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W hether discussing hexaflexagons or number theory,
Klein bottles or the essence of “nothing,” Martin
Gardner has single-handedly created the field of “recreational
mathematics.” The Colossal Book of Mathematics collects
together Gardner’s most popular pieces from his legendary
“Mathematical Games” column, which ran in Scientific
American for twenty-five vears. Gardner’sarray of absorbing puz-
7les and mind-twisting paradoxes opens mathematics up to the
world at large, inspiring people to see past numbers and formulas
and experience the application of mathematical principles to the
myvsterious world around them. With articles on topics ranging
from simple algebra to the twisting surfaces of Mobius strips,
from an endless game of Bulgarian solitaire to the unreachable
dream of time travel, this volume comprises a substantial and
definitive monument to Gardner's influence on mathematics,
science, and culture.

In its twelve sections, The Colossal Book of Mathematics
explores a wide range of areas, each startlingly illuminated by
Gardner's incisive expertise. Beginning with seemingly simple
topics, Gardner expertly guides us through complicated and
wondrous worlds: by way of basic algebra we contemplate the
mesmerizing, often hilarious, linguistic and numerical possibili-
ties of palindromes; using simple geometry, he dissects the prindi-
plesof symmetry upon which the renowned mathematical artist
M C. Fscher constructs his unique, dizzving universe. Gardner,
like tew thinkers today. melds a ngorous scientific skepticism
with a profound artistic and imaginative impulse. I lis stunning
exploration of “The Church of the Fourth Dimension,” for exam-
ple, bridges the disparate worlds of religion and science by bril-
liantly imagining the spatial possibility of God's presence in the
world as a fourth dimension, at once “evervwhere and nowhere.”

With boundless wisdom and his trademark wit, Gardner
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Admired by scientists and mathematicians, writers and
readers, Gardner's vast knowledge and burning curiosity reveal
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to the wonders of mathematics, The Colossal Book of Mathematics
is the largest and most comprehensive math book ever assem-
bled bv Gardner and remains an indispensable volume for ama-
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Preface

My long and happy relationship with Scientific American, back
in the days when Gerard Piel was publisher and Dennis Flanagan was
the editor, began in 1952 when I sold the magazine an article on the his-
tory of logic machines. These were curious devices, invented in pre-
computer centuries, for solving problems in formal logic. The article
included a heavy paper insert from which one could cut a set of win-
dow cards I had devised for solving syllogisms. I later expanded the ar-
ticle to Logic Machines and Diagrams, a book published in 1959.

My second sale to Scientific American was an article on hexa-
flexagons, reprinted here as Chapter 29. As I explain in that chapter’s
addendum, it prompted Piel to suggest a regular department devoted to
recreational mathematics. Titled “Mathematical Games” (that M. G. are
also my initials was a coincidence), the column ran for a quarter of a
century. As these years went by I learned more and more math. There
is no better way to teach oneself a topic than to write about it.

Fifteen anthologies of my Scientific American columns have been
published, starting with the Scientific American Book of Mathematical
Puzzles and Diversions (1959) and ending with Last Recreations (1997).
To my surprise and delight, Robert Weil, my editor at W. W. Norton,
suggested that I select 50 of what I consider my “best” columns, mainly
in the sense of arousing the greatest reader response, to make this hefty,
and, in terms of my career, definitive book you now hold. I have not in-
cluded any of my whimsical interviews with the famous numerologist
Dr. Irving Joshua Matrix because all those columns have been gathered
in The Magic Numbers of Dr. Matrix (1985).

To each chapter I have added an addendum, often lengthy, to update
the material. I also have provided selected bibliographies for further
reading.

Martin Gardner
Hendersonville, NC
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Chapter | The Monkey
and the Coconuts

I the October 9, 1926, issue of The Saturday Evening Post ap-
peared a short story by Ben Ames Williams entitled “Coconuts.” The
story concerned a building contractor who was anxious to prevent a
competitor from getting an important contract. A shrewd employee of
the contractor, knowing the competitor’s passion for recreational math-
ematics, presented him with a problem so exasperating that while he
was preoccupied with solving it he forgot to enter his bid before the
deadline.

Here is the problem exactly as the clerk in Williams’s story phrased it:

Five men and a monkey were shipwrecked on a desert island, and they
spent the first day gathering coconuts for food. Piled them all up to-
gether and then went to sleep for the night.

But when they were all asleep one man woke up, and he thought there
might be a row about dividing the coconuts in the morning, so he de-
cided to take his share. So he divided the coconuts into five piles. He
had one coconut left over, and he gave that to the monkey, and he hid his
pile and put the rest all back together.

By and by the next man woke up and did the same thing. And he had
one left over, and he gave it to the monkey. And all five of the men did
the same thing, one after the other; each one taking a fifth of the co-
conuts in the pile when he woke up, and each one having one left over
for the monkey. And in the morning they divided what coconuts were
left, and they came out in five equal shares. Of course each one must
have known there were coconuts missing; but each one was guilty as the
others, so they didn’t say anything. How many coconuts were there in
the beginning?

Williams neglected to include the answer in his story. It is said that
the offices of The Saturday Evening Post were showered with some



2,000 letters during the first week after the issue appeared. George Ho-
race Lorimer, then editor-in-chief, sent Williams the following historic
wire:

FOR THE LOVE OF MIKE, HOW MANY COCONUTS? HELL POPPING AROUND HERE.

For 20 years Williams continued to receive letters requesting the an-
swer or proposing new solutions. Today the problem of the coconuts is
probably the most worked on and least often solved of all the Dio-
phantine brainteasers. (The term Diophantine is descended from Dio-
phantus of Alexandria, a Greek algebraist who was the first to analyze
extensively equations calling for solutions in rational numbers.)

Williams did not invent the coconut problem. He merely altered a
much older problem to make it more confusing. The older version is the
same except that in the morning, when the final division is made, there
is again an extra coconut for the monkey; in Williams’s version the final
division comes out even. Some Diophantine equations have only one
answer (e.g., x2 + 2 = y%); some have a finite number of answers; some
(e.g., x> + y® = z°) have no answer. Both Williams’s version of the co-
conut problem and its predecessor have an infinite number of answers
in whole numbers. Qur task is to find the smallest positive number.

The older version can be expressed by the following six indetermi-
nate equations which represent the six successive divisions of the co-
conuts into fifths. N is the original number; F, the number each sailor
received on the final division. The 1’s on the right are the coconuts
tossed to the monkey. Each letter stands for an unknown positive inte-
ger:

N=5A+1,
4A=5B+1,
4B=5C+1,
4C=5D+1,
4D=5FE+1,
4E=5F+1,

It is not difficult to reduce these equations by familiar algebraic
methods to the following single Diophantine equation with two un-
knowns:

1,024N = 15,625F + 11,529.

This equation is much too difficult to solve by trial and error, and al-
though there is a standard procedure for solving it by an ingenious use
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of continued fractions, the method is long and tedious. Here we shall
be concerned only with an uncanny but beautifully simple solution
involving the concept of negative coconuts. This solution is sometimes
attributed to the University of Cambridge physicist PA.M. Dirac
(1902—-1984), but in reply to my query Professor Dirac wrote that he ob-
tained the solution from J.H.C. Whitehead, professor of mathematics
(and nephew of the famous philosopher). Professor Whitehead, an-
swering a similar query, said that he got it from someone else, and I
have not pursued the matter further.

Whoever first thought of negative coconuts may have reasoned some-
thing like this. Since N is divided six times into five piles, it is clear
that 5° (or 15,625) can be added to any answer to give the next highest
answer. In fact any multiple of 5% can be added, and similarly any mul-
tiple can be subtracted. Subtracting multiples of 56 will of course even-
tually give us an infinite number of answers in negative numbers.
These will satisfy the original equation, though not the original prob-
lem, which calls for a solution that is a positive integer.

Obviously there is no small positive value for N which meets the
conditions, but possibly there is a simple answer in negative terms. It
takes only a bit of trial and error to discover the astonishing fact that
there is indeed such a solution: —4. Let us see how neatly this works
out.

The first sailor approaches the pile of —4 coconuts, tosses a positive
coconut to the monkey (it does not matter whether the monkey is given
his coconut before or after the division into fifths), thus leaving five
negative coconuts. These he divides into five piles, a negative coconut
in each. After he has hidden one pile, four negative coconuts remain—
exactly the same number that was there at the start! The other sailors
go through the same ghostly ritual, the entire procedure ending with
each sailor in possession of two negative coconuts, and the monkey,
who fares best in this inverted operation, scurrying off happily with six
positive coconuts. To find the answer that is the lowest positive inte-
ger, we now have only to add 15,625 to —4 to obtain 15,621, the solu-
tion we are seeking.

This approach to the problem provides us immediately with a gen-
eral solution for n sailors, each of whom takes one nth of the coconuts
at each division into nths. If there are four sailors, we begin with three
negative coconuts and add 4°. If there are six sailors, we begin with five
negative coconuts and add 67, and so on for other values of n. More for-
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mally, the original number of coconuts is equal to k(n™*') - m(n - 1),
where n is the number of men, m is the number of coconuts given to the
monkey at each division, and k is an arbitrary integer called the para-
meter. When n is 5 and m is 1, we obtain the lowest positive solution
by using a parameter of 1.

Unfortunately, this diverting procedure will not apply to Williams's
modification, in which the monkey is deprived of a coconut on the
last division. I leave it to the interested reader to work out the solution
to the Williams version. It can of course be found by standard Dio-
phantine techniques, but there is a quick shortcut if you take advantage
of information gained from the version just explained. For those who
find this too difficult, here is a very simple coconut problem free of all
Diophantine difficulties.

Three sailors come upon a pile of coconuts. The first sailor takes half
of them plus half a coconut. The second sailor takes half of what is left
plus half a coconut. The third sailor also takes half of what remains
plus half a coconut. Left over is exactly one coconut which they toss to
the monkey. How many coconuts were there in the original pile? If you
will arm yourself with 20 matches, you will have ample material for a
trial and error solution.

Addendum

If the use of negative coconuts for solving the earlier version of
Ben Ames Williams’s problem seems not quite legitimate, essentially
the same trick can be carried out by painting four coconuts blue. Nor-
man Anning, now retired from the mathematics department of the Uni-
versity of Michigan, hit on this colorful device as early as 1912 when
he published a solution (School Science and Mathematics, June 1912,
p. 520) to a problem about three men and a supply of apples. Anning’s
application of this device to the coconut problem is as follows.

We start with 5% coconuts. This is the smallest number that can be di-
vided evenly into fifths, have one-fifth removed, and the process re-
peated six times, with no coconuts going to the monkey. Four of the 55
coconuts are now painted blue and placed aside. When the remaining
supply of coconuts is divided into fifths, there will of course be one left
over to give the monkey.

After the first sailor has taken his share, and the monkey has his co-
conut, we put the four blue coconuts back with the others to make a
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pile of 5° coconuts. This clearly can be evenly divided by 5. Before
making this next division, however, we again put the four blue co-
conuts aside so that the division will leave an extra coconut for the
monkey.

This procedure—borrowing the blue coconuts only long enough to
see that an even division into fifths can be made, then putting them
aside again—is repeated at each division. After the sixth and last divi-
sion, the blue coconuts remain on the side, the property of no one.
They play no essential role in the operation, serving only to make
things clearer to us as we go along.

A good recent reference on Diophantine equations and how to solve
them is Diophantus and Diophantine Equations by Isabella Bash-
makova (The Mathematical Association of America, 1997).

There are all sorts of other ways to tackle the coconut problem. John
M. Danskin, then at the Institute for Advanced Study, Princeton, NJ, as
well as several other readers, sent ingenious methods of cracking the
problem by using a number system based on 5. Scores of readers wrote
to explain other unusual approaches, but all are a bit too involved to ex-
plain here.

Answers

The number of coconuts in Ben Ames Williams's version of the
problem is 3,121. We know from the analysis of the older version that
55 — 4, or 3,121, is the smallest number that will permit five even divi-
sions of the coconuts with one going to the monkey at each division.
After these five divisions have been made, there will be 1,020 coconuts
left. This number happens to be evenly divisible by 5, which permits
the sixth division in which no coconut goes to the monkey.

In this version of the problem a more general solution takes the form
of two Diophantine equations. When n, the number of men, is odd, the
equation is

Number of coconuts = (1 + nk)n™ - (n - 1).
When n is even,
Number of coconuts = (n -1 + nk)Jn® — (n - 1).

In both equations k is the parameter that can be any integer. In
Williams’s problem the number of men is 5, an odd number, so 5 is sub-
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stituted for n in the first equation, and k is taken as 0 to obtain the low-
est positive answer.

A letter from Dr. J. Walter Wilson, a Los Angeles dermatologist, re-
ported an amusing coincidence involving this answer:

Sirs:

I read Ben Ames Williams’s story about the coconut problem in 1926,
spent a sleepless night working on the puzzle without success, then
learned from a professor of mathematics how to use the Diophantine
equation to obtain the smallest answer, 3,121.

In 1939 I suddenly realized that the home on West 80th Street, Ingle-
wood, California, in which my family and I had been living for several
months, bore the street number 3121. Accordingly, we entertained all of
our most erudite friends one evening by a circuit of games and puzzles,
each arranged in a different room, and visited by groups of four in rota-
tion.

The coconut puzzle was presented on the front porch, with the table
placed directly under the lighted house number blazingly giving the se-
cret away, but no one caught on!

The simpler problem of the three sailors, at the end of the chapter,
has the answer: 15 coconuts. If you tried to solve this by breaking
matches in half to represent halves of coconuts, you may have con-
cluded that the problem was unanswerable. Of course no coconuts
need be split at all in order to perform the required operations.

Ben Ames Williams’s story was reprinted in Clifton Fadiman’s an-
thology, The Mathematical Magpie (1962), reissued in paperback by
Copernicus in 1997. David Singmaster, in his unpublished history of
famous mathematical puzzles, traces similar problems back to the Mid-
dle Ages. Versions appear in numerous puzzle books, as well as in text-
books that discuss Diophantine problems. My bibliography is limited
to periodicals in English.
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Chapter 2 The Calculus of
Finite Differences

The calculus of finite differences, a branch of mathematics that
is not too well known but is at times highly useful, occupies a halfway
house on the road from algebra to calculus. W. W. Sawyer, a mathe-
matician at Wesleyan University, likes to introduce it to students by
performing the following mathematical mind-reading trick.

Instead of asking someone to “think of a number” you ask him to
“think of a formula.” To make the trick easy, it should be a quadratic
formula (a formula containing no powers of x greater than x2). Suppose
he thinks of 5x? + 3x — 7. While your back is turned so that you cannot
see his calculations, ask him to substitute 0, 1, and 2 for x, then tell you
the three values that result for the entire expression. The values he
gives you are -7, 1, 19. After a bit of scribbling (with practice you can
do it in your head) you tell him the original formula!

The method is simple. Jot down in a row the values given to you. In
a row beneath write the differences between adjacent pairs of num-
bers, always subtracting the number on the left from its neighbor on the
right. In a third row put the difference between the numbers above it.
The chart will look like this

-7 1 19
8§ 18
10

The coefficient of x2, in the thought-of formula, is always half the bot-
tom number of the chart. The coefficient of x is obtained by taking half
the bottom number from the first number of the middle row. And the
constant in the formula is simply the first number of the top row.

What you have done is something analogous to integration in calcu-
lus. If y is the value of the formula, then the formula expresses a func-
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tion of y with respect to x. When x is given values in a simple arith-
metic progression (0, 1, 2, . . .), then y assumes a series of values (-7, 1,
19, . . .). The calculus of finite differences is the study of such series.
In this case, by applying a simple technique to three terms of a series,
you were able to deduce the quadratic function that generated the three
terms.

The calculus of finite differences had its origin in Methodus Incre-
mentorum, a treatise published by the English mathematician Brook
Taylor (who discovered the “Taylor theorem” of calculus) between
1715 and 1717. The first important work in English on the subject (after
it had been developed by Leonhard Euler and others) was published in
1860 by George Boole, of symbolic-logic fame. Nineteenth-century al-
gebra textbooks often included a smattering of the calculus, then it
dropped out of favor except for its continued use by actuaries in check-
ing annuity tables and its occasional use by scientists for finding for-
mulas and interpolating values. Today, as a valuable tool in statistics
and the social sciences, it is back in fashion once more.

For the student of recreational mathematics there are elementary pro-
cedures in the calculus of finite differences that can be enormously
useful. Let us see how such a procedure can be applied to the old prob-
lem of slicing a pancake. What is the maximum number of pieces into
which a pancake can be cut by n straight cuts, each of which crosses
each of the others? The number is clearly a function of n. If the func-
tion is not too complex, the method of differences may help us to find
it by empirical techniques.

No cut at all leaves one piece, one cut produces two pieces, two cuts
yield four pieces, and so on. It is not difficult to find by trial and error
that the series begins: 1, 2, 4, 7, 11, . .. (see Figure 2.1). Make a chart as
before, forming rows, each representing the differences of adjacent
terms in the row above:

NUMBER OF CUTS 0 1 2 3 4

Number of pieces 1 2 4 7 11
First differences 1 2 3 4
Second differences 1 1 1

If the original series is generated by a linear function, the numbers in
the row of first differences will be all alike. If the function is a qua-

dratic, identical numbers appear in the row of second differences. A
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0 CUTS 1 CUT
1 PIECE 2 PIECES

S%a

| >
CHS

2 CUTS 3 CUTS 4 CUTS
4 PIECES 7 PIECES 11 PIECES

Figure 2.1. The pancake problem

cubic formula (no powers higher than x3) will have identical numbers
in the row of third differences, and so on. In other words, the number
of rows of differences is the order of the formula. If the chart required
10 rows of differences before the numbers in a row became the same,
you would know that the generating function contained powers as high
as x1°.

Here there are only two rows, so the function must be a quadratic. Be-
cause it is a quadratic, we can obtain it quickly by the simple method
used in the mind-reading trick.

The pancake-cutting problem has a double interpretation. We can
view it as an abstract problem in pure geometry (an ideal circle cut by
ideal straight lines) or as a problem in applied geometry (a real pancake
cut by a real knife). Physics is riddled with situations of this sort that
can be viewed in both ways and that involve formulas obtainable from
empirical results by the calculus of finite differences. A famous exam-
ple of a quadratic formula is the formula for the maximum number of
electrons that can occupy each “shell” of an atom. Going outward from
the nucleus, the series runs 0, 2, 8, 18, 32, 50. . .. The first row of dif-
ferences is 2, 6, 10, 14, 18. . . . The second row is 4, 4, 4, 4. . . . Apply-
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ing the key to the mind-reading trick, we obtain the simple formula 2r?
for the maximum number of electrons in the nth shell.

What do we do if the function is of a higher order? We can make use
of a remarkable formula discovered by Isaac Newton. It applies in all
cases, regardless of the number of tiers in the chart.

Newton’s formula assumes that the series begins with the value of the
function when n is 0. We call this number a. The first number of the
first row of differences is b, the first number of the next row is ¢, and
so on. The formula for the nth number of the series is

cn(n — 1) + dn(n — 1)(n — 2)
23

4 en(n —1)(n — 2)(n - 3)...

234

a+ bn+

The formula is used only up to the point at which all further addi-
tions would be zero. For example, if applied to the pancake-cutting
chart, the values of 1, 1, 1 are substituted for a, b, ¢ in the formula. (The
rest of the formula is ignored because all lower rows of the chart con-
sist of zeros; d, e, f, . . . therefore have values of zero, consequently the
entire portion of the formula containing these terms adds up to zero.)
In this way we obtain the quadratic function Jn? + Jn + 1.

Does this mean that we have now found the formula for the maxi-
mum number of pieces produced by n slices of a pancake? Unfortu-
nately the most that can be said at this point is “Probably.” Why the
uncertainty? Because for any finite series of numbers there is an infin-
ity of functions that will generate them. (This is the same as saying
that for any finite number of points on a graph, an infinity of curves can
be drawn through those points.) Consider the series 0, 1, 2, 3. ... What
is the next term? A good guess is 4. In fact, if we apply the technique
just explained, the row of first differences will be 1’s, and Newton’s for-
mula will tell us that the nth term of the series is simply n. But the
formula

1
n+ 24:n[n 1)(n — 2)(n — 3)
also generates a series that begins 0, 1, 2, 3. . . . In this case the series
continues, not 4, 5, 6, . . . but 5, 10, 21. . ..

There is a striking analogy here with the way laws are discovered in
science. In fact, the method of differences can often be applied to phys-
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ical phenomena for the purpose of guessing a natural law. Suppose, for
example, that a physicist is investigating for the first time the way in
which bodies fall. He observes that after one second a stone drops 16
feet, after two seconds 64 feet, and so on. He charts his observations

like this:

0 16 64 144 256
16 48 80 112
32 32 32

Actual measurements would not, of course, be exact, but the num-
bers in the last row would not vary much from 32, so the physicist as-
sumes that the next row of differences consists of zeros. Applying
Newton’s formula, he concludes that the total distance a stone falls in
n seconds is 16n?. But there is nothing certain about this law. It repre-
sents no more than the simplest function that accounts for a finite se-
ries of observations: the lowest order of curve that can be drawn
through a finite series of points on a graph. True, the law is confirmed
to a greater degree as more observations are made, but there is never
certainty that more observations will not require modification of the
law.

With respect to pancake cutting, even though a pure mathematical
structure is being investigated rather than the behavior of nature, the
situation is surprisingly similar. For all we now know, a fifth slice may
not produce the sixteen pieces predicted by the formula. A single fail-
ure of this sort will explode the formula, whereas no finite number of
successes, however large, can positively establish it. “Nature,” as
George Pélya has put it, “may answer Yes or No, but it whispers one an-
swer and thunders the other. Its Yes is provisional, its No is defini-
tive.” Pélya is speaking of the world, not abstract mathematical
structure, but it is curious that his point applies equally well to the
guessing of functions by the method of differences. Mathematicians do
a great deal of guessing, along lines that are often similar to methods of
induction in science, and Pélya has written a fascinating work, Math-
ematics and Plausible Reasoning, about how they do it.

Some trial and error testing, with pencil and paper, shows that five
cuts of a pancake do in fact produce a maximum of sixteen pieces. This
successful prediction by the formula adds to the probability that the
formula is correct. But until it is rigorously proved (in this case it is not
hard to do]) it stands only as a good bet. Why the simplest formula is so
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often the best bet, both in mathematical and scientific guessing, is one
of the lively controversial questions in contemporary philosophy of
science. For one thing, no one is sure just what is meant by “simplest
formula.”

Here are a few problems that are closely related to pancake cutting
and that are all approachable by way of the calculus of finite differ-
ences. First you find the best guess for a formula, then you try to prove
the formula by deductive methods. What is the maximum number of
pieces that can be produced by n simultaneous straight cuts of a flat fig-
ure shaped like a crescent moon? How many pieces of cheesecake can
be produced by n simultaneous plane cuts of a cylindrical cake? Into
how many parts can the plane be divided by intersecting circles of the
same size? Into how many regions can space be divided by intersecting
spheres?

Recreational problems involving permutations and combinations
often contain low-order formulas that can be correctly guessed by the
method of finite differences and later (one hopes) proved. With an un-
limited supply of toothpicks of n different colors, how many different
triangles can be formed on a flat surface, using three toothpicks for the
three sides of each triangle? (Reflections are considered different, but
not rotations.) How many different squares? How many different tetra-
hedrons can be produced by coloring each face a solid color and using
n different colors? (Two tetrahedrons are the same if they can be turned
and placed side by side so that corresponding sides match in color.)
How many cubes with n colors?

Of course, if a series is generated by a function other than a polyno-
mial involving powers of the variable, then other techniques in the
method of differences are called for. For example, the exponential func-
tion 2" produces the series 1, 2, 4, 8, 16. . . . The row of first differences
isalso 1, 2, 4, 8, 16, . . ., so the procedure explained earlier will get us
nowhere. Sometimes a seemingly simple situation will involve a series
that evades all efforts to find a general formula. An annoying example
is the necklace problem posed in one of Henry Ernest Dudeney’s puz-
zle books. A circular necklace contains n beads. Each bead is black or
white. How many different necklaces can be made with n beads? Start-
ing with no beads, the series is 0, 2, 3, 4, 6, 8, 13, 18, 30. . . . (Figure 2.2
shows the 18 different varieties of necklace when n = 7.) I suspect that
two formulas are interlocked here, one for odd n, one for even, but
whether the method of differences will produce the formulas, I do not
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know. “A general solution . . . is difficult, if not impossible,” writes Du-
deney. The problem is equivalent to the following one in information
theory: What is the number of different binary code words of a given
length, ruling out as identical all those words that have the same cyclic
order of digits, taking them either right to left or left to right?

(O

e OO

o

o S0 S0 M8 sSe se
o I ® ¢ % ¢ 7

Figure 2.2. Eighteen different seven-beaded necklaces can be formed with beads of two
colors.

’

A much easier problem on which readers may enjoy testing their
skill was sent to me by Charles B. Schorpp and Dennis T. O’Brien, of
the Novitiate of St. Isaac Jogues in Wernersville, PA: What is the max-
imum number of triangles that can be made with n straight lines? Fig-
ure 2.3 shows how 10 triangles can be formed with five lines. How
many can be made with six lines and what is the general formula? The
formula can first be found by the method of differences; then, with the
proper insight, it is easy to show that the formula is correct.

Addendum

In applying Newton’s formula to empirically obtained data, one
sometimes comes up against an anomaly for the zero case. For instance,
The Scientific American Book of Mathematical Puzzles & Diversions,
page 1489, gives the formula for the maximum number of pieces that can
be produced by n simultaneous plane cuts through a doughnut. The
formula is a cubic,
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Figure 2.3. Five lines make ten triangles.

n® + 3n% + 8n
6

’

that can be obtained by applying Newton’s formula to results obtained
empirically, but it does not seem to apply to the zero case. When a
doughnut is not cut at all, clearly there is one piece, whereas the for-
mula says there should be no pieces. To make the formula applicable,
we must define “piece” as part of a doughnut produced by cutting.
Where there is ambiguity about the zero case, one must extrapolate
backward in the chart of differences and assume for the zero case a
value that produces the desired first number in the last row of differ-
ences.

To prove that the formula given for the maximum number of regions
into which a pancake (circle) can be divided by n straight cuts, consider
first the fact that each nth line crosses n — 1 lines. The n — 1 lines di-
vide the plane into n regions. When the nth line crosses these n regions,
it cuts each region into two parts, therefore every nth line adds n re-
gions to the total. At the beginning there is one piece. The first cut
adds one more piece, the second cut adds two more pieces, the third
cut adds three more, and so on up to the nth cut which adds n pieces.
Therefore the total number of regionsis1+1+2+3+: ..+ n. The sum
of1+2+3+..-+nis¥%n(n-1). To this we must add 1 to obtain the
final formula.

The bead problem was given by Dudeney as problem 275 in his Puz-
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zles and Curious Problems. John Riordan mentions the problem on
page 162, problem 37, of his Introduction to Combinatorial Analysis
(Wiley, 1958; now out of print), indicating the solution without giving
actual formulas. (He had earlier discussed the problem in “The Com-
binatorial Significance of a Theorem of Pélya,” Journal of the Society
for Industrial and Applied Mathematics, Vol. 5, No. 4, December 1957,
pp- 232-34.) The problem was later treated in considerable detail, with
some surprising applications to music theory and switching theory, by
Edgar N. Gilbert and John Riordan, in “Symmetry Types of Periodic Se-
quences,” Illinois Journal of Mathematics, Vol. 5, No. 4, December
1961, pages 657-65. The authors give the following table for the num-
ber of different types of necklaces, with beads of two colors, for neck-
laces of 1 through 20 beads:

NUMBER OF NUMBER OF
BEADS NECKLACES
1 2
2 3
3 4
4 6
5 8
6 13
7 18
8 30
9 46
10 78
11 126
12 224
13 380
14 687
15 1,224
16 2,250
17 4,112
18 7,685
19 14,310
20 27,012

The formulas for the necklace problem do not mean, by the way, that
Dudeney was necessarily wrong in saying that a solution was not pos-
sible, since he may have meant only that it was not possible to find a
polynomial expression for the number of necklaces as a function of n
so that the number could be calculated directly from the formula with-
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out requiring a tabulation of prime factors. Because the formulas in-
clude Euler’s phi function, the number of necklaces has to be calculated
recursively. Dudeney’s language is not precise, but it is possible that he
would not have considered recursive formulas a “solution.” At any
rate, the calculus of finite differences is not in any way applicable to the
problem, and only the recursive formulas are known.

Several dozen readers (too many for a listing of names) sent correct
solutions to the problem before Golomb’s formulas were printed, some
of them deriving it from Riordan, others working it out entirely for
themselves. Many pointed out that when the number of beads is a
prime (other than 2), the formula for the number of different necklaces
becomes very simple:

zn_l - n—1

1
+ 2z

+ 1.
n

The following letter from John F. Gummere, headmaster of William
Penn Charter School, Philadelphia, appeared in the letters department
of Scientific American in October 1961:

Sirs:

I read with great interest your article on the calculus of finite differ-
ences. It occurs to me that one of the most interesting applications of
Newton’s formula is one I discovered for myself long before I had reached
the calculus. This is simply applying the method of finite differences to
series of powers. In experimenting with figures, I noticed that if you
wrote a series of squares such as 4, 9, 16, 25, 36, 49 and subtracted them
from each other as you went along, you got a series that you could sim-
ilarly subtract once again and come up with a finite difference.

So then I tried cubes and fourth powers and evolved a formula to the
effect that if n is the power, you must subtract n times, and your constant
difference will be factorial n. I asked my father about this (he was for
many years director of the Strawbridge Memorial Observatory at Haver-
ford College and teacher of mathematics). In good Quaker language he
said: “Why, John, thee has discovered the calculus of finite differences.”

Donald Knuth called my attention to the earliest known solution of
Dudeney’s bead problem. Percy A. MacMahon solved the problem as
early as 1892. This and the problem are discussed in Section 4.9 of
Concrete Mathematics (1994), by Ronald Graham, Donald Knuth, and
Oren Patashnik.
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Answers

How many different triangles can be formed with n straight
lines? It takes at least three lines to make one triangle, four lines will
make four triangles, and five lines will make 10 triangles. Applying the
calculus of finite differences, one draws up the table in Figure 2.4.

NUMBER OF LINES 0 1 2 3 4 5 Figure 2.4. The answer
to the triangle problem

NUMBER OF TRIANGLES 0 0 0 1 4 10

FIRST DIFFERENCES 0 0 1 3 6
SECOND DIFFERENCES 0 1 2 3
THIRD DIFFERENCES 1 1 1

The three rows of differences indicate a cubic function. Using New-
ton’s formula, the function is found to be: %n(n — 1)(n — 2). This will
generate the series 0, 0, 0, 1, 4, 10, . . . and therefore has a good
chance of being the formula for the maximum number of triangles
that can be made with n lines. But it is still just a guess, based on a
small number of pencil and paper tests. It can be verified by the fol-
lowing reasoning.

The lines must be drawn so that no two are parallel and no more than
two intersect at the same point. Each line is then sure to intersect every
other line, and every set of three lines must form one triangle. It is not
possible for the same three lines to form more than one triangle, so the
number of triangles formed in this way is the maximum. The problem
is equivalent, therefore, to the question: In how many different ways
can n lines be taken three at a time? Elementary combinatorial theory
supplies the answer: the same as the formula obtained empirically.

Solomon W. Golomb, was kind enough to send me his solution to the
necklace problem. The problem was to find a formula for the number
of different necklaces that can be formed with n beads, assuming that
each bead can be one of two colors and not counting rotations and re-
flections of a necklace as being different. The formula proves to be far
beyond the power of the simple method of differences.

Let the divisors of n (including 1 and n) be represented by d;, d,,
d,. . .. For each divisor we find what is called Euler’s phi function for
that divisor, symbolized ®(d). This function is the number of positive
integers, not greater than d, that have no common divisor with d. It is
assumed that 1 is such an integer, but not d. Thus ®(8) is 4, because 8
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has the following four integers that are prime to it: 1, 3, 5, 7. By con-
vention, ®(1) is taken to be 1. Euler’s phi functions for 2, 3, 4, 5, 6, 7 are
1, 2, 2, 4, 2, 6, in the same order. Let a stand for the number of differ-
ent colors each bead can be. For necklaces with an odd number of
beads the formula for the number of different necklaces with n beads
is the one given at the top of Figure 2.5. When n is even, the formula is
the one at the bottom of the illustration.

?1n[¢(dl] *ai +¢(d,)*di,... +n oa’z |
1 N R ]
E{q)(dl) ®di + ¢(d,)) *di ...+ g *(1+a)e ﬂ:::|

Figure 2.5. Equations for the solution of the necklace problem

The single dots are symbols for multiplication. Golomb expressed
these formulas in a more compressed, technical form, but I think the
above forms will be clearer to most readers. They are more general than
the formulas asked for because they apply to beads that may have any
specified number of colors.

The formulas answering the other questions in the chapter are:

1. Regions of a crescent moon produced by n straight cuts:

n? + 3n
2

+ 1.

2. Pieces of cheesecake produced by n plane cuts:

n® + 5n
B

+ 1.

3. Regions of the plane produced by n intersecting circles:
n?>—n+ 2.

4. Regions of the plane produced by n intersecting ellipses:
2n? — 2n + 2.

5. Regions of space produced by n intersecting spheres:

n(n? — 3n + 8)
3 .
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6. Triangles formed by toothpicks of n colors:

nd + 2n
3

7.Squares formed with toothpicks of n colors:

n*+ n?+ 2n
4

8. Tetrahedrons formed with sides of n colors:

n? + 11n?
12 )

9. Cubes formed with sides of n colors:

n® + 3n? + 123 + 8n?
24 :
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Chapter 3 Palindromes:
Words and Numbers

A man, a plan, a canal—Suez!

—Ethel Merperson, a “near miss” palindrormist,
in Son of Giant Sea Tortoise, edited by
Mary Ann Madden (Viking, 1975)

A palindrome is usually defined as a word, sentence, or set of
sentences that spell the same backward as forward. The term is also ap-
plied to integers that are unchanged when they are reversed. Both types
of palindrome have long interested those who amuse themselves with
number and word play, perhaps because of a deep, half-unconscious
aesthetic pleasure in the kind of symmetry palindromes possess. Palin-
dromes have their analogues in other fields: melodies that are the same
backward, paintings and designs with mirror-reflection symmetry, the
bilateral symmetry of animals and man (see Figure 3.1) and so on. In
this chapter we shall restrict our attention to number and language
palindromes and consider some entertaining new developments in

both fields.

Figure 3.1. Flying seagull: a visual palindrome

An old palindrome conjecture of unknown origin (there are refer-
ences to it in publications of the 1930s) is as follows. Start with any
positive integer. Reverse it and add the two numbers. This procedure
is repeated with the sum to obtain a second sum, and the process con-
tinues until a palindromic sum is obtained. The conjecture is that a
palindrome always results after a finite number of additions. For ex-
ample, 68 generates a palindrome in three steps:
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68
+.86
154
+51
605
+506
1,111

For all two-digit numbers it is obvious that if the sum of their digits
is less than 10, the first step gives a two-digit palindrome. If their dig-
its add to 10, 11, 12, 13, 14, 15, 16, or 18, a palindrome results after 2,
1, 2, 2, 3, 4, 6, 6 steps, respectively. As Angela Dunn points out in
Mathematical Bafflers (McGraw-Hill, 1964; Dover, 1980), the excep-
tions are numbers whose two digits add to 17. Only 89 (or its reversal,
98) meets this proviso. Starting with either number does not produce
a palindrome until the 24th operation results in 8,813,200,023,188.

The conjecture was widely regarded as being true until 1967, al-
though no one had succeeded in proving it. Charles W. Trigg, a Cali-
fornia mathematician well known for his work on recreational
problems, examined the conjecture more carefully in his 1967 article
“Palindromes by Addition.” He found 249 integers smaller than
10,000 that failed to generate a palindrome after 100 steps. The small-
est such number, 196, was carried to 237,310 steps in 1975 by Harry
J. Saal, at the Israel Scientific Center. No palindromic sum appeared.
Trigg believed the conjecture to be false. (The number 196 is the
square of 14, but this is probably an irrelevant fact.) Aside from the
249 exceptions, all integers less than 10,000, except 89 and its rever-
sal, produce a palindrome in fewer than 24 steps. The largest palin-
drome, 16,668,488,486,661, is generated by 6,999 (or its reversal) and
7,998 (or its reversal) in 20 steps.

The conjecture has not been established for any number system and
has been proved false only in number notations with bases that are
powers of 2. (See the paper by Heiko Harborth listed in the bibliogra-
phy.) The smallest binary counterexample is 10110 (or 22 in the deci-
mal system). After four steps the sum is 10110100, after eight steps it
is 1011101000, after 12 steps it is 101111010000. Every fourth step in-
creases by one digit each of the two sequences of underlined digits.
Brother Alfred Brousseau, in “Palindromes by Addition in Base Two,”
proved that this asymmetric pattern repeats indefinitely. He also found
other repeating asymmetric patterns for larger binary numbers.
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There is a small but growing literature on the properties of palin-
dromic prime numbers and conjectures about them. Apparently there
are infinitely many such primes, although so far as I know this has not
been proved. It is not hard to show, however, that a palindromic prime,
with the exception of 11, must have an odd number of digits. Can the
reader do this before reading the simple proof in the answer section?
Norman T. Gridgeman conjectured that there is an infinity of prime
pairs of the form 30,103—-30,203 and 9,931,399-9,932,399 in which all
digits are alike except the middle digits, which differ by one. But
Gridgeman’s guess is far from proved.

Gustavus J. Simmons wrote two papers on palindromic powers. After
showing that the probability of a randomly selected integer being palin-
dromic approaches zero as the number of digits in the integer increases,
Simmons examined square numbers and found them much richer than
randomly chosen integers in palindromes. There are infinitely many
palindromic squares, most of which, it seems, have square roots that
also are palindromes. (The smallest nonpalindromic root is 26). Cubes
too are unusually rich in palindromes. A computer check on all cubes
less than 2.8 x 10! turned up a truly astonishing fact. The only palin-
dromic cube with a nonpalindromic cube root, among the cubes ex-
amined by Simmons, is 10,662,526,601. Its cube root, 2,201, had been
noticed earlier by Trigg, who reported in 1961 that it was the only non-
palindrome with a palindromic cube less than 1,953,125,000,000. It is
not yet known if 2,201 is the only integer with this property.

Simmons’ computer search of palindromic fourth powers, to the
same limit as his search of cubes, failed to uncover a single palindromic
fourth power whose fourth root was not a palindrome of the general
form 10 .. .01. For powers 5 through 10 the computer found no palin-
dromes at all except the trivial case of 1. Simmons conjectured that
there are no palindromes of the form X* where k is greater than 4.

“Repunits,” numbers consisting entirely of 1’s, produce palindromic
squares when the number of units is one through nine, but 10 or more
units give squares that are not palindromic. It has been erroneously
stated that only primes have palindromic cubes, but this is disproved
by an infinity of integers, the smallest of which is repunit 111. It is di-
visible by 3, yet its cube, 1,367,631, is a palindrome. The number 836
is also of special interest. It is the largest three-digit integer whose
square, 698,896, is palindromic, and 698,896 is the smallest palin-
dromic square with an even number of digits. (Note also that the num-
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ber remains palindromic when turned upside down.) Such palin-
dromic squares are extremely rare. The next-larger one with an even
number of digits is 637,832,238,736, the square of 798,644.

Turning to language palindromes, we first note that no common Eng-
lish words of more than seven letters are palindromic. Examples of
seven-letter palindromes are reviver, repaper, deified, and rotator. The
word “radar” (for radio detecting and ranging) is notable because it
was coined to symbolize the reflection of radio waves. Dmitri
Borgmann, whose files contain thousands of sentence palindromes in
all major languages, asserts in his book Language on Vacation that the
largest nonhyphenated word palindrome is saippuakauppias, a
Finnish word for a soap dealer.

Among proper names in English, according to Borgmann, none is
longer than Wassamassaw, a swamp north of Charleston, SC. Legend
has it, he writes, that it is an Indian word meaning “the worst place ever
seen.” Yreka Bakery has long been in business on West Miner Street in
Yreka, CA. Lon Nol, the former Cambodian premier, has a palindromic
name, as does U Nu, once premier of Burma. Revilo P. Oliver, a classics
professor at the University of Illinois, has the same first name as his fa-
ther and grandfather. It was originally devised to make the name
palindromic. If there is anyone with a longer palindromic name I do
not know of it, although Borgmann suggests such possibilities as
Norah Sara Sharon, Edna Lala Lalande, Duane Rollo Renaud, and
many others.

There are thousands of excellent sentence palindromes in English, a
few of which were discussed in a chapter on word play in my Sixth
Book of Mathematical Games from Scientific American. The interested
reader will find good collections in the Borgmann book cited above
and in the book by Howard Bergerson. Composing palindromes at night
is one way for an insomniac to pass the dark hours, as Roger Angell so
amusingly details in his article “Ainmosni” (“Insomnia” backward) in
The New Yorker. I limit myself to one palindrome that is not well
known, yet is remarkable for both its length and naturalness: “Doc note,
I dissent. A fast never prevents a fatness. I diet on cod.” It won a prize
for James Michie in a palindrome contest sponsored by the New States-
man in England; results were published in the issue for May 5, 1967.
Many of the winning palindromes are much longer than Michie’s, but,
as is usually the case, the longer palindromes are invariably difficult to
understand.
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Palindromists have employed various devices to make the unintelli-
gibility of long palindromes more plausible: presenting them as
telegrams, as one side only of a telephone conversation, and so on.
Leigh Mercer, a leading British palindromist (he is the inventor of the
famous “A man, a plan, a canal—Panama!”), has suggested a way of
writing a palindrome as long as one wishes. The sentence has the form,
“o ,’ sides reversed, is ‘——.’ ” The first blank can be any se-
quence of letters, however long, which is repeated in reverse order in
the second blank.

Good palindromes involving the names of U.S. presidents are ex-
ceptionally rare. Borgmann cites the crisp “Taft: fat!” as one of the
shortest and best. Richard Nixon’s name lends itself to “No ‘x’ in ‘Mr.
R. M. Nixon’?” although the sentence is a bit too contrived. A shorter,
capitalized version of this palindrome, NO X IN NIXON, is also in-
vertible.

The fact that “God” is “dog” backward has played a role in many sen-
tence palindromes, as well as in orthodox psychoanalysis. In Freud’s
Contribution to Psychiatry A. A. Brill cites a rather farfetched analysis
by Carl Jung and others of a patient suffering from a ticlike upward
movement of his arms. The analysts decided that the tic had its origin
in an unpleasant early visual experience involving dogs. Because of the
“dog-god” reversal, and the man’s religious convictions, his uncon-
scious had developed the gesture to symbolize a warding off of the evil
“dog-god.” Edgar Allan Poe’s frequent use of the reversal words “dim”
and “mid” is pointed out by Humbert Humbert, the narrator of
Vladimir Nabokov’s novel Lolita. In the second canto of Pale Fire, in
Nabokov’s novel of the same title, the poet John Shade speaks of his
dead daughter’s propensity for word reversals:

. .. She twisted words: pot, top,
Spider, redips. And “powder” was “red wop.”

Such word reversals, as well as sentences that are different sentences
when they are spelled backward, are obviously close cousins of palin-
dromes, but the topic is too large to go into here.

Palindrome sentences in which words, not letters, are the units have
been a specialty of another British expert on word play, J. A. Lindon.
Two splendid examples, from scores that he has composed, are

“You can cage a swallow, can’t you, but you can’t swallow a cage, can
you?”
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“Girl, bathing on Bikini, eyeing boy, finds boy eyeing bikini on
bathing girl.”

Many attempts have been made to write letter-unit palindrome
poems, some quite long, but without exception they are obscure,
rhymeless, and lacking in other poetic values. Somewhat better poems
can be achieved by making each line a separate palindrome rather than
the entire poem or by using the word as the unit. Lindon has written
many poems of both types. A third type of palindrome poem, invented
by Lindon, employs lines as units. The poem is unchanged when its
lines are read forward but taken in reverse order. One is allowed, of
course, to punctuate duplicate lines differently. The following example
is one of Lindon’s best:

As I was passing near the jail

I met a man, but hurried by.

His face was ghastly, grimly pale.
He had a gun. I wondered why

He had. A gun? I wondered . . . why,
His face was ghastly! Grimly pale,

I met a man, but hurried by,

As I was passing near the jail.

This longer one is also by Lindon. Both poems appear in Howard W.
Bergerson’s Palindromes and Anagrams (Dover, 1973).

DoPPELGANGER

Entering the lonely house with my wife,
I saw him for the first time

Peering furtively from behind a bush—

Blackness that moved,

A shape amid the shadows,

A momentary glimpse of gleaming eyes
Revealed in the ragged moon.

A closer look (he seemed to turn) might have

Put him to flight forever—
I dared not

(For reasons that I failed to understand),
Though I knew I should act at once.

I puzzled over it, hiding alone,
Watching the woman as she neared the gate.
He came, and I saw him crouching
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Night after night.
Night after night
He came, and I saw him crouching,
Watching the woman as she neared the gate.

I puzzled over it, hiding alone—
Though I knew I should act at once,
For reasons that I failed to understand
I dared not
Put him to flight forever.

A closer look (he seemed to turn) might have
Revealed in the ragged moon
A momentary glimpse of gleaming eyes,
A shape amid the shadows,
Blackness that moved.

Peering furtively from behind a bush,
I saw him, for the first time,
Entering the lonely house with my wife.

Lindon holds the record for the longest word ever worked into a
letter-unit palindrome. To understand the palindrome you must know
that Beryl has a husband who enjoys running around his yard without
any clothes on. Ned has asked him if he does this to annoy his wife. He
answers: “Named undenominationally rebel, I rile Beryl? La, no! I tan.
I'm, O Ned, nude, man!”

Addendum

A. Ross Eckler, editor and publisher of Word Ways, a quarterly
journal on word play that has featured dozens of articles on palin-
dromes of all types, wrote to say that the “palindromic gap” between
English and other languages is perhaps not as wide as I suggested. The
word “semitime” can be pluralized to make a 9-letter palindrome and
“kinnikinnik” is an 11-letter palindrome. Dmitri Borgmann pointed
out in Word Ways, said Eckler, that an examination of foreign dictio-
naries failed to substantiate such long palindromic words as the
Finnish soap dealer, suggesting that they are artificially created words.

Among palindromic towns and cities in the United States, Borgmann
found the 7-letter Okonoko (in West Virginia). If a state (in full or ab-
breviated form) is part of the palindrome, Borgmann offers Apollo, PA,
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and Adaven, Nevada. Some U.S. towns, Eckler continued, are inten-
tional reversal pairs, such as Orestod and Dotsero, in Eagle County,
Colorado, and Colver and Revloc, in Cambria County, Pennsylvania.
Nova and Avon, he added, are Ohio towns that are an unintentional re-
versal pair.

George L. Hart III sent the following letter, which was published in
Scientific American, November 1970:

Sirs:

Apropos of your discussion of palindromes, I would like to offer an ex-
ample of what I believe to be the most complex and exquisite type of
palindrome ever invented. It was devised by the Sanskrit aestheticians,
who termed it sarvatobhadra, that is, “perfect in every direction.” The
most famous example of it is found in the epic poem entitled
Sisupdalavadha.

sa -ka-ra-na-na-ra-ka-sa-
ka-ya-sa-da-da-sa-ya-ka
ra -sa-ha-va va-ha-sa-ra-
na-da-va-da-da-va-da-na.
(na da va da da va da na
ra s8a ha va va ha sa ra
ka ya sa da da sa ya ka
sa ka ra na na ra ka sa)

Here hyphens indicate that the next syllable belongs to the same word.
The last four lines, which are an inversion of the first four, are not part
of the verse but are supplied so that its properties can be seen more eas-
ily. The verse is a description of an army and may be translated as fol-
lows: “[That army], which relished battle [rasahava], contained allies
who brought low the bodes and gaits of their various striving enemies
[sakarananarakasakayasadadasayaka], and in it the cries of the best of
mounts contended with musical instruments [vahasaranadavada-
davadanal.”

Two readers, D. M. Gunn and Rosina Wilson, conveyed the sad news
that the Yreka Bakery no longer existed. However, in 1970 its premises
were occupied by the Yrella Gallery, and Ms. Wilson sent a Polaroid
picture of the gallery’s sign to prove it. Whether the gallery is still there,
I do not know.

Lee Sallows repaired the “near miss” palindrome in this chapter’s
epigraph by adding a word: “Zeus! A man, a plan, a canal—Suez!”
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Answers

Readers were asked to prove that no prime except 11 can be a
palindrome if it has an even number of digits. The proof exploits a well-
known test of divisibility by 11 (which will not be proved here): If the
difference between the sum of all digits in even positions and the sum
of all digits in odd positions is zero or a multiple of 11, the number is a
multiple of 11. When a palindrome has an even number of digits, the
digits in odd positions necessarily duplicate the digits in even posi-
tions; therefore the difference between the sums of the two sets must be
zero. The palindrome, because it has 11 as a factor, cannot be prime.

The same divisibility test applies in all number systems when the fac-
tor to be tested is the system’s base plus one. This proves that no palin-
drome with an even number of digits, in any number system, can be
prime, with the possible exception of 11. The number 11 is prime if the
system’s base is one less than a prime, as it is in the decimal system.
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Chapter 4 Curves of
Constant Width

’f an enormously heavy object has to be moved from one spot
to another, it may not be practical to move it on wheels. Axles might
buckle or snap under the load. Instead the object is placed on a flat plat-
form that in turn rests on cylindrical rollers. As the platform is pushed
forward, the rollers left behind are picked up and put down again in
front.

An object moved in this manner over a flat, horizontal surface obvi-
ously does not bob up and down as it rolls along. The reason is simply
that the cylindrical rollers have a circular cross section, and a circle is
a closed curve possessing what mathematicians call “constant width.”
If a closed convex curve is placed between two parallel lines and the
lines are moved together until they touch the curve, the distance be-
tween the parallel lines is the curve’s “width” in one direction. An el-
lipse clearly does not have the same width in all directions. A platform
riding on elliptical rollers would wobble up and down as it rolled over
them. Because a circle has the same width in all directions, it can be ro-
tated between two parallel lines without altering the distance between
the lines.

Is the circle the only closed curve of constant width? Most people
would say yes, thus providing a sterling example of how far one’s math-
ematical intuition can go astray. Actually there is an infinity of such
curves. Any one of them can be the cross section of a roller that will roll
a platform as smoothly as a circular cylinder! The failure to recognize
such curves can have and has had disastrous consequences in indus-
try. To give one example, it might be thought that the cylindrical hull
of a half-built submarine could be tested for circularity by just mea-
suring maximum widths in all directions. As will soon be made clear,
such a hull can be monstrously lopsided and still pass such a test. It is
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precisely for this reason that the circularity of a submarine hull is al-
ways tested by applying curved templates.

The simplest noncircular curve of constant width has been named
the Reuleaux triangle after Franz Reuleaux (1829-1905), an engineer
and mathematician who taught at the Royal Technical High School in
Berlin. The curve itself was known to earlier mathematicians, but
Reuleaux was the first to demonstrate its constant-width properties. It
is easy to construct. First draw an equilateral triangle, ABC (see Figure
4.1). With the point of a compass at A, draw an arc, BC. In a similar
manner draw the other two arcs. It is obvious that the “curved triangle”
(as Reuleaux called it) must have a constant width equal to the side of
the interior triangle.

\ @@

el .4 ’

A C
Figure 4.1 \-/

Construction of Reuleaux triangle. Reuleaux triangle rotating in square.

If a curve of constant width is bounded by two pairs of parallel lines
at right angles to each other, the bounding lines necessarily form a
square. Like the circle or any other curve of constant width, the
Reuleaux triangle will rotate snugly within a square, maintaining con-
tact at all times with all four sides of the square (see Figure 4.2). If the
reader cuts a Reuleaux triangle out of cardboard and rotates it inside a
square hole of the proper dimensions cut in another piece of cardboard,
he will see that this is indeed the case.

As the Reuleaux triangle turns within a square, each corner traces a
path that is almost a square; the only deviation is at the corners, where
there is a slight rounding. The Reuleaux triangle has many mechanical
uses, but none is so bizarre as the use that derives from this property.
In 1914 Harry James Watts, an English engineer then living in Turtle
Creek, PA, invented a rotary drill based on the Reuleaux triangle and
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Cross section of drill in hole

Watts chuck and drill

Figure 4.2.

capable of drilling square holes! Beginning in 1916 these curious drills
were manufactured by the Watts Brothers Tool Works in Wilmerding,
PA. “We have all heard about left-handed monkey wrenches, fur-lined
bathtubs, cast-iron bananas,” reads one of their descriptive leaflets.
“We have all classed these things with the ridiculous and refused to be-
lieve that anything like that could ever happen, and right then along
comes a tool that drills square holes.”

The Watts square-hole drill is shown in Figure 4.2. At right is a cross
section of the drill as it rotates inside the hole it is boring. A metal
guide plate with a square opening is first placed over the material to be
drilled. As the drill spins within the guide plate, the corners of the
drill cut the square hole through the material. As you can see, the drill
is simply a Reuleaux triangle made concave in three spots to provide
for cutting edges and outlets for shavings. Because the center of the drill
wobbles as the drill turns, it is necessary to allow for this eccentric
motion in the chuck that holds the drill. A patented “full floating
chuck,” as the company calls it, does the trick. (Readers who would
like more information on the drill and the chuck can check United
States patents 1,241,175; 1,241,176; and 1,241,177; all dated September
25, 1917.)

The Reuleaux triangle is the curve of constant width that has the
smallest area for a given width (the area is 1/2 (t — V3)w?, where w is
the width). The corners are angles of 120 degrees, the sharpest possi-
ble on such a curve. These corners can be rounded off by extending
each side of an equilateral triangle a uniform distance at each end (see
Figure 4.3). With the point of a compass at A draw arc DI; then widen
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the compass and draw arc FG. Do the same at the other corners. The re-
sulting curve has a width, in all directions, that is the sum of the same
two radii. This of course makes it a curve of constant width. Other
symmetrical curves of constant width result if you start with a regular
pentagon (or any regular polygon with an odd number of sides) and fol-
low similar procedures.

Figure 4.3. Symmetrical rounded-corner curve of constant width

There are ways to draw unsymmetrical curves of constant width.
One method is to start with an irregular star polygon (it will necessar-
ily have an odd number of points) such as the seven-point star shown
in black in Figure 4.4. All of these line segments must be the same
length. Place the compass point at each corner of the star and connect
the two opposite corners with an arc. Because these arcs all have the
same radius, the resulting curve (shown in gray) will have constant
width. Its corners can be rounded off by the method used before. Ex-
tend the sides of the star a uniform distance at all points (shown with
broken lines) and then join the ends of the extended sides by arcs
drawn with the compass point at each corner of the star. The rounded-
corner curve, which is shown in black, will be another curve of con-
stant width.

Figure 4.5 demonstrates another method. Draw as many straight lines
as you please, all mutually intersecting. Each arc is drawn with the
compass point at the intersection of the two lines that bound the arc.
Start with any arc, then proceed around the curve, connecting each arc
to the preceding one. If you do it carefully, the curve will close and will
have constant width. (Proving that the curve must close and have con-
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Figure 4.4. Star-polygon method of drawing a curve of constant width

stant width is an interesting and not difficult exercise.) The preceding
curves were made up of arcs of no more than two different circles, but
curves drawn in this way may have arcs of as many different circles as
you wish.

Figure 4.5. Crossed-lines method Random curve and tangents

A curve of constant width need not consist of circular arcs. In fact,
you can draw a highly arbitrary convex curve from the top to the bot-
tom of a square and touching its left side (arc ABC in Figure 4.5), and
this curve will be the left side of a uniquely determined curve of con-
stant width. To find the missing part, rule a large number of lines, each
parallel to a tangent of arc ABC and separated from the tangent by a dis-
tance equal to the side of the square. This can be done quickly by using
both sides of a ruler. The original square must have a side equal to the
ruler’s width. Place one edge of the ruler so that it is tangent to arc
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ABC at one of its points, then use the ruler’s opposite edge to draw a
parallel line. Do this at many points, from one end of arc ABC to the
other. The missing part of the curve is the envelope of these lines. In
this way you can obtain rough outlines of an endless variety of lopsided
curves of constant width.

It should be mentioned that the arc ABC cannot be completely arbi-
trary. Roughly speaking, its curvature must not at any point be less
than the curvature of a circle with a radius equal to the side of the
square. It cannot, for example, include straight-line segments. For a
more precise statement on this, as well as detailed proofs of many ele-
mentary theorems involving curves of constant width, the reader is re-
ferred to the excellent chapter on such curves in The Enjoyment of
Mathematics, by Hans Rademacher and Otto Toeplitz.

If you have the tools and skills for woodworking, you might enjoy
making a number of wooden rollers with cross sections that are various
curves of the same constant width. Most people are nonplused by the
sight of a large book rolling horizontally across such lopsided rollers
without bobbing up and down. A simpler way to demonstrate such
curves is to cut from cardboard two curves of constant width and nail
them to opposite ends of a wooden rod about six inches long. The
curves need not be of the same shape, and it does not matter exactly
where you put each nail as long as it is fairly close to what you guess
to be the curve’s “center.” Hold a large, light-weight empty box by its
ends, rest it horizontally on the attached curves and roll the box back
and forth. The rod wobbles up and down at both ends, but the box
rides as smoothly as it would on circular rollers!

The properties of curves of constant width have been extensively in-
vestigated. One startling property, not easy to prove, is that the perime-
ters of all curves with constant width n have the same length. Since a
circle is such a curve, the perimeter of any curve of constant width n
must of course be nin, the same as the circumference of a circle with di-
ameter n.

The three-dimensional analogue of a curve of constant width is the
solid of constant width. A sphere is not the only such solid that will ro-
tate within a cube, at all times touching all six sides of the cube; this
property is shared by all solids of constant width. The simplest exam-
ple of a nonspherical solid of this type is generated by rotating the
Reuleaux triangle around one of its axes of symmetry (see Figure 4.6,
left). There is an infinite number of others. The solids of constant width
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that have the smallest volumes are derived from the regular tetrahedron
in somewhat the same way the Reuleaux triangle is derived from the
equilateral triangle. Spherical caps are first placed on each face of the
tetrahedron, then it is necessary to alter three of the edges slightly.
These altered edges may either form a triangle or radiate from one cor-
ner. The solid at the right of Figure 4.6 is an example of a curved tetra-
hedron of constant width.

» | 4

Figure 4.6. Two solids of constant width

Since all curves of the same constant width have the same perime-
ter, it might be supposed that all solids of the same constant width
have the same surface area. This is not the case. It was proved, however,
by Hermann Minkowski (the Polish mathematician who made such
great contributions to relativity theory) that all shadows of solids of
constant width (when the projecting rays are parallel and the shadow
falls on a plane perpendicular to the rays) are curves of the same con-
stant width. All such shadows have equal perimenters (r times the
width).

Michael Goldberg, an engineer with the Bureau of Naval Weapons in
Washington, has written many papers on curves and solids of constant
width and is recognized as being this country’s leading expert on the
subject. He has introduced the term “rotor” for any convex figure that
can be rotated inside a polygon or polyhedron while at all times touch-
ing every side or face.

The Reuleaux triangle is, as we have seen, the rotor of least area in a
square. The least-area rotor for the equilateral triangle is shown at the
left of Figure 4.7. This lens-shaped figure (it is not, of course, a curve
of constant width) is formed with two 60-degree arcs of a circle having
a radius equal to the triangle’s altitude. Note that as it rotates its corners
trace the entire boundary of the triangle, with no rounding of corners.
Mechanical reasons make it difficult to rotate a drill based on this fig-
ure, but Watts Brothers makes other drills, based on rotors for higher-
order regular polygons, that drill sharp-cornered holes in the shape of
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pentagons, hexagons, and even octagons. In three-space, Goldberg has
shown, there are nonspherical rotors for the regular tetrahedron and oc-
tahedron, as well as the cube, but none for the regular dodecahedron
and icosahedron. Almost no work has been done on rotors in dimen-
sions higher than three,

Figure 4.7.

Least-area rotor in equilateral triangle Line rotated in deltoid curve

Closely related to the theory of rotors is a famous problem named the
Kakeya needle problem after the Japanese mathematician Séichi
Kakeya, who first posed it in 1917. The problem is as follows: What is
the plane figure of least area in which a line segment of length 1 can be
rotated 360 degrees? The rotation obviously can be made inside a cir-
cle of unit diameter, but that is far from the smallest area.

For many years mathematicians believed the answer was the deltoid
curve shown at the right of Figure 4.7, which has an area exactly half
that of a unit circle. (The deltoid is the curve traced by a point on the
circumference of a circle as it rolls around the inside of a larger circle,
when the diameter of the small circle is either one third or two thirds
that of the larger one.) If you break a toothpick to the size of the line seg-
ment shown, you will find by experiment that it can be rotated inside
the deltoid as a kind of one-dimensional rotor. Note how its end points
remain at all times on the deltoid’s perimeter.

In 1927, ten years after Kakeya popped his question, the Russian
mathematician Abram Samoilovitch Besicovitch (then living in Copen-
hagen) dropped a bombshell. He proved that the problem had no an-
swer. More accurately, he showed that the answer to Kakeya’s question
is that there is no minimum area. The area can be made as small as one
wants. Imagine a line segment that stretches from the earth to the moon.
We can rotate it 360 degrees within an area as small as the area of a
postage stamp. If that is too large, we can reduce it to the area of Lin-
coln’s nose on a postage stamp.
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Besicovitch’s proof is too complicated to give here (see references in
bibliography), and besides, his domain of rotation is not what topolo-
gists call simply connected. For readers who would like to work on a
much easier problem: What is the smallest convex area in which a line
segment of length 1 can be rotated 360 degrees? (A convex figure is one
in which a straight line, joining any two of its points, lies entirely on
the figure. Squares and circles are convex; Greek crosses and crescent
moons are not.)

Addendum

Although Watts was the first to acquire patents on the process
of drilling square holes with Reuleaux-triangle drills, the procedure
was apparently known earlier. Derek Beck, in London, wrote that he
had met a man who recalled having used such a drill for boring square
holes when he was an apprentice machinist in 1902 and that the prac-
tice then seemed to be standard. I have not, however, been able to learn
anything about the history of the technique prior to Watts’s 1917
patents.

In 1969 England introduced a 50-pence coin with seven slightly
curved sides that form a circle of constant width, surely the first seven-
sided coin ever minted. The invariant width allows the coin to roll
smoothly down coin-operated machines.

Answers

What is the smallest convex area in which a line segment of
length 1 can be rotated 360 degrees? The answer: An equilateral trian-
gle with an altitude of 1. (The area is one third the square root of 3.)

Any figure in which the line segment can be rotated obviously must
have a width at least equal to 1. Of all convex figures with a width of
1, the equilateral triangle of altitude 1 has the smallest area. (For a
proof of this the reader is referred to Convex Figures, by I. M. Yaglom
and V. G. Boltyanskii, pp. 221-22.) It is easy to see that a line segment
of length 1 can in fact be rotated in such a triangle (see Figure 4.8).

The deltoid curve was believed to be the smallest simply connected
area solving the problem until 1963 when a smaller area was discov-
ered independently by Melvin Bloom and I. J. Schoenberg.
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Figure 4.8. Answer to the needle-turning problem
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Chapter 5 Rep-Tiles

Only three regular polygons—the equilateral triangle, the
square, and the regular hexagon—can be used for tiling a floor in such
a way that identical shapes are endlessly repeated to cover the plane.
But there is an infinite number of irregular polygons that can provide
this kind of tiling. For example, a triangle of any shape whatever will
do the trick. So will any four-sided figure. The reader can try the fol-
lowing test. Draw an irregular quadrilateral (it need not even be con-
vex, which is to say that it need not have interior angles that are all less
than 180 degrees) and cut 20 or so copies from cardboard. It is a pleas-
ant task to fit them all together snugly, like a jigsaw puzzle, to cover a
plane.

There is an unusual and less familiar way to tile a plane. Note that
each trapezoid at the top of Figure 5.1 has been divided into four
smaller trapezoids that are exact replicas of the original. The four repli-
cas can, of course, be divided in the same way into four still smaller
replicas, and this can be continued to infinity. To use such a figure for
tiling we have only to proceed to infinity in the opposite direction: we
put together four figures to form a larger model, four of which will in
turn fit together to make a still larger one. The British mathematician
Augustus De Morgan summed up this sort of situation admirably in the
following jingle, the first four lines of which paraphrase an earlier jin-
gle by Jonathan Swift:

Great fleas have little fleas
Upon their backs to bite ’em,

And little fleas have lesser fleas,
And so ad infinitum.

The great fleas themselves, in turn,
Have greater fleas to go on;
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While these again have greater still,
And greater still, and so on.

Until 1962 not much was known about polygons that have this curi-
ous property of making larger and smaller copies of themselves. In
1962 Solomon W. Golomb, who was then on the staff of the Jet Propul-
sion Laboratory of the California Institute of Technology and is now a
professor at the University of Southern California, turned his attention
to these “replicating figures”—or “rep-tiles,” as he calls them. The re-
sult was three privately issued papers that lay the groundwork for a
general theory of polygon “replication.” These papers, from which al-
most all that follows is extracted, contain a wealth of material of great
interest to the recreational mathematician.

In Golomb’s terminology a replicating polygon of order k is one that
can be divided into k replicas congruent to one another and similar to
the original. Each of the three trapezoids in Figure 5.1, for example, has
areplicating order of 4, abbreviated as rep-4. Polygons of rep-k exist for
any k, but they seem to be scarcest when k is a prime and to be most
abundant when k is a square number.

/
/

Three trapezoids that have a replicating order of 4

)/ /

Figure 5.1. The only known rep-2 polygons

Only two rep-2 polygons are known: the isosceles right triangle and
the parallelogram with sides in the ratio of 1 to the square root of 2 (see
bottom of Figure 5.1). Golomb found simple proofs that these are the
only possible rep-2 triangles and quadrilaterals, and there are no other
convex rep-2 polygons. The existence of concave rep-2 polygons ap-
pears unlikely, but so far their nonexistence has not been proved.
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The interior angles of the parallelogram can vary without affecting its
rep-2 property. In its rectangular form the rep-2 parallelogram is al-
most as famous in the history of art as the “golden rectangle,” discussed
in the Second Scientific American Book of Mathematical Puzzles and
Diversions. Many medieval and Renaissance artists (Albrecht Diirer,
for instance) consciously used it for outlining rectangular pictures. A
trick playing card that is sometimes sold by street-corner pitchmen ex-
ploits this rectangle to make the ace of diamonds seem to diminish in
size three times (see Figure 5.2). Under cover of a hand movement the
card is secretly folded in half and turned over to show a card exactly
half the size of the preceding one. If each of the three smaller aces is a
rectangle similar to the original, it is easy to show that only a 1-by-V2
rectangle can be used for the card. The rep-2 rectangle also has less friv-
olous uses. Printers who wish to standardize the shape of the pages in
books of various sizes find that in folio, quarto, or octavo form it pro-
duces pages that are all similar rectangles. European writing paper also
has a similar shape.

A -
¢

Figure 5.2. A trick diminishing card based on the rep-2 rectangle

The rep-2 rectangle belongs to the family of parallelograms shown in
the top illustration of Figure 5.3. The fact that a parallelogram with
sides of 1 and V'kis always rep-k proves that a rep-k polygon exists for
any k. It is the only known example, Golomb asserts, of a family of fig-
ures that exhibit all the replicating orders. When k is 7 (or any prime
greater than 3 that has the form 4n — 1), a parallelogram of this family
is the only known example. Rep-3 and rep-5 triangles exist. Can the
reader construct them?

A great number of rep-4 figures are known. Every triangle is rep-4
and can be divided as shown in the second illustration from the top of
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The 1-by-Vk parallelogram is a rep-k polygon

/)
v

Every triangle and parallelogram is rep-4

The Sphinx, the only known rep-4 pentagon

The three known varieties of rep-4 hexagons

Figure 5.3.

Rep-Tiles
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Figure 5.3. Among the quadrilaterals, any parallelogram is rep-4, as
shown in the same illustration. The three trapezoids in the top illus-
tration of Figure 5.1 are the only other examples of rep-4 quadrilater-
als so far discovered.

Only one rep-4 pentagon is known: the sphinx-shaped figure in the
third illustration from the top of Figure 5.3. Golomb was the first to dis-
cover its rep-4 property. Only the outline of the sphinx is given so that
the reader can have the pleasure of seeing how quickly he can dissect
it into four smaller sphinxes. (The name “sphinx” was given to this fig-
ure by T. H. O’Beirne of Glasgow.)

There are three known varieties of rep-4 hexagons. If any rectangle is
divided into four quadrants and one quadrant is thrown away, the re-
maining figure is a rep-4 hexagon. The hexagon at the right at the bot-
tom of Figure 5.3 shows the dissection (familiar to puzzlists) when the
rectangle is a square. The other two examples of rep-4 hexagons (each
of which can be dissected in more than one way) are shown at the mid-
dle and left in the same illustration.

No other example of a standard polygon with a rep-4 property is
known. There are, however, “stellated” rep-4 polygons (a stellated poly-
gon consists of two or more polygons joined at single points), two exam-
ples of which, provided by Golomb, are shown at the top of Figure 5.4.
In the first example a pair of identical rectangles can be substituted for the
squares. In addition, Golomb has found three nonpolygonal figures that
are rep-4, although none is constructible in a finite number of steps. Each
of these figures, shown at the left in the bottom illustration of Figure 5.4,
is formed by adding to an equilateral triangle an endless series of smaller
triangles, each one-fourth the size of its predecessor. In each case four of
these figures will fit together to make a larger replica, as shown at the
right in the same illustration. (There is a gap in each replica because the
original cannot be drawn with an infinitely long series of triangles.)

It is a curious fact that every known rep-4 polygon of a standard type
is also rep-9. The rep-4 Nevada-shaped trapezoid of Figure 5.5 can be
dissected into nine replicas in many ways, only one of which is shown.
(Can the reader dissect each of the other rep-4 polygons, not counting
the stellated and infinite forms, into nine replicas?) The converse is
also true: All known standard rep-9 polygons are also rep-4.

Three interesting examples of stellated rep-9 polygons, discovered
and named by Golomb, are shown in Figure 5.6. None of these poly-
gons is rep-4.
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Figure 5.5. Every rep-4 polygon is also rep-9
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Figure 5.6. Stellated rep-8 polygons:

The Fish (A),

The Bird (B}, and

The Ampersand (C)

Any method of dividing a 4 x 4 checkerboard along grid lines into
four congruent parts provides a figure that is rep-16. It is only necessary
to put four of the squares together to make a replica of one of the parts
as in Figure 5.7. In a similar fashion, a 6 x 6 checkerboard can be quar-
tered in many ways to provide rep-36 figures, and an equilateral trian-
gle can be divided along triangular grid lines into rep-36 polygons (see
Figure 5.8). All of these examples illustrate a simple theorem, which
Golomb explains as follows:

Consider a figure P that can be divided into two or more congruent
figures, not necessarily replicas of P. Call the smaller figure Q. The
number of such figures is the “multiplicity” with which Q divides P.
For example, in Figure 5.8 the three hexagons divide the triangle with
a multiplicity of 3 and small equilateral triangles will divide each hexa-
gon with a multiplicity of 12. The product of these two multiplicities
(3 x 12) gives a replicating order for both the hexagon and the equilat-
eral triangle: 36 of the hexagonal figures will form a larger figure of sim-
ilar shape, and 36 equilateral triangles will form a larger equilateral
triangle. In more formal language: If P and Q are two shapes such that
P divides Q with a multiplicity of s and Q divides P with a multiplic-
ity of £, then P and Q are both replicating figures of order st (s x t). Of
course, each figure can have lower replicating orders as well. In the ex-
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Figure 5.7. A rep-16 octagon

Figure 5.8. Three rep-36 polygons

ample given, the equilateral triangle, in addition to being rep-36, is
also rep-4, rep-9, rep-16, and rep-25.

When P and Q are similar figures, it follows from the above theorem
that if the figure has a replicating order of k, it will also be rep-k?, rep-
k3, rep-k*, and so on for all powers of k. Similarly, if a figure is both rep-
s and rep-t, it will also be rep-st.

The principle underlying all of these theorems can be extended as
follows. If P divides QQ with a multiplicity of s, and QQ divides R with a
multiplicity of ¢, and R divides P with a multiplicity of u, then P and
(3 and R are each rep-stu. For instance, each of the polygons in Figure
5.9 will divide a 3 x 4 rectangle with a multiplicity of 2. The 3 x 4 rec-
tangle in turn divides a square with a multiplicity of 12, and the square
divides any one of the three original shapes with a multiplicity of 6.
Consequently, the replicating order of each pelygon is 2 x 12 x 6, or
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144. It is conjectured that none of the three has a lower replicating
order.

Figure 5.9. Three rep-144 polygons

Golomb has noted that every known polygon of rep-4, including the
stellated polygons, will divide a parallelogram with a multiplicity of 2.
In other words, if any known rep-4 polygon is replicated, the pair can
be fitted together to form a parallelogram! It is conjectured, but not yet
proved, that this is true of all rep-4 polygons.

An obvious extension of Golomb’s pioneer work on replication the-
ory (of which only the most elementary aspects have been detailed
here) is into three or even higher dimensions. A trivial example of a
replicating solid figure is the cube: it obviously is rep-8, rep-27, and so
on for any order that is a cubical number. Other trivial examples result
from giving plane replicating figures a finite thickness, then forming
layers of larger replicas to make a model of the original solid. Less triv-
ial examples certainly exist; a study of them might lead to significant
results,

In addition to the problems already posed, here are two unusual dis-
section puzzles closely related to what we have been considering (see
Figure 5.10). First the easier one: Can the reader divide the hexagon
(left) into two congruent stellated polygons? More difficult: Divide the
pentagon (right) into four congruent stellated polygons. In neither case
are the polygons similar to the original figure.

Addendum

I gave the conjecture that none of the three polygons shown in
Figure 5.9 has a replicating order lower than 144. Wrong for all three!
Mark A. Mandel, then 14, wrote to show how the middle polygon could
be cut into 36 replicas (see Figure 5.11). Robert Reid, writing from Peru,
found a way for 121 copies of the first hexomino to replicate and 64
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Figure 5.10. Two dissection problems

Figure 5.11. Hexomino: rep-tile of order 36

Figure 5.12. A Rep-81 polygon

copies of the third polygon to do the same. Reid also proved that the
hexomino shown in Figure 5.12 is a rep-tile of order 81.
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Ralph H. Hinrichs, Phoenixville, PA, discovered that if the middle
hexagon at the bottom of Figure 5.3 is dissected in a slightly different
way (the pattern within each rectangle is mirror-reflected), the entire
figure can undergo an infinite number of affine transformations (the 90-
degree exterior angle taking any acute or obtuse value) to provide an in-
finity of rep-4 hexagons. Only when the angle is 90 degrees is the figure
also rep-9, thus disproving an early guess that all rep-4 standard poly-
gons are rep-9 and vice versa.

The three nonpolygon rep-tiles shown in Figure 5.4 are now called
“self-similar fractals.” Such fractals are being extensively studied. I
have not listed recent references in my bibliography, but interested
readers can consult Christoph Bandt’s “Self-Similar Sets 5,” in the Pro-
ceedings of the American Mathematical Society, Vol. 112, June 1991,
pages 349—62, and his list of references.

The rep-tile triangle second from the top in Figure 5.12—incidently
it is not accurately drawn—is mentioned in Plato’s Timaeus. Timaeus
points out that it is half of an equilateral triangle and that he considers
it the “most beautiful” of all scalene triangles. (See the Random House
edition of Plato, edited by Benjamin Jowett, Vol. 2, p. 34.)

Sol Golomb is best known for his work on polyominoes—shapes
formed by joining n unit squares along their edges. Golomb’s classic
study, Polyominoes, was reissued by Princeton University Press in
1994.

The most spectacular constructions of what Golomb calls “infin-tiles
(rep-tiles with infinitely many sides) are in the papers by Jack Giles, Jr.,
cited in the bibliography. Giles calls them “superfigures.” Many of
Golomb’s infin-tiles, and those of Giles, are early examples of fractals.
Golomb tells me that Giles was a parking lot attendant in Florida when
he sent his papers to Golomb, who in turn submitted them to the Jour-
nal of Combinatorial Theory.

Answers

The problem of dissecting the sphinx is shown in Figure 5.13,
top. The next two illustrations show how to construct rep-3 and rep-5
triangles. The bottom illustration gives the solution to the two dissec-
tion problems involving stellated polygons. The first of these can be
varied in an infinite number of ways; the solution shown here is one of
the simplest.
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Figure 5.13. Solutions to dissection problems

The second solution is an old-timer. Sam Loyd, in his puzzle column
in Woman’s Home Companion (October 1905) points out that the fig-
ure is similar to the one shown here in the lower right corner of Figure
5.3 in that one-fourth of a square is missing from each figure. He writes
that he spent a year trying to cut the mitre shape into four congruent
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parts, each simply connected, but was unable to do better than the so-
lution reproduced here. It can be found in many old puzzle books an-
tedating Loyd’s time.
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Chapter 6 Piet Hein’s
Superellipse

There is one art, no more, no less: to do all
things with artlessness. —Piet Hein

Civilized man is surrounded on all sides, indoors and out, by
a subtle, seldom-noticed conflict between two ancient ways of shaping
things: the orthogonal and the round. Cars on circular wheels, guided
by hands on circular steering wheels, move along streets that intersect
like the lines of a rectangular lattice. Buildings and houses are made up
mostly of right angles, relieved occasionally by circular domes and
windows. At rectangular or circular tables, with rectangular napkins on
our laps, we eat from circular plates and drink from glasses with cir-
cular cross sections. We light cylindrical cigarettes with matches from
rectangular packs, and we pay the rectangular bill with rectangular
credit cards, checks, or dollar bills and circular coins.

Even our games combine the orthogonal and the round. Most outdoor
sports are played with spherical balls on rectangular fields. Indoor
games, from pool to checkers, are similar combinations of the round
and the rectangular. Rectangular playing cards are held in a fanlike cir-
cular array. The very letters on this rectangular page are patchworks of
right angles and circular arcs. Wherever one looks the scene swarms
with squares and circles and their affinely stretched forms: rectangles
and ellipses. (In a sense the ellipse is more common than the circle, be-
cause every circle appears elliptical when seen from an angle.) In op
paintings and textile designs, squares, circles, rectangles, and ellipses
jangle against one another as violently as they do in daily life.

The Danish writer and inventor Piet Hein asked himself a fascinat-
ing question: What is the simplest and most pleasing closed curve that
mediates fairly between these two clashing tendencies? Originally a
scientist, Piet Hein (he is always spoken of by both names) was well
known throughout Scandinavia and English-speaking countries for his
enormously popular volumes of gracefully aphoristic poems (which
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critics have likened to the epigrams of Martial) and for his writings on
scientific and humanistic topics. To recreational mathematicians he is
best known as the inventor of the game Hex, of the Soma cube, and of
other remarkable games and puzzles. He was a friend of Norbert
Wiener, whose last book, God and Golem, Inc., is dedicated to him.

The question Piet Hein asked himself had been suggested by a knotty
city-planning problem that first arose in 1959 in Sweden. Many years
earlier Stockholm had decided to raze and rebuild a congested section
of old houses and narrow streets in the heart of the city, and after World
War II this enormous and costly program got under way. Two broad
new fraffic arteries running north—south and east-west were cut through
the center of the city. At the intersection of these avenues a large rec-
tangular space (now called Sergel’s Square) was laid out. At its center is
an oval basin with a fountain surrounded by an oval pool containing
several hundred smaller fountains. Daylight filters through the pool’s
translucent bottom into an oval self-service restaurant, below street
level, surrounded by oval rings of pillars and shops. Below that there are
two more oval floors for dining and dancing, cloakrooms, and kitchen.

In planning the exact shape of this center the Swedish architects ran
into unexpected snags. The ellipse had to be rejected because its
pointed ends would interfere with smooth traffic flow around it; more-
over, it did not fit harmoniously into the rectangular space. The city
planners next tried a curve made up of eight circular arcs, but it had a
patched-together look with uigly “jumps” of curvature in eight places.
In addition, plans called for nesting different sizes of the oval shape,
and the eight-arc curve refused to nest in a pleasing way.

At this stage the architectural team in charge of the project consulted
Piet Hein. It was just the kind of problem that appealed to his combined
mathematical and artistic imagination, his sense of humor, and his
knack of thinking creatively in unexpected directions. What kind of
curve, less pointed than the ellipse, could he discover that would nest
pleasingly and fit harmoniously into the rectangular open space at the
heart of Stockholm?

To understand Piet Hein’s novel answer we must first consider the el-
lipse, as he did, as a special case of a more general family of curves with
the following formula in Cartesian coordinates:

’X
a

n
='1,

n
y
+ |£
‘b
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where a and b are unequal parameters (arbitrary constants) that repre-
sent the two semiaxes of the curve and n is any positive real number.
The vertical brackets indicate that each fraction is to be taken with re-
spect to its absolute value; that is, its value without regard to sign.

When n =2, the real values of x and y that satisfy the equation (its “so-
lution set”) determine the points on the graph that lie on an ellipse with
its center at the origin of the two coordinates. As n decreases from 2 to
1, the oval becomes more pointed at its ends (“subellipses,” Piet Hein
called them). When n =1, the figure is a parallelogram. When n is less
than 1, the four sides are concave curves that become increasingly con-
cave as n approaches 0. At n = 0 they degenerate into two crossed
straight lines.

If nis allowed to increase above 2, the oval develops flatter and flat-
ter sides, becoming more and more like a rectangle; indeed, the rec-
tangle is its limit as n approaches infinity. At what point is such a
curve most pleasing to the eye? Piet Hein settled on n = 2%. With the
help of a computer, 400 coordinate pairs were calculated to 15 decimal
places and larger, precise curves were drawn in many different sizes,
all with the same height-width ratios (to conform with the proportions
of the open space at the center of Stockholm). The curves proved to be
strangely satisfying, neither too rounded nor too orthogonal, a happy
blend of elliptical and rectangular beauty. Moreover, such curves could
be nested, as shown in Figures 6.1 and 6.2, to give a strong feeling of
harmony and parallelism between the concentric ovals. Piet Hein
called all such curves with exponents above 2 “superellipses.” Stock-
holm immediately accepted the 2 1/2-exponent superellipse as the
basic motif of its new center. Already the large superelliptical pool has
conferred upon Stockholm an unusual mathematical flavor, like the
big catenary curve of St. Louis’s Gateway Arch, which dominates the
local skyline.

Meanwhile Piet Hein’s superellipse has been enthusiastically
adopted by Bruno Mathsson, a well-known Swedish furniture designer.
He first produced a variety of superelliptical desks, now in the offices
of many Swedish executives, and has since followed with superellip-
tical tables, chairs, and beds. (Who needs the corners?) Industries in
Denmark, Sweden, Norway, and Finland turned to Piet Hein for solu-
tions to various orthogonal-versus-circular problems, and he worked on
superelliptical furniture, dishes, coasters, lamps, silverware, textile
patterns, and so on. The tables, chairs, and beds embodied another Piet
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Figure 6.2. Plan of Stockholm’s underground restaurants and the pools above them
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Hein invention: unusual self-clamping legs that can be removed and at-
tached with great ease.

“The superellipse has the same convincing unity as the circle and el-
lipse, but it is less obvious and less banal,” Piet Hein wrote in a lead-
ing Danish magazine devoted to applied arts and industrial design.
(The magazine’s white cover for that issue bare only the stark black line
of a superellipse, captioned with the formula of the curve.)

“The superellipse is more than just a new fad,” Piet Hein continued;
“it is a relief from the straitjacket of the simpler curves of first and sec-
ond powers, the straight line and the conic sections.” Incidentally, one
must not confuse the Piet Hein superellipse with the superficially sim-
ilar potato-shaped curves one often sees, particularly on the face of
television sets. These are seldom moare than oval patchworks of differ-
ent kinds of arc, and they lack any simple formula that gives aesthetic
unity to the curve.

When the axes of an ellipse are equal, it is of course a circle. If in the
circle's formula, x* + y*> = 1, the exponent 2 is replaced by a higher
number, the graphed curve becomes what Piet Hein called the “super-
circle.” At 2% it is a genuine “squared circle” in the sense that it is ar-
tistically midway between the two extremes. The changing shapes of
curves with the general formula x" + y? = 1, as n varies from O to infin-
ity, are graphed in Figure 6.3. If the graph could be stretched uniformly
along one axis (one of the affine transformations), it would depict the
family of curves of which the ellipse, subellipses, and superellipses are
members.

Figure 6.3. Silver superegg,
stable on either end
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In the same way, one can raise the exponent in the corresponding
Cartesian formulas for spheres and ellipsoids to obtain what Piet Hein
called “superspheres” and “superellipsoids.” If the exponent is 2%,
such solids can be regarded as spheres and ellipsoids that are halfway
along the road to being cubes and bricks.

The true ellipsoid, with three unequal axes, has the formula
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where q, b, and ¢ are unequal parameters representing half the length
of each axis. When the three parameters are equal, the figure is a
sphere. When only two are equal, the surface is called an “ellipsoid of
rotation” or a spheroid. It is produced by rotating an ellipse on either
of its axes. If the rotation is on the longer axis, the result is a prolate
spheroid—a kind of egg shape with circular cross sections perpendic-
ular to the axis.

It turns out that a solid model of a prolate spheroid, with homoge-
neous density, will no more balance upright on either end than a
chicken egg will, unless one applies to the egg a stratagem usually cred-
ited to Columbus. Columbus returned to Spain in 1493 after having
discovered America, thinking that the new land was India and that he
had proved the earth to be round. At Barcelona a banquet was given in
his honor. This is how Girolamo Benzoni, in his History of the New
World (Venice, 1565), tells the story (I quote from an early English trans-
lation):

Columbus, being at a party with many noble Spaniards . . . one of them
undertook to say: “Mr. Christopher, even if you had not found the Indies,
we should not have been devoid of a man who would have attempted
the same thing that you did, here in our own country of Spain, as it is
full of great men clever in cosmography and literature.” Columbus said
nothing in answer to these words, but having desired an egg to be
brought to him, he placed it on the table saying: “Gentlemen, I will lay
a wager with any of you, that you will not make this egg stand up as I
will, naked and without anything at all.” They all tried, and no one suc-
ceeded in making it stand up. When the egg came round to the hands of
Columbus, by beating it down on the table he fixed it, having thus
crushed a little of one end; wherefore all remained confused, under-
standing what he would have said: That after the deed is done, every-
body knows how to do it.
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The story may be true, but a suspiciously similar story had been told
15 years earlier by Giorgio Vasari in his celebrated Lives of the Most Em-
inent Painters, Sculptors and Architects (Florence, 1550). Young Fil-
ippo Brunelleschi, the Italian architect, had designed an unusually
large and heavy dome for Santa Maria del Fiore, the cathedral of Flo-
rence. City officials had asked to see his model, but he refused,
“proposing instead . . . that whosoever could make an egg stand upright
on a flat piece of marble should build the cupola, since thus each man’s
intellect would be discerned. Taking an egg, therefore, all those Masters
sought to make it stand upright, but not one could find a way. Where-
upon Filippo, being told to make it stand, took it graciously, and, giv-
ing one end of it a blow on the flat piece of marble, made it stand
upright. The craftsmen protested that they could have done the same;
but Filippo answered, laughing, that they could also have raised the
cupola, if they had seen the model or the design. And so it was re-
solved that he should be commissioned to carry out this work.”

The story has a topper. When the great dome was finally completed
(many years later, but decades before Columbus’s first voyage), it had
the shape of half an egg, flattened at the end.

What does all this have to do with supereggs? Well, Piet Hein (my
source, by the way, for the references on Columbus and Brunelleschi)
discovered that a solid model of a 2%2-exponent superegg—indeed, a
superegg of any exponent—if not too tall for its width, balances im-
mediately on either end without any sort of skulduggery! Indeed,
dozens of chubby wooden and silver supereggs are now standing po-
litely and permanently on their ends all over Scandinavia.

Consider the silver superegg shown in Figure 6.3, which has an ex-
ponent of 2, and a height—width ratio of 4 : 3. It looks as if it should
topple over, but it does not. This spooky stability of the superegg (on
both ends) can be taken as symbolic of the superelliptical balance be-
tween the orthogonal and the round, which is in turn a pleasant sym-
bol for the balanced mind of individuals such as Piet Hein who
mediated so successfully between C. P. Snow’s “two cultures.”

Addendum I

The family of plane curves expressed by the formula |x/al™ +
| y/b|™ = 1 was first recognized and studied by Gabriel Lamé, a 19th-
century French physicist, who wrote about them in 1818. In France they
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are called courbes de Lamé; in Germany, Lamesche kurven. The curves
are algebraic when n is rational, transcendent when n is irrational.

When n = 2/3 and a = b (see Figure 6.4) the curve is an astroid. This
is the curve generated by a point on a circle that is one-fourth or three-
fourths the radius of a larger circle, when the smaller circle is rolled
around the inside of the larger one. Solomon W. Golomb called atten-
tion to the fact that if n is odd, and the absolute value signs are dropped
in the formula for Lamé curves, you get a family of curves of which the
famous Witch of Agnesi (The curve studied by Maria Gaetana Agnesi)
is a member. (The witch results when n = 3.} William Hogan wrote to
say that parkway arches, designed by himself and other engineers, often
are Lamé curves of exponent 2.2. In the thirties, he said, they were
called “2.2 ellipses.”

s

\_ sy

Figure 6.4. Supercircle and related curves

When a superellipse (a Lamé curve with exponent greater than 2) is
applied to a physical object, its exponent and parameters a and b can,
of course, be varied to suit circumstances and taste. For the Stockholm
center, Piet Hein used the parameters n=2% and a/b=6/5. A few years
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later Gerald Robinson, a Toronto architect, applied the superellipse to
a parking garage in a shopping center in Peterborough, a Toronto sub-
urb. The length and width were required to be in the ratio a/b = 9/7.
Given this ratio, a survey indicated that an exponent slightly greater
than 2.7 produced a superellipse that seemed the most pleasing to those
polled. This suggested e as an exponent (since e =2.718 . . .).

Readers suggested other parameters. J. D. Turner proposed mediating
between the extremes of circle and square (or rectangle and ellipse) by
picking the exponent that would give an area exactly halfway between
the two extreme areas. D. C. Mandeville found that the exponent me-
diating the areas of a circle and square is so close to pi that he won-
dered if it actually is pi. Unfortunately it is not. Norton Black, using a
computer, determined that the value is a trifle greater than 3.17. Turner
also proposed mediating between ellipse and rectangle by choosing an
exponent that sends the curve through the midpoint of a line joining
the rectangle’s corner to the corresponding point on the ellipse.

Turner and Black each suggested that the superellipse be combined
with the aesthetically pleasing “golden rectangle” by making a/b the
golden ratio. Turner’s vote for the most pleasing superellipse went to
the oval with parameters a/b = golden ratio and n = e. Michel L. Balin-
ski and Philetus H. Holt III, in a letter published in The New York
Times in December 1968 (I failed to record the day of the month) rec-
ommended a golden superellipse with n = 2% as the best shape for the
negotiating table in Paris. At that time the diplomats preparing to ne-
gotiate a Vietnam peace were quarreling over the shape of their table.
If no table can be agreed upon, Balinski and Holt wrote, the diplomats
should be put inside a hollow superegg and shaken until they are in
“superelliptic agreement.”

The superegg is a special case of the more general solid shape which
one can call a superellipsoid. The superellipsoid’s formula is

’:’E
a
When a = b = ¢, the solid is a supersphere, its shape varying from

sphere to cube as the exponent varies. When a = b, the solid is super-
circular in cross section, with the formula
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Supereggs, with circular cross-sections, have the formula

\,\/_xwi“ .
a b '

When I wrote my column on the superellipse, I believed that any
solid superegg based on an exponent greater than 2 and less than in-
finity would balance on its end provided its height did not exceed its
width by too great a ratio. A solid superegg with an exponent of infin-
ity would, of course, be a right circular cylinder that would, in princi-
ple, stand on its flat end regardless of how much higher it was than
wide. But short of infinity it seemed intuitively clear that for each ex-
ponent there was a critical ratio beyond which the egg would be un-
stable. Indeed, I even published the following proof that this is the case:

If the center of gravity, CG, of an egg is below the center of curvature, CC,
of the egg’s base at the central point of the base, the egg will balance. It
balances because any tipping of the egg will raise the CG. If the CG is
above the CC, the egg is unstable because the slightest tipping lowers the
CG. To make this clear, consider first the sphere shown at the left in Fig-
ure 6.5. Inside the sphere the CG and CC are the same point: the center
of the sphere. For any supersphere with an exponent greater than 2, as
shown second from left in the illustration, the CC is above the CG be-
cause the base is less convex. The higher the exponent, the less convex
the base and the higher the CC.

Now suppose the supersphere is stretched uniformly upward along its
vertical coordinates, transforming it into a superellipsoid of rotation, or
what Piet Hein calls a superegg. As it stretches, the CC falls and the CG
rises. Clearly there must be a point X where the CC and the CG coincide.
Before this crucial point is reached the superegg is stable, as shown third
from left in Figure 6.5. Beyond that point the superegg is unstable (right).

C. E. Gremer, a retired U.S. Navy commander, was the first of many
readers to inform me that the proof is faulty. Contrary to intuition, at the
base point of all supereggs, the center of curvature is infinitely high! If
we increase the height of a superegg while its width remains constant,
the curvature at the base point remains “flat.” German mathematicians
call it a flachpunkt. The superellipse has a similar flachpunkt at its
ends. In other words, all supereggs, regardless of their height—width
ratio, are theoretically stable! As a superegg becomes taller and thinner,
there is of course a critical ratio at which the degree of tilt needed to

68 PrLANE GEOMETRY



CG

Figure 6.5. Diagrams for a false proof of superegg instability

topple it comes so close to zero that such factors as inhomogeneity of
the material, surface irregularity, vibrations, air currents, and so on
make it practically unstable. But in a mathematically ideal sense there
is no critical height-width ratio. As Piet Hein put it, in theory one can
balance any number of supereggs, each an inch wide and as tall as the
Empire State Building, on top of one another, end to end, and they will
not fall. Calculating precise “topple angles” at which a given superegg
will not regain balance is a tricky problem in calculus. Many readers
tackled it and sent their results.

Speaking of egg balancing, the reader may not know that almost any
chicken egg can be balanced on its broad end, on a smooth surface, if
one is patient and steady-handed. Nothing is gained by shaking the
egg first in an attempt to break the yolk. Even more puzzling as a par-
lor trick is the following method of balancing an egg on its pointed
end. Secretly put a tiny amount of salt on the table, balance the egg on
it, then gently blow away the excess grains before you call in viewers.
The few remaining grains which hold the egg are invisible, especially
on a white surface. For some curious reason, balancing chicken eggs le-
gitimately on their broad ends became a craze in China in 1945—at
least, so said Life in its picture story of April 9, 1945.

The world’s largest superegg, made of steel and aluminum and
weighing almost a ton, was set up outside Kelvin Hall in Glasgow, Oc-
tober 1971, to honor Piet Hein’s appearance there as a speaker during
an exhibition of modern homes. The superellipse has twice appeared
on Danish postage stamps: In 1970 on a blue two-kroner honoring
Bertel Thorvaldsen and in 1972 on a Christmas seal bearing portraits of
the queen and the prince consort.
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Supereggs, in a variety of sizes and materials, are on sale throughout
the world in stores that specialize in unusual gifts. Small, solid-steel
supereggs are marketed as an “executive’s toy.” The best trick with one
of them is to stand it on end, give it a gentle push, and try to make it
turn one, two, or more somersaults before coming to rest again on one
end. Hollow supereggs, filled with a special chemical, are sold as drink
coolers. Larger supereggs are designed to hold cigarettes. More expen-
sive supereggs, intended solely as art objects, are also available.

Figure 6.6 shows two stamps honoring Piet Hein’s superellipse that
were issued by Denmark. When he died in 1996, Politiken, Denmark’s
leading newspaper, devoted a full page to his obituary. It was a privi-
lege to have known him as a friend.

DANMARK
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Figure 6.6. The superellipse on two Danish stamps

Addendum Il

Piet Hein’s mathematical recreations were the topics of many of
my Scientific American columns, most of which have been reprinted in
books. For his game of Hex, see The Scientific American Book of Math-
ematical Puzzles and Diversions (Simon & Schuster, 1959), chapter 8.
The nim-like game of Tac-Tix, which later became known as Nimbi, is
covered in chapter 15 of the same volume. Piet Hein’s famous Soma
cube was the topic of chapter 6 in The Second Scientific American
Book of Mathematical Puzzles and Diversions (Simon & Schuster, 1961;
University of Chicago Press, 1987) and chapter 3 of Knotted Doughnuts
and Other Mathematical Entertainments (W.H. Freeman, 1986).

In 1972 Hubley Toys, a division of Gabriel Industries, an American
firm, marketed five unusual mechanical puzzles invented by Piet Hein.
They are no longer on the market, but here is how I described them in
my February 1973 Scientific American column:
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1.Nimbi. This is a 12-counter version of Piet Hein’s nim-type game.
The counters are locked-in, sliding pegs on a reversible circular
board so that after a game is played by pushing the pegs down and
turning the board over it is set for another game.

2. Anagog. Here we have a spherical cousin of Piet Hein’s Soma cube. Six
pieces of joined unit spheres are to be formed into a 20-sphere tetra-
hedron or two 10-sphere tetrahedrons or other solid and flat figures.

3. Crux. A solid cross of six projecting arms is so designed that each arm
rotates separately. One of several problems is to bring three spots of
different colors together at each intersection.

4. Twitchit. A dodecahedron has rotating faces and the problem is to
turn them until three different symbols are together at each corner.
5. Bloxbox. W. W. Rouse Ball, discussing the standard 14—15 sliding-
block puzzle in his Mathematical Recreations and Essays, wrote in
1892: “We can conceive also of a similar cubical puzzle, but we could
not work it practically except by sections.” Eighty-one years later,
Piet Hein found an ingenious practical solution. Seven identical unit
cubes are inside a transparent plastic order-2 cube. When the cube is
tilted properly, gravity slides a cube (with a pleasant click) into the
hole. Each cube has three black and three white sides. Problems in-
clude forming an order-2 cube (minus one corner) with all sides one

color, or all sides checkered, or all striped, and so on.

Does the parity principle involved in flat versions apply to the
three-dimensional version? And what are the minimum required
moves to get from one pattern to another? Bloxbox opens a Pandora’s
box of questions.

Scantion International, a Danish management and consulting com-
pany, adopted the superegg as its logo. In 1982 it moved its world head-
quarters to Princeton, NJ, where Scantion-Princeton, as it is called, built
a luxurious hotel and conference center hidden within the 25 acres of
Princeton’s Forrestal Center. An enormous stone superegg stands on the
plaza in front of the hotel. The Schweppes Building, in Stamford, CT, just
south of Exit 25 on the Merritt Parkway, has the shape of a superellipse.

Hermann Zapf designed a typeface whose “bowls” are based on the
superellipse. He called it “Melior” because the curve meliorates be-
tween an ellipse and a rectangle. You’ll find a picture of the upper- and
lower-case letters on page 284 of Douglas Hofstadter’s Metamagical
Themas (Basic Books, 1985), with comments on page 291.
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In 1959 Royal Copenhagen produced a series of small ceramic
plaques in the shape of a superellipse, each with one of Piet Hein’s
Grooks together with one of the author’s drawings to illustrate it. In
1988 Donald Knuth, Stanford University’s distinguished computer sci-
entist, and his wife commissioned David Kindersley’s Workshop in
Cambridge, England, to cut one of their favorite Grooks in slate, using
the superellipse as a boundary (see Figure 6.7).
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Figure 6.7. One of Piet Hein’s Grooks, cut in slate and bounded by a superellipse.
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Chapter 7 Penrose Tiles

At the end of a 1975 Scientific American column on tiling the
plane periodically with congruent convex polygons (reprinted in my
Time Travel and Other Mathematical Bewilderments) I promised a later
column on nonperiodic tiling. This chapter reprints my fulfillment of
that promise—a 1977 column that reported for the first time a remark-
able nonperiodic tiling discovered by Roger Penrose, the noted British
mathematical physicist and cosmologist. First, let me give some defin-
itions and background.

A periodic tiling is one on which you can outline a region that tiles
the plane by translation, that is, by shifting the position of the region
without rotating or reflecting it. M. C. Escher, the Dutch artist, was fa-
mous for his many pictures of periodic tilings with shapes that resem-
ble living things. Figure 7.1 is typical. An adjacent black and white
bird constitute a fundamental region that tiles by translation. Think of
the plane as being covered with transparent paper on which each tile
is outlined. Only if the tiling is periodic can you shift the paper, with-
out rotation, to a new position where all outlines again exactly fit.

An infinity of shapes—for instance the regular hexagon—tile only pe-
riodically. An infinity of other shapes tile both periodically and non-
periodically. A checkerboard is easily converted to a nonperiodic tiling
by identical isosceles right triangles or by quadrilaterals. Simply bisect
each square as shown in Figure 7.2A, left, altering the orientations to
prevent periodicity. It is also easy to tile nonperiodically with domi-
noes.

Isoceles triangles also tile in the radial fashion shown in the center
of Figure 7.2(A). Although the tiling is highly ordered, it is obviously
not periodic. As Michael Goldberg pointed out in a 1955 paper titled
“Central Tessellations,” such a tiling can be sliced in half, and then the
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Figure 7.1. A periodic tessellation by M. C. Escher (1949)
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Figure 7.2. (A) Nonperiodic tiling with congruent shapes. (B) An enneagon (dotted at left)
and a pair of enneagons (right) forming an octagon that tiles periodically.

half planes can be shifted one step or more to make a spiral form of
nonperiodic tiling, as shown in Figure 7.2(A), right. The triangle can be
distorted in an infinity of ways by replacing its two equal sides with
congruent lines, as shown at the left in Figure 7.2(B). If the new sides
have straight edges, the result is a polygon of 5, 7, 9, 11, . . . edges that
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tiles spirally. Figure 7.3 shows a striking pattern obtained in this way
from a nine-sided polygon. It was first found by Heinz Voderberg in a
complicated procedure. Goldberg’s method of obtaining it makes it al-
most trivial.

Figure 7.3. A spiral tiling by Heinz Voderberg

In all known cases of nonperiodic tiling by congruent figures the fig-
ure also tiles periodically. Figure 7.2(B), right, shows how two of the
Voderberg enneagons go together to make an octagon that tiles period-
ically in an obvious way.

Another kind of nonperiodic tiling is obtained by tiles that group to-
gether to form larger replicas of themselves, Solomon W. Golomb calls
them “reptiles.” Figure 7.4 shows how a shape called the “sphinx”
tiles nonperiodically by giving rise to ever larger sphinxes. Again, two
sphinxes (with one sphinx rotated 180 degrees) tile periodically in an
obvious way.

Are there sets of tiles that tile only nonperiodically? By “only” we
mean that neither a single shape or subset nor the entire set tiles peri-
odically but that by using all of them a nonperiodic tiling is possible.
Rotating and reflecting tiles are allowed.

For many decades experts believed no such set exists, but the sup-
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Figure 7.4. Three generations of sphinxes in a nonperiodic tiling

position proved to be untrue. In 1961 Hao Wang became interested in
tiling the plane with sets of unit squares whose edges were colored in
various ways. They are called Wang dominoes, and Wang wrote a
splendid article about them for Scientific American in 1965. Wang’s
problem was to find a procedure for deciding whether any given set of
dominoes will tile by placing them so that abutting edges are the same
color. Rotations and reflections are not allowed. The problem is im-
portant because it relates to decision questions in symbolic logic. Wang
conjectured that any set of tiles which can tile the plane can tile it pe-
riodically and showed that if this is the case, there is a decision proce-
dure for such tiling.

In 1964 Robert Berger, in his thesis for a doctorate in applied math-
ematics from Harvard University, showed that Wang’s conjecture is
false. There is no general procedure. Therefore there is a set of Wang
dominoes that tiles only nonperiodically. Berger constructed such a
set, using more than 20,000 dominoes. Later he found a much smaller
set of 104, and Donald Knuth was able to reduce the number to 92.

It is easy to change such a set of Wang dominoes into polygonal tiles
that tile only nonperiodically. You simply put projections and slots on
the edges to make jigsaw pieces that fit in the manner formerly pre-
scribed by colors. An edge formerly one color fits only another for-
merly the same color, and a similar relation obtains for the other colors.
By allowing such tiles to rotate and reflect Robinson constructed six
tiles (see Figure 7.5) that force nonperiodicity in the sense explained
above. In 1977 Robert Ammann found a different set of six tiles that
also force nonperiodicity. Whether tiles of this square type can be re-
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duced to less than six is not known, though there are strong grounds for
believing six to be the minimum.

Figure 7.5. Raphael M. Robinson’s six tiles that force a nonperiodic tiling

At the University of Oxford, where he is Rouse Ball Professor of
Mathematics, Penrose found small sets of tiles, not of the square type,
that force nonperiodicity. Although most of his work is in relativity the-
ory and quantum mechanics, he continues the active interest in recre-
ational mathematics he shared with his geneticist father, the late L. S.
Penrose. (They are the inventors of the famous “Penrose staircase” that
goes round and round without getting higher; Escher depicted it in his
lithograph “Ascending and Descending.”) In 1973 Penrose found a set
of six tiles that force nonperiodicity. In 1974 he found a way to reduce
them to four. Soon afterward he lowered them to two.

Because the tiles lend themselves to commercial puzzles, Penrose
was reluctant to disclose them until he had applied for patents in the
United Kingdom, the United States, and Japan. The patents are now in
force. I am equally indebted to John Horton Conway for many of the re-
sults of his study of the Penrose tiles.

The shapes of a pair of Penrose tiles can vary, but the most interest-
ing pair have shapes that Conway calls “darts” and “kites.” Figure
7.6{A) shows how they are derived from a rhombus with angles of 72
and 108 degrees. Divide the long diagonal in the familiar golden ratio
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of (1 + V5)/2 = 1.61803398 . . ., then join the point to the obtuse cor-
ners. That is all. Let phi stand for the golden ratio. Each line segment
is either 1 or phi as indicated. The smallest angle is 36 degrees, and the
other angles are multiples of it.

Ace (fool’s kite) Short bow tie Long bow tie
C

Figure 7.6. {(A) Construction of dart and kite. (B) A coloring (black and gray) of dart and
kite to force nonperiodicity. (C) Aces and bow ties that speed constructions.

The rhombus of course tiles periodically, but we are not allowed to
join the pieces in this manner. Forbidden ways of joining sides of equal
length can be enforced by bumps and dents, but there are simpler ways.
For example, we can label the corners H and T (heads and tails) as is
shown in Figure 7.6(B), and then give the rule that in fitting edges only
corners of the same letter may meet. Dots of two colors could be placed
in the corners to aid in conforming to this rule, but a prettier method,
proposed by Conway, is to draw circular arcs of two colors on each tile,
shown in the illustration as black and gray. Each arc cuts the sides as
well as the axis of symmetry in the golden ratio. Our rule is that abut-
ting edges must join arcs of the same color.

To appreciate the full beauty and mystery of Penrose tiling one
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should make at least 100 kites and 60 darts. The pieces need be colored
on one side only. The number of pieces of the two shapes are (like their
areas) in the golden ratio. You might suppose you need mare of the
smaller darts, but it is the other way around. You need 1.618 . . . as
many kites as darts. In an infinite tiling this proportion is exact. The ir-
rationality of the ratio underlies a proof by Penrose that the tiling is
nonperiodic because if it were periodic, the ratio clearly would have to
be rational.

A good plan is to draw as many darts and kites as you can on one
sheet, with a ratio of about five kites to three darts, using a thin line for
the curves. The sheet can be photocopied many times. The curves can
then be colored, say, red and green. Conway has found that it speeds
constructions and keeps patterns stabler if you make many copies of the
three larger shapes as is shown in Figure 7.6(C). As you expand a pat-
tern, you can continually replace darts and kites with aces and bow
ties. Actually an infinity of arbitrarily large pairs of shapes, made up of
darts and kites, will serve for tiling any infinite pattern.

A Penrose pattern is made by starting with darts and kites around one
vertex and then expanding radially. Each time you add a piece to an
edge, you must choose between a dart and a kite. Sometimes the choice
is forced, sometimes it is not. Sometimes either piece fits, but later you
may encounter a contradiction (a spot where no piece can be legally
added) and be forced to go back and make the other choice. It is a good
plan to go around a boundary, placing all the forced pieces first. They
cannot lead to a contradiction. You can then experiment with unforced
pieces. It is always possible to continue forever. The more you play
with the pieces, the more you will become aware of “forcing rules”
that increase efficiency. For example, a dart forces two kites in its con-
cavity, creating the ubiquitous ace.

There are many ways to prove that the number of Penrose tilings is
uncountable, just as the number of points on a line is. These proofs rest
on a surprising phenomenon discovered by Penrose. Conway calls it
“inflation” and “deflation.” Figure 7.7 shows the beginning of inflation.
Imagine that every dart is cut in half and then all short edges of the orig-
inal pieces are glued together. The result: a new tiling (shown in heavy
black lines) by larger darts and kites.

Inflation can be continued to infinity, with each new “generation” of
pieces larger than the last. Note that the second-generation kite, al-
though it is the same size and shape as a first-generation ace, is formed
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Figure 7.7. How a pattern is inflated

differently. For this reason the ace is also called a fool’s kite. It should
never be mistaken for a second-generation kite. Deflation is the same
process carried the other way. On every Penrose tiling we can draw
smaller and smaller generations of darts and kites. This pattern too
goes to infinity, creating a structure that is a fractal.

Conway’s proof of the uncountability of Penrose patterns (Penrose
had earlier proved it in a different way) can be outlined as follows. On
the kite label one side of the axis of symmetry L and the other R (for left
and right). Do the same on the dart, using / and r. Now pick a random
point on the tiling. Record the letter that gives its location on the tile.
Inflate the pattern one step, note the location of the same point in a
second-generation tile and again record the letter. Continuing through
higher inflations, you generate an infinite sequence of symbols that is
a unique labeling of the original pattern seen, so to speak, from the se-
lected point.

Pick another point on the original pattern. The procedure may give
a sequence that starts differently, but it will reach a letter beyond which
it agrees to infinity with the former sequence. If there is no such agree-
ment beyond a certain point, the two sequences label distinct patterns.
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Not all possible sequences of the four symbols can be produced this
way, but those that label different patterns can be shown to correspond
in number with the number of points on a line.

We have omitted the colored curves on our pictures of tilings be-
cause they make it difficult to see the tiles. If you work with colored
tiles, however, you will be struck by the beautiful designs created by
these curves. Penrose and Conway independently proved that when-
ever a curve closes, it has a pentagonal symmetry, and the entire region
within the curve has a fivefold symmetry. At the most a pattern can
have two curves of each color that do not close. In most patterns all
curves close.

Although it is possible to construct Penrose patterns with a high de-
gree of symmetry (an infinity of patterns have bilateral symmetry), most
patterns, like the universe, are a mystifying mixture of order and un-
expected deviations from order. As the patterns expand, they seem to
be always striving to repeat themselves but never quite managing it. G.
K. Chesterton once suggested that an extraterrestrial being, observing
how many features of a human body are duplicated on the left and the
right, would reasonably deduce that we have a heart on each side. The
world, he said, “looks just a little more mathematical and regular than
it is; its exactitude is obvious, but its inexactitude is hidden; its wild-
ness lies in wait,” Everywhere there is a “silent swerving from accuracy
by an inch that is the uncanny element in everything . . . a sort of se-
cret treason in the universe.” The passage is a nice description of Pen-
rose’s planar worlds.

There is something even more surprising about Penrose universes. In
a curious finite sense, given by the “local isomorphism theorem,” all
Penrose patterns are alike. Penrose was able to show that every finite
region in any pattern is contained somewhere inside every other pat-
tern. Moreover, it appears infinitely many times in every pattern.

To understand how crazy this situation is, imagine you are living on
an infinite plane tessellated by one tiling of the uncountable infinity of
Penrose tilings. You can examine your pattern, piece by piece, in ever
expanding areas. No matter how much of it you explore you can never
determine which tiling you are on. It is no help to travel far out and ex-
amine disconnected regions, because all the regions belong to one large
finite region that is exactly duplicated infinitely many times on all pat-
terns. Of course, this is trivially true of any periodic tessellation, but
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Penrose universes are not periodic. They differ from one another in in-
finitely many ways, and yet it is only at the unobtainable limit that one
can be distinguished from another.

Suppose you have explored a circular region of diameter d. Call it the
“town” where you live. Suddenly you are transported to a randomly
chosen parallel Penrose world. How far are you from a circular region
that exactly matches the streets of your home town? Conway answers
with a truly remarkable theorem. The distance from the perimeter of the
home town to the perimeter of the duplicate town is never more than
d times half of the cube of the golden ratio, or 2.11 + times d. (This is
an upper bound, not an average.) If you walk in the right direction,
you need not go more than that distance to find yourself inside an exact
copy of your home town. The theorem also applies to the universe in
which you live. Every large circular pattern (there is an infinity of dif-
ferent ones) can be reached by walking a distance in some direction
that is certainly less than about twice the diameter of the pattern and
more likely about the same distance as the diameter.

The theorem is quite unexpected. Consider an analogous isomor-
phism exhibited by a sequence of unpatterned digits such as pi. If you
pick a finite sequence of 10 digits and then start from a random spot in
pi, you are pretty sure to encounter the same sequence if you move far
enough along pi, but the distance you must go has no known upper
bound, and the expected distance is enormously longer than 10 digits.
The longer the finite sequence is, the farther you can expect to walk to
find it again. On a Penrose pattern you are always very close to a du-
plicate of home.

There are just seven ways that darts and kites will fit around a ver-
tex. Let us consider first, using Conway’s nomenclature, the two ways
with pentagonal symmetry.

The sun (shown in white in Figure 7.8) does not force the placing of
any other piece around it. If you add pieces so that pentagonal sym-
metry is always preserved, however, you will be forced to construct the
beautiful pattern shown. It is uniquely determined to infinity.

The star, shown in white in Figure 7.9, forces the 10 light gray kites
around it. Enlarge this pattern, always preserving the fivefold symmetry,
and you will create another flowery design that is infinite and unique.
The star and sun patterns are the only Penrose universes with perfect
pentagonal symmetry, and there is a lovely sense in which they are
equivalent. Inflate or deflate either of the patterns and you get the other.
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Figure 7.9. The infinite star pattern

The ace is a third way to tile around a vertex. It forces no more
pieces. The deuce, the jack, and the queen are shown in white in Fig-
ure 7.10, surrounded by the tiles they immediately force. As Penrose
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discovered (it was later found independently by Clive Bach), some of
the seven vertex figures force the placing of tiles that are not joined to
the immediately forced region. Plate 1 shows in deep color the central
portion of the king’s “empire.” (The king is the dark gray area.) All the
deep colored tiles are forced by the king. (Two aces, just outside the left

and right borders, are also forced but are not shown.)

Deuce Jack

Figure 7.10. The “empires” of deuce, jack, and queen

This picture of the king’s empire was drawn by a computer program
written by Eric Regener of Concordia University in Montreal. His pro-
gram deflates any Penrose pattern any number of steps. The heavy
black lines show the domain immediately forced by the king. The thin
black lines are a third-generation deflation in which the king and al-
most all of his empire are replicated.

The most extraordinary of all Penrose universes, essential for un-
derstanding the tiles, is the infinite cartwheel pattern, the center of
which is shown in Figure 7.11. The regular decagon at the center, out-
lined in heavy black (each side is a pair of long and short edges), is
what Conway calls a “cartwheel.” Every point on any pattern is inside
a cartwheel exactly like this one. By one-step inflation we see that
every point will be inside a larger cartwheel. Similarly, every point is
inside a cartwheel of every generation, although the wheels need not be
concentric.

Note the 10 light gray spokes that radiate to infinity. Conway calls
them “worms.” They are made of long and short bow ties, the number
of long ones being in the golden ratio to the number of short ones.
Every Penrose universe contains an infinite number of arbitrarily long
worms. Inflate or deflate a worm and you get another worm along the
same axis. Observe that two full worms extend across the central cart-
wheel in the infinite cartwheel pattern. (Inside it they are not gray.) The
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Figure 7.11. The cartwhes] pattern surrounding Batman

remaining spokes are half-infinite worms. Aside from spokes and the
interior of the central cartwheel, the pattern has perfect tenfold sym-
metry. Between any two spokes we see an alternating display of in-
creasingly large portions of the sun and star patterns.

Any spoke of the infinite cartwheel pattern can be turned side to
side (or, what amounts to the same thing, each of its how ties can be ro-
tated end for end), and the spoke will still fit all surrounding tiles ex-
cept for those inside the central cartwheel. There are 10 spokes; thus
there are 21° = 1,024 combinations of states. After eliminating rotations
and reflections, however, there are only 62 distinct combinations. Each
combination leaves inside the cartwheel a region that Conway has
named a “decapod.”

Decapods are made up of 10 identical isosceles triangles with the
shapes of enlarged half darts. The decapods with maximum symmetry
are the buzzsaw and the starfish shown in Figure 7.12. Like a worm,
each triangle can be turned. As before, ignoring rotations and reflec-
tions, we get 62 decapods. Imagine the convex vertexes on the perime-
ter of each decapod to be labeled T and the concave vertexes to be
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labeled H. To continue tiling, these H’s and T’s must be matched to the
heads and tails of the tiles in the usual manner.

Figure 7.12. Three decapods

When the spokes are arranged the way they are in the infinite cart-
wheel pattern shown, a decapod called Batman is formed at the center.
Batman (shown in dark gray) is the only decapod that can legally be
tiled. (No finite region can have more than one legal tiling.) Batman
does not, however, force the infinite cartwheel pattern. It merely allows
it. Indeed, no finite portion of a legal tiling can force an entire pattern,
because the finite portion is contained in every tiling.

Note that the infinite cartwheel pattern is bilaterally symmetrical, its
axis of symmetry going vertically through Batman. Inflate the pattern
and it remains unchanged except for mirror reflection in a line per-
pendicular to the symmetry axis. The five darts in Batman and its two
central kites are the only tiles in any Penrose universe that are not in-
side a region of fivefold symmetry. All other pieces in this pattern or
any other one are in infinitely many regions of fivefold symmetry.

The other 61 decapods are produced inside the central cartwheel by
the other 61 combinations of worm turns in the spokes. All 61 are
“holes” in the following sense. A hole is any finite empty region, sur-
rounded by an infinite tiling, that cannot be legally tiled. You might
suppose each decapod is the center of infinitely many tilings, but here
Penrose’s universes play another joke on us. Surprisingly, 60 decapods
force a unique tiling that differs from the one shown only in the com-
position of the spokes. Only Batman and one other decapod, called
Asterix after a once-popular French cartoon character, do not. Like Bat-
man, Asterix allows an infinite cartwheel pattern, but it also allows pat-
terns of other kinds.

Now for a startling conjecture. Conway believes, although he has not
completed the proof, that every possible hole, of whatever size or
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shape, is equivalent to a decapod hole in the following sense. By rear-
ranging tiles around the hole, taking away or adding a finite number of
pieces if necessary, you can transform every hole into a decapod. If
this is true, any finite number of holes in a pattern can also be reduced
to one decapod. We have only to remove enough tiles to join the holes
into one big hole, then reduce the big hole until an untileable decapod
results.

Think of a decapod as being a solid tile. Except for Batman and As-
terix, each of the 62 decapods is like an imperfection that solidifies a
crystal. It forces a unique infinite cartwheel pattern, spokes and all, that
goes on forever. If Conway’s conjecture holds, any “foreign piece” (Pen-
rose’s term) that forces a unique tiling, no matter how large the piece is,
has an outline that transforms into one of 60 decapod holes.

Kites and darts can be changed to other shapes by the same technique
described earlier for changing isosceles triangles into spiral-tiling poly-
gons. It is the same technique that Escher employed for transforming
polygonal tiles into animal shapes. Figure 7.13 shows how Penrose
changed his darts and kites into chickens that tile only nonperiodi-
cally. Note that although the chickens are asymmetrical, it is never nec-
essary to turn any of them over to tile the plane. Alas, Escher died
before he could know of Penrose’s tiles. How he would have reveled in
their possibilities!

Figure 7.13. Penrose’s nonperiodic chickens
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By dissecting darts and kites into smaller pieces and putting them to-
gether in other ways you can make other pairs of tiles with properties
similar to those of darts and kites. Penrose found an unusually simple
pair: the two rhombuses in the sample pattern of Figure 7.14. All edges
are the same length. The larger piece has angles of 72 and 108 degrees
and the smaller one has angles of 36 and 144 degrees. As before, both
the areas and the number of pieces needed for each type are in the
golden ratio. Tiling patterns inflate and deflate and tile the plane in an
uncountable infinity of nonperiodic ways. The nonperiodicity can be
forced by bumps and dents or by a coloring such as the one suggested
by Penrose and shown in the illustration by the light and dark gray
areas.
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Figure 7.14. A nonperiodic tiling with Roger Penrose’s rhombuses

g \

\

We see how closely the two sets of tiles are related to each other and
to the golden ratio by examining the pentagram in Figure 7.15. This was
the mystic symbol of the ancient Greek Pythagorean brotherhood and
the diagram with which Goethe’s Faust trapped Mephistopheles. The
construction can continue forever, outward and inward, and every line
segment is in the golden ratio to the next smaller one. Note how all four
Penrose tiles are embedded in the diagram. The kite is ABCD, and the
dart is AECB. The rhombuses, although they are not in the proper rel-
ative sizes, are AECD and ABCF. As Conway likes to put it, the two sets
of tiles are based on the same underlying “golden stuff.” Any theorem
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about kites and darts can be translated into a theorem about the Penrose
rhombuses or any other pair of Penrose tiles and vice versa. Conway
prefers to work with darts and kites, but other mathematicians prefer
working with the simpler rhombuses. Robert Ammann has found a be-
wildering variety of other sets of nonperiodic tiles. One set, consisting
of two convex pentagons and a convex hexagon, forces nonperiodicity
without any edge markings. He found several pairs, each a hexagon
with five interior angles of 90 degrees and one of 270 degrees.

Figure 7.15. The Pythagorean E
pentagram

Are there pairs of tiles not related to the golden ratio that force non-
periodicity? Is there a pair of similar tiles that force nonperiodicity? Is
there a pair of convex tiles that will force nonperiodicity without edge
markings?

Of course, the major unsolved problem is whether there is a single
shape that will tile the plane only nonperiodically. Most experts think
not, but no one is anywhere near proving it. It has not even been shown
that if such a tile exists, it must be nonconvex.

Addendum

For much more on Penrose tiles, see Chapter 2 in my Penrose
Tiles to Trapdoor Ciphers (Mathematical Association of America 1989;
paperback, 1997) in which I discuss solid forms of the tiles and their as-
tonishing application to what are called quasicrystals. Until Penrose’s
discovery, crystals based on fivefold symmetry were believed to be im-
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possible to construct. My bibliography gives only a small sampling of
books and papers about quasicrystals that have been published in re-
cent years.

In 1993 John Horton Conway made a significant breakthrough when
he discovered a convex solid called a biprism that tiles space only ape-
riodically. (Aperiodic has replaced nonperiodic as a term for a tile that
tiles only in a nonperiodic way.) A few years earlier Peter Schmitt, at
the University of Vienna, found a nonconvex solid that fills space ape-
riodically, though in a trivial fashion. Conway’s subtler solid is de-
scribed and pictured in Keith Devlin’s The Language of Mathematics
(W. H. Freeman, 1998, pp. 219-20; paperback, 2000). Doris Schatt-
schneider kindly supplied me with the pattern shown in Figure 7.16 for
constructing the Conway solid.

To assemble, score on all interior
lines, then cut around the outline of
the pattern. Tabs labeled u are to be
folded up, those with d are to be
folded down. Two prisms are then
assembled, one on each side of the
common rhombus face.

Figure 7.16. Conway’s biprism. The central thombus (which is inside the model when as-
sembled) has sides of length 2 and short diagonal length V2. The small angle of the
rhombus is arcos(3/4) = 41.4 degrees. Two triangular prisms are built on this common
rhombus face. The diagonal of the prism parallelogram face has length V/(33/4) = 2.87.
When assembled, the vertices of the rhombus that is a common face of the two prisms
are the poles of 2 twofold rotation raxes.

As Devlin explains, Conway’s biprism fills space in layers. Every
layer is periodic, but each adjacent layer must be rotated by an irra-
tional angle that forces aperiodicity. Unfortunately neither of the two
aperiodic solids leads to the construction of a flat tile that covers the
plane aperiodically. Finding such a tile or proving it nonexistent is the
top unsolved problem in tiling theory.

In 1997 Penrose sued England’s Kimberly-Clark Company for putting
his tiling pattern on their quilted toilet paper without his permission.
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See Time, May 5, 1997, page 26, for the story and a picture of the
paper’s pattern. I don’t know the outcome of the lawsuit.

For a long time Penrose tiles were unavailable for purchase. Happily
they are now on the market in a variety of forms that can be obtained
from Kadon Enterprises, 1227 Lorrene Drive, Pasadena, MD 21122.
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Chapter 8 The Wonders
of a Planiverse

Planiversal scientists are not a very
common breed.

—Alexander Keewatin Dewdney

As far as anyone knows the only existing universe is the one
we live in, with its three dimensions of space and one of time. It is not
hard to imagine, as many science-fiction writers have, that intelligent
organisms could live in a four-dimensional space, but two dimensions
offer such limited degrees of freedom that it has long been assumed in-
telligent 2-space life forms could not exist. Two notable attempts have
nonetheless been made to describe such organisms.

In 1884 Edwin Abbott Abbott, a London clergyman, published his
satirical novel Flatland. Unfortunately the book leaves the reader al-
most entirely in the dark about Flatland’s physical laws and the tech-
nology developed by its inhabitants, but the situation was greatly
improved in 1907 when Charles Howard Hinton published An Episode
of Flatland. Although written in a flat style and with cardboard char-
acters, Hinton’s story provided the first glimpses of the possible science
and technology of the two-dimensional world. His eccentric book is,
alas, long out of print, but you can read about it in the chapter “Flat-
lands” in my book The Unexpected Hanging and Other Mathematical
Diversions (Simon & Schuster, 1969).

In “Flatlands” I wrote: “It is amusing to speculate on two-
dimensional physics and the kinds of simple mechanical devices that
would be feasible in a flat world.” This remark caught the attention of
Alexander Keewatin Dewdney, a computer scientist at the University
of Western Ontario. Some of his early speculations on the subject were
set down in 1978 in a university report and in 1979 in “Exploring the
Planiverse,” an article in Journal of Recreational Mathematics (Vol. 12,
No. 1, pp. 16-20; September). Later in 1979 Dewdney also privately
published “Two-dimensional Science and Technology,” a 97-page tour
de force. It is hard to believe, but Dewdney actually lays the ground-
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work for what he calls a planiverse: a possible two-dimensional world.
Complete with its own laws of chemistry, physics, astronomy, and bi-
ology, the planiverse is closely analogous to our own universe (which
he calls the steriverse) and is apparently free of contradictions. I should
add that this remarkable achievement is an amusing hobby for a math-
ematician whose serious contributions have appeared in some 30 pa-
pers in technical journals.

Dewdney’s planiverse resembles Hinton’s in having an earth that he
calls (as Hinton did) Astria. Astria is a dislike planet that rotates in pla-
nar space. The Astrians, walking upright on the rim of the planet, can
distinguish east and west and up and down. Naturally there is no north
or south. The “axis” of Astria is a point at the center of the circular
planet. You can think of such a flat planet as being truly two-
dimensional or you can give it a very slight thickness and imagine it as
moving between two frictionless planes.

As in our world, gravity in a planiverse is a force between objects that
varies directly with the product of their masses, but it varies inversely
with the linear distance between them, not with the square of that dis-
tance. On the assumption that forces such as light and gravity in a
planiverse move in straight lines, it is easy to see that the intensity of
such forces must vary inversely with linear distance. The familiar text-
book figure demonstrating that in our world the intensity of light varies
inversely with the square of distance is shown at the top of Figure 8.1.
The obvious planar analogue is shown at the bottom of the illustra-
tion.

To keep his whimsical project from “degenerating into idle specula-
tion” Dewdney adopts two basic principles. The “principle of similarity”
states that the planiverse must be as much like the steriverse as possi-
ble: a motion not influenced by outside forces follows a straight line,
the flat analogue of a sphere is a circle, and so on. The “principle of
modification” states that in those cases where one is forced to choose
between conflicting hypotheses, each one equally similar to a steriver-
sal theory, the more fundamental one must be chosen and the other
must be modified. To determine which hypothesis is more fundamen-
tal Dewdney relies on the hierarchy in which physics is more funda-
mental than chemistry, chemistry is more fundamental than biology,
and so on.

To illustrate the interplay between levels of theory Dewdney con-
siders the evolution of the planiversal hoist in Figure 8.2. The engineer
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who designed it first gave it arms thinner than those in the illustration,
but when a metallurgist pointed out that planar materials fracture more
easily than their 3-space counterparts, the engineer made the arms
thicker. Later a theoretical chemist, invoking the principles of similar-
ity and modification at a deeper level, calculated that the planiversal
molecular forces are much stronger than had been suspected, and so
the engineer went back to thinner arms.

The principle of similarity leads Dewdney to posit that the planiverse

Figure 8.2.
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is a three-dimensional continuum of space-time containing matter
composed of molecules, atoms, and fundamental particles. Energy is
propagated by waves, and it is quantized. Light exists in all its wave-
lengths and is refracted by planar lenses, making possible planiversal
eyes, planiversal telescopes, and planiversal microscopes. The plani-
verse shares with the steriverse such basic precepts as causality; the
first and second laws of thermodynamics; and laws concerning inertia,
work, friction, magnetism, and elasticity.

Dewdney assumes that his planiverse began with a big bang and is
currently expanding. An elementary calculation based on the inverse-
linear gravity law-shows that regardless of the amount of mass in the
planiverse the expansion must eventually halt, so that a contracting
phase will begin. The Astrian night sky will of course be a semicircle
along which are scattered twinkling points of light. If the stars have
proper motions, they will continually be occulting one another. If As-
tria has a sister planet, it will over a period of time occult every star in
the sky.

We can assume that Astria revolves around a sun and rotates, thereby
creating day and night. In a planiverse, Dewdney discovered, the only
stable orbit that continually retraces the same path is a perfect circle.
Other stable orbits roughly elliptical in shape are possible, but the axis
of the ellipse rotates in such a way that the orbit never exactly closes.
Whether planiversal gravity would allow a moon to have a stable orbit
around Astria remains to be determined. The difficulty is due to the
sun’s gravity, and resolving the question calls for work on the planar
analogue of what our astronomers know as the three-body problem.

Dewdney analyzes in detail the nature of Astrian weather, using
analogies to our seasons, winds, clouds, and rain. An Astrian river
would be indistinguishable from a lake except that it might have faster
currents. One peculiar feature of Astrian geology is that water cannot
flow around a rock as it does on the earth. As a result rainwater steadily
accumulates behind any rock on a slope, tending to push the rock
downhill: the gentler the slope is, the more water accumulates and the
stronger the push is. Dewdney concludes that given periodic rainfall
the Astrian surface would be unusually flat and uniform. Another con-
sequence of the inability of water to move sideways on Astria is that it
would become trapped in pockets within the soil, tending to create
large areas of treacherous quicksand in the hollows of the planet. One
hopes, Dewdney writes, that rainfall is infrequent on Astria. Wind too
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would have much severer effects on Astria than on the earth because
like rain it cannot “go around” objects.

Dewdney devotes many pages to constructing a plausible chemistry
for his planiverse, modeling it as much as possible on three-
dimensional matter and the laws of quantum mechanics. Figure 8.3
shows Dewdney’s periodic table for the first 16 planiversal elements.
Because the first two are so much like their counterparts in our world,
they are called hydrogen and helium. The next 10 have composite
names to suggest the steriversal elements they most resemble; for ex-
ample, lithrogen combines the properties of lithium and nitrogen. The
next four are named after Hinton, Abbott, and the young lovers in Hin-
ton’s novel, Harold Wall and Laura Cartwright.
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NUMBER 2p 3 3p 3d 48 4p...
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Figure 8.3.

In the flat world atoms combine naturally to form molecules, but of
course only bonding that can be diagrammed by a planar graph is al-
lowed. (This result follows by analogy from the fact that intersecting
bonds do not exist in steriversal chemistry.) As in our world, two
asymmetric molecules can be mirror images of each other, so that nei-
ther one can be “turned over” to become identical with the other. There
are striking parallels between planiversal chemistry and the behavior
of steriversal monolayers on crystal surfaces (see ]J. G. Dash, “Two-
dimensional Matter,” Scientific American, May 1973). In our world
molecules can form 230 distinct crystallographic groups, but in the
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planiverse they can form only 17. [ am obliged to pass over Dewdney’s
speculations about the diffusion of molecules, electrical and magnetic
laws, analogues of Maxwell’s equations, and other subjects too techni-
cal to summarize here.

Dewdney assumes that animals on Astria are composed of cells that
cluster to form bones, muscles, and connective tissues similar to those
found in steriversal biology. He has little difficulty showing how these
bones and muscles can be structured to move appendages in such a
way that the animals can crawl, walk, fly, and swim. Indeed, some of
these movements are easier in a planiverse than in our world. For ex-
ample, a steriversal animal with two legs has considerable difficulty
balancing while walking, whereas in the planiverse if an animal has
both legs on the ground, there is no way it can fall over. Moreover, a fly-
ing planiversal animal cannot have wings and does not need them to
fly; if the body of the animal is aerodynamically shaped, it can act as a
wing (since air can go around it only in the plane). The flying animal
could be propelled by a flapping tail.

Calculations also show that Astrian animals probably have much
lower metabolic rates than terrestrial animals because relatively little
heat is lost through the perimeter of their body. Furthermore, animal
bones can be thinner on Astria than they are on the earth, because they
have less weight to support. Of course, no Astrian animal can have an
open tube extending from its mouth to its anus, because if it did, it
would be cut in two.

In the appendix to his book The Structure and Evolution of the Uni-
verse (Harper, 1959) G. J. Whitrow argues that intelligence could not
evolve in 2-space because of the severe restrictions two dimensions
impose on nerve connections. “In three or more dimensions,” he
writes, “any number of [nerve] cells can be connected with [one an-
other] in pairs without intersection of the joins, but in two dimensions
the maximum number of cells for which this is possible is only four.”
Dewdney easily demolishes this argument, pointing out that if nerve
cells are allowed to fire nerve impulses through “crossover points,”
they can form flat networks as complex as any in the steriverse.
Planiversal minds would operate more slowly than steriversal ones,
however, because in the two-dimensional networks the pulses would
encounter more interruptions. (There are comparable results in the the-
ory of two-dimensional automatons.)

Dewdney sketches in detail the anatomy of an Astrian female fish
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with a sac of unfertilized eggs between its two tail muscles. The fish has
an external skeleton, and nourishment is provided by the internal cir-
culation of food vesicles. If a cell is isolated, food enters it through a
membrane that can have only one opening at a time. If the cell is in con-
tact with other cells, as in a tissue, it can have more than one opening
at a time because the surrounding cells are able to keep it intact. We can
of course see every internal organ of the fish or of any other planiver-
sal life form, just as a four-dimensional animal could see all our inter-
nal organs,

Dewdney follows Hinton in depicting his Astrian people schemati-
cally, as triangles with two arms and two legs. Hinton’s Astrians, how-
ever, always face in the same direction: males to the east and females
to the west. In both sexes the arms are on the front side, and there is a
single eye at the top of the triangle, as shown in Figure 8.4. Dewdney’s
Astrians are bilaterally symmetrical, with an arm, a leg, and an eye on
each side, as shown in the illustration’s center. Hence these Astrians,
like terrestrial birds or horses, can see in opposite directions. Natu-
rally the only way for one Astrian to pass another is to crawl or leap
over him. My conception of an Astrian bug-eyed monster is shown at
the right in the illustration. This creature's appendages serve as either
arms or legs, depending on which way it is facing, and its two eyes pro-
vide binocular vision. With only one eye an Astrian would have a
largely one-dimensional visual world, giving him a rather narrow per-
ception of reality. On the other hand, parts of objects in the planiverse
might be distinguished by their color, and an illusion of depth might be
created by the focusing of the lens of the eye.

Figure 8.4.

&
/

On Astria building a house or mowing a lawn requires less work
than it does on the earth because the amount of material involved is
considerably smaller. As Dewdney points out, however, there are still
formidable problems to be dealt with in a two-dimensional world: “As-
suming that the surface of the planet is absolutely essential to support

100 Prang GEOMETRY



life-giving plants and animals, it is clear that very little of the Astrian
surface can be disturbed without inviting the biological destruction of
the planet. For example, here on earth we may build a modest highway
through the middle of several acres of rich farmland and destroy no
more than a small percentage of it. A corresponding highway on Astria
will destroy all the ‘acreage’ it passes over. . . . Similarly, extensive
cities would quickly use up the Astrian countryside. It would seem
that the only alternative for the Astrian technological society is to go
underground.” A typical subterranean house with a living room, two
bedrooms, and a storage room is shown in Figure 8.5. Collapsible chairs
and tables are stored in recesses in the floors to make the rooms easier
to walk through.
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Figure 8.5.

The many simple three-dimensional mechanical elements that have
obvious analogues on Astria include rods, levers, inclined planes,
springs, hinges, ropes, and cables (see Figure 8.6, top). Wheels can be
rolled along the ground, but there is no way to turn them on a fixed
axle. Screws are impossible. Ropes cannot be knotted; but by the same
token, they never tangle. Tubes and pipes must have partitions, to keep
their sides in place, and the partitions have to be opened (but never all
of them at once) to allow anything to pass through. It is remarkable that
in spite of these severe constraints many flat mechanical devices can be
built that will work. A faucet designed by Dewdney is shown in Figure
8.6, bottom. To operate it the handle is lifted. This action pulls the
valve away from the wall of the spout, allowing the water to flow out.
When the handle is released, the spring pushes the valve back.

The device shown in Figure 8.7 serves to open and close a door (or
a wall). Pulling down the lever at the right forces the wedge at the bot-
tom to the left, thereby allowing the door to swing upward (carrying the
wedge and the levers with it) on a hinge at the top. The door is opened
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Figure 8.6.

from the left by pushing up on the other lever. The door can be lowered
from either side and the wedge can be moved back to stabilize the wall
by moving a lever in the appropriate direction. This device and the
faucet are both mechanisms with permanent planiversal hinges: circu-
lar knobs that rotate inside hollows but cannot be removed from them.

Figure 8.8 depicts a planiversal steam engine whose operation par-
allels that of a steriversal engine. Steam under pressure is admitted
into the cylinder of the engine through a sliding valve that forms one
of its walls (top). The steam pressure causes a piston to move to the
right until steam can escape into a reservoir chamber above it. The sub-
sequent loss of pressure allows the compound leaf spring at the right
of the cylinder to drive the piston back to the left (bottom). The sliding
valve is closed as the steam escapes into the reservoir, but as the pis-
ton moves back it reopens, pulled to the right by a spring-loaded arm.

Figure 8.9 depicts Dewdney’s ingenious mechanism for unlocking a
door with a key. This planiversal lock consists of three slotted tumblers
(a) that line up when a key is inserted (b) so that their lower halves
move as a unit when the key is pushed (c). The pushing of the key is
transmitted through a lever arm to the master latch, which pushes
down on a slave latch until the door is free to swing to the right {d). The
bar on the lever arm and the lip on the slave latch make the lock diffi-
cult to pick. Simple and compound leaf springs serve to return all the
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Figure 8.7.

parts of the lock except the lever arm to their original positions when
the door is opened and the key is removed. When the door closes, it
strikes the bar on the lever arm, thereby returning that piece to its orig-
inal position as well. This flat lock could actually be employed in the
steriverse; one simply inserts a key without twisting it.

“It is amusing to think,” writes Dewdney, “that the rather exotic de-
sign pressures created by the planiversal environment could cause us
to think about mechanisms in such a different way that entirely novel
solutions to old problems arise. The resulting designs, if steriversally
practical, are invariably space-saving.”

Thousands of challenging planiversal problems remain unsolved. Is
there a way, Dewdney wonders, to design a two-dimensional windup
motor with flat springs or rubber bands that would store energy? What
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is the most efficient design for a planiversal clock, telephone, book,
typewriter, car, elevator, or computer? Will some machines need a sub-
stitute for the wheel and axle? Will some need electric power?

There is a curious pleasure in trying to invent machines for what
Dewdney calls “a universe both similar to and yet strangely different
from ours.” As he puts it, “from a small number of assumptions many
phenomena seem to unfurl, giving one the sense of a kind of separate
existence of this two-dimensional world. One finds oneself speaking,
willy-nilly, of the planiverse as opposed to a planiverse. . . . [For] those
who engage in it positively, there is a kind of strange enjoyment, like
[that of] an explorer who enters a land where his own perceptions play
a major role in the landscape that greets his eyes.”

Some philosophical aspects of this exploration are not trivial. In con-
structing a planiverse one sees immediately that it cannot be built
without a host of axioms that Leibniz called the “compossible” ele-
ments of any possible world, elements that allow a logically consistent
structure. Yet as Dewdney points out, science in our universe is based
mainly on observations and experiments, and it is not easy to find any
underlying axioms. In constructing a planiverse we have nothing to
observe. We can only perform gedanken experiments (thought experi-
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ments) about what might be observed. “The experimentalist’s loss,”
observes Dewdney, “is the theoretician’s gain.”

A marvelous exhibit could be put on of working models of planiver-
sal machines, cut out of cardboard or sheet metal, and displayed on a
surface that slopes to simulate planiversal gravity. One can also imag-
ine beautiful cardboard exhibits of planiversal landscapes, cities, and
houses. Dewdney has opened up a new game that demands knowledge
of both science and mathematics: the exploration of a vast fantasy
world about which at present almost nothing is known.

It occurs to me that Astrians would be able to play two-dimensional
board games but that such games would be as awkward for them as
three-dimensional board games are for us. I imagine them, then, play-
ing a variety of linear games on the analogue of our 8 x 8 chessboard.
Several games of this type are shown in Figure 8.10. Part (a) shows the
start of a checkers game. Pieces move forward only, one cell at a time,
and jumps are compulsory. The linear game is equivalent to a game of
regular checkers with play confined to the main diagonal of a standard
board. It is easy to see how the second player wins in rational play and
how in misere, or “giveaway,” checkers the first player wins just as
easily. Linear checkers games become progressively harder to analyze
as longer boards are introduced. For example, which player wins stan-
dard linear checkers on the 11-cell board when each player starts with
checkers on the first four cells at his end of the board?

e | <> <> <> A : |

Figure 8.10.
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Part (b) in the illustration shows an amusing Astrian analogue of
chess. On a linear board a bishop is meaningless and a queen is the
same as a rook, so the pieces are limited to kings, knights, and rooks.
The only rule modification needed is that a knight moves two cells in
either direction and can jump an intervening piece of either color. If the
game is played rationally, will either White or Black win or will the
game end in a draw? The question is surprisingly tricky to answer.

Linear go, played on the same board, is by no means trivial. The ver-
sion I shall describe, called pinch, was invented in 1970 by James
Marston Henle, a mathematician at Smith College.

In the game of pinch players take turns placing black and white
stones on the cells of the linear board, and whenever the stones of one
player surround the stones of the other, the surrounded stones are re-
moved. For example, both sets of white stones shown in part (¢) of Fig-
ure 8.10 are surrounded. Pinch is played according to the following two
rules.

Rule 1: No stone can be placed on a cell where it is surrounded un-
less that move serves to surround a set of enemy stones. Hence in the
situation shown in part (d) of the illustration, White cannot play on
cells 1, 3, or 8, but he can play on cell 6 because this move serves to sur-
round cell 5.

Rule 2: A stone cannot be placed on a cell from which a stone was re-
moved on the last play if the purpose of the move is to surround some-
thing. A player must wait at least one turn before making such a move.
For example, in part (e) of the illustration assume that Black plays on
cell 3 and removes the white stones on cells 4 and 5. White cannot play
on cell 4 (to surround cell 3) for his next move, but he may do so for any
later move. He can play on cell 5, however, because even though a
stone was just removed from that cell, the move does not serve to sur-
round anything. This rule is designed to decrease the number of stale-
mates, as is the similar rule in go.

Two-cell pinch is a trivial win for the second player. The three- and
four-cell games are easy wins for the first player if he takes the center
in the three-cell game and one of the two central cells in the four-cell
one. The five-cell game is won by the second player and the six- and
seven-cell games are won by the first player. The eight-cell game jumps
to such a high level of complexity that it becomes very exciting to play.
Fortunes often change rapidly, and in most situations the winning
player has only one winning move.
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Addendum

My column on the planiverse generated enormous interest.
Dewdney received some thousand letters offering suggestions about
flatland science and technology. In 1979 he privately printed Two-
Dimensional Science and Technology, a monograph discussing these
new results. Two years later he edited another monograph, A Sympo-
sium of Two-Dimensional Science and Technology. It contained papers
by noted scientists, mathematicians, and laymen, grouped under the
categories of physics, chemistry, astronomy, biology, and technology.
Newsweek covered these monographs in a two-page article, “Life in
Two Dimensions” (January 18, 1980), and a similar article, “Scientific
Dreamers’ Worldwide Cult,” ran in Canada’s Maclean’s magazine (Jan-
uary 11, 1982). Omni (March 1983), in an article on “Flatland Redux,”
included a photograph of Dewdney shaking hands with an Astrian.

In 1984 Dewdney pulled it all together in a marvelous work, half
nonfiction and half fantasy, titled The Planiverse and published by Po-
seidon Press, an imprint of Simon & Schuster. That same year he took
over the mathematics column in Scientific American, shifting its em-
phasis to computer recreations. Several collections of his columns have
been published by W. H. Freeman: The Armchair Universe (1987), The
Turing Omnibus (1989), and The Magic Machine (1990).

An active branch of physics is now devoted to planar phenomena. It
involves research on the properties of surfaces covered by a film one
molecule thick, and a variety of two-dimensional electrostatic and elec-
tronic effects. Exploring possible flatlands also relates to a philosoph-
ical fad called “possible worlds.” Extreme proponents of this
movement actually argue that if a universe is logically possible—that
is, free of logical contradictions—it is just as “real” as the universe in
which we flourish.

In Childhood’s End Arthur Clarke describes a giant planet where in-
tense gravity has forced life to evolve almost flat forms with a vertical
thickness of one centimeter.

The following letter from J. Richard Gott III, an astrophysicist at
Princeton University, was published in Scientific American (October
1980):

I was interested in Martin Gardner’s article on the physics of Flatland,
because for some years I have given the students in my general relativ-
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ity class the problem of deriving the theory of general relativity for Flat-
land. The results are surprising. One does not obtain the Flatland ana-
logue of Newtonian theory (masses with gravitational fields falling off
like 1/1) as the weak-field limit. General relativity in Flatland predicts no
gravitational waves and no action at a distance. A planet in Flatland
would produce no gravitational effects beyond its own radius. In our
four-dimensional space-time the energy momentum tensor has 10 in-
dependent components, whereas the Riemann curvature tensor has 20
independent components. Thus it is possible to find solutions to the
vacuum field equations G, = 0 (where all components of the energy
momentum tensor are zero) that have a nonzero curvature. Black-hole
solutions and the gravitational-field solution external to a planet are ex-
amples. This allows gravitational waves and action at a distance. Flat-
land has a three-dimensional space—time where the energy momentum
tensor has six independent components and the Riemann curvature ten-
sor also has only six independent components. In the vacuum where all
components of the energy momentum tensor are zero all the compo-
nents of the Riemann curvature tensor must also be zero. No action at a
distance or gravity waves are allowed.

Electromagnetism in Flatland, on the other hand, behaves just as one
would expect. The electromagnetic field tensor in four-dimensional
space—time has six independent components that can be expressed as
vector E and B fields with three components each. The electromagnetic
field tensor in a three-dimensional space—time (Flatland) has three in-
dependent components: a vector E field with two components and a
scalar B field. Electromagnetic radiation exists, and charges have electric
fields that fall off like 1/r.

Two more letters, published in the same issue, follow. John S. Harris,
of Brigham Young University’s English Department, wrote:

As I examined Alexander Keewatin Dewdney’s planiversal devices in
Martin Gardner’s article on science and technology in a two-dimensional
universe, I was struck with the similarity of the mechanisms to the lock-
work of the Mauser military pistol of 1895. This remarkable automatic
pistol (which had many later variants) had no pivot pins or screws in its
functional parts. Its entire operation was through sliding cam surfaces
and two-dimensional sockets (called hinges by Dewdney). Indeed, the
lockwork of a great many firearms, particularly those of the 19th century,
follows essentially planiversal principles. For examples see the cutaway
drawings in Book of Pistols and Revolvers by W.H.B. Smith.

Gardner suggests an exhibit of machines cut from cardboard, and that
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is exactly how the firearms genius John Browning worked. He would
sketch the parts of a gun on paper or cardboard, cut out the individual
parts with scissors (he often carried a small pair in his vest pocket), and
then would say to his brother Ed, “Make me a part like this.” Ed would
ask, “How thick, John?” John would show a dimension with his thumb
and forefinger, and Ed would measure the distance with calipers and
make the part. The result is that virtually every part of the 100 or so
Browning designs is essentially a two-dimensional shape with an added
thickness.

This planiversality of Browning designs is the reason for the obsoles-
cence of most of them. Dewdney says in his enthusiasm for the plani-
verse that “such devices are invariably space-saving.” They are also
expensive to manufacture. The Browning designs had to be manufac-
tured by profiling machines: cam-following vertical milling machines. In
cost of manufacture such designs cannot compete with designs that can
be produced by automatic screw-cutting lathes, by broaching machines,
by stamping, or by investment casting. Thus although the Browning de-
signs have a marvelous aesthetic appeal, and although they function
with delightful smoothness, they have nearly all gone out of produc-
tion. They simply got too expensive to make.

Stefan Drobot, a mathematician at Ohio State University, had this to
say:

In Martin Gardner’s article he and the authors he quotes seem to have
overlooked the following aspect of a “planiverse”: any communication
by means of a wave process, acoustic or electromagnetic, would in such
a universe be impossible. This is a consequence of the Huygens princi-
ple, which expresses a mathematical property of the (fundamental) so-
lutions of the wave equation. More specifically, a sharp impulse-type
signal (represented by a “delta function”) originating from some point is
propagated in a space of three spatial dimensions in a manner essentially
different from that in which it is propagated in a space of two spatial di-
mensions. In three-dimensional space the signal is propagated as a
sharp-edged spherical wave without any trail. This property makes it
possible to communicate by a wave process because two signals follow-
ing each other in a short time can be distinguished.

In a space with two spatial dimensions, on the other hand, the funda-
mental solution of the wave equation represents a wave that, although it
too has a sharp edge, has a trail of theoretically infinite length. An ob-
server at a fixed distance from the source of the signal would perceive the
oncoming front (sound, light, etc.) and then would keep perceiving it, al-

110 PraNE GEOMETRY



though the intensity would decrease in time. This fact would make com-
munication by any wave process impossible because it would not allow
two signals following each other to be distinguished. More practically
such communication would take much more time. This letter could not
be read in the planiverse, although it is (almost) two-dimensional.

My linear checkers and chess prompted many interesting letters. Abe
Schwartz assured me that on the 11-cell checker field Black also wins if
the game is give-away. I. Richard Lapidus suggested modifying linear
chess by interchanging knight and rook (the game is a draw), by adding
more cells, by adding pawns that capture by moving forward one space,
or by combinations of the three modifications. If the board is long
enough, he suggested duplicating the pieces—two knights, two rooks—
and adding several pawns, allowing a pawn a two-cell start option as in
standard chess. Peter Stampolis proposed sustituting for the knight two
pieces called “kops” because they combine features of knight and bishop
moves. One kop moves only on white cells, the other moves on black.

Of course many other board games lend themselves to linear forms,
for example, Reversi (also called Othello), or John Conway’s Phutball,
described in the two-volume Winning Ways written by Elwyn
Berlekamp, Richard Guy, and John Conway.

Burr puzzles are wooden take-apart puzzles often referred to as Chi-
nese puzzles. Dewdney’s Scientific American column (October 1985)
describes a clever planar version of a burr puzzle designed by Jeffrey
Carter. It comes apart only after a proper sequence of pushes and pulls.

A graduate student in physics, whose name I failed to record, had a
letter in Science News, December 8, 1984, protesting the notion that re-
search in planar physics was important because it led to better under-
standing of three-dimensional physics. On the contrary, he wrote,
planar research is of great interest for its own sake. He cited the quan-
tum Hall effect and the whole field of microelectronics which is based
on two-dimensional research and has many technological applications.

Answers

In 11-cell linear checkers (beginning with Black on cells 1, 2, 3,
and 4 and White on cells 8, 9, 10, and 11) the first two moves are forced:
Black to 5 and White to 7. To avoid losing, Black then goes to 4, and
White must respond by moving to 8. Black is then forced to 3 and
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White to 9. At this point Black loses with a move to 2 but wins with a
move to 6. In the latter case White jumps to 5, and then Black jumps to
6 for an easy end-game victory.

On the eight-cell linear chessboard White can win in at most six
moves. Of White’s four opening moves, RxR is an instant stalemate and
the shortest possible game. R-5 is a quick loss for White if Black plays
RxR. Here White must respond with N-4, and then Black mates on his
second move with RxN. This game is one of the two “fool’s mates,” or
shortest possible wins. The R-4 opening allows Black to mate on his
second or third move if he responds with N-5.

White’s only winning opening is N-4. Here Black has three possible
replies:

1.RxN. In this case White wins in two moves with RxR.

2.R-5. White wins with K-2. If Black plays R-6, White mates with NxR.
If Black takes the knight, White takes the rook, Black moves N-5, and
White mates by taking Black’s knight.

3.N-5. This move delays Black’s defeat the longest. In order to win
White must check with NxR, forcing Black’s king to 7. White moves
his rook to 4. If Black plays KxN, White’s king goes to 2, Black’s K-7
is forced, and White’s RxN wins. If Black plays N-3 (check), White
moves the king to 2. Black can move only the knight. If he plays N-
1, White mates with N-8. If Black plays N-5, White’s N-8 forces
Black’s KxN, and then White mates with RxN.

The first player also has the win in eight-cell pinch (linear go) by
opening on the second cell from an end, a move that also wins the six-
and seven-cell games. Assume that the first player plays on cell 2. His
unique winning responses to his opponent’s plays on 3, 4, 5, 6, 7, and
8 are respectively 5, 7, 7, 7, 5, and 6. I leave the rest of the game to the
reader. It is not known whether there are other winning opening moves.
James Henle, the inventor of pinch, assures me that the second player
wins the nine-cell game. He has not tried to analyze boards with more
than nine cells.
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Chapter 9 The Helix

Rosy’s instant acceptance of our model at
first amazed me. I had feared that her sharp,
stubborn mind, caught in her self-made an-
tihelical trap, might dig up irrelevant results
that would foster uncertainty about the cor-
rectness of the double helix. Nonetheless,
like almost everyone else, she saw the ap-
peal of the base pairs and accepted the fact
that the structure was too pretty not to be
true. —James D. Watson, The Double Helix

A straight sword will fit snugly into a straight scabbard. The
same is true of a sword that curves in the arc of a circle: it can be
plunged smoothly into a scabbard of the same curvature. Mathemati-
cians sometimes describe this property of straight lines and circles by
calling them “self-congruent” curves; any segment of such a curve can
be slid along the curve, from one end to the other, and it will always
“fit.”

Is it possible to design a sword and its scabbard that are not either
straight or curved in a circular arc? Most people, after giving this care-
ful consideration, will answer no, but they are wrong. There is a third
curve that is self-congruent: the circular helix. This is a curve that coils
around a circular cylinder in such a way that it crosses the “elements”
of the cylinder at a constant angle. Figure 9.1 makes this clear. The el-
ements are the vertical lines that parallel the cylinder’s axis; A is the
constant angle with which the helix crosses every element. Because of
the constant curvature of the helix a helical sword would screw its
way easily in and out of a helical scabbard.

Actually the straight line and the circle can be regarded as limiting
cases of the circular helix. Compress the curve until the coils are very
close together and you get a tightly wound helix resembling a Slinky
toy; if angle A increases to 90 degrees, the helix collapses into a circle.
On the other hand, if you stretch the helix until angle A becomes zero,
the helix is transformed into a straight line. If parallel rays of light
shine perpendicularly on a wall, a circular helix held before the wall
with its axis parallel to the rays will cast on the wall a shadow that is

117



P
///r

Figure 9.1. Circular helix on cylinder

a single circle. If the helix is held at right angles to the rays, the shadow
is a sine curve. Other kinds of projections produce the cycloid and
other familiar curves.

Every helix, circular or otherwise, is an asymmetric space curve that
differs from its mirror image. We shall use the term “right-handed” for
the helix that coils clockwise as it “goes away,” in the manner of an or-
dinary wood screw or a corkscrew. Hold such a corkscrew up to a mir-
ror and you will see that its reflection, in the words of Lewis Carroll’s
Alice, “goes the other way.” The reflection is a left-handed corkscrew.
Such a corkscrew actually can be bought as a practical joke. So unac-
customed are we to left-handed screw threads that a victim may strug-
gle for several minutes with such a corkscrew before he realizes that he
has to turn it counterclockwise to make it work.

Aside from screws, bolts, and nuts, which are (except for special
purposes) standardized as right-handed helices, most manmade helical
structures come in both right and left forms: candy canes, circular stair-
cases, rope and cable made of twisted strands, and so on. The same
variations in handedness are found in conical helices (curves that spi-
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ral around cones), including bedsprings and spiral ramps such as the
inverted conical ramp in Frank Lloyd Wright’s Guggenheim Museum in
New York City.

Not so in nature! Helical structures abound in living forms, from the
simplest virus to parts of the human body, and in almost every case the
genetic code carries information that tells each helix precisely “which
way to go.” The genetic code itself is carried by a double-stranded he-
lical molecule of DNA, its two right-handed helices twining around
each other like the two snakes on the staff of Hermes. Moreover, since
Linus Pauling’s pioneer work on the helical structure of protein mole-
cules, there has been increasing evidence that every giant protein mol-
ecule found in nature has a “backbone” that coils in a right-handed
helix. In both nucleic acid and protein, the molecule’s backbone is a
chain made up of units each one of which is an asymmetric structure
of the same handedness. Each unit, so to speak, gives an additional
twist to the chain, in the same direction, like the steps of a helical stair-
case.

Larger helical structures in animals that have bilateral symmetry usu-
ally come in mirror-image pairs, one on each side of the body. The
horns of rams, goats, antelopes, and other mammals are spectacular
examples (see Figure 9.2). The cochlea of the human ear is a conical
helix that is left-handed in the left ear and right-handed in the right. A
curious exception is the tooth of the narwhal, a small whale that flour-
ishes in arctic waters. This whimsical creature is born with two teeth
in its upper jaw. Both teeth remain permanently buried in the jaw of the
female narwhal, and so does the right tooth of the male. But the male’s
left tooth grows straight forward, like a javelin, to the ridiculous length
of eight or nine feet—more than half the animal’s length from snout to
taill Around this giant tooth are helical grooves that spiral forward in
a counterclockwise direction (see Figure 9.3). On the rare occasions
when both teeth grow into tusks, one would expect the right tooth to
spiral clockwise. But no, it too is always left-handed. Zoologists dis-
agree on how this could come about. Sir D’ Arcy Thompson, in his book
On Growth and Form, defends his own theory that the whale swims
with a slight screw motion to the right. The inertia of its huge tusk
would produce a torque at the base of the tooth that might cause it to
rotate counterclockwise as it grows (see J. T. Bonner, “The Horn of the
Unicorn,” Scientific American, March 1951).

Whenever a single helix is prominent in the structure of any living
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Figure 9.3. Helical grooves of the narwhal tooth are always left-handed.

plant or animal, the species usually confines itself to a helix of a spe-
cific handedness. This is true of countless forms of helical bacteria as
well as of the spermatozoa of all higher animals. The human umbilical
cord is a triple helix of one vein and two arteries that invariably coil to
the left. The most striking instances are provided by the conical helices
of the shells of snails and other mollusks. Not all spiral shells have a
handedness. The chambered nautilus, for instance, coils on one plane;
like a spiral nebula, it can be sliced into identical left and right halves.
But there are thousands of beautiful molluscan shells that are either
left- or right-handed (see Figure 9.4). Some species are always left-
handed and some are always right-handed. Some go one way in one lo-
cality and the other way in another. Occasional “sports” that twist the
wrong way are prized by shell collectors.

A puzzling type of helical fossil known as the devil’s corkscrew (Dae-
monelix) is found in Nebraska and Wyoming. These huge spirals, six
feet or more in length, are sometimes right-handed and sometimes left-
handed. Geologists argued for decades over whether they are fossils of
extinct plants or helical burrows made by ancestors of the beaver. The
beaver theory finally prevailed after remains of small prehistoric
beavers were found inside some of the corkscrews.

In the plant world helices are common in the structure of stalks,
stems, tendrils, seeds, flowers, cones, leaves—even in the spiral
arrangement of leaves and branches around a stalk. The number of
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Figure 9.4. Three molluscan shells that are right-handed conical helices

turns made along a helical path, as you move from one leaf to the leaf
directly above it, tends to be a number in the familiar Fibonacci series:
1,2, 3,5,8,13,... (Each number is the sum of the preceding two num-
bers.) A large literature in the field known as “phyllotaxy” (leaf arrange-
ment) deals with the surprising appearance of the Fibonacci numbers
in botanical phenomena of this sort.

The helical stalks of climbing plants are usually right-handed, but
thousands of species of twining plants go the other way. The honey-
suckle, for instance, is always left-handed; the bindweed (a family that
includes the morning glory) is always right-handed. When the two
plants tangle with each other, the result is a passionate, violent embrace
that has long fascinated English poets. “The blue bindweed,” wrote
Ben Jonson in 1617, “doth itself enfold with honeysuckle.” And Shake-
speare, in A Midsummer Night’s Dream, has Queen Titania speak of her
intention to embrace Bottom the Weaver (who has been transformed
into a donkey) by saying: “Sleep thou, and I will wind thee in my
arms./ . . . So doth the woodbine the sweet honeysuckle/Gently en-
twist.” In Shakespeare’s day “woodbine” was a common term for
bindweed. Because it later came to be applied exclusively to honey-
suckle many commentators reduced the passage to absurdity by sup-
posing that Titania was speaking of honeysuckle twined with
honeysuckle. Awareness of the opposite handedness of bindweed and
honeysuckle heightens, of course, the meaning of Titania’s metaphor.

The Helix 121



More recently, a charming song called “Misalliance,” celebrating the
love of the honeysuckle for the bindweed, has been written by the
British poet and entertainer Michael Flanders and set to music by his
friend Donald Swann. With Flanders’ kind permission the entire song
is reproduced on the opposite page. (Readers who would like to learn
the tune can hear it sung by Flanders and Swann on the Angel record-
ing of At the Drop of a Hat, their hilarious two-man revue that made
such a hit in London and New York.) Note that Flanders’ honeysuckle
is right-handed and his bindweed, left-handed. It is a matter of con-
vention whether a given helix is called left- or right-handed. If you
look at the point of a right-handed wood screw, you will see the helix
moving toward you counterclockwise, so that it can just as legitimately
be called left-handed. Flanders simply adopts the convention oppo-
site to the one taken here.

The entwining of two circular helices of opposite handedness is also
involved in a remarkable optical-illusion toy that was sold in this coun-
try in the 1930s. It is easily made by twisting together a portion of two
wire coils of opposite handedness (see Figure 9.6). The wires must be
soldered to each other at several points to make a rigid structure. The
illusion is produced by pinching the wire between thumb and forefin-
ger of each hand at the left and right edges of the central overlap. When
the hands are moved apart, the fingers and thumbs slide along the wire,
causing it to rotate and create a barber’s-pole illusion of opposite hand-
edness on each side. This is continuously repeated. The wire seems to
be coming miraculously out of the inexhaustible meshed portion. Since
the neutrino and antineutrino are now known to travel with screw mo-
tions of opposite handedness, I like to think of this toy as demonstrat-
ing. the endless production of neutrinos and their mirror-image
particles.

On the science toy market at the time I write (2000) is a device called
“Spinfinity.” It consists of two aluminum wire helices that are inter-
twined. When rotated you see the two helices moving in opposite di-
rections.

The helical character of the neutrino’s path results from the fusion of
its forward motion (at the speed of light) with its “spin.” Helical paths
of a similar sort are traced by many inanimate objects and living things:
a point on the propeller of a moving ship or plane, a squirrel running
up or down a tree, Mexican free-tailed bats gyrating counterclockwise
when they emerge from caves at Carlsbad, NM. Conically helical paths
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2 — L & MISALLIANCE N
vl . » The fragrant Honeysuckle spirals clockwise to the sun W
Y = And many other creepers do the same. N | ¥
‘\‘*\\x\ But some climb counterclockwise, the Bindweed does, for one, v |«/ ,
B/AN e Or Convolvulus, to give her proper name. { // ;/
/,, Rooted on either side a door, one of each species grew, 4y

And raced toward the window ledge above. i
Each corkscrewed to the lintel in the only way it knew, Y
Where they stopped, touched tendrils, smiled and fell in love.

Said the right-handed Honeysuckle

To the left-handed Bindweed:

“Oh, let us get married,

If our parents don’t mind. We’d

Be loving and inseparable.
Inextricably entwined, we’d

Live happily ever after,”

Said the Honeysuckle to the Bindweed.

To the Honeysuckle’s parents it came as a shock.
“The Bindweeds,” they cried, “are inferior stock.
They’re uncultivated, of breeding bereft.

We twine to the right and they twine to the left!”

Said the countercockwise Bindweed
To the clockwise Honeysuckle:

“We’d better start saving—

&< Many a mickle maks a muckle—

Then run away for a honeymoon

And hope that our luck’ll

Take a turn for the better,”

Said the Bindweed to the Honeysuckle.

A bee who was passing remarked to them then:
“I've said it before, and I'll say it again:
Consider your offshoots, if offshoots there be.
They’ll never receive any blessing from me.”

Poor little sucker, how will it learn

When it is climbing, which way to turn?
Right—left—what a disgrace!

Or it may go straight up and fall flat on its face!

Said the right-hand-thread Honeysuckle P
To the left-hand-thread Bindweed: 4
“It seems that against us all fate has combined.
Oh my darling, oh my darling,

Oh my darling Columbine

Thou art lost and gone forever,

We shall never intertwine.”

Together they found them the very next day

They had pulled up their roots and just shriveled away, 3\ \f
Deprived of that freedom for which we must fight, %“‘3&
To veer to the left or to veer to the right! v

MicHAEL FLANDERS




Figure 9.6. Helical toy that suggests the production of neutrinos

are taken by whirlpools, water going down a drain, tornadoes, and
thousands of other natural phenomena.

Writers have found helical motions useful on the metaphorical level.
The progress of science is often likened to an inverted conical spiral:
the circles growing larger and larger as science probes further into the
unknown, always building upward on the circles of the past. The same
spiral, a dark, bottomless whirlpool into which an individual or hu-
manity is sliding, has also been used as a symbol of pessimism and de-
spair. This is the metaphor that closes Norman Mailer’s book
Advertisements for Myself. “Am I already on the way out?” he asks.
Time for Mailer is a conical helix of water flushing down a cosmic
drain, spinning him off “into the spiral of star-lit empty waters.”

And now for a simple helix puzzle. A rotating barber’s pole consists
of a cylinder on which red, white, and blue helices are painted. The
cylinder is four feet high. The red stripe cuts the cylinder’s elements
(vertical lines) with a constant angle of 60 degrees. How long is the red
stripe?

The problem may seem to lack sufficient information for determin-
ing the stripe’s length; actually it is absurdly easy when approached

properly.

Addendum

In my Second Scientific American Book of Mathematical Puz-
zles and Diversions (1961) I introduced the following brainteaser in-
volving two helices of the same handedness:

THE TwipDLED BoLTs

Two identical bolts are placed together so that their helical grooves in-
termesh (Figure 9.7). If you move the bolts around each other as you
would twiddle your thumbs, holding each bolt firmly by the head so that
it does not rotate and twiddling them in the direction shown, will the
heads (a) move inward, (b) move outward, or (c) remain the same dis-
tance from each other? The problem should be solved without resorting
to actual test.
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Figure 9.7. Twiddled bolts

Two similar helices are also involved in a curious patent by someone
named Socrates Scholfield of Providence, RI. I cannot now recall how
I came across it. A picture of the device, from the patent’s first page, is
shown in Figure 9.8. It is to be used in classrooms for demonstrating the
nature of God. One helix represents good; the other, evil. As you can
see, they are holessly intertwined. The use of the device is given in de-
tail in five pages of the patent.

I know nothing about Mr. Scholfield except that in 1907 he pub-
lished a 59-page booklet titled The Doctrine of Mechanicalism. I tried
to check it in the New York Public Library many years ago, but the li-
brary has lost its copy. I once showed Scholfield’s patent to the philoso-
pher Charles Hartshorne, one of my teachers at the University of
Chicago. I expected him to find the device amusing. To my surprise,
Hartshorne solemnly read the patent’s pages and pronounced them ad-
mirable.

The Slinky toy furnishes an interesting problem in physics. If you
stand on a chair, holding one end of Slinky so that the helix hangs
straight down, then drop the toy, what happens? Believe it or not, the
lower end of Slinky doesn’t move until the helix has come together,
then it falls with the expected rate. Throughout the experiment the
toy’s center of gravity descends with the usual acceleration.

Answers

If a right triangle is wrapped around any type of cylinder, the
base of the triangle going around the base of the cylinder, the triangle’s
hypotenuse will trace a helix on the cylinder. Think of the red stripe of
the barber’s pole as the hypotenuse of a right triangle, then “unwrap”
the triangle from the cylinder. The triangle will have angles of 30 and
60 degrees. The hypotenuse of such a triangle must be twice the alti-
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tude. (This is easily seen if you place two such triangles together to
form an equilateral triangle.) In this case the altitude is four feet, so that
the hypotenuse (red stripe]) is eight feet.

The interesting part of this problem is that the length of the stripe is
independent not only of the diameter of the cylinder but also of the
shape of its cross section. The cross section can be an irregular closed
curve of any shape whatever; the answer to the problem remains the
same.

The twiddled bolts move neither inward nor outward. They behave
like someone walking up a down escalator, always staying in the same
place.
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Chapter 10 Packing Spheres

Spheres of identical size can be piled and packed together in
many different ways, some of which have fascinating recreational fea-
tures. These features can be understood without models, but if the
reader can obtain a supply of 30 or more spheres, he will find them an
excellent aid to understanding. Ping-pong balls are perhaps the best for
this purpose. They can be coated with rubber cement, allowed to dry,
then stuck together to make rigid models.

First let us make a brief two-dimensional foray. If we arrange spheres
in square formation (see Figure 10.1, right), the number of balls in-
volved will of course be a square number. If we form a triangle (see Fig-
ure 10.1, left), the number of balls is a triangular number. These are the
simplest examples of what the ancients called “figurate numbers.”
They were intensively studied by early mathematicians (a famous trea-
tise on them was written by Blaise Pascal), and although little attention
is paid them today, they still provide intuitive insights into many as-
pects of elementary number theory.

NI\ A A

Figure 10.1. The basis of triangular numbers (left) and of square numbers (right)
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For example, it takes only a glance at Figure 10.1, left, to see that the
sum of any number of consecutive positive integers, beginning with 1,
is a triangular number. A glance at Figure 10.1, right, shows that square
numbers are formed by the addition of consecutive odd integers, be-
ginning with 1. Figure 10.2 makes immediately evident an interesting
theorem known to the ancient Pythagoreans: Every square number is
the sum of two consecutive triangular numbers. The algebraic proof is
simple. A triangular number with n units to a side is the sum of 1 + 2
+3 +...n, and can be expressed by the formula Jn(n + 1). The pre-
ceding triangular number has the formula 1n (n - 1). If we add the two
formulas and simplify, the result is n?. Are there numbers that are si-
multaneously square and triangular? Yes, there are infinitely many of
them. The smallest (not counting 1, which belongs to any figurate se-
ries) is 36; then the series continues: 1225, 41616, 1413721, 48024900,
.. .. It is not so easy to devise a formula for the nth term of this series.
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Figure 10.2. Square and triangular numbers are related.

Three-dimensional analogies of the plane-figurate numbers are ob-
tained by piling spheres in pyramids. Three-sided pyramids, the base
and sides of which are equilateral triangles, are models of what are
called the tetrahedral numbers. They form the series 1, 4, 10, 20, 35, 586,
84, ...and can be represented by the formula %n(n +1)(n + 2), where n
is the number of balls along an edge. Four-sided pyramids, with square
bases and equilateral triangles for sides (i.e., half of a regular octahe-
dron), represent the (square) pyramidal numbers 1, 5, 14, 30, 55, 91,
140, . . .. They have the formula %n(n +1)(2n + 1). Just as a square can
be divided by a straight line into two consecutive triangles, so can a
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square pyramid be divided by a plane into two consecutive tetrahedral
pyramids. (If you build a model of a pyramidal number, the bottom
layer has to be kept from rolling apart. This can be done by placing
rulers or other strips of wood along the sides.}

Many old puzzles exploit the properties of these two types of pyra-
midal number. For example, in making a courthouse monument out of
cannon balls, what is the smallest number of balls that can first be
arranged on the ground as a square, then piled in a square pyramid?
The surprising thing about the answer (4,900} is that it is the only an-
swer. (The proof of this is difficult and was not achieved until 1918.)
Another example: A grocer is displaying oranges in two tetrahedral
pyramids. By putting together the oranges in both pyramids he is able
to make one large tetrahedral pyramid. What is the smallest number of
oranges he can have? If the two small pyramids are the same size, the
unique answer is 20. If they are different sizes, what is the answer?

Imagine now that we have a very large box, say a crate for a piano,
which we wish to fill with as many golf balls as we can. What packing
procedure should we use? First we form a layer packed as shown by the
unshaded circles with light gray circumferences in Figure 10.3. The
second layer is formed by placing balls in alternate hollows as indi-
cated by the shaded circles with black rims. In making the third layer
we have a choice of two different procedures:

Figure 10.3. In hexagonal close-packing, balls go in hollows labeled A; in cubic, in hol-
lows labeled B.
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1. We place each ball on a hollow A that is directly above a ball in the
first layer. If we continue in this way, placing the balls of each layer
directly over those in the next layer but one, we produce a structure
called hexagonal close-packing.

2. We place each ball in a hollow B, directly above a hollow in the first
layer. If we follow this procedure for each layer (each ball will be di-
rectly above a ball in the third layer beneath it), the result is known
as cubic close-packing. Both the square and the tetrahedral pyramids
have a packing structure of this type, though on a square pyramid the
layers run parallel to the sides rather than to the base.

In forming the layers of a close-packing we can switch back and forth
whenever we please from hexagonal to cubic packing to produce vari-
ous hybrid forms of close-packing. In all these forms—cubic, hexago-
nal, and hybrid—each ball touches 12 other balls that surround it, and
the density of the packing (the ratio of the volume of the spheres to the
total space) is ©/\/18 = .74048 +, or almost 75 percent.

Is this the largest density obtainable? No denser packing is known,
but in an article published in 1958 (on the relation of close-packing to
froth) H.S.M. Coxeter of the University of Toronto made the startling
suggestion that perhaps the densest packing has not yet been found. It
is true that no more than 12 balls can be placed so that all of them
touch a central sphere, but a thirteenth ball can almost be added. The
large leeway here in the spacing of the 12 balls, in contrast to the com-
plete absence of leeway in the close-packing of circles on a plane, sug-
gests that there might be some form of irregular packing that would be
denser than .74. No one has yet proved that no denser packing is pos-
sible, or even that 12 point-contacts for each sphere are necessary for
densest packing. As a result of Coxeter’s conjecture, George D. Scott of
the University of Toronto made some experiments in random packing
by pouring large numbers of steel balls into spherical flasks, then
weighing them to obtain the density. He found that stable random-
packings had a density that varied from about .59 to .63. So if there is
a packing denser than .74, it will have to be carefully constructed on a
pattern that no one has yet thought of.

Assuming that close-packing is the closest packing, readers may like
to test their packing prowess on this exceedingly tricky little problem.
The interior of a rectangular box is 10 inches on each side and 5 inches
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deep. What is the largest number of steel spheres 1 inch in diameter
that can be packed in this space?

If close-packed circles on a plane expand uniformly until they fill the
interstices between them, the result is the familiar hexagonal tiling of
bathroom floors. (This explains why the pattern is so commeon in na-
ture: the honeycomb of bees, a froth of bubbles between two flat sur-
faces almost in contact, pigments in the retina, the surface of certain
diatoms and so on.) What happens when closely packed spheres ex-
pand uniformly in a closed vessel or are subjected to uniform pressure
from without? Each sphere becomes a polyhedron, its faces corre-
sponding to planes that were tangent to its points of contact with other
spheres. Cubic close-packing transforms each sphere into a rhombic do-
decahedron (see Figure 10.4, top), the 12 sides of which are congruent
rhombi. Hexagonal close-packing turns each ball into a trapezo-
rhombic dodecahedron (see Figure 10.4, bottom), six faces of which are
rhombic and six, trapezoidal. If this figure is sliced in half along the
gray plane and one half is rotated 60 degrees, it becomes a rhombic do-
decahedron.

In 1727 the English physiologist Stephen Hales wrote in his book
Vegetable Staticks that he had poured some fresh peas into a pot, com-
pressed them, and had obtained “pretty regular dodecahedrons.” The
experiment became known as the “peas of Buffon” (because the Comte
de Buffon later wrote about a similar experiment), and most biologists
accepted it without question until Edwin B. Matzke, a botanist at Co-
lumbia University, repeated the experiment. Because of the irregular
sizes and shapes of peas, their nonuniform consistency and the random
packing that results when peas are poured into a container, the shapes
of the peas after compression are too random to be identifiable. In ex-
periments reported in 1939 Matzke compressed lead shot and found
that if the spheres had been cubic close-packed, rhombic dodecahe-
drons were formed; but if they had been randomly packed, irregular 14-
faced bodies predominated. These results have important bearing,
Matzke has pointed out, on the study of such structures as foam and liv-
ing cells in undifferentiated tissues.

The problem of closest packing suggests the opposite question: What
is the Joosest packing; that is, what rigid structure will have the lowest
possible density? For the structure to be rigid, each sphere must touch
at least four others, and the contact points must not be all in one hemi-
sphere or all on one equator of the sphere. In his Geometry and the
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Figure 10.4. Packed spheres expand into dodecahedrons.

Imagination, first published in Germany in 1932, David Hilbert de-
scribes what was then believed to be the loosest packing: a structure
with a density of .123. In the following year, however, two Dutch math-
ematicians, Heinrich Heesch and Fritz Laves, published the details of
a much looser packing with a density of only .0555 (see Figure 10.5).
Whether there are still looser packings is another intriguing question
that, like the question of the closest packing, remains undecided.

Addendum

The unique answer of 4,900 for the number of balls that will
form both a square and a square-based pyramid was proved by G. N.
Watson in Messenger of Mathematics, new series, Vol. 48, 1918, pages
1-22. This had been conjectured as early as 1875 by the French math-
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Figure 10.5. The Heesch and Laves loose-packing. Large spheres are first packed as
shown on Jeft, then each sphere is replaced by three smaller spheres to obtain the pack-
ing shown on right. It has a density of .055+.

ematician Edouard Lucas. Henry Ernest Dudeney makes the same guess
in his answer to problem 138, Amusements in Mathematics (1917).
There is a large literature on numbers that are both triangular and
square. Highlights are cited in an editorial note to problem E1473,
American Mathematical Monthly, February 1862, page 169, and the
following formula for the nth square triangular number is given:

(17 + 12V2)" + (17 — 12V2)" - 2
32 ‘

The question of the densest possible regular or lattice packing of
spheres has been known since 1930 for all spaces up through eight di-
mensions. (See Proceedings of Symposia in Pure Mathematics, Vol. 7,
American Mathematical Society, 1963, pp. 53—71.) In 3-space, the ques-
tion is answered by the regular close-packings described earlier, which
have a density of .74+. But, as Constance Reid notes in her Introduction
to Higher Mathematics (1959), when 9-space is considered, the problem
takes one of those sudden, mysterious turns that so often occur in the
geometries of higher Euclidean spaces. So far as I know, no one yet
knows the densest lattice packing of hyperspheres in 9-space.

134 Sorip GEOMETRY AND HIGHER DIMENSIONS



Figure 10.6 (top) is a neat “look—see” proof that the space between
four circles packed with their centers on a square lattice is equal to the
area of the square minus the area of a circle. Figure 10.6 (bottom) is a
similar proof that the space between circles packed on a triangular lat-
tice is equal to the area of the triangle minus half the circle’s area.

2

Figure 10.6. Two look—see proofs

Kepler conjectured that the close-packing of spheres described in
this chapter is the densest of all possible packings. Although this pack-
ing is known to be the densest for packings based on a lattice, the ques-
tion of whether an irregular packing might be denser remains in limbo.
In 1990 Wu-Yi Hsiang, at the University of California—Berkeley, pub-
lished a 150-page “proof” of Kepler’s conjecture. It was widely hailed
as valid, but soon experts on sphere packing were finding large holes
in the proof. Hsiang tried to repair them, but as of today the consensus
is that his proof is false and beyond repair.

In 1998 Thomas Hales, at the University of Michigan and one of
Hsiang’s harshest critics, published a 250-page proof of his own. Be-
cause it relies heavily, like the famous proof of the four-color map the-
orem, on lengthy computer calculations, the verdict is still out over
whether Kepler’s conjecture has finally been verified.

Incidently, Stanislaw Ulam told me in 1972 that he suspected that
spheres, in their densest packing, allow more empty space than the
densest packing of any identical convex solids.

Answers

The smallest number of oranges that will form two tetrahedral
pyramids of different sizes, and also one larger tetrahedral pyramid, is
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680. This is a tetrahedral number that can be split into two smaller
tetrahedral numbers: 120 and 560. The edges of the three pyramids are
8, 14, and 15.

A box 10 inches square and 5 inches deep can be close-packed with
1 inch-diameter steel balls in a surprising variety of ways, each ac-
commodating a different number of balls. The maximum number, 594,
is obtained as follows: Turn the box on its side and form the first layer
by making a row of five, then a row of four, then of five, and so on. It
is possible to make 11 rows (6 rows of five each, 5 rows of four each),
accommodating 50 balls and leaving a space of more than .3 inch to
spare. The second layer also will take 11 rows, alternating four and
five balls to a row, but this time the layer begins and ends with four-ball
rows, so that the number of balls in the layer is only 49. (The last row
of four balls will project .28+ inch beyond the edge of the first layer, but
because this is less than .3 inch, there is space for it.) Twelve layers
(with a total height of 9.98+ inches) can be placed in the box, alternat-
ing layers of 50 balls with layers of 49, to make a grand total of 594
balls.
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Chapter 11 Spheres and
Hyperspheres

A circle is the locus of all points on the plane at a given dis-
tance from a fixed point on the plane. Let’s extend this to Euclidean
spaces of all dimensions and call the general n-sphere the locus of all
points in n-space at a given distance from a fixed point in n-space. In
a space of one dimension (a line) the 1-sphere consists of two points at
a given distance on each side of a center point. The 2-sphere is the cir-
cle, the 3-sphere is what is commonly called a sphere. Beyond that are
the hyperspheres of 4, 5, 6, . . . dimensions.

Imagine a rod of unit length with one end attached to a fixed point.
If the rod is allowed to rotate only on a plane, its free end will trace a
unit circle. If the rod is allowed to rotate in 3-space, the free end traces
a unit sphere. Assume now that space has a fourth coordinate, at right
angles to the other three, and that the rod is allowed to rotate in 4-
space. The free end then generates a unit 4-sphere. Hyperspheres are
impossible to visualize; nevertheless, their properties can be studied by
a simple extension of analytic geometry to more than three coordinates.
A circle’s Cartesian formula is a? + b? = r%, where r is the radius. The
sphere’s formula is a? + b? + ¢* = 2. The 4-sphere’s formula is a? + b? +
c? + d® = r?, and so on up the ladder of Euclidean hyperspaces.

The “surface” of an n-sphere has a dimensionality of n — 1. A circle’s
“surface” is a line of one dimension, a sphere’s surface is two-
dimensional, and a 4-sphere’s surface is three-dimensional. Is it possi-
ble that 3-space is actually the hypersurface of a vast 4-sphere? Could
such forces as gravity and electromagnetism be transmitted by the vi-
brations of such a hypersurface? Many late-19th-century mathemati-
cians and physicists, both eccentric and orthodox, took such
suggestions seriously. Einstein himself proposed the surface of a 4-
sphere as a model of the cosmos, unbounded and yet finite. Just as
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Flatlanders on a sphere could travel the straightest possible line in any
direction and eventually return to their starting point, so (Einstein sug-
gested) if a spaceship left the earth and traveled far enough in any one
direction, it would eventually return to the earth. If a Flatlander started
to paint the surface of the sphere on which he lived, extending the
paint outward in ever widening circles, he would reach a halfway point
at which the circles would begin to diminish, with himself on the in-
side, and eventually he would paint himself into a spot. Similarly, in
Einstein’s cosmos, if terrestrial astronauts began to map the universe in
ever-expanding spheres, they would eventually map themselves into a
small globular space on the opposite side of the hypersphere.

Many other properties of hyperspheres are just what one would ex-
pect by analogy with lower-order spheres. A circle rotates around a
central point, a sphere rotates around a central line, a 4-sphere rotates
around a central plane. In general the axis of a rotating n-sphere is a
space of n — 2. (The 4-sphere is capable, however, of a peculiar double
rotation that has no analogue in 2- or 3-space: it can spin simultane-
ously around two fixed planes that are perpendicular to each other.)
The projection of a circle on a line is a line segment, but every point on
the segment, with the exception of its end points, corresponds to two
points on the circle. Project a sphere on a plane and you get a disk, with
every point inside the circumference corresponding to two points on
the sphere’s surface. Project a 4-sphere on our 3-space and you get a
solid ball with every internal point corresponding to two points on the
4-sphere’s hypersurface. This too generalizes up the ladder of spaces.

The same is true of cross sections. Cut a circle with a line and the
cross section is a 1-sphere, or a pair of points. Slice a sphere with a
plane and the cross section is a circle. Slice a 4-sphere with a 3-space
hyperplane and the cross section is a 3-sphere. (You can’t divide a 4-
sphere into two pieces with a 2-plane. A hyperapple, sliced down the
middle by a 2-plane, remains in one piece.) Imagine a 4-sphere moving
slowly through our space. We see it first as a point and then as a tiny
sphere that slowly grows in size to its maximum cross section, then
slowly diminishes and disappears.

A sphere of any dimension, made of sufficiently flexible material,
can be turned inside out through the next-highest space. Just as we can
twist a thin rubber ring until the outside rim becomes the inside, so a
hypercreature could seize one of our tennis balls and turn it inside out
through his space. He could do this all at once or he could start at one
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spot on the ball, turn a tiny portion first, then gradually enlarge it until
the entire ball had its inside outside.

One of the most elegant of the formulas that generalize easily to
spheres of all dimensions is the formula for the radii of the maximum
number of mutually touching n-spheres. On the plane, no more than
four circles can be placed so that each circle touches all the others,
with every pair touching at a different point. There are two possible sit-
uations (aside from degenerate cases in which one circle has an infinite
radius and so becomes a straight line): either three circles surround a
smaller one (Figure 11.1, left) or three circles are inside a larger one
(Figure 11.1, right). Frederick Soddy, the British chemist who received
a Nobel prize in 1921 for his discovery of isotopes, put it this way in
the first stanza of The Kiss Precise, a poem that appeared in Nature
(Vol. 137, June 20, 1936, p. 1021):

NS

Figure 11.1. Find the radius of the fourth circle.

For pairs of lips to kiss maybe
Involves no trigonometry.

*Tis not so when four circles kiss
Each one the other three.

To bring this off the four must be
As three in one or one in three.

If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.
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Soddy’s next stanza gives the simple formula. His term “bend” is
what is usually called the circle’s curvature, the reciprocal of the ra-
dius. (Thus a circle of radius 4 has a curvature or “bend” of 1/4.) If a cir-
cle is touched on the inside, as it is in the case of the large circle
enclosing the other three, it is said to have a concave bend, the value
of which is preceded by a minus sign. As Soddy phrased all this:

Four circles to the kissing come.

The smaller are the benter.

The bend is just the inverse of

The distance from the center.

Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

Letting a, b, c, d stand for the four reciprocals, Soddy’s formula is
2(a®2+ b?> + c® + d?) =(a+ b + c + d)? The reader should have little dif-
ficulty computing the radii of the fourth kissing circle in each illustra-
tion. In the poem’s third and last stanza this formula is extended to five
mutually kissing spheres:

To spy out spherical affairs

An oscular surveyor

Might find the task laborious,

The sphere is much the gayer,

And now besides the pair of pairs

A fifth sphere in the kissing shares.
Yet, signs and zero as before,

For each to kiss the other four

The square of the sum of all five bends
Is thrice the sum of their squares.

The editors of Nature reported in the issue for January 9, 1937 (Vol.
139, p. 62), that they had received several fourth stanzas generalizing
Soddy’s formula to n-space, but they published only the following, by
Thorold Gosset, an English barrister and amateur mathematician:

And let us not confine our cares
To simple circles, planes and spheres,
But rise to hyper flats and bends
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Where kissing multiple appears.

In n-ic space the kissing pairs

Are hyperspheres, and Truth declares—
As n + 2 such osculate

Each with an n + 1-fold mate.

The square of the sum of all the bends
Is n times the sum of their squares.

In simple prose, for n-space the maximum number of mutually
touching spheres is n + 2, and n times the sum of the squares of all
bends is equal to the square of the sum of all bends. It later developed
that the formula for four kissing circles had been known to René
Descartes, but Soddy rediscovered it and seems to have been the first
to extend it to spheres.

Note that the general formula even applies to the three mutually
touching two-point “spheres” of 1-space: two touching line segments
“inside” a third segment that is simply the sum of the other two. The
formula is a great boon to recreational mathematicians. Puzzles about
mutually kissing circles or spheres yield readily to it. Here is a pretty
problem. Three mutually kissing spherical grapefruits, each with a ra-
dius of three inches, rest on a flat counter. A spherical orange is also on
the counter under the three grapefruits and touching each of them.
What is the radius of the orange?

Problems about the packing of unit spheres do not generalize easily
as one goes up the dimensional ladder; indeed, they become increas-
ingly difficult. Consider, for instance, the problem of determining the
largest number of unit spheres that can touch a unit sphere. For circles
the number is six (see Figure 11.2). For spheres it is 12, but this was not
proved until 1874. The difficulty lies in the fact that when 12 spheres
are arranged around a thirteenth, with their centers at the corners of an
imaginary icosahedron (see Figure 11.3), there is space between every
pair. The waste space is slightly more than needed to accommodate a
thirteenth sphere if only the 12 could be shifted around and properly
packed. If the reader will coat 14 ping-pong balls with rubber cement,
he will find it easy to stick 12 around one of them, and it will not be at
all clear whether or not the thirteenth can be added without undue
distortions. An equivalent question (can the reader see why?) is: Can 13
paper circles, each covering a 60-degree arc of a great circle on a sphere,
be pasted on that sphere without overlapping?

H.S.M. Coxeter, writing on “The Problem of Packing a Number of
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Figure 11.2. Six unit circles touch a seventh.,

Figwre 11.3. Twelve unit spheres touch a thirteenth.

142 SoLip GEOMETRY AND HIGHER DIMENSIONS



Equal Nonoverlapping Circles on a Sphere” (in Transactions of the
New York Academy of Sciences, Vol. 24, January 1962, pp. 320-31),
tells the story of what may be the first recorded discussion of the prob-
lem of the 13 spheres. David Gregory, an Oxford astronomer and friend
of Isaac Newton, recorded in his notebook in 1694 that he and Newton
had argued about just this question. They had been discussing how
stars of various magnitudes are distributed in the sky and this had led
to the question of whether or not one unit sphere could touch 13 oth-
ers. Gregory believed they could. Newton disagreed. As Coxeter writes,
“180 years were to elapse before R. Hoppe proved that Newton was
right.” Simpler proofs have since been published, the latest in 1956 by
John Leech, a British mathematician.

How many unit hyperspheres in 4-space can touch a unit hyper-
sphere? It is not yet known if the answer is 24 or 25. Nor is it known
for any higher space. For spaces 4 through 8 the densest possible pack-
ings are known only if the centers of the spheres form a regular lattice.
These packings give 24, 40, 72, 126, and 240 for the “kissing number”
of spheres that touch another.

Why the difficulty with 9-space? A consideration of some paradoxes
involving hypercubes and hyperspheres may cast a bit of dim light on
the curious turns that take place in 9-space. Into a unit square one can
pack, from corner to diagonally opposite corner, a line with a length of
V2. Into a unit cube one can similarly pack a line of V3. The distance
between opposite corners of an n-cube is V'n, and since square roots in-
crease without limit, it follows that a rod of any size will pack into a
unit n-cube if n is large enough. A fishing pole 10 feet long will fit di-
agonally in the one-foot 100-cube. This also applies to objects of higher
dimension. A cube will accommodate a square larger than its square
face. A 4-cube will take a 3-cube larger than its cubical hyperface. A 5-
cube will take larger squares and cubes than any cube of lower dimen-
sion with an edge of the same length. An elephant or the entire Empire
State Building will pack easily into an n-cube with edges the same
length as those of a sugar cube if n is sufficiently large.

The situation with respect to an n-sphere is quite different. No mat-
ter how large n becomes, an n-sphere can never contain a rod longer
than twice its radius. And something very queer happens to its n-vol-
ume as n increases. The area of the unit circle is, of course, ©. The vol-
ume of the unit sphere is 4.1+. The unit 4-sphere’s hypervolume is
4.9+. In 5-space the volume is still larger, 5.2+, then in 6-space it de-
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creases to 5.1+, and thereafter steadily declines. Indeed, as n ap-
proaches infinity the hypervolume of a unit n-sphere approaches zero!
This leads to many unearthly results. David Singmaster, writing “On
Round Pegs in Square Holes and Square Pegs in Round Holes” (Math-
ematics Magazine, Vol. 37, November 1964, pp. 335-37), decided that
around peg fits better in a square hole than vice versa because the ratio
of the area of a circle to a circumscribing square (n/4) is larger than the
ratio of a square inscribed in a circle (2/xn). Similarly, one can show that
a ball fits better in a cube than a cube fits in a ball, although the differ-
ence between ratios is a bit smaller. Singmaster found that the differ-
ence continues to decrease through 8-space and then reverses: in
g-space the ratio of n-ball to n-cube is smaller than the ratio of n-cube
to n-ball. In other words, an n-ball fits better in an n-cube than an n-
cube fits in an n-ball if and only if n is 8 or less.

The same 9-space turn occurs in an unpublished paradox discov-
ered by Leo Moser. Four unit circles will pack into a square of side 4
(see Figure 11.4). In the center we can fit a smaller circle of radius V2
—1. Similarly, eight unit spheres will pack into the corners of a cube of
side 4 (see Figure 11.5). The largest sphere that will fit into the center
has a radius of V/3 - 1. This generalizes in the obvious way: In a 4-cube
of side 4 we can pack 16 unit 4-spheres and a central 4-sphere of radius
V4 -1, which equals 1, so that the central sphere now is the same size
as the others. In general, in the corners of an n-cube of side 4 we can
pack 2" unit n-spheres and presumably another sphere of radius Vn -
1 will fit at the center. But see what happens when we come to 9-space:
the central hypersphere has a radius of V9 — 1 = 2, which is equal to
half the hypercube’s edge. The central sphere cannot be larger than
this in any higher n-cube because it now fills the hypercube. No longer
is the central hypersphere inside the spheres that surround the center
of every hyperface, yet there is space at 2° = 512 corners to take 512 unit
9-spheres!

A related unpublished paradox, also discovered by Moser, concerns
n-dimensional chessboards. All the black squares of a chessboard are
enclosed with circumscribed circles (see Figure 11.6). Assume that
each cell is of side 2 and area 4. Each circle has a radius of V2 and an
area of 2n. The area in each white cell that is left white (is not enclosed
by a circle) is 8 — 2rt = 1.71+. In the analogous situation for a cubical
chessboard, the black cubical cells of edge 2 are surrounded by spheres.
The volume of each black cell is 8 and the volume of each sphere,
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Figure 11.5. Eight unit spheres leave room for one with a radius of V3 - 1.

which has a radius of V3, is 4nV/3, but the volume of the unenclosed
portion of each white cube is not so easy to calculate because the six
surrounding spheres intersect one another.

Consider now the four-dimensional lattice of hypercubes of edge 2
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Figure 11.6. Leo Moser’s hyperchessboard problem

with cells alternately colored as before so that each cell is surrounded
by eight hypercubes of opposite color. Around each black hypercell is
circumscribed a hypersphere. What is the hypervolume of the unen-
closed portion within each white cell? The surprising answer can be
determined quickly without knowing the formula for the volume of a
hypersphere.

Addendum

As far as I know, the latest results on the number of unit spheres
in n-dimensional space that can touch a single unit sphere have been
proved only when n = 3, 8, and 24. As we have seen, when n = 3, the
number is 12; when n = 8, the number is 240; and when n = 24, the
number is 196,560. In 4-space the lower and upper bounds are 24 and
25. In 5-space the bounds are 40—46; in 6-space, 72—82; and in 7-space,
126-140. A new proof of the 3-space case was announced in January
2000 by Sean T. McLaughlin of the University of Michigan.

The ongoing search for the densest possible sphere packings in n-di-
mensional space is now the topic of a vast literature, mainly because
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such packing lattices are closely related to the construction of error-
correcting codes—efficient ways of transmitting information with a
minimum number of errors. The definitive treatise on the topic, by
John Horton Conway and N.J.A. Sloane (1988), runs 663 pages and has
a bibliography of 1,500 entries!

The densest packing of unit spheres, either lattice-based or irregu-
lar, is known only for the circle, regarded as a two-dimensional
“sphere.” Densest lattice packings are known only for n-dimensional
spheres when n = 2 through 8. Beyond n = 8 there are only conjectures
about such packings. In some cases irregular packings have been dis-
covered that are denser than lattice packings. The most famous of
higher space packings is a very dense lattice in 24 dimensions, known
as the Leech lattice after the British Mathematician John Leech who
discovered it. Each sphere in this remarkable structure touches
196,560 others!

Answers

The first problem was to determine the sizes of two circles,
each of which touches three mutually tangent circles with radii of one,
two, and three units. Using the formula given in the chapter,

(111)_( 111)2
21 +-+-+5|=l1+-+=+-],
4 9 x 2 3 x
where x is the radius of the fourth circle, one obtains a value of 6/23 for
the radius of the smaller circle, 6 for the larger one.

The second problem concerned three grapefruits with three-inch
radii and an orange, all resting on a counter and mutually touching.
What size is the orange? The plane on which they rest is considered a
fifth sphere of infinite radius that touches the other four. Since it has
zero curvature it drops out of the formula relating the reciprocals of the
radii of five mutually touching spheres. Letting x be the radius of the
orange, we write the equation,

1 1 1 1 1 1 1  1\2

3(54‘@4‘@4‘;) =(—+—+—+—) ,
which gives x a value of one inch.

The problem can, of course, be solved in other ways. When it ap-
peared as problem 43 in the Pi Mu Epsilon Journal, November 1952,
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Leon Bankoff solved it this way, with R the radius of each large sphere
and r the radius of the small sphere:

“The small sphere, radius r, touches the table at a point equidistant
from the contacts of each of the large spheres with the table. Hence it
lies on the circumcenter of an equilateral triangle, the side of which is
2R. Then (R + r) is the hypotenuse of a right triangle, the altitude of
which is (B - r) and the base of which is 2BV3/3. So

(R+r?=(R-r)?+4R?/3,0orr = R/3.”

The answer to Leo Moser’s paradox of the hypercubic chessboard in
four-dimensional space is that no portion of a white cell remains un-
enclosed by the hyperspheres surrounding each black cell. The radius
of each hypersphere is V4, or 2. Since the hypercubic cells have edges
of length 2, we see at once that each of the eight hyperspheres around
a white cell will extend all the way to the center of that cell. The eight
hyperspheres intersect one another, leaving no portion of the white
cell unenclosed.
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Chapter 12 The Church of
the Fourth Dimension

“Could I but rotate my arm out of the limits
set to it,” one of the Utopians had said to
him, “I could thrust it into a thousand
dimensions.” —H. G. Wells, Men Like Gods

Alexander Pope once described London as a “dear, droll, dis-
tracting town.” Who would disagree? Even with respect to recreational
mathematics, I have yet to make an imaginary visit to London without
coming on something quite extra-ordinary. Once, for instance, I was
reading the London Times in my hotel room a few blocks from Pic-
cadilly Circus when a small advertisement caught my eye:

Weary of the world of three dimensions? Come worship with us Sunday
at the Church of the Fourth Dimension. Services promptly at 11 A.m., in
Plato’s grotto. Reverend Arthur Slade, Minister.

An address was given. I tore out the advertisement, and on the follow-
ing Sunday morning rode the Underground to a station within walking
distance of the church. There was a damp chill in the air and a light
mist was drifting in from the sea. I turned the last corner, completely
unprepared for the strange edifice that loomed ahead of me. Four enor-
mous cubes were stacked in one column, with four cantilevered cubes
jutting in four directions from the exposed faces of the third cube from
the ground. I recognized the structure at once as an unfolded hyper-
cube. Just as the six square faces of a cube can be cut along seven lines
and unfolded to make a two-dimensional Latin cross (a popular floor
plan for medieval churches), so the eight cubical hyperfaces of a four-
dimensional cube can be cut along seventeen squares and “unfolded”
to form a three-dimensional Latin cross.

A smiling young woman standing inside the portal directed me to a
stairway. It spiraled down into a basement auditorium that I can only
describe as a motion-picture theater combined with a limestone cavern.
The front wall was a solid expanse of white. Formations of translucent
pink stalactites glowed brightly on the ceiling, flooding the grotto with
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a rosy light. Huge stalagmites surrounded the room at the sides and
back. Electronic organ music, like the score of a science-fiction film,
surged into the room from all directions. I touched one of the stalag-
mites. It vibrated beneath my fingers like the cold key of a stone xylo-
phone.

The strange music continued for 10 minutes or more after I had taken
a seat, then slowly softened as the overhead light began to dim. At the
same time I became aware of a source of bluish light at the rear of the
grotto. It grew more intense, casting sharp shadows of the heads of
the congregation on the lower part of the white wall ahead. I turned
around and saw an almost blinding point of light that appeared to come
from an enormous distance.

The music faded into silence as the grotto became completely dark
except for the brilliantly illuminated front wall. The shadow of the
minister rose before us. After announcing the text as Ephesians, Chap-
ter 3, verses 17 and 18, he began to read in low, resonant tones that
seemed to come directly from the shadow’s head: “. . . that ye, being
rooted and grounded in love, may be able to comprehend with all saints
what is the breadth, and length, and depth, and height. . . .”

It was too dark for note-taking, but the following paragraphs sum-
marize accurately, I think, the burden of Slade’s remarkable sermon.

Our cosmos—the world we see, hear, feel—is the three-dimensional
“surface” of a vast, four-dimensional sea. The ability to visualize, to
comprehend intuitively, this “wholly other” world of higher space is
given in each century only to a few chosen seers. For the rest of us, we
must approach hyperspace indirectly, by way of analogy. Imagine a
Flatland, a shadow world of two dimensions like the shadows on the
wall of Plato’s famous cave {Republic, Chapter 7). But shadows do not
have material substance, so it is best to think of Flatland as possessing
an infinitesimal thickness equal to the diameter of one of its funda-
mental particles. Imagine these particles floating on the smooth surface
of a liquid. They dance in obedience to two-dimensional laws. The in-
habitants of Flatland, who are made up of these particles, cannot con-
ceive of a third direction perpendicular to the two they know.

We, however, who live in 3-space can see every particle of Flatland.
We see inside its houses, inside the bodies of every Flatlander. We can
touch every particle of their world without passing our finger through
their space. If we lift a Flatlander out of a locked room, it seems to him
a miracle.
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In an analogous way, Slade continued, our world of 3-space floats on
the quiet surface of a gigantic hyperocean; perhaps, as Einstein once
suggested, on an immense hypersphere. The four-dimensional thick-
ness of our world is approximately the diameter of a fundamental par-
ticle. The laws of our world are the “surface tensions” of the hypersea.
The surface of this sea is uniform, otherwise our laws would not be uni-
form. A slight curvature of the sea’s surface accounts for the slight,
constant curvature of our space—time. Time exists also in hyperspace.
If time is regarded as our fourth coordinate, then the hyperworld is a
world of five dimensions. Electromagnetic waves are vibrations on the
surface of the hypersea. Only in this way, Slade emphasized, can sci-
ence escape the paradox of an empty space capable of transmitting en-
ergy.

What lies outside the sea’s surface? The wholly other world of God!
No longer is theology embarrassed by the contradiction between God’s
immanence and transcendence. Hyperspace touches every point of 3-
space. God is closer to us than our breathing. He can see every portion
of our world, touch every particle without moving a finger through our
space. Yet the Kingdom of God is completely “outside” 3-space, in a di-
rection in which we cannot even point.

The cosmos was created billions of years ago when God poured
(Slade paused to say that he spoke metaphorically) on the surface of the
hypersea an enormous quantity of hyperparticles with asymmetric
three-dimensional cross sections. Some of these particles fell into 3-
space in right-handed form to become neutrons, the others in left-
handed form to become antineutrons. Pairs of opposite parity
annihilated each other in a great primeval explosion, but a slight pre-
ponderance of hyperparticles happened to fall as neutrons and this ex-
cess remained. Most of these neutrons split into protons and electrons
to form hydrogen. So began the evolution of our “one-sided” material
world. The explosion caused a spreading of particles. To maintain this
expanding universe in a reasonably steady state, God renews its mat-
ter at intervals by dipping his fingers into his supply of hyperparticles
and flicking them toward the sea. Those which fall as antineutrons are
annihilated, those which fall as neutrons remain. Whenever an an-
tiparticle is created in the laboratory, we witness an actual “turning
over” of an asymmetric particle in the same way that one can reverse
in 3-space an asymmetric two-dimensional pattern of cardboard. Thus
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the production of antiparticles provides an empirical proof of the real-
ity of 4-space.

Slade brought his sermon to a close by reading from the recently dis-
covered Gnostic Gospel of Thomas: “If those who lead you say to you:
Behold the kingdom is in heaven, then the birds will precede you. If
they say to you that it is in the sea, then the fish will precede you. But
the kingdom is within you and it is outside of you.”

Again the unearthly organ music. The blue light vanished, plunging
the cavern into total blackness. Slowly the pink stalactites overhead
began to glow, and I blinked my eyes, dazzled to find myself back in 3-
space.

Slade, a tall man with iron-gray hair and a small dark mustache, was
standing at the grotto’s entrance to greet the members of his congrega-
tion. As we shook hands I introduced myself and mentioned my Sci-
entific American column. “Of course!” he exclaimed. “I have some of
your books. Are you in a hurry? If you wait a bit, we’ll have a chance
to chat.”

After the last handshake Slade led me to a second spiral stairway of
opposite handedness from the one on which I had descended earlier.
It carried us to the pastor’s study in the top cube of the church. Elabo-
rate models, 3-space projections of various types of hyperstructures,
were on display around the room. On one wall hung a large reproduc-
tion of Salvador Dali’s painting “Corpus Hypercubus.” In the picture,
above a flat surface of checkered squares, floats a three-dimensional
cross of eight cubes; an unfolded hypercube identical in structure with
the church in which I was standing.

“Tell me, Slade,” I said, after we were seated, “is this doctrine of
yours new or are you continuing a long tradition?”

“It's by no means new,” he replied, “though I can claim to have es-
tablished the first church in which hyperfaith serves as the corner-
stone. Plato, of course, had no conception of a geometrical fourth
dimension, though his cave analogy clearly implies it. In fact, every
form of Platonic dualism that divides existence into the natural and su-
pernatural is clearly a nonmathematical way of speaking about higher
space. Henry More, the 17th-century Cambridge Platonist, was the first
to regard the spiritual world as having four spatial dimensions. Then
along came Immanuel Kant, with his recognition of our space and time
as subjective lenses, so to speak, through which we view only a thin
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slice of transcendent reality. After that it is easy to see how the concept
of higher space provided a much needed link between modern science
and traditional religions.”

“You say ‘religions,” ” I put in. “Does that mean your church is not
Christian?”

“Only in the sense that we find essential truth in all the great world
faiths. I should add that in recent decades the Continental Protestant
theologians have finally discovered 4-space. When Karl Barth talks
about the ‘vertical’ or ‘perpendicular’ dimension, he clearly means it in
a four-dimensional sense. And of course in the theology of Karl Heim
there is a full, explicit recognition of the role of higher space.”

“Yes,” I said. “I recently read an interesting book called Physicist
and Christian, by William G. Pollard (executive director of the Oak
Ridge Institute of Nuclear Studies and an Episcopal clergyman). He
draws heavily on Heim’s concept of hyperspace.”

Slade scribbled the book’s title on a note pad. “I must look it up. I
wonder if Pollard realizes that a number of late-19th-century Protes-
tants wrote books about the fourth dimension. A. T. Schofield’s Another
World, for example (it appeared in 1888) and Arthur Willink’s The
World of the Unseen (subtitled “An Essay on the Relation of Higher
Space to Things Eternal”; published in 1893). Of course modern oc-
cultists and spiritualists have had a field day with the notion. Peter D.
Ouspensky, for instance, has a lot to say about it in his books, although
most of his opinions derive from the speculations of Charles Howard
Hinton, an American mathematician. Whately Carington, the English
parapsychologist, wrote an unusual book in 1920—he published it
under the byline of W. Whately Smith—on A Theory of the Mecha-
nism of Survival.”

“Survival after death?”

Slade nodded. “I can’t go along with Carington’s belief in such things
as table tipping being accomplished by an invisible four-dimensional
lever, or clairvoyance as perception from a point in higher space, but I
regard his basic hypothesis as sound. Our bodies are simply three-
dimensional cross sections of our higher four-dimensional selves. Ob-
viously a man is subject to all the laws of this world, but at the same
time his experiences are permanently recorded—stored as information,
so to speak—in the 4-space portion of his higher self. When his 3-space
body ceases to function, the permanent record remains until it can be
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attached to a new body for a new cycle of life in some other 3-space
continuum.”

“I like that,” I said. “It explains the complete dependence of mind on
body in this world, at the same time permitting an unbroken continu-
ity between this life and the next. Isn’t this close to what William James
struggled to say in his little book on immortality?”

“Precisely. James, unfortunately, was no mathematician, so he had to
express his meaning in nongeometrical metaphers.”

“What about the so-called demonstrations of the fourth dimension by
certain mediums,” I asked. “Wasn’t there a professor of astrophysics in
Leipzig who wrote a book about them?”

I thought I detected an embarrassed note in Slade’s laugh. “Yes, that
was poor Johann Karl Friedrich Zéllner. His book Transcendental
Physics was translated into English in 1881, but even the English copies
are now quite rare. Zéllner did some good work in spectrum analysis,
but he was supremely ignorant of conjuring methods. As a consequence
he was badly taken in, I'm afraid, by Henry Slade, the American
medium.”

“Slade?” I said with surprise.

“Yes, I'm ashamed to say we’re related. He was my great-uncle. When
he died, he left a dozen fat notebooks in which he had recorded his
methods. Those notebooks were acquired by the English side of my
family and handed down to me.”

“This excites me greatly,” I said. “Can you demonstrate any of the
tricks?”

The request seemed to please him. Conjuring, he explained, was one
of his hobbies, and he thought that the mathematical angles of several
of Henry’s tricks would be of interest to my readers.

From a drawer in his desk Slade took a strip of leather, cut as shown
at the left in Figure 12.1, to make three parallel strips. He handed me a
ballpoint pen with the request that I mark the leather in some way to
prevent later substitution. I initialed a corner as shown. We sat on op-
posite sides of a small table. Slade held the leather under the table for
a few moments, then brought it into view again. It was braided exactly
as shown at the right in the illustration! Such braiding would be easy
to accomplish if one could move the strips through hyperspace. In 3-
space it seemed impossible.

Slade’s second trick was even more astonishing. He had me examine
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Figure 12.1. Slade’s leather strip
6 —braided in hyperspace?

a rubber band of the wide, flat type shown at the left in Figure 12.2.
This was placed in a matchbox, and the box was securely sealed at
both ends with cellophane tape. Slade started to place it under the
table, then remembered he had forgotten to have me mark the box for
later identification. I drew a heavy X on the upper surface.

Figure 12.2. Slade’s rubber band —knotted in hyperspace?

“If you like,” he said, “you yourself may hold the box under the
table.”

I did as directed. Slade reached down, taking the box by its other end.
There was a sound of movement and I could feel that the box seemed
to be vibrating slightly.

Slade released his grip. “Please open the box.”

First I inspected the box carefully. The tape was still in place. My
mark was on the cover. [ slit the tape with my thumbnail and pushed
open the drawer. The elastic band—mirabile dictu—was tied in a sim-
ple knot as shown at the right in Figure 12.2.

“Even if you managed somehow to open the box and switch bands,”
I said, “how the devil could you get a rubber band like this?”

Slade chuckled. “My great-uncle was a clever rascal.”
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I was unable to persuade Slade to tell me how either trick was done.
The reader is invited to think about them before he reads this chapter’s
answer section.

We talked of many other things. When I finally left the Church of the
Fourth Dimension, a heavy fog was swirling through the wet streets of
London. I was back in Plato’s cave. The shadowy forms of moving cars,
their headlights forming flat elliptical blobs of light, made me think of
some familiar lines from the Rubdiydt of a great Persian mathemati-
cian:

We are no other than a moving row

Of magic shadow-shapes that come and go
Round with the sun-illumined lantern held
In midnight by the Master of the Show.

Addendum

Although I spoke in the first paragraph of this chapter of an
“imaginary visit” to London, when the chapter first appeared in Sci-
entific American several readers wrote to ask for the address of Slade’s
church. The Reverend Slade is purely fictional, but Henry Slade the
medium was one of the most colorful and successful mountebanks in
the history of American spiritualism. See my article on Slade in The
Encyclopedia of the Paranormal, edited by Gordon Stein, Prometheus
Books, 1996, and my remarks about Slade’s fourth-dimensional trick-
ery in The New Ambidextrous Universe (W. H. Freeman, 1990).

At the time I wrote about the Church of the Fourth Dimension no em-
inent physicist had ever contended that there might actually be spaces
“out there,” higher than our familiar 3-space. (The use of a fourth di-
mension in relativity theory was no more than a way of handling time
in the theory’s equations.) Now, however, particle physicists are in a eu-
phoric state over a theory of superstrings in which fundamental parti-
cles are not modeled as geometrical points, but as extremely tiny closed
loops, of great tensile strength, that vibrate in higher spaces. These
higher spaces are “compacted”—curled up into tight little structures
too small to be visible or even to be detected by today’s atom smashers.

Some physicists regard these higher spaces as mere artifices of the
mathematics, but others believe they are just as real as the three spaces
we know and love. (On superstrings, see my New Ambidextrous Uni-
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verse.) It is the first time physicists have seriously entertained the no-
tion of higher spaces that are physically real. This may have stimu-
lated the publication of recent books on the fourth and higher
dimensions. I particularly recommend Thomas F. Banchoff’s Beyond
the Third Dimension, if for no other reason than for its wondrous com-
puter graphics.

In recent years the theory of superstrings has been extended to mem-
brane or brane theory in which the strings are attached to vibrating
surfaces that live in higher space dimensions. Some theorists are spec-
ulating that our universe is an enormous brane floating in hyperspace
along with countless other “island universes,” each with its own set of
laws. A possibility looms that these other universes could be detected
by their gravity seeping into our universe and generating the elusive in-
visible dark matter which physicists suspect furnishes 90 percent of the
matter in our universe. For these wild speculations see George john-
son’s mind-boggling article, “Physicists Finally Find a Way to Test Su-
perstring Theory,” in The New York Times, April 4, 2000.

Membrane theory is also called M-theory, the M standing for mem-
brane, mystery, magic, marvel, and matrix. See “Magic, Mystery, and
Matrix,” a lecture by Edward Witten, the world’s top expert on super-
strings, published in Notices of the AMS (American Mathematical So-
ciety), Vol. 45, November 1998, and his 1998 videotape M-Theory,
available from the AMS.

Answers

Slade’s method of braiding the leather strip is familiar to Boy
Scouts in England and to all those who make a hobby of leathercraft.
Many readers wrote to tell me of books in which this type of braiding
is described: George Russell Shaw, Knots, Useful and Ornamental (p.
86); Constantine A. Belash, Braiding and Knotting (p. 94); Clifford Pyle,
Leather Craft as a Hobby (p. 82); Clifford W. Ashley, The Ashley Book
of Knots (p. 486); and others. For a full mathematical analysis, see
J.A.H. Shepperd, “Braids Which Can Be Plaited with Their Threads
Tied Together at Each End,” Proceedings of the Royal Society, A, Vol.
265, 1962, pages 22944,
There are several ways to go about making the braid. Figure 12.3 was
drawn by reader George T. Rab of Dayton, OH. By repeating this pro-
cedure one can extend the braid to any multiple of six crossings. An-
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other procedure is simply to form the six-cross plat in the upper half of
the strip by braiding in the usual manner. This creates a mirror image
of the plat in the lower half. The lower plat is easily removed by one
hand while the upper plat is held firmly by the other hand. Both pro-
cedures can be adapted to leather strips with more than three strands.
If stiff leather is used, it can be made pliable by soaking it in warm
water.

Figure 12.3. Slade’s first trick

Slade’s trick of producing a knot in a flat rubber band calls first for
the preparation of a knotted band. Obtain a rubber ring of circular cross
section and carefully carve a portion of it flat as shown in Figure 12.4.
Make three half twists in the flat section (middle drawing), then con-
tinue carving the rest of the ring to make a flat band with three half
twists (last drawing). Mel Stover of Winnipeg, Canada, suggests that
this can best be done by stretching the ring around a wooden block,
freezing the ring, then flattening it with a home grinding tool. When the
final band is cut in half all the way around, it forms a band twice as
large and tied in a single knot.

Figure 12.4. Slade's second trick

A duplicate band of the same size, but unknotted, must also be ob-
tained. The knotted band is placed in a matchbox and the ends of the
box are sealed with tape. It is now necessary to substitute this match-
box for the one containing the unknotted band. I suspect that Slade did
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this when he started to put the box under the table, then “remembered”
that I had not yet initialed it. The prepared box could have been stuck
to the underside of the table with magician’s wax. It would require
only a moment to press the unprepared box against another dab of wax,
then take the prepared one. In this way the switch occurred before 1
marked the box. The vibrations I felt when Slade and I held the box
under the table were probably produced by one of Slade’s fingers press-
ing firmly against the box and sliding across it.

Fitch Cheney, mathematician and magician, wrote to tell about a sec-
ond and simpler way to create a knotted elastic band. Obtain a hollow
rubber torus—they are often sold as teething rings for babies—and cut
as shown by the dotted line in Figure 12.5. The result is a wide endless
band tied in a single knot. The band can be trimmed, of course, to nar-
rower width.

Figure 12.5. A second way
to produce a knotted
rubber band

It was Stover, by the way, who first suggested to me the problem of
tying a knot in an elastic band. He had been shown such a knotted
band by magician Winston Freer. Freer said he knew three ways of
doing it.
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Chapter 13 Hypercubes

The children were vanishing.

They went in fragments, like thick smoke in a
wind, or like movement in a distorting mirror.
Hand in hand they went, in a direction Para-
dine could not understand. . . .

—LEwis PapceTT, from “Mimsy Were the Borogoves”

The direction that Paradine, a professor of philosophy, could
not understand is a direction perpendicular to each of the three coor-
dinates of space. It extends into 4-space in the same way a chess piece
extends upward into 3-space with its axis at right angles to the xand y
coordinates of the chessboard. In Padgett’s great science fiction story,
Paradine’s children find a wire model of a tesseract (a hypercube of four
dimensions) with colored beads that slide along the wires in curious
ways. It is a toy abacus that had been dropped into our world by a 4-
space scientist tinkering with a time machine. The abacus teaches the
children how to think four-dimensionally. With the aid of some cryp-
tic advice in Lewis Carroll’s Jabberwocky they finally walk out of 3-
space altogether.

Is it possible for the human brain to visualize four-dimensional struc-
tures? The 19th-century German physicist Hermann von Helmholtz ar-
gued that it is, provided the brain is given proper input data.
Unfortunately our experience is confined to 3-space and there is not the
slightest scientific evidence that 4-space actually exists. (Euclidean 4-
space must not be confused with the non-Euclidean four-dimensional
space—time of relativity theory, in which time is handled as a fourth co-
ordinate.) Nevertheless, it is conceivable that with the right kind of
mathematical training a person might develop the ability to visualize
a tesseract. “A man who devoted his life to it,” wrote Henri Poincaré,
“could perhaps succeed in picturing to himself a fourth dimension.”

Charles Howard Hinton, an eccentric American mathematician who
once taught at Princeton University and who wrote a popular book
called The Fourth Dimension, devised a system of using colored blocks
for making 3-space models of sections of a tesseract. Hinton believed
that by playing many years with this “toy” (it may have suggested the
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toy in Padgett’s story), he had acquired a dim intuitive grasp of 4-space.
“I do not like to speak positively,” he wrote, “for I might occasion a loss
of time on the part of others, if, as may very well be, I am mistaken. But
for my own part, I think there are indications of such an intuition. . . .”

Hinton’s colored blocks are too complicated to explain here (the
fullest account of them is in his 1910 book, A New Era of Thought). Per-
haps, however, by examining some of the simpler properties of the
tesseract we can take a few wobbly first steps toward the power of vi-
sualization Hinton believed he had begun to achieve.

Let us begin with a point and move it a distance of one unit in a
straight line, as shown in Figure 13.1(a). All the points on this unit line
can be identified by numbering them from 0 at one end to 1 at the
other. Now move the unit line a distance of one unit in a direction per-
pendicular to the line (b). This generates a unit square. Label one cor-
ner 0, then number the points from 0 to 1 along each of the two lines
that meet at the zero corner. With these x and y coordinates we can now
label every point on the square with an ordered pair of numbers. It is
just as easy to visualize the next step. Shift the square a unit distance
in a direction at right angles to both the x and the y axes (c). The result
is a unit cube. With x, y, z coordinates along three edges that meet at a
corner, we can label every point in the cube with an ordered triplet of
numbers.

Although our visual powers boggle at the next step, there is no logi-
cal reason why we cannot assume that the cube is shifted a unit dis-
tance in a direction perpendicular to all three of its axes (d). The space
generated by such a shift is a 4-space unit hypercube—a tesseract—
with four mutually perpendicular edges meeting at every corner. By
choosing a set of such edges as w, x, y, z axes, one might label every
point in the hypercube with an ordered quadruplet of numbers. Ana-
lytic geometers can work with these ordered quadruplets in the same
way they work with ordered pairs and triplets to solve problems in
plane and solid geometry. In this fashion Euclidean geometry can be ex-
tended to higher spaces with dimensions represented by any positive
integer. Each space is Euclidean but each is topologically distinct: a
square cannot be continuously deformed to a straight line, a cube de-
formed to a square, a hypercube to a cube, and so on.

Accurate studies of figures in 4-space can be made only on the basis
of an axiomatic system for 4-space, or by working analytically with the
W, X, ¥, z equations of the four-coordinate system. But the tesseract is
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Figure 13.1. Steps toward generating a hypercube

such a simple 4-space structure that we can guess many of its proper-
ties by intuitive, analogical reasoning. A unit line has two end points.
When it is moved to generate a square, its ends have starting and stop-
ping positions and therefore the number of corners on the square is
twice the number of points on the line, or four. The two moving points
generate two lines, but the unit line has a start and a stop position and
so we must add two more lines to obtain four as the number of lines
bounding the square.

In similar fashion, when the square is moved to generate a cube, its
four corners have start and stop positions and therefore we multiply
four by two to arrive at eight corners on the cube. In moving, each of the
four points generates a line, but to those four lines we must add the
square’s four lines at its start and the four lines at its stop, making 4 +
4 + 4 =12 edges on the cube. The four lines of the moving square gen-
erate four new faces, to which the start and stop faces are added, mak-
ing 4 + 1 + 1 = 6 faces on the cube’s surface.

Now suppose the cube is pushed a unit distance in the direction of
a fourth axis at right angles to the other three, a direction in which we
cannot point because we are trapped in 3-space. Again each corner of
the cube has start and stop positions, so that the resulting tesseract has
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2 x 8 = 16 corners. Each point generates a line, but to these eight lines
we must add the start and stop positions of the cube’s 12 edges to make
8 + 12 + 12 = 32 unit lines on the hypercube. Each of the cube’s 12 edges
generates a square, but to those 12 squares we must add the cube’s six
squares before the push and the six after the push, making 12+ 6 + 6 =
24 squares on the tesseract’s hypersurface.

It is a mistake to suppose the tesseract is bounded by its 24 squares.
They form only a skeleton of the hypercube, just as the edges of a cube
form its skeleton. A cube is bounded by square faces and a hypercube
is bounded by cubical faces. When the cube is pushed, each of its
squares moves a unit distance in an unimaginable direction at right
angles to its face, thereby generating another cube. To the six cubes
generated by the six moving squares we must add the cube before it is
pushed and the same cube after it is pushed, making eight in all. These
eight cubes form the hypercube’s hypersurface.

The chart in Figure 13.2 gives the number of elements in “cubes” of
spaces one through four. There is a simple, surprising trick by which
this chart can be extended downward to higher n-cubes. Think of the
nth line as an expansion of the binomial (2x + 1)7. For example, the line
segment of 1-space has two points and one line. Write this as 2x+ 1 and
multiply it by itself:

2x + 1

2x + 1

4x? + 2x

2x + 1
4x%2 + 4x + 1
n-SPACE | POINTS LINES SQUARES | CUBES |TESSERACTS

0 1 0 0 0 0
1 2 1 0 0 0
9 4 4 1 0 0
3 8 12 6 1 0
4 16 32 24 8 1

Figure 13.2. Elements of structures analogous to the cube in various dimensions
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Note that the coefficients of the answer correspond to the chart’s
third line. Indeed, each line of the chart, written as a polynomial and
multiplied by 2x + 1, gives the next line. What are the elements of a 5-
space cube? Write the tesseract’s line as a fourth-power polynomial
and multiply it by 2x + 1:

16x* + 32x® + 24x> + 8x + 1
2x + 1
32x5 + 64x* + 48x° + 16x? + 2x
16x* + 32x% + 24x% + Bx + 1
32x° + 80x* + 80x° + 40x2 + 10x + 1

The coefficients give the fifth line of the chart. The 5-space cube has
32 points, 80 lines, 80 squares, 40 cubes, 10 tesseracts, and one 5-space
cube. Note that each number on the chart equals twice the number
above it plus the number diagonally above and left.

If you hold a wire skeleton of a cube so that light casts its shadow on
a plane, you can turn it to produce different shadow patterns. If the
light comes from a point close to the cube and the cube is held a cer-
tain way, you obtain the projection shown in Figure 13.3. The network
of this flat pattern has all the topological properties of the cube’s skele-
ton. For example, a fly cannot walk along all the edges of a cube in a
continuous path without going over an edge twice, nor can it do this on
the projected flat network.

/ Figure 13.3. Projection of the cube in 2-space
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Figure 13.4 is the analogous projection in 3-space of the edges of a
tesseract; more accurately, it is a plane projection of a three-
dimensional model that is in turn a projection of the hypercube. All the
elements of the tesseract given by the chart are easily identified in the
model, although six of the eight cubes suffer perspective distortions just
as four of the cube’s square faces are distorted in its projection on the
plane. The eight cubes are the large cube, the small interior cube, and
the six hexahedrons surrounding the small cube. (Readers should also
try to find the eight cubes in Figure 13.1(d)—a projection of the tesser-
act, from a different angle, into another 3-space model.) Here again the
topological properties of both models are the same as those of the edges
of the tesseract. In this case a fly can walk along all the edges without
traversing any edge twice. (In general the fly can do this only on hy-
percubes in even spaces, because only in even spaces do an even num-
ber of edges meet at each vertex.)

Figure 13.4. Projection of the
tesseract in 3-space

Many properties of unit hypercubes can be expressed in simple for-
mulas that apply to hypercubes of all dimensions. For example, the di-
agonal of a unit square has a length of V2. The longest diagonals on the
unit cube have a length of V3. In general a diagonal from corner to op-
posite corner on a unit cube in n-space is V'n.

A square of side x has an area of x* and a perimeter of 4x. What size
square has an area equal to its perimeter? The equation x* = 4x gives x
a value of 4. The unique answer is therefore a square of side 4. What
size cube has a volume equal to its surface area? After the reader has
answered this easy question he should have no difficulty answering
two more: (1) What size hypercube has a hypervolume (measured by
unit hypercubes) equal to the volume (measured by unit cubes) of its
hypersurface? (2) What is the formula for the edge of an n-cube whose
n-volume is equal to the (n — 1)-volume of its “surface”?
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Puzzle books often ask questions about cubes that are easily asked
about the tesseract but not so easily answered. Consider the longest
line that will fit inside a unit square. It is obviously the diagonal, with
a length of V2. What is the largest square that will fit inside a unit
cube? If the reader succeeds in answering this rather tricky question,
and if he learns his way around in 4-space, he might try the more dif-
ficult problem of finding the largest cube that can be fitted into a unit
tesseract.

An interesting combinatorial problem involving the tesseract is best
approached, as usual, by first considering the analogous problems for
the square and cube. Cut open one corner of a square (see top drawing
in Figure 13.5) and its four lines can be unfolded as shown to form a
one-dimensional figure. Each line rotates around a point until all are in
the same 1-space. To unfold a cube, think of it as formed of squares
joined at their edges; cut seven edges and the squares can be unfolded
(bottom drawing) until they all lie in 2-space to form a hexomino (six
unit squares joined at their edges). In this case each square rotates
around an edge. By cutting different edges one can unfold the cube to
make different hexomino shapes. Assuming that an asymmetric hex-
omino and its mirror image are the same, how many different hexomi-
noes can be formed by unfolding a cube?

The eight cubes that form the exterior surface of the tesseract can be
cut and unfolded in similar fashion. It is impossible to visualize how
a 4-space person might “see” (with three-dimensional retinas?) the hol-
low tesseract. Nevertheless, the eight cubes that bound it are true sur-
faces in the sense that the hyperperson can touch any point inside any
cube with the point of a hyperpin without the pin’s passing through
any other point in the cube, just as we, with a pin, can touch any point
inside any square face of a cube without the pin’s going through any
other point on that face. Points are “inside” a cube only to us. To a hy-
perperson every point in each cubical “face” of a tesseract is directly
exposed to his vision as he turns the tesseract in his hyperfingers.

Even harder to imagine is the fact that a cube in 4-space will rotate
around any of its faces. The eight cubes that bound the tesseract are
joined at their faces. Indeed, each of the 24 squares in the tesseract is a
joining spot for two cubes, as can easily be verified by studying the 3-
space models. If 17 of these 24 squares are cut, separating the pair of
cubes attached at that spot, and if these cuts are made at the right
places, the eight cubes will be free to rotate around the seven uncut
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Figure 13.5. Unfolding a square (top) and a cube (botfom)

squares where they remain attached until all eight are in the same 3-
space. They will then form an order-8 polycube (eight cubes joined at
their faces).

Salvador Dali’s painting “Corpus Hypercubus” (Figure 13.6 owned
by the Metropolitan Museum of Art) shows a hypercube unfolded to
form a cross-shaped polycube analogous to the cross-shaped hexomino.
Observe how Dali has emphasized the contrast between 2-space and 3-
space by suspending his polycube above a checkerboard and by having
a distant light cast shadows of Christ’s arms. By making the cross an un-
folded tesseract Dali symbolizes the orthodox Christian belief that the
death of Christ was a metahistorical event, taking place in a region
transcendent to our time and 3-space and seen, so to speak, only in a
crude, “unfolded” way by our limited vision. The use of Euclidean 4-
space as a symbol of the “wholly other” world has long been a favorite
theme of occultists such as P. D. Ouspensky as well as of several lead-
ing Protestant theologians, notably the German theologian Karl Heim.

On a more mundane level the unfolded hypercube provides the gim-
mick for Robert A. Heinlein’s wild story “—And He Built a Crooked
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Maetropolitan Museum of Art, gift of Chester Dale, 1855
Figure 13.6. Salvador Dali's Corpus Hypercubus, 1954

House,” which can be found in Clifton Fadiman’s anthology Fantasia
Mathematica. A California architect builds a house in the form of an
unfolded hypercube, an upside-down version of Dali’s polycube. When
an earthquake jars the house, it folds itself up into a hollow tesseract.
It appears as a single cube because it rests in our space on its cubical
face just as a folded cardboard cube, standing on a plane, would appear
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to Flatlanders as a square. There are some remarkable adventures inside
the tesseract and some unearthly views through its windows before
the house, jarred by another earthquake, falls out of our space alto-
gether.

The notion that part of our universe might fall out of 3-space is not
so crazy as it sounds. The eminent American physicist J. A. Wheeler
has a perfectly respectable “dropout” theory to explain the enormous
energies that emanate from quasi-stellar radio sources, or quasars.
When a giant star undergoes gravitational collapse, perhaps a central
mass is formed of such incredible density that it puckers space-time
into a blister. If the curvature is great enough, the blister could pinch
together at its neck and the mass could fall out of space—time, releas-
ing energy as it vanishes.

But back to hypercubes and one final question. How many different
order-8 polycubes can be produced by unfolding a hollow hypercube
into 3-space?

Addendum

Hiram Barton, a consulting engineer of Etchingham, Sussex,
England, had the following grim comments to make about Hinton’s col-
ored cubes:

Dear Mr. Gardner:

A shudder ran down my spine when I read your reference to Hinton’s
cubes. I nearly got hooked on them myself in the nineteen-twenties.
Please believe me when I say that they are completely mind-destroying.
The only person I ever met who had worked with them seriously was
Francis Sedlak, a Czech neo-Hegelian philosopher (he wrote a book
called The Creation of Heaven and Earth) who lived in an Oneida-like
community near Stroud, in Gloucestershire.

As you must know, the technique consists essentially in the sequen-
tial visualizing of the adjoint internal faces of the poly-colored unit
cubes making up the large cube. It is not difficult to acquire considerable
facility in this, but the process is one of autohypnosis and, after a while,
the sequences begin to parade themselves through one’s mind of their
own accord. This is pleasurable, in a way, and it was not until I went to
see Sedlak in 1929 that I realized the dangers of setting up an au-
tonomous process in one’s own brain. For the record, the way out is to
establish consciously a countersystem differing from the first in that the

Hypercubes 171



core cube shows different colored faces, but withdrawal is slow and I
wouldn’t recommend anyone to play around with the cubes at all.

The problem of pushing a larger cube through a hole in a smaller
cube is known as Prince Rupert’s problem. The question seems to have
first been asked by Prince Rupert (1619-1682), a nephew of England’s
King Charles. If you hold a cube so one corner points directly toward
you, you will see a regular hexagon. The largest square that will go
into a cube has a face that can be inscribed within this hexagon. Note
that two of the interior square’s sides can be drawn on the outside of the
cube. The other two edges are within the cube.

Apparently I was the first to pose the analogous problem of deter-
mining the largest cube that would go inside a hypercube. Over the
years I received many letters from readers who claimed to have an-
swered this question. Most of the letters were too technical for me to
understand, and wildy different results were claimed.

Richard Guy and Richard Nowakowski, in their feature on unsolved
problems (American Mathematical Monthly, Vol. 104, December 1997,
pp. 967-69) report on a lengthy proof by Kay R. Pechenick DeVicci of
Moorestown, NJ, that the desired cube’s edge is 1.007434775. . . . It is
the square root of 1.014924 . . ., the smaller root of 4x* — 28x® — 7x2 +
16x + 16. Her paper, which includes a generalization to the largest m-
cube in an n-cube, has not been published. Guy and his two collabora-
tors on Unsolved Problems in Geometry (1991), Section B4, refer to
DeVicci’s work as having solved the problem for the 3-cube in a 4-cube,
but they refer to the more general problem of n dimensions as unsolved.

When I began editing columns for this anthology I searched my files
for all the letters I had received on this problem. One writer believed
the answer was simply the unit cube of side 1, which turned out to be
quite close to the truth.

In going more carefully through my correspondence on this prob-
lem I was astonished to find that no less than four readers had obtained
the same answer as Da Vicci—a cube with an edge of 1.00743. . . . I here
list them alphabetically along with the year of their letter: Hermann
Baer, Post Gilboa, Israel (1974); Eugen 1. Bosch, Washington, D.C.
(1966); G. de Josselin de Jong, Delft, The Netherlands (1971); and Kay
R. Pechenick, Lafayette Hill, PA (1983).

The problem of finding all the ways a hypercube can be “unfolded”
to make distinct polycubes (unit cubes joined at their faces) was solved
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by Peter Turney in his 1984 paper (see bibliography). Using graph the-
ory, Turney found 261 unfoldings. His method extends easily to hy-
percubes of any number of dimensions.

In the Journal of Recreational Mathematics (Vol. 15, No. 2. 1982-83,
p- 146) Harry Nelson showed how the 11 polyominoes that fold into a
cube would fit inside a 9 x 9 square and also inside a 7 x 11 rectangle.
It is not known if they will fit inside a smaller rectangle.

Answers

A tesseract of side x has a hypervolume of x*. The volume of its
hypersurface is 8x3. If the two magnitudes are equal, the equation gives
x a value of 8. In general an n-space “cube” with an n-volume equal to
the (n — 1)-volume of its “surface” is an n-cube of side 2n.

The largest square that can be fitted inside a unit cube is the square
shown in Figure 13.7. Each corner of the square is a distance of % from
a corner of the cube. The square has an area of exactly 9/8 and a side
that is three-fourths of the square root of 2. Readers familiar with the
old problem of pushing the largest possible cube through a square hole
in a smaller cube will recognize this square as the cross section of the
limiting size of the square hole. In other words, a cube of side not quite
three-fourths of the square root of 2 can be pushed through a square
hole in a unit cube.

% Figure 13.7. Packing a square in a cube
%

Y
Y

Figure 13.8 shows the 11 different hexominoes that fold into a cube.
They form a frustrating set, because they will not fit together to make
any of the rectangles that contain 66 unit squares, but perhaps there are
some interesting patterns they will form.
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Figure 13.8. The 11 hexominoes that fold into cubes
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Chapter 14 Non-Euclidean
Geometry

“Lines that are parallel
meet at Infinity!”
Euclid repeatedly,
heatedly,
urged.
Until he died,
and so reached that vicinity:
in it he
found that the damned things
diverged.

—Piet Hein, Grooks VI

Euclid’s Elements is dull, long-winded, and does not make ex-
plicit the fact that two circles can intersect, that a circle has an outside
and an inside, that triangles can be turned over, and other assumptions
essential to his system. By modern standards Bertrand Russell could
call Euclid’s fourth proposition a “tissue of nonsense” and declare it a
scandal that the Elements was still used as a textbook.

On the other hand, Euclid’s geometry was the first major effort to or-
ganize the subject as an axiomatic system, and it seems hardly fair to
find fault with him for not anticipating all the repairs made when
David Hilbert and others formalized the system. There is no more strik-
ing evidence of Euclid’s genius than his realization that his notorious
fifth postulate was not a theorem but an axiom that had to be accepted
without proof.

Euclid’s way of stating the postulate was rather cumbersome, and it
was recognized early that it could be given the following simpler form:
Through a point on a plane, not on a given straight line, only one line
is parallel to the given line. Because this is not quite as intuitively ob-
vious as Euclid’s other axioms mathematicians tried for 2,000 years to
remove the postulate by making it a theorem that could be established
on the basis of Euclid’s other axioms. Hundreds of proofs were at-
tempted. Some eminent mathematicians thought they had succeeded,
but it always turned out that somewhere in their proof an assumption
had been made that either was equivalent to the parallel postulate or re-
quired the postulate.
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For example, it is easy to prove the parallel postulate if you assume
that the sum of the angles of every triangle equals two right angles. Un-
fortunately you cannot prove this assumption without using the paral-
lel postulate. An early false proof, attributed to Thales of Miletus, rests
on the existence of a rectangle, that is, a quadrilateral with four right an-
gles. You cannot prove, however, that rectangles exist without using the
paralle] postulate! In the 17th century John Wallis, a renowned English
mathematician, believed he had proved the postulate. Alas, he failed to
realize that his assumption that two triangles can be similar but not
congruent cannot be proved without the parallel postulate. Long lists
can be made of other assumptions, all so intuitively obvious that they
hardly seem worth asserting, and all equivalent to the parallel postu-
late in the sense that they do not hold unless the postulate holds.

In the early 19th century trying to prove the postulate became some-
thing of a mania. In Hungary, Farkas Bolyai spent much of his life at the
task, and in his youth he discussed it often with his German friend
Karl Friedrich Gauss. Farkas’ son Jdnos became so obsessed by the
problem that his father was moved to write in a letter: “For God’s sake,
I beseech you, give it up. Fear it no less than sensual passions because
it too may take all your time and deprive you of your health, peace of
mind and happiness in life.”

Jdnos did not give it up, and soon he became persuaded not only
that the postulate was independent of the other axioms but also that a
consistent geometry could be created by assuming that through the
point an infinity of lines were parallel to the given line. “Out of noth-
ing I have created a new universe,” he proudly wrote to his father in
1823.

Farkas at once urged his son to let him publish these sensational
claims in an appendix to a book he was then completing. “If you have
really succeeded, it is right that no time be lost in making it public, for
two reasons: first, because ideas pass easily from one to another who
can anticipate its publication; and secondly, there is some truth in this,
that many things have an epoch in which they are found at the same
time in several places, just as the violets appear on every side in spring.
Also every scientific struggle is just a serious war, in which I cannot say
when peace will arrive. Thus we ought to conquer when we are able,
since the advantage is always to the first comer.”

Jénos’ brief masterpiece did appear in his father’s book, but as it hap-
pened the publication of the book was delayed until 1832. The Russ-
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ian mathematician Nikolai Ivanovitch Lobachevski had beat him to it
by disclosing details of the same strange geometry (later called by Felix
Klein hyperbolic geometry) in a paper of 1829. What is worse, when
Farkas sent the appendix to his old friend Gauss, the Prince of Mathe-
maticians replied that if he praised the work, he would only be prais-
ing himself, inasmuch as he had worked it all out many years earlier
but had published nothing. In other letters he gave his reason. He did
not want to arouse an “outcry” among the “Boeotians,” by which he
meant his conservative colleagues. (In ancient Athens the Boeotians
were considered unusually stupid.)

Crushed by Gauss’s response, Jdnos even suspected that his father
might have leaked his marvelous discovery to Gauss. When he later
learned of Lobachevski’s earlier paper, he lost interest in the topic and
published nothing more. “The nature of real truth of course cannot but
be one and the same in Marcos-Vasarhely as in Kamchatka and on the
moon,” he wrote, resigned to having published too late to win the
honor for which he had so passionately hoped.

In some ways the story of the Italian Jesuit Giralamo Saccheri is even
sadder than that of Bolyai. As early as 1733, in a Latin book called Eu-
clid Cleared of All Blemish, Saccheri actually constructed both types of
non-Euclidean geometry (we shall come to the second type below)
without knowing it! Or so it seems. At any rate Saccheri refused to be-
lieve either geometry was consistent, but he came so close to accepting
them that some historians think he pretended to disbelieve them just
to get his book published. “To have claimed that a non-Euclidean sys-
tem was as ‘true’ as Euclid’s,” writes Eric Temple Bell (in a chapter on
Saccheri in The Magic of Numbers), “would have been a foolhardy in-
vitation to repression and discipline. The Copernicus of Geometry
therefore resorted to subterfuge. Taking a long chance, Saccheri de-
nounced his own work, hoping by this pious betrayal to slip his heresy
past the censors.”

I cannot resist adding two anecdotes about the Bolyais. Janos was a
cavalry officer (mathematics had always been strictly a recreation)
known for his swordsmanship, his skill on the violin, and his hot tem-
per. He is said to have once challenged 13 officers to duels, provided
that after each victory he would be allowed to play to the loser a piece
on his violin. The elder Bolyai is reported to have been buried at his
own request under an apple tree, with no monument, to commemorate
history’s three most famous apples: the apple of Eve, the golden apple
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Paris gave Venus as a beauty-contest prize, and the falling apple that in-
spired Isaac Newton.

Before the 19th century had ended it became clear that the parallel
postulate not only was independent of the others but also that it could
be altered in two opposite ways. If it was replaced (as Gauss, Bolyai,
and Lobachevski had proposed) by assuming an infinite number of “ul-
traparallel” lines through the point, the result would be a new geome-
try just as elegant and as “true” as Euclid’s. All Euclid’s other postulates
remain valid; a “straight” line is still a geodesic, or shortest line. In this
hyperbolic space all triangles have an angle sum less than 180 degrees,
and the sum decreases as triangles get larger. All similar polygons are
congruent. The circumference of any circle is greater than pi times the
diameter. The measure of curvature of the hyperbolic plane is negative
(in contrast to the zero curvature of the Euclidean plane) and every-
where the same. Like Euclidean geometry, hyperbolic geometry gener-
alizes to 3-space and all higher dimensions.

The second type of non-Euclidean geometry, which Klein names “el-
liptic,” was later developed simultaneously by the German mathe-
matician Georg Friedrich Bernhard Riemann and the Swiss
mathematician Ludwig Schlifli. It replaces the parallel postulate with
the assumption that through the point no line can be drawn parallel to
the given line. In this geometry the angle sum of a triangle is always
more than 180 degrees, and the circumference of a circle is always less
than pi times the diameter. Every geodesic is finite and closed. The
lines in every pair of geodesics cross.

To prove consistency for the two new geometries various Euclidean
models of each geometry were found showing that if Euclidean geom-
etry is consistent, so are the other two. Moreover, Euclidean geometry
has been “arithmetized,” proving that if arithmetic is consistent, so too
is Euclid’s geometry. We now know, thanks to Kurt Godel, that the con-
sistency of arithmetic is not provable in arithmetic, and although there
are consistency proofs for arithmetic (such as the famous proof by Ger-
hard Gentzen in 1936), no such proof has yet been found that can be
considered entirely constructive by an intuitionist (see A. Calder, “Con-
structive Mathematics,” Scientific American, October 1979). God ex-
ists, someone once said, because mathematics is consistent, and the
Devil exists because we are not able to prove it.

The various metaproofs of arithmetic’s consistency, as Paul C. Rosen-
bloom has put it, may not have eliminated the Devil, but they have re-
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duced the size of hell almost to zero. In any case no mathematician
today expects arithmetic (therefore also Euclidean and non-Euclidean
geometries) ever to produce a contradiction. Curiously, Lewis Carroll
was one of the last mathematicians to doubt non-Euclidean geometry.
“It is a strange paradox,” the geometer H.S.M. Coxeter has written,
“that he, whose Alice in Wonderland could alter her size by eating a lit-
tle cake, was unable to accept the possibility that the area of a triangle
could remain finite when its sides tend to infinity.”

What Coxeter had in mind can be grasped by studying M. C. Escher’s
Circle Limit III, reproduced in Figure 14.1. This 1959 woodcut (one of
Escher’s rare works with several colors in one picture) is a tessellation
based on a Euclidean model of the hyperbolic plane that was con-
structed by Henri Poincaré. In Poincaré’s ingenious model every point
on the Euclidean plane corresponds to a point inside (but not on) the
circle’s circumference. Beyond the circle there is, as Escher put it, “ab-
solute nothingness.”

Imagine that Flatlanders live on this model. As they move outward
from the center their size seems to us to get progressively smaller, al-
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though they are unaware of any change because all their measuring in-
struments similarly get smaller. At the boundary their size would be-
come zero, but they can never reach the boundary. If they proceed
toward it with uniform velocity, their speed (to us) steadily decreases,
although to them it seems constant. Thus their universe, which we see
as being finite, is to them infinite. Hyperbolic light follows geodesics,
but because its velocity is proportional to its distance from the bound-
ary it takes paths that we see as circular arcs meeting the boundary at
right angles.

In this hyperbolic world a triangle has a maximum finite area, as is
shown in Figure 14.2, although its three “straight” sides go to infinity
in hyperbolic length and its three angles are zero. You must not think
of Escher’s mosaic as being laid out on a sphere. It is a circle enclosing
an infinity of fish—Coxeter calls it a “miraculous draught”—that get
progressively smaller as they near the circumference. In the hyperbolic
plane, of which the picture is only a model, the fish are all identical in
size and shape. It is important to remember that the creatures of a hy-
perbolic world would not change in shape as they moved about, light
would not change in speed, and the universe would be infinite in all
directions.

Figure 14.2,

The curved white lines in Escher’s woodcut do not, as many people
have supposed, model hyperbolic geodesics. The lines are called
equidistant curves or hypercycles. Each line has a constant perpendic-
ular distance (measured hyperbolically) from the hyperbolic straight
line that joins the arc’s ends. Note that along each white curve fish of
the same color swim head to tail. If you consider all the points where
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four fins meet, these points are the vertexes of a regular tiling of the hy-
perbolic plane by equilateral triangles with angles of 45 degrees. The
centers of the triangles are the points where three left fins meet and
three mouths touch three tails. The 45-degree angles make it possible
for eight triangles to surround each vertex, where in a Euclidean tiling
by equilateral triangles only six triangles can surround each vertex.

Escher and Coxeter had corresponded from the time they met in
1954, and Escher’s interest in tilings of the hyperbolic plane had been
aroused by the illustrations in a 1957 paper on crystal symmetry that
Coxeter had written and sent to him. In a lovely article titled “The
Non-Euclidean Symmetry of Escher’s Picture ‘Circle Limit III’ ” (in the
journal Leonardo, Vol. 12, 1979, pp. 19-25) Coxeter shows that each
white arc meets the boundary at an angle of almost 80 degrees. (The
precise value is 274 + 254 arc secants.) Coxeter considers Circle Limit
IIT the most mathematically sophisticated of all Escher’s pictures. It
even anticipated a discovery Coxeter did not make until five years after
the woodcut was finished!

Elliptic geometry is roughly modeled by the surface of a sphere. Here
Euclidean straight lines become great circles. Clearly no two can be
parallel, and it is easy to see that triangles formed by arcs of great cir-
cles must have angles that add up to more than two right angles. The
hyperbolic plane is similarly modeled by the saddle-shaped surface of
a pseudosphere, generated by rotating a tractrix about its asymptote.

It is a misuse of the word “crank” to apply it to mathematicians who
erred in thinking, before the independence of the parallel postulate
was established, that they had proved the postulate. The same cannot
be said of those amateurs of later decades who could not understand
the proofs of the postulate’s independence or who were too egotistical
to try. Augustus De Morgan, in his classic compendium of eccentric
mathematics, A Budget of Paradoxes, introduces us to Britain’s most in-
defatigable 19th-century parallel-postulate prover, General Perronet
Thompson. Thompson kept issuing revisions of his many proofs (one
was based on the equiangular spiral), and although De Morgan did his
best to dissuade him from his futile efforts, he was unsuccessful.
Thompson also wanted to replace the tempered scale of the piano with
an octave of 40 notes.

The funniest of the American parallel-postulate provers was the Very
Reverend Jeremiah Joseph Callahan, then president of Duquesne Uni-
versity in Pittsburgh. In 1931, when Father Callahan announced he
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had trisected the angle, Time gave the story sober treatment and ran his
photograph. The following year Callahan published his major work,
Euclid or Einstein: A Proof of the Parallel Theory and a Critique of
Metageometry (Devon-Adair, 1932), a 310-page treatise in which he as-
cended to heights of argumentem ad hominem. Einstein is “fuddled,”
he “has not a logical mind,” he is in a “mental fog,” he is a “careless
thinker.” “His thought staggers, and reels, and stumbles, and falls, like
a blind man rushing into unknown territory.” “Sometimes one feels
like laughing,” Callahan wrote, “and sometimes one feels a little irri-
tated. . . . But there is no use expecting Einstein to reason.”

What Callahan found so irritating was Einstein’s adoption of a gen-
eralized non-Euclidean geometry, formulated by Riemann, in which
the curvature of physical space varies from point to point depending on
the influence of matter. One of the great revolutions brought about by
relativity theory was the discovery that an enormous overall simplifi-
cation of physics is obtained by assuming physical space to have this
kind of non-Euclidean structure.

It is now commonplace (how astonished, and I think delighted, Kant
would have been by the notion!) to recognize that all geometric systems
are equally “true” in the abstract but that the structure of physical space
must be determined empirically. Gauss himself thought of triangulat-
ing three mountain peaks to see if their angles added up to two right an-
gles. It is said he actually made such a test, with inconclusive results.
Although experiments can prove physical space is non-Euclidean, it is
a curious fact that there is no way to prove it is Euclidean! Zero curva-
ture is a limiting case, midway between elliptic and hyperbolic curva-
tures. Since all measurement is subject to error, the deviation from zero
could always be too slight for detection.

Poincaré held the opinion that if optical experiments seemed to show
physical space was non-Euclidean, it would be best to preserve the
simpler Euclidean geometry of space and assume that light rays do not
follow geodesics. Many mathematicians and physicists, including Rus-
sell, agreed with Poincaré until relativity theory changed their mind.
Alfred North Whitehead was among the few whose mind was never
changed. He even wrote a book on relativity, now forgotten, in which
he argued for preserving a Euclidean universe (or at least one of con-
stant curvature) and modifying the physical laws as necessary. (For a
discussion of Whitehead’s controversy with Einstein, see Robert M.
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Palter’s Whitehead’s Philosophy of Science, University of Chicago
Press, 1960.)

Physicists are no longer disturbed by the notion that physical space
has a generalized non-Euclidean structure. Callahan was not merely
disturbed; he was also convinced that all non-Euclidean geometries
are self-contradictory. Einstein, poor fellow, did not know how easy it
is to prove the parallel postulate. If you are curious about how Callahan
did it, and about his elementary error, see D. R. Ward’s paper in The
Mathematical Gazette (Vol. 17, May 1933, pp. 101-4).

Like their cousins who trisect the angle, square the circle, and find
simple proofs of Fermat’s last theorem, the parallel-postulate provers
are a determined breed. A more recent example is William L. Fischer
of Munich, who in 1959 published a 100-page Critique of Non-
Euclidean Geometry. Ian Stewart exposed its errors in the British jour-
nal Manifold (No. 12, Summer 1972, pp. 14—21). Stewart quotes from
a letter in which Fischer accuses establishment mathematicians of sup-
pressing his great work and orthodox journals of refusing to review it:
“The university library at Cambridge refused even to put my booklet on
file. . ..Ihad to write to the vice-chancellor to overcome this boycott.”

There are, of course, no sharp criteria for distinguishing crank math-
ematics from good mathematics, but then neither are there sharp crite-
ria for distinguishing day from night, life from non-life, and where the
ocean ends and the shore begins. Without words for parts of continu-
ums we could not think or talk at all. If you, dear reader, have a way to
prove the parallel postulate, don’t tell me about it!

Addendum

Imagine a small circle around the north pole of the earth. If it
keeps expanding, it reaches a maximum size at the equator, after which
it starts to contract until it finally becomes a point at the south pole. In
similar fashion, an expanding sphere in four-dimensional elliptical
space reaches a maximum size, then contracts to a point.

In addition to the three geometries described in this chapter, there is
what Bolyai called “absolute geometry” in which theorems are true in
all three. It is astonishing that the first 28 theorems of Euclid’s Ele-
ments are in this category, along with other novel theorems that Bolyai
showed to be independent of the parallel postulate.
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I'was surprised to see in a 1984 issue of Speculations in Science and
Technology (Vol. 7, pp. 207-16), a defense of Father Callahan’s proof of
the parallel postulate! The authors are Richard Hazelett, vice president
of the Hazelett Strip-Casting Corporation, Colchester, VT, and Dean E.
Turner, who teaches at the University of North Colorado, in Greeley.
Hazelett is a mechanical engineer with master’s degrees from the Uni-
versity of Texas and Boston University. Taylor, an ordained minister in
the Disciples of Christ Church, has a doctorate from the University of
Texas.

It is easy to understand why both men do not accept Einstein’s gen-
eral theory of relativity. Indeed, they have edited a book of papers at-
tacking Einstein. Titled The Einstein Myth and the Ives Papers, it was
published in 1979 by Devin-Adair.

In an earlier column on geometrical fallacies, reprinted in Wheels,
Life, and Other Mathematical Amusements (1983), I discussed in detail
Father Callihan’s false “proof” of the parallel postulate. For other false
proofs, see Underwood Dudley’s book cited in the bibliography.

In the Encyclopaedia Britannica’s tenth edition Bertrand Russell con-
tributed an article on “Geometry, Non-Euclidean.” It was revised for the
eleventh edition (1910) with Whitehead’s name added as coauthor.
They argued that at present, on grounds of simplicity, if an experiment
ever contradicted Euclidean geometry it would be preferable to ques-
tion the experiment rather than give up Euclidean geometry. Of course
they wrote this before relativity theory proved otherwise. Poincaré’s ob-
jection to non-Euclidean geometry was unqualified. Russell changed
his mind in the light of relativity theory, but if Whitehead ever changed
his mind I've been unable to find evidence for it.
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Chapter 15 Rotations
and Reflections

A geometric figure is said to be symmetrical if it remains un-
changed after a “symmetry operation” has been performed on it. The
larger the number of such operations, the richer the symmetry. For ex-
ample, the capital letter A is unchanged when reflected in a mirror
placed vertically beside it. It is said to have vertical symmetry. The
capital B lacks this symmetry but has horizontal symmetry: it is un-
changed in a mirror held horizontally above or below it. S is neither
horizontally nor vertically symmetrical but remains the same if rotated
180 degrees (twofold symmetry). All three of these symmetries are pos-
sessed by H, I, O, and X. X is richer in symmetry than H or I because,
if its arms cross at right angles, it is also unchanged by quarter-turns
(fourfold symmetry). O, in circular form, is the richest letter of all. It is
unchanged by any type of rotation or reflection.

Because the earth is a sphere toward the center of which all objects
are drawn by gravity, living forms have found it efficient to evolve
shapes that possess strong vertical symmetry combined with an obvi-
ous lack of horizontal or rotational symmetry. In making objects for his
use man has followed a similar pattern. Look around and you will be
struck by the number of things you see that are essentially unchanged
in a vertical mirror: chairs, tables, lamps, dishes, automobiles, air-
planes, office buildings—the list is endless. It is this prevalence of ver-
tical symmetry that makes it so difficult to tell when a photograph has
been reversed, unless the scene is familiar or contains such obvious
clues as reversed printing or cars driving on the wrong side of the road.
On the other hand, an upside-down photograph of almost anything is
instantly recognizable as inverted.

The same is true of works of graphic art. They lose little, if anything,
by reflection, but unless they are completely nonrepresentational no
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careless museum director is likely to hang one upside down. Of course,
abstract paintings are often inverted by accident. The New York Times
Magazine (October 5, 1958) inadvertently both reversed and inverted a
picture of an abstraction by Piet Mondrian, but only readers who knew
the painting could possibly have noticed it. In 1961, at the New York
Museum of Modern Art, Matisse’s painting, Le Bateau, hung upside
down for 47 days before anyone noticed the error.

So accustomed are we to vertical symmetry, so unaccustomed to see-
ing things upside down, that it is extremely difficult to imagine what
most scenes, pictures, or objects would look like inverted. Landscape
artists have been known to check the colors of a scene by the undigni-
fied technique of bending over and viewing the landscape through their
legs. Its upside-down contours are so unfamiliar that colors can be seen
uncontaminated, so to speak, by association with familiar shapes.
Thoreau liked to view scenes this way and refers to such a view of a
pond in Chapter 9 of Walden. Many philosophers and writers have
found symbolic meaning in this vision of a topsy-turvy landscape; it
was one of the favorite themes of G. K. Chesterton. His best mystery sto-
ries (in my opinion) concern the poet-artist Gabriel Gale (in The Poet
and the Lunatics), who periodically stands on his hands so that he can
“see the landscape as it really is: with the stars like flowers, and the
clouds like hills, and all men hanging on the mercy of God.”

The mind’s inability to imagine things upside down is essential to
the surprise produced by those ingenious pictures that turn into some-
thing entirely different when rotated 180 degrees. Nineteenth-century
political cartoonists were fond of this device. When a reader inverted
a drawing of a famous public figure, he would see a pig or jackass or
something equally insulting. The device is less popular today, although
Life for September 18, 1950, reproduced a remarkable Italian poster on
which the face of Garibaldi became the face of Stalin when viewed up-
side down. Children’s magazines sometimes reproduce such upside-
down pictures, and now and then they are used as advertising
gimmicks. The back cover of Life for November 23, 1953, depicted an
Indian brave inspecting a stalk of corn. Thousands of readers probably
failed to notice that when this picture was inverted it became the face
of a man, his mouth watering at the sight of an open can of corn.

I know of only four books that are collections of upside-down draw-
ings. Peter Newell, a popular illustrator of children’s books who died
in 1924, published two books of color plates of scenes that undergo
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amusing transformations when inverted: Topsys & Turvys (1893) and
Topsys and Turvys Number 2 (1894). In 1946 a London publisher is-
sued a collection of 15 astonishing upside-down faces drawn by Rex
Whistler, an English muralist who died in 1944. The book has the
richly symmetrical title of ;OHO! (Its title page is reproduced in Figure
15.1.)

— o —————"="1  Figure 15.1. Invertible faces
on the title page of Whistler’s
invertible book

-B_‘

The technique of upside-down drawing was carried to unbelievable
heights in 1903 and 1904 by a cartoonist named Gustave Verbeek. Each
week he drew a six-panel color comic for the Sunday “funny paper” of
the New York Herald. One took the panels in order, reading the cap-
tions beneath each picture; then one turned the page upside down and
continued the story, reading a new set of captions and taking the same
six panels in reverse order! (See Figure 15.2.) Verbeek managed to
achieve continuity by means of two chief characters called Little Lady
Lovekins and Old Man Muffaroo. Each became the other when in-
verted. How Verbeek managed to work all this out week after week
without going mad surpasses all understanding. A collection of 25 of
his comics was published by G. W. Dillingham in 1905 under the title
of The Upside-Downs of Little Lady Lovekins and Old Man Muffaroo.
The book is extremely rare.

The 90-degree rotation is less frequently used in art play, perhaps be-
cause it is easier for the mind to anticipate results. If done artfully,
however, it can be effective. An example is a landscape by the 17th-
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Figure 15.2. A typical upside-down cartoon by Gustave Verbeek

century Swiss painter Matthdus Merian that becomes a man’s profile
when the picture is given a quarter-turn counterclockwise. The rab-
bit—duck in Figure 15.3 is the best-known example of a quarter-turn
picture. Psychologists have long used it for various sorts of testing.
Harvard philosopher Morton White once reproduced a rabbit—duck
drawing in a magazine article to symbolize the fact that two historians
can survey the same set of historical facts but see them in two essen-
tially different ways.

Our lifelong conditioning in the way we see things is responsible for
a variety of startling upside-down optical illusions. All astronomers
know the necessity of viewing photographs of the moon’s surface so
that sunlight appears to illuminate the craters from above rather than
below. We are so unaccustomed to seeing things illuminated from
below that when such a photograph of the moon is inverted, the craters
instantly appear to be circular mesas rising above the surface. One of
the most amusing illusions of this same general type is shown in Fig-
ure 15.4. The missing slice of pie is found by turning the picture upside
down. Here again the explanation surely lies in the fact that we almost
always see plates and pies from above and almost never from below.

Upside-down faces could not be designed, of course, if it were not for
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Figure 15.3. A quarter-turn clockwise Figure 15.4. Where is the missing slice?
makes the duck into a rabbit.

the fact that our eyes are not too far from midway between the top of
the head and the chin. School children often amuse themselves by
turning a history book upside down and penciling a nose and mouth on
the forehead of some famous person.

When this is done on an actual face, using eyebrow pencil and lip-
stick, the effect becomes even more grotesque. It was a popular party
pastime of the late 19th century. The following account is from an old
book entitled What Shall We Do Tonight?

The severed head always causes a sensation and should not be suddenly
exposed to the nervous. . . . A large table, covered with a cloth suffi-
ciently long to reach to the floor all around and completely hide all be-
neath, is placed in the center of the room. . . . A boy with soft silky hair,
rather long, being selected to represent the head, must lie upon his back
under the table entirely concealed, excepting that portion of his face
above the bridge of his nose. The rest is under the tablecloth.

His hair must now be carefully combed down, to represent whiskers,
and a face must be painted . . . upon the cheeks and forehead; the false
eyebrows, nose and mouth, with mustache, must be strongly marked
with black water color, or India ink, and the real eyebrows covered with
a little powder or flour. The face should also be powdered to a deathlike
pallor. . ..

The horror of this illusion may be intensified by having a subdued
light in the room in which the exhibition has been arranged. This
conceals in a great degree any slight defects in the “making-up” of the
head. . ..

Needless to add, the horror is heightened when the “head” suddenly
opens its eyes, blinks, stares from side to side, wrinkles its cheeks (fore-
head).

The physicist Robert W. Wood (author of How to Tell the Birds from
the Flowers) invented a funny variation of the severed head. The face
is viewed upside down as before, but now it is the forehead, eyes, and
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nose that are covered, leaving only the mouth and chin exposed. Eyes
and nose are drawn on the chin to produce a weird little pinheaded
creature with a huge, flexible mouth. The stunt was a favorite of Paul
Winchell, the television ventriloquist. He wore a small dummy’s body
on his head to make a figure that he called Ozwald, while television
camera techniques inverted the screen to bring Ozwald right side up.
In 1961 an Ozwald kit was marketed for children, complete with the
dummy’s body and a special mirror with which to view one’s own face
upside down,

It is possible to print or even write in longhand certain words in
such a way that they possess twofold symmetry. The Zoological Soci-
ety of San Diego, for instance, publishes a magazine called ZOONOOZ,
the name of which is the same upside down. The longest sentence of
this type that I have come across is said to be a sign by a swimming pool
designed to read the same when viewed by athletes practicing hand-
stands: Now NO swiMs ON MON. (See Figure 15.5.)

sketch reproduced by courtesy of the artist, John McClellan
Figure 15.5. An invertible sign

It is easy to form numbers that are the same upside down. As many
have noticed, 1961 is such a number. It was the first year with twofold
symmetry since 1881, the last until 6009, and the twenty-third since the
year 1. Altogether there are 38 such years between a.p. 1 and a.p. 10000
(according to a calculation made by John Pomeroy), with the longest in-
terval between 1961 and 6009. ]. F. Bowers, writing in the Mathemati-
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cal Gazette for December 1961, explains his clever method of calculat-
ing that by A.p. 1000000 exactly 198 invertible years will have passed.
The January 1961 issue of Mad featured an upside-down cover with the
year’s numerals in the center and a line predicting that the year would
be a mad one.

Some numbers, for example 7734 (when the 4 is written so that it is
open at the top), become words when inverted; others can be written
to become words when reflected. With these quaint possibilities in
mind, the reader may enjoy tackling the following easy problems:

1. Oliver Lee, age 44, who lives at 312 Main Street, asked the city to
give his car a license plate bearing the number 337-31770. Why?

2. Prove the sum in Figure 15.6 to be correct.

3[4 I ” Figure 15.6. Is the sum correct?

340
TH813

43374813

3. Circle six digits in the group below that will add up to exactly 21.

Q N W =
O U1 W =
O A W =

4. A basket contains more than half a dozen eggs. Each egg is either
white or brown. Let x be the number of white eggs, and y be the num-
ber of brown. The sum of x and y, turned upside down, is the product
of x and y. How many eggs are in the basket?

Addendum

George Carlson, art editor of John Martin’s Book, a monthly
magazine for children that flourished in the 1920s, contributed some
dozen upside-down pictures to the magazine. Many other examples
can be found in several books on optical illusions and related pictures
by England’s Keith Kay. In 1980 Lothrop published The Turn About,
Think About, Look About Book, by Beau Gardner. It features pictures
to be viewed both upside down and after quarter-turns.
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In 1963 George Naimark privately published, under the imprint of
Rajah Press, a collection of Verbeek’s comic strips. It was followed by
an edition in Japan that was fully colored.

Salvador Dali painted a number of pictures that changed when in-
verted or rotated 90 degrees. His frontispiece for The Maze, by Maurice
Yves Sandoz (1945), is the face of a man. Upside down it becomes a frog
on the rim of a bowl. In 1969 he designed an ashtray to be given away
on Air-India flights. Three elephant heads surrounding the tray become
swans when the tray is inverted. See a full-page ad for the gift in The
New York Times, June 27, 1969, p. 38. A 1937 painting by Dali shows

Figure 15.7. Rotate the top picture 90 degrees to the left, and the bottom landscape 90
degrees to the right.
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three swans on a lake. Their reflections in the water are three elephants.
The landscape is reproduced in color in Richard Gregory’s book on
mirrors, Mirrors in Mind (1997).

Landscapes that turn into faces when rotated 90 degrees were popu-
lar among German painters of the Renaissance. Two examples are re-
produced in Figure 15.7.

Answers

1. The number 337-31770 upside down spells “Ollie Lee.”

2. Hold the sum to a mirror.

3. Turn the picture upside down, circle three 6’s and three 1’s to
make a total of 21.

4. The basket has nine white eggs and nine brown eggs. When the
sum, 18, is inverted, it becomes 81, the product. Had it not been spec-
ified that the basket contained more than six eggs, three white and
three brown would have been another answer.
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Chapter 16 The Amazing
Creations of Scott Kim

Scott Kim’s Inversions, published in 1981 by Byte Publications,
is one of the most astonishing and delightful books ever printed. Over
the years Kim has developed the magical ability to take just about any
word or short phrase and letter it in such a way that it exhibits some
kind of striking geometrical symmetry. Consider Kim'’s lettering of my
name in Figure 16.1. Turn it upside down and presto! It remains exactly
the same!

Figure 16.1.

_mnin G andowr

Students of curious wordplay have long recognized that short words
can be formed to display various types of geometrical symmetry. On the
Rue Mozart in Paris a clothing shop called “New Man” has a large sign
lettered “NeW MaN"” with the e and the a identical except for their ori-
entation. As a result the entire sign has upside-down symmetry. The
names VISTA (the magazine of the United Nations Association),
ZOONOOZ (the magazine of the San Diego zoo) and NISSIN (a Japan-
ese manufacturer of camera flash equipment] are all cleverly designed
so that they have upside-down symmetry.

BOO HOO, DIOXIDE, EXCEEDED, and DICK COHEN DIED 10 DEC
1883 all have mirror symmetry about a horizontal axis. If you hold
them upside down in front of a mirror, they appear unchanged. One
day in a supermarket my sister was puzzled by the name on a box of
crackers, “spep oop,” until she realized that a box of “doo dads” was on
the shelf upside down. Wallace Lee, a magician in North Carolina, liked
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to amuse friends by asking if they had ever eaten any “ittaybeds,” a
word he printed on a piece of paper like this:

|Itteybeds

After everyone said no, he would add:

“Of course, they taste much better upside down.”

Many short words in conventional typefaces turn into other words
when they are inverted. MOM turns into WOW and “up” becomes the
abbreviation “dn.” SWIMS remains the same. Other words have mirror
symmetry about a vertical axis, such as “bid” (and “pig” if the g is
drawn as a mirror image of the p). Here is an amusing way to write
“minimum” so that it is the same when it is rotated 180 degrees:

o] o]

It is Kim who has carried this curious art of symmetrical calligraphy
to heights not previously known to be possible. By ingeniously dis-
torting letters, yet never so violently that one cannot recognize a word
or phrase, Kim has produced incredibly fantastic patterns. His book is
a collection of such wonders, interspersed with provocative observa-
tions on the nature of symmetry, its philosophical aspects, and its em-
bodiment in art and music as well as in wordplay.

Kim is no stranger to my Scientific American columns. He is of Ko-
rean descent, born in the U.S., who in 1981 was doing graduate work
in computer science at Stanford University. He was in his teens when
he began to create highly original problems in recreational mathemat-
ics. Some that have been published in Scientific American include his
“lost-king tours” (April 1977), the problem of placing chess knights on
the corners of a hypercube (February 1978), his solution to “boxing a
box” (February 1979), and his beautifully symmetrical “m-pire map”
given in Chapter 6 of my Last Recreations. In addition to a remarkable
ability to think geometrically (not only in two and three dimensions but
also in 4-space and higher spaces) Kim is a classical pianist who for
years could not decide between pursuing studies in mathematics or in
music. In the early 1980s he was intensely interested in the use of com-
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puters for designing typefaces, a field pioneered by his friend and men-
tor at Stanford, the computer scientist Donald E. Knuth.

For several years Kim'’s talent for lettering words to give them unex-
pected symmetries was confined to amusing friends and designing fam-
ily Christmas cards. He would meet a stranger at a party, learn his or her
name, then vanish for a little while and return with the name neatly
drawn so that it would be the same upside down. His 1977 Christmas
card, with upside-down symmetry, is shown in Figure 16.2. (Lester
and Pear] are his father and mother; Grant and Gail are his brother and
sister.) The following year he found a way to make “Merry Christmas,
1978,” mirror-symmetrical about a horizontal axis, and in 1979 he
made the mirror axis vertical. (See Figures 16.3 and 16.4.)

Figure 16.2.

For a wedding anniversary of his parents Kim designed a cake with
chocolate and vanilla frosting in the pattern shown in Figure 16.5.
(“Lester” is in black, “Pearl” is upside down in white.) This is Kim’s
“figure and ground” technique. You will find another example of it in
Gédel, Escher, Bach: An Eternal Golden Braid, the Pulitzer-prize-
winning book by Kim's good friend Douglas R. Hofstadter. Speaking of
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Kurt Godel, J. S. Bach, and M. C. Escher, Figure 16.6 shows how Kim
has given each name a lovely mirror symmetry. In Figure 16.7 Kim has
lettered the entire alphabet in such a way that the total pattern has
left-right symmetry.

Kim’s magic calligraphy came to the attention of Scot Morris, an ed-
itor at Omni. Morris devoted a page of his popular column on games to
Kim’s work in Omni’s September 1979 issue, and he announced a
reader’s contest for similar patterns. Kim was hired to judge the thou-
sands of entries that came in. You will find the beautiful prizewinners
in Omni’s April 1980 issue and close runners-up in Morris’ columns for
May and November of the same year.

All the patterns in Kim'’s book are his own. A small selection of a few
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more is given in Figure 16.8 to convey some notion of the amazing va-
riety of visual tricks Kim has up his sleeve.

I turn now to two unusual mathematical problems originated by Kim,
both of which are still only partly solved. In 1975, when Kim was in
high school, he thought of the following generalization of the old prob-
lem of placing eight queens on a chessboard so that no queen attacks
another. Let us ask, said Kim, for the maximum number of queens that
can be put on the board so that each queen attacks exactly n other
queens. As in chess, we assume that a queen cannot attack through an-
other queen.

When n is 0, we have the classic problem. Kim was able to prove that
when n is 1, 10 queens is the maximum number. (A proof is in Journal
of Recreational Mathematics, Vol. 13, No. 1, 1980-81, p. 61.) A pleasing
solution is shown in Figure 16.9 top. The middle illustration shows a
maximal solution of 14 queens when n is 2, a pattern Kim described in
a letter as being “so horribly asymmetric that it has no right to exist.”
There are only conjectures for the maximum when n is 3 or 4. Kim's best
result of 16 queens for n= 3 has the ridiculously simple solution shown
in Figure 16.9, bottom, but there is no known proof that 16 is maxi-
mum. For n=4 Kim’s best result is 20 queens. Can you place 20 queens
on a chessboard so each queen attacks exactly four other queens?

The problem can of course be generalized to finite boards of any size,
but Kim has a simple proof based on graph theory that on no finite
board, however large, can n have a value greater than 4. For n =1 Kim
has shown that the maximum number of queens cannot exceed the
largest integer less than or equal to 4k/3, where k is the number of
squares along an edge of the board. For n = 2 he has a more difficult
proof that the maximum number of queens cannot exceed 2k — 2, and
that this maximum is obtainable on all even-order boards.

Kim’s problem concerning polycube snakes has not previously been
published, and he and I would welcome any light that readers can
throw on it. First we must define a snake. It is a single connected chain
of identical unit cubes joined at their faces in such a way that each cube
(except for a cube at the end of a chain) is attached face to face to ex-
actly two other cubes. The snake may twist in any possible direction,
provided no internal cube abuts the face of any cube other than its two
immediate neighbors. The snake may, however, twist so that any num-
ber of its cubes touch along edges or at corners. A polycube snake may
be finite in length, having two end cubes that are each fastened to only
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one cube, or it may be finite and closed so that it has no ends. A snake
may also have just one end and be infinite in length, or it may be infi-
nite and endless in both directions.

We now ask a deceptively simple question. What is the smallest
number of snakes needed to fill all space? We can put it another way.
Imagine space to be completely packed with an infinite number of unit
cubes. What is the smallest number of snakes into which it can be dis-
sected by cutting along the planes that define the cubes?

If we consider the two-dimensional analogue of the problem (snakes
made of unit squares), it is easy to see that the answer is two. We sim-
ply intertwine two spirals of infinite one-ended flat snakes, one gray,
one white, as in Figure 16.10.

204 SYMMETRY



j"'j > Figure 16.10.

The question of how to fill three-dimensional space with polycube
snakes is not so easily answered. Kim has found a way of twisting
four infinitely long one-ended snakes (it is convenient to think of
them as being each a different color] into a structure of interlocked
helical shapes that fill all space. The method is too complicated to ex-
plain in a limited space; you will have to take my word that it can be
done.

Can it be done with three snakes? Not only is this an unanswered
question but also Kim has been unable to prove that it cannot be done
with two! “A solution with only two snakes,” he wrote in a letter,
“would constitute a sort of infinite three-dimensional yin-yang symbol:
the negative space left by one snake would be the other snake. It is the
beauty of such an entwining, and the possibility of building a model
large enough to crawl through, that keeps me searching for a solution.”

The problem can of course be generalized to snakes made of unit
cubes in any number of dimensions. Kim has conjectured that in a
space of n dimensions the minimum number of snakes that completely
fill it is 2(n — 1), but the guess is still a shaky one.

I once had the pleasure of explaining the polycube-snake problem to
John Horton Conway, the Cambridge mathematician now at Princeton
University. When I concluded by saying Kim had not yet shown that
two snakes could not tile three-dimensional space, Conway instantly
said, “But it’s obvious that—" He checked himself in mid-sentence,
stared into three-space for a minute or two, then exclaimed, “It’s not ob-
vious!”

I have no idea what passed through Conway’s mind. I can only say
that if the impossibility of filling three-space with two snakes is not
obvious to Conway or to Kim, it probably is not obvious to anyone
else.
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Addendum

Dozens of readers sent examples of printed words and even
sentences that are unreversed in a mirror or which change to other
words. Several readers noticed that A TOYoTA, not only is a palindrome,
but when written vertically is unaltered by reflection. Jim Scott sent the
photograph reproduced here as Figure 16.11. The word mcuc on the
box of toothpaste is iraNA upside down in a mirror. Kim wrote that a
friend was puzzled over the words “sped deos” until he discovered he
was reading “soap pads” upside down.

Figure 16.11.

I discovered that the following garbled sentence:

MOM
top
OT10
A

got

reads properly when you see it in a mirror.
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David Morice published this two-stanza “poem” in Wordways (No-
vember 1987, p. 235).

DICK HID
CODEBOOK +
DOBIE KICKED
HOBO—OH HECK—I DECIDED
| EXCEEDED ID—I| BOXED
HICK—ODD DODO—EH KID
DEBBIE CHIDED—HOCK CHECKBOOK
ED—BOB BEDDED CHOICE CHICK
HO HO—HE ECHOED—OH OH
DOBIE ICED HOODED IBEX
| COOKED OXHIDE COD
EDIE HEEDED COOKBOOK +
ED
DECKED
BOB

To read the second stanza, hold the poem upside down in front of a
mirror.

Donald Knuth, Ronald Graham, and Oren Patashnik, in their mar-
velous book Concrete Mathematics (the word is a blend of Continuous
and Discrete mathematics), published by Addison-Wesley in 1989, in-
troduce their readers to the “umop-apisdn” function. Rotate the word
180 degrees to see what it means in English.

One conjecture about the origin of the expression “Mind your ps and
gs” is that printers often confused the two letters when they were in
lower case. A more plausible theory is that British tavern owners had
to mind their pints and quarts.

In his autobiography Arrow in the Blue, Arthur Koestler recalls meet-
ing many science cranks when he was a science editor in Berlin. One
was a man who had invented a new alphabet. Each letter had fourfold
rotational symmetry. This, he proclaimed, made it possible for four
people, seated on the four sides of a table, to simultaneously read a
book or newspaper at the table’s center.

Have you heard about the dyslexic atheist who didn’t believe in dog?
Or D.A.M.N,, an organization of National Mothers Against Dyslexia?

I could easily write another chapter about the amazing Scott Kim. He
received his Ph.D. in Computers and Graphic Design, at Stanford Uni-
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versity, working under Donald Knuth. At a curious gathering of mathe-
maticians, puzzle buffs, and magicians in Atlanta in 1995, Kim demon-
strated how your fingers can model the skeleton of a tetrahedron and a
cube, and how they can form a trefoil knot of either handedness. He also
played an endless octave on a piano, each chord rising up the scale yet
never going out of hearing range, and proved he could whistle one tune
and hum another at the same time. During the Atlanta gathering, he
and his friends Karl Schaffer and Erik Stern of the Dr. Schaffer & Mr.
Stern Dance Ensemble presented a dance performance titled “Dances for
the Mind’s Eye.” Choreographed by the three performers, the perfor-
mance was based throughout on mathematical symmetries.

Among books illustrated by Kim are my Aha! Gotcha (W. H. Free-
man, 1982) and Ilan Vardi’s Illustrated Computational Recreations in
Mathematica (Addison-Wesley, 1991). Together with Ms. Robin Samel-
son, Kim produced Letterform and Hlusion, a computer disk with an ac-
companying 48-page book of programs designed for use with Claris’s
MacPaint. In 1994 Random House published Kim’s Puzzle Workout, a
collection of 42 brilliant puzzles reprinted from his puzzle column in
New Media Magazine. Tt is the only book of puzzles known to me in
which every single puzzle is totally original with the author.

Scott Kim'’s queens problem brought many letters from readers who
sent variant solutions for n =2, 3, and 4 on the standard chessboard, as
well as proofs for maximum results and unusual ways to vary the prob-
lem. The most surprising letters came from Jeffrey Spencer, Kjell
Rosquist, and William Rex Marshall. Spencer and Rosquist, writing in
1981, each independently bettered by one Kim’s 20-queen solution for
n = 4 on the chessboard. Figure 16.12 shows how each placed 21
queens. It is not unique. Writing in 1989 from Dunedin, New Zealand,
Marshall sent 36 other solutions!

Marshall also went two better than Kim’s chessboard pattern for n =
3. He sent nine ways that 18 queens can each attack three others on the
chessboard. The solution shown in Figure 16.13 is of special interest be-
cause only three queens are not on the perimeter. Marshall found a sim-
ple pigeonhole proof that for the order-8 board, n = 4, 21 queens is
indeed maximum. His similar proof shows 18 maximum for n = 3. More
generally, he showed that for n = 4, with k the order of the board, the
maximum is 3k — 3 for k greater than 5. When n = 3, Marshall proved that
the maximum number of queens is the largest even number less than or
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equal to (12k —4)/5. For n = 2, he found that Kim’s formula of 2k — 2 ap-
plies to all boards larger than order 2, not just to boards of even order.

Perhaps it is worth noting that when n = 4, no queen can occupy a
corner cell because there is no way it can attack more than three other
queens. Dean Hoffman sent a simple proof that n cannot exceed 4. Con-
sider the topmost queen in the leftmost occupied row. At the most it
can attack four other queens.

In 1991 Peter Hayes sent a letter from Melbourne, Australia, in which
he independently obtained the same results, including all proofs, as
those obtained by William Marshall. They were published in a paper ti-
tled “A Problem of Chess Queens,” in the Journal of Recreational Math-
ematics, Vol. 24, No. 4, 1992, pages 264—71.

In 1996 I received a second letter from William Marshall. He sent me
the results of his computer program which provided complete solu-
tions of Kim'’s chess problem for k (the order of the board) = 1 through

K N=1 N=2 N=3 N=4
3 0 4 2 0
4 5 2 4 1]
5 0 1 31 0
6 2 1 304 (307) 1
7 138 (149) 5 2 3
8 47 (49) 2 g 40
9 1 15 755 655
10 12,490 (12,897) 3 39,302 16,573

Figure 16.14.
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9, and n (number of attacked queens) = 1 through 4. A chart extending
these results to k = 10 is shown in Figure 16.14.

Note that in four cases there are unique solutions. These are shown
in Figure 16.15. Figure 16.16 shows a second solution for n = 2, k=8,
and Figure 16.17 is an elegant solution for n=3, k=9 found among the
755 patterns produced by Marshall’s program.

Dr. Koh Chor Jin, a physicist at the National University of Singapore,
sent a clever proof that given a finite volume of space it is possible to
cover it with two of Kim’s cube-connected snakes. However, as Kim
pointed out, Jin’s construction does not approach all of space as a limit

210 SYMMETRY



as the volume of space increases. Each time you wish to enlarge his
construction, it has to be modified. Kim is convinced that tiling all of
space with two snakes is impossible, but for three snakes the question
Temains open.

In the early 1990s Kim began contributing a puzzle page to Discover.
It is now a regular feature. Ian Stewart devoted his September 1999
Scientific American column on recreational mathematics to the math-
ematical dances choreographed by Kim and his associates Karl Schaf-
fer and Erik Stern.

Answer

Readers were asked to place 20 queens on a chessboard so that
each queen attacks exactly four others. A solution is given in Figure
16.18.

\ Figure 16.18.
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Chapter 17 The Art of
M. C. Escher

What I give form to in daylight is only one
percent of what I've seen in darkness.

—M. C. EscHER

There is an obvious but superficial sense in which certain
kinds of art can be called mathematical art. Op art, for instance, is
“mathematical,” but in a way that is certainly not new. Hard-edged,
rhythmic, decorative patterns are as ancient as art itself, and even the
modern movement toward abstraction in painting began with the geo-
metric forms of the cubists. When the French Dadaist painter Hans Arp
tossed colored paper squares in the air and glued them where they fell,
he linked the rectangles of cubism to the globs of paint slung by the
later “action” painters. In a broad sense even abstract expressionist art
is mathematical, since randomness is a mathematical concept.

This, however, expands the term “mathematical art” until it becomes
meaningless. There is another and more useful sense of the term that
refers not to techniques and patterns but to a picture’s subject matter.
A representational artist who knows something about mathematics can
build a composition around a mathematical theme in the same way
that Renaissance painters did with religious themes or Russian painters
do with political themes. No living artist has been more successful
with this type of “mathematical art” than Maurits C. Escher of the
Netherlands.

“I often feel closer to mathematicians than to my fellow artists,” Es-
cher has written, and he has been quoted as saying, “All my works are
games. Serious games.” His lithographs, woodcuts, wood engravings,
and mezzotints can be found hanging on the walls of mathemnaticians
and scientists in all parts of the world. There is an eerie, surrealist as-
pect to some of his work, but his pictures are less the dreamlike fan-
tasies of a Salvador Dali or a René Magritte than they are subtle
philosophical and mathematical observations intended to evoke what
the poet Howard Nemerov, writing about Escher, called the “mystery,
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absurdity, and sometimes terror” of the world. Many of his pictures
concern mathematical structures that have been discussed in books on
recreational mathematics, but before we examine some of them, a word
about Escher himself.

He was born in Leeuwarden in Holland in 1898, and as a young man
he studied at the School of Architecture and Ornamental Design in
Haarlem. For 10 years he lived in Rome. After leaving Italy in 1934 he
spent two years in Switzerland and five in Brussels, then settled in the
Dutch town of Baarn where he and his wife lived until his death in
1972. Although he had a successful exhibit in 1954 at the Whyte
Gallery in Washington, he was much better known in Europe than here.
A large collection of his work is now owned by the National Gallery of
Art in Washington, D.C.

Among crystallographers Escher is best known for his scores of in-
genious tessellations of the plane. Designs in the Alhambra reveal how
expert the Spanish Moors were in carving the plane into periodic rep-
etitions of congruent shapes, but the Mohammedan religion forbade
them to use the shapes of living things. By slicing the plane into jigsaw
patterns of birds, fish, reptiles, mammals, and human figures, Escher
has been able to incorporate many of his tessellations into a variety of
startling pictures.

In Reptiles, the lithograph shown in Figure 17.1, a little monster
crawls out of the hexagonal tiling to begin a brief cycle of 3-space life
that reaches its summit on the dodecahedron; then the reptile crawls
back again into the lifeless plane. In Day and Night, the woodcut in Fig-
ure 17.2, the scenes at the left and the right are not only mirror images
but also almost “negatives” of each other. As the eye moves up the cen-
ter, rectangular fields flow into interlocking shapes of birds, the black
birds flying into daylight, the white birds flying into night. In the cir-
cular wood-cut Heaven and Hell (Figure 17.3) angels and devils fit to-
gether, the similar shapes becoming smaller farther from the center and
finally fading into an infinity of figures, too tiny to be seen, on the rim.
Good, Escher may be telling us, is a necessary background for evil, and
vice versa. This remarkable tessellation is based on a well-known Eu-
clidean model, devised by Henri Poincaré, of the non-Euclidean hy-
perbolic plane; the interested reader will find it explained in H.S.M.
Coxeter’s Introduction to Geometry (Wiley, 1961), pages 282-90.

If the reader thinks that patterns of this kind are easy to invent, let
him try it! “While drawing I sometimes feel as if I were a spiritualist
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Figure {7.1. Reptiles, lithograph, 1943

Mickelson Gallery, Washington

Figure 17.2. Day and Night, woodcut, 1938
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Figure 17.3. Heaven and Hell, woodcut, 1960

medium,” Escher has said, “controlled by the creatures I am conjuring
up. It is as if they themselves decide on the shape in which they choose
to appear. . . . The border line between two adjacent shapes having a
double function, the act of tracing such a line is a complicated business.
On either side of it, simultaneously, a recognizability takes shape. But
the human eye and mind cannot be busy with two things at the same
moment and so there must be a quick and continuous jumping from
one side to the other. But this difficulty is perhaps the very moving-
spring of my perseverance.”

It would take a book to discuss all the ways in which Escher’s fan-
tastic tessellations illustrate aspects of symmetry, group theory, and
crystallographic laws. Indeed, such a book has been written by Caroline
H. MacGillavry of the University of Amsterdam: Symmetry Aspects of
M. C. Escher’s Periodic Drawings. This book, published in Utrecht for
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the International Union of Crystallography, reproduces 41 of Escher’s
tessellations, many in full color.

Figures 17.4 and 17.5 illustrate another category of Escher’s work, a
play with the laws of perspective to produce what have been called
“impossible figures.” In the lithograph Belvedere, observe the sketch of
the cube on a sheet lying on the checked floor. The small circles mark
two spots where one edge crosses another. In the skeletal model held
by the seated boy, however, the crossings occur in a way that is not re-
alizable in 3-space. The belvedere itself is made up of impossible struc-
tures. The youth near the top of the ladder is outside the belvedere but
the base of the ladder is inside. Perhaps the man in the dungeon has
lost his mind trying to make sense of the contradictory structures in his
world.

The lithograph Ascending and Descending derives from a perplexing
impossible figure that first appeared in an article, “Impossible Objects:
A Special Type of Visual Illusion,” by L. S. Penrose, a British geneticist,
and his son, the mathematician Roger Penrose (British Journal of Psy-
chology, February 1958). The monks of an unknown sect are engaged
in a daily ritual of perpetually marching around the impossible stair-
way on the roof of their monastery, the outside monks climbing, the in-
side monks descending. “Both directions,” comments Escher, “though
not without meaning, are equally useless. Two refractory individuals
refuse to take part in this ‘spiritual exercise.” They think they know bet-
ter than their comrades, but sooner or later they will admit the error of
their nonconformity.”

Many Escher pictures reflect an emotional response of wonder to the
forms of regular and semiregular solids. “In the midst of our often
chaotic society,” Escher has written, “they symbolize in an unrivaled
manner man’s longing for harmony and order, but at the same time
their perfection awes us with a sense of our own helplessness. Regular
polyhedrons have an absolutely nonhuman character. They are not in-
ventions of the human mind, for they existed as crystals in the earth’s
crust Jong before mankind appeared on the scene. And in regard to the
spherical shape—is the universe not made up of spheres?”

The lithograph Order and Chaos (Figure 17.6) features the “small
stellated dodecahedron,” one of the four “Kepler—Poinsot polyhedrons”
that, together with the five Platonic solids, make up the nine possible
“regular polyhedrons.” It was first discovered by Johannes Kepler, who
called it “urchin” and drew a picture of it in his Harmonices mundi
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Figure 17.4. Belvedere, lithograph, 1958
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Figure 17.5. Ascending and Descending, lithograph, 1960

(Harmony of the World), a fantastic numerological work in which basic
ratios found in music and the forms of regular polygons and polyhe-
drons are applied to astrology and cosmology. Like the Platonic solids,
Kepler’s urchin has faces that are equal regular polygons, and it has
equal angles at its vertices, but its faces are not convex and they inter-
sect one another. Imagine each of the 12 faces of the dodecahedron (as
in the picture Reptiles) extended until it becomes a pentagram, or five-
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Figure 17.6. Order and Chaos, lithograph, 1950

pointed star. These 12 intersecting pentagrams form the small stellated
dodecahedron. For centuries mathematicians refused to call the pen-
tagram a “polygon” because its five edges intersect, and for similar rea-
sons they refused to call a solid such as this a “polyhedron” because its
faces intersect. It is amusing to learn that as late as the middle of the
19th century the Swiss mathematician Ludwig Schlifli, although he
recognized some face-intersecting solids as being polyhedrons, refused
to call this one a “genuine” polyhedron because its 12 faces, 12 vertices,
and 30 edges did not conform to Leonhard Euler's famous polyhedral
formula, F+ V= E + 2. (It does conform if it is reinterpreted as a solid
with 60 triangular faces, 32 vertices, and 90 edges, but in this inter-
pretation it cannot be called “regular” because its faces are isosceles tri-
angles.) In Order and Chaos the beautiful symmetry of this solid, its
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points projecting through the surface of an enclosing bubble, is thrown
into contrast with an assortment of what Escher has described as “use-
less, cast-off, and crumpled objects.”

The small stellated dodecahedron is sometimes used as a shape for
light fixtures. Has any manufacturer of Christmas tree ornaments, I
wonder, ever sold it as a three-dimensional star to top a Christmas tree?
A cardboard model is not difficult to make. H. M. Cundy and A. P. Rol-
lett, in Mathematical Models (Oxford University Press, revised edition,
1961}, advise one not to try to fold it from a net but to make a dodeca-
hedron and then cement a five-sided pyramid to each face. Incidentally,
every line segment on the skeleton of this solid is (as Kepler observed)
in golden ratio to every line segment of next-larger length. The solid’s
polyhedral dual is the “great dodecahedron,” formed by the intersec-
tion of 12 regular pentagons. For details about the Kepler—Poinsot star
polyhedrons the reader is referred to the book by Cundy and Rollett and
to Coxeter’s Regular Polytopes (Dover, 1973).

The lithograph Hand with Reflecting Globe (Figure 17.7) exploits a
reflecting property of a spherical mirror to dramatize what philoso-
pher Ralph Barton Perry liked to call the “egocentric predicament.”

Figure 17.7. Hand with Reflecting
Globe, 1935

© 2000 Cordon Art B.V.-Baarn-Holland.
All rights reserved.
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All any person can possibly know about the world is derived from
what enters his skull through various sense organs; there is a sense in
which one never experiences anything except what lies within the cir-
cle of his own sensations and ideas. Out of this “phenomenology” he
constructs what he believes to be the external world, including those
other people who appear to have minds in egocentric predicaments
like his own. Strictly speaking, however, there is no way he can prove
that anything exists except himself and his shifting sensations and
thoughts. Escher is seen staring at his own reflection in the sphere.
The glass mirrors his surroundings, compressing them inside one per-
fect circle. No matter how he moves or twists his head, the point mid-
way between his eyes remains exactly at the center of the circle. “He
cannot get away from that central point,” says Escher. “The ego re-
mains immovably the focus of his world.”

Escher’s fascination with the playthings of topology is expressed in
a number of his pictures. At the top of the woodcut Knots (Figure 17.8)
we see the two mirror-image forms of the trefoil knot. The knot at top
left is made with two long flat strips that intersect at right angles. This
double strip was given a twist before being joined to itself. Is it a sin-
gle one-sided band that runs twice around the knot, intersecting itself,
or does it consist of two distinct but intersecting Mobius bands? The
large knot below the smaller two has the structure of a four-sided tube
that has been given a quarter-twist so that an ant walking inside, on one
of the central paths, would make four complete circuits through the
knot before it returned to its starting point.

The wood engraving Three Spheres (Figure 17.9), a copy of which is
owned by New York’s Museum of Modern Art, appears at first to be a
sphere undergoing progressive topological squashing. Look more care-
fully, however, and you will see that it is something quite different. Can
the reader guess what Escher, with great verisimilitude, is depicting here?

Addendum

When Escher died in 1972, at the age of 73, he was just begin-
ning to become world-famous; not only among mathematicians and
scientists (who were the first to appreciate him), but also with the pub-
lic at large, especially with the young counterculture. The Escher cult
is still growing. You see his pictures everywhere: on the covers of math-
ematical textbooks, on albums of rock music, on psychedelic posters
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Figure 17.8. Knots, woodcut, 1965

that glow under black light, even on T-shirts. When I first reproduced
an Escher picture in my column for April 1961 (and Scientific Ameri-
can ran one of his bird tesselations on the cover), I purchased from Es-
cher only one print, a woodcut. For a mere $40 to $60 each I could have
bought scores of pictures that now would each be worth thousands. But
who could then have anticipated the astonishing growth of Escher’s
fame?
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Figure 17.9. Three Spheres,
wood engraving, 1945

©® 2000 Cordon Art B,V.-Baarn-Holland. All rights reserved.

After Escher died his son George gave me a Persian leather painting,
owned by his father, which is framed and hanging in my library. It is a
circle of horses on which each horse’s head is the head of three horse
bodies.

Answer

Three Spheres is a picture of three flat disks, each painted to
simulate a sphere. The bottom disk is flat on a table. The middle disk
is bent at right angles along a diameter. The top disk stands vertically
on the horizontal half of the middle one. Clues are provided by a fold
line in the middle disk and by identical shading on the three pscudo-
spheres.

The Art of M. C. Escher 223



Bibliography

This highly selective list of references is limited to books and
articles in English. For an extensive bibliography, including foreign
references and motion pictures, see Visions of Symmetry, the definitive
work on Escher by Doris Schattschneider.

H.S.M. Coxeter, “Angels and Devils,” The Mathematical Gardner, D. Klarner (ed.),
Wadsworth, 1981.

H.S.M. Coxeter et al. (eds.), M. C. Escher: Art and Science, Elsevier, 1986.

H.S.M. Coxeter, “The Trigonometry of Escher’s Woodcut ‘Circle Limit III,’ ” The
Mathematical Intelligencer, Vol. 18, No. 4, 1996, pp. 42-46.

B. Ernst, The Magic Mirror of M. C. Escher, Random House, 1976; Ballantine, 1976.

M. C. Escher, Escher on Escher, Abrams, 1989. (Translated by Karin Ford.)

L. Glasser, “Teaching Symmetry,” The Journal of Chemical Education, Vol. 44, Sep-
tember 1967, pp. 502-11.

J. L. Locher (ed.), The World of M. C. Escher, Abrams, 1971.

J. L. Locher (ed.), M. C. Escher: His Life and Complete Graphic Work, Abrams,
1982. Reviewed by H.S.M. Coxeter in The Mathematical Intelligencer, Vol. 7, No.
1, 1985, pp. 59-69.

C. H. MacGillavry, Symmetry Aspects of M. C. Escher’s Periodic Drawings, A. Oost-
hoek’s Uitgeversmaatschappij NV, 1965. Reprinted as Fantasy and Symmetry—
The Periodic Drawings of M. C. Escher, Abrams, 1976

H. Nemerov, “The Miraculous Transformations of Maurits Cornelis Escher,”
Artists’s Proof, Vol. 3, Fall/Winter 1963-64, pp. 32-39.

E. R. Ranucci, “Master of Tesselations: M. C. Escher, 1898-1972,” Mathematics
Teacher, Vol. 67, April 1974, pp. 299-306.

J. C. Rush, “On the Appeal of M. C. Escher’s Pictures,” Leonardo, Vol. 12, 1979, pp.
48-50.

D. Schattschneider, “The P6lya Escher Connection,” Mathematics Magazine, Vol.
60, December 1987, pp. 293-98.

D. Schattschneider, Visions of Symmetry, W. H. Freeman, 1990.

D. Schattschneider, “Escher’s Metaphors,” Scientific American, November 1994,
pp. 66-71.

D. Schattschneider and W. Walker, M. C. Escher: Kaleidocycles, Ballantine, 1977;
revised edition, Pomegranate Artbooks, 1987.

M. Severin, “The Dimensional Experiments of M. C. Escher,” Studio, February
1951, pp. 50-53.

J. L. Teeters, “How to Draw Tesselations of the Escher Type,” Mathematics Teacher,
Vol. 67, April 1974, pp. 307-10.

M. L. Teuber, “Sources of Ambiguity in the Prints of Maurits C. Escher,” Scientific
American, Vol. 231, July 1974, pp. 90-104. See also the correspondence on this
article in Vol. 232, January 1975, pp. 8-9.

K. Wilkie, “Escher: The Journey to Infinity,” Holland Herald, Vol. 9, No. 1, 1974,
pp. 20-43.

224 SYMMETRY









Chapter 18 Klein Bottles
and Other Surfaces

Three jolly sailors from Blaydon-on-Tyne
They went to sea in a bottle by Klein.
Since the sea was entirely inside the hull
The scenery seen was exceedingly dull.

—Frederick Winsor,
The Space Child’s Mother Goose

To a topologist a square sheet of paper is a model of a two-
sided surface with a single edge. Crumple it into a ball and it is still
two-sided and one-edged. Imagine that the sheet is made of rubber.
You can stretch it into a triangle or circle, into any shape you please,
but you cannot change its two-sidedness and one-edgedness. They are
topological properties of the surface, properties that remain the same
regardless of how you bend, twist, stretch, or compress the sheet.

Two other important topological invariants of a surface are its chro-
matic number and Betti number. The chromatic number is the maxi-
mum number of regions that can be drawn on the surface in such a way
that each region has a border in common with every other region. If
each region is given a different color, each color will border on every
other color. The chromatic number of the square sheet is 4. In other
words, it is impossible to place more than four differently colored re-
gions on the square so that any pair has a boundary in common. The
term “chromatic number” also designates the minimum number of col-
ors sufficient to color any finite map on a given surface. It is now
known that 4 is the chromatic number, in this map-coloring sense, for
the square, tube, and sphere, and for all other surfaces considered in
this chapter, the chromatic number is the same under both definitions.

The Betti number, named after Enrico Betti, a 19th-century Italian
physicist, is the maximum number of cuts that can be made without di-
viding the surface into two separate pieces. If the surface has edges,
each cut must be a “crosscut”: one that goes from a point on an edge to
another point on an edge. If the surface is closed (has no edges), each
cut must be a “loop cut”: a cut in the form of a simple closed curve.
Clearly the Betti number of the square sheet is 0. A crosscut is certain
to produce two disconnected pieces.
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If we make a tube by joining one edge of the square to its opposite
edge, we create a model of a surface topologically distinct from the
square. The surface is still two-sided but now there are two separate
edges, each a simple closed curve. The chromatic number remains 4
but the Betti number has changed to 1. A crosscut from one edge to the
other, although it eliminates the tube, allows the paper to remain in one
piece.

A third type of surface, topologically the same as the surface of a
sphere or cube, is made by folding the square in half along a diagonal
and then joining the edges. The surface continues to be two-sided but
all edges have been eliminated. It is a closed surface. The chromatic
number continues to be 4. The Betti number is back to 0: any loop cut
obviously creates two pieces.

Things get more interesting when we join one edge of the square to its
opposite edge bul give the surface a half-twist before doing so. You might
suppose that this cannot be done with a square piece of paper, but it is
easily managed by folding the square twice along its diagonals, as shown
in Figure 18.1. Tape together the pair of edges indicated by the arrow in

——————————

Figure 18.1. Mébius surface constructed with a square
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the last drawing. The resulting surface is the familiar Mobius strip, first
analyzed by A. F. Mobius, the 19th-century German astronomer who
was one of the pioneers of topology. The model will not open out, so it
is hard to see that it is a Mgbius strip, but careful inspection will con-
vince you that it is. The surface is one-sided and one-edged, with a Betti
number of 1. Surprisingly, the chromatic number has jumped to 6. Six
regions, of six different colors, can be placed on the surface so that each
region has a border in common with each of the other five.

When both pairs of the square’s opposite edges are joined, without
twisting, the surface is called a torus. It is topologically equivalent to
the surface of a doughnut or a cube with a hole bored through it. Fig-
ure 18.2 shows how a flat, square-shaped model of a torus is easily
made by folding the square twice, taping the edges as shown by the
solid gray line in the second drawing and the arrows in the last. The
torus is two-sided, closed (no-edged), and has a chromatic number of
7 and a Betti number of 2. One way to make the two cuts is first to make

Figure 18.2. Torus surface folded from a square
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a loop cut where you joined the last pair of edges (this reduces the
torus to a tube) and then a crosscut where you joined the first pair.
Both cuts, strictly speaking, are loop cuts when they are marked on the
torus surface. It is only because you make one cut before the other that
the second cut becomes a crosscut.

It is hard to anticipate what will happen when the torus model is cut
in various ways. If the entire model is bisected by being cut in half ei-
ther horizontally or vertically, along a center line parallel to a pair of
edges, the torus surface receives two loop cuts. In both cases the re-
sulting halves are tubes. If the model is bisected by being cut in half
along either diagonal, each half proves to be a square. Can the reader
find a way to give the model two loop cuts that will produce two sep-
arate bands interlocked like two rings of a chain?

Many different surfaces are closed like the surface of a sphere and a
torus, yet one-sided like a Mdbius strip. The easiest one to visualize is
a surface known as the Klein bottle, discovered in 1882 by Felix Klein
(1849-1925), a great German mathematician. An ordinary bottle has
an outside and inside in the sense that if a fly were to walk from one
side to the other, it would have to cross the edge that forms the mouth
of the bottle. The Klein bottle has no edges, no inside or outside. Its vol-
ume, therefore, is zero. What seems to be its inside is continuous with
its outside, like the two apparent “sides” of a Mébius surface.

Unfortunately it is not possible to construct a Klein bottle in three-
dimensional space without self-intersection of the surface. Figure 18.3

Figwre 18.3. Klein bottle: a closed surface
with no inside or outside

230 TopoLOGY



shows how the bottle is traditionally depicted. Imagine the lower end of
a tube stretched out, bent up, and plunged through the tube’s side, then
joined to the tube’s upper mouth. In an actual model made, say, of glass
there would be a hole where the tube intersects the side. You must dis-
regard this defect and think of the hole as being covered by a continua-
tion of the bottle’s surface. There is no hole, only an intersection of
surfaces. This self-intersection is necessary because the model is in 3-
space. If we conceive of the surface as being embedded in 4-space, the
self-intersection can be eliminated entirely. The Klein bottle is one-sided,
no-edged, and has a Betti number of 2 and a chromatic number of 6.

Daniel Pedoe, a mathematician at the University of Minnesota, is the
author of The Gentle Art of Mathematics. It is a delightful book, but on
page 84 Professor Pedoe slips into a careless bit of dogmatism. He de-
scribes the Klein bottle as a surface that is a challenge to the glass
blower, but one “which cannot be made with paper.” Now, it is true that
at the time he wrote this apparently no one had tried to make a paper
Klein bottle, but that was before Stephen Barr, a science-fiction writer
and an amateur mathematician of Woodstock, NY, turned his attention
to the problem. Barr quickly discovered dozens of ways to make paper
Klein bottles. Here I will describe a variation of my own that is made
from a paper tube. The tube can be a sealed envelope with its left and
right edges cut open.

The steps are given in Figure 18.4. First, make a tube by folding the
square in half and joining the right edges with a strip of tape as shown
(Step 1). Cut a slot about a quarter of the distance from the top of the
tube (Step 2}, cutting only through the thickness of paper nearest you.
This corresponds to the “hole” in the glass model. Fold the model in
half along the broken line A. Push the lower end of the tube up through
the slot (Step 3) and join the edges all the way around the top of the
model (Step 4) as indicated by the arrows. It is not difficult to see that
this flat, square model is topologically identical with the glass bottle
shown in Figure 18.3. In one way it is superior: there is no actual hole.
True, you have a slot where the surface self-intersects, but it is easy to
imagine that the edges of the slot are joined so that the surface is every-
where edgeless and continuous.

Moreover, it is easy to cut this paper model and demonstrate many
of the bottle’s astonishing properties. Its Betti number of 2 is demon-
strated by cutting the two loops formed by the two pairs of taped edges.
If you cut the bottle in half vertically, you get two Mobius bands, one
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Figure 18.4. Folding a Klein bottle from a square

a mirror image of the other. This is best demonstrated by making a tall,
thin model (see Figure 18.5) from a tall, thin rectangle instead of a
square. When you slice it in half along the broken line (actually this is
one long loop cut all the way around the surface), you will find that
each half opens out into a Mébius strip. Both strips are partially self-
intersecting, but you can slide each strip out of its half-slot and close
the slot, which is not supposed to be there anyway.

Figure 18.5. Bisected bottle makes
two Mabius strips
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If the bottle can be cut into a pair of Mobius strips, of course the re-
verse procedure is possible, as described in the following anonymous
limerick:

A mathematician named Klein
Thought the Mtbius band was divine.
Said he: “If you glue
The edges of two,
You’ll get a weird bottle like mine.”

Surprisingly, it is possible to make a single loop cut on a Klein bot-
tle and produce not two Mébius strips but only one. A great merit of
Barr’s paper models is that problems like this can be tackled empiri-
cally. Can the reader discover how the cut is made?

The Klein bottle is not the only simple surface that is one-sided and
no-edged. A surface called the projective plane (because of its topo-
logical equivalence to a plane studied in projective geometry) is simi-
lar to the Klein bottle in both respects as well as in having a chromatic
number of 6. As in the case of the Klein bottle, a model cannot be made
in 3-space without self-intersection. A simple Barr method for folding
such a model from a square is shown in Figure 18.6. First cut the square

——————

Figure 18.6. Folding a cross-cap and projective plane from a square
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along the solid black lines shown in Step 1. Fold the square along the
diagonal A-A’", inserting slot C into slot B (Steps 2 and 3). You must
think of the line where the slots interlock as an abstract line of self-
intersection. Fold up the two bottom triangular flaps E and F, one on
each side (Step 4), and tape the edges as indicated.

The model is now what topologists call a cross-cap, a self-
intersecting Mobius strip with an edge that can be stretched into a cir-
cle without further self-intersection. This edge is provided by the edges
of cut D, originally made along the square’s diagonal. Note that unlike
the usual model of a Mobius strip, this one is symmetrical: neither
right- nor left-handed. When the edge of the cross-cap is closed by tap-
ing it (Step 5), the model becomes a projective plane. You might expect
it to have a Betti number of 2, like the Klein bottle, but it does not. It
has a Betti number of 1. No matter how you loop-cut it, the cut pro-
duces either two pieces or a piece topologically equivalent to a square
sheet that cannot be cut again without making two pieces. If you re-
move a disk from anywhere on the surface of the projective plane, the
model reverts to a cross-cap.

Figure 18.7 summarizes all that has been said. The square diagrams
in the first column show how the edges join in each model. Sides of the
same color join each to each, with the direction of their arrows coin-
ciding. Corners labeled with the same letter are corners that come to-
gether. Broken lines are sides that remain edges in the finished model.
Next to the chromatic number of each model is shown one way the sur-
face can be mapped to accommodate the maximum number of colors.
It is instructive to color each sheet as shown, coloring the regions on
both sides of the paper (as though the paper were cloth through which
the colors soaked), because you must think of the sheet as having zero
thickness. An inspection of the final model will show that each region
does indeed border on every other one.

Addendum

Although I was not the first to model Klein bottles with paper

(credit for this goes to Stephen Barr—see bibliography), my contribu-

tion was to show how easily a model can be made from an envelope
and cut in half to make two Mébius strips of opposite handedness.

A simple way to demonstrate the one-sided property of a Klein bot-

tle is to punch a hole in a model and insert a piece of string. No matter
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where you make the hole, you can always tie the ends of the string to-
gether.

The Klein bottle continues to intrigue limerick writers. Here are three
I have encountered:

Topologists try hard to floor us
With a nonorientable torus.
The bottle of Klein
They say is divine
But it is so exceedingly porous.

—Anonymous

A geometrician named Klein
Thought the Mébius band asinine.
“Though its outside is in,
Still it’s ugly as sin;
It ain’t round like that bottle o’mine!”

—M. M. H. Coffee and J. J. Zeltmacher, Jr.

An anti-strong-drinker named Klein
Invented a bottle for wine.

“There’s no stopper,” he cried,

“And it has no inside,
So the grapes have to stay on the vine!”

—James Albert Lindon

I confess that I have made use of a Klein bottle in two works of fic-
tion. Professor Slapenarski falls into a Klein bottle and disappears at
the end of my mathematically flawed story “The Island of Five Colors”
(you'll find it in Clifton Fadiman’s anthology Fantasia Mathematica),
and again in my novel Visitors from Oz (1999) where it is used as a de-
vice for transporting Dorothy, Scarecrow, and Tin Woodman from Oz
(now in a parallel world) to Central Park in Manhattan.

If you would like to own a glass Klein bottle, a firm called Acme,
6270 Colby Street, Oakland, CA 94618, has five handsome glass Klein
bottles for sale, of various sizes, shapes, and prices. The firm can also
be reached on the Internet at www.kleinbottle.com.

Answers

The torus-cutting problem is solved by first ruling three paral-
lel lines on the unfolded square (see Figure 18.8). When the square is
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Figure 18.8. Solution to the torus-
cutting problem

folded into a torus, as explained, the lines make two closed loops. Cut-
ting these loops produces two interlocked bands, each two-sided with
two half-twists.

How does one find a loop cut on the Klein bottle that will change the
surface to a single Mébius strip? On both left and right sides of the nar-
row rectangular model described you will note that the paper is creased
along a fold that forms a figure-eight loop. Cutting only the left loop
transforms the model into a Mébius band; cutting only the right loop
produces an identical band of opposite handedness.

What happens if both loops are cut? The result is a two-sided, two-
edged band with four half-twists. Because of the slot the band is cut
apart at one point, so that you must imagine the slot is not there. This
self-intersecting band is mirror-symmetrical, neither right- nor left-
handed. You can free the band of self-intersection by sliding it carefully
out of the slot and taping the slot together. The handedness of the re-
sulting band (that is, the direction of the helices formed by its edges)
depends on whether you slide it out to the right or the left. This and the
previous cutting problems are based on paper models that were in-
vented by Stephen Barr and are described in his Experiments in Topol-
ogy (Crowell, 1964).
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Chapter 19 Knots

“A knot!” said Alice, always ready to make
herself useful, and looking anxiously about
her. “Oh, do let me help to undo it!”

—Alice in Wonderland, Chapter 3

To a topologist knots are closed curves embedded in three-
dimensional space. It is useful to model them with rope or cord and to
diagram them as projections on a plane. If it is possible to manipulate
a closed curve—of course, it must not be allowed to pass through it-
self—so that it can be projected on a plane as a curve with no crossing
points then the knot is called trivial. In ordinary discourse one would
say the curve is not knotted. “Links” are two or more closed curves that
cannot be separated without passing one through another.

The study of knots and links is now a flourishing branch of topology
that interlocks with algebra, geometry, group theory, matrix theory,
number theory, and other branches of mathematics. Some idea of its
depth and richness can be had from reading Lee Neuwirth’s excellent
article “The Theory of Knots” in Scientific American (June 1979). Here
we shall be concerned only with some recreational aspects of knot the-
ory: puzzles and curiosities that to be understood require no more than
the most elementary knowledge of the topic.

Let’s begin with a question that is trivial but that can catch even
mathematicians off guard. Tie an overhand knot in a piece of rope as is
shown in Figure 19.1. If you think of the ends of the rope as being
joined, you have tied what knot theorists call a trefoil knot. It is the sim-
plest of all knots in the sense that it can be diagrammed with a mini-
muim of three crossings. (No knot can have fewer crossings except the
trivial knot that has none.) Imagine that end A of the rope is passed
through the loop from behind and the ends are pulled. Obviously the
knot will dissolve. Now suppose the end is passed twice through the
loop as is indicated by the broken line. Will the knot dissolve when the
ends of the rope are pulled?

Most people guess that it will form another knot. Actually the knot
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Figure 19.1.

dissolves as before. The end must go three times through the loop to
produce another knot. If you try it, you will see that the new trefoil cre-
ated in this way is not the same as the original. It is a mirror image. The
trefoil is the simplest knot that cannot be changed to its mirror image
by manipulating the rope.

The next simplest knot, the only one with a minimum of four cross-
ings, is the figure eight at the right in Figure 19.1. In this form it is eas-
ily changed to its mirror image. Just turn it over. A knot that can be
manipulated to make its mirror image is called amphicheiral because
like a rubber glove it can be made to display either handedness. After
the figure eight the next highest amphicheiral knot has six crossings,
and it is the only 6-knot of that type. Amphicheiral knots become pro-
gressively scarcer as crossing numbers increase.

A second important way to divide knots into two classes is to dis-
tinguish between alternating and nonalternating knots. An alternating
knot is one that can be diagrammed so that if you follow its curve in ei-
ther direction, you alternately go over and under at the crossings. Al-
ternating knots have many remarkable properties not possessed by
nonalternating knots.

Still another important division is into prime and composite knots.
A prime knot is one that cannot be manipulated to make two or more
separated knots. For example, the square knot and the granny knot are
not prime because each can be changed to two side-by-side trefoils.
The square knot is the “product” of two trefoils of opposite handed-
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ness. The granny is the product of two trefoils of the same handed-
ness, and therefore (unlike the square knot) it is not amphicheiral. Both
knots are alternating. As an easy exercise, see if you can sketch a square
knot with six (the minimum) alternating crossings.

All prime knots of seven or fewer crossings are alternating. Among
the 8-knots only the three in Figure 19.2 are nonalternating. No matter
how long you manipulate a rope model of one of these knots, you will
never get it to lie flat in the form of an alternating diagram. The knot at
top right is a bowline. The bottom knot is a torus knot as explained
below.

Figure 19.2.

A fourth basic binary division of knots is into the invertible and non-
invertible. Imagine an arrow painted on a knotted rope to give a direc-
tion to the curve. If it is possible to manipulate the rope so that the
structure remains the same but the arrow points the other way, the knot
is invertible. Until the mid-1960s one of the most vexing unsolved
problems in knot theory was whether noninvertible knots exist. All
knots of seven or fewer crossings, and all but one 8-knot and four 9-
knots had earlier been found invertible by manipulating rope models.
It was in 1963 that Hale F. Trotter, now at Princeton University, an-
nounced in the title of a surprising paper “Non-invertible Knots Exist”
(Topology, Vol. 2, No. 4, December 1963, pp. 275-80).

Trotter described an infinite family of pretzel knots that will not in-
vert. A pretzel knot is one that can be drawn, without any crossings, on
the surface of a pretzel (a two-hole torus). It can be drawn as shown in
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Figure 19.3 as a two-strand braid that goes around two “holes,” or it can
be modeled by the edge of a sheet of paper with three twisted strips. If
the braid surrounds just one hole, it is called a torus knot because it can
be drawn without crossings on the surface of a doughnut.

Figure 19.3.

Trotter found an elegant proof that all pretzel knots are noninvertible
if the crossing numbers for the three twisted strips are distinct odd in-
tegers with absolute values greater than 1. Positive integers indicate
braids that twist one way and negative integers indicate an opposite
twist. Later Trotter’s student Richard L. Parris showed in his unpub-
lished Ph.D. thesis that the absolute values can be ignored provided the
signed values are distinct and that these conditions are necessary as
well as sufficient for noninvertible pretzels. Thus the simplest nonin-
vertible pretzel is the one shown. Its crossing numbers of 3, -3, and 5
make it an 11-knot.

It is now known that the simplest noninvertible knot is the am-
phicheiral 8-knot in Figure 19.4. It was first proved noninvertible by
Akio Kawauchi in Proceedings of the Japan Academy (Vol. 55, Series
A, No. 10, December 1979, pp. 399—402). According to Richard Hartley,
in “Identifying Non-invertible Knots” (Topology, Vol. 22, No. 2, 1983,
pPp. 137—45), this is the only noninvertible knot of eight crossings, and
there are only two such knots of nine crossings and 33 of 10. All 36 of
these knots had earlier been declared noninvertible by John Horton
Conway, but only on the empirical grounds that he had not been able
to invert them. The noninvertible knots among the more than 550 knots
with 11 crossings had not yet been identified.

In 1967 Conway published the first classification of all prime knots
with 11 or fewer crossings. (A few minor errors were corrected in a later
printing.) You will find clear diagrams for all prime knots through 10
crossings, and all links through nine crossings, in Dale Rolfsen’s valu-
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Figure 19.4.

able 1990 book Knots and Links. There are no knots with 1 or 2 cross-
ings, one with 3, one with 4, two with 5, three with 6, seven with 7, 21
with 8 crossings, 49 with 9, 165 with 10, and 552 with 11, for a total of
801 prime knots with 11 or fewer crossings. At the time I write, the clas-
sification has been extended through 16 crossings.

There are many strange ways to label the crossings of a knot, then de-
rive an algebraic expression that is an invariant for all possible dia-
grams of that knot. One of the earliest of such techniques produces
what is called a knot’s Alexander polynomial, named after the Ameri-
can mathematician James W. Alexander who discovered it in 1928.
Conway later found a beautiful new way to compute a “Conway poly-
nomial” that is equivalent to the Alexander one.

For the unknotted knot with no crossings the Alexander polynomial
is 1. The expression for the trefoil knot of three crossings is x> — x + 1,
regardless of its handedness. The figure-eight knot of four crossings
has the polynomial x* — 3x + 1. The square knot, a product of two tre-
foils, has an Alexander polynomial of (x? — x+ 1)?, the square of the tre-
foil’s expression. Unfortunately, a granny knot has the same
polynomial. If two knot diagrams give different polynomials, they are
sure to be different knots, but the converse is not true. Two knots may
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have the same polynomial yet not be the same. Finding a way to give
any knot an expression that applies to all diagrams of that knot, and
only that knot, is the major unsolved problem in knot theory.

Although there are tests for deciding whether any given knot is triv-
ial, the methods are complex and tedious. For this reason many prob-
lems that are easy to state are not easy to resolve except by working
empirically with rope models. For instance, is it possible to twist an
elastic band around a cube so that each face of the cube has an
under—over crossing as shown in Figure 19.5. To put it another way, can
you tie a cord around a cube in this manner so that if you slip the cord
off the cube, the cord will be unknotted?

Figure 19.5.

Note that on each face the crossing must take one of the four forms
depicted in the illustration. This makes 4% = 4,096 ways to wrap the
cord. The wrapping can be diagrammed as a 12-knot, with six pairs of
crossings, each pair of which can have one of four patterns. The prob-
lem was first posed by Horace W. Hinkle in Journal of Recreational
Mathematics in 1978. In a later issue (Vol. 12, No. 1, 1979-80, pp.
60-62) Karl Scherer showed how symmetry considerations reduce the
number of essentially different wrappings to 128. Scherer tested each
wrapping empirically and found that in every case the cord is knotted.
This has yet to be confirmed by others, and no one has so far found a
simpler way to attack the problem. The impossibility of getting the de-
sired wrapping with an unknotted cord seems odd, because it is easy
to twist a rubber band around a cube to put the under-over crossings on
just two or four faces (all other faces being straight crossings), and
seemingly impossible to do it on just one face, three faces, or five faces.
One would therefore expect six to be possible, but apparently it is not.
It may also be impossible to get the pattern even if two, three, or four
rubber bands are used.
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Figure 19.6 depicts a delightful knot-and-link puzzle that was sent to
me by its inventor, Majunath M. Hegde, then a mathematics student in
India. The rope’s ends are tied to a piece of furniture, say a chair. Note
that the two trefoil knots form a granny. The task is to manipulate the
rope and ring so that the ring is moved to the upper knot as is indicated
by the broken line. All else must remain identical.

Figure 19.6.

It is easy to do if you have the right insight. Of course, the rope must
not be untied from the chair, nor are you allowed to open a knot and
pass the chair through it. It will help if you think of the ends of the rope
as being permanently fastened to a wall.

The trick of dissolving or creating knots by passing a person through
a loop was actually used by fake mediums in the days when it was
fashionable to relate psychic phenomena to the fourth dimension.
Knots in closed curves are possible only in 3-space. In 4-space all knots
dissolve. If you could toss an unknotted loop of rope to a creature in 4-
space, it could tie any knot in the loop and toss it back to you with the
knot permanently formed. There was a popular theory among physi-
cists who believed in spiritualism that mediums had the power to move
objects in and out of higher spaces. Some mediums, such as the Amer-
ican mountebank Henry Slade, exploited this theory by pretending to
put knots into closed loops of cord. Johann Karl F. Zdllner, an Austrian
physicist, devoted an entire book to Slade and hyperspace. Its English
translation, Transcendental Physics (Arno Press, 1976), is worth read-
ing as striking testimony to the ease with which an intelligent physicist
can be gulled by a clever conjurer.
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In another instance, psychic investigators William Cox and John
Richards exhibited a stop-action film that purported to show two
leather rings becoming linked and unlinked inside a fish tank. “Later
examination showed no evidence that the rings were severed in any
way,” wrote National Enquirer when it reported this “miracle” on Oc-
tober 27, 1981. I was then reminded of an old conjuring stage joke. The
performer announces that he has magically transported a rabbit from
one opaque box to another. Then before opening either box he says
that he will magically transport the rabbit back again.

It is easy, by the way, to fabricate two linked “rubber bands.” Just
draw them linked on the surface of a baby’s hollow rubber teething
ring and carefully cut them out. Two linked wood rings, each of a dif-
ferent wood, can be carved if you insert one ring into a notch cut into
a tree, then wait many years until the tree grows around and through
it. Because the trefoil is a torus knot, it too is easily cut from a teething
ring.

The trick I am about to describe was too crude for Slade, but less
clever mediums occasionally resorted to it. You will find it explained,
along with other knot-tying swindles, in Chapter 2 of Hereward Car-
rington’s The Physical Phenomena of Spiritualism, Fraudulent and
Genuine (H. B. Turner & Co., Boston, 1907). One end of a very long
piece of rope is tied to the wrist of one guest and the other end is tied
to the wrist of another guest. After the seance, when the lights are
turned on, several knots are in the rope. How do they get there?

The two guests stand side by side when the lights go out. In the dark
the medium (or an accomplice) makes a few large coils of rope, then
passes them carefully over the head and body of one of the guests. The
coils lie flat on the floor until later, when the medium casually asks that
guest to step a few feet to one side. This frees the coils from the person,
allowing the medium to pull them into a sequence of tight knots at the
center of the rope. Stepping to one side seems so irrelevant to the phe-
nomenon that no one remembers it. Ask the guest himself a few weeks
later whether he changed his position, and he will vigorously and hon-
estly deny it.

Roger Penrose, the British mathematician and physicist, once
showed me an unusual trick involving the mysterious appearance of a
knot. Penrose invented it when he was in grade school. It is based on
what in crocheting, sewing, and embroidery is called a chain stitch.
Begin the chain by trying a trefoil knot at one end of a long piece of
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heavy cord or thin rope and hold it with your left hand as in step 1 in
Figure 19.7. With your right thumb and finger take the cord at A and
pull down a loop as in step 2. Reach through the loop, take the cord at
B, and pull down another loop (step 3). Again reach forward through
the lowest loop, take the cord at D, and pull down another loop (step
4). Continue in this way until you have formed as long a chain as pos-
sible.

Figure 19.7.

With your right hand holding the lower end of the chain, pull the
chain taut. Ask someone to select any link he likes and then pinch the
link between his thumb and forefinger. Pull on both ends of the cord.
All links dissolve, as expected, but when he separates his finger and
thumb, there is a tight knot at precisely the spot he pinched!

Joel Langer, a mathematician at Case Western Reserve University,
made a remarkable discovery. He found a way of constructing what he
calls “jump knots” out of stainless-steel wire. The wire is knotted and
then its ends are bonded. When it is manipulated properly, it can be
pressed flat to form a braided ring. Release pressure on the ring; tension
in the wire causes it to spring suddenly into a symmetrical three-
dimensional shape. It is now a frustrating puzzle to collapse the wire
back to its ring form.

In 1981 Langer and his associate Sharon O’Neil formed a company
they called Why Knots. It made and sold three handsome jump knots:
the Figure Eight, the Chinese Button Knot, and the Mathematician’s
Loop. When you slide one of these wire knots out of its square enve-
lope, it pops into an elegant hanging ornament. The figure eight is the
easiest to put back into its envelope. The Chinese button knot (so called
because it is a form widely used in China for buttons on nightclothes)
is more difficult. The mathematician’s loop is the most difficult.
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These shapes make it easier to understand how the 18th-century
physicists could have developed a theory, respectable in its day, that
molecules are different kinds of knots into which vortex rings of ether
(today read “space—time”) get themselves tied. Indeed, it was just such
speculation that led the Scottish physicist Peter Guthrie Tait to study
topology and conduct the world’s first systematic investigation of knot
theory.

Addendum

Enormous advances in knot theory have been made since this
chapter was written in 1983, and knot theory is now one of the most ex-
citing and active branches of mathematics. Dozens of new polynomials
for classifying knots have been discovered. One is called the Homfly
after the last initials of its six independent discoverers. The most sig-
nificant new expression is the Jones polynomial found in 1984 by the
New Zealand mathematician Vaughan F. R. Jones, now at the Univer-
sity of California, Berkeley. It has since been improved and generalized
by Louis Kauffman and others. Although these new polynomials are
surprisingly simple and powerful, no one has yet come up with an al-
gebraic technique for distinguishing all knots. Knots with different
polynomials are different, but it is still possible that two distinct knots
will have the same expression.

The Alexander polynomial does not decide between mirror-image
knots, and as we have seen, it does not distinguish the square knot
from the granny. The Jones polynomial provides both distinctions. So
far, it is not clear just why the Jones and the other new polynomials
work. “They’re magic” is how Joan Birman, a knot expert at Barnard
College, put it.

The most amazing development in recent knot theory was the dis-
covery that the best way to understand the Jones polynomial was in
terms of statistical mechanics and quantum theory! Sir Michael Atiyah
now retired from the University of Edinburgh, was the first to see these
connections, then Edward Witten, at the Institute for Advanced Study
in Princeton, did the pioneer work in developing the connections. Knot
theory now has surprising applications to superstrings, a theory that ex-
plains basic particles by treating them as tiny loops, and to quantum
field theory. There is intense interaction between today’s physicists
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and topologists. Discoveries in physics are leading to new discoveries
in topology, and vice versa. No one can predict where it will all lead.

Another unexpected application of knot theory is in broadening our
understanding of the structure and properties of large molecules such
as polymers, and especially the behavior of DNA molecules. DNA
strands can become horribly knotted and linked, unable to replicate
until they are untied or unlinked by enzymes called topoisom-erases.
To straighten out a DNA strand, enzymes have to slice them so they can
pass through themselves or another strand, then splice the ends to-
gether again. The number of times this must occur to undo a knot or
linkage of DNA determines the speed with which the DNA unknots or
unlinks.

There is a delightful three-color test for deciding if a knot diagram
represents a knot. Draw the diagram, then see if you can color its “arcs”
(portions of the line between two crossings) with three colors so that ei-
ther all three colors meet at each crossing or there is only one color at
each crossing, and provided at least one crossing shows all three col-
ors. If you can do this, the line is knotted. If you can’t, the line may or
may not be knotted. The three-coloring can also be used to prove that
two knots are different.

In 1908 the German mathematician Heinrich Tietze conjectured that
two knots are identical if and only if their complements—the topolog-
ical structure of the space in which they are embedded—are identical.
His conjecture was proved in 1988 by two American mathematicians,
Cameron M. Gordon and John E. Luecke. A knot’s complement is a
structure in 3-space, in contrast to the knot which is one-dimensional.
Its topological structure is more complicated than the knot’s, but of
course it contains complete information about the knot. The theorem
fails for links. Two links that are not the same can have identical com-
plements.

Associated with each knot’s complement is a group. Like the poly-
nomials, which can be extracted from the group, two knots can have the
same group yet not be the same knots. An anonymous poet summed up
the situation this way in the British periodical Manifold (Summer
1972):

A knot and
another
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knot may
not be the
same knot, though
the knot group of
the knot and the
other knot's
knot group
differ not; BUT
if the knot group
of a knot
is the knot group
of the not
knotted
knot,
the knot is
not
knotted.

The American philosopher Charles Peirce, in a section on knots in
his New Elements of Mathematics (Volume 2, Chapter 4), shows how
the Borromean rings (three rings linked in such a way that although
they can’t be separated, no two rings are linked) can be cut from a
three-hole torus. Peirce also shows how to cut the figure-eight knot
and the bowline knot from a two-hole torus.

Richard Parris called attention to the fact that not all of the 4,096
ways to wrap string around the cube, in the problem I posed, are knots.
Most of them are links of two, three, or four separate loops.

Conway has proved that if you draw a complete graph for seven
points located anywhere in space—that is, draw a line connecting each
pair of points—the lines will form at least one knot.

For the most recent results in knot theory there is now a Journal of
Knot Theory and Its Ramifications.

Answers

Figure 19.8 shows how a square knot can be changed to an al-
ternating knot of six crossings. Simply flip dotted arc a over to make
arc b.

Figure 19.9 shows one way to solve the ring-and-granny-knot puzzle.
First make the lower knot small, then slide it (carrying the ring with it)
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Figure 19.8.
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Figure 19.9.

up and through the higher knot (a). Open it. Two trefoil knots are now
side by side (b). Make the ringless knot small, then slide it through and
down the other knot. Open it up and you have finished (c).
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Chapter 20 Doughnuts:
Linked and Knotted

As you ramble on through life, brother,
Whatever be your goal,

Keep your eye upon the doughnut
And not upon the hole!

—ANON.

A torus is a doughnut-shaped surface generated by rotating a
circle around an axis that lies on the plane of the circle but does not in-
tersect the circle. Small circles, called meridians, can be drawn around
the torus with radii equal to that of the generating circle. Circles of
varying radii that go around the hole or center of the torus on parallel
planes are called parallels (see Figure 20.1). Both meridians and paral-
lels on a torus are infinite in number. There are two other less obvious
infinite sets of “oblique” circles. Can you find them? Members of one
set do not intersect one another, whereas any member of one set twice
intersects any member of the other.

AXig — Parallel

" Meridian

Figure 20.1. The torus

To a topologist, concerned only with properties that do not alter
when a figure is elastically deformed, a torus is topologically equiva-
lent to the surface of such objects as a ring, a bagel, a life preserver, a
button with one hole, a coffee cup, a soda straw, a rubber band, a sphere
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with one handle, a cube with one hole through it, and so on. Think of
these surfaces as a thin membrane that can be stretched or compressed
as much as one wishes. Each can be deformed until it becomes a per-
fect toroidal surface. In what follows, “torus” will mean any surface
topologically equivalent to a torus.

A common misunderstanding about topology is the belief that a rub-
ber model of a surface can always be deformed in three-dimensional
space to make any topologically equivalent model. This often is not the
case. A Mdbius strip, for example, has a handedness in 3-space that
cannot be altered by twisting and stretching. Handedness is an extrin-
sic property it acquires only when embedded in 3-space. Intrinsically
it has no handedness. A 4-space creature could pick up a left-handed
strip, turn it over in 4-space and drop it back in our space as a right-
handed model.

A similar dichotomy applies to knots in closed curves. Tie a single
overhand (or trefoil) knot in a piece of rope and join the ends. The sur-
face of the rope is equivalent to a knotted torus. It has a handedness,
and no amount of fiddling with the rope can change the parity. Intrin-
sically the rope is not even knotted. A 4-space creature could take from
us an unknotted closed piece of rope and, without cutting it, return it
to us as knotted in either left or right form. All the properties of knots
are extrinsic properties of toruses (or, if you prefer, one-dimensional
curves that may be thought of as toruses whose meridians have shrunk
to points) that are embedded in 3-space.

It is not always easy to decide intuitively if a given surface in 3-space
can be elastically deformed to a different but topologically equivalent
surface. A striking instance, discussed nearly 50 years ago (see Albert
W. Tucker and Herbert S. Bailey, Jr., “Topology,” Scientific American,
January 1950), concerns a rubber torus with a hole in its surface. Can
it be turned inside out to make a torus of identical shape? The answer
is yes. It is hard to do with a rubber model (such as an inner tube), but
a model made of wool reverses readily. Stephen Barr, in his Second
Miscellany of Puzzles (Macmillan, 1969), recommends making it from
a square piece of cloth. Fold the cloth in half and sew together oppo-
site edges to make a tube. Now sew the ends of the tube together to
make a torus that is square shaped when flattened. For ease in revers-
ing, the surface hole is a slot cut in the outer layer of cloth (shown by
the broken line in Figure 20.2).

After the cloth torus is turned inside out, it is exactly the same shape
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Figure 20.2. Reversible cloth torus

as before, except that what were formerly meridians have become par-
allels, and vice versa. To make the switch visible, sew or ink on the
mode! a meridian of one color and a parallel of another so that both col-
ors are visible from either side of the cloth. In 1958 Mrs. Eunice Hakala
sent me a model she had made by cutting off the ribbed top of a sock
and joining the tube’s ends. The ribbing provides a neat set of parallels
that turn into meridians after the torus is reversed.

Let us complicate matters by considering a torus tied in a trefoil knot.
If we ignore handedness, there are only two such toruses: one with an
external knot and one with an internal knot (see Figure 20.3(a) and
(b)). A way to visualize the internally knotted torus is to imagine that
the externally knotted torus on the left is sliced open along a meridian
outside the knot. One end is turned back, as though reversing a sock;
then the tube is expanded and drawn over the entire knot, and its ends
are joined once more. Or imagine a solid wood cube with a hole bored
through it that, instead of going straight, ties a knot before it emerges on
the opposite side. The surface of such a cube is topologically equiva-
lent to an internally knotted torus.

You might suppose that a torus could be simultaneously knotted ex-
ternally and internally, but it can’t be done. One kind of torus seems to
have both an outside and an inside knot (see Figure 20.3(c)). Actually
both knots are humbugs. Untying the outer knot simultaneously unties
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Figure 20.3. Torus with outside knot (g}, inside knot (b}, and pseudoknots (c)

the inner one, proving that the model is topologically the same as an
unknotted torus—its hole elongated like the hole of a garden hose.

Although an outside-knotted torus is intrinsically identical with an
inside-knotted one, it is not possible to deform one to the other when
it is embedded in 3-space. If there is a hole in the side of an outside-
knotted torus, can the torus be reversed in 3-space to put the knot in-
side? In the answer section I shall show how R. H. Bing (1915-1986)
answered this question with a simple sketch.

A similar but harder problem was solved by Bing in his paper “Map-
ping a 3-Sphere onto a Homotopy 3-Sphere,” in Topology Seminar,
Wisconsin, 1965, edited by Bing and R. J. Bean (Princeton University
Press, 1966). Imagine a cube with two straight holes (see Figure
20.4(a)). Its surface is topologically the same as a two-hole doughnut.
We can also have a cube with two holes, one straight, one knotted (Fig-
ure 20.4(b)). It is not possible in 3-space to deform the second cube so
that the knot dissolves and the model looks like the first one. A third
cube has one straight hole and one knotted hole with the knot around
the straight hole (Figure 20.4(c)). Can this cube be elastically deformed
until it becomes the first model? It is hard to believe, but the answer is
yes. Bing’s proof is so elegant and simple that the diagrams for it are al-
most self-explanatory (see Figure 20.5). In elastic deformation a hole
can be moved any distance over a surface without altering the surface’s
topology. As the hole moves, the surface merely stretches in back and
shrinks in front. In Bing's proof the knotted tube is drawn as a single
line to make the proof easier to follow. The hole, at the base of this tube
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Figure 20.4. Three varieties of a two-hole torus
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is moved over the cube’s surface, as indicated by the arrows, dragging
the tube along with it. It goes left to the base of the other tube, climbs
that tube’s side, moves to the right across the top of the cube, circles its
top hole counterclockwise, continues left around the other hole, over
the cube’s front edge, down the front face, around the lower edge to the
cube’s bottom face, and then across that face to the position it formerly
occupied. It is easy to see that the tube attached to this hole has been
untied. Naturally the procedure is reversible. If you had a sufficiently
pliable doughnut surface with two holes, you could manipulate it until
one hole became a knot tied around the other.

Topologists worried for decades about whether two separate knots
side by side on a closed rope could cancel each other; that is, could the
rope be manipulated until both knots dissolved? No pair of canceling

Figure 20.5. R. H. Bing’s proof

258 ToproLOGY



knots had been found, but proving the impossibility of such a pair was
another matter. It was not even possible to show that two trefoil knots
of opposite handedness could not cancel. Proofs of the general case
were not found until the early 1950s. One way of proving it is ex-
plained by Ralph H. Fox in “A Quick Trip through Knot Theory,” in
Topology of 3-Manifolds and Related Topics, edited by M. K. Fort, Jr.
(Prentice-Hall, 1963). It is a reductio ad absurdum proof that unfortu-
nately involves the sophisticated concept of an infinity of knots on a
closed curve and certain assumptions about infinite sets that must be
carefully specified to make the proof rigorous.

When John Horton Conway, a former University of Cambridge math-
ematician now at Princeton University, was in high school, he hit on a
simpler proof that completely avoids infinite sets of knots. Later he
learned that essentially the same proof had been formulated earlier,
but I have not been able to determine by whom. Here is Conway’s ver-
sion as he explained it years ago in a letter. It is a marvelous example
of how a knotted torus can play an unexpected role in proving a fun-
damental theorem of modern knot theory.

Conway’s proof, like the one for the infinite knots, is a reductio ad ab-
surdum. We begin by imagining that a closed string passes through the
opposite walls of a room (see Figure 20.6). Since we shall be concerned
only with what happens inside the room, we can forget about the string
outside and regard it as being attached to the side walls. On the string
are knots A and B. Each is assumed to be genuine in the sense that it
cannot be removed by manipulating the string if it is the only knot on
the string. It also is assumed that the two knots will cancel each other
when both are on the same closed curve. The proof applies to pairs of
knots of any kind whatever, but here we show the knots as simple tre-
foils of opposite parity. If the knots can cancel, it means that the string
can be manipulated until it stretches straight from wall to wall. Think
of the string as being elastic to provide all the needed slack for such an
operation. In the center figure we introduce an elastic torus around the
string. Note that the tube “swallows” knot A but “circumnavigates”
knot B (Conway’s terminology). Any parallel drawn on this tube, on the
section between the walls, obviously must be knotted in the same way
as knot B. Indeed, it can be shown that any line on the tube’s surface,
stretching from wall to wall and never crossing itself at any spot on the
tube’s surface, will be knotted like knot B.

“Now,” writes Conway, “comes the crunch.” Perform on the string
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Figure 20.6. John Horton Conway’s proof

the operation that we assumed would dissolve both knots. This can be
done without breaking the tube. Because the string is never allowed to
pass through itself during the deformation, we can always push the
tube’s wall aside if it gets in the way. The third drawing in Figure 20.6
shows the final result. The string is unknotted. The tube may have
reached a horribly complicated shape impossible to draw. Consider a
vertical plane passing through the straight string and cutting the
twisted tube. We can suppose that the tube’s cross section will look
something like what is shown with the possibility of various “islands,”
but there will necessarily be two lines, XY and MN, from wall to wall
that do not cross themselves at any point on the vertical plane. Each
line will be unknotted. Moreover, each line also is a curve that does not
cross itself on the tube’s surface. As we have seen, all such lines were
(before the deformation) knotted like knot B. The deformation has
therefore removed a knot equivalent to knot B from each of these two
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lines. Therefore knot B, alone on a line, can be removed by manipulat-
ing that line. But knot B, by definition, is a genuine knot that cannot be
so removed. We have contradicted an assumption. If two knots on a
string can cancel, neither knot (since the same proof can be applied to
knot A) can be genuine. Both must really have been pseudoknots.
Although a one-hole torus can be embedded in 3-space in only three
ways (outside knot, inside knot, no knot), a two-hole torus has so many
bizarre forms that the number is, I believe, not yet known. In some cases
it can be reduced to a simpler form by deformation. For example, a
tube-through-hole is equivalent to an ordinary two-hole doughnut (see
Figure 20.7(a)), but what about the other two figures (Figures 20.7(b) and
(c))? They are among several dozen monstrosities sketched by Piet Hein
in a moment of meditation on two-hole toruses. In Figure 20.7(b) an in-
side knot goes through an outside one, and in Figure 20.7(c) an outside
knot goes through a hole. Is it possible, by deformation, to dissolve the
inside knot of Figure 20.7(b) and the outside knot of Figure 20.7(cJ?

Figure 20.7. Two-hole toruses

With more complicated pairs of two-holers embedded in 3-space,
proofs that one can be deformed to the other are not so easy. As one of
Piet Hein’s “grooks” puts it:
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There are doughnuts and doughnuts
with knots and with no knots

and many a doughnut

so nuts that we know not.

Here are three more toroidally knotty questions.

1. How many closed curves can be drawn on a torus, each a trefoil knot
of the same handedness, so that no two curves cross each other at any
point?

2.If two closed curves are drawn on a torus so that each forms a trefoil
knot but the knots are of opposite parity, what is the minimum num-
ber of points at which the two curves will intersect each other?

3. Show how to cut a solid two-hole doughnut with one slice of a knife
so that the result is a solid outside-knotted torus. The “slice” is not,
of course, planar. More technically, show how to remove from a two-
hole doughnut a section topologically equivalent to a disk so that
what remains is a solid knotted torus. (This amusing result was dis-
covered by John Stallings in 1957 and communicated to me by James
Stasheff.)

Addendum

In studying the properties of topological surfaces, one must al-
ways keep in mind the distinction between intrinsic properties, inde-
pendent of the space in which the surface is embedded, and properties
that arise from the embedding. The “complement” of a surface con-
sists of all the points in the embedding space that are not in the surface.
For example, a torus with no knot, one with an outside knot, and one
with an inside knot all have identical intrinsic properties. No two have
topologically identical complements; hence, no two are equivalent in
their extrinsic topological properties.

John Stillwell, a mathematician at Monash University, Australia, sent
several fascinating letters in which he showed how an unknotted torus
with any number of holes—such toruses are equivalent to the surfaces
of spheres with handles—could be turned inside out through a surface
hole. He was not sure whether a knotted torus, even with only one
hole, could be turned inside out through a hole in its surface.

Many beautiful, counterintuitive problems involving links and knots
in toruses have been published. See Rolfsen’s book, cited in the bibli-
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ography, especially the startling problem on page 95, where he shows
that the surface on the left of Figure 20.8 is topologically equivalent to

the surface shown on the right.

Figure 20.8. The surface on the left can be continuously deformed to the surface on the

right.

In my opening paragraph I mentioned the four sets of circles that are
contained in a torus. For readers who have difficulty finding the two
systems of “oblique” circles, they are explained on pages 132-33 in
H.S.M. Coxeter’s classic Introduction to Geometry. (Wiley, 1961). In a
footnote Coxeter says that drawings of all four systems of circles are
given in Hermann Schmidt, Die Inversion und ihre Anwendungen (Old-
enbourg, Munich, 1950, p. 52).

Here are four other toroidal puzzles that I have taken from other
books of mine. The first is from Penrose Tiles to Trapdoor Ciphers, the
second is from Last Recreations, and the third and fourth are from Sci-
ence Fiction Puzzle Tales.

1. Stillwell thought of the following problem. Two toruses, A and B, are
linked as is shown in Figure 20.9. There is a “mouth” (a hole) in B.
We can stretch, compress, and deform either torus as radically as we
please, but of course no tearing is allowed. Can B swallow A? At the
finish B must have its original shape, although it will be larger, and
A must be entirely inside it.

Figure 20.9. Can torus B
swallow torus A?
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2. Two topologists were discussing at lunch the two linked surfaces
shown at the left in Figure 20.10, which one of them had drawn on
a paper napkin. You must not think of these objects as solids, like
ropes or solid rubber rings. They are the surfaces of toruses, one sur-
face of genus 1 (one hole), the other of genus 2 (two holes).

D

Figure 20.10.

Thinking in the mode of “rubber-sheet geometry,” assume that the
surfaces in the illustration can be stretched or shrunk in any desired
way provided there is no tearing or sticking together of separate parts.
Can the two-hole torus be deformed so that one hole becomes un-
linked as is shown at the right in the illustration?

Topologist X offers the following impossibility proof. Paint a ring
on each torus as is shown by the black lines. At the left the rings are
linked. At the right they are unlinked.

“You will agree,” says X, “that it is impossible by continuous de-
formation to unlink two linked rings embedded in three-dimensional
space. It therefore follows that the transformation is impossible.”

“But it doesn’t follow at all,” says Y.

Who is right? I am indebted to Herbert Taylor for discovering and
sending this mystifying problem.

3.Figure 20.11 depicts a familiar linkage known as the Borromean
rings. No two rings are linked, yet all three are linked. It is impossi-
ble to separate them without cutting at least one torus. Show how it
is possible for any number of toruses to form a linked structure even
though no two of them are linked.

4. Are the two structures shown in Figure 20.12 topologically the same?
That is, can one be transformed to the other by a continuous defor-
mation?
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Figure 20.11. Figure 20.12,

Answers

R. H. Bing shows how an internally knotted torus can be re-
versed through a hole to produce an externally knotted torus (see Fig-
ure 20.13). A small hole, h, is enlarged to cover almost the entire side
of the cylinder, leaving only the shaded strip on the right. The top and
bottom disks of the cylinder are flipped over, and the hole is shrunk to
its original size.

T N

Figure 20.13. Solution to torus-reversed problem

As in reversing the unknotted torus through a hole, the deformation
interchanges meridians and parallels. You might not at first think so be-
cause the circle, m, appears the same in all three pictures. The fact is,
however, that initially it is a parallel circling the torus’s elongated hole,
whereas after the reversal it is a meridian. Moreover, after the reversal
the torus’s original hole is no longer through the knotted tube, which
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is now closed at both ends. As indicated by the arrow, the hole is now
surrounded by the knotted tube.

Piet Hein’s two-hole torus, with an internal knot passing through an
external one, is easily shown to be the same as a two-holer with only
an external knot. Simply slide one end of the inside knot around the
outside knot (in the manner explained earlier) and back to its starting
point. This unties the internal knot. Piet Hein’s two-holer, with the ex-
ternal knot going through a hole, can be unknotted by the deformation
shown in Figure 20.14.

1
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Figure 20.14. Unknotting a two-hole torus

Answers to the first three toroidal questions are as follows:

1. An infinity of noncrossing closed curves, each knotted with the same
handedness, can be drawn on a torus (see Figure 20.15, top). If a
torus surface is cut along any of these curves, the result is a two-
sided, knotted band.

2. Two closed curves on a torus, knotted with opposite handedness,
will intersect each other at least 12 times.

3. A rotating slice through a solid two-hole doughnut is used to produce
a solid that is topologically equivalent to a solid, knotted torus (see
Figure 20.15, bottom). Think of a short blade as moving downward
and rotating one and a half turns as it descends. If the blade does not
turn at all, two solid toruses result. A half-turn produces one solid,
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Figure 20.15. Knotted, nonintersecting curves on a torus {a) and rotating slice through a
two-hole torus (b}

unknotted torus. One turn produces two solid, unknotted, linked
toruses. Readers may enjoy investigating the general case of n half-
turns.

Here are solutions to the four puzzles given in the addendum:

1. One torus can be inside another in two topologically distinct ways: the
inside torus may surround the hole of the outside torus or it may not.
If two toruses are linked and one has a “mouth,” it cannot swallow
the other so that the eaten torus is inside in the second sense. This
result can be proved by drawing a closed curve on each torus in such
a way that the two curves are linked in a simple manner. No amount
of deformation can unlink the two curves. If one torus could swallow
the other in the manner described, however, it could disgorge the
eaten torus through its mouth and the two toruses would be un-
linked. This result would also unlink the two closed curves. Because
unlinking is impossible, cannibalism of this kind is also impossible.
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The torus with the mouth can, however, swallow the other one so
that the eaten torus is inside in the first sense explained above. Fig-
ure 20.16 shows how it is done. In the process it is necessary for the
cannibal torus to turn inside out.

A good way to understand what happens is to imagine that torus
A is shrunk until it becomes a stripe of paint that circles B. Turn A
inside out through its mouth. The painted stripe goes inside, but in

1. Mouth starts
to open.

2. It lengthens to
an enormous grin.

. Grin widens until
torus becomes
two attached bands.

4. Horizontal band
enlarges, vertical
band shrinks.

5. Vertical band
widens and creeps
around victim.

6. Mouth closes.

Ve'O0 "

Figure 20.16. How one torus eats another
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doing so it ends up circling B’s hole. Expand the stripe back to a
torus and you have the final picture of the sequence.

2. Figure 20.17 shows how a continuous deformation of the two-hole
torus will unlink one of its holes from the single-hole torus. The ar-
gument for the impossibility of this task fails because if a ring is
painted around one hole (as is shown by the black line), the ring be-
comes distorted in such a way that after the hole is unlinked the
painted ring remains linked through the one-hole torus.

e
S IR =2

For a mind-boggling selection of similar problems involving linked
toruses, see Herbert Taylor’s article “Bicycle Tubes Inside Qut,” in
The Mathematical Gardner (Wadsworth, 1981), edited by David
Klarner.

3. Figure 20.18 shows a circular chain that obviously can be enlarged
to include any number of links. No two toruses are linked. If one
link is cut and removed, all the others are free of one another.

4, The two forms are topologically identical. To prove this, imagine the
linked form deformed to a sphere with two “handles” as shown in
Figure 20.19.

Now imagine the base of one handle being moved over the surface,
by shrinking the surface in front and stretching it in back, along the
path shown by the dotted line. This links the two handles. The struc-
ture is now easily altered to correspond with the linked form of the
toroids.

Doughnuts: Linked and Knotted 269



Figure 20.18.

Figure 20.19.
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Chapter 21 Probability
and Ambiguity

Charles Sanders Peirce once observed that in no other branch
of mathematics is it so easy for experts to blunder as in probability the-
ory. History bears this out. Leibniz thought it just as easy to throw 12
with a pair of dice as to throw 11. Jean le Rond d’Alembert, the great
18th-century French mathematician, could not see that the results of
tossing a coin three times are the same as tossing three coins at once,
and he believed (as many amateur gamblers persist in believing) that
after a long run of heads, a tail is more likely.

Today, probability theory provides clear, unequivocal answers to
simple questions of this sort, but only when the experimental proce-
dure involved is precisely defined. A failure to do this is a common
source of confusion in many recreational problems dealing with
chance. A classic example is the problem of the broken stick. If a stick
is broken at random into three pieces, what is the probability that the
pieces can be put together in a triangle? This cannot be answered with-
out additional information about the exact method of breaking to be
used.

One method is to select, independently and at random, two points
from the points that range uniformly along the stick, then break the
stick at these two points. If this is the procedure to be followed, the an-
swer is 1/4, and there is a neat way of demonstrating it with a geomet-
rical diagram. We draw an equilateral triangle, then connect the
midpoints of the sides to form a smaller shaded equilateral triangle in
the center (see Figure 21.1). If we take any point in the large triangle
and draw perpendiculars to the three sides, the sum of these three lines
will be constant and equal to the altitude of the large triangle. When
this point, like point A, is inside the shaded triangle, no one of the
three perpendiculars will be longer than the sum of the other two.
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Therefore the three line-segments will form a triangle. On the other
hand, if the point, like point B, is outside the shaded triangle, one per-
pendicular is sure to be longer than the sum of the other two, and con-
sequently no triangle can be formed with the three line-segments.

Figure 21.1. 1f a stick is broken in three pieces, the probability is 1/4 that they will form
a triangle.

We now have a neat geometrical analogy to the problem of the bro-
ken stick. The sum of the three perpendiculars corresponds to the
length of the stick. Each point on the large triangle represents a unique
way of breaking the stick, the three perpendiculars corresponding to
the three broken pieces. The probability of breaking the stick favorably
is the same as the probability of selecting a point at random and find-
ing that its three perpendiculars will form a triangle. As we have seen,
this happens only when the point is inside the shaded triangle. Since
this area is one-fourth the total area, the probability is 1/4.

Suppose, however, that we interpret in a different way the statement
“break a stick at random into three pieces.” We break the stick at ran-
dom, we select randomly one of the two pieces, and we break that
piece at random. What are the chances that the three pieces will form
a triangle?

The same diagram will provide the answer. If after the first break we
choose the smaller piece, no triangle is possible. What happens when
we pick the larger piece? Let the vertical perpendicular in the diagram
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represent the smaller piece. In order for this line to be smaller than the
sum of the other two perpendiculars, the point where the lines meet
cannot be inside the small triangle at the top of the diagram. It must
range uniformly over the lower three triangles. The shaded triangle
continues to represent favorable points, but now it is only one-third the
area under consideration. The chances, therefore, are 1/3 that when
we break the larger piece, the three pieces will form a triangle. Since
our chance of picking the larger piece is 1/2, the answer to the original
question is the product of 1/2 and 1/3, or 1/6.

Geometrical diagrams of this sort must be used with caution because
they too can be fraught with ambiguity. For example, consider this
problem discussed by Joseph Bertrand, a famous French mathemati-
cian. What is the probability that a chord drawn at random inside a cir-
cle will be longer than the side of an equilateral triangle inscribed in the
circle?

We can answer as follows. The chord must start at some point on the
circumference. We call this point A, then draw a tangent to the circle
at A, as shown in the top illustration of Figure 21.2. The other end of
the chord will range uniformly over the circumference, generating an
infinite series of equally probable chords, samples of which are shown
on the illustration as broken lines. It is clear that only those chords that
cut across the triangle are longer than the side of the triangle. Since the
angle of the triangle at A is 60 degrees, and since all possible chords lie
within a 180-degree range, the chances of drawing a chord larger than
the side of the triangle must be 60/180, or 1/3.

Now let us approach the same problem a bit differently. The chord
we draw must be perpendicular to one of the circle’s diameters. We
draw the diameter, then add the triangle as shown in the illustration at
bottom left of Figure 21.2. All chords perpendicular to this diameter
will pass through a point that ranges uniformly along the diameter.
Samples of these chords are again shown as broken lines. It is not hard
to prove that the distance from the center of the circle to A is half the
radius. Let B mark the midpoint on the other side of the diameter. It is
now easy to see that only those chords crossing the diameter between
A and B will be longer than the side of the triangle. Since AB is half the
diameter, we obtain an answer to our problem of 1/2.

Here is a third approach. The midpoint of the chord will range uni-
formly over the entire space within the circle. A study of the illustra-
tion at bottom right of Figure 21.2 will convince you that only chords
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Figure 21.2. Probability that random chord is longer than side of inscribed equilateral tri-
angle is proved to be 1/3 (top}, 1/2 (left), and 1/4 (right).

whose midpoints lie within the smaller shaded circle are longer than
the side of the triangle. The area of the small circle is exactly one-
fourth the area of the large circle, so the answer to our problem now ap-
pears to be 1/4.

Which of the three answers is right? Each is correct in reference to a
certain mechanical procedure for drawing a random chord. Examples
of the three procedures are as follows:

1. Two spinners are mounted at the center of a circle. They rotate in-
dependently. We spin them, mark the two points at which they stop,
and connect the points with a straight line. The probability that this
line will be longer than the side of the inscribed triangle is 1/3.

2. A large circle is chalked on the sidewalk. We roll a broom handle to-
ward it, from a distance of 50 feet, until the handle stops somewhere
on the circle. The probability that it will mark a chord longer than the
side of the triangle is 1/2.

3. We paint a circle with molasses and wait until a fly lights on it, then
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we draw the chord on which the fly is the midpoint. The probability
that this chord is longer than the side of the triangle is 1/4.

Each of these procedures is a legitimate method of obtaining a “ran-
dom chord.” The problem as originally stated, therefore, is ambiguous.
It has no answer until the meaning of “draw a chord at random” is
made precise by a description of the procedure to be followed. Appar-
ently nothing resembling any of the three procedures is actually
adopted by most people when they are asked to draw a random chord.
In an interesting unpublished paper entitled “The Human Organism as
a Random Mechanism” Oliver L. Lacey, professor of psychology at the
University of Alabama, reports on a test which showed the probability
to be much better than 1/2 that a subject would draw a chord longer
than the side of the inscribed triangle.

Another example of ambiguity arises from a failure to specify the
randomizing procedure. Readers were told that Mr. Smith had two chil-
dren, at least one of whom was a boy, and were asked to calculate the
probability that both were boys. Many readers correctly pointed out
that the answer depends on the procedure by which the information “at
least one is a boy” is obtained. If from all families with two children,
at least one of whom is a boy, a family is chosen at random, then the an-
swer is 1/3. But there is another procedure that leads to exactly the
same statement of the problem. From families with two children, one
family is selected at random. If both children are boys, the informant
says “at least one is a boy. If both are girls, he says “at least one is a girl.”
And if both sexes are represented, he picks a child at random and says
“at least one isa ... ,” naming the child picked. When this procedure
is followed, the probability that both children are of the same sex is
clearly 1/2. (This is easy to see because the informant makes a state-
ment in each of the four cases—BB, BG, GB, GG—and in half of these
cases both children are of the same sex.)

The following wonderfully confusing little problem involving three
prisoners and a warden is even more difficult to state unambiguously.
Three men—A, B, and C—were in separate cells under sentence of
death when the governor decided to pardon one of them. He wrote
their names on three slips of paper, shook the slips in a hat, drew out
one of them, and telephoned the warden, requesting that the name of
the lucky man be kept secret for several days. Rumor of this reached

Probability and Ambiguity 277



prisoner A. When the warden made his morning rounds, A tried to
persuade the warden to tell him who had been pardoned. The warden
refused.

“Then tell me,” said A, “the name of one of the others who will be
executed. If B is to be pardoned, give me C’s name. If C is to be par-
doned, give me B’s name. And if I'm to be pardoned, flip a coin to de-
cide whether to name B or C.”

“But if you see me flip the coin,” replied the wary warden, “you’ll
know that you’re the one pardoned. And if you see that I don’t flip a
coin, you’ll know it’s either you or the person I don’t name.”

“Then don’t tell me now,” said A. “Tell me tomorrow morning.”

The warden, who knew nothing about probability theory, thought it
over that night and decided that if he followed the procedure suggested
by A, it would give A no help whatever in estimating his survival
chances. So next morning he told A that B was going to be executed.

After the warden left, A smiled to himself at the warden’s stupidity.
There were now only two equally probable elements in what mathe-
maticians like to call the “sample space” of the problem. Either C
would be pardoned or himself, so by all the laws of conditional prob-
ability, his chances of survival had gone up from 1/3 to 1/2.

The warden did not know that A could communicate with C, in an
adjacent cell, by tapping in code on a water pipe. This A proceeded to
do, explaining to C exactly what he had said to the warden and what
the warden had said to him. C was equally overjoyed with the news be-
cause he figured, by the same reasoning used by A, that his own sur-
vival chances had also risen to 1/2.

Did the two men reason correctly? If not, how should each have cal-
culated his chances of being pardoned?

Addendum

In giving the second version of the broken stick problem I could
hardly have picked a better illustration of the ease with which experts
can blunder on probability computations, and the dangers of relying on
a geometrical diagram. My solution was taken from William A. Whit-
worth’s DCC Exercises in Choice and Chance, Problem 677; the same
answer will be found in many other older textbooks on probability. It
is entirely wrong!

278 PROBABILITY



In the first version of the problem, in which the two breaking points
are simultaneously chosen, the representative point on the diagram
ranges uniformly over the large triangle, permitting a comparison of
areas to obtain a correct answer. In the second version, in which the
stick is broken, then the larger piece is broken, Whitworth assumed that
the point on the diagram ranged uniformly over the three lower trian-
gles. It doesn’t. There are more points within the central triangle than
in the other two.

Let the length of the stick be 1 and x be the length of the smallest
piece after the first break. To obtain pieces that will form a triangle,
the larger segment must be broken within a length equal to 1 — x.
Therefore the probability of obtaining a triangle is x/1 — x. We now
have to average all values of x, from 0 to 1/2, to obtain a value for this
expression. It proves to be — 1 + 2 log 2, or .386. Since the probability
is 1/2 that the larger piece will be picked for breaking, we multiply
.386 by 1/2 to obtain .193, the answer to the problem. This is a trifle
larger than 1/6, the answer obtained by following Whitworth’s rea-
soning.

A large number of readers sent very clear analyses of the problem. In
the above summary, I followed a solution sent by Mitchell P. Marcus of
Binghamton, NY. Similar solutions were received from Edward Adams,
Howard Grossman, Robert C. James, Gerald R. Lynch, G. Bach and R.
Sharp, David Knaff, Norman Geschwind, and Raymond M. Redheffer.
Professor Redheffer, at the University of California, is coauthor (with
Ivan S. Sokolnikoff) of Mathematics of Physics and Modern Engineer-
ing (McGraw-Hill, 1958), in which will be found (p. 636) a full discus-
sion of the problem. See also Ingenious Mathematical Problems and
Methods by L. A. Graham (Dover, 1959, Problem 32) for other methods
of solving the problem’s first version.

Frederick R. Kling, John Ross, and Norman Cliff, all with the Educa-
tional Testing Service, Princeton, NJ, also sent a correct solution of the
problem’s second version. At the close of their letter they asked which
of the following three hypotheses was most probable:

1. Mr, Gardner honestly blundered.

2. Mr. Gardner deliberately blundered in order to test his readers.

3. Mr. Gardner is guilty of what is known in the mathematical world
as keeping up with the d’Alemberts.

The answer: number three.
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Answers

The answer to the problem of the three prisoners is that A’s
chances of being pardoned are 1/3, and that C’s chances are 2/3.

Regardless of who is pardoned, the warden can give A the name of a
man, other than A, who will die. The warden’s statement therefore has
no influence on A’s survival chances; they continue to be 1/3.

The situation is analogous to the following card game. Two black
cards (representing death) and a red card (the pardon) are shuffled and
dealt to three men: A, B, C (the prisoners). If a fourth person (the war-
den) peeks at all three cards, then turns over a black card belonging to
either B or C, what is the probability that A’s card is red? There is a
temptation to suppose it is 1/2 because only two cards remain face-
down, one of which is red. But since a black card can always be shown
for B or C, turning it over provides no information of value in betting
on the color of A’s card.

This is easy to understand if we exaggerate the situation by letting
death be represented by the ace of spades in a full deck. The deck is
spread, and A draws a card. His chance of avoiding death is 51/52.
Suppose now that someone peeks at the cards, then turns face up 50
cards that do not include the ace of spades. Only two face-down cards
are left, one of which must be the ace of spades, but this obviously
does not lower A’s chances to 1/2. It doesn’t because it is always pos-
sible, if one looks at the faces of the 51 cards, to find 50 that do not in-
clude the ace of spades. Finding them and turning them face up,
therefore, has no effect on A’s chances. Of course if 50 cards are turned
over at random, and none prove to be the ace of spades, then the chance
that A drew the death card does rise to 1/2.

What about prisoner C? Since either A or C must die, their respective
probabilities for survival must add up to 1. A’s chances to live are 1/3;
therefore C’s chances must be 2/3. This can be confirmed by consider-
ing the four possible elements in our sample space, and their respective
initial probabilities:

—~

1. Cis pardoned, warden names B
2. Bis pardoned, warden names C
3. A is pardoned, warden names B
4. A is pardoned, warden names C

probability 1/3).
probability 1/3).
probability 1/6).
probability 1/6).

N TN
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Only cases 1 and 3 apply when it becomes known that B will die. The
chances that it is case 1 are 1/3, or twice the chances (1/6) that it is case
3, so C’s survival chances are two to one, or 2/3. In the card-game model
this means that there is a probability of 2/3 that C’s card is red.

This problem of the three prisoners brought a flood of mail, pro and
con; happily, all objections proved groundless. Sheila Bishop of East
Haven, CT, sent the following well-thought-out analysis:

SIRs:

I was first led to the conclusion that A’s reasoning was incorrect by the
following paradoxical situation. Suppose the original conversation be-
tween A and the warden had taken place in the same way, but now sup-
pose that just as the warden was approaching A’s cell to tell him that B
would be executed, the warden fell down a manhole or was in some
other way prevented from delivering the message.

A could then reason as follows: “Suppose he was about to tell me that
B would be executed. Then my chance of survival would be 1/2. If, on
the other hand, he was going to tell me that C would be executed, then
my chances would still be 1/2. Now I know as a certain fact that he
would have told me one of those two things; therefore, either way, my
survival chances are bound to be 1/2.” Following this line of thought
shows that A could have figured his chances to be 1/2 without ever ask-
ing the warden anything!

After a couple of hours I finally arrived at this conclusion: Consider a
large number of trios of prisoners all in this same situation, and in each
group let A be the one who talks to the warden. If there are 3n trios al-
together, then in n of them A will be pardoned, in n B will be pardoned,
and in n C will be pardoned. There will be 3n/2 cases in which the war-
den will say, “B will be executed.” In n of these cases C will go free and
in n/2 cases A will go free; C’s chances are twice as good as A’s. Hence
A’s and C'’s chances of survival and 1/3 and 2/3 respectively. . . .

Lester R. Ford, Jr., and David N. Walker, both with the Arizona office
of General Analysis Corporation, felt that the warden has been unjustly
maligned:

SIRs:

We are writing to you on behalf of the warden, who is a political ap-
pointee and therefore unwilling to enter into controversial matters in his
own behalf.

You characterize him in a slurring manner as “The warden, who knew
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nothing about probability theory, . . .” and I feel that a grave injustice is
being done. Not only are you incorrect (and possibly libelous), but I can
personally assure you that his hobby for many years has been mathe-
matics, and in particular, probability theory. His decision to answer A’s
question, while based on a humanitarian attempt to brighten the last
hours of a condemned man (for, as we all now know, it was C who re-
ceived the pardon), was a decision completely compatible with his in-
structions from the governor.

The only point on which he is open to criticism (and on this he has
already been reprimanded by the governor) is that he was unable to pre-
vent A from communicating with C, thereby permitting C to more accu-
rately estimate his chances of survival. Here too, no great damage was
done, since C failed to make proper use of the information.

If you do not publish both a retraction and an apology, we shall feel
impelled to terminate our subscription.

Addendum

The problem of the two boys, as I said, must be very carefully
stated to avoid ambiguity that prevents a precise answer. In my Ahag,
Gotcha 1 avoided ambiguity by imagining a lady who owned two par-
rots—one white, one black. A visitor asks the owner, “Is one bird a
male?” The owner answers yes. The probability both parrots are male
is 1/3. Had the visitor asked, “Is the dark bird a male?”, a yes answer
would have raised the probability that both birds are male to 1/2.

Richard E. Bedient, a mathematician at Hamilton College, described
the prisoner’s paradox in a poem that appeared in The American Math-
ematical Monthly, Vol. 101, March 1994, page 249:

THE PrisONER’S PaARADOX REVISITED

Awaiting the dawn sat three prisoners wary,
A trio of brigands named Tom, Dick and Mary.
Sunrise would signal the death knoll of two,
Just one would survive, the question was who.

Young Mary sat thinking and finally spoke.

To the jailer she said, “You may think this a joke”
But it seems that my odds of surviving ’til tea,
Are clearly enough just one out of three.

But one of my cohorts must certainly go,
Without question, that’s something I already know.
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Telling the name of one who is lost,
Can’t possibly help me. What could it cost?”

The shriveled old jailer himself was no dummy,

He thought, “But why not?” and pointed to Tommy.
“Now it’s just Dick and I” Mary chortled with glee,
“One in two are my chances, and not one in three!”

Imagine the jailer’s chagrin, that old elf,
She’d tricked him, or had she? Decide for yourself.

When I introduced the three prisoners paradox in my October 1959
column, I received a raft of letters from mathematicians who believed
my solution was invalid. The number of such letters, however, was
small compared to the thousands of letters Marilyn vos Savant received
when she gave a version of the problem in her popular Parade column
for September 9, 1990.

Ms. Savant’s version of the paradox was based on a then-popular
television show called Let’s Make a Deal, hosted by Monty Hall. Imag-
ine three doors, Marilyn wrote, to three rooms. Behind one door is a
prize car. Behind each of the other two doors is a goat. A guest on the
show is given a chance to win the prize by selecting the door with the
car. If she chooses at random, clearly the probability she will select the
prize door is 1/3. Now suppose, that after the guest’s selection is voiced,
Monty Hall, who knows what is behind each door, opens one door to
disclose a goat. Two closed doors remain. One might reason that be-
cause the car is now behind one of just two doors, the probability the
guest had chosen the correct door has risen to 1/2. Not so! As Marilyn
correctly stated, it remains 1/3. Because Monty can always open a door
with a goat, his opening such a door conveys no new information that
alters the 1/3 probability.

Now comes an even more counterintuitive result. If the guest
switches her choice from her initial selection to the other closed door,
her chances of winning rise to 2/3. This should be obvious if one grants
that the probability remains 1/3 for the first selection. The car must be
behind one of the two doors, therefore the probabilities for each door
must add to 1, or certainty. If one door has a probability of 1/3 being
correct, the other door must have a 2/3 probability.

Marilyn was flooded with letters from irate readers, many accusing
her of being ignorant of elementary probability theory and many from
professional mathematicians. So awesome was the mail, and so con-
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troversial, that The New York Times, on July 21, 1991, ran a front page,
lengthy feature about the flap. The story, written by John Tierney, was
titled “Behind Monty Hall’s Doors: Puzzle, Debate and Answer?” (See
also letters about the feature in The Times, August 11, 1991.)

The red-faced mathematicians, who were later forced to confess they
were wrong, were in good company. Paul Erdos, one of the world’s
greatest mathematicians, was among those unable to believe that
switching doors doubled the probability of success. Two recent bi-
ographies of the late Erdos reveal that he could not accept Marilyn’s
analysis until his friend Ron Graham, of Bell Labs, patiently explained
it to him.

The Monty Hall problem, as it came to be known, generated many ar-
ticles in mathematical journals. I list some of them in this chapter’s bib-
liography.
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Chapter 22 Nontransitive Dice
and Other Paradoxes

P robability theory abounds in paradoxes that wrench common
sense and trap the unwary. In this chapter we consider a startling new
paradox involving the relation called transitivity and a group of para-
doxes stemming from the careless application of what is called the
principle of indifference.

Transitivity is a binary relation such that if it holds between A and B
and between B and C, it must also hold between A and C. A common
example is the relation “heavier than.” If A is heavier than B and B is
heavier than C, then A is heavier than C. The three sets of four dice
shown “unfolded” in Figure 22.1 were designed by Bradley Efron, a sta-
tistician at Stanford University, to dramatize some discoveries about a
general class of probability paradoxes that violate transitivity. With any
of these sets of dice you can operate a betting game so contrary to in-
tuition that experienced gamblers will find it almost impossible to com-
prehend even after they have completely analyzed it.

The four dice at the top of the illustration are numbered in the sim-
plest way that provides the winner with the maximum advantage.
Allow someone to pick any die from this set. You then select a die
from the remaining three. Both dice are tossed and the person who gets
the highest number wins. Surely, it seems, if your opponent is allowed
the first choice of a die before each contest, the game must either be fair
or favor your opponent. If at least two dice have equal and maximum
probabilities of winning, the game is fair because if he picks one such
die, you can pick the other; if one die is better than the other three, your
opponent can always choose that die and win more than half of the
contests. This reasoning is completely wrong. The incredible truth is
that regardless of which die he picks you can always pick a die that has
a 2/3 probability of winning, or two-to-one odds in your favor!
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Figure 22.1. Nontransitive dice

The paradox (insofar as it violates common sense) arises from the
mistaken assumption that the relation “more likely to win” must be
transitive between pairs of dice. This is not the case with any of the
three sets of dice. In each set the relation “more likely to win” is indi-
cated by an arrow that points to the losing die. Die A beats B, B beats
C, C beats D—and D beats A! In the first set the probability of winning
with the indicated die of each pair is 2/3. This is easily verified by list-
ing the 36 possible throws of each pair, then checking the 24 cases in
which one die bears the highest number.

The other two sets of four dice, also designed by Efron, have the
same nontransitive property but fewer numbers are repeated in order
to make an analysis of the dice more difficult. In the second set the
probability of winning with the indicated die is also 2/3. Because ties
are possible with the third set it must be agreed that ties will be broken
by rolling again. With this procedure the winning probability for each
of the four pairings in the third set is 11/17, or .647.

It has been proved, Efron writes, that 2/3 is the greatest possible ad-
vantage that can be achieved with four dice. For three sets of numbers
the maximum advantage is .618, but this cannot be obtained with dice
because the sets must have more than six numbers. If more than four
sets are used (numbers to be randomly selected within each set), the
possible advantage approaches a limit of 3/4 as the number of sets in-
creases.

A fundamental principle in calculating probabilities such as dice
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throws is one that goes back to the beginnings of classical probability
theory in the 18th century. It was formerly called “the principle of in-
sufficient reason” but is now known as “the principle of indifference,”
a crisper phrase coined by John Maynard Keynes in A Treatise on Prob-
ability. (Keynes is best known as an economist, but his book on proba-
bility has become a classic. It had a major influence on the inductive
logic of Rudolf Carnap.) The principle is usually stated as follows: If
you have no grounds whatever for believing that any one of n mutually
exclusive events is more likely to occur than any other, a probability of
1/n is assigned to each.

For example, you examine a die carefully and find nothing that fa-
vors one side over another, such as concealed loads, noncubical shape,
beveling of certain edges, stickiness of certain sides, and so on. You as-
sume that there are six equally probable ways the cube can fall; there-
fore you assign a probability of 1/6 to each. If you toss a penny, or play
the Mexican game of betting on which of two sugar cubes a fly will
alight on first, your ignorance of any possible bias prompts you to as-
sign a probability of 1/2 to each of the two outcomes. In none of these
samples do you feel obligated to make statistical, empirical tests. The
probabilities are assigned a priori. They are based on symmetrical fea-
tures in the structures and forces involved. The die is a regular solid,
the probability of the penny’s balancing on its edge is virtually zero,
there is no reason for a fly to prefer one sugar cube to another, and so
on. Ultimately, of course, your analysis rests on empirical grounds,
since only experience tells you, say, that a weighted die face would af-
fect the odds, whereas a face colored red (with the others blue) would
not.

Some form of the principle of indifference is indispensable in prob-
ability theory, but it must be carefully qualified and applied with ex-
treme caution to avoid pitfalls. In many cases the traps spring from a
difficulty in deciding which are the equally probable cases. Suppose,
for instance, you shuffle a packet of four cards—two red, two black—
and deal them face down in a row. Two cards are picked at random, say
by placing a penny on each. What is the probability that those two
cards are the same color?

One person reasons: “There are three equally probable cases. Either
both cards are black, both are red, or they are different colors. In two
cases the cards match, therefore the matching probability is 2/3.”

“No,” another person counters, “there are four equally probable
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cases. Either both cards are black, both are red, card x is black and y is
red, or x is red and y is black. More simply, the cards either match or
they do not. In each way of putting it the matching probability clearly
is 1/2.”

The fact is that both people are wrong. (The correct probability will
be given in the Answer Section. Can the reader calculate it?) Here the
errors arise from a failure to identify correctly the equally probable
cases. There are, however, more confusing paradoxes—actually fallac-
ies—in which the principle of indifference seems intuitively to be ap-
plicable, whereas it actually leads straight to a logical contradiction.
Cases such as these result when there are no positive reasons for be-
lieving n events to be equally probable and the assumption of equiprob-
ability is therefore based entirely, or almost entirely, on ignorance.

For example, someone tells you: “There is a cube in the next room
whose size has been selected by a randomizing device. The cube’s edge
is not less than one foot or more than three feet.” How would you esti-
mate the probability that the cube’s edge is between one and two feet
as compared with the probability that it is between two and three feet?
In your total ignorance of additional information, is it not reasonable to
invoke the principle of indifference and regard each probability as 1/27?

It is not. If the cube’s edge ranges between one and two feet, its vol-
ume ranges between 13, or one, cubic foot and 23, or eight, cubic feet.
But in the range of edges from two to three feet, the volume ranges be-
tween 22 (eight) and 33 (27) cubic feet—a range almost three times the
other range. If the principle of indifference applies to the two ranges of
edges, it is violated by the equivalent ranges of volume. You were not
told how the cube’s “size” was randomized, and since “size” is am-
biguous (it could mean either the cube’s edge or its volume) you have
no clues to guide your guessing. If the cube’s edge was picked at ran-
dom, the principle of indifference does indeed apply. It is also applic-
able if you are told that the cube’s volume was picked at random, but
of course you then have to assign a probability of 1/2 to each of the two
ranges from one to 14 and from 14 to 27 cubic feet, and to the corre-
sponding ranges for the cube’s edge. If the principle applies to the edge,
it cannot apply to the volume without contradiction, and vice versa.
Since you do not know how the size was selected, any application of
the principle is meaningless.

Carnap, in attacking an uncritical use of the principle in Harold Jef-
freys’ Theory of Probability, gives the following example of its misuse.
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You know that every ball in an urn is blue, red, or yellow, but you
know nothing about how many balls of each color are in the urn. What
is the probability that the first ball taken from the urn will be blue? Ap-
plying the principle of indifference, you say it is 1/2. The probability
that it is not blue must also be 1/2. If it is not blue, it must be red or yel-
low, and because you know nothing about the number of red or yellow
balls, those colors are equally probable. Therefore you assign to red a
probability of 1/4. On the other hand, if you begin by asking for the
probability that the first ball will be red, you must give red a probabil-
ity of 1/2 and blue a probability of 1/4, which contradicts your previ-
ous estimates.

It is easy to prove along similar lines that there is life on Mars. What
is the probability that there is simple plant life on Mars? Since argu-
ments on both sides are about equally cogent, we answer 1/2. What is
the probability that there is simple animal life on Mars? Again, 1/2.
Now we seem forced to assert that the probability of there being “either
plant or animal life” on Mars is 1/2 + 1/2 =1, or certainty, which is ab-
surd. The philosopher Charles Sanders Peirce gave a similar argument
that seems to show that the hair of inhabitants on Saturn had to be ei-
ther of two different colors. It is easy to invent others.

In the history of metaphysics the most notorious misuse of the prin-
ciple surely was by Blaise Pascal, who did pioneer work on probabil-
ity theory, in a famous argument that became known as “Pascal’s
wager.” A few passages from the original and somewhat lengthy argu-
ment (in Pascal’s Pensées, Thought 233) are worth quoting:

“God is, or he is not.” To which side shall we incline? Reason can de-
termine nothing about it. There is an infinite gulf fixed between us. A
game is playing at the extremity of this infinite distance in which heads
or tails may turn up. What will you wager? There is no reason for back-
ing either one or the other, you cannot reasonably argue in favor of ei-
ther. . . .

Yes, but you must wager. . . . Which will you choose? . . . Let us weigh
the gain and the loss in choosing “heads” that God is. . . . If you gain, you
gain all. If you lose, you lose nothing. Wager, then, unhesitatingly that
he is.

Lord Byron, in a letter, rephrased Pascal’s argument effectively: “In-
disputably, the firm b