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FOREWORD 

You, the readers, have before you a book devoted to explaining how you 

can improve your understanding of mathematics and how you can better solve 

mathematical problems. In brief, its intention is that you learn how to do 

mathematics and how to use mathematics. The. examples are designed for 

those concerned with mathematics at the high school or early undergraduate 

level. 

We claim that this is a wonderful book and that its reissue is timely and 

necessary. We do not believe that many would dispute this claim but 

nevertheless we want to take this opportunity to establish its validity. Our 

proposition then is that this book is eminently suitable for the needs of all 

concerned teachers and interested students of mathematics at the levels 

indicated above; and we will prove our proposition by contradiction! 

If this book were not eminently suitable for your needs, it would have to fail 

for one of the following reasons, all of which I will easily demonstrate to be 

absurd! Let me then list eight purely hypothetical, but absolutely false, 

charges and quickly refute each one! 

1. It never was suitable. This assertion would be so ridiculous we scarcely 

need to rebut it. This book had a tremendous success when it first appeared 

and was found invaluable by teachers and students alike. It was—and is—a 

most pleasant and interesting book to read, and it brought not only enlighten¬ 

ment but joy to the reader. 

2. Mathematics is no longer relevant. This assertion is equally ridiculous! 

It is not mathematicians but the leaders of our society who are to be heard 

most stridently proclaiming the importance of mathematical knowledge and 

understanding to today’s citizens if we are to remain among the leading 

nations of the world. We mathematicians would also point to the great 

advantage to individuals in their own lives of being able to reason effectively 

and solve quantitative problems. 

3. The objectives considered have ceased to be crucial. This false view is 

easily disposed of, but it may be that some could believe the view correct. For 

it is sometimes thought that, with the availability of the hand-calculator and its 

big brother, the computer, the use of mathematics is reduced to pushing 

buttons and feeding in canned programs. This view would be quite false. It is 

the drudgery that has been eliminated from mathematics by these modern 
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devices and not the need for thought. We assuredly still need to recognize 

when a problem is suitable—and ripe—for mathematical treatment, and we 

need to plan a strategy for tackling the problem; these utterly human tasks are 

the ones with which Polya is concerned. 

4. The methods described are now perceived, in many cases, not to be 
the best or are very seriously disputed. This is a standard reason frequently 

offered in justification for allowing a once valuable book to go out of print. It 

does not apply in this case because the author is not concerned with slick 

solutions but with the whole strategy of problem-solving. That strategy is so 

closely related to the way human beings think—when they are thinking 

effectively—that it is not going to undergo any dramatic changes. Polya 

describes the methods that work for him and other successful problem- 

solvers. As the old adage goes, “the proof of the pudding is in the eating.” 

5. The particular mathematical content has been superseded. The 

mathematical content of this book is drawn from the standard precalculus 

curriculum, that is, from arithmetic, algebra, and geometry, with some 

elementary combinatorics. The mathematical material is not, of course, 

developed systematically, since the author’s purpose is to exemplify 

problem-solving strategies and principles with the aid of interesting and 

intriguing mathematical questions. It is true that the availability of the hand 

calculator is not assumed but, on the other hand, the nature of the problems 

treated is not such as to make its availability essential. Polya shows you how 

to think about a problem, how to look at special cases, how to generalize in 

interesting and important directions and how to solve a problem. These skills 

will never be superseded. 

6. The content is well known. One wishes this were true, but it is not! The 

content is not even well known to teachers, let alone to students. The 

examples Polya gives carry a fresh illumination which must surely inspire any 

reader. There is fascination in his description of the mathematical ideas, in his 

elucidation of pedagogical principles, and in his own unique style of 

exposition. There is nothing in this book that bears the stamp of staleness. 

7. The content is now obvious. This assertion differs in an essential way 

from the previous one. That claimed that the content has already been 

conveyed to the reader from other sources. This claims that it does not need to 

be conveyed because what the text is saying has now become obvious as a 

result of a changing climate of thought in mathematical education. But this 

assertion is just as wrong-headed as its predecessor! The changing climate 

gives emphasis to the need to teach the art of problem-solving, of mathemati¬ 

cal discovery; but we are very far from being a nation of skilled problem- 

solvers and discoverers! So, far from rendering this book superfluous, our 

current view of how to teach mathematics renders it absolutely crucial. The 

world has caught up with Polya; and what he and his lifetime friend, Gabor 

Szego, saw so clearly many years ago, long before this book was written, is 
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now the cornerstone of the program of the National Council of Teachers of 

Mathematics' in their campaign to imrove the quality of mathematics 

education. 

8. The book is too expensive for those who would benefit from having it. 
A mere reissue of the original edition might have led to this charge. The 

publishers are to be congratulated on bringing the original two volumes 

together into one volume and in making available a soft-cover edition. The 

separation of the text material into two volumes was justified at the time of 

original publication, since it avoided undue delay in the appearance of a much 

awaited book. There is no case for it today. This book is surely worth its 

present price to anyone genuinely interested in mathematics. 

Thus there can be no possible argument against reissuing this book—and 

overwhelming arguments in favor of doing so. You, the reader, will surely 

share my enthusiasm for this wonderfully stimulating, wonderfully contempo¬ 

rary work, written by a man whose youthful approach to new discoveries in 

mathematics, or any other fields, has never deserted him. Polya succeeds 

better than almost anybody else in conveying, on the printed page, the 

excitement he himself feels in the intellectual adventures he so vividly 

describes. We are privileged and fortunate to be able to share the adventure 

with him. 

The reader’s attention should be drawn to two features of this new edition. 

The bibliography has been updated by Professor Gerald Alexanderson and the 

index has been expanded by Professor Jean Pedersen. Thus, while the text 

remains Polya’s original, this new edition is, in every sense, a text for our 

times. 

Case Western Reserve University PETER HILTON 

Cleveland, Ohio 

Battelle Human Affairs Research Center 

Seattle, Washington 

‘An Agenda for Action, Reston, VA. (1980). 





PREFACE 

A method of solution is perfect if we can foresee 

from the start, and even prove, that following 

that method we shall attain our aim. 

Leibnitz: Opuscules, p. 161. 

1. Solving a problem means finding a way out of a difficulty, a way around 

an obstacle, attaining an aim which was not immediately attainable. Solving 

problems is the specific achievement of intelligence, and intelligence is the 

specific gift of mankind: solving problems can be regarded as the most 

characteristically human activity. The aim of this work is to understand this 

activity, to propose means to teach it, and, eventually, to improve the 

problem-solving ability of the reader. 

2. This work consists of two parts; let me characterize briefly the role of 

these two parts. 

Solving problems is a practical art, like swimming, or skiing, or playing the 

piano: you can learn it only by imitation and practice. This book cannot offer 

you a magic key that opens all the doors and solves all the problems, but it 

offers you good examples for imitation and many opportunities for practice: if 

you wish to learn swimming you have to go into the water, and if you wish to 

become a problem solver you have to solve problems. 

If you wish to derive the most profit from your effort, look out for such 

features of the problem at hand as may be useful in handling the problems to 

come. A solution that you have obtained by your own effort or one that you 

have read or heard, but have followed with real interest and insight, may 

become a pattern for you, a model that you can imitate with advantage in 

solying similar problems. The aim of Part One is to familiarize you with a few 

useful patterns. 

It may be easy to imitate the solution of a problem when solving a closely 

similar problem; such imitation may be more difficult or scarcely possible if 

the similarity is not so close. Yet there is a deep-seated human desire for 

more: for some device, free of limitations, that could solve all problems. This 

desire may remain obscure in many of us, but it becomes manifest in a few 

fairy tales and in the writings of a few philosophers. You may remember the 

tale about the magic word that opens all the doors. Descartes meditated upon a 

ix 
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universal method for solving all problems, and Leibnitz very clearly formu¬ 

lated the idea of a perfect method. Yet the quest for a universal perfect method 

has no more succeeded than did the quest for the philosopher’s stone which 

was supposed to change base metals into gold; there are great dreams that 

must remain dreams. Nevertheless, such unattainable ideals may influence 

people: nobody has attained the North Star, but many have found the right 

way by looking at it. This book cannot offer you (and no book will ever be 

able to offer you) a universal perfect method for solving problems, but even a 

few small steps toward that unattainable ideal may clarify your mind and 

improve your problem-solving ability. Part Two outlines some such steps. 

3. I wish to call heuristics the study that the present work attempts, the 

study of means and methods of problem solving. The term heuristic, which 

was used by some philosophers in the past, is half-forgotten and half- 

discredited nowadays, but I am not afraid to use it. 

In fact, most of the time the present work offers a down-to-earth practical 

aspect of heuristic: I am trying, by all the means at my disposal, to entice the 

reader to do problems and to think about the means and methods he uses in 

doing them. 

In most of the following chapters, the greater part of the text is devoted to 

the broad presentation of the solution of a few problems. The presentation 

may appear too broad to a mathematician who is not interested in methodical 

points. In fact, what is presented here are not merely solutions but case 

histories of solutions. Such a case history describes the sequence of essential 

steps by which the solution has been eventually discovered, and tries to 

disclose the motives and attitudes prompting these steps. The aim of such a 

careful description of a particular case is to suggest some general advice, or 

pattern, which may guide the reader in similar situations. The explicit 

formulation of such advice or such a pattern is usually reserved for a separate 

section, although tentative first formulations may be interspersed between the 

incidents of the case history. 

Each chapter is followed by examples and comments. The reader who does 

the examples has an opportunity to apply, clarify, and amplify the methodical 

remarks offered in the text of the chapter. The comments interspersed between 

the examples give extensions, more technical or more subtle points, or 

incidental remarks. 

How far I have succeeded I cannot know, but I have certainly tried hard to 

enlist the reader’s participation. I have tried to fix on the printed page 

whatever modes of oral presentation I found most effective in my classes. By 

the case histories, I have tried to familiarize the reader with the atmosphere of 

research. By the choice, formulation, and disposition of the proposed 

problems (formulation and disposition are much more important and cost me 

much more labor than the uninitiated could imagine) I have tried to challenge 
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the reader, awake his curiosity and initiative, and give him ample opportunity 

to face a variety of research situations. 

4. This book deals most of the time with mathematical problems. Non- 

mathematical problems are rarely mentioned, but they are always present in 

the background. In fact, I have carefully taken them into consideration and 

have tried to treat mathematical problems in a way that sheds light on the 

treatment of nonmathematical problems whenever possible. 

This book deals most of the time with elementary mathematical problems. 

More advanced mathematical problems, however, although seldom referred 

to, led me to the conception of the material included. In fact, my main source 

was my own research, and my treatment of many an elementary problem 

mirrors my experience with advanced problems which could not be included 

in this book. 

5. This book combines its theoretical aim, the study of heuristics, with a 

concrete, urgent, practical aim: to improve the preparation of high school 

mathematics teachers. 

I have had excellent opportuity to make observations and form opinions on 

the preparation of high school mathematics teachers, for all my classes have 

been devoted to such teachers in the last few years. I hope to be a 

comparatively unprejudiced observer, and as such I can have but one opinion: 

the preparation of high school mathematics teachers is insufficient. Further¬ 

more, I think that all responsible organizations must share the blame, and that 

especially both the schools of education and the departments of mathematics 

in the colleges should very carefully revise their offerings to teachers if t’ley 

wish to improve the present situation. 

What courses should the colleges offer to prospective high school teachers? 

We cannot reasonably answer this question, unless we first answer the related 

question: What should the high schools offer to their students? 

Yet this question is of little help, you may think, because it is too 

controversial; it seems impossible to give an answer that would command 

sufficient consensus. This is unfortunately so; but there is an aspect of this 

question about which at least the experts may agree. 

Our knowledge about any subject consists of information and of know-how. 

If you have genuine bona fide experience of mathematical work on any level, 

elementary or advanced, there will be no doubt in your mind that, in 

mathematics, know-how is much more important than mere possession of 

information. Therefore, in the high school, as on any other level, we should 

impart, along with a certain amount of information, a certain degree of 

know-how to the student. 

What is know-how in mathematics? The ability to solve problems—not 

merely routine problems but problems requiring some degree of indepen¬ 

dence, judgment, originality, creativity. Therefore, the first and foremost 
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duty of the high school in teaching mathematics is to emphasize methodical 

work in problem solving. This is my conviction; you may not go along with it 

all the way, but I assume that you agree that problem solving deserves some 

emphasis—and this will do for the present. 

The teacher should know what he is supposed to teach. He should show his 

students how to solve problems—but if he does not know, how can he show 

them? The teacher should develop his students’ know-how, their ability to 

reason; he should recognizfe and encourage creative thinking—but the 

curriculum he went through paid insufficient attention to his mastery of the 

subject matter and no attention at all to his know-how, to his ability to reason, 

to his ability to solve problems, to his creative thinking. Here is, in my 

opinion, the worst gap in the present preparation of high school mathematics 

teachers. 

To fill this gap, the teachers’ curriculum should make room for creative 

work on an appropriate level. I attempted to give opportunity for such work 

by conducting seminars in problem solving. The present work contains the 

material I collected for my seminars and directions to use it; see the ‘ ‘Hints to 

Teachers, and to Teachers of Teachers” at the end of this volume, pp. 

209—212. This will, I hope, help to improve the mathematics teacher’s 

preparation; at any rate, this is the practical aim of the present work. 

I believe that constant attention to both aims mentioned, the theoretical and 

the practical, made me write a better book. I believe too that there is no 

conflict between the interests of the various prospective readers (some 

concerned with problem solving in general, others with improving their own 

ability, and still others with improving the ability of their students). What 

matters to one type of reader has a good chance to be of consequence to the 

others. 

6. The present work is the continuation of two earlier ones, How to Solve It 

and Mathematics and Plausible Reasoning; the two volumes of the latter have 

separate titles: Induction and Analogy in Mathematics (vol. 1) and Patterns of 

Plausible Inference (vol. 2). These books complete each other without 

essential overlapping. A topic considered in one may be reconsidered in 

another, but then the treatment is different: other examples, other details, or 

other aspects are offered. And so it does not matter much which one is read 

first and which one is read later. 

For the convenience of the reader, the three works will be compared and 

corresponding passages listed in a cumulative index at the end of the second 

volume of this book, Mathematical Discovery. 

7. To publish the first part of a book when the second part is not yet 

available entails certain risl^s. (There is a German proverb: “Don’t show a 

half-built house to a fool.”) These risks are not negligible; yet, in the interest 

of the practical aim of this work, I decided not to delay the publication of this 

volume; see p. 210. 
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This first volume contains Part One of the work, Patterns, and two chapters 

of Part Two, Toward a General Method. 

The four chapters of Part One have more extensive collections of problems 

than the later chapters. In (act, Part One is in many ways similar to a 

collection of problems in analysis by G. Szegd and the author (see the 

Bibliography). There are, however, obvious differences: in the present 

volume the problems proposed are much more elementary, and methodical 

points are not only suggested but explicitly formulated and discussed. 

The second chapter of Part Two is inspired by a recent work of Werner 

Hartkopf (see the Bibliography). I present here only some points of 

Hartkopf’s work which seem to me the most engaging, and I present them as 

they best fit my conception of heuristics, with suitable examples and 

additional remarks. 

8. The Committee on the Undergraduate Program in Mathematics sup¬ 

ported the preparation of the manuscript of this book by funds granted by the 

Ford Foundation. I wish to express my thanks, and I wish to thank the 

Committee also for its moral support. I wish to thank the editor of the Journal 

of Education of the Faculty and College of Education, Vancouver and 

Victoria, for permission to incorporate parts of an article into the present 

work. I also wish to thank Professor Gerald Alexanderson, Santa Clara, 

California, and Professor Alfred Aeppli, Zurich, Switzerland, for their 

efficient help in correcting the proofs. 

Zurich, Switzerland 

December 1961 

George Polya 





PREFACE TO THE SECOND VOLUME 

The present second volume follows the plan, and attempts to carry into 

effect the intentions, indicated in the preface to the first volume. The index at 

the end of this volume refers to both volumes; moreover it contains references 

to selected parallel passages of my related books, which may be of service, I 

hope, to interested readers. 

The Committee on the Undergraduate Program in Mathematics supported 

the preparation of the manuscript of this second volume by funds granted by 

the National Science Foundation. I wish to express my thanks to the 

Committee for their support and encouragement. I wish to thank also the 

Publisher for courteous help and the careful printing. 

The last chapter of this book was dedicated to Charles Loewner on the 

occasion of his seventieth birthday; I wish to reiterate here the expression of 

my high esteem and of my feelings of friendship. 

Zurich, Switzerland George Polya 

October 1964 

PREFACE TO THE CORRECTED 
PRINTING 

The text of the first printing is reprinted here with a few minor changes. An 

appendix is added which contains 35 problems with solutions. These 

problems supplement various chapters in both volumes of the work; their 

numbering indicates where they should be inserted between the problems of 

the first printing. 

Stanford University George Polya 

June 1967 
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PREFACE TO THE COMBINED 
EDITION 

I wish to thank Gerald Alexanderson, Peter Hilton, Dave Logothetti, and 

Jean Pedersen, who in their kindness to me and in their devotion to the subject 

matter sacrificed so much of their time to make the printing of this one volume 

version possible. 

Palo Alto, California GEORGE POLYA 

November 1980 

A POSTSCRIPT TO HIGH SCHOOL 
TEACHERS 

It was not my intention in writing this book to produce a text that would be 

used and followed sequentially at the elementary level, as is done with most 

textbooks. Instead I have endeavored to present sequences of interesting and 

worthwhile problems. The presentation seeks to emphasize the natural 

development of the subject and prepares students to ask more questions on 

their own. 

It is my hope that high school teachers will use this book as a reference 

book in the following way: 

1. Look up in the table of contents or index the topic you plan to teach your 

students. 

2. Study the development and problems presented on that topic in these two 

volumes. 

3. Devise a plan that will be appropriate for your students, following as much 

as possible the Ten Commandments for Teachers on page 116 of Volume 

II. 

4. Carry out your plan. 

5. Evaluate the progress of your students. Don’t forget to include in this 

evaluation the enthusiasm your students have for learning more math¬ 

ematics! 

XVI 



HINTS TO THE READER 

Section 5 of chapter 2 is quoted as sect. 2.5, subsection (3) of section 5 of 

chapter 2 as sect. 2.5(3), example 61 of chapter 3 as ex. 3.61. 

HSI and MPR are abbreviations for titles of books by the author which 

will be frequently quoted; see the Bibliography. 

Iff. The abbreviation “ iff ” stands for the phrase “ if and only if.” 

|. The sign | is prefixed to examples, comments, sections, or shorter 

passages that require more than elementary mathematical knowledge (see 

the next paragraph). This sign, however, is not used when such a passage 

is very short. 

Most of the material in this book requires only elementary mathematical 

knowledge, that is, as much geometry, algebra, “ graphing ” (use of co¬ 

ordinates), and (sometimes) trigonometry as is (or ought to be) taught in 

a good high school. 

The problems proposed in this book seldom require knowledge beyond 

the high school level, but, with respect to difficulty, they are often a little 

above the high school level. The solution is fully (although concisely) 

presented for some problems, only a few steps of the solution are indicated 

for other problems, and sometimes only the result is given. 

Hints that may facilitate the solution are added to some problems (in 

parentheses). The surrounding problems may provide hints. Especial 

attention should be paid to the introductory lines prefixed to the examples 

(or to certain groups of examples) in some chapters. 

The reader who has spent serious effort on a problem may benefit from 

the effort even if he does not succeed in solving the problem. For example, 

he may look at some part of the solution, try to extract some helpful in¬ 

formation, and then put the book aside and try to work out the rest of the 

solution by himself. 

XVII 



HINTS TO THE READER xviii 

The best time to think about methods may be when the reader has 

finished solving a problem, or reading its solution, or reading a case 

history. With his task accomplished and his experience still fresh in mind, 

the reader, in looking back at his effort, can profitably explore the nature 

of the difficulty he has just overcome. He may ask himself many useful 

questions: “ What was the decisive point? What was the main difficulty? 

What could I have done better? I failed to see this point: which item of 

knowledge, which attitude of mind should I have had to see it ? Is there 

some trick worth learning, one that I could use the next time in a similar 

situation? ” All these questions are good, and there are many others— 

but the best question is the one that comes spontaneously to mind. 
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PART ONE 

PATTERNS 

Each problem that I solved became a rule 

which served afterwards to solve other problems. 

descartes: CEuvres, vol. VI, pp. 20-21; Discours de la Methode. 

If I found any new truths in the sciences, 

I can say that they all follow from, or depend on, 

five or six principal problems which I succeeded 

in solving and which I regard as so many battles 

where the fortune of war was on my side. 

descartes: op. cit., p. 67. 





CHAPTER 1 

THE PATTERN OF 
TWO LOCI 

1.1. Geometric constructions 

Describing or constructing figures with ruler and compasses has a 

traditional place in the teaching of plane geometry. The simplest con¬ 

structions of this kind are used by draftsmen, but otherwise the practical 

importance of geometric constructions is negligible and their theoretical 

importance not too great. Still, the place of such constructions in the 

curriculum is well justified: they are most suitable for familiarizing the 

beginner with geometric figures, and they are eminently appropriate for 

acquainting him with the ideas of problem solving. It is for this latter 

reason that we are going to discuss geometric constructions. 

As so many other traditions in the teaching of mathematics, geometric 

constructions go back to Euclid in whose system they play an important 

role. The very first problem in Euclid’s Elements, Proposition One of 

Book One, proposes “to describe an equilateral triangle on a given finite 

straight line.” In Euclid’s system there is a good reason for restricting 

the problem to the equilateral triangle but, in fact, the solution is just as 

easy for the following more general problem: Describe (or construct) a 
triangle being given its three sides. 

Let us devote a moment to analyzing this problem. 

In any problem there must be an unknown—if everything is known, there 

is nothing to seek, nothing to do. In our problem the unknown (the thing 

desired or required, the quaesitum) is a geometric figure, a triangle. 

Yet in any problem something must be known or given (we call the given 

things the data)—if nothing is given, there is nothing by which we could 

recognize the required thing: we would not know it if we saw it. In our 

problem the data are three “finite straight lines” or line segments. 

3 
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Finally, in any problem there must be a condition which specifies how 

the unknown is linked to the data. In our problem, the condition specifies 

that the three given segments must be the sides of the required triangle. 

The condition is an essential part of the problem. Compare our prob¬ 

lem with the following: “Describe a triangle being given its three altitudes.” 

In both problems the data are the same (three line segments) and the 

unknown is a geometric figure of the same kind (a triangle). Yet the 

connection between the unknown and the data is different, the condition 

is different, and the problems are very different indeed (our problem is 

easier). 

The reader is, of course, familiar with the solution of our problem. 

Let a, b, and c stand for the lengths of the three given segments. We lay 

down the segment a between the endpoints B and C (draw the figure 

yourself). We draw two circles, one with center C and radius b, the other 

with center B and radius c; let A be one of their two points of intersection. 

Then ABC is the desired triangle. 

1.2. From example to pattern 

Let us look back at the foregoing solution, and let us look for promising 

features which have some chance to be useful in solving similar problems. 

By laying down the segment a, we have already located two vertices of 

the required triangle, B and C; just one more vertex remains to be found. 

In fact, by laying down that segment we have transformed the proposed 

problem into another problem equivalent to, but different from, the origi¬ 

nal problem. In this new problem 

the unknown is a point (the third vertex of the required triangle); 

the data are two points (B and C) and two lengths (b and c); 

the condition requires that the desired point be at the distance b from 

the given point C and at the distance c from the given point B. 

This condition consists of two parts, one concerned with b and C, the 

other with c and B. Keep only one part of the condition, drop the other 

part; how far is the unknown then determined, how can it vary ? A point of 

the plane that has the given distance b from the given point C is neither 

completely determined nor completely free: it is restricted to a “locus”; it 

must belong to, but can move along, the periphery of the circle with 

center C and radius b. The unknown point must belong to two such loci 

and is found as their intersection. 

We perceive here a pattern (the “pattern of two loci”) which we can 

imitate with some chance of success in solving problems of geometric 

construction: 
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First, reduce the problem to the construction of ONE point. 

Then, split the condition into TWO parts so that each part yields a locus 

for the unknown point; each locus must be either a straight line or a 

circle. 

Examples are better than precepts—the mere statement of the pattern 

cannot do you much good. The pattern will grow in color and interest 

and value with each example to which you apply it successfully. 

1.3. Examples 

Almost all the constructions which traditionally belong to the high 

school curriculum are straightforward applications of the pattern of two 

loci. 

(1) Circumscribe a circle about a given triangle. We reduce the problem 

to the construction of the center of the required circle. In the so reduced 

problem 

the unknown is a point, say X; 

the data are three points A, B, and C; 

the condition consists in the equality of three distances: 

XA = XB = XC 

We split the condition into two parts: 

First XA = XB 

Second XA = XC 

To each part of the condition corresponds a locus. The first locus is the 

perpendicular bisector of the segment AB, the second that of AC. The 

desired point X is the intersection of these two straight lines. 

We could have split the condition differently: first, XA = XB, second, 

XB = XC. This yields a different construction. Yet can the result be 

different? Why not? 

(2) Inscribe a circle in a given triangle. We reduce the problem to the 

construction of the center of the required circle. In the so reduced prob¬ 
lem 

the unknown is a point, say Y; 

the data are three (infinite) straight lines a, b, and c\ 

the condition is that the point X be at the same (perpendicular) distance 

from all three given lines. 

We split the condition into two parts: 

First, X is equidistant from a and b. 

Second, X is equidistant from a and c. 
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The locus of the points satisfying the first part of the condition consists 

of two straight lines, perpendicular to each other: the bisectors of the angles 

included by a and b. The second locus is analogous. The two loci have 

four points of intersection: besides the center of the inscribed circle of the 

triangle we obtain also the centers of the three escribed circles. 

Observe that this application calls for a slight modification of our 

formulation of the pattern at the end of sect. 1.2. What modification? 

(3) Given two parallel lines and a point between them. Draw a circle that 
is tangent to both given lines and passes through the given point. If we 

visualize the required figure (it helps to have it on paper) we may observe 

that we can easily solve a part of the problem: the distance of the two given 

parallels is obviously the diameter of the required circle and half this dis¬ 

tance is the radius. 

We reduce the problem to finding the center X of the unknown circle. 

Knowing the radius, say r, we split the condition as follows: 

First, X is at the distance r from the given point. 

Second, X is at the distance r from both given lines. 

The first part of the condition yields a circle, the second part a straight 

line midway between, and parallel to, the two given parallels. 

Without knowing the radius of the desired circle, we could have split 

up the condition as follows: 

First, X is at the same distance from the given point and the first given 

line. 

Second, X is at the same distance from the given point and the second 

given line. 

Splitting the condition into these two parts is logically unobjectionable 

but nevertheless useless: the corresponding loci are parabolas', we cannot 

draw them with ruler and compasses—it is an essential part of the scheme 

that the loci obtained should be circular or rectilinear. 

This example may contribute to a better understanding of the pattern of 

two loci. This pattern helps in many cases, but not in all. as appropriate 

examples show. 

1.4. Take the problem as solved 

Wishful thinking is imagining good things you don’t have. A hungry 

man who had nothing but a little piece of dry bread said to himself: “If I 

had some ham, I could make some ham-and-eggs if I had some eggs.” 

People tell you that wishful thinking is bad. Do not believe it, this is 

just one of those generally accepted errors. Wishful thinking may be bad 

as too much salt is bad in the soup and even a little garlic is bad in the 
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chocolate pudding. I mean, wishful thinking may be bad if there is too 

much of it or in the wrong place, but it is good in itself and may be a great 

help in life and in problem solving. That poor guy may enjoy his dry 

bread more and digest it better with a little wishful thinking about eggs 

and ham. And we are going to consider the following problem (see Fig. 

1.1). 
Given three points A, B, and C. Draw a line intersecting AC in the point 

X and BC in the point Y so that 
AX = XY = YB 

Imagine that we knew the position of one of the two points X and Y 
(this is wishful thinking). Then we could easily find the other point (by 

drawing a perpendicular bisector). The trouble is that we know neither 

of the two—the problem does not look easy. 

Let us indulge in a little more wishful thinking and take the problem as 
solved. That is, assume that Fig. 1.1 is drawn according to the condition 

laid down by our problem, so that the three segments of the broken line 

AXYB are exactly equal. Doing so we imagine a good thing we have 

not got yet : we imagine that we have found the required location of the 

line XY; in fact, we imagine that we have found the solution. 
Yet it is good to have Fig. 1.1 before us. It shows all the geometric 

elements we should examine, the elements we have and the elements we 

want, the data and the unknown, assembled as specified by the condition. 

With the figure before us, we can speculate as to which useful elements we 

could construct from the data, and which elements could be used in con¬ 

structing the unknown. We can start from the data and work forward, 

or start from the unknown and work backward—even side trips could be 

instructive. 

Could you put together at least a few pieces of the jigsaw puzzle? 

Could you solve some part of the problem ? There is a triangle in Fig. 1.1, 

AXCY. Can we construct it? We would need three data but, unfortu¬ 

nately, we have only one (the angle at C). 

Use what you have, you cannot use what you have not. Could you 
derive something useful from the data ? Well, it is easy to join the given 

points A and B, and the connecting line has some chance to be useful; 

let us draw it (Fig. 1.2). Yet it is not so easy to see how the line AB can be 

useful—should we rather drop it ? 

Figure 1.1 looks so empty. There is little doubt that more lines will be 

needed in the desired construction—what lines? 

The lines AX, XY, and YB are equal (we regard them as equal—wishful 

thinking!). Yet they are in such an awkward relative position—equal 

lines can be arranged to form much nicer figures. Perhaps we should add 

more equal lines—or just one more equal line to begin with. 
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Fig. 1.1. Unknown, data, condition. 
data). 

Fig. 1.3. Working backward (from the Fig. 1.4. Contacts with previous 
unknown). knowledge. 

Fig. 1.6. Stepping stone. 

Chance or inspiration may prompt us to introduce a line into the picture 

which, on the face of it, fits quite well into the intended connection: draw 

YZ parallel and equal to XA, see Fig. 1.3. (We are starting now from the 

desired unknown—wishful thinking—and trying to work backward 

toward the data.) 

Introducing the line YZ was a trial. Yet the line does not look bad; 

it brings in familiar shapes. Join Z to A and B, see Fig. 1.4; we obtain 

the rhombus XAZY and the isosceles triangle BYZ. Could you solve 
some part of the problem? Can we construct A BYZ? We would need 

two data for an isosceles triangle but, unfortunately, we have only one 
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(the angle at Y is equal to the given angle at C). Still, we have something 

here. Even if we do not know ABYZ completely, we know its shape; 

although we do not know its size, we could construct a triangle similar to it. 

This may bring us a little nearer to the solution, but we have not got it 

yet: we must try a few more things. Sooner or later we may remember a 

former trial, the Fig. 1.2. How about combining it with later remarks? 

By superposing Figs. 1.2 and 1.4 we obtain Fig. 1.5 in which there is a new 

triangle, ABZA. Can we construct it? We could, if we knew [\BYZ, 
in that favorable case, we could muster three data: two sides, ZB and 

ZA = ZY, and the angle at B. Well, we do not know/\BYZ; at any rate, 

we do not know it completely, we know only its shape. Yet then, we 

can... 

We can draw the quadrilateral BY'Z'A', see Fig. 1.6, similar to the 

quadrilateral BYZ A in Fig. 1.5, which is an essential part of the desired 

configuration. This may be a stepping stone! 

1.5. The pattern of similar figures 

We carry out the construction, the discovery of which is told by the 

sequence of Figs. 1.1-1.6. 

On the given line BC, see Fig. 1.6, we choose a point Y' at random (but 

not too far from B). We draw the line Y'Z' parallel to CA so that 

Y'Z' = Y'B 

Then, we determine a point A' on AB so that 

A'Z' = Y'Z' 

Draw a parallel to A'Z' through A and determine its intersection with the 

prolongation of the line BZ': this intersection is the desired point Z. The 

rest is easy. 

The two quadrilaterals AZYB and A'Z' Y'B are not only similar but also 

“similarly located” (homothetic). The point B is their center of simi¬ 

larity. That is, any line connecting corresponding points of the two 

similar figures has to pass through B. 
Here is a remark from which we can learn something about problem 

solving: Of the two similar figures, the one that came to our attention first, 

AZYB, was actually constructed later.1 

The foregoing example suggests a general pattern: If you cannot construct 
the required figure, think of the possibility of constructing a figure similar 

to the required figure. 

1 In this “case history” which we have just finished (we started it in sect. 1.4) the 

most noteworthy step was to “take the problem as solved.” For further remarks on 

this, cf. HSI, Figures 2, pp. 104-105, and Pappus, pp. 141-148, especially pp. 146-147. 
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There are examples at the end of this chapter which, if you work them 

through, may convince you of the usefulness of this pattern of “similar 

figures.” 

1.6. Examples 

The following examples differ from each other in several respects; their 

differences may show up more clearly the common feature that we wish to 

disentangle. 

(1) Draw common tangents to two given circles. Two circles are given 

in position (plotted on paper). We wish to draw straight lines touching 

both circles. If the given circles do not overlap they have four common 

tangents, two exterior and two interior tangents. Let us confine our 

attention to the exterior common tangents, see Fig. 1.7, which exist unless 

one of the two given circles lies completely within the other. 

If you cannot solve the proposed problem, look around for an appropriate 

related problem. There is an obvious related problem (of which the reader 

is supposed to know the solution): to draw tangents to a given circle from 

an outside point. This problem is, in fact, a limiting case or extreme case 

of the proposed problem: one of the two given circles is shrunken into a 

point. We arrive at this extreme case in the most natural way by variation 

of the data. Now we can vary the data in many ways: decrease one radius 

and leave the other unchanged, or decrease one radius and increase the 

other, or decrease both. And so we may hit upon the idea of letting both 

radii decrease at the same rate, uniformly, so that both are diminished by 

the same length in the same time. Visualizing this change, we may 

observe that each common tangent is shifting, but remains parallel to itself 

while shifting, till ultimately Fig. 1.8 appears—and here is the solution: 

draw tangents from the center of the smaller given circle to a new circle 

which is concentric with the larger given circle and the radius of which is 

Fig. 1.7. Unknown, data, condition. 
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the difference of the given radii. Use the figure so obtained as a stepping 

stone: the step from it to the desired figure is easy (there are just two rect¬ 

angles to construct). 

(2) Construct a triangle being given the three medians. We “take the 

problem as solved”; that is, we draw the (desired) triangle in which the 

three (given) medians are duly assembled; see Fig. 1.9. We should recol¬ 

lect that the three medians meet in one point (the point M in Fig. 1.9, the 

centroid of the triangle) which divides each median in the proportion 1:2. 

To visualize this essential fact, let us mark the midpoint D of the segment 

AM\ the points D and M divide the median AE into three equal parts; 

see Fig. 1.10. 

The desired triangle is divided into six small triangles. Could you solve 

a part of the problem ? To construct one of those small triangles we need 

three data; in fact, we know two sides: one side is one third of a given 

median, another side is two thirds of another given median—but we do not 

see a third known piece. Could we introduce some other triangle with 

three known data? There is the point D in Fig. 1.10 which is obviously 

eager for more connections—if we join it to a neighboring point we may 

notice AMDG each side of which is one third of a median—and so we can 

construct it, from three known sides—here is a stepping stone! The rest 

is easy. 
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Fig. 1.10. A point eager for more connections. 

(3) To each problem concerned with ordinary triangles there corresponds 

a problem concerned with spherical triangles or trihedral angles. (A 

trihedral angle is contained between three planes; a sphere described about 

its vertex as center intersects it in a spherical triangle.) These problems of 

solid geometry may be reduced to problems of plane geometry. Such 

reduction of problems about figures in space to drawings in a plane is, in 

fact, the object of descriptive geometry, which is an interesting branch of 

geometry indispensable to engineers and architects for the accurate draft¬ 

ing of machinery, vessels, buildings, and so on. 

The reader needs no knowledge of descriptive geometry, just a little 

solid geometry and some common sense, to solve the following problem: 

Being given the three face angles of a trihedral angle, construct its dihedral 

angles. 

Let a, b, and c denote the face angles of the trihedral angle (the sides of 

the corresponding spherical triangle) and a the dihedral angle opposite to 

the face a (a is an angle of the spherical triangle). Being given a, b, c, 

construct a. (The same method can serve to construct all three dihedral 

angles, and so we restrict ourselves to one of them, to a.) 

To visualize the data, we juxtapose the three angles b, a, and c in a plane; 

see Fig. 1.11. To visualize the unknown, we should see the configuration 

in space. (Reproduce Fig. 1.11 on cardboard, crease the line between 

a and b and also that between a and c, and then fold the cardboard to 

form the trihedral angle.) In Fig. 1.12, the trihedral angle is seen in per¬ 

spective; A is a point chosen at random on the edge opposite the face a; 

two perpendiculars to this edge starting from A, one drawn in the face b, 

the other drawn in the face c, include the angle a that we are required to 

construct. 

Look at the unknown! —It is an angle, the angle a in Fig. 1.12. 

What can you do to get this kind of unknown? —We often determine an 

angle from a triangle. 

Is there a triangle in the figure? —No, but we can introduce one. 

In fact, there is an obvious way to introduce a triangle: the plane that 
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contains the angle a intersects the trihedral angle in a triangle; see Fig. 1.13. 

This triangle is a promising auxiliary figure, a likely stepping stone. 

In fact, the solution is not far. Return to the figure in the plane, to 

Fig. 1.11, where the data, the angles a, b, and c, appear in true magnitude. 

(Unfold the cardboard model we have folded together in passing from 

Fig. 1.11 to Fig. 1.12.) The point A appears twice, as Ax and A2 (by 

unfolding, we have separated the two faces b and c which are adjacent in 

space). These points Ar and A2 are at the same distance from the vertex 

V. A perpendicular to AXV through Ar meets the other side of the angle 

b in C, and B is analogously obtained; see Fig. 1.14. Now we know A2B, 

BC, and CAU the three sides of the auxiliary triangle introduced in Fig. 

1.13, and so we can readily construct it (in dotted lines in Fig. 1.14): it 

contains the desired angle a. 

The problem just discussed is analogous to, and uses the construction 

of, the simplest problem about ordinary triangles which we discussed in 

sect. 1.1. We can see herein a sort of justice and a hint about the use of 

analogy. 

Fig. 1.12. The unknown. 
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1.7. The pattern of auxiliary figures 

Let us look back at the problems discussed in the foregoing sect. 1.6. 

They were quite different, and their solutions were quite different too, 

except that in each case the key to the solution was an auxiliary figure: a 

circle with two tangents from an outside point in (1), a smaller triangle 

carved out from the desired triangle in (2), another triangle in (3). In 

each case we could easily construct the auxiliary figure from the data and, 

once in possession of the auxiliary figure, we could easily construct the 

originally required figure by using the auxiliary figure. And so we 

attained our goal in two steps; the auxiliary figure served as a kind of 

stepping stone; its discovery was the decisive performance, the culminat¬ 

ing point of our work. There is a pattern here, the pattern of auxiliary 

Fig. 1.14. The solution. 
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figures, which has some promise and which we can describe as follows: 

Try to discover some part of the figure or some closely related figure 
which you can construct and which you can use as a stepping stone in con¬ 

structing the original figure. 

This pattern is very general. In fact, the pattern of similar figures 

formulated in sect. 1.5 is just a particular case: a figure similar to the 

required figure is related to it in a particular manner and can serve as a 

particularly handy auxiliary figure. 

Unavoidably, its greater generality renders the pattern of auxiliary 

figures less concrete, less tangible: it gives no specific advice about what 

kind of figure we should seek. Experience, of course, can give us some 

directives (although no hard and fast rules): we should look for figures 

which are easy to “carve out” from the desired figure, for “simple” figures 

(as triangles), for “extreme cases,” and so on. We may learn procedures, 

such as the variation of the data, or the use of analogy, which, in certain 

cases, may indicate an appropriate auxiliary figure. 

We have now isolated three different patterns which we may use in deal¬ 

ing with problems of geometric construction. The pattern of auxiliary 

figures leaves us more choice, but offers a less definite target, than the 

pattern of similar figures. The pattern of two loci is the simplest—you 

may try it first just because, in most cases, it is best to try the simplest 

thing first. Yet do not commit yourself, keep an open mind: take the 

problem as solved, draw a figure in which the unknown and the data are 

appropriately assembled, each element at its right place, all elements 

connected by the right relations, as required by the condition. Study this 

figure, try to recognize in it some familiar configuration, try to recall any 

relevant knowledge you may have (related problems, applicable theorems), 

look out for an opening (a more accessible part of the figure, for instance). 

You may be lucky: a bright idea may emerge from the figure and suggest 

an appropriate auxiliary fine, the suitable pattern, or some other useful 

step. 

Examples and Comments on Chapter 1 

1.1. What is the locus of a variable point that has a given distance from a 
given point? 

1.2. What is the locus of a variable point that has a given distance from a 
given straight line? 

1.3. A variable point remains equidistant from two given points; what is its 
locus? 
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1.4. A variable point remains equidistant from two given parallel straight 
lines; what is its locus? 

1.5. A variable point remains equidistant from two given intersecting 
straight lines; what is its locus? 

1.6. Of a triangle, given two vertices, A and B, and the angle y, opposite to 
the side AB\ the triangle is not determined, its third vertex (that of y) can vary. 
What is the locus of this third vertex? 

1.7. Notation. In dealing with a triangle, it is convenient to use the follow- 
ing notation: 

A, B, C vertices 

a. b. c sides 

P, y angles 

hay ht. he altitudes (“heights”) 

may mb. mc medians 

day dfft dr bisectors of the angles (“disectors”?!) 
R radius of circumscribed circle 
r radius of inscribed circle 

It is understood that the side a is opposite the angle a, the vertex of which is 
the point A which is the common endpoint of the three lines ha, ma, and da. 
According to common usage, a stands both for the side (a line segment) and 
for the length of the side; the reader has to find out from the context which 

meaning is intended. The same ambiguity is inherent in the symbols b, c, ha,. ■ ■ 
d„ R, r. We follow this usage although it is objectionable. 

The problem “Triangle from a, b, c” means, of course, “construct a triangle 
being given a, b, and c.” Observe that there may be no solution (the figure 
satisfying the proposed condition may not exist) if the data are adversely 
chosen; for example, there is no triangle with given sides a, b, and c, if a > 
b + c. Experiment first with data for which the required figure is likely to 
exist. 

1.8. Triangle from a, b, ma. 

1.9. Triangle from a, ha, ma. 

1.10. Triangle from a, ha, a. 

1.11. Triangle from a, ma, a. 

1.12. Given three (infinite) straight lines. Construct a circle that touches 
the first two lines and has its center on the third line. 

1.13. Given two intersecting infinite straight lines and a line segment of 
length t. Construct a circle with radius r that touches the two given lines. 

1.14. Construct a circle, being given one point on it, one straight line tangent 
to it, and its radius. 

1.15. Three lighthouses are visible from a ship; their positions on the map 
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are known, and the angles between the rays of light coming from them have 

been measured. Plot the position of the ship on the map. 

1.16. Within a given circle, describe three equal circles so that each shall 
touch the other two and also the given circle. (This figure can sometimes be 
seen in Gothic tracery where analogous figures, with four or six inner circles, 
are more frequent.) 

1.17. Inside a given triangle find a point from which all three sides are seen 
under the same angle. 

1.18. Trisect the area of a given triangle. 
That is, you should locate a point X inside the given A ABC so that A XBC, 

AXCA, and AXAB are equal in area. 
[Keep only apart of the condition, drop the other part: if only the two triangles 

AXCA and AXCB are supposed to be equal, what is the locus of XI The 
answer to this question may show you a way to the solution, but there are also 
other approaches.] 

1.19. Triangle from a, a, r. 
[Keep only a part of the condition, drop the other part: disregard r, but keep 

a and a; what is the locus of the center of the inscribed circle?] 

1.20. Triangle from a, hb, c. 

1.21. Triangle from a, h„, dy. 

1.22. Triangle from a, hb, hc. 

1.23. Triangle from ha, hb, fl. 

1.24. Triangle from ha, fi, y. 

1.25. Triangle from ha, da, a. 

1.26. Construct a parallelogram, being given one side and two diagonals. 

1.27. Construct a trapezoid being given its four sides a, b, c, and d\ a and c 
should be parallel. 

1.28. Construct a quadrilateral being given a, b, c, and d, its four sides, and 
the angle e, included by the opposite sides a and c produced. 

1.29. Triangle from a, b + c, a. 

[Do not fail to introduce all the data into the figure. Where is the “right 
place” for b + cl] 

1.30. Triangle from a, b + c, fi — y. 

1.31. Triangle from a + b + c, ha, <*. 
[Symmetry: b and c (not given) play interchangeable roles.] 

1.32. Given two circles exterior to each other, draw their interior common 
tangents. (The two circles are situated in the same halfplane with respect to 
an exterior common tangent, in different halfplanes with respect to an interior 
common tangent.) 
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1.33. Given three equal circles, construct a circle containing, and tangent to, 

all three given circles. 

1.34. Triangle from a, fi, dr. 

1.35. Inscribe a square in a given right triangle. One corner of the square 
is required to coincide with the right-angle corner of the given triangle, the 

opposite vertex of the square should lie on the hypotenuse, the two other ver¬ 
tices on the legs of the right triangle, one on each. 

1.36. Inscribe a square in a given triangle ABC. Two vertices of the square 
are required to lie on AB, one on AC, and one on BC. 

1.37. Inscribe a square in a given sector of a circle. Two vertices of the 
square are required to lie on the arc, one vertex on each of the two sides of the 
central angle of the sector. 

1.38. Construct a circle being given two points on it and one straight line 
tangent to it. 

1.39. Construct a circle, being given one point on it and two straight lines 
tangent to it. 

1.40. Construct a pentagon circumscribable about a circle being given its 
five angles a, fi, y, 8, and e (subject, of course, to the condition a + /3 + y + 
8 + e = 540°) and the length of its perimeter /. 

1.41. Triangle from ha, hb, hc. 

1.42. A flaw. It may happen that a problem of geometric construction has 
no solution: there may be no figure satisfying the proposed condition with the 
proposed data. For instance, there exists no triangle the sides of which have 
the given lengths a, b, and c if a > b + c. A perfect method of solution will 
either obtain a figure satisfying the proposed condition or show in failing that 
there exists no such figure. 

There can arise, however, the following situation: the proposed problem 
itself does possess a solution, yet an auxiliary problem does not—an auxiliary 
figure, which our scheme would need for the construction of the originally 
required figure, is impossible to construct. This is, of course, a flaw in our 

scheme. 
Is your method for solving ex. 1.41 perfect in this respect? (The triangle 

with sides 65, 156, 169 is a right triangle—the sides are proportional to 5, 12, 
13—with heights 156, 65, 60.) If the answer is No, can you improve your 

method ? 

1.43. Triangle from a, a, R. 

1.44. Looking back at the solution of ex. 1.43, you may ask some instructive 
questions and propose some related problems. 

(a) An analogous problem ? 
(b) A more general problem ? 
(c) Triangle from a, fl, R. 
(d) Triangle from a, r, R. 
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1.45. Three listening posts. The time at which the sound of an enemy gun 
is heard has been exactly observed at three listening posts A, B, and C. On the 
basis of these data, plot on the map the position X of that enemy gun. 

Regard the velocity of sound as known. Explain the analogy with, and the 
difference from, the problem of the three lighthouses, ex. 1.15. 

1.46. On the pattern of two loci. Are the loci with which exs. 1.2, 1.5, and 
1.6 are concerned usable in connection with the pattern of two loci? Cf. the 

statement at the end of sect. 1.2. 

1.47. The pattern of three loci. A concept of plane geometry may have 
various analogues in solid geometry. For instance, in sect. 1.6(3) we regarded 
a spherical triangle or a trihedral angle as analogous to an ordinary plane 
triangle. Yet we could also regard a tetrahedron as analogous to an ordinary 
triangle; seen from this viewpoint, the following problem appears as analogous 

to the problem of sect. 1.3(1). 
Circumscribe a sphere about a given tetrahedron. 

Let us work out the analogy in some detail. We reduce the problem to 
obtaining the center of the required sphere. In the so reduced problem 

the unknown is a point, say X; 
the data are four points (the vertices of the given tetrahedron), say A, B, C, 

and D\ 
the condition consists in the equality of four distances 

XA = XB = XC = XD 

We may split this condition into three parts: 

First XA = XB 
Second XA = XC 
Third XA = XD 

To each part of the condition corresponds a locus. If the point X satisfies 
the first part of the condition, its locus is (it can vary on) a plane, the perpen¬ 
dicular bisector of the segment AB; to each other part of the condition there 
corresponds an analogous plane. Finally, the desired center of the sphere is 

obtained as the intersection of three planes. 
Let us assume that we have instruments with which we can determine the 

points of intersection of three given surfaces when each of these surfaces is 
either a plane or a sphere. (In fact, we have made this assumption implicitly 
in the foregoing. By the way, ruler and compasses are such instruments—we 
can determine with them those points of intersection if we know enough 
descriptive geometry.) Then we can propose and solve problems of geometric 
construction in space. The foregoing problem is an example and its solution 
sets an example: with the help of analogy, we can disentangle from it a pattern 
for solving problems of construction in space, the pattern of three loci. 

1.48. In the foregoing ex. 1.47, as in the example of sect. 1.3(1), we could 
have split the condition differently and so obtain another (although a pretty 

similar) construction. Yet can the result be different? Why not? 
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1.49. On geometric constructions. There are many problems of geometric 
construction where the required figure obviously “exists” but cannot be con¬ 
structed with ruler and compasses (it could be constructed with other—equally 

idealized—instruments). A famous problem of this kind is the trisection of 
the angle: a general angle cannot be divided into three equal parts by ruler and 
compasses; see Courant and Robbins, pp. 137-138. 

A perfect method for geometric constructions should either lead us to a con¬ 
struction of the required figure by ruler and compasses or show that such a 
construction is impossible. Our patterns (two loci, similar figures, auxiliary 
figures) are not useless (as, I hope, the reader has had opportunity to convince 
himself) but they yield no perfect method; they frequently suggest a construc¬ 
tion but, when they do not suggest one, we are left in the dark about the alter¬ 
native with which we are most concerned: is the construction impossible in 
itself, or is it possible and just our effort insufficient? 

There is a well known more perfect method for geometric constructions 
(reduction to algebra—but we need not enter upon details now). Yet for 

another kind of problem which we may face another day there may be no 
perfect method known at that time—and still we have to try. And so the 

patterns considered may contribute to the education of the problem solver 
just by their inherent imperfection. 

1.50. More problems. Devisesomeproblemssimilarto, but different from, the 
problems proposed in this chapter—especially such problems as you can solve. 

1.51. Sets. We cannot define the concept of a set in terms of more funda¬ 
mental concepts, because there are no more fundamental concepts. Yet, in 
fact, everybody is familiar with this concept, even if he does not use the word 
“set” for it. “Set of elements” means essentially the same as “class of 
objects” or “collection of things” or “aggregate of individuals.” “Those 
students who will make an A in this course” form a set even if, at this moment, 
you could not tell all their names. “Those points in space that are equidistant 
from two given points” form a very clearly defined set of points, a plane. 
“Those straight lines in a given plane that have a given distance from a given 
point” form an interesting set consisting of all the tangents of a certain circle. 
If a, b, and c are any three distinct objects, the set to which just these three 
objects belong as elements is clearly defined. 

Two sets are equal if every object that belongs to one of them belongs also 
to the other. If any element that belongs to the set A belongs also to the 
set B, we say that A is contained in B; there are many ways to say the same 
thing: B contains A, B includes A, A is a subset of B, and so on. 

It is often convenient to consider the empty set, that is, the set to which no 
element belongs. For example, the “set of those students who will make A in 
this course” could well turn out to be the empty set, if no student makes a 
better grade than B, or if the course should be discontinued without a final 
examination. The empty set is a useful set as 0 is a useful number. Now, 0 
is less than any positive integer; similarly, the empty set is considered as a sub¬ 
set of any set. 
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The greatest common subset of several sets is termed their intersection. 
That is, the intersection of the sets A, B, C,..and L consists of those, and 
only those, elements that belong simultaneously to each of the sets A, B, C,..., 

and L. 
For example, let A and B denote two planes, each considered as a set of 

points; if they are different and nonparallel, their intersection is a straight line; 
if they are different but parallel, their intersection is the empty set; if they are 
identical, their “intersection” is identical with any of them. If A, B, and C 
are three planes and there is no straight line parallel to all three of them, their 
intersection is a set containing just one element, a point. 

The term “locus” means essentially the same as the term “set” : the set (or 
locus) of those points of a plane that have a given distance from a given point 

is a circle. 
In this example, we define the set (or locus) by stating a condition that its 

elements (points) must satisfy, or a property that these elements must possess: 
the points of a circle satisfy the condition, or have the property, that they are 
all contained in the same plane and all have the same distance from a given 

point. 
The concepts of “condition” and “property” are indissolubly linked with 

the concept of a set. In many mathematical examples we can clearly and 
simply state the condition or property that characterizes the elements of a set. 
Yet, if a more informative description is lacking we can always say: the ele¬ 

ments of the set S have the property of belonging to S, and satisfy the condi¬ 
tion that they belong to S. 

The consideration of the pattern of three loci (after that of two loci; see 
ex. 1.47) may have given us already a hint of a wider generalization. The 
consideration of sets and their intersections intensifies the suggestion. We 
now leave this suggestion to mature in the mind of the reader and we shall 
return to it in a later chapter. 

(The least extensive set of which each one of several given sets is a subset is 
called the union of those given sets. That is, the union of the sets A, B, ..., 
and L contains all the elements of A, all the elements of B,..., and all the 
elements of L, and any element that the union contains, must belong to at least 
one of the sets A, B,..., and L (it may belong to several of them). 

Intersection and union of sets are closely allied concepts (they are “comple¬ 
mentary” concepts in a sense which we cannot but hint), and we could not very 
well discuss one without mentioning the other. In fact, we shall have more 
opportunity to consider the intersection of given sets than their union. The 
reader should familiarize himself from some other book with the first notions 

of the theory of sets which may be introduced into the high schools in the near 
future.) 



CHAPTER 2 

THE CARTESIAN PATTERN 

2.1. Descartes and the idea of a universal method 

Rene Descartes (1596-1650) was one of the very great. He is regarded 

by many as the founder of modern philosophy, his work changed the face 

of mathematics, and he also has a place in the history of physics. We are 

here mainly concerned with one of his works, the Rules for the Direction 

of the Mind (cf. ex. 2.72). 

In his “Rules,” Descartes planned to present a universal method for 

the solution of problems. Here is a rough outline of the scheme that 

Descartes expected to be applicable to all types of problems: 

First, reduce any kind of problem to a mathematical problem. 

Second, reduce any kind of mathematical problem to a problem of 

algebra. 

Third, reduce any problem of algebra to the solution of a single equation. 

The more you know, the more gaps you can see in this project. Des¬ 

cartes himself must have noticed after a while that there are cases in which 

his scheme is impracticable; at any rate, he left unfinished his “Rules” 

and presented only fragments of his project in his later (and better known) 

work Discours de la Methode. 

There seems to be something profoundly right in the intention that 

underlies the Cartesian scheme. Yet it is more difficult to carry this inten¬ 

tion into effect, there are more obstacles and more intricate details than 

Descartes imagined in his first enthusiasm. Descartes’ project failed, but 

it was a great project and even in its failure it influenced science much 

more than a thousand and one little projects which happened to succeed. 

Although Descartes’ scheme does not work in all cases, it does work in 

22 
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an inexhaustible variety of cases, among which there is an inexhaustible 

variety of important cases. When a high school boy solves a “word 

problem” by “setting up equations,” he follows Descartes’ scheme and 

in doing so he prepares himself for serious applications of the underlying 

idea. 

And so it may be worthwhile to have a look at some high school work. 

2.2. A little problem 

Here is a brain teaser which may amuse intelligent youngsters today as 

it probably amused others through several centuries. 

A farmer has hens and rabbits. These animals have 50 heads and 

\ AO feet. How many hens and how many rabbits has the farmer ? 

We consider several approaches. 

(1) Groping. There are 50 animals altogether. They cannot all be 

hens, because then they would have only 100 feet. They cannot all be 

rabbits, because they would then have 200 feet. Yet there should be just 

140 feet. If just one half of the animals were hens and the other half 

rabbits, they would then have.... Let us survey all these cases in a table: 

Hens Rabbits Feet 

50 0 100 

0 50 200 

25 25 150 

If we take a smaller number of hens, we have to take a larger number of 

rabbits and this leads to more feet. On the contrary, if we take a larger 

number of hens.... Yes, there must be more than 25 hens—let us try 30: 

Hens Rabbits Feet 

30 20 140 

I have got it! Here is the solution! 

Yes, indeed, we have got the solution, because the given numbers, 50 

and 140, are relatively small and simple. Yet if the problem, proposed with 

the same wording, had larger or more complicated numbers, we would need 

more trials or more luck to solve it in this manner, by merely muddling 

through. 

(2) Bright idea. Of course, our little problem can be solved less 

“empirically” and more “deductively”—I mean with fewer trials, less 

guesswork, and more reasoning. Here is another solution. 

The farmer surprises his animals in an extraordinary performance: each 

hen is standing on one leg and each rabbit is standing on its hind legs. 

In this remarkable situation just one half of the legs are used, that is, 70 
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legs. In this number 70 the head of a hen is counted just once but the 

head of a rabbit is counted twice. Take away from 70 the number of all 

heads, which is 50; there remains the number of the rabbit heads—there 

are 

70 - 50 = 20 

rabbits! And, of course, 30 hens. 

This solution would work just as well if the numbers in our little prob¬ 

lem (50 and 140) were replaced by less simple numbers. This solution 

(which can be presented less whimsically) is ingenious: it needs a clear 

intuitive grasp of the situation, a little bit of a bright idea—my congratula¬ 

tions to a youngster of fourteen who discovers it by himself. Yet bright 

ideas are rare—we need a lot of luck to conceive one. 

(3) By algebra. We can solve our little problem without relying on 

chance, with less luck and more system, if we know a little algebra. 

Algebra is a language which does not consist of words but of symbols. 

If we are familiar with it we can translate into it appropriate sentences of 

everyday language. Well, let us try to translate into it the proposed 

problem. In doing so, we follow a precept of the Cartesian scheme: 

“reduce any kind of problem to a problem of algebra.” In our case the 

translation is easy. 

State the problem 

in English 

A farmer has 

a certain number of hens 

and a certain number of rabbits 

These animals have fifty heads 

and one hundred forty feet 

in algebraic language 

x 

y 
x + y = 50 

2x + 4y = 140 

We have translated the proposed question into a system of two equations 

with two unknowns, x and y. Very little knowledge of algebra is needed 

to solve this system: we rewrite it in the form 

x + 2y = 70 

x + y = 50 

and subtracting the second equation from the first we obtain 

y = 20 

Using this we find, from the second equation of the system, that 

x = 30 
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This solution works just as well for large given numbers as for small ones, 
works for an inexhaustible variety of problems, and needs no rare bright 
idea, just a little facility in the use of the algebraic language. 

(4) Generalization. We have repeatedly considered the possibility of 
substituting other, especially larger, numbers for the given numbers of our 
problem, and this consideration was instructive. It is even more instruc¬ 
tive to substitute letters for the given numbers. 

Substitute h for 50 and/for 140 in our problem. That is, let h stand 
for the number of heads, and / for the number of feet, of the farmer’s 
animals. By this substitution, our problem acquires a new look; let us 
consider also the translation into algebraic language. 

A farmer has 

a certain number of hens 

and a certain number of rabbits. 

These animals have h heads 

and / feet. 

x 

y 
x + y = h 

2x + 4y = f 

The system of two equations that we have obtained can be rewritten in the 
form 

x + 2y=t 

x + y = h 

and yields, by subtraction. 

Let us retranslate this formula into ordinary language: the number of 
rabbits equals one half of the number of feet, less the number of heads': 
this is the result of the imaginative solution (2). 

Yet here we did not need any extraordinary stroke of luck or whimsical 
imagination; we attained the result by a straightforward routine procedure 
after a simple initial step which consisted in replacing the given numbers 
by letters. This step is certainly simple, but it is an important step of 
generalization.1 

(5) Comparison. It may be instructive to compare different approaches 
to the same problem. Looking back at the four preceding approaches, 
we may observe that each of them, even the very first, has some merit, some 
specific interest. 

1 Cf. HSI, Generalization 3, pp. 109-110; Variation of the problem 4, pp. 210-211; 
Can you check the result? 2, p. 60. 
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The first procedure which we have characterized as "groping” and 

“muddling through” is usually described as a solution by trial and error. 

In fact, it consists of a series of trials, each of which attempts to correct 

the error committed by the preceding and, on the whole, the errors dimin¬ 

ish as we proceed and the successive trials come closer and closer to the 

desired final result. Looking at this aspect of the procedure, we may wish 

a better characterization than “trial and error”; we may speak of “succes¬ 

sive trials” or “successive corrections” or “successive approximations.” 

The last expression may appear, for various reasons, to be the most 

suitable. The term method of successive approximations naturally applies 

to a vast variety of procedures on all levels. You use successive approxi¬ 

mations when, in looking for a word in the dictionary, you turn the leaves 

and proceed forward or backward according as a word you notice precedes 

or follows in alphabetical order the word you are looking for. A mathe¬ 

matician may apply the term successive approximations to a highly sophis¬ 

ticated procedure with which he tries to treat some very advanced problem 

of great practical importance that he cannot treat otherwise. The term 

even applies to science as a whole; the scientific theories which succeed 

each other, each claiming a better explanation of phenomena than the 

foregoing, may appear as successive approximations to the truth. 

Therefore, the teacher should not discourage his students from using 

“trial and error”—on the contrary, he should encourage the intelligent use 

of the fundamental method of successive approximations. Yet he should 

convincingly show that for such simple problems as that of the hens and 

rabbits, and in many more (and more important) situations, straight¬ 

forward algebra is more efficient than successive approximations. 

2.3. Setting up equations 

. In the foregoing, cf. sect. 2.2(3), we have translated a proposed problem 

from the ordinary language of words into the algebraic language of sym¬ 

bols. In our example, the translation was obvious; there are cases, how¬ 

ever, where the translation of the problem into a system of equations 

demands more experience, or more ingenuity, or more work.2 

What is the nature of this work? Descartes intended to answer this 

question in the second part of his “Rules” which, however, he left un¬ 

finished. I wish to extract from his text and present in contemporary 

language such parts of his considerations as are the most relevant at this 

stage of our study. I shall leave aside many things that Descartes did say, 

and I shall make explicit a few things that he did not quite say, but I still 

think that I shall not distort his intentions. 

2 Cf. HSI, Setting up equations, pp. 174-177. 
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I wish to follow Descartes’ manner of exposition : I shall begin each 

explanation by a concise “advice” (in fact, it is rather a summary) and then 

expand that advice (summary) by adding comments. 

(1) First, having well understood the problem, reduce it to the determina¬ 

tion of certain unknown quantities (Rules XIII-XVI). 

To spend time on a problem that we do not understand would be foolish. 

Therefore, our first and most obvious duty is to understand the problem, 

its meaning, its purpose. 

Having understood the problem as a whole, we turn our attention to its 

principal parts. We should see very clearly 

what kind of thing we have to find (the unknown or unknowns) 
what is given or known (the data) 
how, by what relations, the unknowns and the data are connected with 

each other (the condition). 
(In the problem of sect. 2.2(4) the unknowns are x and y, and the data 

h and /, the numbers of hens and rabbits, heads and feet, respectively. 

The condition is expressed first in words, then in equations.) 

Following Descartes, we now confine ourselves to problems in which the 

unknowns are quantities (that is, numbers but not necessarily integers). 

Problems of other kinds, such as geometrical or physical problems, may 

be reduced sometimes to problems of this purely quantitative type, as we 

shall illustrate later by examples; cf. sects. 2.5 and 2.6. 

(2) Survey the problem in the most natural way, taking it as solved and 

visualizing in suitable order all the relations that must hold between the 

unknowns and the data according to the condition (Rule XVII). 

We imagine that the unknown quantities have values fully satisfying the 

condition of the problem: this is meant essentially by “taking the problem 

as solved”; cf. sect. 1.4. Accordingly, we treat unknown and given quan¬ 

tities equally in some respects; we visualize them connected by relations as 

the condition requires. We should survey and study these relations in the 

spirit in which we survey and study the figure when planning a geometric 

construction; see the end of sect. 1.7. The aim is to find some indication 

about our next task. 

(3) Detach a part of the condition according to which you can express the 

same quantity in two different ways and so obtain an equation between the 

unknowns. Eventually you should split the condition into as many parts, 

and so obtain a system of as many equations, as there are unknowns (Rule 

XIX). 

The foregoing is a free rendering, or paraphrase, of the statement of 

Descartes’ Rule XIX. After this statement there is a great gap in 
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Descartes’ manuscript: the explanation which should have followed the 

statement of the Rule is missing (it was probably never written). Therefore, 

we have to make up our own comments. 

The aim is stated clearly enough: we should obtain a system of n equa¬ 

tions with n unknowns. It is understood that the computation of these 

unknowns should solve the proposed problem. Therefore, the system of 

equations should be equivalent to the proposed condition. If the whole 

system expresses the whole condition, each single equation of the system 

should express some part of the condition. Hence, in order to set up the 

n equations we should split the condition into n parts. But how? 

The foregoing considerations under (1) and (2) (which outline very 

sketchily Descartes’ Rules XIII-XVII) give some indications, but no 

definite instructions. Certainly, we have to understand the problem, we 

have to see the unknowns, the data, and the condition very, very clearly. 

We may profit from surveying the various clauses of the condition and 

from visualizing the relations between the unknowns and the data. All 

these activities give us a chance to obtain the desired system of equations, 

but no certainty. 

The advice that we are considering (the paraphrase of Rule XIX) 

stresses an additional point: in order to obtain an equation we have to 

express the same quantity in two different ways. (In the example of sect. 

2.2(3) an equation expresses the number of feet in two different ways.) 

This remark, properly digested, often helps to discover an equation between 

the unknowns—it can always help to explain the equation after it has been 

discovered. 

In short, there are some good suggestions, but there is no foolproof pre¬ 

cept for setting up equations. Yet, where no precept helps, practice may 

help. 

(4) Reduce the system of equations to one equation (Rule XXI). 

The statement of Descartes’ Rule XXI which is here paraphrased is not 

followed by an explanation (in fact, it is the last sentence in Descartes’ 

manuscript). We shall not examine here under which conditions a system 

of algebraic equations can be reduced to a single equation or how such 

reduction can be performed; these questions belong to a purely mathe¬ 

matical theory which is more intricate than Descartes’ short advice may 

lead us to suppose, but is pretty well explored nowadays and no concern 

of ours at this point. Very little algebra will be sufficient to perform the 

reduction in those simple cases in which we shall need it. 

There are other questions which remain unexplored although we should 

concern ourselves with them. Yet we may take them up more profitably 

after some examples. 
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2.4. Classroom examples 

The “word problems” of the high school are trivial for mathematicians, 

but not so trivial for high school boys or girls or teachers. I think, how¬ 

ever, that a teacher who makes an earnest effort to bring Descartes’ advice, 

presented in the foregoing, down to classroom level and to put it into 

practice will avoid many of the usual pitfalls and difficulties. 

First of all, the student should not start doing a problem before he has 

understood it. It can be checked to a certain extent whether the student 

has really understood the problem: he should be able to repeat the state¬ 

ment of the problem, point out the unknowns and the data, and explain 

the condition in his own words. If he can do all this reasonably well, he 

may proceed to the main business. 

An equation expresses a part of the condition. The student should be 

able to tell which part of the condition is expressed by an equation that he 

brings forward—and which part is not yet expressed. 

An equation expresses the same quantity in two different ways. The 

student should be able to tell which quantity is so expressed. 

Of course, the student should possess the relevant knowledge without 

which he could not understand the problem. Many of the usual high 

school problems are “rate problems” (see the next three examples). 

Before he is called upon to do such a problem, the student should acquire 

in some form the idea of “rate,” proportionality, uniform change. 

(1) One pipe can fill a tank in 15 minutes, another pipe can fill it in 20 

minutes, a third pipe in 30 minutes. With all three pipes open, how long 

will it take to fill the empty tank ? 

Let us assume that the tank contains g gallons of water when it is full. 

Then the rate of flow through the first pipe is 

g_ 
15 

gallons per minute. Since 

amount = rate x time 

the amount of water flowing through the first pipe in t minutes is 

If the three pipes together fill the empty tank in t minutes, the amount of 

water in the full tank can be expressed in two ways: 
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The left-hand side shows the contribution of each pipe separately, the 

right-hand side the joint result of these three contributions. 

Division by g yields the equation for the required time t: 

Of course, the derivation of the equation could be presented differently 

and the problem itself could be generalized and modified in various ways. 

(2) Tom can do a job in 3 hours, Dick in 4 hours, and Harry in 6 hours. 

If they do it together (and do not delay each other), how long does the job 

take ? 

Tom can do i of the whole job in one hour; we can also say that Tom is 

working at the rate of i of the job per hour. Therefore, in t hours Tom 

does t/3 of the job. If the three boys work together and finish the work in 

t hours (and if they do not delay each other—a very iffy condition), the 

full amount of work can be expressed in two ways: 

in fact, the 1 on the right-hand side stands for “one full job.” 

This problem is almost identical with the foregoing (1), even numerically 
since 

15:20:30 = 3:4:6 

It is instructive to formulate a common generalization of both (using let¬ 

ters). It is also instructive to compare the solutions and weigh the advan¬ 

tage and disadvantage of introducing the quantity g into the solution (1). 

(3) A patrol plane flies 220 miles per hour in still air. It carries fuel for 

4 hours of safe flying. If it takes off on patrol against a wind of 20 miles per 

hour, how far can it fly and return safely ? 

It is understood that the wind is supposed to blow with unchanged 

intensity during the whole flight, that the plane travels in a straight line, 

that the time needed for changing direction at the furthest point is negli¬ 

gible, and so on. All word problems contain such unstated simplifying 

assumptions and demand from the problem solver some preliminary work 

of interpretation and abstraction. This is an essential feature of the word 

problems which is not always trivial and should be brought into the open, 

at least now and then. 

The problem becomes more instructive if for the numbers 

220 20 4 

we substitute general quantities 

v w T 
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which denote the velocity of the plane in still air, the velocity of the wind, 

and the total flying time, respectively; these three quantities are the data. 

Let x stand for the distance flown in one direction, /i for the duration of 

the outgoing flight, t2 for the duration of the homecoming flight; these 

three quantities are unknowns. It is useful to display some of these quan¬ 

tities in a neat arrangement: 

Distance 

Going 

X 

Returning 

X 

Time h 

Velocity v — w V + w 

(To fill out the last line we need, in fact, some “unsophisticated” knowledge 

of kinematics.) Now, as we should know, 

distance = velocity x time 

We express each of the following three quantities in two ways: 

x = (v — w)/i 

x = (v + w)t2 

h + t2 = T 

We have here a system of three equations for the three unknowns x, 

tu and t2. In fact, only x was required by the proposed problem; tx and 

t2 are auxiliary unknowns which we have introduced in order to express 

neatly the whole condition. Eliminating and t2, we find 

V — W V + w 

and hence 

.. (v2 ~ *2)T 
2v 

There is no difficulty in substituting numerical values for the data 

v, w, and T. It is more interesting to examine the result, and to check it by 

the variation of the data. 

If w = 0, then 2x = vT. This is right, obviously: the whole flight is now 

supposed to take place in still air. 

If w = v, then x = 0. Again obvious: against a headwind with speed v, 

the plane cannot start at all. 

If w increases from the value w = 0 to the value w = v, the distance x 

decreases steadily, according to the formula. And so, again, the formula 

agrees with what we can foresee without any algebra, just by visualizing 

the situation. 

Working with numerical data instead of general data (letters) we would 
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have missed this instructive discussion of the formula and the valuable 

checks of our result. By the way, there are still other interesting checks. 

(4) A dealer has two kinds of nuts; one costs 90 cents a pound, the other 

60 cents a pound. He wishes to make 50 pounds of a mixture that will cost 

72 cents a pound. How many pounds of each kind should he use ? 

This is a typical, rather simple “mixture problem.” Let us say that the 

dealer uses x pounds of nuts of the first kind, and y pounds of the second 

kind; x and y are the unknowns. We can conveniently survey the un¬ 

knowns and the data in the array: 

First kind Second kind Mixture 

Price per pound 90 60 72 

Weight x y 50 

Express in two ways the total weight of the mixture: 

x + y = 50 

Then express in two ways the total price of the mixture : 

90x + 60y = 72-50 

We have here a system of two equations for the two unknowns x and y. 

We leave the solution to the reader, who should have no trouble in finding 

the values 

x = 20, y = 30 

In passing from “numbers” to “letters” the reader obtains a problem 

which, as it will turn out later, has still other (and more interesting) inter¬ 

pretations. 

2.5. Examples from geometry 

We shall discuss just two examples. 

(1) A problem of geometric construction. It is possible to reduce any 

problem of geometric construction to a problem of algebra. We cannot 

treat here the general theory of such reduction,3 but here is an example. 

A triangular area is enclosed by a straight line AB and two circular arcs, 

A C and BC. The center of one circle is A, that of the other is B, and each 

circle passes through the center of the other. Inscribe into this triangular 

area a circle touching all three boundary lines. 

The desired configuration. Fig. 2.1, is sometimes seen in Gothic tracery. 

Obviously, we can reduce the problem to the construction of one point: 

the center of the required circle. One locus for this point is also obvious: 

See Courant-Robbins, pp. 117-140. 
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the perpendicular bisector of the segment AB which is a line of symmetry 

for the given triangular area. And so there remains to find another locus. 

Keep only a part of the condition, drop the other part. We consider a 

(variable) circle touching not three, but only two boundary lines: the 

straight line AB and the circular arc BC; see Fig. 2.2. In order to find the 

locus of the center of this variable circle, we use analytic geometry. We 

let the origin of our rectangular coordinate system coincide with the 

point A, and let the x axis pass through the point B; see Fig. 2.2. Let x 

and y denote the coordinates of the center of the variable circle. Join 

this center to the two essential points of contact, one with the straight 

line AB, the other with the circular arc BC; see Fig. 2.2. The two radii 

have the same length which, therefore, can be expressed in two different 

manners (set AB = a): 

y = a - Vx2 + y2 

By getting rid of the square root, we transform this equation into 

x2 = a2 — 2ay 

And so the locus of the center of the variable circle turns out to be a para¬ 

bola—a locus of no immediate use in geometric constructions. 

Fig. 2.2. We have dropped a part of the 
condition. A B 
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Yet the obvious locus mentioned at the beginning, the perpendicular 

bisector of AB, has the equation 

a 

X = 2 

which, combined with the equation of the parabola, yields the ordinate of 

the desired center of the circle. 

3 a 

y = T 

and this ordinate is easy to construct from the given length a = AB. 

(2) The analogue of Pythagoras’ theorem in solid geometry. Analogy 

is not unambiguous. There are various facts of solid geometry which can 

be quite properly regarded as analogous to the Pythagorean proposition. 

We arrive at such a fact if we regard a cube as analogous to a square, and 

a tetrahedron that we obtain by cutting off a corner of the cube by an 

oblique plane as analogous to a right triangle (which we obtain by cutting 

off a corner of a square by an oblique straight line). To the rectangular 

vertex of the right triangle there corresponds a vertex of the tetrahedron 

which we shall call a trirectangular vertex. In fact, the three edges of the 

tetrahedron starting from this vertex are perpendicular to each other, 

forming three right angles. 

Pythagoras’ theorem solves the following problem: In a triangle that 

possesses a rectangular vertex O, there are given the lengths a and b of the 

two sides meeting in O. Find the length c of the side opposite O. 

We put the analogous problem: In a tetrahedron that possesses a tri¬ 

rectangular vertex O, there are given the areas A, B, and C of the three faces 

meeting in O. Find the area D of the face opposite O. 

We are required to express D in terms of A, B, and C. It is natural to 

expect a formula analogous to Pythagoras’ theorem 

c2 = a2 + b2 

which solves the corresponding problem of plane geometry. A high school 

boy guessed 

D3 = A3 + B3 + C3 

This is a clever guess; the change in the exponent corresponds neatly to 

the transition from 2 to 3 dimensions. 

(3) What is the unknown ? —The area of a triangle, D. 

How can you find such an unknown ? How can you get this kind of 

thing?—The area of a triangle can be computed if the three sides are 

known, by Heron’s formula. The area of our triangle is D. Let a, b. 
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and c denote the lengths of the sides, and set s = (a + b + c)/2; then 

D2 = s(s — a)(s — b)(s — c) 

(This is a form of Heron’s formula.) Let us label the sides of D in the 

figure; see Fig. 2.3. 

Fine! But are the sides a, b, and c known? —No, but they are in right 

triangles; if the legs in these right triangles (labeled p, q, r in Fig. 2.3) were 

known, we could express a, b, and c : 

a2 = q2 + r2, b2 = r2 + p2, c2 = p2 + q2 

That is good; but are p, q, and r themselves known?—No, but they 

are connected with the data, the areas A, B, and C: 

iqr = A, \rp = B, \pq = C 

That is right; but did you achieve anything useful?—I think I did. 

I now have 7 unknowns 

D 

a, b, c 

P, Q, r 

but also a system of 7 equations to determine them. 

(4) There is nothing wrong with our foregoing reasoning, under (3). 

We have attained the goal set by Descartes’ Rule (freely rendered in sect. 

2.3(3)): we have obtained a system with as many equations as there are 

unknowns. There is just one thing: the number 7 may seem too high, 

to solve 7 equations with 7 unknowns may appear as too much trouble. 

And Heron’s formula may not look too inviting. 

If we feel so, we may prefer a new start. 

What is the unknown ? —The area of a triangle, D. 
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How can you find such an unknown? How can you get this kind of 

thing?—The most familiar way to compute the area of a triangle is 

where a is the base, and h the altitude, of the triangle with area D; let us 

introduce h into the figure. See Fig. 2.4. 

Yes, we have seen a before; but what about hi—The height h of the 

triangle with area D can be computed from a suitable triangle, I hope. 

In fact, intersect the tetrahedron with a plane passing through h and the 

trirectangular vertex. The intersection is a right triangle, its hypotenuse 

is h, one of its legs is p which we have seen before, and the other leg, say k, 

is the altitude perpendicular to the side a in the triangle with area A. 

Therefore, 

h2 = k2 + p2 

Very good! But what about kl—We can get it somehow. In fact, 

express the area of the triangle in which, as I have just said, k is an altitude 

in two different manners: 

\ak = A 

Have you as many equations as you have unknowns?—I also have the 

former equations, and I have no time to count. I now see my way, I think. 

Let me just combine what is before me: 

4 D2 = a2h2 

= a2(k2 + p2) 

= 4 A2 + a2p2 

= 4 A2 + (r2 + q2)p2 

= 4 A2 + (rpf + (pqf 

= 4 A2 + 4 B2 + 4 C2 
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Let me bring together the beginning and the end and get rid of that super¬ 

fluous factor 4. Here it is: 

D2 = A2 + B2 + C2 

This result is, in fact, closely analogous to Pythagoras’ theorem. That 

guess with the exponent 3 was clever—it turned out wrong, but this is not 

surprising. What is surprising is that the guess came so close to the truth. 

It may be quite instructive to compare the two foregoing approaches to 

the same problem; they differ in various respects. 

And could you imagine a different analogue to Pythagoras’ theorem ? 

2.6. An example from physics 

We start from the following question. 

An iron sphere is floating in mercury. Water is poured over the mercury 

and covers the sphere. Will the sphere sink, rise, or remain at the same 

depth ? 

We have to compare two situations. In both cases the lower part of 

the iron sphere is immersed in (is under the level of) mercury. The upper 

part of the sphere is surrounded by air (or vacuum) in the first situation, 

and by water in the second situation. In which situation is the upper part 

(the one over the level of the mercury) a greater fraction of the whole 

volume? 

This is a purely qualitative question. Yet we can give it a quantitative 

twist which renders it more precise (and accessible to algebra): Compute the 

fraction of the volume of the sphere that is over the level of the mercury for 

both situations. 

(1) We can give a plausible answer to the qualitative question by purely 

intuitive reasoning, just by visualizing a continuous transition from one 

proposed situation to the other. Let us imagine that the fluid poured 

over the mercury and surrounding the upper part of the iron sphere 

changes its density continuously. To begin with, this imaginary fluid has 

density zero (we have just vacuum). Then the density increases; it soon 

attains the density of the air, and after a while the density of water. If 

you do not see yet how this change affects the floating sphere, let the 

density increase still further. When the density of that imaginary fluid 

attains the density of iron, the sphere must rise clear out of the mercury. 

In fact, if the density increased further ever so little, the sphere should pop 

up and emerge somewhat from that imaginary fluid. 

It is natural to suppose that the position of the floating sphere, as the 

density of the imaginary fluid covering it, changes all the time in the same 

direction. Then we are driven to the conclusion that, in the transition 

from covering vacuum or air to covering water, the sphere will rise. 
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(2) In order to answer the quantitative question, we need the numerical 

values of the three specific gravities involved which are 

1.00 13.60 7.84 

for water mercury iron 

respectively. Yet it is more instructive to substitute letters for these 

numerical data. Let 

a b c 

denote the specific gravity of the 

upper fluid lower fluid floating solid 

respectively. Let v denote the (given) total volume of the floating solid, 

x the fraction of v that is over the level separating the two fluids, and y the 

fraction under that level; see Fig. 2.5. Our data are a, b, c, and v, our 

unknowns x and y. It is understood that 

a < c < b 

We may express the total volume of the floating body in two different 

ways: 
x + y = v 

Now, we cannot proceed beyond this point unless we know the pertinent 

physical facts. The relevant knowledge that we should possess is the law 

of Archimedes which is usually expressed as follows: the floating body is 

buoyed up by a vertical force equal in magnitude to the weight of the 

displaced fluid. The sphere that we are considering displaces fluid in two 

layers. The weights of the displaced quantities are 

ax and by 

in the upper layer and lower layer 

respectively. These two upward vertical forces must jointly balance the 
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weight of the floating sphere which we can, therefore, express in two 

different ways- 

ax + by = cv 

Now, we have obtained a system of two equations for our two unknowns 

x and y. Solving this system, we obtain 

(3) Let us return to the original statement of the problem. In the first 

situation, if there is vacuum over the mercury 

a = 0, b = 13.60, c = 7.84 

which yield for the fraction of the iron sphere’s volume over the level of 

mercury 

x = 0.423u 

In the second situation, when there is water over the mercury, 

a = 1.00, b = 13.60, c = 7.84 

which yield x = 0.457u 

and the latter fraction is larger, which agrees with the conclusion of our 

intuitive reasoning. 

The general formula (in letters) is, however, more interesting than any 

particular numerical result that we can derive from it. Especially, it 

fully substantiates our intuitive reasoning. In fact, keep b, c, and v con¬ 

stant and let a (the density of the upper layer) increase from 

a = 0 to a = c 

Then the denominator b — a of x decreases steadily and so x, the fraction 

of v over the level of the mercury, increases steadily from 

b — c 
x = —;— v to x = v 

b 

2.7. An example from a puzzle 

How can you make two squares from five? Fig. 2.6 shows a sheet of 

paper that has the shape of a cross; it is made up of five equal squares. 

Cut this sheet along a straight line in two pieces, then cut one of the pieces 

along another straight line again in two, so that the resulting three pieces, 

suitably fitted together, form two juxtaposed squares. 

The cross in Fig. 2.6 is highly symmetric (it has a center of symmetry 

and four lines of symmetry). The two juxtaposed squares form a rect¬ 

angle the length of which is twice the width. It is understood that the 
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I-1 Fig. 2.6. Two from five? 

three pieces into which the cross will be divided should fill up this rectangle 

without overlapping. 

Could you solve a part of the problem ? Obviously, the area of the desired 

rectangle is equal to the area of the given cross, and so it equals 5a2 if a 

denotes the side of one of the five squares forming the cross. Yet, having 

obtained its area, we can also find the sides of the rectangle. Let x denote 

the length of the rectangle; then its width is x/2. Express the area of the 

rectangle in two different ways; we obtain 

x--2 = 5 a2 

or x2 = 10a2 

from which we can find both sides of the rectangle. 

We now have sufficient information about the rectangle, its shape and 

size, but the proposed puzzle is not yet solved: we still have to locate the 

two cuts in the cross. Yet the expression for x obtained above may yield 

a hint, especially if we write it in this form: 

*2 = 9a2 + a2 

With this indication, I leave the solution to the reader. 

We can derive some useful suggestions from the foregoing treatment of 

the puzzle. 

First, it shows that algebra can be useful even when it cannot solve the 

problem completely: it can solve a part of the problem and the solution of 

that part can facilitate the remaining work. 

Second, the procedure that we have employed may impress us with its 

peculiar expanding pattern. First, we have obtained only a small part of 

the solution: the area of the desired rectangle. We have used, however, 

this small part to obtain a bigger part: the sides of the rectangle, and hence 

complete information about the rectangle. Now, we are trying to use this 

bigger part to obtain a still bigger part which we may use afterwards, we 

hope, to obtain the full solution. 
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2.8. Puzzling examples 

The problems that we have considered so far in this chapter are “reason¬ 

able.” We are inclined to regard a problem as reasonable if its solution is 

uniquely determined. If we are seriously concerned with our problem, 

we wish to know (or guess) as early as possible whether it is reasonable or 

not. And so, from the outset, we may ask ourselves: Is it possible to 

satisfy the condition ? Is the condition sufficient to determine the unknown ? 

Or is it insufficient ? Or redundant ? Or inconsistent ? 

These questions are important.4 We postpone a general discussion of 

their role, but it will be appropriate to look here at a couple of examples. 

(1) A man walked five hours, first along a level road, then up a hill, then 

he turned round and walked back to his starting point along the same route. 

He walks 4 miles per hour on the level, 3 uphill, and 6 downhill. Find the 

distance walked,5 

Is this a reasonable problem? Are the data sufficient to determine the 

unknown ? Or are they insufficient ? Or redundant ? 

The data seem to be insufficient: some information about the extent of 

the nonlevel part of the route seems to be lacking. If we knew how much 

time the man spent walking uphill, or downhill, there would be no diffi¬ 

culty. Yet without such information the problem appears indeterminate. 

Still, let us try. Let 

x stand for the total distance walked, 

y for the length of the uphill walk. 

The walk had four different phases: 

level, uphill, downhill, level. 

Now we can easily express the total time spent in walking in two different 

ways : 

x/2 - y ,y,y, x/2 - y _ 

4 + 3 + 6 + 4 

Just one equation between two unknowns—it is insufficient. Yet, when 

we collect the terms, the coefficient of y turns out to be 0, and there remains 

x = 20 

And so the data are sufficient to determine x, the only unknown required 

4 Cf. HSI, p. 122: Is it possible to satisfy the condition? 
5 Cf. “Knot I” of “A Tangled Tale” by Lewis Carroll. 
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by the statement of the problem. Hence, after all, the problem is not 

indeterminate: we were wrong. 

(2) We were wrong, there is no denying, but we suspect that the author 

of the problem took pains to mislead us by a tricky choice of those 

numbers 3, 6, and 4. To get to the bottom of his trick, let us substitute 

for the numbers 

3, 6, 4 

the letters u, v, w 

which stand for the pace of the walk 

uphill, downhill, on the level, 

respectively. We should reread the problem, with the letters just intro¬ 

duced substituted for the original numbers, and then express the total time 

spent in walking in two different ways, using the appropriate letters: 

x/2 - y + y + y + x/2 - y = 5 

w u v w 

or 

We cannot determine x from this equation, unless the coefficient of y 

vanishes. And so the problem is indeterminate, unless 

If, however, the three rates of walking are chosen at random, they do not 

satisfy this relation, and so the problem is indeterminate. We were put 

in the wrong by a vicious trick! 

(We can express the critical relation also by the formula 

2 uv 
w =- 

U + V 

or by saying that the pace on the level is the harmonic mean of the uphill 

pace and the downhill pace.) 

(3) Two smaller circles are outside each other, but inside a third, larger 

circle. Each of these three circles is tangent to the two others and their 

centers are along the same straight line. Given r, the radius of the larger 

circle, and t, that piece of the tangent to the two smaller circles in their com¬ 

mon point that lies within the larger circle. Find the area that is inside the 

larger circle but outside the two smaller circles. See Fig. 2.7. 

Is this a reasonable problem? Are the data sufficient to determine the 

unknown ? Or are they insufficient ? Or redundant ? 
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The problem seems perfectly reasonable. To determine the configura¬ 

tion of the three circles, it is both necessary and sufficient to know the radii 

of the two smaller circles, and any two independent data will be just as 

good. Now, the given r and t are obviously independent: we can vary 

one without changing the other (except for the inequality t ^ 2r which 

we may take for granted). Yes, the two data r and t seem to be just 

sufficient, neither insufficient nor redundant. 

Therefore, let us settle down to work. Let A stand for the required 

area, x and y for the radii of the two smaller circles. Obviously 

A = 7jt2 — ttx2 — Try2 

2r = 2x + 2y 

We have here two equations for our three unknowns. A, x, and y. In 

order to obtain a third equation, consider the right triangle inscribed in the 

larger circle, the base of which passes through the three centers and the 

opposite vertex of which is one of the endpoints of the segment t. The 

altitude in this triangle, drawn from the vertex of the right angle, is t/2; 

this altitude is a mean proportional (Euclid VI 13): 

Now we have three equations. We rewrite the last two: 

(x + yf = r2 

2*>' = J 

Subtraction yields x2 + y2, and substitution into the first equation yields 
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The data turned out to be redundant ', of the two data, t and r, only the first 

is really needed, not the second. We were wrong again. 

The curious relation underlying the example just discussed was observed 

by Archimedes; see his Works edited by T. L. Heath, pp. 304-305. 

Examples and Comments on Chapter 2 

First Part 

2.1. Bob has three dollars and one half in nickels and dimes, fifty coins alto¬ 
gether. How many nickels has Bob, and how many dimes ? (Have you seen 
the same problem in a slightly different form?) 

2.2. Generalize the problem of sect. 2.4(1) by passing from “numbers” to 
“letters” and considering several filling and emptying pipes. 

2.3. Devise some other interpretation for the equation set up in sect. 2.4(2). 

2.4. Find further checks for the solution of the flight problem of sect. 2.4(3). 

2.5. In the “mixture problem” of sect. 2.4(4) substitute the letters 

a b c v 

for the numerical data 

90 60 72 50 

respectively. Read the problem after this substitution and set up the equa¬ 
tions. Do you recognize them? 

2.6. Fig. 2.8 (which is different from, but related to. Fig. 2.1) shows another 
configuration frequently seen in Gothic tracery. 

Find the center of the circle that touches four circular arcs forming a 

“curvilinear quadrilateral.” 
Two arcs have the radius AB, the center of one is A, that of the other B. 
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Two semicircles have the radius AB/4, the center of each lies on the line AB, 
one starts from the point A, the other from the point B, both end in the mid¬ 
point of the line AB where they are tangent to each other. 

2.7. Carry through the plan devised in sect. 2.5(3); it should lead you to the 
same simple expression for D2 in terms of A, B, and C that we have obtained 
in sect. 2.5(4) by other means. 

2.8. Compare the approaches of sect. 2.5(3) and 2.5(4). (Emphasize general 
viewpoints.) 

2.9. Find the volume V of a tetrahedron that has a trirectangular vertex O, 
being given the areas A, B, and C of the three faces meeting in O. 

2.10. An analogue to Heron’s theorem. Find the volume V of a tetrahedron 
that has a trirectangular vertex, being given the lengths a, b, and c of the sides 
of the face opposite the trirectangular vertex. 

(If we introduce the quantity 

oa a2 + b2 + c2 
*-2 

into the expression of V in an appropriate, symmetric way, the result assumes 
a form somewhat similar to Heron’s formula.) 

2.11. Another analogue to Pythagoras’ theorem. Find the length d of the 
diagonal of a box (a rectangular parallelepiped) being given p, q, and r, the 
length, the width, and the height of the box. 

2.12. Still another analogue to Pythagoras' theorem. Find the length d of 
the diagonal of a box, being given a, b, and c, the lengths of the diagonals of 
three faces having a corner in common. 

2.13. Another analogue to Heron's theorem. Let V denote the volume of a 
tetrahedron, a, b, and c the lengths of the three sides of one of its faces, and 
assume that each edge of the tetrahedron is equal in length to the opposite 
edge. Express V in terms of a, b, and c. 

2.14. Check the result of ex. 2.10 and that of ex. 2.13 by examining the 
degenerate case in which V vanishes. 

2.15. Solve the puzzle proposed in sect. 2.7. (The sides x and x/2 should 
result from the cuts—but how can you fit a segment of length x into the cross ?) 

2.16. Fig. 2.9 shows a sheet of paper of peculiar shape: it is a rectangle with 
a rectangular hole. The sides of the outer rectangular boundary measure 9 
and 12, those of the inner 1 and 8 units, respectively. Both rectangular bound¬ 
aries have the same center and their corresponding sides are parallel. Cut 
this sheet along just two lines in two pieces that, fitted together, form a com¬ 
plete square. 

(a) Could you solve a part of the problem? How long is the side of the 
desired square? 

(b) Take the problem as solved. Imagine that the sheet is already cut into 
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Fig. 2.9. By two cuts a square. 

two pieces, the “left piece” and the “right piece.” You keep the left piece 
where it is, and move the right piece into the desired position (where, with the 
other, it forms a complete square). Knowing the answer to (a), what kind of 

motion do you expect ? 
(c) Guess a part of the solution. The given sheet is symmetric with respect 

to its center and also with respect to two axes perpendicular to each other. 
Which kind of symmetry do you expect it to retain when cut along the two 

required lines? 

Second Part 

Some of the following examples are grouped according to subject matter 
which is hinted by an indication in front of the first example of the group 
(Miscellaneous, Plane Geometry, Solid Geometry, etc.) Some examples are 
followed by the name of Newton or Euler in parentheses; these are taken from 
the following sources, respectively: 

Universal Arithmetick: or, a Treatise of Arithmetical Composition and Resolu¬ 
tion. Written in Latin by Sir Isaac Newton. Translated by the late Mr. 
Ralphson. London, 1769. (Examples marked “After Newton” are derived 
from the same source, but some change is introduced into the formulation or 

into the numerical data.) 
Elements of Algebra. By Leonard Euler. Translated from the French. 

London, 1797. (In fact, Euler’s Algebra was originally written in German.) 
Isaac Newton (1643-1727) is regarded by many as the greatest man of 

science who ever lived. His work encompasses the principles of mechanics, 
the theory of universal gravitation, the differential and integral calculus, 
theoretical and experimental optics, and several minor items each of which 
would be sufficient to secure him a place in the history of science. Leonard 
Euler (1707-1783) is also one of the very great; he left his traces on almost 
every branch of mathematics and on several branches of physics; he contri¬ 
buted more than anybody else to the development of the calculus discovered 
by Newton and Leibnitz. Observe that such great men did not find it beneath 
their dignity to explain and illustrate at length the application of equations to 
the solution of “word problems.” 
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2.17. Miscellaneous. A mule and an ass were carrying burdens amounting 
to some hundred weight. The ass complained of his, and said to the mule: 
“I need only one hundred weight of your load, to make mine twice as heavy as 
yours.” The mule answered: “Yes, but if you gave me a hundred weight of 
yours, I should be loaded three times as much as you would be.” 

How many hundred weight did each carry? (Euler) 

2.18. When Mr. and Mrs. Smith took the airplane, they had together 94 
pounds of baggage. He paid $1.50 and she paid $2 for excess weight. If 
Mr. Smith made the trip by himself with the combined baggage of both of them, 
he would have to pay $ 13.50. How many pounds of baggage can one person 
take along without charge ? 

2.19. A father who has three sons leaves them 1600 crowns. The will pre¬ 
cises, that the eldest shall have 200 crowns more than the second, and the second 
shall have 100 crowns more than the youngest. Required the share of each. 

(Euler) 

2.20. A father leaves four sons, who share his property in the following 
manner: 

The first takes the half of the fortune, minus 3000 livres. 
The second takes the third, minus 1000 livres. 
The third takes exactly the fourth of the property. 
The fourth takes 600 livres and the fifth part of the property. 
What was the whole fortune, and how much did each son receive ? (Euler) 

2.21. A father leaves at his death several children, who share his property 
in the following manner: 

The first receives a hundred crowns and the tenth part of what remains. 
The second receives two hundred crowns and the tenth part of what remains. 
The third takes three hundred crowns and the tenth part of what remains. 
The fourth takes four hundred crowns and the tenth part of what remains, 

and so on. 
Now it is found at the end that the property has been’divided equally among 

all the children. Required, how much it was, how many children there were, 
and how much each received. (Euler) 

2.22. Three persons play together; in the first game, the first loses to each of 
the other two as much money as each of them has. In the next, the second 
person loses to each of the other two as much money as they have already. 
Lastly, in the third game, the first and second person gain each from the third 
as much money as they had before. They then leave off and find that they have 
all an equal sum, namely, 24 louis each. Required, with how much money 
each sat down to play. (Euler) 

2.23. Three Workmen can do a Piece of Work in certain Times, viz. A once 
in 3 Weeks, B thrice in 8 Weeks, and C five Times in 12 Weeks. It is desired 
to know in what Time they can finish it jointly. (Newton) 

2.24. The Forces of several Agents being given, to determine the Time where¬ 
in they will jointly perform a given Effect. (Newton) 
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2.25. One bought 40 Bushels of Wheat, 24 Bushels of Barley, and 20 Bushels 
of Oats together for 15 Pounds 12 Shillings. 

Again, he bought of the same Grain 26 Bushels of Wheat, 30 Bushels of 
Barley, and 50 Bushels of Oats together for 16 Pounds. 

And thirdly, he bought the like Kind of Grain, 24 Bushels of Wheat, 120 
Bushels of Barley, and 100 Bushels of Oats together for 34 Pounds. 

It is demanded at what Rate a Bushel of each of the Grains ought to be 
valued. (Newton) 

2.26. (Continued) Generalize. 

2.27. If 12 Oxen eat up 3$ Acres of Pasture in 4 Weeks, and 21 Oxen eat up 
10 Acres of like Pasture in 9 Weeks; to find how many Oxen will eat up 24 
Acres in 18 Weeks. (Newton) 

2.28. An Egyptian problem. We take a problem from the Rhind Papyrus 
which is the principal source of our knowledge of ancient Egyptian mathe¬ 
matics. In the original text, the problem is about hundred loaves of bread 
which should be divided between five people, but a major part of the condition 
is not expressed (or not clearly expressed); the solution is attained by “groping”: 
by a guess, and a correction of the first guess.6 

Here follows the Egyptian problem reduced to abstract form and modern 
terminology; the reader should go one step further and reduce it to equations: 
An arithmetic progression has five terms. The sum of all five terms equals 
100, the sum of the three largest terms is seven times the sum of the two small¬ 
est terms. Find the progression. 

2.29. A geometric progression has three terms. The sum of these terms is 
19 and the sum of their squares is 133. Find the terms. (After Newton.) 

2.30. A geometric progression has four terms. The sum of the two extreme 
terms is 13, the sum of the two middle terms is 4. Find the terms. (After 
Newton.) 

2.31. Some merchants have a common stock of 8240 crowns; each contri¬ 
butes to it forty times as many crowns as there are partners; they gain with the 
whole sum as much per cent as there are partners; dividing the profit, it is 
found that, after each has received ten times as many crowns as there are 

partners, there remain 224 crowns. Required the number of partners. 
(Euler) 

2.32. Plane geometry. Inside a square with side a there are five nonover¬ 
lapping circles with the same radius r. One circle is concentric with the square 

and touches the four other circles each of which touches two sides of the square 
(is pushed into a corner). Express r in terms of a. 

2.33. Newton on setting up equations in geometric problems. If the Question 
be of an Isosceles Triangle inscribed in a Circle, whose Sides and Base are to 
be compared with the Diameter of the Circle, this may either be proposed of 

6 Cf. J. R. Newman, The World of Mathematics, vol. 1, pp. 173-174. 
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the Investigation of the Diameter from the given Sides and Base, or of the 
Investigation of the Basis from the given Sides and Diameter; or lastly, of the 
Investigation of the Sides from the given Base and Diameter; but however it 
be proposed, it will be reduced to an Equation by the same.. .Analysis. 
(Newton) 

Let d, s, and b stand for the length of the diameter, that of the side, and that 
of the base, respectively (so that the three sides of the triangle are of length s, 
s, and b, respectively), and find an equation connecting d, s, and b which 
solves all three problems: the one in which d, the other in which b, and the 
third in which s is the unknown. (There are always two data.) 

2.34. (Continued) Examine critically the equation obtained as answer to 
ex. 2.33. (a) Are all three problems equally easy ? (b) The equation obtained 

yields positive values in the three cases mentioned (for d, b, and s, respectively) 
only under certain conditions: do these conditions correctly correspond to the 
geometric situation? 

2.35. The four points G, H, V, and U are (in this order) the four comers of a 
quadrilateral. A surveyor wants to find the length UV=x. He knows the 
length GH=l and measures the four angles 

LGUH = a, /_HUV = /3, /_ UVG = y, LGVH = 8. 

Express x in terms of a, {}, y, 8, and /. 

(Remember ex. 2.33 and follow Newton’s advice: choose those “Data and 
Quaesita by which you think it is most easy for you to make out your Equa¬ 
tion.”) 

2.36. The Area and the Perimeter of a right-angled Triangle being given, to 
find the Hypothenuse. (Newton) 

2.37. Having given the Altitude, Base and Sum of the Sides, to find the 
Triangle. (Newton) 

2.38. Having given the Sides of any Parallelogram and one of the Diagonals, 
to find the other Diagonal. (Newton) 

2.39. The triangle with the sides a, a, and b is isosceles. Cut off from it two 
triangles, symmetric to each other with respect to the altitude perpendicular 
to the base b, so that the remaining symmetric pentagon is equilateral. Express 
the side x of the pentagon in terms of a and b. 

(This problem was discussed by Leonardo of Pisa, called Fibonacci, with 
the numerical values a = 10 and b = 12.) 

2.40. A hexagon is equilateral, its sides are all of the same length a. Three 
of its angles are right angles; they alternate with three obtuse angles. (If the 
hexagon is ABCDEF, the angles at the vertices A, C, and E are right angles, 
those at the vertices B, D, and F obtuse.) Find the area of the hexagon. 

2.41. An equilateral triangle is inscribed in a larger equilateral triangle so 
that corresponding sides of the two triangles are perpendicular to each other. 
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Thus the whole area of the larger triangle is divided into four pieces each of 
which is a fraction of the whole area. Which fraction? 

2.42. Divide a given triangle by three straight cuts into seven pieces four of 

which are triangles (and the remaining three pentagons). One of the triangular 
pieces is included by the three cuts, each of the three other triangular pieces is 
included by a certain side of the given triangle and two cuts. Choose the 
three cuts so that the four triangular pieces turn out to be congruent. Which 
fraction of the area of the given triangle is the area of a triangular piece in this 
dissection ? 

(It may be advantageous to examine first a particular shape of the given 
triangle for which the solution is particularly easy.) 

2.43. The point P is so located in the interior of a rectangle that the distance 
of P from a corner of the rectangle is 5 yards, from the opposite corner 14 yards, 

and from a third corner 10 yards. What is the distance of P from the fourth 
corner ? 

2.44. Given the distances a, b, and c of a point in the plane of a square from 
three vertices of the square; a and c are distances from opposite vertices. 

(I) Find the side s of the square. 
(II) Test your result in the following four particular cases: 

(1) a = b = c 

(2) b2 = 2a2 = 2c2 
(3) a = 0 
(4) b = 0. 

2.45. Pennies (equal circles) are arranged in a regular pattern all Over a 
very, very large table (the infinite plane). We examine two patterns. 

In the first pattern, each penny touches four other pennies and the straight 
lines joining the centers of the pennies in contact dissect the plane into equal 
squares. 

In the second pattern, each penny touches six other pennies and the straight 

lines joining the centers of the pennies in contact dissect the plane into equal 
equilateral triangles. 

Compute the percentage of the plane covered by pennies (circles) for each 

pattern. 

(For the first pattern see Fig. 3.9, for the second Fig. 3.8.) 

2.46. Solid geometry. Inside a cube (a cubical box) with edge a there are 
nine nonoverlapping spheres (nine balls packed into the box) with the same 
radius r. One sphere is concentric with the cube and touches the eight other 

spheres (the balls are tightly packed), each of which touches three faces of the 
cube (is pushed into a corner). Express r in terms of a. 

(Or a in terms of r: make a box when you have the balls. There is an 
analogous problem in plane geometry, see ex. 2.32: can you use its result 
or method?) 
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2.47. Devise a problem of solid geometry analogous to ex. 2.43. 

2.48. A pyramid is called “regular” if its base is a regular polygon and the 
foot of its altitude is the center of its base. 

All five faces of a regular pyramid with square base are of the same area. 
Given the height h of the pyramid, find the area of its surface. 

2.49. (Continued) There is some analogy between a regular pyramid and an 
isosceles triangle; at any rate, if the number of the lateral faces of the pyramid 
is given, both figures, the solid and the plane, depend on two data. 

Devise further problems about regular pyramids. 

2.50. Devise a proposition of solid geometry analogous to the result of 
ex. 2.38. (Ex. 2.12 may serve as a stepping stone to a generalization.) 

2.51. Find the area of the surface of the tetrahedron considered in ex. 2.13, 

being given a, b, and c. (Do you see some analogy?) 

2.52. Of twelve congruent equilateral triangles eight are the faces of a 
regular octahedron and four the faces of a regular tetrahedron. Find the 
ratio of the volume of the octahedron to the volume of the tetrahedron. 

2.53. A triangle rotating first about its side a, then about its side b, and 
finally about its side c, generates three solids of revolution. Find the ratio of 
the volumes and that of the surface-areas of these three solids. 

2.54. An inequality. A rectangle and an isosceles trapezoid are in the rela¬ 
tive situation shown in Fig. 2.10: they have a common (vertical) line of sym¬ 
metry, the same height h and the same area; if 2a and 2b are the lengths of the 
lower and upper base of the trapezoid, respectively, the base of the rectangle 
is of length a + b. Rotated about the common line of symmetry, the rect¬ 
angle describes a cylinder and the trapezoid the frustum of a cone. Which 
one of these two solids has the greater volume? (Your answer may be sug¬ 

gested by geometry, but should be proved by algebra.) 

2.55. Spherometer. There are four points A, B, C, and D on the surface of 

CD Fig. 2.10. Rotate it! 
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a sphere. The points A, B, and C form an equilateral triangle with side a. 

A perpendicular drawn from D to the plane of A ABC has the length h, and 

its foot is the center of A ABC. 

Given a and h, compute the radius R of the sphere. 
(This geometric situation underlies the construction of the spherometer 

which is an instrument to determine the curvature of a lens. On the sphero¬ 

meter, A, B, and C are the endpoints of three fixed parallel “legs,” whereas the 
endpoint of a fourth, movable “leg” is screwed into the position D and the 
distance h is measured by the revolutions of the screw.) 

2.56. Graphic time table. In problems about several objects (material 
points) moving along the same path it is often advantageous to introduce a 
rectangular coordinate system in which the abscissa represents t, the time, and 
the ordinate represents s, the distance, measured along the path from a fixed 
point. To show the use of this device, we reconsider the problem that we 
have treated in detail in sect. 2.4(3). 

We measure the time t and the distance s from the starting time and the 

starting point of the airplane, respectively. Thus, when the airplane has 
traveled t hours on its outgoing flight, its distance from its starting point is 

s = (v — w)t 

This equation, with fixed v and w and variable s and t, is represented in our 
coordinate system by a straight line with slope v - w (the velocity) that passes 

through the origin [the point (0, 0) which represents the start of the airplane]. 
On the returning flight, the distance s and the time t are connected by the 
equation 

s = — (v + w)(t — T) 

of a straight line with slope — (v + w) passing through the point (T, 0) (which 
represents the coming back of the airplane to its starting point at the pre¬ 
scribed time T). 

The intersection of the two lines represents the point (in space and time) 
that belongs both to the outgoing, and to the returning flight, where the air¬ 
plane reverses its direction. At this point, both expressions are valid for s 
simultaneously, and so 

(v — w)t = — (v + w)(t — T) 

This yields 

= (v + w)T 

2v 

and therefore (from either expression for s ) 

(v2 - w*)T 

s =-Tv— 

as expression for the distance of the farthest point reached by the airplane. 
This is the result we found in sect. 2.4(3) (with x instead of s). 

In Fig. 2.11 (disregard the dotted segments) the flight of the airplane is 
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represented by a line consisting of two straight pieces; these pieces form an 
angle at the point whose ordinate represents the greatest distance reached by 
the airplane. The whole line tells the whole story of the flight; it shows where 
the airplane was at any given time and when it arrived at any given point; this 
line is appropriately called the graphic time table of the flight (of the motion 
considered). 

2.57. Two Post-Boys A and B, at 59 Miles Distance from one another, set 
out in the Morning in order to meet. And A rides 7 Miles in two Hours, and 
B 8 Miles in three Hours, and B begins his Journey one Hour later than A; to 
find what Number of Miles A will ride before he meets B. (Newton) 

2.58. (Continued) Generalize. 

2.59. A1 and Bill live at opposite ends of the same street. A1 had to deliver 

a parcel at Bill’s home, Bill one at Al’s home. They started at the same mo¬ 
ment; each walked at constant speed and returned home immediately after 
leaving the parcel at its destination. They met the first time face to face, com¬ 
ing from opposite directions, at the distance of a yards from Al’s home and 
the second time at the distance of b yards from Bill’s home. 

(1) How long is the street? 
(2) If a = 300 and b = 400 who walks faster? 

2.60. Bob, Peter, and Paul travel together. Peter and Paul are good 
hikers; each walks p miles per hour. Bob has a bad foot and drives a small 
car in which two people can ride, but not three; the car covers c miles per hour. 
The three friends adopted the following scheme: they start together, Paul rides 
in the car with Bob, Peter walks. After a while, Bob drops Paul who walks 
on; Bob returns to pick up Peter, and then Bob and Peter ride in the car till 
they overtake Paul. At this point, they change: Paul rides and Peter walks 
just as they started and the whole procedure is repeated as often as necessary. 

(1) How much progress (how many miles) does the company make per hour ? 
(2) Through which fraction of the travel time does the car carry just one 

man? 

2.61. (Continued) Generalize: Bob, with his bad foot and small car, makes 
a similar arrangement with n friends, A, B, C,..., and L (instead of two) all 
walking at the pace p miles per hour. 
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(Draw a graphic time table for n = 3. Check the extreme cases p = 0, 
p = c, n = 1, n = oo.) 

2.62. A Stone falling down into a Well, from the Sound of the Stone striking 
the Bottom, to determine the Depth of the Well. (Newton) 

You have to measure the time T between two moments: the first when you 
let the stone go, and the second when you hear it striking the bottom. You 
have to know too: 

c the velocity of sound and 
g the gravitational acceleration. 
Being given T, c, and g, find d, the depth of the well. 

2.63. To determine the Position of a Comet’s Course that moves uniformly 
in a right Line from three Observations. (Newton) 

Let O be the eye of the observer, A, B, and C the place of the comet in the 
first, the second, and the third observation, respectively. From observations, 
we know the angles 

i'_AOB = oj, /_AOC = oj' 

and the times, t and t', between the first and the second, and between the first 
and the third, observations, respectively. From the assumption of uniform 
motion 

AB _ t_ 
AC t' 

Being given oj, oj', t, and l\ find /3 = f_ABO. 
(Express some trigonometric function of /3, for instance, cot /3, in terms of 

oj, oj', t, and /'.) 

2.64. As many equations as unknowns. Find x, y, and z from the system of 

three equations 
3x — y — 2z = a 

-2x + 3y - z = b 
— x — 2y + 3z = c 

a, b, and c are given. 

(Is it possible to satisfy the condition ? Is the condition sufficient to determine 
the unknowns ?) 

2.65. More equations than unknowns. Find three numbers p, q, and r so 
that the equation 

x4 + 4jc3 - 2jc2 - \2x + 9 = (pic2 + qx + r)2 

holds identically for variable x. 
(This problem requires the “exact” extraction of a square root of a given 

polynomial of degree 4, which may be possible in the present case, yet usually 

it is not. Why not?) 

2.66. Show that it is impossible to find (real or complex) numbers a, b, c, 
A, B, and C such that the equation 

x2 + y2 + z2 = (ax + by + cz)(Ax + By + Cz) 

holds identically for independently variable x, y, and z. 
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2.67. Fewer equations than unknowns. A certain person buys hogs, goats, 
and sheep, to the number of 100, for 100 crowns; the hogs cost him 3| crowns 
a piece, the goats 1$ crown, and the sheep | a crown; how many had he of 
each? (Euler) 

Euler solves this problem by a procedure which he calls Regula Caeci 
(“Blind Man’s Rule”) as follows. Let x, y, and z stand for the number of 
hogs, goats, and sheep bought, respectively; x, y, and z should be, of course, 
positive integers. Expressing first the total number, then the total price, of the 
animals bought, we obtain 

x + y + z = 100 
2\x + 8y + 3z = 600 

the second equation has been slightly (and advantageously) transformed. If 
we eliminate z and solve the resulting equation for y, we obtain 

whence we conclude that 

must be a positive integer. 
Finish the solution. 

2.68. A coiner (we hope that the coins he makes are not counterfeit) has 
three kinds of silver, the first of 7 ounces, the second of 5| ounces, the third of 
4i ounces fine per marc (a marc is 8 ounces), and he wishes to form a mixture 
of the weight of 30 marcs at 6 ounces (fine per marc): how many marcs of each 
sort must he take? (Euler; additions in parenthesis.) 

It is understood that a solution in integers is required. A problem is called a 
Diophantine problem, when its condition admits only integral values for the 
unknowns. 

2.69. There is a number (an integer) which yields a square if you add it to 
100 and another square if you add it to 168. Which number is it ? 

2.70. Bob’s stamp collection consists of three books. Two tenths of his 
stamps are in the first book, several sevenths in the second book, and there 

are 303 stamps in the third book. How many stamps has Bob? (Is the con¬ 
dition sufficient to determine the unknown?) 

2.71. A certain make of ball point pen was priced 50 cents in the store 
opposite the high school but found few buyers. When, however, the store had 
reduced the price, the whole remaining stock was sold for $31.93. What was 
the reduced price ? (Is the condition sufficient to determine the unknown ?) 

2.72. Descartes' Rules. The work of the great philosopher and mathe¬ 

matician Rene Descartes, quoted in sect. 2.1, is of particular importance for 

our study. 
The “Rules” were found unfinished in Descartes’ manuscripts and published 
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posthumously. Descartes planned 36 sections, but the work consists actually 
of 18 sections in more or less finished form and of the summaries of three 
more; the rest was very probably never written. The first twelve sections 

treat of mental operations useful in solving problems, the next twelve discuss 
“perfectly understood” problems, and the last twelve sections were intended 

to deal with “imperfectly understood” problems.7 
Each section begins with a “Rule,” a terse advice to the reader, and the 

section motivates, explains, exemplifies, or states in greater detail, the idea 
summarized by the Rule. We shall quote any passage of the section following 
a certain Rule by giving the number of that Rule.8 

The words of Descartes will be a valuable guide for us, but the reader would 
offend the memory of the originator of “Cartesian doubt” if he believed any¬ 
thing that Descartes said merely because Descartes said it. In fact, the reader 
should not believe what the present author says, or any other author says, or 
trust too much his own hasty impressions. After having given a fair hearing 
to the author, the reader should accept only such statements which he can see 
pretty clearly by himself or of which his well-digested experience can con¬ 
vince him. Doing so, he will act according to the spirit of Descartes’ “Rules.” 

2.73. Strip the problem. We quote Descartes: Strip the question of super¬ 
fluous notions and reduce it to its simplest form.9 This advice is applicable to 
problems of all kinds and on all levels. Yet let us be specific. Take a usual 
type of classroom problem, a “rate problem” about motion [such as that dis¬ 
cussed in sect. 2.4(3)]. The moving object may be described by the problem 
as a person, a car, a train, or an airplane. In fact, it makes little difference: in 
solving the problem on this primitive level, we actually treat the object as a 
material point moving uniformly along a straight path. Such simplification 
may be quite reasonable in some cases, ridiculous in other cases. It is certain, 
however, that we cannot avoid some degree of simplification or abstraction 
when we are reducing a problem about real objects to a mathematical problem. 
For, obviously, a mathematical problem deals with abstractions; it is concerned 

with real objects only indirectly by virtue of a previous passage from the con¬ 
crete to the abstract. 

Engineers and physicists, in handling their problems, have to devote serious 
thought to the question, how far should the abstraction and simplification 
go, which details can be neglected, which small effects disregarded. They 
have to avoid two opposite dangers: they should not render the mathematical 
task too formidable, yet they should not oversimplify the physical situation. 

7 Rule XII, pp. 429-430. “Perfectly understood problems” can be, “imperfectly 
understood problems” cannot be, immediately reduced to purely mathematical prob¬ 
lems—this seems to be the most relevant difference. 

6 As it was done in footnote 7. We quote the standard edition of the CEuvres de 
Descartes by Charles Adam and Paul Tannery, vol. X, which contains the Latin 
original of the “Rules,” “Regulae ad directionem ingenii” on pp. 359-469. Other 
quotations from Descartes refer to the same edition, but give also the volume. 

9 Rule XIII, p. 430. 
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We get a foretaste of their dilemma in dealing with the most primitive word 
problems. In fact, getting accustomed to a degree of simplification is one of 
the difficulties that the beginner has to master, and if this difficulty is never 
brought out into the open, it may become much worse. 

There is a related difficulty. The problems proposed in textbooks tacitly 
assume certain simplifications; real rates may be variable, but all the rates con¬ 
sidered in elementary textbooks are constant. The beginner has to become 
familiar with such tacit assumptions, he has to learn the proper interpretation 
of certain conventionally abbreviated formulations; also this point should be 

openly discussed, at least now and then. 
(There is another related point which is so important that we must mention 

it, but so far away from our main line of inquiry that we must mention it 
briefly: We should relate to the extent of simplification and neglect that enters 
into the formulation of the problem the precision to which we carry the 
numerical computation of the unknown. We may sin by transgression or 
omission if we compute more or less decimals than the data warrant. There 
are few occasions to illustrate this important point on the elementary level, 

but those few occasions should not be missed.) 
For an instructive and not too obvious illustration of some of the points 

here discussed see the author’s paper no. 18 quoted in the Bibliography. 

2.74. Relevant knowledge. Mobilization and organization. Obviously, we 
cannot translate a physical problem into equations unless we know (or rather 
assume as known) the pertinent physical facts. For instance, we could not 
have solved the problem treated in sect. 2.6 without the knowledge of the law 

of Archimedes. 
In translating a geometrical problem into equations, we use pertinent geo¬ 

metrical facts. For instance, we may apply the theorem of Pythagoras, or the 
proportionality of sides in similar triangles, or expressions for areas or volumes, 

and so on. 
If we do not possess the relevant knowledge, we cannot translate the problem 

into equations. Yet even if we have once acquired such knowledge, it may 
not be present to our mind in the moment we need it; or if, by some chance, it 
is present we may fail to recognize its utility for the purpose at hand. We can 
see here clearly a point which should be obvious: It is not enough to possess 
the needed relevant knowledge in some dormant state; we have to recall it 
when needed, revive it, mobilize it, and make it available for our purpose, 
adapt it to our problem, organize it. 

As our work progresses, our conception of the problem continually changes: 
more and more auxiliary lines appear in the figure, more and more auxiliary 
unknowns appear in our equations, more and more materials are mobilized 
and introduced into the structure of the problem till eventually the figure is 
saturated, we have just as many equations as unknowns, and originally present 

and successively mobilized materials are merged into an organic whole. 
(Sect. 2.5(3) yields a good illustration.) 

2.75. Independence and consistence. Descartes advises us to set up as many 
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equations as there are unknowns.10 Let n stand for the number of unknowns, 
and Xi, x2, ..., xn for the unknowns themselves; then we can write the desired 
system of equations in the form 

P1U1, x2,...,xn) = 0 
r2(x1,x2,...,xn) = o 

r»(*i, *2,. = 0 

where ri(jti, x2,..., xn) indicates a polynomial in Xi, x2,..., xn, and the left- 
hand sides of the following equations must be similarly interpreted. Descartes 
advises us further to reduce this system of equations to one final equation.11 
This is possible “in general” (usually, in the regular case,...) and “in general” 
the system has a solution (a system of numerical values, real or complex, for 
xu x2,..., xn satisfying simultaneously the n equations) and only a finite 
number of solutions (this number depends on the degree of the final equation). 

Yet there are exceptional (irregular) cases; we cannot discuss them here in 
full generality, but let us look at a simple example. 

We consider a system of three linear equations with three unknowns: 

axx + biy + CiZ + di = 0 
ci 2x + b2y + c2z + d2 = 0 
a3x + b3y + c3z + d3 = 0 

x, y, z are the unknowns, the twelve symbols au bu.. ., d3 represent given 
real numbers. We assume that ai, bu and ci are not all equal to 0, and 
similarly for a2, b2, c2 and a3, b3, c3. Under these assumptions, each of the 

three equations is represented by a plane if we consider x, y, and z as rectangu¬ 
lar coordinates in space; and so the system of three equations is represented 
by a configuration of three planes. 

Concerning the system of our three linear equations, we distinguish various 

cases. 

(1) There exists no solution, that is, no system of three real numbers x, y, z 
satisfying all three equations simultaneously. In this case we say that the 
equations are incompatible, and their system is inconsistent or self-contradictory. 

(2) There are infinitely many solutions; then we say that the system is 

indeterminate. This will be the case if all triplets of numbers x, y, and z that 
satisfy two of our equations, satisfy also the third, in which case we say that 
this third equation is not independent of the other two. 

(3) There is just one solution: the equations are independent, the system is 

consistent and determinate. 

Visualize the corresponding cases for the configuration of the three planes 
and describe them. 

2.76. Unique solution. Anticipation. If a chess problem or a riddle has 
more than one solution, we regard it as imperfect. In general, we seem to 

10 Rule XIX, p. 468. 
11 Rule XXI, p. 469. 



THE CARTESIAN PATTERN 59 

have a natural preference for problems with a unique solution, they may 
appear to us as the only “reasonable” or the only “perfect” problems. Also 
Descartes seems to have shared this preference; he says: “A perfect question, 
as we wish to define it, is completely determinate and what it asks can be derived 
from the data.”12 

Is the solution of our problem unique ? Is the condition sufficient to deter¬ 
mine the unknown ? We often ask these questions fairly soon (and it is advis¬ 
able to ask them so) when we are working on a problem. In asking them so 
early, we do not really need, or expect, a final answer (which will be given by 
the complete solution), only a preliminary answer, an anticipation, a guess 
(which may deepen our understanding of the problem). This preliminary 
answer often turns out to be right, but now and then we may fall into a trap 
as the examples of sect. 2.8 show.13 

By the way, the unknown may be obtained as a root of an equation of 
degree n with n different roots where n > 1, and the solution may still be 
unique, if the condition requires a real, or a positive, or an integral value for 
the unknown and the equation in question has just one root of the required 
kind. 

2.77. Why word problems ? I hope that I shall shock a few people in assert¬ 
ing that the most important single task of mathematical instruction in the 
secondary schools is to teach the setting up of equations to solve word prob¬ 
lems. Yet there is a strong argument in favor of this opinion. 

In solving a word problem by setting up equations, the student translates a 
real situation into mathematical terms: he has an opportunity to experience 
that mathematical concepts may be related to realities, but such relations must 
be carefully worked out. Here is the first opportunity afforded by the curricu¬ 
lum for this basic experience. This first opportunity may be also the last for 
a student who will not use mathematics in his profession. Yet engineers and 
scientists who will use mathematics professionally, will use it mainly to trans¬ 
late real situations into mathematical concepts. In fact, an engineer makes 
more money than a mathematician and so he can hire a mathematician to solve 
his mathematical problems for him; therefore, the future engineer need not 
study mathematics to solve problems. Yet, there is one task for which the 
engineer cannot fully rely on the mathematician: the engineer must know 

enough mathematics to set up his problems in mathematical form. And so 
the future engineer, when he learns in the secondary school to set up equations 
to solve “word problems,” has a first taste of, and has an opportunity to 
acquire the attitude essential to, his principal professional use of mathematics. 

2.78. More problems. Devise some problems similar to, but different from, 
the problems proposed in this chapter—especially such problems as you can 

solve. 

13 Rule XIII, p. 431. 
13 For more examples of this kind see MPR, vol. 1, pp. 190-192, and pp. 200-202, 

problems 1-12. 



CHAPTER 3 

RECURSION 

3.1. The story of a little discovery 

There is a traditional story about the little Gauss who later became the 

great mathematician Carl Friedrich Gauss. I particularly like the follow¬ 

ing version which I heard as a boy myself, and I do not care whether it is 

authentic or not. 

“This happened when little Gauss still attended primary school. One 

day the teacher gave a stiff task: To add up the numbers 1,2, 3, and so on, 

up to 20. The teacher expected to have some time for himself while the 

boys were busy doing that long sum. Therefore, he was disagreeably 

surprised as the little Gauss stepped forward when the others had scarcely 

started working, put his slate on the teacher’s desk, and said, ‘Here it is.’ 

The teacher did not even look at little Gauss’s slate, for he felt quite sure 

that the answer must be wrong, but decided to punish the boy severely for 

this piece of impudence. He waited till all the other boys had piled their 

slates on that of little Gauss, and then he pulled it out and looked at it. 

What was his surprise as he found on the slate just one number and it 

was the right one! What was the number and how did little Gauss find 

it?” 

Of course, we do not know exactly how little Gauss did it and we shall 

never be able to know. Yet we are free to imagine something that looks 

reasonable. Little Gauss was, after all, just a child, although an exception¬ 

ally intelligent and precocious child. It came to him probably more 

naturally than to other children of his age to grasp the purpose of a ques¬ 

tion, to pay attention to the essential point. He just represented to him¬ 

self more clearly and distinctly than the other youngsters what is required: 

to find the sum 

60 
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1 
2 
3 

and so on 

20 

He must have seen the problem differently, more completely, than the 

others, perhaps with some variations as the successive diagrams A, B,C, D, 
and E of Fig. 3.1 indicate. The original statement of the problem empha¬ 

sizes the beginning of the series of numbers that should be added (A). 
Yet we could also emphasize the end (5) or, still better, emphasize the 

beginning and the end equally (C). Our attention may attach itself to 

the two extreme numbers, the very first and the very last, and we may 

observe some particular relation between them (D). Then the idea 

appears (E). Yes, numbers equally removed from the extremes add up all 

along to the same sum 

1 + 20 = 2 + 19 = 3 + 18 = • • • = 10 + 11 = 21 

and, therefore, the grand total of the whole series is 

10 x 21 = 210 

Did little Gauss really do it this way? I am far from asserting that. 

I say only that it would be natural to solve the problem in some such way. 

How did we solve it? Eventually we understood the situation (E), we 

“saw the truth clearly and distinctly,” as Descartes would say, we saw a 

convenient, effortless, well-adapted manner of doing the required sum. 

How did we reach this final stage? At the outset, we hesitated between 

two opposite ways of conceiving the problem (A and B) which we finally 

A 

1 

2 

3 

B C D E 

1 1 1 1- 

2 2 2- 
• 

3 — 3 3 

• 10-| 
* . n-J 

18 18 18 
18 — 

19 19 19 19 — - 

20 20 20 20- 
Fig. 3.1. Five phases of a 
discovery. 20 
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succeeded in merging into a better balanced conception (C). The original 

antagonism resolved into a happy harmony and the transition (D) to the 

final idea was quite close. Was little Gauss’s final idea the same? Did 

he arrive at it passing through the same stages? Or did he skip some of 

them ? Or did he skip all of them ? Did he jump right away at the final 

conclusion? We cannot answer such questions. Usually a bright idea 

emerges after a longer or shorter period of hesitation and suspense. This 

happened in our case, and some such thing may have happened in the 

mind of little Gauss. 

Let us generalize. Starting from the problem just solved and substitut¬ 

ing the general positive integer n for the particular value 20, we arrive at 

the problem: Find the sum S of the first n positive integers. 

Thus we seek the sum 

S = 1 + 2 + 3 +-Hi 

The idea developed in the foregoing (which might have been that of little 

Gauss) was to pair off the terms: a term that is at a certain distance from the 

beginning is paired with another term at the same distance from the end. 

If we are somewhat familiar with algebraic manipulations, we are easily 

led to the following modification of this scheme. 

We write the sum twice, the second time reversing the original order: 

S=l+ 2 + 3 +•••+(/! — 2) + (n — 1) + w 

S = n + (n — l) + (w — 2) +-1- 3 + 2 +1 

The terms paired with each other by the foregoing solution appear here 

conveniently aligned, one written under the other. Adding the two equa¬ 

tions we obtain 

2 S = (n + 1) + (n + 1) + (n + 1) -I-1- (n + 1) + (n + 1) + (n + 1) 

2 S = n(n + 1) 

c _ n(n + 1) 
i-2 

This is the general formula. For n = 20 it yields little Gauss’s result, 

which is as it should be. 

3.2. Out of the blue 

Here is a problem similar to that solved in the foregoing section: Find 

the sum of the first n squares. 

Let S stand for the required sum (we are no longer bound by the nota¬ 

tion of the foregoing section) so that now 

5 = 1 + 4 + 9+ 16 + • • • + n2 
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The evaluation of this sum is not too obvious. Human nature prompts 

us to repeat a procedure that has succeeded before in a similar situation; 

and so, remembering the foregoing section, we may attempt to write the 

sum twice, reversing the order the second time: 

5=1+ 4 + 9 + • • • + (n - 2)2 + (n - l)2 + n2 

S = n2 + (n - l)2 + (n - 2)2 + • • • + 9 + 4 +1 

Yet the addition of these two equations, which was so successful in the 

foregoing case, leads us nowhere in the present case: our attempt fails, we 

undertook it with more optimism than understanding, our servile imitation 

of the chosen pattern was, let us confess, silly. (It was an overdose of 

mental inertia: our mind persevered in the same course, although this course 

should have been changed by the influence of circumstances.) Yet even 

such a misconceived trial need not be quite useless; it may lead us to a 

more adequate appraisal of the proposed problem : yes, it seems to be 

more difficult than the problem in the foregoing section. 

Well, here is a solution. We start from a particular case of a well-known 

formula: 

(n + 1)3 = „3 + 3„2 + 3„ + J 

from which follows 

(n + l)3 — n3 = 3n2 + 3n + 1 

This is valid for any value of n; write it down successively for n = 

1, 2, 3,..., n: 

23 — l3 = 3-la + 3-1 + 1 

33 - 23 = 3-22 + 3-2 + 1 

43 - 33 = 3-32 + 3-3 +1 

(n + l)3 — n3 = 3n2 +3 n +1 

What is the obvious thing to do with these n equations? Add them! 

Thanks to conspicuous cancellations, the left-hand side of the resulting 

equation will be very simple. On the right-hand side we have to add three 

columns. The first column brings in 5, the desired sum of the squares— 

that’s good! The last column consists of n units—that is easy. The 

column in the middle brings in the sum of the first n numbers—but we 

know this sum from the foregoing section. We obtain 

(„ + 1)3 _ i = 35 + 3 "("+ + „ 

and in this equation everything is known (that is, expressed in terms of n) 
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except 5, and so we can determine 5 from the equation. In fact, we find by 

straightforward algebra 

2(n3 + 3 n2 + 3 n) = 65 + 3(n2 + n) + 2n 

c _ 2n3 + 3n2 + n 

6 

or finally 

c _ n(n + l)(2n + 1) 

* " 6 

How do you like this solution ? 

I shall be highly pleased with the reader who is displeased with the fore¬ 

going solution provided that he gives the right reason for his displeasure. 

What is wrong with the solution ? 

The solution is certainly correct. Moreover, it is efficient, clear, and 

short. Remember that the problem appeared difficult—we cannot 

reasonably expect a much clearer or shorter solution. There is, as far as 

I can see, just one valid objection: the solution appears out of the blue, pops 

up from nowhere. It is like a rabbit pulled out of a hat. Compare the 

present solution with that in the foregoing section. There we could visual¬ 

ize to some extent how the solution was discovered, we could learn a little 

about the ways of discovery, we could even gather some hope that some 

day we shall succeed in finding a similar solution by ourselves. Yet the 

presentation of the present section gives no hint about the sources of dis¬ 

covery, we are just hit on the head with the initial equation from which 

everything follows, and there is no indication how we could find this equa¬ 

tion by ourselves. This is disappointing; we came here to learn problem 

solving—how could we learn it from the solution just presented 71 

3.3. We cannot leave this unapplied 

Yes, we can learn something important about problem solving from the 

foregoing solution. It is true, the presentation was not enlightening: the 

source of the invention remained hidden and so the solution appeared as a 

trick, a cunning device. Do you wish to know what is behind the trick? 

Try to apply that trick yourself and then you may find out. The device 

was so successful that we really cannot afford to leave it unapplied. 

Let us start by generalizing. We bring both problems considered in the 

foregoing (in sections 3.1 and 3.2) under the same viewpoint by considering 

the sum of the fcth powers of the first n natural numbers 

Sk = lfc + 2k + 3fc + • • • + nk 

1 Cf. MPR, vol. 2, pp. 146-148, the sections on "dens ex machina” and “heuristic 
justification.” 
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We found in the foregoing section 

c _ n(n + l)(2n + 1) 
*2 - g 

and before that 

o _ n(n + 1) 
j 

to which we may add the obvious, but perhaps not useless, extreme case 

S0 = n 

Starting from the particular cases k = 0, 1, and 2 we may raise the general 

problem: express Sk similarly. Surveying those particular cases, we may 

even conjecture that Sk can be expressed as a polynomial of degree k + 1 

in n. 

It is natural to try on the general case the trick that served us so well in 

the case k = 2. Yet let us first examine the next particular case k = 3. 

We have to imitate what we have seen in sect. 3.2 on the next higher level— 

this cannot be very difficult. 

In fact, we start by applying the binomial formula with the next higher 

exponent 4: 

(n + l)4 = n4 + 4n3 + 6n2 + An + 1 

from which follows 

(n + l)4 - n4 = 4n3 + 6n2 + 4n + 1 

This is valid for any value of n; write it down successively for n = 

1, 2, 3,..., n: 

24 - l4 = 4-13 + 6-12 + 4-1 + 1 

34 - 24 = 4-23 + 6-22 + 4-2 +1 

44 - 34 = 4-33 + 6-32 + 4-3 + 1 

(n + l)4 — n4 = 4n3 + 6n2 + 4n +1 

As before, we add these n equations. There are conspicuous cancellations 

on the left-hand side. On the right-hand side, there are four columns to 

add, and each column involves a sum of like powers of the first n integers; 

in fact, each column introduces another particular case of Sk: 

(n + l)4 - 1 = 4S3 + 6S2 + 4SX + S0 

Yet we can already express S2, Su and S„ in terms of n, see above. Using 

those expressions, we transform our equation into 

(n + l)4 - 1 = 4S3 + 6 
n(n + l)(2n + 1) A n(n + 1) 

£. + 4 + n 



66 PATTERNS 

and in this equation everything is expressed in terms of n except S3. 

What is needed now to determine S3 is merely a little straightforward 

algebra: 

4S3 = (n + l)4 - (n + 1) - 2n(n + 1) - n(rt + l)(2n + 1) 

= (n + l)[n3 + 3n2 + 3n - 2n - n(2n + 1)] 

We have arrived at the desired result, and even the route seems instructive: 

having used the trick a second time, we may foresee a general outline. 

Remember that dictum of a famous pedagogue: “A method is a device 

which you use twice.”2 

3.4. Recursion 

What was the salient feature of our work in the preceding sect. 3.3 ? In 

order to obtain S3, we went back to the previously determined S2, Slt 

and S0. This illuminates the “trick” of sect. 3.2 where we obtained S2 by 

recurring to the previously determined S1 and S„. 

In fact, we could use the same scheme to derive S1 which we obtained 

in sect. 3.1 by a quite different method. By a most familiar formula 

(n + l)2 = n2 + 2n + 1 

(n + l)2 - n2 = 2n + 1 

We list particular cases: 

22 - l2 = 2-1 + 1 

32 - 22 = 2 2 + 1 

42 - 32 = 2-3 + 1 

Cn + l)2 - n2 = 2n +1 

By adding we obtain 

(n + l)2 - 1 = 2Sx + S0 

Of course, S0 = n and so 

0 (n + l)2 - 1 - n n(n + 1) 

^ “ 2 2 

which is the final result of sect. 3.1. 

After having worked the scheme in the particular cases k = 1,2, and 3, 

3 HSI, The traditional mathematics professor, p. 208. 
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we apply it without hesitation to the general sum Sk. We now need the 

binomial formula with the exponent k + 1: 

(n + l)fc + 1 = nk + 1 + + ly + + 1+ • • • + 

(n + l)fc + 1 - nk + 1 = (k + 1 )nk + (k2 ^ + • 

We list particular cases: 

2fc + 1 - i* + i = (k + l)lfc + (* J 1 jl*"1 +•• • + l 

3fc+1 _ 2k+1 = (k + l)2fc + + 1 y-1+•• •+ l 

4*+i _ 3fc+1 = (k + l)3k + (* J 1 )3*“l +•• •+ l 

(n + l)fc + 1 - = (k + l)nfc + + 1 W"1 +•• •+ l 

By adding we obtain 

(»+ i)fc+1 — i = (* + iysk + (* + +■■■+So 

From this equation we can determine (express in terms of ri) Sk provided 

that we have previously determined Sfc_1( Sfc_2,..., and S„. For 

example, as we have obtained in the foregoing expressions for So, Si, S2, 

and S3, we could derive an expression for S4 by straightforward algebra. 

Having obtained S4, we could proceed to S5, and so on.3 

Thus, by following up the “trick” of sect. 3.2, which appeared “out of 

the blue,” we have arrived at a pattern which deserves to be formulated 

and remembered with a view to further applications. When we are facing 

a well-ordered sequence (such as S0, Sly S2, S3.Sk>...) there is a 

chance to evaluate the terms of the sequence one at a time. We need two 

things. 

First, the initial term of the sequence should be known somehow (the 

evaluation of S0 was obvious). 

Second, there should be some relation linking the general term of the 

sequence to the foregoing terms (Sk is linked to S„, S4.5fc_4 by the 

final equation of the present section, foreshadowed by the “trick” of 

sect. 3.2). 

Then we can find the terms one after the other, successively, recursively, 

3 This method is due to Pascal; see CEuvres de Blaise Pascal, edited by L. Brun- 
schvicg and P. BoutroUx, vol. 3, pp. 341-367. 
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by going back or recurring each time to the foregoing terms. This is the 

important pattern of recursion. 

3.5. Abracadabra 

The word “abracadabra” means something like “complicated nonsense.” 

We use the word contemptuously today, but there was a time when it was 

a magic word, engraved on amulets in mysterious forms (like Fig. 3.2 in 

some respect), and people believed that such an amulet would protect the 

wearer from disease and bad luck. 

In how many ways can you read the word “abracadabra” in Fig. 3.2? 

It is understood that we begin with the uppermost A (the north corner) and 

read down, passing each time to the next letter (southeast or southwest) 

till we reach the last A (the south corner). 

The question is curious. Yet your interest may be really aroused if you 

notice that there is something familiar behind it. It may remind you of 

walking or driving in a city. Think of a city that consists of perfectly 

square blocks, where one-half of the streets run from northwest to south¬ 

east and the other streets (or avenues) crossing the former run from north¬ 

east to southwest. Reading the magic word of Fig. 3.2 corresponds to a 

zigzag path in the network of such streets. When you walk along the 

zigzag path emphasized in Fig. 3.3, you walk ten blocks from the initial 

A to the final A. There are several other paths which are ten blocks 

long between these two endpoints in this network of streets, but there is 

no path that would be shorter. Find the number of the different shortest 

paths in the network between the given endpoints—this is the general, really 

A 

B B 

R R R 

A A A A 

C C C C C 

D D D U D 

A A A A 

B B B 

R R 

A 
Fig. 3.2. A magic word. 
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> 
/ 
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< 
\ 

/ 
< 

A 

/\ 

Fig. 3.3. The zigzag path is the shortest. 

interesting, problem behind the curious particular problem about the magic 

word of Fig. 3.2. 

A general formulation may have various advantages. It sometimes 

suggests an approach to the solution, and this happens in our case. If you 

cannot solve the proposed problem about Fig. 3.2 (probably you cannot), 

try first to solve some simpler related problem. At this point the general 

formulation may help: it suggests trying simpler cases that fall under it. 

In fact, if the two given corners are close enough to each other in the net¬ 

work (closer than the extreme A’s in Fig. 3.3) it is easy to count the differ¬ 

ent zigzag paths between the two: you can draw each one after the other 

and survey all of them. Listen to this suggestion and pursue it system¬ 

atically. Start from the point A and go downward. Consider first the 

points that you can reach by walking one block, then those to which you 

have to walk two blocks, then those which are three or four or more 

blocks away. Survey and count for each point the shortest zigzag paths 
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A 

/ \ 

S ^S2// 

r 3/ 3^ 1 

/\ /\ /\ / 

\ / \ / 
X ^ 

Z Fig. 3.4. Count the number of shortest zigzag paths. 

that connect it with A. In Fig. 3.4 a few numbers so obtained are marked 

(but you should have obtained these numbers and a few more by yourself— 

check them at least). Observe these numbers—do you notice something? 

If you have enough previous knowledge you may notice many things. 

Yet even if you have never before seen this array of numbers displayed 

by Fig. 3.4 you may notice an interesting relation: any number in Fig. 3.4 

that is different from 1 is the sum of two other numbers in the array, of its 

northwest and northeast neighbors. For instance, 

4=1 + 3, 6 = 3 + 3 

You may discover this law by observation as a naturalist discovers the 

laws of his science by observation. Yet, after having discovered it, you 

should ask yourself: Why is that so? What is the reason? 

The reason is simple enough. Consider three corners in your network, 

the points X, Y, and Z, the relative position of which is shown by Fig. 3.4: 

X is the northwest neighbor and Y the northeast neighbor of Z. If we 

wish to reach Z coming from A along a shortest path in the network, we 

must pass either through X or through Y. Once we have reached X, 

we can proceed hence to Z in just one way, and the same is true for pro¬ 

ceeding from Y to Z. Therefore, the total number of shortest paths from A 

to Z is a sum of two terms: it equals the number of shortest paths from A to 

X added to the number of those from A to Y. This explains fully our 

observation and proves the general law. 

Having clarified this basic point, we can extend the array of numbers in 

Fig. 3.4 by simple additions till we obtain the larger array in Fig. 3.5, the 

south corner of which yields the desired answer: we can read the magic 

word in Fig. 3.2 in exactly 252 different ways. 

3.6. The Pascal triangle 

By now the reader has probably recognized the numbers and their 
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peculiar configuration which we have examined in the foregoing section. 

The numbers in Fig. 3.4 are binomial coefficients and their triangular 

arrangement is usually called the Pascal triangle. (Pascal himself called 

it the “arithmetical triangle.”) Further fines can be added to the triangle 

of Fig. 3.4 and, in fact, it can be extended indefinitely. The array in 

Fig. 3.5 is a square piece cut out of a larger triangle. 

Some of the binomial coefficients and their triangular arrangement can 

be found in the writings of other authors before Pascal’s Traite du triangle 

arithmitique. Still, the merits of Pascal in this matter are quite sufficient 

to justify the use of his name. 

(1) We have to introduce a suitable notation for the numbers contained 

in the Pascal triangle; this is a step of major importance. For us each 

number attached to a point of this triangle has a geometric meaning: it 

indicates the number of different shortest zigzag paths from the apex of 

the triangle to that point. Each of these paths passes along the same 

number of blocks, let us say n blocks. Moreover, all these paths agree in 

the number of blocks described in the southwesterly direction and in the 

number of those in the southeasterly direction. Let / and r stand for these 

numbers, respectively (/ to the left and r to the right—of course, downward 

in both cases). Obviously 

n = / + r 

If we give any two of the three numbers n, /, and r, the third is fully deter¬ 

mined and so is the point to which they refer. (In fact, / and r are the 

rectangular coordinates of the point with respect to a system the origin of 

which is the apex of the Pascal triangle; one of the axes points southwest, 

l 

l l 

1 2 1 

13 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

6 15 20 15 6 

21 35 35 21 

56 70 56 

126 126 

Fig. 3.5. A square from a triangle. 252 
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the other southeast.) For instance, for the last A of the path shown in 

Fig. 3.3 

1=5, r = 5, n = 10 

and for the second B of the same path 

1=5, r = 3, n = 8 

We shall denote by (this notation is due to Euler) the number of 

shortest zigzag paths from the apex of the Pascal triangle to the point 

specified by n (total number of blocks) and r (blocks to the right down¬ 

ward). For instance, see Fig. 3.5, 

252 

The symbols for the numbers contained in Fig. 3.4 are assembled in 

Fig. 3.6. The symbols with the same number upstairs (the same n) are 

horizontally aligned (along the nth “base”—the base of a right triangle). 

The symbols with the same number downstairs (the same r) are obliquely 

aligned (along the rth “avenue”). The fifth avenue forms one of the sides 

of the square in Fig. 3.5—the opposite side is formed by the 0th avenue 

(but you may call it the borderline, or Riverside Drive, if you prefer to do 

so). The fourth base is emphasized in Fig. 3.4. 

(2) Besides the geometric aspect, the Pascal triangle also has a compu¬ 

tational aspect. All the numbers along the boundary (0th street, 0th 

avenue, and their common starting point) are equal to 1 (it is obvious that 

(8) 

(o) (1) 

(8) (?) (I) 

(8) (?) (I) (!) 

(2) (?) (?) (!) (?) 

(r-l) (r) 

("V) Fig. 3.6. Symbolic Pascal triangle. 
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there is just one shortest path to these street corners from the starting 

point). Therefore, 

= 1 

It is appropriate to call this relation the boundary condition of the Pascal 

triangle. 

Any number inside the Pascal triangle is situated along a certain hori¬ 

zontal row, or base. We compute a number of the (n + l)th base by 

going back, or recurring, to two neighboring numbers of the nth base: 

cn-cK-.) 
see Fig. 3.6. It is appropriate to call this equation the recursion formula of 

the Pascal triangle. 

From the computer’s standpoint the numbers are determined (or 

defined, if you wish) by the recursion formula and the boundary condition 

of the Pascal triangle. 

3.7. Mathematical induction 

When we compute a number in the Pascal triangle by using the recursion 

formula, we have to rely on the previous knowledge of two numbers of 

the foregoing base. It would be desirable to have a scheme of computa¬ 

tion independent of such previous knowledge. There is a well-known 

formula, which we shall call the explicit formula for binomial coefficients, 

that yields such an independent computation: 

ln\ n(n — l)(n — 2)- • -(n — r + 1) 

\r) 1 ■ 2 ■ 3 ■■■ r 

Pascal’s treatise contains the explicit formula (stated in words, not in our 

modern notation). Pascal does not say how he has discovered it and we 

shall not speculate too much how he might have discovered it. (Perhaps 

he just guessed it first—we often find such things by observation and 

tentative generalization of the observed; see the remark in the solution 

of ex. 3.39.) Yet Pascal gives a remarkable proof for the explicit formula 

and we wish to devote our full attention to his method of proof.4 

We need a preliminary remark. The explicit formula does not apply, 

4 Cf. Pascal’s CEuvres I.c. footnote 3, pp. 455-464, especially pp. 456-457. The 
following presentation takes advantage of modem notation and modifies less essen¬ 
tial details. 
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as it stands, to the case r = 0. 

it should be interpreted as 

Yet we lay down the rule that, if r = 0, 

= 1 

The explicit formula does apply to the case r = n and yields 

(n\ = n(n - !)• •• 2-1 _ 

W 1-2 •••(«- l)n 

which is the correct result. Therefore, we have to prove the explicit 

formula only for 0 < r < n, that is, in the interior of the Pascal triangle 

where we can use the recursion formula. Now, we quote Pascal, with 

unessential modifications some of which will be included in square 

brackets [ ]. 

Although this proposition [the explicit formula] contains infinitely many 
cases I shall give for it a very short proof, supposing two lemmas. 

The first lemma asserts that the proposition holds for the first base, which 
is obvious. [The explicit formula is valid for n = 1, because, in this case, 
all possible values of r, r = 0 and r = 1, fall under the preliminary remark.] 

The second lemma asserts this: if the proposition happens to be valid 
for any base [for any value n] it is necessarily valid for the next base [for 
n + 1]. 

We see hence that the proposition holds necessarily for all values of n. 
For it is valid for n = 1 by virtue of the first lemma; therefore, for n = 2 
by virtue of the second lemma; therefore, for n = 3 by virtue of the same, 
and so on ad infinitum. 

And so nothing remains but to prove the second lemma. 

In accordance with the statement of the second lemma, we assume that 

the explicit formula is valid for the nth base, that is, for a certain value of n 

and all compatible values of r (for r = 0, 1, 2,..., n). In particular, 

along with 
^nj = n(n - !)• • (n - r + 2)(n - r + 1) 

1 • 2 

we also have (if r ^ 1) 

/ » \ _ n(n 

\r ~ 1) 1 • 

(r ~ 1) • r 

n(n — !)• • -(n — r + 2) 

2 • • • (r - 1) 

Adding these two equations and using the recursion formula, we derive 

as a necessary consequence 

CTKK-.)-£ 
n(n — 1)' • •(» - i r + 2) \n - r + 1 

1 • 2 (r- - 1) L r 

n(n — 1)... (n ~ 1 ' + 2) n + 1 

1 • 2 (r- - 1) r 

(» + l)n(n - D- • •(n - r + 2) 

1 • 2 • 3 r 

+ i 
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That is, the validity of the explicit formula for a certain value of n involves 
its validity for n + 1. This is precisely what the second lemma asserts— 
we have proved it. 

The words of Pascal which we have quoted are of historic importance 
because his proof is the first example of a fundamental pattern of reasoning 
which is usually called mathematical induction. 

This pattern of reasoning deserves further study.5 If carelessly intro¬ 
duced, reasoning by mathematical induction may puzzle the beginner; in 
fact, it may appear as a devilish trick. 

You know, of course, that the devil is dangerous: if you give him the 
little finger, he takes the whole hand. Yet Pascal’s second lemma does 
exactly this: by admitting the first lemma you give just one finger, the case 
n = 1. Yet then the second lemma also takes your second finger (the 
case n = 2), then the third finger (n = 3), then the fourth, and so on, and 
finally takes all your fingers even if you happen to have infinitely many. 

3.8. Discoveries ahead 

After the work in the three foregoing sections, we now have three 
different approaches to the numbers in the Pascal triangle, the binomial 
coefficients. 

(1) Geometrical approach. A binomial coefficient is the number of the 
different shortest zigzag paths between two given corners in a network of 
streets. 

(2) Computational approach. The binomial coefficients can be defined 
by their recursion formula and their boundary condition. 

(3) Explicit formula. We have proved it, by Pascal’s method, in sect. 
3.7. 

The name of the numbers considered reminds us of another approach. 

(4) Binomial theorem. For indeterminate (or variable) x and any non¬ 
negative integer n we have the identity 

<,+*-(^(fc+G)'*+"-+CH 
For a proof, see ex. 3.1. 

There are still other approaches to the numbers in the Pascal triangle 
which play, in fact, a role in a great many interesting questions and possess 
a great many interesting properties. “This table of numbers has eminent 

5 HSI, Induction and mathematical induction, pp. 114-121; MPR, vol. 1, pp. 108- 
120. 
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and admirable properties” wrote Jacob Bernoulli in his Ars Conjectandi 

(Basle 1713; see Second Part, Chapter III, p. 88). “We have just shown 

that the essence of combinations is concealed in it [see ex. 3.22-3.27] but 

those who are more intimately acquainted with Geometry know also that 

capital secrets of all Mathematics are hidden in it.” Times have changed 

and many things hidden in Bernoulli’s time are clearly seen today. Still, 

the reader who wants instructive, and perhaps fascinating, exercise has an 

excellent opportunity: he has an excellent chance to discover something 

by observing the numbers in the Pascal triangle and combining his 

observations with one or the other or several approaches. There are so 

many possibilities—some of them should be favorable. 

By the way, we have broached another subject in the first four sections 

of the chapter (sum of like powers of the first n integers). Moreover, we 

have encountered two important general patterns (recursion and mathe¬ 

matical induction) which we still should apply to more examples if we wish 

to understand them thoroughly. And so there are still more prospects 

ahead. 

3.9. Observe, generalize, prove, and prove again 

Let us return to our starting point and have another look at it. 

(1) We started from the magic word of Fig. 3.2 and Fig. 3.3, or rather 

from a problem concerning that word. What was the unknown? The 

number of shortest zigzag paths in that network of streets from the first A 

to the last A, that is, from the north corner of the square to its south corner. 

Such a zigzag path must cross somewhere the horizontal diagonal of the 

square. There are six possible crossing points (street comers, ^’s) along 

the horizontal diagonal. There are, therefore, six different kinds of zig¬ 

zag paths in our problem—how many paths are there of each kind? We 

have here a new problem. 

Let us be specific. Take a definite crossing point on that horizontal 

diagonal, for instance the third point from the left (/ = 3, r = 2, n = 5 in 

the notation of sect. 3.6). A zigzag path crossing this chosen point con¬ 

sists of two sections : the upper section starts from the north corner of the 

square and ends in the chosen point, the lower section starts from the 

chosen point and ends in the south corner; see Fig. 3.3. We have found 

before (see Fig. 3.5) the number of the different upper sections; it is 

The number of the different lower sections is the same. Now any upper 
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section can be combined with any lower section to form a full path [as 

suggested by Fig. 3.7(111)]. Therefore, the number of such paths is 

Of course, the number of zigzag paths crossing the horizontal diagonal at 

any other given point can be similarly computed. Hence we find a new 

solution of our original problem : we can read the magic word of Fig. 3.2 

in exactly 
1 + 25 + 100 + 100 + 25 +1 

different ways. This sum must agree with the result found at the end of 

sect. 3.5; in fact, it equals 252. 

(2) Generalization. One side of the square considered in Fig. 3.3 con¬ 

sists of five blocks. In generalizing (passing from 5 to n) we find that 

Fig. 3.7. Suggestions. 
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“The sum of the squares of the numbers in the nth base of the Pascal tri¬ 

angle is equal to the number in the middle of the 2nth base.” Our reason¬ 

ing under (1) essentially proves this general statement. It is true, we have 

considered the special case n = 5 (we have even considered a special point 

of the fifth base) but there is no particular virtue (and no misleading 

peculiarity) in the special case considered. And so our reasoning is 

generally valid. Yet it may be a useful exercise for the reader to repeat 

the reasoning with special attention to its generality—he has to say n 

instead of 5.® 

(3) Another approach. Still, the result is surprising. We would under¬ 

stand it better if we could attain it from another side. 

Surveying the various approaches listed in sect. 3.8, we may try to link 

our result to the binomial formula. There is, in fact, a connection; 

(1 + x)2"-+ (2n")*" + ••• 

= (1 + *)"(! + x)n 

Let us focus the coefficient of xn. On the right-hand side of the first line 

the coefficient of xn is the right-hand side of the general equation given 

under (2) for which we are seeking a second proof. Now let us turn to the 

product of the two factors which are displayed on the last two lines; in 

writing them we made use of the symmetry of the binomial coefficients: 

C) - C. -,) 
Now, in this product, the coefficient of xn is obviously the left-hand side 

of the equation under (2) which we are about to prove. And here is the 

proof: the coefficient of xn must be the same in both cases since we have 

here an identity in x. 

Examples and Comments on Chapter 3 

First Part 

The examples and comments of this first part are connected with the first 
four sections. 

6 We have here a representative special case; see MPR, vol. 1, p. 25, ex. 10. 
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3.1. Prove the binomial theorem stated in sect. 3.8(4) (and used in sect. 3.4). 
(Use mathematical induction. Which one of the first three approaches 

mentioned in sect. 3.8 appears the most appropriate for the present purpose ?) 

3.2. A particular case equivalent to the general case. The identity asserted 
in sect. 3.8(4) and proved in ex. 3.1 follows as a particular case (a = 1, b = x) 
from the more general identity 

(a + b)n = + (^jan-2b2 + ■■■+ ^jbn 

Show that, conversely, the general identity also follows from that particular 
case.7 

3.3. In the first three sections of this chapter we have computed Sk (defined 
in sect. 3.3) for k = 1, 2, 3; the case k = 0 is obvious. Comparing these 
expressions, we may be led to the general theorem: Sk is a polynomial in n of 
degree k + 1 and the coefficient of its highest term is 1 /(k + 1). 

This theorem which asserts that 

(where the dots indicate terms of lower degree in n) played an important role 
in the history of the integral calculus. 

Prove the theorem; use mathematical induction. 

3.4. We can guess an expression for S4 by computing numerically the ratio 
SJSz for a few small values of n. In fact, for 

n = 1, 2, 3, 4, 5 

St . 17 , 59 89 
S2 *’ 5’ 7’ 5’ 5 

For the sake of uniformity we write rather 

5 17 35 59 89 
5’ 5 ’ 5 ’ 5 ’ 5 

The numerators are close to multiples of 6; in fact, they are 

61 - 1, 6-3 - 1, 6-6 - 1, 6-10 - 1, 615 - 1 

You should recognize the numbers 

1, 3, 6, 10, 15 

If you succeed in constructing an expression for S4, prove it, independently 

of sect. 3.4, by mathematical induction.8 

3.5. Compute S4, independently of ex. 3.4, by the method indicated in 

sect. 3.4. 

7 Such equivalence of the particular and the general may seem bewildering to the 

philosopher or to the beginner, but is, in fact, quite usual in mathematics; see MPR, 

vol. 1, p. 23, ex. 3 and ex. 4. 
6 For broader discussion of a very similar simpler case see MPR, vol. 1, pp. 108-110. 
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3.6. Show that 
n = S0 

n2 = 2 Si - S0 
na = 3S2 - 3Si + S0 

/i4 = 4S3 — 6S2 + 4Si — So 
and generally 

(This is similar to, but different from, the principal formula of sect. 3.4.) 

3.7. Show that 

Si = Si 
2Si2 = 2S3 

4Si3 = 3Sb + S3 

8S14 = 4S7 + 4Sb 

and generally, for k = 1, 2, 3,..., 

2fc-1Sifc = ^j|s2fc-l + ^j^S2fc-3 + ^j|s2fc-B +••• 

The last term on the right-hand side is Sk or kSk +1 according as k is odd or 
even. 

(This is similar to ex. 3.6 where, in fact, we could substitute S0k for nk.) 

3.8. Show that 

3S2 = 3S2 
6S2S1 = 5S4 + S2 

12S2Si2 = 7Sa + 5S4 
24S2S13 = 9Sa + l4Ss + S4 

and generally, for k = 1, 2, 3,..., 

32-W - [(J) + 2(‘)ls» + [(‘) + 2(*)ls.-, 4- 
the last term on the right-hand side is (k + 2)Sk + l or Sk according as k is odd 
or even. 

3.9. Show that 

S3 = Si2 

SB = Si2(4Si - l)/3 
S7 = Si2(6Si2 - 4Si + l)/3 

and generally that S2k-i is a polynomial in Si = n(n + l)/2, of degree k, 
divisible by Si2 provided that 2k - 1 ^ 3. (This generalizes the result of 
sect. 3.3.) 

3.10. Show that 
S4 = S2(6Si - l)/5 
S6 = S2(12Si2 - 6S1 + l)/7 
S8 = S2(40Si3 - 40Si2 + I8S1 - 3)/15 
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and generally that S2JS2 is a polynomial in Si of degree k — 1. (This 

generalizes a result encountered in the solution of ex. 3.4.) 

3.11. We introduce the notation 

1* + 2* + 3* + • • • + nk = Sk(n) 

which is more explicit (or specific) than the one introduced in sect. 3.3; k 
stands for a non-negative integer and n for a positive integer. 

We now extend the range of n (but not the range of k): we let Sk(x) denote 
the polynomial in x of degree k + 1 that coincides with 5fc(n) for x = 
1, 2, 3,...; for example. 

S3(x) = 
x2(x + l)2 

4 

Prove that for k & 1 (not for k = 0) 

Sk(-x - 1) = (-l)*-1^*) 

3.12. Find 1 + 3 + 5 + • • • + (2n — 1), the sum of the first n odd numbers. 
(List as many different approaches as you can.) 

3.13. Find 1 + 9 + 25 + • • • + (2n - l)2. 

3.14. Find 1 + 27 + 125 + • • • + (2/j - l)3. 

3.15. (Continued) Generalize. 

3.16. Find 22 + 52 + 82 + • • • + (3/j - l)2 

3.17. (Continued) Generalize. 

3.18. Find a simple expression for 

1 -2 + (1 + 2)3 + (1 + 2 + 3)4 + • • • + [1 + 2 +•••+(/! - l)]n. 

(Of course, you should try to use suitable points from the foregoing work. 
What has better prospects to be usable: the results or the method?) 

3.19. Consider the n^n ' ^ differences 

2 - 1, 
3- 1, 3-2 
4- 1, 4-2, 4-3 

n — 1, n — 2, n — 3 ,..., n — (n — 1) 

and compute (a) their sum, (b) their product, and (c) the sum of their squares. 

3.20. Define Eu £2, Ea ... by the identity 

xn - ■EiX’*"1 + E2Xn~2 - ■■■ +(-1 )nEn 
= (x - l)(x - 2)(x - 3)- • (x - n) 
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Show that 

r- «(« + 1) 

E1 = —— 

r (m - \)n(n + 1)(3/j + 2) 
E* = -24- 

(/i - 2)(h - 1 )n%n + l)2 
3 48 

(w - 3)(n - 2)(n - l)n(n + l)(15/i3 + \5n2 - 10m - 8) 
Ei-5760- 

and show in general that Ek [which should rather be denoted by Ek(n) since it 
depends on n] is a polynomial of degree 2k in n. 

[The knowledge of a certain proposition of algebra may be a great help; Ek 
is the so-called fcth elementary symmetric function of the first n integers the 
sum of the fcth powers of which is Sk = Sk(n). Check Ek(k) = it!] 

3.21. Two forms of mathematical induction. A typical proposition A that is 
accessible to proof by mathematical induction has an infinity of cases 
Ai, Ai, A3,..An,...; in fact, A is equivalent to the simultaneous assertion 
of Ai, A2, A3,.... For instance, if A is the binomial theorem, A„ asserts the 
validity of the identity. 

a + = (;) + (;)* + (;)*“+■ ■ ■ + 

see ex. 3.1; the binomial theorem asserts, in fact, that this identity holds for 
n = 1, 2, 3, 4,.... 

Let us consider three statements about the sequence of propositions 

A\, A2, A3,...: 

(1) Ai is true. 
(II<?) An implies An + 1. 

(Ub) Au A2, As,... An-1 and An jointly imply An + 1. 

Now we can distinguish two procedures. 
(a) We can conclude from (I) and (11a) that An is true generally, for n = 

1, 2, 3,. ..; we drew this conclusion, with Pascal, in sect. 3.7. 

(b) We can conclude from (1) and (life) that An is true generally, for n = 
1, 2, 3,...; we proceeded so in the solution of ex. 3.3. 

You may feel that the difference between the procedures (a) and (b) is more 
in the form than in the essence. Could you clarify this feeling and propose a 

clear argument? 

Second Part 

3.22. Ten boys went camping together, Bernie, Ricky, Abe, Charlie, AI, Dick, 
Alex, Bill, Roy, and Artie. In the evening they divided into two teams of 
five boys each: one team put up the tent, the other team cooked the supper. 
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In how many different ways is such a division into two teams possible? (Can 

a magic word help you ?) 

3.23. Show that a set of n individuals has ^ J different subsets of r indivi¬ 

duals. [In more traditional language: the number of combinations of n 

objects taken rata time is 

3.24. Given n points in the plane in “general position” so that no three 
points lie on the same straight line. How many straight lines can you draw 
by joining two given points ? How many triangles can you form with vertices 
chosen among the given points ? 

3.25. (Continued) Formulate and solve an analogous problem in space. 

3.26. Find the number of the diagonals of a convex polygon with n sides. 

3.27. Find the number of intersections of the diagonals of a convex poly¬ 
gon of n sides. Consider only points of intersection inside the polygon, and 
assume that the polygon is “general” so that no three diagonals have a 
common point. 

3.28. A polyhedron has six faces. (We may consider the polyhedron as 
irregular so that no two of its faces are congruent.) The faces should be 
painted, one red, two blue, and three brown. In how many different ways can 
this be done? 

3.29. A polyhedron has n faces (no two of which are congruent.) Of these 
faces, r should be painted red, s sapphire, and t tan; we suppose that r + s + 
1 = n. In how many different ways can this be done? 

3.30. (Continued) Generalize. 

Third Part 

In solving some of the following problems, the reader may consider, and 
choose between, several approaches. (See sect. 3.8; the combinatorial inter¬ 
pretation of the binomial coefficients, cf. ex. 3.23, provides one more access.) 
The importance of approaching the same problem from several sides was 
emphasized by Leibnitz. Here is a free translation of one of his remarks: 
“In comparing two different expressions of the same quantity, you may find 
an unknown; in comparing two different derivations of the same result, you 
may find a new method.” 

3.31. Show in as many ways as you can that 

CK-J 
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3.32. Consider the sum of the numbers along a base of the Pascal triangle: 

1 = 1 

1 + 1 = 2 

1+2+1 = 4 
1 +3 + 3 + 1 = 8 

These facts seem to suggest a general theorem. Can you guess it? Having 
guessed it, can you prove it? Having proved it, can you devise another 

proof? 

3.33. Observe 

1 - 1 = 0 

1-2 + 1 = 0 
1 - 3 + 3 - 1 = 0 

1 - 4 + 6 - 4 + 1 = 0 

generalize, prove, and prove again. 

3.34. Consider the sum of the first six numbers along the third avenue of the 
Pascal triangle: 

1 + 4 + 10 + 20 + 35 + 56 = 126 

Locate this sum in the Pascal triangle, try to observe analogous facts, general¬ 
ize, prove, and prove again. 

3.35. Add the thirty-six numbers displayed in Fig. 3.5, try to locate their 
sum in the Pascal triangle, formulate a general theorem, and prove it. (Add¬ 
ing so many numbers is a boring task—in doing it cleverly, you may easily 

catch the essential idea.) 

3.36. Try to recognize and locate in the Pascal triangle the numbers involved 
in the following relation: 

1-1 + 5-4 + 10-6 + 10-4 + 5-1 = 126 

Observe (or remember) analogous cases, generalize, prove, prove again. 

3.37. Try to recognize and locate in the Pascal triangle the numbers involved 
in the following relation: 

6-1 + 5-3 + 4-6 + 3-10 + 215 + 1-21 = 126 

Observe (or remember) analogous cases, generalize, prove, prove again. 

3.38. Fig. 3.8 shows the first four from an infinite sequence of figures each 
of which is an assemblage of equal circles into an equilateral triangular shape. 
Any circle that is not on the rim of the assemblage touches six surrounding 
circles. In the nth figure there are n circles aligned along each side of the 
triangular assemblage and the total number of circles in this nth figure is 
termed the nth triangular number. Express the nth triangular number in 
terms of n and locate it in the Pascal triangle. 

3.39. Replace in Fig. 3.8 each circle by a sphere (a marble) of which the 
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Fig. 3.8. The first four triangular numbers. 

circle forms the equator. Fix 10 marbles arranged as in Fig. 3.8 on a horizon¬ 
tal plane, place 6 marbles on top (they fit neatly into the interstices) as a second 
layer, add 3 marbles on top of these as a third layer and place finally 1 marble 
on the very top. This configuration of 

1 + 3 + 6 + 10 = 20 

marbles is so related to a regular tetrahedron as each of the assemblages of 
circles shown by Fig. 3.8 is related to a certain equilateral triangle: 20 is the 
fourth pyramidal number. Express the nth pyramidal number in terms of n 
and locate it in the Pascal triangle. 

3.40. You can build a pyramidal pile of marbles in another manner: begin 
with a layer of n2 marbles, arranged in a square as in Fig. 3.9, place on top of 
it a second layer of (n — l)2 marbles, then (n — 2)2 marbles, and so on, and 
finally just one marble on the very top. How many marbles does the pile 
contain? 

3.41. Interpret the product 

as the number of a certain set of zigzag paths in a network of streets. 

3.42. All the shortest zigzag paths from the apex of the Pascal triangle to the 

point specified by n (the total number of blocks) and r (blocks to the right 
downward) have a point in common with the line of symmetry of the Pascal 
triangle (from the first A to the last A in Fig. 3.3) namely their common initial 

Fig. 3.9. The fourth square number. 
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point, the apex. In this set of paths, consider the subset of such paths as have 
no further point in common with the line of symmetry and find their number N. 

In order to realize the meaning of our problem, consider easy particular 

cases: for 

r = 0, n, nil (n even) 

N= 1, 1, 0 

Solution. It will suffice to consider the case r > n/2; that is, the common 
lower endpoint of our zigzag paths 'les in the right-hand half of the plane 

bisected by the line of symmetry. There are paths in the full set which we 

divide into three nonoverlapping subsets. 
(1) The subset defined above of which we have to find the number of 

members, N. A path of the set that does not belong to this subset has, besides 
A, another point on the line of symmetry. 

(2) Paths beginning with a block to the left downward; such a path must 
cross the line of symmetry somewhere since its endpoint lies in the other half 

plane. The number of paths in this subset is obviously 

(3) Such paths as belong neither to (I) nor to (2); they begin with a block to 
the right downward but subsequently attain somewhere the line of symmetry. 

Show that there are just as many paths in subset (2) as in subset (3) (Fig. 3.10 
hints the decisive idea of a one-one correspondence between these subsets) and 

Fig. 3.10. The decisive idea. 
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Fig. 3.11. A modification of the decisive idea. 

> 

derive hence that 

N 
_ \2r T 

3.43. (Continued) The number of all shortest zigzag paths from the apex to 
the nth base, that have only the initial point in common with the line of sym¬ 

metry. ,is = 2m is even and 2 if n = 2m + 1 is odd. 

3.44. Trinomial coefficients. Fig. 3.12 shows a fragment of an infinite 
triangular array of numbers defined by two conditions. 

(1) Boundary condition. Each horizontal line or “base” (this term has been 
similarly used in sect. 3.6) begins with 0, 1 and ends with 1, 0. (The nth base 
consists of 2/i + 3 numbers and so the boundary condition leaves undefined 
2/i - 1 numbers of the nth base, for n = 1, 2, 3,_) 

Fig. 3.12. Trinomial 

coefficients. 

0 

1 

0 1 0 

0 1110 

0 1 2 3 2 1 0 

1 3 6 7 6 3 1 0 

4 10 16 19 16 10 4 1 

5 15 30 45 51 45 30 15 5 

0 

1 0 
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(2) Recursion formula. Any number of the (n + l)th base left undefined 
by (1) is computed as the sum of three numbers of the nth base: of its north¬ 
western, northern, and northeastern neighbors. (For instance, 45 = 10 + 

16 + 19.) 
Compute the numbers of the seventh base. (They are, with three exceptions, 

divisible by 7.) 

3.45. (Continued) Show that the numbers of the nth base, beginning and 
ending with 1, are the coefficients in the expansion of (1 + x + x2)n in powers 
of x. (Hence the name “trinomial coefficient.”) 

3.46. (Continued) Explain the symmetry of Fig. 3.12 with respect to its 
middle vertical line. 

3.47. (Continued) Observe that 

1+1 + 1 =3 
1+2+3+2+1 =9 

1 + 3+ 6 + 7 + 6 + 3 + 1 =27 

generalize and prove. 

3.48. (Continued) Observe that 

1-1+1 =1 
1-2+3-2+1 =1 

1 — 3+6 — 7+6 — 3 + 1 =1 

generalize and prove. 

3.49. (Continued) Observe that the value of the sum 

12 + 22 + 32 + 22 + l2 = 19 

is a trinomial coefficient, generalize, and prove. 

3.50. (Continued) Find lines in Fig. 3.12 agreeing with lines in the Pascal 
triangle. 

3.51. Leibnitz's Harmonic Triangle. Fig. 3.13 shows a section of this little 
known but remarkable arrangement of numbers. It has properties which are 
so to say “analogous by contrast” to those of the Pascal triangle. That 
triangle contains integers, this one (as far as visible) the reciprocals of integers. 
In Pascal’s triangle, each number is the sum of its northwestern and north¬ 
eastern neighbors. In Leibnitz’s triangle, each number is the sum of its 
southwestern and southeastern neighbors; for instance 

1 = 1 1 1 = 1 1 ! = -L _L 
2 _ 3 + 6’ 3 _ 4 + 12’ 6 _ 12 + 12 

This is the recursion formula of the Leibnitz triangle. This triangle has also a 
boundary condition: the numbers along the northwest borderline (the “0th 
avenue”) are the reciprocals of the successive integers, 1/1, 1/2, 1/3,.... 
(The boundary condition of the Pascal triangle is of a different nature: 
values are prescribed along the whole boundary, 0th avenue and 0th street.) 
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1 
5 

2 

1 
3 

X 1 
12 4 

J_ X J_ 
20 30 20 

1 
6 

J_ 
7 42 

X _L 
30 60 

1 
105 

X 
60 

1 
140 

_L 
8 

Fig. 3.13. A fragment of Leibnitz’s Harmonic Triangle. 

Starting from the given boundary values, we obtain the others by addition in 
the case of the Pascal triangle, but by subtraction in the present case; in Fig. 
3.13 there are some gaps that can be filled immediately with the help of the 
recursion formula, for instance 

1 _ J_ = 1 
4 20 5 

and 1 - 1 = J_ 
7 8 “ 56 

Using the boundary condition and the recursion formula, extend the table 
of Fig. 3.13 to the eighth base inclusively. 

3.52. Pascal and Leibnitz. Try to recognize a connection between corres¬ 
ponding numbers of the two triangles and, having recognized it, prove it. 

t3.53. Prove9 

111 J_ J_ 1 
1 2 + 6 + 12 + 20 + 30 + 

1 = 1 _L J_ J_ _L 
2 3 + 12 + 30 + 60 + 105 +'" 

1 = 1 J_ J_ J_ J_ 
3 4 + 20 + 60 + 140 + 280 +'" 

(Locate these numbers in the harmonic triangle.) 

9 To accommodate readers who have not had the opportunity to acquire precise 

ideas about infinite series (limits, convergence,...) the solutions to this and similar 

problems given on the next pages will not insist on precise details. Yet such details 

(they are easy in most cases) should be supplied by readers with more complete 

knowledge. 
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t3.54. Find the sum 
1 1 1 1 

12 + 30 + 60 + 105 + 

and generalize. (Do you know an analogous problem?) 

t3.55. Find the sum of the series 

1111 

1-2 + 2-3 + 3-4 + 4-5 +'" 

1111 
1-2-3 + 2-3-4 + 3-4-5 + 4-5-6 +'" 

1 -2.. .(r - l)r + 2-3. . .r(r + 1) + 3-4.. .(r + l)(r + 2) + " ' 

Fourth Part 

Several problems in this part are connected with ex. 3.61, and some others 
with ex. 3.70. 

t3.56. Power series. The decimal fraction 3.14159.. .of the number -n is, in 
fact, an “infinite series” 

3 + ’(i) + 4(l^) + '(fi) + 5(^) +9(^) + 
By substituting for jq the variable x, and for the successive digits 

3, 1, 4, 1, 5, 9, ••• 

the constant coefficients 

GO, * * * 

respectively, we obtain a power series 

(1) a0 + aiX + a3x2 + a3x3 H- 

We are not prepared to consider here the convergence of power series and 
related important matters, only formal operations with such series (see the 
footnote appended to ex. 3.53). Multiplication of the proposed power series 

by a constant c yields 

ca0 + caiX + ca2x2 + ca3x3 H- 

Addition of the proposed power series (1) to another 

(2) bo + b\X + b3x2 + b3x3 + • • • 

yields 

(Po + bo) + (a i + bi)x + (a3 + b2)x2 + (a3 + b3)x3 + • • • 

and the product of our two power series (1) and (2) is 

a0b0 + {a ob\ + aibo)x + {ja3bo + Qib\ + aob3)x2 + • • • 
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Our two power series (1) and (2) are equal if, and only if, 

Oo = bo, fll = bi, <?2 = b2, . . ■ , On = bn. 

We conceive a polynomial as a power series in which infinitely many 
coefficients, in fact, all coefficients beyond a certain one, vanish. For in¬ 
stance, the polynomial 3x — x3 has to be considered as the particular case of 
our power series (1) in which 

Oo = 0, <?i = 3, <?2 = 0, a3 — — 1 and an = 0 for n S 4 

Convince yourself that the foregoing rules are valid for polynomials. 

t3.57. Compute the product 

(1 - x)(l + x + x2 + • • • + + • • •) 

t3.58. Find the coefficient of xn in the product 

(a0 + aix + a2x2 H-1- anxn H-)(1 + x + x2 H-1- jcn H-) 

t3.59. A gap in the solution of ex. 3.57 may suggest the consideration of the 
series 

1 + x + x2 + x3 H- 
1 + 2x + 3x2 + Ax3 H- 
1 + 3x + 6x2 + 10x3 + ••• 
1 + 4x + lOx2 + 20jc3 + • • • 

Do you know the sum of one of these series ? Could you find the sum of the 
others ? 

t3.60. Give another proof for the result of ex. 3.37. 

f3.61. The binomial theorem for fractional and negative exponents. In a 
letter of October 24, 1676, addressed to the Secretary of the Royal Society, 
Newton described how he discovered the (general) binomial theorem; he 
wrote this letter to answer an inquiry of Leibnitz about his (Newton’s) method 
of discovery.10 Newton considered the areas under certain curves; he was 
strongly influenced by ideas of Wallis about interpolation; and eventually he 
arrived at a conjecture: The expansion 

(1 + .*)“ = 1 + yX + a(a ~ 1) „2 
1-2 

a(a - l)(a -2) 3 
1-2-3 

+ • • • 

is valid not only for positive integral values of the exponent a, but also for frac¬ 
tional and negative values, in fact, for all numerical values of a.11 

Newton did not produce a formal proof for his conjecture; rather he relied 
on examples and analogy. He investigated the question, we may say, as a 

physicist, “experimentally” or “inductively.” In order to understand his 
viewpoint, we shall try to retrace some of the steps that convinced him of the 

10 Cf. J. R. Newman, The World of Mathematics, vol. 1, pp. 519-524. 
11 We know today that some restriction concerning x is necessary but we disregard 

it here. Such neglect agrees with Newton’s standpoint in whose time the convergence 
of a series was not explicitly defined, and it agrees also with the standpoint of foot¬ 
note 9. 
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soundness of his conjecture, which we shall call, for the sake of brevity, the 

“conjecture N." 
If a is a non-negative integer, the coefficient of *“ + 1 vanishes on the right- 

hand side of the proposed series, and all the following coefficients vanish 
(thanks to the presence of a factor 0 in the numerator): the series terminates. 
If, however, a has a value not contained in the sequence 0,1, 2, 3,..., the series 
does not terminate but goes to infinity. For example, for a = i the expansion 
under scrutiny turns out to be 

(1 + x)Vt = 1 + yJC + 
K-l) 

1-2 
x* + i(-i)(-f) - 

1-2-3 
+... 

X _ £* x^_ _ 5x^_ 

1 + 2 8 + 16 128 + "‘ 

Newton did not appear to be disturbed by an infinity of nonvanishing terms. 
He knew very well the analogy, which he mentions elsewhere, between power 

series and decimal fractions; see ex. 3.56. Now, some decimal fractions 
terminate (as that for i or f) and others do not (as that for i or W, for instance). 

Is the above series for (1 + jc)& valid? To examine this question, Newton 
multiplied the series by itself; the result should be 

(1 + *)K(1 + x)Vi = \ + x 
To check this, compute the coefficients of x, x2, x3, and xi in the product 
series (ex. 3.56). 

?3.62. Compute the coefficients of x, x2, x3, and x4 in the square of the 
series 

x x2 5x| 1 Ojc4 

1 + 3 “ ~9 + 81 243 +' " 
which is the expansion of (1 + x)'A according to conjecture N. The result 

should be the expansion, according to the same conjecture, of (1 + x)2/i. 

Check it! 

t3.63. (Continued) Compute the coefficients of x, x2, x3, and x4 in the cube 
of the given series. Predict the result and check your prediction. 

?3.64. Expand (1 + Jt)_1 according to conjecture N. Any comment? 

3.65. Extending the range. In sect. 3.6, we have defined the symbol 

for non-negative integers n and r subject to the inequality r S n. We now 
extend the range of n (but not that of r, cf. ex. 3.11): we set 

/x\ . /jc\ x(x - 1 )(jc - 2)- • (x — r + 1) 
loi ’ \r/ _ 1• 2 3 ••• r 

for r = 1, 2, 3, - • • and an arbitrary number x. This definition implies: 

(I) is a polynomial in x, of degree r, for r = 0, 1, 2, 3,- • - . 

(-l)r 
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(III) If n and r are non-negative integers and r > n. = 0. 

(IV) Conjecture N can be written in the form 

(1 + x)a x + x“ + xn + ■ 

(I), (III), and (IV) are obvious; prove (II). 

t3.66. Generalize ex. 3.64: examine whether the full result of ex. 3.59 
agrees with the conjecture N. 

t3.67. Apply a device which we have already used three times (sect. 3.9, 
ex. 3.36, and ex. 3.60) once more: Assuming the conjecture N, compute in two 

different ways the coefficient of xr in the expansion of 

(1 + x)a(l + x)b = (1 + x)a + l’ 

t3.68. Try to assess the result of ex. 3.67: is it proved? Is some part of it 
proved? Are there other means to prove it? If we took it for granted, could 

we prove conjecture N1 Or could we prove some part of conjecture N1 

?3.69. Try to recognize the coefficients of the expansion 

(1 - 4x)-Y* = 1 + 2x + 6x2 + 20x3 +■■■ 

and express the general term in a familiar form (which should render obvious 
the fact that the coefficients are integers). 

t3.70. The method of undetermined coefficients. Expand the ratio of two 
given power series in a power series. 

We have to expand in powers of the variable x the ratio 

bo + b\X + bzX2 + • • • + bnxn + • • • 

Oo + 0\X + OzX^ + • • • + OnXn + • • • 

where the coefficients a0, «i, a2,.b0, bu b2,... are given numbers; we assume 
that a0 5* 0. (This assumption, which we have not mentioned in the first 
short statement of the problem, is essential.) 

We are required to exhibit the given ratio in the form 

bo + b\X + b2x* + • • • 

a0 + 0\X + o2x2 + • • • 
«o + uix + u2x2 H- 

The coefficients u0, «i, u2,..., «„,... are not yet determined at this moment 
when we are just introducing them (hence the name of the method which we 
are about to apply), yet we hope to determine them eventually; in fact, to 
determine them is precisely the task imposed upon us by the problem; the 
coefficients u0, «i, u2,... are the unknowns of our problem (which has, as we 
now see, an infinity of unknowns). 

We rewrite the relation between the three power series (two are given, one 

we are required to find) in the form 

(no + Q\X + a2x2 + • • *)(^o 4" U\X + u2x2 + • • •) = bo + b\X + b2x2 + • • • 
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and now we can see the situation in a more familiar light (ex. 3.56): by equating 
the coefficients of like powers of x on opposite sides, we obtain a system of 
equations 

a0u0 = b0 

«i«o + «0«1 = bi 
«2«o + 0\Ui + O0U2 = bz 

a3u0 + Or2^i + O1U2 + doiio = bs 

This system of equations presents a familiar pattern: it is recursive, that is, 
it can be solved by recursion. We obtain the initial unknown u0 from the 
initial equation and, having obtained u0, «i,..., 2 and 1, we find the 
next unknown «„ from the next equation not formerly used. 

Express u0, «i, 1/2, and u3 in terms of a0, <?i, a2, a3, b0, bi, b2, and b3. 
(The foregoing solution can advantageously serve as a pattern. Note the 

typical steps: 

we introduce the unknowns as the coefficients of a power series; 

we derive a system of equations by comparing coefficients of like powers on 
opposite sides of a relation between power series; 

we compute the unknowns recursively. 

These steps characterize the pattern, or method, of “undetermined coeffi¬ 
cients” which yields some of the most remarkable and most useful systems of 
equations that can be solved by recursion.) 

t3.71. We consider the product of powers 

af'afiafxbftbj*’* 

of which, by definition, 

a, + a, + ak + fi, + f}m is the degree, 

a, + a, + ak the degree in the a’s. 

ft, + fim the degree in the b’s 
iat + ja, + kak + /$ + mfim the weight. 

Of course, the terms just defined are applicable if any number of a’s and b's 
are involved, and not just three of the one kind and two of the other. 

Observe the expressions for u0, uu 1/2, and u3 you found in answering ex. 3.70 
and explain the regularities observed. 

t3.72. Expand the ratio 

bo + b\X + b2X^ + • • • + bnxn + • • • 
1 + F+ X2 + ■ ■ ■ + xn +■■■ 

(The result is simple—can you use it?) 

t3.73. Expand the ratio 

bo + b\X + b2X2 + • • • + bnxn + • • • 
nr* 

(The result is simple—can you use it?) 
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t3.74. Expand the ratio 

, x x2 x3 

1 + 3 +f5 +T05 + 3 • 5 • 7 • • • (2/i + 1) 

. A A A 

1 + 2 +T +48 +' 2-4-6---2/I 

(Compute a few terms and try to guess the general term.) 

t3.75. Inversion of a power series. Being given the power series of a func¬ 
tion, find the power series of the inverse function. 

In other words: being given the expansion of x in powers of y, expand y in 
powers of x. 

More precisely: being given 

x = a4y + ^y2 + • • • + anyn + •■• 

assume that a4 ^ 0 and find the expansion 

y = U\X + u2x2 H-h i/„xn H- 

We follow the pattern of ex. 3.70. In the given expansion of x in powers of 
y, we substitute for y its (desired) power series: 

X = fli(«iX + «2x2 + «3x3 h-) 
+ a2(u42x2 + 2^1 u2x3 + • • •) 

+ n3(t/i3x3 + • • •) 

+ . . . 
In equating the coefficients of like powers of x on opposite sides of this rela¬ 
tion, we obtain a system of equations for m, u2, «3,...: 

1 = fliHi 
0 = aiu2 + a2ui2 

0 = Oi U3 + 2fl2«l + U3t/i3 

and the system so obtained is recursive (although not linear.) 
Express uu u2, u3, u4, and u5 in terms of aL, a2, a3, a4, and aB. 

t3.76. Examine the degree and weight of the expressions you found in 
answering ex. 3.75. 

t3.77. Being given that 

x = y + y2 + y3 + ■ ■ • + yn + • ■ ■ 

expand y in powers of x. 
(The result is simple—can you use it?) 

t3.78. Being given that 

4x = 2y — 3y2 + 4y3 - 5y* +■■ • 

expand y in powers of x. (Try to guess the form of the general term and, hav¬ 
ing guessed it, try to explain it.) 



96 PATTERNS 

t3.79. Being given that 

x = y + ay2 

expand y in powers of x. (The result can be used to clarify a detail of the 

general situation considered in ex. 3.75.) 

t3.80. Being given that 

expand y in powers of x. 

t3.81. Differential equations. Expand in powers of x the function y that 

satisfies the differential equation 

dy _ x2 i ,.2 
dx +y 

and the initial condition 
y = 1 for x = 0. 

Following the pattern of ex. 3.70, we set 

y = u0 + uiX + ui>c2 + uax3 H- 

with coefficients u0, «i, «2,... which we have still to determine. The differen¬ 
tial equation requires 

«i + 2u2x + 3 u3x2 + 4m4x3 H- 

= Uo2 + 2u0U\X + (2moM2 + U\2 + 1)jc^ + • • • 

Comparing coefficients of like powers on opposite sides of this relation, we 
obtain the system of equations. 

Ml = Mo2 

2m2 = 2m0Mi 

3 M3 = 2m0M2 + Ml2 + 1 

4m4 = 2moM3 + 2miM2 

From this system we can find uu m2, m3,. .., recursively, since the initial con¬ 
dition yields 

M0 = 1 

Compute numerically uu m2, m3, and m4. 

(The solution of differential equations by the method of undetermined 

coefficients, which is exemplified by our problem, is of great importance both 
in theory and in practice.) 

t3.82. (Continued) Show that m„ > 1 for n ^ 3. 

t3.83. Expand in powers of x the function y that satisfies the differential 

equation 

d2y 
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and the initial conditions 

y = 1, -T- = 0 for x = 0 
ax 

t3.84. Find the coefficient of jc100 in the power series expansion of the func¬ 
tion 

(1 - jc)“x(1 - jcVHI - jc10)-1(1 - jc20)-1(1 - JC50)-1 

There is little doubt th»t, in order to solve the proposed problem, we have 
to generalize it and look for ways and means to compute the general coefficient 
(that of xn) in the expansion under consideration. It is also advisable to 
examine the easier analogous problems implied by the proposed problem. 
Some meditation on these lines may eventually suggest a plan: introduce 
several power series with “undetermined” coefficients. We set 

(1 x) 1 = Aq + A\X + A2x2 + A3x3 + A±x* + • • • 
(1 - jc)_1(1 - jc5)"1 = B0 + BiJC + B2x2 + B3x3 + • • • 

(1 - jc)-1(1 - jc5)_1(1 - jc10)"1 = Co + Cijc + C2jc2 + ••• 

(1 - jc)-1(1 - jc5)_1(1 - jc10)-1(1 - jc25)"1 = Do + DiX + ■■■ 

and finally 

(1 - jc)"1(1 - jc°)-1(1 - jc10)_1(1 - jc25)_1(1 - JC50)"1 

= Eq + E\X + E2x2 h-+ Enxn H- 

In this notation, the proposed problem requires to find £i0o. Instead of our 
single original unknown £i00, we have introduced infinitely many new un¬ 
knowns: we should find An, B„, Cn, Dn, and En for n = 0, 1, 2, 3,.... Yet, 
for some of these, the result is well known or obvious. 

A o = A\ = A2 = • • • = An = • • • = 1 

Bo = Co = Do = E0 = 1 

Moreover, the unknowns introduced are not unrelated: 

Ao + A\X + A2x2 + • • • = (Bo + B\X + B2x2 + • • *)(1 — xD) 

from which we conclude, by looking at the coefficient of jcn, that 

An = Bn Bn - 5 

Find analogous relations and find the intermediaries through which the 

unknown £i00 is connected with the values already known. Eventually, you 
should obtain a numerical value for El00. 

t3.85. Find the nth derivative /n) of the function y = jc" 1 log jc. 

We obtain by straightforward differentiation and algebraic transformation 

y = - jc-2 log jc + jc"2 

y" = 2jc"3logJC— 3jc"3 

y" = -6jc"4logjc + 11jc"4 

and from these (or more) cases we may guess that the desired nth derivative is 

of the form 
/B) = (— l)n Ml.*”’1”1 log X + (—l)"”1 Cn JC"”"1 
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where c„ is an integer depending on n (but independent of x). Prove this and 

express cn in terms of n. 

3.86. Find a short expression for 

1 + 2x + 3x2 + • • • +nxn~ 1 

(Do you know a related problem? Could you use its result—or its method?) 

3.87. Find a short expression for 

1 + 4x + 9x2 H-+ n2xn~1 

(Do you know a related problem? Could you use its result—or its method?) 

3.88. (Continued) Generalize. 

3.89. Being given that 

On + 1 — On 
n + a 

n + 1 + 0 

for n = 1, 2, 3,... and a ^ /), show that 

Qn(/i + <*) ~ Qi(l + ft) 

“ - 0 
3.90. Find 

0\ + #2 + O3 + • • • + On — 

P + PP + 1 + P P + 1 P + 2 _ pp + 1 p + 2 p + n - 1 
q q q + 1 <?<7 + l<? + 2 q q + \ q + 2 q + n — 1 

3.91. On the number it. We consider the unit circle (its radius =1); we 
circumscribe about it, and inscribe in it, a regular polygon with n sides; let 
C„ (circumscribed) and /„ (inscribed) stand for the perimeters of these two poly¬ 
gons, respectively. 

Introduce the abbreviations 

= A(a, b), Vab = G(a, b), = H(a, b) 

(arithmetic, geometric, and harmonic mean, respectively). 

(1) Find C4, I4, C6, /6. 
(2) Show that 

Czn = ff(C„, /„), ?2n = G(/„, C2n) 

(Thus, starting from Ca, /a we can compute the sequence of numbers 

Ca, /a; C12, /12; C24,124; C4a, /48; 

fey recursion as far as we wish, and so we can enclose 7r between two numerical 
bounds whose difference is arbitrarily small. Archimedes, in computing the 
first ten numbers of the sequence, that is, proceeding to regular polygons with 
96 sides, found that 

3 ft < n < 34 

See his Works, edited by T. L. Heath (Dover), pp. 91-98.) 

3.92. More problems. Devise some problems similar to, but different from, 
the problems proposed in this chapter—especially such problems as you can 
solve. 



CHAPTER 4 

SUPERPOSITION 

4.1. Interpolation 

We need several steps to arrive at the final formulation of our next 

problem. 

(1) We are given n different abscissas 

Xlj ^2, X3, * , Xn 

and n corresponding ordinates 

yi, y2, y3, ■■■, yn 

and so we are given n different points 

(jci.Ji). (x2,y2), (x3, j3), (xn,yn) 

We are required to find a function f(x) the values of which at the given 

abscissas are the corresponding ordinates: 

Ax 1) = yu f(x2) = y2> /(x3) = y3> ..., /(*„) = yn 

In other words, we are required to find a curve, with the equation 

y = /(*), that passes through the n given points; see Fig. 4.1. This is 

the problem of interpolation. Let us explore the background of this 

problem; such exploration may increase our interest in it and so our 

chances to solve it. 

(2) The problem of interpolation may arise whenever we consider a 

quantity y depending on another quantity x. Let us take a more concrete 

case: let x be the temperature and y the length of a homogeneous rod, kept 

under constant pressure. To each temperature x there corresponds a cer¬ 

tain length y of the rod; this is what we express by saying that y depends 

99 
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Fig. 4.1. Interpolation. 

on x, or y is a function of x, or by writing y = f(x). A physicist, in investi¬ 
gating experimentally the dependence of y on x, subjects the rod to differ¬ 
ent temperatures 

Xi, x2, xa, ..., xn 

and, by measuring the length of the rod at each of these temperatures, he 
finds the values 

yi, y2. y3, ■■■, yn 

respectively. The physicist, of course, would like to know the length y 
also at some such temperature x as he has not yet had the opportunity to 
observe. That is, the physicist wants to know, on the basis of his n obser¬ 
vations, the function y = f(x) in its full extent, for the whole range of the 
independent variable x—and so he poses the problem of interpolation. 

(3) Let us remark parenthetically that the physicist’s problem is, in fact, 
more complicated. His values xu yu x2, y2,- ■ •> *»> yn are not the “true 
values” of the quantities measured but are affected by unavoidable errors 
of measurement. Therefore, his curve need not pass through, it should 
only pass close to, the given points. 

Moreover, it is usual to distinguish two cases: the hitherto unobserved 
abscissa x, to which the physicist wants to find the corresponding ordinate 
y, may lie in the interval between the extreme observed values and xn 
in Fig. 4.1) or it may lie outside this interval: in the first case it is customary 
to speak of interpolation and in the latter of extrapolation. (It is usual to 
regard interpolation as more reliable than extrapolation.) 

Yet let us disregard this distinction and the other remarks of this sub¬ 
section, for the time being; let us close the parenthesis and return to the 
standpoint of the subsections (1) and (2). 

(4) The problem posed in subsection (1) is utterly indeterminate: there 
is an inexhaustible variety of curves passing through the n given points. 
His n observations, by themselves, do not entitle the physicist to prefer one 
of those curves to the others. If the physicist decides to draw a curve, he 
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must have some reason for his choice outside his n observations—what 

reason? 

Thus the problem of interpolation raises (and this adds a good deal to its 

interest) a general question: What suggests, or what justifies, the transition 

to a mathematical formulation from given observations and a given 

mental background? This is a major philosophical question—yet, as it is 

rather unlikely that major philosophical questions can be satisfactorily 

answered, we turn to another aspect of the problem of interpolation. 

(5) It would be natural to modify the problem stated in subsection (1) 

by asking for the simplest curve passing through the n given points. This 

modification, however, leaves the problem indeterminate, even vague, 

since “simplicity” is hardly an objective quality: we may judge simplicity 

according to our personal taste, standpoint, background, or mental habits. 

Yet, in the case of our problem, we may give an interpretation to the 

term “simple” that looks acceptable and leads to a determinate and useful 

formulation. First, let us regard addition, subtraction, and multiplication 

as the simplest computational operations. Then, let us regard such func¬ 

tions as the simplest the values of which can be computed by the simplest 

computational operations. Accepting both points, we have to regard the 

polynomials as the simplest functions; a polynomial is of the form 

a0 + a^x + a2x2 H-1- anxn 

Its value can be computed by the three simplest computational operations 

from the numerically given coefficients a0, au..., an and the value of the 

independent variable x. If we assume that an # 0, the degree of the 

polynomial is n. 

Finally, being given two polynomials of different degree, let us regard 

the one with the lower degree as the simpler. If we accept this point too, 

the problem of passing the simplest possible cfirve through n points 

becomes a determinate problem, the problem of polynomial interpolation, 

which we formulate as follows: 

Being given n different numbers xu x2, ..., xn and n further numbers 

>'i, y2,..yn,find the polynomial f(x) of the lowest possible degree satisfying 

the n conditions 

Axi) = yu f(x2) = y2, f(xn) = yn 

4.2. A special situation 

If we see no other approach to the proposed problem, we may try to 

vary the data. For instance, we may keep one given ordinate fixed and let 

the others decrease; and so we may hit upon a special situation that looks 
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more accessible. We need not touch the given abscissas, we accept any 

n different numbers 

xu x2, x3> xn 

but we choose a particularly simple system of ordinates: 

0, 1, 0, .... 0 

respectively. (All given ordinates vanish, except the one corresponding 

to the abscissa x2; see Fig. 4.2.) 

There is an interesting piece of information: the polynomial assuming 

these values vanishes at n — 1 given points, has the n — 1 different roots 

Xu x3> xt.xn, and, therefore, it must be divisible by each of the follow¬ 

ing n — 1 factors: 

x - xu x - x3, x — x4. x — xn 

Therefore, it must be divisible by the product of these n — 1 factors, and 

so it is at least of degree n — 1. If the polynomial attains this lowest 

possible degree n — 1, it must be of the form 

f(x) = C(x - Xi)(x - x3)(x - Xi)...(x - xn) 

where C is some constant. 

Have we used all the data? There remains the ordinate corresponding 

to the abscissa x2 to be taken into account: 

Ax2) = C(x2 - X!)(x2 - x3)(x2 - xt).. .(x2 - xn) = 1 

We compute C from this equation, substitute the value computed for C 

in the expression off(x), and find so 

, . = (x - xQ (x - x3) (x - a-4) ... (x - xn) 

^ (x2 ~ x1)(x2 - x3\x2 - x4).. .(x2 - xn) 

Obviously, this polynomial f(x) takes the required values for all given 

abscissas. We have succeeded in solving the problem of polynomial 

interpolation in a particular case, in a special situation. 

4.3. Combining particular cases to solve the general case 

We were lucky to spot such an especially accessible particular case. To 

O 

*1 *2 *3 X Fig. 4.2. A special situation. 
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deserve our luck, we should try now to make good use of the solution 

obtained. 

By modifying a little the solution obtained, we can handle a slightly 

more extended particular case: to the given abscissas 

•*1> ^2» -*"3. Xn 

we let correspond the ordinates 

0, y2, 0. 0 

respectively. We obtain the polynomial that assumes these values by 

multiplying the expression obtained in sect. 4.2 by an obvious factor: 

(* - x4)(x - x3)(x - x4).. ,(x - x„) 

y2 (*2 - x'iXxa - x3)(x2 - x4).. .(x2 - xn) 

In this expression, the abscissa x2 plays a special role, distinct from the 

common role that falls to the other abscissas. Yet there is no peculiar 

virtue in the abscissa x2: we can let any other given abscissa play that 

special role. And so, if to the abscissas 

*i, x2, x3, ..., xn 

we let correspond the values displayed on any one of the n following lines 

0, 0, .... 0 
0, 0, y 3. .... 0 

0, o, 0, * * * > y n 

we can write down an expression for the polynomial of degree n — 1 that 

assumes the values on that line at the corresponding abscissas. 

We have here outlined the solution in n different particular cases of our 

problem. Can you combine them so as to obtain the solution of the 

general case from the combination? Of course, you can, by adding the 

n expressions outlined: 

= (x - x2)(x - x3)(x - x4).. ,(x - x„) 

K yi (*1 - x2)(x4 - x3)(x4 - x4).. .(x4 - xn) 

+ (x - x4)(x - x3)(x - x4). ■ .(x - x„) 

y2(x2 - x4)(x2 - x3)(x2 - x4)... (x2 - xn) 

(x - Xi)(x - x2)(x - x4).. ,(x - x„) 

■y3(x3 - x4)(x3 - x2)(x3 - x4)... (x3 - xn) 

+ (x - x4)(x - x2)(x - x3).. ,(x - Xn-t) 

yn(xn - Xi)(x„ - x2)(xn - x3)...(xn - Xn_i) 
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is a polynomial, of degree not exceeding n — 1, that satisfies the condition 

Axt) = yt for i = 1,2, 3,...,n 

as we can see at a glance if we realize the structure of its expression. 

(Are there any questions?) 

4.4. The pattern 

The foregoing solution of the interpolation problem, which is due to 

Lagrange, has a highly suggestive general plan. Have you seen it before? 

(1) The reader is probably familiar with, and by the foregoing may be 

reminded of, the usual proof of a well-known theorem of plane geometry : 

“The angle at the center of a circle is double the angle at the circumference 

on the same base, that is, on the same arc.” (The arc is emphasized by a 

double line in Figs. 4.3 and 4.4.) The proof is based on two remarks, and 

proceeds in two steps; cf. Euclid III 20. 

(2) There is a more accessible special situation-. If one of the sides of the 

angle at the circumference is a diameter, see Fig. 4.3, the angle at the center 

a is obviously the sum of two angles of an isosceles triangle; these two 

angles are equal to each other, and one of them is the angle at the circum¬ 

ference, fi. This proves the desired equation 

<x = 2j3 

for the special situation of Fig. 4.3. 

(3) Now, we have no more the special situation of Fig. 4.3 before us. 

We can, however, draw a diameter (dotted line in Fig. 4.4) through the 

vertex of the angle at the circumference, and then the special situation 

arises twice in the figure. Let the equations 

a = 2f}', a = 2 f? 

Fig. 4.3. A special situation. 
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Fig. 4.4. The general case. 

refer to these special situations (see Fig. 4.3). These equations are 

firmly established by the considerations of subsection (2). The angles a 

and /3, at the center and at the circumference, respectively, with which the 

desired theorem deals, can be exhibited as sum or as difference, according 

as we have one or the other case represented by Fig. 4.4 before us: 

a = a + a, (3 = j3' + j3" or a = a — a, (3 = j3' — /3” 

Now, by adding and subtracting our two already established equations, 

we obtain 

«' + «' = 2(/3' + jT), - a" = 2(/3' - f) 

respectively, and this proves the desired theorem 

a = 2(3 

in full generality. 

(4) Now, let us compare the two problems discussed in this chapter: 

the problem to find, from algebra, treated in sects. 4.1, 4.2, and 4.3; and 

the problem to prove, from plane geometry, treated in subsections (1), 

(2), and (3) of the present section. Although these problems differ in 

several respects, their solutions show the same pattern. In both examples, 

the result was attained in two steps. 

First, we were lucky enough to spot a particularly accessible case, a 

special situation, and gave a solution well adapted, but restricted, to this 

special situation; see sect. 4.2 and subsection (2), Fig. 4.2 and Fig. 4.3. 

Then, by combining particular cases to which the restricted solution is 

applicable, we obtained the full, unrestricted solution, applicable to the 

general case', see sect. 4.3 and subsection (3). 
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Let us introduce two terms which underline certain features of this 

pattern. 

The first step deals with a particular case which is not only especially 

accessible, but also especially useful; we can appropriately call it a leading 

particular case: it leads the way to the general solution.1 

The second step combines particular cases by a specific algebraic opera¬ 

tion. In sect. 4.3, n particular solutions, after being multiplied by given 

constants, are added to form the general solution. In subsection (3), 

we add and subtract equations dealing with the special situation to obtain 

the general proof. Let us call the algebraic operation employed in sect. 

4.3 [there is more generality there than in subsection (3)] linear combination 

or superposition. (More about this concept in ex. 4.11.) 

We may use the terms introduced to outline our pattern: Starting from a 

leading special situation we attain the general solution by superposition of 

particular cases. 

Other comments and more examples may enable the reader to fill in this 

outline. He may even burst this outline and enlarge the scope of the 

pattern. 

Examples and Comments on Chapter 4 

First Part 

4.1. In proving the expression Bhl3 for the volume of a pyramid (B is the 
base, h the height) we may regard the case of the tetrahedron (which is a pyra¬ 
mid with triangular base) as leading particular case and use superposition. 
How? 

4.2. If f(x) is a polynomial of degree k, there exists a polynomial Fix) of 
degree k + 1 such that, for n = 1, 2, 3,..., 

/(I) + /(2) + /(3) + • • • + fin) = Fin) 

In proving this theorem, we may regard the result of ex. 3.3 as leading 
particular case and use superposition. How ? 

4.3. (Continued) There is, however, another way: we may regard the result 
of ex. 3.34 as leading particular case and give so, by using superposition, a 
different proof. How? 

4.4. Being given the coefficients a0, au a2,..., ak, find numbers b0, bu b2,..., 
bk such that the equation 

aoXk + a\Xfc_1 + • • • + ak = — l) ^(o) 

holds identically in x (notation of ex. 3.65). 
Show that this problem has just one solution. 

1 MPR, vol. 1, p. 24, ex. 7, 8, 9. 
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4.5. By applying the method of ex. 4.3, give a new derivation for the 

expression of S3 obtained in sect. 3.3. 

4.6. By applying the result of ex. 4.3 (the theorem stated in ex. 4.2) give a 
new derivation for the expression of S3 obtained in sect. 3.3. 

4.7. What does ex. 4.3 yield for the problem of ex. 3.3 ? 

4.8. A question on sect. 4.1: What about the particular case n = 2 ? When 
just two points are given, it would be natural to say that the simplest line pass¬ 
ing through them is the straight line, which is uniquely determined. Is this in 
agreement with the standpoint at which we eventually arrived in sect. 4.1(5)? 

4.9. A question on sect. 4.2: What about the particular case in which 

y, = 0 for / = 1, 2,... n 

that is, all the given ordinates vanish? 

4.10. A question on sect. 4.3: Does the polynomial f(x) obtained satisfy all 
clauses of the condition ? Is its degree the lowest possible ? 

4.11. Linear combination or superposition. Let 

Vu K2, V3, •••, Vn 

be n mathematical objects of some clearly stated nature (belonging to some 
clearly defined set) such that their linear combination 

Ci Vi + c2 V2 + c3V3 + • • • + c„ Vn 

formed with any n numbers 

Cl, c2, c3, • • •, cn 

is of the same nature (belongs to the same set). 

Here are two examples. 

(a) Vu V2, V3,..., Vn are polynomials of degree not exceeding a certain 
given number d; their linear combination is again a polynomial of degree not 
exceeding d. 

(b) Vu V2, V3,..., Vn are vectors parallel to a given plane; their linear 
combination (addition means here vector-addition) is again a vector parallel 
to the given plane. 

Example (a) plays a role in sect. 4.3. With regard to sect. 4.4(3) let us ob¬ 
serve that addition and subtraction are special cases of linear combination 
(n = 2; Ci = c2 = 1 and Ci = — c2 = 1, respectively). 

Example (b) is suggestive; such objects as can be linearly combined subject 
to the “usual” laws of algebra are called “vectors,” and their set is called a 
“vector-space,” in abstract algebra. 

Linear combinations (vector-spaces) play a role in several advanced branches 
of mathematics. We can consider here only a few not too advanced examples 
(ex. 4.12, 4.13, 4.14, and 4.15). 
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We use here the two terms “linear combination” and “superposition” in the 
same meaning, but we use the latter term more often. The term “super¬ 
position” is often employed in physics (especially in wave theory). We take 
here just one example from physics, ex. 4.16, which is simple enough for us and 
important in several respects. 

t4.12. Homogeneous linear differential equations with constant coefficients. 
Such an equation is of the form 

/n) + ai/n_1) + • • • + a„_i/ + any = 0 

ai, a2, ..an are given numbers, called the coefficients of the equation; n is the 
order of the equation; y is a function of the independent variable x\y',y“,..., 
y(n) denote, as usual, the successive derivatives of y. A function y satisfying 
the equation is called a solution, or an “integral.” 

(a) Show that a linear combination of solutions is a solution. 
(b) Show that there is a particular solution of the special form 

y = erl 

where r is an appropriately chosen number. 

(c) Combine particular solutions of such special form to obtain a solution 
as general as possible. 

f4.13. Find a function y satisfying the differential equation 

/ = -y 
and the initial conditions 

y = 1, y' = 0 for x = 0 

4.14. Homogeneous linear difference equations with constant coefficients. 
Such an equation is of the form 

y>c + n + a\yk + n -1 +••• + an~ iyk +1 + anyk = 0 

<ii, 02,..., 0n are given numbers, called the coefficients of the equation; n is the 
order of the equation; an infinite sequence of numbers 

yo, yuy*,.. .,yk,. ■. 

which satisfies the equation for Ic = 0, 1, 2,... is called a solution. 

(We may regard yx as a function of the independent variable x defined for 
non-negative integral values of x. On the other hand, we may regard the 
proposed equation as a recursion formula, that is, a uniform rule by virtue 
of which we can compute any term yk + n of the sequence from n foregoing 

terms yk + n-u yk + n-2,..., yk—or yk fromyfc_i, yk-2,..., yk-n.) 

(a) Show that a linear combination of solutions is a solution. 
(b) Show that there is a particular solution of the special form 

yic = rk 

where r is an appropriately chosen number. 
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(c) Combine particular solutions of such special form to obtain a solution 
as general as possible. 

4.15. The sequence of Fibonacci numbers 

0, 1, 1, 2, 3, 5, 8, 13,... 

is defined by the difference equation (recursion formula) 

yk = yic-i + yic-2 

valid for Ic = 2, 3, 4,... and the initial conditions 

To = 0, yi = 1 

Express yk in terms of k. 

4.16. Superposition of motions. Galileo, having found the law of falling 
bodies and the law of inertia, combined these laws to discover the trajectory 
of (the curve described by) a projectile. The reader who realizes how much 
he is helped by modern notation may relive, in a fashion, this discovery of 

Galileo. 
Let x and y denote rectangular coordinates in a vertical plane; the x axis is 

horizontal, the y axis points upward. A projectile (a material point devoid of 
friction) moves in this plane starting from the origin at the instant t = 0; 

t is the time. The initial velocity of the projectile is v, its initial direction 
includes the angle a with the positive x axis. With the actual motion of the 
projectile, we may associate three virtual motions, starting from the same point 

at the same time. 
(a) A heavy material point, starting from rest and falling freely, has, at the 

time t, the coordinates 

*i = 0, y! = - i gt2 

(b) A material point free from gravity, which has received the vertical com¬ 
ponent v sin a of the initial velocity, has, at the time t, by virtue of the law of 
inertia, the coordinates 

*2 = 0, yi = tv sin a 

(c) A material point, free from gravity, which has received the horizontal 
component of the initial velocity, has, at the time t, by virtue of the law of 

inertia, the coordinates 

x3 = tv cos a, y3 = 0 

If the actual motion is compounded from these three virtual motions accord¬ 

ing to the “simplest” assumption, what is its trajectory ? 

Second Part 

Opportunity is offered to the reader to participate in an investigation, 

important phases of which are indicated by ex. 4.17 and ex. 4.24. 

4.17. The multiplicity of approaches. In a tetrahedron two opposite edges 
have the same length a, they are perpendicular to each other, and each is 
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perpendicular to the line of length b that joins their midpoints. Find the 
volume of the tetrahedron. 

There are several different approaches to this problem. The reader who 
needs help may look at some, or all, of the following ex. 4.18-23. If he wishes 

to visualize the spatial relations involved, he may look for a simple orthogonal 
projection, or for a simple cross-section. 

4.18. What is the unknown? The unknown in ex. 4.17 is the volume of a 
tetrahedron. 

How can you find this kind of unknown ? The volume of a tetrahedron can 
be computed if its base and height are given—but neither of these two quan¬ 
tities is given in ex. 4.17. 

Well, what is the unknown ? 

4.19. (Continued) You need the area of a triangle—how can you find this 
kind of unknown ? The area of a triangle can be computed if its base and 
height are given—but only one of these two quantities is given for the triangle 
that forms the base of the tetrahedron of ex. 4.17. 

You need the length of a line—how can you find this kind of unknown? 
The usual thing is to compute the length of a line from some triangle—but, in 

the figure, there is no triangle in which the height of the tetrahedron of ex. 4.17 

would be contained. 
In fact, there is no such triangle; but could you introduce one? At any rate, 

introduce suitable notation and collect whatever you have. 

4.20. Here is a problem related to yours and solved before: “The volume of a 
tetrahedron can be computed if its base and height are given.” You cannot 

apply this to ex. 4.17 immediately, because the base and height of that tetra¬ 
hedron are not given. There may be, however, other, more accessible tetra- 
hedra around. 

4.21. (Continued) And there may be more accessible tetrahedra within. 

4.22. More knowledge may help. Ex. 4.17 is easy for you, if you know the 
prismoidal formula. 

A prismoid is a polyhedron. Two faces of the prismoid, called the lower base 
and the upper base, are parallel to each other; all the other faces are lateral 
faces. The prismoid has three kinds of edges: edges surrounding the lower 
base, edges surrounding the upper base, and lateral edges. Any lateral edge 
of the prismoid (this is an important part of its definition) joins a vertex of the 
lower base to a vertex of the upper base. A prism is a special prismoid. 

The distance between the two bases is the height of the prismoid. A plane 
that is parallel to, and equidistant from, the two bases, the lower and the upper, 
intersects the prismoid in a polygon called the midsection. 

Let V stand for the volume of the prismoid, h for the height, 

L, M, and N 
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for the areas of its lower base, its midsection, and its upper base, respectively. 

Then (this expression for V is called the prismoidal formula) 

(L + 4M + N)h 

V 6 
Apply it to ex. 4.17. 

4.23. Perhaps you have abandoned the path to the solution of ex. 4.17 
that starts from ex. 4.18 and leads through ex. 4.19, but attained the result 
following some other route. If so, look at the result, return to the abandoned 
path, and follow it to the end. 

4.24. The prismoidal formula. Study all sides of the question, consider it 
under various aspects, turn it over and over in your mind—we did so, look at 

Fig. 4.5. Having found four different derivations for the same result, we 
should be able to profit from their comparison.2 

Out of our four derivations, three do not use the prismoidal formula, but 
one does (ex. 4.22). Hence, for that particular case of the prismoidal formula 
that intervenes in the problem treated, we have in fact, implicitly at least, three 
different proofs. Could we render one of these proofs explicit and extend it 
so that it proves that formula not only in a particular case, but generally ? 

On the face of it, which one of the three derivations in question (ex. 4.20, 
ex. 4.21, and ex. 4.18, 4.19, 4.23) appears to have the best chances? 

4.25. Verify the prismoidal formula for the prism (which is a very special 
prismoid). 

4.26. Verify the prismoidal formula for the pyramid (which, in anappropriate 
position, can be regarded as a prismoid—a degenerate, or limiting, case of a 
prismoid if you prefer, with an upper base shrunken into a point). 

4.27. In generalizing the situation that underlies the solution of ex. 4.20, we 

consider a prismoid P split into n prismoids Pu P2,..., Pn which are nonover¬ 
lapping and fill P completely, their lower bases fill the lower base of P, their 
upper bases the upper base of P. (In the case of ex. 4.20, Fig. 4.5b, P is a 
prism with a square base, n = 5, Pu P2, P3, and P4 are congruent tetraljedra, 

Fig. 4.5. Turn it over and over, consider it under various aspects, study all sides. 

In this, we follow Leibnitz’s opinion; see the quotation preceding ex. 3.31. 
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Pa another tetrahedron.) Show: If the prismoidal formula is valid for n 
prismoids out of the n + 1 considered, it is necessarily valid also for the 
remaining one. 

4.28. In generalizing the situation that underlies the solution of ex. 4.22, 
Fig. 4.5d, we let / and n denote opposite edges of a tetrahedron (/ lower, 
n upper). Pass a plane through / parallel to n, and another plane through n 

parallel to /; let h denote the distance of these two (parallel) planes. The 
tetrahedron can be regarded as a prismoid (a degenerate prismoid, if you pre¬ 
fer) of which the edges / and n are the bases, the lower and the upper, respec¬ 
tively, and h the height. (The midsection is a parallelogram.) 

Verify the prismoidal formula for this kind of prismoid. 

4.29. Prove the prismoidal formula generally (by superposition of particular 
cases treated previously). 

4.30. No chain is stronger than its weakest link. Reexamine the solution of 
ex. 4.28. 

4.31. Reexamine the solution of ex. 4.29. 

t4.32. Simpsons rule. Let f(x) be a function defined (and continuous) in 
the interval 

a ^ x ^ a + h 

[a + h 

put I f(x)dx = / 

/(a) = L, f{a + ^ = M, Aa + h) = N 

Then, under certain conditions which we intend to explore, 

/= -g-h 

this expression for I is called Simpson's rule. 
Let n denote a non-negative integer, take 

Ax) = xn, a = — 1, h = 2 

and determine those values of n for which the expression of the integral I by 
Simpson’s rule is valid. 

(Even when Simpson’s rule is not exactly valid, it may be “approximately 
valid,” that is, the difference between the two sides may be relatively small. 
This is frequently the case, and hence Simpson’s rule is important for the 
approximate evaluation of integrals.) 

t4.33. Prove that Simpson’s rule is valid for any polynomial of degree not 
exceeding 3, provided that a = — 1 and h = 2. 

t4.34. Prove that Simpson’s rule is valid for any polynomial of degree not 
exceeding 3 and unrestricted a and h. 
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f4.35. Derive the prismoidal formula from ex. 4.34, using solid analytic 

geometry and integral calculus. (“To appreciate the easy way do it first the 
hard way,” said the traditional mathematics professor.) 

4.36. Widening the scope. In solving some of the foregoing problems we 
actually went beyond the outline of the pattern of superposition formulated 
in sect. 4.4(4). We have, in fact, attained the general solution by superposing 
more accessible particular cases, but these particular cases were not all of the 
same type, they did not all belong to the same special situation. (In the solu¬ 
tion of ex. 4.29, some of the superposed solids are pyramids, treated in ex. 4.26, 
others are tetrahedra in a special position, treated in ex. 4.28. Also in the 
solution of ex. 4.33, we superpose cases of different nature.) Essentially, we 
deviated from the formulation of sect. 4.4(4) in just one point: we did not start 
from one leading special situation, but from several such situations. Let us, 
therefore, enlarge the outline of our pattern: Starting from a leading special 
situation, or from several such situations, we attain the general solution by 
superposition of particular cases. 

The pattern of superposition points out a path from a leading special case 
(or from a few such cases) to the general case. There is a very different con¬ 
necting path between the same endpoints with which the ambitious problem- 
solver should be equally acquainted: it is often possible to reduce the general 
case to a leading special case by an appropriate transformation. (The general 
case of ex. 4.34 is reduced to the special case of ex. 4.33 by a transformation of 
the variable of integration.) For a suggestive discussion of this topic see 
J. Hadamard, Lemons de giometrie ilementaire. Giomitrie plane, 1898; 
Mdthodes de transformation, pp. 272-278. 





PART TWO 

TOWARD A GENERAL 
METHOD 

Human wisdom remains always one and the same 

although applied to the most diverse objects and it is 

no more changed by their diversity than the sunshine 

is changed by the variety of objects 

which it illuminates. 

Descartes: Rule I, CEuvres, vol. X, p. 360. 





CHAPTER 5 

PROBLEMS 

The solution of problems is the most characteristic and 

peculiar sort of voluntary thinking. 

WILLIAM JAMES 

5.1. What is a problem? 

In what follows, the word “problem” will be taken in a very compre¬ 

hensive meaning. Our first task is to outline this meaning. 

Getting food is usually no problem in modern life. If I get hungry 

at home, I grab something in the refrigerator, and I go to a coffeeshop or 

some other shop if I am in town. It is a different matter, however, when 

the refrigerator is empty or I happen to be in town without money; in such 

a case, getting food becomes a problem. In general, a desire may or may 

not lead to a problem. If the desire brings to my mind immediately, 

without any difficulty, some obvious action that is likely to attain the 

desired object, there is no problem. If, however, no such action occurs 

to me, there is a problem. Thus, to have a problem means: to search 

consciously for some action appropriate to attain a clearly conceived, but not 

immediately attainable, aim. To solve a problem means to find such action. 

A problem is a“great”problem if it is very difficult, it is just a“little” 

problem if it is just a little difficult. Yet some degree of difficulty belongs 

to the very notion of a problem: where there is no difficulty, there is no 

problem. 

A typical problem is to find the way to a preassigned spot in some little 

known region. We can easily imagine how serious this problem was for 

our primitive ancestors who dwelt in a primeval forest. This may or may 

not be the reason that the solution of any problem appears to us somehow 

as finding a way: a way out of a difficulty, a way around an obstacle. 

The greater part of our conscious thinking is concerned with problems. 

When we do not indulge in mere musing or daydreaming, our thoughts 

are directed towards some end, we seek ways and means to that end, we 

try to think of some course following which we could attain our aim. 

117 
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Solving problems is the specific achievement of intelligence, and intelli¬ 

gence is the specific gift of man. The ability to go round an obstacle, to 

undertake an indirect course where no direct course presents itself, raises 

the clever animal above the dull one, raises man far above the most clever 

animals, and men of talent above their fellow men. 

Nothing is more interesting for us humans than human activity. The 

most characteristically human activity is solving problems, thinking for a 

purpose, devising means to some desired end. Our aim is to under¬ 

stand this activity—it seems to me that] this aim deserves a good deal of 

interest. 

In the foregoing, we have studied elementary mathematical problems, in 

grouping together problems accessible to the same method of solution. 

We have acquired so a certain experimental basis and, from this basis, 

we shall now try to ascend to higher generality, attempting to embrace, as 

far as possible, also nonmathematical problems. To aim at a general 

method applicable to all sorts of problems may seem too ambitious, but 

it is quite natural: although the variety of problems we may face is infinite, 

each of us has just one head to solve them, and so we naturally desire just 

one method to solve them. 

5.2. Classification of problems 

A student is taking a written examination in mathematics; he is just an 

average student, but he did some work to prepare himself for this exami¬ 

nation. After having read a proposed problem, he may ask himself: 

“What kind of problem is this?” In fact, it could be to his advantage to 

ask this question: if he can classify his problem, recognize its type, place it 

in such and such a chapter of his textbook, he has made some progress: 

he may now recall the method he has learned for solving this type of 

problem. 

The same holds, in a sense, for all levels of problem solving. The 

question “What kind of problem is this?” leads to the next question “What 

can be done about this kind of problem?” and these questions may be 

asked with profit even in quite advanced research. 

And so it may be useful to classify problems, to distinguish problems of 

various types. A good classification should introduce such types that the 

type of problem may suggest the type of solution. 

We shall not enter now upon a detailed, or attempt a perfect, classifica¬ 

tion. In interpreting with some latitude a tradition which goes back to 

Euclid and his commentators, we just wish to characterize two very general 

types of problems. 

Euclid’s Elements contain axioms, definitions, and “propositions.” 



PROBLEMS 119 

His commentators and some of his translators distinguish two kinds of 

“propositions”: the aim of the first kind (the Latin name is “problema”) 

is to construct a figure, the aim of the second kind (the Latin name is 

“theorema”) is to prove a theorem. In extending this distinction, we shall 

consider two kinds of problems, problems “to find” and problems “to 

prove.” The aim of a problem to find is to find (construct, produce, obtain, 

identify,...) a certain object, the unknown of the problem. The aim of a 

problem to prove is to decide whether a certain assertion is true or false, 

to prove it or disprove it. 

For instance, when you ask “What did he say ?” you pose a problem to 

find. Yet, when you ask “Did he say that?” you pose a problem to prove. 

For more details about these two kinds of problems see the next two 

sections. 

5.3. Problems to find 

The aim of a “problem to find” is to find a certain object, the unknown 

of the problem, satisfying the condition of the problem which relates the 

unknown to the data of the problem. Let us consider two examples. 

“Being given two line-segments a and b, and the angle y, construct the 

parallelogram of which the given line-segments are adjacent sides including 

the angle y.” 

“Being given two line-segments a and b, and the angle y, construct the 

parallelogram of which the given line-segments are the diagonals including 

the angle y.” 

In both problems, the data are the same: the line-segments a and b, and 

the angle y. In both problems, the unknown is a parallelogram and so 

our problems are not a priori distinguishable by the nature of the unknown. 

What makes a difference between our two problems is the condition, the 

required relation between the unknown and the data: of course, the rela¬ 

tion of the parallelogram to its sides differs from its relation to its diagonals. 

The unknown may be of every imaginable category. In a problem of 

geometric construction the unknown is a figure, for instance a triangle. 

When we are solving an algebraic equation, our unknown is a number, a 

root of that equation. When we ask “What did he say?” the unknown 

may be a word, or a sequence of words, a sentence, or a sequence of sen¬ 

tences, a speech. A problem clearly stated must specify the category (the 

set) to which the unknown belongs; we have to know from the start what 

kind of unknown we are supposed to find: a triangle, or a number, or a 

word, or.... 

A problem clearly stated must specify the condition that the unknown 

has to satisfy. In the set of objects specified by the problem to which the 
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unknown must belong, there is the subset of those objects that satisfy the 

condition, and any object belonging to this subset is called a solution. 

This subset may contain just one object: then the solution is unique. This 

subset may be empty : then there is no solution. (For remarks on the 

term “solution” see ex. 5.13.) We observe here that a problem to find 

can be taken in various meanings. Taken in a strict sense, the problem 

demands to find (produce, construct, identify, list, characterize,...) all 

the solutions (the entire subset mentioned above). Taken in a less strict 

sense, the problem may ask for just one (any one) solution, or some 

solutions. Sometimes it is enough to decide the existence of a solution, 

that is, to decide whether the set of solutions is empty or not. It is usual 

to take mathematical problems in the strict sense unless the contrary is 

explicitly stated, but for many practical problems the “strict sense” would 

make little sense. 

When we deal with mathematical problems (unless the context hints the 

contrary) we shall use the phrase “the data” to denote all the given 

(known, granted,...) objects (or their full set) connected with the unknown 

by the condition. If the problem is to construct a triangle from its sides 

a, b, and c, the data are the three line-segments a, b, and c. If the problem 

is to solve the quadratic equation 

x2 + ax + b = 0 

the data are the two given numbers a and b. A problem may have just 

one datum, or no data at all. Here is an example: “Find the ratio of the 

area of a circle to the area of a circumscribed square.” The required 

ratio is independent of the size of the figure and so it is unnecessary to give 

the length of the radius or some other datum of this kind. 

We shall call the unknown, the condition, and the data the principal 

parts of a problem to find. In fact, we can not reasonably hope to solve a 

problem that we do not understand. Yet, to understand a problem, we 

should know, and know very well, what is the unknown, what are the data, 

and what is the condition. And so it is advisable when we are working 

at a problem to pay especial attention to its principal parts. 

5.4. Problems to prove 

There is a rumor that, on a certain occasion. Secretary Soandso used an 

extremely crude expression (which we shall not reproduce here) in referring 

to Congressman Un Tel. It is just a rumor to which considerable doubt 

is attached. Yet the question “Did he say that?” has agitated many 

persons, was debated in the press, mentioned in a congressional commit¬ 

tee, and may reach the courts. Whoever takes the question seriously has a 
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“problem to prove” on his hands: he should lift the doubt about the 

rumor, he should prove the use of the alleged expression or disprove it, 

and proof or disproof should be supported by the best evidence available. 

When we have a mathematical “problem to prove,” we should lift the 

doubt about a clearly stated mathematical assertion A, we should prove 

A or disprove A. A celebrated unsolved problem of this kind is to prove 

or disprove Goldbach’s conjecture: If the integer n is even and n > 4, then 

n is the sum of two odd primes.1 

Goldbach’s assertion (it is a mere assertion, we do not know yet whether 

it is true or false) is stated here in the most usual form of mathematical 

propositions: it consists of hypothesis and conclusion; the first part starting 

with “IP’ is the hypothesis, the second part starting with “then” is the 

conclusion.2 

When we have to prove or disprove a mathematical proposition stated 

in the most usual form, the hypothesis and the conclusion of the proposition 

are appropriately called the principal parts of our problem. In fact, these 

principal parts deserve our especial attention. To prove the proposition 

we should discover a binding logical link between the principal parts, the 

hypothesis and the conclusion; to disprove the proposition we should show 

(by a counter-example, if possible) that one of the principal parts, the 

hypothesis, does not imply the other, the conclusion. Many mathe¬ 

maticians, great and small, tried to lift the doubt about Goldbach’s con¬ 

jecture, but without success: although very little knowledge is needed to 

understand the hypothesis and the conclusion, nobody has succeeded yet 

in linking them with a strict argument, and nobody has been able to 

produce a counter-example. 

5.5. The components of the unknown, the clauses of the condition 

If our problem is to construct a circle, we have to find, in fact, two things: 

the center of the circle and its radius. It may be advantageous to sub¬ 

divide our task: of the two things wanted, the center and the radius, we 

may try to find first one then the other. 

If our problem is to find a point in space and we use analytic geometry, 

we have to find, in fact, three numbers : the three coordinates x, y, and z 

of the point. 

1 MPR, vol. 1, pp. 4-5. 

2 There are mathematical propositions which cannot be naturally split into hypo¬ 

thesis and conclusion; see HSI, p. 155, Problems to find, problems to prove, 4. Here is 

a proposition of this kind: “In the decimal fraction of the number n there are nine 

consecutive digits 9.” To prove or disprove this proposition is a definite mathe¬ 

matical problem—which seems to be, at present, hopelessly difficult. “A fool can 

ask more questions than nine wise men can answer.” 
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According to the viewpoint which we prefer, we can say that, in our first 

example, there are two unknowns or just one unknown and, in our second 

example, there are three unknowns or just one unknown. There is, how¬ 

ever, still another viewpoint which is often advantageous: we may say 

that, in both examples, there is just one unknown, but it is, in a sense, 

“subdivided.” Thus, in our first example, the circle is the unknown, but it 

is a bipartite or two-component unknown; its components are its center and 

its radius. Similarly, in our second example, the point is a tripartite or 

three-component unknown; its components are its three coordinates x, y, 

and z. Generally, we may consider a multipartite or multicomponent 

unknown x having n components xu x2,..., xn. 

One advantage of the terminology we have just introduced is that, in 

certain general discussions, we need not distinguish between problems 

with one unknown and problems with several unknowns: in fact, we can 

reduce the latter case to the former by considering those several unknowns 

as components of one unknown. For instance, what we have said in 

sect. 5.3 applies essentially also to problems where we have to find several 

unknowns, although this case has not been explicitly mentioned in sect. 

5.3. We shall see later that our terminology is useful in various contexts. 

If our problem is a problem to find, there may be advantage in sub¬ 

dividing the condition into several parts or clauses as we have had ample 

opportunity to observe. In solving a problem of geometric construction, 

we may split the condition into two parts so that each part yields a locus 

for the unknown point (chapter 1). In solving a “word problem” by 

algebra, we split the condition into as many parts as there are unknowns, so 

that each part yields an equation (chapter 2). 

If our problem is a problem to prove, there may be advantage in sub¬ 

dividing the hypothesis, or the conclusion, or both, into appropriate parts 

or clauses. 

5.6. Wanted: a procedure 

In constructing a figure in the style of Euclid’s Elements, we are not free 

to choose our tools or instruments: we are supposed to construct the figure 

with ruler and compasses. Thus, the solution of the problem consists, in 

fact, in a sequence of well-coordinated geometric operations which start 

from the data and end in the required figure: our operations are drawing 

straight lines and circles, and determining their points of intersection. 

This example may open our eyes and, looking sharper, we may perceive 

that the solution of many problems consists essentially in a procedure, a 

course of action, a scheme of well-interrelated operations, a modus 

operandi. 
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Take the problem of solving an equation of the second (or third, or 

fourth) degree. The solution consists in a scheme of well-coordinated 

algebraic operations which start from the data, the given coefficients of the 

equation, and end in the required roots: our operations are adding, sub¬ 

tracting, multiplying, or dividing given, or previously obtained, quantities, 

or extracting roots from such quantities. 

Or consider a problem “to prove.” The solution of the problem, the 

result of our efforts, is a proof, that is, a sequence of well-coordinated 

logical operations, of steps which start from the hypothesis and end in the 

desired conclusion of the theorem: each step infers some new point from 

appropriately chosen parts of the hypothesis, from known facts, or from 

points previously inferred. 

Nonmathematical problems present a similar aspect. The builder of a 

bridge has to organize, coordinate, bring into a coherent scheme a tremen¬ 

dous multiplicity of operations: constructing approaches, shipping sup¬ 

plies, erecting scaffoldings, pouring concrete, riveting metallic parts, etc. 

etc. Moreover, he may be obliged to interrelate these operations with 

others of a very different nature: with financial, legal, even political trans¬ 

actions. All these operations depend on each other: most of them suppose 

that certain others have been previously performed. 

Or take the case of the mystery story. The unknown is the murderer; 

the author tries to impress us by the performance of the detective-hero who 

devises a scheme, a course of action which, starting from the first indica¬ 

tions, ends in recognizing and trapping the murderer. 

The object of our quest may be an unknown of any nature or the dis¬ 

covery of the truth about any kind of question; our problem may be theo¬ 

retical or practical, serious or trifling. To solve our problem, we have to 

devise a well-conceived, coherent scheme of operations, of logical, mathe¬ 

matical, or material operations proceeding from the hypothesis to the 

conclusion, from the data to the unknown, from the things we have to the 

things we want. 

Examples and Comments on Chapter 5 

5.1. Of a right prism with square base, find the volume V, being given the 
length a of a side of the base and the height h of the prism. 

What is the unknown? What are the data ? What is the condition? 

5.2. Find two real numbers x and y satisfying the equation 

x2 + y2 = 1 

What is the unknown? What are the data? What is the condition? 
Describe the set of solutions. 
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5.3. Find two real numbers x and y satisfying the equation 

x2 + y2 = -1 

Describe the set of solutions. 

5.4. Find two integers x and y satisfying the equation 

x2 + y2 = 13 

Describe the set of solutions. 

5.5. Find three real numbers x, y, and z such that 

\*\ + \y\ + \A < i 

(1) Describe the set of solutions. 

(2) Modify the problem by substituting ^ for <, and describe the set of 
solutions for the modified problem. 

5.6. State the theorem of Pythagoras. 

What is the hypothesis? What is the conclusion? 

5.7. Let n denote a positive integer and d(n) the number of divisors of n 
(we mean positive integral divisors including 1 and n). For example 

6 has the divisors 1, 2, 3, 6; d(6) = 4 

9 has the divisors 1, 3, 9 ; d(9) = 3 

Consider the proposition: 

d(n) is odd or even according as n is, or is not, a square. 
What is the hypothesis ? What is the conclusion ? 

5.8. To prove or to find? Are the two numbers V3 + VT\ and V5 + V8 

equal? If they are not, which one is greater? 
Restated in a generalized form, the problem is concerned with two numbers 

a and b, well defined by arithmetic operations, and requires of us to decide 
which one of the three possible cases 

a = b, a > b, a < b 

is actually true. 
We may perceive different aspects of this problem. 

(1) First, we have to prove or disprove the proposition a = b. If it turned 
out that this proposition is false, we have to prove or disprove the proposition 
a > b. We may tackle these two tasks also in the reverse order, or perhaps 

simultaneously; at any rate, we have here two problems to prove, linked with 
each other. 

(2) There is a notation extensively used in various branches of mathematics: 
sgn x (read “the sign of x" or “signum x”) is defined as follows: 

{1 when x > 0 

0 when x = 0 

— 1 when x < 0 

sgn x = 
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The problem stated requires of us to find the number sgn (a — b): this is a 
problem to find. 

There is no formal contradiction (there need not be one if our terminology is 
carefully devised): in (1), we have a problem A consisting of two linked, simul¬ 
taneously stated, problems to prove; in (2), we have a problem B, which is a 
problem to find. We do not regard these two problems A and B, stated in 
different terms, as identical—but they are equivalent. (This usage of the term 
“equivalent” is explained in HS1, Auxiliary problem 6, pp. 53-54, and will be 
explained again in Chapter 9.) 

Moreover, there is no material disadvantage. On the contrary, it may be 
a good thing to see two different aspects of the same difficulty: one aspect may 
appeal more to us than the other, it may show a more accessible side and so 
give us a chance to attack the difficulty from that more accessible side. 

5.9. More problems. Take any problem (there are many in the foregoing 

chapters), determine whether it is a problem “to find” or one “to prove,” and 
ask accordingly: 

What is the unknown? What are the data? What is the condition? 
What is the conclusion ? What is the hypothesis ? 
The aim of these questions here is just to familiarize you with the principal 

parts of problems. Yet, experience may show you that these questions, if 
seriously asked and carefully answered, are a great help in problem solving: 
in focusing your attention upon the principal parts of the problem, they 
deepen your understanding of the problem and they may start you in the right 
direction. 

5.10. The procedure of solution may consist of an unlimited sequence of opera¬ 
tions. If we are required to solve the equation 

x2 = 2 

our task can be interpreted in various ways. The interpretation may be: 
“Find the positive square root of 2 to five significant figures”; in this case we 
fully discharge our duty in producing the decimal fraction 1.4142. Yet, the 
interpretation may also be “Extract the square root of 2” without any addi¬ 
tional qualification or alleviation, and then we cannot perform our task by 
producing four, or any other given number of figures after the decimal point: 

the answer must be a procedure, a scheme of arithmetical operations that can 
yield any required number of decimal figures. 

Here is another example: “Find the ratio of the area of the circle to the area 
of the circumscribed square.” The answer is 7r/4 if we take the value of n for 

granted. Leibnitz gave the answer (expressed the ratio n/4) in form of an 
infinite series 

!_! !_! !__L 
1 3 + 5 7 + 9 11 +"' 

This series prescribes, in fact, a never ending sequence of arithmetical opera¬ 
tions which can lead us to any number of figures in the decimal fraction of n 
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(in theory—in practice the procedure is much too slow). “Although this 
series, as it stands, is not suitable for a rapid approximation, but to present to 
the mind the ratio of the circle to the circumscribed square, I do not think 
that anything more suitable or more simple can be imagined,” says Leibnitz.3 

5.11. Squaring the circle. In solving a problem “to find” we seek an object, 
the “unknown” object, and very often we are led to seeking a procedure (a 
sequence of operations) to obtain that object—let us call the procedure sought, 
just for the sake of neater distinction, the “operational unknown.” That a 
neat distinction is very desirable here may be illustrated by a historic example. 

Being given the radius of a circle, construct with ruler and compasses a square 
having exactly the same area as the circle. 

This is the strict form of the celebrated ancient problem of “squaring the 
circle” which originated with the early Greek geometers. We emphasize that 
the problem prescribes the nature of the procedure (of the “operational un¬ 
known”): we should construct a side of the desired square with straightedge 
and compasses, by drawing straight lines and circles, in using only points 
given or obtained by the intersection of previously drawn lines. And, of 
course, starting from the two endpoints of the given radius, we should attain 
the two endpoints of a side of the desired square in a finite number of steps. 

After many centuries, in which an uncounted number of persons attempted 
the solution, it was proved (by F. Lindemann in 1882) that there is no solution: 
The square having the same area as the given circle undoubtedly “exists” (its 
side can be approximated to any given precision by various infinite processes 
known today, one of which is provided by the celebrated series of Leibnitz 
mentioned in ex. 5.10). Yet, a procedure of the desired kind (consisting of a 
finite sequence of operations with straightedge and compasses) does not exist. 
I wonder whether a clear distinction between the desired figure and the desired 
procedure, between the “unknown object” and the “operational unknown,” 
would have diminished the number of unfortunate circle-squarers. 

5.12. Sequence and consequence. In the construction of a bridge, fixing a 
prefabricated metallic piece in its proper place is an important operation. It 
may be essential that of two such operations one should precede the other 
(when the second piece cannot be fastened unless the first has been fastened 

before), but again it may be unessential (when the two pieces are independent). 
Thus, it may or may not be necessary to observe a definite sequence in the per¬ 

formance of two operations. Similarly, the steps of a proof are presented 
successively in a lecture or in print. Yet, a step may precede another step in 
time without preceding it in logic. We must distinguish between sequence 
and consequence, between succession in time and logical concatenation. 
(We shall return to this important matter in chapter 7.) 

5.13. An unfortunate ambiguity. The word “solution” has several different 

meanings, some of which are very important and would deserve to be desig¬ 
nated by an unambiguous term. In default of better ones, I propose a few 
such terms (adding a German equivalent to each). 

3 Philosophische Schriften, edited by Gerhardt, vol. IV, p. 278. 
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Solving object (Losungsgegenstand) is an object satisfying the condition of 
the problem. If the aim of the problem is to solve an algebraic equation, a 
number satisfying the equation, that is, a root of the equation, is a solving 
object. Only a problem “to find” can have a solving object. A category 
(set) to which the solving object belongs must be specified in advance in a 
clearly stated problem—we must know in advance whether we seek a triangle, 
or a number, or what not. In fact, such specification (the precise designation 
of a set to which the unknown belongs) is a principal part of the problem. 
“To find the unknown” means to find (identify, construct, produoe, obtain,...) 
the solving object (the set of all solving objects). 

Solving procedure (Losungsgang) is the procedure (the construction, the 
scheme of operations, the system of conclusions) that ends in finding the 

unknown of a problem to find, or in lifting the doubt about the assertion pro¬ 
posed by a problem to prove. Thus, “solving procedure” is a term applicable 
to both kinds of problems. At the beginning of our work, we do not know 
the solving procedure, the appropriate scheme of operations, but we are seek¬ 
ing it all the time in the hope that we shall know it at the end: this procedure is 
the aim of our quest, it is effectively, in a sense, our unknown, it is, let us say, 
our “operational unknown.” (Cf. ex. 5.11.) 

We could also talk about the “work of solving” (Losungsarbeit) and the 

“result of solving” (Losungsergebnis), but, in fact, I shall try not to appear too 
fussy and, except in a few important cases, I shall leave it to the reader to 
discover from the context what the word “solution” means in a given case: 
whether it means the object, the procedure, the result of the work, or the 

work itself.4 

5.14. Data and unknown, hypothesis and conclusion. Euclid’s Elements 
have a peculiar consistent style which some of us may be inclined to call 

solemn and others pedantic. All propositions are phrased according to a set 
pattern and, in this phrasing, the data and the unknown of a problem to find 
are so treated as if they were similar, or parallel, to the hypothesis and the 
conclusion of a problem, respectively. In fact, there is, as we shall see later, 
a certain similarity or parallelism between these principal parts of the two kinds 
of problems, which is of some importance from the problem-solver’s viewpoint, 
and so from the viewpoint of our subject. Yet, it is inadmissible and illiterate 

to mix up the terms data and hypothesis or the terms unknown and conclusion 
and to apply any one of these terms to the kind of problem for which it is unfit. 
It is sad that such inadmissible and illiterate use of these important terms 
occurs sometimes even in print. 

5.15. Counting the data. A triangle is determined by three sides, or by two 
sides and one angle (the included angle), or by one side and two angles, but it 
is not determined by three angles: 3 independent data are required to determine 
a triangle. (See also ex. 1.43 and 1.44.) To determine a polynomial of 
degree n in one variable (in x) n + 1 independent data are required: the n + 1 
coefficients in the expansion of the polynomial in powers of x, or the n + 1 

4 Cf. HSI, p. 202; Terms, old and new, 8. 
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values taken by the polynomial at the points x = 0,1, 2,..., n, or at any other 
n + 1 different given points, and so on. There are many important kinds of 
mathematical objects to determine which a definite number of independent 
data is required. Therefore, when we are solving a problem to find, it is often 
advantageous to count the data, and to count them early. 

5.16. To determine a polygon with n sides 

(n - 1) + (/! - 2) = (/i - 3) + n = 3 + 2(/i - 3) = 2/j - 3 

independent data are required. What do these four different expressions for 
the same number suggest to you? 

5.17. How many data are required to determine a pyramid the base of 
which is a polygon with n sides ? 

5.18. How many data are required to determine a prism (which may be 
oblique) the base of which is a polygon with n sides? 

5.19. How many data are required to determine a polynomial of degree n 

in v variables? (Its terms are of the form cx1mix2mi.. .xvm« where c is a 
constant coefficient and Wi + w2 H-I- g n.) 



CHAPTER 6 

WIDENING THE SCOPE 

Divide each problem that you examine into as many parts as you 

can and as you need to solve them more easily. 

Descartes: (Euvres, vol. VI, p. 18; Discours de la M6thode, Part II. 

This rule of Descartes is of little use as long as the art 

of dividing.. .remains unexplained.... By dividing his 

problem into unsuitable parts, the unexperienced problem-solver 

may increase his difficulty. 

Leibnitz: Philosophische Schriften, edited by Gerhardt, vol. IV, p. 331. 

6.1. Wider scope of the Cartesian pattern 

There are important methodical ideas involved in the Cartesian pattern 

that are not necessarily connected with the setting up of equations. The 

present chapter undertakes to disentangle some such ideas. We shall pass 

cautiously from equations to more general concepts. We begin with an 

example which is sufficiently general in some respects, but very concrete 

in another respect; it indicates the direction of our subsequent work. 

(1) A certain problem has been translated into a system of four equa¬ 

tions with four unknowns, xu x2, x3, and xt. This system has a peculiar 

feature: not all of its equations involve all the unknowns. Now, we wish 

to emphasize just this feature: our notation will clearly show which equa¬ 

tion involves which unknowns, but it will neglect other details. In fact, 

we write the four equations as follows: 

ri(*i) = 0 
r2(xu x2, x3) = 0 

r3(*i, *2, *a) = 0 
r*(xi, x2, x3, x4) = 0 

129 
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That is, the first equation contains just the first unknown, xu whereas the 

next two equations contain the first three unknowns, xu x2, and x3, and 

only the last, fourth, equation contains all the four unknowns. 

This situation suggests an obvious plan to deal with the proposed system 

of equations: We begin with xx which we compute from the first equation. 

Having obtained the value of xu we observe that the next two equations 

form a system from which we can determine the next two unknowns, x2 

and x3. Having so obtained xu x2, and xa, we use the last, fourth, equa¬ 

tion to compute the last unknown x4. 

(2) Let us now realize that the system of equations considered expresses 

the condition of a problem. This condition is split into four parts and 

each single equation represents a part (or clause, or proviso) of the full 

condition: the equation expresses that the unknowns involved are con¬ 

nected with each other and with the data by just such a relation as the 

corresponding part, or clause, of the condition prescribes. And so 

the condition has a peculiar feature: not all of its clauses involve all the 

unknowns. Our notation clearly shows which clause involves which 

unknowns. 

Of course, the condition can be split into clauses in just this peculiar 

manner (with each clause involving just the indicated particular combina¬ 

tion of unknowns) even if we have not yet translated those clauses into 

equations, or even if we are not able to translate those clauses into equa¬ 

tions. We may suspect that the plan sketched above, under (1), for a 

system of equations may remain valid in some sense for a system of clauses 

even if those clauses are not expressed, or are not expressible, algebraically. 

This remark opens a broad vista of new possibilities. 

(3) In order to see these possibilities more clearly we have to reinterpret 

our notation. 

Till now we have interpreted the symbol r(xu x2,..., xn) in the usual way 

as an algebraic expression in (or a polynomial in, or a function of) the 

unknown (variable) numbers xu x2,..., xn. And so we have interpreted 

r(xi, x2,..., x„) = 0 

as an (algebraic) equation linking the unknowns xu x2,..., xn. If we deal 

with a problem in which xu x2,..., xn are unknowns, such an equation 

expresses a part of the condition (a clause or a proviso of the condition), 

that is, a relation between the unknowns xu x2.xn and the data re¬ 

quired by the condition. 

We do not repudiate this interpretation but we do extend it: Even if the 

clause is not translated into an equation, or even if xu x2.xn are not 
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unknown numbers but unknown things of any kind, the symbolic equation 

r(xi, x2,...,xn) = 0 

should express a relation, required by the condition of the problem, which 

involves the indicated unknowns jc. , x2.xn. We may also say that such 

a symbolic equation expresses a part of the condition (a clause, proviso, 

stipulation, or requirement imposed by the condition). 

We need a few examples to understand properly this extended scope of 

the notation, and still more examples to convince ourselves that this exten¬ 

sion is useful. 

(4) The notation that we have just introduced can be suitably illustrated 

by crossword puzzles. Let us look at a (miniature) example. 

1 5 6 

m jjjj 
2 

j§ 
3 

Across 

1. German mathematician 

2. Do not write beaus 

3. Swiss mathematician 

Down 

1. Do not write dagre 

5. This is boring as 

6. Reset reset. 

In a crossword puzzle the unknowns are words. Let xu x2.jc6 

stand for the six unknown words of our puzzle. Both words and x4 

have their initial letter in the same square numbered 1, but xx should be 

written horizontally across and x4 vertically downward; if n = 2, 3, 5, or 6, 

xn stands for the word the initial letter of which should be written in the 

square numbered n. If we spell out pedantically the conditions implied 

by the square diagram that contains black and white, numbered and 

unnumbered, smaller squares, we have a system of 21 conditions. 

There are the six most conspicuous conditions expressed by the “clues.” 

Let us represent them by 

ri(*i) = 0, r2(x2) = 0, ..., rg(xg) = 0 

Thus, the symbolic equation r1(x1) = 0 represents the condition that the 

word is the name (we hope the last name) of a German mathematician; 
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r4(x4) = 0 expresses the import of the (for the moment, rather cryptic) 

sentence, “Do not write dagre,” and so on. 

There are the six conditions, visible from the diagram, concerned with 

the lengths of the six unknown words: 

r7(*i) = 0, rB(x2) = 0. r12(xB) = 0 

For instance, r7(x^) = 0 prescribes the length of the word x^ The mean¬ 

ing in our case is that each of the words, xu x2.xB should be a five- 

letter word. 

The diagram shows which word crosses which other and where, and so 

implies nine conditions: 

ri3(*i, *4) = 0, r14(*i, xB) = 0, r1B(xlt x6) = 0 

rie(x2, x4) = 0, r17(x2, x5) = 0, r1B(x2, x6) = 0 

-*4) = 0, r2o(x3, xB) = 0, r2i(x:3, xB) = 0 

For example, rn(xlt xB) = 0 stipulates that the third letter of the word xx 

is the initial of the word xB, and so on. 

Now, we have listed all conditions; their number is 6 + 6 + 9 = 21. 

(5) In general, if the problem involves n unknowns xu x2.xn and 

we split the condition into / different parts (requirements, stipulations, 

clauses, provisos) we have a system of / relations connecting n unknowns 

which we may express by a system of / symbolic equations connecting those 

n unknowns as follows: 

x2.x„) = 0 

r2(xu x2.xn) = 0 

n(xu x2.x„) = 0 

In chapter 2 we were concerned with the particular case in which the un¬ 

knowns xu x2.xn are unknown numbers, the equations not merely 

symbolic, but actual algebraic equations, and l = n. In the present 

chapter we shall often be concerned with special situations, such as that 

discussed under (1) and (2), in which not all the clauses involve all the 

unknowns. 

(6) It can happen that two problems are expressed by the same system 

of symbolic equations. Such problems may deal with very different 

matters, but they have something in common: They are similar to each 

other in some (rather abstract) respect, we may put them into the same 

class. In this way we obtain a new, more refined, classification of prob¬ 

lems (of problems to find). Has this classification some interest for our 

study? If two problems are expressed by the same system of symbolic 

equations, is there a procedure of solution applicable to both? 



WIDENING THE SCOPE 133 

This is a good question, I think. Taken in full generality it may be not 

very useful, but it helps to understand the special situations which we are 

going to discuss. 

6.2. Wider scope of the pattern of two loci 

In the foregoing sect. 6.1 we have outlined a very general picture. How 

do our former observations fit into this picture? How does the very first 

pattern that we have discerned fit into it? 

(1) We may give the answer in a more striking form if we adapt our 

terminology. 

In dealing with geometric constructions, we considered “loci.” Such a 

locus is really just a set of points. In what follows we shall call a set a 

locus if it intervenes in the solution of a problem in a certain characteristic 

manner which will be indicated by the following examples. As the term 

“set,” see ex. 1.51, has already so many synonyms (class, aggregate, collec¬ 

tion, category) it may seem wanton to add one more. Yet the term “locus” 

may remind us of our experience with certain elementary geometric prob¬ 

lems and so it may suggest, by analogy, useful steps when we are dealing 

with other, perhaps more difficult, problems. 

(2) Two loci for a point in the plane. Let us return to the very first 

example that we have discussed: Construct a triangle being given its three 

sides. 

Let us look back at the familiar solution (sect. 1.2). By laying down one 

side, say a, we locate two vertices, B and C, of the required triangle. Just 

one more vertex remains to be found; call this third vertex, still unknown 

at this stage of our work, x. The condition requires two things of this 

point x: 

(rx) the point x is at the given distance b from the given vertex C, 

(r2) the point x is at the given distance c from the given vertex B. 

Using the notation introduced in sect. 6.1, we write these two require¬ 

ments, (rx) and (r2), as two symbolic equations: 

ri(x) = 0 
r2(x) = 0 

The points x satisfying the first requirement (rx) (the first of the two 

symbolic equations) fill the periphery of a circle (with center C and radius 

b). This circular line forms the set, or locus, of all points complying with 

the requirement (rx). The locus of the points satisfying the second 

requirement (r2) (the second symbolic equation) is another circular line. 

Now, the point x that solves the proposed problem about the triangle has 
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to satisfy both requirements, it must belong to both loci. Therefore, the 

intersection of these two loci is the set of the solutions of the proposed 

problem. This set contains two points: there are two solutions, two 

triangles symmetric to each other with respect to the side BC. 

(3) Three loci for a point in space. We consider the following problem 

of solid geometry, which is analogous to the simple problem of plane 

geometry that we have just discussed, under (2): Find a tetrahedron being 

given its six edges. 

By the procedure that we have just recalled, under (2), we construct the 

base of the tetrahedron, a triangle, from the three edges that are required 

to surround it. Laying down the base, we locate three vertices of the 

tetrahedron, say A, B, and C. Just one more vertex remains to be found; 

call this fourth vertex, still unknown at this stage of our work, x, and call 

the given distances from the three already located vertices a, b, and c, 

respectively. The condition requires three things of the point x : 

(ri), x is at the distance a from the point A, 

(r2), x is at the distance b from the point B, 

(r3), x is at the distance c from the point C. 

Using the notation introduced in sect. 6.1, we write these three require¬ 

ments, (Ti), (r2), and (r3), as three symbolic equations 

Ti(jc) = 0 

r2(x) = 0 

r3(x) = 0 

The points x satisfying the first requirement (rx) (the first symbolic 

equation) fill the surface of a sphere (with center A and radius a). This 

spherical surface forms the set, or locus, of all points complying with the 

first requirement (r^. To each of the other two requirements there 

corresponds a spherical surface, the locus of the points x satisfying that 

requirement. Now the point x that solves the proposed problem about 

the tetrahedron has to satisfy all three requirements, it must belong to all 

three loci. Therefore, the intersection of these three loci (three spheres) 

is the set of the solutions of the proposed problem. This set contains two 

points: there are two solutions, two tetrahedra symmetric to each other 

with respect to the plane of the triangle ABC. 

(4) Loci for a general object. The examples discussed under (2) and (3) 

may remind us of several other problems that we have solved in chapter 1 

following the same pattern. Behind these examples we may perceive a 

general situation. 
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The unknown of a problem is x. The condition of the problem is split 

into /clauses which we express by a system of / symbolic equations: 

TiW = 0, r2(x) = 0. r,(x) = 0 

Those objects x that satisfy the first clause, expressed by the first symbolic 

equation, form a certain set which we call the first locus. The objects 

satisfying the second clause form the second locus,... the objects satisfying 

the last clause form the /th locus. The object x that solves the proposed 

problem must satisfy the full condition, that is, all the / clauses of the 

condition, and so it must belong to all / loci. On the other hand, any 

object x that does belong simultaneously to all / loci satisfies all the / clauses, 

and so the full condition, and is, therefore, a solution of the proposed 

problem. In short, the intersection of those / loci constitutes the set of 

solutions, that is, the set of all objects satisfying the condition of the pro¬ 

posed problem. 

This suggests a vast generalization of the pattern of two loci, a scheme 

that could work in an inexhaustible variety of cases, could solve almost any 

problem: first, split the condition into appropriate clauses, then form the 

loci corresponding to the various clauses, finally find the solution by taking 

the intersection of those loci. Before judging this vast scheme, let us get 

down to concrete cases. 

(5) Two loci for a straight line. Construct a triangle being given r, ha, 

and a. 

The reader should remember the notation used in chapter 1: r stands for 

the radius of the inscribed circle, ha for the height perpendicular to the 

side a, and a for the angle opposite the side a. 

The problem is not too easy, but certain initial steps are rather obvious. 

Could you solve a part of the problem? We can easily draw a part of the 

required figure: a circle with radius r and two tangents to it that include 

the angle a. (Observe that the two radii drawn to the two points of con¬ 

tact include the angle 180° — a.) The vertex of this angle a will be the 

vertex A of the required triangle. The problem is reduced to the construc¬ 

tion of the (infinite) straight line of which the side opposite A is a segment. 

This line, say x, is our new unknown, given that part of the figure that we 

have already drawn. 

The condition for the line x consists of two clauses: 

(ri), x is tangent to the circle with radius r already constructed, 

(r2), x is at the given distance ha from the given point A. 

The first locus for x is the set of the tangents of the given circle with 

radius r. 
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The second locus for x is again the set of the tangents of a circle the 

center of which is A and the radius ha. 

The intersection of these two loci consists of the common tangents of 

the two circles. We can construct these tangents; see sect. 1.6(1) and 

ex. 1.32. 

(In fact, only the exterior common tangents solve the problem as stated; 

the interior common tangents, which may not exist, would render the 

circle with radius r an escribed circle.) 

Regarding the common tangents of two circles as the intersection of two 

loci for straight lines is a useful idea; it is even more useful if we include 

in it similar cases, especially the extreme case in which one of the circles 

degenerates into a point. 

(6) Three loci for a solid. Design a “multipurpose plug” that fits exactly 

into three different holes, circular, square, and triangular. 

See Fig. 6.1; the diameter of the circle, the side of the square, the base 

and the altitude of the isosceles triangle are equal to each other. 

In geometric terms, three orthogonal projections of the required solid 

should coincide with the three given shapes. We assume (in fact, this 

assumption narrows down the question) that the directions of the three 

projections are perpendicular to each other. Our unknown is a solid, 

say x, and the condition of our problem consists of three clauses: 

(rx) the projection of x onto the floor is a circle, 

(r2) the projection of x onto the front wall is a square, 

(r3) the projection of x onto the side wall is an isosceles triangle. 

It is understood that the solid x is placed into a room having the usual 

shape of a rectangular parallelepiped, that the projections are orthogonal, 

and that the measurements of the three shapes in Fig. 6.1 are related as has 

been explained. 

Let us examine the first locus, that is, the set of solids satisfying the 

requirement (ri). The given circle is placed on the floor. Consider any 

infinite vertical straight line passing through the area of this circle and call 

it a “fiber.” These fibers fill an infinite circular cylinder of which the 

given circle is a cross section. A solid x satisfies the first requirement (rx) 

Fig. 6.1. Three holes for the 
multipurpose plug. 
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if it is contained in the cylinder and contains at least one point of each 

fiber. The set of all such solids is the first locus. 

As the first locus is connected with the infinite vertical cylinder so are 

the two other loci connected with two infinite horizontal prisms. The 

cross section of the prism corresponding to (r2) is a square. If this prism 

lies in the north-south direction, the prism corresponding to (r3) which has 

a triangular cross section lies in the east-west direction. 

Any solid x that belongs to all three loci solves the problem, is a “multi¬ 

purpose plug.” The most extensive solid of this kind is the intersection of 

the three infinite figures, of the cylinder and the two prisms; it is sketched 

in Fig. 6.2. 

(Why is it the most extensive? Describe the various parts of its surface. 

Describe some other solids that solve the problem.) 

(7) Two loci for a word. In a crossword puzzle that allows puns and 

anagrams we find the following clue: 

“This form of rash aye is no proof (7 letters).” 

This is a vicious little sentence; it almost makes sense: “If you say Yes so 

rashly, it does not prove a thing.” Yet we suspect that some vague echo 

of a sense was put into the clue just to lead us astray. There may be a 

better lead: the phrase “form of” may mean “anagram of.” And so we 

may try to interpret the clue as follows. 

The unknown x is a word. The condition consists of two parts: 

(ri), x is an anagram of (has the same seven letters as) RASH AYE; 

(r2), “x is no proof” is a meaningful (probably usual) phrase. 

Let us examine this interpretation of the problem. The condition is 

neatly split into two clauses: (rx) is concerned with the spelling of the word, 

(r2) with its meaning. To each clause corresponds a “locus”—but these 

loci are less “manageable” than in the foregoing cases. 

The first locus is quite clear in itself. We can order the seven letters 

A A E Y H R S 

in 2520 different ways (the reader need not examine now the derivation of 

Fig. 6.2. The best multipurpose plug. 
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this number which equals, in fact, 7 !/2!). If it were absolutely necessary, 

we could write down the 2520 different arrangements of the 7 given letters 

without repetition or omission and so exhaust the possibilities left open by 

clause (Vi), that is, describe or construct completely the corresponding 

locus. This, however, would be boring and wasteful (many of the 

arrangements would have combinations of vowels and consonants never 

arising in English). Moreover, such a mechanical exhaustion of all cases 

was not intended, it is not in the spirit of the game. And so the locus 

corresponding to clause (rx) is, if not in principle, but in practice, inexhaust¬ 

ible, unmanageable. 

The locus corresponding to clause (r2) is not only inexhaustible but some¬ 

what hazy. An English word x is given; does the phrase “x is no proof” 

makesense? Is it a usual phrase? Inmany cases, the answer is debatable. 

And so, for different reasons, neither of the two loci is manageable, 

neither can be conveniently described, surveyed, or constructed. And, of 

course, we have no clear procedure to construct the intersection of the two 

loci. Still, it may be helpful to realize that the condition has two different 

clauses and that the required word has to satisfy both. Focusing now 

one clause of the condition, then the other, thinking of words which 

almost fulfill one clause, or the other, a stab in this direction, then one in 

the other—eventually, our memory, our store of words and phrases may be 

sufficiently stirred, and the desired word may pop up. 

(We have insisted on the circumstance that neither of the two clauses, 

(rx) and (r2), is manageable—this point is useful in assessing the general 

scheme we are considering. In fact, however, one of the two clauses is 

somewhat more manageable than the other—this point may be useful in 

solving the little riddle at hand.) 

6.3. The clause to begin with 

In the foregoing section we have discussed problems of various kinds 

and solved them following the same pattern which wemay call the “pattern 

of / loci.” Yet we did not solve the last problem, in sect. 6.2(7). What 

was the difficulty? We succeeded in splitting the condition into clauses 

quite neatly, but we failed to manage the loci corresponding to these 

clauses: we could not exhaust, could not describe conveniently those loci 

and so we could not form their intersection. 

There are cases in which we have this difficulty but not in its most 

formidable form, and we may be able to handle such cases. 

(1) Two loci for a word. In a crossword puzzle that allows puns and 

anagrams we find the following clue: 

“Flat both ways (5 letters)”. 
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After some trials we may be led to the following interpretation: The 

unknown x is a word. The condition consists of two clauses: 

(fi), x means “flat” 

(r2), x is a word having 5 letters which, read backward, still has the same 

meaning “flat.” 

With which clause should we begin? There is a difference. To manage 

the clause (r2) efficiently, you should have in your head a list of all five- 

letter words that can be read backward with some meaning. Now, very 

few of us have such a list. But most of us can remember words that have 

more or less the same meaning as “flat”; we have to examine them as they 

emerge whether they also fulfill the clause (r2). Here are some such words: 

even, smooth, unbroken—plain, dull—horizontal—of course, level!1 

(2) Let us try to disentangle the essential feature of the foregoing pro¬ 

cedure. 

The clause (rx) selects from the vast range of all words a small set of 

words, one among which is the solution. The clause (r2) does the same, 

but there is a difference: the selection is easier in one case than in the other, 

we can handle (r^ more efficiently than (r2). We have used the more 

manageable clause for a first selection and the less manageable clause for a 

subsequent second selection. It is more necessary to be efficient in the 

first selection: we select elements the first time from the immense reservoir 

of all words, the second time from the very much more restricted first locus, 

obtained by the first selection. 

The moral is simple: To each clause corresponds a locus. Begin with 

the clause, for which the locus can be more fully, or more efficiently, formed. 

Doing so, you may avoid forming the loci corresponding to the other 

clauses: you use those other clauses in selecting elements from the first 

locus. 

(3) Two loci for a tripartite unknown. How old is the captain, how many 

children has he, and how long is his boat? Given the product 32118 of the 

three desired numbers (integers). The length of the boat is given in feet 

(is several feet), the captain has both sons and daughters, he has more 

years than children, but he is not yet one hundred years old. 

This puzzle demands to find three numbers, 

y, z 

which represent the captain’s 

number of children, age, length of boat 

1 HSI, Decomposing and recombining 8, pp. 83-84, contains a very similar example 

and anticipates the essential idea of the present section. 
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respectively. It will be advantageous to conceive the problem thus: We have 

but one unknown; this unknown, however, is not a number but a tripartite 

unknown, a triplet (jc, y, z) of numbers. 

It is very important to split the condition that is expressed by the state¬ 

ment of the problem into appropriate clauses. This needs careful con¬ 

sideration of details and considerable regrouping. After several trials 

(which we skip to save space) we may arrive at the following two clauses: 

(ri), x, y, and z are positive integers different from 1 and such that 

xyz = 32118 

(r2) 4 ^ x < y < 100 

With which one of the two clauses should we begin? Of course, with (rx) 

which leaves only a finite number of possibilities, whereas (r2), which does 

not restrict z at all, leaves an infinite number. 

Therefore, we examine (rx). Now, 32118 is divisible by 6, and so we 

easily decompose it into prime factors: 

32118 = 2 x 3 x 53 x 101 

For a decomposition into three factors we have to combine two of the four 

primes. Therefore, there are only six different ways to decompose the 

number 32118 into a product of three factors all different from 1: 

6 x 53 x 101 

3 x 101 x 106 

3 x 53 x 202 

2 x 101 x 159 

2 x 53 x 303 

2 x 3 x 5353 

Of these six possibilities, the remaining requirement (r2) rejects all except 

the first one, and so we obtain 

x = 6, y = 53, z = 101 

The captain has 6 children, is 53 years old, and the length of his boat is 

101 feet. 

The essential idea of the solution of this simple puzzle is often applicable, 

also in more complicated cases: split off from the full condition a “major” 

clause that leaves open only a small number of possibilities, and choose 

between these possibilities by using the remaining “minor” part of the 

condition.2 

f(4) Two loci for a function. There is a very important type of mathe¬ 

matical problem, of daily use in physics and engineering, the condition of 

2 Cf. ex. 6.12 to 6.17. 
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which is naturally split into two clauses: to determine a function by a 

differential equation and initial, or boundary, conditions. Here is a simple 

example: the unknown x is a function of the independent variable /; it is 

required to satisfy 

d^x 
(rj the differential equation = f(x, t), where f(x, t) is a given 

function, 

dx 
(r2) the initial conditions x = 1, = 0 for / = 0. 

Should we begin with the differential equation or with the initial con¬ 

ditions? That depends on the nature of the given function f{x, t). 

First case. Take/(x,/) = — x, so that the proposed differential equation 

is 

d2x 

di* ~ ~x 

This differential equation belongs to those few privileged types of which we 

can exhibit the “general integral” explicitly. In fact, the most general 

function satisfying the differential equation is 

x = A cos / + B sin / 

where A and B are arbitrary constants (constants of integration). Thus 

we have obtained the “locus” corresponding to the clause (rx). 

We proceed now to the clause (r2) which we use to pick out the solution 

from the first locus that we have just obtained: setting / = 0 in the expres- 

dx 
sions for x and =-> we find from the initial conditions that 

dt 

A = 1, 5 = 0, x = cos t 

Second case. We examine the differential equation, but do not succeed 

in finding its general integral (or any of its integrals) and decide that we 

shall not make any further efforts in this direction. What should we do 

next? With which one of the two clauses, (rx) and (r2), should we now 

begin ? 

In this situation we may use (r2) first: we set up x as a power series in t, 

the initial coefficients of which are determined by the initial conditions 

whereas the remaining coefficients u2, «3, m4, ... appear, at this stage of 

our work, undetermined (they are, in fact, our unknowns, see ex. 3.81): 

X = 1 + M2/2 + Mg/3 + W4/4 + • • 

Thus, in a sense, the locus corresponding to (r2) has been obtained. We 

now proceed to (rj, the first clause, to determine the remaining coefficients 
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u2, u3,... from the differential equation (by recursion, if possible; see 

again ex. 3.81). 

Observe that, in any case, the differential equation is more “selective” 

(narrows down the choice of the function much more) than the initial 

condition. Thus, the proposed (r2) determines only two coefficients of the 

power series; the differential equation (the condition (rx)) has to determine 

the remaining infinite sequence. This shows that the more selective 

clause is not always the best to begin with. 

6.4. Wider scope for recursion 

In the foregoing section we have observed an important difference be¬ 

tween clauses and clauses: there may be reasons, and even strong reasons, 

to begin the work rather with one clause than with the other. It is true, 

there was a limitation: we have considered the case of one unknown. (This 

limitation is not really restrictive; see the indication in sect. 5.5.) Let us 

now consider the case of several unknowns. 

(1) There is an important general situation which is suggested by several 

examples considered in chapter 3. There are n unknowns xlt x2, xa,..., xn 

which satisfy n conditions of the following form: 

ri^i) = 0 
r2(xi, x2) = 0 

r3(xi, x2, x3) = 0 

rn(x i, x2, x3,...,xn) = 0 

This particular system of n relations suggests not only where we should 

begin, but also how we should go on. In fact, it suggests a full plan of 

campaign: Begin with xu which you should determine from the first 

relation. Having obtained xu determine x2 from the second relation. 

Having obtained xx and x2, determine x3 from the third relation, and so on: 

determine the unknowns xu x2,..., xn one at a time, in the order in which 

they are numbered, using the values of those already obtained in deter¬ 

mining the next one. This plan works well if the fcth relation is an equa¬ 

tion 

rk(xu x2.xk.u xk) = 0 

from which we can express xk in terms of xu x2,..., xk.lt for k = 

1, 2, 3,..., n. The situation is particularly favorable if the &th equation 

is linear with respect to xk (the coefficient of which should not vanish, of 

course). 

This is the pattern of recursion : we determine xk by recurring, or going 

back, to the previously obtained xu x2,..xk-1. 
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Following this pattern we simply proceed step by step, beginning with xu 

tackling x2 after xu xa after x2, and so on, which seems to be the most 

obvious, the most natural thing to do. At each step we refer to informa¬ 

tion accumulated by the foregoing steps—and this is perhaps the most 

significant feature of the pattern. We shall see the point more clearly 

after a few examples. 

(2) In sect. 2.5(3) we obtained a system of 7 equations for 7 unknowns. 

Let us relabel the unknowns as follows: 

D = x7 

a = x4 b = x5 c = xe 

p = q = x2 r = x3 

And let us rewrite the system of equations, expressing precisely which 

unknowns are linked by each equation, but disregarding other details, and 

numbering the equations so that the order in which they should be treated 

is clearly visible. 

Thus we obtain the following system of relations: 

ri(x2, x3) = 0 

r2(x3, *i) = 0 

r3(xu x2) = 0 

r4(x2, x3, x4) = 0 

r5(x3, xu x5) = 0 

re(xi, x2, x6) = 0 

rl{x4, Xg, Xg, X-j) = 0 

So written, the system renders the following plan obvious: Let us sepa¬ 

rate the first three relations from the rest. They contain only the first 

three unknowns xu x2, x3 and may be regarded as a system of three equa¬ 

tions for these three unknowns. (In fact, we can easily express x4 = p, 

x2 = q, x3 = r from the system of the three equations given in sect. 2.5(3) 

that are indicated here by the first three relations.) Once the first three 

unknowns xu x2, x3 have been found, the system “becomes recursive”: 

First, we obtain x4, x5, xB, each unknown from the correspondingly 

numbered relation. (In fact, the order in which we treat these three 

unknowns does not matter.) Having found x4, x5, x6, we use the last 

relation to obtain xn (which is the principal unknown in the original 

problem, see sect. 2.5(3); the others are only auxiliary unknowns). 

The reader should compare the system just discussed with the system 

considered in sect. 6.1(1). 

(3) Solve the equation 

(he)2 = she 
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Of course, he and she are ordinary numbers (positive integers) written in 

the ordinary decimal notation, the one a two-digit number, the other a 

three-digit number, and h, e, and s are digits. We may restate the problem 

quite fussily: find h, e, and s satisfying 

(10h + e)2 = 100s + I0h + e 

where h, e, and s are integers, \ ^ h ^ 9, 0 ^ e ^ 9, l^s^9. 

This little puzzle is not difficult. If the reader has solved it by himself, 

he will be in a better position to appreciate the following scheme. In the 

initial phase we shall examine just one unknown. In the next phase we 

shall bring in one more and consider the two unknowns jointly. Only in 

the last phase shall we deal with all three unknowns. 

Phase (e). We begin with e, since there is a requirement for e alone: the 

last decimal of e2 must be e. We list the squares of the ten digits, 

0, 1, 4, 9, 16, 25, 36, 49, 64, 81 

and find that there are only four out of ten that satisfy the requirement, 

and so 

e = 0 or 1 or 5 or 6 

Phase (e, h). There is a requirement that involves just two out of the 

three digits, e and h: 

100 ^ (he)2 < 1000 

from which we easily conclude that 

10 ^ he ^ 31 

Combining this information with the result of the foregoing consideration 

under (e), wefind that the two-digit number he must be one of thefollowing 

ten numbers: 

10, 11, 15, 16, 

20, 21, 25, 26, 

30, 31 

Phase (e, h, s). Now we list the squares of the ten numbers just obtained 

100, 121, 225, 256 

400, 441, 625, 676 

900, 961 

and we find just one that satisfies the full condition. Hence 

e = 5, h = 2, s = 6 

(25)2 = 625 

(4) In the foregoing subsection (3) we have split the condition of the 
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proposed problem into three clauses which we may represent (using the 

notation introduced in sect. 6.1) by a system of three symbolic equations 

ri(e) = 0 

r2(e, h) = 0 

r3(e, h, s) = 0 

Let us compare this system of three clauses with the following system of 

three linear equations: 

ciiXi = bi 

a2x i + a3x2 = b2 

Q4X1 + 03X2 + OgX3 = b3 

Xi, x2, x3 are the unknowns, au a2.ae, b1.b3 are given numbers, 

au a3, and aB are supposed to be different from 0. 

The similarity of these two systems is more obvious than their difference; 

let us compare them carefully. 

Let us look first at the system of three linear equations for *1, x2, and jc3. 

The first equation determines the first unknown Xi completely: the later 

equations will in no way influence or modify the value of xi obtained from 

the first. Based on this value of xu the second equation completely deter¬ 

mines the second unknown x2. 

The system of the three clauses into which we have split the condition 

for the unknowns e, h, and s is formally similar to, but materially different 

from, the system of three equations for xlt x2, x3. The first clause does not 

completely determine the first unknown e; it just narrows down the choice 

for e; it yields (this is the most appropriate expression) a /ocus for e. 

Similarly, the second clause does not completely determine the second 

unknown h \ it yields a locus for the couple of two unknowns (e, h). Only 

the last clause achieves a definitive determination: it picks out from the 

locus previously established the only triplet (e, h, s) that satisfies the full 

condition. 

6.5. Gradual conquest of the unknown 

Considering n numerical unknowns xu x2,..., xn, we may regard them 

as the successive components of one multipartite unknown x (see sect. 5.5). 

Let us so view the n unknowns which we determine successively from a 

recursive system of equations such as we have considered in sect. 6.4(1). 

The recursive procedure of solution unveils our multipartite unknown 

gradually, step by step. At first we obtain little information about the 

unknown, the value of just one component, xx. Yet, using this initial 

information to advantage, we obtain more: we add the knowledge of the 

second component x2 to that of the first. At each stage of our work we 
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add the knowledge of one more component to our previously acquired 

knowledge, at each stage we use the information already obtained to 

obtain additional information. We conquer an empire province by 

province, using at each stage the provinces already won as base of operations 

to win the next province. 

We have seen cases in which this procedure is more or less modified. 

The provinces may not be conquered exactly one at a time, but the empire 

builder sometimes takes a bigger bite, two or three provinces at the same 

time; cf. sect. 6.4(2) and sect. 6.1(1). Ora province is not conquered fully 

at one stroke; first one, then another province is made partially dependent, 

and a final successful move acquires all at once; cf. sect. 6.4(3). 

We may have met with still other variations of the procedure in our past 

experience. We certainly had opportunity to be impressed with the 

peculiar expanding pattern of the work for the solution; cf. sect. 2.7. If 

the unknown has many components (as in a crossword puzzle), we may ad¬ 

vance along several lines simultaneously: we need not thread all our beads 

on one string, but may use several strings. Yet the essential thing is to 

use the information already gathered as a base of operations to gather further 

information. Perhaps all rational procedures of problem solving and 

learning are recursive in this sense. 

Examples and Comments on Chapter 6 

6.1. A condition with many clauses. In a magic square with n rows, n2 num¬ 
bers are so arranged that the sum of the numbers in each of the n rows, in each 
of the n columns and in each of the two diagonals is the same; this sum is 
called the “constant” of the magic square. The simplest and best-known 
magic square has n = 3 rows and is filled with the first nine natural numbers 
1, 2,..., 9. Let us state in minute detail the problem that requires us to find 

this simple magic square. 
What is the unknown? There are nine unknowns; let x,k denote the desired 

number in the /th row and the Arth column; /, k — 1,2, 3. 
What is the condition? The condition has four different kinds of clauses: 

(1) xik is an integer 

(2) 1 £ ** £ 9 
(3) jciic 5* x,i unless / = j and k = l 

(4) Xu 4- Xt2 4- Xt3 = Xu 4- X22 4- X33 for / = 1, 2, 3 

■Tut 4- X2k 4- -*3fc = Xu ~t~ X22 4- X33 for k = 1, 2, 3 

*13 + *22 + *31 = Xu + X22 + X33 

State the number of clauses of each kind and the total number of clauses. 
Which shape have these clauses in the notation of sect. 6.1(3)? 
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6.2. By introducing a multipartite unknown reduce the general system con¬ 
sidered in sect. 6.1(5) to the (apparently more particular) system considered in 

sect. 6.2(4). 

6.3. By introducing a multipartite unknown reduce the system considered 
in sect. 6.1(1) to a particular case of the system considered in sect. 6.4(1). 

6.4. Reduce the system considered in sect. 6.4(2) in the manner of ex. 6.3. 

6.5. Devise a plan to solve the system 

ri(JCi, x2, x3) = 0 
r2(xi, x2, x3) = 0 
r3(xi, x2, x3) = 0 

rt(xi, x2, x3, xt) = 0 
r5(xu x2, x3, x5) = 0 
rB(xi, x2,x3, xe) = 0 

r7(xi, x2, x3, xt, x5, xe, x7) = 0 

6.6. The system of relations 

ritxi) = 0 
r2(xi, x2) = 0 
r3(x2, x3) = 0 
r4(jc3, Xi) = 0 

rn(xH-1, xn) = 0 

is a particularly interesting particular case of a system considered in the text: 
of which one? 

Have you seen it before ? Where have you had opportunity to compare two 
systems analogously related to each other? 

6.7. Through a given interior point of a circle construct a chord of given 
length. 

Classify this problem. 

6.8. Two straight lines, a and b, and a point C are given in position; more¬ 
over, a length / is given. Draw a straight line x through the point C so that 
the perimeter of the triangle formed by the lines a, b, and x is of length /. 

Classify this problem. 

6.9. Keep only a part of the condition. Of the two clauses of the problem 
considered in sect. 6.2(7), (r7) is somewhat more manageable: in trying to 
satisfy this requirement, we can map out some sort of a plan. To find an 
anagram of a given set of letters, such as RASH AYE, we have to find a word 
that has only letters of this set and has all of them. A procedure that may help 
is the following: drop the last part of the condition “and has all of them” and 

try to find words, or usual word parts, word endings, formed with the letters 
of the given set. Short words of this kind are easy to form, and proceeding to 
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longer ones we may hope to arrive eventually at the desired anagram. In our 
case, we may hit upon the following: 

ASH, YES, SAY, SHY, RYE, EAR 
HEAR, HARE, AREA 
SHARE 
RE- (beginning) 
-ER, -AY, -EY (endings). 

To solve the problem of sect. 6.2(7), we look at these bits of words, having in 
mind not only the anagram or clause (rx), but also clause (r2). Some of the 
bits may combine into a full anagram—but SHY AREA is not an acceptable 
solution. 

6.10. The thread of Ariadne. The daughter of King Minos, Ariadne, fell in 

love with Theseus and gave him a clue of thread which he unwound when 
entering the Labyrinth and found his way out of its mazes by following back 

the thread. 
Did some prehistoric heuristic genius contribute to the formation of this 

myth? It suggests so strikingly the nature of certain problems. 
In trying to solve a problem, we often run into the difficulty that we see no 

way to proceed farther from the last point that we have attained. The 
Labyrinth suggests another kind of problem in which there are many ways pro¬ 
ceeding from each point attained, but the difficulty is to choose between them. 

To master such a problem (or to present its solution when we have succeeded 
in mastering it) we should try to treat the various topics involved successively, 
in the most appropriate, the most economical order: whenever an alternative 
presents itself, we should choose the next topic so that we can derive the maxi¬ 
mum help from our foregoing work. The “most appropriate choice at the 
crossroads” is strongly suggested by the “thread of Ariadne” which was, by 
the way, one of Leibnitz’s pet expressions. 

Problems involving several unknowns, several interrelated tasks and con¬ 
ditions, are often of such a labyrinthine nature; crossword puzzles and con¬ 
structions of complex geometric figures may yield good illustrations. Having 
to solve such a problem, we have a choice at each stage: to which task (to 
which word, to which part of the figure) should we turn next? At first, we 
should look for the weakest spot, for the clause to begin with, for the most 
accessible word of the puzzle, or the most easily constructible part of the 
figure. Having found a first word or having constructed a first bit of the 
figure, we should carefully select our second task: that word (or that part of 
the figure) different from the first to find which the first word (or part) already 
found offers the most help. And so on, we should always try to select our 
next task, the next unknown to find, so that we get the maximum help from 
the unknowns previously found. (This spells out an idea already voiced in 
sect. 6.5.) 

There follow a few problems which give an opportunity to the reader to try 
out the preceding advice. 
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6.11. Find the magic square with three rows minutely described in ex. 6.1. 
(You may know one solution, but you should find all solutions. The order 

in which you examine the various unknowns is very important. Especially, 
try to spot those unknowns whose values are uniquely determined and begin 
with them.) 

6.12. Multiplication by 9 reverses a four-digit number (produces a four¬ 
digit number with the same digits in reverse order). What is the number? 

(Which part of the condition will you use first ?) 

6.13. Find the digits a, b, c, and d, being given that 

ab x ba = cdc 

It is assumed that the digits a and b of the two-digit number ab (that is 10a + b) 
are different. 

6.14. A triangle has six “parts”: three sides and three angles. Is it possible 
to find two such noncongruent triangles that five parts of the first are identical 
with five parts of the second? (I did not say that those five identical parts are 
corresponding parts.) 

6.15. Al, Bill, and Chris planned a big picnic. Each boy spent 9 dollars. 
Each bought sandwiches, ice cream, and soda pop. For each of these items 
the boys spent jointly 9 dollars, although each boy split his money differently 
and no boy paid the same amount of money for two different items. The 
greatest single expense was what Al paid for ice cream; Bill spent twice as 

much for sandwiches as for ice cream. How much did Chris pay for soda 
pop? (All amounts are in round dollars.) 

6.16. In preparation for Hallowe’en, three married couples, the Browns, 
the Joneses, and the Smiths, bought little presents for the neighborhood 
youngsters. Each bought as many identical presents as he (or she) paid cents 
for one of them. Each wife spent 75 cents more than her husband. Ann 
bought one more present that Bill Brown, Betty one less than Joe Jones. 
What is Mary’s last name? 

6.17. It was a very hot day and the 4 couples drank together 44 bottles of 
coca-cola. Ann had 2, Betty 3, Carol 4, and Dorothy 5 bottles. Mr. Brown 
drank just as many bottles as his wife, but each of the other men drank more 
than his wife: Mr. Green twice, Mr. White three times, and Mr. Smith four 

times as many bottles. Tell the last names of the four ladies. 

6.18. More problems. Try to consider further examples from the viewpoint 
of this chapter. Pay attention to the division of the condition into clauses 
and weigh the advantages and the disadvantages of beginning the work with 
this or that clause. Review a few problems you have solved in the past with 
this viewpoint in mind and seek new problems in solving which this viewpoint 

has a chance to be useful. 

6.19. An intermediate goal. We have started already working at our prob¬ 

lem, but we are still in an initial phase of our work. We have understood 
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our problem as a whole; it is a problem to find. We have answered the ques¬ 
tion “What is the unknown ?”; we know what kind of thing we are looking for. 

We have also listed the data and have understood the condition as a whole, 
and now we want to split the condition into appropriate parts. 

Observe that this task need not be trivial: there may be several possibilities 
to subdivide the condition and we want, of course, the most advantageous 
subdivision. For instance, in solving a geometric problem by algebra, we 
express each clause of the condition by an equation; different subdivisions of 
the condition into clauses yield different systems of equations and, of course, 
we want to pick the system that is most convenient to handle (cf. sect. 2.5(3) 

and 2.5(4)). 
In the statement of the proposed problem, the condition may appear as an 

undivided whole or it may be divided into several clauses. In either case 
we are facing a task: to split the condition into appropriate clauses in the 
first case and, in the second case, to split the condition into more appropriate 
clauses. The subdivision of the condition may bring us nearer to the solution: 
it is an intermediate goal, very important in some cases. 

6.20. Graphical representation. We have expressed a relation, required by 
the condition of the problem, which involves specified unknowns by a sym¬ 
bolic equation [introduced in sect. 6.1(3)]. We may express such relations 
also graphically, by a diagram, and the graphical representation may contribute 
to a clearer conception of a system of such relations. 

We represent an unknown by a small circle, a relation between unknowns 
by a small square, and we express the fact that a certain relation involves a 
certain unknown by joining the square representing the relation to the circle 
representing the unknown. Thus diagram (a) in Fig. 6.3 represents a system 
of four relations between four unknowns; we see from it, for instance, that 
there is just one unknown involved in all four relations and just one relation 
involving all four unknowns; in fact, the diagram (a) and the system of four 
equations in sect. 6.1(1) express exactly the same state of affairs, the one in geo¬ 
metric language and the other in the language of formulas. The crossing of 
lines in a point which lies outside the little circles and squares [as it happens 
once in diagram (a)] is immaterial; we can imagine, in fact, that only the little 
circles and squares lie in the plane of the paper and the connecting lines are 
drawn through space and have no point in common, although their projections 
on the plane of the paper may cross accidentally. 

As the diagram (a), also the diagrams (b), (c), (d), and (e) of Fig. 6.3 represent 
systems of relations considered before: point out the section or example 
where they have been considered. 

(Fig. 6.4 exemplifies another kind of diagrammatic representation which is 
“dual” to the foregoing: both relations and unknowns are represented by lines, 
a relation by a horizontal, an unknown by a vertical, line; iff a relation contains 
an unknown, the lines have a common point. The same fact is expressed by 
(c) in Fig. 6.3 and Fig. 6.4, and the same holds for (d). 

fAn algebraic representation is suggested by Fig. 6.4: a matrix in which 
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each row corresponds to a relation and each column to an unknown of the 
system; an element of the matrix is 1 or 0 according as the relation concerned 
does or does not involve the unknown concerned.) 

6.21. Some types of nonmathematical problems. Which clause of the con¬ 
dition should we try to satisfy first? This question arises typically in various 
situations. Having chosen a clause which appears to be of major importance, 
and having listed the objects (or some objects) satisfying this “major” clause, 
we bring into play the remaining “minor” clauses which remove most of the 
objects from the list and leave eventually one that satisfies also the minor 
clauses and so the full condition. This pattern of procedure which we had 
opportunity to observe in the foregoing [sect. 6.3(3), ex. 6.15, ex. 6.16] is 
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*1 *2 *3 *4 *1 X2 *3 *4 

Fig. 6.4. Unknowns and relations, vertical and horizontal lines. 

suitable for, and arises naturally in, various types of nonmathematical prob¬ 

lems. 
The translator's problem. In translating a French text into English, we have 

to find the correct English equivalent of a French word, for instance of the word 
“confiance.” A French-English dictionary yields a list of English words 
(confidence, trust, reliance, assurance) which satisfy only a first, rather rough, 
clause of the full condition of our problem: we have to look carefully into the 
context to discover further, more subtle clauses hidden in it and bring these 
clauses into play to remove the less fitting words and choose the most appro¬ 
priate one from the list. 

Checkmate in two moves. There is given an arrangement of white and black 
chessmen on the chessboard, consistent with the rules of the game. The 
unknown is a move of white. The condition requires this move of white to 
be such that whatever move of black may follow there is a subsequent move 
of white that checkmates the black king. 

The desired move of white has to “ward off” each possible move of black 
(prevent it from happening or prepare for answering it with a checkmate). 
And so the condition has as many clauses, we may say, as there are possible 
moves of black to be warded off. 

A workable strategy is to begin with a crucial move of black which appears 
to involve a major threat and to list the moves of white capable of warding off 
this major threat. Then we consider other “minor” moves of black and 

remove from the list such moves of white which are not able to ward off one 
or the other “minor” move of black; the true solution should eventually 
remain alone on the list. 

Engineering design. An engineer wants to design a new gadget. To be put 
into production, the new gadget has to fulfill a host of requirements; some are 
“technical” requirements such as smooth working, no danger for the user, 
durability, and so on, others are “commercial” requirements such as low price 
of manufacturing, sales appeal, and so on. The engineer retains at first the 
technical requirements (or some of them) which we may regard as constituting 
the “major” condition so that he has a clear-cut technical (physical) problem 
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to solve. This problem has usually several solutions which the engineer lists 
and examines. This being done, the commercial requirements (which we have 
heretofore regarded as “minor”) enter into play; they may discard many a 
smoothly operating gadget and may leave one the production of which appears 
the most profitable. 

6.22. Without using paper and pencil, just by looking at it, solve the follow¬ 
ing system of three equations with three unknowns: 

3x + y + 2z = 30 
2x + 3y + z = 30 
x + 2y + 3z = 30 

Prove your solution. 

6.23. Given a, b, and c, the lengths of the three sides of a triangle. Each 

vertex of the triangle is the center of a circle; these three circles are exterior to 
each other and touch each other. Find the three radii x, y, and z. 

6.24. Find x, y, u, and v, satisfying the system of four equations: 

y + u + v = -5 

x + u + v = 0 
x + y + v = -S 

x + y + u = 4 

Don’t you see a short cut? 

6.25. A more refined classification. The foregoing examples 6.22, 6.23, and 

6.24 illustrate an important point: The circumstance that the condition of a 
problem involving several unknowns is symmetric with respect to these un¬ 
knowns may, if recognized, influence the course of, and greatly facilitate, the 

solution. (Cf. also ex. 2.8 and MPR, vol. 1, pp. 187-188, ex. 41. Sometimes, 
as in ex. 6.23, we should consider not only permutations of the unknowns, but 
permutations of the unknowns and the data.) There are other cases, of less 
common occurrence but nevertheless interesting, in which the condition remains 

unchanged, not by all, but only by some permutations (by a certain group of 
permutations) of the unknowns (and the data). By following up this remark 
systematically, we would arrive at a still more refined classification of problems 
to find than the one implied by the basic remark of the present chapter [see 
sect. 6.1(6)] and we can foresee that such a classification would be of some 
interest for our study. 



SOLUTIONS 

Chapter 1 

1.1. Circle with the given point as center and the given distance as radius. 

1.2. Two straight lines parallel to the given line. 

1.3. Straight line, the perpendicular bisector of the segment the endpoints 
of which are given. 

1.4. Straight line parallel to the given parallels midway between them, that 
is, bisecting their distance. 

1.5. Two straight lines, perpendicular to each other, bisectors of the angles 

included by the given lines. 

1.6. Two circular arcs, symmetric to each other with respect to the line 
AB; they have the same endpoints, A and B. 

1.8. Two loci, ex. 1.1. 

1.9. Two loci, exs. 1.1, 1.2. 

1.10. Two loci, exs. 1.2, 1.6. 

1.11. Two loci, exs. 1.1, 1.6. 

1.12. Two loci, ex. 1.5. 

1.13. Two loci, ex. 1.2. 

1.14. Two loci, exs. 1.1, 1.2. 

1.15. Two loci, ex. 1.6. 

1.16. By symmetry reduces to sect. 1.3(2), or to ex. 1.12. 

1.17. Two loci, ex. 1.6. 

1.18. (a) If X varies so that the areas of the two triangles AXCA and AXCB 

remain equal, the locus of X is the median passing through C. (Prove it!) 
The required point is the intersection of the medians. (b) If X varies so that 
the area of AABX remains one third of the area of the given A ABC, the locus 

154 
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of A1 is a parallel to the side AB, at a distance equal to one third of the altitude 

dropped from C; see ex. 1.2. The required point is the intersection of such 
parallels to the sides. Both solutions use “two loci.” 

1.19. Join the center of the inscribed circle to both endpoints of the side a; 

in the triangle so obtained the angle at the center of the inscribed circle is 

180° - 2-^2 = 90° + | 

Two loci, exs. 1.2, 1.6. 
1.20. Auxiliary figure: the right triangle with hypotenuse a and leg hb. 

1.21. Auxiliary figure, see ex. 1.20. 

1.22. Auxiliary figures, see ex. 1.20. 

1.23. Auxiliary figure: right triangle with leg ha and opposite angle /3. 

1.24. Auxiliary figures, see ex. 1.23. Other solution: see ex. 1.34. 

1.25. Auxiliary figure: right triangle with hypotenuse da and height ha. 

1.26. Auxiliary figure: triangle from three sides. 

1.27. Assume that a is longer than c. Auxiliary figure: triangle from sides 
a — c,b, d; see HSI, Variation of the problem 5, pp. 211-213. 

1.28. Generalization of ex. 1.27 which corresponds to the case 6 = 0. 
Auxiliary figure: triangle from a, c, e; see MPR, vol. 2, pp. 142-145. 

1.29. Auxiliary figure: triangle from a, b + c, a/2. 

1.30. Auxiliary figure: triangle from a, b + c, 90° + (/5 - y)/2. 

1.31. Auxiliary figure: triangle from a + b + c, ha, a/2 + 90°. See HSI 
Auxiliary elements 3, pp. 48-50, and Symmetry, pp. 199-200. 

1.32. Appropriate modification of the approach in sect. 1.6(1): let one of the 

two radii shrink at the same rate as the other expands. Auxiliary figure: 
tangents to a circle from an outside point, followed by the construction of two 
rectangles. 

1.33. Cf. sect. 1.6(1). Auxiliary figure: circle circumscribed about the 
triangle the vertices of which are the centers of the three given circles. 

1.34. Similar triangle from a, /3; obtain afterwards the required size by using 
the given length dr. Essentially the same for ex. 1.24. 

1.35. Similar figures: center of similarity is the vertex of the right angle in 
the given triangle. The bisector of this right angle intersects the hypotenuse 
in a vertex of the desired square. 

1.36. Generalization of ex. 1.35. Center of similarity is A (or B). Cf. HSI, 
section 18, pp. 23-25. 

1.37. Similar figures: center of similarity is the center of the circle. The 
required square is symmetric with respect to the same line as the given sector. 

1.38. Similar figure: any circle touching the given line, the center of which 
is on the perpendicular bisector of the segment joining the two given points. 
The point of intersection of this bisector and of the given line is center of 
similarity. Two solutions. 
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1.39. Symmetry with respect to the bisector of the appropriate angle included 
by the given tangents yields one more point through which the circle must pass, 
and so reduces the problem to ex. 1.38. 

1.40. The radii of the inscribed circle drawn to the points of tangency include 
the angles 180° - a, 180° - /5,...; hence a similar figure is immediately 
obtainable. Applicable to circumscribable polygons with any number of 
sides. 

1.41. Let A denote the area and a, b, c the sides of the required triangle 
(ex. 1.7) so that 

2 A = aha = bhb = chc 

Construct a triangle from the given sides ha, hb, hc and let A' denote its area 
and a', b', c' its corresponding altitudes so that 

2 A' = haa' = h„b' = hcc' 

Therefore, 
a _ b _ c 
7 ~ V ~ c' 

and so the triangle with the easily obtainable sides a', b', c' is similar to the 

required triangle. 

1.42. The foregoing solution of ex. 1.41 is imperfect: if ha = 156, hb = 65, 
hc = 60, the required triangle does exist, but the auxiliary triangle with the 
given sides ha, hb, hc does not. 

One possible remedy is a generalization: let k, /, m be any three positive 
integers, and (the notation is not the same as in ex. 1.41) a', b', c' the altitudes 
in the triangle with sides kha, lhb, mhc; then 

a _ b _ c 
17 ~ IF ~ m? 

For example, a triangle with sides 156, 65, and 120 = 2 x 60 does exist. 

1.43. From the center of the circumscribed circle, draw a line to one of the 
endpoints of the side a and a perpendicular to this side. You so obtain a right 
triangle with hypotenuse R, angle a, and opposite leg a/2. This yields a rela¬ 
tion between a, a, and R: you can construct any one of the three if the two 
others are given. (The relation can also be expressed by the trigonometric 
equation a = 2R sin a.) If the data of the proposed problem do not satisfy 
this relation, the problem is impossible; if they do satisfy it, the problem is 
indeterminate. 

1.44. (a) Triangle from a, j3, y. the problem is either impossible or indeter¬ 
minate. (b) The general situation behind ex. 1.43 and (a): the existence of the 
solution implies a relation between the data and, therefore, the solution is either 
indeterminate or nonexistent according as the relation is, or is not, satisfied by 
the data, (c) By the solution of ex. 1.43 reduce to: triangle from a, {}, a. 

(d) By the solution of ex. 1.43 reduce to ex. 1.19. 

1.45. We disregard disturbances influencing the velocity of sound which we 
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cannot control (as wind and varying temperatures). Then, from the time 
difference of the observations at the listening posts A and B, we obtain the 
difference of two distances, AX — BX which yields a locus for X\ a hyperbola. 
We obtain another hyperbola comparing C with A (or B) and the intersection 
of the two hyperbolas yields X. Main analogy with ex. 1.15: the observations 
yield two loci. Main difference: the loci are circular arcs there, but hyperbolas 
here. We cannot describe a hyperbola with ruler and compasses, but we can 
describe it with some other gadget and a machine could be constructed to 
evaluate conveniently the observations of the three listening posts. 

1.46. Those loci would not be usable if we took the statement of the pattern 
in sect. 1.2 literally. In fact, those loci are useful and have been used several 

times in the foregoing examples, and it is the statement in sect. 1.2 that needs 
extension: we should admit a locus when it is a union of a finite number of 
straight lines, or circles, or segments of straight lines, or arcs of circles. 

1.48. If the parts into which the condition is split are jointly equivalent to 
the condition, the various manners of splitting must be equivalent to each 
other. Hence a theorem for the triangle: the perpendicular bisectors of the 
sides (there are three) pass through the same point. And for the tetrahedron: 
the perpendicular bisecting planes of the edges (there are six) pass through the 
same point. 

1.50. (1) Avoiding certain exceptional cases (see exs. 1.43 and 1.44) take any 
three different constituent parts of a triangle listed in ex. 1.7 as data and pro¬ 
pose to construct a triangle. Here are a few more combinations with which 
the construction is easy: 

a. hb. R 

a. hb. m„ 

a. hb. ma 

ha. da. b 

ha. r»a. m„ 

ha. m„ mc 

ha. hb. ma 

a. b. R 

Also a, {}, and any line not yet mentioned in ex. 1.24 or ex. 1.34. Less easy 

a, r, R 

(2) There are several problems about trihedral angles, similar to that dis¬ 
cussed in sect. 1.6(3), which are important and can be solved without invoking 
explicitly the help of descriptive geometry. Here is one: “Being given a, a face 
angle, and /3 and y, the adjacent dihedral angles of a trihedral angle, construct 
b and c, the remaining face angles.” The solution is not difficult, but it would 
take up too much space to explain it here. 

(3) Ex. 1.47 is the space analogue of sect. 1.3(1). Discuss the space ana¬ 
logues of sect. 1.3(2), ex. 1.18, sect. 1.3(3), ex. 1.14. 

No solution: 1.7, 1.47, 1.49, 1.51. 
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Chapter 2 

2.1. If Bob has x nickels and y dimes, we can translate the condition into the 
system of two equations 

5x + lOy = 350 
x + y = 50 

which, after an obvious simplification, precisely coincides with the system in 
sect. 2.2(3). 

2.2. There are m pipes to fill, and n pipes to empty, a tank. The first pipe 
can fill the tank in ai minutes, the second pipe in a2 minutes,... the pipe 
number m in am minutes. Of the other kind of pipes, the first can empty the 
tank in bi minutes, the second in b2 minutes,.. .the pipe number n in bn min¬ 
utes. With all pipes open, how long will it take to fill the empty tank? 

The required time t satisfies the equation 

/ / / _t_ t t _ i 

ai a2 am b\ b2 bn 

(If the solution t turns out negative, how do you interpret it? Possibly, 
there is no solution. How do you interpret this case?) 

2.3. (a) Mr. Vokach (his name means “Smith” in Poldavian) spends one- 
third of his income on food, one-fourth on housing, one-sixth on clothing, and 
has no other expenses (there is no income tax in lucky Poldavia). He wonders 
how long he could live on one year’s pay. 

(b) What voltage should be maintained between two points connected by 
three parallel wires, the resistance of which is 3, 4, and 6 ohms, respectively, 
in order that the total current carried jointly by the three wires should be of 
intensity 1 ? 

And so on. 

2.4. (a) x remains unchanged if we substitute — w for w: starting with the 
wind and returning against it the plane attains the same extreme point in a 
given time. 

(b) Test by dimension; see HSI, pp. 202-205. 

2.5. The system 

x + y = v 

ax + by = cv 

agrees fully with that obtained in sect. 2.6(2). 

2.6. Choose the coordinate system in the same relative position to the line 
AB as in sect. 2.5(1) and set AB = a. The required center (x, y) of the circle 

touching the four given arcs satisfies the two equations 

« - VF-T7* = J(x - ?)2 + y2- l 

a 
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from which follows 

y = aV 6/5 

2.7. Heron’s formula appears rather formidable, but is, in fact, quite man¬ 
ageable if you observe the combination “sum times difference” often enough: 

16Z>2 = (a + b + c)( — a + b + c)(a — b + c)(a + b — c) 

= [(b + c)2 - a2][a2 -(b- c)2] 
= (2be - a2 + b2 + c2)(2fcc + a2 - b2 - c2) 

= 4b2c2 - (b2 + c2 - a2)2 

= 4(p2 + q2)(p2 + r2) - (2p2)2 

2.8. (a) Relevant knowledge. Approach (3) supposes more knowledge of 
plane geometry (Heron’s formula is less familiar than the expression of the 
area in terms of base and height). Yet approach (4) needs more knowledge of 
solid geometry (we have to see, and then to prove, that k is perpendicular to a). 

(b) Symmetry. The three data A, B, and C play the same role, the problem 
is symmetric in A, B, and C. Approach (3) respects this symmetry, but 
approach (4) breaks with it and prefers A to B and C. 

(c) Planning. Approach (3) proceeds more “methodically,” we can follow 
it with some confidence from the start. And, in fact, it leads quite clearly to 
that system of seven equations which appeared to us, at the first blush, too 
formidable. [This is not the fault of the approach which hints, in fact, a 
procedure to solve them; see sect. 6.4(2).] It is less visible in advance that 
approach (4) will be helpful, but it “muddles through” somehow (thanks to a 
lucky remark) and attains the final result with a much shorter computation. 

2.9. K2 = />2<?V/36 = 2 ABC 19. 

2.10. From the three equations in sect. 2.5(3) that express a", b2, and c2 

in terms of p, q, and r, we obtain 

p2 + q2 + r2 = S2 

p2 = S2 - a2, q2 = S2 - b2, r2 = S2 - c2 

and so ex. 2.9 yields 

V2 = (S2 - a2)(S2 - b2){S2 - c2)/36 

2.11. d2 = p2 + q2 + r2. This problem is broadly treated in HSI, Part I; 
see pp. 7-8, 10-12, 13-14, 16-19. 

2.12. The notation chosen agrees both with ex. 2.11 and with sect. 2.5(3)— 
pay attention to both diagonals of the same face. Repeating a computation 
already done in ex. 2.10, we find 

d2= (a2 + b2 + c2)/2 

2.13. A tetrahedron is determined by the lengths of its six edges—this results 
from the space analogue of the very first problem we have discussed in sect. 1.1. 
Yet we obtain the required configuration of the six edges, and so the proposed 
tetrahedron, in choosing one appropriate diagonal in each face of the box 
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considered in ex. 2.11 and 2.12. The volume of this box is pqr. Cut off from 
the box four congruent tetrahedra, each with a trirectangular vertex and with 
volume pqr/6, see ex. 2.9; you obtain so the proposed tetrahedron whose 

volume is, therefore, 
V = pqr — 4pqr/6 = pqr 13 

Now, see ex. 2.10, p2 = S2 — a2 and so on; hence 

V2 = (S2 - a2)(S2 - b2)(S2 - c2)/9 

2.14. Ex. 2.10: If V = 0, one of the factors, for instance S2 — a2 = p2 

vanishes, and so two faces degenerate into line segments; the two other faces 
become coincident right triangles. 

Ex. 2.13: If V = 0, the tetrahedron degenerates into a (doubly covered) 
rectangle; all four faces become congruent right triangles; in fact, S2 — a2 = 0 

involves a2 = b2 + c2. 

2.15. As the last equation sect. 2.7 shows, the side x of the desired rectangle 
is the hypotenuse of a right triangle with legs 3a and a. This segment x can 
be fitted into the cross in four different (but not essentially different) ways; its 

midpoint must coincide with the center of the cross, which divides it into two 
parts, each of the same length x/2 as the other side of the desired rectangle. 
All this suggests strongly the solution exhibited by Fig. S2.15. 

2.16. (a)x2 = 12 -9 - 81, x = 10. 
(b) Shift two units to the left and one unit upward, since 

10 = 12 - 2 = 9 + 1 

(c) Retention of the central symmetry is more likely. 
All this suggests Fig. S2.16. 

2.17. Let x and y be the loads carried by the mule and the ass, respectively. 
Then 

y + 1 = 2(x - 1), x + 1 = 3(y - 1); x = 13/5, y = 11/5 

Fig. S2.15. 
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Fig. S2.16. 

2.18. Mr. has h pounds, Mrs. w pounds, x pounds are free: 

h — x w — x 94 — x 
h + w = 94, 

13.5 ’ 
x = 40 

1.5 2 

2.19. 700, 500, x = 400 from 

x + (x + 100) + (x + 300) = 1600 

2.20. Each son receives 3000. 

2.21. If the share of each child is x, and the whole fortune y, the shares of 
the children are 

y - 100 
first: 

second: 

third: 

and so on. 

x = 100 + 

x =200 + 

x = 300 + 

10 

y - x - 200 

10 

y - 2x - 300 
10 

The difference of any two consecutive right hand sides is 

x + 100 
100 - 

10 

If this difference equals 0 (as it should) x = 900, then (from the first equation) 

y = 8100: there were 9 children. 

2.22. Let the three players initially have the amounts x, y, and z, respec¬ 
tively; it will be advantageous to consider 

x + y + z = s 

(s = 12). We have to consider the amounts owned by the players at four 
different instants; any two consecutive instants are separated by a game; the 
total sum owned by the three is always s: 

First 

x 

2 x — s 

Ax — 2s 

Sx - 4s = 24 

Second 

y 

2 y 

4y - s 

8y — 2s = 24 

Third 

z 

2 z 

4 z 

8z — s = 24 

Hence x = 39, y = 21, z = 12. 
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2.23. Analogous to sect. 2.4(1) and 2.4(2), particular case of ex. 2.2 with 

m = 3, n = 0, ai = 3, a2 = 8/3, a3 = 12/5 

Hence t = f of a week. 

2.24. Newton means a generalization tending in the direction of ex. 2.2, 
but going less far: without “emptying pipes,” there are no b's, n = 0. 

. 2.25. Wheat, barley, and oats cost 5, 3, and 2 shillings a bushel, respectively. 

See ex. 2.26. 

2.26. Let 
x, y, z 

be the prices of three commodities, and let pv be the price of the mixture in 
which 

a„, bv, cv 

units of these commodities are contained, respectively, v = 1, 2, 3. We have 
thus a system of three equations 

a,x + bvy + cvx = pv 

v = 1, 2, 3. We obtain this generalization from the foregoing ex. 2.25 in 
passing from the array of numbers 

40 24 20 312 
26 30 50 320 
24 120 100 680 

to the array of letters 
ai bi ci pi 

a2 b2 c2 p2 

a3 b3 c3 p3 

There is no difficulty in passing from 3 to n different commodities. 

2.27. Let 

a denote the quantity of grass per acre when the pasture starts to be used, 
/3 the quantity of grass eaten by one ox in one week, 
y the quantity of grass that grows on one acre in one week, 
ai, a2, a the number of oxen, 
mu m2, m the numbers of acres, 
t\, t2, t the numbers of weeks in the three cases considered, respectively. 
a, a, {}, and y are unknown, the remaining eight quantities are numerically 

given. 

The conditions are 
Wi(a + tiy) = aitifi 

m2(a + t2y) = a2t2j3 

m(a + ty) = at(3 

a system of 3 equations for the 3 unknowns a//3, y//3, a, which yields 

_ m[mia2t2(t - h) - w2ai/i(/ - /2)] 
° mim2t(t2 - ti) 

and, with the numerical data, a = 36. 
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2.28. Of an arithmetic progression 
with five terms a, a + d,.a + 4d 

find the first term a 

and the difference d 

being given that 
the sum of all terms equals 100 a + (a + d) + • • • 

+ (a + Ad) =100 

and the sum of the last three terms (a + 2d) + (a + 3d) + (a + 4d) 

equals 7 times the sum of the 
first two terms = 7[a + (a + d)\ 

From the equations 

5a + lOrf = 100, 11a - 2d = 0 

a = 5/3, d = 55/6 and so the progression is 

10/6, 65/6, 120/6, 175/6, 230/6 

2.29. — + m + mr = 19 
r 

ma 
" + W2 + WV = 133 
r2 

Set r + - = x 
r 

This changes the system into 

m(x + 1) = 19, m\x2 - 1) = 133 

Division yields two linear equations for mx and m. Hence m = 6, x = 13/6, 
r = 3/2 or 2/3; there are two (only trivially different) progressions: 4, 6, 9 and 

9, 6, 4. 

2.30. a(q3 + q~3) = 13, a(q + q_1) = 4 

Division yields a quadratic for q2. The progression is 

1/5, 4/5, 16/5, 64/5 

or the same terms in reverse order. 

2.31. Let x be the number of the partners. Express the profit of the partner¬ 
ship in two different ways (as received and as distributed): 

(8240 + 40jc-x)t£s = 10jc-x + 224 
1UU 

The equation 

x3 - 25x2 + 206* - 560 = 0 

has no negative roots (substitute x = —p). If there is a rational root, it must 
be a positive integer, a divisor of 560.. This leads to trying successively 
x = 1, 2, 4, 5, 7, 8, 10, 14, 16,.... In fact, the roots are 7, 8, and 10. (Of 
course, Euler first made up the equation, then the story—you could try to 

imitate him.) 
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2.32. The centers of the four circles nonconcentric with the given square are 
vertices of another square of which we express the diagonal in two different 
ways: 

(4r)2 = 2(a - 2r)2 

and so 

r = (V2- \)a/2 

2.33. Let x + (d/2) stand for the height of the isosceles triangle perpendicu¬ 
lar to the base. Then 

Elimination of x yields 

4s4 — 4d2s2 + b2d2 = 0 

2.34. (a) The equation is of the first degree in d2 as well as in b2, but of the 
second degree in s2: Hence, the problem to find s may be reasonably regarded 
as more difficult than the other two. 

(b) d has a positive value iff 4s2 > b2. 

b has a positive value iff d2 > s2. 

s has two different positive values iff d2 > b2. 

The reader can learn here several things. Newton comments on the solution 
of ex. 2.33 as follows: “And hence it is that Analysts order us to make no 
Difference between the given and sought Quantities. For since the same 
Computation agrees to any Case of the given and sought Quantities, it is con¬ 
venient that they should be conceived and compared without any Difference... 
or rather it is convenient that you should imagine, that the Question is pro¬ 
posed of those Data and Quaesita, given and sought Quantities, by which you 
think it is most easy to make out your Equation.” He adds a little later: 
“Hence, I believe, it will be manifest what Geometricians mean, when they 
bid you imagine that to be already done which is sought.” 

(“Take the problem as solved”; cf. sect. 1.4.) 

2.35. In setting up our equations we proceed in the direction just opposite 
to the one suggested by the surveyor’s situation: We regard x and the angles 
a, /3, y, S as given, and / as the unknown. From AUVG we find GV in terms 
of x, a + /3, and y (law of sines). From A VUH we find HV in terms of 
x, {}, and y + S (law of sines). From AGHV we find / in terms of GV, HV, 

and 8 (law of cosines) and, by using the expressions for GV and HV, we obtain 

„ _ 21" sin2(a + /3) sin2/3 2 sin(a + p) sin j3 cos 8 1 
x [sin2(a + /5 + y) + sin2(/3 + y + S) sin(a + /3 + y) sin(/3 + y + S)J 

Hence, express x2 in terms of /, a, /3, y, and 8. 

2.36. Let 
A, 2s, a, b, c 

stand for 

area, perimeter, hypotenuse, remaining sides, 



2.32-2.42 165 

respectively; A and s are given, a, b, and c unknown. To solve the system 

a + b + c = 2s, be = 2 A, a2 = b2 + c2 

express (b + c)2 in two different ways: 

(2s — a)2 = a2 + 4A 

A 
a = s- 

s 

2.37. Lengths of the sides of the triangle 2a, u, v; u + v = 2d; the altitude 
perpendicular to side of length 2a is of length h. 

Given a, h, d, find u, v. 

Introduce x and y, orthogonal projections of the sides u and v on 2a, respec¬ 
tively, and z, where 

x — y = 2z 
Also 

x + y = 2a 

u2 = h2 + x2 v2 = h2 + y2 

Hence, 

or 
2 d(u — v) = 2a-2z 

, « 
u = a + -z 

a 

x = a + z 

j M v = a - -,z 
a 

a — z 

{d + zj = h2 + (a + zf 

- 1',(l - 
2.38. If a and b are the lengths of two nonparallel sides, and c and d the 

lengths of the two diagonals, then 

2 (a2 + b2) = c2 + d2 

In fact, the diagonals dissect the parallelogram into four triangles: Apply the 
law of cosines to two neighboring triangles. 

2.39. (2b - a)x2 + (4a2 - b2)(2x - a) = 0 

If a = 10, b = 12, then x = 16( —8 + 3Vll)/7, very nearly 32/7. Interpret 
the case a = 2b. 

2.40. a2(3 + V 3)/2 

2.41. 1/3, 2/9, 2/9, 2/9. In fact, the sides of the larger triangle are divided 
by the vertices of the inscribed triangle in the proportion 2 to 1. 

2.42. (Stanford 1957.) Consider the simplest case first, that of the equi¬ 
lateral triangle. Symmetry may lead us to suspect that in this case the four 
triangular pieces will also be equilateral. If this is so, however, the sides of 
the triangular pieces must be parallel to the sides of the given triangle: with this 
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remark, we have discovered the essential feature of a configuration that 
solves the problem not only in the particular case examined, but also in the 
general case. (We pass from the equilateral triangle to the general triangle 
by “affinity.”) By four parallels to a side of the given triangle, dissect each 
of the other two sides into five equal segments. Performing this construction 
three times, with respect to each side of the given triangle, we divide it into 
25 congruent triangles similar to it. From these 25 triangular pieces, we easily 
pick out the four mentioned in the problem: the area of each of them is 1/25 of 
the given triangle’s area. (This solution is not uniquely determined. 

2.43. (Stanford 1960.) Generalize: The point P lies in the interior of a 
rectangle, its distances from the four corners are a, b, c, and d, from the four 
sides x, y, x\ y\ in cyclical order (as they are met by the hands of a watch). 

Then, with appropriate notation 

a2 = y'2 + x-2, b2 = x2 + y2, c2 = f + Jr'2, d2 = x’2 + y'2 

and so 
a2 - b2 + c2 - d2 = 0 

In our case a = 5, b = 10, c = 14, and so 

d2 = 25 - 100 + 196 = 121, d = 11 

Observe that the data a, b, and c which determine d are insufficient to determine 
the sides x + x' and y + y' of the rectangle. 

2.44. (I)Let s stand for the side of the square. Then, by ex. 2.43, x + x' = 

y + y' = s, and we have three equations for the three unknowns x, y, and s: 

x2 + (s - y)2 = a2, x2 + y2 = b2, y2 + (s - x)2 = c2 

HenCC’ 2sy = s2 + b2 - a2, 2sx = *2 + b2 - c2 

and, by squaring and adding, we find 

- (a2 + c2)*2 + W - a2)2 + (b2 - c2)2]/2 = 0 

a quadratic equation for s2. 

(II) Check the geometric meaning of the particular cases: 

(1) s2 -- 2a2 or s = 0. 
(2) s = a. 

(3) s imaginary unless c2 = 2b2 = 2s2. 

(4) s imaginary unless a2 = c2 = s2. 

2.45. (Stanford 1959.) 1007r/4 and 1007r/(2 V3) or approximately 78.54% 

and 90.69%, respectively. The transition from a large (square) table to the 
infinite plane involves, in fact, the concept of limit on which, however, we do 
not insist as the result is intuitive. 

2.46. In following the procedure of ex. 2.32, we express the diagonal of an 
appropriate cube in two different ways: 

(4r)2 = 3(a - 2r)2 

r = (2V3 - 3)a/2 
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2.47. The four vertices of a rectangle, taken in cyclical order, are at the dis¬ 
tance a, b, c, and d, respectively, from a point P (which may be located any¬ 
where in space). Being given three of these distances, find the fourth one. 

The relation 
a2 - b2 + c2 - d2 = 0 

found in ex. 2.43 remains valid in the present more general situation, and the 
solution follows from it immediately. This can be applied, for instance, to a 

point P and four appropriately chosen vertices of a box (rectangular parallele¬ 
piped) since any two diagonals of a box are also the diagonals of a certain 
rectangle. 

2.48. The solution of a problem of solid geometry often depends on a “key 
plane figure” which opens the door to the essential relations. 

Through the altitude of the pyramid, pass a plane that is parallel to two sides 
of the base (and perpendicular to its two other sides). The intersection of this 
plane with the pyramid is an isosceles triangle which can be used as key figure: 
its height is h, its base, say a, is equal in length to a side of the base of the pyra¬ 
mid, its legs are of length 2a, since each one is the height of a lateral face. 
Hence, 

and so the desired area is 
5a'2 = 4h2/3 

2.49. For instance: The area of the surface of a regular pyramid equals four 
times the area of its hexagonal base. Given a, the length of a side of this 

base, find h, the height of the pyramid (h = V6a). 

See also ex. 2.52. 

2.50. In a parallelogram the sum of the squares of the 2 diagonals equals the 
sum of the squares of the 4 sides. (Restatement of the result of ex. 2.38.) 

In a parallelepiped, let 

D, E, F 

stand for the sum of the squares of the 

4 diagonals, 12 edges, 12 face-diagonals 

respectively. Then 

D = E = FI 2 

(Follows from the result of ex. 2.38 by repeated application.) 

2.51. The square of the desired area is 

16 s(s — a)(s — b)(s — c) 

This may be regarded as an analogue to Heron’s theorem, but is too close to it 
to be interesting. 

2.52. (Stanford 1960.) Let a stand for the side of a triangle, T for the 
volume of the tetrahedron, and O for the volume of the octahedron. 
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First solution. The octahedron is divided by an appropriate plane into two 
congruent regular pyramids with a common square base the area of which is a2. 

The height of one of these pyramids is a/V2 (the “key plane figure” passes 

through a diagonal of the base) and so 

O = 2--2= = 2!^? 
3 V2 3 

Pass a plane through the altitude (of length h) of the tetrahedron and through 
a coterminal edge; the intersection (the key plane figure) shows two right 
triangles from which 

and so 

Finally 

j, _ 1 a aV3 aV2 _ a3V2 

~ 32~T~~Vf 12~ 

O = 4T 

Second solution. Consider the regular tetrahedron with edge 2a; its volume 
is 23T; four planes, each of which passes through the midpoints of three of its 

edges terminating in the same vertex, dissect it into four regular tetrahedra, 
each of volume T, and a regular octrahedron of volume O. Hence, 

which yields again O = AT. 

2.53. The volumes are as 

the surface areas as 

AT + O 

J_.J_.J_ 
a' b ' c 

c + a , a + b 

b ' c 

2.54. (Stanford 1951.) The difference of the volumes, frustum minus 
cylinder, 

f a2 + ab + b2 (a + b\ 21 nh(a — b)2 

nh[-3-= -12- 

is positive unless a = b and the solids coincide. 
MPR, vol. I, chapter VIII, contains several applications of algebraic 

inequalities to geometry. 

2.55. Let r be the radius of the circle circumscribed about A ABC. Then 

r2 = h(2R — h), r = = — 
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and so 

The term hi2 is often negligible in practice. 

2.57. 35 miles; see ex. 2.58. 

2.58. We list each given numerical value in parenthesis following the letter 
that generalizes it: 

a (7/2) is the velocity of A, 

b (8/3) the velocity of B, 

c (1) the number of hours that pass between the two starts, 
d (59) the distance between the two starting points. Then 

x + y = d. 
x 

a 

a(bc + d) 

a + b 

Newton formulates the generalized problem as follows: “Having given the 
Velocities of two moveable Bodies, A and B, tending to the same Place, to¬ 
gether with the Interval or Distance of the Places and Times from, and in 
which, they begin to move; to determine the Place they shall meet in.” 

2.59. (Stanford 1959.) We use the notation 

u for Al’s speed, 
v for Bill’s speed, 
h for the time (counted from the start) the boys meet the first time, 
l2 for the time they meet the second time, 
d the desired distance of the two houses. Then 

uti = a, ut2 = d + b 

vh = d - a, vt2 = 2d - b 

(1) By expressing u/v in two different ways, we obtain 

a __ d + b 

d — a 2d — b 

Hence, after discarding the vanishing root, we find d = 3a — b. 

(2) Of course, Al. Numerically: ujv = 3/2. 

2.60. (Stanford 1955.) See ex. 2.61; see also HSI, pp. 236, 239-240, 247: prob¬ 
lem 12. 

2.61. Between the start and the first point where all n + 1 friends meet 
again, there are 2n — 1 different phases: 

(1) Bob rides with A 

(2) Bob rides alone 
(3) Bob rides with B 

(4) Bob rides alone 

(2/i — 1) Bob rides with L 

Fig. S2.61, where n = 3, exhibits 5 phases; the lines representing the travels of 
A, B, or Care marked with the proper letters; the steeper slope renders the line 
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S 

Fig. S2.61. 

that represents the itinerary of the car easily recognizable. We see from the 

symmetry of the arrangement (especially clear from Fig. S2.61) that all n odd- 
numbered phases are of the same duration, say T, and all n — 1 even-num¬ 
bered phases of the same duration, say 7”. Express the total progress through 
the 2/i — 1 phases [in nT + (n — 1)7” units of time] in two different ways 
(look first at Bob, then at one of his friends): 

nTc - (n - 1 )T'c = Tc + (n - \)(T + T')p 

whence 

T _ c + p 

T' c — p 

(1) Rate of progress of the company is 

nTc - (n - l)7”c c + (2/i - 1 )p 

nT + (n - 1)7” c(2/i - l)c + p 

(2) The fraction of time when the car carries Bob alone 

(n - 1)7” = (n - l)(c - p) 

nT + (n - 1)7” (2/i - 1 )c + p 

(3) Results (1) and (2) become intuitive in the extreme cases [just (2) for 
n = co is less immediate]: 

p = 0 p = c n = 1 /i = oo 

(1) Rate of progress c/(2n — 1) c c p 

(2) Fraction when Bob alone (n — 1 )/(2« —1)0 0 (c — p)/2c 

2.62. Let be the time of descent of the stone and /2 the time of ascent of 

the sound. From 

T — ti + ti, d = gh2l2, d = ct2 

we find 

d = {-c(2 g)-112 + [(“Qg)-1 + c7’]1'2}2 

Cf. MPR, vol. I, p. 165 and p. 264, ex. 29. 
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2.63. Introduce /S' = Z_ACO. Since 

sin to _ AB sin to' _ AC 

sin /3 AO' sin /S' AO 

sin to sin /S' _ £ 
sin to' sin/3 /' 

On the other hand, /S' = /S - (to' - to). Expressing sin /S'/sin /3 in two 
different ways, we obtain 

cot /3 = cot(to' — to) — 
t sin to' 

/' sin to sin (to' — to) 

2.64. Adding the three equations, we obtain 

0 = a + b + c 

If this relation is not satisfied by the data a, b, and c, “the problem is impos¬ 
sible,” that is, there are no numbers x, y, z fulfilling the three simultaneous 
equations. If that relation is satisfied, the problem is indeterminate, that is, 
there are infinitely many solutions: from the first two equations 

x = z + (3a + b)p 

y = z + (2a + 3b)p 

where z remains arbitrary. 

Cf. ex. 1.43 and 1.44. 

2.65. (Stanford 1955.) Comparing coefficients of like powers on both sides 
of the identity, we obtain 5 equations 

1 = p2, 4 = 2pq, - 2 = q2 + 2pr, -12 = 2qr, 9 = r2 

for our 3 unknowns p, q and r. The first equation yields p = ± 1, whence the 
following 2 equations, used successively, determine two systems of solutions 

p = 1, <?=2, r = — 3, and p=—1, <7 = — 2, r = 3 

both of which happen to satisfy also the remaining two equations. 

Usually, it will not be possible to extract the square root, since usually it is 
impossible to satisfy a system with more equations than unknowns. 

2.66. (Stanford 1954.) Expanding the right-hand side of the hypothetical 
identity and equating corresponding coefficients, we obtain 

(1) aA = bB = cC = 1 
(2) bC + cB = cA + aC = aB + bA = 0 

We derive from (2) that 

bC = — cB, cA = — aC, aB = —bA 

and multiplying these three equations, we derive further that 

abcABC = —abcABC 

abcABC = 0 
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Yet we derive from (1) that 

abcABC = 1 

This contradiction shows that the hypothetical identity from which we have 

started is impossible. 
We have shown here that a system of 6 equations with the 6 unknowns 

a, b, c. A, B, and C is inconsistent. 

2.67. x = 51, y = 60 — 18/, z = 40 + 13/ 

are positive iff 0 < t < 60/18. This leaves for t the values 1, 2, 3 and for 
(x, y, z) the three systems 

(5, 42,53), (10,24, 66), (15,6,79) 

2.68. Follow ex. 2.67: the system 

x + y + z = 30 
14jc + lly + 9z = 360 

is satisfied by 

x = 2t, y = 45 — 5/, z = 3/ — 15 
t = 5, 6, 7, 8, or 9 

2.69. 100 + x = y2, 168 + x = z2 

Subtracting we obtain 

(z - y)(z + y) = 68 

Since 68 = 2217 can be decomposed into a product of two factors in just three 
ways: 

68 = 1-68 = 2-34 = 417 

and y and z must be both odd or both even, there is just one solution: 

z — y = 2, z + y = 34, z = 18, y = 16, jc = 156 

2.70. (Stanford 1957.) Bob has x stamps of which y sevenths are in the 

second book; x and y are positive integers, 

and hence 

2* + y* + 303 = 10 + 7 + JUJ x 

3-5-7-101 
28 - 5y 

The denominator on the right-hand side must be positive and odd since it must 
divide the numerator which is odd. This leaves three possibilities: y = 1,3, 
and 5, and only the last one is suitable: y = 5 and x = 3535 are uniquely 
determined. 

2.71. (Stanford 1960.) If the reduced price is x cents and there are y pens 
in the remaining stock, x < 50 and 

xy = 3193 
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Now, 3193 = 31 x 103 is a product of two prime factors, and so it has pre¬ 
cisely four different factors, 1, 31, 103, and 3193. If we assume that x is an 
integer, x = 1, or 31. If we assume also that x > 1, then jc = 31. 

2.75. (1) Inconsistence: Either there are, among the three planes, two which 
are different and parallel; or any two planes intersect and the three lines of 
intersection are different and parallel. 

(2) Dependence: The plans possess a common straight line; two, or even all 
three, may coincide. 

(3) Consistence and independence: There is just one common point, the point 
of intersection. 

2.78. The current textbooks for secondary schools contain “word problems” 
in great number, although not in great variety. Just such applications and 
such kinds of questions are usually lacking as could shed light on the general 
interest of the “Cartesian pattern.” 

From the foregoing examples, the reader can learn to attach useful questions 
to a problem that he has just solved. I list a few such questions, referring to 
one illustrative example for each (the reader should look for further illus¬ 
trations): 

Can you check the result? (Ex. 2.4.) 

Check extreme (degenerate, limiting) cases. (Ex. 2.14.) 
Can you derive the result differently? Compare the different approaches. 

(Ex. 2.8.) 
Could you devise another interpretation of the result? (Ex. 2.3.) 
Generalize the problem. (Ex. 2.2.) 
Devise an analogous problem. (Ex. 2.47.) 
Starting from any problem and asking the foregoing and similar questions, 

the reader may evolve new problems and find perhaps some interesting and not 
too difficult problem. At any rate, in so asking, he has a good chance to 

deepen his understanding of the problem he started from and to improve his 
problem-solving ability. 

Here are just two (not too easy) problems evolved from the foregoing. 
(I) Check the result of ex. 2.35 

(1) in supposing a = 8, /3 = y, a+/3 = 90°; 

(2) in supposing a = 8, /3 = y, but without prescribing a value for 

“ + 
(3) by substituting 8, y, /3, and a for a, /3, y, and 8, respectively. 

(II) Consider problems of solid geometry analogous to ex. 2.45. (There is 
a hint in ex. 3.39.) 

No solution: 2.56, 2.72, 2.73, 2.74, 2.76, 2.77. 

Chapter 3 

3.1. For n = 0 and n = 1 the assertion is obvious. Assume that it is 
valid for some value of n: 

(1 + x)n = 1 + • • • + + ■■■ + xn 
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Multiplying both sides by 1 + x you obtain 

(1 + ,)• + ! = l + ... + ^ " jJJx' + ■ ■ ■ + ^ + 1 

By virtue of the recursion formula of sect. 3.6(2), the coefficient of xr in 
(1 + jc)n + 1 turns out equal to 

('■:') 
and so the binomial theorem, supposed to be valid for n, turns out to be valid 
also for n + 1. Observe that we have also used the boundary condition of 

sect. 3.6(2). Where? 

3.2. Assume the result of ex. 3.1, set 

b 
x = - 

a 
and consider 

an(I + x)n = (a + b)n 

3.3. Consider the assertion “Sp is a polynomial of degree p + 1” as a con¬ 
jecture (what it originally was). This conjecture is certainly true in the first 
particular cases, p = 0, 1, and 2 (which suggested it; see the beginning of 

sect. 3.3). Let us assume that the conjecture is verified up to the case p = 
k — 1, that is, forp = 0, 1, 2,. . ., k — 1 (for S0, Si, S2,..., Sk~i.) Thenv/e 

can conclude (look at the final equation of sect. 3.4) that 

2 1)‘^fc_1 + 3^ 1)+•••+ S0 = P 

(we introduce P as an abbreviation) is a polynomial of degree k. Now, we 
derive from that equation that 

(1) Sk 
(n + l)fc + 1 - 1 - P 

k + 1 

Since P is of degree k in n, the highest term of (n + l)khl which is nkil 
cannot be canceled, and so our formula shows that Sk is a polynomial of degree 
k + 1 in n. We reached this conclusion assuming that S0 is of degree 1, 

Si of degree 2,... and Sk-1 of degree k. 

To put it intuitively, the property considered of Sk (that it is of degree k + 1) 
has an “unquenchable tendency to propagate itself.” We knew pretty early 
that S0, Si, and S2 have this property; therefore, by our foregoing proof, also 
S3 must have it; by the same proof also S4 must have it, then Ss, and so on. 

That the highest term in Sk is of the asserted form, is also obvious now from 
the formula (1). 

Some of the following problems provide other approaches to the result just 
proved; see also ex. 4.2-4.7. 

n(n + 1)(2/j + 1)(3/j2 + 3// - 1) 
30 
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The proof by mathematical induction follows the standard pattern; see 
MPR, vol. 1, pp. 108-120. 

3.5. Pattern suggested by sect. 3.2, 3.3, and 3.4, and by ex. 3.3. 

3.6. Analogous to sect. 3.4: 

nk - (« - 1)* = (i)"*-1 - (2)^"2 + ■ • • + (- 

3.7. Analogous to sect. 3.4: 

[rin + 1)]* - [(« - l)«]fc = nk[(n + 1)“ - (a - 1)“] 

= 2^«2,‘-1 + 2^jn2k~3 + 2Q/!2*-4 5 + ■•• 

3.8. Analogous to sect. 3.4: 

(2a + l)[a(a + l)]fc — (2n - l)[(a - l)«]fc 
= + 1)* + (n - 1)*] + 2nk + 1[(n + 1)* - (a - 1)*] 

3.9. From ex. 3.7 by recursion and mathematical induction. 

3.10. From ex. 3.8 by recursion and mathematical induction. 

3.11. By virtue of ex. 3.9 and 3.10, it is enough to verify the assertion for 
S,(x) and 

2x + 1 
S2(x) = Sl(x'F^-± 

3.12. (a) By “little Gauss’s method” (first approach of sect. 3.1): 

[1 + (2n - 1)] + [3 + (2// - 3)] + • • • = 2n-^ = n2 

(b) By the second approach of sect. 3.1; see the following. 
(c) Generalize: consider the sum of an arithmetic series with initial term a, 

difference d, and n terms: 

S = a + (a + d) + (a 4- 2d) + • • • + (a + (a — 1 )d) 

Set the last term a + (n - \)d = b; then (this is the second approach of 
sect. 3.1) 

S = a + (a + d) + (a 4- 2d) + ■ ■ ■ + (b — 2d) + (b — d) + b 
S = b + (b — d) + (b — 2d) + ■ ■ ■ + (a + 2d) + (a + d) + a 

By adding and dividing by 2 

Specialize: a — 1, b = 2n — 1; then 

(4) Look at Fig. 3.9. 
(5) See ex. 3.13. 
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3.13. 1 + 4 + 9 + 16 + • • • + (2/i - l)2 + (2/j)2 - 4(1 + 4 + • • • +/12) 

2/i(2/i + l)(4/i +1) n(/i + l)(2/i + 1) 
6 4‘ 6 

_ n(4/J2 - 1) 
3 

3114. Follow the pattern of ex. 3.13: 

4/,2-(2”4+1)2 - s^y1-)2 = -1) 

3.15. Use the notation of ex. 3.11: 

\k + 3“ + • • • + {In - 1)* = 5fc(2n) - 2fc5fc(/i) 

3.16. More questions may be easier to answer than just one question. (This is 

the “inventor’s paradox”; see HSI, p. 121.) Along with the proposed 

22 + 52 + 82 + • • • + (3n - l)2 = U 
consider 

l2 + 42 + 72 + • • • + (3n - If = V 

Then (suggested by ex. 3.15) 

U + V + 9S2(n) = S2(in) 

Moreover 

U - V = 3 + 9 + 15 + • • • + (6/1 - 3) = 3/12 

We have here a system of two linear equations for the two unknowns U and V 

which yields not only the required 

U = /i(6n2 + 3/i - l)/2 

but also 

V = n(6n2 - 3/i - l)/2 

For another method see ex. 3.17. 

3.17. (See Pascal, l.c. footnote 3 in chapter 3.) Generalizing the notation 
of sect. 3.3 (where we dealt with the particular case a = d = 1) we set 

Sk = a* + (a + df + (a + 2 d)k + • • • + [a + (n — 1 )d]k 

Obviously, S0 = n. Substituting 1, 2, 3,..., n for n in the relation 

(a + nd)k + 1 - [a + (n - l)rf]fc + 1 

= + (n - 1 )d]kd + (k + + (« - l)d]k-1d2+ ■ ■ ■ 

and adding, we obtain 

(a + dn)k +1 - a* + 1 = ^ | ^ +2 + • • • + S0dk + 1 

Hence we find Su S2,. .., Sk one after the other, recursively. Do in detail the 
case a = 2, d = 3, k = 2; see ex. 3.16. 
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3.18. The sum required is 

i-22+2_33 
2 2 

(n — l)/i 

= i[(23 - 22 + 33 - 32 + 43 - 42 +■■■+ n3 - n2)] 

= US3 - S2) = 
(n - 1)/i(/i + l)(3/i + 2) 

24 

by the results of sect. 3.2 and 3.3. 

3.19. (a) ”(”2 ~ J); (b) ln-12’'-23n-3...(« - l)1; (c) ^ ^ 
o 12 

3.20. We have already computed Ex in sect. 3.1 and E2 in ex. 3.18. A more 
efficient procedure is based on a classical fact of algebra: the elementary 
symmetric functions can be expressed in terms of the sums of like powers: 

£i = Si 

E2 = (Si2 - S2)/2 
Ea = (Sx3 + 2S3 - 3SiS2)/6 
Et = (.V + 3S22 + 85x53 - 6S,2S2 - 654)/24 

Combine these with our former results (sect. 3.1, 3.2, and 3.3, ex. 3.4). Com¬ 

bining certain properties of the general expression of Ek in terms of Si, S2,..., 
Sk (“isobaric”) with ex. 3.9 and 3.10, we can obtain not only the degree but also 
the coefficient of the highest term, 

and we can derive that, for k i? 2, Ek(n) is divisible by 

{n - k + l)(n - k + 2)...(« - 1)[«(/! + lJp-c-D^ 

3.21. Procedure (a) is a particular case of procedure (b). In fact, if An +1 is 
implied by An alone, it is a fortiori (even with stronger reason) implied by 
Ai, A2,..., An-1 and An together. That is, if statement (Ila) happens to be 

correct, statement (IIb) must be correct. Hence, if we accept procedure (b), 
we are obliged to accept procedure (a). 

Procedure (b) can be reduced to procedure (a). Define Bn as the simultaneous 
assertion of the n propositions Aly A2t..An-1 and An. Then 

statement (I) means: Bi is true. 

statement (life) boils down to: Bn implies Bn + 1. 

Hence, the statements (I) and (IIb) about the sequence Au A2, A3,... boil down 
to statements (I) and (Ila) with Bn substituted for An, (for n = 1, 2, 3,..., of 
course). 

3.22. Fig. 3.3 can be conceived as representing the case in which Bernie, 
Charlie, Dick, Roy, and Artie (blocks from northwest to southeast) put up the 
tent and the other five boys (Ricky, Abe, Al, Alex, and Bill—blocks from 
northeast to southwest) cook the supper. Starting from this concrete case. 
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you should be able to see that to each division of the ten boys into two differ¬ 

ently labeled teams of five there corresponds a shortest zigzag path from top 
to bottom in Fig. 3.3 and, conversely, to each zigzag path of this kind there 
corresponds such a division; the correspondence is one-to-one. Therefore, 
the desired number of divisions is 252; see Fig. 3.3. 

3.23. We are facing here a general situation, a representative special case of 
which (MPR, vol. 1, p. 25, ex. 10) appears in ex. 3.22 and Fig. 3.3. 

Number the individuals from 1 to n and let correspond the fcth “base” 
(horizontal row) of the Pascal triangle to the fcth individual. An individual 
belongs to the subset if, and only if, the zigzag path arrives at the correspond¬ 
ing base coming down along a block running from northwest to southeast. 

In this manner, any subset of size r contained in the given set of size n can be 

visualized as a zigzag path ending in a fixed point, and we count the subsets by 

counting the zigzag paths. Cf. MPR, vol. 2, pp. 105-106, ex. 31. 

3.24. 2 ^ straight lines, ——p^-— triangles. 

3.25. Given n points in space in “general position”, there are 

n(n — 1)(« — 2)(/j — 3) 
1 - 2-3-4 

tetrahedra with vertices chosen among the given n points. 

3.26. n\ _ „ _ njn - 3) 
2} 2 

3.27. Two diagonals intersecting inside the given convex polygon are the 
diagonals of a convex quadrilateral the four vertices of which are chosen among 

the n vertices of the given polygon. Therefore the number of the intersections 
in question is 

n(n — 1)(« — 2)(/j — 3) 

1-2-3-4 

3.28. The red face can be chosen in 

= 6 

different ways. From the remaining five faces, the two blue faces can be 
chosen in 

10 

different ways. Hence the total number of possibilities for distributing the 
three colors among the six faces in the required manner is 

l)© - 6 X 10 - 60 
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3.29. n\ (s + /)! 

r!(« — r)! s!/! 

3.30. A set of n individuals is divided into h nonoverlapping subsets (that 
is, two different subsets have no member in common); the first subset has n 
members, the second r2 members,... and the last subset has rh members so 
that 

ri 4- r2 4- /*3 4- • • • 4- rh = n 
There are 

n\ 

ri !r2!r3!. . .rfc! 

different subdivisions of this kind. The numbering or labeling of the subsets 
is essential: if some of the numbers ri, r2,. .., rh happen to be equal, we must 
carefully distinguish between differently labeled subsets of equal size. Thus 
in ex. 3.22, we distinguish between the five individuals who put up the tent 

and the other five who cook the supper; or, which boils down to the same, in 
Fig. 3.3 we distinguish between two zigzag paths that are mirror images of 
each other with respect to the middle line of the figure (which joins the initial 
A to the final A). Or, in ex. 3.29, the r faces have a predetermined color 
different from that of the s faces, even if the numerical values of r and s happen 
to coincide. 

3.31. This fact is accessible through all four approaches indicated in sect. 
3.8 and also through ex. 3.23. 

(1) The network of streets is symmetrical with respect to the vertical through 

the apex of the Pascal triangle. 
(2) The same symmetry appears both in the recursion formula and in the 

boundary condition. 

(3) Using the notation for the factorial 

we have 
1 -2-3. ..m = m\ 

n\ n(n — 1).. .(« — r + 1) 
,r/ _ 1 • 2 ... r 

n(n — 1).. .(/i — r + l)(/i — r)...2-1 
- T~2 ~r (n - r)...21 

_ n\_nl_/ n \ 
r!(« — r)! (n — r)!r! \n — r) 

(4) Since (a + b)n remains unchanged when we interchange a and b, its 
expansion must show the same coefficient for arbn~r and an~rbr. 

(5) When, from a set of n individuals, we pick out a subset of r individuals, 
we leave another subset of n — r individuals. Therefore, there are as many 
subsets of one kind as of the other kind. 

a++ G + • • • + 

Proof: put a = b = 1 in the expansion of (a + b)n. Another proof: There 
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are 2n shortest zigzag paths from the apex of the Pascal triangle to its nth base; 
this is obvious since, in picking a southward path in Fig. 3.3, you have a choice 
between two alternatives in passing any street corner (any base). Still another 

proof : In a set of n individuals, there are 2n subsets, including the empty set 

and the full set (which are accounted for by and respectively); this 

is obvious, since in picking a subset you may accept or refuse any one of the n 

individuals. 

3.33. .3 -;+ - "+(-|)‘C -o 

for n & 1. Put a = 1 and b — — 1 in the expansion of (a + b)n. 

Another proof: By boundary condition and recursion formula 

GMV) 
-CMVMV) 

(3- (VMV) 

Add! 
Still another proof: Each zigzag path attaining the (n — l)th base splits into 

two zigzag paths going to the nth base, of which one goes to a “positive” 
corner (r = 0, 2, 4,...) and the other to a “negative” corner (r = 1, 3, 5,...). 

3.34. Analogously (fourth avenue) 

1 + 5+15 + 35 56 
generally (rth avenue) 

CHrM':V--C 
Proof by mathematical induction: The assertion is true for n = r: in fact, 

by virtue of the boundary condition. 
Assume now that the assertion holds for a certain value of n. Adding the 

same quantity to both sides of the assumed equation, we find 
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by virtue of the recursion formula, and so the truth of the assertion follows 

for the next value, n + 1. 
This proves the theorem for n g r. 

Another proof -. In Fig. 3.7 (1), A is the apex and L a given point specified by 

n + 1 and r + 1; the total number of shortest zigzag paths from A to L is 

Each of these paths must use some street in going from the rth 

avenue to the (r + l)th avenue; the number of paths using the successive streets 

is 

respectively, and so the sum of these numbers is the total number of the paths 

in question, as it has been asserted. 

3.35. Adding the numbers first along the northwest boundary line (Oth 
avenue), then along the first avenue, then along the second,... and finally 
along the fifth avenue in Fig. 3.5 we obtain 

6, 21, 56, 126, 252, 462 

respectively, and the sum of these numbers is 923, which we seek in vain in the 
neighborhood of the fragment of the Pascal triangle exhibited in Fig. 3.5. 
Yet we find quite close the next number 

924 

Observe now that we could have saved the trouble of performing our additions 
(also the last, the seventh addition) by using ex. 3.34 and a table of binomial 

coefficients, and you can easily prove, in ascending from our representative 
example, that generally 

%%JY)^"V+V) - l 

3.36. On the left-hand side of the proposed equation, the first factors are 
taken from the fifth base and the second factors from the fourth base of the 
Pascal triangle; the right-hand side can be found in the ninth base. In the 
example 1-1+ 5-3 + 10-3 + 10-1 = 56, the fifth, the third, and the eighth 
base are analogously involved. The more general situation considered in 
sect. 3.9 involves the nth, again the nth, and the 2nth base. These examples 
suggest the general theorem: 

(o)(:)+(t)C",) + (t)(.-2) 
+... + 

We admit here, in fact, an extension of the meaning of our symbols ; a formal 
statement follows in ex. 3.65 (III). 
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Both proofs found in sect. 3.9 can be extended to the present more general 
case. The geometric approach is suggested by the comparison of (II) and 
(III) in Fig. 3.7. The analytic approach consists in computing in two different 
ways the coefficient of xr in the expansion of 

(1 + x)m(l + x)n = (1 + x)m+n 

3.37. On the left-hand side of the proposed equation, the first factors are 
taken from the first avenue and the second factors from the second avenue of 
the Pascal triangle; the right-hand side can be found on fourth avenue. In the 
example 

110 + 3-6 + 6-3 + 101 = 56 

the second, again the second, and the fifth avenue are analogously involved. 
We can interpret the general situation dealt with in ex. 3.34 and Fig. 3.7 (I) as 
involving the 0th, the rth and the (r + l)th avenue in an analogous way. 

These examples suggest the general theorem: 

OCrM^rT1) 
+f:2)('+rV"+tr)C: lr + s + n +1\ 

\ r + s + 1 / 

Geometric proof (more general than the geometric proof in ex. 3.34, anal¬ 
ogous to that in sect. 3.9 and ex. 3.36): In Fig. 3.7(IV), the point L is specified 

by the numbers r + 1 + s + n (total number of blocks) and r + 1 + s (blocks 
to the right downward) and so the total number of shortest zigzag paths from 
the apex A to L is 

lr + s + n + 1\ 
\ r + s + 1 ) 

Each of these paths must use some street in going from the rth avenue to the 

(r + l)th avenue; according to the street used, we classify the paths on the 
left-hand side of the asserted formula, and count the paths of each class sepa¬ 
rately; on the right-hand side, we count all the paths in question together. 

It would be desirable to parallel here also the other, analytic proof of sect. 
3.9 and ex. 3.36 where the formula is derived from the consideration of the 
product of two series; yet this seems to be less immediate and there is a gap. 
It would be desirable too to find some (algebraic?) connection between the 
two similar formulas, obtained here and in the foregoing ex. 3.36; there is 
another gap. 

3.38. The nth triangular number is 

1 + 2 + 3 + + n 
n(n + 1) 

-m 
The triangular numbers 1, 3, 6, 10,... form the second avenue of the Pascal 
triangle. 
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3.39. The nth pyramidal number is 

+ Q + Q+-+ (* rH":2) °++2> 
We have used ex. 3.34. The pyramidal numbers 1, 4, 10, 20,... form the 
third avenue of the Pascal triangle. 

Remark. The expressions for the triangular and pyramidal numbers were 
known before the general explicit formula for the binomial coefficients (sect. 
3.7) and may have led, by induction, to the discovery of the general formula. 

3.40. I2 + 22 + • • • +n2 = + 0(2/1 + 1) 
o 

3.41. Shortest zigzag paths joining the apex to the point characterized by 
the two numbers 

n — Mi + n2 + • • • + nh 

(total number of blocks) and 

r = ri + r2 + • • • + rh 

(blocks from northwest to southeast) which, however, are subject to the 

restriction that they must pass through h - 1 given intermediate points, 
analogously characterized by the numbers 

/ii and ri 

Mi + M2 and ri + r2 

Mi 4- ti2 4- * • 4- Mi, _ i and ri 4- r2 4- **•+/*&-1 

3.42. (a) Fig. 3.10 represents two paths belonging to the set, but not to the 
subset (1). They have the same initial point A, the same final point C, and 
pass through the same intermediate point B which lies on the line of sym¬ 

metry and cuts each path into two arcs, AB and BC. The arcs AB are sym¬ 
metric to each other with respect to the line of symmetry and neither of them 
has an interior point in common with this line; the arcs BC coincide. Of 
these two paths, one belongs to the subset (2) and the other to the subset (3). 
Conversely, any path belonging to these subsets can be matched with another 
path in the manner presented by Fig. 3.10: look for the second common point 
B of the path with the line of symmetry (the apex A is the first such common 
point). Such matching establishes a one-to-one correspondence between the 
subsets (2) and (3). 

(b) We could match the paths differently: whereas in Fig. 3.10 the two arcs 
AB are symmetrical to each other with respect to the straight line through the 
points A and B, in Fig. 3.11 they are symmetrical with respect to the midpoint 
of the segment AB. 

(c) From (a) or (b) it follows that 
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Using first one then the other of the two following relations 

CK:l) + (V> (V)-^t) 
we obtain two different expressions 

*-(,■'9 
We have derived this in supposing that 2r > n. Yet we can easily get rid of 
this restriction by using the symmetry of the Pascal triangle. 

3.43. With mathematical induction. Verify the predicted result for n = 
1, 2, 3, (m = 0, 1) by inspecting the figure. 

From 2m to 2m + 1. By producing a path of length 2m which has no point 
in common with the line of symmetry except the apex, we obtain two paths 
of length 2m + 1 of the same nature. Assuming the predicted result for 

n = 2m, we obtain so for n = 2m + 1 

as the value of the required number. 
From 2m + 1 to 2m + 2. By producing a path of length 2m + 1 of the 

specified nature (see above) we obtain in most cases two paths of length 
2m + 2 of the same nature: the paths ending in the two points of the 
(2m + l)th base nearest to the line of symmetry are exceptional. Visualizing 
this case, assuming the result for n = 2m + 1, and using the appropriate par¬ 
ticular case of ex. 3.42, we obtain so, for n — 2m + 2, as the value of the 

required number 

/2/w\ ,, 1 /2m + 1\ 
*\m) " 2 2m + 1 y /w + 1 / 

which turns out, after suitable transformation, equal to 

12m + 2\ 

+ 1 / 

Without mathematical induction. Use the first expression obtained for N 

in the solution of ex. 3.42 under (c), and extend the following sum to values of 

r restricted by n/2 < r g n: 

22[(;:!)-(";')] 
is the value of the required number and yields the predicted result, if we care¬ 

fully distinguish between the cases n = 2m and n = 2m + 1. 

3.44. 0, 1, 6, 21, 50, 90, 126, 141, 126... 
0, 1, 7, 28, 77, 161, 266, 357, 393, 357... 

1, 393, and 1 are not, the other numbers of the seventh base are, divisible by 7. 

3.45. Analogous to ex. 3.1. 
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3.46. Analogous to ex. 3.31. 

3.47. Analogous to ex. 3.32. 

3.48. Analogous to ex. 3.33. 

3.49. Analogous to sect. 3.9; a wider generalization is analogous to ex. 3.36. 

3.50. The lines sloping from northeast to southwest 

1, 1, 1, 1, 1, ... 
1, 2, 3, 4, 5, ... 
1, 3, 6, 10, 15, ... 

are also “avenues” in the Pascal triangle. 

3.51. The symmetry, visible in the first lines, persists; it is enough to write 
out two bases (the seventh and the eighth) to the middle 

111 1 
8 56 168 280 

1 1 1 1 1 

9 72 252 504 630 

3.52. In a given “base” of the harmonic triangle, the denominators are pro¬ 
portional to the binomial coefficients, and the factor of proportionality is 
visible from the extreme terms. More explicitly, we find in corresponding 
location in the two triangles the numbers 

Pascal Leibnitz 

Proof. For r = 0, the boundary condition of the harmonic triangle is 
verified. To verify its recursion formula, use first the recursion formula, then 
the explicit form, of the binomial coefficients: 

= 1 (n + 0! (r - l)!(/l - r + 1)! r!(/l - r)! 
n + 1 r!(n + 1 — r)! n\ n! 

= (r - l)!(/l - r)! = 1 

3.53. On the left-hand side, there is the initial term of an avenue in Fig. 3.13, 
and on the right-hand side the sum of all terms in the next avenue. For a 
proof, see the solution of ex. 3.54. 
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3.54. Use the recursion formula of the Leibnitz triangle: 

1 1 1 
6 12 - 12 

1 1 1 
12 20 ~ 30 

1 1 1 

20 30 ~ 60 

1 1 1 

30 42 ~ 105 

Add ! (A “faraway” term of the second avenue is “negligible.”) From this 
representative particular case, we easily pass to the general proposition: In the 
Leibnitz triangle, the sum of all the (infinitely many) terms of the avenue begin¬ 

ning with, and to the southwest from, a certain initial term, is the northwest 
neighbor of the initial term. By changing 

“Leibnitz” “infinitely many” “southwest” “northwest” 
into 

“Pascal” “finite number of” “northeast” “southeast” 

we pass from the present result to that of ex. 3.34, in which we may see a fur¬ 
ther manifestation of that “analogy by contrast” observed in ex. 3.51. 

3.55. In view of the explicit formula for the general term of the Harmonic 
Triangle (ex. 3.52) the displayed (r - l)th line differs only in a factor from the 

corresponding line of ex. 3.53, for r = 2, 3,.. ., and its sum is 

1 

(r - l).'(r - 1) 

3.57. The product is = 1. The reader acquainted with the theory of infinite 
series understands the equation 

1 + jc + ;e2+---+jcn+---=(l - x)-1 

in a less formal meaning, knows the condition under which it possesses that 
meaning, and knows also a satisfactory derivation. 

3.58. a0 + ax + a2 +■■■+ an; ex. 3.57 is a particular case. 

3.59. Each series corresponds to an avenue of the Pascal triangle. For the 
initial series see ex. 3.57. By repeated application of ex. 3.58 and ex. 3.34 we 
find that 

1 + 2x + ‘ix2 + 4x3 + ■ ■ ■ =(1 + x + x2-\-)2 

1 + 3x + 6x2 + 10x3 -I-=(1 + x + x2 -i-)3 

and, generally, 

CH:‘Mr:y--(r:y-■ 
= (1 + X + X2 + • • -)r+1 = (1 - JC)_r_1 

For a formal proof, use mathematical induction. 
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3.60. Compute in two different ways the coefficient of xn in the product 

(1 - jO-'-HI - Jr)'5'1 

This is strictly analogous to the analytic approach in the solution of ex. 3.36, 
which goes back to sect. 3.9(3). 

3.61. 1, 0, 0, 0, respectively, which can be regarded as a confirmation of the 
conjecture N. 

2 14 7 
3.62. -> —> -r— respectively, computed by two essentially different 

3 V ol 243 

procedures, which can be regarded as another confirmation of the conjecture N. 

3.63. (1 + x)‘/3(l + x)2/3 

-( 1 
x xf 5xf _ ]0x^ 
3 9 + 81 243 

x^ 4x3 
9 + 81 ") 

= 1 + x + Ox2 + Ox3 + Ox4 + • • • 

which yields a further confirmation for the conjecture N. 

3.64. 

t + x + (- .IXzj) ^ + ( - 0(:.2)(:.3) ^ +,.. 
i+fX+ i . 2 X + l-2-3Jr + 

= 1 - X + x2 - X3 + • • • 

= [1 - (-*)]-1 = (1 + x)-1 

by virtue of ex. 3.57, which confirms conjecture N from a quite different side. 
Can the other series of ex. 3.59 also be derived from conjecture JV? 

r — 1— x r — 2 — x — x 

i 2 r 

= (-lyf 
x — r + 2 x — r + 1 

r — 1 r 

3.66. According to conjecture N, the coefficient of xn in the expansion of 

(1 + x)-”-1 is ^ rn = (-l)n(W ^ r) = (-!)n(r +r we have first 

used ex. 3.65 (II), and then we have supposed that r is a non-negative integer 

and used ex. 3.31. Replacing x by — x, and so xn by (— l)nxn, we obtain the 

general result of ex. 3.59, which proves the conjecture N in an extensive par¬ 
ticular case: for negative integral values of a. 

3.67. From 

x + ■ xr + • • • 
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we infer (ex. 3.56) that 

If we put a = m and b = n, this goes over into the result of ex. 3.36, but the 
range is different: m and n are restricted to be non-negative integers, a and b 

are unrestricted, arbitrary numbers. 

3.68. Relation (*), derived from the conjecture N, is not proved: it is just a 

conjecture. 
The particular case of (*) in which a and b are positive integers has been 

proved in ex. 3.36. In fact, in view of the solution of ex. 3.66, the particular 
case of (*) in which a and b are negative integers is equivalent to the result of 
ex. 3.57, and so it is also proved. (Observe that (*) provides so the desired 
connection between ex. 3.36 and ex. 3.37; see the remark at the end of the 
solution of ex. 3.37.) 

Could we use ex. 3.36, which is an extensive particular case of the desired (*), 
as a stepping stone to prove the full statement (*)? (Yes, we can, if we know 
the relevant algebraic facts: a polynomial in two variables x and y must vanish 
identically if it vanishes for all positive integral values of x and y.) 

Set 

The relation (*) is essentially equivalent to the relation 

fa(x)Mx) = fa + b(x) 

Now, take (*) for granted; there follows 

f*(x)f*(x)fa(x) = f2a(x)fa(x) = f3a(x) 

and, generally, 
fa(x)n = fna(x) 

for any positive integer n. Let m be a (positive or negative) integer; since we 
have verified already conjecture N for positive and negative integral values of a 

(see ex. 3.1 and ex. 3.66, respectively) we infer that 

lfrnlnix)]" = Mx) = (1 + XT 

fmlnix) = (1 + X)mln 

and so we have derived from (*) the conjecture N for all rational values of the 

exponent a. 

(In fact, the last step is rather risky: in extracting the nth root, we failed to 

indicate which one of its possible values is meant, and thus we left a gap which 
we can hardly fill if we remain on the purely formal standpoint of ex. 3.56. 
Still, we have discovered essential materials for the construction of a full proof. 
One century and a half after Newton’s letter, in 1826, there appeared a memoir 
of the great Norwegian mathematician Niels Henrik Abel in which he dis¬ 

cussed the convergence and the value of the binomial series, also for complex 
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values of x and a, and greatly advanced the general theory of infinite series; 
see his CEuvres completes, 1881, vol. 1, p. 219-250.) 

3.69. We find 1, 2, 6, 20 on the line of symmetry of the Pascal triangle. 
Explanation; the coefficient of xn is 

(-4)” = 4» 
1- 3-5. 
2- 4-6. 

(2/i - 1) 
2/i 

1-3-5.. ,(2/i - l)-2-4-6. . .2/1 
n\n\ 

3.70. 
HoHo — b0 

flo2«i — aobi — a\bo 

a03u2 = a02b2 - aodibi + (ai2 - a0a2)b0 

a04u3 = a03b3 - a02aib2 + (a0Hi2 - a02a2)b1 - (aL3 - 2a0aLa2 + a02a3)b0 

3.71. The cases n = 0, 1, 2, 3 treated in ex. 3.70 suggest that a0n + 1un is a 
polynomial in the a’s and b’s all terms of which have 

(1) the same degree n in the a’s 
(2) the same degree 1 in the b’s 

(3) the same weight n in the a’s and b’s jointly. 

Reasons: 

(1) If an is replaced by a„c (for n = 0, 1, 2,..., with arbitrary c) «„ must 
be replaced by «„c_1. 

(2) If bn is replaced by bnc, un must be replaced by unc. 

(3) If a„ and bn are replaced by a„cn and bncn respectively (as a result of 
substituting cx for x) also un must be replaced by uncn. 

3.72. un = bn - bn-1-. this value must result if, having expressed un in terms 
of a's and b’s, we set ao = ai = a2 = a3 = • • • = 1. This is a valuable 
check; carry it through for n = 0, 1, 2, 3 (ex. 3.70). 

3.73. un = b0 + bi + b2 +-1- bn (see ex. 3.58): this value must result if, 
having expressed «„ in terms of a's and b’s, we set a0 = 1, ai = -1, a2 = 
a3 = • • • = 0. This is a valuable check; carry it through for n = 0, 1, 2, 3 
(ex. 3.70.) 

3.74. 
x x2 x3 

1 6 + 40 336 + ‘ ' 

Cf. MPR, vol. 1, p. 84, ex. 2. 

+ (-l)n*n , 
(2-4-6.. ,2/i)(2/i + 1) 

3.75. 
ai«i = 1 

— ai3«2 = o2 

a!Su3 = 2a22 - aia3 
— ai7«4 = 5 a23 — 5aia2a3 + ai2ai 

ai9«5 = 14a24 - 21aia22a3 + 3ai2a32 + 6al2a2ai - ai3a5 
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3.76. The cases treated in ex. 3.75 suggest that a12n_1«n is a polynomial in 

the a’s each term of which is 

(1) of degree n — 1 and 
(2) of weight 2n — 2. 

Reasons: 

(1) If a„ is replaced by anc (as a result of substituting c~1x for x) un must be 

replaced by unc~n. 
(2) If a„ is replaced by a„cn (as a result of substituting cy for y) un must be 

replaced by unc~1. 

3.77. x = —> y = — and so 
1 - y 1 + x 

y = x — x2 + x3 - x* + ■ ■ ■ 

Hence, if we set an = 1, in ex. 3.75, we must get m„ = (—l)n_1. This is a 
valuable check; carry it through for n = 1,2, 3, 4, 5. 

3.78. 1 - Ax = (1 + y)'2 or 

y = - 1 + (1 - Ax)~ y* = 2x + 6x2 + • • • + H- 

see ex. 3.69. 

3.79. y = -1 + (1 + 4ax),/’(2a)-1 
= x - ax2 + 2a2x3 - 5a3x4 + 14a4Jt5-- 

The coefficient of xn is 

(4dT = (-l)n-1an-1 /2n - 2\ 
2a \/i/ n \ n — 1 / 

(computation similar to ex. 3.69) and un of ex. 3.75 must reduce to this value if 
ai = 1, a2 = a, a3 = a4 = • • • = 0. Cf. MPR, vol. 1, p. 102, ex. 7, 8, 9. 

3.80. 
JC2 X3 X4 

y ~ X 2 + 3 4 + 

3.81. «o = Ml = «2 = 1, «3 = «4 

( — 1 )n _ 1Xn 
+ V--- + • • • 

n 

7 
6 

3.82. Mathematical induction: The assertion is true for n = 3. Assume 
that n > 3 and that the assertion has been proved for the coefficients preceding 
un so that 

Un-1 > 1, M„-2 > 1,. . ., M3 > 1 

We know that u0 = ui = u2 = 1 and, therefore. 

3.83. Set 

nun = M0Mn-1 + U\Un — 2 + • ' • + Mn-i«0 > « 

y = Mo + Ml* + U2X2 + • • • + UnXn + ■ ■ ■ 

d2y __ 
dx2 ~ 

2- 1«2 + • • • + «(« - l)M„JCn_2 + . . . 
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From the differential equation 

n(n - 1 )«„ = m„ - 2 

From the initial condition 

«0 = 1, Mi = 0 

Finally, for /n = 1, 2, 3,..., 

(-Dm 
«2m = 

2/m! 
M2m-1 — 0 

_ 1 2! + 4! 6! + 

ic4 jt6 

2! ' 47 6l 

3.84. Bn = Bn - 5 + 

Cn = Cn-10 + Bn 

Dn = On-25 + C„ 

£n = En-SO + Dn 

The last equation yields, for n = 100, 

Eioo — Eso + D10 o 

and the foregoing equation yields for n = 20, 

D2o = C20 

since 0_5 = 0: any of the introduced quantities with a negative subscript must 
be properly regarded as equal to 0. These examples should illustrate the main 
feature of the system of equations obtained: we can compute any unknown 

(such as £100) if a certain unknown of the same kind with a lower subscript 
(as £50) and another unknown of a lower kind (denoted by the foregoing letter 
of the alphabet, as Dl00) have been computed previously. (There are cases 
in which only one previously computed unknown is needed, see D20. In 
other cases we need some of the “boundary values” which we have known 
before setting up our equations: I mean B0, C0, D0, E0, and An for n = 0, 1, 2, 
3,...) In short, we compute the unknowns by going back to lower subscripts 

or to former letters of the alphabet and, eventually, to the boundary values. 
(Do not let the difference of notation hide the analogy between this computation 

and the determination of the binomial coefficients by recursion formula and 
boundary condition; see sect. 3.6(2).) 

The reader should set up a convenient system of computation which he can 
check against the following values: 

B\a — 3, C25 — 12, Dq 0 — 49, Eioo — 292 

(For more details, and a concrete interpretation of the problem, see HSI, 
p. 238, ex. 20, and American Mathematical Monthly, 63, 1956, pp. 689-697.) 

3.85. Mathematical induction: assuming the proposed form for/n), we find 
by differentiating once more 

/n + i> = (—l)n + 1(/j + l)!jc_n_2 logx 

+ (— l)nx~n~2[n\ + (n + l)cn] 
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which is of the desired form provided that 

cn + 1 = m! + (m + l)c„ 

Transforming this into 

Cn +1 _ £n . 1 

(n + 1)! " n\ n + 1 

and using ci = 1, we find 

./.111 cn_„.(1+5 + 5 + -+...+ -) 

3.86. To find the sum of a geometric series is a closely related problem: both 
the result and the usual method of derivation are used in the following. 

Call S the proposed sum. Then 

(1 - x)S = 1 + x + x2 +-1- xn_1 - nxn 

Hence the required short expression: 

„ _ 1 - (n + l)xn + nxn + 1 

(1 - x)* 

3.87. Use method, notation, and result of ex. 3.86: call T the proposed sum 
and consider 

(1 - x)T = 1 + 3x + 5x2 + lx3 + ■ ■ ■ + (2/i - l)*"-1 - n2xn 

= 2S-(l+x + x2+--- + xn_1) - n2xn 

and so by straightforward algebra 

1 + * - (n + \)2xn + (2n2 + 2n - l)xn + 1 - n2xn + 2 

(1 - xf 

3.88. In following ex. 3.86 and 3.87, we could find an expression for 

1* + 2kx + 3kx2 + • • • + nkxn~1 

by recursion, by reducing the case k to the cases k — 1 ,k — 2,..., 2, 1, 0. 
3.89. Mathematical induction. The assertion is obviously true for n = 1, 

and 

nn(n + a) — ai(l + fi) _ an+i(n + 1 + ^) — fli(l + _ 
---5-1- «n+l---5- + fln+l a — p a — p 

3.90. Apply ex. 3.89 with 

P 
ai = q U=P' 

The proposed sum turns out to equal 

P (P + 1 P + 1 
P - + 1 \ 9 9+1 

0 = 9-1 

p + n 

q + n - 1 
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3.91. (1) 8, 4V2, 4V3, 6. 

(2) Cn = 2/i tan (ir/n), = 2/j sin (ir/n). 

Hence straightforward verification by familiar trigonometric identities. 

3.92. For more examples on mathematical induction see p.75 footnote 5. 

Problems connected with those in Parts II and III can be found in books on 

Calculus of Probability or Combinatorial Analysis. Problems connected 
with those in Part IV, or with ex. 3.53 to 3.55, can be found in books on 

Infinite Series or Complex Variables. Problems closely related to ex. 3.81, 
3.82 and 3.83 fill an extensive chapter of the Theory of Differential Equations. 

There is an inexhaustible source of themes for further examples. Here is 
just one instance: polynomial coefficients (cf. ex. 3.28, 3.29, 3.30). The coeffi¬ 
cients of the expansion of 

(a + b + c)n 

for n = 0, 1, 2, 3,. .. can be associated with the lattice points in an octant of 

space analogously to the coefficients of 

(a + b)n 

which are, in the Pascal triangle, associated with the lattice points in one 
quarter of a plane. What is, in the space arrangement, analogous to the 

boundary condition, to the recursion formula, to the avenues, streets, and 
bases of the Pascal triangle, to ex. 3.31-3.39? What is the connection with 
ex. 3.44-3.50? We have not yet mentioned the number-theoretic properties 

of binomial, or polynomial, coefficients. And so on. 

No solution: 3.56. 

Chapter 4 

4.1. Let A denote the vertex of the pyramid opposite its base (the “apex”). 
Dissect the base of the pyramid into n triangles of area 

Bu B2,Bn 

respectively. Each of these triangles forms the base of a tetrahedron of which 
A is the opposite vertex and h the height; the pyramid is dissected (by planes 

passing through A) into these n tetrahedra of volume 

Vu F2,..., Vn 

respectively. Obviously, 

B\ + B2 + • • + Bn — B 

Kl + V2 + ■ • • + Vn = V 

Supposing that the desired expression for the volume has been proved for 

the particular case of the tetrahedra, we have 
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Addition (superposition!) of these special relations yields the general relation 

4.2. A polynomial of degree k is of the form 

f(x) = a0xk + fli**-1 + •• •+ ak 

where a0 ^ 0. Substitute successively 1, 2, 3,..., n for x and add: you obtain, 
in using the notation of ex. 3.11, 

/(l) + /(2) + • • • + f(n) = a0Sk(n) + aiSk-i(ri) + ■ ■ ■ + akS0(n) 

The right-hand side is, by the result of ex. 3.3, a polynomial of degree k + 1 
in n. 

4.3. We can write the result of ex. 3.34 in the form 

see ex. 3.65(111). Assuming ex. 4.4, we write the polynomial considered in the 
form 

where (see the solution of ex. 4.4) b0 = k\a0 ^ 0. Substitute successively 
0, 1, 2, 3,..., n for x and add: you obtain, by the result of ex. 3.34 restated 

above, 

/(0) + /(1) + /(2) +■■■ + f(n) = b0("k + j) + b^n + + • • • + b^n + 1) 

The right-hand side is a polynomial of degree k + 1 in n. 

4.4. Comparing the coefficient of xk (the highest power of x present) on 

both sides of the proposed identity, we find 

a0 = b0/k\ 

Hence, it follows from the proposed identity 

a0xk + fli-**-1 +•••+<!*- * jj + • • • + 6*^ 

Comparing the coefficient of jcfc_1 on both sides, we express bx in terms of a0 
and ai, and in continuing in this fashion we determine b0, bu b2,...,bk 
successively, by recursion. 

4.5. We have to determine four numbers b0, bu b2 and b3 so that 

holds identically in x. This means 

x3 =^r(x3 - 3x2 + 2x) + ^ (jc2 - x) + b2x + b3 
O L 
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Comparison of the coefficients of jc3, x2, jc1, and x° yields the equations 

1 = b0/6 
0 = —bo/2 + bi/2 

0 = b<J3 - bi/2 + b2 
0 = b3 

respectively, from which we derive 

b0 = 6, bi = 6, b2 = 1, b3 = 0 

Hence, by the procedure of ex. 4.3 (k = 3) 

l3 + 23 + • • • + n3 = 6^ + + 6^ + 1 j ^ 1) 

= (n + 1 )2n2 
4 

by straightforward algebra. 

4.6. As it has been proved in ex. 4.3 there are five constants c0, Ci, c2, c3, 
and c4 such that 

l3 + 23 + 33 + • • • + n3 = con* + ci/j3 + c2n2 + c3n + c4 

for all positive integral values of n. In setting successively n = 1, 2, 3, 4, and 
5, we obtain a system of five equations for the five unknowns c0, c4, c2, c3, and 
c4. By solving these equations we obtain 

Co = 1/4, Ci = 1/2, c2 = 1/4, c3 = 0, c4 = 0 

that is, we obtain the same result as in ex. 4.5, but with more trouble. 

4.7. Ex. 4.3 yields a new proof for the result of ex. 3.3, except one point: 
the coefficient of nk + 1 in the expression of 5fc(/i) remains undetermined by the 

procedure of ex. 4.3. (A little additional remark, however, will yield also this 
coefficient.) 

4.8. Yes: a straight line is represented by an equation of the form 

y = ax + b 

the right-hand side of which is a polynomial of degree g 1. 

4.9. The straight line coinciding with the x axis appears intuitively as the 
simplest interpolating curve; it corresponds to the identically vanishing poly¬ 
nomial. Any other interpolating polynomial is necessarily of higher degree, 
namely of degree n at least, since it has n different zeros jc4, x2y.. ., xn. 

4.10. Lagrange’s interpolating polynomial, given by the final formula of 
sect. 4.3, is of degree ^ n - 1; it is the only interpolating polynomial of such a 
low degree, I say. In fact, if two polynomials, both of degree g/i - 1, take 
the same values at the n given abscissas, their difference has n different zeros, 
that is more zeros than the degree would permit, unless this difference vanishes 
identically. Lagrange’s interpolating polynomial, being the only one of 

degree gn — 1, is of the lowest possible degree. 
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4.12. (a) Obvious, in view of the rule 

(cij'i + c2y2y = + c2y2 

for constant ci and c2. 

(b) y = erx is a solution of the differential equation iff r is a root of the 
algebraic equation in r 

rn + airn_1 + a2rn~2 + ■ ■ ■ + a„ = 0 

(c) If the equation in r under (b) has d different roots ru r2,..rd and 
ci, c2,...,cd are arbitrary constants 

y = cicn1 + c2er2x + • • • + cder<ix 

is a solution of the differential equation, and its most general solution (as it 
can be shown) when d = n. 

4.13. The equation in r is 
r2 + 1 = 0 

and so the general solution of the differential equation is 

y = Cie,x + c2e~ix 

The initial conditions yield the equations 

ci + c2 = 1, ici — ic2 = 0 

which determine Ci and c2 and so the desired particular solution 

y = (e,x + e-ix)l2 

Observe that also y = cos x satisfies both the differential equation and the 
boundary conditions. See also ex. 3.83. 

4.14. (a) Obvious. 
(b) yk = rk is a solution of the difference equation iff r is a root of the 

algebraic equation given in ex. 4.12(b). 
(c) If the equation of ex. 4.12(£>) has d different roots ri, r2,..., rd and 

ci, c2,..., cd are arbitrary constants 

A = Ciri* + c2r2k + • • • + cdrdk 

is a solution of the difference equation and its most general solution (as it can 

be shown) when d = n. 

4.15. The equation in r is 
r2 - r - 1 = 0 

and so the general solution of the difference equation is 

This yields for k = 0 and k = 1 (initial conditions) the equations 

1 + V5 1 - V5 
ci-j- + c2-2- = 1 Cl + c2 = 0, 



4.12-4.21 197 

which determine Ci and c2 and so the desired expression of the Fibonacci 
numbers 

_L 171 + V5\fc /I - v'BX''! 
- V5 [( 2 ) )J 

4.16. If the actual motion is obtainable by superposition of the three virtual 
motions, the coordinates of the moving point at the time t are 

X = Xi + x2 + x3 = tv cos a, 
y = yi + y2 + y3 = tv sin a - \gt2 

Elimination of t yields the trajectory of the projectile 

y = x tan a 
gx2 

2v2 cos2 a 

which is a parabola. 

4.18. There are two unknowns: the base and the height of the tetrahedron. 
See Fig. 4.5a. 

4.19. Let 
V stand for the volume of the tetrahedron, 

B for its base, 
H for its height, 
h for that height of its base that is perpendicular to the edge of given 

length a. 
Then 

V - BH R - ak 
V-—’ B - T 

and, therefore. 

Yet neither h nor H is given. 

4.20. The orthogonal projection of our tetrahedron (of ex. 4.17) on a plane, 
perpendicular to the line of length b and passing through one of its endpoints, 

is a square. The diagonals of this square are of length a, its area is a2/2, and 
the square itself is, see Fig. 4.5b, the base of a right prism with height b. This 
prism, see Fig. 4.5b, is split into five (nonoverlapping) tetrahedra; our tetra¬ 
hedron of ex. 4.17 is one of them (we call its volume V); the other four are 

congruent, the base of each is an isosceles right triangle with area a2/4, and the 
height of each is b. Hence 

d2bj2 = V+ 4a2 b 112 

V = a2b/6 

4.21. The plane that passes through an edge of length a and the midpoint 

of the opposite edge is a plane of symmetry for our tetrahedron and divides 
it into two congruent tetrahedra (see Fig. 4.5c) the common base of which (an 
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isosceles triangle) has obviously the area ab/2 and the height of which is a/2. 

Hence the desired volume 

V - - - — - — 

V - 3 2 2 - 6 

(There are two such planes of symmetry which jointly divide our tetrahedron 

into four congruent tetrahedra; this yields another, but little different, access 
to the solution.) 

4.22. We can regard our tetrahedron as an extreme (degenerate, limiting) 
prismoid, with height b and each base shrunk into a line-segment of length a; 

the midsection is a square with side a/2; see Fig. 4.5d. Hence 

h = b, L = 0, M = a2/4, N = 0 

and the prismoidal formula yields V = a2b/6. 

4.23. If the expression found for V in ex. 4.19 agrees with the result derived 
in three different ways in ex. 4.20, 4.21, and 4.22, we should have 

Hh = ab 

Yet we can show this relation independently, by computing, in two different 

ways, the area of the isosceles triangle, in which the tetrahedron is intersected 
by a plane of symmetry (ex. 4.21, Fig. A.5e). And so we brought to a success¬ 
ful end a fourth (somewhat tortuous) derivation started in ex. 4.18 and con¬ 

tinued through ex. 4.19. 

4.24. The route from ex. 4.18 through ex. 4.19 to ex. 4.23 is too long and 
tortuous. The solution in ex. 4.21 appears the most elegant: it exploits fully 
the symmetry of the figure—but just for this reason it may be less applicable 

to nonsymmetric cases. Thus, prima facie evidence favors ex. 4.20. Do you 
see another indication in favor of ex. 4.20? 

4.25. L = M = N, and so V = Lh. 

4.26. N = 0, M = LI A, and so V = Lhft. 

4.27. Let Lt, M,, N,, and V, denote the quantities that are so related to P, 
as L, M, N, and V are to P respectively, for i = 1, 2,...,/!. All prismoids 
have the same height h. Obviously 

L\ + Z.2 + * * * + Ln = L 
Mi + M2 +■■■ + Mn = M 
Ni + N2 + ■■■ + Nn = N 

Vi + V2 +•••+ Vn = V 

By combining these equations we obtain 

■sr (L, + AM, + N, , „ \ L + AM + N , „ 
I (-6-* " V) ' -6-* " K 

We regard the right-hand side as one term; the left-hand side is a sum of n 
analogous terms. If n terms out of these n + 1 terms linked by our equation 
vanish, the remaining one term must vanish too. 
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4.28. The orthogonal projection of our tetrahedron onto the plane we have 

passed through / is a quadrilateral (a square in the particular case of ex. 4.20, 
Fig. 4.5b, but irregular in general). One diagonal of this quadrilateral is the 
edge /, the other diagonal is parallel and equal to n. This quadrilateral is the 
base of a prism with height h; the prism is split into five tetrahedra; one of them 
is our tetrahedron, the other four are pyramids in the situation described by 
ex. 4.26, and so the prismoidal formula is valid for them. This formula is also 
valid for the prism, by ex. 4.25, and so also for our tetrahedron, by ex. 4.27. 

4.29. Fig. S4.29 shows a prismoid; B,C,...,Kare the vertices of the lower 
base (in the plane of the paper), and B\ C',..., A"'are the vertices of the upper 
base. 

(1) Consider the pyramid of which the base is the upper base of the pris¬ 
moid and the apex (the vertex opposite the base) a point A (freely chosen) in 
the lower base. 

(2) Join the point A to the vertices B, C,..., K of the lower base. Each 
segment so obtained is associated with a side of the upper base (an edge of the 
prismoid); the segment and the side form a pair of opposite edges of a tetra¬ 
hedron. (For instance, the segment AB is associated with the side B'C' and 

they determine together, as opposite edges, the tetrahedron ABB'C'.) 
(3) The lines drawn from A to the vertices B,C,...,Kdissect the lower base 

into triangles. Each such triangle is associated with a vertex of the upper base; 
the triangle forms the base, the associated vertex the apex, of a pyramid (which 
is, in fact, a tetrahedron; for instance, ABC is associated with the vertex C', 

and they determine together the pyramid ABC-C'). 

C 
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Our prismoid is dissected into the solids introduced in (1), (2), and (3). (Of 

the upper base (1) takes the area, (2) the sides, (3) the vertices. Of the lower 
base (1) takes just one point, (2) dividing segments, (3) the area.) Apply ex. 
4.26 to the pyramids (1) and (3) and ex. 4.28 to the tetrahedra (2). Using 

ex. 4.27, you prove the prismoidal formula for the prismoid BC.. .KB'C.. .K' 

of Fig. S4.29. 

4.30. The solution of ex. 4.28 is incomplete, since it treats only one out of 
three possible cases. Consider two line segments: / and n, and the orthogonal 
projection n' of n on the plane parallel to n that passes through /. Consider 
the two straight lines containing these two segments, respectively, and the 
point of intersection / of these two lines. There are three possible situations: 
the point / may belong 

(0) to none of the two segments / and n', 
(1) to just one segment, or 

(2) to both segments. 

Ex. 4.20 treats only the case (2). Yet a tetrahedron in situation (1) can be 
regarded as the difference of two tetrahedra in situation (2), and a tetrahedron 
in situation (0) can be regarded as the difference of two in situation (1). In 

view of ex. 4.27, this remark completes the proof of ex. 4.28. 

4.31. Fig. S4.29 is subject to two restrictions: 
(1) Both bases are convex. 
(2) Each vertex of one base is associated (there is a one-to-one correspon¬ 

dence) with a side of the other base: two lateral edges start from the vertex 
and end in the endpoints of the side. (For instance, vertex B corresponds to 

the edge B'C', vertex C’ to the edge BC.) 
Condition (2) is actually less restrictive than it might appear: many shapes 

which do not fall under it directly are limiting (degenerate) cases, and the 
proof extends to such shapes (by continuity, or appropriate interpretation). 

The proof in ex. 4.35 is free from restrictions (1) and (2), but uses integral 

calculus. 

4.32. n = 0; then L = M = N = 1, / = 2: valid. 
n = 2m — 1, odd; —L = N= \, M = I = 0: valid. 
n = 2m, even; L = N = 1, M = 0, / = 2j(n + 1): 

valid for n = 2, but for no other positive even integer. 

4.33. f(x) = a + bx + cx2 + dx3: superposition of the particular cases 

n = 0, 1, 2, 3 of ex. 4.32. 

4.34. The substitution 

x a + 
h(t + 1) 

2 

transforms the interval a ^ x ^ a + h into the interval — 1 g t g 1 and any 
polynomial in x of degree g 3 into another polynomial of the same kind in t. 

4.35. We introduce a system of rectangular coordinates x, y, z. We place 
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the prismoid so that its lower base lies in the plane z = 0 and its upper base in 

the plane z = h. The volume of the prismoid is expressed by 

(1) V= Q(z) dz 

where Q(z) denotes the area of the intersection of the prismoid with the plane 
parallel to, and at the distance z from, the lower base. 

This intersection is a polygon with n sides if the prismoid has n lateral edges; 
its area is expressed by 

n 

(2) Q(z) = i ^ (Xiyt +1 “ xt + iyt) 
1=1 

if the lateral edge number i is given by the pair of equations 

(3) x, = a,z + clf yt = b,z + dt 

at, bit cu di are constants specifying the position of the edge; it is understood 
that edge number n + 1 coincides with edge number 1, so that 

tfn + i = 0i« bn+1 = b\,..., yn + i = yi 

Equations (2) and (3) show that Q(z) is a polynomial in z of degree not 

exceeding 2, and so, by ex. 4.34, Simpson’s rule, stated in ex. 4.32, is applicable 
to the integral (1), and this yields the prismoidal formula stated in ex. 4.22 

since, obviously, 

(2(0) = L, Q(hl2) = M, Q(h) = N 

represent the areas of the lower base, the midsection and the upper base, 
respectively. 

No solution: 4.11, 4.17, 4.36. 

Chapter 5 

5.1. The unknown is the number V. 

The data are the numbers a and h. 
The condition is that V measures the volume of a right prism, the height of 

which is h and the base of which is a square with sides of length a. 

5.2. There are two unknowns, the real numbers x and y. Or there is just 

one bipartite unknown, with components x and y, which we may interpret 
geometrically as a point in a plane with rectangular coordinates x and y. 

The condition is fully expressed by the proposed equation. 

We need not talk about data. (If we modified the problem by taking r2 as 
the right-hand side of the proposed equation instead of 1, r would be a datum.) 

A solution is x = 1, y = 0; another solution is x = 3/5, y = —4/5; and so 
on. In the geometrical interpretation, the full set of solutions consists of the 
points on the periphery of a circle with radius 1 and center at the origin. 

5.3. There is no solution: the set of solutions is the empty set. 
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5.4. There are eight solutions: 

(2,3) (3,2) (-2,3) (-3,2) (2,-3) (3,-2) (-2,-3) (-3,-2) 

The set consists of the lattice-points on the periphery of the circle with radius 

V13 and center at the origin. (A point of which both rectangular coordinates 

are integers is called a lattice-point. The configuration of lattice-points is 
important in number theory, crystallography, etc.) 

5.5. We interpret the tripartite unknown (x, y, z) as a point in space with 
rectangular coordinates x, y, and z. 

(1) The set of solutions consists of the points in the interior of an octahedron 

of which the center is at the origin and the six vertices are at the points 

(1,0,0) (-1,0,0) (0,1,0) (0, -1,0) (0,0,1) (0,0,-1) 

(2) The set of solutions consists of the points in the interior and on the 
surface of the octahedron. 

5.6. The following statement renders conspicuous the required principal 
parts: 

If a, b, and c are the lengths of the sides of a right triangle, and a is the length 
of the side opposite the right angle 

then a2 = b2 + c2 

5.7. We have to restate the theorem as the simultaneous assertion of two 
propositions in the usual “if-then” form where hypothesis and conclusion are 
conspicuous: 

“If n is a square 
then d(n) is odd.” 

“If d(n) is odd 
then n is a square.” 

Here is a condensed statement, which uses “iff” (for “if and only if”): 
“Iff n is a square then d(n) is odd.” 

5.16. Begin by considering the case of a convex polygon and postpone 
whatever modifications may be needed to treat the general case. 

(1) Given the lengths of n — 1 line-segments joining a chosen vertex of the 
polygon to the other n — 1 vertices, and the n — 2 angles included by pairs of 
consecutive line-segments. 

(2) Divide the polygon by n — 3 diagonals into n — 2 triangles which are 

all determined (each by three sides) if the lengths of the dividing diagonals and 
of the n sides of the polygon are given. 

(3) Take the particular case of the division into triangles considered under 
(2) supplied by the line-segments considered under (1). Number the triangles 
so that each triangle (except the first) has one side in common with the pre¬ 
ceding triangle. Give any three independent data for the first triangle and, 
for each of the following n — 3 triangles, 2 data independent of each other and 
of the side that belongs also to the preceding triangle. 

(4) Giving 2 rectangular coordinates for each of the n vertices. In data in 
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all, we would determine not only the polygon, but also a coordinate system 
the position of which is unessential. The position of the coordinate system 
depends on 3 parameters and so only 2« — 3 data are essential. 

5.17. To determine the base, 2« — 3 data are required, see ex. 5.16. To 
determine the apex (the vertex opposite to the base) give the 3 rectangular 
coordinates of the apex with respect to a coordinate system of which a coordi¬ 
nate plane is the base, the origin a chosen vertex of the base, and a coordinate 
axis contains a side of the base starting from the chosen vertex. Hence, 
2n data are required. 

5.18. As in ex. 5.17, 2n. 

5.19. The polynomial is of the form 

foXvn + flXvn 1 + ’ ’ ’ + A - l-*v + fn 

where is a polynomial of degree j in v — 1 variables. Using ex. 3.34, we 
prove by mathematical induction that the number of data needed (the number 

of coefficients in the expansion in powers of xi, x2,..., jc„) is 

-+(n:v 
No solution: 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15. 

Chapter 6 

6.1. (1) 9 of shape r(x) = 0 
(2) 9 of shape r(x) = 0 
(3) 36 of shape r(x, y) = 0 
(4) 7 of shape r(x, y, z, w) = 0 

take into account obvious cancellations. 
There are altogether 61 clauses. 

6.2. Regard x as having the n components xu x2,.. ., xn. 

6.3. Let jci = yu xt = y3, regard y2 as having the two components x2 and 
x3, and regard the combination (the simultaneous imposition) of clauses r2 and 
ra as one clause; then you have (with suitable notation) the “recursive” system 

•si(j'i) = 0 
•^(.Vl, ^2) = 0 

Ja(.Vi, yz, J'a) = 0 

6.4. Regard yi as having the components xu x2, x3, and y2 as having the 

components xit xs, xe, set y3 = x7, combine the first three clauses ru r2, r3 
into one Ji, and the next three clauses r4, rB, r6 into s2: then you obtain the 

same final system as in ex. 6.3. 

6.5. Essentially the same as the plan developed in sect. 6.4(2). 

6.6. Particular case of the system in sect. 6.4(1). See ex. 3.21. 



204 SOLUTIONS 

6.7. Two loci for a straight line; cf. sect. 6.2(5). In fact, all chords of given 
length in a given circle are tangent to an (easily construedble) circle concentric 

with the given circle. 

6.8. Construct the point A on a, and the point B on b, each at the distance 

111 from the intersection of the lines a and b: draw the circle that touches a at 
A and b at B; since A may have two positions and the same is true of B, there 
are four such circles. One of these circles is an escribed circle of the desired 
triangle: the desired line * must be tangent to one of four circular arcs. We 

have here two loci for the straight line *; cf. sect. 6.2(5) and ex. 6.7. 

6.9. HEARSAY. 

6.11. (1) Begin with the “constant” c of the magic square. The sum of all 
nine unknowns, xik is, on the one hand, 

= 1 + 2 + 3+ -- -+ 9 = 45 

and it is, on the other hand, the sum of three rows and, therefore, 

= 3c 
From 45 = 3c follows c = 15. 

(2) Add the three rows and the two diagonals; their sum is 5c. Subtract 
hence those rows and columns that do not contain the central element x22', 

their number is 4, their sum is 4c. You obtain so 

3*22 = 5c — 4c = 15 
whence x22 = 5. 

(3) In order to fill those rows and columns that do not contain the central 

*22, list all different ways of representing 15 as the sum of three different 
numbers chosen among the following eight: 1, 2, 3, 4, 6, 7, 8, 9. A systematic 

survey yields: 
15 = 1 + 6 + 8 

=2+6+7 

=2+4+9 
=3+4+8 

(4) Those numbers that arise in just one of the above four representations 
of 15 are distinguished by heavy print; they must be placed in the middle of a 
row or column. The others (in ordinary print) arise Just twice: they must be 
placed in a corner of the magic square. 

(5) Start with any number in heavy print (for instance 1) and set it =*i2. 
One of the numbers in ordinary print in the same representation of 15 (6 or 8 
in our example) must be =*n. The first time, you choose between 4 alter¬ 
natives, the second time between 2, and you have no further choice: in using 
the four representations of 15 collected under (3), you can proceed further in 
just one way. You may obtain, for example, the magic square 

6 1 8 

7 5 3 

2 9 4 
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and the 4 x 2 = 8 squares you can obtain are, in a sense, “congruent”: you 
may derive all of them from any one of them by rotations and reflections. 
The square displayed shows the number 61 which arises in the solution of 
ex. 6.1. 

6.12. (1) If the first digit of a number is >2, multiplication by 9 increases 
the number of digits. Therefore, the required number is of the form 1 abc. 

(2) Moreover 1 abc x 9 = 9..., and so the number must be of the form 

la69. 
(3) Therefore 

(103 + 102a + 106 + 9)9 = 9-103 + 1026 + 10a + 1 
89a + 8 = b 

Hence, a = 0, b = 8: the required number is 1089 = 332. 

6.13. (1) Since ab x ba yields a three-digit number, a-b < 10. Assume 
a < 6; then there are only ten possible cases: 

a = 1, 2 £ i i 9; a = 2, 6 = 3 or 4 

(2) (10a + 6)(106 + a) = 100c +10d + c 

10(a2 + 62 - d) = 101(c - ab) 

Hence a2 + 62 — d is divisible by 101; but 

— 9 < a2 + 62 — d ^ 82 

Therefore, a2 + 62 - d = 0. 
(3) a2 + 62 = d ^ 9. Hence 6 < 3, and so a = 1,6 = 2; hence c = 2, 

d = 5. 

6.14. (Mathematical Log, vol. II, no. 2.) Let us try to find such a para¬ 
doxical pair of triangles. 

(1) Among those five parts there can not be three sides: otherwise the 
triangles would be congruent and all six parts would be identical. 

(2) And so the triangles agree in two sides and three angles. Yet, if they 
have the same angles, they are similar. 

(3) Let a, 6, c be the sides of the first triangle, and 6, c, d the sides of the 

second triangle: if they are, in this order, corresponding sides in our two 
similar triangles we must have 

a _ 6 _ c 
bed 

That is, the sides form a geometric progression. This can be done; here is an 

example: 
a, 6, c, d 

are equal to 
8, 12, 18, 27 

respectively. Observe that 8 + 12 > 18 and that the triangles, with sides 
8, 12, 18, and 12, 18, 27 respectively, are similar, since their sides are propor¬ 

tional, and so they have the same angles. 
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6.15. (Mathematical Log, vol. Ill, no. 2 and 3.) 
(а) Find three integers x, y, and z such that 

* + y + z = 9, 1 ^ x < y < z 

A systematic survey yields just three solutions (just three ways of splitting 

9 dollars); 
9 = 1 + 2 + 6 

= 1+3 + 5 
=2+3+4 

(б) Arrange these three rows in a square so that also each column has the 
same sum 9. 

Essentially (that is, except for permutations of the rows and the columns) 
there is just one such arrangement (which we present in a neat symmetric 

form): 
6 2 1 
2 4 3 

1 3 5 

(c) Now bring into play the remaining “minor” clauses of the condition: 
Since 6 is the greatest number in the square, the first row is for A1 and the 
first column for ice cream. The only number in the square that equals twice 
the number in the intersection of the same row with the first column is 4; 
hence the second row is for Bill and the second column for sandwiches. And 
so Chris spent for soda pop the number in the intersection of the last row with 
the last column, 5 dollars. 

6.16. (Mathematical Log, vol. Ill, no. 2 and 3) 
(a) The wife buys x presents for * cents each, and the husband y presents 

for y cents each: The problem requires 

*2 - y2 = 75 

Now 75 = 3 x 5 x 5 has just six divisors: 

(jc - y)(* + y) = 1 x 75 = 3 x 25 = 5 x 15 

and so there are just three alternatives: 

x — y = 1 x — y = 3 x — y = 5 
or or 

;c + y = 75 x + y = 25 x + y = 15 

which yield the table: 
wife husband 

38 37 
14 11 
10 5 

(b) Now bring into play the remaining “minor” clauses of the condition. 
They show unambiguously 

Ann 38 37 Bill Brown 
14 11 Joe Jones 

Betty 10 5 

and so Mary’s last name must be Jones. 



6.15-6.22 207 

6.17. (Cf. Archimedes, vol. 12,1960, p. 91.) Obviously, the number of cases 

is restricted from the start (4! = 24). Yet, if you are smart, you need not 
examine all these cases. 

(a) Let 

b, g, w, s, 

stand for the number of bottles consumed by the wife of 

Brown, Green, White, Smith, 

respectively. Then 

b + g + w + s = 14 
b + 2g + 3m> + 4j = 30 

and so 

g + 2w + 3s = 16 

(b) As the last equation shows, either g and s are both odd or they are both 
even. Hence, there are only 4 cases that need to be examined: 

g s m>=8-(#+ 3s)j2 
3 5 -1 
5 3 1 

2 4 1 
4 2 3 

Only the last case is admissible. Therefore 

s = 2, w = 3, g = 4, 

and the ladies are 

Ann Smith, Betty White, Carol Green, 

6.18. The division of the condition into clauses is often useful in solving 
puzzles. The reader may find appropriate examples in collections of mathe¬ 
matical puzzles, for instance in H. E. Dudeney, Amusements in Mathematics 

(Dover). The Otto Dunkel Memorial Problem Book published as supplement 
to the American Mathematical Monthly 64 (1957) contains some suitable 

material; no. E776 on p. 61 deserves to be quoted as an exceptionally neat 
example of its type. 

6.20. (b) sect. 6.2(4), 1=5. (c) ex. 6.6, n = 4. (d) sect. 6.4(1), n = 4. 
(e) sect. 2.5(3), sect. 6.4(2). 

6.22. In this system of three equations each of the three unknowns x, y, and 
z plays exactly the same role: A cyclical permutation of *, y, and z interchanges 
the 3 equations, but leaves their system unchanged. Therefore, if the unknowns 
are uniquely determined, we must have x = y = z; supposing this, we have im¬ 
mediately 6x = 30, x = y = z = 5. 

b = 5 

Dorothy Brown. 

There remains to prove that the unknowns are uniquely determined; this 
can be shown by some usual procedure to solve a system of linear equations. 
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6.23. y + z = a 
x + z = b 
x + y = c 

Any permutation of x, y, and z leaves the system of the left-hand sides un¬ 
changed. Set x + y + z = s (which also remains unchanged by a permu¬ 
tation of x, y, and z); adding the three equations we easily find 

s = (a + b + c)/2 

and the system reduces to three equations, each containing just one unknown 

s — x = a, s — y = b, s — z = c 

The whole system (not only the left-hand sides) is symmetric with respect to 
the pairs (jc, a), (y, b), (z, c). 

6.24. (Stanford 1958.) Set 

x+y+u+v=s 

and see ex. 6.23. 
No solution: 6.10, 6.19, 6.21, 6.25. 



APPENDIX 

Hints to Teachers, and to Teachers of Teachers 

Teachers who wish to make use of this book in their profession should 
not neglect the hints addressed to all readers, but they should pay attention 
also to the following remarks. 

1. As explained in the Preface, this book is designed to give opportunity 
for creative work on an appropriate level to prospective high school mathe¬ 
matics teachers (also to teachers already in service). Such opportunity is 
desirable, I think: a teacher who has had no personal experience of some 
sort of creative work can scarcely expect to be able to inspire, to lead, to 
help, or even to recognize the creative activity of his students. 

The average teacher cannot be expected to do research on some very 
advanced subject. Yet the solution of a nonroutine mathematical prob¬ 
lem is genuine creative work. The problems proposed in this book (which 
are not marked with a dagger) do not require much knowledge beyond the 
high school level, but they do require some degree, and sometimes a high 
degree, of concentration and judgment. The solution of problems of this 
kind is, in my opinion, the kind of creative work that ought to be introduced 
into the high school mathematics teachers’ curriculum. In fact, in solving 
this kind of problems, the prospective teacher has an opportunity to 
acquire thorough knowledge of high school mathematics—real knowledge, 
ready to use, not acquired by mere memorizing but by applying it to 
interesting problems. Then, which is even more important, he may 
acquire some know-how, some skill in handling high school mathematics, 
some insight into the essentials of problem-solving. All this will enable him 
to lead, and to judge, his students’ work more efficiently. 

209 
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2. The present volume contains only the first half of a full course. 
Especially, teaching methods are only implicitly suggested by this volume; 
they will be explicitly discussed in a chapter of the second volume. 

Yet this first volume contains much problem material that could be used 
in certain (especially, in more advanced) high school courses. I propose 
as a useful exercise to teachers to reflect on possible classroom use of the 
problems they are doing. 

The best time for such reflection may be when the solution has been 
obtained and well digested. Then you look back at your problem and ask 
yourself: “Where could I use this problem ? How much previous know¬ 
ledge is needed ? Which other problems should be treated first to prepare 
the class for this one ? How could I present this problem ? How could I 
present it (be specific) to such and such a class—or how could I present it 
to Jimmy Jones?” All these questions are good questions and there are 
many other good questions—but the best question is the one that comes 
spontaneously to your mind. 

3. Although this first volume does not present a full course, it contains 
enough material to serve as textbook for a Seminar in Problem Solving. I 
conducted such seminars in various Institutes for teachers; several col¬ 
leagues interested in starting such a seminar asked me for my materials; 
I know of a few colleges where such seminars, or similar classes, have been 
actually offered lately; and it is, I think, highly desirable that many more 
colleges should start experimenting with such seminars. It is in view of 
this situation that I have decided to publish this first volume before the 
second, in spite of the obvious risks of such an incomplete publication. 

4. After some trials, I worked out a procedure for my seminar, a des¬ 
cription of which at this place may be useful.1 

Typical problems, which indicate a useful pattern, are solved in class 
discussion led by the instructor; the text of the first four chapters reproduces 
(as closely as it can be done in print) such class discussions. Then the 
discussion leads to recognizing and formulating the pattern involved—the 
text of the chapters quoted shows also how this is done. 

The homework of the students consists of problems (such as the prob¬ 
lems printed here following each chapter) which offer an opportunity 
to apply, to clarify, and to amplify the pattern obtained (and also the 
methodical remarks made) in class. 

5. I used my seminar (and this is an essential feature of it) to give the 
participants some practice in explaining problems and guiding their solu- 

1 Some of the following will be, and a few foregoing sentences have been, extracted 
from an article in The Journal of Education, Vancouver and Victoria; see the Biblio¬ 
graphy. 
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tion, in fact, some opportunity for practice teaching, for which in most of 
the usual curricula there is not enough opportunity. 

When the homework is returned, this or that point (a more original solu¬ 
tion, a more touchy problem) is presented to the class on the blackboard 
by one of the participants who did that point particularly well, or particu¬ 
larly badly. Later, when the class has become more familiar with the 
style of the performance, a participant takes for a while the instructor’s 
place in leading the class discussion. Yet the best practice is offered in 
group work. This is done in three steps. 

First, at the beginning of a certain practice session, each participant 
receives a different problem (each just one problem) which he is supposed 
to solve in that session; he is not supposed to communicate with his 
comrades, but he may receive some help from the instructor. 

Then, between this session and the next, each participant should check, 
complete, review, and, if possible, simplify his solution, look out for some 
other approach to the result and, by these means and any other means, 
master the problem as fully as he can. He should also do some planning 
for presenting his problem and its solution to a class. He is given oppor¬ 
tunity to consult the instructor about any of the above points. 

Finally, in the next practice session, the participants form discussion 

groups', each group consists of four members (there may be one odd group); 
the participants form these groups by mutual consent, without interven¬ 
tion of the instructor. One member of the group takes the role of the 
teacher, the other members act as students. The “teacher” presents his 
problem to the “students,” tries to challenge their initiative and tries to 
guide them to the solution, in the same style as the instructor does it in 
class discussions. When the solution has been obtained, a short friendly 
criticism of the presentation follows. Then another member takes the 
role of the teacher and presents his problem, and the procedure is repeated 
until each member of the group has had his turn. Then the participants 
partially regroup (each of two neighboring groups may send a member as 
“teacher” to the other group) so that each participant has occasion to 
polish his performance in presenting his problem several times. Some 
particularly interesting problems or particularly good presentations are 
shown to, and afterwards discussed by, the whole class. Congenial groups 
may spontaneously undertake the discussion of problems which are new 
to all participants; this should be encouraged, of course. 

Such problem solving by discussion groups became quickly very popular 
in my classes, and I have the impression that the seminars as a whole were 
a success. Many of the participants were experienced teachers and several 
of them felt that their participation suggested to them useful ideas about 
conducting their own classes. 
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6. This volume may help the college instructor who conducts a Seminar 
in Problem Solving (especially when he conducts it for the first time). He 
may follow the procedure just described (in sect. 4 and 5). In class discus¬ 
sions, he may use the text of any one of the four first chapters. The prob¬ 
lems printed at the end of the chapter are suitable for homework: serious 
work may be needed to expand the sketch of a solution given at the end of 
the volume into a fully presented solution. (Yet the instructor cannot 
choose at random: he should have a good look at the problem, at its solu¬ 
tion, and also at the problems surrounding it, before assigning it.) For 
examinations and term papers, the instructor may wish to avoid problems 
printed in this volume; then he may consult appropriate textbooks (and 
also ex. 1.50, 2.78, and 3.92). For group work (see sect. 5) the problems 
should be harder, but they need not be closely connected with the chapters 
treated; suitable problems may be selected from this book, also from later 
chapters. 

Chapters 5 and 6 may be also discussed, or assigned for reading. The 
role of these chapters, however, can be better explained in the second 
volume. 

Of course, after having gained some experience, the instructor may adopt 
the spirit of this book without following its details too closely. 



CHAPTER 7 

GEOMETRIC REPRESENTATION 
OF THE PROGRESS 
OF THE SOLUTION 

It is very helpful to represent these things in this fashion since nothing 

enters the mind more readily than geometric figures. 

descartes: CEuvres, vol. X, p. 413; Rules for the Direction of 
the Mind, Rule XII. 

7.1. Metaphors. 

It happened about fifty years ago when I was a student; I had to 
explain an elementary problem of solid geometry to a boy whom I was 
preparing for an examination, but I lost the thread and got stuck. I 
could have kicked myself that I failed in such a simple task, and sat 
down the next evening to work through the solution so thoroughly that 
I shall never again forget it. Trying to see intuitively the natural prog¬ 
ress of the solution and the concatenation of the essential ideas in¬ 
volved, I arrived eventually at a geometric representation of the 
problem-solving process. This was my first discovery, and the begin¬ 
ning of my lifelong interest, in problem solving. 

I was guided to the geometric image that finally emerged by a group 
of usual metaphorical expressions. That the language is full of meta¬ 
phors (dead, half-dead, and live) has been observed often enough. I do 
not know whether it has been also observed that many of these meta¬ 
phors are interdependent: they are connected, they are associated, they 
form clusters, more or less loose, more or less overlapping families. At 
any rate, there is an extensive family of metaphorical expressions which 
have two things in common: they are all concerned with that basic 
human activity of problem solving and they are all suggesting the same 
geometric configurations. 

1 
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Discovering the solution is finding a connection between formerly 
separated things or ideas (the things we have and the things we want, 
the data and the unknown, the hypothesis and the conclusion). The 
farther apart the things connected stood originally, the more credit is 
due to the discoverer for connecting them. We sometimes see the con¬ 
nection under the guise of a bridge: a great discovery strikes us as bridg¬ 
ing over a deep chasm between two widely separated ideas. We often 
see the connection realized by a chain: a proof appears as a concatena¬ 

tion of arguments, as a chain, perhaps a long chain, of conclusions. 
The chain is not stronger than its weakest link, and there is no valid 
proof, no uninterrupted chain of reasoning, if even one link is missing. 
More often still we use a thread for mental connecting. We have all 
listened to the professor who lost the thread, or got himself entangled 
in the threads, of his argument. He was obliged to peek in his notes 
before resuming the thread of his lecture, and we were all tired when 
he gathered up the threads to a final conclusion. A slender thread 
becomes a mere geometric line, the things connected become mere 
geometric points, and there emerges, almost unavoidably, a diagram¬ 
matic, graphic image of the concatenation of mathematical conclusions. 

Let us look now at some geometric figures instead of merely listening 
to figures of speech. 

7.2. What is the problem? 

We need an example, and I choose a very simple problem of solid 
geometry:1 

Find the volume F of the frustum of a right pyramid with square base. 

Given the altitude h of the frustum, the length a of a side of its upper base, 

and the length b of a side of its lower base. 

(A pyramid with square base is a right pyramid if its height meets 
the base at the center. The frustum of a pyramid is the portion of the 
pyramid between its base and a plane parallel to its base; this parallel 
plane contains a face of the frustum which we call the upper base of the 
frustum; its lower base is the base of the original full pyramid, its altitude 

is the perpendicular distance between its bases.) 
The first step in solving the problem is to concentrate on its aim. 

What do you want? we ask ourselves and we represent as sharply as we 
can the shape of which we wish to find the volume F (see the left side 
of Fig. 7.1). The mental situation is appropriately represented by a 
single point, labeled F, on which our whole attention should be focused 
(see the right-hand side of Fig. 7.1). 

'Very similar to, but even simpler than, the problem originally considered. See the 

Bibliography, papers 1 and 3 of the author. 
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F 
o 

3 

Fig. 7.1. Concentrate on one point: the aim. 

Yet we cannot find the unknown Fif nothing is given. What are the 

data? we ask ourselves, or What have you? and our attention emphasizes 
those lines of the figure of which the length is given, a, b, and h, see the 
left-hand side of Fig. 7.2. (The square with side a is above, the square 
with side b below, the solid considered.) To portray the changed 
mental situation, three new points emerge, labeled a, h, and b, repre¬ 
senting the data and separated from the unknown F by a gap, an open 

space in Fig. 7.2. This open space symbolizes the open question; our 
problem aims at connecting the unknown F with the data a, h, and b, 

we have to bridge the gap. 

7.3. That’s an idea! 

We start working at our problem by visualizing its aim, its unknown, 
its data. This initial phase of our work is fittingly pictured by Figs.7.1 
and 7.2. Yet how should we proceed from here, which course should we 
adopt? 

If you cannot solve the proposed problem, look aroundfor an appropriate 

related problem. 

In our case, we do not have to look far. In fact, what is the unknown? 

The volume of the frustum of a pyramid. And what is such a frustum? 
How is it defined? As a portion of a full pyramid. Which portion? 
The portion between—No, enough of that; let us restate it differently: 

Fa 

Fig. 7.2. The open question: a gap to bridge over. 

o 
h 

o 
b 
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The frustum is the portion that remains when we cut off from the full 
pyramid a smaller pyramid by a plane parallel to the base. In our case, 
see Fig. 7.3, the base of the big (full) pyramid is a square of area b2. If 

we knew the volumes of these two pyramids, say B and A, respectively, 
we could find the volume of the frustum: 

F= B - A 

Let us find these volumes B and A. That’s an idea! 
Thus we have reduced our original problem, to find F, to two appro¬ 

priately related auxiliary problems, to find A and B. To express this 
reduction graphically, we introduce two new points, labeled A and B, 

into the space between the data a, h, b and the unknown F. We join 
both A and B to F with slanting lines and thereby indicate the essential 
relation between these three quantities: starting from A and B we can 
reach F; the solution of the problem about F can be based on the solu¬ 
tion of the two problems about A and B. 

F 

F = B - A 

O O 0 

a h b 

Fig, 73. If you cannot solve the proposed problem, look around for an .... 

... Appropriate 
related problem 

Our work is not yet finished; we have two new unknowns to find, A 

and B\ there are two pendent points separated from the data by a gap 
in Fig. 7.3. The situation looks hopeful, however; the pyramid is a 
more familiar figure than the frustum, and although we have two un¬ 
knowns, A and B, to find instead of one, F, the two are of similar nature 
and similarly related to the data a and b, respectively. Correspond¬ 
ingly, the graphical representation of the mental situation in Fig. 7.3 
is symmetrical. The line FA is inclined toward the given a, FB toward 
the given b. We have started bridging the open space between the 
original unknown and the data; the remaining gap is narrower. 

7.4. Developing the idea 

Where are we now? What do you want? We want to find the un¬ 
knowns A and B. What is the unknown A? The volume of a pyramid. 
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How can you get this kind of thing? How can you find this kind of un¬ 

known? From what data can you derive this kind of unknown? The 
volume of the pyramid can be computed if we have two data, the area 
of the base and the height of the pyramid; the volume is, in fact, the 
product of these two quantities divided by 3. The height is not given, 
but we can still consider it. Let us call it x. Then 

On the left-hand side of Fig. 7.4 the small pyramid above the frustum 
appears in more detail; its height x is emphasized. The present stage 
of our work is graphically represented on the right-hand side of Fig. 7.4; 
a new point x appears above the data, and slanting lines join A to x and 
a, indicating that A can be reached from x and a, that A can be ex¬ 
pressed in terms of x and a. Although there are still two unknowns 
to find (there are still loose ends dangling in mid air in Fig. 7.4) progress 

Fig. 7.4. A first connection with the data, but loose ends dangling in midair. 

has been made; we have succeeded in connecting the unknown F at 
least with one of the data, with a. 

At any rate the next step is obvious. The unknowns A and B are 
of similar nature (they are symmetrically represented in Fig. 7.3); we 
have expressed the volume A in terms of base and height, and we can 
express the volume B analogously: 

B _ b2(x + h) 

3 

In the left-hand portion of Fig. 7.5, the big pyramid containing the frus¬ 
tum appears in more detail, its height x + h is emphasized. In the 
right-hand portion of Fig. 7.5 three new slanting lines appear, joining B 

to b, h, and x. These lines indicate that B can be attained from b, h, 

and x, that B can be expressed in terms of b, h, and x. And so just one 
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Get it the same way 

q — b2(x + h) 

/■' 

Fig. 7.5. Just one question remains pending. 

pending point—the point x—remains unconnected with the data. The 
gap is narrowed down; it is now between x and the data. 

What is the remaining unknown? It is x, the length of a line. How 

can you find this kind of unknown? How can you get this kind of thing? 
The most usual thing is to obtain the length of a line from a triangle— 

from a right triangle, if possible—or from a pair of similar triangles. 
Yet there is no usable triangle in the figure, and there should be one 
with a side x. Such a triangle would lie in a plane passing through the 
altitude of the small pyramid with volume A; this plane would also pass 
through the altitude of the big pyramid with volume B, which is similar 
to the small one. Yes, similar triangles in a plane passing through the 
altitude—and parallel to a given side of the base of one of these 
pyramids! That’s it! That finishes it! 

A pair of similar triangles appears in Fig. 7.6 from which x can be 
conveniendy computed by the proportion 

x _ a_ 

x + h b 

But details are not important at this stage; what is all important now 
is that x can be expressed in terms of the three data a, h, and b. The 
three new slanting lines emerging in the right-hand portion of Fig. 7.6 
indicate just that by joining x to a, h, and b. 

Fig. 7.6. We have succeeded in bridging the gap. 
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Done! We have succeeded in bridging the gap, in establishing an 
uninterrupted connection between the unknown F and the data a, h, 

and b through the intermediaries (auxiliary unknowns) A, B, and x. 

7.5. Carrying it out 

Is the problem solved? Not yet—not quite. We are required to 
express the volume F of the frustum in terms of the data, a, h, and b, 

and this is not yet done. Yet the more important and more exciting first 
part of our work is behind us; the remaining task is a much calmer 
affair, much more straightforward. 

There was an element of adventure in the first part of our work. At 
each stage, we hoped that the next step would bring us nearer to our 
goal, to bridging the gap. Yes, we hoped, but we were not certain; at 
each stage we had to invent, and risk, the next step. But now no more 
invention or risk is needed; we foresee that we can safely reach the un¬ 
known F from the data a, h, and b just by following the threads of the 
uninterrupted connection represented in Fig. 7.6. 

We begin the second part of our work where we have ended the first 
part We tackle first the auxiliary unknown x that we have introduced 
last; from the last equation of sect. 7.4 we obtain 

Then we substitute this value for x in the two foregoing equations of 
sect. 7.4, obtaining 

1 = a*h B_ hfih 
3(b — a) ’ 3 (b — a) 

(The analogy between these two results is comforting.) We use last 
the equation that we obtained first, in sect. 7.3: 

F = B -A = 
b3 — a3 h 

b — a 3 

F = a2 + ab + b2 ^ 

This is the desired expression. 
The work of the present section is aptly symbolized by Fig. 7.7 where 

each connecting line carries an arrow indicating the direction in which 
we have just used the connection. We started from the data a, h, and b, 

and proceeded hence through the intermediate auxiliary unknowns x, 

A, and B to our original, principal unknown F, expressing these quanti¬ 
ties one after the other in terms of the data. 
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Fig. 7.7. Working from the data to the unknown. 

7.6. A slow-motion picture 

Figures 7.1 to 7.7 show successive stages of the solution; we assemble 
these seven figures into one composite picture, Fig. 7.8. (Figure 7.7 is 
merged into Fig. 7.6. Fig. 7.8 is reproduced in black and red on the 
endpapers immediately inside the cover at the beginning and the end 
of the book; the details on which the attention is focused are em¬ 
phasized by red—red meaning, of course, “burning interest.”) View 
the sequence in Fig. 7.8 from left to right. Viewing it in fast succession, 
we have a kind of cinematographic representation of the problem- 
solvers progress, of the march of discovery. Or, viewing Fig. 7.8 at low 
speed, we have a sort of slow-motion picture of the evolving solution 
which leaves us time for careful observation of significant details. 

In Fig. 7.8, each stage of the solution (each mental situation of the 
problem-solver) is represented at several levels; the items pertaining 
to the same situation are vertically arranged, one under the other. Thus 
the solution progresses along four parallel lines, on four different levels. 

On the uppermost level, the image level, we see the evolution of the 
investigated geometric figure in the problem solver’s mind. At each 
stage, the problem solver has a mental picture of the geometric figure 
he explores, but this picture changes in transition to the next stage; 
some details may recede into the background, other details come to 
our attention, new details are added. 

Going down to the next layer, we attain the relational level. In graph¬ 
ical representation, the objects considered (unknown, data, auxiliary 
unknowns) are symbolized as points, and the relations connecting the 
objects are indicated by lines connecting the symbolizing points. 

Immediately below the relational level we find the mathematical 

level, which consists of formulas and which contrasts with the relational 
level. On the relational level, the system of all relations obtained up 
to the moment in question is exhibited; the last obtained relation is 
emphasized by color (it is in the focus of attention) but it is not 
exhibited with more details than the preceding. On the mathematical 
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level, the last obtained relation is fully shown and the preceding rela¬ 
tions are not shown at all. 

Going down still further we attain what is for us the basic layer, the 
heuristic level. At each stage, it exhibits a simple, natural (generally 
applicable!) question or suggestion which has enabled us to reach that 
stage. Our basic concern is to study the nature of such questions and 
suggestions. 

7.7. A preview 

We wish to view and review Fig. 7.8; we wish to compare it and cor¬ 
relate it with our past experience. Thus behind the story this figure 
tells, we wish to perceive points of general interest which deserve further 
study. In the graphical narrative of the solution of a single problem, we 
shall find useful preindications about the general questions treated in 
the following chapters. We shall survey these chapters one by one, in 
due order. 

(Each of the following sections of the present chapter previews a 
following chapter and has the same title and a corresponding number 
as the chapter that is previews.) 

And now let us try to dig down through the particular story to the 
underlying general ideas. 

7.8. Plans and programs 

In viewing the stages of Fig. 7.8 in sequence, we see how the problem 
solver’s attention ranges over the geometric figure he explores, how he 
takes possession of more and more details of this figure, and how he 
builds up step by step the system of connections which constitutes the 
plan of his solution. In viewing the unfolding of the solution atten¬ 
tively, we may discern in it several phases and activities. 

We have already observed (in sect. 7.5) the contrast between the 
two portions of the solution: in the first portion (illustrated by Figs. 7.1 
to 7.6) we work downward, from the unknown to the data, in the 
second portion (illustrated by the single Fig. 7.7) we work upward, 
from the data to the unknown. 

Yet even in the first portion we may distinguish two phases. In the 
initial phase, Figs. 7.1 and 7.2, the problem solver’s main effort is aimed 
at understanding his problem. In the latter phase, Figs. 7.3 to 7.6, he 
develops the system of logical connections, he constructs a plan of the 
solution. 

This latter phase, the devising of a plan, seems to be the most essen¬ 
tial part of the problem solver’s work; we shall examine it more closely 
in chapter 8. 
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7.9. Problems within problems 

In surveying Fig. 7.8, we may observe that the problem solver, in 
working at his original (proposed, main) problem, encountered several 
auxiliary problems (“helping” problems, subproblems). In seeking 
the volume of the frustum, he was led to seek the volume of a full 
pyramid, then that of another full pyramid, then the length of a line. 
To arrive at his original unknown F, he had to pass through the auxiliary 
unknowns A, B, and x. Just a little experience in solving mathematical 
problems may be enough to convince us that such breaking up of the 
proposed problem into several subproblems is typical (see sect. 2.5(3), 
for instance). 

We shall thoroughly examine the role of auxiliary problems and 
distinguish various kinds of auxiliary problems. 

7.10. The coming of the idea 

Which of the various steps of the solution illustrated by Fig. 7.8 is 
the most important? The popping up of the full pyramid (Fig. 7.3) 
I think—and I think too that most people who have had some experi¬ 
ence in these matters and have devoted some thought to their experience 
will agree. Introducing the full pyramid and conceiving the frustum 
as the difference of two full pyramids is the decisive idea of the solution; 
for most problem solvers the rest of the solution will be easier, more 
obvious, more routine—it may be almost completely routine for the 
more experienced problem solvers. 

The emergence of the decisive idea is not very impressive in le 
present case, but we should not forget that the problem we are discuss¬ 
ing is very simple. Conceiving the decisive idea, seeing a sudden light 
after a long period of tension and hesitation may be very impressive; 
it may be a great experience which the reader should not miss. 

7.11. The working of the mind 

In the graphical representation of Fig. 7.8, the most conspicuous sign 
of progress is the introduction of more and more detail. As the problem 
solver advances, more and more lines appear both in the geometric 
figure and in the relational diagram. Behind the increasing complexity 
of the figure we should perceive a growing structure in the problem 
solver’s mind. At each significant step he brings in some relevant 
knowledge; he recognizes some familiar configuration, he applies some 
known theorem. Thus the work of the problem solver’s mind appears 
as recalling relevant elements of his experience and connecting them 
with the problem at hand, a work of mobilization and organization. 

We have already had the opportunity in the foregoing to make such 
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remarks (especially in ex. 2.74), and we shall have the opportunity to 
explore this point as well as other aspects of the working of the mind. 

7.12. The discipline of the mind 

Figure 7.8, which represents the progress of the solution on four 
different levels, gives some indication about the problem solver’s work. 
We certainly want to know how he is working, but we are even more 
anxious to know how he ought to be working. Can Fig. 7.8 give some 
indication of this? 

On the lowest level of Fig. 7.8 there is a sequence of questions and 
suggestions motivating the successive steps of the problem solver’s 
work. These questions and suggestions are simple, natural, and very 
general; they have guided the problem solver to the solution of the 
simple problem we have chosen as example, and they may guide us in 
innumerable other cases. If there is a discipline of the mind (some 
system of guidelines, some body of maxims or rules in the direction of 
the universal method sought by Descartes and Leibnitz) there is a good 
chance that the questions and suggestions aligned in the basic layer of 
Fig. 7.8 somehow belong to it. We must thoroughly examine this point. 

Examples and Comments on Chapter 7 

7.1. Another approach to the problem stated in sect. 7.2. The base of the frus¬ 
tum is in a horizontal plane (on the desk). By four vertical planes passing 
through the four sides of the top of the frustum (see Fig. 7.9) we divide it into 
9 polyhedrons: 

a prism with square base of volume Q, 
four prisms with triangular base of volume T each, 
four pyramids with square base of volume P each. 

Compute F, following the approach indicated by Fig. 7.10. 

Fig. 7.9. By four vertical planes. 
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0 0 0 
Fig. 7.10. Another approach. a h b 

7.2. Express the two solutions of the same problem given in sect. 2.5(3) and 

2.5(4) diagrammatically (the quantities involved by points, the connecting rela¬ 

tions by connecting lines). 

7.3. The search for a proof. Proposition 4 in the Eleventh Book of Euclid’s 

Elements can be stated as follows: 

If a straight line passes through the point of intersection of two given straight lines 

and is perpendicular to both, then it is also perpendicular to any third straight line 

that lies in the plane of the two given lines and passes through their point of 

intersection. 

We wish to analyze a proof of this proposition, visualize its structure, and under¬ 

stand the motives of its discovery in using the geometric representation of the 

problem solver’s progress developed in this chapter. In relying on the analogy 

with the discussion illustrated by Figs. 7.1 to 7.8, we shall deal with the present 

case somewhat more concisely. 

We are here principally concerned with the formation of the proof in the 

problem solver’s mind. But the proposition to be proved is interesting too; it 

states a basic fact of solid geometry. Even the logical form of the proposition is 

interesting. The teacher who said “Two bad boys spoil the whole class” was pos¬ 

sibly wrong, but his statement has the same form as Euclid’s proposition we are 

about to prove. 

(1) Working backward. We draw Fig. 7.11, introduce suitable notation, and 

then we restate the proposition we intend to prove in standard form, split into 

hypothesis and conclusion: 

P 

Fig. 7.11. Two bad boys spoil the whole class. 
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Hypothesis: The three lines OA, OB, and OC pass through the same point O 

and are in the same plane, but they are different; and 

PO 1 OA POl OB 

Conclusion: Then also 

PO ± OC 

“What is the conclusion?” 

That the line PO is perpendicular to OC. Or that L POC is a right angle. 
“What is a right angle? How is it defined?” 

A right angle is one that is equal to its supplement. There could be some 
advantage in restating the conclusion in this sense. Produce the line PO to F 

(so that P, O, and P' are collinear, and O and the plane containing O lie between 
P and P'). Then (see Fig. 7.12a) the desired conclusion is 

LPOC = LFOC 

“Why do you think that this form of the conclusion is more advantageous?” 
We often prove the equality of angles from congruent triangles. In the present 

case we could prove the desired conclusion if we knew that 

A POC =s A P’OC 

(see Fig. 7.126). To prove this, however, we should, can, and shall suppose F 

so constructed that 

PO = FO 

In fact, what do we need to prove that those two triangles are congruent? We 
know two pairs of equal sides, PO = FO by construction, and also 

OC = OC 

obviously. To finish the proof it would be enough to know (see Fig. 7.12c) that 

PC = FC 

In the foregoing, we have worked starting from the desired conclusion toward 
the given hypothesis; we have worked backward. We went a good distance work¬ 
ing backward from the conclusion, although the continuation of the path that 
should lead us to the hypothesis is still in the clouds. Our work is symbolized 
by Fig. 7.13, which shows graphically which statements we can conclude from 
which other statements—as Figs. 7.1 to 7.8 show which quantities we can compute 
from which other quantities. In Fig. 7.13 each of the foregoing equations 
(congruences) is represented by its left-hand side: 

LPOC = LFOC by LPOC 

A POC ss A FOC by A POC 

OC = OC by OC 

and so on. It is, in fact, enough to write the left-hand side, because we can derive 
from it the right-hand side by substituting F for P, that is, by passing from the 
space above the plane through A, B, C, and O to the space below it. 
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Fig. 7.12. The changing aspect of the geometric figure. 

(2) Restating the problem. Having worked some time at the conclusion, we 
should now turn our attention to the hypothesis of the proposition we wish to 
prove. 

“What is the hypothesis?” 

We should restate the hypothesis so that it harmonizes with the restated con¬ 
clusion; we should bring hypothesis and conclusion nearer to each other and not 
pull them apart. We have to prove (the restated conclusion) that 

LPOC=LPOC 

in supposing (let us restate analogously the hypothesis) that 

LPOA = LP'OA and LPOB = LP'OB 

The whole proposition sounds quite good; it appears homogeneous. Yet we have 
still to add to the hypothesis an essential clause which says that the three differ- 
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Fig. 7.13. Working backward. 

ent lines OA, OB, and OC are in the same plane. Also this clause should be some¬ 
how related to the conclusion. But how? 

In fact, an essential idea is needed here to observe that we are allowed to place 
the points A, B, and C along a straight line and that it may be advantageous to 
place them so. (Any straight line that does not pass through O and is not parallel 
to any one of the three given lines OA, OB, and OC may be chosen.) Thus we 
arrive at a reformulation of the proposition we wish to prove. 

o iPOC 

LPOA 
o 

A,B,C collinear LPOB 

Fig. 7.14. The gap between the hypothesis and the conclusion. 
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Hypothesis: The points A, B, and C are collinear, and the line passing through 
them does not contain the point O. Moreover 

LPOA = LPOA LPOB = LPOB 

Conclusion: Then 

LPOC = LPOC 

Figure 7.14 symbolizes this statement. 

(3) Working forward. In working at the hypothesis we consider the same kind 
of relations as we have considered in working at the conclusion, but we consider 
them in reverse order. 

Since 

we conclude that 

Z.POA = IP'OA by hypothesis 
PO = FO by construction 
OA = OA obviously 

APOA = AP'OA 

Fig. 7.15. Working forward. 
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(see Fig. l.\2d) and hence that 

PA = FA 

(see Fig. l.Yle). An exactly parallel reasoning shows that 

PB = P'B 

(see Figs. 7.12/ and 7.12g). 

In the foregoing we have worked forward; that, is in the direction from the 
given hypothesis toward the desired conclusion. 

Figure 7.15 exhibits the mental situation resulting from the work just done and 
from the work recorded by Fig. 7.13. As Fig. 7.15 shows, it remains to prove that 
PC = FC from the already proved similar statements PA = P'A and PB = P'B 
and the heretofore unused hypothesis that A, B, and C are collinear. Comparing 
the present situation with that represented by Fig. 7.14 we have some reason to be 
hopeful; the gap that we have to bridge became definitely less wide. 

(4) Working from both sides. The remaining part of the proof may occur so 
fast to the problem solver (or to the reader) that the final conclusion may seem 
instantaneous. Yet let us record the details. 

The desired relation 

PC = P'C 

(Fig. 7.12c) could be derived from congruent triangles. (This is working back¬ 
ward.) In fact, we can easily derive from the already established two relations 

PA = P'A PB = P'B 

and the self-evident 

AB = AB 

the congruence (Fig. 7.12/t) 

A PAB = AFAB 

(We have worked forward.) These are, however, not the triangles we need. To 
derive PC = FC (which would finish the proof) we should know, for example, 

that 

APAC = AP'AC 

We could conclude this (now, we are working backward) from the already 
established 

PA = P'A 

and the self-evident 

AC = AC 

if we only knew that 

LPAC = LP'AC 
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Now, in fact, we know that 

Z.PAB = /.FAB 

(see Fig. 7.12i) from the already established congruence of the triangles APAB 
and AFAB. (Figure 7.16 expresses the mental situation at this instant.) Yet as 
A, B, and C are collinear, by hypothesis, 

LPAB=LPAC and Z FAB = LP'AC 

And with this remark we close the last gap (see Fig. 7.17; review the whole 
Fig. 7.12). 

The last step, the transition from Fig. 7.16 to Fig. 7.17 deserves particular atten¬ 
tion; only this last step uses the vitally important clause of the hypothesis that 
A, B, and C are collinear. 

Fig. 7.16. Working from both sides. 
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7.4. Elementary diagrams. In sect. 7.2 to 7.6 we have studied a problem to find, 
in the foregoing ex. 7.3, a problem to prove. In both cases we have used diagrams 
consisting of points and connecting lines to illustrate the progress and the struc¬ 
ture of the solution. Comparing the two cases, we wish to clarify the meaning of 
these diagrams. 

Let us consider an “elementary diagram,” as in Fig. 7.18. This diagram con¬ 
sists of n + 1 points of which one. A, is on a higher level than the n others, B, C, 
D,.. ., and L. The higher placed point A is joined by a line going downward to 
each of the other n points. Such elementary diagrams are the “bricks” of which 
the diagrams encountered in Fig. 7.3 to 7.8 and Fig. 7.13 to 7.17 are built up. 
What does such an elementary diagram express? 

When the elementary diagram belongs to a problem to find such as the one con¬ 
sidered in Fig. 7.3 to 7.8, the points A, B, C, D, . . . , and L represent quantities 

Fig. 7.17. Closing the last gap. 
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Fig. 7.18. We could have A if we had B 

and C and D . .. and L. 

A 

(lengths, volumes, . . .) and they represent statements when the diagram belongs 
to a problem to prove as in Fig. 7.13 to 7.17. In the former case, Fig. 7.18 ex¬ 
presses that we can compute the quantity A if we are given the quantities B, C, D,..., 

and L. In the latter case, Fig. 7.18 expresses that we can conclude the statement 

A from the statements B, C, D, ... , and L. In other words, the elementary dia¬ 
gram expresses in the first case that the quantity A is a known function of the 
quantities B, C, D, . . . , and L, and in the second case that the statement A is a 

consequence of the statements B, C, D,. . . , and L. We can also say that the ele¬ 
mentary diagram Fig. 7.18 answers a question, in one case the question: “From 
what data can we compute A?” and in the other the question: “From what prem¬ 

isses can we conclude A?” 

And so we can foresee how we could use such diagrams to illustrate the solution 
of any kind of problem. In a practical problem the points A, B, C, D, and L may 
represent things we have or we wish to acquire. Figure 7.18 shows that we could 
acquire A if we had B and C and D ... and L, or that the means B, C, D,.. , 
and L suffice jointly to attain the end A. The diagram answers the question: 
“What should I get first if I wish to get AT’ 

7.5. More problems. Although we can try to represent diagrammatically the 
solution of all sorts of problems (see ex. 7.4), the representation can become con¬ 
strained, unnatural. Seek problems with solutions easily represented and instruc¬ 
tively clarified by the diagram. 



CHAPTER 8 

PLANS AND PROGRAMS 

From desire ariseth the thought of some means we have 
seen produce the like of that which we aim at; and from 
the thought of that, the thought of means to that mean; 
and so continually, till we come to some beginning within 
our own power. 

thomas hobbes: Leviathan, Chapter III. 

8.1. A pattern of planning 

Hobbes’ words prefixed to this chapter describe a basically important 
pattern—the pattern of a procedure of problem solving—with admi¬ 
rable concision and precision. Let us read between the lines, let us 
try to see the full scope of the procedure, the variety of cases to which 
it is applicable. 

We have a problem. That is we have an aim A which we cannot 
immediately attain and we are searching for some appropriate action 
to attain it. This aim A may be practical or theoretical, perhaps mathe¬ 
matical—a mathematical object (number, triangle,. ..) which we wish 
to find (compute, construct, . . .) or a proposition which we wish to 
prove. At any rate, we desire to attain our aim A. 

“From desire ariseth the thought of some means”—this is well- 
observed mental behavior. The end suggests the means; a wish is 
usually quickly followed by the thought of some action that could lead 
to its fulfillment. I think of some object I would like to have and soon 
after I remember a shop where I could buy it. 

Yet let us return to Hobbes’ text: “From desire ariseth the thought of 
some means” B that could produce the desired A. This thought prob¬ 
ably originates from some previous experience: “We have seen B pro¬ 
duce the like of A that we aim at.” At any rate, we think that we could 
obtain A if we had B. “And from the thought of B the thought arises 
of some means, say C, to that mean Bwe could obtain B if we had C. 
“And so on continually”—we could obtain C if we had D—“till we 

22 
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come to some beginning within our own power”; we could obtain D if 
we had E—but we do have E\ This E ends our train of thought; E is 
in our possession, “within our own power,” is given, is known. 

Our train of thought ran through several ifs—“this if that,” we could 
obtain this if we had that. In fact, we have considered 

A if B, B if C, C if D, D if E 

and we have stopped at E since we have E unconditionally, without 
any further if. 

(It is almost unnecessary to mention that the number of ifs, or steps, 
is unessential; the four steps and five “targets” or “objectives” arising 
in our example must be considered as representing n steps and n + 1 
objectives.) 

The foregoing was planning. It should be followed, of course, by the 
execution of the plan. Starting from E which is a “beginning within 
our own power” we should obtain D\ having obtained D, we should 
proceed to C, from C to B, and finally from B to our desired aim A. 

Observe that planning and execution proceed in opposite directions. 
In planning, we started from A (the aim, the unknown, the conclusion) 
and we ended by reaching E (the things we have, the data, the hy¬ 
pothesis.) Yet in carrying out the plan we worked from E to A so that 
A, the aim, is the first thing we thought of and the last thing we laid 
hands on. If we regard motion toward the goal as progress, we must 
regard the direction in which our planning has moved as regressive. 
Thus the important pattern of problem solving described by Hobbes 
can be appropriately called regressive planning, or working backwards; 
the Greek geometers called it analysis which means “backward solu¬ 
tion.” The complementary work of execution which proceeds from the 
things in our possession to the aim (from E to A in our case) is called, 
in contradistinction, progressive, or working forward, or synthesis which 
means “putting together.”1 

The reader should visualize this working backward in planning and 
working forward in executing the plan on some obvious example. “I 
could get that desirable object A in that shop if I paid for it that sum B; 
I could get that sum B if ... .” I hope that the reader will succeed in 
devising a neat plan, and will not meet with disappointments in carry¬ 
ing it through. 

8.2. A more general pattern 

Let us confront the pattern developed in the foregoing section with 
the example carefully analyzed in chapter 7 and illustrated by Fig. 7.8. 

1 Cf. HSI, pp. 141-148, Pappus, and pp. 225-232, Working backwards. 
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The example unmistakably shows the general trend of the pattern:' 
working backward from the unknown to the data in the planning phase, 
but working forward from the data to the unknown in executing the 
plan. Yet the details of the example do not fall under the pattern. 

Let us look at the very first step. In the pattern of sect. 8.1, A is 
reduced to B, the primary aim is reduced to a secondary aim, attaining 
A depends on attaining B. In the example of Fig. 7.8, however, the 
computation of the unknown (the volume of the frustum) is reduced 
to the computation of two new unknowns (two volumes); there is not 
only one secondary aim, but there are two such aims. 

If, however, we reconsider our example represented by Fig. 7.8 and 
various remarks made in chapter 7 on this graphical representation 
(see especially ex. 7.4), it should not be difficult for us to conceive a 
generalization of the pattern of sect. 8.1 that encompasses the case of 
Fig. 7.8 and along with it an unlimited variety of worthwhile cases. 

Our aim is A. We cannot attain A immediately, but we notice that 
we could attain it if we had several things, B', B", B'",.... Well, we do 
not have these things, but we start thinking how we could get them; that 
is, we set up B', B", B'", ... as our secondary aims. We may perceive 
after some reflection that we could attain all our secondary aims B', B", 
B"’,... if we had several other things C', C", C'". In fact, we do 
not have these things (C', C", C'", . . .), but we can try to get them; 
we set them up as our tertiary aims, and so on. We are spinning the 
web of our plan. We may be obliged to say several times “We could 
have this, if we had that and that and that” till we finally reach solid 
ground, things we really have. The web of our plan consists of acces¬ 
sory aims, all subordinate to our primary aim A, and of their intercon¬ 
nections. There may be many subordinate aims, and the details of the 
web may be too complex for words, but they can be appropriately 
represented by the points and lines of a diagram of the kind we devel¬ 
oped in chapter 7. (For instance, in sect. 2.5(3) our primary aim was 
D, our secondary aims were a, b, and c, and our tertiary aimsp, q, andr. 
See also ex. 7.2.) 

I think that the foregoing indicates clearly enough a general pattern 
which contains the pattern described in sect. 8.1 as a particular case, 
and which we shall call the pattern of working backwards. It is a pattern 
of planning; the planning starts from the aim (the thing we want, the 
unknown, the conclusion) and works backward toward the things 
“within our power” (the things we have, the data, the hypothesis.) It 
is part of the plan that when we shall have reached those things “within 
our power” we shall use them as a “beginning,” and by retracing our 
steps we shall work forward toward the aim. Cf. ex. 9.2(3). 
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8.3. A program 

Are the two numbers y/3 + yTT and y/5 + ^/8~ equal? If they are 
not, which one is greater? (It is understood that all arising square roots 
are taken with the positive sign.) 

With a little experience in algebraic manipulation, we may readily 
conceive a plan to handle this question; we may even conceive a plan 
so clear and determinate that it deserves a special term and may be 
called a program. 

The two proposed numbers are either equal, or the first is greater, or 
the second is greater. There are three eligible relations between the 
two numbers, expressed by the signs =, >, and <, but just one of these 
three relations is actually valid—we do not know for the moment which 
one, although we hope that we shall know it soon. Let us denote the 
one among the three relations that is actually valid by ? and write 

\/3 + y/U ? V*+ V* 

Whichever of the three relations may be actually valid, we can perform 
certain algebraic operations equally applicable to all three. To begin 
with, we can square both sides and then the same relation will hold 
between the squares: 

3 + 2V33 + 11 ? 5 + 2V40 + 8 

By this operation we have diminished the number of square roots; 
at the outset we had four, and now we have only two. By subsequent 
operations we shall get rid of the remaining square roots by and by, and 
then we shall see which one of the three possible relations is represented 
by the sign ?. 

The reader need not foresee the operations planned in every detail, 
but he should realize that they can be carried out without hesitation 
and are bound to lead to the desired decision. Then he may agree that 
the situation deserves a special term and that such a definite plan 
should be called a program, (see sect. 8.5). 

With these remarks we have, in fact, attained the aim of the present 
section and there is no need to carry out the programmed steps. Still, 
let us carry them out: 

1 + 2V33 ? 2yf46 

1+4V33 + 132 ? 160 

4^33 ? 27 

528 ? 729 
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Yet there is no question here, we know which side is larger, and retracing 
our steps we find that 

V5 + VU < \/5 + VS 
8.4. A choice between several plans 

On each side of a given (arbitrary) triangle describe an equilateral 
triangle exterior to the given triangle, and join the centers of the three 
equilateral triangles. Show that the triangle so obtained is equilateral. 

In Fig. 8.1, A ABC is the given triangle, and A', B', and C' are the 
centers of the equilateral triangles described on BC, CA, and A B, 
respectively. We are required to show that AA'B'C' is equilateral, but 
it seems odd, almost unbelievable, that this triangle is always equi¬ 
lateral, that the final shape produced by the construction is independent 
of the arbitrary initial shape. We suspect that the proof cannot be easy. 

At any rate we do not like the points A', B', and C' appearing so 
isolated from the rest of Fig. 8.1. This defect, however, is not serious. 
As it is readily seen, ABA'C is isosceles, A'B = A'C, and Z BA'C = 
120°. We introduce this triangle and two analogous triangles into the 
figure and thus obtain the “more coherent” Fig. 8.2. 

Yet we still do not know how to approach our goal. How can you 
prove such a conclusion? In Euclid’s manner? By analytic geometry? 
By trigonometry? 

(1) How can we prove in Euclid’s manner that A'B' = A'C"! By 
showing that A'B and A'C' are corresponding sides in congruent 
triangles. Yet there are no usable triangles in the figure, and we do not 
see how we could introduce usable triangles. This is discouraging—let 
us try another approach. 

Fig. 8.1. Three isolated points. 
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(2) How can we prove by analytic geometry that A'B' = A’C’l We 
should regard the coordinates of the points A, B, and C as given quanti¬ 
ties and the coordinates of the points A', B', and C' as unknowns. 
Having expressed these unknowns in terms of the data, we can express 
also the distances in question in terms of the data and examine whether 
they are equal or not. It is a pretty clear plan, but we should handle 
six unknowns and six data—no, it is not too inviting—let us try the 
third approach. 

(3) How can we prove by trigonometry that A'B' = A'C'l We 
should regard the sides a, b, and c of A ABC as given quantities, and the 
three distances 

B’C' = x, C'A' = y, A'B' = z 

as unknowns. Having computed the unknowns, we should examine 
whether actually x = y = z. This looks better than (2); we have only 
three unknowns and three data. 

(4) In fact, we need not compute three unknowns, two are enough: 
ify = z, any two sides are equal—and that is enough. 

(5) In fact, we need not even compute two unknowns, one is enough 
if we proceed a little more subtly; it is enough to express just x in terms 
of a, b, and c provided that we manage to obtain an expression sym¬ 
metric in a, b, and c. (An expression is symmetric in a, b, and c if it 
remains unchanged when we interchange a, b, and c. If such an expres¬ 
sion is valid for x it must be valid just as well for y and z.) 

This plan, although it depends on the ingenuity of the problem solver, 
on the coming of some little novel idea, appears rather attractive—the 
reader should try to carry it out (see Fig. 8.3, ex. 8.3). 

(6) Has our story a moral? I think, it has. 
If you see several plans, none of them too sure, if there are several 

roads diverging from the point where you are, explore a bit of each road 
before you venture too far along any one—any one could lead you to a 
dead end. 
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8.5. Plans and programs 

We may regard our plan as a road along which we intend to travel. 
There are plans and plans, however. We would like to have a plan of 
some action that leads us right to the goal, but, unfortunately we do 
not always succeed in devising such a complete plan, and also less far- 
reaching actions need some planning. We may see just a little bit of the 
road, we may see a long stretch of it, or we may see the full extent of 
our road right to the goal. Then, we may see our road hazily or clearly. 
Again, we may expect, and prepare for, various eventualities along the 
portion of the road that we do not see well or do not see at all. A de¬ 
sirable eventuality, the hope for which never leaves us entirely, is to 
have a bright idea which will immediately clear up everything. 

Quite often, we do not have yet a complete plan; there are gaps in 
the plan, some vital ideas are still missing. Yet we go ahead, we start 
executing our plan in relying on some bright, or at least novel, idea that 
will come to us and fill the gaps. 

How much we rely on such an idea may be regarded as the most im¬ 
portant distinction between plans and plans. If we do not depend at 
all on novel ideas, but are confident that the steps already pondered and 
foreseen by the plan are sufficient to reach our goal, we have a plan clear 
and determined enough to be called a program. We may spend much 
of our time in working at various imperfect plans till we succeed in 
developing one of them into a program. 

Compare sect. 8.3 with sect. 8.4, for instance. 

8.6. Patterns and plans 

Under appropriate circumstances, each pattern we have studied in 
the foregoing suggests a plan—but does not immediately yield a definite 
plan, a program. 

For instance, we have a problem of geometric construction. We may 
try to solve it following the pattern of two loci. This is a plan, indeed, 
but it takes additional ideas to find a suitable point to the construction 
of which the problem can be reduced, and to split the condition suitably 
so that we obtain two loci for that point. 
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Or, we decide to solve a geometric problem by reducing it to equa¬ 
tions, following the Cartesian pattern. This is a plan, indeed, but it 
takes additional ideas to set up as many equations as unknowns and 
further ideas to solve the system of equations. 

Working backward is a very general and useful pattern of planning 
but obviously we need some ideas from the subject matter to work 
across the gap from the unknown to the data. When the regressive 
planning has succeeded and the logical network spanning the gap has 
been perfected, the situation is very different. Then we have a program 
for working foreward from the data to the unknown. 

Examples and Comments on Chapter 8 

8.1. Backward or forward? Regressive or progressive? Analysis or synthesis? 

In our terminology (see sect. 8.2) the term “working backward” stands for a cer¬ 
tain strategy of problem solving, a typical way of planning the solution. Is it the 
only possible strategy? Is it the best strategy? 

(1) Take “our example,” the example we made a graphic study of in chapter 7. 
The plan of the solution at which we have finally arrived is represented by Fig. 7.7; 
it is a web of points and lines, of intermediate unknowns and interconnections, 
stretching across the originally open space between the unknown and the data. 
We started spinning this web from the unknown, working toward the data; the 
successive stages of the work are displayed in Fig. 7.8. We called this direction 
of work “regressive” or “backward” (in Fig. 7.8 it is downward). 

The final plan, the full system of interconnections (see Fig. 7.7—the web may 
be more complex in another case) does not show in which direction it has been 
built up. Another problem solver could have built it up starting from the data 
and working in the direction of the arrows in Fig. 7.7 (which we have followed in 
executing the plan). Discovering the plan in this direction would be progressive 

work, working forward. 

Still another problem solver (having, perhaps, a more complicated problem) 
could devise such a plan without working all the time in the same direction. 
Starting from either end, he could work sometimes from the unknown toward the 
data, sometimes from the data toward the unknown; he may work alternately 
from both ends; he may even establish some promising connection in the middle 
between things which are not yet connected with either end. Thus, devising a 
plan in working backward is by no means the only possibility. For a concrete 
case, see ex. 7.3. 

(2) In our example summarized by Fig. 7.8 we have devised the plan of the solu¬ 
tion working backward. Let us compare our work with the work of a problem 
solver who happened somehow to devise the same plan working foreward. 

In fact, we have started from the unknown, we have asked ourselves questions 
emphasizing the unknown: What do you want? What is the unknown? How can 

you get this kind of thing? How can you find this kind of unknown? From what data 

can you derive this kind of unknown? And thus we have found two “data,” the 
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volumes A and B, from which the unknown can be derived, in terms of which the 
unknown F can be expressed: F = B — A. This stage of our work is indicated 
by Fig. 8.4 (which is a part of Fig. 7.3). 

Yet the other problem solver started differently: from the data. He asked him¬ 
self questions emphasizing the data: What have you? What are the data? What 

are such things good for? How can you use such data? What can you derive from 

such data? And somehow he observed that he can derive from the data the length 
(altitude) x, express x in terms of a, h, and b (from a proportion as we have ob¬ 
served too later in the game, see Fig. 7.6). This stage of his work is indicated by 
Fig. 8.5. 

Let us return to our work, to the stage represented by Fig. 8.4. Having ex¬ 
pressed the unknown F in terms of A and B, we are left with two new unknowns, 
A and B, two new (auxiliary) problems: 

Compute A in terms of the data a, h, and b. 

Compute B in terms of the data a, h, and b. 

These are clear-cut mathematical problems, of the same kind as our original 
problem. Working regressively, we ask again: How can you find such unknowns? 

From what data can you derive such unknowns? 

Let us now return to the other problem solver; he has reached the stage repre¬ 
sented by Fig. 8.5. Having expressed x in terms of the data a, h, and b, he can 
regard x as given, and so he has more data which may give him a better chance to 
find the original unknown. Progressing in the same way, however, he has no 
clear-cut auxiliary problem, but he has to ask himself the less definite question: 
How can I use x? What are such things good for? What can I derive from such 

data? 

Yet the most striking difference between us and the other problem solver, be¬ 
tween the two situations represented by Fig. 8.4 and 8.5, is in the outlook. What 
happens if we succeed in solving our auxiliary problems? What happens if he 
succeeds in answering his question? 

If we succeed in expressing our auxiliary unknowns in terms of the data (A and 
B in terms of a, h, and b), we can express so also our original unknown 

F 

A B 

F 
o 

o o o 
b a h 

Fig. 8.4. Regressive. 

h 

Fig. 8.5. Progressive. 

b 
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(F = B — A) and our problem is solved. If the progressive worker succeeds in 
expressing some quantity, say y, in terms of the data, he still faces an indefinite 
question: How can he use y? Except for one case, of course: if he is lucky, he 
can express F itself, and then he also has solved his problem. 

(3) Both ways of planning, the regressive and the progressive, can succeed, and 
both can fail. Working backward, we may arrive at an auxiliary problem which 
we cannot solve. Working foreward, we may derive more and more quantities 
from the data, but these quantities may serve no useful purpose; we may not be 
able to derive from them our original unknown. 

Both ways of planning require a combination of various activities. Yet, when 
working backward we may expect to spend most of our time in doing clear cut 
problems. When working foreward, we may expect to spend much of our time in 
hesitating between problems we might do, or in doing problems which are no help. 

On the whole, planning regressively, working backward, “analysis” (in the 
terminology of the Greek geometers) is preferable. There can be no hard and 
fast rule, but the wise thing may be to look first at the unknown (the conclusion, 
the thing you want) then at the data (the condition, the hypothesis, the things 
you have). Start working backward from the unknown unless you have some 
special reason not to do so—of course, if a bright idea urges you to start from the 
data, go ahead! 

(4) Let us make just a few more short remarks, although there are still many 
things to say.2 

In some cases there is little choice. In many a practical problem the thing we 
want to find (to construct, to acquire,...) is quite definite, but the things we could 
possibly use for attaining our aim we scarcely know, and they are impossible to 
survey, there are so many of them. We can hardly have a good reason to begin 
with any one item in that unmanageable heap of data, and so we are almost 
obliged to plan regressively. 

After arriving at our plan regressively, we execute it progressively (recall 
sect. 7.5); but it is execution and not planning for we have conceived all the ideas 
before, and now we just carry them out. This may even raise the suspicion that 
those people who start planning progressively may have conceived some idea 
before—conceived it, I mean, implicitly, perhaps subconsciously. 

A lady student explained it thus: synthesis by itself (without foregoing analysis) 
would be difficult—somewhat like trying to make a cake with the ingredients in 
front of you and no recipe to follow. 

And, of course, you should not be pedantic or fussy. Having started working 
backward, from the unknown, you may see a good opportunity to take a step 
forward from the data; then take that step by all means. 

8.2. A wise man begins in the end. A friend of mine, a good mathematician and 
a good philosopher, once told me that when he tries to find a proof for a theorem 
he often begins by writing down Q.E.D. (“quod erat demonstrandum,” what was 
required to prove), and this act of writing down the traditional phrase which 
comes at the very end of a proof puts him in the right mood. 

There is a proverb: “A wise man begins in the end, a fool ends in the beginning.” 

2Cf HSI, pp. 141-148, Pappus, and pp. 225-232, Working backwards. 
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8.3. Carry out the plan indicated in sect. 8.4(5). 

8.4. A choice between three plans. Let a denote the radius of the base and h the 
altitude of a right circular cylinder. A plane intersects the base along a diameter, 
is tangent to (has just one point in common with) the perimeter of the top, and 
divides the volume of the cylinder into two unequal portions. Compute the 
smaller portion (the volume of a “hoof”) which is between the base and the 
intersecting plan. 

This problem and its first solution are due to Archimedes.3 
We use solid analytic geometry. The axis of the cylinder is the z-axis, and its 

base lies in the x, /-plane of a rectangular coordinate system. The plane dividing 
the volume of the cylinder intersects the x, /-plane in the/-axis. Therefore, the 
equation of the perimeter of the base is 

x2 + y2 = a2 

and the equation of the dividing plane is 

z_ _ x_ 

h a 

We may use either integral calculus or Cavalieri’s principle to compute the 
desired volume. With both methods we have to consider a family of parallel 
cross sections of the “hoof.” There are three obvious plans: we may choose cross 
sections perpendicular to the x-axis, perpendicular to the/-axis, or perpendicular 
to the z-axis. 

Which plan do you prefer? Carry it out. 

8.5. A choice between two plans. 

(1) In doing a crossword puzzle we hesitate between two words. One has 4 
letters, of which 1 is known and 3 are unknown, the other has 8 letters of which 
3 are known and 5 are unknown. Which one of these two words should we try to 
find first? On the basis of the numerical data offered, is it possible to make a 
rational choice between the two? 

It is hardly possible, I think, but there is a challenge. 
f (2) The question raised must be restated in a more general and (as far as 

possible) more precise form. 
A word consists of k + l letters of which k are known and / are unknown. We 

undertake to find the word, and we are considering the degree of difficulty of this 
undertaking. 

Let us first suppose that we know those k letters completely: the nature and 
position of each of them are specified (as in the example 

IN_R_ 

where k = 3, / = 5). In this case we may define the degree of difficulty of finding 
the word as the number N of those English words in present-day usage that consist 
of k + l letters of which k letters are of the specified nature and are in the specified 
position. (Of course, any well-defined increasing function of N, such as log N, 

could be just as well taken for the degree of difficulty.) 

3 See Proposition 11 of his Method, pp. 36-38 of the Supplement to his Works edited by 

T. L. Heath (Dover.). 
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Theoretically, this definition may appear reasonable; the greater the number N 

of the admissible words, the greater is the difficulty to choose one of them. Prac¬ 
tically, there are several awkward points. How should we decide whether an 
English word is or is not “in present-day usage”? Is the definition satisfactory 
from the standpoint of the crossword fan? At any rate, the practical determina¬ 
tion of the number N appears prohibitively tiresome and unprofitable. 

t(3) Thus we are led to a different and higher aim; we wish to determine the 
degree of difficulty insofar as it depends on k and / alone—the difficulty “other 
things being equal”—perhaps the “average difficulty.” We wish to lump together 
all the cases with the same k and /, and take only the numerical data k and / into 
account. If we could attain this higher aim, the degree of difficulty would be a 
numerical function f(k, /) of k and /. It seems obvious that f(k, /) should be a 
decreasing function of k and an increasing function of /. Yet, for instance, we do 
not know yet which one is greater, /(1, 3) or /(3, 5). 

f (4) If the letters in English words were independent of each other, the number 
N of English words with k given and / freely eligible letters could be simply ex¬ 
pressed as follows: 

N = 26' 

Number N is used in the meaning explained under (2). Hence the degree of 

difficulty could be defined, for instance as 

f(k, l) = = / 
J v ' log 26 

This choice of f(k, 1) is consistent in itself, but it sidesteps the crucial question: 
How much do the k known letters restrict the choice of the / still eligible (but, in 
fact, not quite freely eligible) letters? 

It is very doubtful that a somewhat realistic formula for f(k, l) can be devised. 
At any rate, we expect that such a formula would differ from the one just proposed 
at least in two respects: it should be a strictly decreasing function of k, and it 
should be adaptable, if not to all, at least to a few languages, 

f (5) Here is a crude and completely speculative trial proposal: 

f(k n = 1°R [26 — ak] [26 — a(k +1)1 • • • [26 - a(k + l - 1)] 
J K ’ ' log 26 

Suitable choice of the positive parameter a should adapt the formula to a language 
written with the 26 Roman letters. The formula should be used only for words of 
length 

k + l<^- + 1 
a 

(6) The foregoing considerations may shed some light on the scope of heuristic 
and on the precision that it could possibly attain, and herein lies their justification. 

8.6. A plan, indeed. “I will just sit here, look at the figure, and wait for a good 
idea.” This, indeed, is a plan. Perhaps a little too primitive. Perhaps a little too 
optimistic: you seem to rely just a little too much on your ability to produce good 
ideas. Still, such a plan may work, occasionally. 
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8.7. Looking back at problems you have solved in the past, reconsider some 
problems you have solved, or could have solved, in working backward. 

8.8. Do not commit yourself. We consider a half-concrete example. We are 
required to prove a proposition of elementary geometry the conclusion of which 
states, “... then the angles ZABC and Z EFG are equal.” We have to derive this 
conclusion from a certain hypothesis the details of which, however, are irrelevant 
to the purpose of this comment, and so we ignore those details. 

At a certain (probably early) stage of the problem solving process we concen¬ 
trate on the conclusion: What is the conclusion? 

We have to prove that 

/.ABC = LEFG 

Flow can you prove such a conclusion? From what hypothesis can you derive such 

a conclusion? 

We succeed in remembering several pertinent facts learned in the past; several 
possibilities of deriving such a conclusion as we have to prove. Two angles are 
equal, 

(1) if they are corresponding angles in congruent triangles; or 
(2) if they are corresponding angles in similar triangles; or 
(3) if they are corresponding angles formed by two parallels with a transversal; 

or 
(4) if they have the same third angle as complement; or 
(5) if they are inscribed in the same circle and intercept the same arc. 

We have here five different known theorems, each of which could be applicable 
to our case, five different hypotheses from each of which we could derive the de- 

\ 

Fig. 8.6. A doubtful choice. 
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sired conclusion. We may start working with any one. For instance, we could 
try (1); we could introduce two likely triangles, say A ABC and A EFG, and then 
try to prove that they are congruent. If we succeeded, the desired conclusion 
would immediately follow! And how could we prove that AABC = A EFG? 

With this question we embark upon regressive planning. Yet we could begin 
such regressive planning just as well with any one of the other theorems quoted— 
has any one of them some chance of success? Which one has the best chances of 
success? If we cannot answer these questions, if the response they evoke is just 
some dim uncertain feeling, the choice we are facing is doubtful indeed. We are 
at the crossroads. We have to choose between several paths; the beginning of 
each is clear enough, but the continuation is uncertain and the end is hidden by 
clouds. Figure 8.6 attempts to express the situation graphically. 

The aim of this example was just to make the reader realize the perplexing 
situation, the uncertainty of the choice between several plans. The advice I would 
give in such a situation is: Do not commit yourself too early, do not commit yourself 

to one course more than necessary. Do one thing, but do not forget the others. 
The good problem solver plans like a good general; he realizes that the attack 

planned may fail and does not neglect the line of retreat. A good plan must have 
some built-in flexibility, some adaptability to unforseeable difficulties.4 

4 See MPR, Vol. 2, pp. 148-152. 



CHAPTER 9 

PROBLEMS WITHIN 
PROBLEMS 

When, in either construction or demonstration, we assume anything 
which has not been proved but requires argument, then we regard what 
has been assumed as doubtful in itself and worthy of investigation, 
and call it a lemma. 

proclus: Commentary on Euclid, On Proposition 1 of Book I. 

When a problem arises, we should be able to see soon whether it will 
be profitable to examine some other problems first, and which others, 
and in which order. 

descartes: CEuvres, vol. X, p. 381; Rules for the Direction of the 
Mind, Rule VI. 

What is the best you can do for this problem? Leave it alone and 
invent another problem. 

THE TRADITIONAL MATHEMATICS PROFESSOR. 

9.1. Auxiliary problems: means to an end 

Some observations of Wolfgang Kohler on anthropoid apes have 
great interest for us. Let us describe, schematically, one of his 
experiments.1 

Inside the cage there is a chimpanzee and he is hungry. Outside the 
cage there lies a banana on the ground. The chimpanzee can pass his 
arms through the bars of his cage, but the banana is beyond his reach. 
The chimpanzee has tried hard to reach the banana, but without 

'Wolfgang K8hler, The mentality of apes (Harcourt, Brace & Co.) pp. 32-34. 

36 
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success, and now he just sits there. Also on the ground outside his cage, 
and within his reach, there lies a stick, but he seems to pay no attention 
to it. Suddenly he stirs, grabs the stick, clumsily pushes the banana 
with it until he can reach the banana, and then he grabs it and eats it. 

This chimpanzee has solved two problems: 

A. To grab the banana. 
B. To grab the stick. 

Problem A arose first. Originally, the chimpanzee did not show the 
least interest in the stick, which he cannot eat; yet he solved B first. The 
solution of problem B paved the way to the solution of his original 
problem A. The chimpanzee had a direct interest in A and only an 
indirect interest in B; A was end, B only means to him; A was his main, 
or original, problem, B just an auxiliary problem (“helping” problem, 
subproblem). 

Let us outline generally the meaning of this important term: An 
auxiliary problem is a problem on which we spend attention or work not 
for its own sake, but because we hope that such attention or work may help 
us to solve another problem, our original problem. An auxiliary problem 
is means to an end, it should yield access to the goal; the original prob¬ 
lem is the end and the goal.2 

Gaining access to the solution of an apparently inaccessible problem 
by devising and solving first an appropriate auxiliary problem is the 
most characteristic kind of intelligent action. We can hardly refuse 
to regard the performance of the chimp as an act of intelligence. 

We are going to classify auxiliary problems, starting from mathe¬ 
matical examples. 

9.2. Equivalent problems: bilateral reduction 

We begin with an example. Our task is to solve the following system 
of three equations with three unknowns: 

fX-y = “4 
(A) i x +y + z = 5 

U +y - z = 31 

From system (A) we derive another system (B): 

(1) we leave the first equation of (A) unchanged; 
(2) we add the second and third equations of (A); 
(3) we subtract from the second equation of (A ) its third equation 

2 HSI, pp. 50-51; Auxiliary problem. 



38 TOWARD A GENERAL METHOD 

and so we obtain the three equations of a new system: 

f x-y=-4 
(B) \ 2(x+y) = 36 

l 2 z= -26 

Our derivation of (B) shows that such numbers x, y, z as satisfy (A) 
must, of necessity, satisfy (5). The converse is also true: numbers 
x, y, z satisfying (B) must satisfy (A). This seems plausible, but we 
can also prove it in various ways, for instance as follows. By dividing 
the last two equations of (B) by 2, we obtain 

fx-y = -4 

(C)\x+y= 18 
l z = -13 

and from (C) we can return to (A) by leaving the first equation of (C) 
unchanged and first adding, then subtracting, the last two. In brief, 
if three numbers x,y, and z satisfy one of the two systems (A) and (B), 
they must of necessity satisfy the other. 

The systems (A) and (B) are not identical; they do not consist of 
the same equations. Therefore, we can not properly say that the two 
corresponding problems, the one to solve (A), the other to solve (B), 
are identical. Yet we can properly say that these two problems are 
equivalent. Here is the general definition of this use of the term: Two 
problems are equivalent for us if we know that the solution of each involves 
the solution of the other.3 

The transition from a problem to an equivalent problem is called a 
bilateral (or reversible, or convertible, or equivalent) reduction. For 
instance, the transition from our original problem which was to solve 
(A) to the problem to solve (B) is a bilateral reduction. It is a useful 
reduction too; the system (B) is closer to the solution than the system 
(A). In fact, (B) is closer to (C) than (A), and (C) is almost at the 
end of our task; there is already the value of z, and little remains to do 
to get also the values of x and y. 

93. Chains of equivalent problems 

Let us return to system (C) in the sect. 9.2; we derive from it, by 
addition and subtraction, the system 

fix = 14 
(D) \2y = 22 

l z = -13 

3HSI, p. 53; Auxiliary problem 6. 
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and hence 

fx = 7 

(E)\y=W 
Iz = -13 

We have here a sequence of five systems (each one is a system of 
three equations) 

(A), (B), (C), (D), (E) 

There is a problem associated with each: to find the values of x,y, 
and z satisfying the system. [The “problem” is fully solved, and so 
the term “problem” is not used in its proper, but in an extended, mean¬ 
ing in the case of the system (is).] Each of these problems is equiva¬ 
lent to the foregoing (and also to the following) problem as each link 
of a chain is joined to the next link; we have here a chain of equivalent 
problems. 

In our chain, (A) is the beginning and (E) is the end; (A) is the 
originally proposed system of equations and (E) exhibits the solution. 
We have here an ideally perfect way to arrive at the solution. Starting 
from the proposed problem, we devise a sequence of problems; each 
problem is equivalent to, and nearer to the solution than, the foregoing 
problem; proceeding thus from problem to problem, we attain, with a 
last step, the solution itself. 

Yet, even in mathematics, in the quest of the unknown and in the 
struggle for the proof, we often have to settle for something less than 
perfection. And so we turn to survey further kinds of auxiliary 
problems. 

9.4. More, or less, ambitious auxiliary problems: unilateral reduction. 

We begin with the consideration of a schematically stated problem: 

A. Find the volume of a pyramid, being given .... 

We suppose here that the data are sufficient to determine the pyramid, 
but the base and the altitude are not among the data, neither of these 
two quantities is given. This much is important, but what the data 
otherwise are is unimportant for our present discussion and so we 
suppress their list.4 

We know that the volume of a pyramid can be computed if its base 
and altitude are given—but, as we have just said, neither of these two 
quantities is given. As they are not given, we shall try to compute 
them, and so we turn to another problem: 

4 For a concrete problem of the form A see ex. 4.17. 
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B. Find the base and the altitude of a pyramid, being given .... 

Problem A has one unknown, problem B has two unknowns, and 
both problems have the same (unlisted) data. There is a one-sided 
asymmetric relation between these two problems. If we succeed in 
solving B, we have the base and the altitude of the pyramid, hence we 
can compute its volume, and so we can solve A. If, however, we 
succeed in solving A, it is by no means certain that we can also solve B: 
although the result of A yields a simple relation between the two un¬ 
knowns of B, there may remain some serious difficulty to find either of 
them. Thus, we achieve less in solving A than in solving B. We may 
call A the less ambitious and B the more ambitious of the two problems.5 

Let us repeat the foregoing in general terms. There are two prob¬ 
lems, A and B, both unsolved, and our state of knowledge is as follows: 
we do know how we could derive from the solution of B the solution of A, 
but we do not know how we should derive from the solution of A the solu¬ 
tion of B. Under such circumstances we say that A is less ambitious 
than B and that (which means the same) B is more ambitious than A. 

The transition from an original problem to an auxiliary problem 
which is more ambitious, or less ambitious, than the original problem 
(in any case, not equivalent to the original problem) is called a uni¬ 
lateral (or irreversible) reduction. In our example, the original problem 
A is less ambitious than the auxiliary problem B, and so the reduction 
of A to B is unilateral. The experienced reader may recall several 
examples similar to the one given here in which such a unilateral reduc¬ 
tion was profitable. 

Unilateral reduction of the opposite kind, where the auxiliary prob¬ 
lem is less ambitious than the original problem, is also often profitable. 
Here is a schematic example: 

A. Compute the unknowns X\, x2, . . . x„_i, and xn, being given .... 

B. Compute the unknown X\, being given .... 

We suppose that the condition and the data determine the unknowns 
and that they are the same in both problems, in A and in B, but what 
they are is unimportant here and so we suppress them. Trivially, the 
solution of A involves the solution of B, but, in general, the solution of 
B cannot involve the solution of A: according to our definition, A is 
more ambitious than B. Yet, very often when we are required to solve 
A, we may introduce with advantage B as auxiliary problem; we did 
so many times in chapter 3 when we solved A by recursion and, by 
choosing x\ as our initial unknown, we began our work with the auxil¬ 
iary problem B as a stepping stone to A. 

5HSI, p. 56; Auxiliary problem 8. 
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9.5. Remoter auxiliary problems 

We begin with an example. Let us consider the following problem: 

A. Given the length of an edge of a regular tetrahedron, find the 
radius of the sphere circumscribed about the tetrahedron. 

If we do not see some other access to problem A we may try to ap¬ 
proach it by considering the following problem: 

B. Given the length of a side of an equilateral triangle, find the radius 
of the circle circumscribed about the triangle. 

The transition from A to B is neither a bilateral nor a unilateral 
reduction in the sense of sections 2 and 4. In fact, we can scarcely see 
a priori how the solution of B would involve that of A or the solution 
of A that of B—problems A and B do not appear equivalent, and neither 
appears more ambitious than the other in the sense of our definitions. 

Yet problems A and B are not unrelated. Problem B is analogous 
to the problem A; we have here a little example of that great analogy 
between plane geometry and solid geometry. Moreover, to most of us 
the problem B will appear easier than the problem A; we may have 
even seen already, and could recall with little trouble, the solution of B. 
In this situation, it is natural to ask: Is it worthwhile to consider prob¬ 
lem B? Is there a chance that the consideration of B will facilitate the 
solution of A? 

It may happen that the consideration of B does not contribute ap¬ 
preciably to the solution of problem A; this may even happen if we 
clearly see the analogy between A and B and if we possess a complete 
solution of B. Yet it may also happen that B will help, although it is 
apparently sterile. The comparison of A with the analogous B may 
render the proposed problem A more interesting, and in such a case 
B is useful. Yet the contribution of B to the solution of A may be even 
more distinct; there is a chance that the analogy between A and B will 
suggest some useful remark. For instance, in the “plane” problem B, 
the desired radius is a simple fraction (f) of the altitude of the equi¬ 
lateral triangle. This may suggest the question: How about the analo¬ 
gous “solid” problem A? Is that desired radius some simple fraction 
of the altitude of the regular tetrahedron? This question, or a similar 
question, can introduce some usable element and pave the way to the 
solution of A. Or, in solving A, we may need the altitude of one of 
the faces of a tetrahedron; then, if we know the ratio of the altitude to 
the radius of the circumcircle for an equilateral triangle (which we 
have just mentioned) the answer to problem B may contribute a link 
to the chain that we have to forge to obtain the answer to A. 

In general, we may expect that the consideration of a problem B 
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will contribute in some way or other to the solution of the proposed 
problem A, even if B is neither equivalent to A, nor more ambitious, 
nor less ambitious, than A. Such a problem B is called a remoter 
auxiliary problem to A. 

9.6. Material help, methodological help, stimulating influence, guidance, 
practice 

An auxiliary problem may help to solve the original problem in an 
inexhaustible variety of ways. 

An equivalent auxiliary problem yields, if solved, the whole solution 
of the original problem, and an auxiliary problem more ambitious than 
the original problem does the same. (The difference between these 
two kinds of auxiliary problems shows up when we are unable to solve 
them. If an equivalent auxiliary problem is definitely beyond our 
reach, so is our original problem; if, however, a more ambitious auxil¬ 
iary problem turns out inaccessible, the prospects for our original 
problem need not be so dark.) 

Other sorts of auxiliary problems, even if solved, do not guarantee 
the whole solution of the original problem, but they may offer material 
help. A part of the solution of the auxiliary problem (or even all of it) 
may become a part of the solution of the original problem to which it 
may contribute a conclusion, a construction, or a fact on which such a 
conclusion or construction is based, and so on. 

Yet even when no such material help is forthcoming, the auxiliary 
problem may give methodological help; it may suggest the method of 
solution, an outline of the solution, or the direction in which we should 
start working, and so on. An auxiliary problem analogous to, but 
easier than, the original problem is in a good position to offer such 
methodological help. 

We might not be able to point out any part or feature in the final 
solution of the original problem that was taken over from, or suggested 
by, a certain auxiliary problem. Still, it is quite possible that the 
stimulating influence of that auxiliary problem contributed a good deal 
to the discovery of the solution of the original problem. Perhaps that 
auxiliary problem has rendered, by analogy or contrast, the original 
problem more understandable or more interesting; or perhaps it has 
stirred our memory—started a train of thought from which, eventually, 
some essential relevant fact emerged. 

Auxiliary problems may help in still another rather subde manner. 
Working on a problem involves decisions. We could continue our work 
in two directions; there are two paths open for us, one to the right and 
one to the left. Which one should we choose? Which one is more 
likely to lead us to the solution? It is important to assess our prospects 
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reasonably and auxiliary problems may give us welcome guidance in 
this respect Our attention and work spent on, and our experience 
gained with, an auxiliary problem have a good chance to influence our 
judgment in the right direction. 

Sometimes we may take on an auxiliary problem just for practice. 
It may happen that our original problem involves concepts with which 
we are not used to dealing. In such a situation, it may be advisable 
to try some easier problem involving the same concepts that would 
thus become a (rather remote) auxiliary problem to our original 
problem. 

Although there are so many different things to gain, it quite often 
happens that we gain little and lose a lot of time and trouble in work¬ 
ing on an auxiliary problem. Therefore, before we get too deeply 
involved in such a problem, we should try to weigh the prospects and 
estimate the chances. 

Examples and Comments on Chapter 9 

9.1. Reliable sources of auxiliary problems? An auxiliary problem may 
“spontaneously grow out” of the proposed problem. Yet it may also happen 
that when we would like to have an attractive auxiliary problem none comes to 
mind. In such a case we may wish we had a list of reliable sources from which 
useful auxiliary problems could be drawn. There are, in fact, various usual modes 
of forming auxiliary problems, and we shall consider the most obvious ones in 
what follows; they will lead you to some auxiliary problems in most cases—but 
it cannot be guaranteed that they will lead you to useful auxiliary problems. 

Auxiliary problems may arise at any stage of the problem solving process. Let 
us assume, however, that we are a little beyond the very first phase. We have 
already considered and well understood the principal parts of our problem—the 
unknown, the data and the condition, or the hypothesis and the conclusion—and 
also the most obvious subdivisions (clauses, etc.) of these principal parts. Yet 
we see no promising plan, and we wish we had some more accessible or more 
attractive goal. It is good to know that searching examination of the principal 
parts of our problem may present us with such a goal, with a usable auxiliary 
problem. We sh^ll survey the most notable cases in what follows. 

92. Respice finem. The desire to attain the aim is a productive desire, it pro¬ 
duces thoughts of actions which possibly could attain the desired aim. The end 
suggests the means. Therefore, look at the end, do not lose sight of your aim; 
it guides your thoughts. 

Respice finem means “Look at the end” and was a current phrase when Latin 
was more used.6 Hobbes expands it: “Look often upon what you would have, as 
the thing that directs all your thoughts in the way to attain it.”7 

6 From a medieval hexameter: Quidquid agis prudenter agas et respice finem. 

''Leviathan, chapter III. 
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Looking at the end, we are waiting until the thought of some means emerges. 
To shorten the waiting time, we should keenly realize the end: What do you want? 

What kind of thing do you want? What is the unknown? What is the conclusion? 

We should also make a resolute effort to conjure up some appropriate means: 
How can you get this kind of thing? Where can you get this kind of thing? In which 

shop can you buy this kind of thing? How can you find this kind of unknown? How 

can you derive such a conclusion? 

The last two questions specifically refer to mathematical problems, one to a 
problem to find, the other to a problem to prove. Let us consider these two cases 
separately. 

(1) Problems to find. We consider, as we have done in sect. 9.4, a half-concrete 
problem: “Find the volume of a pyramid, being given . . . .” The unknown, the 
volume of a pyramid, is specified, whereas the condition and the data remain 
unspecified. How can you find this kind of unknown? How can we compute the 
volume of a pyramid? From which data can you get this kind of unknown? The 
proposed problem has data, of course, but the trouble is that at least for the 
moment we can not derive the unknown from the proposed data. What we really 
want are more manageable data; in fact, we want another, more accessible,problem 

with the same unknown. 

If we find such a problem, we may face different situations. 
(2) Problem with the same unknown, formerly solved. If we are lucky enough 

to recall such a problem we may proceed to choose its data as target for auxiliary 

problems. This procedure is very often useful. Let us illustrate it by our 
(previously mentioned, semiconcrete) example. 

The unknown of our problem is the volume V of a pyramid. In the most 
familiar problem with this unknown, the data are B, the area of the base, and h, 

the length of the altitude. We know the solution of the familiar problem 
(V = Bh/3), and we have recalled it. How can we use this solution? The most 
natural thing is to try to compute B and h from the data of the proposed 
(unsolved) problem. In trying this, we choose B and h as our targets; we intro¬ 
duce two auxiliary problems, the unknown of one is B, the unknown of the other 
is h, and the data in both are the data of our present problem. (For a concrete 
case, see ex. 4.17, 4.18.) 

(3) The foregoing procedure is often applicable, and in many cases it should 
be repeatedly applied. 

Let x denote our primary unknown, the unknown of the proposed problem. 
We are looking for manageable data and we notice that we could find x if we had 
y',y",y'",... (by using the solution of a formerly solved problem.) We choose 
y', y",y"\ ... as our new targets, as secondary unknowns. Now, we could find 
y',y",y'",... if we had z', z", z”',... (by using the solutions of several formerly 
solved problems), and so we set up z', z", z'",... as targets, as our tertiary un¬ 
knowns. And so on. We are working backward, (see sect. 8.2). 

To be well prepared for such work, we should have a store of (simple, often 
usable) solved problems, and it should be a well-stocked and well-organized store 
(ex. 12.3). 

(4) Problem with the same unknown, not yet solved. We may regard such a 
problem as a stepping stone to the proposed problem, introduce it as an auxiliary 
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problem, and try to solve it—and such a procedure may be profitable. Yet 

the prospects are, other things being equal, less favorable than in case (2). 
In fact, to profit by such a problem in the most obvious way, we should first solve 
it and then, in addition, we should be able to use it in the manner described 
under (2). 

(5) If we do not see at all how we could find this kind of unknown with which 
our present problem is blessed, if we cannot recall any formerly solved problem, 
nor imagine a manageable new one, with the same kind of unknown, we may 
look for a problem with a similar kind of unknown. For instance, if we have to 

find the volume of a pyramid and we see no other way we may try to recall how 
we find the area of a triangle and examine various approaches, looking for sug¬ 
gestive analogies. 

(6) Problems to prove. We could repeat here with little change what we have 
said about problems to find, but an accelerated survey will be enough. 

Also here, it is good to start from a half-concrete example. We have to prove 
a theorem of the form: “If... , then the angle is a right angle.” The conclusion 
of this proposition is specified: “the angle is a right angle” but its hypothesis 
remains unspecified. How can you prove such a conclusion? From which hypoth¬ 

esis can you derive such a conclusion? These questions prompt us to look for 
a theorem with the same conclusion where the statement “the angle is a right angle” 
is inferred from some other, more manageable hypothesis. 

If we are lucky enough to recall a formerly proved theorem with the same con¬ 

clusion we can choose its hypothesis as target: we may try to prove the hypothesis 
of the theorem we have recalled from the hypothesis of the theorem we are trying 
to establish. 

This procedure is often applicable. In many cases we can apply it repeatedly 

and discover the proof for the desired conclusion by working backward. 

If we come across a theorem with the same conclusion as the proposed theorem 
but which is equally unproved, we may try to prove it. Such a trial may be profit¬ 
able, but the prospects should be carefully weighed. 

If we cannot recall any formerly proved theorem, nor imagine any manageable 
new one, with the same conclusion, we may look for a theorem with a similar 

conclusion. 

(7) Whatever our problem is, we can be certain in advance that we shall use 
some formerly acquired knowledge in solving it. Yet, especially if our problem is 
difficult, we cannot so confidently foretell which pieces of knowledge we shall be 
able to use. Any formerly solved problem, any formerly proved theorem, could 
be usable, especially if it has some point of contact with our present problem— 
but we have no time to examine all of them. The foregoing discussion directs 
our attention to the most likely point of contact. If we have a problem to find, 
formerly solved problems with the same kind of unknown—and if we have a problem 
to prove, formerly proved theorems with the same conclusion—are more likely to 
be usable. Therefore, we should give high priority to the questions: How can 

you find this kind of unknown? How can you prove such a conclusion? 

9.3. Removing, or adding, a clause. When our work is progressing slowly or 
not at all, we become impatient with it and wish we had another problem. Now, 
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it is good to be acquainted with modifications of the problem leading to related 
problems, the consideration of which has some chance to be useful. Here is a 
list of the most obvious modifications of this kind. 

Problems to find: 

(1) Removing a clause from the condition. 
(2) Adding a clause to the condition. 
Change (1) renders the condition wider, (2) renders it narrower. 

Problems to prove: 

(1) Removing an assumption from the hypothesis. 
(2) Adding an assumption to the hypothesis. 
(3) Removing an assertion from the conclusion. 
(4) Adding an assertion to the conclusion. 

Both (1) and (4) render the theorem stronger, both (2) and (3) render the 
theorem weaker. 

The effects of these changes are discussed in exs. 9.4 and 9.5. 

9.4. Widening, or narrowing, the condition. We consider two conditions, A(x) 

and B(x), regarding objects x of the same category. We say that A(x) is nar¬ 
rower than B(x), or (which amounts to the same) that B(x) is wider than/f(x) 
iff any object satisfying A(x) necessarily also satisfies B(x). (That is, we use 
these terms “inclusively;” the case in which A (x) and B(x) have the same scope 
is included in both terms.) 

(1) Widening the condition means passing from the proposed problem to 
another problem which has a wider condition than the proposed. The reader 
should realize that we have very often performed this operation in the foregoing 
chapters (of course, without describing it in just these terms.) Thus, in a prob¬ 
lem of geometric construction appropriately formulated (or reformulated) the 
condition refers to a point; we obtain a locus for the point by keeping only a part 

of the condition and removing the other part, that is, by widening the condition. 
Again, in setting up one equation of a system of equations for several unknowns, 
we take only one part (requirement, clause, proviso, . . .) of the full condition 
into account and so, in fact, we widen the condition. 

Widening the condition is certainly useful if we can accomplish two things. 
First, find (describe, list, .. .) the set of all objects satisfying the wider condition. 
Second, remove from this set those objects that do not satisfy the original condi¬ 
tion. I think the reader is aware how these two objectives are attained by the 
pattern of two loci; he should also review sect. 6.3(3) and some examples and 
comments dealing with puzzles (see also ex. 6.21). 

Yet widening the condition can be useful also in a different manner as the 
reader familiar with the Cartesian pattern can easily see. 

(2) Narrowing the condition means passing from the proposed problem to 
another problem which has a narrower condition than the proposed. We do not 
have much opportunity to employ this procedure on the level with which we are 
principally concerned, but here is an example. 

We have to solve the equation 

xn + + aiXn~2 + • ■ • + a„ = 0 
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of higher degree n the coefficients of which, ai, 02, • • • a„, are integers. It is ad¬ 
visable to begin the work by looking for integral roots. In fact, by imposing on x 

the additional requirement that it should be an integer we narrow the condition. 
Yet the search for integral roots (they must be divisors of the last coefficient a„) 

is comparatively easy, and, if we succeed in finding such a root, we can lower 
the degree of the proposed equation and so facilitate the search for the remaining 
roots. (For a concrete case, see ex. 2.31.) 

Narrowing the condition is often useful on a more advanced level; see ex. 9.11. 

9.5. Examining a stronger, or a weaker, theorem. We consider two clearly stated 
propositions, A and B. If we know that A follows from B (if we can derive A in 
supposing B true) we say that A is weaker than B and (what means the same) 
that B is stronger than A. This relation between A and B is particularly inter¬ 
esting when we can neither prove nor disprove A, nor prove or disprove B. 

(1) Examining a possible ground. We want to prove that two given quantities 
are unequal. For instance, we want to prove theorem A, which asserts that 

e < it 

We are lucky enough to observe a third quantity with which both given quantities 
can be conveniently compared. In our example both e and n are conveniently 
comparable to the simple number 3. Therefore, to establish A, we consider the 
theorem B that asserts that 

e < 3 and 3 < v 

Of course, A immediately follows from B. The newly introduced proposition B 
asserts more and so it is stronger than the proposition A, to prove which was our 
original problem. 

Observe that if we have to prove an inequality between two irrational numbers 
we are almost obliged to proceed as we have in our example; we should discover 
a rational number which separates the two irrational numbers. In so doing we 
reduce the original proposition to a stronger proposition, as in our example; the 
discovery of the separating rational number makes the new proposition stronger. 

Such things happen in more advanced research at every turn: to prove a pro¬ 
posed theorem A we have to imagine a stronger theorem B from which A follows 
but which for some reason is more manageable than A. In proving B, we 
exhibit a “ground” why A is true. Of course, when we are discovering a theorem 
B from which A follows, we do not know yet whether we shall be able to prove B, 
we do not know even whether B is true or not. Thus, for the moment, such a B 
is not yet a “ground” for the proposed A, just a “possible ground.” Still, it may 
be advisable to examine B, this possible ground for A. 

(2) Examining a consequence. We want to prove that two quantities are equal. 
For instance, letting S denote the surface area of a sphere with radius r, we want 
to prove theorem A that asserts that 

S = 4irr2 

It may be advisable to try to prove less to begin with, namely theorem B, which 
asserts that 

S < 4•nr2 
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(We could possibly prove B in approximating the sphere by circumscribed 
polyhedra.) At any rate, B obviously follows from A, B is a consequence of A, 
the theorem B is weaker than the theorem A. 

The proof of the weaker theorem B, however, could eventually lead us to the 
proof of the original theorem A. In fact, the considerations used in proving B 
could suggest a proof for another weaker theorem, for the opposite inequality 

S S 4irr2 

(perhaps by a transition from circumscribed polyhedra to inscribed polyhedra). 
From the combination of the two weaker theorems, however, the original theorem 
A would follow. 

Such things happen in more advanced research at every turn. 
If we are unable to prove a proposed theorem A, we imagine a weaker theorem 

B which we can prove. Then we may manage to use the weaker theorem B as 
a spring-board, and with the impetus gained from B we attain A. This can 
happen even with quite elementary theorems. For instance, we may attain the 
theorem A which deals with the general case by proving first a weaker theorem B 
which deals with a particular case, and then use B as a spring-board. 

Do you know an example? 

9.6. Let m and n denote given positive integers, m > n. Compare the follow¬ 
ing problems: 

A. Find the common divisors of m and n. 

B. Find the common divisors of n and m — n. 

What is the logical relation between A and B? 
If you are required to do A, do you see some advantage in passing from A to B? 
Use the hint to find the common divisors of 437 and 323. 

f 9.7. Compare the following problems: 

A. Find the maximum of the function f(x). 

B. Find the abscissas x where f(x), the derivative of f(x), vanishes. 

What is the logical relation between A and B? 
Do you see some advantage in passing from A to B? 

9.8. We consider a triangle and let stand: 
O for the center of its circumscribed circle 
G for its centroid (center of gravity) 
E for the point on the line through O and G (Euler line) for which 20G = GE 

(G is between O and E.) 

Consider the two theorems: 

A. The three altitudes of the triangle meet in a point. 

B. The three altitudes of the triangle pass through the point E. 

What is the logical relation between A and B? 
Do you see some advantage in passing from A to B? 
Prove B. 



PROBLEMS WITHIN PROBLEMS 49 

f 9.9. Compare the two following problems (the square roots are taken with 

the positive sign): 

A. Prove that 

lim (\Jx + 1 - yGt) = 0 

B. Given the positive number £, find those positive values of x for which 

\A + i - V* << 

What is the logical relation between A and B? 
Do you see some advantage in passing from A to B? 
Solve B. 

9.10. Compare the two following problems (n denotes a positive integer): 

A. Prove (or disprove) the proposition: If 2" — 1 is a prime number, n must 

be a prime number. 
B. Prove (or disprove) the proposition: If n is a composite number, 2" — 1 

must be a composite number. 

What is the logical relation between A and B? 
Do you see some advantage in passing from A to B? 

Solve B. 

9.11. The search for a counterexample. A counterexample explodes a statement 
purporting to apply to all objects of a certain category: The counterexample is 
an object of the proper category to which the allegedly general statement does not 

apply. The search for counterexamples has several interesting features which 
we should discuss, although we are obliged to go a little beyond our usual level 
for a sufficiently instructive illustration. 

f (1) A problem to prove. Prove, or disprove, the following statement: 

If the infinite series with real terms «i + a2 + a3 + ••• is convergent, the infinite 

series ai3 + a23 + 033 + is also convergent. 

After more or less work we may surmise that the proposed statement is false 

and we try to explode it by a counterexample. 
f (2) A problem to find as auxiliary problem to a problem to prove. We seek a 

counterexample, that is, an infinite sequence that satisfies the hypothesis, but 
does not satisfy the conclusion, of the statement proposed under (1). We have 
so, in fact, a problem to find. Let us look at its principal parts. 

What is the unknown? An infinite sequence «i, a2, a3, . . . , of real numbers. 
What is the condition? It consists of two clauses: 
(I) the series «i + a2 + 03 + • • • is convergent 
(II) the series «i3 + a23 + a33 + • • • is divergent 
We should note that this problem to find arises as an auxiliary problem to a 

problem to prove. 
(3) Wanted one (anyone) object fulfilling the condition. On the elementary 

level, we are usually required to find all solutions, all the objects satisfying the 
condition of the problem. Yet in the present case it is enough to find one solu- 
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tion, one such object; one counterexample is enough to upset the allegedly 
general statement. 

This situation, different from the usual, may demand a different strategy. 
Leibnitz8 has some advice to offer: “All solutions may be required or only some 

solutions. If just any one solution is required, we should invent additional condi¬ 
tions compatible with the original conditions which often demands great skill.” 

f (4) Narrowing the condition. We survey convergent series, satisfying part (I) 
of the condition, hoping to meet with one that also satisfies part (II). It is natural 
to begin our search with the simplest and more familiar cases. 

Thus we may think first of convergent series with positive terms a„. Yet, in 
such a series, an < 1 for large n, therefore a„3 < an, and so the series with the 
general term an3 is also convergent; requirement (II) is not fulfilled. We must 
examine convergent series with positive and negative terms. 

The most familiar case here is that of an alternating series in which the signs 
of the terms form the pattern 

+ -+ -+ -+ - + -••• 
If the terms an of such a series steadily decrease to 0 in absolute value, the series 
is convergent—yet then the terms a„3 behave in the same way, form a convergent 
series and, again, part (II) is not fulfilled. And so we must proceed to less 
familiar regions. 

As we are reluctant to venture too far away from the familiar we may hit on 
the idea of imposing a restriction: 

(III) the signs of the terms a„ should form the pattern 

+-+-+-+-- 
Even after adding (III) to (I) and (II), we still retain a wide margin of uncer¬ 

tain and arbitrary choice. And so we may hit on the idea of imposing one more 
(in fact, not quite definite) restriction: 

(IV) the series «i3 + a23 + a33 + ■ ■ ■ should diverge in the manner of the 

familiar series 1 + i + i + 
The self-imposed additional requirements (III) and (IV) essentially narrow 

the condition (see ex. 9.4). They may guide the search for a counterexample, 
but they may also restrain it. I think that they are more help than hindrance, 
yet the reader should try to find a counterexample by himself and form his own 
opinion. 

(5) An alternating procedure. This may be a good occasion to mention a 
procedure with which everybody who wants to acquire some ability to do prob¬ 
lems to prove should be familiar. (On the high school level there is usually not 
much opportunity to acquire or practice such ability.) 

A problem to prove is concerned with a clearly stated assertion A of which 
we do not know whether it is true or false: we are in a state of doubt. The aim 
of the problem is to remove this doubt, to prove A or to disprove it. 

Sometimes we are able to devise an approach which could work both ways, 
which brings us nearer to proof or disproof whatever is in the cards, and so nearer 
to the solution in any case. Yet such approaches are rare. If we are not lucky 

8 Opuscules et fragments inidits, p. 166. 
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enough to find one we face a decision: should we try to prove the assertion A or 
should we try to disprove it? We have here a choice between two different direc¬ 
tions. To prove A we should look for some propositions from which, or for some 
strategy by which, we could derive A. To disprove A we should look for a 
counterexample. 

A good scheme is to work alternately, now in one direction, then in the other. 
When the hope to attain the end in one direction fades, or we get tired of working 
in that direction, we turn to the other direction, prepared to come back if need be, 
and so, by learning from our work in both directions, we may eventually succeed. 

(6) There is a more sophisticated modification of this alternating procedure 
which may be needed in more difficult cases and may attain a higher aim. 

If we cannot prove the proposed assertion A we try to prove instead a weaker 
proposition (which we have more chances to prove.) And, if we cannot disprove 
the proposed assertion we try to disprove instead a stronger proposition (which 
we have more chances to disprove.) If we succeed in proving a proposition P we 
try next to disprove a proposition (appropriately chosen) stronger than P. Yet 
if we succeed in disproving a proposition P we try next to prove a proposition 
(appropriately chosen) weaker than P. Working toward the proposed A from 
both sides, we may finally prove A. Or we may pass beyond A, and either prove 
a proposition stronger than A, or we may disprove A yet still save some part of 
it in proving a proposition weaker than A. 

In this way, by working alternately on proofs and counterexamples, we may 
attain a fuller knowledge of the facts. We may discover a theorem of which we 
know not only that it is true (we have proved it), but also that it cannot be too 
easily improved (we have disproved sharper theorems). We catch here a glimpse 
into the role of proofs in building up science. (Cf G. P61ya and G. Szegfl, 
Aufgaben and Lehrsdtze aus der Analysis, vol. 1, p. VII. Also MPR, vol. 1, p. 119, 
ex. 14.) 

(7) For further sophistications, striking historical examples, and philosophical 
overtones of the alternating procedure discussed see the work of I. Lakatos quoted 
in the Bibliography. 

9.12. Specialization and generalization are important sources of useful auxiliary 
problems. 

Let us take as example a problem from the theory of numbers. We wish to 
investigate the number of divisors of the positive integer n for which we introduce 
the symbol r(n). For example (we are specializing), 12 has the six divisors 1,2, 
3, 4, 6, and 12 and, therefore, r(12) = 6; we have counted here the “trivial 
divisors” 1 and 12 of 12, and we intend to proceed the same way for any n. 

One way to specialize is to consider individual numbers, observing for instance 
that t(30) = 8. Or we may systematically list the values of r(«) for n = 1,2, 
3,... in constructing a table which starts as follows. 

t (1) = 1 t(6) = 4 
t(2) = 2 t(7) = 2 
t(3) = 2 t(8) = 4 
t(4) = 3 t(9) = 3 
t(5) = 2 t(10)=4 
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Another way to specialize the problem is to consider particular classes of 
numbers. If p is a prime number, 

t(p) = 2, t (j>2) = 3, r(p3) = 4 

and now we may find in generalizing the answer for any power of p: 

r (/>“) =o + l 

If p and q are two different prime numbers, pq has just four divisors 1, p, q, 

and pq and so 

t (pq) = 4 

Then we may consider the product of three different primes, and so on. By 
generalizing, we may attempt to find r(n) when n = p^p2 .../>; is the product of/ 
different primes. And so on, sometimes specializing and then again generalizing, 
we may discover a general expression for r(n). (Find it!) 

Such are the ways of discovery not only in the theory of numbers (of positive 
integers) but also in other branches of mathematics and in science in general. 
In specializing, we try to carve out a more tangible, more accessible part of the 
problem; by generalizing, we try to extend what we have succeeded in observing 
in a restricted domain.9 

9.13. Analogy is another fertile source of discovery. In simple cases, we may 
almost copy the solution of an obviously similar problem. In more delicate cases, 
a more subtle analogy may not give us immediate material help, but it may 
indicate the direction in which we should work. 

The uses of analogy are of inexhaustible variety; they are illustrated by many 
examples in the foregoing (and in the following) chapters. Let us quote just 
one [sect. 1.6(3)]. The problem is to construct an angle in a spherical triangle 
of which the three sides are given. The construction uses the analogous problem 
of plane geometry as auxiliary problem: to construct an angle in an ordinary 
triangle of which the three sides are given. 

Remember a few more pairs of analogous problems. 
There are, as we have hinted, many other ways to use analogy.10 

9.14. And if we fail? The hope with which we undertake the investigation 
of an auxiliary problem may be disappointed, our undertaking may fail. Still, 
the time and effort spent on the auxiliary problem need not be lost; we may leam 
from failure. 

We wish to prove theorem A. We notice a stronger theorem B from which A 
follows. We undertake to investigate B—if we succeed in proving B, A will also 
be proved. Yet B turns out to be false. This is disappointing—but our experience 
with B may lead us to a better evaluation of the prospects of A. 

We wish to prove the theorem A. We notice the theorem B, a consequence of 
A which seems to be more manageable than A. We undertake to investigate 
B—if we succeed in proving B, we may use it as a stepping stone to prove A. 

9 See HSI, Generalization pp. 108-110, Specialization pp. 190-197; and MPR, chapter II 
and passim. 

10 See HSI, Analogy pp. 37-46; and MPR, chapter II and passim. 
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In fact, we manage to prove B, but all our trials to use it as a stepping stone to A 
fail. This is disappointing—but our experience with B may lead us to a better 
evaluation of the prospects of A.11 

9.15. More problems. Having observed that an auxiliary problem was helpful 
in solving some problem, try to understand why it was helpful and where it comes 
from. 

Why? Clarify the relation between the problem and the auxiliary problem; 
see ex. 9.6-9.10. 

Wherefrom? Was the auxiliary problem suggested, or could it have been 
suggested by regressive work (working backward), generalization, specialization, 
or analogy? Or was there some other (less usual) source? 

11 Cf MPR, especially vol. 2, pp. 18-20. 



CHAPTER 10 

THE COMING 
OF THE IDEA 

My mind was struck by a flash of lightning in which its desire 
was fulfilled. 

dante: Paradiso, Canto XXXIII. 

10.1. Seeing the light 

The solution of a problem may occur to us quite abruptly. After 
brooding over the problem for a long time without apparent progress, 
we suddenly conceive a bright idea, we see daylight, we have a flash 
of inspiration. It is like going into an unfamiliar hotel room late at 
night without knowing even where to switch on the light. You stumble 
around in a dark room, perceive confused black masses, feel one or the 
other piece of furniture as you are groping for the switch. Then, having 
found it, you turn on the light and everything becomes clear. The 
confused masses become distinct, take familiar shapes, and appear 
well arranged, well adapted to their obvious purpose. 

Such may be the experience of solving a problem; a sudden clarifica¬ 
tion that brings light, order, connection, and purpose to details which 
before appeared obscure, confused, scattered, and elusive. 

In these matters, however, one grain of experience is worth more 
than pounds of description. To come closer to personal experience 
we should get down to a concrete example. Very elementary mathe¬ 
matical examples may be the best to bring us the work, the suspense, 
and the pleasure of discovery and to “accustom our eyes to see the 
truth clearly and distinctly.” (The last phrase is borrowed from 
Descartes.) 

10.2. Example 

I take the liberty of trying a little experiment with the reader. I shall 
state a simple but not too commonplace theorem of geometry, and then 

54 
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I shall try to reconstruct the sequence of ideas that led to its proof. I 
shall proceed slowly, very slowly, revealing one clue after the other, 
and revealing each clue gradually. I think that before I have finished 
the whole story, the reader will seize the main idea (unless there is some 
special hampering circumstance). But this main idea is rather unex¬ 
pected, and so the reader may experience the pleasure of a little 
discovery. 

A. If three circles having the same radius pass through a point, the 
circle through their other three points of intersection also has the same 
radius. 

This is the theorem that we have to prove. The statement is short 
and clear, but does not show the details distincdy enough. If we draw 
a figure (Fig. 10.1) and introduce suitable notation, we arrive at the 
following more explicite restatement: 

B. Three circles k, l, m have the same radius r and pass through the 
same point O. Moreover, l and m interesect in the point A, m and k in 
B, k and l in C. Then the circle e through A, B, C has also the radius r. 

Figure 10.1 exhibits the four circles k, l, m, and e and their four points 
of intersection A, B, C, and O. The figure is apt to be unsatisfactory, 
however, for it is not simple, and it is still incomplete; something seems 
to be missing; we failed to take into account something essential, it 
seems. 



56 TOWARD A GENERAL METHOD 

We are dealing with circles. What is a circle? A circle is determined 
by center and radius; all its points have the same distance, measured 
by the length of the radius, from the center. We failed to introduce 
the common radius r, and so we failed to take into account an essential 
part of the hypothesis. Let us, therefore, introduce the centers, K of k, 
L of /, and M of m. Where should we exhibit the radius r? There seems 
to be no reason to treat any one of the three given circles k, /, and m or 
any one of the three points of intersection A, B, and C better than the 
others. We are prompted to connect all three centers with all the 
points of intersection of the respective circle: K with B, C, and O, and 
so forth. 

The resulting figure (Fig. 10.2) is disconcertingly crowded. There 
are so many lines, straight and circular, that we have much trouble in 
“seeing” the figure satisfactorily; it “will not stand still.” It resembles 
certain drawings in old-fashioned magazines. The drawing is ambig¬ 
uous on purpose; it presents a certain figure if you look at it in the 
usual way, but if you turn it to a certain position and look at it in a 
certain peculiar way, suddenly another figure flashes on you, suggesting 
some more or less witty comment on the first. Can you recognize in 
our puzzling figure, overladen with straight lines and circles, a second 
figure that makes sense? 

We may hit in a flash on the right figure hidden in our overladen 
drawing, or we may recognize it gradually. We may be led to it by the 

Fig. 10.2. Too crowded. 
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C 

effort to solve the proposed problem, or by some secondary, unessential 
circumstance. For instance, when we are about to redraw our unsatis¬ 
factory figure, we may observe that the whole figure is determined by 
its rectilinear part (Fig. 10.3). 

This observation seems to be significant. It certainly simplifies the 
geometric picture, and it possibly improves the logical situation. It 
leads us to restate our theorem in the following form. 

C. If the nine segments 

KO, KC, KB, 
LC, LO, LA, 
MB, MA, MO, 

are all equal to r, there exists a point E such that the three segments 

EA, EB, EC 

are also equal to r. 

This statement directs our attention to Fig. 10.3. This figure is at¬ 
tractive; it reminds us of something familiar. (Of what?) 

Of course, certain quadrilaterals in Fig. 10.3, such as OLAM have, 
by hypothesis, four equal sides, they are rhombi. A rhombus is a 
familiar object; having recognized it, we can “see” the figure better. 
(Of what does the whole figure remind us?) 

Opposite sides of a rhombus are parallel. Insisting on this remark, 
we realize that the 9 segments of Fig. 10.3 are of three kinds; segments 
of the same kind, such as AL, MO, and BK, are parallel to each other. 
(Of what does the figure remind us now?) 

We should not forget the conclusion that we are required to attain. 
Let us assume that the conclusion is true. Introducing into the figure 
the center E of the circle e, and its three radii ending in A, B, and C, we 
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obtain (supposedly) still more rhombi, still more parallel segments; 
see Fig. 10.4. (Of what does the whole figure remind us now?) 

Of course, Fig. 10.4 is the projection of the 12 edges of a parallelepiped 
having the particularity that the projections of all edges are of equal 
length. 

Figure 10.3 is the projection of a “nontransparent” parallelepiped; 
we see only 3 faces, 7 vertices, and 9 edges; 3 faces, 1 vertex, and 3 edges 
are invisible in this figure. Figure 10.3 is just a part of Fig. 10.4, but 
this part defines the whole figure. If the parallelepiped and the direc¬ 
tion of projection are so chosen that the projections of the 9 edges 
represented in Fig. 10.3 are all equal to r (as they should be, by hy¬ 
pothesis), the projections of the 3 remaining edges must be equal tor. 
These 3 lines of length r are issued from the projection of the 8th, the 
invisible vertex, and this projection E is the center of a circle passing 
through the points A, B, and C, the radius of which is r. 

Our theorem is proved, and proved by a surprising, artistic concep¬ 
tion of a plane figure as the projection of a solid. 

(The proof uses notions of solid geometry. I hope that this is not 
a great wrong, but if so it is easily redressed. Now that we can char¬ 
acterize the situation of the center E so simply, it is easy to examine 
the lengths EA, EB, and EC independently of any solid geometry. Yet 
we shall not insist on this point here.) 

103. The nature of the helpful idea 

The foregoing exemplifies various points about the nature of the 
helpful idea. Its coming was presented as extremely slow; instead of 
being uttered triumphantly, it was stuttered. (This was done to give 
an opportunity to the reader to participate in the discovery.) Also in 
other respects, our example is somewhat one-sided, as any example is 
bound to be, because of the immense variety of the phenomenon. Still, 
if the reader considers it with sympathetic understanding, in the proper 
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light, in the proper setting, against the background of his own ex¬ 
perience, our example may serve as a useful illustration of various 
features which occur frequently. 

Very often the helpful idea arises spontaneously. It brings in some 
conspicuous new element, and it changes our mode of conception. A 
strong conviction that the end is within reach follows in its wake. 

The spontaneity is a very characteristic feature but rather hard to 
describe. If it happened to the reader that, from the entanglement of 
the lines and letters in Fig. 10.2, the image of the parallelepiped 
“jumped” out at him unexpectedly, he will understand better what is 
meant. He will also understand, perhaps, to a certain extent, what is 
meant by inspiration, how it is possible to interpret the sudden ap¬ 
pearance of an impressive idea as the whispering of an inner voice, 
or a warning given by a supernatural being. 

The conspicuous new element arising in our case is the idea of the 
parallelepiped. It is rather strange that the appearance of a solid figure 
brings the decisive step in the solution of a problem of plane geometry. 
It is much more usual that the decisive new element is found within 
the domain to which the problem belongs. If the problem is one of 
plane geometry we would expect that the new element will be a new 
line added to the figure, or a relevant theorem suddenly remembered, 
or something of this kind. 

The change in the mode of conception is very spectacular in the present 
case. The circles recede and vanish in the background, the straight 
lines come to the foreground. But we cease to conceive them as radii, 
we now relate everything to the parallelepiped. The former radii, their 
endpoints, the included quadrilaterals obtain a new significance, they 
represent now edges, corners, faces of the solid. The change in the 
mode of conceiving the elements of the problem is spectacular but 
typical. The same kind of revolutionary restructuring of our whole 
conception is brought about by the decisive idea in the solution of 
almost any other problem. As the idea emerges, the elements assume 
new roles, obtain new meanings. In the solution of geometric problems 
the elements are reshuffled and regrouped; they are assembled into 
triangles, or into pairs of triangles with corresponding sides, or into 
rhombi, or into any other familiar configuration serving the purpose 
of the search. A line that before the coming of the helpful idea was 
just a line, obtains some significance: it becomes the side of a triangle 
whose congruence with some other triangle is essential for the solution; 
or it becomes a transversal cutting two parallels; or it fits in some other 
way into a comprehensive picture. After the coming of the idea we 
see more—more meaning, more purpose, and more relations. The 
coming of the idea is similar to switching on the light in a dark room. 

The helpful idea arises with the conviction that the end is within 
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reach. A suddenly arising idea, displaying a spectacular new element 
amid dramatic rearrangement, has an impressive air of importance 
and carries strong conviction. This conviction is expressed by such 
exclamations as “Now I have it!” “I have got it!” “That’s the trick!” 
In our present case, if you just see the parallelepiped without seeing 
that it leads to the solution, you do not yet have the decisive idea. You 
need more. You need not see in detail how the parallelepiped leads to 
the solution, but you should have a strong feeling that it will lead to 
the solution. 

10.4. Ideas depend on chance 

Have you got an idea? You say “Yes”? Then you are lucky. You 
cannot compel helpful ideas to appear. I take my problem earnestly. 
I put it to myself. I set it to myself. I realize it keenly. I become 
absorbed in my problem. I am waiting for a helpful idea; will it come? 
Perhaps at once, perhaps after some time, perhaps not at all. 

We need helpful ideas, we naturally desire to have helpful ideas at 
our service. But, in fact, they are our masters and they are capricious 
and self-willed. They may flash upon us unexpectedly, but more often 
they are long in coming, and sometimes they just keep us waiting and 
do not turn up at all. 

Ideas come when they want to come, not when we want them to 
come. Waiting for ideas in gambling. 

If ideas came quite at random, the solution of problems would 
depend mainly on chance. Many people believe that this is so. Samuel 
Butler expressed this opinion in four witty lines: 

All the inventions that the world contains, 
Were not by reason first found out, nor brains; 
But pass for theirs who had the luck to light 
Upon them by mistake or oversight. 

It is difficult to believe that such a widespread opinion should be en¬ 
tirely devoid of foundation, completely wrong. But is it completely 
right? Must we depend on chance alone when we have a problem to 
solve? I hope that, after all the preceding chapters, the reader has an 
opinion. 

Examples and Comments on Chapter 10 

10.1. The spontaneity of ideas. A quotation and a comment. 

(1) We quote from The Age of Reason, First Part, by Thomas Paine. 

Any person who has made observations on the state and progress of the human 
mind, by observing his own, cannot but have observed that there are two distinct 
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classes of what are called thoughts: those that we produce in ourselves by reflec¬ 
tion and the act of thinking, and those that bolt into the mind of their own accord. 
I have always made it a rule to treat those voluntary visitors with civility, taking 
care to examine, as well as I was able, if they were worth entertaining; and it is 
from them I have acquired almost all the knowledge that I have. 

(2) Lichtenberg observed that we should not say “I am thinking” but rather 
“it is thinking” as we say “it is raining” or “it thunders.” Lichtenberg suggests 
that there are spontaneous actions of the mind which we cannot command any 
more than the great forces of nature. 

We could also say that our mind sometimes behaves like a sort of horse or 
mule, some strange animal whom we have to humor and occasionally to cudgel 
in order to get the desired service from it—which we quite often do not get. 

(Georg Christoph Lichtenberg, 1742-1799, German physicist and writer; the 
Aphorismen may be his best remembered work.) 

10.2. Two experiments. Some time (but not too much time) spent on cross¬ 
word puzzles may be quite rewarding; we can learn something about problem 
solving, how we think, and how we ought to think. 

(1) In a crossword puzzle you find the following clue: “A very common kind 
of heart (10 letters).” You may have no inkling at the outset what the word is 
or what the clue means. Yet a crossing word that you have succeeded in finding 
in the meantime yields some information: a letter in the middle. Another cross¬ 
ing word supplies a second letter; then you find a third letter, or a fourth—and 
suddenly the desired word “bolts into your mind.” 

Provide yourself with a sheet of paper and turn to the solution of this problem 
on p. 172. First cover the whole solution with your sheet. Then, sliding it down¬ 
ward, uncover just one line—do you know now the desired word? If not, uncover 
a second line, then the next, and so on; you may experience the idea “bolting 
into your mind.” 

t(2) If you know just a little calculus (not too much) you may try a similar 
experiment in finding the value of an indefinite integral. Take a sheet and turn 
to p. 172. 



CHAPTER 11 

THE WORKING 
OF THE MIND 

Mariotte says that the human mind is like a bag: when you are 
thinking you are shaking the bag until something falls out of it. Hence 
there is no doubt that the result of thinking depends to some extent 
on chance. I would add that the human mind is more like a sieve: 
when you are thinking you are shaking the sieve until some minute 
things pass it. When they pass, the spying attention catches whatever 
seems relevant. Again, it is something like this: to catch a thief, the 
commander of a city orders the whole population to pass a certain gate 
where the man who waj robbed is watching. Yet, to save time and 
trouble, some method of exclusion may be used. If the man robbed 
says that the thief was a man, not a woman, and an adult, not a 
youngster or a child, those not concerned are excused from passing 
the gate. 

Leibnitz: Opuscules et fragments, p. 170. 

11.1. How we think 

A problem solver must know his mind and an athlete must know 
his body in about the same way as a jockey knows his horses. I imagine 
that a jockey studies horses not for the sake of pure science but to make 
them perform better, and that he studies more the habits and whims 
of individual horses than horse physiology or horse psychology in 
general. 

What you start reading now is not a chapter in a textbook of 
psychology; it is not exactly a conversation between problem solvers 
who talk about the habits of their minds as jockeys may talk about the 
habits of their horses; it is, however, more like a conversation than a 
formal presentation. 

62 
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11.2. Having a problem 

An essential ingredient of the problem is the desire, the will, and the 
resolution to solve it. A problem that you are supposed to do and 
which you have quite well understood, is not yet your problem. It 
becomes your problem, you really have it, when you decide to do it, 
when you desire to solve it. 

You may be involved more or less deeply in your problem—your 
desire to solve it may be more or less strong. Unless you have a very 
strong desire, your chances to solve a really hard problem are negligible. 

The desire to solve your problem is a productive desire: it may even¬ 
tually produce the solution, it certainly produces a change in your 
mental behavior. 

113. Relevancy 

You may have a problem so badly that the problem has you; you 
cannot get rid of your problem, it follows you everywhere. 

A man with a problem may be obsessed by his problem. He appears 
absentminded; he does not notice things which appear obvious to his 
neighbors, and he forgets things which none of his neighbors would 
forget. Newton, working intensely on his problems, often forgot to 
eat his meals. 

Yes, the problem solver’s attention is selective: it refuses to dwell 
on things which appear irrelevant to his problem and espies the most 
minute things that appear relevant. It is a “spying” attention as 
Leibnitz put it. 

11.4. Proximity 

A student takes a written examination in mathematics. He is not 
required to do all the proposed problems, but he should do as many 
as possible. In this situation his best strategy may be to start by look¬ 
ing through all the problems at an appropriate pace and choose those 
he is most likely to master. 

Observe that this supposes that the problem solver is able to assess 
to some extent the difficulty of his problems, that he can estimate to a 
degree his “psychological distance” from his problem’s solution. In 
fact, anybody seriously concerned with his problem has a vivid feeling 
for the proximity of the solution and for the pace of his progress toward 
the solution. He may not use words but he feels keenly: “It goes well, 
the solution may be just around the comer,” or “It goes so slowly and 
the solution is still far off,” or “I got stuck, there is no progress at all,” 
or “I am drifting away from the solution.” 
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11.5. Prevision 

As soon as we are seriously concerned with our problem, we try to 
foresee, we try to guess; we expect something, we anticipate an outline 
of the shape of the solution. This outline may be more or less definite— 
and of course it may be more or less wrong, although I would say not 
often very wrong. 

All problem solvers guess, but the sophisticated and the unsophis¬ 
ticated guess somewhat differently. 

A primitive person just sits there with his problem, scratching his 
head or chewing his pencil, waiting for a bright idea, and doing little 
or nothing to bring that bright idea nearer. And when the desired 
idea eventually appears and brings a plausible guess, he simply accepts 
that guess, regarding it as the solution with little or no criticism. 

A more sophisticated problem solver takes his guesses more skep¬ 
tically. His first guess may be: “There are 25” or “I should tell him 
this and that.” Yet then he checks his guess and may change it: “No, 
not 25. Yet let me try 30” or “No. It is no use to tell him that, because 
he could answer thus and so. Yet I could tell him that . . . .” And 
eventually, by “trial and error,” by successive approximations, the 
problem solver may arrive at the right answer, at an appropriate plan.1 

A still more sophisticated and more experienced problem solver, 
when he does not succeed in guessing the whole answer, tries to guess 
some part of the answer, some feature of the solution, some approach 
to the solution, or some feature of an approach to the solution. Then 
he seeks to expand his guess, but also seeks opportunities to check his 
guess, and so he seeks to adapt his guess to the best information he 
can get at the moment. 

Of course, both the sophisticated and the unsophisticated would like 
to have a really good guess, a bright idea. 

And everybody would like to know what chances his guess has to 
come true. Such chances cannot be precisely evaluated (this is not 
the place to discuss remote possibilities of evaluation). Many times, 
however, the problem solver has a definite feeling about the prospects 
of his guess. Primitive people who do not even know what a proof 
is may have the strongest feelings about their guesses; sophisticated 
people may distinguish fine shades of feeling; but anybody who has 
conceived a guess has some feeling about the likely fate of his guess. 
And so we notice still another sort of feeling, besides the feelings of 
relevancy and proximity, in the problem solver’s mind. 

Is this point relevant? How far off is the solution? How good is 
this guess? Such questions accompany each move of the problem 

1 Sect. 2.2(1) and 2.2(5). 
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solver; they are more felt than formulated and the answers, too, are 
more felt than formulated. Do such feelings guide the problem solver 
or do they merely accompany his decisions? Are they causes or 
symptoms? I don’t know, but I do know that if you do not have such 
feelings, you are not really concerned with your problem. 

11.6. Region of search 

1 seldom part with my wrist watch, but when I do I usually have 
some trouble to find it. When I miss my watch, I habitually start look¬ 
ing for it at some well-defined place: on my desk, or on a certain shelf 
where I am used to store little belongings, or at any third place if I 
happen to remember that I took off my wrist watch just there. 

Such behavior is typical. As soon as we are seriously concerned 
with our problem, we anticipate an outline of its solution. This outline 
may be vague, it may be hardly conscious, but it manifests itself in our 
behavior. We may try various solutions, but they are all alike; they 
are all within that preconceived, but perhaps not consciously precon¬ 
ceived, outline. When none of the solutions tried fits the problem, we 
feel lost, nothing else comes to mind; we cannot step outside that pre¬ 
conceived outline. We do not look for just any kind of solution, but 
for a certain kind, a kind within a limited outline. We do not look for 
a solution just anywhere in the world, but for a solution within a certain 
limited region of search.2 

To begin our search within a likely limited region may be reasonable. 
When I am trying to find my missing wrist watch, it is quite reasonable 
not to look for it anywhere in the universe, or anywhere in the city, or 
anywhere in the house, but just on my desk where I found it several 
times in the past. It is quite reasonable to begin by seeking the un¬ 
known within that limited region, but it is unreasonable to persevere 
in seeking it there even when it becomes more and more clear that it 
is not there. 

11.7. Decisions 

Problem solving may be contemplative; with primitive people, it 
may be inarticulate brooding. Or it may be a long, strenuous, winding 
road to the solution, each turning of which is marked by a decision. 
Such decisions are prompted (or perhaps merely accompanied) by 
feelings of relevancy and proximity, by swelling or fading hope. 
Decisions and prompting feelings are seldom expressed in words, but 
may be occasionally: 

2 Karl Duncker, On Problem Solving, Psychological Monographs, vol. 58, No. 5 (1945). 

See p. 75. 
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“Now, let me look at this.” 
“No, there is not much to see here. Let me look at that.” 
“There is not much to see here either, but there is something in the 

air. Let me look at it a little longer.” 
An important type of decision is to enlarge the region of search, to 

discard a limitation the narrowness of which starts giving us an op¬ 
pressive feeling. 

11.8. Mobilization and organization 

The problem solver’s mental activity is very imperfectly known and 
its complexity may be unfathomable. Yet one result of this activity 
is perfectly obvious: as the problem solver advances, he collects more 
and more material. 

Let us compare the problem solver’s conception of a mathematical 
problem at the beginning and at the end of his work. When the prob¬ 
lem arises, there is a simple picture: the problem solver sees his problem 
as an undivided whole without details, or with very few details; for 
instance, he may see just the principal parts, unknown, data, and condi¬ 
tion, or hypothesis and conclusion. Yet the final picture is very dif¬ 
ferent: it is complex, full of added details and materials the relevancy 
of which the problem solver could hardly have suspected at the outset. 
There are auxiliary lines in the originally almost empty geometric 
figure, there are auxiliary unknowns, there are materials from the 
formerly acquired knowledge of the problem solver, especially theorems 
applied to the problem. That just these theorems will be applicable, 
the problem solver did not foresee at all at the beginning. 

Where do all these materials, auxiliary elements, theorems, etc. come 
from? The problem solver has collected them; he had to extract them 
from his memory and purposefully connect them with his problem. 
We call such collecting mobilization and such connecting organization.3 

Solving a problem is similar to building a house. We must collect 
the right material, but collecting the material is not enough; a heap of 
stones is not yet a house. To construct the house or the solution, we 
must put together the parts and organize them to a purposeful whole. 

Mobilization and organization cannot actually be separated; they 
are complementary aspects of the same complex process—of our work 
aimed at the solution. Such work, when intensive, brings into play all 
our psychical resources, requires the whole gamut of our mental activ¬ 
ities, and presents an inexhaustible variety of aspects. We may be 
tempted to distinguish some of the manifold mental operations in¬ 
volved and describe them by such terms as isolation and combination, 
recognizing and remembering, regrouping and supplementing. 

3 Cf ex. 2.74. 
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The following lines attempt to describe these activities. Of course, 
the reader should not expect, and could not reasonably expect, hard 
and fast distinctions or rigid and exhaustive definitions. 

11.9. Recognizing and remembering 

In examining our problem we cheer up when we recognize some 
familiar feature. Thus, in examining a geometric figure, we may 
recognize with pleasure a triangle not noticed before, or a pair of similar 
triangles, or some other intimately known configuration. Examining 
an algebraic formula we may recognize a complete square, or some 
other familiar combination. Of course, we may also recognize, and 
it may be very useful to recognize, some more complex situation to 
which we cannot yet attach a name and for which we have not yet a 
formal definition, but which strikes us as familiar and important. 

We have good reasons to be pleased when we have recognized a 
triangle in the proposed figure. In fact, we know several theorems and 
have solved various problems about triangles, and one or the other of 
these known theorems or former solutions may be applicable to our 
present problem. By recognizing a triangle, we establish contact with 
an extensive layer of our formerly acquired knowledge, some streak of 
which might be useful now. Thus, in general, recognizing may lead 
us to remembering something helpful, to mobilization of relevant 
knowledge. 

11.10. Supplementing and regrouping 

We have recognized a triangle in the figure and have succeeded in 
remembering a theorem about triangles that has some chance to be 
applicable to the present situation. Yet, to actually apply that theorem 
we must add some auxiliary line to our triangle, for instance, an altitude. 
Thus, in general, prospective useful elements just mobilized may be 
added to our conception of the problem to enrich it, to make it fuller, 
to fill in gaps, to supply its deficiencies, in a word, to supplement it. 

Supplementing introduces new materials into our conception of the 
problem and is an important step in its organization. Yet sometimes 
we can make an important advance in organization without introduc¬ 
ing any new material, just by changing the disposition of the elements 
already present, by conceiving them in new relations, by rearranging 
or regrouping them. By regrouping its elements, we change the 
“structure” of our problem’s conception. Thus regrouping means 
restructuring,4 

Let us state this consideration more concretely. The decisive step 
in the solution of a geometric problem may be the introduction of an 

4 Cf. Duncker, loc. cit. pp. 29-30. 
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appropriate auxiliary line. Yet sometimes we can take the decisive 
step without introducing any new line, just by conceiving the lines 
already present in a new fashion. For example, we may notice that 
certain lines form a pair of similar triangles. In noticing this familiar 
configuration, we recognize hitherto unobserved relations between the 
elements of the figure, we see the elements differently grouped, we see 
a new structure, we see the figure as a better arranged, more harmoni¬ 
ous, more promising whole—we have restructured the problem 
material. 

Regrouping may involve a change in emphasis. Elements and rela¬ 
tions which were in the foreground before the regroupment may now 
surrender their privileged place and recede into the background; they 
may even recede so far that they practically drop out from the con¬ 
ception of the problem. For better organization we must now and 
then reject things which we thought relevant some time ago. Yet, on 
the whole, we add more than we reject. 

11.11. Isolation and combination 

When we are examining a complex whole, our attention may be 
attracted now by this detail and then by another. We concentrate on 
a certain detail, we focus on it, we emphasize it, we single it out, we 
distinguish it from its surroundings, in one word, we isolate it. Then 
the spotlight shifts to another detail, we isolate still another detail, 
and so on. 

After examining various details and revaluing some of them, we may 
feel the need of visualizing again the situation as a whole. In fact, after 
the revaluation of some details, the appearance of the whole, the “vue 
d’ensemble,” the “Gestalt” may have changed. The combined effect 
of our reassessment of certain details may result in a new mental pic¬ 
ture of the whole situation, in a new, more harmonious combination 
of all the details. 

Isolation and combination may advance the solution in complement¬ 
ing each other. Isolation leads to decomposing the whole into its parts, 
a subsequent combination reassembles the parts into a more or less 
different whole. Decomposed and recombined, again decomposed and 
again recombined, our view of the problem may evolve toward a more 
promising picture. 

11.12. A diagram 

A diagrammatic summary of the foregoing sections is offered by 
Fig. 11.1, which the reader should take for what it is worth. Nine terms 
are arranged in a square; one occupies the center of the square, four 
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Isolation 

Organization 

others the four vertices, and four more terms are written along the 
sides. 

Mobilization and organization are represented by opposite ends of 
the horizontal diagonal of the square. In fact, these are complementary 
activities. Mobilization is extracting relevant items from our memory, 
organization is connecting such items purposefully. 

Isolation and combination are represented by opposite ends of the 
vertical diagonal. In fact, these are complementary activities. Isola¬ 
tion is selecting a particular detail from the surrounding whole, com¬ 
bination is assembling dispersed details to a meaningful whole. 

The sides adjoining the corner assigned to mobilization are labeled 
recognize and remember. In fact, mobilization of items relevant to the 
problem often starts from recognizing some element given with the 
problem and consists in remembering connected elements. 

The sides adjoining the corner assigned to organization are labeled 
supplement and regroup. In fact, organization means supplementing 
the conception of the problem, making it fuller by adding new details 
and filling the gaps; and it also means regrouping the whole conception. 

As we read the terms along the sides of the square, from left to right, 
we proceed from mobilized details to the organized whole; a detail 
just recognized, carefully isolated and focused, may induce a regroup¬ 
ment of the whole conception. Also, a detail remembered which fits 
into a combination is suitably added to the conception and supple¬ 
ments the whole. 

Prevision is the center of our activity aimed at the solution, as the 
corresponding point is the center of our symbolic square. We keep 
on mobilizing and organizing, isolating and recombining, recognizing 
and remembering all sorts of elements, regrouping and supplementing 
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our conception of the problem, just to foresee the solution, or some 
feature of the solution, or a bit of the path leading to it. If prevision 
comes to us abruptly, in a flash, we call it inspiration, or illuminating 
idea; our central desire is to have such an idea. 

The mental operations surveyed in Fig. 11.1 take more specific forms 
when applied to special material. Thus, correspondingly to the four 
sides of the square, we list four mental operations important in solving 
mathematical problems: 

Recognize: Regroup: 
use definitions transform the problem 

Remember: Supplement: 
known theorems and problems introduce auxiliary elements 

There is another point. The problem solver’s moves are prompted 
or accompanied by feelings of relevancy and proximity, and feelings 
gauging the goodness of his guess. In discussing this we have men¬ 
tioned incidentally that more sophisticated people have more differ¬ 
entiated feelings concerning such points. I do not wish to suppress 
here a rather speculative remark:5 some such shades of feeling may be 
connected with the mental operations surveyed in Fig. 11.1. 

We cheer up when our conception of the problem appears well 
balanced and coherent, complete with all details, and all details are 
familiar. If we have distinct details in a harmonious whole, the idea of 
the solution appears near. What we express with these terms is, it 
seems to me, that certain activities considered above are well progressing, 
or have already reached their goal. 

Our conception of the problem appears well balanced when we do 
not feel the need of regrouping it, and appears as coherent when we 
have no trouble in remembering its details, but any detail easily recalls 
the others. When there is no need of supplementing it, the conception 
appears as complete, and it appears as familiar when all details have 
been recognized. Distinctness of details comes from foregoing isolation 
of, and concentration on, each detail, and the harmony of the whole 
conception results from successful combination of the details. We say 
that the idea is near when we feel that we are well progressing toward 
fuller prevision. 

Wishing to arrange these favorable signs of our progress system¬ 
atically, we place them so that their relative positions are the same as 
those of the corresponding terms in the square of Fig. 11.1. Thus, we 
arrange seven terms so as the four sides of that square and the three 
important points on its vertical diagonal are disposed. See the scheme: 

5 Cf. HSI, Signs of progress 4, p. 184. 
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Well recognized: 

Well isolated: 
distinct details 

Well grouped: 
familiar well balanced 

Well remembered: 

Prevision promising: 
idea near 

Well supplemented: 
coherent complete 

Well combined: 
harmonious whole 

11.13. The part suggests the whole 

A whistling boy passed me in the street and I caught one or two 
measures of a melody which I like very much but had not heard for a 
long time. Suddenly that melody filled by mind, ousting completely 
whatever worries or idle thoughts I had before. 

This little event is a good illustration of the “association of ideas,” 
a phenomenon already described by Aristotle and by many authors 
after him. Bradley gives a good description: “Any part of a single state 
of mind tends, if reproduced, to reinstate the remainder.” In fact, 
in my case, one measure brought back the whole impact of that melody 
and then, by and by, the remaining measures. Here is another descrip¬ 
tion which lacks essential details but is easy to remember: “The part 
suggests the whole.” Let us regard this short sentence as a convenient 
abbreviation of Bradley’s more precise formulation. 

Notice the important words “tends” and “suggests.” The statements 
“The part suggests the whole” 
“The part tends to reinstate the whole” 
“The part has a chance to reinstate the whole” 

may be acceptable, but the sentence 
“The part reinstates the whole” 

is certainly inacceptable as an expression for the “law of association”: 
there is no necessity of recall, just a chance, a tendency. We also know 
something about the strength of that tendency; a part more in the focus 
of attention suggests the whole stronger; several parts jointly suggest 
the whole stronger than any one of them singly. These additions are 
important if we wish to understand the role of association in the prob¬ 
lem solver’s mental experience. 

Let us consider a strongly schematized example. A mathematical 
problem can be quickly solved by the application of a certain decisive 
theorem D, but it is very difficult to solve it without D. At the outset, 
the problem solver does not even suspect that the theorem D is relevant 
to his problem, although he is quite well acquainted with the theorem D 



72 TOWARD A GENERAL METHOD 

itself. How can he discover the decisive role of D? There are various 
cases. 

The case is relatively simple if the proposed problem and the theorem 
D have a common component part. The problem solver, after having 
tried this and that, will come upon that component part, isolate and 
focus it, and then that common part has a chance to recall or “reinstate” 
the whole theorem D. 

The case is less simple if the original conception of the problem and 
the decisive theorem D have no common component. Still, if there 
is another theorem C, also known to the problem solver, that has some 
component in common with the problem and another component in 
common with D, the problem solver may attain D by first contacting 
C and then passing from C to D. 

Of course, the chain of associations may be still longer; the proposed 
problem may be in associative contact with A, A with B, B with C, and 
finally C with D. The longer the chain the longer must the problem 
solver “shake the bag” or “shake the sieve” till the decisive D eventually 
falls out. 

Shaking the bag or the sieve is a metaphorical way to describe the 
problem solver’s mental experience (see the quotation prefixed to this 
chapter). The foregoing sections summarized by Fig. 11.1 attempted 
to describe this experience somewhat less metaphorically. There is a 
quite plausible interpretation of the activities described; through them, 
the problem solver seeks to establish desirable associative contacts. 

In fact, in recognizing an element, the problem solver places it in a 
context with which it has strong associative contact. Any newly mobi¬ 
lized element, added to the problem’s conception, offers chances to 
attract further elements with which it is in associative contact. When 
the problem solver isolates and focuses an element, the attention spent 
on it gives it more chance to bring in associated elements. A regroup¬ 
ment may bring together elements which could exercise more associa¬ 
tive attraction jointly than anyone could singly. 

It is, however, hardly possible to explain the problem solver’s mental 
experience by association alone; there must be something else besides 
associative attraction to distinguish between relevant and irrelevant, 
desirable and undesirable, useful and useless associated elements and 
combinations.6 

Examples and Comments on Chapter 11 

11.1. Your experience, your judgment. The aim of this book is to improve your 
working habits. In fact, however, only you yourself can improve your own habits. 
You should find out the difference between what you are usually doing and what 

6 Cf Duncker, loc. cit. p. 18. 
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you ought to do. This chapter was written to help you to see better what you are 
usually doing. 

The following exercises, ex. 11.2-11.6, ask you to illustrate passages of the fore¬ 
going text. In the first place, try to find illustrations from your own work—such 
illustrations as come to your mind spontaneously have the best chance to be 
illuminating. Try to judge with an open mind whether the descriptions in the 
text or the illustrations in the solutions agree with your experience. 

11.2. Mobilization. Recall your work on some problem of geometry where the 
figure, originally almost empty, became more and more filled by auxiliary ele 
ments as the solution progressed. 

113. Prevision. Can you recall a case in which, at a pretty definite moment, 
you became suddenly convinced that the solution will succeed? 

11.4. More parts suggest the whole stronger. Can you agree, judging by your 
own experience? 

113. Recognizing. Can you recall a case in which recognizing an element 
(noticing its formerly unnoticed familiar role) appeared as the turning point of 
the solution? 

11.6. Regrouping. Can you recall a case in which regrouping the figure ap¬ 
peared as the key to the solution? 

11.7. Working from inside, working from outside. Establishing contacts be¬ 
tween the proposed problem and his previous experience is certainly an essential 
part of the problem solver’s performance. He can try to discover such contacts 
“from inside” or “from outside.” He may remain within the problem, examining 
its elements till he finds one that is capable of attracting some usable element 
from outside, that is, from his previously acquired knowledge. Or he may go 
outside the problem, examining his previously acquired knowledge until he finds 
some element applicable to his problem. Working from inside, the problem 
solver scans his problem, its component parts, its aspects. Working from outside, 
he surveys his existing knowledge, and ransacks the provinces of knowledge that 
are most likely to be applicable to the present problem. The two parts of Fig. 11.2 
attempt to give visual expression to “inside” and “outside” work. 

Fig. 11.2. Working from inside, working from outside—to pierce the clouds. 



74 TOWARD A GENERAL METHOD 

11.8. Heuristic rat’s maze. Figure 11.3 may represent trails in wooded hilly 
country made by woodcutters without much care, and then abandoned; the point 
E marks the entrance. Figure 11.3 may also represent a maze in which rats are 
made to run in a psychological experiment. 

But Fig. 11.3 may also symbolize the problem solver’s activity when he is work¬ 
ing in a certain way. After a straightforward beginning, he follows a curving 
trail until he reaches an (actual or imagined) impasse. Then he turns back and 
starts retracing his steps, but noticing a side path he follows it to another impasse 
which makes him turn back. And so he goes on, attempting several trails, retrac¬ 
ing many of his steps, noticing new issues, exploring his problem and proceeding 
on the whole, we hope, in the right direction. 

11.9. Progress. As the solution progresses, the problem solver’s conception 
of the problem continually changes; especially, he collects more and more 
material connected with the problem. Let us tentatively assume that we can 

Fig. 113. Trials, trails, impasses, and side issues. 

somehow measure the extent of the material collected at each instant, and that 
this extent is somehow proportional to the appropriateness of the problem solver’s 
conception of his problem. Of course, this assumption is crude and unlikely, 
but it enables us to represent graphically the progress of the solution. 

In a coordinate system, see Fig. 11.4, we take the time as abscissa and the 
“measure” of the problem’s conception at the instant considered as the corre¬ 
sponding ordinate. The resulting curve represents the problem’s conception as 
function of the time; it gives visual expression to the solution’s growth in the 
problem solver’s mind. 

Let us assume that the solution develops without setbacks; correspondingly, 
Fig. 11.4 displays a rising curve, representing a never decreasing function of the 
time. The curve begins (from the left) with a slowly, almost uniformly rising 
dotted line, which intends to symbolize the “prehistory,” the subconscious growth 
of the problem. The point C, from which the curve is traced in full, marks the 
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beginning of conscious work. The slope of the curve at any point represents the 
pace of progress at the corresponding instant. The pace varies; it is slowest at 
the point S, which is a point of momentary stagnation; the tangent to the curve 
at the point S is horizontal. The pace is fastest at the point / where the slope is 
a maximum; I, a point of inflection, marks the emergence of the decisive idea, 
the instant of inspiration. (The point S is also a point of inflection, but of the 
opposite kind; the slope at S is a minimum.) 

The development of the solution in the problem solver’s mind is a complex 
process which has an inexhaustible variety of aspects. Figure 11.4 does not pre¬ 
tend to exhaust these aspects, but it may add a little to our other discussions; it 
may complement, for instance, the suggestions of Fig. 7.8. 

11.10. You too. Much of what I know, or imagine to know, about problem 
solving came to me through reflecting on relatively few suggestive experiences. 
In reading a book, having a discussion with a friend, talking with a student, or 

Fig. 11.4. Conscious beginning—stagnation—idea, inspiration, point of inflection. 

observing the faces in an audience I suddenly recognized something and was 
tempted to say to myself: “You too, you are acting very much the same way.” In 
fact I sometimes had this feeling “you too” in observing animals: dogs, birds, and 
once a mouse. 

11.11. Mice and men. The landlady hurried into the backyard, put the mouse¬ 
trap on the ground (it was an oldfashioned trap, a cage with a trapdoor) and 
called to her daughter to fetch the cat. The mouse in the trap seemed to under¬ 
stand the gist of these proceedings; he raced frantically in his cage, threw himself 
violently against the bars, now on this side and then on the other, and in the last 
moment he succeeded in squeezing himself through and disappeared in the 
neighbour’s field. There must have been on that side one slightly wider opening 
between the bars of the mousetrap. The landlady looked disappointed, and so 
did the cat who arrived too late. My sympathy from the beginning was with the 
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mouse, and so I found it difficult to say something polite to the landlady, or to 
the cat; but I silently congratulated the mouse. He solved a great problem, and 
gave a great example. 

That is the way to solve problems. We must try and try again until eventually 
we recognize the slight difference between the various openings on which every¬ 
thing depends. We must vary our trials so that we may explore all sides of the 
problem. Indeed, we cannot know in advance on which side is the only practi¬ 
cable opening where we can squeeze through. 

The fundamental method of mice and men is the same; to try, try again, and 
to vary the trials so that we do not miss the few favorable possibilities. It is true 
that men are usually better in solving problems than mice. A man need not 
throw himself bodily against the obstacle, he can do so mentally; a man can vary 
his trials more and learn more from the failure of his trials than a mouse. 



CHAPTER 12 

THE DISCIPLINE 
OF THE MIND 

Method consists entirely in properly ordering and arranging the 
things to which we should pay attention. 

descartes: CEuvres, vol. X, p. 379; Rules for the Direction of the 
Mind, Rule V. 

12.1. How we ought to think 

Chapter 11 attempted to describe the typical mental behavior of 
the problem solver. Yet, is the typical also rational? We may behave 
so, but should we behave so? 

These questions, in their vague generality, can hardly be answered, 
but they serve to indicate the trend of this chapter. Guided by the 
mental experience of the problem solver, which we surveyed in chapter 
11, we shall attempt to list such mental operations (steps, procedures, 
etc.) as are typically useful for solving problems and, in listing them, 
we shall try to assign the proper position to each in the problem solving 
process. 

We shall express the typically useful operations of problem solving 
in a concise, condensed form by “stereotyped” questions and recom¬ 
mendations. The reader should realize that these questions and 
recommendations can be interpreted in two different ways: either as 
quotations from a soliloquy of the problem solver, or as addressed by 
an understanding teacher to a student of his whom he wishes to help.1 

'The reader is urged to compare the exposition of the present chapter with the parallel 

passages of HSI; for the foregoing see pp. 1-5, Purpose. The “stereotyped” questions and 

recommendations, which I consider as an essential part of my method, were introduced in 

my paper no. 2, see the Bibliography. 
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12.2. Focusing the aim 

When you have a problem it often comes to your mind, and it may 
do so so often that it becomes an obsession. Yet you should not only 
think of your problem in some vague way, you should face it, you 
should see it clearly, you should ask yourself: What do you want? 

There are many opportunities to ask this question in the course of 
the solution. When you become too deeply engaged in some side issue 
which may be irrelevant after all, when your thoughts start wandering, 
it may be advisable to ask yourself: What do you want? and bring your 
aim again into focus. 

The aim of a problem to find is the unknown; to focus this aim, you 
should ask: What is the unknown? The aim of a problem to prove is 
the conclusion, and so the appropriate form of the question is: What 
is the conclusion? 

Having clearly seen your aim, the thing you would like to have, you 
should take stock of the things in your possession which you could 
possibly use to attain your aim, and so you should ask yourself: What 
have you? 

In fact, if you wish to join two points, to find your way from one 
point to the other, it may help you to look at the points alternately, first 
at one, then at the other, and so you often have the opportunity to ask 
the questions in succession: What do you want? What have you got? 

Adapted to problems to find, the questions are: What is the unknown? 
What are the data? What is the condition? Adapted to problems to 
prove: What is the conclusion? What is the hypothesis? 

What do these questions prompt us to do? To turn our attention 
to the points mentioned. According to Descartes (see the motto of 
this chapter), method consists in paying attention to all relevant points, 
one after the other, in appropriate sequence. Now, there is little doubt 
that the principal parts of a problem to find (unknown, data, and condi¬ 
tion) and those of a problem to prove (conclusion and hypothesis) are 
relevant. They are even so important that it seems appropriate to 
consider them early; when you have well understood the problem as 
a whole, pay attention to its principal parts. 

123. Assessing the prospects 

A problem solver earnestly concerned with his problem keenly feels 
the proximity of the goal and the pace of his progress toward the goal; 
he keenly feels any change affecting the prospects of his plan. Now 
and then it is desirable to go a little beyond mere feelings, to see more 
clearly our position in relation to the problem, to diagnose the prob¬ 
lem, to assess the prospects, and such is the tendency of the following 
questions. 
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Some problems are hopeless. If the problem in hand is hopeless, 
we should not get too deeply involved in it, and so we ask: Is there any 
answer to this question? Is there a clear answer, a sensible answer? If 
there is an answer, can I find it? 

When we are dealing with a problem to find, we should ask: Is there 
a solution? We may ask more elaborately: Is there just one solution, or 
several solutions, or no solution? Is the condition just enough to deter¬ 
mine the unknown, or does it demand too little, or too much? 

When we are dealing with a problem to prove, the appropriate ques¬ 
tion is: Is the theorem true or false? We may ask more elaborately: Is 
the theorem true? Or is a stronger hypothesis needed to imply the con¬ 
clusion? Is the theorem sharp? Or is a weaker hypothesis enough to 
imply the conclusion? And so on. 

In fact, we cannot give a definitive answer to any of these questions 
before we have finished our work and solved the problem. Yet the 
questions do not really aim at a definitive answer, they demand only 
a provisional answer, a guess. In trying to guess right we may clarify 
our position in relation to the problem, and this is the desirable effect. 
We have stated the foregoing questions in a short, colloquial foim. 
More cautiously, we should ask: Is it likely that there is an answer, a 
solution? The theorem stated may be true or false: what is more likely? 

How soon should we ask the foregoing questions? There is (and 
there should be) no hard and fast rule. Very often they naturally follow 
the questions of sect. 12.2 concerned with the principal parts of the 
problem. 

12.4. Wanted: an approach 

The end suggests the means; the consideration of the aim (of the 
unknown, of the conclusion) may suggest an approach. One question 
leads to another: What do you want? What is the unknown? How can 
you find this kind of unknown? From what data can you derive this kind 
of unknown? And these questions may initiate a regressive approach; 
if we perceive “data” from which the unknown of the proposed problem 
could be derived, we may choose them as target for an auxiliary prob¬ 
lem and so we may start working backward [see ex. 8.1 (2) ]. 

For a problem to prove, the corresponding questions are: What do 
you want? What is the conclusion? How can you derive this kind of 
conclusion? From what hypothesis can you derive this kind of conclusion? 

Instead of emphasizing the unknown (the conclusion) we may em¬ 
phasize the data (the hypothesis): What are the data? What are such 
data good for? What can you derive from such data? For problems to 
prove there is a corresponding string of questions: What is the hy¬ 
pothesis? What is such a hypothesis good for? What can you derive from 
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such a hypothesis? These questions may initiate a progressive ap¬ 
proach. (See ex. 8.1; we have discussed there, and we should remem¬ 
ber, that, on the whole, regressive planning is preferable to progressive 
planning.) 

Unfortunately, it can easily happen that we cannot design a service¬ 
able plan, neither by regressive nor by progressive work. There are, 
however, other questions that could suggest an approach, and here are 
some that we may ask with advantage early in the game: What kind 
of problem is it? Is it related to any known problem? Is it like any known 
problem? Trying to classify our problem, trying to find relations and 
resemblances to known problems, we may perceive a familiar pattern 
applicable to our problem, and then we have something to begin with— 
we see the first stretch of a road that may lead us to the solution. 

Trying to find a usable related problem we may survey those relations 
that are most often useful: Do you know a related problem? Could you 
imagine a related problem? Do you know, or could you imagine, a prob¬ 
lem of the same kind, or an analogous problem, or a more general, or a 
more special problem? These questions, however, may lead us far from 
the proposed problem, so it is usually more profitable to ask them a 
little later when the problem is clarified and well fixed in our mind so 
that we do not risk losing sight of it when working at some distance 
from it. 

12.5. Wanted: a more promising aspect 

When you are handling material things (for instance, when you are 
about to saw a limb off a tree) you automatically put yourself in the 
most convenient position. You should act similarly when you are fac¬ 
ing any kind of problem; you should try to put yourself in such a posi¬ 
tion that you can tackle the problem from the most accessible side. 
You turn the problem over and over in your mind; try to turn it so that 
it appears simpler. The aspect of the problem that you are facing at 
this moment may not be the most favorable: Is the problem as simply, 
as clearly, as suggestively expressed as possible? Could you restate the 
problem? 

Of course you want to restate the problem (transform it into an 
equivalent problem) so that it becomes more familiar, more attractive, 
more accessible, more promising. 

The aim of your work is to bridge the gap between what you want 
and what you have, to connect the unknown with the data, the con¬ 
clusion with the hypothesis. Could you restate your problem so that 
unknown and data, hypothesis and conclusion appear nearer to each 
other? 
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Transform the conclusion, or transform the hypothesis, or trans¬ 
form both, but so that you bring them nearer to each other. Transform 
the unknown, or transform the data or the condition, or transform the 
whole problem, but so that you bring the unknown and the data nearer 
to each other. 

As the solution progresses, new lines appear in the figure considered; 
new materials and new relations are added to the growing structure 
in the problem solver’s mind. Each transformation of the problem is 
apt to bring in new elements. Going back to definitions is an important 
way of adding new material to the problem’s conception. 

For instance, our problem deals with the frustum of a pyramid (as 
in chapter 7). What is the frustum of a pyramid? How is it defined? 
The frustrum is the portion of a full pyramid that remains when a 
smaller pyramid is cut off from it by a plane parallel to its base. This 
answer brings two new solids to our attention, the full pyramid and 
the small pyramid, and we may find it advantageous to incorporate 
one or the other or both in the problem’s conception.2 

In going back to the definition of the elements given with the problem 
we introduce new elements, which in turn introduce still more new 
elements, and continuing thus we may further unfold the problem’s 
concept. Such unfolding often brings us closer to the solution, but it 
need not; sometimes it may encumber the problem with unnecessary 
detail. 

There are many ways of transforming problems which would deserve 
consideration; some are applicable only to certain particular kinds of 
problems, but others are rather general. (See ex. 12.1, 12.2.) 

12.6. Wanted: relevant knowledge 

The solution consists essentially in connecting the proposed problem 
with appropriate elements of our formerly acquired knowledge. When 
we are trying to restate the problem in a more promising form, we are 
in fact seeking a connection in starting from the problem, we are trying 
to pierce the clouds surrounding the problem by working at it “from 
inside.” We may seek the connection from the other end, in trying to 
find some usable piece of knowledge in working at the problem “from 
outside.” 

It is obviously impossible to survey all our formerly acquired knowl¬ 
edge. Therefore, we should start exploring the parts of our knowledge 
that are most likely to be relevant to our problem. 

If you are familiar with the domain to which your problem belongs, 
you know its “key facts,” the facts you had most opportunity to use. 

2 Cf HSI, Definition, pp. 85-92. 
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Make them ready as a good workman makes his favorite tools ready 
for use so that they are within easy reach. 

If you have a problem to find, problems with the same unknown 
deserve your especial interest; such a problem may be the starting point 
for regressive planning (see chapter 8). If you have a problem to prove, 
theorems having the same conclusion as the theorem you are con¬ 
cerned with deserve your especial interest as possible starting points. 

What are the key facts here? Is there a problem (especially a formerly 
solved problem) with the same kind of unknown? Is there a theorem 
(especially a formerly proved theorem) with the same conclusion? 
These questions have a good chance to extract some usable element 
from your previously acquired knowledge; it is advisable to start with 
them when you wish to collect pertinent facts. If they remain barren, 
however, you may be obliged to examine more complex or more rec¬ 
ondite facts, or previously considered problems which have some other 
element in common with your problem, not just the unknown or the 
conclusion. There are, no doubt, elements in your knowledge which 
you could use for your present problem—but how are they related to 
it? How should you reach them? You may try generalization, special¬ 
ization, analogy; you may ransack the whole province of knowledge to 
which your problem belongs. 

Of course, the more extensive your knowledge is and the better it is 
organized, the more chance you have to find what you need. See 
ex. 12.3. 

12.7. Wanted: reassessment of the situation 

You are disappointed with the progress of your work. Various ideas 
you have had fizzled out, various routes you have tried led to an im¬ 
passe. The figure in front of you, the whole conception of the problem 
in its present state, is perplexing and obscure, crowded but still incom¬ 
plete; some essential element, some essential link is missing. 

The trouble may be that you are involved in side issues and burdened 
with irrelevant material. Try to go back to the bare conception of the 
problem; look again at the unknown, the data and the condition, or the 
hypothesis and the conclusion. Did you take into account the whole 
condition? Did you use all the data? Did you take into account the whole 
hypothesis, did you use every part of it? 

These questions are particularly relevant if you have previously con¬ 
vinced yourself that all the data and all the parts of the condition are 
needed to determine the unknown, or that the whole hypothesis is 
needed to derive the conclusion. Yet even if you have no such definite 
knowledge and you just suspect that all the data and all the clauses of 
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the condition, or of the hypothesis, may be essential, the foregoing 
questions are justified and may be helpful. They suggest that you 
should try to use a datum or clause which you have neglected so far, and 
so they may lead you to the missing link. 

Or the trouble may be that you have not realized sufficiently the 
meaning of the essential terms of the problem. Do you understand— 
have you visualized—all concepts essentially involved in the problem? 
This question may prompt you to go back to the definition of some terms, 
and so it may suggest that you should unfold your problem; it has a 
chance to lead you to a more satisfactory restatement, to usable new 
elements. 

12.8. The art of asking questions 

In the foregoing sections we surveyed typical mental operations or 
“moves” of the problem solver. The description of each move culmi¬ 
nated in a question (or advice—in italics) which may serve as an 
epitome, a condensed expression of the move.3 It is important to 
understand how the problem solver (or the teacher) can use these 
questions. 

Each of the collected questions, if asked at the right place and in the 
right time, may evoke the right answer, the right idea, a well-adapted 
move which can advance the solution. Thus the question may act as 
a stimulant, prompting the desirable reaction. These questions are 
idea-needlers. 

Of course, under given circumstances you may not know what ques¬ 
tion to ask. Yet you may try several questions, one after the other, and 
arrive at a question that helps. Thus you can use the foregoing sections 
as a repertory of eligible questions, as a checklist. 

Do not, however, use this checklist in a haphazard way, taking the 
questions at random, and do not use it mechanically, going through the 
questions in a fixed order. Instead, use this list of questions as an expert 
workman uses his tool chest. He takes a good look at the work he has 
to do and then he selects his tools. He may be obliged to try several 
tools until he finds the right one, but he does not pick his tools at 
random, or in a mechanically fixed order; he selects his tools with judge¬ 
ment. That is the way how you should select a question from those 
collected in this chapter when you are facing a problem. 

Of course the workman probably has acquired his workmanship by 
long experience and by watching other workmen carefully. That is 

3The questions concerned with “problems to find” are listed HSI pp. XVI-XVII (immedi¬ 

ately inside the cover of the hard-cover edition). The reader is urged to study this list and 

the pertaining explanations and illustrations. 



84 TOWARD A GENERAL METHOD 

how you may master the use of the questions collected here. There 
is no hard and fast rule directing their use. Yet, if your personal ex¬ 
perience of success and failure is behind these questions, and if you 
are keenly aware of your aim, there is a good chance that you will pick 
a good one. 

Of course, the tools of a good workman are in good repair and well 
arranged in his tool chest. If you know the questions and the under¬ 
lying moves described in this chapter, not from description but from 
experience, and if you have well understood their respective roles in 
the problem solving process, there is a good chance, I think, that you 
will handle your problems more professionally, less clumsily, and in a 
less haphazard way than most people. 

Perhaps, any kind of mental discipline consists in the possession and 
the proper use of a set of appropriate questions. Yet how can we learn 
the art of asking questions? Has this art no rules? 

Examples and Comments on Chapter 12 

12.1. Restate the problem. The aim of our problem is to prove (or disprove) 
the statement: “If A is true then B is true.” It may be advantageous to transform 
the problem and try to prove (or disprove) the equivalent contrapositive state¬ 
ment: “If B is false then A is false.” See ex. 9.10. 

Here is an analogous situation. Let x denote the unknown of a problem to 
find and a, b, c./ the data. (For instance, the unknown and the data may be 
measurements of various parts of a geometric figure.) It may be advantageous 
to interchange the unknown x and one of the data, say a. By so doing we pass 
from the original problem to a new one of which the unknown is a and the data 
x, b, c./. See ex. 2.33, 2.34, and 2.35. 

We have considered here two types of transformations independent of the sub¬ 

ject matter. The study of such types belongs properly to heuristics. 

12.2. Express it in mathematical language. Descartes’s great project which we 
discussed in sect. 2.1 may be (roughly) condensed into one piece of advice: 
Transform your problem, whatever it may be, into a mathematical problem by 
expressing it in the form of algebraic equations. Descartes’s project failed, but 
we may revive it by generalizing it: Express your problem in mathematical language. 

The success of this advice depends, of course, on the scope of the mathematical 
language at our disposal. For instance, if we know and can use not only the sym¬ 
bols of algebra as Descartes, but also the symbols of the differential and integral 
calculus, we can treat many more problems. 

“Mathematical language,” if taken in a very wide sense, may include every kind 
of sufficiently clarified concept formation. In this very wide interpretation the 
advice “Express it in mathematical language” may be theoretically perfect, but 
it is practically pointless: it means no more than “try to be clear.” 
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There is, however, a much narrower and even somewhat vague interpretation 
which is often useful. Graphs, diagrams, or geometric figures used as symbols 
form a sort of mathematical language. To draw a figure, to express the problem 
in the language of geometric figures, is often helpful. Some people have an urge 
to represent their ideas by some sort of geometric symbols. Cf ex. 14.8. 

12.3. A well-stocked and well-organized store of knowledge is an important 
asset of the problem solver. Good organization which renders the knowledge 
readily available may be even more important than the extent of knowledge. 
Anyhow, there are cases where too much knowledge may be an obstacle; it may 
prevent the problem solver from seeing a simple approach. Yet good organiza¬ 
tion can only help. 

In a well-arranged store the items most frequently demanded are in the most 
accessible places, the items often used together are stored together, and labeling 
and details of arrangement are so planned that we can conveniently assemble 
any two, or more, related items. 

A sensible arrangement of the books in your library or the tools in your tool 
chest may be helpful, but a sensible arrangement of the knowledge in your 
memory may be still more helpful and may deserve more care. Let us look at 
some points of organization important for the problem solver. 

(1) In any subject matter there are some key facts (key problems, key 
theorems) which should be stored somehow in the forefront of your memory. 
When you are starting a problem, you should have some key facts around you, 
close at hand, just as an expert workman lays out his most frequently used tools 
around him when he starts working. 

When you intend to prove a proposition of elementary plane geometry in the 
manner of Euclid, you may regard as key facts the four cases of congruence and 
the four cases of similarity of triangles. When you intend to reduce a problem 
of elementary geometry to equations in the Cartesian manner (chapter 2), you 
may regard as key facts the theorem of Pythagoras and the proportionality of the 
sides in similar triangles. You name the relevant key facts if you are experienced 
in dealing with the convergence of series, or with some other class of problems. 

(2) Two questions which are again and again useful to the problem solver are: 
By what data can you determine this kind of unknown? From what hypothesis can 

you derive this conclusion? In view of the continual use of these questions, 
formerly solved problems with the same kind of unknown should be somehow 
“stored together,” as should formerly proved theorems with the same conclusion. 

(3) Do you know the city you live in? If you know it very well, you should 
be able to find the shortest route and the most convenient means of transportation 
between any two points of the city. Such is the desirable organization of knowl¬ 
edge; in the domain in which you work you should be able to find a practicable 
connection between any two points. 

Surveying related problems may make for a better organization. Thus, the 
first part of this book has extensively surveyed problems related to each other by 
the common pattern of their solution. We may also survey strings of problems 
related by a common unknown, or by common data, or by analogy, and so on. 

(4) Euclid wrote not only the “Elements” but also several other works. One 
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of them, the “Data,” surveys the various data by which geometric objects can be 
determined. I like to believe that Euclid wrote the “Data” to help the problem 
solver by storing geometric knowledge in a form readily available to readers who 
often ask themselves: by what data could I determine this kind of unknown? 

12.4. By what data can you determine this kind of unknown? List simple 
“problems to find,” whose unknowns are described by one of the following sen¬ 
tences. (Capitals denote points.) 

(1) ... find the point P. 
(2) ... find the length A B. 
(3) ... find the area of AABC. 
(4) ... find the volume of the tetrahedron ABCD. 

12.5. From what hypothesis can you derive this conclusion? List simple theorems 
of plane geometry whose conclusions coincide with one of the following. 
(Capitals A, B, C,. . . denote points.) 

(1) ... then AB = EF. 
(2) ... then ZABC = LEFG. 
(3) ... then AB.CD = EF. GH. 

(4) ... then AB <_AC. 

12.6. Analogy: The triangle and the tetrahedron. Here is a pair of problems, 
the first about the triangle, the second about the tetrahedron, which are analogous 
to each other: 

Inscribe a circle in a given triangle. 
Inscribe a sphere in a given tetrahedron. 

List more pairs of problems, or pairs of theorems, similarly related to each 
other. Are the solutions, or proofs, also analogous, or how are they related to 
each other? 

12.7. State a theorem about triangles analogous to the following theorem 
about tetrahedra: 

A line joining the midpoints of two opposite edges of a tetrahedron passes through 
the center of gravity of any cross-section of the tetrahedron that is parallel to those 
two edges. 

Could the theorem on the triangle help to prove the theorem on the tetrahe¬ 
dron? Also answer the corresponding questions dealing with the theorems in 
ex. 12.8 and ex. 12.9. 

12.8. (Continued) Any plane passing through the midpoints of two opposite 
edges of a tetrahedron bisects its volume. 

12.9. (Continued) In any tetrahedron the plane bisecting a dihedral angle 
divides the opposite edge into segments that are proportional to the areas of the 
adjacent faces including the dihedral angle. 
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12.10. Attention and action. 
(1) Does method consists entirely in paying attention to all relevant points, 

one after the other, in appropriate sequence? (See the motto of this chapter.) 
I would not dare to assert that. Yet, certainly, a good part of the methodical 
work of the problem solver consists in focusing the relevant elements of his prob¬ 
lem and their various combinations, one after the other. 

The question, “What is the unknown?” and the advice, “Look at the unknown!” 
aim at the same effect: to turn the problem solver’s attention to the unknown of 
his problem. Working methodically, the problem solver proceeds so as if he were 
directed by an inner voice: 

Look at the problem as a whole. 
Look at the unknown. 
Look at the data. 
Look at the condition. 
Look at each datum separately. 
Look at each clause of the condition separately. 
Look especially at the datum that you have not used yet. 
Look especially at the clause of the condition that you have not used yet. 
Look at the combination of these two data. 
And so on. 

(2) Attention may initiate action. 
Look at the unknown! What is the unknown? How can you find this kind of 

unknown? By what data can you determine this kind of unknown? Do you know— 
have you solved—a problem with this kind of unknown? The attention given the 
unknown induces the problem solver to search his memory for formerly solved 
problems with the same unknown. If the search succeeds, the problem solver 
may attempt to solve his problem in working backward (see chapter 8). 

The case considered (recursive work initiated by attention paid to the un¬ 
known) is particularly frequent and useful, but attention given to any relevant 
element of the problem may lead to a profitable contact and hence to profitable 
action. For instance, attention to a term arising in the formulation of the problem 
may lead to going back to the definition of that term and so to a helpful restatement 
of the problem, to the introduction of usable new elements into the restated 
problem. 

(3) The problem solver pays attention successively to various elements of the 
problem and to various combinations of these elements—he hopes to detect one 
that gives access to some profitable action—or to detect the one that gives access 
to the most profitable action. He hopes to find a bright idea that shows in a flash 
what there is to do. 

12.11. Productive thinking, creative thinking. Thinking is productive if it pro¬ 
duces the solution of the present problem, thinking is creative if it creates means 
to solve future problems. The greater the number and variety of the problems 
to which the means created are applicable, the greater is the creativity. 

The problem solver may do creative work even if he does not succeed in solving 
his own problem; his effort may lead him to means applicable to other problems. 
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Then the problem solver may be creative indirectly, by leaving a good unsolved 
problem which eventually leads others to discovering fertile means. 

I think that the Greeks who left us the problem of the trisection of an arbitrary 
angle did great creative work although they did not solve this problem, and 
inspite of the fact that, through the intervening centuries, this problem occasioned 
a tremendous amount of unproductive work. Yet this problem revealed a con¬ 
trast: whereas an arbitrary angle can be bisected, only some special angles (such 
as 90°) can be easily trisected by ruler and compasses; this led to the problem of 
dividing an angle into 5,7, or 17 equal parts, contributed to the problem of solving 
equations by radicals, and eventually to the discoveries of Gauss, Abel, and 
Galois—which created means applicable to countless problems unsuspected by 
the Greek who first meditated on the trisection of an angle. 



CHAPTER 13 

RULES 
OF DISCOVERY? 

Though it is difficult to prescribe any Thing in these Sorts of Cases, 

and every Person's own Genius ought to be his Guide in these 

Operations; yet I will endeavour to show the Way to Learners. 

newton: Universal Arithmetick translated by Ralphson, 1769, p. 198. 

Since A rts are more easily learnt by Examples than Precepts, I have 

thought fit to adjoin the Solution of the following Problems. 

newton: op. cit., pp. 177-178. 

13.1. Rules and rules 

As the work of the problem solver progresses, the face of the problem 
continually changes. At each stage, the problem solver is confronted 
with a new situation and a new decision: what should he do in this 
situation, what should be the next step? If he possessed a perfect 
method, an infallible strategy of problem solving, he could determine 
the next step from the data of the present situation by clear reasoning, 
on the basis of precise rules. Unfortunately there is no universal per¬ 
fect method of problem solving, there are no precise rules applicable 
to all situations, and in all probability there will never be such rules. 

Yet there are rules and rules. Rules of conduct, maxims, and guide¬ 
lines can be quite useful and reasonable without being as strict as the 
rules of mathematics or logic. A mathematical rule is like a mathe¬ 
matical “line without breadth” separating black from white. Yet there 
are quite reasonable rules which leave some latitude, some room for 
secondary considerations; there is no sharp line of demarcation, and 
sometimes there is no black and no white, just various shades of grey. 

89 
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There seem to be attitudes, modes of thinking, habits of mind useful 
in many, and perhaps in most, problem solving situations. At any 
rate, the examples and discussions of the foregoing chapters seem to 
suggest such attitudes. Therefore, we should not ask: “Are there rules 
of discovery?” but we should put the question differently, perhaps so: 
“Are there maxims of some sort expressing attitudes useful in problem 
solving?”1 

13.2. Rationality 

We call an act or a belief rational if it is based on well-considered 
clear reasons and does not spring merely from less articulate and more 
obscure sources such as habit, unscrutinized impressions, feelings, or 
“inspiration.” The assent we accord to a mathematical theorem after 
having critically examined its demonstration step by step, is the proto¬ 
type of rational belief. From a certain point of view the main merit 
of the study of mathematical demonstrations is that it brings us nearer 
to that ideal rational behavior that befits man, the “rational being.” 

It is not obvious, however, how the problem solver should behave 
rationally. Let us consider his difficulty a little more concretely, let 
us visualize a frequently arising typical situation. It occurs to a prob¬ 
lem solver as he is working at a certain problem A, that this problem 
is connected with another problem B. The study of problem B could 
possibly bring him nearer to his goal, the solution of his original prob¬ 
lem A. On the other hand, however, the study of problem B may 
remain sterile and could result in loss of time and effort. And so the 
problem solver faces a decision: should he abandon for a time the study 
of his original problem A and switch to the study of the new problem B? 

His dilemma is to introduce or not to introduce B as an auxiliary 
problem. Can the problem solver arrive at a rational decision? 

One important benefit that the problem solver may derive from prob¬ 
lem B is that work on B may stir his memory and bring to the surface 
elements that he can use in solving his original problem A. What are 
the chances that work on B will have this desirable effect? It seems 
impossible to evaluate such chances merely on the basis of some clear, 
rational argument; to some extent, in some manner the problem solver 
must rely on his inarticulate feelings. 

On the other hand, there may be articulate reasons for or against 
introducing B as an auxiliary problem; we have surveyed some such 
reasons in chapter 9. How should the problem solver take into account 
both his inarticulate feelings and his articulate reasons? He may—and 

1 The majority of the “rules” discussed in this chapter have been introduced, in a some¬ 

what different formulation, in paper no. 13 of the author; see the Bibliography. 
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this seems to be a sensible procedure—carefully consider his articulate 
reasons for an appropriate time and refer to his feelings afterwards 
for the final decision. In fact, the careful consideration of his articulate 
reasons has had a chance to influence his feelings in the right direction; 
he could scarcely have acted more rationally. 

At any rate, the problem solver must learn to balance inarticulate 
feelings against articulate reasons. And perhaps this is the most im¬ 
portant thing he must learn. It seems to me that the main rule of 
conduct, the principal maxim of the problem solver should be: 

Never act against your feelings, but try to see with an open mind clear 

reasons for or against your plans. 

13.3. Economy, but no predeterminable limitation 

Tendency to economy needs no explanation. Everybody under¬ 
stands that you wish to save your assets, that you try to expend as little 
money, time, and effort as possible in performing a given task. Your 
mind may be your most important asset, and saving mental effort may 
be the most important kind of economy. Do not do with more what 

can be done with less. This is the general principle of economy; we 
observe it in problem solving if we try to attain the solution by bringing 
in as little extraneous material as possible. 

Obviously, we have to scrutinize carefully the problem itself and such 
materials as immediately belong to it; we should first try to see a path 
to the solution without examining other things. If we fail to notice 
such a path, we examine materials which do not belong so immediately 
to the problem but are still close to it. If we fail again to notice some 
useful suggestion we may proceed to further details but—and this is 
the desirable general attitude—we are reluctant to spend time and effort 
on farfetched things as long as there is some hope that we can solve 
the proposed problem by starting from things closer to it. This sort 
of common sense economy should be expressed by the maxim: 

Stay as close to the problem as possible. 

Yet we cannot predict how close to the problem we shall be able to 
stay. Some superior being, possessing a perfect method of problem 
solving unattainable to us, could foretell with certainty how far away 
he will be obliged to go to collect the materials necessary to the solution 
—yet we cannot. In accordance with the principle of economy, we 
first explore the proposed problem itself; if this is not enough, we ex¬ 
plore the immediate neighborhood of the problem. If even this is not 
enough, we explore a wider neighborhood; whenever our exploration 
fails to discover a path to the solution, we are obliged to go further. If 
you have made up your mind to solve the problem at any cost, you may 
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pay a very high cost indeed; at any rate, you cannot limit the cost in 
advance. The resolute problem solver has to accept the principle of 
absence of limitation, counterpart of the principle of economy: 

Yet be prepared to go as far away from the problem as circumstances 
may oblige you to go. 

13.4. Persistence, but variety 

“Genius is patience.” 
“Genius is one per cent inspiration and ninety-nine per cent 

perspiration.” 
One of these sayings is attributed to Buffon, the other to Edison, and 

both convey the same message: a good problem solver must be ob¬ 
stinate, he must stick to his problem, he must not give up. 

What applies to the whole does not quite apply to the parts. Cer¬ 
tainly, the problem solver examining some detail or some aspect of 
his problem should stick to it, should not give up too soon. Yet he 
should also try to assess the prospects and should not insist on squeez¬ 
ing an orange he has already squeezed completely dry. 

Stick to the point examined till there is hope for some useful suggestion. 

The work of the problem solver is largely a work of mobilization; he 
has to extract from his memory items applicable to his present problem. 
The item he needs to recall may be closer associated with, and more 
easily remembered through, a certain aspect or a certain detail of his 
problem than through other aspects or details. But the problem solver 
does not know in advance which detail or aspect will bring him nearer 
to his goal. Therefore, he should consider a variety of aspects or de¬ 
tails, and he should certainly consider all the more basic or more 
promising ones. 

To cover the whole territory without loss of time, the problem solver 
should not stay too long in, or return too soon to, the same spot. He 
should seek variety, he should see something new at each stage—a new 
point, or a new combination of points previously examined, or see in a 
new light points and combinations already considered. The aim is, of 
course, to see the whole problem in a new, more promising light. 

In brief, variety is a necessary counterpart of persistence. As stated 
earlier, you should explore the points you consider with some persist¬ 
ence. Yet try to examine some ground not yet covered at each step and 
try to perceive some useful suggestion in whatever you examine. 

The most obvious danger that this maxim warns you of, the greatest 
enemy of variety, is falling in a groove—repeating the same thing over 
and over again without change and without progress. 
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13.5. Rules of preference 

If there are two approaches to the same problem which appear 
equally advantageous in other respects, but one of which seems easier 
than the other, it is natural to try the easier approach first. We see here 
a (rather trivial) rule of preference which we may state: 

The less difficult precedes the more difficult. 

In fact, this statement as it stands is incomplete: we should have 
added as a limitation or restriction “ceteris paribus” or “other things 
being equal.” Now, let us note that this essential limitation, although 
not expressed, must be understood in this and in all subsequent similarly 
formulated rules of preference. Following are a couple equally obvious 
rules of this kind: 

The more familiar precedes the less familiar. 

An item having more points in common with the problem precedes an 
item having less such points. 

These rules are obvious, but their application may be less obvious. 
The restriction “ceteris paribus,” especially, not expressed but under¬ 
stood, may require all the subtlety of the problem solver. 

There are other less obvious, less general, more specific rules of pref¬ 
erence. To examine them in an orderly fashion we should classify the 
elements involved. Here is a classification which may be incomplete, 
but at least the most conspicuous cases fit quite naturally into it: 

(1) Materials inherent in the problem. 
(2) Available knowledge. 
(3) Auxiliary problems. 

We shall take up the connected rules in the three following sections. 

13.6. Materials inherent in the problem 

When you start examining a problem, you do not know yet which 
details of the problem will turn out important. Hence there is the 
danger that you may emphasize too much an unimportant detail, and 
then you may get caught by it, you cannot get away from it. Therefore, 
begin by examining the problem as an undivided whole, do not concern 
yourself with details, let the whole of the problem work on your mind 
until you fully realize the point, the aim of the problem. The whole 
precedes the parts. 

When you have the impression that you cannot profit much more by 
the consideration of the problem as a whole and you are about to go 
into details, observe that there is something like a hierarchy of details. 
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The highest ranking, nearest to the “center” of the problem, are the 
principal parts. (As we have discussed, the hypothesis and the con¬ 
clusion are the principal parts of a problem to prove, the unknown, the 
data, and the condition those of a problem to find.) It is natural to 
begin the detailed consideration of the problem with the principal parts; 
you should see clearly, very clearly, the desired conclusion and the 
hypothesis from which it should follow—or the desired unknown, the 
available data, and the connecting condition. The principal parts 
precede the other parts. 

One or the other of the principal parts may be subdivided: the hy¬ 
pothesis may consist of several assumptions, the conclusion of several 
assertions, and the condition of several clauses; the unknown may be 
a multipartite unknown having several components; and there may be 
several data which you may have lumped together in a first considera¬ 
tion. After the principal parts, their subdivisions deserve your next 
attention; you may examine each of the data, each of the unknowns, 
each clause of the condition, each assumption of the hypothesis, each 
assertion of the conclusion by itself. At any rate, other details of the 
problem may be considered as further removed from its center than 
the principal parts, which rank highest, and the subdivisions of the 
principal parts, which come next. There may be an order of precedence 
also among remoter parts of the problem. (Thus, a certain concept A 
may be involved in the statement of the problem, and another concept 
B may be involved in the definition of A; obviously B is further removed 
from the center of the problem than A.) Now, do not go further than 
necessary. Other things being equal (this limitation remains with us), 
you have more chance to make good use of a part closer to the center 
of the problem than of a more remote one. Less remote parts precede 
more remote parts. 

13.7. Available knowledge 

As we have repeatedly discussed, an essential (perhaps the most 
essential) performance of the problem solver is to mobilize the relevant 
elements of his knowledge and connect them with the elements of his 
problem. The problem solver can work at this task “from inside” or 
“from outside.” He may remain inside his problem, unfolding it, 
scrutinizing its various parts, and hoping that such scrutiny will attract 
some usable piece of knowledge. Or he may go outside his problem, 
roaming over various regions of his knowledge and looking for usable 
pieces. In the foregoing section we have observed the problem solver 
working from inside, now we wish to see him working from outside. 



RULES OF DISCOVERY? 95 

Any piece of knowledge, any experience of our past could be usable 
for the solution of the problem at hand, but it is obviously impossible 
to pass in review all our knowledge or to recall our whole past point 
by point. Even if our problem is mathematical and we take into ac¬ 
count only that relatively clear and well-ordered portion of our knowl¬ 
edge that consists of formerly solved problems and formerly proved 
theorems within a certain branch of mathematics, we cannot undertake 
to examine all that material item by item. We have to restrict our¬ 
selves, we have to pick out such items as have the best chance to be 
usable. 

Let us consider, one after the other, problems to solve and problems 
to prove. 

We have a problem to solve. We have already considered its princi¬ 
pal parts, the unknown, the data, the condition. Now we are searching 
our memory for some formerly solved problem that could be helpful. 
It is natural to look for one that has something in common with our 
present problem, the unknown, or one of the unknowns, the data, or 
one of the data, some concept essentially involved, and so on. There 
is a possibility, more or less remote, that any such formerly solved prob¬ 
lem may be helpful, but there are certainly too many for us to examine. 
Yet, among all the possible points of contact there is one that deserves 
more attention than the others—the unknown. (Especially, we may 
try to use a formerly solved problem that has the same kind of unknown 
as our present problem as the starting point of a regressive solution, of 
working backward; see chapter 8.) Of course, in special situations 
other points of contact may be preferable, but in general, a priori, other 
things being equal, we should first look at the unknown.2 Formerly 
solved problems having the same kind of unknown as the present problem 
precede other formerly solved problems. 

If we cannot find a sufficiently approachable formerly solved problem 
that has the same kind of unknown as the problem in hand we may 
look for one that has a similar kind of unknown—even such problems 
have a high priority, although not the highest priority. 

If we have a problem to prove, the situation is similar. In searching 
our memory for a formerly proved theorem that could be helpful, we 
should look at the conclusion. Formerly proved theorems with the same 
conclusion as the theorem that we are trying to prove precede other formerly 
proved theorems. 

The next best thing to a formerly proved theorem with the same con¬ 
clusion may be one with a conclusion similar to the conclusion of the 
theorem we want to establish. 

2HSI, pp. 123-129, Look at the unknown. 
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13.8. Auxiliary problems 

One of the most crucial decisions confronting the problem solver is 
the choice of an appropriate auxiliary problem. He may look for such 
a problem working from inside, or working from outside, or (what is 
often the most sensible procedure) working alternately from inside 
and outside. Certain sorts of auxiliary problems, other things being 
equal, have more chance to be useful than others. 

An auxiliary problem may advance the solution of the proposed 
problem in an inexhaustible variety of ways: it may yield material help, 
methodological help, stimulating influence, guidance, or practice. Yet 
whatever kind of help we are seeking, we have more chance a priori 
to obtain it from an auxiliary problem whose connection with the pro¬ 
posed problem is closer, than from another whose connection is looser. 
Problems equivalent to the proposed one precede such problems as are 
more or less ambitious, and these precede the rest. We can express the 
same thing in other terms: Bilateral reduction precedes unilateral reduc¬ 
tion which precedes looser connections (see chapter 9). 

13.9. Summary 

Rationality. Never act against your feelings, but try to see with an 
open mind clear reasons for or against your plans. 

Economy but no predeterminable limitation. Stay as close to the 
problem as possible. Yet be prepared to go as far away from it as circum¬ 
stances may oblige you to go. 

Persistence but variety. Stick to the point examined until there is hope 
for some useful suggestion. Yet try to examine some ground not yet 
covered at each step and try to perceive some useful suggestion in whatever 
you examine. 

Rules of preference 
The less difficult precedes the more difficult. 
The more familiar precedes the less familiar. 
An item having more points in common with the problem precedes an 

item having less such points. 
The whole precedes the parts, the principal parts precede the other parts, 

less remote parts precede more remote parts. 
Formerly solved problems having the same kind of unknown as the 

present problem precede other formerly solved problems. 
Formerly proved theorems with the same conclusion as the theorem that 

we are trying to prove precede other formerly proved theorems. 
Problems equivalent to the proposed one precede such problems as are 

more or less ambitious, and these precede the rest. Or: Bilateral reduction 
precedes unilateral reduction which precedes looser connections. 
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Yet add mentally to all rules of preference: other things being 
equal. 

Examples and Comments on Chapter 13 

13.1. The genius, the expert, and the beginner. The genius acts according to the 
rules without knowing that there are rules. The expert acts according to the 
rules without thinking of the rules, but, if needed, he could quote the rule appli¬ 
cable to the case in question. The beginner, trying to act according to the rule, 
may learn its veritable meaning from success and failure. 

These remarks are not new of course. St. Augustine, speaking of orators and 
the rules of rhetoric, put it so: “They follow the rules because they are eloquent, 
they are not eloquent because they follow the rules.” 

13.2. Of plums and plans. Shall I take this fruit? Is it ripe enough to be picked? 
Of course, if I leave it on the tree, it may still ripen and gain in flavor. On the 
other hand, if it remains on the tree, it may be attacked by birds or insects, 
knocked down by the wind, taken by the neighborhood children, or be spoiled 
or lost in some other way. Should I take it now? Has it quite the right color, 
shape, softness, smell, general appearance? 

Color, shape, softness, and smell indicate the flavor, they do not guarantee it. 
When examining a fruit from my own garden, I can assess such indications quite 
reliably, at least I think so. When the fruit is not so familiar to me, my estimate 
is certainly much less reliable. Anyhow, estimating the taste of a fruit on the 
basis of its appearance can scarcely be considered as “fully objective.” Such 
estimates depend to a large extent on personal experience which can scarcely be 
explained completely or argued exhaustively on an impersonal level. 

Shall I take this step? Is my plan ripe enough to be carried through? Of course 
it is not certain that my plan will work. If I pondered it a little longer, I could 
see its chances a little better. On the other hand, I should do something sooner 
or later and, for the moment, I cannot think of a more reliable plan. Should I 
start carrying through that plan now? Does it look promising enough? 

In picking plums or pursuing plans we may have some articulate reasons, but 
our decision will scarcely be based on reason alone. Our evaluation of the general 
aspect, of the promise of the fruit or of the problem situation, is bound to depend 
on feelings not fully analyzable. 

13.3. Style of work. Anybody who intends to formulate “rules of discovery” 
should realize that different problem solvers work differently. Each good prob¬ 
lem solver has his individual style. 

Let us compare two problem solvers; one has the mentality of an “engineer,” 
the other the mentality of a “physicist.” They are trying to solve the same prob¬ 
lem, but they are working differently as they have different interests. The engi¬ 
neer aims at a neat, short, efficient solution (the “least expensive,” the “most 
marketable” solution). The physicist aims at the principle underlying the solu¬ 
tion. The engineer is more inclined to “productive,” the physicist to “creative,” 
thinking (ex. 12.11). Accordingly they prefer different means to the same end. 
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Let us consider a half-concrete example. There seem to be two approaches 
to the problem that the engineer and the physicist are trying to solve. On the one 
hand, the proposed problem shows some analogy to a certain formerly solved 
problem A. On the other hand, the proposed problem seems to be amenable to 
treatment according to a general pattern B. There is a choice between these two 
approaches, between A and B. I am inclined to think that under such circum¬ 
stances, other things being equal, the engineer prefers to investigate the concrete 
problem A and the physicist the general pattern B. 

This example leads to the general statement: the style of work of the problem 
solver consists essentially in a system of preferences, of priorities. To the rules 
of preference summarized in sect. 13.9, the problem solver may add others (for 
instance: “General patterns precede particular facts”). Moreover, he may 
emphasize certain rules of preference more than others (“When there is a conflict, 
rule X has more weight than rule Y”). 



CHAPTER 14 

ON LEARNING, TEACHING, 
AND LEARNING TEACHING1 

What you have been obliged to discover by yourself leaves a path in 
your mind which you can use again when the need arises. 

G. c. lichtenberg: Aphorismen. 

Thus all human cognition begins with intuitions, proceeds from thence 

to conceptions, and ends with ideas. 

i. kant: Critique of Pure Reason, translated by 
J. M. D. Meiklejohn, 1878, p. 429. 

I [planned to] write so that the learner may always see the inner 
ground of the things he learns, even so that the source of the invention 
may appear, and therefore in such a way that the learner may under¬ 
stand everything as if he had invented it by himself. 

G. w. von leibnitz: Mathematische Schriften, edited by Gerhardt, 
vol. VII, p. 9. 

14.1. Teaching is not a science 

I shall tell you some of my opinions on the process of learning, on 
the art of teaching, and on teacher training. 

My opinions are the result of a long experience. Still, such personal 
opinions may be irrelevant and I would not dare to waste your time by 
telling them if teaching could be fully regulated by scientific facts and 

'Sect. 14.1-14.7 were presented as an address at the 46th Annual Meeting of the Mathe¬ 

matical Association of America at Berkeley and printed previously; see the Bibliography, 

paper no. 20 of the author. 
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theories. This, however, is not the case. Teaching is, in my opinion, 
not just a branch of applied psychology—at any rate, it is not yet that 
for the present. 

Teaching is correlated with learning. The experimental and theoret¬ 
ical study of learning is an extensively and intensively cultivated branch 
of psychology. Yet there is a difference. We are principally concerned 
here with complex learning situations, such as learning algebra or learn¬ 
ing teaching, and their long-term educational effects. The psycholo¬ 
gists, however, devote most of their attention to, and do their best work 
about, simplified short-term situations. Thus the psychology of learn¬ 
ing may give us interesting hints, but it cannot pretend to pass ultimate 
judgment upon problems of teaching.2 

14.2. The aim of teaching 

We cannot judge the teacher’s performance if we do not know the 
teacher’s aim. We cannot meaningfully discuss teaching, if we do not 
agree to some extent about the aim of teaching. 

Let me be specific. I am concerned here with mathematics in the 
high school curriculum and I have an old fashioned idea about its aim: 
first and foremost, it should teach those young people to think. 

This is my firm conviction; you may not go along with it all the way, 
but I assume that you agree with it to some extent. If you do not regard 
“teaching to think” as a primary aim, you may regard it as a secondary 
aim—and then we have enough common ground for the following 
discussion. 

“Teaching to think” means that the mathematics teacher should not 
merely impart information, but should try also to develop the ability 
of the students to use the information imparted: he should stress know¬ 
how, useful attitudes, desirable habits of mind. This aim may need 
fuller explanation (my whole printed work on teaching may be re¬ 
garded as a fuller explanation) but here it will be enough to emphasize 
only two points. 

First, the thinking with which we are concerned here is not day¬ 
dreaming but “thinking for a purpose” or “voluntary thinking” 
(William James) or “productive thinking” (Max Wertheimer). Such 
“thinking” may be identified here, at least in first approximation, with 
“problem solving.” At any rate, in my opinion, one of the principal 
aims of the high school mathematics curriculum is to develop the 
students’ ability to solve problems. 

Second, mathematical thinking is not purely “formal”; it is notcon- 

2 E. R. Hilgard, Theories of Learning, 2nd ed., Appleton-Century-Crofts, New York, 1956. 

Cf. pp. 485-490. 
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cemed only with axioms, definitions, and strict proofs, but many other 
things belong to it: generalizing from observed cases, inductive argu¬ 
ments, arguments from analogy, recognizing a mathematical concept 
in, or extracting it from, a concrete situation. The mathematics teacher 
has an excellent opportunity to acquaint his students with these highly 
important “informal” thought processes, and I mean that he should use 
this opportunity better, and much better, than he does today. Stated 
incompletely but concisely: let us teach proving by all means, but let 
us also teach guessing. 

14.3. Teaching is an art 

Teaching is not a science, but an art. This opinion has been ex¬ 
pressed by so many people so many times that I feel a little embarrassed 
repeating it. If, however, we leave a somewhat hackneyed generality 
and get down to appropriate particulars, we may see a few tricks of our 
trade in an instructive sidelight. 

Teaching obviously has much in common with the theatrical art. For 
instance, you have to present to your class a proof which you know 
thoroughly having presented it already so many times in former years 
in the same course. You really cannot be excited about this proof—but, 
please, do not show that to your class; if you appear bored, the whole 
class will be bored. Pretend to be excited about the proof when you 
start it, pretend to have bright ideas when you proceed, pretend to be 
surprised and elated when the proof ends. You should do a little acting 
for the sake of your students who may learn, occasionally, more from 
your attitudes than from the subject matter presented. 

I must confess that I take pleasure in a little acting, especially now 
that I am old and very seldom find something new in mathematics; I 
may find a little satisfaction in re-enacting how I discovered this or that 
little point in the past. 

Less obviously, teaching has something in common also with music. 
You know, of course, that the teacher should not say things just once 
or twice, but three or four or more times. Yet, repeating the same sen¬ 
tence several times without pause and change may be terribly boring 
and defeat its own purpose. Well, you can learn from the composers 
how to do it better. One of the principal art forms of music is “air with 
variations.” Transposing this art form from music into teaching you 
begin by saying your sentence in its simplest form; then you repeat it 
with a little change; then you repeat it again with a little more color, 
and so on; you may wind up by returning to the original simple formu¬ 
lation. Another musical art form is the “rondo.” Transposing the 
rondo from music into teaching, you repeat the same essential sentence 
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several times with little or no change, but you insert between two repeti¬ 
tions some appropriately contrasting illustrative material. I hope that 
when you listen the next time to a theme with variations by Beethoven 
or to a rondo by Mozart you will give a little thought to improving your 
teaching. 

Now and then, teaching may approach poetry, and now and then it 
may approach profanity. May I tell you a little story about the great 
Einstein? I listened once to Einstein as he talked to a group of physi¬ 
cists in a party. “Why have all the electrons the same charge?” said he. 
“Well, why are all the little balls in the goat dung of the same size?” 
Why did Einstein say such things? Just to make some snobs to raise 
their eyebrows? He was not disinclined to do so, I think. Yet, prob¬ 
ably, it went deeper. I do not think that the overheard remark of 
Einstein was quite casual. At any rate, I learnt something from it: 
Abstractions are important; use all means to make them more tangible. 
Nothing is too good or too bad, too poetical or too trivial to clarify your 
abstractions. As Montaigne put it: The truth is such a great thing that 
we should not disdain any means that could lead to it. Therefore, if the 
spirit moves you to be a little poetical, or a little profane, in your class, 
do not have the wrong kind of inhibition. 

14.4. Three principles of learning 

Teaching is a trade that has innumerable little tricks. Each good 
teacher has his pet devices and each good teacher is different from any 
other good teacher. 

Any efficient teaching device must be correlated somehow with the 
nature of the learning process. We do not know too much about the 
learning process, but even a rough outline of some of its more obvious 
features may shed some welcome light upon the tricks of our trade. Let 
me state such a rough outline in the form of three “principles” of learn¬ 
ing. Their formulation and combination is of my choice, but the 
“principles” themselves are by no means new; they have been stated 
and restated in various forms, they are derived from the experience of 
the ages, endorsed by the judgment of great men, and also suggested 
by the psychological study of learning. 

These “principles of learning” can be also taken for “principles of 
teaching,” and this is the chief reason for considering them here—but 
more about this later. 

(1) Active learning. It has been said by many people in many ways 
that learning should be active, not merely passive or receptive; merely 
by reading books or listening to lectures or looking at moving pictures 
without adding some action of your own mind you can hardly learn 
anything and certainly you can not learn much. 
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There is another often expressed (and closely related) opinion: The 
best way to learn anything is to discover it by yourself. Lichtenberg (an 
eighteenth century German physicist, better known as a writer of 
aphorisms) adds an interesting point: What you have been obliged to 
discover by yourself leaves a path in your mind which you can use again 
when the need arises. Less colorful but perhaps more widely applicable, 
is the following statement: For efficient learning, the learner should dis¬ 
cover by himself as large a fraction of the material to be learned as feasible 
under the given circumstances. 

This is the principle of active learning (Arbeitsprinzip). It is a very 
old principle: it underlies the idea of “Socratic method.” 

(2) Best motivation. Learning should be active, we have said. Yet 
the learner will not act if he has no motive to act. He must be induced 
to act by some stimulus, by the hope of some reward, for instance. The 
interest of the material to be learned should be the best stimulus to 
learning and the pleasure of intensive mental activity should be the best 
reward for such activity. Yet, where we cannot obtain the best we 
should try to get the second best, or the third best, and less intrinsic 
motives of learning should not be forgotten. 

For efficient learning, the learner should be interested in the material 
to be learned and find pleasure in the activity of learning. Yet, beside these 
best motives for learning, there are other motives too, some of them de¬ 
sirable. (Punishment for not learning may be the least desirable 
motive.) 

Let us call this statement the principle of best motivation. 

(3) Consecutive phases. Let us start from an often quoted sentence 
of Kant: Thus all human cognition begins with intuitions, proceeds from 
thence to conceptions, and ends with ideas. The English translation uses 
the terms “cognition, intuition, idea.” I am not able (who is able?) to 
tell in what exact sense Kant intended to use these terms. Yet I beg 
your permission to present my reading of Kant’s dictum: 

Learning begins with action and perception, proceeds from thence to 
words and concepts, and should end in desirable mental habits. 

To begin with, please, take the terms of this sentence in some sense 
that you can illustrate concretely on the basis of your own experience. 
(To induce you to think about your personal experience is one of the 
desired effects.) “Learning” should remind you of a classroom with 
yourself in it as student or teacher. “Action and perception” should 
suggest manipulating and seeing concrete things such as pebbles, or 
apples, or Cuisenaire rods; or ruler and compasses; or instruments in 
a laboratory; and so on. 
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Such concrete interpretation of the terms may come more easily and 
more naturally when we think of some simple elementary material. Yet 
after a while we may perceive similar phases in the work spent on mas¬ 
tering more complex, more advanced material. Let us distinguish 
three phases: the phases of exploration, formalization, and assimilation. 

A first exploratory phase is closer to action and perception and moves 
on a more intuitive, more heuristic level. 

A second formalizing phase ascends to a more conceptual level, intro¬ 
ducing terminology, definitions, proofs. 

The phase of assimilation comes last: there should be an attempt to 
perceive the “inner ground” of things, the material learned should be 
mentally digested, absorbed into the system of knowledge, into the 
whole mental outlook of the learner; this phase paves the way to ap¬ 
plications on one hand, to higher generalizations on the other. 

Let us summarize: For efficient learning, an exploratory phase should 
precede the phase of verbalization and concept formation and, eventually, 
the material learned should be merged in, and contribute to, the integral 
mental attitude of the learner. 

This is the principle of consecutive phases. 

14.5. Three principles of teaching 

The teacher should know about the ways of learning. He should 
avoid inefficient ways and take advantage of the efficient ways of learn¬ 
ing. Thus he can make good use of the three principles we have just 
surveyed, the principle of active learning, the principle of best motiva¬ 
tion, and the principle of consecutive phases; these principles of learn¬ 
ing are also principles of teaching. There is, however, a condition: to 
avail himself of such a principle, the teacher should not merely know 
it from hearsay, but he should understand it intimately on the basis of 
his own well-considered personal experience. 

(1) Active learning. What the teacher says in the classroom is not 
unimportant, but what the students think is a thousand times more 
important. The ideas should be born in the students’ mind and the 
teacher should act only as midwife. 

This is a classical Socratic precept and the form of teaching best 
adapted to it is the Socratic dialogue. The high school teacher has a def¬ 
inite advantage over the college instructor in that he can use the dia¬ 
logue form much more extensively. Unfortunately, even in the high 
school, time is limited and there is a prescribed material to cover so 
that all business cannot be transacted in dialogue form. Yet the prin¬ 
ciple is: let the students discover by themselves as much as feasible under 
the given circumstances. 
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Much more is feasible than is usually done, I am sure. Let me recom¬ 
mend to you here just one little practical trick: let the students actively 
contribute to the formulation of the problem that they have to solve after¬ 
wards. If the students have had a share in proposing the problem they 
will work at it much more actively afterwards. 

In fact, in the work of the scientist, formulating the problem may be 
the better part of a discovery, the solution often needs less insight and 
originality than the formulation. Thus, letting your students have a 
share in the formulation, you not only motivate them to work harder, 
but you teach them a desirable attitude of mind. 

(2) Best motivation. The teacher should regard himself as a sales¬ 
man: he wants to sell some mathematics to the youngsters. Now, if 
the salesman meets with sales resistance and his prospective customers 
refuse to buy, he should not lay the whole blame on them. Remember, 
the customer is always right in principle, and sometimes right in prac¬ 
tice. The lad who refuses to learn mathematics may be right; he may 
be neither lazy nor stupid, just more interested in something else—there 
are so many interesting things in the world around us. It is your duty 
as a teacher, as a salesman of knowledge, to convince the student that 
mathematics is interesting, that the point just under discussion is in¬ 
teresting, that the problem he is supposed to do deserves his effort. 

Therefore, the teacher should pay attention to the choice, the formu¬ 
lation, and a suitable presentation of the problem he proposes. The 
problem should appear as meaningful and relevant from the student’s 
standpoint; it should be related, if possible, to the everyday experience 
of the students, and it should be introduced, if possible, by a little joke 
or a little paradox. Or the problem should start from some very famil¬ 
iar knowledge; it should have, if possible, some point of general interest 
or eventual practical use. If we wish to stimulate the student to a 
genuine effort, we must give him some reason to suspect that his task 
deserves his effort. 

The best motivation is the student’s interest in his task. Yet there are 
other motivations which should not be neglected. Let me recommend 
here just one little practical trick. Before the students do a problem, let 
them guess the result, or a part of the result. The boy who expresses an 
opinion commits himself; his prestige and self-esteem depend a little 
on the outcome, he is impatient to know whether his guess will turn out 
right or not, and so he will be actively interested in his task and in the 
work of the class—he will not fall asleep or misbehave. 

In fact, in the work of the scientist, the guess almost always precedes 
the proof. Thus, in letting your students guess the result, you not only 
motivate them to work harder, but you teach them a desirable attitude 
of mind. 
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(3) Consecutive phases. The trouble with the usual problem material 
of the high school textbooks is that they contain almost exclusively 

merely routine examples. A routine example is a short range example; 
it illustrates, and offers practice in the application of, just one isolated 
rule. Such routine examples may be useful and even necessary, I do 
not deny it, but they miss two important phases of learning: the explora¬ 
tory phase and the phase of assimilation. Both phases seek to connect 
the problem in hand with the world around us and with other knowl¬ 
edge, the first before, the last after, the formal solution. Yet the routine 
problem is obviously connected with the rule it illustrates and it is 
scarcely connected with anything else, so that there is little profit in 
seeking further connections. In contrast with such routine problems, 
the high school should present more challenging problems at least now 
and then, problems with a rich background that deserve further ex¬ 
ploration, and problems which can give a foretaste of the scientist’s 
work. 

Here is a practical hint: if the problem you want to discuss with your 
class is suitable, let your students do some preliminary exploration: it 
may whet their appetite for the formal solution. And reserve some 
time for a retrospective discussion of the finished solution; it may help 
in the solution of later problems. 

(4) After this much too incomplete discussion, I must stop explain¬ 
ing the three principles of active learning, best motivation, and consecu¬ 
tive phases. I think that these principles can penetrate the details of 
the teacher’s daily work and make him a better teacher. I think too 
that these principles should also penetrate the planning of the whole 
curriculum, the planning of each course of the curriculum, and the 
planning of each chapter of each course. 

Yet it is far from me to say that you must accept these principles. 
These principles proceed from a certain general outlook, from a cer¬ 
tain philosophy, and you may have a different philosophy. Now, in 
teaching as in several other things, it does not matter much what your 
philosophy is or is not. It matters more whether you have a philosophy 
or not. And it matters very much whether you try to live up to your 
philosophy or not. The only principles of teaching which I thoroughly 
dislike are those to which people pay only lip service. 

14.6. Examples 

Examples are better than precepts; let me get down to examples—I 
much prefer examples to general talk. I am here concerned principally 
with teaching on the high school level, and I shall present you a few 
examples on that level. I often find satisfaction in treating examples 
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at the high school level, and I can tell you why: I attempt to treat them 
so that they recall in one respect or the other my own mathematical 
experience; I am re-enacting my past work on a reduced scale. 

(1) A seventh grade problem. The fundamental art form of teaching 
is the Socratic dialogue. In a junior high school class, perhaps in the 
seventh grade, the teacher may start the dialogue so: 

“What is the time at noon in San Francisco?” 
‘But, teacher, everybody knows that’ may say a lively youngster, or 

even ‘But teacher, you are silly: twelve o’clock.’ 
“And what is the time at noon in Sacramento?” 

‘Twelve o’clock—of course, not twelve1 o’clock midnight.’ 
“And what is the time at noon in New York?” 
‘Twelve o’clock.’ 
“But I thought that San Francisco and New York do not have noon 

at the same time, and you say that both have noon at twelve o’clock!” 
‘Well, San Francisco has noon at twelve o’clock Western Standard 

Time and New York at twelve o’clock Eastern Standard Time.’ 
“And on what kind of standard time is Sacramento, Eastern or 

Western?” 
‘Western, of course.’ 
“Have the people in San Francisco and Sacramento noon at the 

same moment?” 
“You do not know the answer? Well, try to guess it: does noon come 

sooner to San Francisco, or to Sacramento, or does it arrive exactly at 
the same instant at both places?” 

How do you like my idea of Socrates talking to seventh grade kids? 
At any rate, you can imagine the rest. By appropriate questions the 
teacher, imitating Socrates, should extract several points from the 
students: 

(a) We have to distinguish between “astronomical” noon and con¬ 
ventional or “legal” noon. 

(b) Definitions for the two noons. 
(c) Understanding “standard time”: how and why is the globe’s 

surface subdivided into time zones? 
(d) Formulation of the problem: “At what o’clock Western Standard 

Time is the astronomical noon in San Francisco?” 
(e) The only specific datum needed to solve the problem is the 

longitude of San Francisco (in an approximation sufficient for the 
seventh grade). 

The problem is not too easy. I tried it on two classes; in both classes 
the participants were high school teachers. One class spent about 25 
minutes on the solution, the other 35 minutes. 
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(2) I must say that this little seventh grade problem has various ad¬ 
vantages. Its main advantage may be that it emphasizes an essential 
mental operation which is sadly neglected by the usual problem mate¬ 
rial of the textbooks: recognizing the essential mathematical concept in 
a concrete situation. To solve the problem, the students must recognize 
a proportionality : the time of the highest position of the sun in a locality 
on the globe’s surface changes proportionally to the longitude of the 
locality. 

In fact, in comparison with the many painfully artificial problems of 
the high school textbooks, our problem is a perfectly natural, a “real” 
problem. In the serious problems of applied mathematics, the appro¬ 
priate formulation of the problem is always a major task, and often the 
most important task; our little problem which can be proposed to an 
average seventh grade class possesses just this feature. Again, the 
serious problems of applied mathematics may lead to practical action, 
for instance, to adopting a better manufacturing process; our little prob¬ 
lem can explain to seventh graders why the system of 24 time zones, 
each with a uniform standard time, was adopted. On the whole, I think 
that this problem, if handled with a little skill by the teacher, could help 
a future scientist or engineer to discover his vocation, and it could also 
contribute to the intellectual maturity of those students who will not 
use mathematics professionally. 

Observe also that this problem illustrates several little tricks men¬ 
tioned in the foregoing: the students actively contribute to the formula¬ 
tion of the problem [cf sect. 14.5(1)]. In fact, the exploratory phase 
which leads to the formulation of the problem is prominently important 
[cf. sect. 14.5(3)]. Then, the students are invited to guess an essential 
point of the solution [cf. sect. 14.5(2)]. 

(3) A tenth grade problem. Let us consider another example. Let 
us start from what is probably the most familiar problem of geometric 
construction: construct a triangle, being given its three sides. As analogy 
is such a fertile source of invention, it is natural to ask: what is the 
analogous problem in solid geometry? An average student, who has 
a little knowledge of solid geometry, may be led to formulate the prob¬ 
lem: construct a tetrahedron, being given its six edges. 

It may be mentioned here parenthetically that this problem of the 
tetrahedron comes as close as it can on the usual high school level to 
practical problems solved by “mechanical drawing.” Engineers and 
designers use well executed drawings to give precise information about 
the details of three dimensional figures of machines or structures to be 
built: we intend to build a tetrahedron with specified edges. We might 
wish, for example, to carve it out of wood. 
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This leads to asking that the problem should be solved precisely, by 
straight-edge and compasses, and to discussing the question: which 
details of the tetrahedron should be constructed? Eventually, from a 
well conducted class discussion, the following definitive formulation of 
the problem may emerge: 

Of the tetrahedron A BCD, we are given the lengths of its six edges 

AB, BC, CA, AD, BD, CD. 

Regard AABC as the base of the tetrahedron and construct with ruler and 
compasses the angles that the base includes with the other three faces. 

The knowledge of these angles is required for cutting out of wood 
the desired solid. Yet other elements of the tetrahedron may turn up 
in the discussion such as 

(a) the altitude drawn from the vertex D opposite the base, 
(b) the foot F of this altitude in the plane of the base; 

(a) and (b) would contribute to the knowledge of the solid, they may 
possibly help to find the required angles, and so we may try to construct 
them too. 

(4) We can, of course, construct the four triangular faces which are 
assembled in Fig. 14.1. (Short portions of some circles used in the 
construction are preserved to indicate that AD2 = AD3, BD3 = BD\, 
CDi = CD3.) If Fig. 14.1 is copied on cardboard, we can add three 
flaps, cut out the pattern, fold it along three lines, and paste down the 

Fig. 14.1. Tetrahedron from six 

edges. 
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Fig. 14.2. An aspect of the finished product. 

flaps; in this way we obtain a solid model on which we can measure 
roughly the altitude and the angles in question. Such work with card¬ 
board is quite suggestive, but it is not what we are required to do: we 
should construct the altitude, its foot, and the angles in question with 
ruler and compasses. 

(5) It may help to take the problem, or some part of it, “as solved.” 
Let us visualize how Fig. 14.1 will look when the three lateral faces, after 
having been rotated each about a side of the base, will be lifted into 
their proper position. Fig. 14.2 shows the orthogonal projection of 
the tetrahedron onto the plane of its base, A ABC. The point Fis the 
projection of the vertex D\ it is the foot of the altitude drawn from D. 

(6) We may visualize the transition from Fig. 14.1 to Fig. 14.2 with 
or without a cardboard model. Let us focus our attention on one of the 
three lateral faces, on ABCDX, which was originally located in the 
same plane as A ABC, in the plane of Fig. 14.1 which we imagine as 
horizontal. Let us watch the triangle BCDX rotating about its fixed 
side BC and let our eyes follow its only moving vertex Dx. This vertex 
Dx describes an arc of a circle. The center of this circle is a point of 
BC; the plane of this circle is perpendicular to the horizontal axis of 
revolution BC; thus Dx moves in a vertical plane. Therefore, the pro¬ 
jection of the path of the moving vertex Dx onto the horizontal plane of 
Fig. 14.1 is a straight line, perpendicular to BC, passing through the 
original position of Dx. 

Yet there are two more rotating triangles, three altogether. There 
are three moving vertices, each following a circular path in a vertical 
plane—to which destination? 

(7) I think that by now the reader has guessed the result (perhaps 
even before reading the end of the foregoing subsection): the three 
straight lines drawn from the original positions (see Fig. 14.1) of Dx, 
D2, and D3 perpendicularly to BC, CA, and AB, respectively, meet in 
one point, the point F, our supplementary aim (b), see Fig. 14.3. (It is 
enough to draw two perpendiculars to determine F, but we may use the 
third to check the precision of our drawing.) And what remains to 
do is easy. Let M be the point of intersection of DXF and BC (see 
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Fig. 14.3. The common destina¬ 

tion of three travelers. 

Fig. 14.3). Construct the right triangle FMD (see Fig. 14.4), with 
hypotenuse MD = MDX and leg MF. Obviously, FD is the altitude 
[our supplementary aim (a)] and ZFMD measures the dihedral angle 
included by the base A ABC and the lateral face A DBC which was 
required by our problem. 

(8) One of the virtues of a good problem is that it generates other 
good problems. 

The foregoing solution may, and should, leave a doubt in our mind. 
We found the result represented by Fig. 14.3 (that the three perpen¬ 
diculars described above are concurrent) by considering the motion 
of rotating bodies. Yet the result is a proposition of geometry and so it 
should be established independently of the idea of motion, by geometry 
alone. 

Now, it is relatively easy to free the foregoing consideration [in sub¬ 
sections (6) and (7)] from ideas of motion and establish the result by 

Fig. 14.4. The rest is easy. F M 
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ideas of solid geometry (intersection of spheres, orthogonal projection).3 
Yet the result is a proposition of plane geometry and so it should be 
established independently of the ideas of solid geometry, by plane 
geometry alone. (How?) 

(9) Observe that this tenth grade problem also illustrates various 
points about teaching discussed in the foregoing. For instance, the 
students could and should participate in the final formulation of the 
problem, there is an exploratory phase, and a rich background. 

Yet here is the point I wish to emphasize: the problem is designed to 
deserve the attention of the students. Although the problem is not so 
close to everyday experience as our seventh grade problem, it starts 
from a most familiar piece of knowledge (the construction of a triangle 
from three sides), it stresses from the start an idea of general interest 
(analogy), and it points to eventual practical applications (mechanical 
drawing). With a little skill and good will, the teacher should be able 
to secure for this problem the attention of all students who are not 
hopelessly dull. 

14.7. Learning teaching 

There remains one more topic to discuss and it is an important topic: 
teacher training. In discussing this topic, I am in a comfortable posi¬ 
tion: I can almost agree with the “official” standpoint. (I am referring 
here to the “Recommendations of the Mathematical Association of 
America for the training of mathematics teachers,” American Mathe¬ 
matical Monthly, 67 (1960) 982-991. Just for the sake of brevity, I take 
the liberty to quote this document as the “official recommendations.”) 
I shall concentrate on just two points. To these two points I have de¬ 
voted a good deal of work and thought in the past and practically all 
my teaching in the last ten years. 

To state it roughly, one of the two points I have in mind is concerned 
with “subject matter” courses, the other with “methods” courses. 

(1) Subject matter. It is a sad fact, but by now widely recognized, 
that our high school mathematics teachers’ knowledge of their subject 
matter is, on the average, insufficient. There are, certainly, some well- 
prepared high school teachers, but there are others (I met with several) 
whose good will I must admire but whose mathematical preparation 
is not admirable. The official recommendations of subject matter 
courses may not be perfect, but there is no doubt that their acceptance 
would result in substantial improvement. I wish to direct your atten¬ 
tion to a point which, in my considered opinion, should be added to the 
official recommendations. 

3C/ sect. 6.2(3). 
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Our knowledge about any subject consists of information and know¬ 
how. Know-how is ability to use information; of course, there is no 
know-how without some independent thinking, originality, and crea¬ 
tivity. Know-how in mathematics is the ability to do problems, to find 
proofs, to criticize arguments, to use mathematical language with some 
fluency, to recognize mathematical concepts in concrete situations. 

Everybody agrees that, in mathematics, know-how is more impor¬ 
tant, or even much more important, than mere possession of informa¬ 
tion. Everybody demands that the high school should impart to the 
students not only information in mathematics but know-how, inde¬ 
pendence, originality, creativity. Yet almost nobody asks these beauti¬ 
ful things for the mathematics teacher—is it not remarkable? The 
official recommendations are silent about the mathematical know-how 
of the teacher. The student of mathematics who works for a Ph.D. 
degree must do research, yet even before he reaches that stage he may 
find some opportunity for independent work in seminars, problem 
seminars, or in the preparation of a master’s thesis. Yet no such op¬ 
portunity is offered to the prospective mathematics teacher—there is 
no word about any sort of independent work or research work in the 
official recommendations. If, however, the teacher has had no ex¬ 
perience in creative work of some sort, how will he be able to inspire, 
to lead, to help, or even to recognize the creative activity of his students? 
A teacher who acquired whatever he knows in mathematics purely 
receptively can hardly promote the active learning of his students. A 
teacher who never had a bright idea in his life will probably reprimand 
a student who has one instead of encouraging him. 

Here, in my opinion, is the worst gap in the subject matter knowledge 
of the average high school teacher: he has no experience of active 
mathematical work and, therefore, he has no real mastery even of the 
high school material he is supposed to teach. 

I have no panacea to offer, but I have tried one thing. I have intro¬ 
duced and repeatedly conducted a problem solving seminar for teachers. 
The problems offered in this seminar do not require much knowledge 
beyond the high school level, but they require some degree, and now 
and then a higher degree, of concentration and judgment—and, to that 
degree, their solution is “creative” work. I have tried to arrange my 
seminar so that the students should be able to use much of the material 
offered in their classes without much change; that they should acquire 
some mastery of high school mathematics; and so that they should have 
even some opportunity for practice teaching (in teaching each other 
in small groups). Cf. vol. 1, pp. 210-212. 

(2) Methods. From my contact with hundreds of mathematics 
teachers I gained the impression that “methods” courses are often re- 
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ceived with something less than enthusiasm. Yet so also are received, 
by the teachers, the usual courses offered by the mathematics depart¬ 
ments. A teacher with whom I had a heart to heart talk about these 
matters found a picturesque expression for a rather widespread feeling: 
“The mathematics department offers us tough steak which we cannot 
chew and the school of education vapid soup with no meat in it.” 

In fact, we should once summon up some courage and discuss pub¬ 
licly the question: Are methods courses really necessary? Are they in 
any way useful? There is more chance to reach the right answer in 
open discussion than by widespread grumbling. 

There are certainly enough pertinent questions. Is teaching teach¬ 
able? (Teaching is an art, as many of us think—is an art teachable?) 
Is there such a thing as the teaching method? (What the teacher teaches 
is never better than what the teacher is—teaching depends on the whole 
personality of the teacher—there are as many good methods as there 
are good teachers.) The time allotted to the training of teachers is 
divided between subject matter courses, methods courses, and practice 
teaching; should we spend less time on methods courses? (Many Euro¬ 
pean countries spend much less time.) 

I hope that people younger and more vigorous than myself will take 
up these questions some day and discuss them with an open mind and 
pertinent data. 

I am speaking here only about my own experience and my own 
opinions. In fact I have already implicitly answered the main question 
raised; I believe that methods courses may be useful. In fact, what I 
have presented in the foregoing was a sample of a methods course, or 
rather an outline of some topics which, in my opinion, a methods course 
offered to mathematics teachers should cover. 

In fact, all the classes I have given to mathematics teachers were in¬ 
tended to be methods courses to some extent. The name of the class 
mentioned some subject matter, and the time was actually divided be¬ 
tween that subject matter and methods: perhaps nine tenths for subject 
matter and one tenth for methods. If possible, the class was conducted 
in dialogue form. Some methodical remarks were injected incidentally, 
by myself or by the audience. Yet the derivation of a fact or the solu¬ 
tion of a problem was almost regularly followed by a short discussion 
of its pedagogical implications. “Could you use this in your classes?” 
I asked the audience. “At which stage of the curriculum could you use 
it? Which point needs particular care? How would you try to get it 
across?” And questions of this nature (appropriately specified) were 
regularly proposed also in examination papers. My main work, how¬ 
ever, was to choose such problems (like the two problems I have here 
presented) as would illustrate strikingly some pattern of teaching. 
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(3) The official recommendations call “methods” courses “cur¬ 
riculum-study” courses and are not very eloquent about them. Yet 
you can find there one excellent recommendation, I think. It is some¬ 
what concealed; you must put two and two together, combining the 
last sentence in “curriculum study courses” and the recommendations 
for Level IV. But it is clear enough: A college instructor who offers a 
methods course to mathematics teachers should know mathematics at 
least on the level of a Master’s degree. I would like to add: he should 
also have had some experience, however modest, of mathematical re¬ 
search. If he had no such experience how could he convey what may 
be the most important thing for prospective teachers, the spirit of crea¬ 
tive work? 

You have now listened long enough to the reminiscences of an old 
man. Some concrete good could come out of this talk if you give some 
thought to the following proposal which results from the foregoing 
discussion. I propose that the following two points should be added 
to the official recommendations of the Association: 

I. The training of teachers of mathematics should offer experience in 
independent (“creative”) work on the appropriate level in the form of a 
Problem Solving Seminar or in any other suitable form. 

II. Methods courses should be offered only in close connection either 
with subject matter courses or with practice teaching and, if feasible, only 
by instructors experienced both in mathematical research and in teaching 

14.8. The teacher’s attitude4 

As I have already said, my classes addressed to teachers were, to some 
extent, “methods” courses. In these classes I aimed at points of im¬ 
mediate practical use in the daily task of the teacher. Therefore, in- 
avoidably, I had to express repeatedly my views on the teacher’s daily 
task and on the teacher’s mental attitude. My comments tended to 
assume a set form and eventually I was led to condense them into “Ten 
Commandments for Teachers”; see p. 116. I wish to add a few com¬ 
ments on these ten rules. 

In formulating these rules, I had in mind the participants in my 
classes, teachers who teach mathematics on the high school level. 
Nevertheless, these rules are applicable to any teaching situation, to 
any subject taught on any level. Especially on the high school level, 
however, the mathematics teacher has more and better opportunities 

4 This section can be read independently of the foregoing (of which a few points will be 

repeated.) It is reprinted, with several modifications and the kind permission of the editor, 

from the Journal of Education of the Faculty and College of Education, Vancouver and 

Victoria, no. 3, 1959, pp. 61-69. 
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TEN COMMANDMENTS FOR TEACHERS 

1. Be interested in your subject. 
2. Know your subject. 
3. Know about the ways of learning: The best way to learn any¬ 

thing is to discover it by yourself. 
4. Try to read the faces of your students, try to see their expecta¬ 

tions and difficulties, put yourself in their place. 
5. Give them not only information, but “know-how,” attitudes 

of mind, the habit of methodical work. 
6. Let them learn guessing. 
7. Let them learn proving. 
8. Look out for such features of the problem at hand as may be 

useful in solving the problems to come—try to disclose the 
general pattern that lies behind the present concrete situation. 

9. Do not give away your whole secret at once—let the students 
guess before you tell it—let them find out by themselves as 
much as is feasible. 

10. Suggest it, do not force it down their throats. 

to apply some of them than the teacher of other subjects; and this refers 
in particular to rules 6, 7, and 8. 

On what authority are these commandments founded? Dear fellow 
teacher, do not accept any authority except your own well-digested 
experience and your own well-considered judgement. Try to see clearly 
what the advice means in your particular situation, try the advice in 
your classes, and judge after a fair trial. 

Let us now consider the ten rules one by one, with especial attention 
to the task of the mathematics teacher. 

(1) There is just one infallible teaching method: if the teacher is 
bored by his subject, his whole class will be infallibly bored by it. 

This should be enough to render evident the first and foremost com¬ 
mandment for teachers: Be interested in your subject. 

(2) If a subject has no interest for you, do not teach it, because you 
will not be able to teach it acceptably. Interest is a sine qua non, an 
indispensably necessary condition; but, in itself, it is not a sufficient 
condition. No amount of interest, or teaching methods, or whatever 
else will enable you to explain clearly a point to your students that you 
do not understand clearly yourself. 

This should be enough to render obvious the second commandment 
for teachers: Know your subject. 
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Both interest in, and knowledge of, the subject matter are necessary 
for the teacher. I put interest first because with genuine interest you 
have a good chance to acquire the necessary knowledge, whereas some 
knowledge coupled with lack of interest can easily make you an ex¬ 
ceptionally bad teacher. 

(3) You may benefit a great deal from reading a good book or lis¬ 
tening to a good lecture on the psychology of learning. Yet reading 
and listening are not absolutely necessary, and they are by no means 
sufficient; you should know the ways of learning, you should be inti¬ 
mately acquainted with the process of learning from experience—from 
the experience of your own studies and from the observation of your 
students. 

Accepting hearsay as evidence for a principle is bad; paying lip 
service to a principle is worse. Now, there is one case where you cannot 
afford to be content with hearsay and lip service, there is one principle 
of learning that you should earnestly realize: the principle of active 
learning.5 Try to see at least its central point: The best way to learn 
anything is to discover it by yourself. 

(4) Even with some genuine knowledge and interest and some un¬ 
derstanding of the learning process you may be a poor teacher. The 
case is unusual, I admit, but not quite rare; some of us have met with 
an otherwise quite competent teacher who was unable to establish 
“contact” with his class. In order that teaching by one should result 
in learning by the other, there must be some sort of contact or connec¬ 
tion between teacher and student: the teacher should be able to see the 
student’s position; he should be able to espouse the student’s cause. 
Hence the next commandment: Try to read the faces of your students, 
try to see their expectations and difficulties, put yourself in their place. 

The response of the students to your teaching depends on their back¬ 
ground, their outlook, and their interests. Therefore, keep in mind and 
take into account what they know and what they do not know, what 
they would like to know and what they do not care to know, what they 
ought to know and what is less important for them to know. 

(5) The four foregoing rules contain the essentials of good teaching. 
They form jointly a sort of necessary and sufficient condition: if you 
have interest in, and knowledge of, the subject matter and if, moreover, 
you can see the student’s case and what helps or hampers his learning, 
you are already a good teacher or you will become one soon; you may 
need only some experience. 

It remains to spell out some consequences of the foregoing rules, 

5 See sect. 14.4(1), 14.5(1). To be acquainted with the two other principles discussed in 

the foregoing is advisable. 
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especially such consequences as concern the high school mathematics 
teacher. 

Knowledge consists partly of “information” and partly of “know¬ 
how.” Know-how is skill; it is the ability to deal with information, to 
use it for a given purpose; know-how may be described as a bunch of 
appropriate mental attitudes; know-how is ultimately the ability to 
work methodically. 

In mathematics, know-how is the ability to solve problems, to con¬ 
struct demonstrations, and to examine critically solutions and demon¬ 
strations. And, in mathematics, know-how is much more important 
than the mere possession of information. Therefore, the following 
commandment is of especial importance for the mathematics teacher: 
Give your students not only information, but know-how, attitudes of mind, 
the habit of methodical work. 

Since know-how is more important in mathematics than information, 
it may be more important in the mathematics class how you teach than 
what you teach. 

(6) First guess, then prove—so does discovery proceed in most 
cases. You should know this (from your own experience, if possible), 
and you should know, too, that the mathematics teacher has excellent 
opportunities to show the role of guessing in discovery and thus to im¬ 
press on his students a fundamentally important attitude of mind. 
This latter point is not so widely known as it should be and, just for 
this reason, it deserves particular attention. I wish you would not 
neglect your students in this respect: Let them learn guessing. 

Ignorant and careless students are liable to come forward with “wild” 
guesses. What we have to teach is, of course, not wild guessing, but 
“educated” “reasonable” guessing. Reasonable guessing is based on 
judicious use of inductive evidence and analogy, and ultimately encom¬ 
passes all procedures of plausible reasoning which play a role in 
“scientific method.”6 

(7) “Mathematics is a good school of plausible reasoning.” This 
statement summarizes the opinion underlying the foregoing rule; it 
sounds unfamiliar and is of very recent origin; in fact, I think that I 
should claim credit for it. 

“Mathematics is a good school of demonstrative reasoning.” This 
statement sounds very familiar—some form of it is probably almost as 
old as mathematics itself. In fact, much more is true: mathematics is 
coextensive with demonstrative reasoning, which, pervades the sciences 
just as far as their concepts are raised to a sufficiently abstract and 
definite, mathematico-logical level. Under this high level there is no 

6 See chapter 15. 
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place for truly demonstrative reasoning (which is out of place, for in¬ 
stance, in everyday affairs). Still (it is needless to argue such a widely 
accepted point), the mathematics teacher should acquaint all his 
students beyond the most elementary grades with demonstrative rea¬ 
soning: Let them learn proving. 

(8) Know-how is the more valuable part of mathematical knowl¬ 
edge, much more valuable than the mere possession of information. 
Yet how should we teach know-how? The students can learn it only 
by imitation and practice. 

When you present the solution of a problem, emphasize suitably the 
instructive features of the solution. A feature is instructive if it deserves 
imitation; that is, if it can be used not only in the solution of the present 
problem, but also in the solution of other problems—the more often 
usable, the more instructive. Emphasize the instructive features not 
just by praising them (which could have the contrary effect with some 
students) but by your behavior (a bit of acting is very good if you have 
a bit of theatrical talent). A well-emphasized feature may convert 
your solution into a model solution, into an impressive pattern by imitat¬ 
ing which the student will solve many other problems. Hence the rule: 
Look out for such features of the problem at hand as may be useful in 
solving the problems to come—try to disclose the general pattern that lies 
behind the present concrete situation.7 

(9) I wish to indicate here a little classroom trick which is easy to 
learn and which every teacher should know. When you start discussing 
a problem, let your students guess the solution. The student who has 
conceived a guess, or has even stated his guess, commits himself: he 
has to follow the development of the solution to see whether his guess 
comes true or not—and so he cannot remain inattentive.8 

This is just a very special case of the following rule, which itself is 
contained in, and spells out, some parts of rules 3 and 6: Do not give 
away your whole secret at once—let the students guess before you tell it— 
let them find out by themselves as much as is feasible. 

In fact, the credit for this rule is due to Voltaire who expressed it 
more wittily: “Le secret d’etre ennuyeux c’est de tout dire.” “The art 
of being a bore consists in telling everything.” 

(10) A student presents a long computation which goes through 
several lines. Looking at the last line, I see that the computation is 
wrong, but I refrain from saying so. I prefer to go through the com¬ 
putation with the student, line by line: “You started out all right, your 
first line is correct. Your next line is correct too; you did this and that. 

7 Do you want more details? Read the whole book. 

8C/ sect. 14.5(2). 
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The next line is good. Now, what do you think about this line?” The 
mistake is on that line and if the student discovers it by himself, he has 
a chance to learn something. If, however, I at once say “This is wrong” 
the student may be offended and then he will not listen to anything I 
may say afterwards. And if I say “This is wrong” once too often, the 
student will hate me and mathematics and all my efforts will be lost as 
far as he is concerned. 

Dear fellow teacher, avoid saying “You are wrong.” Say instead, if 
possible: “You are right, but....” If you proceed so, you are not hypo¬ 
critical, you are just humane. That you should proceed so, is implicitly 
contained in rule 3. Yet we can render the advice more explicit: Suggest 
it, do not force it down their throats. 

Our last two rules, 9 and 10, tend in the same direction. What they 
jointly suggest is to leave the students as much freedom and initiative 
as possible under existing teaching conditions. Pressed for time, the 
mathematics teacher is often tempted to sin against the spirit of these 
rules, the principle of active learning. He may hurry to the solution of 
a problem without leaving enough time for the students to put the prob¬ 
lem to themselves in earnest. He may name a concept or formulate 
a rule too soon, without sufficient preparation by appropriate material, 
before the students can feel the need for such a concept or rule. He 
may commit the celebrated mistake of deus ex machina: he may intro¬ 
duce some device (for instance, a tricky auxiliary line in a geometric 
proof) which leads to the result all right, but the students cannot see 
for their life how it was humanly possible to discover such a trick which 
appeared right out of the blue. 

There are too many temptations to violate the principle. Let us, 
therefore, emphasize a few more of its facets. 

Let your students ask the questions; or ask such questions as they may 
ask by themselves. 

Let your students give the answers; or give such answers as they may 
give by themselves. 

At any rate avoid answering questions that nobody has asked, not 
even yourself. 

Examples and Comments on Chapter 14 

First Part 

14.1. Taking 122°25'41" west for the longitude of San Francisco answer the 
question (<f) of sect. 14.6(1). 

14.2. Following up a hint in sect. 14.6(8), prove the proposition suggested by 
Fig. 14.3 by solid geometry. 
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14.3. (Continued) Prove the proposition suggested by plane geometry. 

14.4. Sect. 14.6(9) mentions some points discussed in the foregoing and illus¬ 
trated by the problem presented in sect. 14.6(3) to 14.6(8). Do you notice more 
such points? 

Second Part 

14.5. Why problem solving? I am of the opinion that teaching “problem 
solving” could be an essential ingredient of various curricula rather different in 
other respects and should be, in fact, an essential ingredient of any useful high 
school mathematics curriculum. This opinion underlies the present book and 
my related writings and has already been explicitly stated in the foregoing (see 
sect. 5 of the preface and sect. 14.2). If the reader is not convinced by the fore¬ 
going chapters that this opinion has some merit, I cannot do much for him. Still, 
I wish to present a few comments on the role of problem solving in the high school 
curriculum. 

(1) We are concerned here with the teaching of mathematics on the high school 
level and with the aims of such teaching. Responsible and realistic consideration 
of these aims should take into account the use that the students can be expected 
to make of what they are supposed to learn. Of course, there are different cate¬ 
gories of students, and some will make more, and others less, use of the knowledge 
acquired in school, and some categories form a greater, and others a smaller, frac¬ 
tion of the student body. Reliable statistical data about these things would be 
very desirable, but they are scarcely available. The numerical proportions I shall 
use in what follows are rough estimates without serious statistical basis—I use 
them, in fact, just for the sake of concreteness. 

(2) Let us consider such students as take some mathematics on the high school 
level (algebra, geometry, etc.) and, with regard to the future use of such study in 
their respective professions, let us distinguish three categories: mathematicians, 
users of mathematics, and nonusers of mathematics. 

Let us draw the boundaries of the first category rather widely: Let us count as 
“mathematicians” or “producers of mathematics” also theoretical physicists, 
astronomers, and certain engineers in special research positions. Altogether they 
may form about 1% of the students. (The number of future Ph.D.’s in mathe¬ 
matics is closer to 0.1%.) 

Engineers, scientists (also some social scientists), mathematics and science 
teachers, etc. are users (but, in general, not producers) of mathematics. Let us 
count as users of mathematics also such students as will not use mathematics in 
their profession, but who essentially need some mathematics in their studies (such 
is the case of numerous engineering graduates who become salesmen or man¬ 
agers). The number of all sorts of users of mathematics may be, say, 29% of the 
students. 

Many of thq remaining students could, but actually will not, use any mathe¬ 
matics beyond what they should have learned in primary school. It is a rough 
but not unrealistic estimate that 70% of the students will be nonusers of mathe¬ 
matics; almost all future businessmen, lawyers, clergymen, etc. belong to this 

category. 
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(3) We do not know in advance who will become what and so we do not know 
which students belong to which category. The mathematics class, therefore, 
should be so conducted that it conforms to two “principles”: 

First, each student should be able to derive some profit from his study irrespec¬ 
tive of future occupation. 

Second, such students as have some aptitude for mathematics should be at¬ 
tracted to it and not get disgusted with it by ill-advised teaching. 

I take for granted that the reader accepts these two principles, at least to some 
extent. In fact, I think that to plan the curriculum without continuous earnest 
attention to these two principles would be unrealistic and irresponsible. 

Let me hint briefly how the three categories of students here considered 
[see (2)] could gain something essential from the study of problem solving. 

(4) The ability to solve mathematical problems needs, of course, some knowl¬ 
edge of the mathematical subject matter involved, but, moreover, it needs certain 
useful habits of mind, a certain general attitude which we are inclined to call 

“common sense” in everyday life. The teacher who wishes to serve equally all his 
students, future users and nonusers of mathematics, should teach problem solving 
so that it is about one-third mathematics and two-thirds common sense. It may 
not be too easy to implant common sense and useful mental habits, but if the 
mathematics teacher succeeds in implanting them he has rendered real service to 
his students, whatever their future occupation may be. This service is certainly 
the most significant thing he can do for those 70% of students who will have no 
use for technical mathematics in later life. 

The 29% of students who will become users of mathematics need, as a prepara¬ 
tion for subsequent studies, some technical proficiency (for instance, some 
facility in algebraic manipulation). Yet just the students with a good practical 
mind are reluctant to learn technicalities unless they are convinced that those 
technicalities serve a purpose, are good for something. The best the teacher can 
do to justify the teaching of technicalities is to demonstrate that they are effica¬ 
cious in solving naturally arising interesting concrete problems. 

Future mathematicians form only about 1% of the student body, but it is of 
paramount importance that they should be discovered: if they choose the wrong 
profession, their talent, needed by modern society in more than one way, may be 
wasted. The most important thing the high school teacher can do for this 1% is 
to awake their interest in mathematics. (To teach them a little more or less subject 
matter in high school hardly matters as, in any case, it can be only an infinitesimal 
fraction of the subject matter they have to know ultimately.) Now, problem 
solving is an important avenue to mathematics; it is not the only one, but it is 
connected with other important avenues (see ex. 14.6). Moreover, the teacher 
should treat a few problems which, although somewhat more difficult and time 
consuming, have real mathematical beauty and background (see chapter 15). 

(5) I hope, as I said before, that arguments for teaching problem solving in 
the high school can be found in every part of the present book and of my related 
writings. A few specific points will be emphasized in the following. 

14.6. Problem solving and theory formation. A devoted and well-prepared 
teacher can take a significant but not too complex problem and by helping the 
students discover its various aspects he can lead them through it, as through a 



LEARNING, TEACHING, LEARNING TEACHING 123 

gateway, into a whole theory. To prove that \/T is irrational, or that there are 
infinitely many prime numbers, are such significant problems. The former can 
be a gateway to a critical concept of the real number,9 the latter to number 
theory.10 

Such a procedure of the teacher parallels the historical evolution of science. 
The solution of a significant problem, the effort expended on, and the insight 
gained from, the solution may open the gate to a new science, or even to a new 
era of science. We should think of Galileo and the problem of falling bodies, or 
of Kepler and the problem of the orbit of Mars. 

In his work quoted, M. Wagenschein offers an idea which deserves, in my 
opinion, the attention of all planners of curricula: instead of hurrying through all 
the details of a much too extended program, the teacher should concentrate on 
a few really significant problems and treat them leisurely and thoroughly. The 
students should explore all aspects of the problem accessible at their level, they 
should discover the solution by themselves, they should anticipate, led by the 
teacher, some consequences of the solution. In this way, a problem may become 
a representative example, a paradigm for a whole chapter of science. This is a 
first sketch of the idea of paradigmatic teaching about which every teacher seri¬ 
ously concerned with the curriculum should read more in the book quoted; see 
also ex. 14.11. 

Let us note that the appropriate treatment of a single problem may be the gate¬ 
way to, or the representative example of, a branch of science. It is in view of 
this and similar observations that I took the liberty to say in sect. 14.2 “thinking 
may be identified, at least in first approximation, with problem solving.” 

14.7. Problem solving and general culture. Many people think (and I am one of 
those many) that one of the essential tasks, and perhaps the most essential task, 
of the high school is to impart general culture. Let us not enter here, however, 
upon defining “general culture,” because otherwise we could wrangle indefinitely 
about the “right” definition. 

In teaching problem solving in the mathematics class we have an excellent 
opportunity to develop certain concepts and habits of mind which are, in my 
opinion, important ingredients of general culture; the box on p. 124 displays a 
list.11 The list is not exhaustive; it contains only such more conspicuous, more 
tangible points as are, I hope, not beyond the reach of an average high school 
class. Most items of the list are explained at length in this book and in my related 
writings.12 For additional remarks see ex. 14.8 and 14.10. 

For a viewpoint which raises important questions about the relation between 

general culture and the teaching of mathematics see the work of Wittenberg, foot¬ 
note 9. 

9Cf A. I. Wittenberg, Bildung und Mathematik (Klett Verlag 1963) pp. 168-253 passim. 

10 Cf. Martin Wagenschein, Exemplarisches Lehren im Mathematikunterricht, Der 
Mathematikunterricht, vol. 8, 1962, part 4, pp. 29-38. 

11 From American Mathematical Monthly, vol. 65, 1958, p. 103. 

12 For “Language of Formulas” see chapter 2, for “Reasonable Guessing” chapter 15. 

For Unknown, Data, and Condition, Generalization, Specialization, and Analogy, see the 
Index. 
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Unknown Data Condition 

Generalization Specialization 

Analogy 

Strict Reasoning 

Reasonable Guessing 

Language 

of 

Diagrams Formulas 

14.8. Language of figures. There are people who have an urge to represent their 
ideas by means of some sort of geometric symbols. In their mind some figures 
of speech which we all use have a tendency to develop into geometric figures. 
When they are thinking about their problems they are apt to find paper and pencil 
and start doodling: They may be struggling to express themselves in a language 
of geometric figures. 

(1) There are many important nongeometric facts and ideas which are most 
appropriately expressed by geometric figures, graphs, or diagrams. By dots 
placed at appropriate elevations, high or low, the musical notation expresses the 
pitch of sounds, high or low. By means of geometric symbols (dots and connecting 
strokes) the chemical notation expresses the constitution of chemical compounds. 
Numbers and numerical relations can be expressed in various ways by geometrical 
objects and relations. Analytic geometry offers systematic means of translating 
numerical relations into geometrical relations and vice versa. Analytic geometry 
is, in a way, a dictionary of two languages, of the language of formulas and of 
the language of geometric figures: it enables us to translate readily from one lan¬ 
guage into the other. The ideas of analytic geometry underlie a great variety of 
graphs, diagrams, nomograms, etc. used in science, engineering, economics, and 
so on. Diagrams may also be useful in pure mathematics, and some can be well 
explained on the high school level; for an illustration not found in the usual text¬ 
books, see ex. 14.9. 

(2) Graphs and diagrams used in science are usually definite and precise in 
principle: the (idealized) geometric figure represents exactly the intended numer¬ 
ical relations. It is important to observe that graphical representations which are 
more or less vague or unprecise may still be useful. For instance, I believe that 
Fig. 11.2 has some suggestive value although it is scarcely more than a metaphor 
on paper, a figure of speech changed into a visible figure; Fig. 11.3 and 11.4 are 
of similar nature. Figures 15.1 to 15.5 have a clear mathematical meaning: 
they represent the set of all triangular shapes and certain subsets of this set. Yet 
their principal interest is that they hint something more, a process which we 
cannot yet conceive so clearly, the progress of an inductive argument. 

Of two diagrams similar to the eye, one may be interpreted in an entirely def- 
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inite mathematical meaning and the other in a rather vague metaphorical sense, 
and all gradations are possible between strict precision and poetical allusion. 
Flow charts, used for many purposes, can well illustrate the point. 

(3) Geometry, our knowledge of space, has several aspects. Geometry can 
be conceived, as we know, as a science based on axioms. Yet geometry is also a 
skill of the eyes and the hands. Again, geometry can be considered as a part of 
physics (the most primitive part, say some physicists—the most interesting part, 
say some geometers). As a part of physics, geometry is also a field in which we 
can make intuitive or inductive discoveries and verify them subsequently by 
reasoning. To these aspects the foregoing has added one more: geometry is also 
the source of the symbols of a sort of language which can be colloquial or precise, 
and both ways helpful and enlightening. 

There is a moral for the teacher: if you wish to instruct your students and not 
just hurry through the items of a curriculum dictated from above, do not neglect 
any of these aspects. Especially, do not insist too early or too much on the axio¬ 
matic aspect of geometry if you do not wish to disgust the future engineers and 
scientists among your students (or future artists and philosophers) who may be 
more attracted by the eye-knowledge of geometrical shapes, by space visualiza¬ 
tion, or by inductive discovery, or the powerful help to thinking afforded by dia¬ 

grammatic representation. 

14.9. Rationals and irrationals. What follows is only a rapid sketch of what 
should be very carefully done in the classroom—we are facing here what is per¬ 
haps the most delicate point of the high school mathematics curriculum. For the 
sake of brevity, I shall use a few terms and the notation of analytic geometry of 
which, however, very little knowledge is actually needed (just a little “graphing”). 

Let x and / denote, as usual, rectangular coordinates. The line with the equa¬ 
tion/ = 1 is the number line (just a “glorified yardstick”). See Fig. 14.5, which 
also displays the lattice points, that is, the points with integral coordinates. Figure 
14.5 emphasises the lattice points along the number line (“milestones along a long 
straight road”). 

In Fig. 14.5 the number x is represented by the point (x, 1) on the number line. 
We draw the straight line through the point (x, 1) and the origin (0, 0). Iff this 

Fig. 14.5. Number line and lat¬ 

tice points. 
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line passes through the lattice point (p, q) (different from the origin!) the number 
x is rational: 

£ _ P_ 

1 1 

from similar triangles. 
The teacher should ask (but not answer, at least not answer for a considerable 

time) the following questions: 

The origin (0,0) is a lattice point. Must every straight line passing through the 
origin pass also through another lattice point? 

Of course, there are just two cases: a straight line through the origin does or 
does not pass through another lattice point; which case is more likely? 

The teacher should let these questions and Fig. 14.5 “sink in” and only when 
the students have realized their import (perhaps after hours or weeks or months) 
should he start discussing the irrationality of \fl, the approximation of irrationals 
by rationals (Fig. 14.5 may be used, after Felix Klein, as a gateway to continued 
fractions), etc. 

14.10. Strict reasoning. Should we teach mathematical proofs in the high 

school? In my opinion, there is little doubt about the answer: Yes, we should, 
unless extremely adverse conditions compel us to lower the standard. Rigorous 
proofs are the hallmark of mathematics, they are an essential part of mathe¬ 
matics’ contribution to general culture. The student who was never impressed 
by a mathematical proof missed a basic mental experience. 

On what level of rigor should we teach mathematical proofs, and how? The 
answer to this question is not so simple; it is, in fact, beset with difficulties. Yet 
to ignore these difficulties and give some answer without much thought, just by 
following tradition, fashion, or prejudice, is not the kind of thing conscientious 
planners of the curriculum should do. 

There are proofs and proofs, there are various ways of proving. The first thing 
we must realize is that certain ways of proving are more appropriately taught on 
a given level of age and maturity than other ways. 

(1) A certain aspect of mathematical proofs was observed and described by 
Descartes with remarkable lucidity. 

I quote the third of his Rules for the Direction of the Mind:13 “About the objects 
of our study, we should not seek the opinion of others or our own conjectures, but 
only what we can see with clear and evident intuition or deduce with certitude, for 
there are no other ways to knowledge.” In explaining this rule, Descartes con¬ 
siders the “two ways to knowledge,” intuition and deduction, successively. Here 
is the beginning of his discussion of deduction:14 “The evidence and certitude of 
intuition are required not only in propositions, but also in all kinds of reasoning. 
For instance, we intend to deduce that 2 and 2 equals 3 and 1. Then we must 
intuitively see not only that 2 and 2 make 4 and that 3 and 1 make 4, but also that 
from these two propositions that third one mentioned above necessarily follows.” 

13 Oeuvres, vol. X, p. 366. 

14 Oeuvres, vol. X, p. 369. 
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A mathematical deduction appears to Descartes as a chain of conclusions, a 
sequence of successive steps. What is needed for the validity of deduction is 
intuitive insight at each step which shows that the conclusion attained by that step 
evidently flows and necessarily follows from formerly acquired knowledge 
(acquired directly by intuition or indirectly by previous steps of deduction). 

(We know from chapter 7 that a graph with ramifications represents the struc¬ 
ture of a proof more appropriately than a simple unramified chain, but this is not 
the point: If Descartes knew the diagrammatic representation we have studied 
in chapter 7, he would insist that each element of the diagram—such as repre¬ 
sented by Fig. 7.18—must be supported by intuitive evidence.) 

(2) Yet mathematics has several aspects. It can also be regarded as a game 
with symbols played according to arbitrarily fixed rules in which the principal 
consideration is to stick to the rules of the game. (This aspect is quite recent; 
fifty years ago most mathematicians and most philosophers would have thought 
that such an aspect of mathematics is revolting. Still, this aspect, which has been 
introduced under the influence of the great mathematician David Hilbert, is quite 
appropriate in certain studies of the foundations of mathematics.) 

In this game with symbols, the symbols are meaningless (we are supposed to 
ignore their meaning if they have one). There are “proofs” in this game; a step 
of a proof consists in writing down a “well-formed” new formula (a combination 
of symbols complying with the rules). Such a step is considered as valid if the 
new formula is written down strictly in accordance with certain formulas intro¬ 
duced at the beginning (“axioms”) with formulas written in previous steps, and 
with certain rules of inference fixed from the start. To be handled in this fashion, 
both the proofs and the propositions proved must be “atomized,” decomposed 
into very small steps and minute component parts. 

(3) Between the two extreme aspects considered in (1) and (2) there are 
others.15 In fact, the concept of mathematical proof has evolved, changed from 
one era of science to the other. The study of this evolution and of the motives 
that led to it could have great interest for us teachers. By understanding how the 
human race has acquired a concept we could better see how the human child 
should acquire it. Cf. ex. 14.13. 

A productive mathematician is, of course, free to prefer any aspect of mathe¬ 
matics; he should prefer the aspect most profitable for his work. Yet on the high 
school level our choice is not free, and if the choice is between (1) and (2) 
(between teaching proofs closer to one aspect or to the other), we can hardly 
hesitate. 

I think that everybody prefers intuitive insight to formal logical arguments, 
including professional mathematicians. Jacques Hadamard, an eminent French 
mathematician of our times, expressed it so:16 “The object of mathematical rigor 
is to sanction and legitimize the conquests of intuition, and there never was any 
other object for it.” Yet, if we exclude professional mathematicians, almost no¬ 
body remains who would be in a position to properly appreciate formal argu- 

15 For a well-illustrated important investigation of the nature of proofs see Lakatos 

(quoted in the Bibliography). 

16£mile Borel, Lecons sur la theorie des fonctions, 3rd ed. 1928; see p. 175. 
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ments. Intuition comes to us “naturally,” formal arguments do not.17 At any 
rate, intuition comes to us much earlier and with much less outside influence than 
formal arguments which we cannot really understand unless we have reached a 
relatively high level of logical experience and sophistication. 

Therefore, I think that in teaching high school age youngsters we should em¬ 
phasize intuitive insight more than, and long before, deductive reasoning. And 
when we present proofs, we should present them much closer to the idea of 
Descartes [see (1)] than to a certain idea of certain modem logicians [see (2)]. 

I have met with youngsters who had a definite interest, and probably some 
talent, for engineering or science, but refused to leam mathematics, and I have 
a hunch where this refusal comes from. 

(4) Let me give an example. I consider the proposition: Among three points 

on a straight line, there is just one that lies between the two others. 

Observe that this proposition says something essential about the nature of the 
straight line. If there are three points on a circle, no one plays a special role, no 
one is distinguished from the others by “betweenness.” 

Does this proposition about the three points on the straight line need a proof? 

In a university lecture on the foundations of geometry, a proof for this proposition 
starting from the axioms may be essential. Yet to present such a proof to a tenth 
grade high school class just starting the rational study of geometry is simply 
preposterous. 

This is my opinion, which may be wrong. To have a defensible opinion you 
must picture to yourself the reaction of the class to such a proof. I imagine it so: 
The majority of the youngsters will be simply bored. Yet a less mediocre and less 
indifferent minority will feel more or less distinctly that the proof is superfluous 
and aimless. There may be one or two boys in the class who will be frankly dis¬ 
gusted and revolted. At any rate, I think that such would have been my own 
reaction if such a proof had been presented to me when I was of high school age. 
I do not pretend that I remember exactly the ideas of the teenager I was sixty 
years ago, and I certainly do not pretend that that teenager was always right. Still, 
I can vividly imagine my reaction to such a proof: It would have convinced me 
that my teacher is stupid—or that mathematics is stupid, or that both are stupid. 
And, at that point, I would have stopped listening to the explanations of the 
teacher—or, if obliged to listen, I would have listened with reluctance, suspicion, 
and contempt. 

At any rate, I think that an adverse reaction to a proof of the nature outlined is 
natural and proper. 

(5) There are many aspects of proofs. I think that the role of proofs in build¬ 
ing up science is more complex than it is usually assumed, and there may be a 
question deserving a philosophical inquiry. We deal here, however, with another 
question: which aspect of proofs should be presented to beginners? This question 
seems to me easier, and I have a pretty firm opinion about it which I take the 
liberty to express. 

In the first place, the beginner must be convinced that proofs deserve to be 
studied, that they have a purpose, that they are interesting. 

17 For an incidental remark expressing a very similar opinion see H. Weyl, Philosophy of 

mathematics and natural science, p. 19. 
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Proofs have a purpose in a law court. The defendant is suspected to be guilty, 
but this is just suspicion, there is a doubt. It must be proved either that he is guilty 
or that he is not. The purpose of a legal proof is to remove a doubt, but this is also 
the most obvious and natural purpose of a mathematical proof. We are in doubt 
about a clearly stated mathematical assertion, we do not know whether it is true 
or false. Then we have a problem: to remove the doubt, we should either prove 
that assertion or disprove it. 

Now I can explain why I am so firmly convinced that the proof hinted at previ¬ 

ously (about the three points on a line) is out of place in the high school. A high 
school age youngster who has understood that assertion about the three points 
can hardly doubt it. There is no doubt to remove, and so the proof appears use¬ 
less, aimless, senseless. The case is aggravated if the proof starts from axioms, 
distinguishes several cases, and takes thirteen lines in the textbook. It may give 
the youngsters the impression that mathematics consists in proving the most 
obvious things in the least obvious way. 

(6) Yet, as I have already said, the proof about the three points on the straight 
line is quite in order on the proper level. When we teach it in high school we 
commit the ugly and ridiculous pedagogical sin of the confusion of levels. See 
ex. 14.15. 

On the research level, it can happen that a proposition appears intuitively 
obvious, we have strong plausible arguments for it, but no formal argument. It 
is in such a situation that a mathematician may do his best to discover a proof. 
For a preview of such situations on the high school level see ex. 14.11, and more 
examples in chapter 15. 

(7) Before leaving this subject, I must sound a warning against another grave 
pedagogical error: overemphasizing trivial proofs. Crowding the pages of a text¬ 
book with pointless proofs which lack motivation and rewarding goals may make 
the worst impression on the best students, who have some gift of intuition which 
could be most useful in engineering or science or mathematics. 

Also this ugly error may be due to a confusion of levels. Not for a high school 
age boy, but for a professional mathematician it may be necessary to check the 
formal justification for each step of a long argument. Such checking may be 
necessary, although it is not the most enjoyable part of the mathematician’s work. 
Logic is the lady at the exit of the supermarket who checks the price of each item 
in a large basket whose contents she did not collect. 

14.11. Can a map be perfect? A map is the representation of a part of the earth’s 
surface on a flat piece of paper. 

(1) To understand the situation before us, we generalize it and we describe 
more precisely the more general situation. (This transition from the particular 
to the general and from the more intuitive to the more abstract level is important; 
it is made here abruptly, but in the classroom it should be made gradually and 
carefully). 

We consider the mapping of a surface S onto another surface S'. We consider 
a one-to-one mapping, that is, we suppose that to each point p of S there corre¬ 
sponds just one point p' of S', the image of p, and that, conversely, to each point 
of p' of S' there corresponds just one point p of S, the original of p'. We assume 
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further that the mapping is “continuous”: to the points of a “smooth” line on one 
surface there corresponds a set of points on the other surface forming a smooth 
line. Let L\ and Lz be lines on S intersecting in the point p at which they include 
the angle a. Let the lines L{ and Li be the images of the lines L\ and L2, respec¬ 
tively. Then L[ and Li intersect in the point p\ the image of p, at which they 
include the angle a'; we consider a' as the image of a and a as the original of a'. 

(In the particular case of geographical maps, S is a part of the earth’s surface 
and S' the corresponding part of a plane. Let us think of important lines on the 
earth’s surface—coast lines, rivers, boundary lines, roads, railway lines—which 
are represented by corresponding lines on the map.) 

(2) Now we are in a position to give a clear definition. We call a mapping 

perfect if it satisfies two conditions: 

(I) All lines are reduced on the same scale. 
(II) All angles are preserved. 

Let us restate these two conditions with more detail. 
(I) To the mapping there belongs a definite “scale” or fixed numerical ratio 

(for instance, 1:1 000 000) in the following sense: If L\ a line on the surface S’, 

is the image of L, a line on the surface S, then the length of L’ has that fixed numer¬ 
ical ratio (1:1 000 000 in our example) to the length of L, independently of the 
shape, size, and location of the lines. 

(II) Each angle a’ on S’ is equal to the angle a on S of which a' is the image. 
(3) Let us visualize the foregoing definition, let us see more concretely the 

details involved. 
(3a) It is stated that the scale of a carefully done geographical map is 

1:1 000 000. This means that such is the scale approximately—but can the scale 
be the same throughout the map exactly? And, if such is the case, can the map 
also preserve the angles? That is the question. 

(3b) If it is geometrically possible to map the surface S onto the surface S’ on 
any fixed scale, it is, obviously, also possible to map a surface geometrically similar 

to S onto the surface S’ on the scale 1:1, that is, without reduction or enlargement. 
For example, let us assume that the planet on which we are living is an exact 
sphere. If any part of the earth’s surface could be perfectly mapped onto a flat 
sheet of paper on the scale 1:1 000 000, the corresponding part of a sphere of 
which the diameter is one millionth of the earth’s diameter would be so mapped 
onto the same sheet that corresponding lines, original and image, would be of 
the same length throughout, and also corresponding angles would be equal. 

(3c) We can roll a sheet of paper into a cylindrical or conical shape and, con¬ 
versely, we can unroll the curved lateral surface of a cylinder, or of a cone, into a 
flat sheet. Such unrolling generates a perfect mapping of the curved cylindrical, 
or conical, surface onto a plane (imagine coastlines and rivers traced on the 
paper); lengths and angles are obviously preserved. 

Yet could we similarly unroll into a plane a piece of a spherical surface, pre¬ 
serving all lengths and angles? We strongly suspect that it is not possible, and 
this suspicion may be based on experience, on observations we made in peeling 
apples or potatoes. 
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(4) Now we may perceive the kernel of our problem. Is it possible to map, 
with points corresponding one-to-one, a piece S of a spherical surface onto a 
piece S’ of a plane so that all lengths and all angles are preserved? 

We assume that (contrary to our expectation) such a mapping is possible and 
draw consequences from this assumption in the following (5) and (6). 

(5) Lengths are preserved. Let p and q be two different points of S (of the 
sphere) and L any line on S connecting p and q\ let p', q\ and L' be the images in 
S' (in the plane) ofp, q, and L, respectively. By our assumption, L and L' are of 
the same length. If L happens to be the shortest line on the sphere connecting p 

and q, shorter than any other connecting line, then, as lengths are preserved, L' 

must be shorter than any other line connecting p' and q\ and so the shortest con¬ 
necting line, in the plane. We know (the reader should know) that the shortest 
lines in the plane are straight lines, and the shortest lines on the sphere are arcs 
of great circles. The result of our consideration is: arcs of great circles on the 
spherical surface S are mapped onto segments of straight lines in the plane region 
S’. Especially, the sides of a spherical triangle which are arcs of great circles 
are mapped onto the sides of an ordinary triangle which are segments of straight 
lines. 

(6) Angles are preserved, and so each angle of the spherical triangle just men¬ 
tioned should be equal to the corresponding angle of the ordinary triangle. Yet 
this is impossible, since the sum of the three angles of an ordinary triangle is 180° 
whereas, as the reader should know, the sum of the three angles of a spherical 
triangle is greater than 180°. 

A perfect mapping of the sphere onto the plane is impossible. 
(7) The problem we have just solved may become a gateway both to practical 

applications (mapmaking) and to a great theory (a chapter of differential geom¬ 
etry centered in the “theorema egregium” of Gauss and reaching forward to 
general relativity). Here are a few points not too far beyond the high school level 
and closely connected with what we have just discussed; check them. 

(7a) A plane (ordinary, Euclidean) triangle and a spherical triangle are so 
related that each side of one has the same length as the corresponding side of the 
other. Show that in this situation [considered in (5) and (6)] each angle of the 
spherical triangle is greater than the corresponding angle in the plane triangle. 
[That the sum of the angles of the first is greater than the sum of the angles of 
the second was the decisive remark of (6).] 

(7b) The two conditions stated under (2) are not unrelated: (I) involves (II), 
that is if (I) is satisfied, (II) must be satisfied too. 

(7c) Yet (II) does not involve (I). There are many mappings of the sphere 
onto the plane preserving all the angles, but in which the ratio of the length of a 
curve on the sphere to the length of the image curve in the plane is by no means 
constant [it cannot be constant, by virtue of the theorem proved in (5) and (6)]. 

(7d) There are mappings of the sphere onto the plane preserving all the areas 
(but they do not preserve the angles). 

(7e) There are mappings of the sphere onto the plane preserving shortest lines, 
that is, mapping arcs of great circles onto segments of straight lines (but they do 
not preserve the angles). 
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(8) Yet I think that making explicite the role of continuity in the foregoing 
discussions and supplementing precise details in this respect would be too much 
above the level of the high school. 

14.12. What should we teach? You, as a teacher, are paid by the community to 
teach the youngsters in your class. Therefore, your task is to teach what is profit¬ 
able for the community and for the youngsters in your class. 

You think that this advice does not amount to much. It may amount to more 
than you think. Just keep your task constantly in mind in short range as in long- 
range planning, in mapping out the next class period or the curriculum. Imagine 
that there is in your class a nice and clever boy, not yet spoiled by the school and 
not yet afraid of you who at any moment may ask you, honestly and naively: “But 
teacher, what is that good for?” If you try to picture to yourself what is in the 
mind of that nice boy and plan your teaching so that you can answer that critical 
question—or that he is constantly amused and challenged and has no opportunity 
to ask that critical question—you may become a better teacher. 

I admit that the teacher’s task is beset with temptations. For instance, we may 
be tempted to teach what is easy to teach, what is “teachable.” Yet should we 
teach everything that is teachable? Is the teachable always profitable? 

A clever trainer may teach a seal to balance a ball on its nose. But does such 
skill help the seal to catch more fish? 

14.13. The genetic principle. Planning the curriculum involves more than 
choosing the facts and theories to be taught; we must also foresee in what sequence 
and by what methods those facts and theories should be taught. In this respect 
the “genetic principle” offers an important suggestion. 

(1) The genetic principle of teaching can be stated in various ways, for in¬ 
stance: In teaching a branch of science (or a theory, or a concept) we should let 
the human child retrace the great steps of the mental evolution of the human 
race. Of course, we should not let him repeat in detail the thousand and one 
errors of the past, just the great steps. 

This principle does not lay down a hard and fast rule; on the contrary, it leaves 
us much freedom of choice. What steps are great and what errors are negligible 
is a matter of interpretation. The genetic principle is a guide to, not a substitute 
for, judgement. 

Yet in order to emphasize just this point, there may be some advantage in re¬ 
stating the principle more cautiously (and more vaguely): Having understood 

how the human race has acquired the knowledge of certain facts or concepts, we 
are in a better position to judge how the human child should acquire such knowl¬ 
edge. [We came very close to this formulation in ex. 14.10(3).] 

(2) The genetic principle is supported by a biological analogy. The develop¬ 
ment of the individual animal retraces the evolutionary history of the race to 
which the animal belongs. That is, the embryo of the animal, as it passes through 
the successive stages of its development from the fertilized ovum to its adult form, 
resembles at each stage an ancestor of its race, and the sequence of its stages of 
development mirrors the sequence of its ancestors. If for “development of the 
individual animal” we say “ontogeny” and for “evolutionary history of the 
animal species” we say “phylogeny,” we arrive at the concise form which the 
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German biologist Ernest Haeckel has given to his “fundamental biogenetic law”: 
“Ontogeny recapitulates Phylogeny.” 

Such analogy is, of course, just a source of interesting suggestions and not a 
proof for the genetic principle of teaching, which itself should not be regarded 
as an “established principle” but just as a source of interesting suggestions. 

(3) Thus, the genetic principle may suggest the principle of consecutive phases 
which we have discussed in sect. 14.4(3) and 14.5(3). In fact, in the historical 
development of various branches of science (of theories, of concepts) we may 
distinguish three phases. In an initial exploratory phase the first suggestive, but 
often incomplete or erroneous, ideas emerge from contact with the experimental 
material. In the next phase of formalization the material is ordered, appropriate 
terminology introduced, the laws recognized. In the last phase of assimilation 

the laws are seen in a broader context, extended, and applied. 
Yet only the reading of the original works of great authors can really convince 

us of the genetic principle of teaching. Such reading may be like a brisk walk in 
the fresh air after the stale atmosphere of the textbooks. As James Clerk Maxwell 
wrote in the preface of his great Treatise on Electricity and Magnetism: “It is of 
great advantage to the student of any subject to read the original memoirs on that 
subject, for science is always most completely assimilated when it is in the nascent 
state.” 

(4) According to the genetic principle, the learner should retrace the path 
followed by the original discoverers. According to the principle of active learn¬ 
ing, the learner should discover by himself as much as possible. A combination 
of the two principles suggests that the learner should rediscover what he has to 
learn—we have caught here a first glimpse of an important aspect of the educa¬ 
tional process about which the reader should consult the two books of 
A. Wittenberg quoted in the bibliography. 

14.14. Lip service. “General culture” is a catchword and, as a catchword, it is 
exposed to misuse. It is easy to pay lip service to “general culture.” The most 
atrocious things can be done in the schools under the pretence that they are done 
for “general culture.” 

“General culture,” “teaching to think,” and “teaching problem solving” are 
catchwords which can be misinterpreted and misused inspite of the good sub¬ 
stance behind them. Yet there is a difference in favor of “problem solving.” 

“Problem solving” can be explained not only in other general terms (equally 
liable to misinterpretation) but also by suggestive concrete examples (this book 
and my related writings attempt to present many such examples). 

Moreover, lip service paid to problem solving can be more easily unmasked: 
“So, you are teaching problem solving—very interesting. What problems did 
you present to your class? What desirable mental attitudes do you expect to 
develop by such problems?” 

14.15. Confusion of levels. “Contemporary mathematicians work much more 
with sets, operations, groups, fields, etc. than with oldfashioned geometry and 
algebra. Therefore, we must teach sets, operations, groups, and fields before 
those oldfashioned subjects.” 

This is an opinion. Here is a similar one: 
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“Contemporary American adults do many more miles driving a car than walk¬ 
ing. Therefore, we must teach a baby to drive a car before he can walk.” 

14.16. Isadora Duncan was a celebrated dancer—as celebrated when I was 
young as Marilyn Monroe was in more recent years. 

What is the connection between the lady and our subject? You see, it may 
seem such a good idea to let a team plan the curriculum and write the textbooks. 
The team consists of a university professor and a high school teacher. We may 
expect a splendid result in which the professor’s mathematical perspective is 
coupled with the teacher’s experience in handling high school classes. Yes, yes, 
but. . . . 

When I was young everybody knew a certain story about Isadora Duncan. 
Allegedly, she offered something like marriage to Bernard Shaw: “. . . and think 
of the child who would have your brains and my looks.” “Yes, yes,” said Bernard 
Shaw “but what a calamity if the child had my looks and your brains.” 

Perhaps you too have seen some books recently which mirror the teacher’s 
mathematical perspective coupled with the professor’s experience in handling 
high school classes. 

14.17. Levels of knowledge. In his “Treatise on the Improvement of the Mind” 
(Tractatus de Intellectus Emendatione), the philosopher Benedict Spinoza dis¬ 
tinguishes four different levels of knowledge.18 Spinoza exemplifies the four 
levels by four different ways of understanding the Rule of Three. In the follow¬ 
ing, (1) to (4), “rule” stands for any mathematical rule the reader learned some 
time ago and, if possible, for one that he has learned by stages, understanding it 
better at each stage. 

(1) A student has learned a rule by heart, accepting it on authority, without 
proof, but he is able to use the rule, can apply it correctly. Then we say that he 
has mechanical knowledge of the rule. 

(2) The student tried the rule on simple cases and convinced himself that it 
works correctly in all cases he has tested. He thus has inductive knowledge of 
the rule. 

(3) The student has understood a demonstration of the rule. He has rational 

knowledge of the rule. 
(4) The student conceives the rule clearly and distinctly and is so convinced 

of it that he cannot doubt that the rule is true. He has intuitive knowledge of 

the rule. 
(5) I do not know whether the passage of Spinoza paraphrased in the fore¬ 

going has been noticed in the pedagogical literature. At any rate, the distinction 
between various levels of knowledge should be well understood by the teacher. 
Thus the curriculum requires of him that he should teach such and such chapter 

of mathematics in such and such grade. Yet what level of knowledge should the 
students attain? Is mechanical knowledge sufficient? Or should the teacher at¬ 
tempt to lead his students to intuitive knowledge? We have here two different 
aims, and it makes a great difference both for the teacher and for the students 
which one is adopted. 

18 See e.g. Philosophy of Benedict Spinoza, translated by R. H. H. Elwes, p. 7. The follow¬ 

ing is a very free paraphrase of Spinoza’s text; especially, the names for the levels are added. 
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(6) When we consider the various levels of knowledge distinguished by 
Spinoza from the teacher’s standpoint, we are led to several questions. How 
could we bring the students to this or that level? How could we test whether 
the students have attained this or that level? These questions are most difficult 
to answer in regard to the intuitive level. 

(7) We could, of course, distinguish more than four levels of knowledge, and 
there is one level whose consideration may deserve the attention of teachers (and 
of learners, especially of ambitious learners who aspire to become scientists)— 

well anchored, well connected, well cemented, in one word well-organized 

knowledge,19 
The teacher who aims at well-organized knowledge should be careful, in the 

first place, in introducing new facts. A new fact should not appear out of no¬ 
where, it should be motivated by, referred to, connected with the world around 
us and the existing knowledge, the daily experience, the natural curiosity of the 
student. 

Moreover, when the new fact has been understood, it should be used to solve 
new problems, to solve old problems more simply, to shed light on things already 
known, to open new perspectives. 

The ambitious learner should carefully study a new fact; he should turn it over 
and over, consider it under various aspects, scrutinize it from all sides, and try to 
fit it into his existing knowledge at the best place where it is most conveniently 
connected with related facts. Then he will be able to see that new piece of knowl¬ 
edge with the least effort, the most intuitively. Moreover, he should try to ex¬ 
pand and enlarge any newly acquired knowledge by application, generalization, 
specialization, analogy, and in all other ways. 

(8) As dedicated teachers we may find ways to anchor a new fact in the ex¬ 
perience of the student, connect it with formerly learned facts, cement its knowl¬ 
edge by applications. We can only hope that the student’s well-anchored, well- 
connected, well-cemented, well organized knowledge will finally become intuitive. 

14.18. Repetition and contrast. If you like both music and teaching, you may 
observe various resemblances between them, and your observations, even if they 
are not scientifically perfect, may improve your teaching. They may lead you to 
presenting the material you have to offer in a more artistic and more effective 
arrangement. 

Why is that so? Repetition and contrast play a role in all arts, also in the 
teacher’s art, but their role is most conspicuous in music. Hence the foreshadow¬ 
ing, the development, the repetition, alternation, and variation of themes in a 
musical composition may well suggest the analoguous treatment of themes in 
the classroom or in a literary composition. 

14.19. Inside help, outside help. In planning and writing this book I had in 
mind the task of the high school mathematics teacher and especially the following 
situation. The teacher proposes a problem to his class; the students should learn 
from their own work, and the problem should be solved in class discussion. This 
situation requires careful handling. If the teacher helps too little, there will be 

19 Cf. ex. 12.3, and also the preface and the whole plan of G. P61ya and G. Szegd, A ufgaben 

und LehrsUtze am der Analysis. 
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no progress. If the teacher helps too much, there will be no opportunity for the 
students to learn from their own work. How should the teacher avoid the horns 
of this dilemma? How much should the teacher help the students? 

There is a better question; we should not ask “how much,” we should ask 
“how.” How should the teacher help the students? There are various ways to 
help. 

(1) There are cases in which the teacher must ask several questions and re¬ 
peat his questions several times until he succeeds in extracting a little work from 
the students. In the following dialogue a dotted line.indicates the silence 
of the students. The discussion has been going on for some time as the teacher 
says: 

“Tell me again: What is the unknown?” 
‘The length of the line AB.’ 

“How can you find this kind of unknown?” 

“How can you find the length of a line?” 

“From which data could you derive the length of a line?” 

“Did not we solve such problems before? I mean problems in which the un¬ 
known was the length of a line?” 
‘I think we did’. 
“How did we proceed in such a case? From which data did we compute the 
unknown length?” 

“Look at the figure. You see the line AB, don’t you? The length AB is un¬ 
known. Of which lines is the length known?” 
‘AC is given.’ 
“Good! Is there any other given line?” 
‘BC is also given.’ 
“Look at the lines AB, AC, and BC—look at their configuration. How would 

you describe this configuration?” 
‘AB, AC, and BC are the sides of AABC.’ 

“What kind of triangle is AABC!” 

Well, there are cases in which a teacher must be infinitely patient. 

(2) A less patient teacher could proceed quite differently and tell the students 
right away: “Apply the theorem of Pythagoras to the right triangle AABC.” 

(3) What is the difference between the two procedures (1) and (2)? 
The most obvious difference is that (1) is long and (2) is short. 
Yet we should also observe another difference: (1) offers more opportunity to 

the student than (2) to contribute to the solution something of his own. 
Yet there is a more subtle difference. 
The questions and suggestions offered by the teacher in procedure (1) could 

have occurred to the student himself. If you look at them closely, you may notice 
that several of these questions and suggestions are tools which the problem solver 
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can use also for other problems, in fact, for wide classes of problems. These 
tools are at the disposal of everybody—of course, the more experienced, the 
“methodologically better prepared” problem solver handles them more delib¬ 
erately and more skillfully. 

Yet the action advised by the teacher in procedure (2) is not a tool a priori at 
the disposal of the problem solver—it is the solution itself, or it is almost that. It 
is a specific action suggested without reference to any general idea. 

Let us call inside help such help as the problem solver earnestly concerned with 
his problem and familiar with methodological ideas has a good chance to find by 
himself. Let us call outside help such help as has little relation to methodological 
ideas—the problem solver has little chance to elicit such help by methodical work. 
I think that the most important difference between the procedures (1) and (2) is 
that the teacher offers inside help in the former and only outside help in the latter. 

(4) If we accept the principle of active learning we must prefer inside help to 
outside help. In fact, the teacher should give outside help only in the last resort, 
when he has exhausted all obvious inside suggestions without result, or when he 

is pressed for time. 
Outside help has very little chance to be instructive—appearing out of the blue, 

as deus ex machina, it can easily be disappointing.20 Inside help may be the most 
instructive thing the teacher can offer; the student may catch on, he can realize 
that the question helps and that he could have put that question to himself by 
himself. And so the student may learn to use that question; the voice of the 
teacher may become for him an inner voice which warns him when a similar situa¬ 
tion arises.21 

To give inside help, the teacher may use all the “stereotyped” questions and 
recommendations collected in chapter 12—for this reason, chapter 12 may be¬ 
come for him the central chapter of the book. Of course, he must first become 
intimately acquainted with the situations to which those questions and recom¬ 
mendations are applicable. This book has been planned and written to help the 
teacher in this task. 

14.20. In my class, when I get the impression that I have spoken too long with¬ 
out interruption and I should now ask a question of the audience, I am apt to 
remember a German jingle of which here is an approximate translation: 

All are sleeping just one is preaching: 
Such performance is called here “teaching.” 

14.21. How difficult is it? Both the scientist and the teacher may be led to this 
question, the one when he is struggling with a problem, the other when he is about 
to propose it to his class. In answering the question we must rely much more on 
“feeling” than on any clear argument. Still, now and then we arrive at assessing 
the degree of difficulty of a problem quite well. The scientist’s feeling may be 
justified by the outcome of his research and the teacher’s feeling by the outcome 
of an examination. 

In most circumstances, clear arguments can contribute but little to the evalua- 

20 Cf. the end of sect. 3.2. 

21 Cf. HSI passim, especially sect. 17, Good questions and bad questions, pp. 22-23. 
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tion of the degree of difficulty of a problem, yet even that little deserves careful 
consideration. 

(1) Size of the region of search. An offense has been committed (for instance, 
one of the children has broken a window) and we know that the offender is one 
of a set of n persons. Other things being equal, the difficulty to find the offender 
obviously increases with n. Generally speaking, we may expect that the difficulty 
of a problem increases with the size of the adequate region of search. (Cf 
sect. 11.6.) 

(2) Number of items to be combined. The students have to solve a problem 
which needs the application of n different rules introduced in the last chapter with 
which the students are much less familiar than with the foregoing chapters of the 
course. Under such circumstances, other things being equal, the difficulty of the 
problem obviously increases with n. Generally speaking, we may expect that 
the difficulty of a problem increases with the number of items which we have not 
combined before but which we have to combine to solve the problem. 

(3) The foregoing considerations may help us to judge the difficulty of a prob¬ 
lem a priori, before trying it. Judging the difficulty a posteriori, after having 
tried to solve the problem, involves, more or less explicitely, ideas of statistics; 
here is a schematic example. In an examination, of two problems proposed to 
100 students, one was solved by 82 students, the other by 39 students. Obviously, 
the latter was more difficult for this group of 100 students. Will it also be more 
difficult for the next group of students? Yes, says the statistician, this has to be 
expected with such and such a degree of confidence provided that there are no 
nonrandom differences between the two groups. And there is the rub. In educa¬ 
tional matters there are too many scarcely controllable circumstances which have 

a great influence so that the distinction between “random” and “nonrandom” 
becomes highly elusive. Thus the presentation of a certain point in the course, 
the insistence of the teacher on that point, the mood of the teacher, and many 
other unforseeable circumstances may incontrollably influence the outcome of 
an examination—they may influence it much more than that component of the 
situation about which we have desired to obtain information by statistical ex¬ 
periment. We have touched here but lightly on one of the many reasons which 
should make us cautious or even suspicious when we are dealing with educational 
statistics. 

Of course, when the mathematician deals with a problem that was proposed two 
hundred or two thousand years ago yet still remains unsolved, he has a rather 
good “statistical” reason to suspect that the problem is hard. (The thfcory of 
numbers abounds in such problems.) 

14.22. Difficulty and educational value. It is difficult to assess the difficulty, and 
still more difficult to assess the educational value, of a problem. Yet the teacher 
must try to assess both when he is about to propose the problem to his class. 

The teacher can be assisted in his task by a classification of high school level 
problems. The credit for a classification of this kind is due to Franz Denk.22 The 
following classification is somewhat different; it distinguishes four types of 
problems. 

22 Franz Denk, Werner Hartkopf, and George P61ya, pp. 39-42; see the Bibliography. 
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(1) One rule under your nose. The problem can be solved by straightforward 
mechanical application of a rule or by straightforward mechanical imitation of an 
example. Moreover, the rule to apply or the example to follow is thrust under the 
nose of the student; typically, the teacher proposes such problems at the end of 

the hour in which he has presented the rule or the procedure. A problem of this 
type offers practice but nothing else; it may teach the student to use that particular 
rule or procedure, but has little chance to teach him anything else. And there 
is the danger that, even of that single rule, the student will acquire just “mechan¬ 
ical,” and not “insightful,” knowledge. 

(2) Application with some choice. The problem can still be solved by the ap¬ 
plication of a rule learned in class or the imitation of an example shown in class, 
yet it is not so immediately obvious which rule or example should be used; the 
student needs some mastery of the material covered in the last weeks and some 
judgement to find the usable item in a certain limited region of search. 

(3) Choice of a combination. To solve the problem, the student must combine 
two or more rules or examples shown in class. The problem need not be too dif¬ 
ficult if a somewhat similar (but not the same!) combination has been discussed 
in class. Of course, if the combination is quite novel, or if many pieces of knowl¬ 
edge must be combined, or pieces of knowledge from chapters wide apart, the 
problem may demand a higher degree of independence and may become quite 
difficult. 

(4) Approaching research level. It is scarcely possible to draw a sharp line of 
demarcation between the kind of problem we have just considered [under (3)] 
and research problems. The examples and discussions of chapter 15 attempt to 
outline some characteristics desirable in “research problems on the classroom 
level.” 

On the whole, as the degree of difficulty increases along the lines presented in 
ex. 14.21(1) and (2), also the educational value of the problem has a chance o 
increase, especially if our educational aim is “teaching to think,” and we judge 
values from the standpoint of this aim. 

14.23. Some types of problems. For the use of teachers who wish to interrupt 
now and then the monotonous sequence of routine problems dished out by the 
textbooks, I collected elsewhere some types of nonroutine problems (MPR, v. 2, 
p. 160). I wish to add here one more problem of the “You may guess wrong” type 
(ex. 14.25) and one new type, the “red herring” problem. This latter type diverts 
the attention from the main point, from the most natural or most efficient proce¬ 
dure, by some conspicuous but irrelevant feature. “Red herring” problems 
should be sparingly used; they should be proposed only to students clever enough 
to see the joke and to learn better the relevant point by having brushed aside 
irrelevancies. See ex. 14.24. 

14.24. Find the remainder of the division of the polynomial 

x3 + x5 + x7 + x11 + x13 + x17 + x19 

by the polynomial x2 — 1. 

14.25. Two spheres are tangent to each other. They are separated from each 
other by their principal common tangent plane that passes through their point of 
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contact. They have infinitely many other common tangent planes which envelop 
their common tangent cone. This cone touches each sphere along a circle, and 
the part of the cone between these two circles is the lateral surface of a frustum. 

Being given t, the slant height of the frustum, compute: 
(1) the lateral area of the frustum 
(2) the area of that piece of the “principal” tangent plane that lies within the 

tangent cone. 
(Are there enough data to determine the unknowns?) 

14.26. A term paper. For terminology and notation, see “Mathematics and 
Plausible Reasoning,” vol. 1, pp. 137-138, ex. 33; you may also be able to use 
appropriate points from ex. 34-54 on pp. 138-141 and their solutions on pp. 
249-256. 

Consider 
(a) a right prism, 
(b) a right pyramid, and 
(c) a right double pyramid. 

The base of each of these three solids is a regular polygon with n sides, and each 
solid is so circumscribed about a sphere that the point of contact on each face of 
the solid is the center of gravity of that face. 

(1) Find the ratio of the area of the base B to the area of the total surface S 

of the solid for (a), (b), and (c). 
(2) Compute S3/V2 for (a), (b), and (c); Vstands for volume. 
(3) Collect in a table the numerical values of the ratios computed under (2) for 

n = 3, 4, 5, and 6. 
(4) Describe the limiting case n—* oo for (a), (b), and (c). Find the limit 

of the ratios computed in (2) and add their numerical values to the table (3). 
(5) Consider the (unsolved) problem: “Find the polyhedron with a given 

number F of faces and a given volume that has the minimum surface area.” 
Formulate a “plausible” conjecture for F = 4, 6, 8, 12, and 20; explain why it 

is plausible, and find indications for or against it in your foregoing work. 
(6) Choose carefully a particular problem from the foregoing work that could 

be appropriately treated in a solid geometry class in the high school. 
Formulate it clearly. 
Note such “inside” questions and suggestions (from the list “How to Solve It,” 

HSI, pp. XVI-XVII, for instance) [cf. chapter 12] as have a good chance to be 
efficiently used for the problem chosen. 

Represent the progress of the solution of the chosen problem diagrammatically 
(as we did it in class for the volume of the frustum.) [Cf. chapter 7.] 

(7) How would you “sell” (justify the choice of, explain the general interest of) 
the subject of this term paper to a class of bright students in a high school, or in 
a teacher-training institution? (Name the level, and be efficient but concise— 
please!) 

(8) A diagonal of a convex polyhedron is a straight-line segment joining two 
vertices that, except for its two endpoints, lies completely inside the polyhedron 
(not on the surface). Let D denote the number of diagonals of the polyhedron. 
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Compute D 

(a) for each of the five regular solids, 
(b) for a polyhedron all F faces of which are triangles, 
(c) for a general polyhedron, being given that it has F„ polygonal faces with 

n sides, n = 3, 4, 5,..., 

F3 + F4 + F5 + ■■■ = F 

(9) (Optional) If the foregoing has suggested to you some mathematical idea 
which seems to you relevant, even if incomplete for the moment, note it here—but 
very clearly and concisely. 

(The foregoing is a typical example of a “take-home final” such as I am ac¬ 
customed to propose to my classes offered to high school teachers. For (5) see 
below ex. 15.35, for (8) ex. 15.13. To answer (6) and (7), some participants 
presented a dialogue between the teacher and the students similar to some dia¬ 
logues in this book and especially in HSI. Some of these dialogues were very 
well done. The references in square brackets were added in print.) 

14.27. On talks at mathematical meetings. Zermelo’s rules. The situation of 
the speaker in a mathematical meeting resembles a little, and differs a great deal 
from, the situation of the teacher in the classroom. The speaker, as the teacher, 
intends to impart some information, but his audience consists of his peers and 
possibly his superiors, not of students. The situation of the speaker is not easy, 
also his performance is not often successful. This is not so much his fault, rather 
the fault of the vast expanse of mathematics. Any one mathematician can master 
only a small parcel of present day mathematics, and usually knows very little 
about the other small parcel that the next mathematician has mastered. 

(1) Ernest Zermelo, whose name will be forever linked to the important 
“axiom of choice” of general set theory, liked to spend some of his time in coffee¬ 
houses. His conversation there was interspersed with sarcastic remarks about 
his colleagues. Commenting on an address which had great success at a recent 
mathematical meeting, he criticized the speaker’s style and eventually condensed 
his disapproval into two rules according to which, he mockingly asserted, that 
address must have been constructed: 

I. You cannot overestimate the stupidity of your audience. 

II. Insist on the obvious and glide nimbly over the essential.23 
Zermelo’s personal remarks were often witty; very unjust on the whole, but 

striking and revealing about some particular point. So was the criticism implied 
by the two rules; I had to laugh and I could not forget the rules. Years later I 
realized that these rules, suitably interpreted, give often applicable sound advice. 

(2) The speaker in a mathematical meeting usually treats his audience as if 
everybody knew everything about the subject he is discussing—especially each 
detail of his latest paper. Of course, just the contrary is the case, and the speaker 
should realize it. It would be better for him to overestimate than underestimate 
the lack of knowledge of the audience about the subject. In fact, the speaker 

23 In the original German: I. Du kannst Deine Horer nicht dumm genug einschdtzen. 

II.Bestehe auf den: Selbstverstdndlichen und husche ilber das Wesentliche hinweg. 
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could greatly profit from an interpretation of Zermelo’s first rule: “You cannot 
overestimate the lack of knowledge of your audience about the things you are 

talking about.’’ 
(3) What is essential in the mathematician’s work? Each detail of the proof 

is essential, but it is hardly possible to present adequately all details of a long and 
difficult proof to a mathematical meeting. Even if the speaker succeeded in 
hurrying through all the details, nobody would be able to follow. Therefore, 
“glide nimbly over the essential,” over the details of the proof. 

Yet even a long proof may hinge on a central remark which in itself is intuitive 
and simple. A good speaker should be able to detach from the proof some de¬ 
cisive remark and make it intuitive and obvious until everybody in the audience 
can understand it, take it home, and keep it for possible later use. In so doing 
the speaker succeeds in imparting useful information and, in fact, follows 
Zermelo’s second rule: “Insist on the obvious and glide nimbly over the essential.” 

14.28. Epilogue. When I was young I devoured the novels of Anatole France. 
More than by the stories themselves I was attracted by the tone in which they are 
told, the voice of a sage who looks at all things human with a delicate irony 
mingled with pity. 

Anatole France has a word about a subject we have been discussing: “Do not 
try to satisfy your vanity by teaching them great many things. Awake their 
curiosity. It is enough to open the minds, do not overload them. Put there just 
a spark. If there is some good inflammable stuff it will catch fire.” (Le jardin 
d’Epicure, p. 200.) 

There is a great temptation to paraphrase this passage: “Do not try to satisfy 
your vanity by teaching high school kids a lot of... just because you wish to make 
people believe that you understand it yourself. .. .” Yet let us resist temptation. 
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GUESSING AND 
SCIENTIFIC METHOD1 

Non-mathematical induction plays an essential role in mathematical 
research. 

i. schur: Inaugural Dissertation, Berlin 1901, Thesis I. 

It will always be difficult, in any branch of knowledge, to describe with 
some approximation to the truth the method followed by the 
inventors. . . . Nevertheless, concerning the mental procedures of 
mathematicians there is a simple remark extensively confirmed by the 
history of science: observation has an important place and plays a 
great role in their procedures. 

Charles hermite: CEuvres, vol. IV, p. 586. 

Observation is the abundant source of invention in the world of 
subjective realities just so as it is in the world of phenomena 
perceptible by the senses. 

Charles hermite: Hermite et Stieltjes, Correspondance, vol. I, p. 332. 

15.1. Research problems on the classroom level 

The teaching of mathematics should acquaint the students with all 
aspects of mathematical activity as far as possible. Especially it should 
give opportunity to the students for independent creative work—as far 
as possible. 

The activity of the expert mathematician, however, differs a great 
deal and in several respects from the usual classroom activity. We shall 
be in a better position to see which differences deserve particular em- 

1 This chapter is dedicated to my friend and colleague, Charles Loewner. 
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phasis after a few examples. The following examples show that a good 
teacher can offer something approaching the experience of independ¬ 
ent inquiry even to an average class by choosing appropriate problems 
and presenting them in the appropriate way. 

15.2. Example 

“Being given L, the length of the perimeter of an isosceles right tri¬ 
angle, compute its area A.” This is the usual kind of problem printed 
in the usual textbook. It is not even a bad problem, just not too inter¬ 
esting when it is presented by itself, isolated from analogous problems. 
Compare it with the following presentation, and see the difference. 

“In those legendary pioneer days” said the teacher “when land was 
plentiful and almost everything else very scarce, a man in the Middle 
West had hundreds of acres of flat grassland, but only one hundred 
yards of barbed wire. He intended to use the whole length of this wire 
to fence in a piece of his land. He thought of various shapes and 
wondered how many square yards would be the fenced in area.” 

“Well, which shape would you prefer? But remember, you have to 
compute the area, and so you rather choose some easy shape.” 

- A square. 
- A rectangle with sides of 20 and 30 yards. 
- An equilateral triangle. 
-An isosceles right triangle. 
- A circle. 
“Very good. May I add a few shapes: 
A rectangle with sides of 10 and 40 yards. 
An isosceles triangle with sides of 42, 29, and 29 yards. 
An isosceles trapezoid with sides of 42, 13, 32, and 13 yards. 
A regular hexagon. 
A semicircle.” 
“All these figures are isoperimetric, that is, of equal perimeter; the 

perimeter of each is supposed to be 100 yards. Compute the areas in 
square yards, and arrange the ten figures according to their areas, begin¬ 
ning with the largest and ending with the smallest. By the way, before 
computing you may try to guess which area will be the largest and which 
one will be the smallest.” 

This problem may be proposed as homework to an average high 
school class at an appropriate stage of the curriculum. The solution 
consists of the following list: 

Circle 795 Rectangle 30, 20 600 
Regular hexagon 722 Semicircle 594 

Square 625 Equilateral triangle 481 
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Trapezoid 42, 13, 32, 13 444 Triangle 42, 29, 29 420 
Isosceles right triangle 430 Rectangle 40, 10 400 

“Are there any questions?” 

15.3. Discussion 

The point of our problem is to bring to the attention of the students 
the list of figures and areas which constitutes its solution; the ob¬ 
servation of this list should suggest various remarks to the students. 
The more spontaneously these remarks emerge, the better it is. Yet, 
if they are slow in coming, the teacher may contribute to the discussion 
by well-placed, gently prodding questions, such as the following. 

“Have you any comment on the list?” 
“The circle leads the list. Have you any comment on this?” 
“There are several triangles in the list, also several quadrilaterals. 

Which figure leads the list of quadrilaterals? What about the 
triangles?” 

“Yes, it may be so as you say, but have you proved it?” 
“If you have not proved it what reason have you to believe it?” 
“A triangle may be considered as a degenerate quadrilateral, with one 

vanishing side (or with one angle of 180°). Does this remark con¬ 
tribute to your argument?” 

Eventually the students should arrive, sooner or later, by their own 
means as far as possible, to remarks in the direction of the following. 

The list suggests that of all plane figures of equal perimeter the circle 
has the maximum area. 

The list suggests that of all quadrilaterals of equal perimeter the 
square has the maximum area. 

The list suggests that of all triangles of equal perimeter the equi¬ 
lateral triangle has the largest area. 

The list suggests that of all polygons with a given number n of sides 
and with a perimeter of given length the regular polygon has the largest 
area. 

Another suggestion of the list: If two regular polygons have the same 
perimeter, the one with more sides has the larger area. (The more a 
polygon resembles the circle the larger seems to be its area.) 

None of these statements is proved by the list, which yields, however, 
some kind of reason to believe in them, more or less. 

Our experience may also suggest more general insights, such as the 
following: Verification in more cases gives us a stronger reason to 
believe. 

There may be other relevant remarks, and some of the foregoing 
remarks may come more readily after more examples. 
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15.4. Another example 

“The Greeks knew” said the teacher “a remarkable proposition on 
the area of the triangle which we call today ‘Heron’s formula’ and ex¬ 
press by the equation 

A2 : s(s — a)(s — b)(s — c) 

where A stands for the area of the triangle, a, b, and c for the lengths of 
the three sides, and 

5 
a + b + c 

2 

for the semiperimeter. 
“The proof for Heron’s formula is not quite simple, and I do not 

wish to enter into it today. In absence of a proof, however, we cannot 
be certain that the equation as it stands is correct—my memory may 
have failed me as I wrote it down. Could you check the formula? How 
could you check it?” 

- I would try it on the equilateral triangle. 
In this case a = b = c, s = 3a/2, and the formula yields the correct 

result. “What else could we do?” 
-1 would try it on a right triangle. 
- I would try it on an isosceles triangle. 
In the first case a2 = b2 + c2, in the second case b = c, and in both 

cases the formula yields, after some algebraic manipulation, the correct 
result. (The reader should work out the details.) 

“Do you like it?” 
- Yes, it checks. 
“Could you think of a further particular case that we should check?” 
“What about the degenerate triangle? I mean the extreme, or limit¬ 

ing, case in which the triangle collapses into a straight line segment.” 
In this case s = a (or b, or c) and the formula obviously yields the 

correct result. 
- Please, teacher, in how many cases must we check a formula, if we 

want to be sure that it is right? 
The reader may picture to himself the discussion started by the last 

question. 

15.5. Graphic representation of the inductive argument’s progress 

What is, and what is not, accomplished by the successive verifications 
of the proposed formula in sect. 15.4? Each verification deals with a 
certain triangular shape, and so a survey of all such shapes may con¬ 
tribute to elucidating our question. 
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Let x,y, and z denote the sides of a variable triangle listed in order of 
increasing length, so that 

0<x^y^z 

Then we must have 

x +y> z 

Now, as only the shape of the triangle matters, and not its size, we 
may assume that 

z = 1 

Thus we have three inequalities 

(1) x^y, y^ 1, x+y> 1 

Let us now represent the triangle with sides x, y, and 1, or triangle 
(x,y, 1) for short, by the point (x,y) in a plane the rectangular coordi¬ 
nates in which are x and y. Each one of the three inequalities (1) re¬ 
stricts the point (x, y ) to a half-plane (including the boundary line in 
the first two cases, excluding it in the third case). Jointly the three 
inequalities (1) characterize a set of points—the common part or inter¬ 
section of the three half-planes. This intersection is a triangle, see 
Fig. 15.1, with vertices (1, 1), (0, 1), and 0£, [including the vertex 
(1, 1) and the two adjacent sides, but excluding the two other vertices 
and the third side]. This triangular area represents the totality of tri¬ 
angular shapes; the point (x,y) represents the triangle (x,y, 1) and dif¬ 
ferent points represent different shapes. 

How are the particular cases considered in sect. 15.4 located in 
Fig. 15.1? 

First, we have verified the proposed formula for the equilateral tri¬ 
angle. Such a triangle is (1, 1, 1)—we mark with this symbol the corre¬ 
sponding point (1, 1) in Fig. 15.2. 

y 

(U) 

Fig. 15.1. The totality of triangular shapes. 
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angle. 

angles. 

Then we verified the formula for right triangles. If (x,y, 1) is a right 
triangle, its greatest side 1 must be its hypotenuse and, therefore, 

x2 + y2 = 1 

Hence the right triangles are represented in Fig. 15.3 by a circular arc 
(of the unit circle). 

Then we considered isosceles triangles. We should here distinguish 
between two kinds of isosceles triangles: either the two longer sides are 
equal and so 

7=1 

or the two shorter sides are equal and so 

x = y 

Hence, the points representing isosceles triangles fill two boundary lines 
in Fig. 15.4 (fully drawn there—they were just dotted in the foregoing 
Fig. 15.2 and 15.3). 
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Finally, for a degenerate (collapsing) triangle (x,y, 1) 

x +y = 1 

Such “triangles” are represented by the third boundary line, fully drawn 
in Fig. 15.5 (but just dotted in the foregoing Figs. 15.2, 15.3, and 15.4). 

Surveying the sequence of diagrams from Fig. 15.2 to Fig. 15.5, we 
may visualize the progress of the inductive argument. At the begin¬ 
ning, in Fig. 15.2, one point was enough to represent the extent of 
verification. Then more and more full lines appear in the diagram, 
indicating more and more classes of cases in which the verification has 
succeeded. 

The points representing the triangular shapes for which the formula 
in question has been verified, are distributed along lines. Yet the 
formula remains unverified for the “bulk” of the triangular shapes 
represented by the area not covered by those lines. Still, since the 
formula has been verified along the whole boundary and also along a 
crossing line, we may reasonably expect that it will turn out correct in 
all cases. The part suggests the whole and suggests it strongly. 

15.6. A historic example 

We are going to investigate a problem of solid geometry by follow¬ 
ing in the footsteps of two great mathematicians. I shall tell then- 
names later, but not too early, otherwise a good point of my story could 
be spoiled. 

(1) Analogy suggests a question. A polyhedron is enclosed by plane 
faces just so as a polygon is enclosed by straight sides; polyhedra in 
space are analogous to polygons in a plane. Yet polygons are simpler, 
more accessible than polyhedra, a question about polygons has a good 
chance to be much easier than the corresponding question about poly¬ 
hedra. When we know a fact about polygons, we should try to discover 
an analogous fact about polyhedra; in doing so we have a good chance 
to hit upon a stimulating question. 

For instance, we know that the sum of the angles in a triangle is the 
same for all triangles: it is, independently of the size and shape of the 
triangle, equal to 180°, or two right angles, or it (in radians; we shall 
prefer this last way of measuring angles). More generally, the sum of 
angles in a polygon with n sides is (n — 2)w. Now, let us try to dis¬ 
cover an analogous fact about polyhedra. 

(2) We try to exhaust the possibilities. Our goal, however, is not 
quite clear. We wish to find out something about the sum of the angles 
in a polyhedron—but what angles? 
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Each edge of the polyhedron is associated with a dihedral angle, in¬ 
cluded by the two faces adjacent to that edge. Each vertex of the poly¬ 
hedron is associated with a solid angle included by all the faces (three 
or more) adjacent to that vertex. Which kind of angle should we con¬ 
sider? Has the sum of all angles of the same kind some simple 
property? What about the sum of the six dihedral angles in a tetra¬ 
hedron? What about the sum of the four solid angles in a tetrahedron? 

It turns out that none of the two last named sums is independent of 
the shape of the tetrahedron (see ex. 15.14). How disappointing! We 
expected the tetrahedron to behave like a triangle. 

Still, we may be able to save our original idea. We have not yet 
exhausted all possibilities. There are, in a polyhedron, angles of still 
another kind (this kind is the most familiar, in fact): each face enclosed 
by n sides (by n edges of the polyhedron) contains n interior angles. Let 
us call such angles face angles, and let us try to find the sum of all face 
angles of the polyhedron. Let 2a denote the desired sum; see Fig. 15.6. 

(3) We observe. If we see no other approach to our problem, we can 
always attack it experimentally: we take a few polyhedra and we com¬ 
pute 2a (the sum of the face angles) for each. We may begin with the 
cube, see Fig. 15.7a. Each face of the cube is a square; the sum of the 
four angles in a square is 2m. As there are six faces, 2a is 

6 X 2m = \2m 

for the cube. We can handle just as easily the tetrahedron and the 
octahedron, see Fig. 15.76 and c. 

The three polyhedra we have examined so far are regular. Let us 
examine, for a change, some nonregular polyhedron, for instance a 
5-prism (a prism with pentagonal base, see Fig. 15.7*/). This prism has 
two kinds of faces: there are five parallelograms and two pentagons. 
Therefore, 2a is 

5 X 27t + 2 x 2>m = 1677- 

Fig. 15.6. Face angle. 
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Fig. 15.7. Polyhedra. 

for the 5-prism. Then let us take a polyhedron which we see less often 
in a classroom, see Fig. 15.7e: a pyramid is placed on a cube as “roof”; 
the resulting “tower” has 9 faces, 5 squares, and 4 triangles; hence its 
2a equals 

5x27r + 4xfl' = 14ir 

We collect our observations in Table I; to render more recognizable 
the polyhedra considered, let us note for each the number of its faces, F. 

TABLE I 

Polyhedron F 2a 

Cube 6 12ir 
Tetrahedron 4 
Octahedron 8 
5-Prism 7 I6v 

Tower 9 14*r 

Do you notice something worth noticing—some law or pattern or 
regularity? 
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(4) We observe, guided by an idea. It is not surprising that, at this 
stage of the game, we see nothing striking in the observational material 
hitherto collected; observation without some leading idea seldom pro¬ 
duces noteworthy results. 

In reflecting on our own procedure, we may find our way out of this 
impasse. In (3), we have repeatedly computed the grand total of the 
face angles 2a by taking first the sum of those angles that belong to the 
same face—we know this sum precisely, in fact the knowledge of this 
sum was the starting point of our inquiry. Let us now take, for a 
change, the sum of those angles that have the same corner of the poly¬ 
gon as vertex. We do not know this sum precisely, but we know that it 
is less than 2it, a full plane angle. (We now restrict ourselves explicitely 
to convex polyhedra; the fact quoted is intuitive, but you may look up 
Euclid XI 21 for a proof.) Let V denote the number of vertices of the 
polyhedron considered; we perceive that the grand total of the face 
angles 

2a < 277 V 

Let us verify this relation on our collected material! We extend our 
Table I into Table II. 

TABLE II 

Polyhedron F 2a V 2trV 

Cube 6 12tr 8 16tt 

Tetrahedron 4 4tt 4 8tr 

Octahedron 8 8tr 6 12»r 
5-Prism 7 16tt 10 20tt 
Tower 9 14tt 9 18tt 

In fact, throughout Table II, 2ttV is larger than 2a, and we can hardly 
fail to observe that the difference is constant 

2wV — 2a = 47t 

Is this a coincidence? A mere coincidence seems unlikely, and so we 
can hardly resist the temptation to guess that the relation observed 
holds not only in the few cases we have examined, but generally for all 
convex polyhedra. Thus we arrive at the conjecture 

(?) 2a : 2wV — 4it 

The query in parenthesis in front of the stated relation should remind us 
that it is not proved, merely conjectured. 
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(5) We test our conjecture. Our observation, guided by a lucky re¬ 
mark, produced a remarkable conjecture—but is it true? 

Let us check a few more cases. There are two more regular polyhedra 
to consider, the dodecahedron and the icosahedron, with F= 12 and 
F = 20, respectively. Furthermore, we could consider a general prism, 
the n-prism, the base of which is a polygon with n sides, then the 
n-pyramid with a base of the same nature, and the n-double-pyramid; 
the last consists of two n-pyramids standing on opposite sides of a com¬ 
mon base (which is not a face of the resulting double pyramid). The 
reader can easily extend Table II to the solids mentioned. 

EXTENSION OF TABLE II 

Polyhedron F 2a V 2 irV 

Dodecahedron 12 36w 20 40 v 

Icosahedron 20 20tt 12 24 it 

n- Prism n + 2 (4n — 4 )ir In 4 mr 

n-Pyramid n + 1 (2 n — 2)s7 n + 1 (2 n + 2)tr 

w-Double-pyramid In 2 nit n + 2 (2 n + 4) v 

The conjectural relation (?) is verified in all cases examined, which 
is gratifying but does not amount to a proof. 

(6) Reflections on the procedure followed. In computing 2a we have 
used the same procedure several times: we started by taking the sum 
of such angles as belong to the same face. Why not apply this proce¬ 
dure generally? 

To follow up this reflection we introduce suitable notation. Let 

S\, S2, S3, . . . , Sp 

denote the number of sides of the first, the second, the third, . . . , the 
last face, respectively. With this notation 

2a = 7r(ji — 2) + it{s2 — 2) + • • • + m(sp — 2) 

= n(si + s2 + • • • + sF - 2F) 

Now, Ji + S2 -I- S3 + • • • + sp is the total number of all the sides of 
all F faces. In this total each edge of the polyhedron is counted exactly 
twice (as it is adjacent to exactly two faces) and so 

Ji + ^2 + • • • + Sp = 2 E 

where E stands for the number of the edges of polyhedron. Hence we 
obtain 

(!) 2a : 2it(E — Fj 
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We have found here a second expression for 2a, but there is an essential 
difference: the first expression, (?) in subsection (4), was just conjec¬ 
tured, but (!) is proved. If we eliminate 2a from (?) and (!) we obtain 
the relation 

(??) F+ V= E + 2 

which, however, we have not proved and, therefore, we let (??) precede 
it. In fact, (??) is just as doubtful as (?); through the well-proven (!), 
each of the two relations (?) and (??) follows from the other, and so 
they stand and fall together, they are equivalent. 

(7) Verifications. Both the familiar relation (??) and the less famil¬ 
iar relation (?) were discovered by Euler, who did not know that 
Descartes found relations (?) and (!) before him. We know about 
Descartes’ work on this subject from a few brief sentences found among 
his unpublished manuscripts and printed about a century after Euler’s 
death.2 

Euler devoted two memoirs and a short remark of a third memoir to 
the subject.3 The remark is concerned with the sum of the solid angles 
in a tetrahedron [this sum depends on the shape, as we have said in 
subsection (2)]. On the whole, the preceding exposition follows Euler’s 
first memoir where he tells how he was led to his discovery, but offers 
no formal proof, only a variety of verifications. We wish to follow Euler 
also in this respect. By collecting the material from our foregoing tables 
and adjoining to it E, the number of edges, we obtain Table III. 

TABLE III 

Polyhedron F V E 

Tetrahedron 4 4 6 
Cube 6 8 12 
Octahedron 8 6 12 
Dodecahedron 12 20 30 

Icosahedron 20 12 30 

Tower 9 9 16 
n- Prism n + 2 In 3 n 

w-Pyramid n + 1 n + 1 2n 

w-Double-pyramid In n + 2 3 n 

The conjectured relation (??) is verified throughout Table III, which 
is gratifying but, of course, does not amount to a proof. 

2 Descartes, CEuvres, vol. X, pp. 265-269. 

3Euler, Opera Omnia, ser. 1, vol. 26, pp. XIV-XVI, 71-108, and 217-218. 
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(8) Reflections on the result obtained. In his second memoir, Euler 
attempted a proof for (??). His attempt failed, however; there is an 
essential gap in his proof. Yet, in fact, the foregoing considerations 
have brought us quite close to a proof; we just need to realize how far 
we have advanced. 

Let us try to realize the full meaning of our result (!). Especially, 
let us see what happens when the polyhedron varies. Let us imagine 
that the polyhedron changes continuously; its faces are gradually inclin¬ 
ing so that their lines and points of intersection, the edges and vertices 
of the polyhedron, are continuously changing, yet so that the “general 
plan,” or “morphological structure,” of the polyhedron, the connec¬ 
tion between its faces, edges and vertices, remains unchanged. Then 
also the numbers F, E, and V (of faces, edges, and vertices respectively) 
remain unchanged. Such a change may affect each face angle a in¬ 
dividually, but, by virtue of the well-proven (!), it cannot affect the 
face angles collectively, that is, it must leave 2a, the sum of all face 
angles, unchanged. And here we may see an opportunity to profit by 
such a change: the change could reduce the proposed polyhedron to 
some more accessible form for which we might more easily compute 
the (unchanged!) 2a. 

Indeed, let us choose one of the faces of the polyhedron as “base.” 
We place this base horizontally and we stretch it (whereas the other 
faces shrink) so that eventually the whole polyhedron can be orthog¬ 
onally projected onto its base; Fig. 15.8 shows the result (a) for a cube 
and (b) for a “general” polyhedron. The result is a collapsed poly¬ 
hedron, flattened into two superposed polygonal sheets (with the same 
rim): the lower sheet (the “stretched base”) is undivided, the upper 
sheet is divided into F — 1 subpolygons, F being the number of faces 
of the original polyhedron. We let r denote the number of sides of the 
polygonal rim enclosing both sheets. 

We compute 2a for the flattened polyhedron (we know that it has 
the same value for the original, unflattened polyhedron). The total 
sum consists of three parts. 

7 7 

z Z 
Fig. 15.8. Flattened polyhedra. 
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The sum of the angles in the lower sheet (the “stretched base”) is 
(r - 2)tt. 

The sum of the angles on the rim of the upper sheet is the same. 
There remain the angles in the interior of the upper sheet; they sur¬ 

round the V — r interior vertices and so their sum is (V — r)2w. 
From the three component parts, we obtain 

2a : 2(r — 2)w + (V— r)2w 

= 2it V — Aw 

This proves our conjecture (?) and, therefore, also our conjecture (??). 

15.7. Scientific method: guess and test 

The foregoing examples suggest general insights. Of course, such 
insights will emerge more spontaneously and with better documenta¬ 
tion from more work on these examples and on similar ones (see the 
Examples and Comments at the end of this chapter). Yet, even what 
we have discussed may lead to some remarks tending toward the 
following. 

Observation may lead to discovery. 
Observation should disclose some regularity, pattern, or law. 
Observation has more chance to yield worthwhile results if guided 

by some good remark, by some insight [as in sect. 15.6(4) ]. 
Observation yields only tentative generalizations, conjectures, not 

proofs. 

Test your conjecture: examine particular cases and consequences. 
Any particular case or consequence that is verified (turns out to be 

true) adds to the credit of the conjecture. 
Distinguish carefully between suggestion and proof, between con¬ 

jecture and fact. 
Do not neglect analogies: they may lead to discovery [as the analogy 

between polygons and polyhedra, sect. 15.6(1)]. 
Examine extreme cases [such as degenerate triangles and collapsed 

polyhedra, sect. 15.4 and sect. 15.6(8)]. 
These remarks would deserve to be stated more precisely, with more 

details, with more system and, especially, with much broader documen¬ 
tation (cf MPR). Yet even as they stand, as they may emerge from 
examples such as the preceding and from well-directed classroom dis¬ 
cussions, they can give students on the high school level a basic insight 
into the nature of science. Philosophers, past and present, have offered 
and do offer widely divergent views about the nature of science, of 
“scientific method,” of “induction,” etc. Yet what do scientists actually 
do? They devise hypothetical explanations and submit their hy- 
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potheses to the test of experience. If you want a description of scientific 
method in three syllables, I propose: 

GUESS AND TEST 

15.8. Some desirable features of “research problems” 

The problems just presented differ from the usual routine problems 
in several respects. I wish to emphasize just three points. 

(1) The schoolboy receives his problem ready made from the text¬ 
book or from the teacher and, in many cases, the teacher cares little 
and the textbook less whether the boy takes any interest or not in the 
problem. On the contrary, the mathematician’s most crucial step may 
be to choose his problem; to spot, to invent a problem that is attractive 
and worthwhile but not beyond his force. In sect. 15.2 and 15.4 the 
teacher proceeds so that the students should have some share in pro¬ 
posing the problem [Cf. sect. 14.5(1)]. 

(2) Most textbook problems have little connection; they serve to 
illustrate just one rule and offer some practice in its application. After 
having rendered this service they may sink into oblivion. Yet the prob¬ 
lems of sect. 15.2 and 15.6 have a rich background; they suggest challeng¬ 
ing problems which suggest further challenging problems, until the 
ramifications of the original problem cover a wide domain. (Such 
ramifications will be discussed to some extent in the Examples and 
Comments at the end of the chapter.) 

(3) In many classrooms “guessing” is taboo, whereas in mathe¬ 
matical research “First guess then prove” is almost the rule. In the 
foregoing problems, observation, conjectures, inductive arguments, in 
short, plausible reasoning play a prominent role. 

(4) Although point (1) (participation of the students in proposing 
the problem) is not unimportant, the other two points are more 
momentous. Problems with a background connected with the world 
around us, or with other domains of thought, and problems involving 
plausible reasoning, challenging the judgment of the students,have more 
chance to lead them to intellectual maturity than the problems that fill 
the textbooks and serve only to practice this or that isolated rule. 

15.9. Conclusion 

As I see them, examples and remarks such as those presented in this 
chapter are communicable on the high school level and they can do, 
let us say, three things for the students. 

First, they may give the student a taste of mathematics in the making, 
of independent creative work. 
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Second, and this is even more important, as it may serve a larger frac¬ 
tion of the student population: they contribute not only to the under¬ 
standing of mathematics, but also to that of the other sciences. In fact, 
they give a reasonably good first idea of “inductive research” and 
“scientific method.” 

Third, they reveal an aspect of mathematics which is as important 
as it is rarely mentioned; mathematics appears here as a close relative 
to the natural sciences, as a sort of “observational science” in which 
observation and analogy may lead to discoveries. This aspect should 
especially appeal to prospective users of mathematics, to future scien¬ 
tists and engineers. 

And so I hope that mathematical discovery, scientific method, and 
the inductive aspect of mathematics will not be so completely neglected 
in the high schools of the future as they are in the high schools of today. 

Examples and Comments on Chapter 15 

First Part 

15.1. Among the several conjectures suggested by the list of sect. 15.2 and 
stated in sect. 15.3, are there some that you can prove? Pick out some readily 
accessible assertion and prove it. 

15.2. [Sect. 15.4] Devise further means to check Heron’s formula. 

15.3. [Sect. 15.5] In Fig. 15.5, an arc of the unit circle divides the triangle (the 
points of which represent triangular shapes) into two parts, one above, the other 
below, the arc. What is the difference between the shapes represented by those 

two parts? 

15.4. [Sect. 15.6(8)] Try to devise a more definite transition from the “general” 
convex polyhedron to the “flattened” one. 

15.5. We consider a convex polyhedron with F faces, V vertices, and E edges. 
Let 

Fn stand for the number of those faces that have precisely n sides, and 
V„ for the number of those vertices in which precisely n edges meet. 
Tell the value of 2F„ and that of 2 V„; the sign 2 is used here as an abbreviation 

X 

for ^ . (Of course, only a finite number among the F„ are different from 0, and 
n=3 

the same holds for V„; hence, in fact, 2 denotes a finite sum. The sign 2 will be 
used in the same sense in some of the following connected problems.) 

15.6. (Continued) Express the number of the face angles in several different 
ways. 

15.7. (Continued) By appropriately chosen diagonals (“face diagonals”) which 
do not cross each other, dissect each face of a polyhedron into triangles. Express 
in several different ways the number of triangles into which the total surface of 
the polyhedron is so divided. 
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15.8. Show that 

Can the case of equality be attained in the first inequality, and under what circum¬ 

stances? Analogous question for the second inequality. 

15.9. Show that in any convex polyhedron the average of the face angles is 
never less than it/3 but always less than 2w/3. 

15.10. Show that in any convex polyhedron there must be a face with less than 
6 sides. 

15.11. Being given V, the number of vertices of a convex polyhedron, find the 
maximum of F and the maximum of E. Under what condition are these maxima 
attained? 

15.12. Being given F, the number of faces of a convex polyhedron, find the 
maximum of V and the maximum of E. Under what condition are these maxima 

attained? 

15.13. When a straight-line segment connects two vertices of a convex poly¬ 
hedron, there are three possible cases: the connecting segment may be an edge, 
or a face diagonal, or a diagonal. The last case arises iff, except the two endpoints, 
no point of the segment lies on the surface of the polyhedron. Let D denote the 
number of diagonals of the polyhedron; E, F, V, Fn, and V„ will be used in the 
same meaning as earlier. 

(1) Find D for the five regular polyhedra. 
(2) Find D for the w-prism, the w-pyramid, and the w-double-pyramid. 
(3) Express D in terms of F when all faces of the polyhedron are polygons with 

the same number of sides n = 3, 4, 5,.... 
(4) Express D generally. 
Illustrate each general case by examples. Be careful; questions may be 

misleading. 

15.14. [Sect. 15.6(2)] We consider a tetrahedron and let 25 stand for the sum 
of its six dihedral angles and 2m stand for the sum of its four solid angles. 

Compute these two sums in the following three limiting cases: 
(1) The tetrahedron collapses into a triangle, three edges become sides of the 

triangle, three other edges line segments drawn from an interior point of the 
triangle to its vertices. 

(2) The tetrahedron collapses into a convex quadrilateral, its six edges become 
the four sides and the two diagonals of the quadrilateral. 

(3) One vertex of the tetrahedron goes to infinity, the three edges converging 
to it become parallel and perpendicular to the opposite face. 

(A sphere with radius 1 is described about the vertex of a polyhedral angle as 
center. That part of the surface of the sphere that falls within the polyhedral 
angle is a spherical polygon. The area of this spherical polygon measures the 
“solid angle.”) 

15.15. (Continued) Examine the answer to ex. 15.14. Compare the two sums 
examined. Do they vary in the same way? Are their variations related? 
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15.16. For a polyhedron with F faces, V vertices, and E edges, we let 25 denote 
the sum of its E dihedral angles and 2m the sum of its V solid angles. Compute 
the two sums for a cube. 

15.17. (Continued) Compute the two sums for two different easily accessible 
(degenerate) cases of the w-pyramid. 

15.18. (Continued) Compute the two sums in accessible (limiting) cases of 
the fl-prism and the w-double-pyramid. 

15.19. (Continued) In all cases considered, compare the two sums with F, V, 

and E; observe the variation of the quantities compared; which variations appear 
most closely related? 

15.20. (Continued) If you have found a rule that is supported by all your ob¬ 
servations, try to prove it. 

Second Part 

15.21. Try to guess the answers to the following questions. 
Of all triangles inscribed in a given circle which one has the largest area? 
Of all quadrilaterals inscribed in a given circle which one has the largest area? 
Of all polygons with a given number n of sides inscribed in a given circle which 

one has the largest area? 

15.22. Try to guess the answers to the following questions. 
Of all the triangles circumscribed about a given circle which one has the smallest 

area? 
Of all the quadrilaterals circumscribed about a given circle which one has the 

smallest area? 
Of all the polygons with a given number n of sides circumscribed about a given 

circle which one has the smallest area? 

15.23. The Principle of Non-Sufficient Reason. The “usual” answers given to 
ex. 15.21 and 15.22 are correct.4 We shall not discuss the proof here. We wish 
to explore why do people so often guess correctly in similar situations. 

Of course, we cannot expect to find a very definite answer. Yet I think that the 
following expresses feelings voiced by many people. 

Why are the regular polygons so popular? The circle is the most “perfect,” the 
most symmetric plane figure; it has infinitely many axes of symmetry, it is sym¬ 
metric with respect to each of its diameters. Of all polygons with a given number 
of sides the regular polygon is the “nearest in perfection” to the circle: it is the 
most symmetric, it has more axes of symmetry than the others. And so we expect 
that the inscribed regular polygon will “fill” the circle better (and the circum¬ 
scribed regular polygon will “hug” the circle tighter) than any other polygon 
with the same number of sides. 

Analogy plays a role too. The regular polygon yields the extremum in the 
isoperimetric problem (sect. 15.3, ex. 15.1) which is similar to the foregoing 
problems. 

4 Concerning ex. 15.21 see MPR vol. 1, pp. 127-128. 
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There are still other plausible arguments. We are going to discuss one that is 
rather subtle but deserves special attention. We are facing here problems with 
several unknowns where the condition is the same for each unknown; the condi¬ 
tion does not favor any vertex of the polygon more than any other vertex, no side 
more than any other side. Hence we may expect that, in the polygon that satisfies 
the condition and so solves the problem, all sides will be equal and all angles will 
be equal. Thus we expect that the regular polygon will be the solution. 

Underlying this expectation is a principle of plausible inference which we may 
try to express as follows: 

“No one should be favored of eligible possibilities among which there is no 
sufficient reason to choose.” 

We may term this the “Principle of Non-Sufficient Reason.”This principle is of 
some importance in problem solving; quite often it enables us to forecast the 
solution, or choose the procedure leading to the solution. In a mathematical 
context, a more specific formulation of the principle may be advantageous: 

“Unknowns that play the same role in the condition may be expected to play 
the same role in the solution.” 

Or shorter: “No difference in the conditions, no difference in the results.” Or: 
“Expect the same values for unknowns subject to the same conditions.” 

In geometrical problems, the principle favors symmetry (as we have seen.) 
Hence we may sometimes find the following formulations of the principle of 
nonsufficient reason more suggestive (although, in fact, they are less clear): 

“We expect that any symmetry found in the data and condition of the problem 
will be mirrored by the solution.” 

“Symmetry should result from symmetry.” 
To some extent, the “symmetry found in the data and condition” should be 

mirrored not only by the “solving object” but also by the “solving procedure.”5 
Of course, we should not forget that the principle is merely heuristic and should 

not take plausibility for certainty.6 
The principle of nonsufficient reason plays a certain role also in not purely 

mathematical questions.7 
A striking example which flies in the face of the principle can be concisely de¬ 

scribed if we use some algebraic terminology. The problem is: Find n quantities 
of which the n elementary symmetric functions are given. The principle of non¬ 
sufficient reason makes us expect that those n quantities will be equal. Yet the 
n roots of an algebraic equation of which the coefficients are given “at random” 
should be expected to be all different from each other. 

15.24. The ass of Buridan. An ass was very hungry when he found himself fac¬ 
ing two equal and equally appetizing haystacks, one to his left, the other to his 
right, and himself in such a position in the middle that there was perfect symmetry. 

5See HSI, pp. 199-200 (Symmetry), and ex. 5.13 for the terminology. 

6Cf MPR, vol. 1, pp. 186-188, ex. 40 and 41. See also a paper of the author “On the 

role of the circle in certain variational problems” Annales Univ. Scient. Budapest. Sectio 
Math. v. 3-4, 1960-61, pp. 233-239. 

7 See J. M. Keynes, A treatise on probability, pp. 41-64. 



162 TOWARD A GENERAL METHOD 

Attracted equally by both haystacks the ass could not decide between them and 
died of hunger. 

Poor ass—he fell a victim to the principle of nonsufficient reason. 

15.25. Of all polyhedra inscribed in a given sphere and having a given number 
V of vertices, which one has the largest volume? 

Try to guess the answer for V= 4, 6, and 8. 

15.26. Of all polyhedra circumscribed about a given sphere and having a given 
number F of faces, which one has the smallest volume? 

Try to guess the answer for F = 4, 6, and 8. 

15.27. Given the radius r of a sphere, compute the volume of the inscribed cube. 

15.28. Consider the sphere with radius r as the globe. Inscribe a regular 
hexagon in the equator. The six vertices of this hexagon, the north pole, and the 
south pole are the eight vertices of a double pyramid. Compute its volume. 

Any remarks? 

15.29. Given the radius r of a sphere, compute the volume of the circumscribed 
regular octahedron. 

1530. A right prism with regular hexagonal base is circumscribed about a 
sphere with radius r, which we regard as the globe. The surface of the prism 
touches the sphere in six points equally spaced along the equator, in the north 
pole, and in the south pole. Compute the volume of the prism. 

Any remarks? 

1531. Compare the solids considered in the foregoing (ex. 15.27 with ex. 15.28, 
ex. 15.29 with ex. 15.30) and try to find a plausible explanation. 

1532. Here is a plausible assumption: of two polyhedra inscribed in the same 
sphere and having the same number V of vertices, the one with more faces and 
edges has more chance to “fill” the sphere. Granted this, what kind of polyhedron 
do you expect to be the solution of ex. 15.25? 

1533. Here is a plausible assumption: of two polyhedra circumscribed about 
the same sphere and having the same number F of faces, the one with more vertices 
and edges has more chance to “hug” the sphere tighter. Granted this, what kind 
of polyhedron do you expect to be the solution of ex. 15.26? 

1534. Are there any more remarks suggested by ex. 15.31? 

1535. Of all polyhedra having a given surface area and a given number F of 
faces, which one has the largest volume? 

Try to guess the answer for F = 4, 6, and 8. 

1536. Solve the system, giving all solutions: 

lx2 - 4xy + 3\y2 = 36 
3*2 - 4xy + 2_y2 = 36 

What about the principle of nonsufficient reason? 
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Fig. 15.9. Equal weights at equal distances. 

-a- 

O O 
15.37. Solve the system, giving all solutions: 

6x2 + 3y2 + 3 z2 + 8 (yz + zx + xy) = 36 
3*2 + 6/2 + 3z2 + 8 (yz + zx + xy) = 36 
3*2 + 3y2 + 6 z2 + 8 (yz + zx + xy) = 36 

1538. Solve the system, giving all solutions: 

x2 + 5y2 + 6 z2 + 8 (yz + zx + xy) = 36 
6x2 + y2 + 5 z2 + 8 (yz + zx + xy) = 36 
5x2 + 6y2 + z2 + 8 (yz + zx + xy) = 36 

1539. The principle of nonsufficient reason in physics. Or, nature ought to be 
predictable. The beginning of Archimedes’ work “On the Equilibrium of Planes 
or the Centres of Gravity of Planes”8 deals with the equilibrium of the lever. (The 
lever is a rigid horizontal bar supported at one point which is called the fulcrum; 
the weight of the bar is regarded as negligible.) Archimedes considers the case 
where the midpoint of the lever is the fulcrum and the two endpoints carry equal 
weights, see Fig. 15.9; he admits as evident that in this situation of perfect sym¬ 
metry there is equilibrium; in fact, his first postulate states: “Equal weights at 
equal distances are in equilibrium.” Indeed, the lever is in the situation of 
Buridan’s ass: it has no sufficient reason to incline to one side rather than to the 
other. 

We can penetrate here a little deeper. Let us see what happens if somebody 
contradicts Archimedes’ postulate and proposes a different rule: in the situation 
of Fig. 15.9 the right-hand weight will sink. Well, if this prediction turns out cor¬ 
rect for me as I am looking at the lever, it must turn out wrong for my friend who, 
facing me, is looking at the lever from the opposite side: the rule which contradicts 
Archimedes’ postulate cannot be generally valid. We may now perceive a deeper 
source of the confidence with which we are inclined to accept Archimedes’ 
postulate: we want nature to be predictable. 

15.40. Choosing n points on a spherical surface. We restate ex. 15.25 and ex. 
15.26 as the first two in a series of analogous problems. 

On the surface of a given sphere choose n points so that 
(1) the inscribed polyhedron of which the vertices are the n points should have 

maximum volume; 
(2) the circumscribed polyhedron the n faces of which touch the sphere in then 

points should have minimum volume; 
(3) the shortest of the n(n — l)/2 distances between the n points should 

8 See his Works, edited by T. L. Heath, p. 189. 
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be a maximum (a “maximum minimorum”: this is the “problem of the n 

misanthropes”); 
(4) each point carrying a unit electric charge, the n mutually repelling charges 

should be in the most stable electrostatic equilibrium. 
(5) On the surface of the sphere, there is an arbitrary continuous mass distri¬ 

bution the density of which is observed at n points. Choose the n points so that 
on the basis of those n observations the total mass can be most accurately esti¬ 
mated. (This is the “problem of the n reporters” of a worldwide news agency, or 
the problem of best interpolation. For a line segment, Gauss has solved the analo¬ 
gous problem, in a certain sense, by his celebrated mechanical quadrature.) 

In all five foregoing problems, if n = 4, 6, 8, 12, or 20, the vertices of a certain 
inscribed regular polyhedron deserve consideration, although they may not yield 
the solution as certain foregoing examples show. Cfi L. Fejes-T6th, Lagerungen 
in der Ebene, auf der Kugel und im Raum. 

If the n points are chosen at random (the n brightest fixed stars on the sky ap¬ 
pear to be so chosen when n is not very large), the average distance of a point from 
its next neighbor, its second next neighbor, its third next neighbor, and so on, can 
be computed. See a paper of the author, Vierteljahrsschrift der Naturforschenden 
Gesellschaft in Ziirich, v. 80, 1935, pp. 126-130. 

Third Part 

15.41. More problems. Consider some research problems similar to, but dif¬ 
ferent from, the problems discussed in this chapter. Pay especial attention to 
such questions as the following: Does the problem fit, and where does it fit, into 
the curriculum? Is the problem instructive? Has it a worthwhile background? 
Does it illustrate some idea of general interest? Does it afford opportunity for 
inductive, plausible reasoning? Or opportunity for a challenging proof on the 
level of the class? How should it be presented to the class? 

15.42. In sect. 15.4 we tested a general formula by discussing particular cases. 
Where have you opportunity for a discussion of this kind? Carry through such 
a discussion in a few more cases. What is the merit of such a discussion? 

15.43. The main purpose of sect. 15.5 is to illustrate graphically an aspect of 
inductive reasoning. Could the students benefit from this section in other 
respects? 

15.44. Periodic decimals. The three decimal expansions 

£ = 0.166666666... 

£ = 0.142857142... 

£ = 0.125 

belong to three different types. The one representing £ is a terminating decimal 

expansion, the two others are infinite. In fact, they are recurring, repeating, or 

periodic decimals; with the standard notation, they are written in the form 

£ = 0.16 

£ = 0.142857 
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The bar is placed over the repetend or period, that is, the sequence of digits that 
must be infinitely often repeated. The period of £ is of length 1, that of \ of length 
6; generally, the number of digits in a period is called its length. The decimal ex¬ 
pansion of \ is purely periodic that for £ is mixed: The first does not and the second 
does contain an initial sequence of digits that does not belong to the period. Here 
is one more example for each of the three types 

= 0.8863 # = 0.703 $$ = 0.95 

Find out by observation as much as you can about the three types of decimal 
expansions, about the length of their periods, about the distribution of the digits 
in the period, or whatever else you find worth noticing. Try to prove or disprove 
the guesses to which observation leads you. 

Choose the fractions you wish to observe, or look at the decimal fractions into 
which the numbers mentioned under (1) through (7) are expanded. 

(1) *,*,*,*,*,*,* 
(2) 
(3) All proper fractions with a denominator that is relative prime to the nu¬ 

merator and is less than 14. 
(4) All proper fractions with denominator 27 whose numerator is relative 

prime to 27. 

(5) i. I; tV* iVi tV* tAt> rh 
(6) ^9, 9^9, 9^99 
(7) iV) T&T> 1001> loioi 

At any rate observe and try to understand thoroughly that 

7.00000 ... = 6.99999 ... 

0.50000 ... = 0.49999 ... 

15.45. (Continued) Observe that 

i = 0.111111 ... 

■f, = 0.037037 ... 

9^ = 0.01010101 ... 

jfr = 0.0036900369 .. 

tV = 0.090909 ... 

tV = 0.027027 ... 

jfr = 0.00990099 .. 

9^9 = 0.0027100271 

and explain. 

15.46. (Continued) Starting from decimal expansions and passing from the 
base 10 to the base 2 we arrive at binary expansions. Here is an example: 

} = 0.01010101 ... 

if we interpret the right-hand side in the binary system, that is, if we take the fore¬ 
going equation in the meaning 

1 = -L + -L + -L + -L+ ... 
3 22 24 26 28 

Examine binary expansions in the same way as decimal expansions have been 
examined in ex. 15.44 and 15.45. 
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(a) (b) (c) 

Fig. 15.10. Triangular and trapezoidal numbers. 

15.47. (Continued) Assess the educational merit of the project of research 
sketched in ex. 15.44, 15.45, and 15.46. 

15.48. Trapezoidal numbers: Fig. 15.10a represents the triangular number 

1+2 + 3+ 4=10 

cf. ex. 3.38 and Fig. 3.8. We could call analogously the number 

3 + 4 + 5 = 12 

represented by Fig. 15.106 a “trapezoidal” number. If we include extreme cases 
in our definition (which is often desirable) we must regard also the numbers 
represented by (a) and (c) in Fig. 15.10 as “trapezoidal.” Yet then each positive 
integer would be “trapezoidal” (since it can be represented by one row of points 
as in Fig. 15.10c) and the definition would be pointless. Thus we are led to the 
following definition. 

Let t (n) denote the number of trapezoidal representations of the positive integer 
n, that is, the number of representations of n as sum of consecutive positive in¬ 
tegers. Here are a few examples: 

6= 1 +2 + 3 

15 = 7 + 8 = 4 + 5 + 6=1+2+3 + 4 + 5 

When 

n = 1, 2, 3, 6, 15, 81, 105 
t(n) = 1, 1, 2, 2, 4, 5, 8 

Find a “simple expression” for t (n) by appropriate observation followed, if pos¬ 
sible, by a proof. 

15.49. (Continued) Fig. 15.11 offers graphic help to survey your observations. 
Let us call the expression of n in the form 

n = a + (a + 1) + (a + 2) + • • • + (a + r - 1) 

(a sum of r terms) a trapezoidal representation of n with r rows. Iff n admits a 
trapezoidal representation with r rows, the point with abscissa n and ordinate r 
is marked with a dot in Fig. 15.11. 

If t(n) = 1, the only trapezoidal representation of n must be the “trivial” rep¬ 
resentation with r = 1. List the numbers n in Fig. 15.11 for which t(n) = 1. 

What is t (p) if p is a prime number? 
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15.50. (Continued) Let s(n) denote the number of representations of the posi¬ 
tive integer n as sum of consecutive odd positive integers. Find an expression 
for s («). 

Examples 

15 = 3 + 5 + 7 
45 = 13 + 15 + 17 = 5 + 7 + 9 + 11 + 13 
48 = 23 + 25 = 9+11 + 13 + 15 = 3 + 5 + 7 + 9+11 + 13 

When 

n = 2, 3, 4, 15,45, 48, 105 
s(ri) = 0, 1, 1, 2, 3, 3, 4 

15.51. Assess the project of research sketched in ex. 15.48 and 15.49. 

15.52. Consider three plane figures: 
(1) a square with a vertical diagonal, 
(2) the circle (with radius a) circumscribed about it, 
(3) the square circumscribed about the circle with a vertical side. 
The vertical diagonal of (1) divides each figure in two symmetric halves. 

Rotating about their common vertical axis of symmetry, the three plane figures 
describe three solid figures: 

(1) a double cone, 
(2) a sphere, 
(3) a cylinder. 

Compute, in all three cases, 
V, the volume of the solid figure, 
S, the surface area of the solid figure, 
A, the area of the plane figure, 
L, the perimeter of the plane figure, 

XA, the distance of the center of gravity of the half-area of the plane figure from 
the axis of revolution, 

Xi„ the distance of the center of gravity of the half perimeter of the plane figure 
from the axis of revolution. 

Group the eighteen quantities in a 3 x 6 table, observe, and try to explain what 
you have observed. 

r 

Fig. 15.11. Trapezoidal representation of n with r rows. 
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15.53. Observe that 

y/2-l = V2- VT 

(V2- 1)2 = 3 - 2V2 =V9-V8 

(V2 - 1)3 = 5y/l - 7 =V50-V49 

(yjl — l)4 = 17 — 12V2 = t/289 _ ^/288 

try to generalize, and prove your guess. 

15.54. Quite often it matters little what your guess is, but it always matters a 
lot how you test your guess. 

15.55. Fact and conjecture. The following story of which I cannot guarantee 
the authenticity is about Sir John and a janitor. Sir John, who is a member of 
the Royal Society, can be expected to draw a sharp distinction between a fact and 
a conjecture; the janitor, who is employed in the Royal Society building, unex¬ 
pectedly drew such a distinction on a certain occasion. 

One day Sir John arrived somewhat late to a meeting of the Royal Society and 
was visibly in a hurry. He had to deposit his hat in the cloakroom and receive a 
check with a number for it. The janitor who was in charge of the cloakroom that 
day said obligingly: “Please, do not wait for the check, Sir, I shall give you your 
hat without a check.” Sir John went thankfully to the meeting without the check, 
but was somewhat worried about the fate of his hat. When, however, he entered 
the cloakroom after the meeting, the janitor, without hesitation, gave him his hat. 
Sir John was visibly pleased, and I do not know what prompted him to ask the 
janitor: “How did you know that this is my hat?” I do not know either what 
happened to the janitor—perhaps he found Sir John’s tone unduly patronizing— 
at any rate he answered rather sharply: “Sir, I do not know whether it is your hat; 
it is the hat you gave me.” 

r 

Fig. 15.12. For the observant reader, a diagram due to Leibnitz: n is divisible by r. 
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Chapter 7 

7.1. The connecting lines exhibited by Fig. 7.10 indicate the relation 

F=Q + 4 T+ 4 P 

Obviously 

Q = a2h, 7= f P=J (^T^)2 

Introduce the connecting lines indicating these relations into Fig. 7.10 and 
satisfy yourself that the foregoing relations yield the same final expression for F 

as the approach considered in the text. 

7.2. See Fig. S7.2, (3) and (4); the latter represents the mental situation just 
before the dramatic last line in Volume I, p. 36. 

No solution: 7.3, 7.4, 7.5. 

(3) 
D 

(4) 
D 

Fig. S7.2. 

169 
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Chapter 8 

8.3. (Stanford 1956.) From Fig. 8.3 

AB' = -A-, AC = -4= 

Apply the law of cosines to AB’AC': 

3x2 = b2 + c2 — 2be cos + -yj 

Apply the law of cosines to AABC to express be cos a, set be sin a = 2 T where T 

is the area of AABC, and obtain 

6x2 = a2 + b2 + c2 + 4 \/T T 

T is symmetric in a, b, and c. 

8.4. The cross-section is 

(1) a rectangle with area 2yz = *2 , 

(2) a right triangle with area = ^(a ~y ) ; 

(3) a segment of a circle. 

Plan (2) is preferable (rational function of y) and the desired volume equals 

*£1 *zdy = 2fL 

No solution: 8.1, 8.2, 8.5, 8.6, 8.7, 8.8. 
Chapter 9 

9.5. See sect. 4.4. The theorem A, stated in sect. 4.4(1) and illustrated by 
Fig. 4.4 is proved by the help of the weaker theorem B, stated in sect. 4.4(2) and 
illustrated by Fig. 4.3. 

9.6. The problems A and B are equivalent. There is a distinct advantage in 
passing from A to B since we arrive so at smaller numbers. Repeating this pas¬ 
sage, we obtain successively the following pairs of numbers: 

(437,323) (323,114) (209,114) (114,95) (95,19) 
(76,19) (57,19) (38,19) (19,19) 

Thus all the common divisors of 437 and 323 are 1 and 19, the divisors of 19 which 
is their greatest common divisor. The procedure used in this example is generally 
applicable, is of basic importance, and is called Euclid’s algorithm (see Euclid 
VII 2). 

9.7. (1) Under certain important and frequently arising circumstances the 
condition of B is wider than that of A. (Here is a simple case: f(x) is defined, 
continuous, and possesses a derivative in the closed interval a^x^b\ moreover 
it is known that the maximum off(x) is not attained for x = a nor for* = b.) 

(2) Finding the roots of the equation f(x) = 0 appears in most cases as the 
more familiar problem; moreover we know means to remove those roots which 
do not yield the maximum of f(x). 
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9.8. (1) Theorem B is stronger; it immediately implies A. 

(2) B is easier to prove than A, because B adds to A a precise detail on which 
we can start to work: if we have only the less complete statement A, we have still 
to discover that precise detail, or some equivalent fact; the stronger theorem B 

is more accessible than A, because it is more explicit than A. This is a typical 
case (cf. HSI, pp. 114-121, especially p. 121, Induction and mathematical induc¬ 
tion, especially point 7). 

(3) Let A denote any vertex of the triangle and M the midpoint of the opposite 
side; prove first that A MGO ~ A AGE, from which MO || AE follows. 

9.9. (1) A is a problem to prove, B is a problem to find which is more ambitious 
than A: we can foresee from the outset that a complete solution of B will either 
prove or disprove the assertion stated by A. 

(2) A is a problem on limits, B on algebraic inequalities, and so B appears 
more elementary. 

(3) We omit the case t g 1 which is easier. In the case t < 1 we have a chain 
of equivalent conditions: 

y/x + 1 f + y/x 

1 < t2 + 2eyfx 

That is, from a certain value of x onward, the quantity y/x + 1 — y/x is less than 

t, an arbitrary (arbitrarily small!) positive quantity. This proves A. 

9.10. (1) The two propositions with which A and B are concerned are equiva¬ 
lent (by contraposition) and so are the two problems A and B themselves. 

(2) The statement, “n is composite,” affirms the existence of two integers a 

and b such that n = ab, a > 1, b > 1. The statement “n is prime” denies that n 

is composite (we can disregard here the case n = 1) and this “negative” statement 
offers “less foothold.” Hence B appears more tractable. 

(3) Ifn = ab 

2n — 1 = (2“)& - 1 

is divisible by 2° — 1. 

9.11. Set, for m = 1, 2, 3,... , 

a3m-2 = 2m~1/3, a3m_i = a3m = -m~1/3 

For a generalization of the present problem see American Mathematical 

Monthly, vol. 53, 1946, pp. 283-284, problem 4142. It seems impossible to set 
up helpful additional requirements, like (III) and (IV), without some idea, with¬ 
out some premonition or anticipation of the solution. 

9.12. Ifp\, p2,... ,pi are different primes, and n = • • • pfl then 

t(n) = (ai + \)(a2 + 1) • • • (a, + 1) 

9.13. Ex. 1.47 and sect. 1.3(1); sect. 2.5(2), 2.5(3); sect. 3.2 and sect. 3.1. 
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9.15. Why? Here are two more tasks analogous to ex. 9.6-9.10. 
(I) Compare the two problems: 

A. Find ^T00. 

B. Find \/100. 

t(II) Let f(x) and g(x) stand for some given functions. Compare the two 
problems: 

A. Prove that f fix) dx= Ja g(x) dx- 

B. Prove that /(x) =2 g(x) for a ^ x ^ b. 

Wherefrom? Auxiliary problems that originate, overtly or covertly, from one 
or the other of the four sources named seem to be the most usual. An instructive 
example: generalization, specialization, and analogy contribute jointly to the 
solution of ex. 3.84; see Vol. 1, p. 97, p. 191, and HSI ex. 20, pp. 238, 241-242, 
252-253. 

No solution: 9.1, 9.2, 93, 9.4, 9.14. 
Chapter 10 

10.2. 
(1) 

_E_ 

_E_A  

_ W _ E_A  

_W_ E_H_A_ 

_W_ E_H_A_T 

(2) 
/ yjx1 — x* dx = 

f x2 y'x3 — 1 dx = 

f \/*3 — 1 • x2dx = 

^ / -\/*3 — 1 • 3xr2 dx = 

_ l)i/2 d(xs _ i) 

No solution: 10.1. 

Chapter 11 

11.2. Fig. 1.1 to 1.6; Fig. 7.1 to 7.6, summarized by Fig. 7.8. 

11.3. See the two examples quoted in the solution of ex. 11.2: in the first, it may 
be Fig. 1.6; in the second, it may be Fig. 7.3. 

11.4. Ex. 10.2. 

11.5. Recognizing in Fig. 4.2 the abscissas *i, x3,... ,xn as roots of the desired 
polynomial f(x). 
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11.6. The transition from Fig. 1.11 to Fig. 1.12. Or, in MPR, vol. II, p. 144, the 
transition from Fig. 16.2 to Fig. 16.3. 

No solution: 11.1,11.7,11.8, 11.9,11.10, 11.11. 

Chapter 12 

12.4. 
(1) The point P lies on two given straight lines; by construction,... 

The point P lies on a given straight line, and on a given circle; by 
construction,.... 

The point P lies on two given circles; by construction,.... 
(2) Given the lengths of two sides of AABC, and the included angle, the third 

side being A B,.... 
Given the length of the side BC and two angles of AABC,.... 
Given, in the right triangle AABC, the lengths of the two legs AC and 

BC,.... 

(3) Given the base and the height, .... 
Given three sides of AABC,.... 
[Also all sets of data listed under (2)]. 

(4) Given the area of the base AABC and the length of the altitude from the 
vertex D,. .. . 

12.5. 
(1) If AABC^ A EFG, .... 

If ABFE is a parallelogram,.... 
(2) If AABC ~ A EFG,_ 

If ZABC and LEFG are corresponding angles, obtained by cutting two 
parallels by a transversal,.... 

If ZABC and LEFG are inscribed in the same circle and intercept the 
same arc,.... 

And so on; see ex. 8.8. 
(3) If the figure ABCD ... is similar to the figure EFGH ..., the points being 

mentioned in the order as they correspond to each other,. .. 
If AE || BF || CG || DH, and A, B, C, D are collinear and also E, F, G, H 

are collinear... (A less heavy statement of the theorem is the following: “Corre¬ 
sponding parts of straight lines cut by parallels are proportional.”) 

(4) If, in AABC, LC < LB,. . . 

12.6. See ex. 1.47, sect. 2.5(2), ex. 2.10, ex. 2.13, ex. 2.51, sect. 14.6(3), also 
HSI pp. 37-46, especially p. 38 (Analogy, especially sect. 3) and MPR, vol. 1, 
pp. 45-46. There are many others. 

12.7. A median of a triangle that ends in the midpoint of the side AB, passes 
through the midpoint of any segment intercepted by the two other sides on a line 
parallel to AB. 

(In the tetrahedron, the cross sections considered are parallelograms. The 
plane passing through an edge of the tetrahedron and the midpoint of the opposite 
edge yields a useful intersection.) 
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12.8. A median of a triangle bisects its area. 
(For the tetrahedron, the theorem stated follows from the principle ofCavalieri, 

since the plane in question bisects the area of each cross section considered in 
ex. 12.7.) 

12.9. The bisector of an interior angle of a triangle divides the opposite side 
into segments that are proportional to the adjacent sides. 

No solution: 12.1, 12.2,123,12.10,12.11. 

Chapter 13 

No solution: 13.1, 13.2,133. 

Chapter 14 

14.1. Approximately 9f minutes after noon. The longitude of the “central” 
meridian for Western Standard Time is 120° west. 

14.2. Since 

BD = BDi, CD = CZ)i 

the point D belongs to the intersection of two spheres, one with center B and radius 
BDi, the other with center C and radius CD\. The plane of this circle ofintersec- 
tion is perpendicular to the line BC joining the centers of the spheres, and there¬ 
fore it is perpendicular to the horizontal plane of AABC. Hence the orthogonal 
projection F of D onto the horizontal plane lies on the line through D\ perpen¬ 
dicular to BC. Of course, £>2 and £>3 are analogously situated. 

143. The point F is the radical center (defined in textbooks of analytic geom¬ 
etry) of the three circles indicated by short arcs in Fig. 14.1, and D\F, D2F, and 
D3F are the three radical axes meeting in F. 

14.4. Action and perception in sect. 14.6(4). 

14.11. The following answers are sketchy. 
(la) Using the law of cosines both of ordinary and of spherical trigonometry, 

we are led to prove the inequality 

b2 + c2 — a2 ^ —cos b cos c + cos a 
2be sin b sin c 

in supposing that 0 < a < w, 0 < 6 < w, 0 < c < w, and that the three segments 
of length a, b, and c, respectively, form a triangle. The inequality can be derived 
by appropriate manipulation from the fact that the function (sin x)/x steadily 
decreases as x increases from 0 to w, and this fact itself can be made plausible by 
geometric considerations. 

(lb) By continuity, a “very small” spherical triangle is “almost plane,” and 
so it is “almost congruent” to its image in the plane, having the same sides; hence 
the corresponding angles are “almost” equal. 

(7c) The stereographic projection of the sphere (from the north pole onto the 
plane of the equator) preserves the angles. 

(Id) The theorem of Archimedes on the surface area of a spherical zone yields 
a simple area preserving mapping. 

(7c) Projection of a hemisphere onto a plane from the center of the sphere. 
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14.24. The desired remainder is a polynomial of degree not exceeding 1, of the 
form ax + b. Take the problem as solved, suppose that the quotient q(x) of the 
division has been found. Then you have the identity: 

jc3 + x? + ■ ■■ + x17 + x19 = (x2 — l)q(x) + ax + b 

which yields, for x = 1 and x = — 1, two equations to determine the two un¬ 
knowns a and b: 

7 = a + b, —1 = —a + b 

Hence b = 0, a = 7, and the desired remainder is lx. 

The prime numbers 3, 5, . . . 17, 19 are conspicuous but irrelevant; if they are 
replaced by any seven odd positive integers the result remains the same. We see 
this clearly after having solved the problem, yet when we are looking at the prob¬ 
lem the first time, those prime numbers could lead us on a wild goose chase. 

14.25. 

(1) W'2, 
(2) wfV4. 

No solution: 14.5-14.10,14.12-14.23,14.26,14.27,14.28. 

Chapter 15 

15.1. “Being given the perimeter, find the figure with maximum area.” This 

is the “isoperimetric problem”; it can be proposed for various classes of figures; 
here are a few references: 

triangles: MPR, vol. 1, p. 133, ex. 16; 
rectangles: HSI, pp. 100-102, Examine your guess 2; 
quadrilaterals: MPR, vol. 1, p. 139, ex. 41; 
polygons with a given number of sides: MPR, vol. 1, p. 178; 
all plane figures: MPR, vol. 1, pp. 168-183. 
For an introduction to some ideas of Jacob Steiner and to connected physical 

problems see Modern Mathematics for the Engineer, second series, edited by E. F. 
Beckenbach, pp. 420-441. 

15.2. Symmetry in a, b, and c; test by dimensions. 

15.3. Acute triangles above, obtuse triangles below, the arc. 

15.4. Central projection of the polyhedron (of its inside) onto one of its faces 
w (the “window”); choose as center of projection a point outside the polyhedron, 
but sufficiently near to an inner point of tv. Cf MPR, vol. 1, p. 53, ex. 7. 

15.5. 2F„ = F, 2K„ = V 

15.6. = SnV„ = 2E 

15.7. Use ex. 15.5, ex. 15.6, the definition of sect. 15.6(2), and the final result 
of sect. 15.6(8) 

^(n-2)Fn = 2E-2F = ^^- = 2V-4 

15.8. From ex. 15.6 and 15.5 

2E = 2nF„ S 32 F„ = 3F 

2E = 2nK„S 32K„ = 3K 
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There is equality in the first line iff each face is a triangle, and in the second line 
iff just three edges end in each vertex. 

15.9. First proof. Take here for granted (but prove afterwards for yourself) the 
lemma. 

Lemma. If a set of quantities can be subdivided into nonoverlapping subsets 
so that the average of the quantities in each subset is less than a, then the average 
of the quantities in the whole set is also less than a. 

This lemma remains valid if the relation “less than” expressed by the sign < is 
replaced by any of the relations expressed by >, 5. We apply the lemma 
twice, to (1) and (2). 

(1) The average of the angles in a face with n sides is 

n V n) ~ 3 

(2) The sum of the face angles with common vertex is <2w, their number S3, 
and so their average is <2w/3. 

Second proof. By sect. 15.6(6) and ex. 15.6 the average of all face angles is 

2a _ 2tr(E — F) 

2E ~ IE E }= 3 

by ex. 15.8. Equality is attained iff all faces are triangles. 

On the other hand, by Euler’s theorem proved in sect. 15.6(8), 

2a _ litV — 4it _ trV _ 2it 2it _ 2it 

2 E 2E ~ E E = 3 E 

by ex. 15.8. 

15.10. First proof. The average of the angles in a face with n sides is 

("~ 2)w _ _!\w> 
n \ n} = 3 

if n S 6. If all faces had six sides or more, the average of all face angles would be 
S2w/3, which is impossible by ex. 15.9. 

Second proof. From Euler’s theorem, ex. 15.8 and ex. 15.6, 

12 = 6F- 2E + 6V — 4E 

^6F-2E 

= 2(6 - n)F„ 

12 ^ 3 F3 + 2 F4 + F5 

and so at least one of the three numbers F3, F4, and E5 must be positive. 

15.11. (1) If there is a face that has n sides where n > 3, we can divide it into 
n — 2 triangles by diagonals, and so we can replace it by n — 2 (which is >1) 
triangular faces without changing V. Therefore, F cannot be a maximum unless 
all F faces are triangles. 
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(2) From 15.8, 2E S 3F with equality iff F4 = F5 = ■ ■ ■ = 0, F = F3. Now, 

F+ V= E + 2^$F+2 

V^^F+2 

F^2(V-2) 

and 

E= F+ (V-2) S 3(F- 2) 

with equality iff each face is a triangle. 

15.12. By analogy, both solutions of ex. 15.11 apply (with proper interpretation) 
to the present case and yield 

rg2(f-2), E ^ 3(F — 2) 

with equality iff just three edges start from each vertex of the polyhedron. 
The inequalities derived have interesting applications. For instance, we com¬ 

bine the second inequality just obtained with ex. In.8 as follows: 

E + 6 < 
3 = = 3 

For E = 6 this yields 

4 < F< 4 

that is, the case of the tetrahedron. For E = 7 it yields, however, 

and so F cannot be an integer! We are so driven to the conclusion that there exists 
no convex polyhedron with 7 edges—a fact already noticed by Euler. 

15.13. 
(1) 0 4 3 100 36 

for tetra-, hexa-, octa-, dodeca-, icosahedron 
respectively. 

(2) ii(i!-3) 0 1 + n(--~ 3) 

for the /t-prism, /t-pyramid, /t-double pyramid 
respectively. 

(F — 2)(F — 4) (F2 — 5F + 2) (9F2 - 42F + 8) 
1 ; 8 2 8 

for n = 3, 4, 5 

respectively; n > 5 is impossible, see ex. 15.10; the ... after 5 is misleading. 

(4) In terms of F„, cf ex. 15.6, 15.7, 

= I - J2(2n- 3)<»- 2)F. + J[S(n _ 2)F,]> 
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15.14. 

(1) (2) (3) 

25 3m 2m 
5m 
2 

2m 2m 0 m 

15.15. In the cases observed in ex. 15.14, both sums change in the same 
direction—the change of 2m is double of the change of 25—and 

225 — 2m = 4 it 

Is this relation true for all tetrahedra? 

15.16. Cf. ex. 15.19. 

15.17. Generalize the cases (1) and (3) of ex. 15.14; in both the result is the 

same. Cf. ex. 15.19. 

15.18. Cf. ex. 15.19. 

15.19. 225 - 2m F V E 

Tetrahedron 4 it 4 4 6 

Cube 8 w 6 8 12 

n-Pyramid (2n — 2) it n+ 1 n + 1 2 n 

n-Prism 2 nit n + 2 2 n 3 n 

n-Double-pyramid (4n — 4 )w 2 n n + 2 3 n 

Neither V nor E, only F increases consistently when 225 — 2m increases. 

15.20. 225 - 2m = 2mF - 4it 

For a proof, express the spherical area (the solid angle) associated with a vertex 
in terms of the dihedral angles associated with the edges that diverge from that 

vertex. Remember that the area of a spherical triangle with angles a, fi, and y is 
the “spherical excess” a + fi + y — w, and derive hence an expression for the 
area of a spherical polygon. You obtain so (use ex. 15.5, 15.6) 

2m = 225 - 2w(n - 2) V„ = 225 - 2v(F - V) 

15.21. The usual answers are: the equilateral triangle, the square, the regular 

polygon with n sides. 

15.22. Usually, the same shapes are guessed as in ex. 15.21. 

15.25. The usual answers are: the regular tetrahedron, the regular octahedron, 
the cube. 

15.26. The usual answers are: the regular tetrahedron, the cube, the regular 
octahedron. 

15.27. A diagonal of the cube is a diameter of the sphere. Hence, if a is the 
length of an edge of the cube 

(2r)2 = 3fl2 

(Cf. HSI, pp. 7-14, the main example of Part I.) Therefore, the required volume is 

- 8V?r3 

9 
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15.28. Let A denote the area of an equilateral triangle with side r. The required 
volume is 

V5>3 

The answer to the case V= 8 of ex. 15.25, which appeared as a quite plausible 

guess, turned out to be wrong. (The answers to the cases V= 4 and 6 are correct, 
however; for the first, cf. MPR, vol. 1, p. 133, ex. 17.) 

15.29. Let A be the area and h the altitude of a face of the octahedron. Then 
the required volume is (divide the octahedron into 8 tetrahedra) 

V= Ml1 _ 8r_W_ 
3 3 ^5 

The sphere touches, by symmetry, each face at its center. Hence h is, in a right 
triangle, the length of the hypotenuse which is divided by the altitude (of length r) 

into two pieces, of lengths h/3 and 2/i/3, respectively. Thus 

iL.2h.-r2 
3 3 

By eliminating h, we find 

V= 4 V5>3 

1530. Volume of the prism is 

6-^2r = 4V5>3 

In answering the case F = 8 of ex. 15.26 we hardly expected this. (The answers 
to cases F = 4 and 6 are correct.) 

1531. 
F V E 

Cube 6 8 12 
Hexagonal double pyramid 12 8 18 

Regular octahedron 8 6 12 

Hexagonal right prism 8 12 18 

The nonregular polyhedron that “beats” (or “ties with”) the regular polyhedron 
agrees with it, of course, in the prescribed number of elements (V in the first case, 
F in the second) but is more complicated otherwise (has greater F and £ in the 
first case, greater V and E in the second). Should this circumstance account for 
the observed failure of the principle of nonsufficient reason? 

1532. One which has only triangular faces, see ex. 15.11. 

1533. One which has only three-edged vertices, see ex. 15.12. 

1534. Between the cube and the octahedron there is a reciprocal relation, and 
we can observe the same relation between the corresponding rival nonregular 
polyhedra; cf. MPR, vol. 1, p. 53, ex. 3 and 4. This suggests a conjecture: between 
the solutions of the problems of ex. 15.25 and ex. 15.26 for the same number of 
data the same (topological) reciprocal relation will hold; cf. ex. 15.32 and 15.33. 
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15.35. The usual answers are the same as to ex. 15.26, and the whole situation 
is the same; the usual answer is correct for F = 4 and F = 6, incorrect for F = 8. 
Cf MPR, vol. 1, p. 188, ex. 42. 

1536. (Stanford 1962.) We are required to find the points of intersection of 
two congruent ellipses symmetrical to each other with respect to the line x = y. 

Subtraction of the equations yields x2 = y2. Of the four points of intersection 

(6,6) (-6,-6) (2,-2) (-2,2) 

two do, and two do not, comply with the principle of nonsufficient reason. Cf 

ex. 6.22. 

1537. By appropriate subtractions x2 = y2 = z2. Of the eight solutions 

(1,1,1) (-1, -1,-1) 
(3,-3,-3) (-3,3,3) (-3, 3, -3) (3,-3, 3) (-3,-3, 3) (3, 3,-3) 

two do, and six do not, comply with the principle of nonsufficient reason. 

1538. (Stanford 1963.) Same solutions as in ex. 15.37, but it is less easy to 
establish that x2 = y2 = x2. 

15.41. See ex. 15.42-15.53. 

15.42. (1) We can discuss the result of any problem “in letters” in this manner 
by checking particular cases; cf. sect. 2.4(3); ex. 2.61; HSI, Can you check the 

result? 2, p. 60; MPR, vol. 2, pp. 5-7, sect. 2, pp. 13-14, ex. 3-7; also paper no. 11 
of the author, quoted in the Bibliography; etc. 

(2) In checking its particular cases, we familiarize ourselves with the formula, 
we understand its “structure” better. Moreover, such a discussion may illustrate 
several important general ideas. We may learn that the merit of a formula consists 
in its generality, in its applicability. Then, we may also learn plausible, inductive 
reasoning—assessing the likelihood of a general assertion by examining its partic¬ 
ular cases. In brief, the teacher who neglects discussions of the kind presented 
in sect. 15.4 misses a most obvious opportunity to do something for the mental 
maturity of his students. 

15.43. Each point of the region displayed in Fig. 15.1 represents a triangular 
shape. (For diagrams surveying in an analogous way ellipsoidal and lenticular 
shapes see G. P61ya and G. Szego, Isoperimetric inequalities in mathematical 

physics, Princeton University Press, p. 37 and p. 40.) Thus, Fig. 15.1 may prepare 
the student for a certain way of using diagrams in science, for instance, indicator 
diagrams in thermodynamics. Moreover Fig. 15.1 offers nonpointless practice 
in the geometrical interpretation of linear inequalities. 

15.44. Here are some of the facts to which experimentation with decimal frac¬ 
tions may lead. 

All three types of decimal expansions represent rational numbers and, con¬ 
versely, the decimal expansion of a rational number must belong to one of the 
three types. The difference between the types depends on the prime factors of 
the denominator of the represented rational number; according as all these prime 
factors divide 10, or none of them divides 10, or there is one prime factor that 
divides and another that does not divide 10, the decimal fraction is terminating, 
or purely periodical, or mixed. (In speaking about the denominator b of a rational 



15.35-15.47 181 

number a/b we have supposed that a/b is in lowest terms, that is, that the integers 
a and b have no common divisor greater than 1, and b S 1. We have disregarded 

two obvious cases: the case b = 1 (integers) and the case of the infinite decimal 
expansion of such rational numbers as can be represented also by a terminating 
expansion. Cf. I. Niven, Numbers: rational and irrational. Random House, 
pp. 23-26, 30-37.) 

The length of the period is independent of the numerator. 
If the denominator is a prime number p, the length of the period is a divisor of 

p — 1. (More generally, the length of the period divides <p(£>), the number of 
positive integers not exceeding the denominator b and relative prime to b. What 
can you say about mixed expansions?) 

If the denominator is a prime and the length of the period an even number, each 
digit in the second half of the period completes the corresponding digit in the first 
half to 9. (For instance, in the expansion 

\ = 0.142857 

1+8=9 4 + 5= 9 2 + 7 = 9 

The knowledge of this fact may save much work in computing decimal fractions.) 
If the denominator is not divisible by 3, the sum of the digits in the period is 

divisible by 9. For instance 

if = 0.36585 

3+6 + 5 + 8 + 5 = 27 

The reader should check these statements on examples. The proofs are easy, 
provided that some knowledge of the theory of numbers is available—to rouse 
the reader’s interest in this theory is one of the aims. 

15.45. Observation: 

9 x 11 = 99, 27 x 37 = 999, 99 x 101 = 9999, 271 x 369 = 99999 

Explanation: Therefore, for instance, 

27 X 0.037037 • • • = 0.999999 • • • = 1 

We should not hesitate to compare little things with great things (parva com- 

ponere magnis): such a comparison may be instructive. The step we have taken 
from “observation” to “explanation,” from noticing a regularity to noticing the 
underlying connection, is infinitely smaller in scale than, but similar in nature to, 
the step from Kepler to Newton; cf. MPR, vol. 1, p. 87, ex. 15. 

15.46. Except for the last statement (concerning the sum of the digits in the 
period) to each result of ex. 15.44 there corresponds a parallel result in the binary 

system. For instance, in the binary expansion 

i = O.TOOT 

the length of the period is 5 — 1 and 

1+0=1, 0+1 = 1 

15.47. Challenging arithmetical work, practice in decimal fractions and fac¬ 
torization. Broad background: concept of real number (“And what about the 
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decimal expansion of y/I, or of w?”). A prelude to number theory. On the 
general cultural level: wide opportunity for inductive reasoning, even for the con¬ 

struction of a comprehensive theory starting from an experimental basis. 
Take a detail; ex. 15.45 offers an exceptionally neat opportunity to confirm a 

guess based on observation by a proof, by the understanding of the underlying 
connection. 

15.48. See ex. 15.49. 

15.49. In Fig. 15.11, t(n) is the number of dots with abscissa n. We find that 
t (n) = 1 for 1, 2, 4, 8, 16. 

When p is an odd prime t(p) =2. 
Even after these significant hints (and even after a comparison of Fig. 15.11 

with Fig. 15.12) it may take longer experimentation and some acumen to discover 
the rule: t (n) equals the number of odd divisors of n. The reader should prove this 

rule; he may profit from the following remarks. 
(1) The trapezoidal representation displayed in ex. 15.49 is equivalent to the 

equation 

2n = r(r + 2a — 1) 

(2) Of the two factors r and r + 2a — 1, one is odd, the other is even, and the 
odd factor must divide n. 

(3) The smaller of these two factors is r, the number of rows. 
(4) If n and r are given, a is uniquely determined. 

15.50. We use the symbol r(n), as defined in ex. 9.12. The rule distinguishes 

five cases: 
(1) If n is odd and not a square, s(n) = r(n)/2. 
(2) If n is odd and a square, s(n) = [r(n) + l]/2. 
(3) If n is even and not divisible by 4, s(ri) = 0. 
(4) If n is divisible by 4 and not a square, s(n) = r(n/4)/2. 
(5) If n is divisible by 4 and a square, s(n) = [r(n/4) + l]/2. 
To prove this rule, observe that 

n = (2a + 1) + (2a + 3) + • • • + (2a + 2r - 1) = r(r + 2d) 

If n is divisible by 4, observe that 

15.51. Let us compare the present project with that assessed in ex. 15.47. In 
the present case the problem is more artificial, the background less rich, the law 
more difficult to guess, but the proof, although challenging, needs very little pre¬ 
liminary knowledge; I think that the project is very much worthwhile. 

Figure 15.11 yields a nontrivial, instructive example of a binary relation (be¬ 
tween the two positive integers n and r; n is the sum of r successive positive 
integers) and of its representation by a diagram. For Fig. 15.12, which represents 
a better known and more important binary relation, see Leibnitz, Opuscules, 

p. 580. The study of these diagrams could profitably precede the introduction of 
the concept “binary relation.” 
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15.52. The required quantities can be computed without explicit use of the 
integral calculus (Cavalieri’s principle, Pappus’ rules). They are displayed in 
the table: 

Double 
Cone Sphere Cylinder 

V 
lira3 

3 
Aira3 

3 
lira3 1:2:3 

s l^fltta2 4 ita1 6 ita2 VI:2:3 

A 2d2 ita1 4a2 2:w:4 

L 4 '/la lira 8 a ly/7:ir:4 

XA 
a 

J-a a 

3 3 it 1 XA 1 

XL a 
*a 

XL - 3 

2 it 4 

s = 
v da 

c dV 

A " da 

c dV 

A " da 

L= V?# 
da 

t dA 

~ da 

T dA 

L~ da 

For a generalization of the observation about XA/Xi, (which, by the way, turned 
up in a class discussion) see a paper by C. J. Gerriets and the author, American 

Mathematical Monthly, vol. 66, 1959, pp. 875-879. 

15.53. For n = 1, 2, 3, ... 

(V?— l)n = y/m + 1 — ^/m 

where m is a positive integer which depends on n. Proof by (easy) mathematical 
induction. See American Mathematical Monthly, vol. 58, 1951, p. 566. 

No solution: 15.23, 15.24, 15.39,15.40,15.54,15.55. 





APPENDIX 

Problems 

Problems 1.19.1, 1.19.2, and 1.19.3 appropriately follow (in this 
order) ex. 1.19, problem 2.27.1 follows ex. 2.27, etc. 

1.19.1. Triangle from a, r, R. 

[ Could you think of other data more appropriate to determine the unknown? 

Could you exchange just one datum for a more suitable one?] 

1.19.2. Triangle from a, ha, r. 

[Could you derive something useful from the data?] 

1.193. Triangle from a, r, a + b + c. 

2.27.1. How long did Diophantus live? The problem is proposed in the form 

of an alleged inscription on Diophantus’ tombstone. The original is in verse. 
(Cf B. L. van der Waerden, Science Awakening, p. 278.) 

Here is the tomb of Diophantus. This stone tells you his age if you have 

mastered his art. The gods gave him to live one sixth of his life as a boy. 
After one twelfth more his beard began to show. Then one seventh of his life 

passed till his wedding day. After five years of marriage a boy was born. Alas, 

his beloved son came to an untimely end attaining only one half of the age he 

himself was permitted to live. After this bereavement he sought consolation in 
mathematics for four years and then he too ended his earthly career. 

235.1. From a vertex of a certain triangle draw the altitude, the angle bi¬ 
sector, and the median. Being given that these three lines divide the angle a 

at the vertex into four equal parts, find a. 

[You may wish to know also the shape of the triangle. Pay attention to each 

part of the condition.] 

2.40.1. Of a right triangle, given the length of the hypotenuse c and the area 
A. On each side of the triangle, describe a square exterior to the triangle and 
consider the least convex figure containing the three squares (formed by a tight 
rubber band around them): it is a hexagon (it is irregular, has one side 
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in common with each square, and one of its remaining three sides is obviously 
of length c). 

Find the area of the hexagon. 

2.40.2. In a right triangle, c is the length of the hypotenuse, a and b are the 

lengths of the two other sides, and d is the length of the diameter of the 
inscribed circle. Prove that 

a + b = c + d 

[Restate the problem: Given a, b, and c, compute d.[ 

2.50.1. Here is a problem of solid geometry analogous to ex. 2.45. 
Start by dissecting the three-dimensional space into equal cubes. 

First pattern: Each cube is associated with a concentric sphere that touches 
its six faces. 

Second pattern: “Each second” cube is associated with a concentric sphere 

that touches its 12 edges. (That is, of two cubes that have a face in common, 
one does and the other does not contain the center of an associated sphere.) 

Compute the percentage of space contained in the spheres for each pattern. 

2.52.1. A cake has the shape of a right prism with a square base; it has icing 
on the top as well as on the sides (that is, on the four lateral faces). The alti¬ 
tude of the prism is ^ of the side of its base. Cut the cake into 9 pieces so that 

each piece has the same amount of cake and the same amount of icing. One of 

the 9 pieces should be a right prism with a square base with icing only on 
the top: Compute the ratio of its altitude to a side of its base and give a dear 
description of all 9 pieces. 

2.55.1. Five edges of a tetrahedron are of the same length a, and the sixth 
edge is of the length b. 

(1) Express the radius of the sphere circumscribed about the tetrahedron 
in terms of a and b. 

(2) How would you use the result (1) to determine practically the radius of a 
spherical surface (of a lens)? 

2.55.2. The carbon atom has four valencies which we picture as directed 

symmetrically in space. From the center of a regular tetrahedron draw four 

lines to the four vertices and compute the angle a included by any two of them. 

2.553. Photometer. A lamp L has the candle-power /, another lamp L' the 
candle-power /', and their distance is d. Find the position of a screen that is so 

placed between these lamps, perpendicularly to the line joining them, that it is 
equally illuminated from both sides. 

(If the candle-power of a point-source L of light is /, the illumination of a 
surface, which is at the distance x from L and is perpendicular to the distance, 
is I/x2. To understand this thoroughly, you should consider two spheres with 
center L: one with radius 1, the other with radius *.) 

3.10.1. Salvaging. The ship sank—perhaps there is some treasure in it worth 

lifting. Your plan has failed—perhaps there is an idea in it worth saving. 
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In sect. 3.2, our first plan to compute S2 (notation of sect. 3.3) failed igno- 

miniously: The procedure that worked for Si did not work at all as we tried to 
apply it to S2. Where does the fault lie? Perhaps we applied the proce¬ 
dure too rigidly. What about applying it less rigidly? Applying it with some 

modification? Or applying it to some other case? 
Such consideration may lead to trials, and it is quite natural to try the pro¬ 

cedure on Sic. What is the essential point of the procedure? Combining two 
terms equally removed from the ends: one term as distant from one end as the 
other is from the other end. Such are the terms jk and (n — j)k of Sk. If addi¬ 
tion does not work, subtraction may—and eventually we may adapt the com¬ 

bination to the nature of k: 

(n-j)k-(-j)k = nk-(kl)nk-y + (^)nk-*f-+ (-1)*^ * j JijT1 

Write this successively for j = 0, 1,21, n: 

nk - (-1)‘0* = nk 

(n _ l)* _ (_l)*l* = n* - (j)n*-1! + {^jnk-2l2 

-+ (-l)*"1^ * 

(n - 2)k - ( —1)*2* = nk - {^)nk~l2 + (*)nk~222 

-+ (—l)*-1(jfc * j)b2*-i 

1* _ (_ 1)*(« _ 1)* = nk - (j)«*-!(« - 1) + ^)nk-2(n - l)2 

-+(-l)*-i(/t^1)„(„_l)*-i 

0* — ( — l)*n* = nk — (fynk~lri + nk~2n2 

-+ (-\)k~'(kk_ x)nnk~' 

By adding and using the notation of sect. 3.3 (but writing So for S0 + 1) we 
obtain 

■S*[l — ( — 1)*] = nkS6 - + (J)”*"252 

Explore the cases k = 1, 2, 3 of this result and then try to assess it generally. 

3.40.1. In how many ways can the positive integer n be the sum of positive 
integers? In how many ways can n be the sum of a specified number t of terms 
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(all positive integers)? Let us regard two sums that differ in the order of terms 

as different. 
It is natural to start exploring such a problem by experiments and by trying 

to arrange neatly the material produced by the experiments. Here are the 
sums found for n = 4 and n = 5: 

4 1 +3 2 + 1 + 1 1 + 1 + 1 + 1 
2+2 1+2 + 1 

3 + 1 1 + 1+2 

5 1+4 3 + 1 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 
2+3 1+3 + 1 1 +2 + 1 + 1 

3 +2 1 + 1+3 1 + 1 +2 + 1 

4 + 1 
2 + 1+2 
2+2 + 1 

1 + 1 + 1 +2 

Do you notice a pattern? 
Prove your guess! 
Could a geometric figure help you? 

3.40.2. Fibonacci numbers. By adding the numbers along the oblique lines of 
Fig. A3.40.2 we obtain the sequence of the Fibonacci numbers 

1, 1,2, 3, 5, 8, 13,21,... 

Fig. A3.40.2. An oblique approach to Fibonacci. 

We let Fn stand for its nth term, the nth Fibonacci number; thus Fi = 1, 
F2 = 1, Fb = 21. 

(1) Express Fn in terms of binomial coefficients. 
(2) Prove that for n = 3, 4, 5,. . . 

F„ = F„_ i + F„_ 2 

3.40.3. (Continued). The sequence of numbers 

1, 1, 1, 2, 3, 4, 6, 9, 13, .. . 
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is analogously generated (see Fig. A3.40.3). Let G„ stand for its nth term; 

thus Gg = 13. 
(1) Express G„ in terms of binomial coefficients. 
(2) Prove that for n = 4, 5, 6, . . . 

G„ = Gn-1 + G„-3 

(3) Generalize. 

f3.60.1. Consider the table 

1 • 1 = 1 
1 -3 - 2-2 + 3-1 = 2 

1 -5 - 2-4 + 3-3 - 4-2 + 5-1 = 3 
1-7- 2-6 + 3-5 - 4-4 + 5-3 - 6-2 + 7-1 = 4 

Guess the general law suggested by these examples, express it in suitable mathe¬ 
matical notation, and prove it. 

3.65.1. If x and n stand for positive integers the expression 

X2(X2 _ 1)(;C2 _ 4) . . . [A-2 _ („ _ 1)2] 
(2n - 1)!« 

represents an integer. 

f3.88.1. Another solution of ex. 3.86, which is simpler in some respects, uses 
differential calculus. Find it. 

f3.88.2. Observe that 

1+2-1 =3 

1 + 2-2 + 3-1 =8 

1+2-3 + 3- 3 +4-1 =20 

1 + 2 • 4 + 3 • 6 +4-4 +5-1 = 48 
1-1 + 2- 5 + 3-10 + 4-10 + 5- 5+ 6-1= 112 
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Guess the general law suggested by these examples, express it in suitable mathe¬ 

matical notation, and prove it. 

4.15.1. Define/* for k = 2, 3, 4,... by the recursion formula 

and set 

/o = a, yi = b 

Express/* in terms of a, b, and k. 

5.19.1. Examining the solution of ex. 5.19, we may observe that the number 
found has a simple interpretation: It is the number of ways of choosing v boxes 
out of n + v boxes. We should be able to see such a simple thing by a simple 

argument. 
Imagine the n + v boxes in a row—each occupying, if you wish, a subinterval 

of length 1 of the interval 0 ^ x ^ n + v. What has the proposed problem to 

do with marking v out of these n + v boxes? 

6.13.1. Prove that no number in the sequence 

11, 111, 1111, 11111,... 

is the square of an integer. 

6.17.1. “How many children have you, and how old are they?” asked the guest, 

a mathematics teacher. 
“I have three boys,” said Mr. Smith. “The product of their ages is 72 and 

the sum of their ages is the street number.” 
The guest went to look at the entrance, came back and said, ‘The problem is 

indeterminate.” 
“Yes, that is so,” said Mr. Smith, “but I still hope that the oldest boy will 

some day win the Stanford competition.” 

Tell the ages of the boys, stating'your reasons. 

7.2.1. There is an interpretation of the diagram in Fig. A7.2.1. which is of 
historic interest. Can you recognize it? 

f9.11.1. Any solution will do. Show that there exists a couple of divergent 

series. 
al + a2 + ‘ ‘ • + an + ' • • hi + bi + • • • + bn + • • • 

with positive decreasing terms 

a\ > a2 > a3 > • • • b\ > b2 > b3 > • • • 

such that the series 

min(ai,M + min(a2,b2) + • • • + min(a„,6„) + • • • 

is convergent. As usual, min(a,6) denotes the lesser (not greater) of the two 
numbers a and b. 

[Not all couples of series satisfying the condition stated are required, but just 
one such couple (any one). Thus Leibnitz’s advice quoted in ex. 9.11 is appli¬ 
cable: Narrow down the region of search without increasing your difficulty.] 
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12.2.1. Prove the proposition: If a side of a triangle is less than the average 
(arithmetic mean) of the two other sides, the opposite angle is less than the 
average of the two other angles. 

(What are the principal parts? Express them in mathematical language, by 
using the usual symbols of trigonometry.) 

12.5.1. Relevant knowledge. A quadrilateral with sides a,b,c,d and area A is 
both inscribed and circumscribed (inscribed in a circle and circumscribed about 
another circle). The n 

A2 = abed 

[To prove this proposition may be easy or difficult according as you do or do 

not know a certain related proposition.] 

12.9.1. Do you know a related problem? Solve the following system of three 

equations for the unknowns x, y, and z (a,b, and c are given): 

x2y2 + x2z2 = axyz 

y2z2 +y2x2 = bxyz 

z2x2 + z2y2 = cxyz 

(We have here a system of 3 equations with 3 unknowns. The best known sys¬ 
tems of this kind are linear: Can we “linearize” the proposed system? We may 

hit upon the following form: 
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l/*2 

1 A2 + 1A2 = 

+ 1A2 = — .xyz 

1A2 + My2 c 
xyz 

which is linear in x~2, y~2, z~2 if we regard (wishful thinking) xyz as known. 

The solution will be of the form 

\_ = _A_ 
x2 xyz 

and opens a new perspective—can you see it?) 

12.9.2. Go back to definitions. We consider three circles / /', and v and their 
centers F, F, and V, respectively. The circles/and/' are fixed, v is variable,/' 
and v are inside/but outside each other. Prove the proposition: If the variable 
circle v touches both fixed circles / and /', the locus of its center V is an ellipse. 

[What is an ellipse?] 

12.93. Exploring the neighborhood. Did you like the foregoing problem 

(ex. 12.9.2)? Did you like its solution? Then examine its neighborhood—you 
found a nice ripe apple on this tree, there may be more. 

Vary the problem: You may consider a generalization, or particular cases, 
limiting cases, analogous cases. There is a chance to find something interesting 
as well as a chance to learn to do research. 

The reader should find the various loci for V that result from the following 
modifications of the assumptions concerning the fixed circles/and/' and the 

variable circle v. 
(1) Specialization. The circles/and/' are concentric. 
(2) Limiting case. Let / be a fixed straight line and /' a fixed point; v 

touches/and passes through/' = F'. 
(3) Analogy. The two circles/and/' are outside each other and v touches/ 

and f in the same way, it is either outside both or it contains both. 
(4) Limiting case of (3). Let/and/' be two distinct points and let v pass 

through both. 
Consider other particular, limiting, or analogous cases. 

14.1.1. Leap years. An ordinary year has 365 days, a leap year 366 days. 
The year n which is not a centenary year is a leap year if, and only if, n is 
a multiple of 4. A centenary year, that is, a year n where n is a multiple of 100, 
is a leap year if (and only if) n is a multiple of 400. Thus 1968 and 2000 are 
leap years, 1967 and 1900 are not. These rules were established by the Pope 

Gregory XIII. 
So far we spoke of “civil” years which must consist of a whole number 

of days. The astronomical year is the period of time in which the earth 
completes a full revolution around the sun. If the Gregorian rules would 
precisely agree with it, what would be the length of the astronomical year? 
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15.2.1. [Sect. 15.5.] Let a,b, and c denote the lengths of the sides of a tri¬ 
angle and d the length of the bisector of the angle opposite to the side of 
length c, terminated on the side. 

(1) Express d in terms of a,b, and c. 
(2) Check the expression obtained in the four cases illustrated by Figs. 15.2 

to 15.5. 

15.52.1. One more high-school level research project, which could also be pro¬ 

posed as part of a term paper in a class for teachers. 
A point {x,y,z) in three-dimensional space is characterized in the usual way 

by its three rectangular coordinates x,y, and z. 

We consider four sets of points, C,0,I, and H. Each set is characterized by a 
system of inequalities (which may consist of just one inequality): Those points 

(and only those points) belong to the set the coordinates of which satisfy 
simultaneously all inequalities of the system. 

We list the four systems of inequalities defining our sets: 

(Q \X\^\ l/l^l |2|^l 

(°) 1*1 + 1/1 + 1*1 =2 
(/) all four inequalities listed under (Q and (O) 

(H) 1/1 + \z\ =2 M + |x|^2 1*1 + 1/1 ^2 

Describe carefully the geometric nature of the four sets, mention all relevant 
features (do not forget symmetries) arranging them clearly in suitable tables. 

Describe also the relations between the four figures. 
Find the volume V and the surface area S of each figure. 
Which generalizations does this work suggest to you? 
(Cardboard models may be helpful. Cf. ex. 2.50.1, HSI p. 235, ex. 8.) 

15.53.1. Observe also that 

2 — y/T = y/4 — y/T 

(2 - y/T)2 = y/®- y/Z$ 

(2 - y/T)3 = y/676 - y/675 

(2 - y/T)* = y/9409 - y/$m 

try to generalize and prove your guess. 

Solutions 

1.19.1. From the center of the circumscribed circle, draw a line to one of the 
endpoints of the side a and a perpendicular to a. You thus obtain a right tri¬ 
angle with hypotenuse R, angle a, and opposite leg a/2. In our case R and a 

are given and so you can construct a. Construct the desired triangle from the 
a so found and the a and r originally given by using ex. 1.19. 

1.19.2. Divide the desired triangle into three triangles by joining the center 

of the inscribed circle to the three vertices. Consideration of the areas yields 

± r(a + b + c) = i aha 
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Thus you can construct the length of the perimeter a + b + c from the given 
a, ha, r and so reduce the proposed problem to ex. 1.19.3. 

1.193. From the center of the inscribed circle, draw a line to the vertex 
A and a perpendicular to the side b (or c). You thus obtain a right triangle in 
which one of the acute angles is a/2 and the opposite leg r. Let * denote the 

other leg. Now 

a+b+c — 2a = 2x 

and so you can first construct x from the given a+b+c and a, and then con¬ 
struct a from x and the given r. Construct the desired triangle from the a so 
found and a and r originally given by using ex. 1.19. 

2.27.1. Let x stand for the number of years Diophantus lived. From 

— _j_—_l_2L_i_5 4- — 4- 4 = 
6 + 12+7+ +2 + 

we find x = 84. 

235.1. (Cf American Mathematical Monthly, vol. 66, 1959, p. 208.) Let fi 
be the larger and y the smaller of the two remaining angles. If fi is an acute 

angle, the five lines c, ha, da, ma, b starting from the vertex A (notation ex. 1.7) 
follow each other in this order. From the right triangles into which ha divides 
the triangle considered 

a it a it 3a 
P 2 4 ’ y 2 4 

From the triangles into which ma divides the triangle considered 

2.40.1. (Stanford 1965.) The hexagon consists of three squares and four 

triangles and these triangles have all the same area A. Therefore the hexagon’s 
area is 2c2 + 4A. 

2.40.2. (Stanford 1963.) Divide the given right triangle into three triangles 
with a common vertex at the center of the circle inscribed in the given. From 
comparing the areas 
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d_ a + b + c _ ab_ 

2 2 “2 

lab _ lab (a + b — c) 
a + b + c (a + b)2 — c2 

a + b — c 

2.50.1. 10077-/6 and 1007r\/2/6 or approximately 52.36% and 74.07%, respec¬ 

tively. Cf. the solution of ex. 15.52.1, part (6). 

2.52.1. (Stanford 1964.) Let C stand for the given prism (the cake) and D 

for the desired prism (with icing only on the top). For a side of the base and 

the altitude, respectively, let 

s and h in C 
x and y in D 

stand. The conditions defining D are expressed by the equations 

s2 + Ash 

9 

x2y = 
s2h 

h 
5s 

16 

which yield 

s 
x 

2 
z = J_ 
* 18 

Carve out D from C so that either the sides or the diagonals of its top 
are parallel to the sides of the top of C, and in either case so that the prisms C 

and D have the same 4 planes of symmetry, which cut the remainder of C into 
8 congruent pieces each having the same volume and the same amount of 
“icing” as D. 

2.55.1. (Stanford 1962.) Let C denote the center and r the radius of 

the circumsphere. There are two “key plane figures,” two cross sections of 

the tetrahedron, one through the edge b and the midpoint of the opposite edge, 

the other through this latter edge and the midpoint of the edge b. These two 

cross sections are perpendicular to each other; their intersection d joins the two 
midpoints considered and contains C. 

Let x denote the perpendicular distance of C from b (its other end is the mid¬ 
point of b) and h the altitude of one of the two faces that are equilateral 
triangles; therefore 

From right triangles in tfie two cross sections we find the equations 

h2 = d2 + (A)2 
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r2 = (d - x)2 + (gf 

and now we have four equations to determine our four unknowns: h is immedi¬ 
ately obtained from the first, then d from the second. It is convenient to find x 

after d (subtract from each other the last two equations). Finally, 

2 a2 4a2 - b2 

4 3a2 - b2 

(Check: If b = ay/5 = 2h, then r = oo.) 

Possible application: Two rigid equilateral triangles with side a and a com¬ 
mon side as hinge can be so inclined to each other that all four vertices are on 
a concave spherical surface; then by measuring b we obtain r. A convex lens 
demands a somewhat more sophisticated gadget. 

2.55.2. If in ex. 2.55.1 we take a = b, the tetrahedron becomes regular, 

and 

r2 3 a2 

8 

a/2 y/Z 

r 3 

a = 109°28' 

This may be supposed to be the angle between any two valences of a carbon 
atom symmetrically bound (as the one in CH4). 

2.553. Let x be the perpendicular distance from L to the screen. Then 

J_ _ /' 
x2 (d — x)2 

and so 

dy/T 

X VT+VT 
(The practical problem is somewhat different: We are given /, we measure d 

and x; hence we have to determine /'.) 

3.10.1. Here are the first three particular cases: 

2Si = n(n + 1) 

0 = n2(n + 1) - 2nSi 

2S3 = «3(„ + i) _ 3„25l + 3ns2 

The case k = 1 yields the evaluation of Si by a method which differs but 
little from the “method of little Gauss” (sect. 3.1). 

The case k = 2 leads, by a roundabout way, again to Si. 

The case k = 3 yields S3 provided that Si and S2 are already known. 
In general, the result allows to compute Sk from the foregoing So, Si, 

S2,..., Sfc-i when k is odd, but not when k is even. This explains to some ex- 
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tent (by the generalization of a modification) why the method that succeeded 
for Si in sect. 3.1 failed for S2 in sect. 3.2. Morever, by comparing our result with 
sects. 3.2 to 3.4 and exs. 3.6 to 3.10, we may learn a little—and somebody could 
use it someday for some purpose. 

3.40.1. I hope the reader has explored also the cases n = 1,2,3. 

Guess: There are — J) different ways of representing n as the sum 

of t positive integers. 
The cases t = 1, n are trivial, the cases t = 2, n — 1 fairly obvious. For a 

general proof, consider on the number line the interval 0 ^ x ^ n and on it the 

points x = 1,2,3,..., n — 1. In choosing any t — 1 out of these n — 1 points as 
points of division, we cut the interval into t successive subintervals of integral 
length and so we make n a sum of t successive terms of the desired kind. 

For teachers: The Cuisenaire rods can attractively present this problem and 

its solution. 

3.40.2. Check relations on Fig. A3.40.2 for what values of n you can. 

(1> f--(”o ‘) + ("T2) + (”23) + ' " 
(2) From the recursion formula, see sect. 3.6(2). Cf. ex. 4.15. 

3.40.3. 

(2) From the recursion formula. 

(3) Changing the slope leads to the sequence yi, _y2, yz, ■ ■ ■, dependent 
on one parameter (the slope, or the positive integer q) satisfying the recursion 
formula (difference equation, ex. 4.14) 

yn = yn-i + yn-q 

In the case q = 1 the slope is 0 and 

y„ = 2/„_i 

See ex. 3.32. 

3.60.1. Guess: 

l(2n - 1) - 2(2n - 2) + 3(2n - 3) - • • • + (2n - 1) 1 = n 

To prove this, consider the coefficient of x2n~2 in the product 

(1 + 2x + 3x2 + 4x3 + •••)(! — 2x + 2x2 — 4x3 + ■ ■ ■) 

= (1 - *)-2(l +x)-2 

= (1 -x2)-2 

= 1 + 2x2 + 3X4 * + 4x6 + ■ ■ ■ + nx2n~2 + ■ ■ ■ 

3.65.1. (Cf. Stanford 1963.) Observe that 

jc _ (x + n) + (x - n) 

n 2 n 
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Hence the proposed expression equals 

(*£■) + (*+£-‘) 

and binomial coefficients are integers. 

3.88.1. Differentiate both sides of 

1 - X"+1 

1 - * 
1 + X + X2 + • • • + X" = 

Ex. 3.87 and 3.88 can be similarly treated. 

3.88.2. Guess: 

l(«) + 2(j) + 3Q +...+(„ + !)(«)=(„ + 2)2--i 

(The difficulty in arriving at this guess may have been recognizing the products 
3-1,4-2, 5-4, 6-8, 7-16.) 

For a proof, first differentiate both sides of the identity 

(”)* + (i)*2 + (”)*3 + "' + (^)xn+1 = + *)" 

and then set x = 1. 

4.15.1. The equation in r 

2r2 — r — 1 = 0 

has the roots r = 1 and r = —1/2. Therefore, by ex. 4.14, 

(~l)*c2 
yk = c i + ■ 

2k 

By using the initial conditions (the cases k = 0 and k = 1), we obtain c1; C2, 
and, finally. 

yk 
a + 2b 

3 + (-1)* 
a — b 

3-2*-i 

5.19.1. We put a mark (a multiplication point if you wish) on v out of those 
n + v boxes in a row. In each box preceding the first marked box we put a 
factor xt, in the unmarked boxes between the marks no. 1 and no. 2 the factor 

*2, in the boxes between the marks no. 2 and no. 3 the factor x3,..., in 
the boxes between the marks no. (v — 1) and no. v the factor xv, in each box 
following the last marked box the factor 1. Thus to any choice of v boxes out 
of those n + v corresponds a product of the form ximi x<im* x3m* • • • xvm° with 

ffii + nt2 + m3 + ■ ■ ■ + mv ^ n and so a term of the polynomial: This is 
an intuitive argument. 

Cf ex. 3.40.1. 

6.13.1. (Stanford 1949.) The problem is: Find a positive integer x such that 
all digits of x2 are 1. 

(1) Keep only a part (a small part) of the condition: The last digit of x2 is 1. 
As the last digit of x2 depends only on the last digit of x it is enough to consider 
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the one-digit numbers; their squares are 

0, 1, 4, 9, 16, 25, 36, 49, 64, 81 

respectively. [Observe that x2 and (10 — x)2 have the same last digit.] Thus 

only numbers ending in 1 or 9 are eligible. 
(2) Keep a part (the next larger part) of the condition: The last two digits of 

x2 are 11. Enough to consider two-digit numbers, of the two numbers x 

and 100-Jc just one, and so, by virtue of (1), finally just the ten numbers 01, 11, 

21,...91. None of them has a square with the ending 11: This proves 

the assertion. 
Moral: It may be advantageous to transform a “problem to prove” into 

a “problem to find.” 

6.17.1. [Stanford 1965.] It is understood that for “age” we admit only 

a whole number of years. Here is a complete list of the decompositions of 72 
into three positive integral factors each followed by the sum of the three factors: 

1-1-72 74 2-2- 18 22 

1-2-36 39 2-3- 12 17 

1-3-24 28 2-4- 9 15 

1-4-18 23 2-6- 6 14 

1-6-12 19 3-3 • 8 14 

1-8- 9 18 3-4- 6 13 

The only sum of three factors that occurs more than once is emphasized by 

bold print. The remark about the oldest boy yields a distinction between two 
otherwise equally eligible cases: The boys are 8,3, and 3 years old. 

7.2.1. See ex. 3.91. The points represent the quantities 

c6 h 
Cl2 

C24 

124 

C48 

hs 
C96 

I96 

9.11.1. (Cf. American Mathematical Monthly, vol. 56, 1949, pp. 423-424.) 
Choose in advance 

min (a„A) = \ 
n2 

(Any other convergent series with decreasing positive terms would do just 
as well.) The series 
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are constructed in corresponding “segments” indicated by parentheses. In one 
segment each term equals the minimum chosen in advance; in the correspond¬ 
ing segment of the other series all terms are equal to each other and to the last 
term of the preceding segment, and their sum is 1. These two kinds of segments 

alternate in both series. 
These series do not yet fulfill quite the condition stated: The terms are 

decreasing in the sense “S” and not yet in the sense “>.” Yet there is 

an easy modification: In segments where the consecutive terms are all equal, 
subtract from them consecutive terms of an arithmetic progression with suffi¬ 
ciently small positive initial term and difference, especially with sum < 

12.2.1. (Stanford 1952.) What is the hypothesis? 

What is the conclusion? 

which is equivalent to 

Relevant knowledge: 

a < P±y 

2a < w — a 

a < w/3 

a2 = b2 + c2 — 2be cos a 

b2 a. c2 — a2 
cos a = -—- 

2be 

> 
b2 +c2 - (b + c) 74 

2be 

_ 3(b2 + c2) 1 

8 be 4 

6 be 1 1 
8 be 

which proves the assertion. 

12.5.1. (Julius G. Baron; see Mathematics Magazine 39, 1966, p. 134 and 
p. 112.) 

The problem is substantially: Find the area A of a quadrilateral which is 
both inscribed and circumscribed, given its sides a,b,c, and d. 

A closely related problem was raised in India twelve centuries ago. You 
stand a good chance to remember it if you have ever heard of it and ask your¬ 
self earnestly: Do you know a related problem? Do you know a problem with the 

same kind of unknown? 

In fact, that related problem has the same unknown and the same data as the 
proposed; it has even one-half of the most striking clause of the proposed 
condition; it is: Find the area A of an inscribed quadrilateral being given its sides 

a,b,c, and d. Its solution is (MPR, vol. 1, pp. 251-252, ex. 41) 
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A2 = (p - a)(p - b)(p - c)(p - d) 

where 2p = a + b + c + d. 

In possession of this information, it is sufficient to observe: If the quadrilat¬ 
eral is circumscribed and side a is opposite to c, side b to d, then 

a+c=b+d=p 

12.9.1. Set 

b + c — a = 2A c + a — b = 2B a + b — c = 2C 

Then 
1 = A 1 = B 1 _ C 

x2 xyz y2 xyz z2 xyz 

By multiplying, we obtain 
xyz = ABC 

and so 
*2 = BC y2 = CA z2 = AB 

For a full treatment there remains the discussion of the case when one or more 
of the unknowns xy, and z vanish. 

12.9.2. The usual definition of the ellipse mentions the foci. The considera¬ 
tion of this definition may lead to the question “Where are the foci?” and so 

eventually to guessing a stronger proposition which is easier to prove: Under the 
given assumptions concerning/,/', and v, the locus of V is an ellipse with foci 
F and F. In fact, the definition of the ellipse is satisfied. As the figure easily 
shows 

FV + F'V = r + F 

where r is the radius of/and F that of/. 

12.93. (1) Concentric circle with radius (r + F)/2. (2) Parabola with 

directrix/and focus F'. (3) Hyperbola with foci F and F'. (4) Perpendicu¬ 
lar bisector of the segment with endpoints/ = F and /' = F'. 

Some other cases: 

(5) Limiting case of ex. 12.9.2, or of (3): /' is a point on /, the locus 
is a straight line. 

(6) Particular case of (3): r = F, the locus is a straight line. 
There are more questions. 
About (3): What is the direction of the asymptotes, where is their point of 

intersection? Direction and location must be determined by the fixed circles/ 
and /', but how? And why? 

About (5): Is the whole straight line a limiting case of an ellipse? Or that of 
a hyperbola? Or is some part of the line this and the other that? 

And so on. 

To the teacher: The case in which/' is a point is beautifully presented by four 
films in the series Animated Geometry by J. L. Nicolet. 

14.1.1. If 400 consecutive .Gregorian years precisely agreed with 400 astro¬ 
nomical years, the length of one astronomical year would be 
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97 • 366 + 303 • 365 _ , 97 
400 + 400 

days, that is, 365 days, 5 hours, 49 minutes, and 12 seconds, which is only 
26 seconds longer than the length derived from astronomical observations. 
The discrepancy is small, but it would amount to a day in 3323 years. 

15.2.1. (Cf Stanford 1964.) (1) The segments into which d divides c 

are proportional to the adjacent sides. Therefore 

f———-t—\ = a2 + d2 — lad cos -J- 
\a + b / 2 

(—^-rf = b2 + d2 - 2bd cos 
\a + b/ 2 

Straightforward elimination of y yields 

„ _ ab[(a + by - c2] 

(a + by 

(2) If a = b = c, then d2 = 3a2/4. If a2 + b2 = c2, then 

d = b 

a\Jl a + b 

and this proportion is visible from easily constructed similar triangles. 
If a = b, then d2 = a2 — (c/1)2. 

If a + b = c, then d = 0. 

15.52.1. The formulation of the problem leaves considerable latitude and it 

does so intentionally: “real” problems may be rather indeterminate at the start. 
I detail some points deserving consideration. 

(1) The points of each set fill the interior and the surface of a polyhedron, see 
Figs. AS1, AS2, AS3. 

Fig. AS1. See C and O, imagine I and H. 



SOLUTIONS, 15.52.1 203 

Fig. AS2. The intersection /. 

C is a cube, its faces are squares. 
0 is a regular octahedron, its faces are equilateral triangles (Cf. ex. 5.5). 

/ is the intersection of C and 0; it is called the cuboctahedron. It has 14 

faces: 6 faces are squares each cut out from a face of C, and 8 faces are equi¬ 

lateral triangles each cut out from a face of 0. 
H contains both C and 0; it is, in fact, the smallest convex set containing 

both, their convex hull. Its faces are rhombi, it is called the rhombic dodecahed- 

dron. 

We pass from C to / by slicing off from C 8 congruent tetrahedra. 

We pass from C to H by adding to C 6 congruent pyramids. 
(2) We list the vertices of our four polyhedra: 

C (±1,±1,±1) 
0 (±2,0,0,) (0,±2,0) (0,0,±2) 
/ (0,±1,±1) (±1,0,±1) (±1,±1,0) 
H vertices of both C and 0. 

(3) The following table exhibits F, V, and E, the number of faces, vertices, 
and edges, for each polyhedron. 

F V 

C 6 8 
0 8 6 

I 6 + 8 12 

H 12 8 + 6 

E 

12 

12 
24 
24 

(4) C, 0, and / are inscribed in H. Eight among the 14 vertices of H are 
the vertices of C, the remaining 6 the vertices of 0, the centers of the 12 faces 
of H are the vertices of I. 

Each edge of C is coupled with an edge of 0: they bisect each other, they are 

the diagonals of the same face of H, their point of intersection is a vertex of /. 



204 SOLUTIONS, 15.53.1 

(5) All four polyhedra have the same kind of symmetry; we describe it 
in considering the most familiar figure C. 

There are planes of symmetry of two different kinds in the cube: 

Three are parallel, and midway between, a pair of opposite faces of the cube. 
Six pass through a pair of opposite edges. 
All 9 planes of symmetry pass through the center of the cube and cut it into 

48 congruent tetrahedra. 
There are axes of symmetry of three different kinds, (c/. HSI, ex. 8, pp. 235, 

239, 244-245) in the cube: 
Six connect the midpoints of a pair of opposite edges, each one is the inter¬ 

section of 2 planes of symmetry. 
Four connect a pair of opposite vertices, each one is the intersection of 

3 planes of symmetry. 
Three connect the midpoints of a pair of opposite faces, each one is the 

intersection of 4 planes of symmetry. 
All 13 axes of symmetry pass through the center of the cube. If the axis is 

an intersection of n planes of symmetry, then the cube rotated about the axis 
through an angle 360°/n coincides with itself. 

(6) The two patterns of ex. 2.50.1 involve C and H, respectively. In the first 
pattern, each sphere is inscribed in a cube and all these cubes fill the whole 
space without gaps and overlapping. In the second pattern, each sphere is in¬ 
scribed in a rhombic dodecahedron and all these rhombic dodecahedra fill the 

-whole space without gaps and overlapping. 
(7) To compute V [not the same notation as under (3)!] for / and H, we 

can advantageously start from C. If the polyhedron is circumscribed about a 
sphere there is a connection between V and S. 

c S = 24 K = ll*5 = 8 

o S = 16 y/3 V - 1 2 S - 32 
3 VJ 3 

I S = 12 + 4y/J II 

H S = 24yT V = -i y/IS = 16 

(8) The example may serve to introduce several general concepts, for instance, 
systems of linear inequalities, convex hull, symmetry in space, etc. 

Some more particular questions: Are there other pairs of polyhedra so 
coupled as C and 0? Other space filling polyhedra? Etc. 

15.53.1. Let a, b, and D be positive integers, D not a perfect square, so linked 
that 

a* - b*D = 1 

a = 2, b = 1, D = 3 is an example. Let n be a positive integer; then there are 
integers A and B such that 

(a — by/B)* = A — By/D 
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There follows 
(a + by/D)n = A + By/D 

A2 — B2D = (a + by/D)n(a — by/D)n 

= (a2 - b2D)n 

= 1 
and 

(a - by/By = y/A2 - y/WD 

= y/A2- y/A2 - 1 

Just a little change is needed to similarly generalize ex. 15.53, or to merge it 
with the present problem into a common generalization. 
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Abbreviations, 1 xvii 
Abel, Niels Henrik, 1 188; 2 88 
Abracadabra, 1 68-73 
Abstraction, 1 30, 56 

Adam, Charles, 1 56 
Aeppli, Alfred, 1 xiii 
Age of Reason (The), 2 60-61 
Alexanderson, Gerald L., 1 vii, xiii, 

xvi 
Algebra, for solving word problems, 

1 22, 24 
Alternating procedure, 2 50-51 
American Mathematical Monthly, 

2 112 

Analogue, to Heron’s theorem, 1 
45 

to Pythagoras’ theorem, 1, 34, 
45 

Analogy, 1 13; 2 41, 52, 86, 124, 
149; H 37-46; 112-34; II 9- 

12, 27-28 
binomial and polynomial coeffi¬ 

cients, 1 87-88 
of Heron’s theorem, 1 45 
of Pythagoras’ theorem, 1 34, 45; 

H 7-20 
Pascal’s and Leibnitz’s triangles, 

1 88-90 
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plane and solid geometry, 1 12-13, 
50-51, 83; 2 86, 108; H 38-45, 

235; I 25-26, 45-47 
see also Generalization, specializa¬ 

tion and analogy 
Analysis, 2 23, 31 

see Pattern of working backward 

Angle, 

dihedral, 112; 2 150 
trihedral, 112 

Anticipation, 1 58-59 
Aphorismen, 2 99 
A priori, 1119 

Archimedes, 1 38, 44, 57, 98; 2 32, 
163; H 38; I 155-158, 166- 
167 

Area of triangle, 1 34-35 
Ariadne, The Thread of, 1 148 
Aristotle, 2 71 

Arithmetic mean, 198 
Ars Conjectandi, 1 76 
Ass of Buridan (The), 2 161-162 
Auxiliary problem, 1 18; 2 36-53, 

96; H 50-57 
equivalent, 2 37-39; H 53-56 

figures, 1 14-15 
more, or less, ambitious, 2 39-40; 

H 56-57 
remoter, 2 41-42 

Baron, Julius G., 2 202 
Beckenbach, E. F., 2 175 
Beethoven, Ludwig van, 2 102 
Bernoulli, Jacob, 1 76 

polynomials, 1 62-68 
Binomial 

coefficients, 1 71-75 
formula, 1 63, 65, 67 
theorem, 1 75, 91-93 

‘Blind Man’s Rule’, (Euler), 155 
Bolzano, Bernard, 2 184; H 57-58 
Borel, Emile, 2 127 

Boutroux, P. (and L. Brunschvicg), 

1 67 
Bradley, 2 71 
Bright idea, 1 15, 23, 62; 2 54-61; 

H 57-58 

Brunschvicg, L. (and P. Boutroux), 

1 67 
Buridan, 2 161 

Butler, Samuel, 2 60 

Carbon atom (the), 2 188 
Carroll, Lewis, 1 41 
Carry out your plan, 2 7, 31; H 68- 

72 
Cartesian pattern, 1 22-59 

classroom examples, 1 29-32 

geometric examples, 1 32-37 
wider scope, 1 129-133 

Case history, 1 vi, 9 
Cavalieri, 2 32, 183 
Ceteris paribus, 2 93 
Chains of equivalent problems, 2 

38-39 
Checkmate in two moves, 1 152 
Choice between three plans, 2 32 
Circle, circumscribed, 1 5 

inscribed, 1 5 
Classroom examples of Cartesian 

pattern, 1 29-32 
Comparison of solutions to a word 

problem, 1 25 
Conclusion, 1 121; 2 78; H 155 

how can you prove such a, 2 26, 
34 

Condition, 1 4, 119-120, 129-133; 
2 46-47, 78; H 72-73 

clauses, 1 4, 122 
express by equations, see Pattern, 

Cartesian 
keep only a part, 1 4, 17, 33,147; 

2 46; H 82-84 
major clause, 1 140 
redundant, 1 42-44; I 190-192, 

200-202 
split the condition, 1 5, 6, 19, 27, 

129-133, 150 
sufficient, or insufficient, to de¬ 

termine the unknown, 1 18, 
41-42, 54, 55, 57-58; H 122; 
I 200-202 

the clause to begin with, 1 138- 
142, 148-149, 151-153 
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using the whole, see Did you use 

all of the data? 
see also Unknown, data, condition 

Conjecture, see Guess 
Consistence, Independence and, 

1 57-58 

Constructions, geometric, 1 20 

ruler and compass, 1 3, 20, 
32 

Contained in, sets, 1 20 

Continuous transition, 1 10, 37; 
2 115 

Could you solve part of the prob¬ 
lem? 1 40, 45 

Counterexample, 2 49-51; H 190- 
192 

Courant, Richard, 1 20, 32 
Critique of Pure Reason, 2 99 
Crossword puzzle, 1 32-33, 131, 

138-139; 2 61 
Cube, 2 151, 154 
Cuboctahedron, 2 205 

Curvilinear quadrilateral, 1 44 

Dante, 2 54; I 168 
Data, 1 3, 119-120, 127-128; 2 78; 

H 155 
derive something useful from, 

1 7; 2 30; H 73-75 
to determine this kind of un¬ 

known, 2 85-86 
variation of, 1 10, 31, 101; H 

210-213 
see also Unknown, data, condition 

Decimals, periodic, 2 164-165 

Decisions, 2 65-66 
Definition, 2 81, 83; H 85-92 
Denk, Franz, 2 138, 207 
Descartes, Rene, 1 1,22, 23, 27-28, 

55-59,61, 115, 129; 2 1, 12, 
36, 77, 78, 126-127, 149-158, 
184; H 92-93; II18, 142 

on polyhedra, 2 154; I 56-57 
Rules for the Direction of the 

Mind, 1 22, 26-28, 55-56, 58- 
59; 2 126 

Descriptive geometry, 2 12 

Deus ex machina, 1 64; 2 120; II 

146-148 
Diagram, 2 68-71 
Did you use all the data (the whole 

condition, the whole hypo¬ 

thesis)? 1 17, 102; 2 82; H 
95-98, 152; II 155-156, 162- 
163 

Difference equations, 

homogeneous, 1 108 
Differential equations, 1 96 

homogeneous linear, 1 108 
Dihedral angle, 1 12; 2 150 
Diophantine problem, 155 
Diophantus, 2 187 
Discipline of the mind, 2 12, 77-88 
Discovery, Story of a Little, 1 60- 

62 
Dodecahedron, 2 153-154 

rhombic, 2 205 

Dodgson, Charles, 1 41 
Do not commit yourself, 2 34 
Do you know a related problem? 

2 80; H 98 
Dudeney, H. E., 1 207 
Duncan, Isadora, 2 134 
Duncker, Karl, 2 65, 67, 72; H 134 

Economy, 2 91-92, 96 
Egyptian Problem, An, 1 48 
Einstein, 2 102 

Elwes, R. H. H., 2 134 
Empty set, 1 20 

Equal sets, 1 20 
Equations, 

as many as unknowns, 1 54 
differential, 1 96 
fewer than unknowns, 155 
homogeneous linear difference, 

1 108 

homogeneous linear differential, 
1 108 

incompatible, 1 58 
inconsistent system of, 1 58 

more than unknowns, 1 54 
n inn unknowns, 1 142-145 
self-contradictory system of, 1 58 
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setting up, 1 26 
system of, 1 28; 2 37-38 
system of four, 1 129-130 

Equivalent problems, 1 125; 2 37- 
38 

Euclid, 1 3, 43, 104, 118, 122, 127; 
2 13, 36, 85-86, 152, 184; 
I 15 

Euclidean constructions, 1 3, 20,32 
Euler, Leonhard (1707—1783), 1 

46-48, 55, 72; 2 48; I 3, 9, 
18-22, 30-34, 90-102, 106- 
107, 121; II 7-9,95-96 

‘Blind Man’s Rule’, 1 55 
line, 2 48 
on polyhedra, 2 149-158, 176; 

I 35-43, 52-58 
Example, 

from physics, 1 37-39 
from a puzzle, 1 39-40 
pattern, 1 4-6 
puzzling (cartesian), 1 41-44 

Expanding pattern, 1 40 

Exploring the neighborhood, 2 194 
Extrapolation, 1 100 
Extreme case, 1 10 

Fact and conjecture, 2 168 
Fejes-Toth, L., 2 164 
Fibonacci, (Leonardo of Pisa), 1 49 

numbers, 1 109; 2 190 
numbers (Binet formulas for), 

1 196-197 
5-prism, 2 151, 154 
Flexibility, 2 35; II 151 
Folding, cardboard, 1 12-13 
France, Anatole, 2 142 
Frustum (of a right pyramid), 2 

2-10 
Function, 1 99-100 

Galileo, 1 109; 2 123; I 8, 194-196 
Galois, Evariste, 2 88 
Gauss, Carl Friedrich, 1 60-62, 2 88; 

I 59 
Generalization, 1 25, 48, 53, 62, 

64, 77, 81, 83, 88, 92, 111, 

112, 175; 2 124, 152; H 108- 
110; I 12-17, 22-23; II passim 

general formulation advantageous, 
1 69 

letters for numbers, 1 25, 44, 162; 
H 109 

observe and generalize, 1 76, 84; 
2 145, 152; H 237; I 116-118 

Generalization and specialization, 
2 51-52 

Generalization, specialization, and 
analogy, 2 53, 80, 124; I 12- 
17 

Genetic principle, 2 132-133 

Genius, the expert, and the begin¬ 
ner, 2 97 

Geometry, 
descriptive, 1 12 
plane, 1 48 
solid, 1 34, 50-51; 2 58 

Geometric constructions, 1 3-4, 20 
Geometric mean, 1 98 
Gestalt, 2 68 

Given, 1 3 
Go back to definitions, 2 194 
Goldbach, Christian, 1 121; I 5 
Gothic tracery, 1 17, 32-33, 44 

Graphic time table, 1 52-54 
Guess, 1 34, 46, 79, 95; 2 79, 105, 

124, 143-168; I, \\ passim 
examine your guess, 2 156-157, 

168; H 99-103 
see also Generalization, Induction 

Hadamard, Jacques, 1 113; 2 127, 
184; H 134, 199 

Haeckel, Ernest, 2 133 
Harmonic mean, 1 98 
Harmonic triangle, 1 88-89 
Hartkopf, Werner, 1 ix; 2 138, 184 
Have you seen it before? 1 147 
Heath, T. L., 1 98 
Hermite, Charles, 2 143 
Heron’s (also Hero’s) theorem, 1 

34-35; 2 146, 158 
analogue to, 1 45 
see also Analogy of 
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Heuristic, 2 10 
rat’s maze, 2 74 

Hilbert, David, 2 127 
Hilgard, E. R., 2 100 
Hilton, Peter, 1 vii, xvi; 2 209 

Hobbes, Thomas, 2 22 
Homothetic figures, 1 9 
How can you get THIS kind of 

thing (unknown, conclusion)? 
1 34,36, 110; 2 5, 6, 29-30, 
79, 86 

see also Problem with the same, 
or a similar, kind of unknown; 
Theorem with the same, or a 

similar conclusion 
Hypothesis, 1 121 

to derive this conclusion, 2 85-86 

Hypothesis and conclusion, 1 121, 
125, 127; 2 46, 78, 94; H 155 

Icosahedron, 2 153-154 
If you cannot solve the proposed 

problem, 1 10, 69;24;H 114 
Incompatible equations, 158 
Inconsistent system of equations, 

1 58 
Independence and consistence, 1 

57-58 
Indeterminate 

problem, 1 99-101 
system of equations, 158 

Induction, 1 91-92, 183; 2 143-168; 
H 114-117; I 3-11,1. II 
passim 

fundamental inductive pattern 
(heuristic syllogism), H 186- 
190; II 3-5 and passim 

mathematical, 1 73-75 
observe and explain regularities, 

1 94, 189, 190; 2 145, 181; 
H 237; I 87-88 

verification (in particular cases, of 

consequences), 1 92; 2 146- 
149, 153, 154; H 62-64 

see also Generalization, observe 
and generalize 

Inequality, 1 51 

Inside help, outside help, 2 135-137; 

H 20-23 

Interpolation, 1 99-101 
Interpretation, 1 30, 44 

mechanical, 1 146-148 
optical, 1 142-146 
reinterpretation, 1 149-155 

Intersection, of sets, 1 21 
Inversion of a power series, 1 95 
Isolation and combination, 2 68-69 
Isoperime trie problem, 2 144-145 
Is there a solution? 2 79; H 122 

see also Condition, sufficient, or 
insufficient, to determine the 

unknown 

James, William, 1 117; 2 100; H 

134 

Kant, Immanuel, 2 99, 103 
Keep part of the condition, 1 33 

Kepler, Johannes, 2 123, 181; I 12, 
196-198 

Key facts, 2 81, 85 
Key figure, 1 167 
Keynes, J. M., 2 161 
Klein, Felix, 2 126 
Kohler, Wolfgang, 2 36; H 134 
Krauss, F., 2 184; H 134 

Lagrange, Joseph, 1 104, 195 

interpolation formula, 1 101-104 
Lakatos, Imre, 2 51,127, 184 
Language, algebraic (mathematical), 

1 24; 2 84, 124; H 174-177 
of geometric figures, 2 85, 124- 

125 
Lattice point, 1 202 

Leap years, 2 194 
Learning, Three principles of, 2 

102-104 
Leibnitz, Gottfried von, 1 46, 83, 

88, 89,91, 111, 125-126, 
129, 148; 2 12, 50,62-63,99, 

168,184;H123; I 30 
Leibnitz’s Harmonic Triangle, 1 88- 

89 
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Leonardo of Pisa (Fibonacci), 1 49 
Lichtenberg, Georg, 2 61, 99, 103 
Lighthouses, Three, 1 16-17 
Lindemann, Ferdinand, 1 126 
Linear combination, 1 106-107 
Listening posts, three, 1 19 
Loci, 

two for a function, 1 140-142 
patterns of, 1 3-21 

Locus, 1 4, 5, 133 
Loewner, Charles, 1 xv; 2 143 
Logothetti, Dave, 1 xvi 
Look at the unknown, 2 87; H 123- 

129 
see also Problem with the same, 

or a similar, kind of unknown 

Mach, Ernst, 2 184;H 134; I 108 
Magic square, 1 149 

Maps, 2 129-132 
Mariotte, 2 62 
Mathematical induction, 1 73-75, 

82; H 114-121; I 108-120 
Mathematische Schriften, 2 99 

Maxwell, James Clerk, 2 133 
Mean, 

arithmetic, 1 98 
geometric, 1 98 
harmonic, 1 98 

Medians of a triangle, 111 
Meiklejohn, J. M. D., 2 99 
Mental inertia, I 63 
Metaphors, 2 1-2 
Method 

of successive approximations, 1 
26 

of undetermined coefficients, 1 
93-94 

see also Pattern, Result or method 
Mice and men, 2 75-76 
Mobilization and organization, 1 57; 

2 11,66-67, 73; H 157-159 
diagram (How we think), 2 69 

Modus operandi, 1 122 
Monroe, Marilyn, 2 134 
Montaigne, Michel de, 2 102 
Morphological structure, 2 155 

Mozart, Wolfgang, 2 102 
Multiplicity of approaches, 1 75, 83, 

109 

Napoleon’s problem, 2 26-28 
n-double-pyramid, 2 153-154 
Newman, J. R., 1 48, 91 
Newton, Sir Isaac (1643-1727), 1 

46-49,53, 54,91-92, 188; 2 
63, 89, 181; I 27, 87 

Nicolet, J. L., 2 203 

Niven, Ivan, 2 181 
No solution, 1 18 
Notation, 

triangle, 1 16 
w-prism, 2 153-154 
w-pyramid, 2 153-154 
Number 

pyramidal, 1 85 
square, 1 85 
triangular, 1 84-85 

Numbers, 
Fibonacci, 1 109 
trapezoidal, 2 166-167 
triangular, 2 166 

Octahedron, 2 151, 154 
volume of, 1 51 

One more high school research 
project, 2 195 

Ontogeny, 2 132-133 
Out of the blue, 1 64; H 50; II 147- 

148 

Paine, Thomas, 2 60-61 
Paper cutting, 1 45 
Pappus, 1 9; 2 23, 31, 184, 207; H 

141-148 
Paradigmatic teaching, 2 123 
Part suggests the whole, 2 71-72, 

149 
Pascal, Blaise, 1 67, 70-75, 84-89, 

176 
Pattern, Cartesian, 1 22-23, 26-29, 

129-133; H 174-177 
of auxiliary figures, 1 14-15; H 

46-50 
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of mathematical induction, 1 73- 
75, 82; H 114-121; I 108-120 

of recursion, 1 66-68, 142-146 
of similar figures, 1 9-10, 15; H 

23-25 
of superposition, 1 105-106, 113 
of three loci, 1 19 
of two loci, 1 4-5,6, 15, 19, 133- 

138 
of undetermined coefficients, 1 

93-97 
of working backward, 2 13-14, 

16,22-24, 29-31, 44; H 141- 
148, 225-232 

of working forward, 2 8, 17-18, 
29-31 

Pedersen, Jean, 1 vii, xvi 
Periodic decimals, 2 164-165 
Persistence, 2 92, 96 
Photometer, 2 188 
Phylogeny, 2 132-133 

Physics, 
an example from, 1 37-39 

Plane geometry, 1 48 
Plans and programs, 2 10, 22-35 
Plausible reasoning, 2 157 
Plums and plans (Of), 2 97 
Polyhedra, 2 149-160 
Polyhedron 

flattened, 2 155 
n faces, 1 83 

six faces, 1 83 
Power series, 1 90-91 

inversion of, 1 95 

Principle, genetic, 2 132-133 
Principle of Nonsufficient Reason, 

2 160-163; I 186-188 
Prevision, 2 64-65, 69 
Prismoidal formula, 1 110-113 
Problem, 1 117-118 

equivalent, 1 4, 125; 2 38; H 53- 
56 

formulation, 1 99-101; 2 105, 
108 

indeterminate, 1 99-101 
principal parts, 1 120, 121; 2 94; 

H 155 

related, 1 4, 80; H 114 
related and simpler, 1 69 
related and solved before, 1110; 

2 44; H 110-112 
solve part of the proposed, 1 6, 7, 

8, 11,40, 45; H 80 
strip it, 1 56-57 

take the problem as solved, 1 6-9, 
11, 15, 27, 45, 164; H 104- 
105, 146-147; as almost 
solved, I 127 

Problem, to find, 1 119-120, 132; 
H 154 

to prove, 1119, 120-121 ;H 154- 
155 

with the same, or a similar, kind 
of unknown, 2 44-45, 82, 85, 
86, 95; H 124-129 

Problem(s), 
auxiliary, 2 11, 36 

chess, 1 152 
classification of, 1 118-119 
Diophantine, 1 55 

nonmathematical, 1 151-152 
rate, 1 29-32 

translator’s, 1 152 
Proclus, 2 36 
Productive thinking, creative think¬ 

ing, 2 87-88, 97 
Program, 2 25, 28 

Progressive planning, see Pattern or 
working forward 

Proximity, 2 63; II 163-164 

Puzzles, 1 39-40, 45-46, 137-140, 
143-144, 149; H 160-162 

crossword, 1 131-132, 137-139, 
147-148; 2 32-33, 61, 172; 
H 83-84 

Pyramid, 
volume of, 1 106; 2 2-10, 39 

Pyramidal number, 1 85 
Pythagoras’ theorem 

analogue in solid geometry, 1 34- 
37 

another analogue to, 1 
45 

see also Analogy 
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Quadrilateral, curvilinear, 1 44 

Rate problems 
classroom examples, 1 29-32 

Rationality, 2 90-91, 96 
Rationals and irrationals, 2 125-126 
Recognizing and remembering, 2 67 
Recursion formula, 1 66-68, 73, 88, 

109, 142-145, 191; I 93, 102, 
104 

Reduce the problem, 1 5 
Reduction, 15,6 

ad absurdum, H 162-171 
bilateral, 2 37-38; H 54-56 
convertible, see bilateral 
equivalent, see bilateral 

unilateral, 2 39-40; H 56-57 
Redundant data, 1 44 
Region of search, 2 65 
Regressive planning, 2 23 

see also Pattern or working back¬ 
ward 

Regula Caeci, 155 
Related figure, 1 15 
Related problem, 1 10, 110 
Relevancy, 2 63 
Relevant knowledge, 1 29, 38, 57, 

159; 2 81-82, 193;H 157, 
159 

Respice finem, 2 43-46 
Restate the problem, 2 15-17, 84; 

H 75, 88 
Result or method, 1 81, 98, 107, 

192;H 52 
Retrospective discussion, 2 106; H 

59-68 
Rhombic dodecahedron, 2 205 
Robbins, Herbert, 1 20, 32 
Rule, 

Blind Man’s (Euler), 155 
Descartes’, 1 55-57 
Simpson’s, 1112 

Rules, 2 89-90, 97 
for ‘The Direction of the Mind’, 

1 22;2 126 
of discovery, 2 89-98; H 172 

of plausible reasoning, II 109-111 

of preference, 2 93 
of teaching, 2 104-106; H 173 
Zermelo’s, 2 141-142 

Salvaging, 2 188 
Schlegel diagram (flattened poly¬ 

hedron), 2 155 
Schur, Issai, 2 143 
Scientific method; guess and test, 2 

156 
Self-contradictory, system of equa¬ 

tions, 1 58 
Sequence and consequence, 1 126 
Sequence, well-ordered, 1 67 
Series, power, 1 90-91 

Sets, 1 20-21 
Setting up equations, see Pattern, 

Cartesian 

Shaw, Bernard, 2 134 
Signumx, 1 124-125 
Similarly located (homothetic), 1 9 

Simpson’s rule, 1112 
Socratic (method, dialogue), 2 103, 

104,107 
Solid geometry, 1 34, 50-51; 2 58 
Solution, 1 120, 126-127; H 202 

looking back at the solution, 118; 
H 14-19 

see also Retrospective discussion 
Specialization, 2 51, 124;H 190- 

197;I 13 
concrete interpretation, H 197 
extreme special case, H, 192-196; 

I 23-24 
Specialization, leading particular 

case, 1 106, 113; I 24-25 
next particular case, 1 63 
particular case equivalent to gen¬ 

eral case, 1 79; I 23 
representative special case, 1 78, 

178;I 25 
special situation, 1 102, 104 
see also Generalization, specializa¬ 

tion, and analogy 
Sphere, 

circumscribed about tetrahedron, 
1 19 
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Spherical triangles, 1 12 
Spherometer, 1 51-52 
Spinoza, Baruch, 2 134 
Square number, 185 
Squaring the circle, 1 126 
St. Augustine, 2 97 
Steiner, Jacob, 2 175 
Stepping stone, 1 8-9, 11, 14, 15; 

H 196 
Strict reasoning, 2 126-129; H 215- 

221 
Style of work, 2 97-98 
Subproblem, see Auxiliary problem 
Subset, 1 20 

Successive approximations, 1 26 
Sufficient condition, 1 59, 41-42 
Sum of 

consecutive odd positive integers, 
2 167 

first n integers, 1 60-62 
first n odd numbers, 1 81 
first n squares, 1 62-64 
like powers of the first n integers, 

1 64-68 
Superposition, 1 8, 106-107, 99- 

113 
Supplementing and regrouping, 2 

67-69 
Sussanan, Irving, 2 209 
Symmetry, 1 153, 159, 207, 208; 

2 27, 160-163; H 199-200; 
I 89, 187-188 

Synthesis, 2 23 
see also Pattern or working back¬ 

ward 

System of equations, 1 28; 2 37-38 
Szego, Gabor, 2 135, 184, 207 

Take the problem as solved (wishful 
thinking), 1 6-9, 11, 27, 45 

Tangents to circles, 1 10 
Tannery, Paul (and Charles Adam), 

1 56 
Teaching 

is an art, 2 101-102 
is not a science, 2 99-100 
the aim of, 2 100-101 

three principles of, 2 104 
what should we teach? 2 132 

Ten Commandments for Teachers, 
2 116-120 

Term paper, 2 140-141 
Test your conjecture, see Guess, ex¬ 

amine 
Tetrahedron, 1 34, 111-112; 2 151, 

154 
circumscribe a sphere about, 1 19 
volume of, 1 51, 106, 109-110 

Theorem (proposition), 1 121 

prove, or disprove, 1 120-121; 2 
129; H 154-155 

stronger (possible ground), 2 47; 

II 19-20 
weaker (consequence), 2 47-48; 

II 3-9, 18-19 
with the same, or a similar, con¬ 

clusion, 2 45, 82, 85, 86, 95; 
H 128 

Theories of Learning, 2 100 

Three lighthouses, 1 16-17 
Three listening posts, 1 19 
Timetable, graphic, 1 52-54 
Tower (polyhedron), 2 151, 154 
Traite du triangle arithmetique, 1 

71 
Transition, continuous, 1 37 
Translator’s problem, 1 152 
Trapezoidal numbers, 2 166-167 
Trial and error, 1 26 
Triangle 

area of, 1 34-35 

Leibnitz’s harmonic, 1 88-89 
medians of, 1 11 
notation for, 1 16 

Pascal’s, 1 70-75 
Triangular number, 1 84-85; 2 166 

Trihedral angle, 112 

Trinomial coefficients, 1 87-88 

Understand the problem, 1 27 

Undetermined coefficients, method 
of, 1 93-94 

Unilateral reduction, 2 39-42 
Union, of sets, 1 21 
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Unique solution, 1 58-59 
Universal method, 1 22 
Unknown, 1 3, 119; 2 78; H 154 

auxiliary, 1 31; 2 7; H 51 
how to find this kind of unknown, 

1 34,36, 110; 2 5, 6, 29-30, 
79, 86; H 124-129 

multicomponent, 1 122 
multipartite, 1 122 

operational, 1 126 
Unknown, data, condition, 1 5, 8, 

10, 11, 27, 119-120, 125 ; 2 
78, 94; H 155, 214 

van der Waerden, B. L., 2 187 

Variation of the data, 1 10,31, 101 
Vector-space, 1 107 
Volume of 

a ‘hoof’, 2 32 
frustum of right pyramid, 2 2-10 
octahedron, 1 51 
prismoid, 1 110-113 
pyramid, 1 106, 2 2-10, 39-40 
tetrahedron, 1 51, 106, 109-110 

Wagenschein, Martin, 2 123, 186 
Wallis, John, 1 91 
Well-ordered sequence, 167 
Wertheimer, Max, 2 100 
Weyl, Hermann, 2 128 

What are such things (data hypo¬ 
thesis) good for? 2 30, 79-80; 
H 73-75 

see also Data, derive something 
useful form 

What do you want? 2 3, 44, 78; H 
214-215 

see also Unknown;Look at the 
unknown; Unknown, Data, 
condition; Conclusion; 
Hypothesis and conclusion 

What have you? 2 3, 78; H 73-75 

What is Mathematics? 1 20, 32 
see also Data; Unknown, data, 

condition; Hypothesis; 

Hypothesis and conclusion 

Wise man begins in the end, 2 31 
Wishful thinking, 1 6-8 
Wittenberg, A. I., 2 123, 133, 209 

Working backward, from the un¬ 
known to the data, see 
Pattern of working backward 

Working forward, from the data to 
the unknown, see Pattern of 
working forward 

Working from inside, from outside, 
2 73, 81 

Working of the mind, 2 11, 62-76 

Zermelo’s rules. 2 141-142 


