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PREFACE

Inductive reasoning is one of the many battlefields for conflicting philo-
sophical opinions, and one that is still relatively lively today. The reader
who went through Vol. I of this work has had a good opportunity to notice
two things. First, inductive and analogical reasoning play a major réle in
mathematical discovery. Second, both inductive and analogical reasoning
are particular cases of plausible reasoning. It seems to me more philo-
sophical to consider the general idea of plausible reasoning instead of its
isolated particular cases. The present Vol. II attempts to formulate certain
patterns of plausible reasoning, to investigate their relation to the Calculus
of Probability, and to examine in what sense they can be regarded as
“rules” of plausible reasoning. Their relation to mathematical invention
and instruction will also be briefly discussed.

The text of the present Vol. IT does not often refer explicitly to Vol. I,
and the reader can understand the main connections without looking up
these references. Among the problems appended to the various chapters
there are some that the reader cannot solve without referring to Vol. I, but
on the whole one can read Vol. IT in first approximation without having read
Vol. 1. Yet, of course, it is more natural to read Vol. II after Vol. I, the
examples of which provide the investigation that lies ahead of us with
experimental data and a richer background.

Such data and background are particularly desirable in view of the
method that will be followed. I wish to investigate plausible reasoning in
the manner of the naturalist: I collect observations, state conclusions, and
emphasize the points in which my observations seem to support my con-
clusions. Yet I respect the judgment of the reader and I do not want to
force or trick him into adopting my conclusions.

Of course, the views presented here have no pretension to be final. In
fact, there are a few places where I feel clearly the need of some improve-
ment, minor or major. Yet I believe that the main direction is right, and
that the discussions, and especially the examples, of this work may elucidate
the “double nature” and the “‘complementary aspects” of plausible and
especially inductive reasoning, which appears sometimes as “objective’” and
sometimes as ‘‘subjective.”

GEORGE PoLya
Stanford University
May 1953






HINTS TO THE READER

THE section 2 of chapter VII is quoted as sect. 2 in chapter VII, but as sect.
7.2 in any other chapter. The subsection (3) of section 5 of chapter XIV
is quoted as sect. 5 (3) in chapter XIV, but as sect. 14.5 (3) in any other
chapter. We refer to example 26 of chapter XIV as ex. 26 in the same
chapter, but as ex. 14.26 in any other chapter.

Some knowledge of elementary algebra and geometry may be enough to
read substantial parts of the text. Thorough knowledge of elementary
algebra and geometry and some knowledge of analytic geometry and
calculus, including limits and infinite series, is sufficient for almost the whole
text and the majority of the examples and comments. Yet more advanced
knowledge is supposed in a few incidental remarks of the text, in some pro-
posed problems, and in several comments. Usually some warning is given
when more advanced knowledge is assumed.

The advanced reader who skips parts that appear to him too elementary
may miss more than the less advanced reader who skips parts that appear
to him too complex.

Some details of (not very difficult) demonstrations are often omitted
without warning. Duly prepared for this eventuality, a reader with good
critical habits need not spoil them.

Some of the problems proposed for solution are very easy, but a few are
pretty hard. Hints that may facilitate the solution are enclosed in square
brackets []. The surrounding problems may provide hints. Especial
attention should be paid to the introductory lines prefixed to the examples
in some chapters, or prefixed to the First Part, or Second Part, of such
examples.

The solutions are sometimes very short: they suppose that the reader
has earnestly tried to solve the problem by his own means before looking
at the printed solution.

A reader who spent serious effort on a problem may profit by it even if
he does not succeed in solving it. For example, he may look at the solution,
try to isolate what appears to him the key idea, put the book aside, and then
try to work out the solution.

At some places, this book is lavish of figures or in giving small inter-
mediate steps of a derivation. The aim is to render visible the evolution of a
figure or a formula; see, for instance, fig. 16.1-16.5. Yet no book can have
enough figures or formulas. A reader may want to read a passage ‘“‘in
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viil HINTS TO THE READER

first approximation” or more thoroughly. If he wants to read more
thoroughly, he should have paper and pencil at hand: he should be pre-
pared to write or draw any formula or figure given in, or only indicated by,
the text. Doing so, he has a better chance to see the evolution of the
figure or formula, to understand how the various details contribute to the
final product, and to remember the whole thing.
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SOME CONSPICUOUS PATTERNS

1 do not wish, at this stage, to examine the logical justification of this form of
argumentation; for the present, I am considering it as a practice, which
we can observe in the habits of men and animals.—BERTRAND RUSSELL!

1. Verification of a consequence. In the first volume of this work on
Induction and Analogy in Mathematics we found some opportunity to familiarize
ourselves with the practice of plausible reasoning. In the present second
volume we undertake to describe this practice in general terms. The examples
of the first part have already indicated certain forms or patterns of plausible
reasoning. In the present chapter we undertake to formulate some such
patterns explicitly.?

We begin with a pattern of plausible inference which is of so general use
that we could extract it from almost any example. Yet let us take an example
which we have not yet discussed before.

The following conjecture is due to Euler:® Any integer of the form 8n +- 3 is
the sum of a square and of the double of a prime. Euler could not prove this
conjecture, and the difficulty of a proof appears perhaps even greater today
than in Euler’s time. Yet Euler verified his statement for all integers of the
form 8n + 3 under 200; forn= 1,2, ... 10 see Table I.

Table 1
1l=1+2 x5
19=94 2 %5
P N e o
35=14+2%x17=9+4+2x%x13=254+2X%X5
43 =9+ 2 x 17
51 =281 2 %13
59 =1+2x29=254+2%17=49+2X5
67 =9+ 2 x 29
75=142x37=49+2 x 13 :
83=1+2x41=94+2x%x37=25+2x%x29=49+2 x 17

|

1 Philosophy, W. W. Norton & Co., 1927, p. 80.

2 Parts of this chapter were used in my address “‘On plausible reasoning” printed in the
Proceedings of the International Congress of Mathematicians 1950, vol. 1, p. 739-747.

3 Opera Omnia, ser. 1, vol. 4, p. 120-124. In this context, Euler regards 1 as a prime;
this is needed to account for the case 3 =1 + 2 x 1.

3



4 SOME CONSPICUOUS PATTERNS

Such empirical work can be easily carried further; no exception has been
found in numbers under 1000.# Does this prove Euler’s conjecture? By
no means; even verification up to 1,000,000 would prove nothing. Yet
each verification renders the conjecture somewhat more credible, and we can
see herein a general pattern.

Let 4 denote some clearly formulated conjecture which is, at present,
neither proved, nor disproved. (For instance, 4 may be Euler’s conjecture
thatefor n —150083 v

8n+3=x2+2p

where x is an integer and p a prime.) Let B denote some consequence of 4;
also B should be clearly stated and neither proved, nor disproved. (For
instance, B may be the first particular case of Euler’s conjecture not listed in
Table I which asserts that 91 = 2 4- 2p.) For the moment we do not know
whether 4 or B is true. We do know, however, that

4 implies B.

Now, we undertake to check B. (A few trials suffice to find out whether the

assertion about 91 is true or not.) If it turned out that B is false, we could

conclude that A4 also is false. This is completely clear. We have here a

classical elementary pattern of reasoning, the “modus tollens” of the so-called
hypothetical syllogism:

A implies B

B false
~ Afalse

The horizontal line separating the two premises from the conclusion stands
as usual for the word “therefore.” 'We have here demonstrative inference of a
well-known type.

What happens if B turns out to be true? (Actually, 91 = 9 + 2 x 41
=81 +2 X 5.) There is no demonstrative conclusion: the verification
of its consequence B does not prove the conjecture 4. Yet such verification
renders 4 more credible. (Euler’s conjecture, verified in one more case,
becomes somewhat more credible.) We have here a pattern of plausible
inference:

A implies B
B true
A more credible
The horizontal line again stands for ““therefore.” We shall call this pattern
the fundamental inductive pattern or, somewhat shorter, the “inductive pattern.”

* Communication of Professor D. H. Lehmer.
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This inductive pattern says nothing surprising. On the contrary, it
expresses a belief which no reasonable person seems to doubt: The verification
of a consequence renders a conjecture more credible. 'With a little attention, we can
observe countless reasonings in everyday life, in the law courts, in science,
etc., which appear to conform to our pattern.

2. Successive verification of several consequences. In the present
section, I use the phrase “discussion of a theorem” in the specific meaning
“discussion, or survey, of some particular cases and some more immediate
consequences of the theorem.” T think that the discussion of the theorems
presented is useful both in advanced and in elementary classes. Let us
consider a very elementary example. Let us assume that you teach a class
in solid geometry and that you have to derive the formula for the area of the
lateral surface of the frustum of a cone. Of course, the cone is a right
circular cone, and you are given the radius of the base R, the radius of the
top r, and the altitude £. You go through the usual derivation and you
arrive at the result:

A. The area of the lateral surface of the frustum is

7R+ 1)V (R — 1) + k.

We call this theorem 4 for future reference.

Now comes the discussion of the theorem 4. You ask the class: Can you
check the result?  If there is no response, you give more explicit hints: Can you
check the result by applying it? Can you check it by applying it to some
particular case you already know? Eventually, with more or less collaboration
from the part of your class, you get down to various known cases. IfR = 7,
you obtain a first noteworthy particular case:

B,. The area of the lateral surface of a cylinder is 27rh.

Of course, 4 stands for the altitude of the cylinder and r for the radius of
its base. We call B, this consequence of 4 for future reference. The
consequence B; has been treated already in your class and so it serves as a
confirmation of A4.

You obtain another particular case of 4 in setting r = 0 which yields:

B,. The area of the lateral surface of a cone is mRV R® + h2.

Here £ denotes the altitude of the cone and R the radius of its base. Also
this consequence B, of 4 was known before and serves as a further confirmation
of 4.

There is a less obvious but interesting particular case corresponding to
fe=201

By. The area of the annulus between two concentric circles with radii R and r is
wR2 — 2

This consequence By of 4 is known from plane geometry and yields still
another confirmation of 4.
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The foregoing three particular cases, all known from previous study,
support 4 from three different sides; the three figures (cylinder, cone, and
annulus, corresponding to 7 = R, r = 0, and & = 0, respectively) look quite
different. You may mention also the very particular case r = A = 0.

B,. The area of a circle with radius R is wR2.

I have sometimes observed that a boy in the last row who seemed to sleep
soundly toward the end of my careful derivation opened his eyes and showed
some interest in the progress of the discussion. The derivation of the formula,
apparently plain and easy, seemed abstruse and difficult to him. He was
not convinced by the derivation. He is more convinced by the discussion:
a formula that checks in so many and so different cases has a good chance to
be correct, he thinks. And in thinking so he conforms to a pattern of plausible
reasoning which is closely related to, but more sophisticated than, the
fundamental inductive pattern:

4 implies B, .,
B,,, is very different from the formerly

verified consequences B,, B,, ... B, of 4

A much more credible

This pattern adds a qualification to the fundamental inductive pattern.
Certainly the verification of any consequence strengthens our belief in a
conjecture. Yet the verification of certain consequences strengthens our
belief more and that of others strengthens it less. The pattern just given
brings to our attention a circumstance which has a great influence on the
strength of inductive evidence: the variety of the consequences tested. The
verification of a new consequence counts more if the new consequence differs
more from the formerly verified consequences.

Now let us look at the reverse of the medal. Take the example of the fore-
going section 1. The successive cases in Table I in which Euler’s conjecture
is verified look very similar to each other—unless we notice some hidden clue,
and it seems very difficult to notice such a clue. Therefore, sooner or later,
we get tired of this monotonous sequence of verifications. Having verified
a certain number of cases, we hesitate. Is it worth while to tackle the next
case? The next case, if the result is negative, could explode the conjecture—
but the next case is so similar in all known aspects to the cases already
verified that we scarcely expect a negative result. The next case, if the result
is positive, would increase our confidence in Euler’s conjecture, but this
increase in confidence would be so small that it is scarcely worth the trouble
of testing that next case.

This consideration suggests the following pattern which is not essentially
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different from the pattern that we have just stated, but rather a complementary
form of it:
4 implies B,
B, ., is very similar to the formerly verified
consequences By, By, ... B, of 4

B, ., true

4 just a little more credible

The verification of a new consequence counts more or less according as the new
censequence differs more or less from the formerly verified consequences.

3. Verification of an improbable consequence. In a little known
short note® Euler considers, for positive values of the parameter n, the series

2 4 6
X X X

(1) 1 — - — +...
nn+1) nan+1)@m+2)(n+3) n...(n+5)

which converges for all values of x. He observes the sum of the series and

its zeros for:n =1, 2, 3, 4.

n=—-1: suncos x. zeros + m/2, 4+ 37w[2, 4 57[2, ...
n= 2: sum (sin x)/x, zeros + m, + 27, 4+ 3m, ...
n=3: sum 2(1 — cos x)/+%,  zeros + 2m, 4 4w, 4 6m, .
n=4: sum 6(x — sin x)/x3, no real zeros.

Euler observes a difference: in the first three cases all the zeros are real, in
the last case none of the zeros is real. Euler notices a more subtle difference
between the first two cases and the third case: for n =1 and n = 2, the
distance between two consecutive zeros is 7 (provided that we disregard the
zeros next to the origin in the case n = 2) but for n = 3 the distance between
consecutive zeros is 27 (with a similar proviso). This leads him to a striking
observation: in the case n = 3 all the zeros are double zeros. ‘“Yet we
know from Analysis,” says Euler, “that two roots of an equation always
coincide in the transition from real to imaginary roots. Thus we may
understand why all the zeros suddenly become imaginary when we take for
n a value exceeding 3.” On the basis of these observations he states a
surprising conjecture: the function defined by the series (1) has only real zeros,
and an infinity of them, when 0 << n < 3, but has no real zero at all whenn > 3. In
this statement he regards n as a continuously varying parameter.

In Euler’s time questions about the reality of the zeros of transcendental
equations were absolutely new, and we must confess that even today we
possess no systematic method to decide such questions. (For instance, we

5 Opera Omnia, ser. 1, vol. 16, sect. 1, p. 241-265.
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cannot prove or disprove Riemann’s famous hypothesis.) Therefore, Euler’s
conjecture appears extremely bold. I think that the courage and clearness
with which he states his conjecture are admirable.

Yet Euler’s admirable performance is understandable to a certain extent.
Other experts perform similar feats in dealing with other subjects, and each
of us performs something similar in everyday life. In fact, Euler guessed the
whole from a few scattered details. Quite similarly, an archaeologist may
reconstitute with reasonable certainty a whole inscription from a few
scattered letters on a worn-out stone. A paleontologist may describe
reliably the whole animal after having examined a few of its petrified bones.
When a person whom you know very well starts talking in a certain way,
you may predict after a few words the whole story he is going to tell you.
Quite similarly, Euler guessed the whole story, the whole mathematical
situation, from a few clearly recognized points.

It is still remarkable that he guessed it from so few points, by considering
just four cases, n = 1, 2, 3, 4. We should not forget, however, that circum-
stantial evidence may be very strong. A defendantis accused of having blown
up the yacht of his girl friend’s father, and the prosecution produces a receipt
signed by the defendant acknowledging the purchase of such and such an
amount of dynamite. Such evidence strengthens the prosecution’s case
immensely. Why? Because the purchase of dynamite by an ordinary
citizen is a very unusual event in itself, but such a purchase is completely
understandable if the purchaser intends to blow up something or somebody.
Please observe that this court case is very similar to the case n =3
of Euler’s series. That all roots of an equation written at random turn
out to be double roots is a very unusual event in itself. Yet it is com-
pletely understandable that in the transition from two real roots to two
imaginary roots a double root appears. The case n = 3 is the strongest
piece of circumstantial evidence produced by Euler and we can perceive
herein a general pattern of plausible inference:

A4 implies B
B very improbable in itself
B true

A very much more credible

Also this pattern appears as a modification or a sophistication of the funda-
mental inductive pattern (sect. 1). Let us add, without specific illustration
for the moment, the complementary pattern which explains the same idea
from the reverse side:
A implies B
B quite probable in itself
B true

4 just a little more credible
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The verification of a consequence counts more or less according as the consequence is
more or less improbable in itself. The verification of the most surprising
consequences is the most convincing.

By the way, Euler was right: 150 years later, his conjecture has been
completely proved.$

4. Inference from analogy. At this stage it may be instructive to
look back at the examples of the first volume on Induction and Analogy. We
have formulated a few patterns of plausible inference in the foregoing
sections of this chapter: how do those examples appear in the light of these
patterns?

Let us reconsider two related examples (from sect. 10.1 and 10.4 of Volume
I, respectively). One of these examples is connected with the isoperimetric
theorem and Descartes, the other with a physical analogue of the isoperi-
metric theorem and Lord Rayleigh. We reproduce two tables from ch. X
(called there Table I and Table II, here Table II and Table I11I, respectively)
putting them side by side. Table II (as it is numbered in the present
chapter) lists the perimeters of ten figures, each of which has the same area 1,
and Table III lists the principal frequencies of the same ten figures (considered
as vibrating membranes).

Table II Table III
Perimeters Principal Frequencies
of Figures of Equal Area of Membranes of Equal Area
Circle 3.55 Circle 4.261
Square 4.00 Square 4.443
Quadrant 4.03 Quadrant 4.551
Rectangle 3 : 2 4.08 Sextant 4.616
Semicircle 4.10 Rectangle 3 : 2 4.624
Sextant 4.21 Equilateral triangle 4.774
Rectangle 2 : 1 4.24 Semicircle 4.803
Equilateral triangle 4.56 Rectangle 2 : 1 4.967
Rectangle 3 : 1 4.64 Isosceles right triangle 4.967
Isosceles right triangle  4.84 Rectangle 3 : 1 5.736

The perimeters in one table, the principal frequencies in the other, are
increasingly ordered. Both tables start with the circle which has the
shortest perimeter among the ten figures listed and also the lowest principal
frequency, and this suggests two theorems:

Of all plane figures with a given area the circle has the shortest perimeter.

Of all membranes with a given area the circle has the lowest principal frequency.

¢ See the author’s paper: Sopra una equazione transcendente trattata da Eulero, Bolletino
dell’ Unione Matematica Italiana, vol. 5, 1926, p. 64-68.
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The first statement is the isoperimetric theorem, the second a celebrated
conjecture of Lord Rayleigh. Our tables yield sound inductive evidence
for both statements but, of course, no proof.

The situation has changed since we considered these tables in sect. 10.1
and 10.4. In the meantime we have seen a proof for the isoperimetric
theorem (sect. 10.6-10.8, ex. 10.1-10.15). The geometrical minimum
property of the circle, inductively supported by Table II, has been proved.
It is natural to expect that the analogous physical minimum property of the
circle, inductively supported by Table III, will also turn out to be true.
In expecting this we follow an important pattern of plausible inference:

A analogous to B
B true

A more credible

A conjecture becomes more credible when an analogous conjecture turns out to be true.
The application of this pattern to the situation discussed seems sensible.
Yet there are further promising indications in this situation.

5. Deepening the analogy. The Tables II and III, side by side, seem
to offer further suggestions. The ten figures considered do not appear in
exactly the same sequence in both tables. There is something peculiar about
this sequence. The arrangement in Table II appears not very different
from that in Table III, but this is not the main point. The tables contain
various kinds of figures: rectangles, triangles, sectors. How are the figures
of the same kind arranged? How would a shorter table look listing only
figures of one kind? The tables contain a few regular figures: the equi-
lateral triangle, the square, and, let us not forget it, the circle. How are
the regular figures arranged? Could we compare somehow figures of
different kinds, for instance, triangles and sectors? Could we broaden the
inductive basis by adding further figures to our tables? (In this we are
much restricted. It is not difficult to compute areas and perimeters, but
the principal frequency is difficult to handle and its explicit expression is
known in very few cases only.) Eventually we obtain Table IV.

Table IV exhibits a remarkable parallelism between these two quantities
depending on the shape of a variable plane figure: the perimeter and the
principal frequency. (We should not forget that the area of the variable
figure is fixed, = 1.) If we know the perimeter, we are by no means able
to compute the principal frequency or vice versa. Yet, judging from Table
IV, we should think that, in many simple cases, these two quantities vary in
the same direction. Consider the two columns of numerical data in this table
and pass from any row to the next row: if there is an increase in one of the
columns, there is a corresponding increase in the other, and if there is a
decrease in one of the columns, there is a corresponding decrease in the other.
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Table IV
Perimeters and principal frequencies of figures of equal area
Figure Perimeter Pr. frequency
Rectangles:
1 : 1 (square) 4.00 4.443
4 4.08 4.624
25k 4.24 4.967
31 4.64 5.736
Triangles:
60° 60° 60° 4.56 4.774
45° 45° 90° 4.84 4.967
30° 60° 90° 5.08 5557
Sectors:
180° (semicircle) 4.10 4.803
90° (quadrant) 4.03 4.551
60° {sextant) 4.21 4.616
45° 4.44 4.755
36° 4.68 4.916
30° 4.93 5.084
Regular figures:
circle R0 4.261
square 4.00 4.443
equilateral triangle 4.56 4.774
Triangles versus sectors:
tr. 60° 60° 60° 4.56 4.774
sector 60° 4.21 4.616
tr. 45° 45° 90° 4.84 4.967
sector 45° 4.44 4.755
tr. 30° 60°90° 5.08 5.157
sector 30° 4.93 5.084

Let us focus our attention on the rectangles. If the ratio of the length to
the width increases from 1 to oo, so that the shape varies from a square to an
infinitely elongated rectangle, both the perimeter and the principal frequency
seem to increase steadily. The square which, being a regular figure, is
“nearest” to the circle among all quadrilaterals, has the minimum perimeter
and also the minimum principal frequency. Of the three triangles listed,
the equilateral triangle which, being a regular figure, is ‘“‘nearest” to the
circle among all triangles has the minimum perimeter and also the minimum
principal frequency. The behavior of the sectors is more complex. As the
angle of the sector varies from 180° to 0°, the perimeter first decreases, attains
a minimum, and then increases; and the principal frequency varies in the
same manner. Let us now look at the regular figures. The equilateral triangle
has 3 axes of symmetry, the square has 4 such axes, and the circle an infinity.
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As far as we can see from Table IV, both the perimeter and the principal
frequency seem to decrease as the number of the axes of symmetry increases.
In the last section of Table IV we matched each triangle against the sector
whose angle is equal to the least angle of the triangle. In all three cases,
the sector turned out to be “more circular,”” having the shorter perimeter and
the lower principal frequency.

What we definitely know about these regularities goes, of course, only as
far as Table IV goes. That these regularities hold beyond the limits of the
experimental material collected is suggested and rendered plausible by
Table IV, but is by no means proved. And so Table IV led us to several
new conjectures which are similar to Rayleigh’s conjecture although, of
course, of much more limited scope.

How does Table IV influence our confidence in Rayleigh’s conjecture?
Can we find in Table IV any reasonable ground for it that we did not notice
before in discussing the Tables II and III?

We certainly can.  First of all, the Table IV contains a few more particular
cases in which Rayleigh’s conjecture is verified (the 30° 60° 90° triangle, the
sectors with opening 45°, 36°, and 30°). Yet there is more than that. The
analogy between the isoperimetric theorem and Rayleigh’s conjecture has
been considerably deepened; the facts listed in Table IV add several new
aspects to this analogy. Now it seems to be reasonable to consider a con-
clusion from analogy as becoming stronger if the analogy itself, on which the
conclusion is based, becomes stronger. And so Table IV considerably
strengthens Rayleigh’s case.

6. Shaded analogical inference. Yet there is still something more.
As we have observed, Table IV suggests several conjectures which are analo-
gous to (but of more limited scope than) Rayleigh’s conjecture. Table IV
suggests these conjectures and lends them some plausibility too. Yet this
circumstance quite reasonably raises somewhat the plausibility of Rayleigh’s
original conjecture. If you think so too, you think according to the following
pattern:

4 analogous to B

B more credible

A somewhat more credible

A conjecture becomes somewhat more credible when an analogous conjecture becomes more
credible. This is a weakened or shaded form of the pattern formulated in

sect. 4.

EXAMPLES AND COMMENTS ON CHAPTER XII

1. Table I, exhibiting some inductive evidence for Euler’s conjecture
mentioned in sect. 1, is very similar to the table in sect. 1.3, or to Tables I,
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II, and IIT in ch. IV, or to Euler’s table given in support of his “Most
Extraordinary Law of the Numbers Concerning the Sum of Their Divisors,”
see sect. 6.2. These tables resemble also two tables given in ch. III, one in
sect. 3.1 (polyhedra), the other in sect. 3.12 (partitions of space). To which
one of these two is the resemblance closer?

2. Euler, having verified his “Most Extraordinary Law” (cf. sect. 6.2) for
n=1,2,3,4,...20, proceeds to verify it for n = 101 and n = 301. Hehad
a good reason to examine 101 and 301 rather than 21 and 22 (which he
clearly states at the outset of No. 7 of his memoir). Ignoring, or remembering
only vaguely, the contents of Euler’s Law, would you think that the veri-
fication of his two cases (101 and 301) has more probative value than would
have the verification of the two next cases (21 and 22) ?

3. Of a triangle, let @, b, and ¢ denote the sides, 2p = a + b - ¢ the peri-
meter, A the area.

Check Heron’s formula

A2 =p(p—a)(p—b) (p—c)
in as many ways as you can.

4. We consider a quadrilateral inscribed in a circle. Let a, b, ¢, and d
denote the sides, 2p = a + b + ¢ + d the perimeter, 4 the area.

It is asserted that

L=(p—a)(p—0b)(p—c)(p—d).
Check this assertion in as many ways as you can. Have you any comment ?
5. Let V denote the volume of a tetrahedron and
acbive,
e.f:8

the lengths of its six edges; the edges a, b, and ¢ end in the same vertex of
the tetrahedron, ¢ is the edge opposite to a, fto b, and gtoc. (Two edges of a
tetrahedron are called opposite to each other if they have no vertex in
common.) The edges ¢, f, and g are the three sides of a face of the tetra-
hedron, opposite to the vertex in which a, b, and ¢ end. It is asserted that

144V2% = 4a%b%2 + (b2 4 ¢ — €2) (@ + a® — f2) (a® + b2 — g?)
— (B2 4 2 — eB)2 — B 4 a® — £2)2 — 2(a® + B — g?)2.

Check this assertion in as many ways as you can. [Is the expression proposed
for V' symmetric in the six edges?]
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6. Set
a"+ " 4 " =3,

forn=1,2,3,...and define p, ¢, and r by the identity in x

(x—a)(x —b) (x —¢c) =3 —pa® 4+ gx —r

so that
p=a+b+o
q = ab + ac + bc,
ri— aboy

(In the usual terminology, p, ¢, and r are the “elementary symmetric
functions” of a, b, and ¢, and s, a “sum of like powers.””) Obviously,
p = s5;. Itis asserted that, for arbitrary values of a, 4, and ¢,

_25° — Ssy%s3 + 35

o 5_(313‘__ 53) :
518 — 58353 — 5832 + 9555
15(s;® — s3)

==

provided that the denominator does not vanish. Check these formulas in
the particular case ¢ = 1, 6 = 2, ¢ = 3 and in three more cases displayed
in the table:

Case a b )
(1) 1 2 3
(2) 1 2 —3
(3) 1 2 0
(4) 1 2 —2

Devise further checks. Especially, try to generalize the cases (2), (3),
and (4).

7. Let A, By, B,, By, and B, have the meaning given them in sect. 2. Does
the verification of B,, coming after that of B,, B,, and Bj, supply additional
inductive evidence for 4?

8. Let us recall Euler’s “Most Extraordinary Law” and the meaning of
the :abbreviations: 7% Gy, Gy, Gy . <. ' C¥ ;G G, . .« ~explained in sect. 6.3.
Euler supported the theorem 7', when he was not yet able to prove it,
inductively, by verifying its consequences C;, C,, Cs, . . . Cyy.  (He went even
further, perhaps.) Then he discovered that also Cj¥, C, Cf, . .. are con-
sequences of 7', and verified C¥, C%, . . . C5, Cf;, C35,.  Thanks to these new
verifications Euler’s confidence was, presumably, much strengthened: but
was it justifiably strengthened? [Closer attention to detail is needed here
than in ex. 2.]
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9. We return to Euler’s conjecture discussed in sect. 1; for the sake of
brevity, we call it the “conjecture E.”” Let us note concisely the meaning of
this abbreviation,

¥ 8n 4+ 3 = x® 4 2p.

The idea that led Euler to his conjecture E deserves mention. Euler
devoted much of his work to those celebrated propositions of Number
Theory that Fermat has stated without proof. One of these (we call it the
‘““conjecture F”’) says that any integer is the sum of three trigonal numbers.
Let us note concisely the meaning of this abbreviation,

: _ Xrlo M) e 1)
% = 9 + 2 -+ 7 :

Euler observed that if his conjecture E were true, Fermat’s conjecture F
would easily follow. That is, Euler satisfied himself that E implies F.
(For details, see the next ex. 10.) Bent on proving Fermat’s conjecture F,
Euler naturally desired that his conjecture E should be true. Is this mere
wishful thinking? I do not think so; the relations considered yield some
weak but not unreasonable ground for believing Euler’s conjecture E
according to the following scheme:

E implies F
F credible
E somewhat credible

Here is another pattern of plausible inference. The reader should compare it
with the fundamental inductive pattern.

10. In proving that E implies F (in the notation of the foregoing ex. 9),
Euler used a deeper result which he proved previously: a prime number of
the form 4n + 1 is a sum of two squares. (This was discussed inductively in
ex. 4.4.) Taking this for granted, prove that actually E implies F.

11. After having conceived his conjecture discussed in sect. 3, Euler tested
it by computing the first zeros of his series for a few values of n. (By a
“first zero”> we mean a zero the absolute value of which is 2 minimum. If
x is a first zero of the series in question, also — x is a zero, and x and — x are
“first zeros.”” Therefore, x is real if, and only if, x? is positive.) Of course,
Euler had to compute these zeros approximately. A method (Daniel
Bernoulli’s method) which he frequently used for such a purpose yielded the
following sequences of approximate values for the first zero x in the cases
n= 1/2. 118z 1/4.

n=1J2 n=1/3 n=1/4

4x2 ~3.000  9x2 ~4.0000 162 ~ 5.0000
3.281 4.2424 5.2232
3.291 4.2528 5.2302

3.304 4.2532 5.2304
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In all three cases, the approximate values seem to tend to a positive limit
regularly and rather rapidly. Euler takes this as a sign that the first zeros
are real and sees herein a confirmation of his conjecture.

Let us realize the general scheme of Euler’s heuristic conclusion. Let 4
stand for his conjecture explained in sect. 3, concerning the reality of the
zeros of his series. Let B stand for the fact that for n = 1/2 the first zero is
real. Obviously 4 implies B. Now Euler did not prove B, he only made B
more credible. Therefore we have here the following pattern of plausible
inference

A4 implies B

B more credible

A somewhat more credible

The second premise is weaker than the second premise of the fundamental
inductive pattern. The word “‘somewhat” is inserted to emphasize that
also the conclusion is weaker than in the fundamental inductive pattern.

12. A modern mathematician can derive a more stringent heuristic
conclusion from the numerical data of the foregoing ex. 11 than Euler himself
derived. Itcan be shown that if Euler’s series has only real zeros, the succes-
sive approximate values obtained by Daniel Bernoulli’s method form neces-
sarily an increasing sequence.” Let 4 stand for the same conjecture as in the
foregoing ex. 11, but let B denote now another statement, namely the follow-
ing: “For n = 1/2, the first four approximations obtained by Daniel Bernoulli’s
method form an increasing sequence, and the same holds for » = 1/3 and
n=1/4"" Then both premises of the fundamental inductive pattern are
known to hold:

A implies B
B true

and the resulting heuristic conclusion is stronger.
Two remarks may be added to the foregoing.

(1) Euler did not formulate the property just quoted of Daniel Bernoulli’s
method and certainly did not proveit. Yet there is a good chance that, in
the possession of a vast experience with this method, he had some sort of
inductive knowledge of it. So Euler, although he did not draw the modern
mathematician’s inference explicitly, possessed it in a less clarified form.
And, presumably, he had in his rich mathematical background still other
indications which he could not quite formulate and which we could not yet
clarify today.

7 See the author’s paper “Remarks on power series,” Acta Scientiarum Mathematicarum,
v. 12B, 1950, p. 199-203.
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(2) The numerical data quoted in ex. 11 led the author to suspect the
general theorem proved l.c. This is a small but concrete example of the use
of the inductive method in mathematical research.

13. In ch. IV we investigated inductively the sum of four odd squares;
see sect. 4.3-4.6, Table I. Later we tackled the analogous problems
involving four arbitrary squares and eight squares; see ex. 4.10-4.23 and
Tables IT and ITII. The former investigation certainly helped us to recognize
the law in the latter cases. Should our confidence in the result of the latter
investigation also be enhanced by the result of the former?

14. Inductive conclusion from fruitless efforts. Construct, by ruler and com-
passes, the side of a square equal in area to a circle of given radius. This is the
strict formulation of the famous problem of the quadrature of the circle,
conceived by the Greeks. It was not forgotten in the Middle Ages, although
we cannot believe that many people then understood its strict formulation;
Dante refers to it at the theological culmination of the Divina Commedia,
toward the end of the concluding Canto. The problem was about two
thousand years old as the French Academy resolved that manuscripts
purporting to square the circle will not be examined. Was the Academy
narrow-minded? I do not think so; after the fruitless efforts of thousands
of people in thousands of years there was some ground to suspect that the
problem is insoluble.

You are moved to give up a task that withstands your repeated efforts.
You desist only after many and great efforts if you are stubborn or deeply
concerned. You desist after a few cursory trials if you are easy goirg or
not seriously concerned. Yetin any case there is a sort of inductive con-
clusion. The conjecture under consideration is:

A. It is impossible to do this task.

You observe:

B. Even I cannot do this task.

This, in itself, is very unlikely indeed. Yet certainly
A implies B

and so your observation of B renders 4 more credible, by the fundamental
irductive pattern.

The impossibility of squaring the circle, strictly formulated, was proved in
1882, by Lindemann, after the basic work of Hermite. There are other
similar problems dating from the Greeks (the Trisection of an Angle and the
Duplication of the Cube) that, after the accumulated evidence of fruitless
efforts, have been ultimately proved insoluble. After fruitless efforts to
construct a “perpetuum mobile” the physicists formulated the ““principle of
the impossibility of a perpetual motion,” and this principle turned out
remarkably fruitful.
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FURTHER PATTERNS AND FIRST LINKS

When we have intuitively understood some simple propositions . . . it is
useful to go through them with a continuous, uninterrupted motion of thought,
to meditate upon their mutual relations, and to conceive distinctly several of
them, as many as possible, simultaneously. In this manner our knowledge
will grow more certain, and the capacity of the mind will notably increase.—
DESCARTES!

1. Examining a consequence. We consider a situation which
frequently occurs in mathematical research. We wish to decide whether a
clearly formulated mathematical proposition 4 is true or not. We have,
perhaps, some intuitive confidence in the truth of 4, but that is not enough:
we wish to prove 4 or disprove it. We work at this problem, but without
decisive success. After a while we notice a consequence B of 4. This B is
a clearly formulated mathematical proposition of which we know that it
follows from 4:

A4 implies B.

Yet we do not know whether B is true or not. Now it seems that B is more
accessible than 4; for some reason or other we have the impression that we
shall have better success with B than we had with 4. Therefore, we switch
to examining B. We work to answer the question: is B true or false?
Finally we succeed in answering it. How does this answer influence our confidence
inA?

That depends on the answer. If we find that B, this consequence of 4, is
false, we can infer with certainty that 4 must also be false. Yet if we find
that B is true, there is no demonstrative inference: although its consequence
B turned out to be true, A itself could be false. Yet there is a heuristic
inference: since its consequence B turned out to be true, 4 itself seems to

! The eleventh of his Rules for the Direction of the Mind. See Oeuvres, edited by Adam
and Tannery, vol. 10, 1908, p. 407.

18
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deserve more confidence. According to the nature of our result concerning
B, we follow a demonstrative or a heuristic pattern:

Demonstrative Heuristic

A implies B A implies B
B false B true
A false A more credible

We met these patterns already in sect. 12.1 where we called the heuristic
pattern the fundamental inductive pattern. We shall meet with similar
but different patterns in the following sections.

2. Examining a possible ground. We consider another situation
that frequently occurs in mathematical research. We wish to decide whether
the clearly formulated proposition 4 is true or not, we wish to prove 4 or
disprove it. After some indecisive work we hit upon another proposition
B from which 4 would follow. We do not know whether B is true or not,
but we have satisfied ourselves that

A is implied by B.

Thus, if we could prove B, the desired 4 would follow; B is a possible ground
for A. We may be tired of 4, or B may appear to us more promising than 4;
for some reason or other we switch to examining B. Our aim is now to
prove or disprove B. Finally we succeed. How will our result concerning
B influence our confidence in 4?

That depends on the nature of our result. If we find that B is true, we
can conclude that 4 which is implied by B (follows from B, is a consequence
of B) is also true. Yet if we find that B is false, there is no demonstrative
conclusion: 4 could still be true. But we have been obliged to discard a
possible ground for 4, we have one chance less to prove 4, our hope to
prove A from B has been wrecked: if there is any change at all in our
confidence in 4 in consequence of the disproof of B, it can only be a change
for the worse. In short, according to the nature of our result concerning B,
we follow a demonstrative or a heuristic pattern:

Demonstrative Heuristic
A implied by B 4 implied by B
B true B false
A true A less credible

Observe that the first premise is the same in both patterns. The second
premises are diametrically opposite, and the conclusions are also opposite,
although not quite as far apart.
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The demonstrative inference follows a classical pattern, the “modus
ponens” of the so-called hypothetical syllogism. The heuristic pattern is
similar to, but different from, the fundamental inductive pattern, see sect. 1
or sect. 12.1.  We can state the heuristic inference in words: our confidence in
a conjecture can only diminish when a possible ground for the conjecture is exploded.

3. Examining a conflicting conjecture. We consider a situation
which is not too usual in mathematical research but frequently occurs in the
natural sciences. We examine two conflicting, incompatible conjectures A4
and B. When we say that 4 conflicts with B or

4 is incompatible with B

we mean that the truth of one of the two propositions 4 and B necessarily
implies the falsity of the other. Thus, 4 may be true or not and B may be
true or not; we do not know which is the case except that we know that
both cannot be true. They could both be false, however. A naturalist
proposed the conjecture 4 to explain some phenomenon, another naturalist
proposed the conjecture B to explain the same phenomenon differently.
The explanations are incompatible; both naturalists cannot be right, but
both could be wrong.

If one of the conjectures, say B, has been proved to be right, then the fate of
the other is also definitely decided: 4 must be wrong. If, however, B has
been disproved, the fate of 4 is not yet definitely settled: also 4 could be
wrong. Yet, undeniably, by the disproof of a rival conjecture incompatible
with it, 4 can only gain. (The naturalist who invented 4 would certainly
think so.) And so we have again two patterns:

Demonstrative Heuristic
A incompatible with B A incompatible with B
B true B false
A false A more credible

Our confidence in a conjecture can only increase when an incompatible rival conjecture
is exploded.

4. Logical terms. In the foregoing three sections we have seen three
pairs of patterns. Each pair consists of a demonstrative pattern and of a
heuristic pattern; the three demonstrative patterns are related to each other
and the corresponding three heuristic patterns seem to be correspondingly
related. The relations between the demonstrative patterns are clear
relations of formal logic. In the next section we shall try to clarify the
relations between the heuristic patterns. The present section prepares us
for the next section by discussing a few simple terms of formal logic.2

* We treat here formal logic in the “old-fashioned” manner (using ordinary language and
avoiding logical symbols as much as feasible) but with a few modern ideas. Some of the
simpler logical symbols will be used incidentally later, especially in sect. 7.
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(1) The term proposition may be taken in a more general meaning, but
most of the time it will be sufficient and even advantageous to think of some
clearly formulated mathematical proposition of which for the moment we do
not know whether it is true or not. (A good example of a proposition for a more
advanced reader is the celebrated ‘“Riemann hypothesis”: Riemann’s
&-function has only real zeros. We do not know, in spite of the efforts of many
excellent mathematicians, whether this proposition is true or false.) We
shall use capitals 4, B, C, . . . to denote propositions.

(2) The negation of the proposition 4 is a proposition that is true if, and
only if, 4 is false. We let non-4 stand for the negation of 4.

(3) The two statements ““A4 is false” and “non-4 is true” amount exactly
to the same. We can substitute one for the other in any context without
changing the import, the truth, or the falsity, of the whole text. Two
statements which can be so substituted for each other are termed equivalent.
Thus, the statement “A is false” is equivalent to the statement “non-4 is
true.” It will be convenient to write this in the abbreviated form:

“A false” eq. ‘“‘non-4 true.”

It is also correct to say that

“A true” eq. “non-4 false.”
“non-4 true” eq. “4 false,”
“non-4 false” eq. “A4 true.”

(4) We say that the two propositions 4 and B are incompatible with each
other, if both cannot be true. The proposition 4 can be true or false,
B can be true or false; if we consider 4 and B jointly, four different cases can
arise:

A true, B true A true, B false
A false, B true A false, B false.

If we say that 4 is incompatible with B, we mean that the first of these four
cases (in the north-west corner) is excluded. Incompatibility is always
mutual. Therefore,

“A incompatible with B” eq. “B incompatible with 4.”

(5) We say that A implies B (or B is implied by 4, or B follows from 4, or
B is a consequence of 4, etc.) if 4 and non-B are incompatible. Thus the
concept of implication is characterized by the following equivalence:

“A implies B” eq. “4 incompatible with non-B.”

To know that 4 implies B is important. For the moment we do not know
whether 4 is true or not and we are in the same state of ignorance concerning
B. If, however, it should turn out some day that A4 is true, we shall know
right away that non-B must be false and so B must be true.
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can be interpreted as confirmation or refutation. Such interpretation
depends on some kind of plausible reasoning the difficulties of which in
“physical situations” begin a step earlier than in “mathematical situations.”
We shall try to reduce this distinction to its simplest expression.

Suppose that we are investigating a mathematical conjecture by examining
its consequences. Let 4 stand for the conjecture and B for one of its con-
sequences, so that A implies B. We arrive at a final decision concerning B:
we disprove B or we prove it and, accordingly, we face one or the other of
the following two situations:

A implies B A implies B
B false B true

We shall call these “mathematical situations.” We have considered them
repeatedly and we know what reasonable inference we can draw from each.

Suppose now that we are investigating a physical conjecture 4 and that we
test experimentally one of its consequences B. We cannot arrive at an
absolute decision concerning B; our experiments may show, however, that
B, or its contrary, is very hard to believe. ~Accordingly, we face one or the
other of the following two situations:

A implies B 4 implies B

B scarcely credible B almost certain

We call these “physical situations.” What inference is reasonable in these
situations? (The empty space under the horizontal line that suggests the
word “therefore”” symbolizes the open question.)

In each of the four situations considered we have two data or premuses.
The first premise is the same in all four situations; all the difference between
them hinges on the second premise. This second premise is on the level
of pure formal logic in the ‘‘mathematical’ situations, but on a much vaguer
level in the “physical” situations. This difference seems to me essential;
it may account for the additional difficulties of the physical situations.

Let us survey the four situations “with a continuous uninterrupted motion
of thought,” as Descartes liked to say (see the motto at the beginning of this
chapter). Let us imagine that our confidence in B changes gradually,
varies “continuously.” We imagine that B becomes less credible, then still
less credible, scarcely believable, and finally false. On the other hand, we
imagine that B becomes more credible, then still more credible, practically
certain, and finally true. If the strength of our conclusion varies continually in
the same direction as the strength of our confidence in B, there is little doubt what
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our conclusion should be since the two extreme cases (B false, B true) are
clear. In this manner we arrive at the following patterns:

A implies B A4 implies B
B less credible B more credible
A less credible A somewhat more credible

The word “somewhat” in the second pattern is inserted to remind us that
the conclusion is, of course, weaker than in the fundamental inductive
pattern.  Qur confidence in a conjecture is influenced by our confidence in one of its
consequences and varies in the same direction. We shall call these patterns shaded;
the first is a shaded demonstrative pattern, the second is the shaded version
of the fundamental inductive pattern. The term “shaded” intends to
indicate the weakening of the second premise: less credible” instead of
“false”; “more credible” instead of ‘“‘true.” We have already used this
term in this meaning in sect. 12.6.

We obtained the shaded patterns just introduced from their extreme
cases, the “modus tollens”” and the fundamental inductive pattern discussed
in sect. 1, by weakening the second premise. In the same manner we can
obtain other shaded patterns from the patterns formulated in sects. 2 and 3.
We state just one here (all are listed in the next section). The heuristic
pattern of sect. 3 yields the following staded pattern:

A4 incompatible with B
B less credible

A somewhat more credible

7- Atable. Inorder to list concisely the patterns discussed in this chapter,
it will be convenient to use some abbreviations. We write

A— B for A implies B,
A<« B for A isimplied by B,
A l B for A incompatible with B.

The symbols introduced are used by some authors writing on symbolic
logic.® In this notation, the two formulas

A — B, B« A
are exactly equivalent and so are the formulas

A|B, B|A.

* D. Hilbert and W. Ackerman, Grundziige der theoretischen Logik.
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We shall also abbreviate ‘“credible” as “cr.”” and ‘“‘somewhat” as “s.” See
Table I.

Table I
(1) (2) (3) 4)
Shaded Shaded
Demonstrative Demonstrative  Inductive Inductive
1. Examining a consequence A—-> B A— B A—> B A—-> B
B false B less cr. B more cr. B true
A false A less cr. As.morecr. A more cr.
2. Examining a possible ground A<« B A<« B A<« B A<« B
B true B more cr. B less cr. B false
A true A more cr. As.lesscr.  Alesscr.
3. Examining a conflicting A|B A|B A|B A|B
conjecture B true B more cr. B less cr. B false
A false A less cr. A's. more cr. A more cr.

8. Combination of simple patterns. The following situation can
easily arise in mathematical research. We investigate a theorem 4. This
theorem A4 is clearly formulated, but we do not know and we wish to find
out whether it is true or false. After a while we hit upon a possible ground:
we see that 4 can be derived from another theorem H

4 is implied by H

and so we try to prove H. We do not succeed in proving H, but we notice
that one of its consequences B is true. The situation is:
A implied by H
B implied by H
B true

Is there a reasonable inference concerning A from these premises?

There is one, I think, and we can even obtain it by combining two of the
patterns surveyed in the foregoing section. In fact, the fundamental
inductive pattern yields:

H implies B
B true

H more credible

In obtaining this conclusion, we have used only two of our three premises.
Let us combine the unused third premise with the conclusion just obtained;
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one of our shaded patterns (in the intersection of the second row with the
second column of Table I in sect. 7) yields:

4 implied by H
H more credible

A more credible

The result is (as it should be) pretty obvious in itself: from the verification of
the consequence B of its possible ground H some credit is reflected upon the
proposition 4 itself.

9. On inference from analogy. The situation discussed in the fore-
going section can be construed as a link between the patterns discussed in
this chapter and one of the most conspicuous forms of plausible inference:
the conclusion from analogy.

I do not think that it is possible to explain the idea of analogy in completely
definite terms of formal logic; at any rate, I have no ambition to explain it
so. As we have discussed before, in sect. 2.4, analogy has to do with
similarity and the intentions of the thinker. If you notice some similarity
between two objects (or, preferably, between two systems of objects) and
intend to reduce this similarity to definite concepts, you think analogically.

For example, you notice some similarity between two theorems 4 and B;
you observe some common points. Perhaps, you think, it will be possible
some day to imagine a more comprehensive theorem H that brings out all
the essential common points and from which both 4 and B would naturally
follow. If you think so you begin to think analogically.*

At any rate, let us consider the analogy of two theorems 4 and B as the
intention to discover a common ground H from which both 4 and B would
follow:

A implied by H, B implied by H.

Let us not forget that we do not have H; we just hope that there is such an H.

Now we succeed in proving one of the two analogous theorems, say B.
How does this event influence our confidence in the other theorem A?
The situation has something in common with the situation considered in the
foregoing sect. 8. There we reached a reasonable conclusion expressed by
the compound pattern

A implied by H
B implied by H
B true

A more credible

¢ Thus, the isoperimetric theorem and Rayleigh’s conjecture, compared with each other
in sect. 12.4, may suggest the idea of a common generalization.
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There is, of course, the important difference that now we do not have H,
we just hope for H. With this proviso, however, we can regard the two
premises
A implied by H
B implied by H
as equivalent to one:
A analogous to B.

In substituting this one premise for those two premises in the above com-
pound pattern we arrive at the fundamental pattern of plausible inference
first exhibited in sect. 12.4:
A analogous to B
B true

A more credible

10. Qualified inference. We come back again to the fundamental
inductive pattern. It is the first pattern that we introduced and it is the
most conspicuous form of plausible reasoning. It is concerned with the
verification of a consequence of a conjecture and the resulting change in our
opinion. It says something about the direction of this change; such a
verification can only increase our confidence in the conjecture. It says
nothing about the amount of the change; the increase of confidence can be
great or small. Indeed, it can be tremendously great or ridiculously small.

The aim of the present section is to clarify the circumstances on which
such an important difference depends. We begin by recalling one of our
examples (sect. 12.3).

A defendant is accused of having blown up the yacht of his girl friend’s
father and the prosecution produces a receipt signed by the defendant
acknowledging the purchase of such and such an amount of dynamite.

The evidence against the defendant appears very strong. Why does it
appearso? Let usinsist on the general features of the case. Two statements
play an essential role.

A: the defendant blew up that yacht.
B: the defendant acquired explosives.

At the beginning of the proceedings, the court has to consider 4 as a
conjecture. The prosecution works to render 4 more credible to the
jurors, the defense works to render it less credible.

At the beginning of the proceedings also B has to be considered as a
conjecture. Later, after the introduction of that receipt in court (the
authenticity of the signature was not challenged by the defense) B has to
be considered as a proven fact.
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Certain relations between 4 and B, however, should be clear from the
beginning.

4 without B is impossible. If the defendant blew up the yacht, he had
some explosives. He had to acquire these explosives somehow: by purchase,
stealing, gift, inheritance or otherwise. That is

A4 implies B.

B without 4 is not impossible, but must appear extremely unlikely from
the outset. To buy dynamite is very unusual anyhow for an ordinary
citizen. To buy dynamite without the intention of blowing up something
or somebody would be nonsense. It was easy to suspect that the defendant
had quite strong emotional and financial grounds for blowing up that yacht.
It was difficult to suspect any purpose for the purchase of dynamite, except
blowing up the yacht. And so, as we said, B without 4 appears extremely
unlikely.

Let us nail down this important constituent of the situation: the credi-
bility of B, before the event, viewed under the assumption that A is not true. We shall
abbreviate this precise but long description as “the credibility of B without
4.’ Thus, we can say:

B without 4 is hardly credible.

Now, we can see the essential premises and the whole pattern of the
plausible inference that impressed us with its cogency:

A implies B
B without 4 hardly credible
B true

A very much more credible

For better understanding let us imagine that that important constituent of
the situation, the credibility of B without 4, changes gradually, varies
continuously between its extreme cases.

A implies B. If, conversely, also B implies 4, so that 4 and B imply each
other mutually, the credibility of B without 4 attains its minimum, is nil.
In this case, if B is true, also 4 is true, so that the credibility of 4 attains its
maximum.

A4 implies B. That is, B is certain when 4 is true. If the credibility of
B without 4 approaches its maximum, B is almost certain when 4 is false.
Therefore, B is almost certain anyway. When an event happens that looks
almost certain in advance, we do not get much new information and so we
cannot draw surprising consequences. (The purchase of a loaf of bread,
for instance, can hardly ever yield such a strong circumstantial evidence,
as the purchase of dynamite.)
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Let us assume, as in sect. 6, that the strength of the conclusion varies
continually in the same direction when that influential factor, the credibility of B
without 4, changes without change of direction. Then these two must vary
in opposite directions and we arrive so at an important qualification of the
strength of the conclusion in the fundamental inductive pattern:

A implies B
B true
A more credible

The strength of the conclusion increases when the credibility of B without A decreases.
Let us put side by side the two extreme cases:

{ A implies B : A implies B
B without 4 hardly credible | B almost certain anyway
B true B true

A very much more credible A very little more credible

The first two premises are bracketed to express that the second is to be
considered as a qualification of the first. That A4 implies B is the first
premise in the fundamental inductive pattern. Here we qualify this premise;
we add a modification which counts heavily in determining the strength of
the conclusion. For the sake of comparison let us remember that in sect. 6
we modified the fundamental inductive pattern in another direction, in
weakening its second premise.

11. On successive verifications. We have verified already n
consequences By, B,, . . . , B, of a certain conjecture 4. Now we proceed to
a next consequence B, ., we test it, and we find that also B, , is true.
What is the influence of this additional evidence on our confidence in A4?
Of course,

4 implies B,
B, is true

A more credible

Yet how strong is the conclusion? That depends on the credibility of
B, ,, without 4 as we have seen in the foregoing section.

Now we may have had a good reason for believing in B, ; before it was
verified even under the assumption that 4 is not true. We have seen prev-
iously that By, B,, . .. , B, are true. If B, , is very similar to B,, By, ... ,
B,, we may foresee by analogy that also B,,; will be true. If B, is very
different from B,, B,, ... , B,, it is not supported by such analogy and we
may have very little reason to believe in B,,; without 4. Therefore,
the strength of the additional confidence resulting from an additional verification
increases when the analogy of the newly verified consequence with the previously verified
consequences decreases.
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This expresses essentially the same thing as the complementary patterns
formulated in sect. 12.2, but perhaps a little better. In fact, we may
regard the explicit mention of analogy as an advantage.

12. On rival conjectures. If there are two different conjectures, 4 and
B, aimed at explaining the same phenomenon, we regard them as opposed to
each other even if they are not proved to be logically incompatible. These
conjectures 4 and B may or may not be incompatible, but one of them tends
to render the other superfluous. This is enough opposition, and we regard
A and B as rival conjectures.

There are cases in which we treat rival conjectures almost as if they were
incompatible. For example, we have two rival conjectures 4 and B but,
in spite of some effort, we cannot think of a third conjecture explaining the
same phenomenon; then each of the two conjectures 4 and Bis the “‘unique
obvious rival” of the other. A short schematic illustration may clarify the
meaning of the term.

Let us say that 4 is the emission theory of light that goes back to Newton
and that B is the wave theory of light that originated with Huyghens. Let
us also imagine that we discuss these matters in the time after Newton and
Huyghens, but before Young and Fresnel when, in fact, much inconclusive
discussion of these theories took place. Nobody showed, or pretended to
show, that these two theories are logically incompatible, and still less that
they are the only logically possible alternatives; but there were no other
theories of light prominently in view, although the physicists had ample
opportunity to invent such theories: each theory was the unique obvious
rival of the other. And so any argument that seemed to speak against one
of the two rival theories was readily interpreted as speaking for the other.

In general, the relation between rival conjectures is similar to the relation
between rivals in any other kind of competition. If you compete for a prize,
the weakening of the position of any of your rivals means some strengthening
of your position. You do not gain much by a slight setback to one of your
many obscure rivals. You gain more if such setback occurs to a dangerous
rival. You gain still more if your most dangerous rival drops out of the race.
If you have a unique obvious rival, any weakening or strengthening of his
position influences your position appreciably. And something similar
happens between competing conjectures. There is a pattern of plausible
reasoning which we attempt to make somewhat more explicit in Table II.

Table II
A incompatible with B A incompatible with B
B false B less credible
A more credible A somewhat more credible
A rival of B A rival of B
B false B less credible

A a little more credible A very little more credible
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The disposition of Table II is almost self-explanatory. This Table contains
four patterns arranged in two rows and two columns. The first row contains
two patterns already considered; see sect. 3, the end of sect. 6, and the last
row of Table I.  In passing from the first row to the second row, we weaken
the first premise; in fact we substitute for a clear relation of formal logic
between 4 and B a somewhat diffuse relation which, however, makes some
sense in practice. This weakening of the first premise renders the conclusion
correspondingly weaker, as the verbal expression attempts to convey. In
passing from the first column to the second column we weaken the second
premise, which renders the conclusion correspondingly weaker. The pattern
in the southeast corner has no premise that would make sense in demonstra-
tive logic and its conclusion is the weakest.

It is important to emphasize that the verbal expressions used are slightly
misleading. 1In fact, the specifications added to “credible” (“‘somewhat,”
“a little,” ““very little”) should not convey any absolute, only a relative, degree
of credibility. They indicate only the change in strength as we pass from
one row to the other, or from one column to the other. Even the weakest of
the four patterns may yield a weighty conclusion if the conviction that the
conjecture 4 has no other dangerous rival than B is strong enough. In fact,
this pattern will play some role in the next chapter.

13. On judicial proof. The reasoning by which a tribunal arrives at
its decisions may be compared with the inductive reasoning by which the
naturalist supports his generalizations. Such comparisons have been already
offered and debated by authorities on legal procedure.5 Let us begin the
discussion of this interesting point by considering an example.

(1) The manager of a popular restaurant that is kept open to late hours
returned to his suburban home, as usual, well after midnight. As he left
his car to open the door of his garage, he was held up and robbed by two
masked individuals. The police, searching the premises, found a dark grey
rag in the front yard of the victim; the rag might have been used by one of
the holdup men for covering his face. The police questioned several persons
in the nearby town. One of the men questioned had an overcoat with a big
hole in the lining, but otherwise in good condition. The rag found in the
front yard of the victim of the holdup was of the same material as the lining
and fitted into the hole exactly. The man with the overcoat was arrested
and charged with participation in the holdup.

(2) Many of us may feel that such a charge was amply justified by the
related circumstances. But why? What is the underlying idea?

The charge is not a statement of facts, but the expression of a suspicion, of
a conjecture::

A. The man with the overcoat participated in the holdup.

® J. H. Wigmore, The principles of judicial proof, Boston, 1913; cf. p. 9-12, 15-17.
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Such an official charge, however, should not be a gratuitous conjecture,
but supported by relevant facts. The conjecture 4 is supported by the fact

B. The rag found in the front yard of the victim of the holdup is of the
same material as, and fits precisely into the hole of, the lining of the overcoat
of the accused.

Yet why do we regard B as a justification for 4? We should not forget
that 4 is just a conjecture: it can be true or false. If we wish to act fairly,
we have to consider carefully both possibilities.

If A4 is true, B is readily understandable. We can easily imagine that a
man in urgent need of a mask and not within reach of more suitable materials
cuts out a piece from the lining of his overcoat. In a hurry to get away
after the criminal act, such a man may lose his mask. Or, in a fright, he
may even throw away his mask there and then instead of pocketing it and
throwing it away at a safer place. In short, B with 4 looks readily credible.

If, however, 4 is not true, B appears inexplicable. If the man did not
participate in a holdup or something, why should he spoil his perfectly good
overcoat by cutting out a large piece from the lining? And why should that
piece of lining arrive, of all places, upon the scene of a robbery by masked
bandits? It could arrive there by mere coincidence, of course, but such a
coincidence is hard to believe. In short, B without 4 is hardly credible.

And so we see that the conclusion that led to the charge against the man
with the overcoat has the following pattern:

{ B with A readily credible
B without 4 hardly credible
B true

A more credible

Yet this pattern of plausible reasoning is obviously related to another
pattern of plausible reasoning that we have discussed before (in sect. 10):

{ A implies B
B without 4 hardly credible
B true

A very much more credible

The difference between the two patterns appears at the very beginning.
The premise
B with A readily credible
is similar to, but weaker than, the premise
A implies B
which, in fact, could also be worded as “B with 4 certain.” Thus the former
pattern (just discovered) appears as a ‘“weakened form” of the latter pattern
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(introduced in sect. 10) and so eventually as a modification of the fundamental
inductive pattern (formulated in sect. 12.1).

The case that led us to the formulation of the new pattern was fairly
simple. Let us look at a more complex case.®

(3) At the time of the murder, Clarence B. Hiller, with his wife and
four children, lived in a two-storey house in Chicago. The bedrooms of the
family were on the second floor. At the head of the stairs leading to the
second floor a gas light was kept burning at night. Shortly after 2 o’clock
on Monday morning, Mrs. Hiller was awakened and noticed that this light
was out. She awoke her husband and he went in his nightgown to the head
of the stairway where he encountered an intruder. The men fought and in
the struggle both fell to the foot of the stairway, where Hiller was shot twice;
he died in a few moments. The shooting occurred about 2.25 a.m.

Just a little before the shooting one of Hiller’s daughters had seen a man
at the door of her bedroom, holding a match so that his face could not be
seen. She was not frightened because her father used to get up at night
and see if the children were all right. No one else in the family saw the
intruder.

About three-quarters of a mile from Hiller’s house there is a streetcar stop.
Early in the morning on which the murder occurred, four police officers,
who had gone off duty in the neighborhood shortly before, were sitting on a
bench at this stop waiting for the streetcar. About 2.38 a.m. they saw a
man approaching from a direction from which the bench could not be
easily seen. The officers spoke to the man, but he continued walking with
his right hand in his pocket. The officers stopped the man and searched
him. There was a loaded revolver in the pocket; he was perspiring; fresh
blood appeared at different places of his clothing; there was a slight wound
on his left forearm, bleeding slightly. The officers (who did not know at this
time of the murder) brought the man to the police station where he was
examined. This man—we shall call him the defendant—was later charged
with Mr. Hiller’s murder.

The court had to examine and, after examination, to deny or uphold the
accusation, that is, the following conjecture advanced by the prosecution:

A. The defendant shot and killed Mr. Hiller.

We survey the salient points of the evidence put forward in support of the
conjecture 4.

B,. There was burned powder in two chambers of the cylinder of the
revolver found on the defendant when he was arrested, and there was the
smell of fresh smoke. In the judgment of the police officers the revolver had
been fired twice within an hour before the arrest. The five cartridges with
which the revolver was loaded bore exactly the same factory markings as

¢ Concerning the following case the reader should consult the findings of the Supreme
Court of Illinois, almost fully reprinted in Wigmore, l.c. footnote 5, p. 83-88.
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three undischarged cartridges found in the hallway of the Hiller house near
the dead body.

B,. The intruder entered the Hiller house through a rear window of the
kitchen from which he first removed the screen. A person entering this
window could support himself on the railing of the porch. On this railing
which was freshly painted there was the imprint of four fingers of a left hand.
Two employees of the identification bureau of the Chicago police testified
that, in their judgment, the imprints on the railing were identical with the
defendant’s fingerprints.

B,. Two experts not belonging to the Chicago police expressed the same
opinion concerning the fingerprints. (One was an inspector of the Dominion
Police at Ottawa, Canada; the other a former expert of the federal
government in Washington, D.C.)

B,. About 2.00 a.m., just before the shooting of Mr. Hiller, a prowler
entered a house separated by a vacant lot from the Hiller house. Two
women saw a man in the door of their bedroom with a lighted match over
his head. Both women testified that this prowler was of the same size and
build as the defendant. One of the women remembered also that the
prowler wore a light-colored shirt and figured suspenders. Having inspected
the shirt and the suspenders of the defendant exhibited in court, the witness
testified that in her opinion the defendant was the same man that she saw on
that night in the door.

By. The defendant gave a false name and a false address when he was
arrested and he denied that he had ever been arrested before. In fact, he
had been sentenced before on a charge of burglary, paroled, returned to the
penitentiary for a violation of the parole, and released on parole a second
time about six weeks before the night of the murder. He bought the revolver
under a false name about two weeks after his second parole, pawned it, got it
back, pawned it again and got it back a second time five hours before the
shooting.

Bg. The defendant was unable to explain consistently the blood on his
clothing, or the wound on his left forearm, or his whereabouts on the night of
the shooting. Concerning his whereabouts he told two different stories, one
after his arrest and another in court. The people whom he first asserted
having visited that night denied that he called on them. The defendant
then told the court that he visited a saloon, but no witness was found to
corroborate this.

(4) All the facts, events, and circumstances related under the headings
B,, B,, . . . Bg are readily understandable if the accusation 4 is true. They
all support 4, but the weight of such support is not the same in all cases.
Some of these facts would be explicable even if 4 was not true. Some others,
however, would appear as miraculous coincidences if 4 was not true.

That the cartridges found in the revolver of the defendant are of the same
make as the cartridges found next to the body of the victim proves little in
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itself, if this make is a usual make sold by all gunsmiths. Yet it proves a
lot that just as many cartridges have been fired from this revolver as shots
have been fired at the victim and within the same hour; it is difficult to
explain away such a coincidence. The agreement of the fingerprints on the
railing with the fingerprints of the defendant would be considered in itself
as an almost decisive proof nowadays, but was not yet considered so at the
time of the trial, in 1911. That the defendant lied about his name, address,
and criminal past when he was arrested does not prove much; such a lie is
understandable if the accusation 4 is true, but also understandable if it is
not true: the man would prefer to be let alone by the police anyway. Yet
it weighs heavily that the defendant was not able to explain consistently
his whereabouts on that fatal night. He must have known that the point is
important, and his counsel certainly knew about the importance of an alibi.
If the accusation 4 was untrue and the defendant passed the night harmlessly
or committing some minor crime, why did he not say so right away, or at
least before it was too late ?

All the details mentioned are readily understandable if the accusation 4
is true.  Yet the coincidence of so many details appears as inexplicable if the
accusation 4 is not true; it is extremely hard to believe that so many
coincidences are due to mere chance. At any rate, the defense failed to
propose a consistent explanation of the evidence submitted.

There was, of course, more evidence before the jury than related here,
and there was one that no description can adequately render: the behavior
of the defendant and the witnesses. The jury convicted the defendant of
murder and the State Supreme Court upheld the conviction. We quote the
last sentence of the opinion of the Chief Justice: “No one of these circum-
stances, considered alone, would be conclusive of his [the defendant’s] guilt,
but when all the facts and circumstances introduced in evidence are considered
together, the jury were justified in believing that a verdict of guilty should
follow as a logical sequence.’’”

(5) Thestatements By, B,, . . . B, listed under (3) fit pretty well the pattern
introduced under (2). They fit even better another pattern which differs
from it in just one point:

{ B with 4 readily credible
B without 4 less readily credible
B true

Af r;lore cfédible

Each of the statements By, B,, . .. By can be meaningfully substituted for
B in this pattern in which, of course, 4 has to be interpreted as the accusa-
tion. The statements B), By, . .. By are compound statements; they have

? Cf. Wigmore, loc. cit. 5, p. 88.
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portions (some of which we have emphasized under (4)) each of which can be
regarded in itself as relevant evidence: each such portion can also be mean-
ingfully substituted for B in the above pattern. If we recall our discussion
under (4) we may realize that, of course, the less easily credible B is without
A, the stronger is the conclusion.

If we visualize how the successive witnesses unfolded the mass of evidence
before the jury in the course of the proceedings, we may see more clearly the
analogous roles of plausible reasoning in such proceedings and in a scientific
inquiry in which several consequences of a conjecture are successively
tested. (Cf. especially sect. 12.2.)

(6) The foregoing consideration clearly suggests a compound pattern of
plausible reasoning that is related to the pattern stated under (5) just as the
compound pattern introduced in sect. 12.2 is related to the fundamental
inductive pattern of sect. 12.1. I do not enter upon this matter here; a
reader more versed in the doctrine of legal evidence could take it up with
more impressive examples and interpretations, but I will add one more
illustration of the pattern.®

As Columbus and his companions sailed westward across an unknown
ocean they were cheered whenever they saw birds. They regarded birds as
a favorable sign, indicating the nearness of land. Although in this they were
repeatedly disappointed, the underlying reasoning seems to me quite correct.
Stated at length, this reasoning runs as follows:

{ When the ship is near the land, we often see birds.
When the ship is far from the land, we see birds less often.
Now we see birds.

Therefore, it becomes more credible that we are near the land.

This reasoning fits exactly the pattern formulated under (5): the presence
of birds is regarded as circumstantial evidence for the nearness of land.
Columbus’ crew saw several birds on Thursday, the 11th of October, 1492,
and the next day they discovered the first island of a2 New World.

The reader may notice that the pattern illustrated underlies much of our
everyday reasoning.

EXAMPLES AND COMMENTS ON CHAPTER XIII
First Part

1. Following the method of sect. 4 (6), derive the demonstrative pattern
mentioned in sect. 3 from the demonstrative pattern mentioned in sect. 1

8 How to Solve It, pp. 212-221.
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2. Supply the details of the demonstration sketched in sect. 5: derive the
heuristic pattern of sect. 2 from the heuristic pattern of sect. 1.

3. Derive the heuristic pattern of sect. 3 from the heuristic pattern of sect. 1.

4- In a crossword-puzzle we have to find a word with 9 letters, and the
clue is: “Disagreeable form of tiredness.”?

The condition that the unknown word has to satisfy is ambiguously stated,
of course. After a few unsuccessful attempts we may observe that “‘tiredness”
has 9 letters, just as many as the unknown word, and this may lead us to the
following conjecture:

A. The unknown word means “disagreeable” and is an anagram of
TIREDNESS.

(Anagram means a rearrangement of the letters of the given word into
a new word.) This conjecture 4 may appear quite likely. (In fact, “form
of” may suggest ‘‘anagram of” in crossword jargon.) Tackling other
unknown words of the puzzle, we find quite plausible solutions for two of them
crossing the nine-letter word mentioned, for which we obtain two possible
letters, placed as the following diagram indicates:

We may regard this as evidence for our conjecture A.

(a) Why? Point out the appropriate pattern.

(b) Try to find the nine-letter word required. [In doing so, you have a
natural opportunity to weigh the evidence for 4. Here are a few helpful
questions: Which letter is the most likely between T and R? How could
the vowels E E I be placed? See also How to Solve It, pp. 147-149.]

5. Let us take up once more the court case already considered in sect. 12.3
and (more fully) in sect. 10. Let us consider again the charge (the Factum
Probandum, the fact to prove, of the prosecution):

A. The defendant blew up the yacht.

Yet let us change our notation in another point: we consider here the
statement

B. The defendant bought dynamite in such and such an amount, in such
and such a shop, on such and such a day.

The change is that B denotes here not a general statement, but a specific
fact. (Courts prefer, or should prefer, to deal with facts as distinctly
specified as possible.) We again take B as proved. (Thus, B is a Factum
Probans, a fact supporting the proof.)

Such change of notation as we have introduced cannot change the force
of the argument. Yet what is now the pattern?

6. The defendants are a contractor and a public official. One was charged
with giving, the other with accepting, a bribe. There was a specific charge:

® The Manchester Guardian Weekly, November 29, 1951.
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the accusation asserted that the down payment for the new car of the official
came from the contractor’s pocket. One of the witnesses for the prosecution
was a motor car dealer; he testified that he received $875 on November 29
as down payment on the official’s car. Another witness was the manager of
a local bank; he testified that $875 was withdrawn on November 27 (of the
same year) from a usually inactive joint account of the contractor and his
wife; the receipt was signed by the wife. These facts were not challenged by
the defense.

What would you regard as a strong point in this evidence? Name the
appropriate pattern.

7. The Blacks, the Whites, and the Greens live on the same street in
Suburbia. The Blacks and the Whites are neighbors and the Greens live
just opposite. One evening Mr. Black and Mrs. White had a long conversa-
tion over the fence. It was rather dark, yet Mrs. Green did not fail to
observe the conversation and jumped to the conclusion—you know which
conclusion: that favorite conjecture of Mrs. Green.

Unfortunately, there is not much chance to stem the flood of gossip
started by Mrs. Green. If, however, taking a terrific risk, you wished to
constitute yourself counsel for the defense of innocent people maligned by
Mrs. Green, I can give you a fact: the Whites, who wished to move nearer to
Mr. White’s office for a long time, signed a lease for a house that belongs to
Mr. Black’s uncle, and this happened a few days after that conversation.
Use this fact.

What is your defense and what is the pattern?

8. The prosecution tries to prove:

A. The defendant knew, and was capable of recognizing, the victim at the
time of the crime.

The prosecution supports this by the undenied fact:

C. The defendant and the victim were both employed by the same firm
for several months three years before the crime was committed.

Thus 4 is the Factum Probandum and C is advanced as Factum Probans.
What is the pattern? [The notation is devised to help you. Is the size of
the firm relevant?]

9. On inductive research in mathematics and in the physical sciences. A difference
between ‘“mathematical situations” and “physical situations” that seems to
be important from the standpoint of plausible reasoning has been pointed
out in sect. 6. There seem to be other differences of this kind, and one
should be discussed here.

Coulomb discovered that the force between electrified bodies varies
inversely as the square of the distance. He supported this law of the
inverse square by direct experiments with the torsionbalance. Coulomb’s
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experiments were delicate and the discrepancy between his theoretical and
experimental numbers is considerable. We cannot help suspecting that
without the powerful analogy of Newton’s law (the law of the inverse
square in gravitational attractions), neither Coulomb himself nor his
contemporaries would have considered his experiments with the torsion-
balance as conclusive.

Cavendish discovered the law of the inverse square in electrical attractions
and repulsions independently of Coulomb. (Cavendish’s researches were
not published in his lifetime, and Coulomb’s priority is incontestable.)
Yet Cavendish devised a more subtle experiment to support the law. We
need not discuss the details of his method,!® only one feature of which is
essential here: Cavendish considers the possibility that the intensity of the
force is not 72 (r is the distance of the electric charges) but, more generally,
r~* where « is some positive constant. His experiment shows that o — 2
cannot exceed in absolute value a certain numerical fraction.

Coulomb’s experimental investigation is pretty similar to an inductive
investigation in mathematics: he confronts particular consequences of a
conjectural physical law with the observations, as a mathematician would
confront particular consequences of a conjectural number-theoretic law with
the observations. Analogy may play an important réle in the choice of the
conjectural law, here and there. Yet Cavendish’s experimental investiga-
tion is of a different character; he does not consider only one conjectural
law (the law 7=%) but several conjectural laws (the laws r~%). These laws
are different (different laws of electrical attraction correspond to different
values of the parameter «) but they are related, they belong to the same
“family” of laws. Cavendish confronts a whole family of laws with the
observations and tries to pick out the law that agrees best with them.

This is the most characteristic difference between the two investigations:
one aims at one conjecture, the other at a family of conjectures. The first
compares the observations with the consequences of one conjecture, the other
compares them with the consequences of several conjectures simultaneously.
The first tries to judge on the basis of such comparison whether the proposed
conjecture is acceptable or not, the other tries to find out the most acceptable
(or least unacceptable) conjecture. The first kind of inductive investigation
is widely practised in mathematics and is not unusual in the physical sciences.
The second kind of inductive investigation is widely practised in the physical
sciences, but we very seldom meet with it in mathematics.

In fact, the most typical kind of physical experiment aims at measuring
some physical constant, at determining its value, as Cavendish’s experiment
aims at determining the value of the exponent «. In mathematics we could
regard this or that investigation as an inductive research aiming at the

10 Cf. J. C. Maxwell, 4 treatise on electricity and magnetism, 2nd ed. (1881), vol. 1, p. 76-82.
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determination of some mathematical constant, but such investigations are
quite exceptional.l!

10. Tentative general formulations. Newton’s often repeated ‘“Hypo-
theses non fingo” is unilateral. It would be a mistake to interpret it
as “Beware of conjectures”: such advice, if followed, would ruin inductive
investigation. Better advice is: Be quick in shaping conjectures; go slow in
accepting them. Still better is Faraday’s word: ‘“The philosopher should
be a man willing to listen to every suggestion, but determined to judge for
himself.” Of course, the philosopher that Faraday had in mind cultivates
the experimental, not the traditional, philosophy.

The present study intends to be an “inductive” investigation of plausible
reasoning. I present here, without inhibition, a few tentative generaliza-
tions. They apply to a few forms of plausible reasoning, but even their
formulation should be carefully scrutinized before any attempt at a further
extension.

(1) Monotonicity. The considerations of sect. 6 may suggest a rule:
“The conclusion of a plausible inference varies monotonically, when one of
its premises varies monotonically.” This fits the case considered in sect. 6
and a few more cases some of which will be presently considered.

(2) Continuity. We shall need a term of demonstrative logic. We say that

A and B are equivalent

when 4 and B imply each other mutually, that is, when 4 follows from B and
also B follows from A. If A and B are equivalent, we may not know at
present whether 4 or B is true, but we know that only two cases are possible:
either both are true or both are false; 4 and B stand or fall together. A
descriptive symbolic expression for the equivalence of 4 and B is:

Mg

The two arrows suggest that we can pass from the truth of any one of the
two statements 4 and B to the truth of the other.

In sect. 10 we considered a suggestive connection between two statements
A and B. We considered the logical relation

4 implies B

along with the credibility of B without 4. Let us imagine that this credibility
varies monotonicallv: B becomes less and less credible without 4. In the
limit when B becomes impossible without 4, the truth of B implies that
of A. Yet we supposed that the truth of 4 implies that of B and so, in the
limit, 4 and B imply each other mutually, become equivalent.

11 By the way, Cavendish’s experiment has an even broader scope: it tends to show that
the law 7—2 is more acceptable than any other law ¢(r), without restricting the function
@(r) to the form r—; cf. Maxwell, ibid., p. 76-82.
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Let us observe now how the variation described affects our fundamental
inductive pattern:
A implies B
B true

A more credible

We assume that the second premise remains unchanged when the first
premise varies as described. As B becomes less and less credible without 4,
the conjecture 4 becomes more and more credible by the verification of its
consequence B. That is, the conclusion becomes stronger, gains weight.
In the limit the conclusion becomes ““4 is true”” and so our pattern of plausible
inference becomes in the limit the following (obvious) pattern of demonstra-
tive inference
4 and B equivalent

B true

A true

In short, our pattern of plausible inference has a “limiting form,” which
is a pattern of demonstrative inference. As the premises of the plausible
inference “tend” to the corresponding premises of the limiting form, the
plausible conclusion “‘approaches” its extreme limiting strength. Still
shorter: there is a continuous transition from the heuristic pattern to a
demonstrative pattern.

Most of this description fits a few more cases. Some of these are displayed
in Table III. The symbols and abbreviations of Table I, explained in sect.
7, are used in Table III. Also the symbol <, explained above, is used.

Instead of non-B, defined in sect. 4, the shorter symbol B is used.

Table III

A—-> B A— B A|B A | B

B true B more cr. B false B less cr.
Approaching:

A more cr. As.morecr. Amorecr. ASs. more cr.

AS=B ASB A2 B A2B

B true B more cr. B false B less cr.
Limiting:

A true A more cr. A true A more cr.

(3) Plausible from demonstrative? Table III may yield another suggestion.
The limiting patterns in this Table are much more obvious than the approach-
ing patterns. Two of the limiting patterns are demonstrative, and the two
others, although not purely demonstrative, are hardly questionable. The
more debatable approaching patterns which are all patterns of plausible
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inference, seem to arise from the corresponding limiting patterns by a
uniform “‘weakening’ process: stronger statements as

A< B, Atrue, A more cr.
are systematically replaced by corresponding weaker statements as
A—> B, A morecr., As.more cr.

Could all forms of plausible inference be linked in some analogous way
to forms of demonstrative, or almost demonstrative, inference ?

Second Part
Ex. 11 should be read first: it introduces (and excuses) what follows.

xx. More personal, more complex. In the foregoing I did not discuss con-
jectures from my own published mathematical work. This is an omission
since, after all, I cannot know any mathematician more intimately than
myself. This omission could even appear suspicious to some readers. I
do not think that such suspicion is justified. The reason for not discussing
more complex specialized topics from my own research is not lack of frankness,
but just the complexity and specialization of the topics; I thought it better
to discuss simpler topics of more general interest.

The following ex. 12-19 suppose considerably more advanced knowledge
than the bulk of the book. They are taken from my own research. I try
to offer a representative sample. I include some conjectures that have
appeared in print before, and others that have not. I include some con-
jectures from my ‘“‘naive” early work, when I had not begun to think
explicitly about the subject of plausible reasoning, and I include conjectures
from my later, less naive work. Ex. 12 dates from my naive days; it tells of
the heuristic grounds that led me to a result. Ex. 13, 14, 15, and 16 deal
with formerly published conjectures from my naive years, ex. 17 with a
formerly published conjecture from my less naive years, and ex. 18 and 19
with conjectures that have not been printed before.1?

12 Papers by the author of this book are quoted without name in this footnote; ““cf.” intro-
duces the page on which the conjecture is stated (sometimes in form of a question); a paper
quoted with name brought the first proof of the conjecture discussed. Ex. 12: Rendiconti,
Circolo Matematico di Palermo, vol. 34 (1912), p. 89-120. Ex. 13: L’Intermédiaire des
Mathématiciens, vol. 21 (1914), p. 27, qu. 4340; G. Szegd, Math. Annalen, vol. 76 (1915),
p. 490-503. Ex. 14: Math. Annalen, vol. 77 (1916), p. 497-513; cf. p. 510; F. Carlson,
Math. Leitschrift, vol. 9 (1921), p. 1-13. Ex. 15: L’Intermédiaire des Mathématiciens, vol. 20
(1913), p. 145-146, qu. 4240; G. Szegd, Math. Zeitschrift, vol. 13 (1922), p. 38. See also
Journal fiir die reine und angewandte Math., vol. 158 (1927), p. 6-18. Ex. 16: Fahresbericht der
Deutschen Math. Vereinigung, vol. 28 (1919), p. 31-40; cf. p. 38. Ex. 17: Proceedings of the
National Academy of Sciences, vol. 33 (1947), p. 218-221; cf. p. 219. Ex. 19: Journal fiir die
reine und angewandte Math., vol. 151 (1921), p. 1-31; see theorem I, p. 3.
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I should add that even in my naive years I was impressed and somewhat
puzzled by the strength of the confidence with which some of my own con-
jectures inspired me, and I wondered what sort of reasons might underlie
such confidence. The following sentences express fairly well my early views
about the source of new conjectures.

“There is a straight line that joins two given points. A new theorem is
often a generalization that joins two extreme particular cases, and is obtained
by a sort of linear interpolation. There is a straight line with a given direc-
tion through a given point. A new theorem is often conceived in the fortunate
moment when a general direction of inquiry meets with an appropriate
particular case. A new theorem may also result from drawing a parallel.”13

12. There is a straight line that joins two given points. The numbers A®
disposed in the infinite square

(1) (1) (1) 1) (1)
i A A4S TR
(2) (2) (2) (2) (2)
Al a8 A e
(k) (k) (k) (k) (k)
8 Al A A o

are connected with a function f(x). (They are derived from the expansion
of f(x) in powers of x; both A%® and f(x) are real.) E. Laguerre discovered
that V(k), the number of changes of sign in the kth row AP, AP, AP, ...
of the array, is connected with R, the number of roots of the equation f(x) = 0
between 0 and 1 (extremities excluded):

V(k) > R,

and V(k) can only decrease or remain unchanged as & increases. Will the
never increasing V(k) ultimately attain R? Laguerre proposed this question,
but left it unsolved. M. Fekete proved that V(k) finally attains R provided
that R = 0, and this particular case suggested the conjecture that V(k)
always attains R. I was lucky enough to observe another connection
between the numbers A% and the function f(x): there are certain positive
numbers B¥ (independent of the function f(x)) such that

Jlim AP B = £(0) for fixed n,

lim A% /B = £(1) for fixed k.

That is, the vertical direction in the infinite square array is connected with
f(0), the horizontal direction with f(1). These two extreme directions,

13 Cf. G. Polya and G. Szegd, Analysis, vol. 1, p. VI.
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the vertical and the horizontal, may remind you of two extreme points that
demand to be joined: what about the intermediate oblique directions?  Just for
a moment, take the conjecture that we aim at proving for granted: it
implies some connection between the intermediate directions and the values
that f(x) takes when x varies between 0 and 1. This suggests that A®/B®
may tend to f(x) where x is somehow connected with the limit of n/k. In
fact, I found finally, and it was even easy to prove, that

Jim AP BP — f(x) if lim n/(n + k) = x.
sN—> 0

This relation turned out the key to the solution of Laguerre’s problem.

13. There is a straight line with a given direction through a given point. Drawing
a parallel. In conjunction with the Fourier series of a positive function f(x),

f(x) = ay + 2 > (a, cos nx 4 b, sin nx),
1
O. Toeplitz considered the equation in 4
ag— A a; — by §48 Vaguytih Oy
a, + by ag— A o ds
(*) | =0

|

iy Fib, B atib g ... a—h
His research revealed that the n roots of this equation
ey e R ity |

“imitate” the n equidistant values of the function f(x)

/) A% (2) )

For example, the arithmetic mean of the z roots

A Ag . s oodyy

_ao

nn

n
corresponds to

e R R P P

Let us try to draw a parallel: the geometric mean of the n roots

(it oo Ao - DE®

where D, denotes the determinant with n rows that we obtain in setting

A = 0 on the left-hand side of the equation (*). This may correspond to
2x

: 27\ (4n onm\1 /" ;Tflosm)az
o )] -

n n n
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At this stage it is natural to look for a convenient particular case. For the
particular function

S(x) = ay + 2a, cos x 4 2b, sin x

there is no difficulty in computing D, and lim D}/, and this limit turns out
n— 0
to be equal to the value (**): a general direction of inquiry met with an appropriate

particular case, and it would have been difficult not to state the conjecture:
for any positive function f(x)

S

1
J. 10g f(z) dz
0

lim D" = ¢
n— ©
14. The most obvious case may be the only possible case. If the coefficients

ag, ay, 4y, . . . 4, . . . of the power series

ag+ a2+ a2+ ...4+a,2"+...

are integers, and an infinity of these integers are different from 0, the series
obviously diverges at the point z = 1 since its general term does not tend to 0.
Therefore the radius of convergence of such a power series is <1. The
extreme value 1 of the radius of convergence may be attained. An obvious
example is the series

Lidei g ghil- 10 s arg® o il

it represents a function of extremely simple analytic character, the rational
function 1/(1 — z). Another example is

FAET S ol B L R L S

it represents a function of extremely complex analytic character, a non-
continuable function. (This is the most familiar example of a series for
which the circle of convergence is a singular line.) These two obvious
examples are of opposite nature. Yet, surprisingly, any power series with
integral coefficients and radius of convergence 1, the analytic nature of which
could be ascertained, turned out to be similar to one or the other of these
opposite examples: it represented either a rational function or a non-
continuable function. Theorems by E. Borel and P. Fatou showed that
extensive classes of functions of intermediate nature cannot be represented by
such a series. As the author succeeded in proving similar theorems and in
handling more examples, he unearthed mounting evidence for a conjecture:
“The most obvious continuable analytic functions represented by a power
series with integral coefficients and the radius of convergence 1, certain
rational functions, are the only such functions.” In other words: If the
radius of convergence of a power series with integral coefficients attains the
extreme value 1, the function represented is necessarily of an extreme
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character: it is either extremely simple, a rational function, or extremely
complicated, a non-continuable function.”

15. Setting the fashion. The power of words. This example has various
aspects which I shall try to discuss one after the other.
(1) E. Laguerre discovered several sequences of real numbers

Aoy Hyy Koy « o o Oy

with the following curious property: if the (otherwise arbitrary) equation of
degree n

(I) agt+ax +apx®+ ...+ ax"=0

has real roots only, also the equation
(IT) agxy + ay0x + agoex® 4 ... 4 ax,x" =0

(into which the sequence transforms (I)) will have real roots only. Laguerre
proposed, but left unsolved, the problem: to find a simple necessary and
sufficient condition that characterizes this kind of sequences.

It is easy to find necessary conditions: we just apply a sequence of the
desired kind to any equation that is known to have real roots only, and then
we obtain a transformed equation all roots of which are necessarily real.
For example, applying the sequence g, o, . . . &, to the equations

1 —a=0, 2 —xt=0, x4 — 8 =0,

which, obviously, have real roots only, we easily find that ag, &y, o4, o, - -«
are necessarily of the same sign, all positive, or all negative (in the broad sense:
0 is not excluded). Applying the same sequence to the equations

x—x3=0, 20—, a0,

we find that also a;, oy, a5, &, . . . are necessarily of the same sign. Bearing
these remarks in mind and applying the sequence to the equation

(I11) 1+('1’)x+(;‘)x2+...+xn=o

(all 7 roots of which are equal to —1) we obtain the necessary condition that
the roots of the equation

(IV) %o + (;‘) ax + (;) x4 ...+ 0" =0

are all real and of the same sign.

We obtained this last condition by accumulating several necessary
conditions. Their accumulation should be rather strong: is it strong enough
to_form a sufficient condition? If it were so, the following curious proposition
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would hold: “If both equations (I) and (IV) have real roots only, and the
roots of (IV) are all of the same sign, also the equation (II) has only real
roots.”

(2) This conjecture came rather early to my mind, but I could not trust
it: it looked too strange. In the case n = 2, however, the conjecture was
easily verified (the case n = 1 is completely trivial).

Yet, by chance, I came across a theorem proved by E. Malo: If the equation
(I) has only real roots and the equation

og + oy 4 opx® + ... 4 a4 x" =0

has only real roots of the same sign, the equation (IT) must have only real
roots. Malo’s theorem was clearly analogous to that strange conjecture and
made it look much less strange. Moreover, Malo’s theorem was a con-
sequence of that conjecture, as I could easily see, and so another broad and
important consequence of the conjecture had been verified: the conjecture
appeared much stronger.

(3) As it is easily seen, the conjecture can be restated as follows: “If the
sequence of positive numbers oy, a,, ... «, transforms the equation (III)
into an equation with real roots only, it will transform an arbitrary equation
with real roots only into an equation of the same nature.” In other words,
the equation (III) sets the fashion: its response to the sequence ag, oy, . . . &, is
imitated by all equations whose roots are all real.

(4) Why does equation (III) set the fashion? Because all its roots coincide.
This answer is the “right’” answer in some sense. At any rate, as I found out
later, equations (or functions) all roots (or zeros) of which coincide play an
analogous role in several analogous problems: they set the fashion (they are
“tonangebend”).

Yet, as the conjecture in question was still a conjecture, I resorted to the
following “explanation”: All roots of the equation (III) are equal to —1.
These roots are all crowded into one point of the real axis, they are as close
together as possible. In such a situation they are, understandably, the most
inclined to jump out of the real axis. Therefore, if the sequence ag, ay, . . . a,
applied to the polynomial (1 + x)" with the most crowded roots does not
succeed in driving out these roots of the real axis, it has still less chance to
drive out the less crowded roots of other polynomials.

The logical value of this “explanation” is obviously nil, but that does not
imply that its psychological value is also nil. I am convinced that this
playful analogy was extremely important for me personally: it helped to
keep the conjecture alive for years.

I should mention here that similar quaint verbal formulations have often
been connected with my mathematical work. The sentence at the end of
ex. 14 is a characteristic instance. Here are two more examples.
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For more than two decades I was much interested in Fabry’s well known
gap-theorem on power series. There were two periods: a first “contempla-
tive” period, and a second “active” period. In the active period I did some
work connected with the theorem, and found various proofs, extensions, and
analogues to it. In the contemplative period I did practically no work
connected with the theorem, I just admired it, and recalled it from time to
time in some curious, far fetched formulation as the following: “If it is
infinitely improbable that in a power series a coefficient chosen at random
be different from 0, then it is not only infinitely probable, but certain, that
the power series is not continuable.” Obviously, this sentence has neither
logical, nor literary merit, but it served me well in keeping my interest
alive.

The idea of a certain proof occurred to me fairly clearly, but for several
days after that I did not attempt to work out the final shape of the proof.
During these days I was obsessed by the word “transplantation.” In fact,
this word describes the decisive idea of the proof as precisely as it is possible
for any single word to describe such a complex thing.

I made up, of course, various explanations for this “power of words”
but, perhaps, it is better to wait with explanations till there are more
examples.14

16. This is too improbable to be a mere coincidence. Let f denote the number of
prime factors of the integer n, and let us call n “evenly factorized” or “oddly
factorized”” according as f is even or odd. For example:

30 =2 X 3 X 5 is oddly factorized

60 =2 X 2 X 3 X 5 is evenly factorized.

Prime numbers as 2, 3, 5, 7, 11, 13, 17, . .. are oddly factorized, squares
as4, 9, 16, . . . are evenly factorized, and the number 1 has to be regarded as
evenly factorized since it has no prime factors and 0 is an even number.
Among the twelve first numbers

1 2 S 4 5 6 7 8 9 10 11 12

e o o € o € [¢] o € € o o

five are evenly factorized, and seven oddly.

If we look at the succession of €’s and o’s in the foregoing scheme, we can
scarcely detect a simple rule. The two kinds of numbers appear to alternate
irregularly, unpredictably, at random. The idea of chance occurs to us
almost unavoidably: it is natural to think that we would obtain a similar
sequence if, instead of taking the trouble to factorize a proposed integer, we

€C 9

just flipped a coin and wrote “e”” or “0” according as head or tail turns up.

14 Cf. J. Hadamard, The psychology of invention in the mathematical field, p. 84-85.
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It is also natural to suspect that the coin is “fair,” that heads and tails turn
up about equally often, that the two kinds of integers, the evenly and the
oddly factorized, are equally frequent.

Now it can be proved (the proof is difficult) that among the first n integers
about as many are evenly factorized as oddly factorized if » is large. (The
ratio tends to 1 as n tends to c0.) This seems to corroborate our suspicions.
Now you would more confidently expect that the evenly and oddly factorized
numbers follow each other as a random succession of heads and tails,
Expecting so, I started listing for each n which kind of integers, the oddly or
the evenly factorized, are in majority among the first n. The first listings
looked lopsided. I was surprised and proceeded to larger values of n:
it was still lopsided. I was amazed and proceeded to still larger values of n,
but it was still lopsided. I got tired of numerical computation as I reached
n= 1500 and had to admit that there is some observational evidence for
the conjecture: “For n > 2, the evenly factorized integers are never in
majority among the first n integers.”

You toss a coin 1500 times. You count how many heads and how many
tails you obtain in the first z trials. It can easily happen that you obtain less
heads than tails. (Take “less” in the wide sense, as “not more.”) Itcould even
happen that you obtain less heads than tails all the time from the second step
on, for n = 2, 3,4, . .. 1500, but this cannot so easily happen. This is too im-
probable to be a mere coincidence, we are tempted to say. Yettheimprobable did
happen and has been observed as we played heads and tails with the factorized
integers.  There must be some reason. 1 did what I had to do: I took the con-
Jecture for granted (tentatively, of course) and tried to derive consequences
from it. I was lucky enough to observe two points. First, if the new
conjecture were true, the truth of a far more important conjecture due to
Riemann (on the {-function) would necessarily follow. Second, if a little
more than the new conjecture were true (if the evenly factorized numbers
were definitely in the minority from a certain upward) another important
conjecture due to Gauss (on the classnumber of quadratic forms) would
necessarily follow. Both points seemed to speak in favor of the new
conjecture.

The conjecture is no longer new, but its fate is still undecided. A; E.
Ingham dérived consequences from it that may tend to render it less credible.
On the other hand, D. H. Lehmer verified it by numerical computation up
to n = 600,000.

17. Perfecting the analogy. “Of all solids with a given volume, the sphere
has the minimum surface.” This is the classical isoperimetric theorem in
space, a remarkable physical analogue to which was discovered by
H. Poincaré and strictly proved by G. Szegd: “Of all solids with a given
volume the sphere has the minimum electrostatic capacity.” It is natural
to think that there should be further analogous theorems, and I was looking
for such a theorem. The field of force around a solid charged with electricity
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is similar to the field of flow around a solid moving with uniform velocity
across an incompressible ideal fluid. (Both fields are sourceless and
irrotational, and therefore satisfy the same partial differential equation.)
The capacity of the solid in the electrostatic field corresponds roughly to
the “virtual mass” of the solid in the hydrodynamic field. (The moving
body stirs up the fluid and adds to its own kinetic energy that of the moving
fluid; the “virtual mass” is a factor of this additional kinetic energy.)
Both the capacity and the virtual mass are connected with the energy of the
corresponding field. Yet there is a conspicuous difference: the capacity
depends only on the shape and size of the solid, but the virtual mass depends
also on the direction of the motion of the solid. In order to render the analogy
more perfect, I had to construct a new concept: averaging the virtual
mass over all the possible directions, we obtain the average virtual mass. And
so the conjecture arose: ““Of all solids with a given volume, the sphere has
the minimum average virtual mass.”

The ellipsoid is the only shape for which the virtual mass has been explicitly
computed in all directions. In fact, it turned out that of all ellipsoids with
a given volume the sphere has the minimum average virtual mass: the
conjecture has been verified in an important particular case. I could support
the conjecture also by analogy: I succeeded in proving the analogous
hydrodynamical minimum property of the circle in two dimensions. So
supported, the conjecture deserved to be publicly stated, at least I thought so.

The conjecture is neither proved nor disproved at this date, although
G. Szego and M. Schiffer have found interesting connected results which
seem to support it.

18. A new conjecture. 'We consider the plane in which the rectangular
coordinates are x and y, and in this plane a region R surrounded by a closed
curve C. We seek a function u = u(x, ») that satisfies one or the other of the
two boundary conditions

(1) u=0,
ou
(2) $=0

along the curve C and the partial differential equation

0% 0%

within the region R. 1In (2) n denotes the normal to the curve C; in (3)
v denotes a certain constant. Thus we have two different problems: in the
first, we have to solve the differential equation (3) with the boundary
condition (1); in the second with (2). Both problems are important in
physics in connection with various phenomena of vibration. Both problems
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have the same trivial solution: u = 0 identically. Only for particular
values of » has one or the other problem a non-trivial, that is, not identically
vanishing solution u: the problem with the boundary condition (1) for
» = Ay, Agy Ag, - . . , the problem with the boundary condition (2) for

V= iy, g, Pg; - -+ - LIS
0.1 A o5 Ay Sl e S ewers

0=t < S g S g < -+ -

These exceptional values 4;, A9, A3, ... and py, fy, g, ... are called the
eigenvalues of the first and the second problem, respectively. The eigen-
values are connected with the frequencies of the characteristic vibrations in
the corresponding physical phenomena.
I wish to state a new conjecture: Let A denote the area of the region R; then,
orin — 1088t
= AN Ana /o

This is a challenging conjecture. As the shape of the region R can arbi-
trarily vary and n ranges over all the integers 1, 2, 3, ... , the conjecture
covers an immense variety of particular cases of which not too much is
known: the conjecture could be exploded by a numerical result concerning
any of these particular cases. Yet the conjecture is not too badly supported.

(a) The conjecture is verified for n =1, 2, 3, ... when R is a rectangle.
This was, in fact, the particular case that suggested the conjecture.

(b) The conjecture is verified for n = 1, 2 when R is of arbitrary shape.
This particular case is very different from that mentioned under (a).

(c) The conjecture has been verified by numerical computation in a few
particular cases in which the eigenvalues can be explicitly computed: for
n up to 25 and for special shapes of R (the circle, a few circular sectors, a few
triangles).

(d) It has been known for a long time that
M=y peS Ay g Ay .-
This agrees with the conjecture.

(e) It is also known that

lim ynt = lim A0 = 47d™
n— © n— ©

and this also agrees with the conjecture.

Of course, no amount of such verification can prove the conjecture or
oblige anybody to believe in it to any degree. Yet such verifications can
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enhance the interest of the conjecture, spur us on to testing further con-
sequences, and add a zest to scientific investigation which is the raison d’étre
of a conjecture.

Technical details about the conjecture stated (for some of which I am
greatly indebted to Mr. Peter Szeg) will be published elsewhere.

19. Another new conjecture: “If F’(x) is an algebraic function and all the
coefficients a;, a,, a, . . . of the series

F(x) = ayx 4 ap® + a2 + . ..

are integers, also F(x) is an algebraic function.” In other words: “Unless
the integral of an algebraic function is an algebraic function itself, it cannot
be represented by a power series with integral coefficients.”

For an illustration, consider the expansion

: 0 2n x2ﬂ+1
P30 _
arcsin 2y %( & ) o 1

The derivative of arc sin 2« is an algebraic function and all the coefficients
in the expansion of this derivative are integers as we see from the above
formula. Yet arcsin 2x is not an algebraic function. Therefore, if the
proposed conjecture is true, there must be infinitely many coefficients in the
above expansion that are not integers. This is easy to verify: if2n 4+ lisa
prime number, it is not a divisor of 2n! Thus the case examined supports
the conjecture, which is also supported (and has been suggested) by the
following fact: if we substitute “rational function” for “algebraic function”
in the proposed conjectural statement, we change it into a true and proven
statement. The conjecture is also supported by rather vague analogies,
by the “atmosphere” surrounding the subject of power series with integral
coefficients; see ex. 14.

There are many cases similar to that of arc sin 2% that could be easily
tested but have not been examined yet. Without a thorough investigation
of such accessible consequences such a conjecture should not be printed. I

publish it here as an example of an undeveloped, rather imperfectly supported,
conjecture.

20. What is typical? As far as I can see, there is nothing in the last
examples (ex. 12-19) that would disagree with the general impression
derived from the foregoing examples. In these last examples, as in the
others, the conjecture in question was doubly supported: by some clear facts,
and by a “general atmosphere.” The former kind of support, by clear
facts, seems to me well within the patterns outlined in this chapter and the
foregoing: analogy and verified consequences are prominent, merely
plausible consequences also play some role; support from two very different
sides appears as vital. On the whole, ex. 12-19 appear to be typical.
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None of the conjectures mentioned in ex. 13-17 has been refuted (to this
date, at least). This could look atypical. I have not mentioned here,
however, countless other conjectures of mine that have been refuted after
a few minutes, or hours, or days; such shortlived conjectures are usually
quickly forgotten. Of course, I published only conjectures that passed all
the obvious tests I could think of and outlasted at least a few months’ work;
these are the sturdiest conjectures, with the best chances of survival.
Typically, research consists in shaping many conjectures, exploding most of
them, and establishing a few.
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CHANCE, THE EVER-PRESENT
RIVAL CONJECTURE

. . . the probability that this coincidence is a mere work of chance is,
therefore, considerably less than (1/2)%° . . . Hence this coincidence must
be produced by some cause, and a cause can be assigned which affords a
perfect explanation of the observed facts.—G. KIRCHHOFF!

1. Random mass phenomena. Everyday speech uses the words
“probable,” “likely,” “plausible,” and ‘“credible” in meanings which are
not sharply distinguished. Now, we single out the word “probable” and we
shall learn to use this word in a specific meaning, as a technical term of a
branch of science which is called the “Theory of Probability.”’2

This theory has a great variety of applications and aspects and, therefore,
it can be conceived and introduced in various ways. Some authors regard
it as a purely mathematical theory, others as a kind or branch of logic, and
still others as a part of the study of nature. These various points of view
may or may not be incompatible. We have to start by studying one of them,
but we should not commit ourselves to any of them. We shall change our
position somewhat in the next chapter, but in the present chapter we choose
the viewpoint which is the most convenient in the great majority of applica-
tions and which the beginner can master most quickly. We regard here the
theory of probability as a part of the study of nature, as the theory of certain
observable phenomena, the random mass phenomena.® We can understand

pretty clearly what this term means if we compare a few familiar examples
of such phenomena.

1 Abhandlungen der k. Akademie der Wissenschaften, Berlin, 1861, p. 78-80.

? In the foregoing, the words “probable” and “probability”” have been sometimes used in
a non-technical sense, but this will be carefully avoided in the present chapter and the next.
The words “likely” and “likelihood” will be introduced as technical terms later in this
chapter.

 In this essential point, and in several other points, the present exposition follows the
views of Richard von Mises although it deviates from his definition of mathematical proba-
bility; cf. his book Probability, Statistics, and Truth.

i
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(1) Rainfall. Rainfall is a mass phenomenon. It consists of a very great
number of single events, of the fall of a very great number of raindrops.
These raindrops, although very similar to each other, differ in various
respects: in size, in the place where they strike the ground, etc. There is
something in the behavior of the raindrops that we properly describe as
“random.” In order to understand clearly the meaning of this term let us
imagine an experiment.

Let us observe the first drops on the pavement as the rain starts falling.
We observe the pavement in the middle of some large public square,
sufficiently far from buildings or trees or anything that could obstruct the
rain. We focus our attention on two stones which we call the “right-hand
stone” and the “left-hand stone.” We observe the drops falling on these
stones and we note the order in which they strike. The first drop falls on
the left-hand stone, the second drop on the right, the third again right, the
fourth left, and so on, without apparent regularity as

L RR-EL LR ERERRLRR

(R for right, L for left). There is no regularity in this succession of the rain-
drops. In fact, having observed a certain number of drops, we cannot
reasonably predict which way the next drop will fall. We have noted
above fifteen entries. Looking at them, can we predict what the sixtéenth
entry will be, R or L? Obviously, we cannot. On the other hand, there is
some sort of regularity in the succession of the raindrops. In fact, we can
confidently predict that at the end of the rain the two stones will be equally
wet. That is, the number of drops striking each stone will be very nearly
proportional to the area of its free horizontal surface. Nobody doubts that
this is so, and the meteorologists certainly assume that this is so in con-
structing their rain-gauges. Yet there is something paradoxical. We can
foresee what will happen in the long run, but we cannot foresee the details.
The rainfall is a typical random mass phenomenon, unpredictable in certain
details, predictable in certain numerical proportions of the whole.

(2) Boys among the newborn. Inahospital, the newborn babies are registered
in order as they are born. Boys and girls (B and G) follow each other
without apparent regularity as

GBBGBGBBGGBBBGG

Although we cannot predict the details of this random succession, we can
well predict an important feature of the final result obtained by summing up
all such registrations in the United States during a year: the number of the
boys will be greater than the number of the girls and, in fact, the ratio of
these two numbers will be little different from the ratio 51.5 : 48.5. The
number of births in the United States is about 3 millions per year. We
have here a random mass phenomenon of considerable dimensions.
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(3) A game of chance. We toss a penny repeatedly, noting each time which
side it shows, “heads” or “tails” (H or T'). We obtain so a succession
without apparent regularity as

T HBHIH BT I EHT T

If we have the patience to toss the penny a few hundred times, a definite
ratio of heads to tails emerges, which does not change much if we prolong
our experiment still further. If our penny is “unbiased,” the ratio 50 : 50
of heads to tails should appear in the long run. If the penny is biased, some
other ratio will come into view. At any rate we see again the characteristic
features of a random mass phenomenon. Constant proportions emerge in
the long run, although the details are unpredictable. There is a certain
aggregate regularity, in spite of the irregularity of the individual happenings.

2. The concept of probability. In the year 1943 the number of
births in the United States, male, female, and total, was

1,506,959 1.427,901 2,934,860,
respectively. We call

1,506,959 the frequency of the male births,

1,427,901 the frequency of the female births.
We call

1,506,959

kT ke

the relative frequency of the male births and

1,427,901

m = 0.4865

the relative frequency of the female births. In general, if an event of a
certain kind occurs in m cases out of n, we call m the frequency of occurrence of
that kind of event and m/n its relative frequency.

Let us imagine that, throughout the whole year, the births are successively
registered in the whole United States (as in the hospital that we have men-
tioned in the foregoing section). If we look at the succession of male and
female births, we have before us an extremely long series of almost three
million entries beginning like

GBBGBGBBGGBBBGG.

As the mass phenomenon unfolds, we have, at each stage of the observation,
a certain frequency of male births and also a certain relative frequency. Let
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us note, after 1, 2, 3, ... observations, the frequencies and the relative
frequencies found up to that point:

Observations ~ Event  Frequency of B Relative frequency

1 5 0 0/1 = 0.000
2 B 1 1/2 = 0.500
3 B 2 2/3 = 0.667
4 G 2 2/4 = 0.500
5 B 3 3/5 = 0.600
6 7] 3 3/6 = 0.500
7 B 4 4/7 = 0.571
8 B 5 5/8 = 0.625
9 G 5 5/9 = 0.556

10 & 5 5/10 = 0.500

11 B 6 6/11 = 0.545

12 B 7 7/12 = 0.583

13 B 8 8/13 = 0.615

14 G 8 8/14 = 0.571

15 g 8 8/15 = 0.533

As far as we have tabulated it, the relative frequency oscillates pretty strongly
(between the limits 0.000 and 0.667). Yet we have here only a very small
number of observations. Aswe go further and further, the oscillations of the
relative frequency will become less and less violent, and we can confidently
expect that in the end it will oscillate very little about its final value 0.5135.
As the number of observations increases, the relative frequency appears to settle down to a
stable final value, in spite of all the unpredictable irregularities of detail. Such
behavior, the emergence of a stable relative frequency in the long run, is
typical of random mass phenomena.

An important aim of any theory of such phenomena must be to predict
the final stable relative frequency or long range relative frequency. 'We have to
consider the theoretical value of long range relative frequency and we shall call this
theoretical value probability.

We wish to clarify this concept of probability. Naturally, we begin with
the study of mass phenomena for which we can predict the long range
relative frequency with some degree of reasonable confidence.

(1) Balls in a bag. A bag contains p balls of various colors among which
there are exactly f white balls. We use this simple apparatus to produce
a random mass phenomenon. We draw a ball, we look at its color and we
write W if the ball is white, but we write D if it is of a different color. We
put back the ball just drawn into the bag, we shuffle the balls in the bag, then



CHANCE, THE EVER-PRESENT RIVAL CONJECTURE 59

we draw again one and note the color of this second ball, W or D. In pro-
ceeding so, we obtain a random sequence similar to those considered in
sectitls

WDDDWDDWWDDDW W D.

What is the long range relative frequency of the white balls?

Let us discuss the circumstances in which we can predict the desired
frequency with reasonable confidence. Let us assume that the balls are
homogeneous and exactly spherical, made of the same material and having
the same radius. Their surfaces are equally smooth, and their different
coloration influences only negligibly their mechanical behavior, if it has any
influence at all. The person who draws the balls is blindfolded or prevented
in some other manner from seeing the balls. The position of the balls in
the bag varies from one drawing to the other, is unpredictable, beyond our
control. Yet the permanent circumstances are well under control: the
balls are all the same shape, size, and weight; they are undistinguishable by
the person who draws them.

Under such circumstances we see no reason why one ball should be
preferred to another and we naturally expect that, in the long run, each ball
will be drawn approximately equally often. Let us say that we have the
patience to make 10,000 drawings. Then we should expect that each of the
p balls will appear about

10,000 .
times,

There are f white balls. Therefore, in 10,000 drawings, we expect to get
white

flg == l0,000;ftimcs;

this is the expected frequency of the white balls. To obtain the relative
frequency, we have to divide the frequency by the number of observations,
or drawings, that is, by 10,000. And so we are led to the statement: the
long range relative frequency, or probability, of the white balls is_f]p.

The letters fand p are chosen to conform to the traditional mode of expres-
sion. As we have to draw one of the p balls, we have to choose one of p
possible cases. 'We have good reasons (equal condition of the p balls) not to
prefer any of these p possible cases to any other. If we wish that a white ball
should be drawn (for example, if we are betting on white), the f white balls
appear to us as favorable cases. Hence we can describe the probability
J1p as the ratio of the number of favorable cases to the number of possible cases.

Pulling a ball from a bag, putting the ball back into the bag, shaking the
bag, pulling another ball, and repeating this n times seems to be a pretty
silly occupation. Do we waste our time in studying such a primitive game ?
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I do not think so. The bag and the balls, handled in the described manner,
generate a random mass phenomenon which is particularly simple and
accessible. Generalization naturally starts from the simplest, the most
transparent particular case. The science of dynamics was born when Galileo
began studying the fall of heavy bodies. The science of probability was
born when Fermat and Pascal began studying games of chance which depend
on casting a die, or drawing a card from a pack, or drawing a ball from a
bag. The fundamental concepts and laws of dynamics can be extracted
from the simple phenomenon of falling bodies. We use the bag and the
balls to understand the fundamental concept of probability.

P

Fig. 14.1. Probability defined by rainfall.

(2) Rainfall. We return to the consideration of the random mass pheno-
menon from which we started in sect. 1. The area of a horizontal surface
is P and the area of a certain portion of this surface is F; see fig. 14.1. We
observe the raindrops falling on this area P and we are interested in the
frequency of the raindrops falling on the subarea F. We are inclined to
predict without hesitation the long range relative frequency: the fraction of
the total rain over the area that falls on the subarea will be very nearly
F|P if the rain consists of more than a few drops. In other words, the proba-
bility that a raindrop striking the surface of area P should strike the portion
of area F is F|P. If we idealize the rainfall and consider a raindrop as a
geometric point, we can also say: the probability that a point falling in the
area P should fall in the subarea F is F/P.

In the last statement we consider each point of the area P as a possible case
and each point of the subarea F as a favorable case. The number of favor-
able cases as that of the possible cases is infinite, and it would not make sense
to talk about the ratio of infinite numbers. We can consider, however, the
area of a surface as the measure of the points contained in the surface. Using
this term, we can describe the probability F/P as the ratio of the measure of
favorable cases to the measure of possible cases.

3. Using the bag and the balls. In deriving the fundamental principle
of statics, Lagrange replaced an arbitrary system of forces by a suitable
system of pulleys. In the light of this Lagrangeian argument (the details
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of which are not needed here?) any case of equilibrium appears as a suitable
combination of correctly balanced pulleys. The Calculus of Probability can
be viewed in a similar manner; in fact, such a view is suggested by the early
history of this science. ~ Seen from this standpoint, any problem of probability
appears comparable to a suitable problem about bags containing balls,
and any random mass phenomenon appears as similar in certain essential
respects to successive drawings of balls from a system of suitably combined
bags. Let us illustrate this by a few simple examples.

(1) Instead of tossing a fair penny, we can draw a ball from a bag contain-
ing just two balls, one of which is marked with an H and the other with a 7'
(heads and tails). Instead of casting an unbiased die, we can draw a ball
from a bag containing exactly six balls, marked with 1,°2,:8,4, 55 0r°6:spots,
respectively. Instead of drawing a card from a pack of cards, we can draw
a ball from a bag containing 52 balls, suitably marked. It seems to be
intuitively clear that substituting a bag with balls for pennies, dice, cards,
and other similar contrivances in a suitable way, we do not change the odds
in the usual games of chance. At least, we do not change the chances in
that idealized version of these games in which the contrivances used (pennies,
dice, etc.) are supposed to be perfectly symmetrical and, correspondingly,
certain fundamental chances perfectly equal.

(2) Wishing to study the randomness in the distribution of boys and
girls among the newborn, we may substitute for the actual mass phenomenon
successive drawings from a bag containing 1,000 balls, 515 marked with B
and 485 marked with G. This substitution is, of course, theoretical and,
as every theory is bound to be, it is tentative and approximative. Yet the
point is that the bag and the balls enable us to formulate a theory.

(3) A meteorologist registers the succession of rainy and rainless days in
a certain locality. His observations seem to show that, on the whole, each
day tends to resemble the foregoing day: rainless days seem to follow
rainless days more easily than rainy days and, similarly, rainy days seem to
follow rainy days more easily than rainless days. Of course, a dependable
regularity appears only in a long series of observations; the details are
irregular, seem to be random.

The meteorologist may wish to express more clearly his impressions
that we have just sketched. If he wishes to formulate a theory in terms of
probability, he may consider three bags. Each bag contains the same
number of balls, let us say 1,000 balls. Some of the balls are white, the
others are black (white for rainless, black for rainy). Yet there are important
differences between the bags. Each bag bears an inscription, easily visible
to the person who draws the balls. One bag is inscribed ‘“‘sTarT,” another
“AFTER WHITE,” and the third “AFTER BLACK.” The ratio of balls of different
color is different in different bags. In each bag the ratio of white balls to

4 See E. Mach, Die Mechanik, p. 59-62.
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black balls approximates the observable ratio of rainless days to rainy days,
but in different circumstances. In the bag ‘“sTarRT” the ratio is that of
rainless days to rainy days throughout the year, in the bag “AFTER WHITE”
the ratio is that of rainless days to rainy days following a rainless day, and
in the bag “AFTER BLACK” the ratio is that of rainless days to rainy days
following a rainy day. Therefore, the bag “AFTER WHITE” contains more
white balls than the bag “ArTER BLACK.” The balls are drawn successively
and each ball drawn, when its color has been noticed, is replaced into the
bag from which it was drawn. The bag “starT” is used but once, for the
first ball. If the first ball is white, we use the bag ‘“AFTER wHITE” for the
second ball, but if the first ball is black, the second ball is drawn from the
bag “AFTER BLACK.” And so on, the color of the ball just drawn determines
the bag from which the next ball should be drawn.

It is just a theory that the succession of white and black balls drawn under
the described circumstances imitates the succession of rainless and rainy
days with a reasonable approximation. Yet, on the face of it, this theory
does not seem to be out of place. At any rate, this theory, or some similar
theory, could deserve to be confronted with the observations.

(4) Take any English text (from Shakespeare, if you prefer) and replace
each of the letters a, ¢, 7, 0, u, and » by V and each of the remaining twenty
letters by C. (V means vowel and C means consonant.) You obtain a
pattern as

GV VY GCV:EC G Ve,

This irregular sequence is in some way opposite to that discussed in the
foregoing subsection (3): each day tends to be like the foregoing day, but each
letter tends to be unlike the foregoing letter. Still, we could imitate the
succession of vowels and consonants by a succession of white and black balls
drawn from three bags bearing the same inscriptions as before (in subsection
(3)), yet the ratio of white balls to black balls should not be the same as
before. To imitate realistically the succession of vowels and consonants the
bag “AFTER WHITE” should contain less white balls than the bag {‘AFTER
BLACK.”’

(5) There are two bags. The first bag contains p balls among which
there are f white balls. The second bag contains P chips among which
there are F white chips. Using both hands, I draw from both bags at the
same time, a ball with the left hand and a chip with the right hand. What is
the probability that both the ball and the chip turn out to be white?

We could, of course, repeat this primitive experiment sufficiently often,
perhaps a thousand times, and so obtain an approximate value for the desired
probability. Yet we can also try to guess it, and that is more interesting.

The result of the two simultaneous drawings is a “couple,” consisting
of a ball and a chip. There are p balls and P chips. As any ball can be
coupled with any chip, there are pP possible couples; they are shown in
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fig. 14.2 where p = 5, f= 2, P= 4, F= 3. There is no reason to prefer
any of the p balls to any other ball, or any of the P chips to any other chip.
There seems to be no reason to prefer any of the pP couples to any other couple. In
fact, in performing the experiment with the two bags, I am supposed to
proceed blindly, at random, so that each hand draws independently of the
other. ‘“Let not thy left hand know what thy right hand doeth.” It seems
incredible that the chances of the ball that I draw with my left hand should
be influenced by the chip that I draw with my right hand. Why should
ball no. 1 be any more attracted by chip no. 1 than it is by chip no. 2°?

}\

| 8B B 8
g 5 H 8
el o
8§ 4AE0

55

Fig. 14.2. Independent events.

And so we can imagine a bag, containing pP mechanically indistinguish-
able objects (each object is a couple, a ball attached to a chip); one drawing
from this one bag appears equivalent to the two simulianeous drawings from
the two bags described at the outset. We have so pP possible cases; it
remains to find the number of favorable cases. A glance at fig. 14.2 shows
that there are fF couples consisting of a white ball and a white chip. And so
we obtain the value of the desired probability: it is

i v A

g ¥
the product of two probabilities. In fact, f/p is the probability of drawing a
white ball from the first bag, and F/P the probability of drawing a white
chip from the second bag.

The essential point about the ball and the chip is that the drawing of one
does not influence the chances of the other. In the usual terminology
of the calculus of probability, such events are called independent of each other;
the joint happening of both events is viewed as a compound event. The



64. CHANCE, THE EVER-PRESENT RIVAL CONJECTURE

foregoing consideration motivates the rule: The probability of a compound event
is the product of the probabilities of the constituent events, provided that these constituent
events are mutually independent.

4. The calculus of probability. Statistical hypotheses. The
theory of probability, as we see it, is a part of the study of nature, the theory
of random mass phenomena.

The most striking achievement of the physical sciences is prediction.
The astronomers predict with precision the eclipses of the sun and the moon,
the position of the planets, and the return of comets which evade observation
for several years. A great astronomer (Leverrier) succeeded even in pre-
dicting the position of a planet (Neptune), the very existence of which was
not known before. The theory of probability predicts the frequencies in
certain mass phenomena with some amount of success.

The astronomers base their predictions on former observations, on the laws
of mechanics, the law of gravitation, and long difficult computations. Any
branch of physical science bases its predictions on some theory or, we can say,
on some conjecture, since no theory is certain and so every theory is a more
or less reasonable, more or less well-supported, conjecture. In trying to
predict the frequencies in a certain random mass phenomenon from the
theory of probability we have to make some theoretical assumption about
the phenomenon. Such an assumption, which has to be expressed in terms
of probability concepts, is called a statistical hypothesis.

When we apply the theory of probability we have to compute probabilities
(which are theoretical, approximate values of relative frequencies). When we
try to find a probability, we have a problem to solve. The unknown of this
problem is the desired probability. Yet, in order to determine this unknown,
we need data and conditions in our problem. The data are usually proba-
bilities and the conditions, on which the relation of the unknown probability
to the given probabilities depends, constitute a statistical hypothesis.

As in the applications of the theory of probability the computation of
probabilities plays a prominent role, this theory is usually called the calculus
of probability. Thus, the aim of the calculus of probability is to compute new
probabilities on the basis of given probabilities and given statistical hypotheses.

The reader who wishes to peruse the remaining part of this chapter must
either know the elements of the calculus of probability, or he must take for
granted certain results derived from these elements. Most of the time, the
text will state the results without derivation; derivations will be given
subsequently, in the First Part of the Exercises and Comments following
this chapter, and in the corresponding Solutions. Yet even if the reader
does not check the derivation of the results, he ought to have some insight
into the underlying theoretical assumptions. We can make such assump-
tions intuitively understandable: we compare the random mass phenomenon
that we examine to drawings from suitably filled bags under suitable
conditions, as in the foregoing sect. 3.
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The applications of the calculus of probability are of unending variety.
The following sections of this chapter attempt to illustrate the principal types
of applications by suitable elementary examples. Stress will be laid on the
motivation of these applications, that is, on such preliminary considerations
as make the choice of procedure plausible.

5. Straightforward prediction of frequencies. At the beginning of
its history the calculus of probability was essentially a theory of certain games
of chance. Yet the predictions of this theory were not tested experimentally
on a large scale until modern times. We begin by discussing an experiment
of this kind.

(1) W. F. R. Weldon cast 12 dice 26,306 times, noting each time how
many of these 12 dice have shown more than four spots.®> The results of his
observations are listed in column (4) of Table I; column (1) shows the number
of the dice among the 12 that have turned up five or six spots. Thus, in
26,306 trials it never happened that all twelve dice showed more than four
spots. The most frequent case was that in which four out of the twelve dice
showed five or six spots; this happened 6,114 times.

Table I

(1) (2) (3) 4) (5) (6)
Nr.of 50r 6 ExcessI Predicted I Observed Predicted II Excess IT

0 4+ 18 203 185 187 il
1 + 67 1216 1149 1146 - 3
2 + 80 3345 3265 3215 — 50
3 + 101 5576 5475 5465 — 10
4 -+ 159 6273 6114 6269 + 155
D — 176 5018 5194 L3 £ - 79
6 — 140 2927 3067 3043 — 24
7 — 76 1255 1331 1330 - 1
8 — 11 392 403 424 + 21
9 — 18 87 105 96 i D
10 - 1 13 14 15 42l
11 - 3 1 4 1 - 3
12 0 0 0 0 0
Total 0 26,306 26,306 26,306 0

How can the theory predict the observed numbers listed in column (4)
of Table I? If we assume that the dice are *’fair”’ and that the trials with
different dice, or with the same die at different times, are independent of

® Philosophical Magazine, ser. 5, vol. 50, 1900, p. 167-169; in a paper by Karl Pearson.




66 CHANCE, THE EVER-PRESENT RIVAL CONJECTURE

each other, we can compute the relevant probabilities. Under our assump-
tion (which is properly termed a “statistical hypothesis”) the probability
that exactly 4 dice out of 12 should show 5 or 6 spots is

134 £2)\?. . 126,720
P=495{112) =" ——I
(3) (3) 531,441

Now, by definition, the probability is the theoretical value of long range
relative frequency. If the event with probability P shows itself m times in n
trials, we expect that

s approximately
n

or
m = Pn approximately.

Therefore, we should expect that exactly 4 dice will show five or six spots
out of the 12 dice cast in about

126,720
531,441

n 26,306 = 6,273

cases out of n = 26,306 trials. (Observe that we can compute this number
6,273 before the trials start.) Now, this predicted value 6,273 does not seem
to be “very different” from the observed number 6,114, and so our first
impression about the practical applicability of the theory of probability may
be quite good.

The number 6,273 is listed in column (3) of Table I at the proper place,
in the same row as the number 4 in column (1). All the numbers in column
(3) are similarly computed. In order to compare more conveniently the
predicted values in column (3) with the observed numbers in column (4), we
list the differences (predicted less observed) in column (2). With their
meaning in mind, we survey the columns (2), (3), and (4). Is the agreement
between experience and theory satisfactory? Are the observed numbers
sufficiently close to the predicted values?

There is, obviously, some agreement between the columns (3) and (4).
Both columns of numbers have the same general aspect: the maximum is
attained at the same point (in the same row) and the numbers first increase
to the maximum and then decrease steadily to 0 in very much the same
fashion in both columns. The deviation of the observed number from the
predicted value appears relatively small in most cases; the agreement, at a
first glance, looks quite good. On the other hand, however, the number of
trials, 26,306, appears pretty large. Are the deviations sufficiently small in
view of the large number of trials?

This seems to be the right question. Yet we cannot answer it off-hand;
we had better postpone it till we know a little more; see sect. 7 (3). Yet
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without any special knowledge, just with a little common sense, we can draw
quite a sharp conclusion from Table I. A physicist would easily notice the
following point about the columns (3) and (4). The differences are listed
in column (2). Some of these differences are positive, others negative. If
these differences were randomly distributed, the + and — signs should be
intermingled in some disorderly fashion. In fact, however, the + and —
signs are sharply separated: the theoretical values are too large up to a
certain point, and too small from that point onward. In such a case, the
physicist speaks of a systematic deviation of the theory from the experiment,
and he regards such a systematic deviation as a grave objection against the
theory.

And so the agreement between the theory of probability and Weldon’s
observations, which looked quite good at first, begins to look much less good.

(2) Yet who is responsible for that systematic deviation? The theoretical
values have been computed according to the rules of the calculus of proba-
bility on the basis of a certain assumption, a ‘“‘statistical hypothesis.” We
need not blame the rules of the calculus; the fault may be with the statistical
hypothesis. In fact, this statistical hypothesis has a weak point: we assumed
that the dice used in the experiment were ‘“‘fair.”” When gentlemen play
a game of dice, they should assume that the dice are fair, but for a naturalist
such an assumption is unwarranted.

In fact, let us look at the example of the physicist. Galileo discovered the
law of falling bodies that we write today in the usual notation as an equation:

G P

s stands for space (distance), ¢ for time. More exactly, Galileo discovered
the form of the dependence of son ¢: the distance is proportional to the square
of the time ¢. Yet he made no theoretical prediction about the constant g
that enters into this proportionality; the suitable value of g has to be found
by experiments. In this respect, as in many other respects, natural science
followed the example of Galileo; in countless cases the theory yielded the
general form of a natural law, and the experiment had to determine the
numerical values of the constants that enter into the mathematical expres-
sion of the law. And this procedure works in our example, too.

If a die is ““fair,” none of the six faces is preferable to the others, and so
the probability for casting 5 or 6 spots is

PRl

e
Even if the die is not fair, there is a certain probability p for casting 5 or 6
spots; p may be different from 1/3. (Yet not very different in an ordinary
die, otherwise we would consider the die as “loaded.”) We take p as a
constant that has to be determined by experiment. And now, we modify
our original statistical hypothesis: we assume that all twelve dice used have
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the same probability p for showing 5 or 6 spots. (This is a simple assumption
but, of course, pretty arbitrary. We cannot believe that it is exactly true;
we can only hope that it is not very far from the truth. There is virtually
no chance that the dice are exactly equal, but they may be only slightly
different.) We keep unchanged the other part of our former statistical
hypothesis (different dice and different trials are considered as independent).

On the basis of this new statistical hypothesis we can again assign theoretical
values corresponding to the observations listed in column (4) of Table I.
For example, the theoretical value corresponding to the observed value
6,114 is

495 p* (1 — p)® 26,306;

it depends on p, and also the theoretical values corresponding to the other
numbers in column (4) depend on p.

It remains to determine p from the experiments that we are examining.
We cannot hope to determine p from experiments exactly, only in some
reasonable approximation. If we change our standpoint for a moment and
consider the casting of a single die as a trial,

12 X 26,306 — 315,672

trials have been performed; this is a very large number. The frequency of
the event “five or six spots’”’ can be easily derived from the column (4) of
Table I. We find as the value of the relative frequency

106,602
315,672

we take this relative frequency, resulting from a very large number of trials,
for the value of p. (We assume so for p a value slightly higher than 1/3.)

Once p is chosen, we can compute theoretical values corresponding to the
observed frequencies. These theoretical values are tabulated in column (5)
of Table I. Thus the columns (3) and (5) give theoretical values correspond-
ing to the same observed numbers, but computed under different statistical
hypotheses. In fact, the two statistical hypotheses differ only in the value
of p; column (3) uses p = 1/3, column (5) uses the slightly higher value
derived from the observations. (Column (3) can be computed before the
observations, but column (5) cannot.) The differences between correspond-
ing items of columns (5) and (4) are listed in column (6).

Thereis little doubt that the theoretical values in column (5) fit the observa-
tions much better than those in column (3). In absolute value, the
differences in column (6) are, with just one exception, less than, or equal to,
the differences in column (2) (equal in just three cases, much less in most
cases). In opposition to column (2), the signs + and — are intermingled
in column (6), so that they yield no ground to suspect a systematic deviation
of the theoretical values in column (5) from the experimental data in
column (4).

=0:3376986;
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(3) Judged by the foregoing example, the theory of probability seems to be
quite suitable for describing mass phenomena generated by such gambling
devices as dice. If it were not suitable for anything else, it would not deserve
too much attention. Let us, therefore, consider one more example.

As reported by the careful official Swiss statistical service, there were
exactly 300 deliveries of triplets in Switzerland in the 30 years from 1871 to
1900. (That is, 900 triplets were born. In talking of deliveries, we count
the mothers, not the babies.) The number of all deliveries (some of triplets,
some of twins, most of them, of course, of just one child) during the same
period in the same geographical unit was 2,612,246. Thus, we have here a
mass phenomenon of considerable proportions, but the event considered,
the birth of triplets, is a rare event. The average number of deliveries per
year is

2,612,246/30 = 87,075,
the average number of deliveries of triplets only
300/30 = 10.

Of course, the event happened more often in some years, in others less often
than the average 10, and in some years exactly 10 times. Table II gives

Table II
Triplets born in Switzerland 1871-1900.

(1) ) 3) (4) (5)

Deliveries ~ Years obs. Years theor. (2) cumul.  (3) cumul.

0 0 0.00 0 0.00
1 0 0.00 0 0.00
2 0 0.09 0 0.09
3 1 0.21 1 0.30
4 0 0.57 1 0.87
5 1 1.14 2 2.01
6 1 1.89 3 3.90
7 ) 2.70 8 6.60
8 1 3:39 9 999
9 - %A 13 13.74
10 4 8.75 17 17.49
11 4 342 21 20.91
12 3 2.85 24 23.76
13 2 2.16 26 25.92
14 1 1.59 27 27.91
15 2 1.02 29 28.53
16 0 0.66 29 29.19
17 1 0.39 30 29:58
18 0 0.21 30 2979
19 0 0.12 30 29.91

\
\
l
|
|
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the relevant details in column (2). We see there (in the row that has 10
in the first column) that there were in the period considered exactly 4 years
in which exactly 10 deliveries of triplets took place. As the same column (2)
shows, no year in the period had less than 3 such deliveries, none had more
than 17, and each of these extreme numbers, 3 and 17, turned up in just one
year.

The numbers of column (2) seem to be dispersed in some haphazard
manner. It is interesting to note that the calculus of probability is able to
match the irregular looking observed numbers in column (2) by theoretical
numbers following a simple law; see column (3). The agreement of columns
(2) and (3), judged by inspection, does not seem to be bad; the difference
between the two numbers, the observed and the theoretical, is less than 1
in absolute value, except in two cases. Yet in these two cases (the rows with
7 and 8 in the first column) the difference is greater than 2 in absolute value.

There is a device that allows us to judge a little better the agreement of the
two series of numbers. The column (4) of Table II contains the numbers of
column (2) “cumulatively.” For example, consider the row that has 7 in
column (1); it has 5 in column (2) and 8 in column (4). Now

8=04+04+0+1T+0+1+1+5;

that is, 8 is the sum, or the “accumulation”, of all numbers in column (2)
up to the number 5, inclusively, in the respective row. (In otherwords, 8 is the
number of those years of the period in which the number of deliveries of
triplets did not exceed 7.) Column (5) contains the numbers of column (3)
“cumulatively”’, and so the columns (4) and (5) are analogously derived
from the observed numbers in column (2) and the theoretical numbers in
column (3), respectively. The agreement between columns (4) and (5)
looks excellent; the difference is less than 1 in absolute value except in
just one case, where it is still less than 2.

6. Explanation of phenomena. Ideas connected with the concept of
probability play a réle in the explanation of phenomena, and that is true
of phenomena dealt with by any science, from physics to the social sciences.
We consider two examples.

(1) Gregor Mendel (1822-1884), experimenting with the cross-breeding
of plants, became the founder of a new science, genetics. Mendel was, by
the way, an abbot in Moravia, and carried out his experiments in the garden
of his monastery. His discovery, although very important, is very simple.
To understand it we need only the description of one experiment and an
intuitive notion of probability. To make things still easier, we shall not
discuss one of Mendel’s own experiments, but an experiment carried out by
one of his followers.®

Of two closely related plants (different species of the same genus) one has

¢ By Correns; see W. Johannsen, Elemente der exakten Erblichkeitslehre, Jena 1909, p. 371.
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white flowers and the other rather dark red flowers. The two plants are
so closely related that they can fertilize each other. The seeds resulting
from such crossing develop into hybrid plants which have an intermediate
character: the hybrids have pink flowers. (In fig. 14.3 red is indicated by
more, pink by less, shading.) If the hybrid plants are allowed to become
self-fertilized, the resulting seeds develop into a third generation of plants in
which all three kinds are represented: there are plants with white, plants
with pink, and plants with red flowers. Fig. 14.3 represents schematically
the relations between the three subsequent generations.

141 291 132
OO O @O OB

Fig. 14.3. Three generations in a Mendelian experiment.

Yet the most striking feature of the phenomenon is the numerical propor-
tion in which the three different kinds of plants of the third generation are
produced. In the experiment described, 564 plants of the third generation
have been observed. Among them, those two kinds of plants that resemble
one or the other grandparental plant were about equally numerous: there
were 141 plants with white flowers and 132 plants with red flowers in the
third generation. Yet the plants resembling the hybrid parental plants
were more numerous: there were 291 plants with pink flowers in the third
generation. We can conveniently survey these numbers in fig. 14.3. We
easily notice that these numbers given by the experiment are approximately
in a simple proportion:

141 : 291 : 132 almost as 1 : 2 : 1.
This simple proportion invites a simple explanation.




72 CHANCE, THE EVER-PRESENT RIVAL CONJECTURE

Let us begin at the beginning. The experiment began with the crossing
of two different kinds of plants. Any flowering plant arises from the union
of two reproductive cells (an ovule and a grain of pollen). The pink-
flowering hybrids of the second generation arose from two reproductive
cells of different extraction. As the pink-flowering plants of the third
generation are similar to those of the second generation, it is natural to
assume that they were similarly produced, by two reproductive cells of
different kinds. This leads us to suppose that the pink-flowering hybrids
of the second generation have two different kinds of reproductive cells.
Supposing this, however, we may perceive a possibility of explaining the
mixed offspring. In fact, let us see more clearly what would happen if the
pink-flowering hybrids of the second generation actually had two different
kinds of reproductive cells, which we may call “white” and “red” cells.
When two such cells are combined, the combination can be white with white,
or red with red, or one color with the other, and these three different
combinations could explain the three different kinds of plants in the third
generation; see fig. 14.3.

After this remark, it should not be difficult to explain the numerical
proportions. The deviation of the actually observed proportion
141 : 291 : 132 from the simple proportion 1 :2 : 1 appears as random.
That is, it looks like the deviation of observed frequencies from underlying
probabilities. This leads us to wondering what the probabilities of the two
kinds of cells are, or in which proportion the “white”” and ‘“red” cells are
produced. As there are about as many white-flowering as red-flowering
plants in the third generation, we can hardly refrain from trying the simplest
thing: let us assume that the “white” and “red” reproductive cells are
produced in equal numbers by the pink-flowering plants. Finally, we are
almost driven to compare the random encounter of two reproductive cells
with the random drawing of two balls, and so we arrive at the following
simple problem.

There are two bags containing white and red balls, and no balls of any other
color. Each bag contains just as many white balls as red balls. With both
hands, I draw from both bags, one ball from each. Find the probability
for drawing two white balls, two balls of different colors, and two red balls.

As it is easily seen (cf. sect. 3 (5)), the required probabilities are

b |

¢ 4 7
respectively. We perceive now a simple reason for the proportion 1 : 2 : 1
that seems to underlie the observed numbers, and so doing we come very
close to Mendel’s essential concepts.

(2) The concept of random mass phenomena plays an important réle in

physics. In order to illustrate this réle, we consider the velocity of chemical
reactions.
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Relatively crude observations are sufficient to suggest that the speed of
a chemical change depends on the concentration of the reacting substances.
(By concentration of a substance we mean its amount in unit volume.) This
dependence of the chemical reaction velocity on the concentration of the
reactants was soon recognized, but the discovery of the mathematical form
of the dependence came much later. An important particular case was
noticed by Wilhelmy in 1850, and the general law was discovered by two
Norwegian chemists, Guldberg and Waage, in 1867. We now outline, in a
particular case and as simply as we can, some of the considerations that led
Guldberg and Waage to their discovery.

We consider a bimolecular reaction. That is, two different substances,
A and B, participate in the reaction which consists in the combination of one
molecule of the first substance 4 with one molecule of the second substance B.
The substances 4 and B are dissolved in water, and the chemical change
takes place in this solution. The substances resulting from the reaction do
not participate further in the chemical action; they are inactive in one way
or another. For example, they may be insoluble in water and deposited in
solid form.

The solution in which the reaction takes place consists of a very great
number of molecules. According to the ideas of the physicists (the kinetic
theory of matter) these molecules are in violent motion, traveling at various
speeds, some at very high speed, and colliding now and then. If a molecule
A collides with a molecule B, the two may get so involved that they exchange
some of their atoms: the chemical reaction in which we are interested
consists of such an exchange, we imagine. Perhaps it is necessary for such
an exchange that the molecules should collide at a very high speed, or that
they should be disposed in a favorable position with respect to each other in
the moment of their collision. At any rate, the more often it happens that a
molecule 4 collides with a molecule B, the more chance there is for the
chemical combination of two such molecules, and the higher the velocity of
the chemical reaction will be. And so we are led to the conjecture: the
reaction velocity is proportional to the number of collisions between molecules A and
molecules B.

We could not predict exactly the number of such collisions. We have
before us a random mass phenomenon like rainfall. Remember fig. 14.2;
there, too, we could not predict exactly how many raindrops would strike
the subarea F. Yet we could predict that the number of raindrops striking
the subarea F would be proportional to the number of raindrops falling on the
whole area P. (The proportionality is approximate, and the factor of
proportionality is /P, as discussed toward the end of sect. 2.) Similarly, we
can predict that the number of collisions in which we are interested (between
any molecule 4 and any molecule B) will be proportional to the number of
the molecules 4. Of course, it will also be proportional to the number of
the molecules B, and so finally proportional to the product of these two
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numbers. Yet the number of the molecules of a substance is proportional
to the concentration of that substance, and so our conjecture leads us to
the following statement: the reaction velocity is proportional to the product of
the concentrations.

We arrived at a particular case of the general law of chemical mass
action discovered by Guldberg and Waage. This is the particular case
appropriate for the particular circumstances considered. On the basis of
the law of mass action it is possible to compute the concentration of the re-
acting substances at any given moment and to predict the whole course of
the reaction.

7. Judging statistical hypotheses. We start from an anecdote.”

(I) “One day in Naples the reverend Galiani saw a man from the
Basilicata who, shaking three dice in a cup, wagered to throw three sixes;
and, in fact, he got three sixes right away. Such luck is possible, you say.
Yet the man succeeded a second time, and the bet was repeated. He put
back the dice in the cup, three, four, five times, and each time he produced
threesixes. ‘Sangue diBacco,’ exclaimed the reverend, ‘the dice are loaded !’
And they were. Yet why did the reverend use profane language ?”’

The reverend Galiani drew a plausible conclusion of a very important
type. If he discovered for himself this important type of plausible inference
on the spur of the moment, his excitement is quite understandable and I,
personally, would not reproach him for his mildly profane language.

The correct thing is to treat everybody as a gentleman until there is
some definite evidence to the contrary. Quite similarly, the correct thing is
to engage in a game of chance under the assumption that it is fairly played.
I do not doubt that the reverend did the correct thing and assumed in the
beginning that that man from the Basilicata had fair dice and used them
fairly. Such an assumption, correctly stated in terms of probability, is a
statistical hypothesis. A statistical hypothesis generally assumes the values
of certain probabilities. Thus, the reverend assumed in the beginning, more
or less explicitly, that any of the dice involved will show six spots with the
probability 1/6. (We have here exactly the same statistical hypothesis as in
zeet! 5'(1).)

The calculus of probability enables us to compute desired probabilities
from given probabilities, on the basis of a given statistical hypothesis. Thus,
on the basis of the statistical hypothesis adopted by the reverend at the begin-
ning, we can compute the probability for casting three sixes with three dice;
it is

(1/6)3 = 1/216,

a pretty small probability. The probability for repeating this feat twice,

7 J. Bertrand, Calcul des probabilités, p. VII-VIII.
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that is, casting three sixes at a first trial, and casting them again at the next
trial, is
(1/216)2 = (1/6)¢ = 1/46,656,

a very small probability indeed. Yet that man from the Basilicata kept on
repeating the same extraordinary thing five times. Let us list the
corresponding probabilities:

Repetitions Probability
1 L/6he = 1/216
2 pibt—— 1/46,656
3 1/6° = 1/10,077,696
4 1/61% = 1/2,176,782;336
5 1/615 = 1/470,184,984,576.

Perhaps, the reverend adopted his initial assumption out of mere politeness;
looking at the man from the Basilicata, he may have had his doubts about
the fairness of the dice. The reverend remained silent after the three sixes
turned up twice in succession, an event that under the initial assumption
should happen not much more frequently than once in fifty thousand
trials. He remained silent even longer. Yet, as the events became more
and more improbable, attained and perhaps surpassed that degree of
improbability that people regard as miraculous, the reverend lost patience,
drew his conclusion, rejected his initial polite assumption, and spoke out
forcibly.

(2) The anecdote that we have just discussed is interesting in just one
aspect: it is typical. It shows clearly the circumstances under which we
can reasonably reject a statistical hypothesis. We draw consequences from
the proposed statistical hypothesis. Of special interest are consequences
concerned with some event that appears very improbable from the standpoint
of our statistical hypothesis; I mean an event the probability of which,
computed on the basis of the statistical hypothesis, is very small. Now,
we appeal to experience: we observe a trial that can produce that allegedly
improbable event. If the event, in spite of its computed low probability,
actually happens, it yields a strong argument against the proposed statistical
hypothesis. In fact, we find it hard to believe that anything so extremely
improbable could happen. Yet, undeniably, the thing did happen. Then
we realize that any probability is computed on the basis of some statistical
hypothesis and start doubting the basis for the computation of that small
probability. And so there arises the argument against the underlying
statistical hypothesis.

(3) As the reverend Galiani, we also felt obliged to reject the hypothesis of
fair dice when we examined the extensive observations related in sect. 5 (1);
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our reasons to reject it, however, were not quite as sharp as his. Could we
find better reasons in the light of the foregoing discussion?

Here are the facts: 315,672 attempts to cast five or six spots with a dice
produced 106,602 successes; see sect. 5 (2). If all dice cast were fair, the
probability of a success would be 1/3. Therefore, we should expect about

31667213 —"105,224

successes in 315,672 trials. Thus, the observed number deviates from the
expected number
106,602 — 105,224 = 1,378

units. Does such a deviation speak for or against the hypothesis of fair dice ?
Should we regard the deviation 1,378 as small or large? Is the probability
of such a deviation high or low?

The last question seems to be the sensible question. Yet we still need a
sensible interpretation of the short, but important, word ‘“‘such.” We shall
reject the statistical hypothesis if the probability that we are about to compute
turns out to be low. Yet the probability that the deviation should be exactly
equal to 1,378 units is very small anyhow—even the probability of a devia-
tion exactly equal to 0 would be very small. Therefore, we have to take into
account all the deviations of the same absolute value as, or of larger absolute value
than, the observed deviation 1,378. And so our judgment depends on the solution
of the following problem: Given that the probability of a success is 1|3 and that the
trials are independent, find the probability that in 315,672 trials the number of successes
should be either more than 106,601 or less than 103,847.

With a little knowledge of the calculus of probability we find that the
required probability is approximately

0.0000001983;

this means less than two chances in ten million. That is, an event has
occurred that looks extremely improbable, if the statistical hypothesis is
accepted that underlies the computation of probability. We find it hard to
believe that such an improbable event actually occurred, and so the under-
lying hypothesis of fair dice appears extremely unlikely. Alreadyinsect.5 (1)
we saw a good reason to reject the hypothesis of fair dice, but now we see a
still better, more distinct, reason to reject it.

(4) The actual occurrence of an event to which a certain statistical
hypothesis attributes a small probability is an argument against that hypo-
thesis, and the smaller the probability, the stronger is the argument.

In order to visualize this essential point, let us consider the sequence

1 1 1 1

100 100° 1,000° 10,000’
A statistical hypothesis implies that the probability of a certain event is 1/10.
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The event happens. Should we reject the hypothesis? Under usual
circumstances, most of us would not feel entitled to reject it; the argument
against the hypothesis does not appear yet strong enough. If another event
happens to which the statistical hypothesis attributes the probability 1/100,
the urge to reject the hypothesis becomes stronger.  If the alleged probability
is 1/1,000, yet the event happens nevertheless the case against the hypothesis
is still stronger. If the statistical hypothesis attributes the probability

1
1,000,000,000

to the event, or one chance in a billion, yet the event happens nevertheless,
almost everybody would regard the hypothesis as hopelessly discredited,
although there is no logical necessity to reject the hypothesis just at this
point. If, however, the sequence proceeds without interruption so that
events happen one after the other to which the statistical hypothesis attributes
probabilities steadily decreasing to 0, for each reasonable person arrives
sooner or later the critical moment in which he feels justified in rejecting the
hypothesis, rendered untenable by its increasingly improbable consequences.
And just this point is neatly suggested by the story of the reverend Galiani.
The probability of the first throw of three sixes was 1/216; of the sequence of
five throws of three sixes each, 1/470,184,984,576.

The foregoing discussion is of special importance for us if we adopt the
standpoint that the theory of probability is a part of the study of nature.
Any natural science must recur to observations. Therefore it must adopt
rules that specify somehow the circumstances under which its statements
are confirmed or confuted by experience. We have done just this for the
theory of probability. We described certain circumstances under which
we can reasonably consider a statistical hypothesis as practically refuted by
the observations. On the other hand, if a statistical hypothesis survives
several opportunities of refutation, we may consider it as corroborated to a
certain extent.

(5) Probability, as defined in sect. 2, is the theoretical value of long range
relative frequency. The foregoing gave us an opportunity to realize a few
things. First, such a theoretical value depends, of course, on our theory,
on our initial assumptions, on the statistical hypothesis adopted. Second,
such a theoretical value may be very different from the actual value.

A suitable notation may help us to clarify our ideas. Let P be the proba-
bility of an event E computed on the basis of a certain statistical hypothesis
H. Then P depends both on E and on H. (In fact, we could use, instead
of P, the more explicit symbol P(E, H) that emphasizes the dependence of P
on E and H.)

In some of the foregoing applications we took the hypothesis H for granted
(at least for the moment) and, computing P on the basis of H, we tried to
predict the observable frequency of the event E. Yet, in the present section,
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we proceeded in another direction. Having observed the event E, we
computed P on the basis of the statistical hypothesis H and, in view of the
value of P obtained, we tried to judge the reliability of the hypothesis H.
We perceive here a new aspect of P. The smaller P is, the more we feel
inclined to reject the hypothesis H, and the more unlikely the hypothesis H
appears to us: P indicates the likelihood of the hypothesis H. We shall say
henceforward that P is the likelihood of the statistical hypothesis H, judged in view
of the fact that the event E has been observed.

This terminology, which agrees essentially with the usage of statisticians,
emphasizes a certain aspect of the dependence of P on the event E and the
statistical hypothesis H. Our original terminology lays the stress on the
complementary aspect of the same dependence: P is the probability of the
event E, computed on the basis of the statistical hypothesis H.

Some practice in the use of this double terminology is needed to convince
us that its advantages sufficiently outweigh its dangers.

8. Choosing between statistical hypotheses. The following example
may provide a first orientation to the applications of the theory of probability
in statistical research.

(1) A consumer buys a certain article from the producer in large lots.
The consumer is a big consumer, a large merchandizing or industrial firm,
or a government agency. The producer is also big and manufactures the
article in question on a large scale. The article can be a nail, or a knob, or
anything manufactured; an interesting example is a fuze, used for firing
explosives in ammunition or in blasting operations. The article has to
meet certain specifications. For example, the nail should not be longer than
2.04 inches nor shorter than 1.96 inches, its thickness is similarly specified,
and perhaps also its minimum breaking strength; the burning time of the
fuze is specified, and so on. An article that does not meet the specifications
is considered as defective. Even the most carefully manufactured lot may
contain a small fraction of defectives. Therefore the lot has to be inspected
before it passes from the producer to the consumer. The lot may be fully
inspected, that is, each article in the lot may be tested whether it meets the
agreed specifications. Such a full inspection would be impractical for a lot
of 10,000 nails and it would be preposterous for a lot of fuzes even if the lot
is small; in order to measure its burning time, you have to destroy the fuze
and there is not much point in destroying the whole lot by inspecting it.
Therefore in many cases instead of inspecting the whole lot before acceptance,
only a relatively small sample is taken from the lot. A simple procedure of
such acceptance sampling is characterized by the following rule.

“Take a random sample of n articles from the submitted lot of N articles.
Test each article in the sample. If the number of defectives in the sample
does not exceed a certain agreed number ¢, the so-called acceptance number, the
consumer accepts the lot, but he rejects it, and the producer takes it back, if
there are more defectives than ¢ in the sample.”
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The results obtained by this rule depend on chance. By chance, the frac-
tion of defectives in the sample can be much lower or much higher than in
the whole lot. If the sample turns out to be better than the lot, chance works
against the consumer, and it works against the producer if the sample turns
out to be worse than the lot. In spite of these risks, some such procedure
appears necessary, and the rule formulated may be quite reasonable. We
have to find out how the procedure works, how its result depends on the
quality of the submitted lot. And so we are led to formulate the following
problem: Given p, the probability that an article chosen at random in the submitted
lot is defective, find a, the probability that the lot will be accepted.

Fercentage of lots accepted, a

S

Fercentage of defectives in lot, ,of

Fig. 14.4. Operating characteristic of an acceptance sampling procedure.

In the most important practical cases N, the size of the lot, is large even
in comparison with n, the size of the sample. In such cases we may assume
that N is infinite; we lose little in precision and gain much in simplicity.
Assuming N = o0, we easily find that

o= —p+ (})oa — o+ (D)t —
iy (Z)p‘(l —p".

We take this expression of a, the probability of acceptance, for granted and
we concentrate on discussing some of its practical implications.

We graph a as function of p; see fig. 14.4. If we graphed 100z as function
of 100p, the form of the curve would be the same. Now, 100p is the percent-
age of defective articles in the lot submitted. On the other hand, if several
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lots with the same percentage of defectives were subjected to the same
inspection procedure, the relative frequency of acceptance, that is, the ratio
of accepted lots to submitted lots, would be close to a. Therefore, in the long
run, 100a will be the percentage of the lots accepted among the lots submitted.
This explains the labeling of the axes in fig. 14.4. The curve in fig. 14.4
allows us to survey how the procedure operates on lots of various quality,
and so it is appropriately called the operating characteristic.

Judged by its effects, does the procedure appear reasonable? This is the
question that we wish to consider.

If there are no defectives in the lot, there should be no chance for rejecting
it. In fact, if p = 0 our formula yields a = 1, as it should. If there are
only defectives in the lot, there should be no chance for accepting it. In
fact, if p = 1 our formula yields @ = 0, as it should. Both extreme points of
the operating characteristic curve are obviously reasonable.

If the number of defectives increases, the chances of acceptance should
diminish. In fact, differentiating with a little skill, we easily find the
surprisingly simple expression

da niYe, ity
G=—e—a(%)ra—»

which is always negative. Therefore, the operating characteristic is neces-
sarily a falling curve, as represented in fig. 14.4, which is again as it
should be.

The absolute value of the derivative, or —da/dp, has also a certain practical
significance. The change dp of the abscissa represents a change in the quality
of the lot. The change da of the ordinate represents a change in the chances
of acceptance, due to the change in quality. The larger is the ratio of these
chances da/dp in absolute value, the sharper is the distinction made by the
procedure between two slightly different lots. Especially, the point at
which da/dp attains its maximum absolute value may be appropriately called
the “point of sharpest discrimination.”” This point is easily recognized in
the graph: it is the point of inflexion, if there is one, and otherwise the left-
hand extremity of the curve. (Its abscissa is p = ¢/(n — 1).)

(2) The rule appears sensible also from another standpoint. It has a
certain flexibility. By choosing #, the size of the sample, and ¢, the accept-
ance number, we can adapt the rule to concrete requirements. Both the
consumer and the producer require protection against the risks inherent in
sampling. A bad lot may sometimes yield a good sample and a good lot a
bad sample, and so there are two kinds of risks: the sampling procedure may
accept a bad lot or reject a good lot. The consumer is against accepting bad
lots and the producer is against rejecting good lots. Still, both kinds of
undesirable decisions are bound to happen now and then and the only thing
that we can reasonably demand is that they should not happen too often.
This demand leads to concrete problems such as the following.
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“Determine the sample size and the acceptance number so that there should
be less than once chance in ten that a lot with 59, defectives is accepted and
there should be less than five chances in a hundred that a lot with only 29,
defectives is rejected.”

In this problem, there are two unknowns, the sample size n and the accept-
ance number ¢. The condition of the problem requires the following
two inequalities:

a > 0.95 when p = 0.02,

a < 0.1 when p = 0.05.

It is possible to satisfy these two simultaneous conditions, but it takes consider-
able numerical work to find the lowest sample size » and the corresponding
acceptance number ¢ for which the required inequalities hold.

We shall not discuss the numerical work. We are much more concerned
here with visualizing the problem than with solving it. Let us therefore look
a little further into its background. As we said already, both the acceptance
of a bad lot and the rejection of a good lot are undesirable, the first from the
consumer’s viewpoint and the second from the producer’s viewpoint. Yet
the two undesirable possibilities may not be equally undesirable and the
interests of consumer and producer may be not quite so sharply opposed.
The acceptance of a bad lot is not quite in the interest of the producer; it may
damage his reputation. Yet the rejection of a good lot may be very much
against the interests of the consumer; he may need the articles urgently and
the rejection may cause considerable delay. Moreover, repeated rejection
of good lots, or even the danger of such rejection, may raise the price. If
the interests of both parties are taken into account, the rejection of a good lot
may be still less desirable than the acceptance of a bad lot. Seen against
this background, it appears understandable that the conditions of our problem
afford more protection against the rejection of the better quality than against
the acceptance of the worse quality. (Only 5 chances in a hundred are
allowed for the first undesirable event, but 10 chances in a hundred for the
second.)

(3) The problem discussed under (2) admits another, somewhat different,
interpretation.

The producer’s lawyer affirms that there are no more than 2%, defectives
in the lot. Yet the consumer’s lawyer contends that there are at least 5%
defectives in the lot. For some reason (it may be a lot of fuzes) a full inspec-
tion is out of the question; therefore some sampling procedure has to decide
between the two contentions. For this purpose the procedure outlined
under (1) with the numerical data given in (2) can be appropriately used.

In fact, the conflicting contentions of the two lawyers suggest a fiction.
We may pretend that there are exactly two possibilities with respect to the
lot: the percentage of defectives in the lot is either exactly 29, or exactly
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5%. Of course, nobody believes such a fiction, but the statistician may find
it convenient: it restricts his task to a decision between two clear and simple
alternatives. If the parties agree that the rejection of a lot with 29,
defectives is less desirable than the acceptance of a lot with 59, defectives,
the statistician may reasonably adopt the procedure outlined in (1) with the
numerical data prescribed in (2). Whether the statistician’s choice will
satisfy the lawyers or the philosophers, I do not venture to say, but it certainly
has a clear relation to the facts of the case. The statistician’s rule, applied
to a great number of analogous cases, accepts a good lot (with 29, defectives)
about 950 times out of 1,000 and rejects it only about 50 times, but the rule
rejects a bad lot (with 5%, defectives) about 900 times out of 1,000 and accepts
it only about 100 times. That is, the statistician’s rule, which is based on
sampling, cannot be expected to give the right decision each time, but it
can reasonably be expected to give the right decision in an assignable
percentage of cases in the long run.

(4) To give an adequate idea of what the statisticians are doing on the
basis of just one example is, of course, a hopeless undertaking. Yet on the
basis of the foregoing example we can obtain an idea of the statistician’s
task which, although very incomplete, is not very much distorted: the statisti-
cian designs rules of the same nature as the rule of acceptance sampling
procedure outlined in (1) and considered in relation to numerical data in (2).
We may understand the statistician’s task if we have understood the nature
of the rules he designs. Therefore, we have to formulate in general terms
what seems to be essential in our particular rule; I mean the rule discussed
in the foregoing sub-sections (1), (2), and (3).

Our rule prescribes a choice between two courses of action, acceptance
and rejection. Yet the aspect of the problem considered under (3) is more
suitable for generalization. There we considered a choice between two
statistical hypotheses. (They were “‘this random sample is taken from a large
lot with 29, defectives” and ‘‘this random sample is taken from a large lot
with 5%, defectives.”) Any reasonable choice should be made with due
regard to past experience and future consequences. In fact, our rule is
designed with regard to both.

According to our rule, the choice depends upon a set of clearly specified
observations (the testing of n articles and the number of defectives detected
among the n articles tested). These observations constitute the relevant
experience on which the choice is based. As our rule prefers a hypothesis to
another on the basis of observations, it can claim to be named an inductive
rule.

Our rule is designed with a view to probable consequences. The
statistician cannot predict the consequences of any single application of the
rule. He forecasts merely how the rule will work in the long run. If the
choice prescribed by the rule is tried many times in such and such circum-
stances, it will lead to such and such result in such and such percentage of
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the trials, in the long run. Our rule is designed with a view to long range
consequences.

To sum up, our rule is designed to choose between statistical hypotheses, is based
on a specified set of observations, and aims at long range consequences. 1f we may
regard our rule as sufficiently typical, we have an idea what the statisticians
are doing: they are designing rules of this kind.

(In fact, they try to devise “best” rules of this kind. For example, they
wish to render the chances of such and such undesirable effect a minimum,
being given the size of the sample, on which the work and expense of the
observations depend.)

(5) Taking a random sample from a lot is an important operation in
statistical research. There is another problem about this operation that we
have to discuss here. We keep our foregoing notation in stating the problem.

In a very large lot, 100p percent of the articles is defective. In order to obtain some
information about p, we take a sample of n articles from the lot, among which we find m
defective articles. On the basis of this observation, which value should we reasonably
attribute to p?

There is an obvious answer, suggested by the definition of probability
itself. Yet the problem is important and deserves to be examined from
various angles.

Our observation yields some information about p. Especially, if m
happens to be different from 0, we conclude that p is different from 0.
Similarly, if m is less than n, we conclude that p is less than 1. Yet in any
case p remains unknown and all values between 0 and 1 are eligible for p.
If we attribute one of these values to p, we make a guess, we adopt a conjecture,
we choose a statistical hypothesis.

Let us think of the consequences of our choice before we choose. If we
have a value for p, we can compute the probability of the event the observa-
tion of which is our essential datum. I mean the probability for finding
exactly m defective articles in a random sample of n articles. Let us call
this probability P. Then

P= (;)p“(l RS

The value of P depends on p, varies with p, can be greater or less. If,
however, this probability P of an observed event is very small, we should
reject the underlying statistical hypothesis. It would be silly to choose such
an unlikely hypothesis that has to be rejected right away. Therefore let us
choose the least unlikely hypothesis, the one for which the danger of rejection
isleast. Thatis, let us choose the value of p for which P is as great as possible.

Now, if P is a maximum, log P is also a maximum and, therefore,

d log P —
gL WAy

dp Pt Bk §



84. CHANCE, THE EVER-PRESENT RIVAL CONJECTURE

This equation yields

m

p=
n

And so, after some consideration, we made the choice that we were tempted
to make from the outset: as a reasonable approximation to p, the underlying
probability, we choose m/n, the observed relative frequency.

Yet our consideration was not a mere detour. We can learn a lot from
this consideration.

Let us begin by examining the réle of P. This P is the probability of a
certain observed event E (m defectives in a sample of size n). This proba-
bility is computed on the basis of the statistical hypothesis H, that 100p is
the percentage of defectives in the lot. The probability P varies with the
hypothesis H,, (with the value of p). The smaller P, the less acceptable, the
less likely appears H,. Thus we are led to consider P as indicating the
likelihood of the hypothesis H,. This term “likelihood” has been introduced
before (in sect. 7 (5)), in the same meaning, but now we may see the reasons
for its introduction more clearly.

Let us emphasize that we choose among the various admissible statistical
hypotheses H,, (with 0 < p < 1) the one for which P, the likelihood of H,, is
as great as possible. Behind this choice there is a principle, appropriately
called the principle of maximum likelihood, that guides the statistician also in
other cases, less obvious than our case.

9. Judging non-statistical conjectures. We consider several examples
in order to illustrate the same fundamental situation from several angles.

(1) The other day I made the acquaintance of a certain Mr. Morgenstern.
This name is not very usual, but not unknown to me. There was a German
author Morgenstern for whose nonsense poetry I have a great liking. And,
Oh yes, my cousin who lives in Atlanta, Georgia, recently began work in the
offices of Mark Morgenstern & Co., consulting engineers.

At the beginning I had no thoughts about Mr. Morgenstern. After a
while, however, I hear that he is in the engineering business. Then other
pieces of information leaked out. I hear that the first name of my new
acquaintance is Mark, and that his place of business is Atlanta, Georgia.
At this stage it is very difficult not to believe that this Mr. Morgenstern is
the employer of my cousin. I ask Mr. Morgenstern directly and find that it
is so.

This trivial little story is quite instructive. (It is based, by the way, on
actual experience, but the names are changed, of course, and also some
irrelevant circumstances.) That two different persons should have exactly
the same last name is not improbable, provided that the name is very common
such as Jones or Smith. It is more improbable that two different persons
have the same first and last name, especially, when it is an uncommon name,
such as Mark Morgenstern. That two different persons have the same
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profession, or the same large town as residence, is not improbable. Yet it
is very improbable that two different persons taken at random should have
the same unusual name, the same home town, and the same occupation.
A chance coincidence was hard to believe and so my conjecture about my
recent acquaintance Mr. Morgenstern was quite reasonable. It turned out
to be correct, but this has really little to do with the merits of the case. My
conjecture was reasonable, defensible, justifiable on the basis of the proba-
bilities considered. Even if my conjecture had turned out incorrect, I
would have no reason to be ashamed of it.

In this example, no numerical value was given for the probability
decisively connected with the problem, but a rough estimate for it could be
obtained with some trouble.

(2) Two friends who met unexpectedly decided to write a postcard to a
third friend. Yet they were not quite sure about the address. Both
remembered the city (it was Paris) and the street (it was Boulevard Raspail)
but they were both uncertain about the number. “Wait,” said one of the
friends, “let us think about the number without talking, and each of us will
write down the number when he thinks that he has got it.”> This proposal
was accepted and it turned out that both remembered the same number:
79 Boulevard Raspail. They put this address on the postcard which
eventually reached the third friend. The address was correct.

Yet what was the reason for adopting the number 79? By not talking
to each other, the two friends made their memories work independently.
They both knew that Boulevard Raspail is long enough to have buildings
numbered at least up to 100. Therefore, it seems reasonable to assume that
the probability for a chance coincidence of the two numbers is not superior
to 1/100. Yet this probability is small, and so the hypothesis of a chance
coincidence appears unlikely. Hence the confidence in the number 79.

(3) According to the statement of the bank, the balance of my checking
account was $331.49 at the end of the past month. I compute my balance
for the same date on the basis of my notes and find the same amount. After
this agreement of the two computations I am satisfied that the amount in
which they both agree is correct. Is this certain? By nomeans. Although
both computations arrived at the same result, the result could be wrong and
the agreement may be due to chance. Is that likely?

The amount, expressed in cents, is a number with five digits. If the last
digit was chosen at random, it could just as wellbe O or 1 or 2, .. .or 8 as 9,
and so the probability that the last digit should be 9 is just 1/10. The same
is true for each of the other figures. In fact, if all figures were chosen at
random, the number could be any one of the following:

000.00, 000.01, 000.02, ... 999.99

I have here obviously 100,000 numbers. If that assemblage of five figures,
33149, was produced in some purely random way, all such assemblages
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could equally well arise. And, as there are 100,000 such assemblages, the
probability that any one given in advance should be produced is

1 1)\° %
=|=) =10
100,000  \10

Now, 10-% = 0.00001 is a very small probability. If, trying to produce
an effect with such a small probability, somebody manages to succeed at the
very first trial, the outcome may easily appear as miraculous. I am,
however, not inclined to believe that there is anything miraculous about
my modest bank account. A chance coincidence is hard to believe and so I
am driven to the conclusion that the agreement of the two computations is
due to the correctness of the result. Ordinary normal people generally
think so in similar circumstances and after the foregoing considerations this
kind of belief appears rather reasonable.

(4) To which language is English more closely related, to Hungarian or
to Polish? Very little linguistic knowledge is enough to answer this question,
but it is certainly more fun to obtain the answer by your own means than to
accept it on the authority of some book. Here is a common sense access to
the answer.

Both the form and the meaning of the words change in the course of
history. We can understand the changes of form if we realize that the same
language is differently pronounced in different regions, and we can understand
the changes of meaning if we realize that the meaning of words is not rigidly
fixed, but shifting, and changes with the context. In the second respect,
however, there is one conspicuous exception: the meaning of the numerals
one, two, three, . . . certainly cannot shift by imperceptible degrees. This
is a good reason to suspect that the numerals do not change their meaning
in the course of linguistic history. Let us, therefore, base a first comparison
of the languages in question on the numerals alone. Table III lists the
first ten numerals in English, Polish, Hungarian, and seven other modern
European languages. Only languages that use the Roman alphabet are
considered (this accounts for the absence of Russian and modern Greek).
Certain diacritical marks (accents, cedillas) which are unknown in English
are omitted (in Swedish, German, Polish, and Hungarian).

Looking at Table IIT and observing how the same numeral is spelled in
different languages, we readily perceive various similarities and coincidences.
The first five languages (English, Swedish, Danish, Dutch, and German)
seem to be pretty similar to each other, and the next three languages (French,
Spanish, and Italian) appear to be in even closer agreement; so we have two
groups, one consisting of five languages, the other of three. Yet even these
two groups appear to be somehow related; observe the coinciding spelling
of 3 in Swedish, Danish and Italian, or that of 6 in English and French.
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Table III. Numerals in ten languages.
English Swedish Danish Dutch German French Spanish Italian Polish Hungarian

one en en een ein un uno uno jedem  egy
two  tva to twee  zwei deux dos due dwa ketto
three tre tre drie drei trois tres tre trzy harom
four fyra fire vier vier quatre cuatro quattro cztery negy
five fem fem vijf funf cinq cinco  cinque piec ot

six sex seks zes sechs six seis sei szesc hat
seven sju syv zeven sieben sept siete sette siedem het
eight atta otte acht  acht huit ocho otto osiem  nyolc
nine  nio ni negen neun neuf nueve  nove dziewiec kilenc
ten tio ti tien zehn dix diez dieci dziesiec tiz

Polish seems to be closer to one group in some respects, and to the other in
other respects; compare 2 in Swedish and Polish, 7 in Spanish and Polish.
Yet Hungarian shows no such coincidences with any of the nine other
languages. These observations lead to the impression that Hungarian has
little relation to the other nine languages which are all in some way related
to each other. Especially, and this is the answer to our initial question,
English seems to be definitely closer related to Polish than to Hungarian.
Yet there are several objections. A first objection is that ‘“‘similarity”
and ‘‘agreement’ are vague words; we should say more precisely what we
mean. This objection points in the right direction. Following its sugges-
tion, we sacrifice a part of our evidence in order to render the remaining
part more precise. We consider only the initials of the numerals listed in
Table ITI. We compare two numerals expressing the same number in two
different languages; we call them ‘“concordant” if they have the same
initial, and ‘“‘discordant” if the initials are different. Table IV contains the
number of concordant cases for each pair of languages. For instance, the

Table IV. Concordant initials of numerals in ten languages.

E 8 8 3 4 4 4 4 39
Sw-9 .58 45
Da 4 5 46
Pu-5 22
G 32
38
41
41
30
8
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1
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9
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number 7, in the same row as the letters “Sp” and in the same column as the
letter ““P” indicates that Spanish and Polish have exactly seven concordant
numerals out of the possible 10 cases. The reader should check this and a
few other entries of Table IV. The last column of Table IV shows how
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many concordant cases each language has with the other nine languages
altogether. This last column shows pretty clearly the isolated position of
Hungarian: it has only 8 concordant cases altogether whereas the number of
concordant cases varies between 22 and 46 for the other nine languages.

Yet, perhaps, any definite conclusion from such data is rash: those
coincidences of initials may be due to chance. This objection is easy to
raise, but not so easy to answer. Chance could enter the picture through
various channels. There may be an element of chance due to the fact that
the correspondence between letters and pronunciation is by no means rigid.
This is true even of a single language (especially of English). A fortiori,
the same letter is often pretty differently pronounced in different languages
and, on the other hand, different letters are sometimes very similarly
pronounced. We have to admit that the coincidences observed are not free
from some random element. Yet the question is: Is it probable that such
coincidences as we have observed are due to mere chance?

If we wish to answer this question precisely, numerically, we have to
adopt some precise, numerically definite statistical hypothesis and draw
consequences from it which can be confronted with the observations. Yet
the choice of a suitable hypothesis is not too obvious. We consider here
two different statistical hypotheses.

I. There are two bags. Each bag contains 26 balls, each ball is marked
with a letter of the alphabet, and different balls in the same bag are differently
marked. With both hands, I draw simultaneously from both bags, one ball
from each. The two letters so drawn may coincide or not; their coincidence
is likened to the coincidence of the initials of the same numeral written in
two different languages (and non-coincidence is likened to non-coincidence).
The probability of a coincidence is 1/26.

II. The coincidence of the initials of the same numeral written in two
different languages is again likened to the coincidence of two letters drawn
simultaneously from two different bags and, again, both bags are filled in the
same way with balls marked with letters. Yet now each of the bags contains
100 balls and each letter of the alphabet is used to mark as many different
balls in the bag as there are numerals in Table III having that letter as
initial. The probability of a coincidence is found to be 0.0948.

On both hypotheses, the comparison of the ten first numerals is likened to
ten independent drawings of the same nature.

We can compare both hypotheses with the observations if we compute
suitable probabilities. Tables V and VI contain the relevant material.

Table V compares the relative frequencies actually found with the proba-
bilities computed. Columns (2) and (3) of Table V refer to all 45 pairs of
languages considered in Table IV. Columns (4) and (5) of Table V refer
only to 9 pairs, formed by Hungarian matched with the remaining nine
languages. For the sake of concreteness, let us focus on the line that deals
with 6 or more coincidences (n = 6). Such coincidences turned up in
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Table V. Absolute and relative frequencies, and probabilities, for n or more
coincidences of initials

(1) 2) ) () () (6) )

Frequencies Probabilities
n 10 languages 9 lang. v. Hu. Hyp. IT Hyp. I
0 45 1.000 9 1.000 1.000000  1.000000
1 40 0.889 5 0.556 0.630644 0.324436
7 35 0.778 3 0.333 0.243824 0.054210
3 31 0.689 0 0.000 0.061524  0.005569
4 25 0.556 0 0.000 0.010612  0.000381
5 15 0.333 0 0.000 0.001281 0.000018
6 | 0.200 0 0.000 0.000108  0.000001
7 0 0.000 0.000006  0.000000

4 0.156

9 out of 45 cases as column (2) shows. Therefore, the observed relative
frequency of 6 or more coincidences is 9/45 = 0.2, whereas this many
coincidences have only a little more than one chance in ten thousand to
happen on hypothesis II, and only one chance in a million on hypothesis I;
see columns (6) and (7), respectively. Similar remarks apply to the other
lines of Table V: what has been actually observed appears as extremely
improbable on either hypothesis, so there are strong grounds to reject both
hypotheses. Yet columns (4) and (5) present a different picture: the coinci-
dences observed are somewhat improbable on hypothesis I, but they appear
as quite usual and normal from the standpoint of hypothesis II. The

Table VI. Total number of coincidences, observed and theoretical
(Hypothesis II).

Coincidences Deviations
Observed Expected Actual Standard
10 languages 171 42.66 128.34 7.60

9 lang. v. Hu. 8 8.53

—0.53

2.78

impression gained from Table V is corroborated by Table VI: if we con-
sider all 45 pairs of languages, the actually observed total number of coinci-
dences exceeds tremendously what we have to expect on the basis of hypothesis
I1, yet the expected and observed numbers agree closely if we consider only
the 9 pairs in which Hungarian is matched with the other 9 languages. (On
hypothesis I, we have considerably stronger disagreement in both cases.)

In short there is no obvious interpretation of ‘“‘chance’ that would permit
us to make chance responsible for all the coincidences observable in Table I1I;
there are too many of them. Yet we can quite reasonably make chance
responsible for the coincidences between Hungarian and the other languages.
The explanation that Hungarian is unrelated to the other languages which
are all related to each other has been vindicated.
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The point is that this explanation has been vindicated, thanks to the con-
sideration of probabilities, by so few observations. The explanation itself is
supported by an overwhelming array of philological evidence.

(5) From appropriate observations (with telescope and spectroscope) we
can conclude that certain elements found in the crust of our globe are also
present in the sun and in certain stars. This conclusion is based on a physical
law discovered by G. Kirchhoff almost a century ago (which says roughly
that a luminous vapor absorbs precisely the same kind of light that it emits).
Yet the conclusion appeals also to probabilities, and this is the point with
which we are concerned here; we shall reduce the physical part of the argu-
ment to a schematic outline.

5U/7 5(//7

[l‘Oﬂ [/‘Oﬂ

Fig. 14.5. Coincidences.

Using suitable apparatus (a prism or a diffraction grating) we can detect
a sequence of lines in the light of the sun (in the solar spectrum). We can
detect a sequence of lines also in the light emitted by certain substances,
such as iron, vaporized at high temperature in the laboratory. (In fact, the
lines in the spectrum of the sun, the Fraunhofer lines, are dark, and the lines
in the spectrum of iron are bright.) Kirchhoff examined 60 iron lines and
found that each of these lines coincides with some solar line. (See the
rough schematic fig. 14.5 or Encyclopaedia Britannica, 14th edition, vol. 21,
fig. 3 on plate I facing p. 560.) These coincidences are fully understandable
if we assume that there is iron in the sun. (More exactly, these coincidences
follow from Kirchhoff’s law on emission and absorption if we assume that in
the atmosphere of the sun there is iron vapor that absorbs some of the light
emitted by the central part of the sun glowing at some still higher tempera-
ture.) Yet, perhaps (here is again that ever-present objection) these
coincidences are due to chance.

The objection deserves serious consideration. In fact, no physical observa-
tion is absolutely precise. Two lines which we regard as coincident could be
different in reality and just by chance so close to each other that, with the
limited precision of our observations, we might fail to recognize their
difference. 'We have to concede that any observed coincidence may be only
an apparent coincidence and there may be, in fact, a small difference.
Yet let us ask a question: Is it probable that each of the 60 coincidences
observed springs from a random difference so small that it failed to be detected
by the means of observation employed ?
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Kirchhoff, who registered the observed lines on an (arbitrary) centimeter
scale, estimated that he could not have failed to recognize a difference that
exceeded 1/2 millimeter on his scale. On this scale the average distance
between two adjacent lines of the solar spectrum was about 2 millimeters.
If the 60 lines of iron were thrown into this picture at random, independently
from each other, what would be the probability that each falls closer to
some solar line than 1/2 millimeter?

a b c d e

Fig. 14.6. Equidistant lines.

We bring this question nearer to its solution by formulating an equivalent
question in a more familiar domain. Parallel lines are drawn on the floor;
the average distance between two adjacent lines is 2 inches. We throw a
coin on the floor 60 times. If the diameter of the coin is 1 inch, what is
the probability that the coin covers a line each time?

In this last formulation, the question is easy to answer. Assume first that
the lines on the floor are equidistant (as in fig. 14.6) so that the distance from
each line to the next is 2 inches. If the coin covers a line, the center of the
coin is at most at 1/2 inch distance from the line and, therefore, this center
lies somewhere in a strip 1 inch wide that is bisected by the line (shaded in

a ot e d e

Fig. 14.7. Lines at irregular distances.

fig. 14.6). Obviously, the probability that the coin cast on the floor should
cover a line is 1/2. The probability that the coin, cast on the floor 60 times,
should cover some line each time, is (1/2)%0.

Assume now that the lines on the floor are not equidistant; the average
distance between two adjacent lines is still supposed to be 2 inches. We
imagine that the lines, which were equidistant originally, came into their
present position by being shifted successively. Ifa line (as line b in fig. 14.7)
is shifted so that its distance from its next neighbor remains more than 1 inch,
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the chances of the coin for covering some line remain unchanged. If]
however, the line is so shifted (as line d in fig. 14.7) that its distance from the
next line becomes less than 1 inch, the two (shaded) attached strips overlap
and the chances of the coin to cover a line are diminished. Therefore, the
required probability is less than (1/2)80,

To sum up, if the iron lines were thrown by blind chance into the solar
spectrum, the probability of the 60 coincidences observed by Kirchhoff
would be less than 2780 and so less than 10-18 or

1
1,000,000,000,000,000,000

“This probability” says Kirchhoff, whom we quoted already in the
motto prefixed to this chapter ““is rendered still smaller by the fact that
the brighter a given iron line is seen to be, the darker, as a rule, does the
corresponding solar line appear. Hence this coincidence must be produced
by some cause, and a cause can be assigned which affords a perfect explanation
of the observed facts.”

(6) The following example is not based on actual observation, but it
illustrates a frequently arising, typically important situation.

An extremely dangerous disease has been treated in the same locality by
two different methods which we shall distinguish as the “old treatment’ and
the “new treatment.” Of the 9 patients who have been given the old treat-
ment 6 died and only 3 survived, whereas of the 11 patients who received the
new treatment only 2 died and 9 survived. The twenty cases are clearly
displayed in Table VII.

Table VII. Four Place Correlation Table.

Patients Died Survived Total
Old treatment 6 9 9
New treatment 2 9 11
Total 8 ;b 20

A first glance at this table may give us the impression that the observations
listed speak strongly in favor of the new treatment. The relative frequency
of fatal cases is

6/9 or 679, with the old treatment,

2/11 or 189, with the new treatment.

On second thoughts, however, we may wonder whether the observed
numbers are large enough to give us any reasonable degree of confidence in
the percentages just computed, 679, and 18%,. Still, the fact remains that
the number of fatal cases was much lower with the new treatment. Such a
low mortality, however, could be due to chance. How easily can chance
produce such a result?
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This last question seems to be the right question. Yet, at any rate, the
question must be put more precisely before it can be answered. We have to
explain the precise meaning in which we used the words “chance” and
“such.” The word “chance” will be explained if we assimilate the present
case to some suitable game of chance. A fair interpretation of the words
“such a result” seems to be the following: we consider all outcomes in which
the number of fatalities with the second treatment is not higher than that
actually observed. Thus, we may be led eventually to the following formulation.

There are two players, Mr. Oldman and Mr. Newman, and 20 cards, of which 8
are black and 12 are red.  The cards are dealt so that Mr. Oldman receives 9 cards and
Mr. Newman receives 11 cards. What is the probability that Mr. Newman receives
2 or less black cards?

This formulation expresses as simply and as sharply as possible the conten-
tion that we have to examine: the difference between the old and the new
treatment does not really matter, does not really influence the mortality,
and the observed outcome is due to mere chance.

The required probability turns out to be

- = 0.0399 ~ g

8398 25
That is, an outcome that appears to be as favorable to the new treatment, as
the observed outcome, or even more favorable, will be produced by chance
about once in 25 trials. And so the numerical evidence for the superiority
of the new treatment above the old cannot be simply dismissed, but is
certainly not very strong.

In order to see clearly in these matters, let us give a moment’s considera-
tion to a situation in which the numerical data would lead us to a probability
1/10,000 instead of 1/25. Such data would make very hard to believe that
the observed difference in mortality is due to mere chance but, of course,
they would not prove right away the superiority of the new treatment. The
data would furnish a pretty strong argument for the existence of some non-
random difference between the two kinds of cases. What the nature of this
difference actually is, the numbers cannot say. If only young or vigorous
people received the new treatment, and only elderly or weak people the old
treatment, the argument in favor of the medical superiority of one treatment
above the other would be extremely weak.

(7) T think that the reader has noticed a certain parallelism between the
six preceding examples of this section. Now this parallelism may be ripe
to be brought into the open and formulated in general terms. Yet let us
follow as far as possible the example of the naturalist who carefully compares
the relevant details, rather than the example of those philosophers who rely
mainly on words. We went into considerable detail in discussing our
examples; if we do not take into account the relevant particulars carefully,
our labor is lost.
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In each example there is a coincidence and an explanation. (Name, surname,
occupation and home town of a person I met coincide with those of a person
I heard of. Explanation: the two persons are identical.—Two numbers,
remembered or computed by two different persons, coincide. Explanation:
the number, arrived at by two persons working independently, is correct.—
The initials of several couples of numerals, designating the same number in
two different languages, coincide. Explanation: the two languages are
related.—The bright lines in the spectrum of iron, observed in laboratory
experiments, coincide with certain dark lines in the spectrum of the sun.
Explanation: there is iron vapor in the atmosphere of the sun.—A new
treatment of a disease coincides with lower mortality. Explanation: the
new treatment is more effective.)

Contrasting with these specific explanations, the nature of which varies
with the nature of the example, there is another explanation which can be
stated in the same terms in all examples: the observed coincidences are due
to chance.

The specific explanations are not groundless, some of them are reasonably
convincing, but none of them is logically necessary or rigidly proven.
Therefore the situation is fundamentally the same in each example: there
are two rival conjectures, a specific conjecture, and the “universally applic-
able”” hypothesis of “randomness” which attributes the coincidences to
chance.

Yet, if we look at it more closely, we perceive that the “hypothesis of
randomness”’ is vague. The statement “this effect is due to chance” is
ambiguous, since chance can operate according to different schemes. If we
wish to obtain some more definite indication from it, we have to make the
hypothesis of randomness more precise, more specific, express it in terms of
probability, in short, we have to raise it to the rank of a statistical
hypothesis.

In everyday matters we usually do not take the trouble to state a statistical
hypothesis with precision or to compute its likelihood numerically. Yet we
may take a first step in this direction (as in example (1)) or go even a little
further (as in examples (2) or (3)). In scientific questions, however, we
should clearly formulate the statistical hypothesis involved and follow it up
to a numerical estimate of its likelihood, as in examples (5) and (6).

In the transition from the general and therefore somewhat diffuse idea of
randomness to a specific statistical hypothesis we have to make a choice.
There are cases in which we scarcely notice this choice, since we can perceive
just one statistical hypothesis that is simple enough and fits the case reasonably
well; in such a case the hypothesis chosen appears “natural” (as in examples
(3), (5) and (6)). In other cases the choice is quite noticeable; we do not
see immediately a statistical hypothesis that would be simple enough and fit
the case somewhat “realistically,”” so we choose after more or less hesitation
(as in example (4)).
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Eventually there are two rival conjectures facing each other: a non-
statistical, let us say “physical,”” conjecture Pk and a statistical hypothesis St.
Now, a certain event E has been observed. This event E is related both to
Ph and to St, and is so related that its happening could influence our choice
between the two rival conjectures Ph and St. If the physical conjecture Ph is
true, E appears as easily explicable, its happening is easily understandable.
In the clearest cases (as in example (5)) E is implied by P#, is a consequence
of Ph. On the other hand, from the standpoint of the statistical hypothesis St,
the event E appears as a “‘coincidence’ the probability p of which can be
computed on the basis of the hypothesis St. If the probability p of E turns
out to be low, the happening of the event E is not easily explicable by
‘“chance,” that is by the statistical hypothesis S¢; this weakens our confidence
in St and, accordingly, strengthens our confidence in Ph.  On the other hand,
if the probability p of the observed event E is high, E may appear as explicable
by chance, that is, by the statistical hypothesis S¢; this strengthens somewhat
our confidence in St and accordingly weakens our confidence in Ph.

It should be noticed that the foregoing is in agreement with what we said
about rival conjectures in sect. 13.12 and adds some precision to the pattern
of plausible reasoning discussed in sect. 12.3.

The omnipresent hypothesis of randomness is an alternative to any other
kind of explanation. This seems to be deeply rooted in human nature.
“Was it intention or accident?”” “Is there an assignable cause or merely
chance coincidence?” Some question of this kind occurs in almost every
debate or deliberation, in trivial gossip and in the law courts, in everyday
matters and in science.

10. Judging mathematical conjectures. We compare some examples
treated in foregoing chapters with each other and with those treated in the
foregoing section.

(1) Let us remember the story of a remarkable discovery told in sect. 2.6.
Euler investigated the infinite series

P 1 1 1

bdghadmtot. Lhadni,
First he found various transformations of this series. Then, using one of
these transformations, he obtained an approximate numerical value for the
sum of the series, the value 1.644934. Finally, by a novel and daring
procedure, he guessed that the sum of the series is #?/6. Euler felt himself
that his procedure was daring, even objectionable, yet he had a good
reason to trust his discovery: the value found by numerical computation,
1.644934, coincided, as far as it went, with the value guessed

2
% — 1.64493406 . .. .

And so Euler was confident. Yet was this confidence reasonable? Such a
coincidence may be due to chance.
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In fact, it is not outright impossible that such a coincidence is due to
chance, yet there is just one chance in ten million for such a coincidence to
happen: the probability that chance, interpreted in a simple manner,
should produce such a coincidence of seven decimals is 10-7; cf. sect. 9 (3)
and ex. 11.  And so we should not blame Euler that he rejected the explana-
tion by chance coincidence and stuck to his guess 72/6. He proved his
guess ultimately. Yet we need not insist here on the fact that it has been
proved: with or without confirmation, Euler’s guess was, in itself, not only
brilliant but also reasonable.

(2) Let us look again at sect. 3.1 and especially at fig. 3.1 which displays
nine polyhedra. For each of these polyhedra we determined F, V, and E,
that is, the number of faces, vertices, and edges, respectively, and listed the
numbers found in a table (Vol. I, p. 36). Then we observed a regularity:
throughout the table

g pogiindisy

It seemed to us improbable that such a persistent regularity should be mere
coincidence, and so we were led to conjecture that the relation observed in
nine cases is generally true.

There is a point in this reasoning that could be made more precise:
what is the probability of such a coincidence? To answer this question,
we have to propose a definite statistical hypothesis. I was not able to think
of one that fits the case perfectly, but there is one that has some bearing on
the situation. Let me state itin setting F — 1 =X, V—-1=7Y, E = Z.
With this change of notation, the conjectural relation obtains the form
X+ Y=2.

We have three bags, each of which contains n balls, numbered 1, 2, 3, ... n.
We draw one ball from each bag and let X, Y, and Z denote the number
from the first, the second, and the third bag, respectively. What is the
probability that we should find the relation

bW A

between the three numbers X, ¥, and Z, produced by chance?

It is understood that the three drawings are mutually independent.
With this proviso the probability required is determined and we easily find
that it is equal to

n—1
2

Let us apply this to our example. Let us focus on the moment when we
succeed in verifying the hypothetical relation for a new polyhedron. For
example, after the nine polyhedra that we examined initially (in sect. 3.1)
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we took up the case of the icc;ahedron (in sect. 3.2).  For the icosahedron,
as we found, F = 20, V = 12, £ = 30, and so, in fact

(F—1) 4+ (¥ — 1) =19 4- 11 = 30 = E:

Is this merely a random coincidence? We apply our formula, taking n = 30
(we certainly could not make n less than 30) and find that such an event
has the probability

Aol = 1% = 016111

Pk 300 ARG

that is, it has a little less prospect than 1 chance in 60. We may hesitate
whether we should, or should not, ascribe the verification of the conjectured
relation to mere chance. Yet if we succeed in verifying it for another
polyhedron, with F, V, E about as large as for the icosahedron, and we are
inclined to regard the two verifications as mutually independent, we face an
event (the joint verification in both cases) with a probability less than
(1/60)2; this event has less chance to happen than 1 in 3600 and is, therefore,
even harder to explain by chance. If the verifications continue without
interruption, there comes a moment, sooner or later, when we feel obliged
to reject the explanation by chance.

(3) In the foregoing example we should not stress too much the numerical
values of the probabilities that we computed. To realize that the probability
steadily decreases as verification follows verification may be more helpful
in guiding our judgment than the numerical values computed. At any
rate, there are cases in which it would be hard to offer a fitting statistical
hypothesis and so it is not possible to compute the probabilities involved
numerically, yet the calculus of probability still yields helpful suggestions.

In sect. 4.8 we compared two conjectures concerning the sum of two
squares. Let us call them conjecture 4 and conjecture B, respectively.
Conjecture A (that we have discovered at the end of sect. 4.6) asserts a
remarkable rule that precisely determines in how many ways an integer of a
certain form can be represented as a sum of four odd squares. Conjecture
B (Bachet’s conjecture) asserts that any integer can be represented as the
sum of four squares in one or more ways. Each of the two conjectures
offers a prediction about the sum of four squares, but the prediction offered
by A4 is more precise than that offered by B. Just to stress this point, let us
consider for a moment a quite unbelievable assumption. Let us assume that
we know from some (mysterious) source that, in a certain case, the number of
representations has an equal chance to have any one of the 7 4- 1 values
0,1, 2, ...r and cannot have a value exceeding r, which is a quite large
number (and this should hold both under the circumstances specified in A
and under those specified in B—a rather preposterous assumption). Now,
A predicts that the number of representations has a definite value; B
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predicts that it is greater than 0. Therefore, the probability that 4 turns
out to be true in that assumed case is 1/(r 4+ 1), whereas the probability
that B turns out to be true is 7/(r 4+ 1). In fact, both 4 and B turn out to
be true in that case, both conjectures are verified, and the question arises
which verification yields the stronger evidence. In view of what we have
just discussed, it is much more difficult to attribute the verification of 4 to
chance, than the verification of B. By virtue of this circumstance (in
accordance with all similar examples discussed in this chapter) the verifica-
tion of the more precise prediction 4 should carry more weight than the
verification of the less precise prediction B. In sect. 4.8 we arrived at the
same view without any explicit consideration of probabilities.

EXAMPLES AND COMMENTS ON CHAPTER XIV

First Part

Each example in this first part begins with a reference to some section or
subsection of this chapter and supplies formulas or derivations omitted in
the text. The solutions require some knowledge of the calculus of probability.

1. [Sect. 3 (3)] Accept the scheme of sect. 3 (3) for representing the
succession of rainy and rainless days. Say ‘“‘sunny” instead of ‘“‘rainless,”
for the sake of convenience, and let r,, s,, 7,, and s, denote probabilities,

r, for a rainy day after a rainy day,

s, for a sunny day after a rainy day,

r, for a rainy day after a sunny day, and

s, for a sunny day after a sunny day.

(a) Show thatr, —r, = s, — s5,.

(b) It was said that “a rainy day follows a rainy day more easily than a
rainless day.” What does this mean precisely ?

2. [Sect. 3 (4)] It was said that “each letter tends to be unlike the fore-
going letter.” 'What does this mean precisely ?

3. [Sect.5 (1)] Find the general expression for the numbers in column (3)
of Table I.

4. [Sect. 5 (2)] Find the general expression for the numbers in column
(5) of Table I.

5. [Sect. 5 (3)] (a) Find the general expression for numbers in column
(3) of Table II.  (b) In order to detect a systematic deviation, if there is one,
examine the differences of corresponding entries (on the same row) of
columns (4) and (5); list the signs.

6. [Sect. 7 (1)] If a trial consists in casting three fair dice and a success
consists in casting six spots with each dice, what is the probability of n
successes in 7z trials?
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7. [Sect. 7 (2)] Among the various events reported in the story of the
Reverend Galiani told in sect. 7 (1), which one constitutes the strongest
argument against the hypothesis of fair dice?

8. [Sect. 7 (3)] (a) Write down the formula that leads to the numerical
value 1.983 - 10-7.

(b) The probability of a success is 1/3. Find the probability that 315672
trials yield precisely 315672/3 successes.

9. [Sect. 8 (1)] The expression given for a is a sum. Each term of this
sum is, in fact, a probability: for what?

10. [Sect. 8 (1)] Find the abscissa of the point of inflection of the curve
represented by fig. 14.4.

11. [Sect. 9 (3)] Given a number of n figures. A sequence of n figures
is produced at random, perhaps by a monkey playing with the keys of an
adding machine. What is the probability that the sequence so produced
should coincide with the given number? [Is the answer mathematically
determined ?]

12. [Sect. 9 (4)] Explain the computation of the probability 0.0948.

13. [Sect. 9 (4)] Find the general expression for the numbers (a) in
column (6), (b) in column (7), of Table V.

14. [Sect. 9 (4)] Explain the computation of the expected numbers of
coincidences in Table VI: (a) 42.66, (b) 8.53.

15. [Sect. 9 (4)] Explain the computation of the standard deviation 2.78
in the last row and last column of Table VI.

16. [Sect. 9 (5)] Why (1/2)80?

17. [Sect. 9 (6)] Explain the computation of the probability 0.0399.
[Generalize.]

18. [Sect. 10 (2)] Derive the expression (n — 1)/2n% for the required
probability.

Second Part

19. On the concept of probability. Sect. 2 does not define what probability
““is,” it merely tries to explain what probability aims at describing: the
“long range” relative frequency, the “final stable” relative frequency, or the
relative frequency in a “very long” series of observations. How long such
a series is supposed to be, was not stated. This is an omission.

Yet such omissions are not infrequent in the sciences. Take the oldest
physical science, mechanics, and the definition of velocity in non-uniform,
rectilinear motion: velocity is the space described by the moving point in a
certain interval of time, divided by the length of that interval, provided that
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the interval is “very short.”” How short such an interval is supposed to be is
not stated.

Practically, you take the interval of time measured as short, or the statistical
series observed as long, as your means of observation allow you. Theoretically
you may pass to the limit. The physicists, in defining velocity, let the interval
of time tend to zero. R. von Mises, in defining probability, lets the length of
the statistical series tend to infinity.

20. How not to interpret the frequency concept of probability. The D. Tel. shook
his head as he finished examining the patient. (D. Tel. means doctor of
teleopathy; although strenuously opposed by the medical profession, the
practice of teleopathy has been legally recognized in the fifty-third state of
the union.) “You have a very serious disease,” said the D. Tel. Of ten
people who have got this disease only one survives.” As the patient was
sufficiently scared by this information, the D. Tel. went on. “But you are
lucky. You will survive, because you came to me. I have already had
nine patients who all died of it.”

Perhaps the D. Tel. meant it. His grandfather was a sailor whose ship
was hit by a shell in a naval engagement. The sailor stuck his head through
the hole torn by the shell in the hull of the ship and felt protected ‘“‘because,”
he reasoned, “it is very improbable that a shell will hit the same spot twice.”

21. An official, charged to supervise an election in a certain locality,
found 30 fake registrations among the 38 that he examined the first morning.
A daily paper declares that at least 999, of the registrations in that locality
are correct and above suspicion. How does the daily’s assertion stand up in
the light of the official’s observation ?

22. In the window of a watchmaker’s shop there are four cuckoo clocks,
all going. Three clocks out of the four are less than two minutes apart:
can you rely on the time that they show? There is a natural conjecture:
the clocks were originally set on time, but they are not very precise (they are
Jjust cuckoo clocks) and one is out of order. If this is so, you could rely on
the time shown by three. Yet there is a rival conjecture, of course: those
three clocks agree by mere chance. What is the probability of such an
event?

23. If a, b, ¢, d, e, and f are integers chosen at random, not exceeding in
absolute value a given positive integer n, what is the probability that the
system

ax + by = e

ox+dy=f
of two equations with two unknowns has just one solution ?

24. Probability and the solution of problems. In a crossword puzzle one
unknown word with 5 letters is crossed by two unknown words with four
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letters each. You guess that the unknown 5 letter word is ToweR and then
you have the situation indicated by the following diagram:

pO—

e —

ITIOW|EIR|

]

In order to test your guess, you would like to find one or the other four letter
word crossing the conjectural Tower. One of the crossing words could
verify the o, the other the e. Which verification would carry more weight?
And why?

25. Regular and Irregular. Compare the two columns of numbers:

I IT
1005 1004
1033 1038
1075 1072
1106 1106
11382 1139
1179 1173
1205 1206
1231 1239
1274 1271
1301 1303

One of these two columns is “‘regular,” the other “irregular.” The regular
column contains ten successive mantissas from a four-place table of common
logarithms. The numbers of the irregular column agree with the corres-
ponding numbers of the regular column in the first three digits, yet the fourth
digits could be the work of an unreliable computer: they have been chosen
“at random.” Which is which? [Point out an orderly procedure to
distinguish the regular from the irregular.]

26. The fundamental rules of the Calculus of Probability. In computing
probabilities we may visualize the set of possible cases and see intuitively
that none is privileged among them, or we may proceed according to rules.
It is important for the beginner to realize that he can arrive at the same
result by these two different paths. The rules are particularly important
when we regard the theory of probability as a purely mathematical theory.
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The rules will be important in the next chapter. For all these reasons, let
us introduce here the fundamental rules of the calculus of probability, using
the bag and the balls;8 cf. sect. 3.

The bag contains p balls. Some of the balls are marked with an 4, others
with a B, some with both letters, some are not marked at all. (There are p
possible cases and two “properties,” or “‘events,” 4 and B.) Let us write 4
for the absence of 4 or “non-4.” (We take — as the sign of negation, but
place this sign on the top of the letter, not before it.) There are four
possibilities, four categories of balls.

The ball has 4, but has not B. We denote this category by AB and the
number of such balls by a.

The ball has B, but has not 4. We denote this category by 4B and the
number of such balls by &.

The ball has both 4 and B. We denote this category by 4B and the
number of such balls (common to 4 and B) by c.

The ball has neither 4 nor B. We denote this category by 4B and the
number of such balls (different from those having 4 or B) by d.

Therefore, obviously,

a+b+c+d=p.

We let Pr{4} stand as abbreviation for the probability of 4, and Pr{B}
for that of B. With this notation, we have obviously

Pr{d} =2 j ¢ PeB) ettt

Let Pr{AB} stand for the “probability of 4 and B,” that is, the probability
for the joint appearance of 4 and B. Obviously

Pr{4B) — ;.

Let Pr{4 or B} stand for the probability of obtaining 4, or B, or both 4
and B.? Obviously

a+b+c¢

Pr{4 or B} = 2

8 We follow H. Poincaré, Calcul des probabilités, p. 35-39.

® The little word “or” has two meanings, which are not sufficiently distinguished by the
English language, or by the other modern European languages. (They are, however,
somewhat distinguished in Latin.) We may use¢ “‘or”” “exclusively” or “inclusively.” “You
may go to the beach or to the movies” (not to both) is exclusive “or” (in Latin “aut”). *“You
may go the beach or have a lot of candy” is inclusive “or” if you mean “one or the other or
both.” In legal or financial documents inclusive “or’’ is rendered as “and/or” (in Latin
“vel”). In Pr{4 or B} we mean the inclusive “or.”
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We readily see that

Pr{4} 4 Pr{B} = Pr{4B} + Pr{4 or B}
and hence follows our first fundamental rule (the “or” rule):
(1) Pr{4 or B} = Pr{4} + Pr{B} — Pr{4B).

We wish now to define the conditional probability Pr{4/B}, in words:
probability of 4 if B (granted B, posito B, on the condition B, on the hypo-
thesis B, . .. ). Also this probability is intended to represent a long range
relative frequency. We draw from the bag, repeatedly, one ball each time,
replacing the ball drawn before drawing the next, as described at length in
sect. 2 (1). Yet we take into account only the balls having a B. If among the
first n such balls drawn, there are m balls that also have an A4, m/n is the
relative frequency that should be approximately, when n is sufficiently
large, equal to Pr{4/B}. It appears rather obvious that

c
b+c¢

In fact, there are ¢ balls having 4 among the b -+ ¢ balls having B; also the
reasoning of sect. 2 (1) may be repeated; from a certain viewpoint, we could
regard the expression of Pr{4/B} also as a definition. At any rate, we easily
find, comparing the expressions of the probabilities involved, that

Pr{4/B} =

Pr{4/B} — Pr{AB}/Pr{B}.

Interchanging 4 and B, we find the second fundamental rule (the “and”
rule):

(2) Pr{4B} = Pr{4} Pr{B/4} = Pr{B} Pr{4/B}.
We can derive many other rules from (1) and (2). Observing that
Pr{d or 4} =1, Pr{d44} = 0,
we obtain from (1), by substituting 4 for B, that
(3) Pr{d} + Pr{d} =1,
what we could see also directly, of course. Similarly, since
Pr{4B or AB} = Pr{B},  Pr{(4B)(4B)} =0,
we obtain from (1), by substituting 4B for 4 and 4B for B, that
(4) Pr{B} = Pr{4B} + Pr{4B).
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We note here the following generalization of (2):
(5) Pr{4B/H} = Pr{A/H} Pr{B|HA} = Pr{B/|H} Pr{A|HB}.
We can also visualize (5) by using the bag and the balls.

27. Independence. We call two events independent of each other, if the
happening (or not happening) of one has no influence on the chances of
the other. Disregard, however, for the moment this informal definition and
consider the two following formal definitions.

(I) A is called independent of B if
Pr{4/B} = Pr{4/B}.
(IT) A4 and B are called mutually independent if
Pr{4/B} = Pr{A|B} = Pr{4}, Pr{B|A} = Pr{B/4} = Pr{B}.

N N
iy B a2

A A

M M

Fig. 14.8. ‘I'wo systems of roads from the city M to the city N, with an
essential difference.

Obviously, if 4 and B are mutually independent, A4 is independent of B.
Using the rules of ex. 26, prove the theorem: If none of the probabilities
Pr{4}, Pr{B}, Pr{fi}, Pr{E} vanishes and any one of the two events A and B is
independent of the other, they are mutually independent.

28. Compare sect. 3 (5) with ex. 27.

29. A car traveling from the city M to the city N may pass through the
town 4 and also through the town B. This is true of both systems of roads,
(I) and (II), shown in fig. 14.8. Answer the following questions (a), (b),
and (¢) first in assuming that (I) represents the full system of roads between
M and N, then in assuming the same thing about (II).

(a) Let 4 stand for the event that a car traveling from M to N passes
through the town 4, and B for the event that it passes through B. Assume
(for both systems, (I) and (II)) that the three roads starting from A are
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equally well frequented (have the same probability) and also that the roads
ending in N (there are 2 in (I), 6 in (II)) are equally well frequented. Find

the probabilities Pr{d}, Pr{d4/B}, Pr{4/B}, Pr{(B}, Pr(B/4}, Pr{B/A)}.
(b) Find Pr{4B} using the rule (2) of ex. 26.
(c) Verify that
Pr{d} = Pr{B} Pr{4/B} + Pr{B)} Pr{4/B},
Pr{B} = Pr{d4} Pr{B/A} + Pr{4} Pr{B/A}.
(d) What do you regard as the most important difference between (I)
and (II)?

30. Permutations from probability. To decide the order in which the »
participants should show their skill in an athletic contest, the name of each is
written on a slip of paper, and then the z slips are drawn from a hat, one after
the other, at random. What is the probability that the n names should
appear in alphabetical order?

We present two solutions, and draw a conclusion from comparing them.
(1) Call E, the event that the slip drawn first is also alphabetically the
first, £, the event that the slip drawn in the second place is also alphabetically
the second, and so forth. The desired probability is
MEEE...E)=
= Pr{E,} Pr{E,|E,} Pr{E4/E\E,} .. . Pr{E,|E, .. . E, ,}
1 1 1 1

n n—1 n—2 1

In fact, we obtain the first transformation by applying the rules (2) and
(5) of ex. 26, and the second transformation by observing that there are n
possible cases for E;, n — 1 for E, after E;, n — 2 for E, after E, and E,, and
so forth, whereas, for each of these events, there is just one favorable case.

(2) Call P, the number of all the possible orderings (permutations,
linear arrangements, . . .) of n distinct objects. The n names can come out
from the hat in P, ways, no one of these P, possible cases appears as more
privileged than the others, and among these P, cases just one is favorable
(the alphabetical order). Therefore, the desired probability is 1/P,.

(3) The results derived under (1) and (2) must be equal. Equating them,
we evaluate P, :

P,=1:2-3...n=nl

31. Combinations from probability. Mrs. Smith bought n eggs, not realizing
that r of these eggs are rotten. She needs r eggs, and chooses as many among
her n eggs at random. What is the probability that all r eggs chosen are
rotten ?
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As in ex. 30 we present two solutions, and draw a conclusion from
comparing them.

(1) Call E, the event that the first egg opened by Mrs. Smith is rotten,
E, the event that the second egg is rotten, and so forth. The desired proba-
bility is

PelES B E, ... 38}

= Pr{E,} Pr{E,|E,} Pr{E,/E\E,} . . . Pr{E,|E, . .. E,_,}

r r—1 r—2 1
n n—1 P Gkl Pl 4 5 i

The first transformation is obtained by rules (2) and (5) of ex. 26, the second
from the consideration of possible and favorable cases for E,, for E, after E;,
and so on.

(2) We have a set of n distinct objects. Any r objects chosen among these
n objects form a subset of size r of the given set of size n: call Cy the number
of all such subsets. (Usually Cy is called the number of “combinations” of r
things selected from among n things.) In the case of Mrs. Smith’s eggs,
there are C) possible cases, no one more privileged than the others, and
among these C7 cases just one is favorable (if getting rotten eggs is “favorable™).
Hence the desired probability is 1/C}.

(3) Comparing (1) and (2), we evaluate CJ':
nn—1)...(n—r+41) n! _(n)

n
o PR r ~ rm=rl \r/

32. The choice of a rival statistical conjecture : an example. One person with-
drew $875 from his savings account on a certain date, and another person
received $875 two days later. The coincidence of these two amounts, one
withdrawn, the other received, may be regarded as circumstantial evidence,
as an indication that a crime has been committed; cf. ex. 13.6. If the jury
finds it too hard to believe that this coincidence is due to mere chance, a
conviction may result. Hence the problem: what is the probability of such
a coincidence? The less the probability is, the more difficult it is to attribute
the coincidence to chance, and the stronger is the case against the defendants.

Yet we cannot compute a probability numerically without assuming some
definite statistical hypothesis. Which hypothesis should we assume? In a
serious case we should give serious thought to such a question. Let us
survey a few possibilities.

(1) As the number 875 has three digits, we may regard the positive
integers with not more than three digits as admissible, and we may regard
them as equally admissible. The probability that two such integers, chosen
at random, independently from each other, should coincide, is obviously
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1/999. This probability is pretty small—but is the assumption that underlies
its computation reasonable ?

(2) As 875 has less than five digits, we could regard all positive integers
with less than five digits as equally admissible. This leads to the probability
1/9999 for the coincidence. This probability is very small indeed, but our
assumption is far-fetched, even frivolous.

(3) If the point appears as important, the court can order inspection of
the books of the bank or summon one of its competent officials to testify.
And so it has been ascertained that immediately before the withdrawal of
that sum $875 the amount $2581.48 was deposited on the account. In
possession of this relevant information we may regard as possible and equally
admissible cases the sums 1, 2, 3, . . . 2581 that could have been withdrawn
from the account. Just one of these cases, 875, has to be termed favorable
and so we are led to the probability 1/2581 for the coincidence. This is a
small probability, but our assumption may seem reasonably realistic.

(4) We could have considered not only withdrawals in dollars, but also
withdrawals in dollars and cents, such as $875.31. If we consider all such
cases as equally admissible, the probability for a coincidence becomes
1/258148. This is a very small probability, but our assumption may appear
less realistic: withdrawals in dollars and cents such as $875.31 are more
usual from a checking account than from a savings account.

(5) On the contrary, one could argue that the amounts withdrawn from
a savings account are usually “round” amounts, divisible by 100, or 50, or 25.
Now, 875 is divisible by 25. If we regard only multiples of 25 as admissible,
and equally admissible, the probability in question becomes 1/103.

Of course, we could imagine still other and more complicated ways to
compute the probability, but we should not insist unduly on such a trans-
parent example. The example served its purpose if the reader can see by
now the following two points.

(a) Although some of the five assumptions discussed may seem more
acceptable than others, no one is conspicuously superior to the others, and
there is little hope to find an assumption that would be satisfactory in every
respect and could be regarded as the best.

(b) Each of the five assumptions considered attributes a rather small
probability to the coincidence actually observed, and so, on the whole, our
consideration upholds the common sense view: It is hard to believe that
this coincidence is due to mere chance.”

33. The choice of a rival statistical conjecture: general remarks. Let us try to
learn something more general from the particular example considered
(ex. 32). Let us reconsider the general situation discussed in sect. 14.9 o
An event E has occurred and has been observed. Concerning this event,
there are two rival conjectures facing each other: a “physical” conjecture P,
and a statistical hypothesis H. If we accept the physical conjecture P, E is
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easily and not unreasonably explicable. If we accept the statistical hypo-
thesis H, we can compute the probability p for the happening of such an
event as E. If p is “small,” we may be induced to reject the statistical
hypothesis H. At any rate, the smallness of p weakens our confidence in
H and therefore strengthens somewhat our confidence in the rival con-
jecture P.

Yet ex. 32 makes us aware that the quality of the statistical hypothesis H
plays a role in the described reasoning. The statistical hypothesis H may
appear as unnatural, inappropriate, far-fetched, frivolous, cheap, unreliable
from the start. Or H may appear as natural, appropriate, realistic,
reasonable, reliable in itself.

Now p, the probability of the event E computed on the basis of the hypo-
thesis H, may be so small that we reject H: a rival of P drops out of the race.
This increases the prospects of P—but it may increase them a lot or only a
little: this depends on the quality of the rival. If the statistical hypothesis H
appeared to us originally as appropriate and reliable, H was a dangerous
rival and its fall strengthens P appreciably. If, however, H appeared to us
as inappropriate and unreliable from the start, H was a weak rival; its fall
is not surprising and strengthens P very little.

Being given a clear statistical hypothesis H, the probability p of the event £
is determined, and the statistician can compute it. Yet the statistician’s
customer, who may be a biologist, or a psychologist, or a businessman, or
any other non-statistician, has to decide what this numerical value of p
means in his case. He has to decide how small a p is enough to reject or
weaken the statistical hypothesis H. Yet the customer is usually not even
directly interested in the statistical hypothesis H: he is primarily concerned
with the rival “physical” conjecture P. And he has to decide how much
weight the rejection or weakening of H has in strengthening P. This
latter decision obviously cannot depend on the numerical value of p alone:
it certainly depends on the choice of H.

I am afraid that the statistician’s customer who wishes to make use of the
numerical value p furnished by the statistician, without realizing the import
of the statistical hypothesis H for his problem, just deceives himself. He
can scarcely realize the import of H if he does not realize that his physical
conjecture P could be also confronted with statistical hypotheses different
from H,-:iCf. ex.;15,5.



RS e
88 XV =8
| | | | | |

n =

THE CALCULUS OF PROBABILITY AND THE
LOGIC OF PLAUSIBLE REASONING

It is difficult to estimate the probability of the results of induction.—
LAPLACE!

We know that the probability of a well-established induction is great,
but, when we are asked to name its degree, we cannot. Common sense tells
us that some inductive arguments are stronger than others, and that some are
very strong.  But how much stronger or how strong we cannot express.—
JOHN MAYNARD KEYNES?

1. Rules of plausible reasoning. In the foregoing three chapters we
collected patterns of plausible reasoning. Do these “patterns” constitute
“rules” of plausible reasoning? How far and in which way are they binding,
authoritative, imperative? There is a certain danger of losing ourselves in
purely verbal explanations. Therefore I wish to consider the question more
concretely, even a little personally.

(1) T remember a conversation on invention and plausible reasoning. It
happened long ago. I talked with a friend who was much older than myself
and could look back on a distinguished record of discoveries, inventions,
and successful professional work. As he talked on plausible reasoning and
invention, he doubtless knew what he was talking about. He maintained
with unusual warmth and force of conviction that invention and plausible
reasoning have no rules. Hunches and guesses, he said, depend on experience
and intuition, but not on rules: there are no rules, there can be no rules,
there should be no rules, and if there were some rules, they were useless
anyway. I maintained the contrary—a conversation is uninteresting if
there is no difference of opinion—yet I felt the strength of his position. My
friend was a surgeon. A wrong decision of a surgeon may cost a life and

! Essai philosophique sur les probabilités; see Oeuvres complétes de Laplace, vol. 7
p- CXXXIX.
% A treatise on probability, p. 259.

3

109



110 THE LOGIC OF PLAUSIBLE REASONING

sometimes, when a patient suddenly starts bleeding or suffocating, the right
decision must come in a second. I understood that people who have to make
such responsible quick decisions have no use for rules. The time is too short
to apply a rule properly, and any set pattern could misguide you; what you
need is intense concentration upon the situation before you. And so people
come to distrust “‘rules” and to rely on their “intuition” or ‘“‘experience’ or
“intuition-and-experience.”

In the case of my friend, there was still something else, pernaps. He was a
little on the domineering side. He hated to relinquish power. He felt,
perhaps, that acknowledging a rule is like delegating a part of his authority
to a machine, and so he was against it.

Let us note: distrust in rules of reasoning may come naturally to intelligent
people.

(2) Two people presented with the same evidence may judge it very
differently. Two jurors who sat through the same proceedings may disagree:
one thinks that the evidence introduced is sufficient proof against the
defendant and the other thinks that it is not. Such disagreement may have
thousand different grounds: people may be moved in opposite directions
by fears, hopes, prejudices and sympathies, or by personal differences.
Perhaps, one of the jurors is stupid and the other is clever, or one slept
through the proceedings and the other listened intently. Yet the personal
differences underlying the disagreement may be more subtle. Perhaps both
jurors are honest and reasonably unprejudiced, both followed the proceedings
with attention, and both are intelligent, but in a different way. The first
juror may be a better observer of demeanor. He observes the facial expres-
sions of the witnesses, the tics of the defendant; he notices when an answer
is haltingly given; he is impressed by quick motions of the eyes and little
gestures of the hands. The other juror may be a less skillful observer of
facial expressions, but a better judge of social relations: he understands
better the milieu and the circumstances of the people involved in the case.
Seeing the same things with different eyes, honestly and not unintelligently,
the two jurors come to opposite conclusions.

Let us not neglect the obvious and let us note: two people presented with
the same evidence may honestly disagree.

(3) My friend and I are both interested in the conjecture 4. (This friend
is a mathematician, and 4 is a mathematical conjecture.) We both know
that 4 implies B. And now we find that B, this consequence of 4, is true.
We agree, as we honestly have to agree, that this verification of its consequence
B is evidence in favor of the conjecture 4, but we disagree about the value,
or weight, of this evidence. One of us asserts that this verification adds
very little to the credibility of 4, and the other asserts that it adds a lot.

This disagreement would be understandable if we were very unequally
familiar with the subject and one of us knew many more formerly verified
consequences than the other. Yet this is not so. We know about the same
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consequences of A4 verified in the past. We agree even that there is little
analogy between the just verified B and those formerly verified consequences.
We agree also, as we honestly should, that this circumstance renders the
evidence for 4 stronger. Yet one of us says “just a little stronger,” the other
says “a lot stronger,” and we disagree.

We both suspected, even a short while ago, that B is false and it came to us
as a surprise that B is true. In fact, from the standpoint of a rather natural
assumption (or statistical hypothesis) B appears pretty improbable. We
both perceive that this circumstance renders the evidence for 4 stronger.
Yet one of us says “just a little stronger,” the other says “‘a lot stronger,”
and we keep on disagreeing.

We are both perfectly honest, I think, and our disagreement is not merely
a matter of temperament. We disagree because his background is different
from mine. Although we had about the same scientific training, we de-
veloped indifferent directions. Hiswork led him to distrust the hypothesis 4.
He hopes, perhaps, that one day he will be able to refute that conjecture A.
As to myself, I do not dare to hope that I shall prove 4 one day. Yet I must
confess that I would like to prove 4. In fact, it is my ambition to prove 4,
but I do not wish to fool myself into the illusion that I shall ever be able to
prove 4. Such an incompletely avowed hope may influence my judgement,
my evaluation of the weight of the evidence. Yet I may have other grounds
besides: still more obscure, scarcely formulated, inarticulate grounds. And
my friend may have some grounds too that he did not yet confess to himself,
At any rate, such differences in our backgrounds may explain the situation:
we disagree concerning the strength of the evidence, although we agree in all
the clearly recognizable points that should influence the strength of the
evidence in an impersonal judgement according to universally accepted
reasonable standards.

Let us note: two persons presented with the same evidence and applying
the same patterns of plausible inference may honestly disagree.

(4) We tried to see plausible reasoning at work, concretely, in the behavior
of people facing concrete problems. We have now, I hope, a somewhat
clearer idea in which way our patterns are “‘binding,” how far they can be
regarded as “‘rules.”

Yet there are other approaches to explore. Formal Logicand the Calculus
of Probability have clear strict rules which appear somehow related to our
patterns. What is the nature of this relation? This is the question that we
shall discuss in the next sections.

2. Anaspect of demonstrative reasoning. A comparison of plausible
reasoning with demonstrative reasoning may be useful at this stage. Yet of
course the aspect of plausible reasoning at which we have arrived cannot
stand comparison with the highly sophisticated stage at which the theory of
demonstrative reasoning has arrived at this date, after a development of
more than two thousand years of which the last fifty were particularly
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crowded. A comparison with a more primitive aspect of demonstrative
reasoning may be more helpful. Let us put ourselves, more or less, in the
position of a contemporary of Aristotle.

Aristotle noticed that reasoning conforms to certain patterns. He observed,
I imagine, such patterns in philosophical or political or legal or everyday
arguments, recognized the patterns as they occurred, extracted and formulated
them. These patterns are the syllogisms. The examples by which Aristotle
finds necessary to support his syllogisms seem to bear witness to the idea that
he discovered his syllogisms by a sort of induction—and how could he have
discovered them otherwise? At any rate, the idea that the syllogisms may
have been discovered inductively brings them a little nearer to our patterns
of plausible reasoning.

Instead of the “‘subsumptive” syllogism, so dear to Aristotle and still
dearer to his scholastic followers, let us consider the ‘“modus tollens’ of the
“hypothetical” syllogism, which we have already considered in sect. 12.1:

A implies B
B false

1;1 false

Even from a quite primitive standpoint, we can see various remarkable
features in this pattern of reasoning: it is impersonal, universal, self-sufficient,
and definitive.

(1) By using the word impersonal we emphasize that the validity of the
reasoning does not depend on the personality of the reasoner, on his mood,
or taste, or class, or creed, or color.

(2) By using the word universal, we emphasize that the statements con-
sidered (denoted by 4 and B) need not belong to this or that particular
field of knowledge, to mathematics or physics, to law or logic, but can
belong to any one of these fields, or to any field whatsoever. They can be
concerned with any sufficiently clear object of human thought: the syllogistic
conclusion applies to all such objects.

(3) In order to understand the next point, we should realize that our
knowledge and our reasonable beliefs can be changed by new information.
Yet there is something unchangeable in the syllogism considered. Having
once accepted the premises we cannot avoid accepting the conclusion. At
some later date, we may receive new information about the matters involved
in our syllogistic reasoning. If, however, this information does not change
our acceptance of the premises, it cannot reasonably change our acceptance
of the conclusion. The inference of a demonstrative syllogism requires
nothing from outside, is independent of anything not mentioned explicitly
in the premises. In this sense, the syllogism is self-sufficient: nothing is needed
beyond the premises to validate the conclusion and nothing can invalidate it
if the premises remain solid.
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This “self-sufficiency” or “autarky” of the syllogism is, perhaps, its most
noteworthy feature. Let us quote Aristotle himself: “A syllogism is a
discourse in which, certain things being stated, something other than what
is stated follows of necessity from their being so. I mean by the last phrase
that they produce the consequence, and by this, that no further term is
required from without in order to make the consequence necessary.’’

(4) If the premises are unquestionably certain, we can “detach” the
conclusion from the syllogism. That is, if you know for certain both that
“4 implies B” and that “B is false,” you may forget about these premises
and just keep the conclusion “4 is false” as your definitive mental possession.

We have examined just one out of the several kinds of syllogisms, but the
syllogism examined is typical: also the other syllogisms are impersonal,
universal, self-sufficient, and definitive. And these features foreshadow the
general character of demonstrative reasoning.

3. A corresponding aspect of plausible reasoning. Let us compare
the pattern of demonstrative reasoning (the “modus tollens™) discussed in the
foregoing section with the pattern of plausible reasoning introduced in
sect. 121 :

4 implies B
B true
A more credible
Between these two patterns, the “demonstrative’” and the “plausible,” there
is a certain outward similarity. (The demonstrative pattern is traditional,
and the other has been fashioned after it, of course.)  Yetlet us compare them
more thoroughly.

Both patterns have the same first premise

A implies B.
The second premises

B false B true

are just opposite, but they are equally clear and definite; they are on the
same logical level. Yet there is a great difference between the two
conclusions

A false A more credible

These conclusions are on different logical levels. The conclusion of the
demonstrative pattern is on the same level as the premises, but the con-
clusion of our pattern of plausible reasoning is of a different nature, less
sharp, less fully expressed.

The plausible conclusion is comparable to a force which has direction and
magnitude. This conclusion pushes us in a certain direction: A4 becomes
more credible. This conclusion has also a certain strength: A may become
much more credible or just a little more credible. The conclusion is not fully
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expressed and is not fully supported by the premises.  The direction is expressed
and is implied by the premises, the strength is not. For any reasonable person, the
premises involve that 4 becomes more credible (certainly not less credible)
but my friend and I may disagree how much more credible 4 becomes.
The direction is impersonal, the strength may be personal. My friend and I may
honestly disagree about the weight of the conclusion, since our tempera-
ments, our backgrounds, and our unstated reasons may be different. Yet
the strength of the conclusion matters. If two jurors judge differently
the strength of a conclusion, one may be for acquittal and the other against
it. If two scientists judge differently the strength of a conclusion, one may
be for undertaking a certain experiment and the other against it.

The conclusion of our pattern of plausible inference appears as one-sided
when compared with the actual beliefs and acts of the reasoning persons: it
expresses merely one aspect, and neglects others. If we realize this, the
nature of plausible reasoning may seem less baffling and elusive. At any
rate we are now better prepared to compare the patterns, the demonstrative
and the plausible, point by point. Each of the following subsections refers
to the correspondingly numbered subsection of the foregoing sect. 2.

(1) When we are reasoning in accordance with our pattern of plausible
inference, we conform to a principle: the verification of a consequence
strengthens the conjecture. This principle seems to be generally recognized,
independently of personal differences and idiosyncrasies. Thus our pattern
appears as impersonal.

We pay, however, a price for such “impersonality.” Our pattern succeeds
in being impersonal because it is one-sided, restricted to one aspect of the
plausible inference. When we raise the question ““How much is the conjecture
strengthened by the verification of this consequence?”” we open the door to
personal differences.

(2) We took pains to show by many examples in the foregoing chapters
that we naturally follow our pattern of plausible inference in dealing with
mathematical conjectures. The underlying principle is generally recognized
in the natural sciences, and it is implicitly admitted in the law courts, and in
everyday life. The verification of a consequence is regarded as reasonable
evidence for a conjecture in any domain. Thus our pattern appears as
universal.

We pay, however, a price for such “universality.” Our pattern succeeds
in being universal because it is one-sided, restricted to one aspect of plausible
inference. The universality becomes blurred when we raise the question
“What is the weight of such evidence?” In order to judge the weight of
the evidence, you have to be familiar with the domain; in order to judge the
weight with assurance, you have to be an expert in the domain. Yet you
cannot be familiar with all domains, and you can still less be an expert in all
domains. And so everyone of us will notice soon enough that there are
practical limits to the universality of plausible inference.
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(3) As far as it is expressed, the plausible conclusion is supported by the
premises.  On the basis of the evidence supplied by the premises it is reason-
able to place more confidence in 4. At some later date, however, we may
receive new information which, without changing our reliance on the
premises, may change our opinion about 4: we may find 4 less credible, or
we may even succeed in proving 4 false.

This does not constitute an objection against the pattern of reasoning: as
far as the evidence expressed in the premises goes, the conclusion is Jjustified.
A verdict of the jury may condemn the innocent or acquit the criminal. Yet
such injustice of the verdict may be justifiable: on the basis of the available
evidence no better verdict was possible. Such is the nature of plausible
inference, and so our pattern of plausible reasoning may be termed self-
sufficient.

Yet this kind of self-sufficiency or “autarky” does not mean durability.
Moreover, the weight of the evidence, which is not mentioned in the con-
clusion of our (one-sided) pattern, but is important nevertheless, depends on
things which are not mentioned in the premises. The strength of the con-
clusion (not its direction) requires things outside the premises.

(4) We cannot “detach” the conclusion of our pattern of plausible reason-
ing. “4 is rendered more credible” is meaningless without reference to the
premises that explain by which circumstances it was rendered so. Referred
to the premises, the plausible conclusion makes perfectly good sense and is
perfectly reasonable, but it may diminish in value as time goes by, although
the premises remain intact. The plausible conclusion may be very valuable
in the moment when it emerges, but the advance of knowledge is likely to
depreciate it: its importance is only momentary, transitory, ephemeral,
provisional.

In short, our pattern of plausible reasoning is one-sided and leaves an
ample margin for disagreement in things that matter. Yet, at the price of
such one-sidedness, it manages to be impersonal and universal, even self-
sufficient in a way.  Still, it cannot escape being merely provisional.

It would be foolish to deplore that in several respects our pattern of
plausible reasoning falls short of the perfection of demonstrative reasoning.
On the contrary, we should feel a little satisfaction that we succeeded in
clarifying somewhat a difference that we may have suspected from the
beginning.

From the outset it was clear that the two kinds of reasoning have different
tasks. From the outset they appeared very different: demonstrative reason-
ing as definite, final, “machinelike”; and plausible reasoning as vague,
provisional, specifically “human.” Now we may see the difference a little
more distinctly. In opposition to demonstrative inference, plausible
inference leaves indeterminate a highly relevant point: the “strength”
or the “weight” of the conclusion. This weight may depend not only on
clarified grounds such as those expressed in the premises, but also on
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unclarified unexpressed grounds somewhere in the background of the person
who draws the conclusion. A person has a background, a machine has not.
Indeed, you can build a machine to draw demonstrative conclusions for you,
but I think you can never build a machine that will draw plausible inferences.

4. An aspect of the calculus of probability. Difficulties. A highly
important step in the construction of a physical theory is its formulation in
mathematical terms. 'We come to a point in our investigation where we should
undertake such a step; we should formulate our views on plausible reasoning
in mathematical terms.

No attempt at formulating a theory of plausible reasoning can disregard a
historical fact: the calculus of probability was considered by Laplace and
by many other eminent scientists as the appropriate expression of the rules
of plausible inference. There are some grounds for this opinion and some
objections against it. We begin by considering some of the difficulties.

We wish to use the calculus of probability to render more precise our
views on plausible reasoning. Yet we could have some misgivings about
such a procedure, for we have seen in the foregoing chapter that the calculus
of probability is a (quite acceptable) theory of random mass phenomena.
How could the calculus of probability be both the theory of mass phenomena
and the logic of plausible inference ?

This is not a strong objection; there is no real difficulty. The calculus
of probability could be both things, could have two interpretations. In fact,
a mathematical theory may have several different interpretations. The same
differential equation (Laplace’s equation) describes the steady irrotational
flow of an incompressible non-viscous fluid and the distribution of forces in
an electrostatic field. The same equation describes also the steady flow of
heat, the steady flow of electricity, the diffusion of a salt dissolved in water
under appropriate conditions, and still other phenomena. And so it is
not excluded a priori that the same mathematical theory may serve two
purposes. Perhaps, we may use the calculus of probability both in describing
random mass phenomena and in systematizing our rules of plausible inference.

It is important, however, to distinguish clearly between these two inter-
pretations. Thus, we may use the symbol Pr{4} (see ex. 14.26) in both
interpretations, but only with certain safeguards, and we must understand
quite clearly both meanings of the symbol. and see the difference between the
two meanings.

In the foregoing chapter on random mass phenomena, we considered some
kind of event 4 such as the birth of a boy, or the fall of a raindrop in some
specified location, or the casting of a specified number of spots with a die,
and so on. We used the symbol Pr{4} to denote the probability of the event
A, that is, the theoretical value of the long range relative frequency of the
event 4.

In the present chapter, however, we have to deal with plausible reasoning.
We consider some conjecture 4, and we are concerned with the reliability
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of this conjecture 4, the strength of the evidence in favor of 4, our confidence
in 4, the degree of credence we should give to 4, in short the credibility of
the conjecture A. We shall take the symbol Pr{4} to denote the credibility
of A.

Thus, in the present chapter we shall use the symbol Pr{4} in its second
meaning as “credibility” unless we explicitly state the contrary. Such use
of the symbol is not objectionable, but we have to discuss carefully the concept
of credibility if we do not wish to expose ourselves to grave objections.

First, there is an ambiguity to avoid. The symbol Pr{4} should represent
the credibility of 4, or the strength of the evidence for the conjecture A.
Such evidence is strong if it is convincing. It is convincing if it convinces
somebody. Yet we did not say whom it should convince: you, or me, or
Mr. Smith, or Mrs. Jones, or whom? The strength of the evidence could
also be conceived impersonally. If we conceive it so, the degree of belief that
you or me or any other person may happen to have in a proposed conjecture
is irrelevant, but what matters is the degree of reasonable belief that anyone of us
should have. We did not say yet, and we have still to decide, in what exact
sense we should use the term ‘credibility of 4” and the corresponding
symbol Pr{4}.

There is another difficulty. The magnitudes considered by the physicists
such as “mass,” “‘electric charge,” or “reaction velocity” have an operational
definition; the physicist knows exactly which operations he has to perform
if he wishes to ascertain the magnitude of an electric charge, for example.
The definition of “long range relative frequency,” although in some way
less distinct than that of an electric charge, is still operational; it suggests
definite operations that we can undertake to obtain an approximate numerical
value of such a frequency. The trouble with the concept of the “credibility
of a conjecture” is that we do not know any operational definition for it.
What is the credibility of the conjecture that Mr. Jones is unfaithful? This
credibility may have at this moment a definite value in the mind of Mrs. Jones
(a negligibly small value, we hope) but we do not know how to determine
that value numerically. What is the credibility of the law of universal
gravitation judged on the basis of the observations reported in the first
edition of Newton’s Principia? This question could be of high interest to
some of us. (Not to Mrs. Jones, perhaps, but to Laplace or Keynes
if they were still alive—see the quotations prefixed to this chapter.)
But nobody dared to propose a definite numerical value for such a
credibility.

We have still to give a suitable interpretation of the term “credibility of
the conjecture 4,” and to the corresponding symbol Pr{4}. This inter-
pretation must be such that the difficulty of an operational definition does
not interfere with it. Moreover, and this is the main thing, this interpreta-
tion should enable us to view the rules of plausible reasoning systematically
and realistically.
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5. An aspect of the calculus of probability. An attempt. You
have just been introduced to Mr. Anybody and you have to say a few words
to him. You two are really complete strangers to each other and so your
conversation may be cautious. Still you cannot help touching upon various
assertions such as “It will rain tomorrow,” “The next Big Game will be won
by The Blues,” “Corporation So-and-so will pay a higher dividend next
year,” ‘/Mrs. Somebody whose divorce is the talk of the town was unfaithful,”
“Polio is caused by a virus,” or any other assertions, 4, B, C, D, 3 A0
Mr. Anybody attaches to the assertion 4 a definite degree of credence Pr {4}.
If you are very clever, you can feel after some time spent with Mr. Anybody
whether Pr{4} is low or high. Yet however clever you are, I cannot
believe that you are able to ascribe a definite numerical value to Pr{4}, the
credibility of the statement 4 in the eyes of Mr. Anybody. (Although it
would be interesting: the values of Pr{4}, Pr{B}, Pr{C}, . . . could sharply
characterize Mr. Anybody’s personality.)

Let us be realistic and acknowledge the impossibility of a task that is
obviously beyond our means: let us regard Pr{4}, the credibility of the
conjecture 4 in the eyes of Mr. Anybody, as a definite positive fraction

0<Pr{d} <1

the numerical value of which, however, we do not know. And let us treat
similarly Pr{B}, Pr{C}, ... if B, C, ... are conjectures, that is, clearly
formulated (perhaps mathematical) statements of which, however, Mr.
Anybody does not know at this time whether they are true or false.
If, however, A4 is true and Mr. Anybody knows it, we set P8 =1 AR
false and Mr. Anybody knows it, we set Pr{4} = 0.

It seems to me that our ignorance of the numerical values of Pr{4},
Pr{B}, . . . cannot really hurt us. In fact, we are not concerned here with the
personal opinions of Mr. Anybody. We are concerned with impersonal and
universal rules of plausible inference. We wish to know, in the first place,
whether there are such rules at all, and then we wish to know whether or not
the calculus of probability does disclose such rules (as Laplace and others
maintained). For the moment we rather hope that there are such rules,
and that Mr. Anybody, as a sensible person, reasons according to such rules
whatever degrees of credence Pr{4}, Pr{B}, Pr{C}, . . . he may attach at this
moment to the statements 4, B, C, . . . discussed. And so I cannot see why
our ignorance of the numerical values of Pr{4}, Pr{B}, Pr{C}, . . . should
hurt us.

Let us attempt, therefore, to apply the rules of the calculus of probability
to the credibilities Pr{4}, Pr{B}, Pr{C}, . . . as interpreted: positive fractions
measuring degrees of confidence of that mythical or idealized person,
Mr. Anybody. We wish tosee whether, in doing so, we can elicit anything
that can be reasonably interpreted as an impersonal and universal rule of
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plausible reasoning. Our attempt may fail, of course, but I cannot see at
this moment why it should fail, and so I am cautiously hopeful .3

6. Examining a consequence. Mr. Anybody is investigating a
certain conjecture A. This conjecture A4 is clearly formulated, but
Mr. Anybody does not know whether 4 is true or not and wants badly to
find out which is the case: is 4 true or is it false? He notices a certain
consequence B of 4. He is satisfied that

A implies B.

Yet he does not know whether B is true or false, and sometimes, when he is
tired of investigating 4, he thinks of switching to the investigation of B.

We have considered this situation many times, and now we wish to
reconsider it in the light of the calculus of probability. We wish to pay due
attention to three credibilities: Pr{4}, Pr{B}, and Pr{4/B}. Mr. Anybody
knows very well that 4 and B are unproved and unrefuted, but he believes
in them to a certain degree and this degree is expressed by Pr{4} and Pr{B},
respectively.  Also Pr{4/B}, the degree of credence that he could place in 4
if he knew that B is true, plays an important role in his deliberations.

We have no means of assigning a numerical value to any of these credi-
bilities, although we can sometimes imagine in which direction a change in
the state of knowledge of Mr. Anybody would change the value of one or the
other. At any rate, the calculus of probability yields a relation between
them.

In fact, by one of the fundamental theorems on probability (see
ex. 14.26 (2))

Pr{4} Pr{B/A} = Pr{B} Pr{4/B}.

Yet now, since 4 implies B, B must be true if 4 is true, and so

Pr{B/A} =1.
Hence we obtain

(I Pr{4} = Pr{B} Pr{4/B}.
Let us visualize the contents of this equation.

(1) Mr. Anybody decided to investigate the consequence B of his conjecture
4. He did not succeed yet in bringing this investigation to a conclusion.
Yet sometimes he saw indications that B may be true, and sometimes

# That the Calculus of Probability should deal primarily with degrees of belief (confidence,
confirmation, certitude, . . .) and not with more or less idealized relative frequencies, is the
opinion of many authors among which I quote only two: J. M. Keynes, 4 treatise on probability
(cf. especially p. 34, 66, 160), and B. de Finetti, La prévision, ses lois logiques, ses sources
subjectives, Annales de I’ Institut Henri Poincaré, vol. 7 (1937) p. 1-68. There is no space to
explain my differences from these authors, or the differences between them, but I wish to
express my thanks to both. The standpoint here adopted is similar to, but not quite the
same as, that of my previous paper: Heuristic reasoning and the theory of probability,
American Math. Monthly, vol. 48 (1941) p. 450-465.
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indications to the contrary. His confidence in B, which we call Pr{B},
rose and fell accordingly. Yet he did not observe anything that would
have changed his views about the relation between A and B or about
Pr{4/B}. How did all this influence Pr{4}, his confidence in 4?

Equation (I) shows that Pr{A} changes in the same direction as Pr{B}, provided
that Pr{4/B} remains unchanged. This agrees with our former remarks,
especially with those in sect. 13.6. (Observe, that we consider only the
direction of the change that we can sometimes ascertain, and not its amount
that we can never know precisely.)

(2) Mr. Anybody succeeded in proving B, which is a consequence of the
conjecture A that he originally investigated. Before proving B, he had
some confidence in B, the degree of which we have represented by Pr{B};
he had also some confidence in 4, of degree Pr{4}. He sometimes considered
Pr{4/B}, the confidence he could place in 4 after a proof of B. After the
proof of B, his confidence in B attains the maximum value 1, and his
confidence in 4 becomes, of course, Pr{4/B}. (Substituting 1 for Pr{B} in
equation (I), we are led formally to the new value of the credibility of A.)
We suppose here that his views about the relation between 4 and B and his
evaluation of Pr{4/B} remain unchanged.

Observing that 0 < Pr{B} < 1, we derive from equation (I) the inequality
(IT) Pr{d4} < Pr{4/B}.

Now, Pr{4} and Pr{4/B} represent the credibility of A before and after the
proof of B, respectively. Therefore inequality (II) is the formal expression
of a principle with which we met so often: the vertfication of a consequence
renders a conjecture more credible; cf. sect. 12.1, for instance.

(3) Yet we can learn still more from equation (I) which we write in the
form
Pr{4}
Pr{B}’

(I11) Pr{d|B} =

The left-hand side, the credibility of 4 after the verification of B, is expressed
in terms of the confidence that the researcher had in 4 and B, respectively,
before such verification. Let us compare various cases of successful
verification of a consequence. These cases have one circumstance in
common: the same confidence Pr{d} was placed in the conjecture 4 (at
which the investigation aims) before the verification of its consequence B.
Yet these cases differ in another respect: the consequence B (which was
eventually verified) was expected with more confidence in some cases and
with less confidence in others. That is, we regard Pr{4} as constant and
Pr{B} as variable. How does the variation of Pr{B} influence the weight
of the evidence resulting from the verification of the consequence B?
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Let us pay due attention to the extreme cases. Since B is a consequence
of 4, B is certainly true when 4 is true, and so Pr{B}, the credibility of B,
cannot be less than Pr{4}, the credibility of 4. On the other hand no
credibility can exceed certainty: Pr{B} cannot be greater than 1. We have
determined the bounds between which Pr{B} is contained:

Pr{4} < Pr{B} < 1.

The lower bound is attained, when not only A4 implies B, but also B implies
4, so that the two assertions 4 and B are equivalent, stand and fall together,
in which case they are, of course, equally credible. The upper bound 1
cannot be really attained: if it were attained, B would be certain before
investigation, and we have not included this case in our consideration.
Yet the upper bound can be approached: B can be almost certain before
examination. How does the evidence resulting from the verification of B
change when Pr{B} varies between its extreme bounds?

The evidence is stronger, when Pr{4/B}, the new confidence in 4 resulting

from the verification of the consequence B, is greater. It is visible from the
relation (III) that

as Pr{B} decreases from 1 to Pr{4}
Pr{4/B} increases from Pr{4} to 1.

This statement expresses in a new language a point that we have recognized
before (sect. 12.3): the increase of our confidence in a conjecture due to the verification
of one of its consequences varies inversely as the credibility of the consequence before such
verification. 'The more unexpected a consequence is, the more weight its
verification carries. The verification of the most surprising consequence
is the most convincing, whereas the verification of a consequence that we did
not doubt much anyway (Pr{B} almost 1) has little value as evidence.

(4) The situation just discussed can be viewed from another standpoint.
Using some simple rules of the calculus of probability (cf. ex. 14.26 formulas
(4), (2), (3), in this order) we obtain

Pr{(B} = Pr{4B} 4 Pr{4B)}
= Pr{d} Pr{B/A} + Pr{d} Pr{B|A)}
= Pr{d} + [1 — Pr{4}] Pr{B/A).

In passing to the last line, we also used that Pr{B/A} = 1, which expresses

that Bis a consequence of 4. In substituting for Pr{B} the value just derived,
we obtain from (IIT)

Pr{4}

v Pr{d/B} = ———————— Tt

) i Pr{d} + [1 — Pr{4}] Pr(B/A}

Let us assume as before that Pr{4} is constant; that is, let us survey various
cases in which the confidence in A4, the conjecture examined, was the same
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before testing the consequence B of 4. Yet Pr{4/B}, the credibility of 4

after the verification of B, still depends on Pr{B/A4}, the credibility of B
(before verification, of course) viewed under the assumption that 4 is not

true. And Pr{B //f} canvary; itcan take, in fact, any value between 0 and 1.

Now, by our formula (III),
as Pr{B|A} decreases from 1 to 0
Pr{4/B} increases from Pr{4} to 1.

This statement expresses in a new language a point that we have discussed
before (sect. 13.10). Let us look at the extreme cases. If B without A4
is hardly credible (Pr{B/A} almost 0) the verification of the consequence B
brings the conjecture 4 close to certainty. On the other hand, the verifica-
tion of a consequence B that we would scarcely doubt even if 4 were false
(Pr{B/A} almost 1) adds little to our confidence in 4.

4. Examining a possible ground. After the broad and cautious
discussion in the foregoing section we can proceed a little faster in surveying
similar situations.

Here is such a situation: the aim of our research is a certain conjecture 4.
We notice a possible ground for 4, that is, a proposition B from which 4
would follow:

A is implied by B.

We start investigating B. If we succeeded in proving B, 4 would also be
proved. Yet B turns out to be false. How does the disproof of B affect
our confidence in 4?

Let the calculus of probability answer this question. Since A is implied
by B
Pr{4/B} = 1.

Let us combine this with some basic formulas (see ex. 14.26 (4), (2), (3)):
Pr{4} = Pr{4B} 4 Pr{4B}
— Pr{B} Pr{4/B} + Pr{B} Pr{4/B}
= Pr{B} + (1 — Pr{B}) Pr{4/B}.
We obtain hence that

Pr{4} — Pr{B}

(1) Pr{4/B} = I —rB)

The left-hand side represents the credibility of 4 after B (which is a possible
ground for 4) has been refuted. The right-hand side refers to the situation
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before the refutation of B. By the way, this right-hand side can be trans-
formed so that equation (I) appears in the form

Pr{4/B} = Pr{4} — Pr{B} i:\m

and hence we see that
(11) Pr{4/B} < Pr{4}.

Both sides of this inequality represent the credibility of the conjecture 4, the
left-hand side after the refutation of B, the right-hand side before this refuta-
tion. Therefore, inequality (II) expresses a rule: our confidence in a conjecture
can only diminish when a possible ground Jor the conjecture has been exploded.
{CF sect. 18:2;)

Yet we can learn more from equation (I). Let us consider Pr{4} as
constant and Pr{B} as variable. That is, let us survey various cases which
differ in one important respect: in the degree of our confidence in B. Our
confidence in B may be very small, but it cannot be arbitrarily large: it can
never exceed our confidence in 4, since if B is true 4 is also true. (Yet 4
could be still true even if B is false.) And so, we determined the extreme
values between which Pr{B} can vary:

0 < Pr{B} < Pr{4).
We see from equation (I) that
as Pr{B} increases from 0 to Pr{4}
Pr{A/B} diminishes from Pr{4} to 0.

That is, the more confidence we placed in a possible ground of our conjecture, the greater
will be the loss of faith in our conjecture when that possible ground is refuted.

8. Examining a conflicting conjecture. We consider now another
situation: we examine two conflicting conjectures, 4 and B. When we say
that 4 conflicts with B or

4 is incompatible with B

we mean that the truth of one of them implies the falsity of the other. We
are, in fact, primarily concerned with 4 and we have started investigating B
because we thought that the investigation of B could shed some light on 4.
In fact, a proof of B would disprove 4. Yet we succeeded in disproving B.
How does this result affect our confidence in A?

Let the calculus of probability give the answer. Let us begin by expressing
in the language of this calculus that 4 and B are incompatible. This means
in other words that 4 and B cannot both be true, and so

Pr{4B} = 0.
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Now we conclude from our basic formulas (cf. ex. 14.26 (4), (2), (3))
Pr{A} = Pr{AB} 4 Pr{4B}
= Pr{4B}
— Pr{B) Pr{4/B}

= (1 — Pr{B}) Pr{4/B}
which yields finally

= Pr{4}
(I PoidiBl — e,
Equation (I) obviously implies the inequality:
(11) Pr{d/B} > Pr{4}.

The left-hand side refers to the situation after the refutation of B, the right-
hand side to the situation before this refutation. Therefore, we can read (II)
as follows: our confidence in a conjecture can only increase when an incompatible
rival conjecture has been exploded. (Cf. sect. 13.3.)

Yet we can learn more from equation (I). Let us consider Pr{4} as
constant and Pr{B} as variable. Let us determine the bounds between which
Pr{B} may vary. Of course, Pr{B} can be arbitrarily small. Yet Pr{B}

cannot be arbitrarily large; in fact it can never exceed Pr{A_}. If B is
correct, A is a fortiori correct. Since Pr{A} is equal to 1 — Pr{4}

0 < Pr{B} < 1 — Pr{4}.
We see from equation (I) that
as Pr{B} increases from 0 to 1 — Pr{4}
Pr{A/B} increases from Pr{4} to 1.

That is, the more confidence we placed in an incompatible rival of our conjecture, the
greater will be the gain of faith in our conjecture when that rival is refuted.

9. Examining several consequences in succession. We consider
now the following important situation: the aim of our research is a certain
conjecture A. For the moment, we do not see how we could decide whether
A is true or not. Yet we see several consequences By, By, B, . . . of 4:

A implies B;, A4 implies By, A implies B,, ... . The consequences
BB, sareamove accessible than 4 itself and we settle down to examine
them one after the other. (This is the typical procedure of the natural
sciences: we have no means of examining a general law 4 in itself, and
therefore we examine it by testing several consequences By, By, By, . . . .) We
have already examined the consequences By, By, ... B, and we have
succeeded in verifying all of them: By, B,, . . . B, turned out to be correct.
Now we are testing the next consequence B, : how will the outcome affect
our confidence in 4?
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In order to see the answer in the light of the calculus of probability, we
start from a general rule of this calculus (see ex. 14.26 (5)):

Pr{d/H} Pr{B/HA} = Pr{B|H} Pr{4|HB}.
We set B = B,.,. Now, since B, ., is a consequence of 4,

Pr{B/HA} = Pr{BnH/HA} =1
and so we find that

Pr{d|H} = Pr{B,,/H} Pr{d|HB,,y).
We set H = BB, . .. B, and obtain the decisive formula:
(I) PridiBs. s s B} == Pr{B By .. B} Pr{d|Byss BBy )
In order to understand (I) correctly, we have to realize that
Pr{4/B,...B,}and Pr{B,,,/B, . .. B,}

denote the credibilities of 4 and B, ,, respectively, after B;, B,, . .. B, have
been verified but, of course, before B, ., has been verified ;

Pr{4/B, ... B, B,.,} denotes the credibility of 4 after the verification of
its n + 1 consequences, By, B,, . . . B, and B, ;.

We have to keep these meanings in mind, and then we can read (I) as a
precise and pregnant proposition on inductive reasoning.

Let us first focus our attention on Pr{B, /B, . .. B,}; the value of this
credibility will be in most cases less than 1, and equal to 1 only if the correct-
ness of By, By, ... B, renders the correctness of B, ., certain, that is, if
By, By, . . . and B, jointly imply B, ;. If this is not the case, we can derive
from (I) the inequality:

(I1) Pr{4/B,...B,} < Pr{4/B,...B, B,,,).

That is, the verification of a new consequence enhances our confidence in the conjecture,
unless the new consequence is implied by formerly verified consequences.
Let us write equation (I) in the form:

Pridiby. .. 8}
Pr{B, /B, ...B,}

The left-hand side refers to the situation after the confirmation of ¢ Py
the right-hand side refers to the situation before this confirmation. Let us
regard the relation of 4 to By, B,, . .. B, as fixed, but the relation of B to
By, By, ... B, as variable. Then we can read (III) as follows: the increase
in our confidence brought about by the confirmation of a new consequence (or the
weight of the evidence furnished by this confirmation) wvaries inversely as
the credibility of the new consequence, appraised (before its confirmation, of course)
in the light of the previously verified consequences.

We can express this same rule in other words. When we start testing the
consequence B, ; of our conjecture 4, we face the possibility that B, ; will

(I1I) Pr{4/B,...B,B,,,} =
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turn out false in which case 4 will be exploded. In view of the formerly
verified consequences By, By, . . . B, the chance for exploding 4 by disproving
B,,, appears strong when Pr{B, /B, . .. B,} is small. Therefore we can
read (III) as follows: the consequence that, judged in the light of the preceding
verifications, stands the better chance of refuting the proposed conjecture, will disclose
the stronger inductive evidence if it is confirmed in spite of the forebodings. Still
shorter: “more danger, more honor.” If a conjecture escapes the danger of
refutation it shall be esteemed in proportion to the risk involved.

From the very beginning of our discussion we have considered the induc-
tive evidence supplied by the successive verification of several consequences
of a proposed conjecture. The extreme cases were the most conspicuous.
Let us survey them once more (adding just a little color) and let us focus the
moment when, having verified the consequences By, B,, . . . B, of a conjecture
A, we start scrutinizing a new consequence B, ;.

The new consequence under scrutiny, B, ,,, may appear “little different”
from the formerly verified consequences By, By, . . . B,. Such a case is not
too exciting. We confidently expect (by analogy, presumably) that B,
will be verified like the other consequences (that is, P1{B, /B, . .. B,} is
close to 1, its maximum). We scarcely expect that the investigation of
B, will disclose some very new aspect or that it will upset the conjecture 4,
but also, when B, is finally verified, the gain in evidence for 4 is not much.

On the other hand, the new consequence under scrutiny, B, ,;, may appear
as “very different” from the formerly verified consequences By, B b
Such a case may be exciting. Analogy with By, By, . .. B, gives us little
reason to expect that B,,, will be verified (Pr{B, /B, ...B,} is close to
its minimum). We realize that the investigation of B, risks upsetting the
conjecture A, but it has also a chance to disclose some new aspect, and when
B, ., is eventually verified, the gain in evidence for 4 may be considerable.

The reader should review some of our former examples and discussions.
(Cf. sect. 3.1-3.7, ch. VI, sect. 10.1, sect. 12.2, sect. 13.11, and several other
passages.) After due comparison, equation (III) of the present section may
appear to him as the most concise and precise expression of the principle
involved. At any rate, if he can see the bearing of equation (III) on some
of our examples, he has taken a good step towards clarifying his ideas about
an important subject.

10. On circumstantial evidence. We now consider a situation that
we encountered in dealing with reasoning in judicial matters: we are examin-
ing a conjecture 4. (This conjecture 4 may be an accusation advanced by
the prosecution.) We (the jury) have to find out whether 4 is true or not.
A circumstance B is submitted (by the prosecution) which is so connected
with the conjecture 4 that

B with 4 is more credible than without A4.

In the course of the proceedings this circumstance B is so strongly confirmed
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that we may regard it as a proven fact. (Perhaps B was not even challenged
by the defense.) How does all this affect our belief in A?

Let the calculus of probability answer this question. The essential assump-
tion concerning the connection between 4 and B is expressed by the
inequality
(I) Pr{B/A} > Pr{B|A}.

By basic formulas of the theory of probability (cf. ex. 14.26)
Pr{4} Pr{B/A} = Pr{B} Pr{4/B},
Pr{B} == Pr{d} Pr{(B/4} + (1 — Pr{4}) Pr{B/4}.

Combining these, we obtain

Pr{4 Pr{B/A
(11) —_Pr{rj/ ; p = Prld} + (1 — Pr(4) —_PNEB;A;.
Using (I), we conclude from (II) that
(111) Pr{4} < Pr{4/B}.

Both sides of this inequality represent the credibility of the conjecture 4,
the left-hand side before the verification of the circumstance B, the right-
hand side after the verification of B. Therefore, inequality (IIT) expresses a
rule: if a certain circumstance is more credible with a certain conjecture than without
it, the proof of that circumstance can only enhance the credibility of that conjecture.
(G sect. 13.13)

Yet we can learn more from equation (II). Let us regard Pr{4} and
Pr{B|A} as constant, but Pr{B/A} as variable. Then Pr{4/B} depends on
Pr{B/A4}:

as Pr{B/A} decreases from Pr{B/A} to O

Pr{4/B} increases from Pr{4} to 1.

That is, the less credible a circumstance appears without a certain conjecture, the more
will the proof of that circumstance enhance the credibility of that conjecture. In sect.
13.13, led by the consideration of examples, we came very close to this rule.

Strong judicial evidence results from several proved coincidences all
pointing to the same conclusion; see sect. 13.13 (4). If there are several
circumstances By, B,, B,, . .. each of which is more credible with 4 than
without 4, and they are successively proved, the evidence for 4 increases at
each step. The amount of additional evidence resulting from a circumstance
newly proved depends on various points. A new circumstance that is very
different from the circumstances previously examined (a new witness who is
visibly independent of the witnesses previously examined) carries particular
weight. To express these points, we could develop formulas so related to
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those introduced in the present section as the formulas developed in sect. 9
are related to those introduced in sect. 6.

EXAMPLES AND COMMENTS ON CHAPTER XV

1. Examine the situation discussed in sect. 13.8 by the Calculus of
Probability.

2. Examine the pattern encountered in the solution of ex. 13.8 by the
Calculus of Probability. Can you justify it?

3. Reexamine ex. 13.10 by the Calculus of Probability.

4. Probability and credibility. The peculiar “non-quantitative” application
of the Calculus of Probability, discussed in sect. 5-10, was designed to eluci-
date certain patterns of plausible reasoning. These patterns were mainly
suggested by heuristic reasoning about mathematical conjectures. Can we
apply the Calculus of Probability to examples of other kind in the same
manner ?

(1) Let 4, denote the conjecture that the fair die that I am about to roll
will show 7 spots (n = 1,2, ...6). These conjectures A4;, 4,, . . . 44 are of
a kind that we did not particularly wish to examine in sect. 5-10. Yet let us
try to treat them in the same manner: we consider their credibilities
Pr{4,}, Pr{4,}, . .. Pr{4g} and apply the Calculus of Probability to them.
As A, A,, . . . Ag are mutually exclusive and exhaust all the possibilities,

Pr{4,} + Pr{dy} + ... + Pr{dg} = 1.

Since the die with which we are concerned is fair, its faces are interchangeable,
none of the six faces is preferable to any other, and so we are compelled to
assume that

Prid,} = Pelid) =. . . = Prda
Combining this with the foregoing equation, we obtain that
Pr{4,} = PriAf} =" = Prsg) =06,

and so we are led to attribute definite numerical values to the credibilities
considered. MTr. Anybody (our friend from sect. 5) would be driven to the
same conclusion, I think.

The credibility of the conjecture 4, turned out to have the same numerical
value as the probability of the event that a fair die shows one spot. Yet
this is not surprising at all: we admitted the same rules and assumed the
same interchangeability (or symmetry) in computing credibilities and proba-
bilities.  (The reader should not forget, of course, that credibility and
probability are quite differently defined.)

(2) The foregoing argument applies to many other cases.

By three straight lines passing through its center, the surface of a circle is
divided into six equal sectors. A raindrop is about to fall on the circular
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surface. Let us call 4, the assertion that the raindrop will fall on the first
sector, A, the assertion that it will fall on the second sector, and so on. This
situation is essentially the same as that discussed under (1) and the result is,
of course, also the same: each of the six assertions 4,, Ay, . . . Az has the same
credibility 1/6.

The generalization is obvious: we need not stick to the number 6 or to
raindrops. We can divide the circle into 7 sectors and consider some other
kind of random event. We can also pass from the area of the circle to its
periphery and so we arrive at the following situation: a point will be chosen
on the periphery of a circle by some random agency that has no preference
whatsoever for any particular points of this periphery. Somebody con-
Jectures that the point will lie on a certain arc. The credibility of this
conjecture is the ratio of the length of the arc to the length of the whole
periphery.

From the circle we can pass to the sphere. Let us assume, for the sake
of simplicity, that the Earth is a perfect sphere and that the meteorites
striking the Earth have no preference for any particular direction. Some-
body conjectures that the next meteorite falling on the Earth will strike a
certain region. What is the credibility of this conjecture? The mathe-
matical treatment may be more complicated if we carry it through in minute
detail, but the result is just as intuitive as for the circle: the desired credibility
is the ratio of the area of that region to the area of the whole spherical surface.

We need not enter upon further analogous, or more general, situations.
Let us look, however, at two particular cases.

The credibility of the conjecture that a point chosen at random on the
periphery of a circle will lie within a distance of one degree from a given
point of this periphery is 1/180.

The credibility of the conjecture that the next meteorite falling on the
Earth will strike within a distance of one degree from the center of New
York City is 0.00007615. (This is the numerical ratio of a small spherical
cap to the whole spherical surface.)

The circle and the sphere possess high symmetry: a suitable rotation that
does not change the position of the figure as a whole can transport a point
of the figure from any given position on the figure to any other given position.
This symmetry is not enough in itself to justify the preceding results. In
deriving them we have to assume “physical”’ symmetry, the interchangeability
of any two points of the geometric figure in relation to the physical agency
under consideration.

The computed credibilities cannot claim much novelty: they coincide
with corresponding probabilities, known for a long time, and successfully
applied to a variety of mass phenomena.

The computed credibilities may appear as incapable of interfering with
the credibilities with which we are primarily concerned. Of this, however,
we should not feel too sure.
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(3) Kepler knew only six planetsrevolving around the sun and even devised
a geometric argument why there should be exactly six planets; see sect.11.5.
Yet the telescopes did not listen to his argument. In 1781, about 150
years after Kepler’s death, the astronomer Herschel observed a slowly
moving star and supposed it to be a comet; but it turned out to be a seventh
planet (Uranus) revolving beyond the orbit of Saturn. In the years
1801-1806 four small planets (Ceres, Pallas, Juno, and Vesta) revolving
between the orbits of Mars and Jupiter were similarly discovered. ~ (Hundreds
of such minor planets have been discovered later.)

On the basis of Newton’s theory, the astronomers tried to compute the
motions of these planets. They did not succeed very well with the planet
Uranus; the differences between theory and observation seemed to exceed
the admissible limits of error. Some astronomers suspected that these devia-
tions may be due to the attraction of a planet revolving beyond Uranus’
orbit, and the French astronomer Leverrier investigated this conjecture
more thoroughly than his colleagues. Examining the various explanations
proposed, he found that there is just one that could account for the observed
irregularities in Uranus’ motion: the existence of an ultra-Uranian planet.
He tried to compute the orbit of such a hypothetical planet from the
irregularities of Uranus. Finally Leverrier succeeded in assigning a definite
position in the sky to the hypothetical planet. He wrote about it to another
astronomer whose observatory was the best equipped to examine that portion
of the sky. The letter arrived on the 23rd of September 1846 and in the
evening of the same day a new planet was found within one degree of the
spot indicated by Leverrier. It was a large ultra-Uranian planet that
had approximately the mass and orbit predicted by Leverrier.

(4) The theory that renders possible such an extraordinary prediction
must be a wonderful theory. This may be our first impression. Let us try
to clarify this impression by the Calculus of Probability.

T stands for the theory that underlies the astronomical computations:
it is Newton’s theory, consisting of his laws of mechanics and his law of
gravitational attraction.

N stands for Leverrier’s assertion: at the date given, there will be a new
planet, having such and such a mass and such and such an orbit (approxi-
mately), in the neighborhood of such and such a point of the sky. More
precisely, let N stand for that part of Leverrier’s assertion that has been
verified by subsequent observations.

Pr{T} denotes the degree of confidence placed in the theory 7' on the basis
of all facts known by the astronomers before the date of the discovery of the
new planet.

Pr{T/N} denotes the degree of confidence due to the same theory 7'
when the verification of Leverrier’s prediction N has been added to the facts
known before.

We think that the verification of Leverrier’s prediction adds to the credit
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of the theory 7', and so we suspect that Pr{7T/N} is greater than Pr{7T}. In
fact, we find (by ex. 14.26 (2)) that

Pr{T|N} Pr{N|T}
Pe{T} = Pi{N}

Pr{N} is the credibility of Leverrier’s assertion N “in itself,” that is,
without reference to the truth or falsity of the theory 7T'; the underlying
state of knowledge is the same as assumed in the evaluation of Pr{T}. This
Pr{N} must be extremely small: if we ignore Newton’s theory 7' what ground
could we have to suspect that there is an ultra-Uranian planet of such and
such precise properties so near to a given point of the sky?

Pr{N/T?} is the credibility of Leverrier’s assertion N in the light of Leverrier’s
computation based on the theory 7', and so it is a concept very different
from Pr{N}. Perhaps Leverrier did not show quite conclusively that the
existence of an ultra-Uranian planet with such and such properties is the
only explanation compatible with the theory 7. Yet he came pretty near
to showing just this, and so Pr{N/T'} cannot be too far from certainty.

To sum up, we may regard Pr{N/T'} as a sizable fraction, not very far from
1, and Pr{N} as a very small fraction, approaching 0. Yet if we think so,
the ratio Pr{N/T}/Pr{N} appears as very large, and so must appear the
ratio Pr{7/N}/Pr{T} which has the same value as the foregoing, by the
above equation. Therefore, Pr{7T'/N}, our confidence in the theory T' after
the verification of Leverrier’s prediction appears as very much greater than
Pr{T'}, our confidence in the same theory before this verification.

(5) The foregoing consideration remains within the limits to which we
cautiously restricted ourselves in sect. 5. Yet let us discard caution for a
moment and indulge in some adventurous rough estimates.

Leverrier’s prediction N covers many details of which we pick out just
one: the new planet will be near such and such a spot of the sky. It was
found, in fact, within one degree from the indicated point (at a distance 52).
Yet the probability that a point chosen at random on the sphere should be
within one degree from a preassigned spot can be computed under simple
assumptions, as we stated above, under (2). We find that Pr{N} is much
smaller than 0.00007615. We can scarcely regard Pr{N/T'} as exactly
equal to 1, yet we may surmise that, in setting

Pr{N} = 0.00007615,  Pr{N/T} =1,

we overestimate much more the first, than the second, credibility. And so
we arrive at the inequality

1175 N
Pr{T} ~ 0.00007615

Of course, such an estimate is questionable. There may be reasons of
analogy, quite independent of Newton’s theory 7', suggesting that a new

== 18131%
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planet has more chance to be near the plane of the Earth’s orbit than far
fromit. Ifwe think so, we should substitute for 0.00007615 a greater fraction
but one that is still less than

1/180 = 0.005556;
cf. under (2).
Such estimates could be argued endlessly. For example, since Pr{T|N}
is certainly less than 1, the inequality proposed implies that

Pr{T} < 0.00007615.

We may be tempted to regard this as a refutation of the proposed inequality,
asa “reductio ad absurdum.”  In fact, Newton’s theory 7' could be regarded
as firmly established in 1846, even before the discovery of Neptune, and so
it could appear as absurd to attribute to 7' such a low credibility. I do
not think, however, that we are obliged to regard a credibility 10— as low in
such a case: we could think that logical certainty, to which we ascribe the
credibility 1, is incomparably more than the reliance that we can place in
the best established inductive generalization, the credibility of which we
could even consider as infinitesimal; cf. ex. 8.

After all this, we may find it safer to return to the standpoint of sect. 5-10,
to which we essentially adhered under (4). Represent to yourself qualita-
tively how a change in this or that component of the situation would influence
your confidence, but do not commit yourself to any quantitative estimate.

5. Likelihood and credibility. We may have a conjecture about proba-
bilities. For example, you may conjecture that the die that you hold
in your hands is ideally fair, that is, each face has the same probability 1/6.
Of course, this conjecture is hard to believe. Or you may conjecture that
each face of that die has a probability between 0.16 and 0.17, which would be
more credible. A conjecture about probabilities is a statistical hypothesis.
It often happens that we have only two obvious rival conjectures: a ‘“‘physical”
conjecture P and a statistical hypothesis H; cf. sect. 14.9 (7) and ex. 14.33.
In such a case we may be seriously concerned with Pr{H}, the credibility
of the statistical hypothesis H.

A statistical hypothesis H is appropriately tested by statistical observation.
Let E denote the prediction that the statistical observation will yield such
and such a result. Let us consider the credibility Pr{E/H} and let us assume
that this credibility has a numerical value, equal to the probability that an event of
the kind predicted by £ will happen, computed on the basis of the statistical
hypothesis H. As we have seen in ex. 4, certain (quite natural) assumptions
of interchangeability, or symmetry (included in the statistical hypothesis H)
may even oblige us to equate credibility with probability.

This credibility, or probability, Pr{E/H} can be viewed from two different
standpoints as we have discussed in sect. 14.7 (5); cf. alsosect. 14.8 (5). On
the one hand Pr{£/H} is the probability of an event of the kind predicted by
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E, computed on the basis of the statistical hypothesis . On the other hand,
if such an event actually happens and is observed, we are inclined to think
that H is the less likely the less the numerical value of Pr{E/H} is, and for this
reason we call Pr{E|H} the likelihood of the statistical hypothesis H, judged in
view of the fact that the event predicted by E has actually happened.
Cf. sect. 14.7 (5), also sect. 14.8 (5).

Now it follows from ex. 14.26 (2) that

Pe(H/E} — Pr{E {)I:gEI;r{H }

In this equation, Pr{E/H} is not only a credibility, but also a probability,
and has a definite numerical value. Yet Pr{H/E}, Pr{H}, Pr{E} are only
credibilities and are not supposed to possess definite numerical values.*
Especially both Pr{H} and Pr{H/E} denote the credibility of the same
statistical hypothesis H, but the first before, and the second after, the observa-
tion of the event predicted by E. Let us restate the above equation in a
less conventional form, emphasizing one of the aspects of Pr{E/H}:

g Likelihood x Credibility before event
Gredibility afteréventssc S Saaneo s - — {
Credibility of event

Having observed the event predicted by E, we face a decision: should we
reject the statistical hypothesis H, and accept the rival physical conjecture P,
or what should we do? Our decision should be based on the latest informa-
tion, and so on Pr{H/E}, the credibility of the statistical hypothesis after the
observation of the event. Of this credibility Pr{H/E} the likelihood Pr{E/H}
is a factor: it is the most important factor, perhaps, because it possesses a
numerical value, computable by a clear and familiar procedure, but it is
still just a factor, not the full expression of the credibility.

The likelihood is an important indication, but not everything. The
statistician may wisely restrict himself to the computation of the likelihood,
but the statistician’s customer may act unwisely if he neglects the other
factors. He should carefully weigh Pr{H}, the credibility of the statistical
hypothesis H before the event: we mean, in fact, this Pr{H} when we talk
about the “appropriateness,” or “realism,” of H. Cf. ex. 14.33.

6. Laplace’s attempt to link induction with probability. A bag contains
black and white balls in unknown proportions; m white and n black balls
have been successively drawn and replaced. What is the probability that
m' -+ n’ subsequent drawings will yield m’ white and n’ black balls?

A particular case of this apparently harmless problem about the bag and
the balls can be interpreted as the fundamental problem about inductive
inference reduced to its simplest expression. In fact, let us consider the case

4 This is the usual situation. Only exceptionally is the statistician in a position to ascribe
a numerical value to Pr{H}.
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where n = n’ = 0. We drew m balls from the bag of unknown composition,
and all balls drawn turned out to be white. We may assimilate this situation
to the naturalist’s situation who tested m consequences of a conjecture and
found all m observations concordant with the conjecture. The naturalist
plans more observations. What is the probability that his next m’ observa-
tions will also turn out to be concordant with the conjecture? This question
may be construed as the particular case n = n’ = 0 of the proposed problem
about the bag and the balls.

In this problem there is an obscure and puzzling point: the proportion
of the black balls to the white balls in the bag is unknown. Yet in view of
the intended interpretation, this point appears essential: the naturalist
cannot know the “inner workings” of nature. He knows only what he has
observed, and we know only that the bag yielded, up to this moment, so
and so many white balls in so and so many drawings.

Common sense would suggest that we cannot compute the required
probability if nothing is known about the composition of the bag; a problem
without sufficient data is insoluble. Yet Laplace gave a solution—a
controversial solution. How did he manage to arrive at a solution at all?

Laplace introduces a new principle to compensate for the lack of data;
this principle is controversial. “When the probability of a simple event is
unknown, we may suppose all possible values of this probability between 0
and 1 as equally likely,” says Laplace.® “This is the equal distribution of
ignorance,” sneer his opponents.

Once Laplace’s controversial principle is admitted, the derivation of the
solution is straightforward; we need not consider it here. Its result is:
if m drawings yielded only white balls, the probability that m’ subsequent
drawings should also yield only white balls is

m—+ 1
m-Em LT
Let us call this statement the “General Rule of Succession.” The best
known particular case is concerned with m’ = 1: if m drawings yielded only

white balls, the probability that also the next drawing should yield a white
ball is

m—+ 1
m42
Let us call this the “Special Rule of Succession.”
Are these rules acceptable if we interpret “white balls” as “concordant
observations of the same nature” and “‘probability” as “degree of reasonable
confidence”? This question is to the point and we shall discuss it.

5 Oeuvres complétes, vol. 7, p. XVII.
¢ This differs somewhat from the usual terminology. Cf. J. M. Keynes, A treatise on
probability, p. 372-383.
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(1) Let us reconsider our first example of inductive reasoning. Goldbach’s
conjecture asserts that, from 6 — 3 + 3 onward, any even integer is the sum
of two odd primes. The table in sect. 1.3 verifies this conjecture up to 30.
Having verified it up to 30, we expect with more or less confidence that it will
also be verified in the next case, for 32. The Special Rule of Succession may
be interpreted to mean that, having verified Goldbach’s conjecture in the
first m cases, we are entitled to expect its verification in the next case with
the probability

m—{—l_l 1
S Batall el

Let us realize what this means. As m increases the probability also
increases: in fact, the more cases have been verified in the past, the more
confidently we expect the conjecture to be verified in the next case. If m
tends to oo, the probability tends to 1: we could hope to approach certainty
closer and closer by collecting more and more verifications. Let us now
consider the difference of two probabilities, one corresponding to m + 1,
the other to m, previous verifications:

m -+ 2 m+1_ 1
m+ 3 _m+2_(m+2)(m+3)'

This difference decreases as m increases: it is true that each new verification
adds to our confidence, but it adds less and less as it comes after more and
more previous similar verifications. (The similarity of the verifications is
essential at this point; cf. sect. 1 2197)

Let us take up now the General Rule of Succession. It could be inter-
preted to mean this: having verified Goldbach’s conjecture in the first m
cases, we are entitled to expect its verification in the next m’ cases with the
probability

m -1
FERET

If we keep m fixed, but let m’ increase, this probability decreases: in fact, the
further we try to predict the future on the basis of past observation, the less
confidently we can predict it. If m’ increases indefinitely, the probability
tends to 0. In fact, the verification for all values of m" would mean that
Goldbach’s conjecture is true. Obviously, on the basis of a given number m
of observations we cannot assert that the conjecture is true. The rule seems
to imply a stronger statement: on the basis of m observations we cannot even
attribute a probability different from 0 to Goldbach’s conjecture, and such a
strong statement may point in the right direction.

(2) Up to this point the Rule of Succession looks rather respectable. Yet
let us look at it more concretely. Let us attribute numerical values to m
and let us not neglect everyday situations. It will be enough to consider
the Special Rule of Succession.
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I tested the even numbers 6, 8, 10, . . . 24, and found that each of them is a
sum of two odd primes. The Rule says that I should expect with the
probability 11/12 that also 26 is a sum of two odd primes.

In a foreign city where I scarcely understood the language, I ate in a
restaurant with strong misgivings. Yet after 10 meals taken there I felt
no ill effects and so I went quite confidently to the restaurant the eleventh
time. The Rule said that the probability that I would not be poisoned by
my next meal was 11/12.

A boy is 10 years old today. The Rule says that, having lived 10 years,
he has the probability 11/12 to live one more year. The boy’s grandfather
attained 70. The Rule says that he has the probability 71/72 to live one
more year.

These applications look silly, but none is sillier than the following due to
Laplace himself. “Assume,” he says, “that history goes back 5,000 years,
thatis, 1,826,213 days. The sunrose each day, and so you can bet 1,826,214
against 1 that the sun will rise again tomorrow.”? I would certainly be
careful not to offer such a bet to a Norwegian colleague who could arrange
air transportation for both of us to some place within the Arctic circle.

Yet the rule can beat even this absurdity. Let us apply it to the case
m — 0: the Rule’s derivation is as valid for this case as for any other case.
Yet for m = 0 the Rule asserts that any conjecture without any verification
has the probability 1/2. Anybody can invent examples to show that such
an assertion is monstrous. (By the way, it is also self-contradictory.)

(3) Our discussion was long. In more guarded language it would have
been still longer, and it could be prolonged, but here is the long and the
short of it: the Rule of Succession may look wise if we avoid numerical
values, but it certainly looks foolish if we get down to numerical values.
Perhaps, this points to a moral: in applying the Calculus of Probability to
plausible reasoning, avoid numerical values on principle. At any rate,
this is the standpoint advocated in this chapter.

7. Why not quantitative? This chapter advances a thesis: The Calculus
of Probability should be applied to plausible reasoning, but only quali-
tatively. But there is a strong temptation to apply it quantitatively, and
so we have to examine a few more relevant points.

(1) Non-comparable. There is some evidence that Goldbach’s conjecture
concerning the sum of two odd primes is correct; see sect. 1.2-1.3.  There
is some evidence that Norsemen landed on the American mainland a few
hundred years before Columbus. Which evidence is stronger?

This seems to be a very silly question indeed. What could be the purpose
of comparing two such disparate cases? And who should compare them?
To judge the evidence competently you should be an expert. In one case the
evidence should be judged by a mathematician expert in the Theory of

7 Qeuvres complétes, vol. 7, p. XVIIL.



THE LOGIC OF PLAUSIBLE REASONING 137

Numbers. 1In the other case the evidence should be judged by a historian
expert in Old Icelandic. There is scarcely a person who would be expert in
both.

However this may be, our apparently silly question points out a possibility.
It could be that there is no reasonable decision, no reasonable way to say
which evidence is stronger than the other. This possibility is so important
that it deserves a name. If there is no reasonable way to decide which
evidence is stronger, E, or E,, let us call E, non-comparable with E,. We
could find in the foregoing chapters several examples that suggest
more clearly and more convincingly than the example from which we
started here that one evidence may not be comparable with another. See
sect. 4.8.

(2) Comparable. After having pointed out the possibility that evidences
may be non-comparable, let us survey now a few cases in which evidences
are obviously comparable.

Let E, denote the evidence for Goldbach’s conjecture (sect. 1.2) resulting
from its verification for all even numbers up to 1,000. Let E, denote the
evidence for the same conjecture resulting from its verification up to 2,000.
Obviously, the evidence E, is stronger than the evidence E;.

Now, let us change the notation, and let E; denote the present evidence
for the landing of Norsemen on the American continent before Columbus.
Let E, denote what this evidence would grow into, if somebody discovered,
say, a burial place somewhere on the coast of Labrador containing shields
and swords similar to those preserved elsewhere from the Viking age.
Obviously, the evidence E, would be stronger than the evidence .

Let us consider one more, somewhat subtler, case. Let now E, denote the
evidence for a conjecture A resulting from the verification of one of its
consequences B. After the consequence B has been verified, somebody
remarks that B is very improbable in itself, (This remark could be quite
precise; the probability of B, computed on the basis of a simple and
apparently appropriate statistical hypothesis, could be very low.) This
remark changes the evidence for the conjecture 4 into E,. The evidence E,
is stronger than the evidence E,. (We have said this already, perhaps a
trifle less sharply, in sect. 12.3.)

In all three examples, we obtain the evidence E, from the evidence E, by
adding some relevant observation. Yet, if there is no such simple relation
between E; and E,, how could we decide which one is stronger? This
question brings even closer the possibility that evidences may be
non-comparable.

(3) Comparable, but still not quantitative. In the foregoing, subsection (2),
we have seen cases in which an evidence E, may be reasonably held stronger
than an evidence E,. Yet how much stronger? It seems to me that there is no
reasonable answer to this question in any of the foregoing cases. And so we
still remain on a qualitative level.
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(4) How would it look? 1In sect. 4 we started taking the symbol Pr{4}
to denote the credibility of a conjecture 4. In the subsequent sections of
this chapter we tried to get along without giving any determinate numerical
value to Pr{4}: herein consists the “qualitative” standpoint that this book
advocates. The “quantitative” standpoint would consist in giving to Pr{4}
a definite numerical value whenever the Calculus of Probability is applied to
plausible reasoning about the conjecture A.

The burden of proof falls squarely on those who champion a quantitative
application of the Calculus of Probability to plausible reasoning. All that
they have to do is to produce a class of non-trivial conjectures 4 for which the
credibility Pr{4} can be computed by a clear method that leads to acceptable
results at least in some cases.’

Nobody has yet proposed a clear and convincing method for computing
credibilities in non-trivial cases, and if we visualize concrete situations in which
a sound estimate of credibilities is important (as we have done), we can easily
perceive that any attribution of definite numerical values to credibilities is in
great danger of looking foolish.

Credibilities that have definite numerical values are comparable: two
numbers are either equal, or one of them is greater than the other. Yet,
after the discussion under (1) and (2), we may find it hard to accept that any
two conjectures should be comparable in credibility. Take the two
conjectures with which we began our discussion: Goldbach’s conjecture and
that historical conjecture about the discovery of America. If we attributed
numerical values to their credibilities, the strength of the evidence speaking
for one could be compared with that for the other: yet such a comparison
looks futile and foolish.

(5) Would it be worthwhile? There is another point to consider which is
independent of the foregoing discussion. The weight of a plausible argument
may be extremely important, but such importance is provisional, ephemeral,
transient: would it be worthwhile to fasten a numerical value on something
so transitory ?

What is the credibility of Newton’s law of gravitation, judged in the light
of the facts collected in the first edition of the Principia? Let us imagine for
a moment that there is a method to evaluate numerically such a credibility.
Yet we should not imagine for a moment that the evaluation could be easy:
in view of the complexity of the facts and their interrelations, the evaluation
must be delicate and the numerical computation long. Would it be
worthwhile to undertake it? Perhaps, for us, in view of the historical and
philosophical importance of Newton’s discovery. Yet scarcely for Newton
and his contemporaries: instead of computing the credibility of the theory,
they could have, with the same effort, changed the credibility by developing

8 Attributing a numerical value to a credibility on the basis of some assumption of inter-
changeability or symmetry (as we did in ex. 4) should be regarded here as trivial: something
more, and more novel, is required to justify quantitative credibilities.
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the theory, and multiplying the observations. It looks preposterous to
devote ten years to the computation of a degree of credibility that is valid
only a second.

8. Infinitesimal credibilities? A new particular case of some number-
theoretic conjecture (such as Goldbach’s conjecture; cf. sect. 1.2-1.3) has
been verified. Such verification must be considered as increasing the weight
of the evidence, or the credibility of the conjecture. Yet no amount of such
verifications can prove the conjecture. We may even feel that no amount of
such verifications can bring the conjecture measurably nearer to a proof.
(Cf. ex. 4 (5), ex. 6 (1).) Such feelings may suggest the introduction of
infinitesimals into the Calculus of Probability.

Infinitesimals can be quite clearly handled by modern mathematics.
We consider “quantities” a, b, . . . represented by ‘“‘“formal power series” :

a=ay+ a6+ a6+ a,e3 ... ;

4y, 4y, ay, . . . are real numbers, ¢ is an indeterminate, no attention is paid to
convergence. There is an algebra of such quantities; there are rules
(familiar from the theory of convergent power series) according to which
such formal power series can be added, subtracted, and multiplied; even
division by a can be performed if ay # 0. We call a the “quantity zero” or
0 when qy, a,, a,, . . . all vanish. Two quantities are equal if their difference
is 0. The quantity a reduces to the number ay when a,, a,, aj, . . . all vanish.

We say that a is positive if the first non-vanishing number in the sequence
g; @y, Ay, . . . is positive. From this definition, we easily derive two basic
rules:

Either a is 0 or a is positive or —a is positive, and these three possibilities
are mutually exclusive.

The sum and product of two positive quantities are positive.

We say that @ > b if a — b is positive. From these definitions it follows
that any positive number is greater than e, (that is, the formal power series
04+ e+0-240-68 .. .) although ¢ is positive. And so ¢ is an
“actual” infinitesimal.

We may contemplate now some form of the Calculus of Probability in which
the probabilities (or credibilities) are not necessarily numbers, but quantities
a of the kind just introduced, subject to the condition 0 <a< 1. Insucha
calculus the credibility of Goldbach’s conjecture after 1,000,000, or any
other number, of verifications could still be infinitesimal, that is, a quantity
a with q; = 0.

I refrain from comments on the prospects of such a plan. At any rate, it
discloses a possibility of viewing non-numerical credibilities from another
angle.

9- Rules of admissibility. 1 wish the reader to draw his own conclu-
sions and to form his own opinion. Therefore I postponed the expression of
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my opinion on a crucial question to this last comment of the chapter. I
mean the question suggested by the first section of the chapter: Has plausible
reasoning rules of any kind?

It is rather obvious that plausible reasoning has no rules of the same kind
as demonstrative reasoning. A demonstration has been proposed. If it
is presented in sufficiently small steps, the validity of each step can be tested
by a rule of formal logic. If all steps conform to the rules, the demonstration
is valid, but it is invalid if there is a step violating the rules. Thus, the rules
of demonstrative logic are decisive: they can decide whether a proposed
demonstrative argument is binding or not. The patterns of plausible
reasoning that we have collected cannot achieve such a thing. A plausible
argument has been proposed. Each step of it intends to render a certain
conjecture more credible and does so following some accepted pattern.
Having followed each step of the whole argument, you are not bound to
trust the conjecture to any definite degree.

Yet there are rules of different kinds. Logical rules are very different
from legal rules. A law court should listen to all parties concerned, but it
should not listen to irrelevancies. Therefore a law court should have powers
to exclude irrelevant matters from its proceedings, and such powers are
regulated by rules of admissibility. Without some rules of this kind, there could
be no orderly administration of justice: the court could not restrict an
unscrupulous counsel who, by unfair or irrelevant questions, could wear
down adverse witnesses, the opposition, the jury, and the judge, or drag out
the proceedings indefinitely.

The patterns of plausible reasoning collected in the foregoing can be
regarded as rules of admissibility in scientific discussion. You are by no means
obliged to give a definite degree of credence to a conjecture if some of its
consequences have been verified. Yet if the conjecture is discussed, it is
certainly admissible to mention such verifications and it is fair and reasonable
to listen to them. Our patterns register various points concerning such
verifications that could reasonably influence the weight of the evidence
(as analogy, or lack of analogy, with former verifications, etc.). It is fair
and reasonable to admit the discussion of such points too. In collecting these
patterns the author’s intention was to list those general points that, according
to the usage of good scientists, are admissible in a scientific discussion, with a view to
reasonably influencing the credibility of the conjecture discussed.

In a trial by jury, the powers of the court are divided between the jury
and the presiding judge. This division of powers (as conceived by certain
legal authorities and accepted to some extent by the judicial practice of
certain states and countries) is of great interest for us. The jury and the
judge have different functions, they decide different questions. Questions
concerning the admissibility of evidence are answered by the judge, questions
concerning the credibility of the evidence admitted are answered by the jury.
It is for the judge to decide which evidence deserves consideration by the jury.
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It is for the jury to determine whether the submitted evidence is of sufficient
weight. In deciding which matters are, and which are not, worthy of
consideration by the jury, the judge has to know and to respect precedent,
the court’s usage, and the formulated rules of admissibility. In weighing
the evidence submitted, the juror, who had possibly no legal training at all,
has to rely on his own natural lights.

In short, the powers of the court are so divided between the judge and the
jury, as the power of judging a proposed conjecture is divided in each of us
between impersonal rules and personal good sense. The judge plays the
role of the rules, the jury that of your personal discernment. It is for the
impersonal rules of plausible reasoning to decide which kind of evidence
deserves consideration. Yet it is for your personal good sense to decide
whether the particular piece of evidence just submitted has sufficient weight
or not.



XVI

PLAUSIBLE REASONING IN
INVENTION AND INSTRUCTION

Words consist of letters of the alphabet, sentences of words which can be
found in the dictionary, and books of sentences which may be found also in
other authors. Yet if the things I say are consistent and so connected that
they follow from each other, you can as well blame me for having borrowed
my sentences from others as for having borrowed my words from the dictionary.
—DESCARTES!

1. Object of the present chapter. The examples in the first part of
this work and the discussions in the foregoing chapters of the second part
elucidated somewhat, I hope, the role of plausible reasoning in the discovery
of mathematical facts. Yet the mathematician does not only guess; he also
has problems to solve, and he has to prove the facts that he guessed. What is
the role of plausible reasoning in the discovery of the solution or in the
invention of the proof? This is the question to be discussed in the present
chapter. And, by the way, this is the question that attracted the author
who, primarily concerned with the methods of problem-solving, was
eventually led to the subject of the present book.

The subject of plausible reasoning is subtle and elusive and so is the subject
of methods of solution. It was perhaps appropriate to defer the question
that combines two such delicate subjects till the last chapter. The following
treatment will be brief; the main purpose is to point out the connection
with the matters previously discussed. A more ample treatment would fit
into another book on methods of problem-solving.

2. The story of a little discovery. The solution of any simple but
not merely routine mathematical problem may bring you some of the tension
and the triumph of a discovery. Let us look at the following example:
Construct a quadrilateral, being given a, b, ¢, and d, its four sides, and &, the angle
included by the opposite sides a and c.

1 Qeuvres, edited by Adam and Tannery, vol. 10, 1908, p. 204.
142
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The data of the problem are exhibited in fig. 16.1: four lines and one
angle, fragments of a figure torn to pieces that we should reassemble to
satisfy all the requirements laid down in the problem.

It is understood that the sides a, b, ¢, and d follow each other in this order
around the desired quadrilateral so that a is opposite to ¢, and b to d. The
angle ¢, included by the opposite sides a and ¢ is not one of the four angles
of the quadrilateral.

Let us ask a few of the usual questions that may bring the problem closer
to us.

Are the data sufficient to determine the unknown? The four sides alone would be
obviously insufficient to determine the quadrilateral: four sticks attached
by flexible joints at their respective ends form an articulated quadrilateral
which is movable, deformable, not rigid, has no determinate shape. Yet if
one of its four angles is fixed, the articulated quadrilateral cannot move any
more: the quadrilateral is determined by its four sides and one of its angles.
We may guess that it is also determined by four sides and some other angle,
and so the data of our problem appear sufficient.

Draw a figure. We draw fig. 16.2 which displays all five data so assembled
as they should be assembled according to the conditions of the proposed
problem. Presumably, we have to use all the data.

It can happen that we get stuck at this point and no useful idea occurs to
us for a while. In fact, fig. 16.2 looks clumsy. The sides a, b, ¢, d are at
their proper places, of course, but the situation of the angle ¢ appears
unfortunate. This angle is one of our data, we have to use it. Yet how can
we use it if it is located so far away, at such an unusual place?

An experienced problem-solver would try to redraw the figure: he would
try to place that angle ¢ somewhere else. He may hit so upon fig. 16.3
where the angle ¢ is between the side a and a parallel to the side ¢ drawn
through an endpoint of a. Fig. 16.3 looks more promising than the obvious
fig:16:2,

Why does fig. 16.3 look promising? Even good students who feel pretty
sure that fig. 16.3 is promising may be unable to answer this question
clearly.

“It looks good to me.”

“The data are more tightly fitted together.”

Only a student who is exceptionally talented or experienced will be able
to give a full explanation: “In fig. 16.2 the angle is located in a triangle.
Yet this triangle is not suitable for construction: only two data are known,
e and b. As located in fig. 16.3, the angle ¢ has more chance to be fitted
into a suitable triangle. This is desirable, since, usually, this kind of
construction is reduced to the construction of a triangle from suitable data.”

The general idea behind the last answer seems to be: any feature in which
the present situation recognizably agrees with successful past situations
seems promising.
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g B C/ a

Fig. 16.1. Fragments. Fig. 16.2. Obvious.

Fig. 16.3. Warmer. Fig. 16.4. Hot!

&

a
Fig. 16.5. Done!
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However this may be, fig. 16.3 lives up to our expectations. In fact, the
angle & does fit into a triangle that we can easily construct (from the sides
a and ¢ and the included angle ¢, see fig. 16.4). When this triangle has been
completed, the solution is quite close. In fact, to the triangle just completed
another triangle is attached that we can construct (from sides b, d, and a
previously constructed side, see fig. 16.5). Having drawn both triangles, we
complete the required construction by drawing the parallelogram with
sides b and c.

For most problem-solvers the decisive step in the foregoing solution,
represented by a succession of five figures, is the step from fig. 16.2 to fig. 16.3;
a longer period of hesitation may precede this step. Yet, once the angle ¢
is favorably located, the progress of the solution from fig. 16.3 through
fig. 16.4 to the final fig. 16.5 may be quite rapid.

The foregoing solution may reveal one or two points which play a role
also in more momentous discoveries.

3. The process of solution. Solving a problem is an extremely
complex process. No description or theory of this process can exhaust its
manifold aspects, any description or theory of it is bound to be incomplete,
schematic, highly simplified. I wish to point out the place of plausible
reasoning in this complex process, and I shall choose the simplest description
I am able to find in which this place can be recognizably located. And even
the beginning of such a simple description will suffice here.

(1) Setting a problem to yourself. A problem becomes a problem for you
when you propose it to yourself. A problem is not yet your problem just
because you are supposed to solve it in an examination. If you wish that
somebody would come and tell you the answer, I suspect that you did not yet
set that problem to yourself in earnest. But if you are anxious to find the
answer yourself, by your own means, then you have made the problem really
yours, you are serious about it.

Setting a problem to yourself is the beginning of the solution, the essential
first move in the game. Itis a move in the nature of a decision.

(2) Selective attention. You need not tell me that ycu have set that problem
to yourself, you need not tell it to yourself; your whole behavior will show
that you did. Your mind becomes selective; it becomes more accessible to
anything that appears to be connected with the problem, and less accessible
to anything that seems unconnected. You eagerly seize upon any recollec-
tion, remark, suggestion, or fact that could help you to solve your problem,
and you shut the door upon other things. When the door is so tightly shut
that even the most urgent appeals of the external world fail to reach you,
people say that you are absorbed.

(3) Registering the pace of progress. There is another thing that shows that
you are seriously engaged in your problem; you become sensitive. You
keenly feel the pace of your progress; you are elated when it is rapid, you
are depressed when it is slow. Whatever comes to your mind is quickly
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sized up: ‘It looks good,” “It could help,” or “No good,” “No help.”
Such judgments are, of course, not infallible. (Although they seem to be
more often correct than not, especially with talented or experienced people.)
At any rate, such judgments and feelings are important for you personally;
they guide your effort.

(4) Where plausible reasoning comes in. Let us see somewhat more concretely
a typical situation.

You try to attain the solution in a certain direction, along a certain line.
(For example, in trying to solve the geometrical problem of sect. 2 you reject
fig. 16.2 and attempt to work with the more hopeful fig. 16.3.) You may
feel quite keenly that you work in the right direction, that you follow a
promising line of approach, that you are on the scent. You may feel so,
by the way, without formulating your feeling in words. Or even if you say
something such as, “It looks good,” you do not take the trouble to analyze
your confidence, you do not ask, “Why does it look good?”” You are just
too busy following up the scent.

Yet you may have bad luck. You run into difficulties, you do not make
much progress, nothing new occurs to you and then you start doubting:
“Was it a good start? Is this the right direction?” And then you may
begin to analyze your feeling: ‘““The direction looked quite plausible—
but why is it plausible?”” Then you may start debating with yourself, and
some more distinct reasons may occur to you:

“The situation is not so bad. I could bring in a triangle. People
always bring in triangles in such problems.”

““It was probably the right start, after all. It looks like the right solution.
What do I need for a solution with this kind of problem? Such a point—and
I have it. And that kind of point—I have it too. And...”

It would be interesting to see more distinctly how people are reasoning in
such a situation—in fact, it is our main purpose to see just that. Yet we
need at least one more example to broaden our observational basis.

4. Deus ex machina.? The next example has to be a little less simple
than that of sect. 2. It will be given in sect. 6 after some preparations in
this section and the next. Sect. 6 will bring a proof, presented in a manner
that contrasts with the usual manner of presentation. To emphasize the
contrast, let us first see the proof as it would be presented in a (more advanced)
textbook or in a mathematical periodical.

A mathematical book or lecture should be, first of all, correct and
unambiguous. Still, we know from painful experience that a perfectly
unambiguous and correct exposition can be far from satisfactory and may
appear uninspiring, tiresome, or disappointing, even if the subject-matter
presented is interesting in itself. The most conspicuous blemish of an

2 Sect. 4, 5, and 6 reproduce, except for slight changes, parts of my paper “With, or
without, motivation?” American Mathematical Monthly, v. 56, 1949, p. 684-691.
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otherwise acceptable presentation is the ‘“deus ex machina.” Before further
comments, I wish to give a concrete example. Let us look at the proof of
the following not quite elementary theorem.?

If the terms of the sequence ay, ay, a,, . . . are non-negative real numbers, not all
equal to O, then

0

-
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Proof. Define the numbers ¢y, ¢,, ¢5, . . . by
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forn=1,2,3,.... We use this definition, then the inequality between
the arithmetic and the geometric means (sect. 8.6), and finally the fact that
the sequence defining e, the general term of whichis [(k + 1) /k]¥, isincreasing.
We obtain
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5. Heuristic justification. The crucial point of the derivation (d) is
the definition of the sequence ¢, ¢,, ¢5, . . . . This point appears right at the
beginning without any preparation, as a typical “deus ex machina.”” What
is the objection to it?

“It appears as a rabbit pulled out of a hat.”

“It pops up from nowhere. It looks so arbitrary. It has no visible
motive or purpose.”’

3 I may be excused if I choose an example from my own work. See G. Pélya, Proof of an
inequality, Proceedings of the London Mathematical Society (2), v. 24,1925, p. LVII. The theorem
proved is due to T. Carleman.
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“I hate to walk in the dark. I hate to take a step when I cannot see any
reason why it should bring me nearer to the goal.”

“Perhaps the author knows the purpose of this step, but I do not, and
therefore I cannot follow him with confidence.”

“Look here, I am not here just to admire you. I wish to learn how to
do problems by myself. Yet I cannot see how it was humanly possible to
hit upon your . .. definition. So what can I learn here? How could I
find such a . . . definition by myself?”

“This step is not trivial. It seems crucial. IfI could see that it has some
chances of success, or see some plausible provisional justification for it, then
I could also imagine how it was invented and, at any rate, I could follow
the subsequent reasoning with more confidence and more under-
standing.’”

The first answers are not very explicit, the later ones are better, and the
last is the best. It reveals that an intelligent reader or listener desires two
things:

First, to see that the present step of the argument is correct.

Second, to see that the present step is appropriate.

A step of a mathematical argument is appropriate if it is essentially
connected with the purpose, if it brings us nearer to the goal. It is not
enough, however, that a step is appropriate: it should appear so to the reader.
If the step is simple, just a trivial, routine step, the reader can easily imagine
how it could be connected with the aim of the argument. If the order of
presentation is very carefully planned, the context may suggest the connection
of the step with the aim. If, however, the step is visibly important, but its
connection with the aim is not visible at all, it appears as a ‘“deus ex
machina” and the intelligent reader or listener is understandably dis-
appointed.

In our example, the definition of ¢, appears as a ‘““deus ex machina.” Yet
this step is certainly appropriate. In fact, the argument based on this
definition proves the proposed theorem, and proves it rather quickly and
clearly. The trouble is that the step in question, although vindicated in the
end, does not appear as justified from the start.

Yet how could the author justify it from the start? The complete justifica-
tion takes some time; it is supplied by the full proof. What is needed is,
not a complete, but an incomplete justification, a plausible provisional ground,
just a hint that the step has some chances of success, in short, some heuristic
Justification.

6. The story of another discovery. It is almost unnecessary to remind
the reader that the best stories are not true. They must contain, however,
some essential elements of truth, otherwise they would not be any good.
The following is a somewhat “rationalized’ presentation of the steps that led
me to the proof given in sect. 4. That is, the heuristic justification of the
successive steps is suitably emphasized.
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The theorem proved in sect. 4 is surprising in itself. We would be less
surprised if we knew how it was discovered. We are led to it naturally in
trying to prove the following: If the series with positive terms

G+ Byt a3 .. Fa,+ oo

is convergent, the series

4, + (2,8)V2 + (aya,8,)13 4 . . . + (218585 . . . @)V + . ..
is also convergent. 1 shall try to emphasize some motives which may help us
to find the proof.
(1) A suitable known theorem. ~Itisnatural to begin with the usual questions.
What is the hypothesis? We assume that the series Xa, converges—that its
partial sums remain bounded—that

a, + ay + ...+ a, is not large.
What is the conclusion? We wish to prove that the series X(ay, ay . . . a,)/*
converges—that
(ayay . . . @)™ is small.

Do you know a theorem that could be useful? What we need is some relation
between the sum of n positive quantities and their geometric mean. Have
you seen something of this kind before? If you ever have heard of the inequality
between the arithmetic and the geometric means, it has a good chance to
occur to you at this juncture:

)1/n<a1+a2+'°'+an.
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This inequality shows that (a;a, . . . a,)V/" is small when a;, + a, + ... + a,
is not large. It has so many contacts with our problem that we can hardly
resist the temptation of applying it:
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—complete failure! The series 21/n is divergent, the last line of (a) is
meaningless.

(2) Learning from failure. It is difficult to admit that our plan was wrong.
We would like to believe that at least some part of it was right. The useful
questions are: What was wrong with our plan? Which part of it could we save?

The series @, + a, + ...+ a, + ... converges. Therefore, a, is small
when n is large. Yet the two sides of the inequality (ag) are different when
ay, 4y, ... a, are not all equal, and they may be very different when
ay, ay, . . . a, are very unequal. In our case, ¢, is much larger than qa,, and
so there may be a considerable gap between the two sides of (ag). This is
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probably the reason that our application of (ag) turned out to be
insufficient.
(3) Modifying the approach. The mistake was to apply the inequality (ag)
to the quantities
G ey e 0y

which are too unequal. Why not apply it to some related quantities which
have more chance to be equal? We could try

1y, agi-0a85 v s NG

n*

This may be the idea! We may introduce such increasing compensating
factors as 1, 2, 3, ... n. We should, however, not commit ourselves more
than necessary, we should reserve ourselves some freedom of action. We
should consider perhaps, more generally, the quantities

2 2 2 2
Vg, 2%as,-308s7. < 0y

We could leave A indeterminate for the moment, and choose the most advan-
tageous value later. This plan has so many good features that it seems ripe
for action:
1/n
® vn 2 (ag1*- a2t . .. am?)
; (0, 85...a,)" " =2 (1.2, )i

A
Ms

(b)

1
= 2 akt 3 DL

k=1 n=k

We run into difficulties. We cannot evaluate the last sum. Even if we
recall various relevant tricks, we are still obliged to work with “crude equa-
tions” (notation A, instead of =):

()" ~ ne?,

%
e
Introducing this into the last line of (b) we come very close to proving
(b) 2 (@ay. .. aye g C3a

where C is some constant, perhaps ¢!A-1.  Such aninequality would, of course,
prove the theorem in view.
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(4) Looking back at the foregoing reasoning we are led to repeat the question:
“Which value of 1 is the most advantageous?” Probably the A that makes
¢*21 a minimum. We can find this value by differential calculus:

=1

This suggests strongly that the most obvious choice is the most advantageous:
the compensating factor multiplying a, should be n! = n, or some quantity
not very different from n when » is large. This may lead to the simple
value C = ¢ in (b’).

(5) More flexibility. We left A indeterminate in our foregoing reasoning
(b). This gave our plan a certain flexibility: the value of A remained at our
disposal. Why not give our plan still more flexibility? We could leave
the compensating factor that multiplies a, quite indeterminate; we call it
¢,» and we will dispose of its value later, when we shall see more clearly what
we need. We embark upon this further modification of our original
approach:
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How should we choose ¢,? This is the crucial question and we can no longer
postpone the answer.

First, we see easily that a factor of proportionality must remain arbitrary.
In fact, the sequence ccy, ccy, . . . , cc,, . . . leads to the same consequences as
G o it

Second, our foregoing work suggests that both ¢, and (¢;c, . . . ¢,,)!/" should
be asymptotically proportional to n:

ey~ Kn, {646y . )P~ et En = K'n.
Third, it is most desirable that we should be able to effect the summation
n= o 1
n=k n(cicq. .. Cp) 1"

At this point, we need whatever previous knowledge we have about simple
series. If we are familiar with the series

Zﬁ:z(%_nil)

it has a good chance to occur to us at this juncture. This series has the
property that its sum has a simple expression not only fromn = 1 to n = o0,
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but also from n = k to n = co—a great advantage! This series suggests the
choice

(cy0g ..M =mn 41,

Now, visibly n + 1 ~ n for large n—a good sign! What about ¢, itself? As
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the asymptotic proportionality with n is a good sign. And the number e
arises—a very good sign!

We choose this ¢, and, after this choice, we take up again the derivation
(d) in sect. 4 with more confidence than before.

Now, we may understand how it was humanly possible to discover that
definition of ¢, which appeared in sect. 4 as a ““deus ex machina.” The
derivation (d) became also more understandable. It appears now as the
last, and the only successful, attempt in a chain of consecutive trials, (a), (b),
(c),and (d). And the origin of the theorem itselfis elucidated. We see now
how it was possible to discover the réle of the number ¢ which appeared so
surprising at the outset.

7. Some typical indications. We have seen two examples in the fore-
going. We examined first a “‘problem to find”’ (in sect. 2) then a “problem
to prove” (in sect. 6.)% A much greater variety of examples were needed to
illustrate properly the réle of plausible reasoning in devising a plan of the
solution. At any rate, from our examples we can disentangle a few typical
circumstances indicative of the worth of a plan. In dealing with other
circumstances of this kind we shall appeal to whatever experience the reader
had in solving mathematical problems.

In enumerating such indicative circumstances, we shall not attempt
completeness. In some cases we shall find it necessary to distinguish between
problems to find and problems to prove. In such cases we shall give two
parallel formulations, and give the formulation relative to problems to find
first.

We consider a situation in which plausible reasoning comes naturally to
the problem-solver. You are engaged in an exciting problem. You have
conceived a plan of the solution, but somehow you do not like it quite. You
have your doubts, you are not quite convinced that your plan is workable.
In debating this matter with yourself, you are, in fact, examining a conjecture:

A. This plan of the solution will work.

Several pros and cons may occur to you as you examine your plan from
various angles. Here are some conspicuous typical indications that may
speak for the conjecture 4.

4 For this terminology, see How to Solve It, p. 141-144.
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B,. This plan takes all the data into account.

This formulation applies to problems to find. There is a parallel formula-
tion that applies to problems to prove: this plan takes into account all the parts of
the hypothesis. For example, fig. 16.3 combines all the data, and this is a
good sign. Also fig. 16.2 contains all the data, but there is a difference
between the two figures that the next points may clarify.

B,. This plan provides for a connection between the data and the unknown.

There is a parallel formulation concerned with problems to prove: this
plan provides for a connection between the hypothesis and the conclusion. For example,
in sect. 6 (1), the inequality between the arithmetic and geometric means
promised to create a connection between the hypothesis and the conclusion,
and this promise moved us to work with that inequality. Fig. 16.3 appears
to provide for a closer connection, and so it appears more hopeful, than
fig. 16.2.

By. This plan has features that are often useful in solving problems of this
kind.

For example, the plan starting from fig. 16.3 introduces at a more mature
stage (fig. 16.4) the construction of a triangle. This is a good sign, since
problems of geometric construction are often reduced to the construction of
triangles.

B,. This plan 1is similar to one that succeeded in solving an analogous
problem.

By. This plan succeeded in solving a particular case of the problem.

For example, you have a plan to solve a difficult problem concerned with
an arbitrary closed curve. Carrying through the plan seems to involve a lot
of work and so you hesitate. Yet you observe that in the particular case
when the closed curve is a circle your plan works and yields the right result.
This is a good sign, and you feel encouraged.

Bg. This plan succeeded in solving a part of the problem (in finding some of the
unknowns, or in proving a weaker conclusion).

This list is by no means exhaustive. There are still other typical indica-
tions and signs, but we need not list them here. At any rate, it would be
useless to list them without proper illustration.?

8. Induction in invention. The problem-solver’s conjecture 4 (that
his plan of the solution will work) may be supported by one, or two, or more
indications By, By, Bs, . . . (of the kind listed in the foregoing sect. 7). Such
indications may occur to the problem-solver successively, each indication
intensifying his confidence in his plan. Our foregoing discussions lead us to
compare such a problem-solving process with the inductive process in which
an investigator, examining a conjecture 4, succeeds in verifying several
consequences By, By, B, . . . in succession. We may also compare it with
the legal procedure in which the jury examining an accusation 4, takes

5 Cf. How to Solve It, p. 212-221.
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cognizance of several corroborating circumstances By, By, By, . . . in succes-
sion. We should not naively expect the identity of the three processes,
but we should examine their similarity or dissimilarity with an open
mind.

(1) When the problem-solver debates his plan of the solution with himself,
this plan is usually more “fluid”’ than “rigid,” it is more felt than formulated.
In fact it would be foolish of the problem-solver to fix his plan prematurely.
A wise problem-solver does not commit himself to a rigid plan. Even at a
later stage, when the plan is riper, he keeps it ready for modification, he
leaves it a certain flexibility, he reckons with unforeseen difficulties to which
he might be obliged to adapt his plan. Therefore, when the problem-
solver investigates the workability of his plan, he examines a changeable,
sometimes a fleeting, object.

On the other hand, the conjectures that the mathematician or the
naturalist investigates are usually pretty determinate: they are clearly
formulated, or at least reasonably close to a clear formulation. Also the
jury has a pretty determinate conjecture to examine: an indictment, the
terms of which have been carefully laid down by the prosecution.

Let us note this striking difference that separates the problem-solver’s
investigation of the workability of his plan from the inductive investigation
of a mathematical or physical conjecture, or from the judicial investigation
of a charge: it is the difference between a changeable, or fleeting, and a
determinate, relatively well defined object.

(2) The proceedings and acts of a court of justice are laid down in the
record. The conjecture examined by the naturalist, and the evidence
gathered for or against it, are also destined for a permanent record. Not so
the problem-solver’s conjecture concerning the workability of his scheme,
or the signs speaking for or against it: their importance is ephemeral. They
are extremely important as long as they guide the problem-solver’s decisions.
Yet, when the problem-solver’s work enters a new phase, the plan itself may
change, and then the indications speaking for or against it lose almost all
interest. At the end, when the solution is attained and the problem is done,
all such accessories are cast away. The final form of the solution may be
recorded, yet the changing plans and the arguments for or against them are
mostly or entirely forgotten. The building erected remains in view, but
the scaffoldings, which were necessary to erect it, are removed.

Let us note this aspect of the difference between an inductive, or judicial,
investigation on the one hand, and the problem-solver’s appraisal of the
prospects of his plan on the other: one is, the other is not, for permanent
record.

(3) The conjecture A and the indications B,, B,, . . . listed in sect. 7 can
be interpreted with a certain latitude. After the foregoing remarks (under
(1) and (2)) we should not expect that a sharply defined interpretation will
be too often applicable. Still, there is some advantage in beginning with
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such an interpretation. We consider the problem-solver’s conjecture A
and an indication B supporting it, stated as follows:

A. This plan of the solution will work in its present form.

B. This plan of the solution takes into account all the data.

In order to describe the situation more precisely, we add: It is known that
each of the data is necessary. If this is so

A implies B.

In fact, if the plan should work and yield the correct solution, it must use all
the data, each of which is necessary to the solution.

Now it is important to visualize clearly the situation: 4 is a conjecture
in which the problem-solver is naturally interested, B is a statement that may,
or may not, be true. Let us examine both possibilities.

(4) If all the data are necessary to the solution, but our plan of the
solution does not take into account all the data, our plan, in its present
form, cannot work. (It could work in a modified form.) That is, if B
is false, 4 must also be false.

Now it is important to observe that we could reach this conclusion also by
formal reasoning. In fact, we have followed here a classical elementary
pattern of reasoning (already quoted in sect. 12.1) the “modus tollens” of
the so-called hypothetical syllogism :

A implies B
B false

A false

(5) If, however, our plan of the solution does take into account all the
data, it is natural to regard this circumstance as a good sign, as a favorable
omen, as a forecast that our plan might work. (I imagine the problem-
solver’s relief when he notices that a datum that at first seemed to be neglected
by his plan is used by it after all, and used in a neat manner, too.) In short,
if B is true, 4 becomes more credible.

Now it is important to observe that, in fact, we could have reached this
conclusion by simply following our fundamental inductive pattern:

A implies B
B true

A more credible

(6) We consider now another situation. It is similar to, but clearly
different from, the situation explained under (3) and discussed under (4)
and (5). Again we are concerned with the problem-solver’s conjecture A
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and an indication B supporting it. Yet the situation is now different (less
sharply defined). 4 and B have the meanings:

A. This plan of the solution will work (in a modified form, perhaps).

B. This plan of the solution takes into account all the data.

In order to characterize the situation more fully, we have to add:
We strongly suspect, although we do not definitely know, that all the data are
necessary.

As above, 4 is a conjecture in which the problem-solver has a stake, and
B is a statement that may, or may not, be true. We have to examine both
possibilities.

If B turns out to be false, there is an argument against 4, but it is not
quite decisive. As B is false, our plan does not take into account all the data;
nevertheless, we may stick to our plan (if we have some strong, although
unexpressed, ground for it). There may be some (not yet clarified) ground
to hope that a modification of our plan will take care of all the data eventually.
Also the doubt that all the data may not Be necessary could have some little
influence.

If B turns out to be true, we can take this circumstance for an encouraging
sign. In fact, even if 4 does not imply B, and so B is not absolutely certain
with 4, it may be that still

B with 4 is readily credible,

B without 4 is less readily credible.

In such a case the verification of B still counts as a sort of circumstantial
evidence for 4. (Cf. sect. 13.13 (5).)

(7) In the foregoing subsections (3), (4), (5), and (6), we discussed the
indication listed under B in sect. 7. (We called it just B.) The discussion
of the other indications listed in sect. 7 (under B,, Bj, . . . B) would disclose
a similar picture.

As we have seen, 4 may imply B;, but even if this is not so and B, is not
necessarily associated with 4, the chances may be strong that 4 will be
accompanied by B;. The relation of 4 to B, (or By, or By, ... ) is of the
same nature. If the problem-solver’s plan is any good, it must create some
connection between the data and the unknown (or between the hypothesis
and the conclusion); cf. B,. It is not absolutely necessary that the solution
should be similar to the solution of some formerly solved similar problem,
yet the chances are usually pretty strong that this should be so; cf. By, By. If
the plan works for the whole problem it must work, of course, for any par-
ticular case or any portion of the problem; cf. B, B,.

Therefore, if we are in doubt about 4, but succeed in observing B, or B, or
By . . ., we can reasonably regard our observation as some kind of inductive
or circumstantial evidence for 4, as an indication in favor of the problem-
solver’s conjecture that his plan will work.
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(8) If, in spite of much work, the naturalist succeeds in verifying only a
few not too surprising consequences of his conjecture, he may be moved to
drop it. If too little evidence is submitted against the defendant, the court
may drop the case. If, after a long and strenuous effort, only a few weak
indications in favor of his plan have occurred to the problem-solver, he may
be moved to modify his plan radically, or even drop it altogether.

On the other hand, if several consequences are verified, several pieces of
evidence against the defendant submitted, several indications observed, the
case for the naturalist’s conjecture, for the prosecution, or for the problem-
solver’s plan may be greatly strengthened. Yet even more important than
the number may be the variety. Consequences that are very different from
each other, witnesses who are obviously independent, indications that come
from different sides, count more heavily. (Cf. sect. 12.2, 13.11, 15.9.)

(9) In spite of such similarities, there is a considerable difference. The
naturalist’s task is to gather as much evidence as he can for or against his
conjecture. The court’s task is to examine all the relevant evidence sub-
mitted. Yet it is not the problem-solver’s task to collect as much evidence
as he can for or against his plan of the solution, or to debate such evidence to
the bitter end: his task is to solve the problem, by any means, in following
this plan of the solution, or any other plan, or no plan.

Even a faulty plan may serve the problem-solver’s purpose. To solve his
problem, he has to mobilize and organize the relevant parts of his past
experience. Working with a faulty plan, but with genuine effort, the
problem-solver may stir up some relevant item which otherwise would have
remained hidden and unawakened in the background; this may give him a
new departure. In problem-solving a bad plan is frequently useful; it may
lead to a better plan.

(10) Two persons presented with the same evidence may honestly
disagree, even if they are relying on the same patterns of plausible reasoning.
Their backgrounds may be different. My unexpressed, inarticulate
grounds, my whole background may influence my evaluation of experi-
mental or judicial evidence. They may influence still more my evaluation
of the indications for or against my plan of the solution, and this is not
unreasonable. It is reasonable that, working at the solution of a problem, I
should attach more weight than under other conditions to the promptings
of my background and less weight to distinctly formulated grounds: to stir
up relevant material hidden somewhere in the background is the thing I am
working for.

Still, it seems to me that one of the principal assets of a seasoned problem-
solver is that he is able to deal astutely with indications for or against the
workability of his plan, as a well-trained naturalist deals with experimental
evidence, or an experienced lawyer with legal evidence.

9. A few words to the teacher. Mathematics has many aspects. To
many students, I am afraid, mathematics appears as a set of rigid rules, some
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of which you should learn by heart before the final examinations, and all of
which you may forget afterwards. To some instructors, mathematics appears
as a system of rigorous proofs which, however, you should refrain from
presenting in class, but instead present some more popular although incon-
clusive talk of which you are somewhat ashamed. To a mathematician, who
is active in research, mathematics may appear sometimes as a guessing game:
you have to guess a mathematical theorem before you prove it, you have to
guess the idea of the proof before you carry through the details.

To a philosopher with a somewhat open mind all intelligent acquisition of
knowledge should appear sometimes as a guessing game, I think. In science
as in everyday life, when faced by a new situation, we start out with some
guess. Our first guess may fall wide of the mark, but we try it and, according
to the degree of success, we modify it more or less. Eventually, after several
trials and several modifications, pushed by observations and led by analogy,
we may arrive at a more satisfactory guess. The layman does not find it
surprising that the naturalist works in this way. The knowledge of the
naturalist may be better ordered with a view to selecting the appropriate
analogies, his observations may be more purposeful and more careful, he may
give more fancy names to his guesses and call them ““tentative generalizations,”
but the naturalist adapts his mind to a new situation by guessing like the
common man. And the layman is not surprised to hear that the naturalist
is guessing like himself. It may appear a little more surprising to the layman
that the mathematician is also guessing. The result of the mathematician’s
creative work is demonstrative reasoning, a proof, but the proof is
discovered by plausible reasoning, by guessing.

If this is so, and I believe that this is so, there should be a place for guessing
in the teaching of mathematics. Instruction should prepare for, or at least
give a little taste of, invention. At all events, the instruction should not
suppress the germs of invention in the student. A student who is somewhat
interested in the problem discussed in class expects a certain kind of solution.
If the student is intelligent, he foresees the solution to some extent: the result
may look thus and so, and there is a chance that it may be obtained by such
and such a procedure. The teacher should try to realize what the students
might expect, he should find out what they do expect, he should point out
what they should reasonably expect. If the student is less intelligent and
especially if he is bored, he is likely to produce wild and irresponsible guesses.
The teacher should show that guesses in the mathematical domain may be
reasonable, respectable, responsible. I address myself to teachers of mathe-
matics of all grades and say: Let us teach guessing!

I did not say that we should neglect proving. On the contrary, we
should teach both proving and guessing, both kinds of reasoning,
demonstrative and plausible. More valuable than any particular
mathematical fact or trick, theorem, or technique, is for the student to
learn two things:
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First, to distinguish a valid demonstration from an invalid attempt, a
proof from a guess.

Second, to distinguish a more reasonable guess from a less reasonable
guess.

There are special cases in which it is more important to teach guessing
than proving. Take the teaching of calculus to engineering students. (I
have a long and varied experience of this kind of teaching.) Engineers
need mathematics, quite a few of them have a healthy interest in mathematics,
but they are not trained to understand e-proofs, they have no time for
e-proofs, they are not interested in e-proofs. To teach them the rules of
calculus as a dogma imposed from above would not be educational. To
pretend that your proof is complete when, in fact, it is not, would not be
honest. Confess calmly that your proofs are incomplete, but give respect-
able plausible grounds for the incompletely proved results, from examples
and analogy. Then you need not be ashamed of fake proofs, and some
students may remember your teaching after the examinations. On the
basis of a long experience, I would say that talented students of engineering
are usually more accessible to and more grateful for well-presented plausible
grounds than for strict proofs.

I'said that it is desirable to teach guessing, but not that it is easy to teach it.
There is no foolproof method for guessing, and therefore there cannot be any
foolproof method to teach guessing. I may have said a few foolish things in
the foregoing, perhaps, but I have avoided the most foolish thing, I hope,
which would be to pretend that I have an infallible method to teach guessing.

Still, it is not impossible to teach guessing. I hope that some of the
examples explained at length and some of the exercises proposed in the fore-
going will serve as useful suggestions. These suggestions have the best
chance to fall on fertile ground with teachers who have some real experience
in problem-solving.

Take, for instance, the example treated in sect. 4and 6. The two presenta-
tions, in sect. 4 and sect. 6, are very different. The most obvious difference
is that one is short and the other long. The most essential difference is
that one gives proofs and the other plausibilities. One is designed to check
the demonstrative conclusions justifying the successive steps. The other is
arranged to give some insight into the heuristic motives of certain steps. The
demonstrative presentation follows the accepted manner, usual since
Euclid; the heuristic presentation is extremely unusual in print. Yet an
alert teacher can use both manners of exposition. In fact, he could con-
struct, if need be, a third presentation that is between the two with due regard
to the available time, to the interest of his students, to all the conditions
under which he works.$

¢ For a presentation intermediate between sect. 4 and sect. 6 see G. H. Hardy, J. E.
Littlewood, and G. Pélya, Inequalities, p. 249-250.
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This book is principally addressed to students desiring to develop their own
ability, and to readers curious to learn about plausible reasoning and its
not so banal relations to mathematics. The interests of the teacher are not
neglected, I hope, but they are met rather indirectly than directly. I hope
to fill that gap some day. In the meantime, I reiterate my hope that this
book, as it is, may be useful to some teachers, at least to those teachers who
have some genuine experience in problem-solving. The trouble is that
there are so few teachers of mathematics who have such experience. And
even the best School of Education has not yet succeeded in producing the
marvellous teacher who has such an excellent training in teaching methods
that he can make his students understand even those things that he does not
understand himself.

EXAMPLES AND COMMENTS ON CHAPTER XVI

1. To the teacher: some types of problems. This book is designed to serve
various categories of readers: those who wish to understand guessing, those
who wish to learn guessing, and those who wish to teach guessing. The
reader of the last category is seldom directly addressed, but an alert teacher
could learn something both from the examples presented in this book and
from the manner of presentation. He could see, for instance, that there are
manners of proposing a problem very different from the usual manner. I
wish to point out a few types of problems, the “guess-and-prove” problems,
the “test-consequences” problems, the ‘“you-may-guess-wrong” problems,
and the “‘small-scale-theory” problems. All these types could be used by an
alert teacher to challenge his more intelligent students and to relieve the
monotony of routine problems which fill the textbooks.

Guess and prove. Mathematical facts are first guessed and then proved,
and almost every passage in this book endeavors to show that such is the
normal procedure. If the learning of mathematics has anything to do
with the discovery of mathematics, the student must be given some
opportunity to do problems in which he first guesses and then proves some
mathematical fact on an appropriate level. Still, the usual textbooks do
not offer such an opportunity: ex. 1.2, 5.1, 5.2, 7.1-7.6 (and many
others) do.

Test consequences. Philosophers and non-philosophers disagree about
almost everything touching induction, but there is little doubt that the
most usual inductive procedure consists in examining a general state-
ment by testing its particular consequences. This inductive procedure
is of daily use in mathematical research, and could be of daily use in the
classroom with real benefit to the students. See sect. 12.2 and ex. 12.3-12.6.
Ciex 6.

You may guess wrong. You should acquire some experience in guessing.
You should know from personal contact with the real thing that guesses may
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be respectable, that guesses may go wrong, and that even your own quite
respectable guesses may gowrong. Forsuch experience, solveex. 11.1-11.12.

Small scale theory. On almost every page of this book some relatively
elementary problem is discussed so that the discussion should shed some light
upon a point that may arise in connection with other, not so elementary,
problems. There is a reason to prefer such ‘“‘small scale research”: a less
elementary problem could show the point in question on a more impressive
scale, but it would demand a much longer explanation and much more
preliminary knowledge. Itis not too easy to “reduce the scale”: elementary
problems that show clearly enough the relevant features of plausible, or
inventive, reasoning may be hard to find. It is also possible, but still less
easy, to devise elementary problems to illustrate the scientist’s activity in
constructing a theory. The following ex. 2, 3, and 4 offer such ‘‘small-scale-
theory problems”; ex. 5 and 6 are somewhat similar.

2. A quadrilateral is cut into four triangles by its two diagonals. We call
two of these triangles “‘opposite’ if they have a common vertex but no common
side. Prove the following statements:

(a) The product of the areas of two opposite triangles is equal to the
product of the areas of the other two opposite triangles.

(b) The quadrilateral is a trapezoid if, and only if, there are two opposite
triangles equal in area.

(c) The quadrilateral is a parallelogram if, and only if] all four triangles
are equal in area.

3. (a) Prove the following theorem: A point lies inside an equilatera
triangle and has the distances x, y, and z from the three sides, respectively;
h is the altitude of the triangle. Then x + y + z = A.

(b) State precisely and prove the analogous theorem in solid geometry
concerning the distances of an inner point from the four faces of a regular
tetrahedron.

(c) Generalize both theorems so that they should apply to any point in
the plane or space, respectively (and not only to points inside the triangle
or tetrahedron). Give precise statements, and also proofs.

4. Consider the following four propositions, (I)-(IV), which are not
necessarily true.
(I) If a polygon inscribed in a circle is equilateral it is also equiangular.
(IT) If a polygon inscribed in a circle is equiangular it is also
equilateral.
(ITI) If a polygon circumscribed about a circle is equilateral it is also
equiangular.
(IV) If a polygon circumscribed about a circle is equiangular it is also
equilateral.
(a) State which of the four propositions are true and which are false,
giving a proof of your statement in each case.
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(b) If, instead of general polygons, we should consider only quadri-
laterals which of the four propositions are true and which are false?

(c) What about pentagons?

(d) Could you guess, or perhaps even prove, more comprehensive
statements? They should explain your observations (b) and (c).

5. Let a, 8, and y denote the angles of a triangle. Show that

(a) sin a + sin B + sin y = 4 cos g cos g cos g,
(b) sin 2a + sin 2 + sin 2y = 4 sin « sin § sin y,
(c) sin 4a + sin 4 + sin 4y = — 4 sin 24« sin 2§ sin 2y.

6. Consider the frustum of a right pyramid with square base. Call
“midsection” the intersection of the frustum with a plane parallel to the
base and the top and at the same distance from both. Call “intermediate
rectangle” the rectangle of which one side is equal to a side of the base and
the other side is equal to a side of the top.

Four different friends of yours agree that the volume of the frustum
equals the altitude multiplied by a certain area, but they disagree and make
four different proposals regarding this area:

(I) the midsection
(II) the average of the base and the top

(IIT) the average of the base, the top, and the midsection

(IV) the average of the base, the top, and the intermediate rectangle.

Let 4 be the altitude of the frustum, a the side of its base, and & the side of
its top. Express each of the four proposed rules in mathematical notation,
decide whether it is right or wrong, and prove your answer.

7. Qui nimium probat, nihil probat. That is, if you prove too much, you
prove nothing. I cannot tell in which sense the inventor of this classical
saying intended to use it, but I wish to explain a meaning of the sentence that
I found extremely helpful when I started doing some work in mathematics,
and ever since. The sentence reminds me of one of the most useful signs
by which we can judge the workability of a plan of the solution.

Here is the situation: you wish to prove a proposition. This proposition
consists of a conclusion and a hypothesis which has several clauses, and you
know that each one of these clauses is necessary to the conclusion, that is,
none of them can be discarded without rendering the conclusion of the
proposition invalid. You have conceived a plan of the proof, and you are
weighing the chances of your plan. If your plan does not bring into play
all the clauses, you have to modify your plan or reject it: if it would work as
it is and prove the conclusion, although it leaves aside this or that clause of
the hypothesis, it would prove too much, that is, something false, and so it
would prove nothing.

I said that your plan should bring into play those clauses. I mean that
mere lip-service is not enough, just mentioning them does not do: your plan
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should provide for essential use of each clause in the proof. The framework
intended to support the conclusion cannot stand up unless it has a solid
foothold in each clause of the hypothesis.

It may be very difficult to devise a plan that duly brings into play all the
clauses of the hypothesis. Therefore, if a plan promises to catch all those
clauses, we greet it with relief: there is an excellent sign, a strong indication
that the plan may work.

For corresponding remarks on the solution of “problems to find” all the
data of which are necessary see sect. 8 (3), (4), (5).

If you prefer a French sentence to a Latin saying, here is one: “La mariée
est trop belle”’; the bride looks too good. I do not think that I need to
amplify this; after the foregoing the reader can picture all the details to
himself.

8. Proximity and credibility. How far away is the solution? How much
remains to be done? Such questions lie heavily on the mind of the student
who has to finish his task within a set time, but they are present in the mind
of every problem-solver.

(1) We are even able to answer such questions to a certain extent, not
precisely, of course, but rather correctly on the average, I am inclined to
believe.

For instance, let us look back at figs. 16.1-16.5 and the process of solution
that they represent. The problem-solver may feel that fig. 16.3 is much
closer to the solution than fig. 16.2; and he may feel that the solution is
within easy reach once he has arrived at fig. 16.4.

In judging the proximity of the solution, we may rely on inarticulate
feelings, or on more distinct signs. Any sign that indicates that our plan of
the solution might work may be interpreted also as a sign of progress toward
the solution, and help us to estimate the distance that we still have to go.

(2) Let us consider the solution of a “problem to prove.” The aim is to
prove (or disprove) a certain theorem. The problem-solver may trust, or
distrust, the theorem at which he works.  Yet, if he is any good as a problem-
solver, he should be prepared to revise his beliefs. And so the questions,
“Is the theorem credible? How credible is it?” are ever present in his
mind, although sometimes more, sometimes less, in the foreground. If
anything new comes in sight, he has two questions: “Does it render the
theorem more, or less, credible ?””  “Does it bring the solution nearer or not ?*’
His attention may be, of course, so absorbed by the new fact that he finds
no time to formulate either question in words. He may also give the answer
to himself without words. Even if he says “Good sign” or “Bad sign,” he
will scarcely take the trouble to express at length what he means. Is it a
sign of the proximity of the solution, or a sign of the credibility of the theorem ?
Yet, if he is a good problem-solver, he knows well enough the important
difference between proximity and credibility, and this difference will show
up in his work, in his handling of the problem.
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(3) Recalling a name once known, but now forgotten, is a task that is
simpler than but somewhat similar to a mathematical problem. We can
often observe people trying to recall a name, and we could learn a few
interesting things from such observations.

In a conversation, your friend wants to tell you a name (the name of a
shop, of an acquaintance, or of an author, perhaps). He gets stuck and you
hear him say: ‘“Just a minute and I shall get it,”” or “Wait a little, it may
take a short while till T recall it,” or “How stupid of me, but I am not able
to recall it now, although I am sure it will occur to me in a few hours,
perhaps tomorrow morning.” Obviously, your friend tries to judge the
proximity of that name, he tries to measure a sort of “‘psychological distance.”
I would surmise that his predictions will turn out about right, that his evalua-
tion of that “psychological distance” is roughly correct.

With a view to a possible comparison with problem-solving, it is also
interesting to note that a person who is not able to recall a name fully may
be able to recall it partially or, better expressed perhaps, he may be able to
recall certain features of the name. You may hear your friend say: “The
name is not Battenberg—he is not the husband of the Queen, after all—but
it is a German name, of three syllables, very similar to Battenberg.” And
(I have observed such cases) your friend may be completely right in all these
particulars, although the correct name will occur to him only a few days
later.

Quite similarly, a mathematician, although he has not yet solved his
problem, may foresee certain features of the solution quite reliably.

Those aspects of problem-solving that are the most interesting for the
future mathematician or the teacher are not readily accessible to the usual
methods of experimental psychology. Perhaps, recalling a name, a process
in some respects similar to solving a mathematical problem, could be
brought more easily within the scope of psychological experiments.

9. Numerical computation and plausible reasoning. Although numbers are
often regarded as symbols of the highest attainable certainty, the results of
numerical computation are by no means certain; they are only plausible.
Numerical computation depends on plausible reasoning in many ways.

(1) You have to do a long numerical computation. The final result is
attained in a sequence of steps. You have a very good chance to do
correctly any single step, yet there are many steps, there is a possibility of a
mistake at each step, and the final result may be wrong. How can you
protect yourself from error?

Compute the desired number twice by procedures as different as possible.
If the two computations yield different results, it is certain that at least one
of them is wrong, but both may be wrong. If the two computations agree,
it is by no means certain that the result twice obtained is correct, but it may
be correct, and the agreement is an indication of its correctness. The weight
of this indication depends on the difference between the two procedures used.
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For example, the weight is very small if, having done the computation
once, you repeat it immediately afterwards, without any change in the
method: with the first computation still fresh in your mind and in your
fingers, you can easily stumble a second time at the same place where you
stumbled the first time. To repeat the computation after a while is
a little better, to let another person do it the second time is con-
siderably better, to do the second computation by a very different
method is still better.

In fact, if two quite different procedures arrive at the same result, we have
only two obvious conjectures: the result may be correct, or the agreement
may be due to chance. If the probability of an agreement by mere chance
is very small, the second of the two rival conjectures is correspondingly
unlikely, we are inclined to reject it, and so we are disposed to place more
confidence in the first conjecture, that is, we may rely more on the correctness
of the result.

The more the procedures of the two computations differ, the more
realistic is the simplest evaluation of the probability of their agreement:
the probability is 10~ that the two computations arrive by mere
chance at the same n figures; cf. sect. 14.9 (3), ex. 14.11, but also
ex. 14.32, and ex. 12.

In large-scale computation it is good practice to render a chance coinci-
dence still more improbable by the introduction of multiple controls. Two
computations are performed by methods as different as conveniently
possible, yet so that they should agree, if correct, not only in the final result,
but also in several intermediate results. As the agreement increases, it
becomes increasingly difficult to attribute it to mere chance although, of
course, chance can never be fully excluded and the result can never be fully
guaranteed.

(2) In the foregoing we tacitly assumed that the two computations of
which we compare the results are known to be strictly equivalent theoretically.
Yet in applied mathematics we often have to work with approximations,
and we may compare numerical results which need not agree completely
even if all arithmetical operations involved are faultless; we just hope that
they will agree “roughly.” Moreover, the theory of the method of approxi-
mation with which we work may be very imperfectly known. Under such
circumstances, of course, the scope of plausible reasoning is even wider and
such reasoning is more hazardous. Cf. ex. 11.23.

(3) Two mathematicians, 4 and B, investigated the same set of nine
combinatorial problems. We need not know the subject of these problems
(they deal with the hypercube in four dimensions) but it is important to
know that they are arranged in order of increasing difficulty. The first
two problems are trivial, the third problem is easy, the fourth is less easy,
then they become increasingly more complex, and the last problem is the
hardest.
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Both 4 and B solved the problems, but their results did not quite agree.
Here are their solutions for the nine problems:

. A8 GEES Rl SR B R A YR ]
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That is, A and B agree about the first six problems, which are easier, but
disagree concerning the last three problems, which are harder. In fact,
they followed very different methods.

A attacked each of the nine problems independently of the others. His
method for each problem is somewhat different, and as he proceeds to harder
problems, also his method becomes increasingly complex.

B attacked the problems by a uniform method. His work consists of two
parts. The first part, which is more difficult, is a common preparation for
the solution of all nine problems. The second part, which is more routine,
applies the result of the first part to each single problem according to a uniform
rule. Treated with B’s method, the problems appear to differ in difficulty
much less than with 4’s method.

It seems to me that the situation described gives us a reasonable ground to
trust B’s solution more than A4’s solution.

Since the two methods, which are very different, agree with regard to the
first six problems, and these problems are easier anyhow, there is good ground
to believe that the solution of these problems is correct. About the solution
of the first three problems there is no doubt.

Since the result of the first part of B’s work is verified by its consequences
in 3 cases out of 9, and is presumably verified in 3 more cases (it is neither
verified nor refuted in the 3 remaining cases) there is good ground to trust
this result.

If, however, the first part of B’s work were correct (as it presumably is)
he could only err in the second, more routine, part in dealing with the last
three problems. Yet 4 had the greatest difficulty in dealing with them.
And so 4 appears to have more chances of error than B.7

The case just discussed is rather special, but it shows that there are further
possibilities in exploring the patterns of plausible reasoning. For example, it
may be a rewarding task to express the plausible argument just presented in
formulas of the Calculus of Probability as fittingly as possible.

10. You have to add a column of ten six-place numbers, beginning so,
for instance:

1-15 962103
116467 07
I\ BAR L

Describe various procedures to do it.

7 See G. Pélya, Sur les types des propositions composées, Journal of Symbolic Logic, vol. 5
(1940), p. 98-103.
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11. Call “elementary step” the addition of a one-digit number that you
see written to a two-digit number that you have in mind; include, however,
the possibility (which renders the step easier) that the second number is also
written, or that it has one digit only. How many elementary steps are required
to perform the addition mentioned in ex. 10 in the most usual manner?

12. In doing a computation, you obtain first two nine-place numbers, and
then the final result as their difference, which turns out to be a three-place
number. Another procedure of computation obtains the same three-place
result as the difference of two seven-place numbers. Compute the
probability that such an agreement is due to chance, using the formula
given in ex. 9 (1).

13. Formal demonstration and plausible reasoning. You have to do a long
numerical computation. The final result is attained in a sequence of steps
and must be correct if each step is correct. Each single step (as the addition
3 + 7 or the multiplication 3 X 7) is so simple and familiar that you cannot
slip under somewhat favorable circumstances, when your attention is
“undivided.” Still, like everyone else, you are liable to make mistakes in
a computation. After having performed the successive steps quite carefully,
you should not trust the final result without checking it.

You go through a lengthy mathematical demonstration. The demonstra-
tion is supposed to be decomposed into steps each of which you can check
perfectly, and the final conclusion must be correct if each step is correct.
Yet you may make mistakes like everybody else. After having checked
the successive steps quite carefully, can you trust the final conclusion? Not
more, and perhaps less, than the final result of a long computation.

In fact, a mathematician who has checked the details of a demonstration
step by step and has found each step in order may be still dissatisfied. He
needs something more to satisfy himself than the correctness of each detail.
What?

He wants to understand the demonstration. After having struggled through
the proof step by step, he takes still more trouble: he reviews, reworks,
reformulates, and rearranges the steps till he succeeds in grouping the details
into an understandable whole. Only then does he start trusting the proof.

I would not dare to analyze what constitutes “‘understanding.” Some
people say that it is based on “‘intuition” and they credit intuition with
perceiving the whole and grouping the details into a well-arranged har-
monious whole. I would not dare to contradict this, although I have some
misgivings.® Yet I wish to call attention to a point strongly suggested by
the examples and discussions in this book.

8 The meaning of intuition and its réle in grouping the details is usually not too well
explained. It is remarkable, however, that Descartes, with whom the modern usage of the
term “intuition” originates, explains both points rather impressively, in the Third and the
Seventh of his Rules for the Direction of the Mind. See Oeuvres, edited by Adam and
Tannery, vol. 10, p. 368-370 and 387-388.
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Some practice may convince us that analogy and particular cases can be
helpful both in finding and in understanding mathematical demonstrations.
The general plan, or considerable parts, of a proof may be suggested or
clarified by analogy. Particular cases may suggest a proof (see, for instance,
sect. 3.17); on the other hand, we may test an already formulated proof by
observing how it works in a familiar or critical particular case. Yet analogy
and particular cases are the most abundant sources of plausible argument:
perhaps, they not only help to shape the demonstrative argument and to
render it more understandable, but also add to our confidence in it. And so
we are led to suspect that a good part of our reliance on demonstrative reasoning
may come from plausible reasoning.
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SOLUTIONS, CHAPTER XII

1. The resemblance to the table of sect. 3.12 (partitions of space) can be
regarded as closer. All the tables mentioned, except that in sect. 3.1 that
lists polyhedra, are concerned with inductive evidence supporting a pro-
position 4 of a particular nature: A asserts that a certain statement §,, the
meaning of which depends on a variable integer =, mtrucfot =125, ... .
Inductive examination of such a proposition 4 naturally proceeds in a certain
order: we test S, first, then S, then S;, and so on. This order is visible in the
arrangement of the tables. Yet if we examine a proposition concerned with
polyhedra, as in sect. 3.1, there is no such “natural” order. We may
begin our investigation with the tetrahedron which, from various viewpoints,
may be regarded as the ‘“‘simplest” polyhedron. Yet which polyhedron
should we examine next? There is no convincing ground to regard
some polyhedron as the “second in simplicity,” another as the third, and
so on.

2. If the cases 101 and 301 appear “further removed” from the already
verified cases 1, 2, 3, . . . 20 than the cases 21 and 22 (and in Euler’s investiga-
tion they do appear so), it seems reasonable (and it is certainly in harmony
with the pattern introduced in sect. 2) to attach more weight to the verifica-
tion of the cases 101 and 301 than to that of the cases 21 and 22.

3. (1) ¢ = p: the triangle degenerates into a straight line; 4 = 0.
(2) ¢ > p makes A4 imaginary: there is no triangle with ¢ > p.

(3) a=b =c: the triangle is equilateral and A2 = 344/16, which is
correct.

(4) @ — B2 + : the triangle is a right triangle and
1642 = (a+b+¢) (b+c—a) (@—b+0) (a+b—0
=[(b+)? —a®] [&* — (b —)*]
— (2b0)?

or A2 = b2%2/4, which is correct.

7k
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(5) b =rc= (h® + a?/4)V2: the triangle is isosceles, with height /4, and
1642 = (a + 2b) (26 — a)a®
= (46* — a?)a?

= 4h%q2,
which is correct.
(6) The dimension is correct.
(7) The expression for 42 is symmetric in the three sides a, b, and ¢, as it
should be.

4. (1) d = 0: the quadrilateral becomes a triangle, the asserted formula
reduces to Heron’s formula, ex. 3.

(2) d = p: the quadrilateral degenerates into a straight line; 4 = 0.

(3) d > p makes 4 imaginary: there is no quadrilateral with d > p-

(4) a=b =c¢=d yields 4% = a%, which is correct for a square, but
incorrect (too large) for a rhombus: the square is inscribable in a circle,
the rhombus is not.

(3) ¢ = a, d = b yields A2 = (ab)? which is correct for a rectangle but
incorrect (too large) for an oblique parallelogram: the rectangle is inscribable
in a circle, the oblique parallelogram is not.

(6) In the foregoing cases (4) and (5) the asserted formula attributes a
value too large to the area of non-inscribable quadrilaterals: this agrees
with sect. 10.5 (2) and 10.6 (3).

(7) The asserted formula gives the dimension of 4 correctly.

(8) According to the asserted formula 4 is symmetric in the four sides
a, b, ¢, and d: an inscribed quadrilateral remains inscribed in the same
circle if two neighboring sides are interchanged. (Consider the four isosceles
triangles with common vertex at the center of the circle of which the bases
are the four sides.)

These remarks do not prove the proposed formula, of course, but they
render it very plausible, according to the pattern exhibited in sect. 2. For a
proof see ex. 8.41.

5 (1) a=b=c=e¢=f=g: thetetrahedronisregular; V = 21/243/12.

(2) =02+ ¢% f2=c24 a2 g% =a®+ b2: the tetrahedron is “tri-
rectangle,” that is, the three edges a, b, and ¢, starting from the same vertex,
are perpendicular to each other; V = abc/6.

(3) e=0, b=v¢, f=g: the tetrahedron collapses, becomes a plane
figure, a triangle; V = 0.

(4) e=a, f=1b, g% = c® = a® + b2: the tetrahedron collapses, becomes
a rectangle with sides @ and 4; ¥ = 0.

(5) A particular case more extended than (4): the tetrahedron becomes
a plane quadrilateral, with sides a, b, ¢, f and diagonals ¢, g. Then V =0
yields a relation between the sides and the diagonals of a general quadrilateral
which also can be verified directly, although less easily.
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(6) The dimension is correct.

(7) The expression of V is not symmetric in all six edges, but need not be:
the three edges a, b, ¢ which start from the same vertex do not play the same
role as the three edges ¢, f, ¢ which include a triangle (a face). We can
transform, however, the proposed expression into the following:

144_[/2 — q2¢2 (bz +f2 + c2 + gz AL e 82)
+sz’2(cz+g2+a2+e2-—b2—f2)
teg@+ AR+ -3¢
— f22 — %2 — aPf2 — a%h%g?.
The first three lines correspond to the three pairs of opposite edges, the four
terms in the last line to the four faces of the tetrahedron: the new algebraic
form exhibits all the symmetry (interchangeability) of the data due to the
geometric configuration. By the way, the new form (the correctness of the
algebraic manipulation that yielded it) can also be checked by the particular
cases (1), (2), (3), (4)-
6. (1) We find for

S15 535 S5 q, r
the numerical values

6, 36, 276, 11l 6
respectively, which verify both formulas.

(2) More generally, let

a-1b+tiec—95—=ph="
Then

s3 = —3ab(a + b),
ss = —bab(a + b) (a® + ab + b?),

q = —a® — ab — b?,
r = —ab(a + b)
and both formulas are verified since
3
—5—;‘:: —a® —ab =B, %‘: —ab(a + b).

(3) More generally, let ¢ = 0. A longer straightforward computation
verifies both formulas.

(4) More generally, let b4 ¢=0. Then 5 =a, s3= Gl i—a:
denominator and numerator vanish in the expressions proposed for ¢ and 7.

For proof and generalization see Fournal des math. pures et appliquées, ser.

9, vol. 31 (1952) p. 37-47.
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7- The statement B, (with r = 4 = 0) is contained as a particular case
both in B, (r =0) and in B, (h = 0). Hence, if either B, or B, is true,
B, must be true too. If we have this clearly in mind, the verification of
By, coming after that of B, or By, does not convey to us new information.
And, where there is no new information, there can be no new evidence, I
should think. Still, it is desirable to observe B,; it rounds off the picture.

8. Closer attention to the derivation in No. 9-13 of Euler’s memoir in
sect. 6.2 shows that C*, CF, . . . G5 follow from C;, Cy, . . . Gy, mathematically:
therefore, the verification of C}¥, CY, . . . Cy did not really yield new informa-
tion or evidence, but that of Cff; and C, did.

9. The pattern agrees essentially with the pattern that will be introduced
in ex. 11; see comments there.

10. If 8n 4 3 = w? 4 2p, the integer w is necessarily odd. Therefore,
w? is of the form 8n + 1 and so p of the form 4n + 1. Euler proved that
b=+ o2
of the two integers « and v, one must be odd and the other even. Hence
2p = 2u® 4 20 = (u + v)? + (u — 0)%.
Now, w, u + v, and 4 — v are odd. Let
w=2—lu+v=2y—1,u—0p=27—1
and we obtain
8n+3=(2x— 12+ (2y — 1)? + (22— 1)®

or 9

2 2
I e ) Rt i e
Rt e

13. Yes, it should, in harmony with the pattern introduced in sect. 6.

No solution: 11, 12, 14.

SOLUTIONS, CHAPTER XIII
1. The following pattern is generally applicable:

A4 implies B
B false

A bfalse

Apply it in substituting non-B for B. You obtain

A4 implies non-B
non-B false

A false
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We have noted in sect. 4 (5) the equivalence:
“A implies B” eq. “A incompatible with non-B”.

Also this equivalence is generally applicable. Apply it in substituting
non-B for B. You obtain

“4 implies non-B” eq. ‘4 incompatible with B”

We took here for granted that the negation of non-B is B (since the negation
of B is non-B) and, therefore, we substituted B for non-(non-B). In sub-
stituting B for 4 in the equivalence noted at the end of sect. 4 (3), we
obtain also

“non-B false” eq. ‘B true”.

Substituting for the two premises of the last pattern the corresponding
equivalent statements, displayed on the right-hand sides of the two foregoing
equivalences, we obtain:
A incompatible with B
B true

A false

This is, in fact, the demonstrative pattern of sect. 3.
2. Assume that the following pattern is generally applicable:

A implies B
B true

A more credible
Apply it in substituting non-4 for 4 and non-B for B. You obtain:

non-4 implies non-B

non-B true

non-A more credible

Collect the following three equivalences:
“non-A implies non-B” eq. B implies 4”
“non-B true’” eq. “B false”
“non-A more credible” eq. 4 less credible”.
The first has been derived in sect. 4 (5). The second has been mentioned in

sect. 4 (3), in another notation, with 4 for B. The third has been stated
(invented just for the present purpose) in sect. 5. Substitute for the premises
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and the conclusion of the last considered pattern the three corresponding
equivalent statements just displayed. You obtain:

B implies A
B false

A lesé créd?t)le

Except for a slight change in the wording (or notation) this is, in fact, the
heuristic pattern introduced in sect. 2.

3. Start from the same pattern as in ex. 2. Substitute non-B for B (as in
ex. 1). You obtain so:

A implies non-B

non-B true
A more credible
Collect the following two equivalences:
“4 implies non-B” eq. “A incompatible with B”
“non-B true” eq. “B false”.

The first has been derived in ex. 1. The second is given, except for notation
(A instead of B) in sect. 4 (3). Substitute for the two premises of the pattern
considered the equivalent statements just displayed. You obtain

A4 incompatible with B
B false

A more credible
This is, in fact, the heuristic pattern of sect. 3.

4- (a) Atany rate 4 implies B, where the statement 5 is defined as follows :

B. The letters in which the required nine-letter word is crossed by other
words of the puzzle are chosen among the letters of the word TIREDNESS.

Let us interpret B as restricted to the two places filled in the proposed
diagram (end and third from the end). We should distinguish between two
cases.

If we regard the solutions for the two crossing words as final, we found that
B is true and so we verified a consequence of the conjecture A. Therefore,
we consider 4 as more credible according to the fundamental inductive
pattern: (sects 12,1

If, however, we regard the solutions for the crossing words only as tenta-
tive, we rendered B only more credible. Therefore the shaded version of
the fundamental inductive pattern, defined in sect. 6, is appropriate and, of
course, the evidence for 4 is weaker than in the former case.

(b) DISSENTER.
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5. The pattern is that of sect. 13 (5):

The Factum Probans is readily credible or understandable under
assumption of the Factum Probandum.

The Factum Probans is (much) less readily credible or under-
standable without the assumption of the Factum Probandum.

The Factum Probans itself is proved.

This renders the Factum Probandum more credible.

The presentation that we are considering here appears to be more appro-
priate to a court case, but the presentation of sect. 10 is more suitable to
show the connection with the most usual form of inductive reasoning in the
physical sciences or in mathematical research.

6. We have to treat the charge as a conjecture:

A. The down payment for the official’s car came from the contractor’s
pocket.

We have to regard as a fact:

B. The withdrawal from the contractor’s account of an amount ($875)
equal to the down payment on the official’s car, the date of the withdrawal
preceding the date of the payment by two days.

B with A is much more readily understandable than B without 4: if the
withdrawal was not connected with the following payment, the exact
coincidence of the amounts and the near coincidence of the dates has to be
ascribed to mere chance. Such chance is not impossible, but improbable.
The strength of the evidence hinges on this point. The pattern of sect. 13 (5)
seems to fit very well.

5. Let us call poor Mrs. White and Mr. Black the “defendants.” (They
cannot answer charges, but at least they cannot be cross-examined by
Mrs. Green.) Mrs. Green’s accusation, stripped from her pious circum-
locutions, is, of course,

A. The defendants live in double adultery.

We accept as a fact

B. The defendants had a long conversation in the obscurity over the
fence.

This fact, unfortunately, yields some circumstantial evidence for 4
according to a reasonable pattern (sect. 13 (5)) if the following two premises
are accepted:

B with A4 readily credible,

B without 4 less readily credible.

There is no use trying to shake the faith of Suburbia in the first premise, I
am afraid. Yet even some Suburbans may see that, on that famous evening,
the defendants might well have discussed the lease in which both had a
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legitimate interest. This makes B about as credible without 4 as with 4,
knocks out the second premise, and explains away the alleged circum-
stantial evidence. This argument may be of no avail against Mrs. Green’s
gossip, although it seems to me reasonable and typical. In arguing against
some piece of circumstantial evidence, lawyers very often try to knock out
Just that second premise of the pattern in a “rebuttal.”

8. We have to consider another contention or conjecture:

B. The defendant was well acquainted with the victim three years before
the crime.

It would be too much to say that 4 is implied by B, but a weaker statement
in this direction is obviously justified :

4 is rendered more credible by B.

Now C does not prove B, but certainly renders B more credible.

From the two displayed premises we are tempted to draw the conclusion
4 more credible.

This seems to suggest a new pattern:

A more credible with B
B more credible

A more credible

The first premise of this pattern is weaker than the corresponding premise of
the pattern in line 2, column (2) of Table I, the second premise is the same:
the conclusion must also be weaker. [See, however, ex. 15.2.]

By the way, the size of the firm matters: if the firm is small, B is rendered
much more credible than in the opposite case.

No solution: Ex. g through 2o.

SOLUTIONS, CHAPTER XIV
1. (a) Follows fromr, 45, =7, + 5, = 1.
(b) £, —f,=135 —3 =0
2. With the notation of ex. | appropriately adapted, r, — r, =5, — 5, < 0.

3. N (;’) Pq"%, with N = 26306, n = 12, p= 1/3’ g = 2/3 where s is
the number in the same row in column (1)

4. Same expression as in the solution of ex. 3 with the same numerical
values for N and n and the same meaning of s, butp = 0.3376986, ¢ = 1 — p.

5- (a) Nu®*e*[s! with N = 30, u = 10, and s the corresponding entry in
column (1).

b) —— =t = —— — F + —F -+ + +.

665
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7. The compound event that consists in casting six spots with each of the
three dice five times in uninterrupted succession and has the probability
6-15 on the hypothesis of fair dice: n =5 in ex. 6.

8. (a) 2fydx= 1.983 - 107

o

where y = (27)~1/2 "2, o = 1377.5 (pgn)~172,

p=1/3, q¢=2/3, n=2315672.
B

(b) fy dx = 1.506 - 102
with # = —a = 0.5 (pgn)~*/2 and y, p, ¢, and n have the same meaning as

under (a). To compute the numerical values as exactly as they are given
here the simplest current tables of the probability integral are not sufficient.

9. For finding no defective article in the sample, just one defective,
precisely two defectives, . . . precisely ¢ defectives, respectively.

10. d2a/dp® = 0 if the derivative of log (da/dp) vanishes, which yields the

equation

b4 b—p
and hence the value given at the end of sect. 8 (1).

11. The required probability is 10~", provided that we accept one or the
other of the following assumptions:

(I) All possible sequences of n figures are equally probable. (There are
10" such sequences.)

(II) The various figures in the sequence are mutually independent, and
for each figure the ten possible cases 0, 1, 2, ... 9 are equally probable.
(Apply the rule of sect. 3 (5) repeatedly.)

Both assumptions look “natural,” but no such assumption is logically
binding: the answer 10", although strongly suggested, is not mathematically
determined.

12. Suppose that [ different letters can be drawn from a bag, with proba-
bilities py, py, - - - 5, respectively.  We have two such bags and we pick out a
letter from each: the probability of a coincidence is pf + 3 + ... + i
In the case of Hypothesis II, / = 17 and py, . . . p1 can be found by actual
count.

13. In both cases
10

10 r 10—k%__ T — 10) k_10—k
an(k)Pq = kzo(k re

where ¢ = 1 — p; (a) p = 0.0948, (b) p = 1/26 = 0.03846.
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14. In both cases np with p = 0.0948; (a) n = 450, (b) n = 90.

15. (npg)'? for n =90, p = 0.0948, ¢ =1 — p. The computation of
the standard deviation 7.60 is based on a formula which is not found in the
textbooks. With the notation of ex. 12 set

p=0+pB+... 4+
Y=0+mB+...+48,

o® =n(n — 1) w[p(l — p) + 2(n — 2) (p' — p)]/2.
Then n = w = 10, p = 0.0948, p’ = 0.01165 yield ¢ — 7.60.

16. We assume that the 60 trials with the coin are independent and apply
the rule introduced in sect. 3 (5) repeatedly.

17. Generalize the proposed numerical table

5 r n
s’ r | n'
S R N

and interpret it as follows. There are N = R 4+ § = n + n’ cards, among
which R = r + 7’ cards are red and § = s + 5" cards are black. The cards
are distributed at random between two players; one receives n cards, and
the other n’ cards. What is the probability that the first player receives r
red cards and s black cards, and the other player 7" red cards and s black
cards? (Of course, r 4+ s =mn, ¥ 4 =n'.) The answer is, as is well
known,

(f)(f) =(n)R(R—1)...(R—r+I)S(S—l)...(S—s-{-1)
(z:) r NN —1)...(N—a+1

P SRS gilegt1
T NI sl

Only four quantities out of the 9 contained in the table can be arbitrarily
given, the values of the remaining 5 follow from the relations written above.
We take the numbers n = 9, n’ = 11, and § = 8 as given (the number of
patients receiving each treatment and the total number of fatal cases) from
which N = 20 and R = 12 follow. Yet we take for s’ = 2, 1, 0 in
succession (number of fatalities with the second treatment <2). From
the formula, we compute the probability in each of these three cases
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(not more than 2 fatalities with the new treatment, 2, 1 or 0 black cards
to Mr. Newman) and adding the probabilities for these mutually exclusive
events we find:

12!8!9!11![ 1 5 1 1 ]
20! 3! 6! 9!2! 2!7!10!1!+l!8!ll!0!

it 12) 8) ” 12) 8) 4 12)(8) /(20) 335

HE DT 10/\1 11/\0 11/~ 8398
18. By an obvious extension of the reasoning of sect. 3 (5) (three-dimen-
sional analogue of fig. 14.2) the number of possible cases is n%. All the

favorable cases, thatis, all the admissible solutions of the equation Z = X + Y
can be enumerated as follows:

2=1+1
3=1+4+2=2+41

$ul LYZTY 9 30

n=14+m—-—1)=24+0—2)=...=@m—1)F+1.
Hence the number of favorable cases is
1+24+3+4...+(n—1)=n(n—1)2

and the required probability

afs — 12 a1
n® o

21. The probability that a sample of 38 from an infinite population
contains 30 or more defectives is

3 (Do —nm< (Do 5(L)

i=30\ ?
9
s (38) L__'b)_[,so
8/ 1—2p
~ 461 x 1072

provided that 100p%, = 1% of the population is defective. The
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probability estimated is the likelihood of the daily’s assertion in the
light of the official’s observation, computed under the simplest assumptions.

22. The probability required is

4;——2 )3+3(—2 )21 ATY. 20 )} 0.0000924
(l2><60 12><60( 12 x 60 3 g

(Any one of the four clocks could be the one among the three agreeing
clocks that shows the earliest time. The possibility that all four clocks
show times less than 2 minutes apart accounts for the first term in the curly
brackets.)

23. The integer a takes one of the values
—Ryeee , —25—1,0,1,2 . .in

We assume that these 27 4 1 values are equally probable, we make
the corresponding assumption for b, ¢, d, ¢, and /> and assume also that
a, b, ¢, d, e, and f are mutually independent. Only now, after having
given a precise meaning to “chosen at random,” can we proceed to solve
the problem.

There is just one solution if, and only if, ad — bc % 0. We can, and do,
neglect ¢ and f: there are (2n 4 1)* possible cases. We count unfavorable
cases, distinguishing two possibilities.

(I) a=0. Then bec = 0, darbitrary, and thereare (2n + 2n + 1)(2n+1)
cases.

(IT) a # 0. Then a can take 2n values, b and ¢ are arbitrary, and d is
uniquely determined by a, b, and ¢: there are 27(2z + 1)2 cases.

The probability required is

| _(4n+1) @n+1) 4 2020 + b

@n+ 1)
2
L 4 4 6n + 1 s,
8n® + 1202 4 (6n 4 1) 2n

and so it tends to 1 as 7 tends to 00. This gives another precise meaning to
the statement: “a system of two equations with two unknowns has in general
just one solution.” Cf. sect. 11.3, ex. 11.16.

24. The verification of the O gives more confidence in TowEr than the
verification of the E. Since O is less frequent than E, the occurrence of O
in the crossing word is less easily interpreted as chance coincidence than
that of the E.
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25. Tabulating the differences between the successive numbers of each
column, and then again the differences of the differences (the so-called
“second differences”) we obtain:

I 11

1005 1004
28 34

1033 114 1038 0
42 34

1075 il 1072 0
31 34

1106 15 1106 Ly
26 33

1132 + 21 1139 1
47 34

1179 2o 1173 Lo
26 33

1205 0 1206 0
26 33

1231 R L 1239 Ve
43 32

1274 =15 1271 0
27 32

1301 1303

The first differences show it clearly enough that II is regular and I is not.
Yet the second differences are still more suggestive: II shows a minimum of
irregularity due to the unavoidable rounding errors, but the second differences
in I vary in sign and are quite large. Such “differencing” is an important
operation in checking the construction of numerical tables. There are two
remarks.

(1) In the table of a function f(x) the first differences are connected with
f'(x), and the second differences with f "(x), by the mean value theorem.
This provides us with an opportunity to check the differences.

(2) The last decimals in I are, in fact, the first ten decimals of = in
reverse order. The view that the successive decimals of 7 behave as if
they were produced by chance, has been expressed many times with many

variations.
27. Assume that 4 is independent of B:

(6) Pr{4/B} = Pr{4|B}.

(We begin with (6) to avoid interference with the numbering in ex. 26.)
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Using (4), (2), (6), and (3) (in this order) we obtain
(7) Pr{4} = Pr{4B} + Pr{4B)

= Pr{B} Pr{4/B} + Pt{B} Pr{4/B}

= Pr{4/B} (Pr{B} + Pr{B))

= Pr{4/B)}.
From (2), (7), and Pr{4} + 0 follows that

Pr{d} Pr{B|4} = Pr{B} Pr{d)

s Pr{B/4} = Pr{B).

Using again (4) and (2), as in (7), and using also (8), (3), and Pr{4} + 0,
we find that
Pr{B} = Pr{4} Pr{B|4} + Pr{4} Pr(B/A}

) (1 — Pe(4}) Pe(B} — Pe(d} Pr(B/4}
Pr{B} = Pr{B/A};
(6), (7), (8), and (9) show the required conclusion.
28. If 4 and B are mutually independent,
Pr{4B} = Pr{4} Pr{B}.
This follows from rule (2) of ex. 26 and definition (ID)iofiex. 27.

29- (a) Pr{d}, Pr{4/B}, Pr{4/B}, Pr(B}, Pr(B/4}, Pr(B/d}

(I) .13 ’ %‘ ’ } ’ ’} ) % ’ ‘}
(II) . K9 A & 1, 0
(b) Pr{4B} = Pr{4} Pr{B/A} = Pr{B} Pr{4/B)

M e TS Tl

(1) ey

(c) The formulas follow generally from ex. 26 (4), (2). Numerically
Pr{4} = Pr{B} Pr{4/B} 4 Pr(B) Pr{4/B},

Soie: CE PSS B Lhl e
t8) pdibdmmsn p Arinlodastofhi bicud ob
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Pr{B} = Pr{4} Pr(B/A} + Pr{4} Pr(B|4},
Lol W R i e S
0 1= -4 g N

(d) With (I), 4 and B are mutually independent, with (II) they
are not.

No solution: 19, 20, 26, 30, 31, 32, 33.

SOLUTIONS, CHAPTER XV
1. Since H implies both 4 and B,
Pr{4/H} =1, Pr{B/H} = 1.
Therefore, by rule (2) of ex. 14.26,
Pr{H} = Pr{4} Pr{H|4}, Pr{H} = Pr{B} Pr{H|B}.
Eliminating Pr{H}, we obtain
Pr{4} Pr{H|A} = Pr{B} Pr{H|B}.

If we regard the relation between H and 4, and also the relation between
H and B, as unchanged, and, therefore, Pr{H|A} and Pr{H|B} as constants,
and let Pr{B} increase, also Pr{4} will increase by virtue of our last equation.

2. By the formulas ex. 14.26 (2), (3), (4)
Pr{d} = Pr{d/B} + Pr{B} (Pr{4/B} — Pr{4/B}).

We take Pr{4/B} and Pr{A/B} as given, but let Pr{B} increase. (This can
be quite naturally visualized in the case considered in ex. 13.8.) The
increase of Pr{B} implies a corresponding increase of Pr{d} if

(*) Pr{4/B} > Pr{4/B}.

In the concrete case of ex. 13.8 this inequality seems acceptable. Yet the
statement of the pattern given in the solution of ex. 13.8 appears unacceptable.
Here is a statement which looks better and is certainly in line with the
formula:

A more credible with B than without B

B (becomes) more credible

A (becomes) more credil;lc

If 4 is a consequence of B, Pr{4[B} =1, (*) is certainly correct, and the
pattern becomes that in sect. 13.7, Table I, line 2, column 2.

3. Review the few cases in which we have represented patterns of plausible
reasoning by formulas of the Calculus of Probability: sect. 6-10 and ex. 1-2.
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The monotonicity and continuity asserted by ex. 13.10 is obvious in these
cases from the following simple mathematical fact: If a, b, ¢, d, x,, x, are real
constants, ad — bc # 0, and the function y of x, defined by

_ax+b
'y_cx—i—d’

has the property that 0 < y < 1 forx, < x < %y, then y is strictly monotonic
and continuous for x; < x < x,. With respect to the generality of the
remarks of ex. 13.10 we should observe this: if 2 is not a linear fractional
function but, more generally, a rational function of x, it is still necessarily a
continuous function of x, except at points where it becomes infinite, but no
more necessarily a monotonic function.

No solution: 4, 5, 6, 7, 8, 9.

SOLUTIONS, CHAPTER XVI

2. [Stanford 1951] The quadrilateral has to be convex. Let us call
I, II, III, IV the triangles into which it is divided by its diagonals, (I), (II),
(IIT), (IV) the areas of the four triangles, respectively, and p, ¢, 7, s the
lengths of the four straight lines drawn from the intersection of the diagonals
to the four vertices of the quadrilateral. Name and number in “cyclic
order” so that the side of length p is common to IV and I, g toI and II,
r to IT and III, s to III and IV; I is opposite to III, II to IV; p + ris
the length of one diagonal, ¢ + s that of the other. Let p and ¢ include the
angle «. Then

2(L) = hasin o, 2(II) = grsin a,

2T ="rs s\, 2(IV) = spsin a.
Hence
(a) (I) (III) = (II) (IV).
(b) The base of I is parallel to that of III if, and only if]

plg =r/s or @)= (1)
(c) The quadrilateral is a parallelogram if, and only if]
p=r gqg=s5 or (I)=(II)= (1) = (IV).

3. [Stanford 1949] (a) Let a be a side of the equilateral triangle.
Joining the point inside it to its three vertices, you divide it into three triangles
with areas that added together give the whole area : ax[2 + ay[2 4 az|2 = ah/2.
Divide by a/2. See fig. 8.8.

(b) A point inside a regular tetrahedron with altitude % has the distances
%, , 2, and w from the four faces, respectively. Thenx 4y 4 2 4+ w = A.
The proof is analogous: divide the regular tetrahedron into four tetrahedra.
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(c) The relation remains valid in both cases (a) and (b) for outside points,
provided that the distances ¥, y, z (and w) are taken with the proper sign: -}
when a spectator placed in the point sees the side (face) from inside, — when
he sees it from outside. The proof is essentially the same.

4. [Stanford 1946] (a) (I) and (IV) are generally true, but (II) and
(III) are not; see (b).

(b) (II) and (III) are false: the rectangle and the rhombus are counter-
examples, respectively.

(c) (II) and (III) are true for pentagons.

(d) (II) and (III) are true for polygons with an odd number of sides,
3or5or7...,as it follows from (II') and (III").

(I') If a polygon inscribed in a circle is equiangular, any two sides
separated by just one intervening side are equal. Therefore, if the number of
sides is even, equal to 2m, either all 2m sides are equal, or m sides are equal to
a and the m remaining sides to b, a # b, and no two sides having a vertex in
common are equal.

(IIT") If a polygon circumscribed about a circle is equilateral, any two
angles separated by just one intervening angle are equal. Therefore, if the
number of angles is even, equal to 2m, either all 2m angles are equal, or
m angles are equal to « and the m remaining angles to B, & #~ B, and no two
angles having a side in common are equal.

To prove (I) (II') (III') (IV) join the center of the circle to the vertices
of the polygon, draw perpendiculars from the center to the sides, and pick
out congruent triangles.

5. [Stanford 1947] The relation between (a) and (b) appears similar to
that between (b) and (c); the similarity of the left-hand sides appears more
clearly than that of the right-hand sides. Hence it is natural to look for
some transition from (a) to (b) that could also serve as a transition from (b)
to (c). There is such a transition: if

at+Bt+y=m
20 + 2B + 2y = 2w # m, but
(m —2a) + (w — 2B) + (m — 2y) ==

Taking for granted that (a) holds for any three angles , B, y with sum ,
we obtain (b) by substituting for these angles 7 — 2, 7 — 28, m — 2y,
respectively, and we pass from (b) to (c) by using the same substitution.

It remains to verify (a) which can be done in many ways, for instance as
follows. Substituting 2u, 20, and = — 2u — 20 for a, B, and y, respectively,
we transform (a) into

sin u cos u -+ sin v cos » = [2 cos u cos v — cos (u + )] sin (u + v).

Use the addition theorems of cosine and sine.
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6. [Stanford 1952] According to the four proposals, the volume of the
frustum would be

(1) [(a+ 8)/2)%

(IT) [(@® + 5%)/2]h
(1) [a® 4 82 + (a + b)*/4]4/3
(IV) [a® + 6 + abh3,

respectively. If b = a, the frustum becomes a prism with volume a%:
(I) (II) (III) (IV) agree in yielding the correct result. If b — 0 the frustum
becomes a pyramid with volume a%/3: only (IV) yields this and so Gy
(IIT) which yield different values must be incorrect. That (IV) is generally
correct, must still be proved; see the textbooks.

10. (1) Doing the addition with paper and pencil in the most usual
manner, you begin at the top of the last column and proceed downward;
in the given example the first two steps are 3 + 7 =10, 10 4+ 0 = 10.
Then you proceed downward in the next column, and so on. (2) You take
the columns in the same order as before, but you start at the bottom and
proceed upward in each. (3) You take the columns again in the same
order but do each column twice, first downward, then upward; you note the
result when, working downward, you reach the bottom, and check it by
working upward. (4) Add first the Ist, 3rd, 5th, . .. number, then the
2nd, 4th, 6th, . . . number, and finally the two sums obtained; this requires
some extra writing. (5) Do the addition once by hand, and once by a
machine. And so on.

1x. 59.
12. 10-%.  (Not 1073 or 10-7.)
No solution: 1, 7, 8, 9, 13.
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