x?2 — 9 exceeds 100 by x? — 109: and since x is less than 23 by
23 — x, we have this equation

x?>—109 =23 —x

Therefore x? = —x + 132; and, by the rule,

+132 = 1+ 529 _ 1+
o274 02—

B 1+ 23
x=TgE 2
sothatx = 11,orx = —12.

Hence, when only a positive number is required, that number will be 11, the square of which minus 9 is 112,
and consequently greater than 100 by 12, in the same manner as 11 is less than 23 by 12.

648. Question 3. To find a number such that if we multiply its half by its third, and to the product add half the
number required, the result will be 30.

Supposing the number to be x, its half, multiplied by its third, will give %xz; so that %xz + %x = 30; and

multiplying by 6, we have x? + 3x = 180, or x? = — 3x + 180; which gives x = —; + E + 180 = —

N|w

27
+Z,
2

Consequently, either x = 12, orx = — 15.

649. Question 4. To find two numbers, the one being double the other, and such that if we add their sum to their
product, we may obtain 90.

Let one of the numbers be x, then the other will be 2x; their product also will be 2x2, and if we add to this 3x,
or their sum, the new sum ought to make 90. So that 2x? + 3x = 90; or 2x% = 90 — 3x; whence x? = —% +

45, and thus we obtain
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650. Question 5. A horse-dealer bought a horse for a certain number of crowns, and sold it again for 119
crowns, by which means his profit was as much percent as the horse cost him; what was his first purchase?

Consequently x = 6,0r x = - 7%.

Suppose the horse cost x crowns; then, as the dealer gains x per cent, we have this proportion:

X2
As1 tx ol x L —
s100:x 1 x 100

2
since therefore he has gained fR’ and the horse originally accost him x crowns, he must have sold it for x +

2 2 2
1xTo; therefore x + 1xTo = 119; and subtracting x, we have 1’;—0 = —x + 119; then multiplying by 100, we obtain
x? = —100x + 11900. Whence, by the rule, we find

x =—=50 £+v2500 + 11900 = —50 + V14400 = —50 + 120

The horse therefore cost 70 crowns, and since the horsedealer gained 70 per cent when he sold it again, the
profit must have been 49 crowns. So that the horse must have been sold again for 70 + 49, that is to say, for
119 crowns.

651. Question 6. A person buys a certain number of pieces of cloth: he pays for the first 2 crowns, for the
second 4 crowns, for the third 6 crowns, and in the same manner always 2 crowns more for each following
piece. Now, all the pieces together cost him 110 crowns: how many pieces had he?

Let the number sought be x; then, by the question, the purchaser paid for the different pieces of cloth in the
following manner:

for the

1 2 3 4 5 .- x pieces
hepays 2 4 6 8

10 .- 2x crowns

It is therefore required to find the sum of the arithmetical progression 2 + 4 + 6 + 8 + --- + 2x, which
consists of x terms that we may deduce from it the price of all the pieces of cloth taken together. The rule which
we have already given for this operation requires us to add the last term to the first; and the sum is 2x + 2;
which must be multiplied by the number of terms x, and the product will be 2x? + 2x; lastly, if we divide by
the difference 2, the quotient will be x* + x, which is the sum of the progression; so that we have x* + x =
110; therefore x> = —x + 110, and

N T P T
=TT . -T2 T

And hence the number of pieces of cloth is 10.

652. Question 7. A person bought several pieces of cloth for 180 crowns; and if he had received for the same
sum 3 pieces more, he would have paid 3 crowns less for each piece. How many pieces did he buy?
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: : . 180 :
Let us represent the number sought by x; then each piece will have cost him — crowns. Now, if the purchaser

: : 180 . o
had had x + 3 pieces for 180 crowns, each piece would have cost —5 Crowns; and, since this price is less than

the real price by three crowns, we have this equation,

180 180
—-3

x4+ 3 X

Multiplying by x, we obtain % — 180 — 3x; dividing by 3, we have ;z—’; = 60 — x; and again, multiplying

18
x+3
by x + 3, gives 60x = 180 + 57x — x?; therefore adding x? we shall have x? + 60x = 180 + 57x; and
subtracting 60x, we shall have x? = —3x + 180.

= 3 Pro=-34+ 1
X=ToT . TT2T T

He therefore bought, for 180 crowns, 12 pieces of cloth at 15 crowns the piece; and if he had got 3 pieces
more, namely, 15 pieces for 180 crowns, each piece would have cost only 12 crowns; that is to say, 3 crowns
less.

The rule consequently gives,

653. Question 8. Two merchants enter into partnership with a stock of 100 pounds; one leaves his money in the
partnership for three months, the other leaves his for two months, and each takes out 99 pounds of capital and
profit. What proportion of the stock did they separately furnish?

Suppose the first partner contributed x pounds, the other will have contributed 100 — x. Now, the former
receiving 991., his profit is 99 — x, which he has gained in three months with the principal x; and since the
second receives also 991., his profit is x — 1, which he has gained in two months with the principal 100 — x; it

is evident also that the profit of this second partner would have been # if he had remained three months in

the partnership: and as the profits gained in the same time are in proportion to the principals, we have the
following proportion,

3x —3

x:99 —x:: 100 — x :

And the equality of the product of the extremes to that of the means, gives the equation,

3x?% — 3x

2 =9900 — 199x + x2

then multiplying this by 2, we have
3x? — 3x = 19800 — 398x + 2x2

and subtracting 2x2, we obtain x? — 3x = 19800 — 398x. Adding 3x, gives x> = 19800 — 395x; then by the
rule,

= — 45
X 2

395+_ 156025_F79200__ 395_F485__90
4 4 2 2 2
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The first partner therefore contributed 45I. and the other 55I. The first having gained 54l. in three months,
would have gained in one month 18l.; and the second having gained 44l. in two months, would have gained
22l. in one month: now these profits agree; for if, with 451., 18l. are gained in one month, 22[. will be gained
in the same time with 551.

654. Question 9. Two girls carry 100 eggs to market; the one had more than the other, and yet the sum which
they both received for them was the same. The first says to the second, If' I had had your eggs, I should have

received 15 pence. The other answers, If I had had yours, 1 should have received 6 % pence. How many eggs did

each carry to market?
Suppose the first had x eggs; then the second must have had 100 - x.

Since, therefore, the former would have sold 100 - x eggs for 15 pence, we have the following proportion:

15x
100 — x

(100 —x) : 15 1 x =

Also, since the second would have sold x eggs for 62 pence, we readily find how much she got for 100 — x

eggs, thus:

20 2000 — 20x
x: (100 —x) it —: ———
3 3x

Now, both the girls received the same money; we have consequently the equation,

15x 2000 — 20x
100 —x 3x

which becomes 25x? = 200000 — 4000x; and, lastly, x> = —160x + 8000, whence we obtain

x = —80 +v6400 + 8000 = —80 + 120 = 40
So that the first girl had 40 eggs, the second had 60, and each received 10 pence.

655. Question 10. Two merchants sell each a certain quantity of silk; the second sells 3 ells more than the first,
and they received together 35 crowns. Now, the first says to the second, I should have got 24 crowns for your
silk; the other answers, And I should have got for yours 12 crowns and a half. How many ells had each?

Suppose the first had x ells; then the second must have had x + 3 ells; also, since the first would have sold

x + 3 ells for 24 crowns, he must have received % crowns for his x ells. And, with regard to the second,

25’;;75; so that the whole

since he would have sold x ells for 12% crowns, he must have sold his x + 3 ells for

sum they received was

24x 25x + 75

13 + ox = 35 crowns

This equation becomes x? = 20x — 75; whence we have

x=10£+v100-75=10+15

So that the question admits of two solutions:
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According to the first solution, the first merchant had 15 ells, and the second had 18; and since the former
would have sold 18 ells for 24 crowns, he must have sold his 15 ells for 20 crowns. The second, who would

have sold 15 ells for 12 crowns and a half, must have sold his 18 ells for 15 crowns; so that they actually
received 35 crowns for their commodity.

According to the second solution, the first merchant had 5 ells, and the other 8 ells; and since the first would
have sold 8 ells for 24 crowns, he must have received 15 crowns for his 5 ells; also, since the second would

have sold 5 ells for 12 crowns and a half, his 8 ells must have produced him 20 crowns; the sum being, as
before, 35 crowns.
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Chapter VII — Of the Extraction of the Roots of Polygonal Numbers

656. We have shown, in a preceding chapter'*), how polygonal numbers are to be found; and what we then

called a side, is also called a root. If, therefore, we represent the root by x, we shall find the following

expressions for all polygonal numbers:

I1I-gon or triangle:
IV-gon or square:
V-gon:

VI-gon:

VII-gon:
VIII-gon:

IX-gon:

X-gon:

n-gon:

x? +x
2
2
3x%2 —x
2
2x% —x
5x% — 3x
2
3x? — 2x
7x% — 5x
2
4x?% — 3x

(n—2)x>—-(n—4)x
2

657. We have already shown that it is easy, by means of these formulas, to find, for any given root, any
polygonal number required: but when it is required reciprocally to find the side, or the root of a polygon, the
number of whose sides is known, the operation is more difficult, and always requires the solution of a quadratic
equation; on which account the subject deserves, in this place, to be separately considered. In doing this we
shall proceed regularly, beginning with the triangular numbers, and passing from them to those of a greater

number of angles.

658. Let therefore 91 be the given triangular number, the side or root of which is required.

If we make this root = x, we must have

X% +x
2

consequently,

=91 or x>+ x =182 and x?=—x+ 182

1 [729 1 27
+ +

2
from which we conclude that the triangular root required is 13; for the triangle of 13, or % is 91.

659. But, in general, let a be the given triangular number, and let its root be required.
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2
Here, if we make it = x, we have % = a, or x? + x = 2a; therefore, x> = —x + 2a, and, by the rule for

solving Quadratic Equations (Article 641):

1 1 —1++v8a+1
X = _-E-+ Z-+-2a =:_____7Z_____

This result gives the following rule: To find a triangular root, multiply the given triangular number by 8, add 1
to the product, extract the root of the sum, subtract 1 from that root, and lastly, divide the remainder by 2.

660. So that all triangular numbers have this property; namely, if we multiply them by 8, and add unity to the
product, the sum is always a square; of which the following small Table furnishes some examples:

Triangles 1 3 6 10 15 21 28 36 45 55
8times+1= 9 25 49 81 121 169 225 289 361 441

If the given number a does not answer this condition, we conclude that it is not a real triangular number, or
that no rational root of it can be assigned.

661. According to this rule, let the triangular root of 210 be required; we shall have a = 210, and 8a + 1 =

1681, the square root of which is 41; whence we see that the number 210 is really triangular, and that its root

is % = 20. But if 4 were given as the triangular number, and its root were required, we should find it

= ? —% and consequently irrational. However, the triangle of this root, g—%, may be found in the

following manner:

Vv33-1 V33-1 16

to it, the sum is x2+x=7=8.

_m, and adding x =

17
, we have x? =

Since x =

x%+x

Consequently, the triangle, or the triangular number, =4,

662. The quadrangular numbers being the same as squares, they occasion no difficulty. For, supposing the

given quadrangular number to be a, and its required root x, we shall have x> = a, and consequently, x = Va;
so that the square root and the quadrangular root are the same thing.

663. Let us now proceed to pentagonal numbers.

3x%-x

Let 22 be a number of this kind, and x its root; then, by the third formula, we shall have = 22, or

1 44 . )
3x% —x =44, or x* = 5% + = from which we obtain,

1, 1+44_1+\/529_1+23_4
=TT 13673 6 66

and consequently 4 is the pentagonal root of the number 22.
664. Let the following question be now proposed; the pentagon a being given, to find its root.

Let this root be x, and we have the equation
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3x2—x_ 242 _, , 1 +2a
s =a or3x’ —x=2a or x* = gx+

by means of which we find

1 1 2a 1++v24a+1

xX=—+ |[;z+—=

6T 3673 = 6

Therefore, when a is a real pentagon, 24a + 1 must be a square.

1+V7921 _ 1489 _

Let 330, for example, be the given pentagon, the root will be x = S

665. Again, let a be a given hexagonal number, the root of which is required.

If we suppose it = x, we shall have 2x? — x = a, or x2 = %x + %a; and this gives

So that, in order that a may be really a hexagon, 8a + 1 must become a square; whence we see that all
hexagonal numbers are contained in triangular numbers; but it is not the same with the roots.

For example, let the hexagonal number be 1225, its root will be x = s :801 = lzﬁ = 25.

666. Suppose a an heptagonal number, of which the root is required.

5x2-3x

Let this root be x, then we shall have =a,orx? = gx + %a, which gives

_3 |9 ,2 3+40a+9
*Z10" 1007527 10

therefore the heptagonal numbers have this property, that if they be multiplied by 40, and 9 be added to the
product, the sum will always be a square.

Let the heptagon, for example, be 2059; its root will be found:

_ 3++/82369 3+287 29
B 10 10

X

667. Let us suppose a an octagonal number, of which the root x is required.

2 1
We shall here have 3x% — 2x = a, or x? = 3 + 3% whence results
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Consequently, all octagonal numbers are such that if multiplied by 3 and unity be added to the product, the
sum is constantly a square.

1+V11449 _ 14107 _
===

36.

For example, let 3816 be an octagon,; its root will be x =

668. Lastly, let a be a given n-gonal number, the root of which it is required to assign; we shall then, by the last
formula, have this equation:

(n—2)x>—(n—4)
2

=qg or (M=2)x>—(n—4)x =2a

consequently,

_(n—4)x+ 2a
T on-=2 n—2

2

whence,

_ n—4 N (n—4)2+ 2a
*Tom—-2 " Jan—22 Tn=2"""

_ n—4 (n—4)2 8(n-2)a
== [am—22 a2 "

n—4+ V8(n—2)a + (n —4)2
X 2(n-2)

This formula contains a general rule for finding all the possible polygonal roots of given numbers.

For example, let there be given the XXIV-gonal number, 3009: since a is here = 3009 and n = 24, we
haven — 2 = 22 andn — 4 = 20; wherefore the root, or x, is

20 ++/529584 +400 20 +728 .
B 44 T 44

X
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Chapter VIII — Of the Extraction of the Square Roots of Binomials

669. By a binomial we mean a quantity composed of two parts, which are either both affected by the sign of
the square root, or of which one, at least, contains that sign.

For this reason 3 + /5 is a binomial, and likewise V8 + +/3; and it is indifferent whether the two terms be
joined by the sign + or by the sign —. So that 3 — /5, and 3 + V/5 are both binomials.

670. The reason that these binomials deserve particular attention is that in the resolution of quadratic equations
we are always brought to quantities of this form, when the resolution cannot be performed. For example, the

equation x? = 6x — 4 gives x = 3 + /5.

It is evident, therefore, that such quantities must often occur in algebraic calculations; for which reason, we
have already carefully shown how they are to be treated in the ordinary operations of addition, subtraction,
multiplication, and division: but we have not been able till now to show how their square roots are to be
extracted; that is, so far as that extraction is possible; for when it is not, we must be satisfied with affixing to the

quantity another radical sign . Thus, the square root of 3 + /2 is written v 3 + V2; or V(3 + v2).

671. It must here be observed, in the first place, that the squares of such binomials are also binomials of the
same kind; in which also one of the terms is always rational.

For, if we take the square of a ++/b, we shall obtain (a2 + b) + 2aVb. If therefore it were required
reciprocally to take the root of the quantity (a? + b) + 2avb, we should find it to be a +Vb; and it is
undoubtedly much easier to form an idea of it in this manner, than if we had only put the sign vV before that
quantity. In the same manner, if we take the square of va + Vb, we find it (a + b) + 2Vab; therefore,
reciprocally, the square root of (a + b) + 2+/ab will be Va + Vb, which is likewise more easily understood,
than if we had been satisfied with putting the sign V before the quantity.

672. 1t is chiefly required, therefore, to assign a character, which may, in all cases, point out whether such a
square root exists or not; for which purpose we shall begin with an easy quantity, requiring whether we can

assign, in the sense that we have explained, the square root of the binomial 5 + 2v6.

Suppose, therefore, that this root is Vx + ﬁ; the square of it is (x +y) + 2\/x_ , which must be equal to the
quantity 5 + 2+/6. Consequently, the rational part x + y must be equal to 5, and the irrational part 2\/x—y must be
equal to 2v/6; which last equality gives \/E = /6. Now, since x + y = 5, we have y = 5— x, and this
value substituted in the equation xy = 6, produces 5x — x? = 6, or x> = 5x — 6; therefore,

5, s 25 1,
XEIT Ty T2

Sothatx = 3,andy = 2; whence we conclude that the square root of 5 + 2v/6 is V3 + V2.

673. As we have here found the two equations, x + y = 5, and xy = 6, we shall give a particular method
for obtaining the values of x and y.
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Since x + y = 5, by squaring, x? + 2xy + y? = 25; and as we know that x? — 2xy + y? is the square of
x — y, let us subtract from x? + 2xy + y? = 25, the equation xy = 6, taken four times, or 4xy = 24, in
order to have x? — 2xy + y? = 1; whence by extraction we have x — y = 1;and as x + y = 5, we shall
easily find x = 3,andy = 2: wherefore, the square root of 5 + 2v/6 is v/3 + V2.

674. Let us now consider the general binomial a + Vb, and supposing its square root to be vx + \/;, we shall
have the equation (x + y) + 2\/x—y =a++b;sothatx + y = a, and 2\/x_y = /b, or 4xy = b; subtracting
this square from the square of the equation x + y = a, that is, from x? + 2xy + y% = a?, there remains
x? — 2xy + y? = a? — b, the square root of which is x —y = Va2 —b. Now, x + y = a, we have therefore

_a+Va?=b Y ey

x > andy = >

consequently, the square root required of a + Vb is

\[a+\/a2—b+\[a—\/a2—b
2 2

675. We admit that this expression is more complicated than if we had simply put the radical sign V before the

given binomial a + Vb, and written it v a + Vb: but the above expression may be greatly simplified when the
numbers a and b are such that a® - b is a square; since then the sign v, which is under the radical, disappears.

We see also, at the same time, that the square root of the binomial a + Vb cannot be conveniently extracted,
except when a? - b = c¢?; in this case, the square root required is /% + / %; but if a? - b be not a perfect
square, we cannot express the square root of a + v/b more simply, than by putting the radical sign V before it.

676. The condition, therefore, which is requisite, in order that we may express the square root of a binomial

a ++/b in a more convenient form, is that a? - b be a square; and if we represent that square by c?, we shall

have for the square root in question /aTﬂ + /% We must farther remark that the square root of a — v/b will

a+c a—c . . a?-c? .
— — |—; for, u ula, w - ; NOW, = a® - b, - =
be : for, by squaring this formula, we get a — 2 : now, since c? a’?— b, or a® - c?
2 2 4

b, the same square is found: a — 2\/% =a- ¥ =a—b.

677. When it is required, therefore, to extract the square root of a binomial, as a + \/F, the rule is, Subtract from
the square (a?) of the rational part the square (b) of the irrational part, take the square root of the remainder,
and calling that root ¢, write for the root required,

a+c a—c¢
+
2 2

678. If the square root of 2 ++/3 were required, we should have a = 2 and Vb = +/3; wherefore a> — b =

c¢? = 4 — 3 = 1; so that, by the formula just given, the root sought will be /% + /% = \E + \/%
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Let it be required to find the square root of the binomial 11 + 6+/2. Here we shall have a = 11, and Vb =
6v2; consequently, b = 36 X 2 = 72,and a®> — b = 49, which gives ¢ = 7; and hence we conclude that
the square root of 11 + 6v2 is V9 + /2, or 3 + V2.

Required the square root of 11 + 2+/30. Here a = 11, and Vb = 2+/30; consequently, b = 4 X 30 =
120,a? — b = 1,andc = 1; therefore the root required is V6 + /5.

679. This rule also applies, even when the binomial contains imaginary, or impossible quantities.

Let there be proposed, for example, the binomial 1 + 4+/—3. First, we shall have a = 1 and Vb = 4/=3,

that is to say, b =- 48, and a? — b = 49; therefore ¢ = 7, and consequently the square root required is

VA ++/=3=2++/-3.
Again, let there be given —l + l\/—3. First, we have a = —l' Vb = l\/—3 and b = 1 X (=3) = —%; whence

= 1, and ¢ = 1; and the result required is f /—— +— or Ly v

1
a’?—b=>-+
4

»PIW

Another remarkable example is that in which it is required to find the square root of 2v/—1. As there is here no
rational part, we shall have a = 0. Now, Vb =2vV=1, and b = — 4; wherefore a? — b = 4, and ¢ = 2;
consequently, the square root required is V1 +v—1 = 1 ++/—1; and the square of this quantity is found to be

1+2Vv—-1—-1=2v-1.

680. Suppose now we have such an equation as x> = a + Vb, and that a®? — b = c¢?; we conclude from this

that the value of x = /azi + /?, which may be useful in many cases.

For example, if x? = 17 4+ 12v/2, we shall have x = 3 + /8 = 3 + 2v/2.

681. This case occurs most frequently in the resolution of equations of the fourth degree, such as x* = 2ax? +
d. For, if we suppose x> = y, we have x* = y?, which reduces the given equation to y? = 2ay + d, and

from this we find y = a + Va? + d, therefore, x* = a + Va? + d, and consequently we have another evolution

to perform. Now, since Vb=+vVaZ+d, we have b = a® + d, and a® — b = —d; if, therefore, — d is a
square, as ¢, that is to say, d = — c?, we may assign the root required.
Suppose, in reality, that d = ; or that the proposed equation of the fourth degree is x* = 2ax? — c?, we

shall then find that x = /a+c / o

682. We shall illustrate what we have just said by some examples.
1. Required two numbers, whose product may be 105, and whose squares may together make 274.
Let us represent those two numbers by x and y; we shall then have the two equations,

xy = 105

2 4+ y2 =274

X

. 105 . . : : .
The first gives y = - and this value of y being substituted in the second equation, we have
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5 1052
Xt +—— =274
X
Wherefore x* + 1052 = 274x? or x* = 274x% — 1052,
If we now compare this equation with that in the preceding article, we have 2a = 274, and — ¢? = — 105%;

consequently, ¢ = 105, and a = 137. We therefore find

137 + 105 137 — 105
x = + =111+4

2 2

Whence x = 15, or x = 7. In the first case, y = 7, and in the second case, y = 15; whence the two
numbers sought are 15 and 7.

683. It is proper, however, to observe that this calculation may be performed much more easily in another way.
For, since x2 + 2xy + y? and x% — 2xy + y? are squares, and since the values of x? + y? and of xy are
given, we have only to take the double of this last quantity, and then to add and subtract it from the first, as
follows: x? + y? = 274; to which if we add 2xy = 210, we have x? + 2xy + y? = 484, which gives
x +y =22

But subtracting 2xy, there remains x? — 2xy + y? = 64, whence we find x — y = 8.
So that 2x = 30, and 2y = 14; consequently, x = 15,andy = 7.
The following general question is resolved by the same method.

2. Required two numbers, whose product may be m, and the sum of the squares n.

If those numbers are represented by x and y, we have the two following equations:

Xy =m
+

2 yZ

X n

Now, 2xy = 2m being added to x? + y? = n, we have x? + 2xy + y? = n + 2m, and consequently,
x+y=vn+2m

But subtracting 2xy, there remains x? — 2xy + y% = n — 2m, whence we get x —y = Vn — 2m; we have,
therefore,

1 1
x=§\/n+2m+§\/n—2m

1 1
y=5\/n+2m—§\/n—2m

684. 3. Required two numbers such that their product may be 35, and the difference of their squares 24.
Let the greater of the two numbers be x, and the less y: then we shall have the two equations

xy = 35
x2— y? = 24
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and as we have not the same advantages here, we shall proceed in the usual manner. Here, the first equation
1225

. 35
gives y = —,

= 24. Multiplying by x2, we

have x* — 1225 = 24x2, or x* = 24x? + 1225. Now, the second member of this equation being affected by
the sign +, we cannot make use of the formula already given because having c? = — 1225, ¢ would become
imaginary.

Let us therefore make x> = z; we shall then have z? = 24z + 1225, whence we obtain
z=12+ V144 + 1225 =12+ 37

consequently, x> = 12 4 37; that is to say, either = 49, or = 25.

If we adopt the first value, we have x = 7,andy = 5.

The second value gives x = vV—25; and, since xy = 35, we have y = \is_s 225 _ V=49 = 74—

685. We shall conclude this chapter with the following question.

4. Required two numbers such that their sum, their product, and the difference of their squares, may be all
equal.

Let x be the greater of the two numbers, and y the less; then the three following expressions must be equal to
one another: namely, the sum, x + y; the product, xy; and the difference of the squares, x?> — y2. If we
compare the first with the second, we have x + y = xy; which will give avalueof x: fory = xy — x =

vy

x(y— 1)andx = - consequently, X+ty=-—+y=-— and xy = that is to say, the sum is equal to

the product; and to thls also the difference of the squares ought to be equal. Now, we have

L y2 B 2:—y4+2y3
Y y:—-2y+1 Y y2-2y+1

2

. . . y? y -yt -
so that making this equal to the quantity found S0 We have 31 Yoy D d1V1d1ng by y2, we have v
-y%+2y
y2-2y+1

which gives

; and multiplying by y? — 2y + 1, or (y — 1)°, we have y — 1 = —y? + 2y; consequently, y? = y + 1;

11 1+\/_
=>+ |2 ——+
2T 27

y

and since x = Py we shall have, by substitution, and using the sign +, x =

V5+1
V51"

In order to remove the surd quantity from the denominator, multiply both terms by /5 + 1, and we obtain

_ 6+2V5 _ 345
T4 T 2

Therefore, the greater of the numbers sought is x = #; and the less, y = 1+2\/§.



Leonard Euler 221

Hence their sum x + y = 2 + /5; their product xy = 2 +/5; and since x? = 7+2£, and y% = 3+zﬁ’ we have

also the difference of the squares x? — y2? = 2 + /5, being all the same quantity.

686. As this solution is very long, it is proper to remark that it may be abridged. In order to which, let us begin
with making the sum x + y equal to the difference of the squares x? — y?; we shall then have x + y =
x? — y?%; and dividing by x + y, because x> — y? = (x + y) X (x — y), we find 1 = x — y, and
x =y + 1. Consequently, x + y = 2y + 1, and x?> — y? = 2y + 1; farther, as the product xy, or
y? + y, must be equal to the same quantity, we have y2 + y = 2y + 1, or y2 = y + 1, which gives, as

before, y = 1+2\/§.

687. The preceding question leads also to the solution of the following.
5. To find two numbers such that their sum, their product, and the sum of their squares, may be all equal.

Let the numbers sought be represented by x and y; then there must be an equality between x + y, xy and
2 2
x“ + y-.

Y. consequently, xy, and

y-1

Comparing the first and second quantities, we have x + y = xy, whence x =
2
x+y= ﬁ Now, the same quantity is equal to x? + y?; so that we have

y? , Y

y2—2y+1+y

y—1

Multiplying by y2 — 2y + 1, the product is
y4_2y3+2y2 =y3_y2 or y4=3y3_3y2

and dividing by y?2, we have y?> = 3y — 3; which gives

3 3+v-3
y==-= —3=—
2 2

1+\/__3, whence results x = 3+\/__3; and multiplying both terms by 1 — v/ —3, the result is

10

consequently, y —1 =

1+v/-3
_6—2Yy-3 3-+v-3
T T T2
Therefore the numbers sought are
_3-v-3 q _3+v-3
X = > andy = 5
the sum of which is x + y = 3, their product xy = 3; and lastly, since x? = 3_3\/__3, and y? = 3+3\/__3, the

sum of the squares x? + y? = 3, all the same quantity as required.
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688. We may greatly abridge this calculation by a particular artifice, which is applicable likewise to other cases;
and which consists in expressing the numbers sought by the sum and the difference of two letters, instead of
representing them by distinct letters.

In our last question, let us suppose one of the numbers sought to be p + ¢, and the other p — g, then their
sum will be 2p, their product will be p? — g2, and the sum of their squares will be 2p? + 2q?2, which three
quantities must be equal to each other; therefore making the first equal to the second, we have 2p = p? — g2,

which gives g% = p? - 2p.

Substituting this value of g? in the third quantity (2p? + 2q?), and comparing the result 4p? — 4p with the
first, we have 2p = 4p? — 4p, whence p = %

2 3+v/-3

and

Consequently, g2 = p?- 2p =—%, and ¢q =?; so that the numbers sought are p +q =

3—v=-3

p—q= , as before.
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Questions for Practice

1. What two numbers are those, whose difference is 15, and half of their product equal to the cube of the less?
Ans. 3 and 18.
2. To find two numbers whose sum is 100, and product 2059.

Ans. 71 and 29.

3. There are three numbers in geometrical progression: the sum of the first and second is 10, and the difference
of the second and third is 24. What are they?

Ans. 2,8, and 32.

4. A merchant having laid out a certain sum of money in goods, sells them again for 24![. gaining as much per
cent as the goods cost him: required, what they cost him.

Ans. 20L.

5. The sum of two numbers is a, their product b. Required the numbers.

i O I
2T 4 93 4

6. The sum of two numbers is a, and the sum of their squares b. Required the numbers.

a+ 2b — a? da$ 2b — a?
e 4

7. To divide 36 into three such parts that the second may exceed the first by 4, and that the sum of all their
squares may be 464.

Ans.:

Ans.:

Ans. 8,12, 16.

8. A person buying 120 pounds of pepper, and as many of ginger, finds that for a crown he has one pound more
of ginger than of pepper. Now, the whole price of the pepper exceeded that of the ginger by six crowns: how
many pounds of each had he for a crown?

Ans. 4 of pepper, and 5 of ginger.

9. Required three numbers in continual proportion, 60 being the middle term, and the sum of the extremes
being equal to 125.

Ans. 45, 60, 80.
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10. A person bought a certain number of oxen for 80 guineas: if he had received 4 more for the same money, he
would have paid one guinea less for each head. What was the number of oxen?

Ans. 16.

11. To divide the number 10 into two such parts that their product being added to the sum of their squares, may
make 76.

Ans. 4 and 6.

12. Two travellers A and B set out from two places, I' and A, and at the same time; A from ' with a design to
pass through A, and B from A to travel the same way: after A had overtaken B, they found on computing their
travels that they had both together travelled 30 miles; that A had passed through A four days before, and that B,
at his rate of travelling, was a journey of nine days distant from I'. Required the distance between the places I'
and A.

Ans. 6 miles.
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Chapter IX — Of the Nature of Equations of the Second Degree

689. What we have already said sufficiently shows that equations of the second degree admit of two solutions;
and this property ought to be examined in every point of view because the nature of equations of a higher
degree will be very much illustrated by such an examination. We shall therefore retrace, with more attention,
the reasons which render an equation of the second degree capable of a double solution; since they undoubtedly
will exhibit an essential property of those equations.

690. We have already seen, indeed, that this double solution arises from the circumstance that the square root of
any number may be taken either positively, or negatively; but, as this principle will not easily apply to
equations of higher degrees, it may be proper to illustrate it by a distinct analysis. Taking, therefore, for an
example, the quadratic equation, x> = 12x — 35, we shall give a new reason for this equation being resolvible
in two ways, by admitting for x the values 5 and 7, both of which will satisfy the terms of the equation,

691. For this purpose it is most convenient to begin with transposing the terms of the equation, so that one of
the sides may become 0; the above equation consequently takes the form

x> —=12x+35=0

and it is now required to find a number such that, if we substitute it for x, the quantity x?> — 12x + 35 may be
really equal to nothing; after which, we, shall have to show how this may be done in two different ways.

692. Now, the whole of this consists in clearly showing that a quantity of the form x? — 12x + 35 may be
considered as the product of two factors. Thus, in reality, the quantity of which we speak is composed of the
two factors (x — 5) X (x — 7); and since the above quantity must become 0, we must also have the product
(x—=5) X (x—= 7) = 0; but a product, of whatever number of factors it is composed, becomes equal to 0,
only when one of those factors is reduced to 0. This is a fundamental principle, to which we must pay particular
attention, especially when equations of higher degrees are treated of.

693. It is therefore easily understood that the product (x — 5) X (x — 7) may become 0 in two ways: first,
when the first factor x — 5 = 0; and also, when the second factor x — 7 = 0. In the first case, x = 5, in the
second x = 7. The reason is therefore very evident why such an equation x> — 12x + 35 = 0, admits of two
solutions; that is to say, why we can assign two values of x, both of which equally satisfy the terms of the
equation; for it depends upon this fundamental principle that the quantity x? — 12x + 35 may be represented
by the product of two factors.

694. The same circumstances are found in all equations of the second degree: for, after having brought the the
terms to one side, we find an equation of the following form x? — ax + b = 0, and this formula may be always
considered as the product of two factors, which we shall represent by (x — p) X (x — gq), without concerning
ourselves what numbers the letters p and g represent, or whether they be negative or positive. Now, as this
product must be = 0, from the nature of our equation, it is evident that this may happen in two cases; in the
first place, when x = p; and in the second place, when x = q; and these are the two values of x which satisfy
the terms of the equation.

695. Let us here consider the nature of these two factors in order that the multiplication of the one by the other
may exactly produce x?> —ax + b. By actually multiplying them, we obtain x> — (p + q)x + pq; which
quantity must be the same as x? — ax + b, therefore we have evidently p + ¢ = a, and pq = b. Hence is
deduced this very remarkable property that in every equation of the form x? — ax + b = 0, the two values of x
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are such that their sum is equal to a, and their product equal to b: it therefore necessarily follows that if we
know one of the values, the other also is easily found.

696. We have at present considered the case in which the two values of x are positive, and which requires the
second term of the equation to have the sign —, and the third term to have the sign +. Let us also consider the
cases, in which either one or both values of x become negative. The first takes place, when the two factors of
the equation give a product of this form (x — p) X (x + q); for then the two values of x are x = p and
x = — q; and the equation itself becomes

x*+(@—-px—pg=0

the second term having the sign +, when q is greater than p, and the sign —, when q is less than p; lastly, the
third term is always negative.

The second case, in which both values of x are negative, occurs when the two factors are
(x +p) X (x+q)
for we shall then have x = —p, and x = — q; the equation itself therefore becomes
*+@+q@x+pg=0
in which both the second and third terms are affected by the sign +.

697. The signs of the second and the third terms consequently show us the nature of the roots of any equation of
the second degree. For let the equation be

x> ?2ax?bh=0

If the second and third terms have the sign +, the two values of x are both negative; if the second term has the
sign —, and the third term +, both values are positive: lastly, if the third term also has the sign —, one of the
values in question is positive. But, in all cases whatever, the second term contains the sum of the two values,
and the third term contains their product.

698. After what has been said, it will be easy to form equations of the second degree containing any two given
values. Let there be required, for example, an equation such that one of the values of x may be 7, and the other
— 3. We first form the simple equations x = 7, and x = — 3; whence, x — 7 = 0, and x + 3 = 0; these
give us the factors of the equation required, which consequently becomes x? — 4x — 21 = 0. Applying here,
also, the above rule, we find the two given values of x; for if x? = 4x + 21, we have, by completing the
square, etc.

x=2+vV25=2+5
thatis tosay, x = 7,orx = — 3.

699. The values of x may also happen to be equal. Suppose, for example, that an equation is required, in which
both values may be 5. Here the two factors will be (x — 5) X (x — 5), and the equation sought will be
x? — 10x + 25 = 0. In this equation, x appears to have only one value, but it is because x is twice found = 5,
as the common method of resolution shows; for we have x2 = 10x — 25; wherefore x = 5 + /0 = 5 + 0, that
is to say, x is in two ways = 5.
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700. A very remarkable case sometimes occurs in which both values of x become imaginary, or impossible; and
it is then wholly impossible to assign any value for x that would satisfy the terms of the equation. Let it be
proposed, for example, to divide the number 10 into two parts, such that their product may be 30. If we call one
of those parts x, the other will be 10 — x, and their product will be 10x — x? = 30; wherefore x2 = 10x — 30,

and x = 5 + V-5, which, being an imaginary number, shows that the question is impossible.

701. It is very important, therefore, to discover some sign by means of which we may immediately know
whether an equation of the second degree be possible or not.

Let us resume the general equation x2 — ax + b = 0. We shall have x2 = ax — b, and x = %a + Eaz —b.

This shows that if b be greater than iaz, or 4b greater than a?, the two values of x are always imaginary, since

it would be required to extract the square root of a negative quantity; on the contrary, if b be less than iaz, or

even less than 0, that is to say, if it be a negative number, both values will be possible or real. But, whether they
be real or imaginary, it is no less true that they are still expressible, and always have the property that their sum
is equal to a, and their product equal to b. Thus, in the equation x? — 6x + 10 = 0, the sum of the two values
of x must be 6, and the product of these two values must be 10; now, we find, x = 3 + /=1 and x = 3 — /-1,
quantities whose sum is 6, and the product 10.

702. The expression which we have just found may likewise be represented in a manner more general, and so as

to be applied to equations of this form, fx? + gx + h = 0; for this equation gives x*> = F ‘g;—x - ;, therefore,

whence we conclude that the two values are imaginary, and, consequently, the equation impossible when 4fh is
greater than g?; that is to say, when, in the equation fx? — gx + h = 0, four times the product of the first and
the last term exceeds the square of the second term: for the product of the first and the last term, taken four
times, is 4fhx?, and the square of the middle term is g?x?; now, if 4fhx? be greater than g2x?, 4fh is also
greater than g2, and, in that case, the equation is evidently impossible; but in all other cases, the equation is
possible, and two real values of x may be assigned. It is true they are often irrational; but we have already seen
that, in such cases, we may always find them by approximation: whereas no approximations can take place with
regard to imaginary expressions, such as vV—5; for 100 is as far from being the value of that root, as 1, or any
other number.

703. We have farther to observe that any quantity of the second degree, x? + ax + b, must always be resolvible
into two factors, such as (x + p) X (x £ q). For, if we took three factors, such as these, we should come to a
quantity of the third degree; and taking only one such factor, we should not exceed the first degree. It is
therefore certain that every equation of the second degree necessarily contains two values of x, and that it can
neither have more nor less.

704. We have already seen that when the two factors are found, the two values of x are also known, since each
factor gives one of those values by making it equal to 0. The converse also is true, namely, that when we have
found one value of x, we know also one of the factors of the equation; for if x = p represents one of the values
of x, in any equation of the second degree, x — p is one of the factors of that equation; that is to say, all the
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terms having been brought to one side, the equation is divisible by x — p and farther, the quotient expresses the
other factor.

705. In order to illustrate what we have now said, let there be given the equation x? + 4x — 21 = 0, in which
we know that x = 3 is one of the values of x because (3 X 3) + (4 x 3) — 21 = 0; this shows that x — 3

is one of the factors of the equation, or that x? + 4x — 21 is divisible by x — 3, which the actual division
proves. Thus,

x + 7
x- 3| x2+4x—21
x? — 3x
7x - 21
7x - 21

0

So that the other factor is x + 7, and our equation is represented by the product (x - 3) X (x + 7) = 0;
whence the two values of x immediately follow, the first factor giving x = 3, and the other x = — 7.
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Chapter X — Of Pure Equations of the Third Degree

706. An equation of the third degree is said to be pure when the cube of the unknown quantity is equal to a
known quantity, and when neither the square of the unknown quantity, nor the unknown quantity itself, is found

in the equation; so that x3 = 125; or, more generally, x> = a, x3 =

%, etc. are equations of this kind.
707. It is evident how we are to deduce the value of x from such an equation, since we have only to extract the
cube root of both sides. Thus, the equation x3 = 125 gives x = 5, the equation x> = a gives x = Va, and

sfla  3a

the equation x3 = % gives x = Pl T To be able, therefore, to resolve such equations, it is sufficient that we

know how to extract the cube root of a given number.

708. But in this manner, we obtain only one value for x: but since every equation of the second degree has two
values, there is reason to suppose that an equation of the third degree has also more than one value. It will be
deserving our attention to investigate this; and, if we find that in such equations x must have several values, it
will be necessary to determine those values.

709. Let us consider, for example, the equation x3 = 8, with a view of deducing from it all the numbers whose
cubes are, respectively, 8. As x = 2 is undoubtedly such a number, what has been said in the last chapter
shows that the quantity x> — 8 = 0, must be divisible by x — 2: let us therefore perform this division:

x? + 2x + 4
x-2|x3-8
x3 - 2x?
2x% -8
2x? - 4x
4x - 8
4x - 8
0

Hence it follows that our equation, x> — 8 = 0, may be represented by these factors:
(x—2)x(x?*+2x+4)=0

710. Now, the question is to know what number we are to substitute instead of x in order that x> = 8, or that
x3 — 8 = 0; and it is evident that this condition is answered by supposing the product which we have just now
found equal to O: but this happens, not only when the first factor x — 2 = 0, which gives us x = 2, but also
when the second factor x? + 2x + 4 = 0.

Let us, therefore, make x? + 2x + 4 = 0; then we shall have x> = —2x — 4, and thence x = —1 + V-3.

711. So that beside the case, in which x = 2, which corresponds to the equation x3> = 8, we have two other

values of x, the cubes of which are also 8; and these are, x = —1 ++/—3, and x = —1 —+/—3, as will be
evident, by actually cubing these expressions:

(-14V=3) = (-1+=3) (-1 +V=3) = (-2 - 2V=3)(-1+V=3) =8
(-1-V=3)" = (-1-V=3) (-1 -V=3) = (-2 +2v=3)(-1-V=3) =8
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It is true that these values are imaginary, or impossible; but yet they deserve attention.

712. What we have said applies in general to every cubic equation, such as x> = a; namely, that beside the
value x = /a, we shall always find two other values. To abridge the calculation, let us suppose ¥a = c, so that

a = c3, our equation will then assume this form, x3 — ¢3 = 0, which will be divisible by x — c, as the
actual division shows:

x2 + cx + c?
x—c|x3—¢3
x3 — cx?
cx? — ¢3
cx? — c?*x
c?x — ¢3
c?x — ¢
0

Consequently, the equation in question may be represented by the product (x — ¢) X (x? + cx + ¢?) =
0, which is in fact = 0, not only when x — ¢ = 0, or x = c, but also when x> + cx + ¢? = 0. Now, this
expression contains two other values of x; for it gives x? = — cx — c?, therefore,

B c+ c? 2_—ci\/—3cz_—cicv—3_—1i\/—3
R 2 -T2 - 2 ¢

713. Now, as ¢ was substituted for 3/a, we conclude that every equation of the third degree of the form x3 = a
furnishes three values of x expressed in the following manner:

1. x=3a
—1++=3

2 ox=—F—xia
—1—+=3

3. x= 5 x Va

This shows that every cube root has three different values; but that one only is real, or possible, the two others
being impossible. This is the more remarkable since every square root has two values, and since we shall
afterwards see that a biquadratic root has four different values, that a fifth root has five values, and so on.

In ordinary calculations, indeed, we employ only the first of those values because the other two are imaginary;
as we shall show by some examples.

714. Question 1. To find a number, whose square, multiplied by its fourth part, may produce 432.

Let x be that number; the product of x? multiplied by %x must be equal to the number 432, that is to say,

§x3 =432, and x> = 1728; whence, by extracting the cube root, we have x = 12.

The number sought therefore is 12; for its square 144, multiplied by its fourth part, or by 3, gives 432.
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715. Question 2. Required a number such that if we divide its fourth power by its half, and add 14% to the
product, the sum may be 100.

Calling that number x, its fourth power will be x*; dividing by the half, or %x, we have 2x3; and adding to
that 14 i, the sum must be 100. We have therefore 2x3 + 14% = 100; subtracting 14 i, there remains 2x3 =

343 .. . . . 343 .
%; dividing by 2, gives x3 = %, and extracting the cube root, we find x = %

716. Question 3. Some officers being quartered in a country, each commands three times as many horsemen,
and twenty times as many foot-soldiers, as there are officers. Also a horseman’s monthly pay amounts to as
many florins as there are officers, and each foot-soldier receives half that pay; the whole monthly expense is
13000 florins. Required the number of officers.

If x be the number required, each officer will have under him 3x horsemen and 20x foot-soldiers. So that the
whole number of horsemen is 3x2, and that of foot-soldiers is 20x?2.

Now, each horseman receiving x florins per month, and each foot-soldier receiving %x florins, the pay of the

horsemen, each month, amounts to 3x3, and that of the footsoldiers to 10x3; consequently, they all together
receive 13x3 florins, and this sum must be equal to 13000 florins: we have therefore 13x3 = 13000, or
x3 = 1000, and x = 10, the number of officers required.

717. Question 4. Several merchants enter into partnership and each contributes a hundred times as many
sequins [a gold coin] as there are partners; they send a factor to Venice, to manage their capital, who gains, for
every hundred sequins, twice as many sequins as there are partners, and he returns with 2662 sequins profit.
Required the number of partners.

If this number be supposed = x, each of the partners will have furnished 100x sequins, and the whole capital
must have been 100x?2; now, the profit being 2x for 100, the capital must have produced 2x3; so that 2x3 =
2662, or x3 = 1331; this gives x = 11, which is the number of partners.

718. Question 5. A country girl exchanges cheeses for hens at the rate of two cheeses for three hens; which hens
lay each % as many eggs as there are cheeses. Farther, the girl sells at market nine eggs for as many sous [a unit

of currency] as each hen had laid eggs, receiving in all 72 sous; how many cheeses did she exchange?

Let the number of cheeses = x, then the number of hens which the girl received in exchange, will be gx, and
each hen laying %x eggs, the number of eggs will be zxz. Now, as nine eggs sell for %x sous, the money which
%xz eggs produce is ix3 and ix3 = 72. Consequently, x> = 24 X 72 = 8 X 3 X 8 X 9 = 8 X 8 X

27, whence x = 12; that is to say, the girl exchanged twelve cheeses for eighteen hens.
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Chapter XI — Of the Resolution of Complete Equations of the Third Degree

719. An equation of the third degree is called complete when, beside the cube of the unknown quantity, it
contains that unknown quantity itself, and its square: so that the general formula for these equations, bringing
all the terms to one side, is

ax® +bx*+cx+d=0

And the purpose of this chapter is to show how we are to derive from such equations the values of x, which are
also called the roots of the equation. We suppose, in the first place, that every such an equation has three roots;
since it has been seen, in the last chapter, that this is true even with regard to pure equations of the same degree.

720. We shall first consider the equation x3 — 6x% + 11x — 6 = 0; and, since an equation of the second degree
may be considered as the product of two factors, we may also represent an equation of the third degree by the
product of three factors, which are in the present instance,

x—-1Dxx—-2)x(x—-3)=0

since, by actually multiplying them, we obtain the given equation; for (x - 1) X (x — 2) gives x> — 3x + 2,
and multiplying this by x — 3, we obtain x3 — 6x? + 11x — 6, which are the given quantities, and which
must be 0. Now, this happens when the product (x — 1) X (x — 2) X (x — 3) = 0; and, as it is sufficient for
this purpose that one of the factors become 0, three different cases may give this result, namely, when x — 1 =
0,or x = 1;secondly, whenx — 2 = 0, or x = 2; and thirdly, whenx — 3 = 0,orx = 3.

We see immediately also that if we substituted for x any number whatever beside one of the above three, none
of the three factors would become equal to 0; and, consequently, the product would no longer be 0: which
proves that our equation can have no other root than these three.

721. If it were possible, in every other case, to assign the three factors of such an equation in the same manner,
we should immediately have its three roots. Let us, therefore, consider, in a more general manner, these three
factors, x — p, x — q, x — . Now, if we seek their product, the first, multiplied by the second, gives x? —
(p + @)x + pq and this product, multiplied by x — r, makes

x3—(@+q+1r)x*+ (pqg +pr+qr)x —pqgr

Here, if this formula must become = 0, it may happen in three cases: the first is that, in which x — p = 0, or
x = p;thesecondis, whenx — q = 0,or x = q; thethirdis, whenx — r = 0,orx = r.

722. Let us now represent the quantity found by the equation x3 — ax? + bx — ¢ = 0. It is evident, in order
that its three roots may be x = p,x = q, x = r, that we must have,

. a=p+q+r
. b=pqg+pr+qr
3. ¢ = pqr

We perceive, from this, that the second term of the equation contains the sum of the three roots: that the third
term contains the sum of the products of the roots taken two by two; and lastly, that the fourth term consists of
the product of all the three roots multiplied together.
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From this last property we may deduce an important truth, which is that an equation of the third degree can
have no other rational roots than the divisors of the last term; for since that term is the product of the three
roots, it must be divisible by each of them: so that when we wish to find a root by trial, we immediately see
what numbers we are to use!*”,

For example, let us consider the equation, x3 = x + 6, 0orx3 — x — 6 = 0. Now, as this equation can have
no other rational roots than numbers which are factors of the last term 6, we have only 1, 2, 3, 6, to try with,
and the result of these trials will be as follows:

Ifx = 1,wehave 1—1—6 = —6
Ifx = 2,wehave 8—2—-—6 =0

Ifx = 3,wehave 27— 3— 6 = 18
Ifx = 6, wehave 216— 6— 6 = 204

Hence we see that x = 2 is one of the roots of the given equation; and, knowing this, it is easy to find the

other two; for x = 2 being one of the roots, x — 2 is a factor of the equation, and we have only to seek the
other factor by means of division as follows:

Since, therefore, the formula is represented by the product (x — 2) X (x? + 2x + 3), it will become = 0,
not only when x — 2, but also when x? + 2x + 3 = 0: and, this last factor gives x? + 2x = —3;
consequently,

x=-1xv-2
and these are the other two roots of our equation, which are evidently impossible, or imaginary.

723. The method which we have explained, is applicable only when the first term x° is multiplied by 1, and the
other terms of the equation have integer coefficients; therefore, when this is not the case, we must begin by a
preparation which consists in transforming the equation into another form having the condition required; after
which, we make the trial that has been already mentioned.

Let there be given, for example, the equation

11 3
3 _3x24+—x—--=0
x x 4x 2

As this contains fourth parts, let us make x = g, which will give

3 3y? 11 3
y 3y Wy 3 o
8 4 8 4

and, multiplying by 8, we shall obtain the equation
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y3—6y?+11y—-6=0

the roots of which are, as we have already seen, y = 1,y = 2and y = 3; whence it follows that in the given

. 1 3
equation, we have x = X = 1,x = >

724. Let there be an equation, where the coefficient of the first term is a whole number but not 1, and whose
last term is 1; for example,

6x3 —11x>+6x—1=0

Here, if we divide by 6, we shall have x3 — 1—61x2 +x —é = 0; which equation we may clear of fractions, by

the method just explained.

First, by making x = %, we shall have

216 216

and multiplying by 216, the equation will become y3 — 11y? + 36y — 36 = 0. But as it would be tedious to
make trial of all the divisors of the number 36, and as the last term of the original equation is 1, it is better to
suppose, in this equation, x = i; for we shall then have Z% - i—i + S — 1 = 0, which, multiplied by z3 gives
6 — 11z + 6z2 — z3 = 0, and transposing all the terms, z3 — 6z% + 11z — 6 = 0; where the roots are z = 1,

z = 2,z = 3; whence it follows that in our equation x = 1,x = %,x = %

725. It has been observed in the preceding articles that in order to have all the roots in positive numbers, the
signs plus and minus must succeed each other alternately; by means of which the equation takes this form,

x3—ax®*+bx—c=0

the signs changing as many times as there are positive roots. If all the three roots had been negative, and we had
multiplied together the three factors x + p,x + q, x + r, all the terms would have had the sign plus, and the

form of the equation would have been x3 + ax? + bx + ¢ = 0, in which the same signs follow each other three
times; that is, the number of negative roots.

We may conclude, therefore, that as often as the signs change, the equation has positive roots; and that as
often as the same signs follow each other, the equation has negative roots. This remark is very important
because it teaches us whether the divisors of the last term are to be taken affirmatively or negatively when we
wish to make the trial which has been mentioned.

726. In order to illustrate what has been said by an example, let us consider the equation x3 + x? — 34x +
56 = 0, in which the signs are changed twice, and in which the same sign returns but once. Here we conclude
that the equation has two positive roots, and one negative root; and as these roots must be divisors of the last
term 56, they must be included in the numbers £ 1, 2, 4, 7, 8, 14, 28, 56.

Let us, therefore, make x = 2, and we shall have 8 + 4 — 68 + 56 = 0; whence we conclude that x = 2
is a positive root, and that therefore x — 2 is a divisor of the equation; by means of which we easily find the two

other roots: for, actually dividing by x - 2, we have
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x® + 3x- 28
x-2|x3 + x2- 34x- 56
x3 - 2x?
3x% - 34x
3x%2 - 6x
- 28x + 56
- 28x + 56

0

And making the quotient x2 + 3x — 28 = 0, we find the two other roots, which will be

3 4 9 428 3 4 11
YETIE AT T TR
that is, x = 4 or x = — 7; and taking into account the root found before, namely, x = 2, we clearly perceive

that the equation has two positive, and one negative root. We shall give some examples to render this still more
evident.

727. Question 1. There are two numbers whose difference is 12, and whose product multiplied by their sum
makes 14560. What are those numbers?

Let x be the less of the two numbers, then the greater will be x + 12, and their product will be x? + 12x,
which multiplied by the sum 2x + 12, gives

2x3 + 36x% + 144x = 14560
and dividing by 2, we have
x3 + 18x2% + 72x = 7280

Now, the last term 7280 is too great for us to make trial of all its divisors; but as it is divisible by 8, we shall
make x = 2y because the new equation, 8y3 + 72y? + 144y = 7280, after the substitution, being divided by
8, will become y3 + 9y% + 18y = 910; to solve which, we need only try the divisors 1, 2, 5, 7, 10, 13, etc. of
the number 910: where it is evident that the three first, 1, 2, 5, are too small; beginning therefore with
supposing y = 7, we immediately find that number to be one of the roots; for the substitution gives 343 +
441 + 126 = 910. It follows, therefore, that x = 14; and the two other roots will be found by dividing
y3 +9y? + 18y — 910 by y — 7, thus:

y? + 16y + 130
y-7|y3 + 9y + 18y - 910

y?-7y?
16y% + 18y
16y% - 112y
130y - 910
130y - 910
0

Supposing now this quotient y% + 16y + 130 = 0, we shall have y* + 16y = —130, and thence y = — 8 +
V—66; a proof that the other two roots are impossible.
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The two numbers sought are therefore 14, and (14 + 12) = 26; the product of which, 364, multiplied by
their sum, 40, gives 14560.

728. Question 2. To find two numbers whose difference is 18, and such that their sum multiplied by the
difference of their cubes may produce 275184.

Let x be the less of the two numbers, then x + 18 will be the greater; the cube of the first will be x* and the
cube of the second

x3 + 54x? 4+ 972x + 5832
the difference of the cubes
54x% 4+ 972x + 5832 = 54(x% + 18x + 108)
which multiplied by the sum 2x + 18, or 2(x + 9), gives the product
108(x® + 27x? 4+ 270x + 972) = 275184
And, dividing by 108, we have
x3 +27x% + 270x + 972 = 2548 or x3 + 27x* + 270x = 1576

Now, the divisors of 1576 are 1, 2, 4, 8, etc. the two first of which are too small; but if we try x = 4, that
number is found to satisfy the terms of the equation.

It remains, therefore, to divide by x - 4 in order to find the two other roots; which division gives the quotient
x% + 31x + 394; making therefore

x% + 31x = —394

31 [961 1576
X—"t |[—/————
2 4 4

Hence the numbers sought are 4, and 4 + 18 = 22.

we shall find

that is, two imaginary roots.

729. Question 3. Required two numbers whose difference is 720, and such that if the less be multiplied by the
square loot of the greater, the product may be 20736.

If the less be represented by x, the greater will evidently be x + 720; and, by the question,
xVx +720 = 20736 =8-8-4 - 81
Squaring both sides, we have
x% (x +720) = x3 +720x* =82 -8%-42.812

Let us now make x = 8y, this supposition gives
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83y3 +720-8%y%2 = 82-82-42.81%
and dividing by 83, we have y3 + 90y2 = 8- 42 - 812,
Farther, let us suppose y = 2z, and we shall have
823 +4-90z% = 8- 4% - 817
or, dividing by 8,
z3 +452% = 42 . 812

Again, make z = 9u, in order to have, in this last equation 93u® + 45 -92u2 = 42 - 9* because dividing
now by 93, the equation becomes u3 + 5u? = 42-9 or u?(u +5) = 16+ 9 = 144; where it is obvious that
u = 4; for in this case u? = 16,and u + 5 = 9: since, therefore, u = 4, we have z = 36,y = 72, and
x = 576, which is the less of the two numbers sought; so that the greater is 1296, and the square root of this
last, or 36, multiplied by the other number 576, gives 20736.

730. Remark: This question admits of a simpler solution; for since the square root of the greater number
multiplied by the less must give a product equal to a given number, the greater of the two numbers must be a
square. If, therefore, from this consideration, we suppose it to be x? the other number will be x2 — 720, which
being multiplied by the square root of the greater, or by x, we have x3 — 720 = 20736 = 64 - 27 - 12.

If we make x = 4y, we shall have
64y3 —720-4y =64-27-12 or y3—45y=27-12

Supposing, farther, y = 3z, we find 27z3 — 135z = 27 - 12; or, dividing by 27, z3 — 5z = 12, or
z3 — 5z — 12 = 0. The divisors of 12 are 1, 2, 3, 4, 6, 12: the first two are too small; but the supposition of
z = 3 gives exactly 27 — 15— 12 = 0. Consequently, z = 3,y = 9, and x = 36; whence we conclude
that the greater of the two numbers sought, or x2, is 1296, and that the less, or x2 — 720, is 576, as before.

731. Question 4, There are two numbers whose difference is 12 and the product of this difference by the sum of
their cubes is 102144. What are the numbers?

Calling the less of the two numbers x, the greater will be x + 12: also the cube of the first is x3 and of the
second x3 + 36x% + 432x + 1728; the product also of the sum of these cubes by the difference 12, is

12(2x3 + 36x% + 432x + 1728) = 102144
and, dividing successively by 12 and by 2, we have
x3 + 18x% + 216x + 864 = 4256 or x> + 18x? + 216x = 3392 =8-8-53
If now we substitute x = 2y, and divide by 8, we shall have y3 + 9y% + 54y = 8 - 53 = 424.

Now, the divisors of 424 are 1, 2, 4, 8, 53, etc., 1 and 2 are evidently too small, but if we make y = 4, we
find 64 + 144 + 216 = 424.Sothaty = 4, and x = 8; whence we conclude that the two numbers sought
are8,and 8 + 12 = 20.
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732. Question 5. Several persons form a partnership and establish a certain capital, to which each contributes
ten times as many pounds as there are persons in company: they gain 6 plus the number of partners percent; and
the whole profit is 392 pounds. Required how many partners there are?

Let x be the number required; then each partner will have furnished 10x pounds, and conjointly 10x? pounds;
x3+6x2
10

and since they gain x + 6 per cent, they will have gained with the whole capital, , which is to be made

equal to 392.
We have, therefore, x3 + 6x2 = 3920; consequently, making x = 2y, and dividing by 8, we have
y3 4+ 3y2 = 490

Now, the divisors of 490 are 1, 2, 5, 7, 10, etc., the first three of which are too small; but if we suppose y =
7, we have 343 + 147 = 490;sothaty = 7,andx = 14.

There are therefore fourteen partners and each of them put 140 pounds into the common stock.

733. Question 6. A company of merchants have a common stock of 8240 pounds; and each contributes to it
forty times as many pounds as there are partners; with which they gain as much per cent as there are partners.
Now, on dividing the profit, it is found, after each has received ten times as many pounds as there are persons in
the company, that there still remains 2241. Required the number of merchants?

If x be made to represent the number, each will have contributed 40x to the stock; consequently, all together
will have contributed 40x?, which makes the stock = 40x? + 8240. Now, with this sum they gain x percent;
so that the whole gain is

40x3 8240x 4 . 824 2 . 412

100 T 100 10X to¥Ts¥tm X

From which sum each receives 10x, and consequently they all together receive 10x?2, leaving a remainder of
224; the profit must therefore have been 10x? + 224, and we have the equation

2x3 412«

5 TS

= 10x?% + 224

Multiplying by 5 and dividing by 2, we have x3 + 206x = 25x2 + 560, or x> — 25x% 4+ 206x — 560 = 0:
the first however, will be more convenient for trial. Here the divisors of the last term are 1, 2, 4, 5, 7, 8, 10, 14,
16, etc., and they must be taken positively; because in the second form of the equation the signs vary three
times, which shows that all the three roots are positive.

Here, if we first try x = 1, and x = 2, it is evident that the first side will become less than the second. We
shall therefore make trial of other divisors.

When x = 4, we have 64 + 824 = 400 + 560, which does not satisfy the terms of the equation.
Ifx = 5, wehave 125 4+ 1030 = 625 + 560, which likewise does not succeed.

But if x = 7, we have 343 + 1442 = 1225 + 560, which answers to the equation; so that x = 7 is a
root of it. Let us now seek for the other two by dividing the second form of our equation by x — 7:
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x%? - 18x + 80
x-7|x3- 25x2 + 260x - 560
x3 - 7x?
-18x% + 260x
-18x% + 126x
80x - 560
80x - 560
0
Now, making this quotient equal to nothing, we have x? — 18x + 80 = 0, or x> — 18x = —80; which gives

x = 9 4 1, so that the two other roots are x = 8 orx = 10.

This question therefore admits of three answers. According to the first, the number of merchants is 7;

according to the second, it is 8; and, according to the third, it is 10. The following statement shows that all

these will answer the conditions of the question:

Number of merchants

Each contributes 40x

If all they contribute 40x?

The original stock was

The whole stock is 40x? + 8240

With this capital they gain as much
per cent as there are partners

Each takes from it

So that they all together take 10x?

There remains therefore

7 8 10

280 320 400
1960 | 2560 | 4000
8240 | 8240 | 8240
10200 | 10800 | 12240
714 864 | 1224
70 80 100
490 640 | 1000
224 224 224
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Chapter XII — Of the Rule of Cardan, or of Scipio Ferreo

734. When we have removed fractions from an equation of the third degree, according to the manner which has
been explained, and none of the divisors of the last term are found to be a root of the equation, it is a certain
proof, not only that the equation has no root in integer numbers, but also that a fractional root cannot exist;
which may be proved as follows.

Let there be given the equation x3 — ax? + bx — ¢ = 0, in which, a, b, c, express integer numbers. If we
suppose, for example, x = %, we shall have 2?7 — z a+ gb — ¢ = 0. Now here, the first term alone has 8 for the

denominator; the others being either integer numbers, or numbers divided by 4 or by 2, and therefore cannot
make 0 with the first term. The same thing happens with every other fraction.

735. As in those fractions the roots of the equation are neither integer numbers, nor fractions, they are irrational,
and, as it often happens, imaginary. The manner, therefore, of expressing them, and of determining the radical
signs which affect them, forms a very important point, and deserves to be carefully explained. This method,
called Cardan’s Rule, is ascribed to Cardan, or more properly to Scipio Ferreo, both of whom lived some
centuries since*®),

736. In order to understand this rule, we must first attentively consider the nature of a cube whose root is a
binomial.

Let a + b be that root; then the cube of it will be a® + 3a?b + 3ab? + b3, and we see that it is composed
of the cubes of the two terms of the binomial, and beside that, of the two middle terms, 3a?b + 3ab?, which
have the common factor 3ab, multiplying the other factor, a + b; that is to say, the two terms contain thrice
the product of the two terms of the binomial, multiplied by the sum of those terms.

737. Let us now suppose x = a + b; taking the cube of each side, we have x> = a® + b3 + 3ab(a + b): and,
since a + b = x, we shall have the equation, x> = a3 + b3 + 3abx, or x> = 3abx + a® + b3, one of the
roots of which we know to be x = a + b. Whenever, therefore, such an equation occurs, we may assign one
of its roots.

For example, let a = 2 and b = 3; we shall then have the equation x> = 18x + 35, which we know with
certainty to have x = 5 for one of its roots.

738. Farther, let us now suppose a®> = p, and b3 = q; we shall then have a = 3\/5 and b = 3\/5, consequently,
ab = 3/pq; therefore, whenever we meet with an equation of the form x3 = 3x3/pq + p + q, we know that

one of the roots is 3/p + 3/q.

Now, we can determine p and q in such a manner that both 33/pq and p + g may be quantities equal to

determinate numbers; so that we can always resolve an equation of the third degree, of the kind which we speak
of.

739. Let, in general, the equation x> = fx + g be proposed. Here, it will be necessary to comparey with f
with 33/pq, and g with p + q; that is, we must determine p and ¢ in such a manner that 33/pg may become
equalto f,andp + q = g; for we then know that one of the roots of our equation will be x = 3\/5 + 3\/5

740. We have therefore to resolve these two equations,
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3Vpa=f

ptq=g

The first gives

f JER 4
3 = — = ——= — 3 [ p— 3
VP4 3 OF P4 =7 27f and 4pq 27f

The second equation, being squared, gives p? + 2pq + q? = g?; if we subtract from it 4pq = % f3, we have

p?—2pq+q*=g%— %f3, and taking the square root of both sides, we have
4
—g= g2 _—__¢3
P—q ’g 57/
Now, since p + q = g, we have, by adding p + g to one side of the equation, and its equal, g, to the other,

4
2y = 2 ___ 3
pr=g+ |9 27

and, by subtracting p — q fromp + g, we have 2q = g — f g% - % f3; consequently,

/ 4 / 4
9t 9t 57 f° 9—J9°> 5713
P= 2 2

741. In a cubic equation, therefore, of the form x*> = fx + g, whatever be the numbers f and g, we have

always for one of the roots
3 / a_ A o3 3| / 2_ 4 3
g+ |9 27f N 9 27f

2 2

and q =

X =

that is, an irrational quantity, containing not only the sign of the square root, but also the sign of the cube root;
and this is the formula which is called the Rule of Cardan.

742. Let us apply it to some examples in order that its use may be better understood.
Let x3 = 6x + 9. First, we shall have f = 6 and g = 9, so that g = 81, f3 = 216, % 3 =32; then

g* - % f3 =49 and / g% — % f3 = 7. Therefore, one of the roots of the given equation is

319+7 3[9-7 3/16 3]2
x=\/ > +J —= 7+£=i/§+iﬁ=2+1=3
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743. Let there be proposed the equation x3 = 3x + 2. Here, we shall have f = 3 and g = 2; and

consequently, g2 = 4, f3 = 27, and %f3 = 4; which gives /gz - %f3 = 0; whence it follows that one of

the roots is x = 3/?+3/%=1+1=2.

744. It often happens, however, that though such an equation has a rational root, that root cannot be found by
the rule which we are now considering.

Let there be given the equation x> = 6x + 40, in which x = 4 is one of the roots. We have here f = 6

and g = 40; farther, g> = 1600, and %f3 = 32; so that g2 —%fE‘ = 1568, and /gz - %F’ =+/1568 =
V4 449 -2 = 28v2; consequently one of the roots will be

3140 +28v2 3[40 — 28V2
x=\/ +2 \/_+\/ > \/_=3\/20+14\/§+3\/20—14\/§

which quantity is really = 4, although, upon inspection, we should not suppose it. In fact, the cube of 2 + /2
being 20 + 14+/2, we have, reciprocally, the cube root of 20 + 14v/2 equal to 2 ++/2; in the same manner,

3\/20 —14+/2 = 2 —+/2; wherefore our root x = 2 + V2 + 2 — /2 = 4.¥7

745. To this rule it might be objected that it does not extend to all equations of the third degree because the
square of x does not occur in it; that is to say, the second term of the equation is wanting. But we may remark
that every complete equation may be transformed into another in which the second term is wanting, which will
therefore enable us to apply the rule.

To prove this, let us take the complete equation x3 - 6x? + 11x - 6 = 0: where, if we take the third of the
coefficient 6 of the second term, and make x — 2 = y, we shall have

=y + 2

X
x2 =y2 +4y +4
x3 =93 + 6y% + 12y +8

Consequently, x*> — 6x? + 11x - 6 becomes (by summing):

—6x2 = —6y%— 24y — 24
11x = 11y + 22
-6 = —6
Thus, y3 -y

We have, therefore, the equation y3 — y = 0, the resolution of which it is evident, since we immediately
perceive that it is the product of the factors

yp: -1 =yy+Dx@y—-1)=0

If we now make each of these factors = 0, we have

YT Yot



Leonard Euler 243
that is to say, the three roots which we have already found.

746. Let there now be given the general equation of the third degree, x> + ax? + bx + ¢ = 0, of which it is
required to destroy the second term.

For this purpose, we must add to x the third of the coefficient of the second term, preserving the same sign,
and then write for this sum a new letter, as for example y, so that we shall have x + %a =y,andx =y — %a;

whence results the following calculation:

_ 1
Y,
2 _.2_% 242
x2=y 3ay+19a 1
x3 :y3—ay2+§a2y—ﬁa3
Consequently,
1 1
x3 = y3 — ay? +§(212y_2_Za3
ax? = ay2—§a2y+ga3
bx = by—%ab
c = c
or

3—(l >~ p) b (2a—xab+c) =0
y 3a y 27a 3(1 Cc) =

an equation in which the second term is wanting.

747. We are enabled, by means of this transformation, to find the roots of all equations of the third degree, as
the following example will show.

Let it be proposed to resolve the equation
x3—6x2+13x—12=0

Here it is first necessary to destroy the second term; for which purpose, let us make x — 2 = y, and then we
shallhavex = y + 2,x% = y%2 + 4y + 4,andx® = y3 + 6y? + 12y + 8; therefore,

*= y> +6y +12y+8
—6x?% = —6y? — 24y — 24
13x = 13y + 26
—-12 = —-12
which gives y3 + y— 2 = 0,0ory® = —y + 2.
And if we compare this equation with the formula, (Article 741), x> = fx + g, we have f = — 1, and

- 9. 2 _ A3 _ 4 2 _ 4% f3 _ 4 _12 /z_i 3=/£=
g = 2; wherefore, g© = 4, and 27f =—5 also, g 27f 4+27 27,and g 27f —
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V27 + 6v21 + § V27 - 6v21; and it remains to substitute this value in x = y +

SV

421
- consequently, y =
2.

748. In the solution of this example, we have been brought to a quantity doubly irrational; but we must not

immediately conclude that the root is irrational because the binomials 27 + 6v21 might happen to be real

cubes; and this is the case here; for the cube of 3+2—m being %ﬁ = 27 + 6v21, it follows that the cube

3+v21
2

3—v21
2

root of 27 + 6vV21 is , and that the cube root 27 — 6v21 of is . Hence the value which we found

for y becomes

_L3+V21\ 173421\ 1 1
Y=3\7 2 3\" 2 )T2727

Now, since y = 1, we have x = 3 for one of the roots of the equation proposed, and the other two will be
found by dividing the equation by x — 3:

x?-3x + 4
x-3|x3-6x% + 13x - 12
x3 - 3x?
-3x% + 13x
-3x% + 9x
4x - 12
4x - 12

0

Also making the quotient x> — 3x + 4 = 0, we have x> = 3x — 4; and

3 9 16 3 7 3f£v-7
X ::—-i: _—— ::—-i: —_—_—
2 4 4 2 4 2

which are the other two roots, but they are imaginary.

749. It was, however, by chance, as we have remarked that we were able, in the preceding example, to extract
the cube root of the binomials that we obtained, which is the case only when the equation has a rational root;
consequently, the rules of the preceding chapter are more easily employed for finding that root. But when there
is no rational root, it is, on the other hand, impossible to express the root which we obtain in any other way,
than according to the rule of Cardan; so that it is then impossible to apply reductions. For example, in the

equation x> = 6x + 4, we have f = 6 and g = 4, so that x = i/Z +2v-1+ i/Z — 2+/—1, which cannot
be otherwise expressed'**.
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Questions for Practice

1. Given y® + 30y = 117, to determine .

Ans.y = 3.
2. Given y® — 36y = 91, to find the value of y.
Ans.y = 7.
3. Given y3® + 24y = 250, to find the value of y.
Ans.y = 5.05.
4. Given y® — 3y* — 2y2— 8 = 0, tofind y.
Ans.y = 2.
5.Giveny® + 3y? + 9y = 13, to determine y.
Ans.y = 1.
6. Given x3 — 6x = — 9, to find the value of x.
Ans.x =- 3.
7. Given x3 — 6x%2 + 10x = 8, to find x.
Ans. x = 4.
8. Given p3 — %p = %, to find p.
Ans.p = 8%.
9. Given x3 — ?x = £= to find x.
Ans. x = 2%.
10. Given a? — 91a = — 330, to find a.
Ans.a = 5.

11. Given y3 — 19y = 30, what is the value of y?

Ans.y = 5.
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Chapter XIII — Of the Resolution of Equations of the Fourth Degree

750. When the highest power of the quantity x rises to the fourth degree, we have equations of the fourth
degree; the general form of which is

x*+axd+bx?+cx+d=0

We shall, in the first place, consider pure equations of the fourth degree; the expression for which is simply
x* = f; the root of which is immediately found by extracting the biquadrate root of both sides, since we obtain

x=4F.

751. As x* is the square of x2, the calculation is greatly facilitated by beginning with the extraction of the
square root; for we shall then have x? = \/7 ; and, taking the square root again, we have x = 4\/7; so that
x = ‘{/7 is nothing but the square root of the square root of f.

For example, if we had the equation, x* = 2401, we should immediately have x> = 49, and thenx = 7.

752. 1t is true this is only one root; and since there are always three roots in an equation of the third degree, so
also there are four roots in an equation of the fourth degree: but the method which we have explained will

actually give those four roots. For, in the above example, we have not only x> = 49, but also x> = —49;
now, the first value gives the two roots x = 7, and x = — 7, and the second value gives x = vV—49 = 7+/—1,
and x = —/—49 = —7+/—1; which are the four biquadrate roots of 2401. The same also is true with respect to

other numbers.

753. Next to these pure equations, we shall consider others in which the second and fourth terms are wanting,

and which have the form x* + fx? + g = 0. These may be resolved by the rule for equations of the second

degree; for if we make x2 = y, wehavey? + fy + g = 0,ory? = — fy — g, whence we deduce

1 /1 N
y=-35f% Zfz—g= I ; g

— [F2_
Now, x? = y, sothatx = + /w which the double signs + indicate all the four roots.

754. But whenever the equation contains all the terms, it may be considered as the product of four factors. In
fact, if we multiply these four factors together, (x — p) X (x — q) X (x — r) X (x — 5), we get the
product

x4—(p+q+r+s)x3+(pq+pr+ps+qr+qs+rs)x2— (pqr+pqs+prs+qrs)x+pqrs

and this quantity cannot be equal to 0, except when one of these four factors is = 0. Now, that may happen in
four ways:

1. when x =
2. when x

I
w I a

3. when x
4. when x =
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Consequently, these are the four roots of the equation.

755. If we consider this formula with attention, we observe, in the second term, the sum of the four roots
multiplied by — x3; in the third term, the sum of all the possible products of two roots, multiplied by x?; in the
fourth term, the sum of the products of the roots combined three by three, multiplied by — x; lastly, in the fifth
term, the product of all the four roots multiplied together.

756. As the last term contains the product of all the roots, it is evident that such an equation of the fourth degree
can have no rational root, which is not a divisor of the last term. This principle, therefore, furnishes an easy
method of determining all the rational roots, when there are any; since we have only to substitute successively
for x all the divisors of the last term, till we find one which satisfies the terms of the equation: and having found
such a root (for example, x = p), we have only to divide the equation by x — p, after having brought all the
terms to one side, and then suppose the quotient = 0. We thus obtain an equation of the third degree, which
may be resolved by the rules already given.

757. Now, for this purpose, it is absolutely necessary that all the terms should consist of integers, and that the
first should have only unity for the coefficient; whenever, therefore, any terms contain fractions, we must begin
by destroying those fractions; and this may always be done by substituting, instead of x, the quantity y, divided
by a number which contains all the denominators of those fractions.

For example, if we have the equation

1 1 3 1
4 _—-,3 4, -.2_° —=0
X 2x +3x 4x+18

as we find here fractions which have for denominators 2, 3, and multiples of these numbers, let us suppose
x = Jé, and we shall then have

1
8

___+__

y4
64

[EnN

an equation, which, multiphed by 6*, becomes
y*—=3y3+12y2 - 162y +72 =0

If we now wish to know whether this equation has rational roots, we must write, instead of y, the divisors of
72 successively, in order to see in what cases the formula would really be reduced to 0.

758. But as the roots may as well be positive as negative, we must make two trials with each divisor; one,
supposing that divisor positive, the other, considering it as negative. However, the following Rule will
frequently enable us to dispense with this!*"),

Whenever the signs + and — succeed each other regularly, the equation has as many positive roots as there are
changes in the signs; and as many times as the same sign recurs without the other intervening, so many negative
roots belong to the equation.

Now, our example contains four changes of the signs, and no succession; so that all the roots are positive: and
we have no need to take any of the divisors of the last term negatively.

759. Let there be given the equation
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x*+2x3 —7x2 -8x+12=0

We see here two changes of signs, and also two successions; whence we conclude, with certainty, that this
equation contains two positive, and as many negative roots, which must all be divisors of the number 12. Now,
its divisors being 1, 2, 3, 4, 6, 12, let us first try x = + 1, which actually produces 0; therefore one of the
rootsis x = 1.

If we next make x = —1, wefind4+1—2—-7 + 8 + 12 = 21— 9 = 12:sothat x = — 1 is not one
of the roots of the equation. Let us now make x = 2, and we again find the quantity = 0; consequently,
another of the roots is x = 2; but x = — 2, on the contrary, is found not to be a root. If we suppose x = 3,
we have 81 + 54 — 63 — 24 + 12 = 60, so that the supposition does not answer; but x = — 3, giving
81— 54— 63 + 24 + 12 = 0, this is evidently one of the roots sought. Lastly, when we try x = — 4, we
likewise see the equation reduced to nothing; so that all the four roots are rational, and have the following
values: x = 1, x = 2, x = —3,and x = — 4; and, according to the Rule given above, two of these roots
are positive, and the two others are negative.

760. But as no root could be determined by this method, when the roots are all irrational, it was necessary to
devise other expedients for expressing the roots whenever this case occurs; and two different methods have
been discovered for finding such roots, whatever be the nature of the equation of the fourth degree.

But before we explain those general methods, it will be proper to give the solution of some particular cases,
which may frequently be applied with great advantage.

761. When the equation is such that the coefficients of the terms succeed in the same manner, both in the direct
and in the inverse order of the terms, as happens in the following equation:*"

xt+mxd+nx?+mx+1=0
or in this other equation, which is more general:
x* + max® + na’x? + madx+a* =0

we may always consider such a formula as the product of two factors, which are of the second degree, and are
easily resolved. In fact, if we represent this last equation by the product

(x? + pax + a?) x (x? + gax+a?) =0

in which it is required to determine p and g in such a manner that the above equation may be obtained, we shall
find, by performing the multiplication,

x*+ (p+ @Qax® + (pqg + 2)a*x* + (p + Qa’x + a* =
and, in order that this equation may be the same as the former, we must have,

I.Lp+qg=m
2.pg+2 =n

and, consequently, pqg = n — 2.

Now, squaring the first of those equations, we have p? + 2pq + q* = m?; and if from this we subtract the
second, taken four times, or 4pq = 4n — 8, there remains p? — 2pq + q*> = m? — 4n + 8; and taking the
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square root, we find p — q = Vvm?2 —4n + 8; also, p + q = m; we shall therefore have, by addition, 2p =

A/m2— — 2_
m++vVm? —4n+8,orp = m++4n+8; and, by subtraction, 2¢g = m —vVm? —4n +8, orq = w.

Having therefore found p and q, we have only to suppose each factor = 0, in order to determine the value of x.

The first gives x> + pax + a? = 0, or x> = — pax — a?, whence we obtain
pa p?a? pa 1
x=-—=* | —a2=—7i§aw/p2—4

i __9qa,1 2 _ 2 . .
The second factor gives x = 5 + 3 a./q* — 4; and these are the four roots of the given equation.

762. To render this more clear, let there be given the equation x* — 4x3 — 3x? — 4x + 1 = 0. We have
herea = 1,m = —4,n = — 3; consequently, m?> — 4n + 8 = 36, and the square root of this quantity is
= 6; therefore

_—4+6_1 q _—4-6 .
L
whence result the four roots,
1 1 —1++/=
1"and 2™ x=——+vJ=3 = 1+v-3
272 2
5 1 v
31 and 4 x=24-v21 =5i 21
272 2
that is, the four roots of the given equation are:
1 x= -1+vV-3 2y = -1-vV-3
2 2
3.x:5+;/ﬁ 4.9(25_;/H

The first two of these roots are imaginary, or impossible; but the last two are possible; since we may express
V21 to any degree of exactness, by means of decimal fractions. In fact, 21 being the same with 21.00000000,
we have only to extract the square root, which gives V21 = 4.5825.

Since, therefore, v21 = 4.5825, the third root is very nearly x = 4.7912, and the fourth, x = 0.2087. It
would have been easy to have determined these roots with still more precision: for we observe that the fourth

. 2 1 . . . . . .
root is very nearly o O o which value will answer the equation with sufficient exactness. In fact, if we make

X = l, we find —— — 2 _12 +1= 2L Wwe ought however to have obtained O, but the difference is
5 625 125 25 5 625

evidently not great.

763. The second case in which such a resolution takes place, is the same as the first with regard to the
coefficients, but differs from it in the signs, for we shall suppose that the second and the fourth terms have
different signs; such, for example, as the equation

x* + max® + na®x®* —madx+a*=0

which may be represented by the product,
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(x? + pax —a?) x (x> + gqax —a?) =0
For the actual multiplication of these factors gives
x* +(p+ Qax® + (pq — 2)a*x®> — (p + @Q)a®x +a* = 0

a quantity equal to that which was given, if we suppose, in the first place, p + ¢ = m, and in the second
place, pq — 2 = n, or pg = n + 2; because in this manner the fourth terms become equal of themselves. If
now we square the first equation, as before, (Article 761) we shall have p? + 2pq + g? = m?; and if from
this we subtract the second, taken four times, or 4pq = 4n + 8, there will remain p? — 2pq + q?> = m? —

4n — 8; the square root of which is p — ¢ = Vvm? — 4n — 8, and thence, by adding p + ¢ = m, we obtain

- _ 2_An—
p = @; and, by subtractingp + ¢, q = w

Having therefore found p and g, we shall obtain from the first factor (as in Article 761) the two roots x =
- %pa + %aw/p2 + 4, and from the second factor the two roots x = —%qa + %aw/q2 + 4; that is, we have the

four roots of the equation proposed.
764. Let there be given the equation
x*—=3-2x3+3-8x+16=0
Here wehavea = 2,m = —3,andn = 0;so thatVvm?2 —4n—8=1= p — q; and, consequently,

341
P="7

—3-1

-2
2

=—1and q =

Therefore the first two roots are x = 1 + /5, and the last, two are x = 2 + v/8; so that the four roots sought
will be,

L.x=1+V5 2.x=1-+5
3.x=2+V8 4.x=2-+8
Consequently, the four factors of our equation will be
(x—l—\/g)x(x—1+\/§)x(x—2—¢§)x(x—2+\/§)

and their actual multiplication produces the given equation; for the first two being multiplied together give
x%2 — 2x — 4, and the other two give x? — 4x — 4: now, these products multiplied together, make x* —
6x3 — 24x + 16, which is the same equation that was proposed.
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Chapter XIV — Of the Rule of Bombelli for reducing the Resolution of Equations
of the Fourth Degree to that of Equations of the Third Degree

765. We have already shown how equations of the third degree are resolved by the rule of Cardan so that the
principal object, with regard to equations of the fourth degree, is to reduce them to equations of the third
degree. For it is impossible to resolve, generally, equations of the fourth degree, without the aid of those of the
third; since, when we have determined one of the roots, the others always depend on an equation of the third
degree. And hence we may conclude that the resolution of equations of higher dimensions presupposes the
resolution of all equations of lower degrees.

766. It is now some centuries since Bombelli, an Italian, gave a rule for this purpose, which we shall explain in
this chapter”'l.

Let there be given the general equation of the fourth degree, x* + ax® + bx? + cx + d = 0, in which
the letters a, b, c, d, represent any possible numbers; and let us suppose that this equation is the same as

1 2
(xz +Eax+p) —(gx+71)>=0
in which it is required to determine the letters p, q, and r in order that we may obtain the equation proposed. By
squaring, and ordering this new equation, we shall have

1
x* + ax3 + Zazx2 + apx + p? + 2px? — 2qrx —r? — q*x?

Now, the first two terms are already the same here as in the given equation; the third term requires us to make

2:

%az + 2p — q* = b, which gives q iaz + 2p — b; the fourth term shows that we must make ap — 2qr =

c, or 2qr = ap — c; and, lastly, we have for the last term p? — r? = d, or > = p? — d. We have
therefore three equations which will give the values of p, g, and r.

767. The easiest method of deriving those values from them is the following: if we take the first equation four
times, we shall have 4g®> = a? + 8p — 4b; which equation, multiplied by the last, 7> = p? — d, gives

4q%r? = 8p3 + (a? — 4b)p? — 8dp — d(a? — 4b)

Farther, if we square the second equation, we have 4q%r? = a?p? — 2acp + c?. So that we have two
values of 4q%r?, which, being made equal, will furnish the equation

8p3 + (a? — 4b)p? — 8dp — d(a? — 4b) = a’p? — 2acp + c?
or, bringing all the terms to one side, and arranging,
8p3 — 4bp? + (2ac — 8d)p — a*d + 4bd — c* = 0
an equation of the third degree, which will always give the value of p by the rules already explained.

768. Having therefore determined three values of p by the given quantities a, b, ¢, d, when it was required to
find only one of those values, we shall also have the values of the two other letters g and r; for the first
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equation will give g = Eaz + 2p — b, and the second gives r = %. Now, these three values being

determined for each given case, the four roots of the proposed equation may be found in the following manner:

2
This equation having been reduced to the form (x2 + % ax + p) — (gx +7)% = 0, we shall have
1 2
<x2 +Eax +p) = (gx +71)?
and, extracting the root, x2 + %ax +p=qx+r, or x*+ %ax +p =—qx —r. The first equation gives
x? = (q - % a) x —p + r, from which we may find two roots; and the second equation, to which we may give

the form x? = — (q + %a) x — p — r, will furnish the two other roots.

769. Let us illustrate this rule by an example, and suppose that the equation
x* —10x3 4+ 35x% — 50x + 24 = 0

was given. If we compare it with our general formula (at the end of Article 767), we havea = — 10, b = 35,
¢ = —=50,d = 24; and, consequently, the equation which must give the value of p is

8p® — 140p? + 808p — 1540 = 0 or 2p® — 35p2 + 202p — 385 = 0

The divisors of the last term are 1, 5, 7, 11, etc.; the first of which does not answer; but making p = 5, we
get 250 — 875 4+ 1010 — 385 = 0, so that p = 5; and if we farther suppose p = 7, we get 686 —
1715 + 1414 — 385 = 0, a proof that p = 7 is the second root. It remains now to find the third root; let us

therefore divide the equation by 2, in order to have p3 — %pz +101p — % = 0, and let us consider that the
coefficient of the second term, or %, being the sum of all the three roots, and the first two making together 12,
the third must necessarily be %

We consequently know the three roots required. But it may be observed that one would have been sufficient;
because each gives the same four roots for our equation of the fourth degree.

770. To prove this, let p = 5; we shall then have, by the formula, /iaz +2p—b,q=+v25+10—-35=0,

_500+50 = %. Now, nothing being determined by this, let us take the third equation,

andr =
r’=p?—-d=25-24=1
so that r = 1; our two equations of the second degree will then be:
1.x2=5x—4 2.x*=5x—6

The first gives the two roots,
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that is to say, x = 4,andx = 1.

The second equation gives

that is to say, x = 3,andx = 2.
But suppose now p = 7, we shall have

—70+50
—=

q=V25+14—-35=2 and r =

whence result the two equations of the second degree,

1.x2=7x—-12 2. x2=3x-2

. + .
the first gives x = % + \E, orx = %, sothatx = 4, and x = 3; the second furnishes the root

3 1 341
x=—%4 |-=———
2 4 2

and, consequently, x = 2 and x = 1; therefore, by this second supposition, the same four roots are found as
by the first.

Lastly, the same roots are found, by the third value of p = %; for, in this case, we have

—55+ 50 5
q=V25+11-35=1 and r:T:_E

so that the two equations of the second degree become,
l.x2=6x—8 2. x*=4x-3

Whence we obtain from the first, x = 3 ++/1, that is to say, x = 4, and x = 2; and from the second,
x =2 ++/1, that is to say, x = 3,and x = 1, which are the same roots that we originally obtained.

771. Let there now be proposed the equation
x*—16x—12=0
inwhicha = 0,b = 0,c = —16,d = — 12; and our equation of the third degree will be
3p3+96p —256 =0 or p>+12p—32=0
and we may make this equation still more simple by writing p = 2t; for we have then

8t3+24t—-32=0 or t3+3t—4=0
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The divisors of the last term are 1, 2, 4; whence one of the roots is found to be t = 1; therefore p = 2,

q =V4=2andr = % = 4. Consequently, the two equations of the second degree are
1L x2=2x4+2 2. x*=-2x—6

which give the roots
x=1+V3 and x=-1+v-5

772. We shall endeavour to render this resolution stiil more familiar by a repetition of it in the following
example. Suppose there were given the equation

x*—6x3+12x2 -12x+4=0
which must be contained in the formula
(x2=3x+p)?—-(gx+1r)?=0

in the former part of which we have put — 3x because — 3 is half the coefficient, — 6, of the given equation.
This formula being expanded, gives

x*—6x3+2p+9—qg®)x*—(6p+2qr)x +p*—12=0

which, compared with our equation, there will result from that comparison the following equations:

N

12

[uny
N

+9-¢q*
+ 2qr =
—r2 =4

W N =
= o
NT T

The first gives g2 = 2p — 3; the second, 2qr = 12 — 6p, or qr = 6 — 3p; the third, 7?2 = p? — 4.
Multiplying 2 by g% and p? — 4 by 2p — 3, we have
q’r? =2p3 —3p?—8p +12
and if we square qr, and its value, 6 — 3p, we have
q*r? = 36 — 36p + 9p?
so that we have the equation
2p3 —3p?—8p+ 12 =9p? —36p + 36
or
2p% — 12p? + 28p — 24 = 0
or
pdi—6p?+14p—12=0

one of the roots of which is p = 2; and it follows that g2 = 1,q = 1, qr — r = 0. Therefore our equation

r
will be (x? — 3x + 2)? = x2, and its square root will be x> — 3x + 2 = =+ x. If we take the upper sign,
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we have x2 = 4x — 2; and taking the lower sign, we obtain x> = 2x — 2, whence we derive the four roots
x=2+V2,andx =1+V-1.
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Chapter XV — Of a new Method of resolving Equations of the Fourth Degree

773. The rule of Bombelli, as we have seen, resolves equations of the fourth degree by means of an equation of
the third degree; but since the invention of that Rule, another method has been discovered of performing the
same resolution: and, as it is altogether different from the first, it deserves to be separately explained”.

774. We will suppose that the root of an equation of the fourth degree has the form x = \/E + \/E ++/r, in
which the letters p, g, r, express the roots of an equation of the third degree, such as, z3 — fz2 + gz — h = 0;
sothatp + q + r = f,pq + pr + qr = g, and pqr = h. This being laid down, we square the assumed

formula x = \/E + \/E + +/r, and we obtain

x* =p+q+r+2/pq+2pr+2/qr

and, sincep + q + r = f, we have

x* —f =2/pq +2,/pr +2,/qr

We again take the squares, and find

x* — 2fx% + f2 = 4pq + 4pr + 4qr + 8/p2qr + 8\ pq?r + 8\/pqr?

Now, 4pq + 4pr + 4qr = 4g; so that the equation becomes

x* —2fx? + f2 —4g = 8.[pgr x (/v + Jq + V)

But \/5 + \/E ++r =x, and pqr = h, or \/pqr = Vh; wherefore we arrive at this equation of the fourth
degree,

x* —2fx? —8xVh+f2—4g=0

one of the roots of which is x = \/E + \/a + +/r; and in which D, q, and r, are the roots of the equation of the
third degree,

z3—fz2+gz—h=0

775. The equation of the fourth degree, at which we have arrived, may be considered as general, although the
second term x3 is wanting; for we shall afterwards show that every complete equation may be transformed into
another from which the second term has been taken away.

Let there be proposed the equation x* — ax? — bx — ¢ = 0 in order to determine one of its roots. We will
first compare it with the formula in order to obtain the values of f, g, and h; and we shall have,

1. 2f = a,and consequently, f =%
2
2. 8\/h=b,s0thath=z—4

a? a?
3. f2—4g=—c,or:—4g+c=0,or7+c=4g

1 1
and, consequently, g = " a? + 2 ¢
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776. Since, therefore, the equation
x*—ax?*—bx—c =0
gives the values of the letters f, g, and h, so that

1 1 1 1 1
= — = — 2 — pp— 2 —_ —
f 54 g 16a +4c, and h 64b or Vh 8b

we form from these values the equation of the third degree z3 — fz2 + gz— h = 0, in order to obtain its
roots by the known rule. And if we suppose those roots, 1.z = p,2.z = q,3.z = r, one of the roots of our
equation of the fourth degree must be, by the supposition. Article 774,

x:ﬁ+\/ﬁ+\/?

777. This method appears at first to furnish only one root of the given equation; but if we consider that every

sign v may be taken negatively, as well as positively, we shall immediately perceive that this formula contains
all the four roots.

Farther, if we chose to admit all the possible changes of the signs, we should have eight different values of x,

and yet four only can exist. But it is to be observed that the product of those three terms, or ./pqr must be equal
to Vh = %b, and that if ﬁ b be positive, the product of the terms \/E, \/E, Vr, must likewise be positive; so that

all the variations that can be admitted are reduced to the four following:

x=\/5+\/5+\/F
x=Jp— a7
x=—\/5+\/5—\/?
x=—\/5—\/5+\/F

1 . . .
In the same manner, when 3 b is negative, we have only the four following values of x:

x:\/ﬁ+\/a—\/7—‘
x:\/ﬁ—\/a+\/7—‘
x:—\/ﬁ+\/a+\/7—‘
RN

This circumstance enables us to determine the four roots in all cases; as may be seen in the following example.

W e

W N e

778. Let there be proposed the equation of the fourth degree, x* — 25x? + 60x — 36 = 0, in which the
second term is wanting. Now, if we compare this with the general formula, we have a = 25, b = — 60, and
¢ = 36; and after that,

25 625 769 225

AT I 4

by which means our equation of the third degree becomes,

;25,769 225
AT
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First, to remove the fractions, let us make z = %; and we shall have

ud  25u? N 769u 225
64 32 64 4

and multiplying by the greatest denominator, we obtain
u® — 50u? + 769u — 3600 = 0

We have now to determine the three roots of this equation; which are all three found to be positive; one of them
being u = 9: then dividing the equation by u — 9, we find the new equation u? — 41u + 400 = 0, or
u? = 41u — 400, which gives

41+_ 1681 1600 4149
2~ .| 4 14 2

u =

so that the three roots areu = 9,u = 16,andu = 25.

Consequently, as z = %, the roots are

These, therefore, are the values of the letters p, g, and r; that is to say,

o aandr S
p—4,q— ,anadr = 4

Now, if we consider that ./pqr = Vvh = —%, and that therefore this value = %b is negative, we must,
agreeably to what has been said with regard to the signs of the roots \/5, \/E, \r, take all those three roots
negatively, or take only one of them negatively; and consequently, as \/5 = ;, \/E =2, and \Vr = g, the four

roots of the given equation are found to be:

1. x=24+2-2=1
2 2
3 5
2. X—E—2+E—2
3. x=—242+43=3
2 2
3 5
4. x=-2-2-2=-6

From these roots are formed the four factors,
x—-Dx(x-2)xx—-3)x(x+6)=0

The first two, multiplied together, give x> — 3x + 2; the product of the last two is x? + 3x — 18; again
multiplying these two products together, we obtain exactly the equation proposed.

779. It remains now to show how. an equation of the fourth degree, in which the second term is found, may be
transformed into another, in which that term is wanting: for which we shall give the following Rule'™!,
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Let there be proposed the general equation y* + ay3 + by? + cy + d = 0. If we add to y the fourth part

. 1 L. 1
of the coefficient of the second term, or e and write, instead of the sum, a new letter x, so that y + SA=X,

and consequently y = x — i a: we shall have

1 1 3 3 1

2 _.2_ 2 S 2 3_.3_2 2,2 2.~ 3
y? =x 2ax+16a and y3=x 79% +16ax i
and, lastly, as follows:
3 1 1
4=yt oaxd 4+ 2242 - 3 + 4
Y g4 1647 256
3 3 1
3 _ 30 22,2 4 23, g4
ay ax 73X T i
1 1
b 2 b 2 _ - + — 2
y X 2abx 16a b
1
cy = cx - =
Y 4ac
d = d
Or,
3 1 1 3 1 1
x4+0x3—§a2x2+bx2+§a3x—§abx+cx—ﬁa4+Ea2b—zac+d=O

We have now an equation from which the second term is taken away and to which nothing prevents us from
applying the rule before given for determining its four roots. After the values of x are found, those of y will

. . . 1
casily be determined, since y = x — 2@

780. This is the greatest length to which we have yet arrived in the resolution of algebraic equations. All the
pains that have been taken in order to resolve equations of the fifth degree, and those of higher dimensions, in
the same manner, or, at least, to reduce them to inferior degrees, have been unsuccessful: so that we cannot give
any general rules for finding the roots of equations which exceed the fourth degree.

The only success that has attended these attempts has been the resolution of some particular cases; the chief of
which is that in which a rational root takes place; for this is easily found by the method of divisors because we
know that such a root must be always a factor of the last term. The operation, in other respects, is the same as
that we have explained for equations of the third and fourth degree.

781. It will be necessary, however, to apply the rule of Bombelli to an equation which has no rational roots.

Let there be given the equation y* — 8y3 + 14y? + 4y — 8 = 0. Here we must begin with destroying the
second term, by adding the fourth of its coefficient to y, supposing y — 2 = x, and substituting in the
equation, instead of y, its new value x + 2; instead of y? its value x> + 4x + 4; and doing the same with
regard to y3 and y*, we shall have,
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y* = x* + 8x3 + 24x? + 32x + 16
-8y% = - 8x3 - 48x? - 96x - 64
14y2 = 14x* + 56x + 56
4y = 4x + 8
-8 = - 8
x* + 0 - 10x2 - 4x + 8=0
This equation being compared with our general formula gives a = 10, b = 4, ¢ = — 8; whence we

conclude that f = 5,g = 1:7, h = i and Vh = %; that the product ./pgr will be positive; and that it is from the

3

equation of the third degree, z3 —5z% + 1:72 —i = 0 that we are to seek for the three roots p, q, r (Article

774).

782. Let us first remove the fractions from this equation by making z = %) and we shall thus have, after

multiplying by 8, the equation u® — 10u? + 17u — 2 = 0, in which all the roots are positive. Now, the
divisors of the last term are 1 and 2; if wetry u = 1, wefind 1 — 10 + 17 — 2 = 6; so that the equation is
not reduced to nothing; but trying u = 2, we find 8 — 40 + 34 — 2 = 0, which answers to the equation,
and shows that u = 2 is one of the roots. The two others will be found by dividing by u — 2, as usual; then the
quotient u? — 8u + 1 = 0 will give u? = 8u— 1, and u = 4 +V15. And since z = %, the three roots of

the equation of the third degree are,

1. =p=
4++/15
2, 7 = = >
4—+/15
3, Z =T =

2

783. Having therefore determined p, g, r, we have also their square roots, namely[54],

=1 and gV Yoo 2T

But we have already seen, (Article 675 and Article 676), that the square root of a + \/E, when Va2 —b =c, is

expressed by
a+c a—c¢
+Vb = +
Jat Vb ’ 2 N2

so that, as in the present case, a = 8, and Vb = 2+ 15; and consequently, b = 60, and ¢ = Va? — b = 2, we
have

8+2V15=vV5++3 and [8-2V15=v5-+3

Hence, we have \/5 =1, \/E = \/g;,\/g and Vr = ﬁ;@; wherefore, since we also know that the product of these

quantities is positive, the four values of x will be:
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1. x:ﬁ+ﬁ+ﬁ=1+m:1+\/§
2 x=p-Jqg-Vr=1+0E_ 5
Y. .

2

4, x=—\/5—\/6+\/?:—1+wz—1—\/§

Lastly, as we have y = x + 2, the four roots of the given equation are:

1.y=3++5 2.y=3-+5
3.y=1++3 4.y=1-+3
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Questions for Practice

1. Given z* — 4z3 — 8z + 32 = 0, to find the values of z.

Ans. 4,2, -1 ++-3, -1 —+-3.

2. Given y* — 4y3 — 3y?2 — 4y + 1 = 0, to find the values of y.

An _11;\/__3 and Si;/ﬁ.
3. Given x* — 3x% — 4x = 3, to find the values of x.
Ans 1i;/ﬁ and _1;‘”/?
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Chapter XVI - Of the Resolution of Equations by Approximation

784. When the roots of an equation are not rational and can only be expressed by radical quantities, or when we
have not even that resource, as is the case with equations which exceed the fourth degree, we must be satisfied
with determining their values by approximation; that is to say, by methods which are continually bringing us
nearer to the true value, till at last the error being very small, it may be neglected. Different methods of this
kind have been proposed, the chief of which we shall explain.

785. The first method which we shall mention supposes that we have already determined, with tolerable
exactness, the value of one root™); that we know, for example, that such a value exceeds 4, and that it is less
than 5. In this case, if we suppose this value = 4 + p, we are certain that p expresses a fraction. Now, as p is
a fraction and consequently less than unity, the square of p, its cube, and, in general, all the higher powers of p,
will be much less with respect to unity; and, for this reason, since we require only an approximation, they may
be neglected in the calculation, When we have, therefore, nearly determined the fraction p, we shall know more
exactly the root 4 + p; from that we proceed to determine a new value still more exact, and continue the same
process till we come as near the truth as we desire.

786. We shall illustrate this method first by an easy example, requiring by approximation the root of the
equation x? = 20.

Here we perceive that x is greater than 4, and less than 5; making, therefore, x = 4 + p; we shall have

x? = 16 + 8p + p? = 20; but as p? must be very small, we shall neglect it in order that we may have only

the equation 16 + 8p = 20, or 8p = 4. This gives p = %, and x = 4%, which already approaches nearer the
true root. If, therefore, we now suppose x = 4% + p'; we are sure that p’ expresses a fraction much smaller than
before and that we may neglect p'? with greater propriety. We have, therefore, x% = 20i+ 9p' = 20, or
1 17

9p' = — i; and consequently, p' = — %; therefore x = 4% “3e = 43

And if we wished to approximate still nearer to the true value, we must make x = 4% + p"’, and should thus

have x2 = 20— + 8 2p" = 20; so that 822 p”' = — —— 322p" = ——— = -2 and
1296 36 36 1296 1296 36
_ 1 _ 1
P="36x322 11592
therefore, x = 4 % — 11;92 = 15f57932, a value which is so near the truth that we may consider the error as of no

importance.

787. Now, in order to generalise what we have here laid down, let us suppose the given equation to be x? = a,
and that we previously know x to be greater than n, but less thann + 1. If we now make x = n + p, p must

be a fraction, and p? may be neglected as a very small quantity so that we shall have x? = n? + 2np = a;

2 2 2
a-n a-n nc+a
or2np = a— n®andp = o consequently, x = n + o = o

2
Now, if n approximated towards the true value, this new value % will approximate much nearer; and, by

substituting it for n, we shall find the result much nearer the truth; that is, we shall obtain a new value which
may again be substituted in order to approach still nearer; and the same operation may be continued as long as
we please.
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For example, let x2 = 2; that is to say, let the square root of 2 be required; and as we already know a value

2
sufficiently near, which is expressed by n, we shall have a still nearer value of the root expressed by nz—:lz Let,

therefore,
1. n =1, and we shall have x = 2
2. n= 3, and we shall have x = —
2 12
3. n= E, and we shall have x = >
12 408
This last value approaches so near v/2 that its square % differs from the number 2 only by the small
quantity 1661464, by which it exceeds it,

788. We may proceed in the same manner when it is required to find by approximation cube roots, biquadrate
roots, etc.

Let there be given the equation of the third degree, x> = a; or let it be proposed to find the value of 3/a.

Knowing that it is nearly n, we shall suppose x = n + p; neglecting p? and p3, we shall have x> = n3® +

_n3
3n%p = a;sothat3n?p = a— n3, andp = %; whence

2n3+a
x=n+p=W

If, therefore, n is nearly = /a, the quantity which we have now found will be much nearer it. But for still
greater exactness, we may again substitute this new value for n, and so on.

For example, let x3 = a = 2; and let it be required to determine V2. Here, if n is nearly the value of the

3
number sought, the formula % will express that number still more nearly; let us therefore make

1. n =1, and we shall have x = g

4 91
2. n= > and we shall have x = P

162130896
128634294

3. n= %, and we shall have x =
789. This method of approximation may be employed with the same success in finding the roots of all
equations.

To show this, suppose we have the general equation of the third degree, x3> + ax? + bx + ¢ = 0, in which
n is very nearly the value of one of the roots. Let us make x = n — p; and, since p will be a fraction,

neglecting the powers of this letter which are higher than the first degree, we shall have x> = n? — 2np, and

3

x3 = n® — 3n%p; whence we have the equation

n®—3n’p+an? —2anp+bn—bp+c =0



Leonard Euler 265

or
nd +an? + bn+c = 3n%p + 2anp + bp = (3n? + 2an + b)p
so that
_n3+an2+bn+c
p= 3n2+2an+b>b
and
3 nd+an?+bn+c _2n3+an2—c
= 3n2+2an+b | 3n2+2an+b

This value, which is more exact than the first, being substituted for n, will furnish a new value still more
accurate.

790. In order to apply this operation to an example, let x> + 2x2 + 3x — 50 = 0, inwhicha = 2, b = 3,
2n3+2n%+50

) , will be a value still
3n2+4n+3

and ¢ = — 50. If n is supposed to be nearly the value of one of the roots, x =

nearer the truth.

Now, the assumed value of x = 3 not being far from the true one, we shall suppose n = 3, which gives us

x = %; and if we were to substitute this new value instead of n, we should find another still more exact.

791. We shall give only the following example for equations of higher dimensions than the third.

Let x> = 6x + 10, or x> — 6x — 10 = 0, where we readily perceive that 1 is too small, and that 2 is too
great. Now, if x = n be a value not far from the true one, and we make x = n + p, we shall have x° =

n® + 5n*p; and, consequently,

n®+5n*p=6n+6p+10 or p(5n* —6) =6n+ 10 —n®

6n+10—n’ 4n5+10
Wherefore p = “oni g andx =n+p = e
If we suppose n = 1, we shall have x = RS —14; this value is altogether inapplicable, a circumstance

which arises from the approximated value of n having been taken by much too small. We shall therefore make

. 138 69 D .
n = 2, and shall thus obtain x = w7 =34 value which is much nearer the truth. And if we were now to

. . 69 . .
substitute for n, the fraction 3 e should obtain a still more exact value of the root x.

792. Such is the most usual method of finding the roots of an equation by approximation, and it applies
successfully to all cases.

We shall however explain another method”® which deserves attention on account of the facility of the
calculation. The foundation of this method consists in determining for each equation a series of numbers, as a,
b, c, etc. such that each term of the series, divided by the preceding one, may express the value of the root with
so much the more exactness, according as this series of numbers is carried to a greater length.
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Suppose we have already got the terms p, q, 7, s, t, etc., % must express the root x with tolerable exactness;

[57]

that is to say, we have % = x nearly. We shall have”" also 2 = x, and the multiplication of the two values will

. T S S . t t
g1ve; = x?. Farther as ~ =X, we shall also have; = x3; then, since — = x, we shall have; = x*, and so on.

793. For the better explanation of this method, we shall begin with an equation of the second degree, x> =
x + 1, and shall suppose that in the above series we have found the terms p, g, 1, s, t, etc. Now, as % = x, and

2

= x*, we shall have the equation §= % +1,orq + p = r. And as we find, in the same manner, that

T
P
s =r 4+ q,andt = s + r, we conclude that each term of our series is the sum of the two preceding terms;
so that having the first two terms, we can easily continue the series to any length. With regard to the first two
terms, they may be taken at pleasure: if we therefore suppose them to be 0, 1, our series will be 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, etc. and such that if we divide any term by that which immediately precedes it, we
shall have a value of x so much nearer the true one, according as we have chosen a term more distant. The
error, indeed, is very great at first, but it diminishes as we advance. The series of those values of x in the order
in which they are always approximating towards the true one, is as follows:

11235813 21 34 55 89 144

X =0'1'1'2’3'5"8'13°21'34'55° 89 '
If, for example, we make x = E, we have = =2L 41 = ﬂ’ in which the error is only L Any of the
13 169 13 169 169

succeeding terms will render it still less.

794. Let us also consider the equation x> = 2x + 1; and since, in all cases, x = %, and x? = %’ we shall have

:—) = Z?q + 1, orr = 2q + p; whence we infer that the double of each term, added to the preceding term, will

give the succeeding one. If, therefore, we begin again with 0, 1, we shall have the series,
0,1,2,5,12, 29,70, 169, 408, etc.
Whence it follows that the value of x will be expressed still more accurately by the following fractions:

12512 29 70 169 408
~0°'1'2'5°'12'29° 70" 169

which, consequently, will always approximate nearer and nearer the true value of x = 1 ++/2; so that if we

take unity from these fractions, the value of v/2 will be expressed more and more exactly by the succeeding
fractions:

1137174199239
0125122970169

For example for its square s Wthh differs only by % from the number 2.

795. This method is no less applicable to equations, which have a greater number of dimensions. If, for
example, we have the equation of the third degree x> = x? + 2x + 1, we must make x = %, x? = %’ and

x3 = %; we shall then have s = r + 2q + p; which shows how, by means of the three terms p, q, and r, we

are to determine the succeeding one, s; and, as the beginning is always arbitrary, we may form the following
series:
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0,0,1,1,3,6,13, 28, 60, 129, etc.

from which result the following fractions for the approximate values of x:

01136132860129
~0'0°'1'1'3"6°13°28° 60 ’

The first of these values would be very far from the truth; but if we substitute in the equation %, or g, instead

of x, we obtain

3375 225 30 3388

=t 1="—
343 49 7 343
. . . 13
in which the error is only EVES

796. It must be observed, however, that all equations are not of such a nature as to admit the application of this
method; and, particularly, when the second term is wanting, it cannot be made use of. For example, let x> = 2;

if we wished to make x = %, and x? = g, we should have % =2,orr = 2p, that is to say, r = 0q + 2p,

whence would result the series
1,1,2,2,4,4,8, 8, 16, 16, 32, 32, etc.

from which we can draw no conclusion because each term, divided by the preceding, gives always x = 1, or

= 2. But we may obviate this inconvenience by making x = y — 1; for by these means we have y? —

2y + 1 = 2; and if we now make y = %, and y? = %, we shall obtain the same approximation that has been

already given.

797. 1t would be the same with the equation x3 = 2. This method would not furnish such a series of numbers

as would express the value of 3/2. But we have only to suppose x = y — 1 in order to have the equation

3:

y3—3y2 + 3y— 1 = 2,0ory®> = 3y?— 3y + 3; and then making y = %, y? = %’ and y %, we have

= 3r — 3q + 3p, by means of which we see how three given terms determine the succeeding one.
Assuming then any three terms for the first, for example 0, 0, 1, we have the following series:

0,0,1, 3,6, 12,27, 63, 144, 324, etc.

The last two terms of this series give y= 2 and x =2 ThlS fraction approaches sufficiently near the cube

14-4-

128

root of 2; for the cube of S22 , and 2 = —; the dlfference therefore, is only —

798. We must farther observe, with regard to this method, that when the equation has a rational root, and the
beginning of the period is chosen such that this root may result from it, each term of the series, divided by the
preceding term, will give the root with equal accuracy.

To show this, let there be given the equation x> = x + 2, one of the roots of which is x = 2; as we have
here, for the series, the formula r = q + 2p, if we take 1, 2, for the first two terms, we have the series 1, 2, 4,
8, 16, 32, 64, etc. a geometrical progression, whose exponent = 2. The same property is proved by the
equation of the third degree, x> = x? + 3x + 9, which has x = 3 for one of the roots. If we suppose the
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leading terms to be 1, 3, 9, we shall find, by the formula, s = r + 3q + 9p, and the series 1, 3, 9, 27, 81,
243, etc. which is likewise a geometrical progression.

799. But if the beginning of the series exceed the root, we shall not approximate towards that root at all; for
when the equation has more than one root, the series gives by approximation only the greatest: and we do not
find one of the less roots, unless the first terms have been properly chosen for that purpose. This will be
illustrated by the following example.

Let there be given the equation x> = 4x — 3, whose two roots are x = 1, and x = 3. The formula for the
series is r = 4q — 3p, and if we take 1, 1, for the first two terms of the series, which consequently expresses
the least root, we have for the whole series, 1, 1, 1, 1, 1, 1, 1, 1, etc. but assuming for the leading terms the
numbers 1, 3, which contain the greatest root, we have the series, 1, 3, 9, 27, 81, 243, 729, etc. in which all
the terms express precisely the root 3. Lastly, if we assume any other beginning, provided it be such that the
least term is not comprised in it, the series will continually approximate towards the greatest root 3; which may
be seen by the following series:

Beginning,

0,1, 4, 13, 40, 121, 364, etc.

1,2,5, 14,41, 122, 365, etc.

2,3,6,15,42,123, 366, 1095, etc.
2,1,-2,-11,-38,-118,-362,-1091, - 3278, etc.

in which the quotients of the division of the last terms by the preceding always approximate towards the greater
root 3, and never towards the less.

800. We may even apply this method to equations which go on to infinity. The following will furnish an
example:

x® = x4 xP72 4 x0T 4 x0T+

The series for this equation must be such that each term may be equal to the sum of all the preceding; that is,
we must have

1,1,2,4,8,16, 32, 64, 128, etc.

whence we see that the greater root of the given equation is exactly x = 2; and this may be shown in the
following manner. If we divide the equation by x*, we shall have

=i 1y
T x o x2 0 x3 x*

. . . 1 1 o
a geometrical progression, whose sum is found = 3> S0 that 1 = oy multiplying therefore by x — 1, we have

x—1=1,andx = 2.

801. Beside these methods of determining the roots of an equation by approximation, some others have been
invented, but they are all either too tedious, or not sufficiently general®™. The method which deserves the
preference to all others is that which we explained first, for it applies successfully to all kinds of equations:
whereas the other often requires the equation to be prepared in a certain manner, without which it cannot be
employed; and of this we have seen a proof in different examples.
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Questions for Practice

1. Given x3 + 2x2 — 23x — 70 = 0, to find x.

Ans. x = 5.13450.

2. Given x3 — 15x + 63x — 50

0, to find x.
Ans. x = 1.028039.
3. Given x* — 3x%2 — 75x = 10000, to find x.
Ans. x = 10.2615.
4. Given x°> + 2x* + 3x3 + 4x? + 5x = 54321, to find x.
Ans. x = 8.4144.
5.Let 120x3 + 3657x% — 38059x = 8007115, to find x.

Ans. x = 34.6532.
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PART II — Containing the Analysis of Indeterminate Quantities
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Chapter I — Of the Resolution of Equations of the First Degree, which contain
more than one unknown Quantity

1. It has been shown, in the First Part of these Elements, how one unknown quantity is determined by a single
equation, and how we may determine two unknown quantities by means of two equations, three unknown
quantities by three equations, and so on; so that there must always be as many equations as there are unknown
quantities to determine, at least when the question itself is determinate.

When a question, therefore, does not furnish as many equations as there are unknown quantities to be
determined, some of these must remain undetermined, and depend on our will; for which reason, such questions
are said to be indeterminate; forming the subject of a particular branch of algebra, which is called Indeterminate
Analysis.

2. As in those cases we may assume any numbers for one, or more unknown quantities, they also admit of
several solutions: but, on the other hand, as there is usually annexed the condition that the numbers sought are
to be integer and positive, or at least rational, the number of all the possible solutions of those questions is
greatly limited: so that often there are very few of them possible; at other times, there may be an infinite
number, but such as are not readily obtained; and sometimes, also, none of them are possible. Hence it happens
that this part of analysis frequently requires artifices entirely appropriate to it, which are of great service in
exercising the judgment of beginners, and giving them dexterity in calculation.

3. To begin with one of the easiest questions. Let it be required to find two positive, integer numbers, the sum
of which shall be equal to 10.

Let us represent those members by x and y; then we have x + y = 10; and x = 10 — y, where y is so far
only determined that this letter must represent an integer and positive number. We may therefore substitute for
it all integer numbers from 1 to infinity: but since x must likewise be a positive number, it follows that y cannot
be taken greater than 10, for otherwise x would become negative; and if we also reject the value of x = 0, we
cannot make y greater than 9; so that only the following solutions can take place:

But, the last four of these nine solutions being the same as the first four, it is evident that the question really
admits only of five different solutions.

If three numbers were required, the sum of which might make 10, we should have only to divide one of the
numbers already found into two parts, by which means we should obtain a greater number of solutions.

4. As we have found no difficulty in this question, we will proceed to others, which require different
considerations.

Question 1. Let it be required to divide 25 into two parts, the one of which may be divisible by 2, and the
other by 3. Let one of the parts sought be 2x, and the other 3y; we shall then have 2x + 3y = 25;

consequently, 2x = 25 — 3y; and, dividing by 2, we obtain x = ZS_T:W; whence we conclude, in the first

place, that 3y must be less than 25, and, consequently, that y is less than 8. Also, if, from this value of x, we
take out as many integers as we possibly can, that is to say, if we divide by the denominator 2, we shall have
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x=12—-y+ I_Ty; whence it follows that 1 — y, or rather y — 1, must be divisible by 2. Let us, therefore,
make y — 1 = 2z;and we shall have y = 2z + 1, so that

x=12-2z—-1-2z=11-3z

And, since y cannot be greater than 8, we must not substitute any numbers for z which would render 2z + 1
greater than 8; consequently, z must be less than 4, that is to say, z cannot be taken greater than 3, for which
reasons we have the following answers:

Ifwemake z=0|z=1|z=2|z =3
we have y=1|y=3|y=5|y=7
and x=11 | x 8|x =5|x 2

Hence, the two parts of 25 sought, are
2x +3y =22+3,164+9,10 + 15,4 + 21
5. Question 2. To divide 100 into two such parts that the one may be divisible by 7, and the other by 11.

Let 7x be the first part, and 11y the second. Then we must have 7x + 11y = 100; and, consequently,

100—11y 98+2—7y—4 2—4
SEL y_ 7y Y 14—y 4 7y

X

wherefore 2 — 4y, or 4y — 2, must be divisible by 7.

Now, if we can divide 4y — 2 by 7, we may also divide its half, 2y — 1, by 7°°\. Let us therefore make
2y—1=7z,0or 2y = 7z + 1, and we shall have x = 14 — y — 2z; but, since 2y = 7z + 1 =6z +
z+ 1, we shall have y = 3z + 