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From the Preface to the First Printing

A great discovery solves a great problem but there is a
grain ot discovery in the solution of any problem. Your
problem may be modest; but if it challenges your curios-
ity and brings into play your inventive faculties, and if
you solve it by your own means, you may experience the
tension and enjoy the triumph of discovery. Such experi-
ences at a susceptible age may create a taste for mental
work and leave their imprint on mind and character for
a hifetime.

Thus, a teacher of mathematics has a great opportu-
nity. If he fills his allotted time with drilling his students
in routine operations he kills their interest, hampers
their intellectual development, and misuses his oppor-
tunity. But 1f he challenges the curiosity of his students
by setting them problems proportionate to their knowl-
edge, and helps them to solve their problems with stimu-
lating questions, he may give them a taste for, and some
means of, independent thinking.

Also a student whose college curriculum includes some
mathematics has a singular opportunity. This opportu-
nity is lost, of course, if he regards mathematics as a
subject in which he has to earn so and so much credit
and which he should forget after the final examination
as quickly as possible. The opportunity may be lost even
1f the student has some natural talent for mathematics
because he, as everybody else, must discover his talents
and tastes; he cannot know that he likes raspberry pie if
he has never tasted raspberry pie. He may manage to find
out, however, that a mathematics problem may be as
much fun as a crossword puzzle, or that vigorous mental

\



vi From the Preface to the First Printing

work may be an exercise as desirable as a fast game of
tennis. Having tasted the pleasure in mathematics he will
not forget it easily and then there is a good chance that
mathematics will become something for him: a hobby, or
a tool of his profession, or his protession, or a great
ambition.

The author remembers the time when he was a student
himself, a somewhat ambitious student, eager to under-
stand a little mathematics and physics. He listened to
lectures, read books, tried to take 1n the solutions and
facts presented, but there was a question that disturbed
him again and again: “Yes, the solution seems to work,
it appears to be correct; but how is it possible to invent
such a solution? Yes, this experiment seems to work, this
appears to be a fact; but how can people discover such
facts? And how could I invent or discover such things by
myself?” Today the author is teaching mathematics in a
university; he thinks or hopes that some of his more eager
students ask similar questions and he tries to satisfy their
curiosity. Trying to understand not only the solution of
this or that problem but also the motives and procedures
of the solution, and trying to explain these motives and
procedures to others, he was finally led to write the
present book. He hopes that it will be useful to teachers
who wish to develop their students’ ability to solve prob-
lems, and to students who are keen on developing their
own abilities.

Although the present book pays special attention to the
requirements of students and teachers ot mathematics, 1t
should interest anybody concerned with the ways and
means of invention and discovery. Such interest may be
more widespread than one would assume without reflec-
tion. The space devoted by popular newspapers and
magazines to crossword puzzles and other riddles seems
to show that people spend some time in solving unprac-
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tical problems. Behind the desire to solve this or that
problem that confers no material advantage, there may
be a deeper curiosity, a desire to understand the ways and
means, the motives and procedures, of solution.

The following pages are written somewhat concisely,
but as simply as possible, and are based on a long and
serious study of methods of solution. This sort of study,
called heuristic by some writers, is not in fashion now-
adays but has a long past and, perhaps, some future.

Studying the methods of solving problems, we perceive
another face of mathematics. Yes, mathematics has two
faces; it is the rigorous science of Euclid but it is also
something else. Mathematics presented in the Euclidean
way appears as a systematic, deductive science; but mathe-
matics in the making appears as an experimental, in-
ductive science. Both aspects are as old as the science ot
mathematics itself. But the second aspect is new in one
respect; mathematics “in statu nascendi,” 1n the process
of being invented, has never before been presented in
quite this manner to the student, or to the teacher him-
self, or to the general public.

The subject of heuristic has manifold connections;
mathematicians, logicians, psychologists, educationalists,
even philosophers may claim various parts of it as belong-
ing to their special domains. The author, well aware ot
the possibility of criticism from opposite quarters and
keenly conscious of his limitations, has one claim to
make: he has some experience in solving problems and
in teaching mathematics on various levels.

The subject is more fully dealt with in a more exten-

sive book by the author which is on the way to com-
pletion.

Stanford University, August 1, 1944



viii  From the Preface to the Seventh Printing

From the Preface to the Seventh Printing

I am glad to say that I have now succeeded in fulfilling,
at least in part, a promise given in the preface to the

first printing: The two volumes Induction and Analogy
in Mathematics and Patterns of Plausible Inference which
constitute my recent work Mathematics and Plausible

Reasoning continue the line of thinking begun in How
to Solve It.

Zurich, August 30, 1954

Preface to the Second Edition X

Preface to the Second Edition

The present second edition adds, besides a tew minor
improvements, a new fourth part, “Problems, Hints,
Solutions.”

As this edition was being prepared for print, a study
appeared (Educational Testing Service, Princeton, N.J.;
cf. Time, June 18, 1956) which seems to have formu-
lated a few pertinent observations—they are not new to
the people in the know, but it was high time to formu-
late them for the general public—: * ... mathematics has
the dubious honor of being the least popular subject in
the curriculum . . . Future teachers pass through the
elementary schools learning to detest mathematics . .
They return to the elementary school to teach a new
generation to detest 1t.”

I hope that the present edition, designed for wider
diffusion, will convince some of its readers that mathe-
matics, besides being a necessary avenue to engineering
jobs and scientific knowledge, may be fun and may also
open up a vista of mental activity on the highest level.

Zurich, June 30, 1956

The cover 1llustrates pp. 87-88 but also p. 208.



HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM

What is the unknown? What are the data? What is the condition?

Is it possible to satisfy the condition? Is the condition sufficient to
You have to understand  determine the unknown? Or is it insufficient? Or redundant? Or

the problem.  contradictory?
Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them downr

First.

DEVISING A PLAN

Have you seen it before? Or have you seen the same problem in a

_ _ slightly different form?

Find the connection between  p, 4y know a related problem? Do you know a theorem that could
the data and the unknown. . “coful?

. Youmay be obliged ;. . unknown! And try to think of a familiar problem having
to consider auxiliary problems T
the same or a similar unknown.

if an immediate connection ‘ _

cannot be found. Here isa problem related to yours and solved before. Could you use 1t?

You should obtain eventually Could you use its result? Could you use its method? Should you intro-
a plan of the solution. duce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently?

Go back to definitions.

Second.

It you cannot solve the proposed problem try to solve first some related
problem. Could you imagine a more accessible related problem? A
more general problem? A more special problem? An analogous problem?
Could you solve a part of the problem? Keep only a part of the condi-
tion, drop the other part; how far is the unknown then determined,
how can it vary? Could you derive something useful from the data?
Could you think of other data appropriate to determine the unknown?
Could you change the unknown or the data, or both if necessary, so
that the new unknown and the new data are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you
taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN

Third. Carrying out your plan of the solution, check each step. Can you see
Carry out your plan. _clearly that the step is correct? Can you prove that it is correct?

LOOKING BACK

Fourth. ©an you check the result? Can you check the argument?
Can you derive the result differently? Can you see it at a glance?

Examine the solution obtained.
Can you use the result, or the method, for some other problem?
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Introduction

The following considerations are grouped around the
preceding list of questions and suggestions entitled “How
to Solve It.” Any question or suggestion quoted from it
will be printed in :talics, and the whole list will be
referred to simply as “the list” or as “our list.”

The following pages will discuss the purpose of the
list, illustrate its practical use by examples, and explain
the underlying notions and mental operations. By way of
preliminary explanation, this much may be said: Ii,
using them properly, you address these questions and
suggestions to yourself, they may help you to solve your
problem. If, using them properly, you address the same
questions and suggestions to one of your students, you
may help him to solve his problem.

The book is divided into four parts.

The title of the first part is “In the Classroom.” It
contains twenty sections. Each section will be quoted by
its number in heavy type as, for instance, “section 7.”
Sections 1 to b discuss the “Purpose” of our list in gen-
eral terms. Sections 6 to 17 explain what are the “Main
Divisions, Main Questions” of the list, and discuss a first
practical example. Sections 18, 19, 20 add “More Ex-
amples.”

T'he title of the very short second part 1s “How to
Solve It.” It is written in dialogue; a somewhat idealized
teacher answers short questions of a somewhat idealized

student.
The third and most extensive part is a “Short Diction-
ary of Heuristic”’; we shall refer to it as the “Dictionary.”

X1X



XX Introduction

It contains sixty-seven articles arranged alphabetically.
For example, the meaning of the téerm HEURISTIC (set
in small capitals) is explained in an article with this title
on page 112. When the title of such an article is referred
to within the text it will be set in small capitals. Certain
paragraphs of a few articles are more technical; they are
enclosed in square brackets. Some articles are fairly
closely connected with the first part to which they add
further illustrations and more specific comments. Other
articles go somewhat beyond the aim of the first part of
which they explain the background. There is a key-
article on MODERN HEURISTIC. It explains the connection
of the main articles and the plan underlying the Diction-
ary; it contains also directions how to find information
about particular items of the list. It must be emphasized
that there is a common plan and a certain unity, because
the articles of the Dictionary show the greatest outward
variety. There are a few longer articles devoted to the
systematic though condensed discussion of some general
theme: others contain more specific comments, still others
cross-references, or historical data, or quotations, or
aphorisms, or even jokes.

The Dictionary should not be read too quickly; 1ts text
is often condensed, and now and then somewhat subtle.
The reader may refer to the Dictionary for information
about particular points. If these points come from his
experience with his own problems or his own students,
the reading has a much better chance to be profitable.

The title of the fourth part is “Problems, Hints, Solu-
tions.” It proposes a few problems to the more ambitious
reader. Each problem is followed (in proper distance) by

a “hint” that may reveal a way to the result which 1s
explained in the “solution.”
We have mentioned repeatedly the “student” and the

“teacher” and we shall refer to them again and again. 1t

Introduction wxi

may be good to observe that the “student” may be a high
flchoo-l student, or a college student, or anyone else who
1s studying mathematics. Also the ‘“teacher” may be a
%ngh school teacher, or a college instructor, or anyone
interested in the technique of teaching mathematics. The
author looks at the situation sometimes from the point
of view of the student and sometimes from that of the
teacher (the latter case is preponderant in the first part).
Yet most of the time (especially in the third part) the
point of view 1s that of a person who is neither teacher
nor student but anxious to solve the problem before him.



114 Induction and Mathematical Induction

hesitation between shame and pretension. See WHY
PROOFS?

If you cannot solve the proposed problem do not let
this failure afflict you too much but try to find consola-
tion with some easier success, try to solve first some re-
lated problem; then you may find courage to attack your
original problem again. Do not forget that human superi-
ority consists in going around an obstacle that cannot be
overcome directly, in devising some suitable auxiliary
problem when the original one appears insoluble.

Could you imagine a more accessible related problem?
You should now invent a related problem, not merely
remember one; 1 hope that you have tried already the
question: Do you know a related problem?

The remaining questions in that paragraph of the hist
which starts with the title of the present article have a
common aim, the VARIATION OF THE PROBLEM. There are
different means to attain this aim as GENERALIZATION,
SPECIALIZATION, ANALOGY, and others which are various
ways of DECOMPOSING AND RECOMBINING.

Induction and mathematical induction. Induction 1s
the process of discovering general laws by the observation
and combination of particular instances. It is used in all
sciences, even in mathematics. Mathematical induction
is used in mathematics alone to prove theorems of a
certain kind. It is rather unfortunate that the names are
connected because there is very little logical connection
between the two processes. There is, however, some prac-
tical connection; we often use both methods together.
We are going to illustrate both methods by the same
example.

1. We may observe, by chance, that

1 + 8 + 27 4+ 64 = 100

o P PR S ——
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and, recognizing the cubes and the square, we may give
to the fact we observed the more interesting form:

13+23+33+43= 102,

How does such a thing happen? Does it often happen
that such a sum of successive cubes is a square?

In asking this we are like the naturalist who, impressed
by a curious plant or a curious geological formation, con-
ceives a general question. Our general question 1s con-
cerned with the sum of successive cubes

13 23 —|—33 .-lr+n3.

We were led to it by the “particular instance” n = 4.

What can we do for our question? What the naturalist
would do; we can investigate other special cases. The
special cases n = 2, g are still simpler, the case n = 5 1S
the next one. Let us add, for the sake of uniformity and
completeness, the case n = 1. Arranging neatly all these
cases, as a geologist would arrange his specimens of a
certain ore, we obtain the following table:

1 = 1= 12
1+ 8 = 9= 3°
1 + 8+ 2% = g6 = 62
14 8+ 27+ 64 = 100 = 102
1+ 8+ 27+ 64+ 125 = 225 = 152,

It is hard to believe that all these sums of consecutive
cubes are squares by mere chance. In a similar case, the
naturalist would have little doubt that the general law
suggested by the special cases heretofore observed 1s cor-
rect; the general law is almost proved by induction. 'The
mathematician expresses himself with more reserve al-
though fundamentally, of course, he thinks in the same
fashion. He would say that the following theorem 1is
strongly suggested by induction:

T he sum of the first n cubes is a square.
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2. We have been led to conjecture a remarkable, some-
what mysterious law. Why should those sums of succes-
sive cubes be squares? But, apparently, they are squares.

What would the naturalist do in such a situation? He
would go on examining his conjecture. In so doing, he
may follow various lines of investigation. The naturalist
may accumulate further experimental evidence; if we
wish to do the same, we have to test the next cases,
n =26, %, .... The naturalist may also reexamine the
facts whose observation has led him to his conjecture;
he compares them carefully, he tries to disentangle some
deeper regularity, some further analogy. Let us follow
this line of investigation.

Let us reexamine the cases n =1, 2, g, 4, 5 which we
arranged in our table. Why are all these sums squares?
What can we say about these squares? Their bases are 1,
g, 6, 10, 15. What about these bases? Is there some deeper
regularity, some further analogy? At any rate, they do not
seem to increase too irregularly. How do they increase?
The difference between two successive terms of this se-
quence 1s itself increasing,

g—1=2 06—93=9g, 10—0=4, 15— 10=5.

Now these differences are conspicuously regular. We may
see here a surprising analogy between the bases of those
squares, we may see a remarkable regularity in the num-
bers 1, 3, 6, 10, 15:

1—....._

|
Jowd

g = 1+ 2
6=1+2+4+3
10=11+27T 31 4
1F =1+ 2+ 3+ 4+ 5.

If this regularity is general (and the contrary is hard to

Induction and Mathematical Induction 114

believe) the theorem we suspected takes a more precise
form:

It s, forn=1,2,3,...
134234 g8 et nd3=(14+24g+°**+n)2.

3. The law we just stated was found by induction, and
the manner in which it was found conveys to us an idea
about induction which is necessarily one-sided and im-
pertect but not distorted. Induction tries to find regular-
ity and coherence behind the observations. Its most con-
spicuous instruments are generalization, specialization,
analogy. Tentative generalization starts from an effort to
understand the observed facts; it is based on analogy, and
tested by further special cases.

We refrain from further remarks on the subject of
induction about which there is wide disagreement among
philosophers. But it should be added that many mathe-
matical results were found by induction first and proved
later. Mathematics presented with rigor is a systematic
deductive science but mathematics in the making is an
experimental inductive science.

4. In mathematics as in the physical sciences we may
use observation and induction to discover general laws.
But there 1s a difference. In the physical sciences, there is
no higher authority than observation and induction but
in mathematics there is such an authority: rigorous
proot.

After having worked a while experimentally it may be
good to change our point of view. Let us be strict. We
have discovered an interesting result but the reasoning
that led to it was merely plausible, experimental, pro-
visional, heuristic; let us try to establish it definitively by
a rigorous proof.

We have arrived now at a “problem to prove”: to
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prove or to disprove the result stated before (see 2,
above) .

‘There is a minor simplification. We may know that

o+ 1)

2

I+2+3+- -+n=

At any rate, this is easy to verify. Take a rectangle with
sides » and n + 1, and divide it in two halves by a zigzag
line as in Fig. 15a which shows the case n = 4. Each of
the halves is “staircase-shaped” and its area has the ex-
pression1+ 2+ -+ n; for n=4 it is 14+ 2+ g+ 4,
see Fig. 18b. Now, the whole area of the rectangle is
n(n + 1) ot which the staircase-shaped area is one half;
this proves the formula.

Fic. 18

We may transform the result which we found by in-
duction into

13+23+33+,..+n3=(”(n:'1))2

5. If we have no idea how to prove this result, we may
at least test it. Let us test the first case we have not
tested yet, the case n = 6. For this value, the formula
yields

6 2
1+8+27—[—64—[—125—I—216=< 2(7)

Induction and Mathematical Induction 119

and, on computation, this turns out to be true, both
sides being equal to 441.

We can test the formula more eftectively. The formula
is, very likely, generally true, true for all values of n.
Does it remain true when we pass from any value n to
the next value n + 1? Along with the formula as written
above (p. 118) we should also have

2
I3+23+33+"'+ﬂ3+(ﬂ+I)3=((n+1)2(n+2)>'

Now, there is a simple check. Subtracting from this the
formula written above, we obtain

(n + 1)3 = ((ﬂ ~+ 1)2(n +- 2))2 B (n(n ;I— 1))2_

This is, however, easy to check. The right hand side may
be written as

() ot 22— 1= () W b g -

— (4n+4) =+ 1)@+ 1) = (n 4+ 1)>

Our experimentally found formula passed a vital test.
Let us see clearly what this test means. We verified
beyond doubt that

o o9 = (CHDEE DY (kDY

We do not know yet whether

I3+23+33._|_...+n3= S

is true. But if we knew that this was true we could infer,
by adding the equation which we verified beyond doubt,
that

134284384+l (n+1)° =

((n + 1)(n + 2))2
2
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1s also true which is the same assertion for the next
integer n + 1. Now, we actually know that our conjec-
ture 1s true for n =1, 2, g, 4, 5, 6. By virtue of what we
have just said, the conjecture, being true for n = 6, must
also be true for n = #; being true for n = 7 it is true for
n = 8; being true for n = 8 it is true for n = g; and so
on. It holds for all n, it is proved to be true generally.

6. The foregoing proof may serve as a pattern in many
similar cases. What are the essential lines of this pattern?

The assertion we have to prove must be given in ad-
vance, 1in precise form.

The assertion must depend on an integer n.

The assertion must be sufficiently “explicit” so that we
have some possibility of testing whether it remains true
in the passage from 7 to the next integer n + 1.

It we succeed in testing this effectively, we may be able
to use our experience, gained in the process of testing, to
conclude that the assertion must be true for n + 1 pro-
vided it is true for n. When we are so far it is sufficient to
know that the assertion is true for n = 1; hence it follows
for n =2; hence it follows for n = 3, and so on; passing
from any integer to the next, we prove the assertion
generally, |

This process is so often used that it deserves a name.
We could call it “proof from n to n 4 1” or still simpler
“passage to the next integer.” Unfortunately, the ac-
cepted technical term 1s “mathematical induction.” This
name results from a random circumstance. The precise
assertion that we have to prove may come from any
source, and it is immaterial from the logical viewpoint
what the source is. Now, in many cases, as in the case we
discussed here in detail, the source is induction, the asser-
tion is found experimentally, and so the proof appears
as a mathematical complement to induction; this ex-
plains the name.

Inventors Paradox 121

7. Here is another point, somewhat subtle, but impor-
tant to anybody who desires to find proofs by himselt.
In the foregoing, we found two different assertions by
observation and induction, one after the other, the first
under 1, the second under 2; the second was more pre-
cise than the first. Dealing with the second assertion, we
found a possibility of checking the passage from n to
n + 1, and so we were able to find a proof by “mathemat-
ical induction.” Dealing with the first assertion, and
ignoring the precision added to it by the second one, we
should scarcely have been able to find such a proof. In
fact, the first assertion is less precise, less “explicit,” less
“tangible,” less accessible to testing and checking than
the second one. Passing from the first to the second, from
the less precise to the more precise statement, was an
important preparative for the final proof.

This circumstance has a paradoxical aspect. The
second assertion is stronger; it implies immediately the
first, whereas the somewhat “hazy” first assertion can
hardly imply the more “clear-cut” second one. Thus, the
stronger theorem is easier to master than the weaker
one; this is the INVENTOR’S PARADOX.

Inventor’s paradox. The more ambitious plan may
have more chances of success.

This sounds paradoxical. Yet, when passing from one
problem to another, we may often observe that the new,
more ambitious problem is easier to handle than the
original problem. More questions may be easier to an-
swer than just one question. The more comprehensive
theorem may be easier to prove, the more general prob-
lem may be easier to solve.

The paradox disappears if we look closer at a few
examples (GENERALIZATION, 2; INDUCTION AND MATHEMAT-
ICAL INDUCTION, #). The more ambitious plan may have



162 Reductio ad Absurdum and Indirect Proof

The questions and suggestions of our list cannot work
magic. They cannot give us the solution of all possible
puzzles without any effort on our part. If the reader
wishes to find the word, he must keep on trying and
thinking about it. What the questions and suggestions
of the list can do is to “keep the ball rolling.” When,
discouraged by lack of success, we are inclined to drop
the problem, they may suggest to us a new trial, a new
aspect, a new variation of the problem, a new stimulus;
they may keep us thinking.

For another example see PECOMPOSING AND RECOMBIN-
ING, 8.

Reductio ad absurdum and indirect proof are different
but related procedures.

Reductio ad absurdum shows the falsity of an assump-
tion by deriving from it a manifest absurdity. “Reduc-
tion to an absurdity” is a mathematical procedure but it
has some resemblance to irony which 1s the favorite
procedure of the satirist. Irony adopts, to all appearance,
a certain opinion and stresses it and overstresses it till it
leads to a manifest absurdity.

Indirect proof establishes the truth of an assertion by
showing the falsity of the opposite assumption. Thus,
indirect proof has some resemblance to a politician’s
trick of establishing a candidate by demolishing the repu-
tation of his opponent.

Both “reductio ad absurdum” and indirect proof are
effective tools of discovery which present themselves natu-
rally to an intent mind. Nevertheless, they are disliked
by a few philosophers and many beginners, which is
understandable; satirical people and tricky politicians do
not appeal to everybody. We shall first illustrate the
effectiveness of both procedures by examples and discuss
objections against them afterwards.
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1. Reductio ad absurdum. Write numbers using each
of the ten digits exactly once so that the sum of the
numbers is exactly 100. '

We may learn something by trying to solve this puzzle
whose statement demands some elucidation.

What is the unknown? A set of numbers: and by num-
bers we mean here, of course, ordinary integers.

What is given? The number 10o0.

What 1s the condition? The condition has two parts.
First, writing the desired set of numbers, we must use
each of the ten digits, o, 1, 2, 3, 4, 5, 6, 77, 8 and ¢, just
once. Second, the sum of all numbers in the set must
be 100.

Keep only a part of the condition, drop the other part.
The first part alone is easy to satisfy. Take the set 1q,
28, 37, 46, 50; each figure occurs just once. But, of course,

- the second part of the condition is not satisfied; the sum

of these numbers is 180, not 100. We could, however, do
better. “Try, try again.” Yes,

19+ 284+ 30+ 74+ 64 5+ 4 = gg.

‘T'he first part of the condition is satisfied, and the second
part 1s almost satisfied; we have gq instead of 100. Of

course, we can easily satisty the second part if we drop
the first:

19+ 284+ 314+474+6+ 54 4 = 100.

The first part is not satisfied: the figure 1 occurs twice,
and o not at all; the other figures are all right. “Try, try
again.”

After a few unsuccessful trials, however, we may be led
to suspect that it is not possible to obtain 100 in the
manner required. Eventually the problem arises: Prove

that it is impossible to satisfy both parts of the proposed
condition at the same time.
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Quite good students may find that this problem is
above their heads. Yet the answer is easy enough if we
have the right attitude. We have to examine the hypo-
thetical situation in which both parts of the condition
are satisfied.

We suspect that this situation cannot actually arise and
our suspicion, based on the experience of our unsuccess-
ful trials, has some foundation. Nevertheless, let us keep
an open mind and let us face the situation in which hy-
pothetically, supposedly, allegedly both parts of the con-
dition are satisfied. Thus, let us imagine a set of num-
bers whose sum is 100. They must be numbers with one
or two figures. There are ten figures, and these ten figures
must be all different, since each of the figures, o, 1, 2,
. . . g should occur just once. Thus, the sum of all ten

figures must be
o+1+2+3+4+5+6+7+8+9=4s5

Some of these figures denote units and others tens. It
takes a little sagacity to hit upon the idea that the sum
of the figures denoting tens may be of some importance.
In fact, let ¢ stand for this sum. Then the sum of the
remaining figures, denoting units, 15 45 — . Theretore,
the sum of all numbers in the set must be

10t -+ (45 — t) = 100.

We have here an equation to determine £. It 1s of the first

degree and gives

;= 55,
9
Now, there is something that is definitely wrong. The
value of ¢t that we have found is not an integer and ¢

should be, of course, an integer. Starting from the sup-
position that both parts of the proposed condition can
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be simultaneously satisfied, we have been led to a mani-
fest absurdity. How can we explain this? Our original
supposition must be wrong; both parts of the condition
cannot be satisfied at the same time. And so we have
attained our goal, we have succeeded in proving that the
two parts of the proposed condition are incompatible.

Our reasoning is a typical “reductio ad absurdum.”

2. Remarks. Let us look back at the foregoing reason-
ing and understand its general trend.

We wish to prove that it is impossible to fulfill a cer-
tain condition, that i1s, that the situation in which all
parts of the condition are simultaneously satisfied can
never arise. But, if we have proved nothing yet, we have
to face the possibility that the situation could arise. Only
by tacing squarely the hypothetical situation and exam-
ining it closely can we hope to perceive some definitely
wrong point in it. And we must lay our hand upon some
definitely wrong point if we wish to show conclusively
that the situation is impossible. Hence we can see that
the procedure that was successful in our example is rea-
sonable in general: We have to examine the hypothetical
situation 1in which all parts of the condition are satisfied,
although such a situation appears extremely unlikely.

The more experienced reader may see here another
point. The main step of our procedure consisted in set-
ting up an equation for . Now, we could have arrived
at the same equation without suspecting that something
was wrong with the condition. If we wish to set up an
equation, we have to express in mathematical language
that all parts of the condition are satisfied, although we
do not know yet whether it is actually possible to satisfy
all these parts simultaneously.

Our procedure is “open-minded.” We may hope to find
the unknown satisfying the condition, or we may hope to
show that the condition cannot be satisfied. It matters
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little in one respect: the investigation, if it is well con-
ducted, starts in both cases in the same way, examining
the hypothetical situation in which the condition is
fulfilled, and shows only in its later course which hope
1s justified.

Compare FIGURES, 2. Compare also pAPPUS; an analysis
which ends in disproving the proposed theorem, or in
showing that the proposed “problem to find” has no
solution, is actually a “reductio ad absurdum.”

8. Indirect proof. The prime numbers, or priumes, are
the numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . .
which cannot be resolved into smaller factors, although
they are greater than 1. (The last clause excludes the
number 1 which, obviously, cannot be resolved into
smaller factors, but has a different nature and should
not be counted as a prime.) The primes are the “ulti-
mate elements” into which all integers (greater than 1)
can be decomposed. For instance,

630 =2°3-3°5°7
1s decomposed into a product of five primes.

Is the series of primes infinite or does it end some-
where? It is natural to suspect that the series of primes
never ends. If it ended somewhere, all integers could be
decomposed into a finite number of ultimate elements
and the world would appear “too poor” in a manner of
speaking. Thus arises the problem of proving the exist-
ence of an infinity of prime numbers.

This problem 1s very different from elementary mathe-
matical problems of the usual kind and appears at first
inaccessible. Yet, as we said, it is extremely unlikely that
there should be a last prime, say P. Why is it so unlikely?

Let us face squarely the unlikely situation in which,

hypothetically, supposedly, allegedly, there is a last prime
P. Then we could write down the complete series of
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primes 2, 3, 5, 7, 11, . . . P. Why is this so unlikely? What
1s wrong with it? Can we point out anything that is
definitely wrong? Indeed, we can. We can construct the
number

Q=(2°3*5°7"11...P)+1.

‘This number Q is greater than P and therefore, allegedly,
Q cannot be a prime. Consequently, Q must be divisible
by a prime. Now, all primes at our disposal are, sup-
posedly, the numbers 2, g, 5, . . . P but Q, divided by any
ol these numbers, leaves the rest 1; and so Q is not
divisible by any of the primes mentioned which are,
hypothetically, all the primes. Now, there is something
that is definitely wrong; Q must be either a prime or it
must be divisible by some prime. Starting from the sup-
position that there is a last prime P we have been led to
a manifest absurdity. How can we explain this? Our
original supposition must be wrong; there cannot be a
last prime P. And so we have succeeded in proving that
the series of prime numbers never ends.

Our proot is a typical indirect proof. (It is a famous
proof too, due to Euclid; see Proposition 20 of Book IX
of the Elements.)

We have established our theorem (that the series of
primes never ends) by disproving its contradictory op-
posite (that the series of primes ends somewhere) which
we have disproved by deducing from it a manifest ab-
surdity. Thus we have combined indirect proof with
“reductio ad absurdum”; this combination is also very
typical.

4. Objections. The procedures which we are studying
encountered considerable opposition. Many objections
have been raised which are, possibly, only various forms
of the same fundamental objection. We discuss here a
“practical” form of the objection, which 1s on our level.
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To find a not obvious proof is a considerable intel-
lectual achievement but to learn such a proof, or even to
understand it thoroughly costs also a certain amount of
mental effort. Naturally enough, we wish to retain some
benefit from our effort, and, of course, what we retain
in our memory should be true and correct and not false
or absurd.

But it seems difficult to retain something true from a
“reductio ad absurdum.” The procedure starts from a
false assumption and derives from it consequences which
are equally, but perhaps more visibly, false till it reaches
a last consequence which is manifestly false. It we do not
wish to store falsehoods in our memory we should forget
everything as quickly as possible which is, however, not
feasible because all points must be remembered sharply
and correctly during our study of the proof.

The objection to indirect proofs can be now stated
very briefly. Listening to such a proof, we are obliged to
focus our attention all the time upon a false assumption
which we should forget and not upon the true theorem
which we should retain.

If we wish to judge correctly of the merits of these
objections, we should distinguish between two uses of
the “reductio ad absurdum,’” as a tool of research and as
a means of exposition, and make the same distinction
concerning the indirect proof.

It must be confessed that “reductio ad absurdum™ as a
means of exposition is not an unmixed blessing. Such a
“reductio,” especially if it is long, may become very pain-
ful indeed for the reader or listener. All the derivations
which we examine in succession are correct but all the
situations which we have to face are 1mpossible. Even
the verbal expression may become tedious if it insists, as
it should, on emphasizing that everything is based on an

4

initial assumption; the words “hypothetically,” “sup-
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posedly,” “allegedly” must recur incessantly, or some
other device must be applied continually. We wish to
reject and forget the situation as impossible but we have
to retain and examine it as the basis for the next step,
and this inner discord may become unbearable in the
long run.

Yet 1t would be foolish to repudiate “reductio ad
absurdum” as a tool of discovery. It may present itself
naturally and bring a decision when all other means
seem to be exhausted as the foregoing examples may
show.

We need some experience to perceive that there is no
essential opposition between our two contentions. Ex-
perience shows that usually there is little difficulty in
converting an indirect proof into a direct proof, or in
rearranging a proof found by a long “reductio ad ab-
surdum” into a more pleasant form from which the
“reductio ad absurdum” may even completely disappear
(or, after due preparation, it may be compressed into
a few striking sentences).

In short, if we wish to make full use of our capacities,
we should be familiar both with “reductio ad absurdum”
and with indirect proof. When, however, we have suc-
ceeded 1n deriving a result by either of these methods we
should not fail to look back at the solution and ask: Can
you derive the result differently?

Let us illustrate by examples what we have said.

5. Rearranging a reductio ad absurdum. We look back
at the reasoning presented under 1. The reductio ad
absurdum started from a situation which, eventually,
turned out to be impossible. Let us however carve out a
part of the argument which is independent of the initial
false assumption and contains positive information. Re-
considering what we have done, we may perceive that
this much is doubtless true: If a set of numbers with one
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or two digits is written so that each of the ten figures
occurs just once, then the sum of the set 1s of the form

10t + (45 ~ 1) = 9 (L + 5) -

Thus, this sum is divisible by 9. The proposed puzzle
demands however that this sum should be 100. Is this
possible? No, it is not, since 100 1s not divisible by g.

The “reductio ad absurdum”™ which led to the discov-
ery of the argument vanished from our new presentation.

By the way, a reader acquainted with the procedure
of “casting out nines” can see now the whole argument
at a glance.

6. Converting an indirect proof. We look back at the
reasoning presented under g. Reconsidering carefully
what we have done, we may find elements of the argu-
ment which are independent of any false assumption, yet
the best clue comes from a reconsideration of the mean-
ing of the original problem itself.

What do we mean by saying that the series of primes
never ends? Evidently, just this: when we have ascer-
tained any finite set of primes as 2, 3, 5, 7, 11, . . . P,
where P is the last prime hitherto found, there 1s always
one more prime. Thus, what must we do to prove the
existence of an infinity of primes? We have to point out
a way of finding a prime different from all primes hith-
erto found. Thus, our “problem to prove” is in fact re-
duced to a “problem to find”: Being given the primes
2, % & ... P, find a new prime N different from all the
given primes.

Having restated our original problem in this new form,
we have taken the main step. It is relatively easy now to
see how to use the essential parts of our former argu-
ment for the new purpose. In fact, the number

Q=(2:3"5"7°11...P)+1

is certainly divisible by a prime. Let us take—this 1s the
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idea—any prime divisor of Q (for instance, the smallest
one) for N. (Of course, if Q happens to be a prime, then
N = (.) Obviously, Q divided by any of the primes 2, g,
s . . . P leaves the remainder 1 and, therefore, none of
these numbers can be N which is a divisor of Q. But that
is all we need: N is a prime, and different from all
hitherto found pI‘lI’IlES 2, %, 5 7, 11, . . . P.

This proof gives a definite procedure of prolonging
again and again the series of primes, without limit. Noth-
ing 1s indirect in it, no 1mpossible situation needs to be
considered. Yet, fundamentally, it 1s the same as our
former indirect proot which we have succeeded in con-
verting.

Redundant. See CONDITION.

Routine problem may be called the problem to solve
the equation x2 — gx 4 2 = o if the solution of the gen-
eral quadratic equation was explained and illustrated
before so that the student has nothing to do but to sub-
stitute the numbers —g and 2 for certain letters which
appear in the general solution. Even if the quadratic
equation was not solved generally in “letters” but half
a dozen similar quadratic equations with numerical co-
efficients were solved just before, the problem should
be called a “routine problem.” In general, a problem is
a “routine problem” if it can be solved either by substi-
tuting special data into a formerly solved general prob-
lem, or by following step by step, without any trace of
originality, some well-worn conspicuous example. Setting
a routine problem, the teacher thrusts under the nose of
the student an immediate and decisive answer to the
question: Do you know a related problem? Thus, the
student needs nothing but a little care and patience in
following a cut-and-dried precept, and he has no oppor-
tunity to use his judgment or his inventive faculties.
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missing idea. If even the hint does not help, he may look
at the solution, try to isolate the key idea, put the book
aside, and then try to work out the solution.

PROBLEMS

1. A bear, starting from the point P, walked one mile
due south. Then he changed direction and walked one
mile due east. Then he turned again to the left and
walked one mile due north, and arrived exactly at the
point P he started from. What was the color of the bear?

2. Bob wants a piece of land, exactly level, which has
four boundary lines. Two boundary lines run exactly
north-south, the two others exactly east-west, and each
boundary line measures exactly 100 feet. Can Bob buy
such a piece of land in the U.S.?

3. Bob has 10 pockets and 44 silver dollars. He wants
to put his dollars into his pockets so distributed that each
pocket contains a different number of dollars. Can he do
Toly

4. T'o number the pages of a bulky volume, the printer
used 2989 digits. How many pages has the volume?

5. Among Grandfather’s papers a bill was found:

n2 turkeys $_67.9_

The first and last digit of the number that obviously
represented the total price of those fowls are replaced
here by blanks, for they have faded and are now illegible.

What are the two faded digits and what was the price
of one turkey?

6. Given a regular hexagon and a point in its plane.
Draw a straight line through the given point that divides
the given hexagon into two parts of equal area.

7. Given a square. Find the locus of the points from
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which the square is seen under an angle (a) of go°
(b) of 45°. (Let P be a point outside the square, but in
the same plane. The smallest angle with vertex P con-
taining the square is the “angle under which the square
is seen’’ from P.) Sketch clearly both loci and give a full
description.

8. Call “axis” of a solid a straight line joining two
points of the surface of the solid and such that the solid,
rotated about this line through an angle which is greater
than 0° and less than g60° coincides with itself.

Find the axes of a cube. Describe clearly the location
of the axes, find the angle of rotation associated with
each. Assuming that the edge of the cube is of unit
length, compute the arithmetic mean of the lengths of
the axes.

g. In a tetrahedron (which 1s not necessarily regular)
two opposite edges have the same length @ and they are
perpendicular to each other. Moreover they are each per-
pendicular to a line of length & which joins their mid-
points. Express the volume of the tetrahedron in terms of
a and b, and prove your answer.

10. The vertex of a pyramid opposite the base is called
the apex. (a) Let us call a pyramid “isosceles” if its apex
is at the same distance from all vertices of the base.
Adopting this definition, prove that the base of an
1sosceles pyramid is inscribed in a circle the center of
which is the foot of the pyramid’s altitude.

(b) Now let us call a pyramid “isosceles” if its apex
is at the same (perpendicular) distance from all sides of
the base. Adopting this definition (different from the
foregoing) prove that the base of an isosceles pyramid is
circumscribed about a circle the center of which is the
toot of the pyramid’s altitude.

11. Find x, y, u, and v, satistying the system of four
equations
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x+4y+gv+pu= 16
8x + 4y + 6v -+ 2u = —16
2x + 6y + 4v+8u= 16
x4+ 8y +r7v+ u = —16

(I'his may look long and boring: look for a short cut.)

12. Bob, Peter, and Paul travel together. Peter and
Paul are good hikers; each walk p miles per hour. Bob
has a bad foot and drives a small car in which two
people can ride, but not three; the car covers ¢ miles per
hour. The three friends adopted the following scheme:
They start together, Paul rides in the car with Bob, Peter
walks. After a while, Bob drops Paul, who walks on; Bob
returns to pick up Peter, and then Bob and Peter ride in
the car till they overtake Paul. At this point they change:
Paul rides and Peter walks just as they started and the
whole procedure is repeated as often as necessary.

(a) How much progress (how many miles) does the
company make per hour?

(b) Through which fraction of the travel time does
the car carry just one man?

(c) Check the extreme cases p = 0 and p = c.

13. T'hree numbers are in arithmetic progression, three
other numbers in geometric progression. Adding the cor-
responding terms of these two progressions successively,
we obtain

85, 76, and 84

respectively, and, adding all three terms of the arith-
metic progression, we obtain 126. Find the terms of both
progressions.

14. Determine m so that the equation in x

x4 — (gm+ 2)x2+ m2 = o

has four real roots in arithmetic progression.
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15. The length of the perimeter of a right triangle is
6o inches and the length of the altitude perpendicular
to the hypotenuse is 12 inches. Find the sides.

16. From the peak of a mountain you see two points,
A and B, in the plain. The lines of vision, directed to
these points, include the angle y. The inclination of the
first line of vision to a horizontal plane is «, that of the
second line B. It is known that the points 4 and B are on
the same level and that the distance between them is c.

Express the elevation x of the peak above the common
level of 4 and B in terms of the angles a, 8, y, and the
distance c.

17. Observe that the value of

I 2 3 n
IR TR ]
15 1/2, 5/6, 23/24 for n = 1,2,3, respectively, guess the
general law (by observing more values if necessary) and

prove your guess.
18. Consider the table

I

I

3T 5 = 8

7T 9 II = 27
13+ 15 + 17 + 19 = 64
21 -+ 23 + 25 + 27 <4 29 = 125

Guess the general law suggested by these examples, ex-
press 1t 1n suitable mathematical notation, and prove it.

19. The side of a regular hexagon is of length n (n is
an integer). By equidistant parallels to its sides the hexa-
gon 1s divided into T equilateral triangles each of which
has sides of length 1. Let V denote the number of vertices
appearing in this division, and L the number of bound-
ary lines ot length 1. (A boundary line belongs to one or
two triangles, a vertex to two or more triangles.) When
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n = 1, which is the simplest case, T =6, V =1, L = 12.
Consider the general case and express T, V, and L in
terms of n. (Guessing is good, proving is better.)

20. In how many ways can you change one dollar?

(The “way of changing” is determined if it is known how
many coins of each kind—cents, nickels, dimes, quarters,

half dollars—are used.)

HINTS

1. What is the unknown? The color of a bear—but
how could we find the color of a bear from mathematical
data? What is given? A geometrical situation—but it
seems self-contradictory: how could the bear, after walk-
ing three miles in the manner described, return to his
starting point?

2. Do you know a related problem?

3. If Bob had very many dollars, he would have obvi-
ously no difficulty in filling each of his pockets difterently.
Could you restate the problem? What is the minimum
number of dollars that can be put in 10 pockets so that
no two different pockets contain the same amounts

4. Here is a problem related to yours: 1f the book has
exactly g numbered pages, how many digits uses the
printer? (g, of course.) Here is another problem related
to yours: If the book has exactly gg numbered pages, how
many digits does the printer use?

k. Could you restate the problem? What can the two
faded digits be if the total price, expressed in cents, 18
divisible by 72?7

6. Could you imagine a more accessible related prob-
lem? A more general problem? An analogous problem?

(GENERALIZATION, 2.)

1. Do you know a related problem? The locus of th-e

points from which a given segment of a straight line 1s
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seen under a given angle consists of two circular arcs,
ending 1n the extreme points of the segment, and sym-
metric to each other with respect to the segment.

8. I assume that the reader is familiar with the shape
of the cube and has found certain axes just by inspection
—but are they all the axes? Can you prove that your list
of axes is exhaustive? Has your list a clear principle of
classification?

9. Look at the unknown! The unknown is the volume
of a tetrahedron—yes, I know, the volume of any pyramid
can be computed when the base and the height are given
(product of both, divided by g) but in the present case
neither the base nor the height is given. Could you
imagine a more accessible related problem? (Don’t you
see a more accessible tetrahedron which is an aliquot
part of the given oner)

10. Do you know a related theorem? Do you know a
related . . . simpler . . . analogous theorem? Yes: the foot
of the altitude is the mid-point of the base in an isosceles
triangle. Here is a theorem related to yours and proved
before. Could you use . . . its method? The theorem on
the isosceles triangle is proved from congruent right
triangles of which the altitude is a common side.

11. It is assumed that the reader is somewhat familiar
with systems of linear equations. To solve such a system,
we have to combine its equations in some way—look out
for relations between the equations which could indicate
a particularly advantageous combination.

12. Separate the various parts of the condition. Can
you write them down? Between the start and the point
where the three friends meet again there are three dif-
ferent phases:

(1) Bob rides with Paul
(2) Bob rides alone
(3) Bobrides with Peter.
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Call t,, t,, and ¢4 the durations of these phases, respec-
tively. How could you split the condition into appro-
priate parts?

13. Separate the various parts of the condition. Can
you write them down? Let

a — d, a, a+d
be the terms of the arithmetic progression, and
bg—1, b, bg

be the terms of the geometric progression.

14. What is the condition? The four roots must form
an arithmetic progression. Yet the equation has a par-
ticular feature: it contains only even powers ot the un-
known x. Therefore, if a is a root, —a is also a root.

15. Separate the various parts of the condition. Can
you write them down? We may distinguish three parts in
the condition, concerning

(1) perimeter
(2) right triangle
(3) height to hypotenuse.

16. Separate the various parts of the condition. Can
you write them down? Let a and b stand for the lengths
of the (unknown) lines of vision, « and g for their 1n-
clinations to the horizontal plane, respectively. We may
distinguish three parts in the condition, concerning

(1) the inclination of a
(2) the inclination of b
(3) the triangle with sides a, b, and c.

17. Do you recognize the denominators 2, 6, 24¢ Do
you know a related problem? An analogous problem?
(INDUCTION AND MATHEMATICAL INDUCTION.)
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18. Discovery by induction needs observation. Observe
the right-hand sides, the initial terms of the left-hand
sides, and the final terms. What is the general law?

19. Draw a figure. Its observation may help you to dis-
cover the law inductively, or it may lead you to relations
between T, V, L, and n.

20. What 1s the unknown? What are we supposed to
seek? Even the aim of the problem may need some clari-
fication. Could you imagine a more accessible related
problem? A more general problem? An analogous prob-
lem? Here is a very simple analogous problem: In how
many ways can you pay one cent? (‘There is just one
way.) Here is a more general problem: In how many ways
can you pay the amount of n cents using these five kinds
of coins: cents, nickels, dimes, quarters, and half dollars.
We are especially concerned with the particular case
n = 100.

In the simplest particular cases, for small n, we can
figure out the answer without any high-brow method,
just by trying, by inspection. Here is a short table (which
the reader should check).

n 4 5 9 10 14 15 19 20 24 25
E,1 2 2 4 4 6 6 9 9 13

The first line lists the amounts to be paid, generally
called n. The second line lists the corresponding num-
bers of “ways of paying,” generally called E,. (Why I
have chosen this notation is a secret of mine which I am
not willing to give away at this stage.)

We are especially concerned with E,,,, but there is
little hope that we can compute E,,, without some
clear method. In fact the present problem requires a
little more from the reader than the foregoing ones; he
should create a little theory.

Our question is general (to compute E, for general n),
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but 1t is “isolated.” Could you imagine a more accessible
related problem? An analogous problem? Here 1s a very
simple analogous problem: Find 4,, the number of ways
to pay the amount of n cents, using only cents. (4, = 1.)

SOLUTIONS

1. You think that the bear was white and the point P
is the North Pole? Can you prove that this is correct? As
it was more or less understood, we idealize the question.
We regard the globe as exactly spherical and the bear as
a moving material point. This point, moving due south
or due north, describes an arc of a meridian and it de-
scribes an arc of a parallel circle (parallel to the equator)
when it moves due east. We have to distinguish two cases.

(1) If the bear returns to the point P along a meridian
different from the one along which he left P, P is neces-
sarily the North Pole. In fact the only other point of the
globe in which two meridians meet is the South Pole, but
the bear could leave this pole only in moving northward.

(2) The bear could return to the point P along the
same meridian he left P if, when walking one mile due
east, he describes a parallel circle exactly n times, where
n may be 1, 2, § ... In this case P is not the North Pole,
but a point on a parallel circle very close to the South
Pole (the perimeter of which, expressed in miles, is
slightly inferior to 27 4 1/n).

2. We represent the globe as in the solution of Prob-
lem 1. The land that Bob wants is bounded by two
meridians and two parallel circles. Imagine two fixed
meridians, and a parallel circle moving away from the
equator: the arc on the moving parallel intercepted by
the two fixed meridians is steadily shortened. The center
of the land that Bob wants should be on the equator: he
can not get it 1n the U.S.
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. The least possible number of dollars in a pocket is
obviously o. The next greater number is at least 1, the
next greater at least 2 . . . and the number in the last

(tenth) pocket is at least g. Therefore, the number of
dollars required is at least

O+14+2+4+3+...4+9=4}

Bob cannot make it: he has only 44 dollars.
4. A volume of ggg pages needs

9+ 2 X 9o+ g X goo = 2889

digits. If the bulky volume in question has x pages

2889 + 4(x — 999) = 298¢
X = 1024

This problem may teach us that a preliminary estimate
of the unknown may be useful (or even necessary, as in
the present case).

5. It _679_ is divisible by 42, it is divisible both by
8 and by g. If it is divisible by 8, the number 7g_ must
be divisible by 8 (since 1000 is divisible by 8) and so
79 must be #g2: the last faded digit is 2. If _6%g2 is
divisible by g, the sum of its digits must be divisible by
9 (the rule about “casting out nines”) and so the first
faded digit must be g. The price of one turkey was (in
grandfather’s time) $367.92 + 72 = $5.11.

6. “A point and a figure with a center of symmetry (in
the same plane) are given in position. Find a straight
line that passes through the given point and bisects the
area ot the given figure.” The required line passes, of

course, through the center of symmetry. See INVENTOR’s

PARADOX.

7. In any position the two sides of the angle must pass
through two vertices of the square. As long as they pass
through the same pair of vertices, the angle’s vertex
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moves along the same arc of circle (by the theorem
underlying the hint). Hence each of the two loci re-
quired consists of several arcs of circle: of 4 semicircles
in the case (a) and of 8 quarter circles 1n the case (b);
see Fig. 31.

-

FIG. §1

8. The axis pierces the surface of the cube in some
point which is either a vertex of the cube or lies on an
edge or in the interior of a face. If the axis passes through
a point of an edge (but not through one of its end-
points) this point must be the midpoint: otherwise the
edge could not coincide with itself after the rotation.
Similarly, an axis piercing the interior of a face must pass
through its center. Any axis must, of course, pass through
the center of the cube. And so there are three kinds of
axes:

(1) 4 axes, each through two opposite vertices; angles
120°, 240°
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(2) 6 axes, each through the mid-points of two oppo-
site edges; angle 180°

(3) 3 axes, each through the center of two opposite
faces; angles go°, 180°, 2170°,

For the length of an axis of the first kind see section

12; the others are still easier to compute. The desired
average 1s

4V3 +6v2 + 3
13

(This problem may be useful in preparing the reader for
the study of crystallography. For the reader sufficiently
advanced in the integral calculus it may be observed that
the average computed is a fairly good approximation to
the “average width” of the cube, which is, in fact,
3/2 = 1.5.)

9. The plane passing through one edge of length a
and the perpendicular of length b divides the tetrahedron
Into two more accessible congruent tetrahedra, each with
base ab/2 and height a/2. Hence the required volume

= 1.410.

10. The base of the pyramid is a polygon with 7 sides.
In the case (a) the n lateral edges of the pyramid are
equal; in the case (b) the altitudes (drawn from the
apex) of its n lateral faces are equal. If we draw the alti-
tude of the pyramid and join its foot to the n vertices of
the base in the case (a), but to the feet of the altitudes
of the n lateral faces in the case (b), we obtain, in both
cases, n right triangles of which the altitude (of the
pyramid) is a common side: I say that these n right tri-
angles are congruent. In fact the hypotenuse [a lateral
edge in the case (a), a lateral altitude in the case (b)]
15 of the same length in each, according to the definitions



246 Problems, Hints, Solutions

laid down in the proposed problem; we have just men-
tioned that another side (the altitude of the pyramid)
and an angle (the right angle) are common to all. In the
n congruent triangles the third sides must also be equal;
they are drawn from the same point (the foot of the
altitude) in the same plane (the base): they form n
radii of a circle which is circumscribed about, or in-
scribed into, the base of the pyramid, in the cases (a) and
(b) , respectively. [In the case (b) it remains to show,
however, that the n radii mentioned are perpendicular
to the respective sides of the base; this tollows from a
well-known theorem of solid geometry on projections.]

It is most remarkable that a plane figure, the i1sosceles
triangle, may have two different analogues in solid
geometry.

11. Observe that the first equation is so related to the
last as the second is to the third: the coefhcients on the
left-hand sides are the same, but in opposite order,

whereas the right-hand sides are opposite. Add the first

equation to the last and the second to the third:

6(x + u)
10(x + u)

10(y + v) = o,
10(y + v) = o.

This can be regarded as a system of two linear equations
for two unknowns, namely for x + u and y + v, and easily
yields

X + u = o, Yy + v = 0.

Substituting —x for u and —y for v in the first two equa-
tions of the original system, we find

—4x + 4y = 16
bx — 2y = — 16.

This 1s a simple system which yields

X = —2, y = 2, u = 2,

o r—
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12. Between the start and the meeting point each of
the friends traveled the same distance. (Remember, dis-
tance = velocity X time.) We distinguish two parts in
the condition:

Bob traveled as much as Paul:

Cty — Clyg + Clg = cly + Pty + Pis,
Paul traveled as much as Peter:
cty + Pty + pts = bt + Pty + cta.
The second equation yields
(€ — Pty = (¢ — P)ts.

We assume, of course, that the car travels faster than a
pedestrian, ¢ > p. It follows

that is, Peter walks just as much as Paul. From the
first equation, we find that

i3 ¢+ p

) ¢ — P

which is, of course, also the value for ¢;/t,. Hence we
obtain the answers:

(a) f(tl —~ to + 33) — 6(5 + Sﬁ)

i+ t2 + t3 3¢ -+ p
{2 __c— P
(b) iy +tet+ts3 e+ p

(c) In fact, 0 < p <. There are two extreme cases:

If p = o (a) yields ¢/g and (b) yields 1/3
It p = ¢ (a) yields ¢ and (b) yields o.

These results are easy to see without computation.
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13. The condition is easily split into four parts ex-
pressed by the four equations  —

a—d- bg~! = 85

a+b =46
a+d+bg =84
ga = 120,

The last equation yields a = 42, then the second b = g4.
Adding the remaining two equations (to eliminate d),

we obtain
2a + b(g™1 + g) = 169.

Since a and b are already known, we have here a quad-
ratic equation for g. It yields

g =2, = —26 or g=1/2, d = 25.
The progressions are
68, 42, 16 17, 42, 64
or
147, 34, 68 68, 34, 17

14. If a and —a are the roots having the least absolute
value, they will stand next to each other in the progres-
sion which will, therefore, be of the torm

—ga, —a, a, 3a.

Hence the left-hand side of the proposed equation must
have the form
(x2 — a2)(x2 — ga2).

Carrying out the multiplication and comparing coeffi-
cients of like powers, we obtain the system

10a2 = gm -+ 2,

" = == —_— e —TTrwr . [ e—— [
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Elimination of a yields
1gm? — 108m — 36 = o.

Hence m = 6 or —6/19.

15. Let a, b, and ¢ denote the sides, the last being the
hypotenuse. The three parts of the condition are ex-
pressed by

a+b+c¢ = 60
a® + b2 = (2
ab = I2¢.

Observing that
(a + b)2 = a2 + b2 + 2ab
we obtain
(60 — ¢) 2 = ¢2 + 24c.

Hence ¢ = 25 and either a = 15, b = 20 ora = 20, b = 15
(no difference for the triangle).
16. The three parts of the condition are expressed by

: X
sin ¢ = =~
a
] A
sin = —
B =7,

¢2 = a? + b2 — 2ab cos v

The elimination of a and b yields

o ¢? sin? a sin? 3
sin? & + sin? 8 — 2 sin a sin B cos ¥

X

17. We conjecture that

I 2 n |
ALY R mauwsy Bl Sl rovres T B

Following the pattern of INDUCTION AND MATHEMATICAL
INDUCTION, we ask: Does the conjectured formula remain
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true when we pass from the value n to the next value
n = 1?7 Along with the formula above we should have

n-t+1 I
(n 4+ 2)! (n + 2)!

Check this by subtracting from it the former:

o v, !
n+2)! (42 (n+1)!

which boils down to

n + 2 I

(n + 2)! (n + 1)!

and this last equation is obviously true forn =1, 2, 3, . .
hence, by following the pattern referred to above, we can
prove our conjecture.

18. In the nth line the right-hand side seems to be n3
and the left-hand side a sum of n terms. The final term
of this sum is the mth odd number, or 2m — 1, where

n(n+ 1)

2

1

I 2 n
5_!+:§+"'+(n+1)!+

m=1+2+3+...+n=

S€€ INDUCTION AND MATHEMATICAL INDUCTION, 4. Hence
the final term of the sum on the left-hand side should be

am — 1 =n24+n— 1.

We can derive hence the initial term of the sum con-
sidered in fwo ways: going back n — 1 steps from the
final term, we find

n2+n—-1)—2n—1)=n2 —n+1

whereas, advancing one step from the final term of the
foregoing line, we find

[(mn—1)24+(n—1) —1]+2

. T A e s
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which, after routine simplification, boils down to the
same: good! We assert therefore that

ne—n+1)+m2—n+g)+---+n2+n—1)=nsd

where the left-hand side indicates the sum of n successive
terms of an arithmetic progression the difference of
which 1s 2. If the reader knows the rule for the sum of
such a progression (arithmetic mean of the initial term
and the final term, multiplied by the number of terms),
he can verify that

(nz—-n—l-l)-—l—(nz—l—n-—-—l)n=

2

n3

and so prove the assertion.

(I'he rule quoted can be easily proved by a picture
little different from Fig. 18.)

19. The length of the perimeter of the regular hexagon
with side n is 6n. Therefore, this perimeter consists of
6n boundary lines of length 1 and contains 6n vertices.
‘Therefore, in the transition from n — 1 to n, V increases
by 67 units, and so

V=14+6(1+2+3+ - +n)=3n2+gn-+1;

S€€ INDUCTION AND MATHEMATICAL INDUCTION, 4. By 3§
diagonals through its center the hexagon is divided into
6 (large) equilateral triangles. By inspection of one of
these

T=6(1+8+p5+"++2n—1) =6n2

(rule for the sum of an arithmetic progression, quoted in
the solution of Problem 18). The T triangles have jointly
3T sides. In this total g7 each internal line of division of
length 1 1s counted twice, whereas the 6n lines along the
perimeter of the hexagon are counted but once. Hence

2l. = gT + 6n,

L = gn? + gn.

33G
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(For the more advanced reader: it follows from Euler’s
theorem on polyhedra that T + V = L + 1. Verify this
relation!)

20. Here is a well-ordered array of analogous prob-
lems: Compute 4,, B,, C,, D, and E,. Each of these quan-
tities represents the number of ways to pay the amount
of n cents; the difference is in the coins used:

4, only cents

B,, cents and nickels

C, cents, nickels, and dimes

D, cents, nickels, dimes, and quarters

E, cents, nickels, dimes, quarters, and half dollars.

The symbols E, (reason now clear) and 4, were used
before.

All ways and manners to pay the amount of n cents
with the five kinds of coin are enumerated by E,. We
may, however, distinguish two possibilities:

First. No half dollar is used. The number of such ways
to pay is D,, by definition.

Second. A half dollar (possibly more) is used. After
the first half dollar is laid on the counter, there remains
the amount of n — 5o cents to pay, which can be done in
exactly E,_., ways.

We 1nfer that

En,= D, 4+ E, 50
Similarly

D, = Cn + Dy_gs,

Cn = Bn + Ca_go,

B, = A, + B,_s.

A Ihittle attention shows that these formulas remain
valid it we set
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(which obviously makes sense) and regard any one of the
quantities 4,, B, . . . E, as equal to o when its subscript
happens to be negative. (For example, Eqx = Do, as
can be seen immediately, and this agrees with our first
formula since Epg _50 = E_55 = 0.)

Our tormulas allow us to compute the quantities con-
sidered recursively, that is, by going back to lower values
of n or to former letters of the alphabet. For example,
we can compute Cgzo by simple addition if C,(y and Bjy,
are already known. In the table below the initial row,
headed by 4,, and the initial column, headed by o, con-
tain only numbers equal to 1. (Why?) Starting from these
initial numbers, we compute the others recursively, by
simple additions: any other number of the table is equal
either to the number above it or to the sum of two
numbers: the number above it and another at the proper
distance to the left. For example,

C39 = Bgy +Coo=47+9=16

The computation is carried through till E., = p0: you
can pay yo cents in exactly yo different ways. Carrying it
further, the reader can convince himself that E, 4, = 292:
you can change a dollar in 292 different ways.

n O 5 10 15 20 25 30 35 40 45 5O
A, 1 1 1 1 1 1 1 1 1 1 1
B, 1 2 8 4 5 6 4% 8 g 10 11
Cr 1 2 4 6 9 12 16 20 25 g0 36
D, 1 2 4 6 g9 13 18 24 31 39 49
E, 1 2 4 6 9 13 18 24 31 89 50
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