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Foreword

John Vinti was one of the few surviving figures from the American Golden Age
of Science that began during the 1930s. After entering the Massachusetts Institute
of Technology (MIT) on a scholarship, he received an S.B. Degree in mathemat-
ics. Awarded a James Savage Fellowship at MIT, he pursued graduate studies in
physics. It was during this time that he became interested in Hamiltonian mechan-
ics. Then, as now, the Hamilton-Jacobi equation was regarded by most physicists
as only a point of departure for quantum mechanics. Years later, he was to be the
first to apply it effectively to an important practical problem in orbital mechanics.
He began his doctoral dissertation on atomic wave functions under the physicist
Rudolf Langer and finished his thesis under Philip Morse, who is famous for the
Morse potential for diatomic molecules. It was the approach of finding a "solv-
able problem" suggested by Morse that became a dominant factor in Vinti's later
scientific career.

After receiving a Doctor of Science degree in physics from MIT, Vinti spent
two years in postdoctoral research at the University of Pennsylvania and produced
a number of research papers. The most important of these papers for space sci-
ence was the calculation of the continuous absorption spectrum of helium; this
extraordinary contribution is referenced in the Encyclopedia of Physics. Several of
his publications in electromagnetic wave propagation and gamma-ray scattering,
which appeared in the Physical Review during this period, are still widely quoted.
Although the devastating effect of the Great Depression on America's academic
institutions halted a well-deserved rapid rise of his professional career, his sci-
entific work is nevertheless noted for its creative versatility. First as a theoretical
physicist, he made fundamental contributions to atomic and molecular physics
as well as related fields, resulting in more than 70 important papers in physics,
mathematics, and engineering. These unique accomplishments earned him the
following honors: Fellow of the American Physics Society in 1936; Fellow of the
British Interplanetary Society in 1960; Fellow of the Royal Astronomical Society
(London) in 1961; Member of the Cosmos Club, Washington, D.C., in 1961; Fel-
low of the Washington Academy of Sciences in 1963; and Fellow of the American
Association for the Advancement of Science in 1967.

With the advent of World War II and the effects of the Great Depression begin-
ning to recede in the early 1940s, Vinti moved to the Aberdeen Proving Ground
in Maryland. The genesis of Vinti's interest in celestial mechanics began at Ab-
erdeen. It was while working on interior ballistics of rockets that he met Boris
Garfinkel, an astronomer, and Joel Brenner, a mathematician, both of whom had
a major influence on his subsequent career. Garfinkel helped direct his efforts in
celestial mechanics, while Brenner reinvigorated his focus in finding a solvable
solution of the Hamilton-Jacobi equation in orbital mechanics. It was also during
his stay at Aberdeen that he developed a close association with giants such as John
von Neumann, Martin Schwarzchild, Subramanyan Chandrasekhar, and Josef and
Maria Goeppert-Maier.

In 1957, Vinti was invited by Robert Dressier to join his Mathematical-Physics
Division at the National Bureau of Standards (NBS), Washington, D.C., where
Vinti was free to choose his own research areas. This gave Vinti the opportunity
to work on his orbital ideas. In 1959, he produced his first series of papers on the
motion of a close-Earth, drag-free satellite by means of separable Hamiltonian. By
introducing a gravitational potential in oblate spheroidal coordinates, Vinti was
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able simultaneously to satisfy Laplace's equation and to separate the Hamilton-
Jacobi equation. Since the assumed potential is very close to that of the Earth,
the resulting equations of motion, which are solved in closed form, yield very
accurate and rapid results. Until that time, standard general perturbation methods
used in orbit determination were both computationally intensive and relatively
low in accuracy for use in orbit prediction. In a single brilliant effort, this changed
overnight. Scientists and engineers especially in the Soviet, French, Japanese, and
Chinese space communities were quick to recognize this work and adapt it to their
needs in both research and applications.

In 1968, Vinti returned to MIT where he had started his career, combining
the teaching of celestial mechanics and research at the Measurement Systems
Laboratory. Several papers emerged during this period. Work on the problem
of the stability of free rotation of a rigid body led to new quantitative results.
Another paper showed the feasibility of representing the higher harmonics of the
Earth's gravitational field by means of a monopole layer on a spherical surface
just containing the Earth. These higher harmonics amount to perturbations of only
a few parts in a million, but there are hundreds of them that have to be accounted
for in calculating an accurate satellite orbit as a baseline for satellite geodesy.
At the urging of scientist-astronaut Dr. Philip Chapman, Vinti and colleague
Leonard Wilk completed an analysis of an experimental method for determining
the gravitational constant G in a large manned orbiting laboratory. The motivation
was to search for possible variations in G with gravitational potential to test Robert
Dicke's modification of general relativity.

As a teacher, Vinti was acclaimed by both his students and fellow researchers.
While at Aberdeen he resumed his academic career in 1940, serving at various
times as lecturer in physics and mathematics for the Universities of Delaware
and Maryland. From a course in theoretical mechanics he delivered at Aberdeen
for the University of Maryland, two-thirds of the students went on to receive
doctoral degrees in physics, and each of them pointed out that more than half of
the material on their written comprehensives had been covered in Vinti's course.
In the academic environment, Vinti always put his students' concerns above all
else. His teaching method was unique: He made his students lecture to him from
the blackboard. Invariably, that they said that his courses were the most valuable
they had ever experienced.

G. J. Der
TRW, Los Angeles, California
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Preface

This book presents one of the many extraordinary contributions given to the aerospace
sciences by the late Professor John Pascal Vinti. It contains the text of lecture notes that
Vinti used in a course first given at the Catholic University of America in 1966, and which
was later refined for a similar course he taught at MIT. The step-by-step derivations could
have been shortened by drastically reducing the number of equations, but Vinti endeavored
to achieve, above all, clarity and rigor, as well as elegance and practicality.

As both a researcher and a professor of physics, Vinti is able toaddress and relate the
various topics in orbital and celestial mechanics starting from the first principle. The text
is organized to bring together work from different areas of satellite astronomy so as to
examine critically the discipline from the viewpoint of classical mechanics. Advanced
courses in classical mechanics have long been a time-honored part of the graduate physics
curriculum. As such, it remains an indispensable component of a student's education. In one
or another of its advanced formulations, it serves as a springboard to various branches of
physics including the applications to celestial and orbital mechanics. Thus, the technique of
action-angle variables, which was needed for the older quantum mechanics, is invaluable for
the discussion of conditionally periodic Staeckel systems. The Hamilton-Jacobi equation,
which in modern physics provided the transition to wave mechanics, is now seen as the
starting point for the Vinti spheroidal method for satellite orbits and ballistic trajectories.
Lagrange and Poisson brackets, and canonical transformations, which also were of signal
importance in modern physics, are indispensable in the theory of general perturbations.
Moreover, the approach to celestial and orbital mechanics affords both the student and
researcher the opportunity to master many of the mathematical techniques necessary for this
discipline while still working in terms of the familiar universal concepts of classical physics.

With these objectives in mind, the traditional treatment of the subject, which was in large
measure fixed in the latter part of the 19th century, is no longer adequate. The present book
is an exposition of celestial and orbital mechanics that fulfills the new requirements. Those
formulations that are of importance to this field have received emphasis, and mathematical
techniques have been introduced whenever they result in increased elegance, compactness,
and understanding. For both students and workers in celestial and orbital mechanics, a great
deal of effort was made to keep the book self-contained. Much of Chapters 1-4 is devoted,
therefore, to material usually covered in preliminary courses. Until now, no connected
account was available on the classical foundations arising from forces that are not derivable
from a potential. This powerful concept is included in Chapters 12 and 13 on the Gaussian
variational equations for both the Jacobi and Keplerian elements. A natural followup to this
is the effect of drag on the orbits of Earth satellites, which is covered in Chapter 18.

The Vinti spheroidal method, which is many years ahead of its time, predicts position
and velocity vectors for satellites and ballistic missiles almost as accurately as numerical
integration. Those nonspecialists who may not be familiar with the underlying mathematics
or who may not have access to sophisticated numerical integration routines can simply use
one of the available Vinti computer routines to obtain accurate solutions for a satellite orbit or
ballistic trajectory. To save memory and improve numerical integration efficiency, the Vinti
spheroidal method was implemented onboard one of our ballistic missile targeting programs
with great success more than 20 years ago. The targeting portion of the computer code has
deliberately been deleted for clarity. It is simple to apply a Vinti trajectory computer routine
to solve a targeting problem. The important routines are commented, to help interested
readers who wish to understand the Vinti spheroidal method in detail. Helpful hints and
clarifying details are presented in various appendices.

XV
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Introduction

P ROFESSOR John Pascal Vinti is an example of a brilliant American scientist
whose outstanding works have gone essentially unrecognized. This book is a

belated tribute to the extraordinary contributions of Vinti in the fields of orbital and
celestial mechanics. Until Vinti, standard general perturbations methods and semi-
analytic satellite theories applied to orbit determination were computationally
intensive and low in accuracy. With a single brilliant stroke, this changed overnight.
Vinti was the first physicist to apply effectively the Hamiltonian-Jacobi equation
to solve analytically the orbit prediction problem in mechanics. His revolutionary
method for the orbits of satellites about an oblate Earth is, to this day, yet to be fully
acknowledged. This was due, in part, to the advanced nature of his techniques, as
well as his lack of self-promotion for his work.

The first eight chapters of this book provide the fundamentals of orbital and ce-
lestial mechanics: Newton's Laws, The Two-Body Problem, Langrangian Dynam-
ics, The Hamiltonian Equations, Canonical Transformations, Hamilton-Jacobi
Theory, Hamilton-Jacobi Perturbation Theory, and Vinti Spheroidal Method for
Satellite Orbits and Ballistic Trajectories. By introducing a gravitational potential
in oblate spheroidal coordinates, Vinti was able simultaneously to satisfy Laplace's
equation and to separate the Hamilton-Jacobi equation. Since the assumed poten-
tial is very close to that of the Earth, the resulting equations of motion, which are
solved in closed form, rapidly yield very accurate results. Today's extremely fast
computers motivate numerical integration of trajectories in almost every applica-
tion. Very often, numerical techniques are not well understood, making the numer-
ical solutions erroneous and/or computationally inefficient. Analytic methods for
long-term satellite orbit prediction and short-term ballistic missile impact-point
prediction are indispensable. A Vinti trajectory propagator has the same input and
output formats as a Kepler routine but gives solutions that approach the accuracy
of numerical integration in most cases, especially for a drag-free satellite and a
long-range ballistic missile. A Vinti trajectory propagator is difficult to implement,
and once developed, it is usually guarded as proprietary software. Through the
generosity of his friends and students, this book includes six Vinti trajectory prop-
agators that have been independently developed by Wads worth, Izsak-Borchers,
Bonavito, Lang, Getchell, and Der-Monuki. Appendix A describes the coordi-
nate systems and coordinate transformations used in the Vinti spheroidal method.
Appendix B provides the computational procedures of two Vinti trajectory al-
gorithms. Appendix C presents a set of examples to address the accuracy and
robustness of the Vinti spheroidal method.

The remaining chapters of this book consist of additional topics of several
important elements of orbital and celestial mechanics: Delaunay Variables, The
Lagrange Planetary Equations, The Planetary Disturbing Function, Gaussian Vari-
ational Equations for the Jacobi Elements, Gaussian Variational Equations for the
Keplerian Elements, Potential Theory, The Gravitational Potential of a Planet, El-
ementary Theory of Satellite Orbits with Use of the Mean Anomaly, Elementary
Theory of Satellite Orbits with Use of the True Anamoly, The Effects of Drag
on Satellite Orbits, The Brouwer-von Zeipel Method I, The Brouwer-von Zeipel
Method II, Lagrange and Poisson Brackets, Lie Series, Perturbations by Lie Se-
ries, The General Three-Body Problem, The Restricted Three-Body Problem, and
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2 G. J. DER

Staeckel Systems. This latter part is based on Vinti's lecture notes used at the
Catholic University of America and MIT.

The equations of motion of orbital and celestial mechanics can be traced to
the works of Newton, D'Alembert, Lagrange, Hamilton, Jacobi, and many others.
They formulated the kinematical problem by providing the equations of motion
expressed in either a set of N second-order, ordinary differential equations or 2N
first-order, ordinary differential equations. Few of these great mathematicians and
physicists were able to provide even a single analytic solution to the equations of
motion of orbital and celestial objects.

The primary purpose of this book is to describe Vinti's potential theory in
orbital mechanics and his interpretation of the elements of celestial mechanics.
Vinti's potential theory leads to the best analytic solution to the equations of
motion for the satellite orbits and ballistic trajectories about an oblate Earth. By
analytic, we mean that the algorithm does not involve any numerical integration.
Vinti's interpretation of the elements of orbital and celestial mechanics provides
refreshing, yet simple and logical, reading. A secondary purpose is to provide
several practical Vinti trajectory algorithms that are included on the floppy disk.
A Vinti trajectory algorithm, which gives an accurate analytic solution to Kepler's
problem, computes the position and velocity vectors r(t) and v(t) at a given final
time t, from the given initial position vector r(/o), the initial velocity vector v(fo),
and the initial time (f0).

Figure 1 shows that the equations of motion can be solved by special pertur-
bations or general perturbations. Special perturbations methods, which employ
numerical integration, theoretically provide the most accurate solution at the ex-
pense of computational time. General perturbations methods, whose solutions are
analytic, can be represented by three basic methods: Kepler, Brouwer, and Vinti.
Other general perturbations methods that employ a reference orbit, power series,
averaging process, and special rectangular coordinates are usually application-
specific and, thus, omitted from this discussion. A conceptual comparison of
typical numerical and analytic solutions for Kepler's problem is depicted in Fig. 2.
The Vinti solution is usually very close to the numerically integrated solution for
the satellite state prediction or the ballistic missile impact-point prediction.

SPECIAL
PERTURBATIONS

Numerical
Integrators

1Numerical
integration

/"More general "N
1 form of the I
^equations of motion/

\

Most
accurate
solutionf

GENERAL
PERTURBATIONS

Kepler

1Solution of
Kepler's
equation

A Equations of "\
motion with no 1

Vperturbationsy

1

Most
simple
analytic

r solution

Brouwer

Term-by-term
analytic
integration of
Lagrange
planetary
equation i f

Vinti

i

Solution of
Hamilton-
Jacobi
equation

r
( Equations of motion include ^\

some perturbed accelerations J

Analytic solution
with singularities
and initialization
difficulty \ f i

Analytic solution
with neither
singularities
nor initialization

rdifficulty

Fig. 1 Methods of solution for the equations of motion in orbital mechanics and
celestial mechanics.
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Vinti's solution

v ( t )
Numerically
integrated
solution

Kepler's Problem

Given: r ( ^ ) 9 v

Find: r ( f ) ,v( f )

r V^O^H object at tQ

Fig. 2 A conceptual comparison of numerical and analytic methods for satellite-state
prediction and ballistic missile impact-point prediction.

Kepler and Newton provided the most simple analytic solution for the unper-
turbed problem, in which the equations of motion are reduced to three
homogeneous second-order, ordinary differential equations. Brouwer performed
successive canonical transformations and analytic term-by-term integration us-
ing the von Zeipel averaging technique. A Brouwer (or Kozai) method often
encounters numerical difficulties in the neighborhood of the singularities of zero
eccentricity, zero inclination, or critical inclination. Vinti formulated the equa-
tions of motion with the oblate spheroidal coordinate system (the Earth is an
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NEWTONIAN MECHANICS
Classical Formulation Hamilton-Jacobian Formulation

Equations of motion
d2r _ u __ _

Given: r(f0), v(f0) ,r0 , t
Find: r(0,v(0

Kepler's method:
(1) Assume no perturbations

or zero disturbed
acceleration: ad - o

(2) Solve the unperturbed Kepler's
equation:

where x is the universal variable.
(3) Express solution in the form:

[TOl |7/ S/]I></0)1
[v(t)\ [fi * / J lv( f 0 ) J

where f->g,f,g are functions
of x.

Equations of motion
. _ _dH(q,p,t)

where g's and p's are respectively coordinates and
momenta, and £ = 1,2,3.

Given: r(r0), v(/0),f0, t
Find: r ( f ) ,v ( f )

Vinti's method:
(1) Define Hamiltonian and generating function:

H= T+V and S = S(q,P)
where T is the kinetic energy and and V is the
potential energy that includes perturbations.

(2) Define the spheroidal gravitation potential:
u. (p + 8 T\)

which simultanuously satisfies the Laplace's equation
and separates the Hamiltonian-Jacobi equation

H + — = 0
resulting in three kinematical equations

j33 = 0 -H c> «3 R3 - «3 N3

where a's,R's,N's and j3's can be computed at f 0 .
(3) Substitute the j3's back into the kinematical equations

and solve for p, 77, 0 and then p, 77,0 at t, which then
transform into r(r)and v(0.

Fig. 3 Computational procedures of Kepler and Vinti methods of solution for the
equations of motion from the Newtonian mechanics point of view.

oblate spheroid) and then took advantage of separation of variables to solve ana-
lytically the Hamilton-Jacobi partial differential equations while simultaneously
satisfying the Laplace equation. Even though Vinti's method includes only the
second-, third-, and about 70% of the fourth-order zonal gravitational harmonics
in the perturbed accelerations, his method is not only the most computationally
efficient (fastest and most accurate), but also demonstrates no singularity behavior
whatsoever.

Figure 3 depicts the computational procedures of the Kepler and Vinti methods
from the classical mechanics point of view. Kepler's method of solution is a
classical formulation of Newtonian mechanics by directly solving the second-
order, ordinary differential equation. The Brouwer's method, which is not included
in Fig. 3, uses the Delaunay form of the canonical equations of motion and
eliminates the lower case variables from the Hamiltonian by means of successive
canonical transformations. The canonical equations are essentially the Lagrange
equations of motion. Kozai used the classical element form of the canonical
equations of motion and developed almost the same solutions as Brouwer's. In a
programmable (first-order) Brouwer's algorithm, only the first-order short periodic
terms, second-order secular terms, and long periodic terms can be kept. Using the
von Zeipel averaging technique and analytic term-by-term integration by brute
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INTRODUCTION 5

force, Brouwer's solution must also begin with a set of mean (averaged) orbital
elements. Vinti's method, which is a Hamilton-Jacobian formulation of Newtonian
mechanics, is straightforward and elegant. The equations of motion for the classical
and Hamilton-Jacobian formulations are expressed in terms of force and energy,
respectively.

The trajectory propagation algorithms of Brouwer and Kozai, which are repre-
sented by the simplified general perturbations (SGP) and its derivatives (SGP4,
SDP4, SGP8, SDP8), have been developed by the North American Aerospace
Defense Command (NORAD) and used for over 30 years. For comparison pur-
poses, an unofficial version of these SGP algorithms and the necessary conversion
algorithms are also included on the floppy disk. These SGP algorithms, which
were downloaded from a computer at the U.S. Air Force Institute of Technology
via the Internet, are slightly modified for true double precision computing.

The singularity problems that we have described are insignificant when com-
pared with the difficulty of initialization or starting procedure. The input state
vector for a term-by-term analytic integration method such as Brouwer's requires
a six-dimensional mean vector (the six mean elements in the NORAD two-card
element set are n, e, i, £2, &>, M). The mean anomaly h is used instead of the mean
semi-major axis a. Thus, all SGP propagators start with a given mean vector, and
their output is the predicted (osculating) position and velocity vectors r(f) and v(t),
which can be transformed to the osculating elements (a,e, I, £2,0), M), if desired.
Osculating elements are the ones that are usually available, and the reconstruction
of mean elements must begin with osculating elements. Therefore, the SGP prop-
agators that accept only mean elements as input are difficult to use because they
require an additional step of converting osculating elements to mean elements.
Conversion is unnecessary if the input and output are initial and final position and
velocity vectors. Although Vinti's method starts with the given osculating position
and velocity vectors, it actually computes a set of mean elements and then outputs
the predicted position and velocity vectors r(t) and v(t). That is, the input and
output formats of Vinti's method are identical to those of Kepler's method, and this
transparency of mean elements alone presents a formidable advantage of Vinti's
method over any term-by-term analytic integration method.

The Hamilton-Jacobi equation was regarded by most physicists only as the
point of departure for quantum mechanics. Vinti mathematically solved the
Kepler problem by separating the Hamilton-Jacobi equation and simultaneously
satisfying the Laplace equation and exploited the spheroidal Earth to provide the
physical meaning. The Vinti spheroidal method relies not just on a solid mathemat-
ical foundation, but also on the laws of physics. Formulating this potential in terms
of oblate spheroidal coordinates is in itself a combination of masterful insight and
hard work. The editors' objective is to make this elegant theory understandable
and to make its great practical utility for satellite orbit and ballistic missile launch
and impact-point prediction accessible to a new generation of astronomers, physi-
cists, applied mathematicians, and engineers. Goddard Space Flight Center was an
active center for the development of Vinti's work. Vinti and scientists at Goddard
published numerous reports that extended Vinti's analytic method to include drag
and perform differential correction in orbit determination.
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Chapter 1

Newton's Laws

I. Newton's Laws of Motion

O RBITAL and celestial mechanics are based almost entirely on the mechanics
of Newton. According to this, we can attach a number, called the inertia! mass,

to any given particle, and this number governs its response to its environment. Let
the position vector of the particle be r, its vector displacement from the origin O
of some reference system that we call inertial. Such an inertial system is said to be
at rest relative to the "fixed stars," or more accurately, with respect to the universe
as a whole.

If t is time, we denote a time derivative by a superscript dot. The velocity v
of any particle is then given by v = r, and this is the quantity that the ancients
supposed to be directly responsive to the environment for all objects below the
moon. Galileo and Newton gave up this idea and assumed that it is the second
derivative r, the acceleration, that plays this role. Thus, r is some function of
position (and sometimes velocity) that governs the motion.

Newton's first two laws of motion can be expressed as

m r = F

where the environmental function F is called the force acting on the particle and
where m is called the inertial mass.

Newton's third law of motion, of action and reaction, is concerned with the
interaction of two particles A and B. It states that they exert equal and opposite
forces on each other, not necessarily along the line joining them. The caveat,
important only when the forces are electromagnetic and the relative velocity is
high, does not affect orbital and celestial mechanics.

II. Newton's Law of Gravitation
If two particles A and B are separated by a distance r, Newton's law of gravi-

tation states that they attract each other, along the line joining them, with a force
proportional to (M^M^)/r2. Here MA and MB are numbers called the gravitational
masses of the particles. As an equation

F = -GMAMBr/r3

where r is their separation vector and G is a gravitational constant very nearly
equal to (2/3)l(T2() km3/(kgs2).

At a given point in space, the gravitational field strength is defined as the grav-
itational force per unit gravitational mass on a test particle placed at the point. If

7
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8 J. P. VINTI

M is the gravitational mass of the test particle and the field strength is /, the force
on the test particle is

F = Mf

It is well known that all bodies fall to the Earth with the same acceleration g
if atmospheric resistance is eliminated. Thus, for any two particles with inertial
masses mk and gravitational masses Mk (k = 1, 2), we have m\g = M\f and
rri2g = MIJ', where / is the gravitation field strength at the place of fall. Thus,
m i /Mi = w2/M2 so that m is proportional to M. By a suitable choice of units they
may be treated as equal. With such a choice of units the law of gravitation becomes

F = —Gniim^r /r^

and the gravitational field strength produced by a particle of mass m at a vector
distance r is

/ = -Gmr/r3

III. The Gravitational Potential
Consider a source point of mass mk, with position vector rk relative to some

origin 0, and a field point at P, with position vector r (Fig. 1.1). If pk = r — rk,
the source point produces at P the field strength

fk = -Gmkpk/pl
Suppose we keep the source mass fixed at rk and vary the field point P. Then
dr = dpk and

= H^* A• dr = —— — pk • dpk = —— —dpk = d V

Fig. 1.1 Gravitational potential.
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NEWTON'S LAWS 9

Let us now consider a gravitational field to be produced by n source masses
m\,mi, . . . , mn. The total field at point P will then be

1 1 Pk

If we keep the sources fixed but move the field point by dr, then dpk = dr and

where

is called the gravitational potential at P.
In rectangular coordinates / • dr = — d V becomes

yV,d* = -T — a*L-J JX L^i ^r
xyz xyz UA

Since djt, dy, and dz are independent, we find

. __3V_ _ _dV_ . _ dV_
fx " " aJ /J " ~^T /z " ~^7

so that

We thus represent the vector field / by a scalar potential field V. The potential
produced by a point mass m at a distance r is then

V = -Gm/r

The potentials produced at a field point by a number of point sources are scalar
additive.

The equation for the potential produced by a number of point sources is readily
generalized to the case of a continuum of sources. If dr7 is a volume element, s
the mass density, and r' the position vector of a volume element, the potential at a
field point at r outside a distribution D is

sdr'
= _G f gdr /

J \r~r'

It is a simple matter to show that in free space V satisfies Laplace's equation

V2V =0
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10 J. P. VINTI

IV. Gravitational Flux and Gauss' Theorem
The integral // • dS over a closed surface S is called the flux from S. Here dS is

a vector surface element pointing along the outward normal. If m is the total mass
enclosed by S, Gauss' theorem states that

f-dS = -4nGm

The proof for the case of discrete particles inside S is as follows: Surround each
particle by a small sphere of radius ak, with mk at its center. Consider the free space
R bounded by S and the totality of spherical surfaces E. The outward normal for
R is outward from S and inward into each small sphere. Then

f f • dS + / / • dS = / / • dS
Js «/£ JR

Since V has no singularities in R, the divergence theorem holds:

f f.dS= f V - f d t = - f V2Vdt = 0
JR JR JR

since / = —Wand V2V = 0 in free space. Thus,

f f - d S + f f - d S = 0
Js Jv

Since E consists of a number of spheres EI , E 2 , . . . , Em, this becomes

/-dS
s

If we let each ak -> 0, the value of / over the sphere E^ is

the quantity O(a%) being produced by the sources other than mk and nk is the unit
vector along fk. Then

L
As ak -> 0

/ f *dS -»> 4nGmk

Thus

/ • dS = -4n G > ^mk = -4nGmj /_ j "~
fI

Jsfs

This is Gauss' theorem.
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NEWTON'S LAWS 11

V. Gravitational Properties of a True Sphere
Define a true sphere as a body with a spherical surface and with density e(r),

a function only of the distance r from the center of the sphere. By symmetry the
field outside the sphere is then

where /, is the unit vector r/r. Thus

/ • dS = 4nr2f(lf(r) = —47tGmLs
m being the total mass of the sphere. Then ^r(r) = -Gm/r2 and

/ = -Gmr/r3

just as though all the mass were concentrated at the center of the sphere. The active
gravitational behavior of a true sphere is the same as that of a particle.

The passive behavior of a true sphere in a gravitational field is the same as that
of a particle. The relevant theorem is

F = mfc

where m is the sphere's mass, fc the gravitational field at its center, and F the
resulting force. To prove this, consider the external field as arising from n point
masses mk (k = 1, . . . , n). The sphere attracts each point mass mk with the force
Gmm^k/r^ where rk is the vector from the mass m^ to the center C of m. By
Newton's third law, each mk exerts a force — Gmmkrk/r% on the sphere. The total
force on the sphere is thus — S^Gm/n^/r^, which equals mfc. Here

fc = -

the total field strength produced at C by the external particles. Thus, F = mfc, as
stated.

It is now a matter of simple integration to prove that a single external particle
exerts zero gravitational torque on a true sphere. By addition, any external dis-
tribution of mass produces zero gravitational torque on it. For orbital motion, we
may treat a true sphere as a mass point, both actively and passively. Moreover, its
spin motion can never be coupled with its orbital motion.
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Chapter 2

The Two-Body Problem

I. Reduction to the One-Center Problem

L ET m\ and m2 be the masses of two true spheres. They may be the sun and
a planet, a planet and a satellite (natural or artificial), or a double star (see

Fig. 2.1). Let the reference system Oxyz be inertial; letri andr2 be the position
vectors of m\ and m2, R that of their center of mass C; and let s\ and $2 be the
position vectors of m\ and m2 relative to C. With m\ as the primary, let r be the
position vector of w2 relative to m\ .

Then

r = s2 -si = r2 -r\ R = (mi +ra2)~1(wiri + m2r2)

The equations of motion are

m\r\ = Gmim2r/r3 w2r'2 = —Gmim2r/r3

so that

m\r\ + m2r'2 = 0

from which R = 0, R = C0 + C\t.
Now consider motion relative to C. We have

ri = R + s\ r2 = R

With use of the definition of R, these give

si =1-1 -(mi +m2)"1(mir1 + w2r2) = (mi +m2)~1m2(r1 -r2)

= —(mi +m2)~1m2r

5-2 =r 2 - (mi +m2)~1(^i^i +m 2 r 2 ) = (mi +m2)~1m1(r2 -TI)

= (mi -hm2)~ lm!r

These equations show that the orbits of mi and m2 relative to the center of mass
have the same behavior, both in regard to shape and time, as the orbit of m2 relative
to mi . The only difference is a distance scale factor in each case. Any characteristic
length for the relative orbit will be multiplied by m2(m\ + m2)-1 for the orbit of
mi relative to C or by mi (mi + m2)-1 for the orbit of m2.

The orbit of m2 relative to mi is characterized by

13
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14 J. R VINTI

o

but

so that

Fig. 2.1 The two-body problem.

/r3

= -G(mi

where /x == G(m \ +ra2). This is the same as for a particle of unit mass moving under
the attraction of a center with gravitational mass mi +m2 and infinite inertial mass.

II. The One-Center Problem
Before integrating r(0 = —/zr/r3, let us consider the more general problem

of a particle moving in a field derivable from a potential V(q, t). Such a potential
depends not only on the coordinates, but also explicitly on the time t. Then r(t) =
-VV(q,t).

Such a system is called monogenic; if t does not appear explicitly, it is called
conservative. An example for V(q, t) would be the drag-free motion of a satellite
around a spinning planet with equatorial ellipticity. An example for V(q only)
would be the drag-free motion of a satellite around an axially symmetric planet.

If V depends only on the distance r from the planet, then

where lr is the unit vector r/r.
Then

d0 = r x r(t) = —(r x r)
dt

so that if L is the angular momentum per unit mass

L = r x r = constant vector

The total angular momentum is conserved, and the orbit lies in a fixed plane. To see
this, note that L is perpendicular to both r and r, which determine the instantaneous
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THE TWO-BODY PROBLEM 15

plane of the orbit. Since L is constant, the normal to the orbital plane remains fixed
in direction, and the orbital plane remains fixed for such a central field.

If the field is not central but is symmetric with respect to the axis 0z, then
y = y (r, z) and the z-component Lz of angular momentum is constant. To show
this, note that per unit mass

Lz = x y — yx Lz = xy — yx

with
ay _ _ 9 V * .. _ dv _ $v y

X~~~~dx~ ~a77 y ~ ~3y ~ ~o~r~r

so that
. xydv xydv _

LZ — ~~ —— "̂ — + ——"7— — 0r or r or
and Lz is constant. If V depends only on q, then

y — yxx _|_ yty _|_ y £ _ yy .y;

On scalar multiplication of r(0 = -Vy by r, we obtain

r ./•' = —Vy -r = — V

so that

and

|(r2) +V(q) = const =W

Here W is the energy integral, so that this theorem is the conservation of energy.
Thus, r(0 = —W(q) is called a conservative system.

For the two-body problem r(t) = —G(m\ + W2)/ r /r2 , so that the energy inte-
gral becomes

where v is the relative velocity.
By using the relations that reduced the two-body problem to a one-center prob-

lem, it is easy to show that

...
+ ~m2V2 - ———— = - ————— -W

2 2 r (roi+ro2)
where W is the constant just met and v i and v2 are the velocities of m\ and m2
relative to the center of mass.

III. The Laplace Vector
If L is the angular momentum per unit mass, the vector

R = r x L — fjilr
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16 J. RVINTI

is constant. It is known by various names: Laplace, Runge-Lenz, perifocus vector,
or e- vector. To prove its constancy, we begin with motion in a general central field
V(r) and show that V (r) must be — /x/r for the theorem to hold.

Write

r(f) = -VV(r) = -V'(r)lr = -V'(r)r/r

Then since L = r x r is constant, it follows that

— (r x L ) = r xL = -V'(r)r~lr x Ldt
= -Vf(r)r~lr x (r x r)

= -V'(r)r-1[r(r - r ) - r 2 r ]

= -V /(r)r~1[r(rr)-r2r]

= -V'(r)rr + V'(r)rf

However,

thus

and

df dr
This equation yields an integral of the motion if and only if

Vr = — (Vr) - Vrdt

•(r x L) = - - ( V r ) + Vr + r V'(df d/

dr
is a constant. In such a case

r V = kr —

or

Since /: vanishes for a planet (potential vanishing at infinity), we obtain such an
integral of the motion if V = — jji/r. This corresponds to the two-body problem
if IJL = G(m\ 4- m^). Then
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THE TWO-BODY PROBLEM 1 7

or
r x L — nlr = R

where R is the Laplace vector, now proved constant.
Any function of the coordinates and momenta, and possibly of the time t, is

called an integral of the motion if it remains constant. In rectangular coordinates,
the momenta are simply x,y,z per unit mass of the orbiter.

We have found seven integrals for the two-body problem: the energy W, the
three components of the angular momentum L, and the three components of the
Laplace vector R. They are not all independent, however, because there are two
relations connecting them. One of these is R • L = 0; we shall write down the
other one later. This leaves five independent integrals. Later, we shall discover a
sixth independent integral.

IV. The Conic Section Solutions
Since the angular momentum L is perpendicular to the orbital plane and since

the Laplace vector R is perpendicular to L, it follows that R lies in the orbital
plane. If /is the angle from R to the position vector r, then

r • R = rR cos / = r • (r x L — /x/r) = L2 — /zr

Solution for r gives

This is the equation of a conic section

\-\-e cos /

with the semi-latus rectum p = L2//z, the eccentricity e = R/H, > 0, and the true
anomaly/. Note the relations L2 = fjip and R = i^e.

A conic section may be defined as the locus of a point A, the ratio of whose
distances to a focus F and a directrix dd remains constant (see Fig. 2.2). Let FC
be a perpendicular from the focus F to the directrix dd and FB a perpendicular to
FC intersecting the conic at B. From the definition

r/D = -const = e = (D + r c o s f ) ~ l p
Then D = r/e and

r = P
1 + e cos /

For the two-body problem, L2 = \ip and R = lie. This second relation explains
the occasional use of the term e-vector for R. The point P, for which r is a mini-
mum, is called the pericenter, and we denote by i a unit vector pointing from F
toward P.

We next prove that
R = fjiei L2 = /x(l + e)rp

where rp = FP. To do so, we may evaluate R and L at P, since they are constants.
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18 J. R VINTI

Fig. 2.2 Conic section.

At P, since r _L r, with the orbiter moving counterclockwise, it follows that
L — r x r points out from the figure at P. Then r x L points from F toward P.
However, at P, with r = v

|L| = L = r^
L2

9|r x L\ = rp vz
p = —

Then

From R = r x L — /Jr we find

Then

Since L2 = /xp and rp = p(l + ^)~!, we find that

(L2
= — -MV'-p /

as was to be shown. On eliminating p between the two equations for L2 and rpt
we obtain

which also was to be shown.
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THE TWO-BODY PROBLEM 19

If v = r, the energy W per unit mass is W = ^v2 - (//,/r), a constant that may
also be evaluated at P. From L = rpvp, rp = p(l + e)~l , and L2 = /z(l + e)rp,
it follows simply that W = (fji/2p) (e2 — 1). If e > 1, then W > O and the curve
is a hyperbola. Comparison with r = p(l + e cos f ) ~ l shows that cos / > —l/e,
so that /cannot exceed cos~l(—l/e), and this reveals the asymptotes. If e = 1,
the speed v vanishes as r — >> oo, and the curve is a parabola. If e < 1, then
W < O, and only those values of r occur for which /z/r > — W, i.e., for which
r < -n/W.

With 0 < e < 1 , the orbit is an ellipse, and we can define a quantity a by

--£-£«••-'>
where a > 0 and /? = a(l — e2). Here a will be the semi-major axis.

At this point, it is easy to find the remaining relation connecting the seven
integrals already found. From

W = —(e2 - 1) R = ne L2 = jjip2p

elimination of e and p yields

Before going into elliptic orbits in detail, it should be mentioned here that the
inverse square law of gravitation has led us to Kepler's first law: The planets
move around the sun in elliptic orbits with the sun at one focus. This conclusion
follows from the finiteness of only those orbits with e < I . It has also led to Kepler's
second law, since we have shown the constancy of angular momentum. Specifically,
consider L = r x r = const. With r = rlr we have

f = f l r + r-lrat

But (d/dt)lr = f l f , where If is a unit vector along the transverse. Then r x r =
r2lr x flf = r2fk, where A: is a unit vector normal to the orbital plane. However,
r2/ is twice the rate at which area is swept out by the planetary vector. This is
constant, and we have Kepler's second law.

V. Elliptic Orbits
Here, the orbit is a closed curve, periodic in the time t by the law of equal areas

and symmetric about / = 0. The quantity /is the true anomaly in the equation

r = p(l -f e cos /)-1 e < 1

The energy equation is

_ ( e _ 1 ) = _
2 r 2p 2a
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20 J. R VINTI

Since p = a(l — e2), we find

therefore

Fig. 2.3 Elliptic orbit.

(l + e)~l = a(\ - e)

(l-erl =a(l+e)

a being called the semi-major axis or "mean distance." It is only the arithmetic
mean of the extreme distances and not the time mean. To put the equation in
rectangular coordinates £ and y, with the center of the ellipse as origin, write
r = p(\ -f e cos f ) ~ l , p = a(\ — e2), and note that FP = a(l — e) as shown in
Fig. 2.3. Then

_ a(l — e2)cos f _ a(e + cos
\-\-e cos / \-\-e cos /

y = r sin /

It is a simple exercise to show that
2

so that the semi-minor axis

The Eccentric Anomaly E
We next introduce an important variable, the eccentric anomaly E. To do so,

circumscribe an auxiliary circle around the ellipse, and draw a perpendicular from
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THE TWO-BODY PROBLEM 21

Fig. 2.4 Eccentric anomaly E.

the orbiter at 5, intersecting the circle at C as shown in Fig. 2.4. Draw OC from
the center of the ellipse to C, and define the eccentric anomaly E as the counter-
clockwise angle from the major axis to OC. (We shall always view an orbiter so
that pericenter is at the right and so that the motion is counterclockwise.)

To relate E to/, we first derive an important lemma,

b sin E = r sin /

To do so, regard CA and B A as signed quantities, plus when C and B are above
the major axis and minus when below. Then

(BAf = y1 = (b2/a2)(a2 - £2)

from the equation of the ellipse. Then

CA _ a
~BA~~b

because CA and B A always have the same sign. However,

CA=asinE BA = rsinf

so that
a sin E a
r sin f b

The lemma follows immediately. It should be remarked that the anomalies / and
E are to be thought of as always increasing, so that / > 0 and E > 0 for all
time t.
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22 J. P. VINTI

Cosine Relation

a(l—e2)cosf
£ = a cos E = ae +

e cos / 1 + e cos /
Thus

e + cos f
cos E = ——————

1 + e cos /

Relation
Rewrite the lemma b sin E = r sin / as

a(\ —

Then

sin E =
\-\-e cos /

Before inverting these relations, note that r = a (1 — e cos E). This follows from

e(e + cos /) l-e2

I — e cos E = 1 — ——————— = ——————
1 + 6 cos / 1 + e cos /

since
a(l-e2)
1+e cos /

The inverted relations are
cos E — e a

cos / = —————— = -(cos E — e)
I — e cos E r

, Vl -e2sinE a r——- .
sin / = ———————— = — v 1 — eL sin E

I — e cos £ r
Note that, as the orbiter goes round and round,/and E agree at all multiples of n,
so that f = E.

There is an important relation connecting the half-angles f/2 and E/2. To derive
it, note that

sin/ = 2sin(//2)cos(//2) = J\ -e2sinE(l - ecosE)'1

= 2>/l - e2 sin(£/2)cos(E/2)(l - ecos^r1

2 cos2(//2) = 1 + cos / = 1 + (cos E - e)(\ - e cos E)~l

= (1 - e)(l - cos £)(1 - e cos E)"1

= 2(1 - e) cos2(£/2)(l - e cos E)'1
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THE TWO-BODY PROBLEM 23

By division

Kepler's Third Law
We next show that \JL — n2a?, where n is the "mean motion," defined by n =

2n/T, T being the period. Because the area of the ellipse is nab, we have

\L\ = r2f = 2A = 2nab/T =
Here A is the area swept out in time t. However,

\L\ =

Thus, na2 = *J~jZa, so that \i = n2a3. This is essentially Kepler's third law, which
states that among the planets the square of the period is proportional to the cube
of the semi-major axis. If ms is the sun's mass and m\ and ra2 are the masses of
two planets, we have JJL\ = G(ms + m\) and jjL2 — G(ms -f m2). Then

02

Kepler's third law is thus an approximation. It would be rigorously true if the
planets all had equal masses and if there were no planetary interactions.

Kepler's Equation
If r is the time of passage through pericenter, this states that

E — esinE = n(t — r)
where n(t — r) = I is called the mean anomaly. To prove it, begin with

r . l-e2

— = I — e cos E =
a 1 + e cos /

Differentiate with respect to t to find

(1 -e2)efsmf es'mfr2/
eE sin E =

(l+ecosf)2 a\\ -e2)
enabsinf ensinf ensinE

Thus

E =
I — e cos E

Integration with respect to time gives
E — e sin E = n(t — r)

where — nr is the constant of integration. Here r is the sixth independent integral
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24 J. P. VINTI

of the motion. Unlike the other integrals, it is not algebraic:

r

where

1 J l / r\\ e i ,[!/ r \ l ]
= t - - cos"1 -1 1 - - I + - sin] cos'1 - 1 - - I J

n \_e\ aj] n \ \_e\ a) \\

a = -jji/2W e = jl+2WL2/im n =

VI. Spherical Trigonometry
Before putting the orbit in three-space, it is desirable to state here the two laws

of spherical trigonometry that will be of use. Let A, B, C be the three angles of a
spherical triangle and a, b, c be the respective opposite sides.

Law of cosines:
cos c = cos a cos b + sin a sin b cos C

Law of sines:
sin A sin B sin C
sin a sin b sin c

There are simple vector derivations of these two laws.

VII. Orbit in Space
We draw an octant of the celestial sphere; its radius is arbitrary. For the case

of a planet moving around the sun, we take its center at the center of mass of the
sun. For motion of a satellite around the Earth, we take its center at the center of
mass of the Earth. Ox points toward the vernal equinox of some fixed date, say
1950.0. For a planet around the sun, Oz points toward the pole of the ecliptic and,
for a satellite around the Earth, toward the north pole of the equator. A line from
O to the orbiter intersects the celestial sphere at the suborbital point; the orbit is
represented on the celestial sphere by the locus of its suborbital points, of which
NFS is an arc. In Fig. 2.5, S is the orbiter, P the pericenter, TV the ascending node,
ON the line of nodes, co the argument of pericenter, /the true anomaly, and 7 the
inclination of the orbit to the xy plane. The latter is the plane of the ecliptic for a
planet or the equatorial plane of the Earth for a satellite of the Earth.

If we draw a meridian through the suborbital point, the position of the orbiter is
fixed by the angles 0 and 0 and the radial distance r. For a planet, 0 is the ecliptic
latitude A and 0 the ecliptic longitude /?; for a satellite, 0 is the declination 8 (same
as geocentric latitude) and 0 the right ascension a.

Let £1 be the longitude or right ascension of the node. To put the orbit in space,
we need to find the rectangular coordinates as functions of r, £1, to, 7, and/. Call
a) -f- / == ^r, the argument of latitude, and apply spherical trigonometry to the
spherical triangle SQN '. We have

sin# = sin 7 sin i/f (2.1)

cos 0 = cos x cos \/s -f sin / sin \[s cos 7 (2.2)

cos \js = cos x cos 0 (2.3)

where x = 0 — £2. Multiply Eq. (2.2) by sin x to find

cos B sin x = sin x cos x cos V + sin2x sin iff cos 7 (2.4)
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THE TWO-BODY PROBLEM 25

Fig. 2.5 Octant of the celestial sphere with T/> = u; + / (argument of latitude), 0 =
^ H~ X (right ascension), Oa = r cos 9, and 0* = Oa cos 0 = r cos 9 cos 0.

Now apply Eq. (2.3) in sin x cos x cos ̂  to find

cos 0 sin x = sin x cos2x cos 9 + sin2x sin ̂  cos /
A transposition gives

cos# sinx(l — cos2x) = sin2x sin1/rcos/
and cancellation of sin2x throughout yields

cos 0 sin x = sin ̂  cos / (2.5)

The rectangular coordinates satisfy

x = r cosO cos0 = r cos (9 cos(£2 + x) = r cosO [cos £2 cos x — sin £2 sin x]

j = r cos 0 sin</> = rcos#sin(Q + x) = rcosO [sin £2 cos x + cos £2 sin x]

z = r sin 0 = r sin / sin \[f
(2.6)

In Eqs. (2.6), insert cos x cos 9 = cos ̂  and cos$ sin x = sin \/r cos / and
replace ty by co + /. The result is

^ = r[cos ̂  cos(6t> + /) — sin £2 cos / sin(&> + /)]

y = r[sin £2 cos(&> + /) + cos £2 cos / sin(&> + /)]

z = r sin / sin(&> + /)
Then

r =ix+jy + kz
where i,j,k are unit vectors along the Cartesian axes.
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26 J. P. VINTI

Eccentric Anomaly
To find r in terms of the eccentric anomaly, we use

r cos / = a (cos E — e)

r sin / = b sin E

derived previously, and write

r = lAr cos / -h Ipr sin /

where I A is a unit vector pointing from the force center O to pericenter and IB is a
unit vector pointing from O parallel to the semi-minor axis as shown in Fig. 2.6.

Then
r = A(cos E - e) + B sin E

where A = I A a and B — Isb =
Comparison of the expression for r in terms of E with that for r in terms of/

yields
Ax = a [cos £2 cos co — sin £2 cos / sin &>]

Ay = a[sin £2 cos co + cos £2 cos 7 sin &>]

Az = a sin / sin &>

Bx = —/?[cos £2 sin co + sin £2 cos / cos CD]

By, = b[— sin ^2 sin co -f cos £2 cos / cos &>]

Bz — b sin / cos &>

Fig. 2.6 Eccentric anomaly in the octant of the celestial sphere.
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THE TWO-BODY PROBLEM 27

A useful form for r is

r=Re[(lA+UB)re-if]

where s is the base of natural logarithms.
The velocity r is obtained most easily in terms of E.

r = (-A sinE + B cos E)E

Here E is to be found by using Kepler's equation

E - e sin E = n (t — r)

We have

(1 -ecosE)E = n

so that

(r/d)E = n and E = (an/r)

Thus

r = (an/r) (—A sin E + B cos E)

where r = a (1 — e cos £*).

Derivation of A and 5 by Use of Rotations
Examination of Fig. 2.6 shows that if we take the orbital plane as an xy plane,

the position vector r is expressible as the column matrix CM, where

rcos/\
r sin / 1 = b sin E 1

0 / \ 0 /
If we perform a rotation about the normal through O to the orbital plane through
the angle (—to), we obtain ON as a new x axis. The square matrix [— &>] for this
rotation is

fcos&> — sin a> 0"
[-co] = \ sin to cos to

L o
sin a> 0 "I
OS 60 0

o ij
If we now form the matrix product [—a)]CM, we obtain a second column matrix
for r, with a new x axis along ON and a z axis still perpendicular to the orbital
plane.

Next, examine Fig. 2.5. If we perform a rotation about ON as x axis through
the angle (—/), we obtain a new representation forr as a column matrix with ON
as x axis and a new z axis in the inertial direction Oz. The square matrix [—/] for
this rotation is

ri o 0 1
[-/] = 0 cos/ -sin/

L 0 sin / cos / J
The result [—/][—a)]CM is again a column matrix.
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28 J. P. VINTI

Finally, if we rotate the axes through the angle (— &>) about the inertial axis Oz,
we obtain a column matrix for r in the actual inertial system. The square matrix
[—£2] for this rotation is

|~cos£2 —sin £2 0
[-£2] = sin £"2 cos £2 0

L 0 0 1

The final result for r is the column matrix

The reader should carry out the preceding matrix multiplication, always multi-
plying a column matrix by the adjacent square matrix so as to diminish the labor of
calculation. One obtains another derivation of A/ a and B/b as functions of £2 , &>,
and/.

There are some other orbital elements that are often used in celestial mechanics,
especially in planetary theory. The first of these is a) = o) + £2, called the longitude
of pericenter. It has the peculiarity of being the sum of two angles in different
planes, i.e., a "broken angle." Variables based on it are a) H- /, called the "true
longitude," and a) + €, called the "mean longitude"; these are also broken angles.
To see how they might appear, consider a term in a perturbing function, the product
of cos £2 and cos(&> + /). On writing this out one obtains cosines of a) + / and
a) + / — £2. The mean rates of change of the true and mean longitudes are both
equal to the mean rate of change of the longitude </>. To see this, divide Eq. (2.5)
by Eq. (2.3). The result is

tan x = tan(0 — £2) = cos / tan ̂  = cos / tan(&> + /)

Whenever co + / increases by TT, so does 0 — £2, so that

Here we are anticipating the later use of co and £2, like the other Keplerian elements,
as time variable quantities when pertubations are considered.

Algorithm for the Orbit Generator

Given /i, a, e, I,a),£l, and r, calculate r andr at time t. Calculates =
t = n(t — r), and E from E — e sin E = t. Then calculate I A and /# from
their preceding formulations as functions of co, /, and £2. With A = l&a and
B = lBa^l -e1, then

r — A(cos E — e) + Z? sin E

r = (an/r)(—A sinE + B cos E)

where r = a(l — e cos £).
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VIII. Orbit Determination from Initial Values
Given initial coordinates ;c/, y/, Zi and velocities x / , > > , , z/, calculates, e, /, co, £2,

and r. It will simplify matters to drop the subscript /, understanding that all the x
and x are for the same initial time.

For a, calculate v2 = x2 + y2 + z2, r = ^/x2 + y2 + z2, and W = |i>2 —(/z/r).
Then a = -(n/2W).

Forp, calculate L2 = (yz - zy)2 + (zx-xz)2 + (xy - yx)2. Then p = (L2//z).
For e, since p = a(\ - e2), e = *J(\ — p/d).
For /, since L^ = L cos /, cos / = L$/L = (xy — yx)/L, where L2 is given

in a preceding equation. It is useful to find sin / as a check. If IN is a unit vector
pointing from 0 toward the node,

k x L = l^L sin /

On writing L = iL\ + jLi + kL^, we find

IN L sin / = y'Li — iZ/2

so that

sin / =

where L\ — yz — zy and LI = zx — xz.
Of course, cos / alone determines 7, which ranges from 0-180°, cos / being plus

for direct orbits and minus for retrograde orbits. (A direct orbit goes from west to
east.) However, sin / is a useful check.

For T, from Kepler's equation,

E — e sin E = n(t - r)

we have (I — e cos E)E = n. Since r = a(\ — e cos E), we find E = n a/r.
Thus

r = (a e sin E)E = n a2(e/r) sin E

Since

n = y/xa"3

rr = ^fjla e sin E

then
. ^ rr xx + y y + zz

sin E = —— = ———————
e^fjla e^/JIa

Also

cos E = - (1 — -
e \ a

From sin E and cos E1, determine E. Then r is found by putting t = 0 in Kepler's
equation:

r = —(E — esinE)/n
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30 J. R VINTI

For to, use the Laplace vector

R = v x L — iJilr = fjielA
Here Az = a sin / sin to, so that

Rz = xL2 — yL\ — fJi(z/r) = ̂ e sin / sin to

Thus
. . xL2-yLi ze sin / sin to = —————— — -

To find e sin / sin to, use

L x R = L x (v x L) — jJiL x lr = ^e L x 1A

This gives
L V f

y T ^ __ » / ________ —— [JLP, LI D

r
since /^, /#, and /^ form a cyclic orthonormal triad of vectors. Now, Bz =
b sin / cos to, so that the z component of the preceding equation gives

L2z — —(L\y — L2x) = ——b sin I cos to
r b

Thus
Li (Liy-L2x)e sin / cos to = — + ———————

JJL Lr
This equation, along with the one for e sin / sin to, permits the evaluation of sin CD
and cos to, and thus to.

For £2, use k x / = 1NL sin /. Scalar multiply by i to find

i • k x L = / • /#L sin /

However, i • & x L = i x k • L = —j • L = —L2. Also i • IN = cos £2. Thus

cos £3 = - 2

L sin I
To find sin £2, form

i x (& x L) = i x /wL sin / = & sin £2L sin /

fc(i • L) — L(i • A:) = k sin £2L sin /

Here i • & = 0 and i • L = L\,so that
LIsin £2 = -———

L sin/
Having cos £2 and sin £2, one then finds £2.
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Chapter 3

Lagrangian Dynamics

I. Variations

T HE purpose of this chapter is to develop some general formulations of dy-
namics that will be useful in treating nondissipative systems. Let a dynamical

system be characterized by N generalized coordinates qh i — 1, . . . , N, and let
/(#/» <?/» 0 t>e any function of the g's and the generalized velocities g/- Call it
f ( q i > <li » 0 f°r short. There may or may not be constraints among the g's; if there
are k constraints, the number of degrees of freedom is N — k.

We call the space of the g's the configuration space (Fig. 3.1); this would be
ordinary space if N = 3. During the motion, the system proceeds in configuration
space from point A with coordinates qiA, i = 1, . . . , Af at time t = 0 to some
point B at time t with coordinates g,#, / = 1, . . . , N. The system goes through
a succession of points in the configuration space that we call the dynamical path.
Let us next imagine a varied path, permitted by the constraints, that would take
the system from A to B in the same time. Let P be a point reached at time /
on the dynamical path and P' be the point supposedly reached at the same time on
the varied path; here P and P' are corresponding points. Also let f(q, q,t)be any
function of the g's, g's, and t at P and F(q, q, t) its value at P' at the same time.
Define the variation Sf by

Sf = F-f

Then

However,

so that

That is,

so that d and 8 are commuting operators. The function/may be either a scalar or
a vector.

31
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32 J. P. VINTI

Fig. 3.1 Variations in the configuration space.

II. D'Alembert's Principle
Let us consider the system to be made up of a number of mass points, the k'\h

having a mass mk. A given mass point k will be acted on by some applied force
Fk and a constraint force Ck. Constraint forces are forces that do no work. An
example would be the normal force produced on a particle constrained to move on
a surface; the frictional force, being tangential and doing work, would be called
an applied force, but we shall soon rule out such dissipative forces.

If rk is the position vector of particle k in some inertial system, then

If we now imagine the particle to be displaced by a vector amount 8rk, in a way
compatible with the constraints, we call 8rk a virtual displacement of/:; this is the
displacement to a varied path. On forming the scalar product of 8rk with Eq. (3.1)
and summing over all the particles, it follows that

• 8rk = YikFk • 8rk (3.2)

since the constraint force Ck is normal to 8rk. Now Eq. (3.2) can be written as

T,k(Fk-mkrk} -8rk=0 (3.3)
an equation that is known as D'Alembert's principle.

If the applied forces are monogenic, then

) (3.4)

Here the g's may be generalized coordinates. In applications to artificial satellites,
V will be the gravitational potential energy of a satellite; it will depend explicitly
on t when the departure of the Earth from axial symmetry is taken into account.

III. Hamilton's Principle
Theorem: 8rk and rk are parallel, therefore rk • 8rk = <5(^r|). (See Fig. 3.2.)

Hamilton's principle selects the correct dynamical path from all possible var-
ied paths and gives fQ 8(T — V)dt = 0 for a conservative system.
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LAGRANGIAN DYNAMICS 33

Fig. 3.2 Hamilton's principle selects the correct dynamical path.

Proof: Let us integrate Eq. (3.2) from 0 to t:

£* / Fk-8rkdt = T,k mkrk-8rkdt (3.5)
Jo Jo

Here
ft rt t ,t

\ rk • 8rk dt — I 8rk • drk =fk*8rk - I rk • d8rk
Jo Jo o ^o

Since 8rk = 0 at the endpoints, the first term on the right vanishes. Also d(8rk) =
8(drk) = 8(fk)dt, so that

and

where

/

t ft \ f1

rk-8rkdt = - f k - 8 r k d t = -- 8f2
kdt

Jo ^ JQ

£* / rnkrk • 8rk dt = - / -
Jo Jo

8Tdt (3.6)

If the system is monogenic

On inserting Eqs. (3.6) and (3.7) into Eq. (3.5), we find

/'Jo
S(T-V)dt =

(3.7)

(3.8)

This is then the property of the dynamical path that distinguishes it from all possible
varied paths. It is one form of Hamilton's principle.
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34 J. P. VINTI

At this stage it is customary to take the 8 outside the integral sign. This is possible
if the system is holonomic, but not otherwise.1 A holonomic system is one with
integrable constraints. For a system without constraints — and we shall consider
only such systems — the 8 always commutes with the integral sign. The question
does not really concern us very much because if we took the 8 outside the integral
sign, we should later find ourselves always putting it back inside. Thus, Eq. (3.8)
expresses Hamilton's principle as we shall use it for unconstrained systems.

IV. Lagrange's Equations
Define the Lagrangian function L by

L = T(q,q,t)-V(q,t) (3.9)

Here t is inserted as an argument of T in case we decide to use a rotating frame of
reference. To apply Hamilton's principle

8Ldt = 0 (3.10)
o

we must form

8L = E* -8qk + -8qk (3.11)

there being no term in d L / d t because varied points are reached at the same times
as the corresponding dynamical points. Since

8qkdt

/" di f dL d
I —— 8qkdt = I —— -(8qk)dt

Jo °qk Jo oqk dt

=— * - r — ( ^ L \
dqk o ^0 dr \dqkj

with the 8qk vanishing at the endpoints, we find

Consider only the case of no constraints. We may then choose

where
dL d

and where sk(t) > 0, always small and vanishing at A(t = 0) and B(t). Then Eq.
(3.12) becomes

/'Jo
If we choose each sk(t) to be continuous and assume Qk to be continuous, then
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LAGRANGIAN DYNAMICS 35

each Qk must vanish over the whole range from 0 to t. It follows that

,...,
3qkJ dqk

These are Lagrange's equations of motion, sometimes called the Euler-Lagrange
equations. There are cases where such a Lagrangian function L can be found, even
though L may not be T - V. An example would be the mechanics of special rela-
tivity with electromagnetic forces. In general, any function L(q, q, t) that satisfies
these equations is called a Lagrangian and can be used to set up the so-called
Hamiltonian formulation of dynamics. We next proceed to this Hamiltonian form.

Reference
!Pars, L. A., A Treatise on Analytical Dynamics, Wiley, New York, 1963, p. 528.
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Chapter 4

The Hamiltonian Equations

HP HE Lagrangian equations contain generalized coordinates qk and generalized
JL velocities qk. The Hamiltonian equations contain generalized coordinates qk

and generalized momenta pk.
Here

(4.D

If the q's are rectangular coordinates,

L = Vk±mk(x% + y\ + zl) - V(x, t) (4.2)

in which case

Pxk = mk*k Pyk = mkyk pZk = mkik (4.3)

The reason for the name is thus apparent. In this special case the p's are dimen-
sionally ordinary physical momenta, but this will not be true in general.

Next, introduce the Hamiltonian function H(q, p, t) by means of the Legendre
transformation.

H(q, p, 0 = T,kpkqk - L(q, q, t) (4.4)

Since H is to depend on the g's and//s and not on the g's and ̂ 's, we must regard
the ^'s in Eq. (4.4) as functions of the g's and/?'s. Then from Eq. (4.4)

BH(q,p,t) 3qk dL dqk^^-—— =^- + ^—— -Z, —— ——

= 4l (4.5)
by virtue of the definition (4.1) of pk. It is thus a purely algebraic result, with no
use of dynamics, that

(4.6)3Pj

To obtain the equation for pk as a derivative of the Hamiltonian, we have to
apply some dynamics, in the form of the Lagrangian equations, along the dy-
namical path. Begin with the Legendre transformation (4.4), applying d/dqj to it.

37
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38 J. P. VINTI

We find
3qk 3L 3L 3qk
-—— — -—— — 2jk——--——
3qj 3qj 3qk 3qj

(4.7)

with use of Eqs. (4.1) and (4.3) for pk. Now return to the Lagrangian equations,
they state that

d f S L ' . _ ,.g)

dqj dt \3qjJ dt

again with use of the definition (4.1) of pk. Thus, by Eqs. (4.7) and (4.8)
dpk = BH(q,p,t)
dt 3qk

We also had
d#fc

(4.9a)

(4.9b)
dt 3pk

Equations (4.9) are the Hamiltonian or canonical equations of motion.
To get some idea of the physical meaning of the Hamiltonian //, we need to

consider the kinetic energy

T = -Vkmkfl(q,t) (4.10)

The velocity vector r is expressed here not only as a function of the generalized
coordinates qk, but also as an explicit function of the time t. This is to take care of
the possibility that we may be using a rotating coordinate system. Thus+£
On squaring Eq. (4.11) and inserting the result into Eq. (4.10), we find that

T = TQ(q, t) + 7i($, 0 + T2(q, 0 (4.12)

where Tn(q, t) is a homogeneous function of the ^'s of degree N. Such a function
has the property

(4.13)

and thus satisfies Euler's equation
N

Now consider
H(q, p, t) = ^kpkqk -L = T.kpkqk -T+V (4.15)
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THE HAMILTONIAN EQUATIONS 39

Here
,0 3T

= S^jk— - (4.16)

since L = T — V and V does not depend on the g's. However,

S4fc|^ = S* Jf? + ̂  + p) = r, + 272 (4.17)
9^ \9^ 3qk dqkj

byEq. (4.14). Thus

Tl+2T2 (4.18)

From Eqs. (4. 15) and (4. 18)

H = Tl+2T2- (7b + 7i
(4.19)

H = T2 - TQ + V
In the usual case where the position vectors do not depend explicitly on the time t,
i.e., in a nonrotating reference system, TO and T\ vanish, so that T = +T2. In this
usual case

H = T + V (4.20)

the total energy.
Even in this case, however, V may depend explicitly on t, and if so, H also does.

I. An Important Theorem

£-£
To prove this theorem, write

AH /3H dH \ dH
—— = E k( ——qk + ——pk ) + —— (4.22)
d^ \3^ 9^ / 3?

Insertion of the canonical equations (4.9) then gives

dH 3H 3H__ = E,(-fcfc + fcW +__ = __

and the theorem is proved. It follows that H is constant if it does not depend
explicitly on t.

II. Ignorable Variables
If//does not contain qf explicitly, g/ is called an ignorable or cyclic coordinate,

and
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40 J. P. VINTI

so that PJ = dj, a constant. If all the g's were ignorable, we should have

H = H(pi,p2, . ..
and each

Pj = <*j

where each v/ is a constant depending only on the constants p, = a/, j =
!,... ,#. Then,

qj = Vjt + pj (4.24)

We should have a complete solution of the canonical equations, with 2N constants
of integration, a\ , a2, . . . , aN and f$\ , /?2, . . . , PN-

We shall use this idea to try to solve the canonical equations, introducing new
canonical variables Qk, /\, k — 1, . . . , N, which will make all the Q's ignorable.
Otherwise we must do it piecemeal, one at a time. To do so, we have to consider
the theory of transformations from canonical variables q^, p^ to new ones <2&> A>
i.e., the theory of canonical transformations.
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Chapter 5

G

Canonical Transformations

I. The Condition of Exact Differentials
IVEN the set of canonical equations

. . . , ,Pk = ——— - ——— qk = —— - ——— k = l,...,N (5.1)

we wish to find which time-dependent mappings to new variables P\ , P^, . . . , PN,
2i > (?2> • • • > QN will preserve the canonical form of these equations. That is, we
map by means of

, t ) (5.2)

to find conditions on this mapping and on a new function K(Q, P, t), so that

) BK(Q,P.t)
k *k v '

To do so, we begin afresh, with the q's and /?'s defined only by Eqs. (5.1) and the
Hamiltonian H(q, p, t). Regarding the q's and p's as independent variables, with
given initial values, we look for a variational principle that will take them from their
initial values at t — 0 to the same final values at time t that would be produced by
Eqs. (5.1). The form of the variational principle will resemble Hamilton's principle
but will not really be the same.

We call the space of the q's and p's the phase space, as is usual in mechanics.
Theorems of existence and uniqueness of solution then show that for given initial
values #fc(0), /?*(()), k = 1, . . . , N, the system (5.1) follows a unique path in the
phase space from the initial point Potofc(O), /ty(0)] to the final point P[qk(t), Pk(t)]\
this is the dynamical path D. Other paths might be geometrically possible but would
violate Eqs. (5.1). Any other adjacent path with the same endpoints, traversed in
our imagination in the same time, is called a varied path V. For such a varied path,
denote the variations at the same time from the dynamical path by

Theorem 1: For arbitrary variations q^ p^, k — 1, . . . , JV, the condition

qk ~ H(q, p, t)]dt = 0 (5.4)/JQ
is necessary and sufficient that the g's and p's satisfy Eqs. (5.1), i.e., that the g's
and p's be canonical with respect to H as Hamiltonian.

41
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42 J. P. VINTI

To show this, note that

'•^-tq*dqk opk
However, 8qk = (d/dt) (Sq^), so that

= —
dt

Insertion of Eqs. (5.5) and (5.6) into Eq. (5.4) then yields

(5.5)

(5.6)

8[VkPkqk-H(q,p,t)]dt

*

-fJo

? k \ d t -
\

° W7

(5.7)

Since the endpoints are fixed, however,

Thus
nt r / r) // \ / (^ f-f \ ~l

= / EJ-(^4--— )^ + ( ^ - — -W
Jo L V 9^/ V °pk/ J

(5.8)

If Eqs. (5.1) hold, the integral vanishes, so that condition (5.4) is necessary.
To prove sufficiency, assume that Eq. (5.4) holds, so that the integral in Eq.

(5.8) vanishes. If we should assume that some of the terms pk + (3H/3qk) and
qk — (dH/dpk) fail to vanish, we may choose our variations so that

( O TT \ / O TT \

Pk + 7— )fi*(0 «Pik = ( 4* - 7— 1^(0 (5-9)
3^7 V ^7

are small arbitrary nonnegative functions of t, vanishingwhere the £&(0 and
at the endpoints. Then

nt

I
Jo

o rr \ 2

— -
9^7

C^ / f^ J-f
S / l ^ - - - —

Jo V 3py

\
(5.10)

the summations being taken over those values of A: andy* for which the corresponding
terms have been assumed nonvanishing. However, Eq. (5.10) is false unless Eqs.
(5.1) hold. This completes the proof of sufficiency and thus of Theorem 1.

If we map from the g's andp's to Q's and P's, Theorem 1 shows that the condition

/
Jo

(5.11)
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CANONICAL TRANSFORMATIONS 43

is necessary and sufficient that the Q's and P's be canonical with respect to
K(Q, P, t) as Hamiltonian.

Suppose now that the mapping of Eqs. (5.2) between q, p and Q, P has the
Jacobian determinant.

(5.12)

where A, B, C, and D are square matrices such that

3qi /? 3qi r 3pi n - 3pi
Bij = Cij = DiJ -so , ao

If the Jacobian does not vanish at q\ , qi, . . . , q^, Pi > /?2, • • • , /?#» then Eqs. (5.2)
determine <2i, Q2, . . . , QAS P\, P2, .-., PN at any such point. (A very simple
example would be the point transformation x = rcosO, y = r sin#, with the
Jacobian r; in this case, 0 is determined for all x and y, except x = y = 0, where
r — 0.) With the nonvanishing of the Jacobian, any function F(Q, P, £) can be
expressed, at least in principle, by

F(Q,P,t) = G(q,p,t) (5.14)

Theorem2: If there exist functions H(q, p, t), K(Q, P, t\ and F(Q, P, t) such
that

Vkpkqk - H(q, p, t) - [XkPkQk - K(Q, P, 01 = TF&> P' r) ^5'15)
at

then, if the qkl pk are canonical with respect to H(q, p, t) as Hamiltonian, the
Qk, Pk will be canonical with respect to K(Q, P, t) as Hamiltonian.

To prove this theorem, we form the time integral of the variation of Eq. (5.15)
from a fixed path in the phase space of Qk, Pk- The varied path is to have the same
endpoints and be traversed in the same time as the fixed path. Since

.,,, (5,6,
we find

8[VkPkqk-H(q,p,t)]dt= I 8[VkPkQk - K(Q, P, t)]At (5.17)
./O

since 5F(2, P ,0 lo=0 .
The nonvanishing of the Jacobian guarantees no singularities in the mapping,

so that 8qk and 8pk exist for any 8Qk and 8Pk at any point in the phase space of
the 2's and P's. If we now impose the condition that the qk, pk are to be canonical
with respect to H(q, p, t), the fixed path in the phase space of the g's and p's
is the dynamical path. The integral on the left side of Eq. (5.17) vanishes by the
necessity feature of Theorem 1. Since the integral on the right side of Eq. (5.17)
also vanishes, the Qk, Pk are canonical with respect to K(Q, P, t) as Hamiltonian,
by the sufficiency feature of Theorem 1. This completes the proof of Theorem 2.

If the Jacobian does not vanish, we may replace F(Q, P,t) in Eq. (5.15) by
G(q, p, t) by virtue of Eq. (5.14). On reversing the roles of the qk, pk and Qk, Pk
in the preceding argument, we find that if Eq. (5.15) is satisfied, and if Qk, Pk
are known to be canonical with respect to K(Q, P, t) as Hamiltonian, then qk, pk
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44 J. R VINTI

will be canonical with respect to H(q, p, t) as Hamiltonian. This is a corollary of
Theorem 2. The latter and its corollary can be combined into one statement, as
follows.

If the Jacobian from q^ , pk to Qk , Pk does not vanish in the region of phase
space with which we are concerned, the condition

Xk(pk dqk - Pk dQk) + [K(Q, P, 0 - H(q, p, 01 & = AF(Q, P, 0 (5.18)

is sufficient for a canonical property of either set (^, /?&) or (Qk, Pk) to ensure the
canonical property of the other.

This is not a necessary condition, as a simple example will show. Let Qk =
pk, Pk = qk, and K = — H. It is verifiable at once that this is a canonical trans-
formation, but it does not satisfy the perfect differential condition (5.18).

A condition that is both necessary and sufficient is

KZ.k(pk dqk - Hdt)- Xk(Pk dQk - K dt) = perfect differential (5.18a)

where A is a constant and not necessarily equal to I.1'2

II. Canonical Generating Functions
a) Suppose that

q=q(Q,P,t) p = p(Q,P,t) (5.19)

is such a mapping that

Pk = |̂  Pk = -j£r (5.20)
dqk 9 Qk

where S is a so-called generating function of the form

S = S(q,Q,t) (5.21)

With use of the summation convention on k = 1, . . . , TV, it follows that
3S 3S . dS 8S /e^

ftfc-ftGi-a^ + ag^-dT-ar (5'22)

We may write this as
dS 35(Pkqk-H)-(PkQk-K) = — + K-H-— (5.23)

= "i ifK = H+d-£ (5-24)

By the sufficiency criterion of Sec. I, if the q, p are canonical with respect to H
as Hamiltonian, the g, P will be canonical with K as Hamiltonian if

dS
K(Q,P,t) = H(q,p,t)+— (5.25)

ot

b) With

S = S(p,P,t) (5.26)
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CANONICAL TRANSFORMATIONS 45

if the mapping is such that

3S 3S
qk = -—— Qk = —— (5.26a)

3pk 3 Pk

then

Pkqk - P = ^(Pkqk-PkQk)

d
= ^(PkQk ~ PkQk)

d= -r(pkqk — PkQk

>-qkPk + QkPk

3S 3S .
' + T — Pk + ~r^-pk

°Pk v *k

8S

(5.27)

(5.27a)

(5.28)

and
d 3S

(pkqk -H)- (PkQk -K) = -^(Pkqk - PkQk + S) + K-H-— (5.29)

The sufficiency criterion then shows that if q, p are canonical with H as Hamil-
tonian, the <2, P will be canonical with

K = H + — (5.29a)

as Hamiltonian.
c) With

S = S(q,P,t) (5.30)

Pk = —— Qk = —— (5.31)

we have

D f) _ »-» /» 1 /^ D- /&£;/£ = Pkqk ~l~ \l,k*k — —dt
3S 3S . d

dt dt—"' "st (532)

Then

The sufficiency criterion shows that, if q, p are canonical relative to //, then Q, P
will be canonical relative to K as Hamiltonian if

K = H + % (5.33a)
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d) With
S = S(p, Q, t) (5.34)

ft = -^~ Pk = -^ (535)
d#t ^ Qk

we find

P*4* ~ pkQk = -PkVk + -£(/>*£*) ~ PkQk

3S 3S . d
= Wk

pk+ao;Qk + *
dS d5 95

= d7 + dT(**> - ¥

(pk qk-H)- (PkQk -K) = 2-(S + pkqk) + K - H - ̂  (5.36)
d£ ot

Thus, if g, p are canonical relative to //, then g, P will be canonical relative to K
as Hamiltonian if

K = H + — (5.36a)
Of

In case S = S(p, Q), the reader can readily verify that the minus signs can be
dropped in Eqs. (5.35) and the Q, P will still be canonical relative to the same
Hamiltonian K = H. The only reason for using the minus signs in Eqs. (5.35)
is to obtain K = H + (dS/dt) when S depends explicitly on t. Case d falls
into line with cases a, b, and c, which yield K = H -\- ( 3 S / d t ) . Not all canonical
transformations can be derived from the preceding four generating functions. An
example is p\ — Q\,q\ = — P\, pi — P^,q1 = Q^, which satisfies

Such a mapping is canonical, without change of Hamiltonian, but it cannot be
produced by means of any of the above generating functions.

As seen in Table 5.1, case c will be useful in the Hamilton-!acobi theory and
case d, without the explicit dependence of S on t, in the von Zeipel perturbation

Table 5.1 Summary of canonical generating functions

Case a: q, Q Case b: p, P Case c: q, P Case d: /?, Q

2,t) 3S(p,P,t) dS(q,P,t)
Pk — ——~———— qk = ———i——— Pk = ———~———

— - - ~ y ? ' 3> 0 0 _ 3S(p, P, 0 0 _ -~ vj . ~ , -/ p _

K = H± —
Bt
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CANONICAL TRANSFORMATIONS 47

method. A simple example of case c is S — X^ /?£<?#. This gives the identity
transformation /?# = Pk^ndq^ = Q^. In cased, without the explicit dependence on
t and with use of the plus signs, S = £&/?& Qk also gives the identity transformation.

III. Extended Point Transformation
Suppose we have g's and /?'s canonical relative to H(q, p, t) as Hamiltonian.

A point transformation is one in which the new Q's are functions only of the g's
(and perhaps of t), but not of thep's. The new P's can be found by expressing the
kinetic energy Tin terms of the Qk,Qk,t and then using

There is another method of doing this, however. Suppose

Choose a generating function of case c, viz.,

S = VjPjfj(q,t) (5.39)

with
as

Qk = —— = fk(q,t) (5.40)

The new P's are to be found from

pk = —— = VjPjd^q'^ (5.41)

Such a transformation is called an extended point transformation. It results in a
new Hamiltonian

as
K(Q, P, t) = H(q, p,t) + — (5.42)

ot
Just to show how the method works, we shall devote the rest of this section to a
simple example, which is not really very fruitful. Then, in the next section, we shall
consider an example where an extended point transformation yields an important
result.

IV. Transformation from Plane Rectangular to Plane Polar Coordinates
For a particle of mass m with rectangular coordinates x, y momenta p\ =

mx, p2 = my, potential energy V(x, y), we have

H = (I/2m) (p2 + p2) + V(x, y) (5.43)

The equations of point transformation are

x=rco$0 ;y = rsin# (5.44)

We could transform directly to plane polar coordinates by writing

T = \
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48 J. P. VINTI

Then
3T 3T 2 .
— = Pl = mr — - = P2 = mr20
3r 80

so that

The method of the extended point transformation goes as follows.

Gi = r = /,(jr,y) = (Ar2 + y2)i

2 2dx x2 + y
a/i _ y _ . . 9/2 _ x _ cose—— — — — sin u — — — - —— — — — ——
ay r ay XL + y* r

The equations

become
P2sin6>

PI cos 9 — ———— = p\
r

P2cos<9
PI sm 9 + ———— = p2

r
with the solution

P! = ^j cos 9 + /?2 sin 0

= r(—p\ smO

To verify their correctness, use /?i = mi, p2 = ^j and form

PI + (iP2/r) = m(x + iy)e~w

However,
x + i y = re

x + iy = (r+irO)sie

so that

Pi-
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PI = mr P2 = mr2

49

V. The Jacob! Integral
Consider an artificial satellite in orbit about the Earth as shown in Fig. 5.1. If

r = geocentric distance, 0 = geocentric latitude, and </> = right ascension, its
kinetic energy per unit mass in the usual inertial system is

Then p\ = r, p2 = r20, and p^ = r2 cos2 0<p, so that

With neglect of drag, the system is monogenic and the potential

V = V(r, 6, A)

North celestial pole

mean vernal
equinox

G

Fig. 5.1 Artificial satellite in orbit about the Earth.
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50 J. P. VINTI

where A, = geographic longitude (or geocentric longitude). However,

A = (/) - u(t)

where u is the angle from the meridian through the vernal equinox to the meridian
through Greenwich. It is called the Greenwich sidereal time and satisfies

where coe is the sidereal rate of rotation of the Earth and UQ is the Greenwich
sidereal time at t = 0. Thus

V = V[r ,0,0-w(0]
The Hamiltonian is then

V(r, 0,4-u)cos

depending explicitly on the time. Thus

—— - —— - -' — —"dT ~ ~aT "" ~u~dx ~ "^"00
since t is kept fixed in evaluating 3 V/dA,. From Eqs. (5.1), p-$ = — (9///d0) =
-(aV/30), thus

dff
— = o>ep3

This suggests finding a transformation that will take us to a constant Hamiltonian

K = H — (JL)ep3
To do so, introduce an extended point transformation

In the notation of the previous section,

where u = a)et + UQ. The equations

Pk = ——

give

which become

Pi = Pi P2 = P2
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CANONICAL TRANSFORMATIONS 51

Also

dt ~~ 3 J dt ~" 3 dt ~ 3 dt ~ ^ 3

The new Hamiltonian
ds

K = H + — = //- ft^P3 = const
ot

where

The net result of this extended point transformation is that simply by changing
from right ascension to geographic longitude as a new <2, we find that the corre-
sponding Hamiltonian K is a constant. This new Hamiltonian is called the Jacobi
integral. In the special case that the Earth is considered to be axially symmetric,
H — o)eP^ would be constant, but so would H and P$ separately.

References
1 Breves Filho, J. A., Celestial Mechanics 6, 1972, pp. 108-110.
2Goldstein, H., Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA, 1980,

p. 380.
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Chapter 6

Hamilton-Jacob! Theory

S UPPOSE we have a system with Hamiltonian H(q, p, t) where the q's and
I. The Hamilton- Jacob! Equation
e a syst

/?'s are to be solutions of

3//(g,p.O . aJ/(g.P.O 7 ,P* = ——— a ——— <?* = —— £ ——— *=! , . . . , #
oqk °Pk

Transform to new variables Q, P by means of a generating function S(q , P , t). The
appropriate equations are

BS(q,P,t) 3S(q,P,t)
Pk = —— - ———— Qk = —— — ———dqk 3Pk

from case c in Table 5. 1 . If the q, p are canonical with H as Hamiltonian, the Q, P
will then be canonical with

as Hamiltonian. Also, if Q, P are canonical with K as Hamiltonian, the q, p will
be canonical with H as Hamiltonian.

The bold step to the Hamilton-Jacobi equation is to require that the transforma-
tion be such that

K(Q,P,t) = 0
If we can find such a transformation, then

. 3£ 3K

so that

where the a's and /3's are all constant. The original problem will then be solved,
since we can then find qk , k from

The key step is putting

53
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54 J. P. VINTI

If we replace pk by dS/dq^, we obtain

3S_ \ 3S(q,P,t) _
-' 3q' ) 3t ~

a partial differential equation for S, called the Hamilton-Jacobi equation. If we
can solve this equation for S, we can find the required canonical transformation.
The integration constants arising in the solution will serve as the new P's, which
will be the same as the constants a's.

II. An Important Special Case
If// is explicitly independent of r, then

H = ai

a constant. Then
3S_ _ _

and

S = -ait + W(q)

Thus
3S 3W(q)

Pk = —— = ————

The HJ equation reduces to

u( 3W ,\//I q, ——, M = a\
V dq )

To write down this equation, construct the Hamiltonian //(<?, /?, t), replace each
Pk by 3W/3qk, and set H equal to the constant cc\.

In most cases one cannot solve this equation in closed form or by quadratures.
In some cases, however, one can solve it by separation of variables, and these cases
are important. If N = 3 and we can separate variables, we shall find two separation
constants 0,2 and 0^3, which along with a\, will be the new P's. We can find

W =

so that

and
ds dw

= — to Me
dak
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We thus obtain, as the kinematical equations of motion,

55

da\

dW(q,a) _
80:3

To find the g's as functions of r, we have to invert these equations, obtaining

To find thep's, we use
3W

The <?'s then follow from the p's by means of

,p,jl=

III. The Hamilton- Jacob! Equation for the Kepler Problem
If r is the radial distance, 6 = latitude, and 0 = longitude or the right ascension,

the Hamiltonian for a unit mass is

"-5 rf + 7*
where V(r) = — jit/r, /x = G(WI + m2). On replacing pk by dW/dqk, the ///
equation becomes

or

j.
2

We try to separate variables by placing

W =

If a prime denotes the derivative with respect to the indicated argument, this
becomes

Then

cos2 6 + 2/ir cos2 0 - r2 cos2 OW{2 - cos2 0 W^2 = a3
2 (6.1)
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a constant, because the left side depends only on 0 and the right side only on r and
0. Thus

where &-$ may have either sign, because

= —— = '

and

which is Lz, the z component of angular momentum. To show this, note that

Lz—xy-yx= lm(x - iy)(x + iy)

However, if p = r cos 9

Thus

On dividing Eq. (6.1) by cos2 9 and transposing, we find

+ 2)ur - r2W{2 = Wf + a\ sec2 6> = a2

a constant, because the left side depends only on r and the right side only on 9.
We may assume &i > 0 without loss of generality.

Then

and

W{ = ±r~l (-oil

Since W'f = pr —r and iy^ = p^ = r20, the plus sign holds for W{ when r > 0
and the minus sign when r < 0. Similarly the plus sign holds for W^ when 9 > 0
and the minus sign when 9 < 0.

From W^ = «3, we obtain

In integral form

f - 1 / 9 7 X 1

W\ = I ±r (— ofo + 2ar + 2a\r ) 2 dr
Jn V
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HAMILTON-JACOBI THEORY 57

where the integrands are always nonnegative. The lower limit r0 allows for a
constant of integration.

Note that for real motion, ot\ — a2 sec2 0 > 0, so that

sec2 0 < all a] cos2 0 > &l/ot\

Since cos2# < 1, we find a2 < u\. The minimum value of cos# is |a3|/ 'a<i.
As 0 increases from 0 toward n/2, cos 6 diminishes until it equals \ct>$\/U2. As 0
diminishes from 0 toward — 7T/2, cosO again diminishes until it equals \ct?l\/(X2.
Thus

#max = cos~1(|a3|/a2)

#min = -#max = ~ COS

Total energy is

1 2 /z
«. = 2»2-7

where v is magnitude of the velocity. For a bounded orbit

a\ < 0

else v would remain real as r — >• oo.
The integrals W\ and Wi are difficult to evaluate, but we need only dW\/da\,

dW\/dct2, dW2/d&2, and 3W2/dci3 since they are the quantities that appear in the
kinematic equations

t _
t + pi =

, ) 3Wl

d(X2 3a2

9W(q9a) 3W

We shall see that we can express the derivatives of W\ and Wi with respect to
the a's as integrals. Before evaluating these integrals, it is well to say what the a's
and /3's will turn out to be in terms of the Keplerian elements a, e, /, &>, £2, and r.
We shall see that

«3 = Oi2 COS / ft = ^

At this point the question may arise: Since we have already solved the Kepler
problem, why solve it again with such a complicated piece of machinery as the HJ
procedure? The answer is this: The ///solution will yield a canonical transforma-
tion of the Cartesian #'s and /?'s or the spherical coordinate q's and /?'s to the a's
and /Ts, which are so closely related to the Keplerian elements. Most problems
in orbital mechanics and celestial mechanics are solved by a method of perturba-
tions, beginning with a solution of a problem already solved, such as the Kepler
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problem. If we begin with the Keplerian solution, we use the Keplerian elements
as variables in the perturbed problem. Once we have solved the perturbed problem
by finding the variable Keplerian elements as functions of time, we can write down
the solutions for the position vector r and the velocity r , as we did before, viz.,

r — A(cos E — e) + B sin E
(6.3)

-
where

r = ̂ (-A sinE + B cos E)

r = a(l — ecosE)

E — esinE = n(t — r)

Note that A and B are functions of a, e, £2, &>, and / as derived in Chapter 2,
Sec. VII, for an elliptic orbit. Equations (6.2) and (6.3) together always hold; they
express a canonical transformation from the oldp's and q's to the new ones, which
are simply the a's and /3's. As such they hold for the perturbed problem as well
as for the unperturbed (Kepler) problem. Moreover, the HJ procedure will get us
started on the perturbation calculations to find the perturbed a's and yS's.

IV. The Integrals for the Kepler Problem
Integrals Involving Only W\
The ct\ Integral

Consider

where that dr > 0 is for the upper sign and dr < 0 is for the lower sign. Let

F(r) = -al

having the real positive zeros r\ and r^ for a\ < 0, satisfying r\ < r <r^ Solution
of the quadratic equation F(r) = 0 gives

n = I±(i--li + *!l«2\
2a\l V 1 + ^ }

'2 = ̂ (l + Jl + ̂ ?M2«i \ V ^ /

where r\ is the pericenter distance and r2 the apocenter distance. For a satellite of
the Earth, the names are perigee and apogee; for a planet going around the sun,
they are perihelion and aphelion. Here r\ and r2 satisfy

l, , ^ ^r i < r < r 2 a = -(r^r2) = ——
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HAMILTON-JACOBI THEORY 59

giving the integral

ai ~ 2a
The oti Integral

-L ±r-1F5(V,a1,a?2)dr

where that dr > 0 is for the upper sign and dr < 0 is for the lower sign.
Then

fr 1 i 3F 1
= ±—F~ —— dr^-

Jr() 2r dai rG

drQ

This equation follows from the theorem
rb rb %f ^^ ^a

'da ' d a
d rb rb df

— f ( X , < x ) d x = J-
da Ja Ja da

If we choose TO = r\, the term F1//2(ro, a\, 0^2) will vanish, because r\ is a zero
of F(r, a\, a2). Another choice of r0 would give different /Ts, but r0 = ri is the
most convenient choice, because it will lead to ft\ = — r. Thus

W}=l ±r-l(-az
2 + 2nr + 2airz)idr

dWi
={:

=[±r(~al

= /' ±ri-:
Jr,

_
dr

3«i ..,

/*'

-2ai(r-r1)(r2-r)]~tdr

±r[(r-r,)(r2-r)ndr
J Y\

Now define a and e by
1 -\L

a — -(r\ + r2) = —— > 0 since QL\ < 0
2 2a\

sothat

giving the integral

The fa Integral
Then

ri = a(l - e) r2 = a(l + e) (6.4)

Purchased from American Institute of Aeronautics and Astronautics  

 



60 J. P. VINTI

To avoid the double-valued function in the integrand, introduce a uniformizing
variable E defined by

r=a(l-ecosE) £ > 0 for all t (6.5)

Then

r = aeE sin E

so that the sign of sin E is always the same as that of f . Now by Eqs. (6.4) and
(6.5)

(r ~ r\) (r2 - r) = a2e2 sin2 E

[(r — r\) (TI — r)p = ae\sinE\

In the integrand of dW\ /dct\ ,
_i aesinE

±r[(r-ri)(r2-r)] * = .±r — — — - = r
ae\sinE\

since the upper sign is for r > 0 and sin E > 0 and the lower sign is for r < 0 and
sin E < 0. Note also thatr = r\ gives cos E\ = 1 or E\ = 2nq (q = 0, 1, 2, . . .).
Since dW/dai = d

Jr,
rdr

-ecosE)dE

Since —2ct\ = fji/a, therefore (— 2a\)~l^2a = l/n, where n = y/Zz"^. Thus

r + ̂  = n~l (E - 2n q - e sin E) (6.6)

or

E -£sin£ =/i(r + ft)

If we let E =0, then r = r, giving the integral

Now by Eq. (6.5) r is periodic in E with period 2;r. Also, by Eq. (6.6), when
AE — 2n, we have A? = 2n/n. The motion is periodic in t with period

T = 27T/AZ (6.7)

and /? = ^jjia'3 is the mean motion. Equation (6.6) is Kepler's equation, which
was discussed earlier, and n = ̂  [ia~^ can be written

fji = n2a3 (6.8)

essentially Kepler's third law.
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The summary of results of t + fi\ = 3W(q, a)/dot\ = dW\/da\ is as follows.

r = a(l — ecosE)

e =

leading to

where

,,2 _ r~ (\ ,,A _ ,,^(\ _ e^\ _

e2)

E -esinE = n(t +

We thus recognize the orbit as a Keplerian ellipse, where a is the semi-major axis,
e the eccentricity, p the semi-latus rectum, n the mean motion, f$\ = — r, r is the
time of perigee passage, and E is the eccentric anomaly.

Integrals Involving Both Wi and W2
The «3 Integral

= , ) = 3Wi ^ 3W2

3(X2 3^2 3^2

We had

= r
where that dr > 0 is for the upper sign and dr < 0 is for the lower sign.

Then
r

- i

/

/• i
T-[(r-ri)(r2-r)]-idr

. , r

To eliminate the double sign in the integrand, introduce a new uniformizing variable
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/, defined by

/ > 0 for all t
a(\ - e2) (6.9)

r =
1 -f e cos /

With r\ = a(l — e) and r^ = a(l + e), Eq. (6.9) covers the physical range
r\ < r < r2. Then

a(l-e2)efsinf

Note that Eq. (6.9) fixes cos / and that the sign off is the same as the sign of sin /,
so that sin / and cos / are thus both determined. From Eq. (6.5) and Eq. (6.9), we
then deduce that

c o s E — e . . Vl — e2sin fcos / = - —————— sin / = ————————
1 — e cos E I — e cos E

e -f cos / Vl — e2 sin /cos E = —————— sm E — ————————
1 + e cos / 1 + e cos /

It is evident that /is the true anomaly.
Return to the preceding integrand. From Eq. (6.9) and r\ = a (1 — e), r2 =

a(l + e), we find

ae(l — e)(\ — e cos /) ae(\ + e)(l + e cos /)
r — r\ — ————————————— YI — r = —————————————

1 + e cos / 1 + e cos /

Thus
a2e2(l-e2)sin2f

(r - rO(r2 - r) = —— — ———— — —(1 + ecos/)2

(6-lla)
,,1[(r -ri)(r2-r)]2 =

I+e cos /
Also

_ a(l -e2)esinf
r~ *

so that

r~ldr = eSmf df (6.11b)
1 + e cos /

and

T-Kr - n)(r2 - r)]~2 dr = T——-——--^4- d/ (6.12)r ^(1 _ ^2^2 |sm/ I

Here the upper sign goes with sin / > 0 and the lower with sin / < 0, so that
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Eq. (6.12) becomes -d//[0(l - e2^]. Thus

dWi -a2(-2 df (6.13)
d<*2 0(1 - e2)i

Here /i is the value of / corresponding to r = n . By Eq. (6.9) we then have

fi = 27r<7 (7 =0, 1,2, . . .

We can take /i to be zero, or else it could be absorbed into the f a , since fa —
dW/da2. Thus

f/ (6.13a)
C*2 0(1 - £ ) 2

By

we find

——- = -/ (6.14)

Next we need 3W2/da2. From

W2==L ±(a2-«3sec^)2de

where that dO > 0 is for the upper sign and dO < 0 is for the lower sign, we find

3W2 fe , 0 ~ 9 v _ i
——- = a2 I ±((*l- a] sec 6>) 2 d°
d&2 Jo

To evaluate this, write
1 cos 0 cos 0

Of^ — C^7 SeC u •*/ 0^2 COS C/ — CXo A/^2 — ^3 — ^2 ^^

/ o o\-i COS^

Then
cos (9 d6>

,3—— Ji.^sin^
2 3

Define 7, which we shall later identify physically, by

0?3 V a2 ~ a3
cos x = — sin y = -————— > 0
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giving the integral

3 = a2 cos y for 0 < y < n

The f32 Integral
Then

dW2 _ 1 f° ± cos 9 dO
da2 sin y J0 L / s i n 0 \ 2

To eliminate the double sign, introduce the variable

w = ——
smy

so that
cos 0 dO

dw =
sin y

Since cos# > \a^\/a2 > 0 always, it follows that dw > 0 is for the upper sign
and dw < 0 is for the lower sign. Then

r ±dw
Jo ^/^ ÛT

The double sign is still there; so next introduce a uniformizing variable ^, with
ijf > 0 for all r, such that

w = sin \lf

(Note that i//" is defined as the argument of latitude in Chapter 2, Sec. VI.) Then

and
d= cos

Since ty > 0 always and since dw > 0 for the upper sign and dw < 0 for the
lower sign, it follows that cos ty > 0 for the upper sign and cos i/f < 0 for the
lower. Thus

±dw
= d\ff

and
dw2
da2

= ^

where sin 0 = sin fy sin y.
Thus

3Wl dW2
P2 = -—— + -——
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gives the integral

Integral Involving Only W2: The /3$ Integral
We have

3W(q,ct) 3W2
fa = — ——— = 0 + T —

where

t\( 2 2
- = / ±K-«32'Jo

Thus

aw9

Removing \a$\ from both numerator and denominator, we obtain

•/Jo

dW2 f8 sec2'•7—= sgnr -

= sgn -fJo

^ - tan2 9

sec2#

However,

tanx = JQ?2 o^3 (6.16)
V ^3

so that

sec26>
/

Jo Vtan2 / - tan2 0

Introduce the variable

To show the u < 1, note that for real motion

a\ — a2 sec2^ > 0 giving sec2# < (a|/a

or

cos2^ > («2/a2) giving a2 < a2 cos2^ <

(6.17)
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However,

a2 — a2

tan2# = sec2# - 1 < 2 3 = tan2y

using Eq. (6.16). Thus

|tan0| < |tany|

so that

tan (9 < |tany|

or

u < 1

Return to the integral. We obtain

= sgn «3 f d°

where that du > 0 is for the upper sign and du < 0 is for the lower sign. The
double sign is still there, but to eliminate it, introduce x by x > 0 for all t
and

u — sin/ (6.18)

Then cos x > 0 with the upper sign and < 0 with the lower sign. (Note that
X = </> — £2 gives the physical meaning of the element x in Chapter 2, Sec. VI.)

We have
dO

Thus

9 Of 3

where

tan# = | tany|sinx

using Eqs. (6.17) and (6.18). Thus

gives the integral

ft = 0 -
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Summary for fa and fa

fa = ̂ ~ f

ft = 0 - XSgna3

tan0 = |tany | sinx

(6.19)tany = = |tany|sgna

/

sin 0 = sin ̂  sin y (^ > 0)

To understand these equations better, we prove some theorems.

V. Relations Connecting fa and fa with u and 1
Theorem 1: The orbit lies in a plane passing through the origin.
Proof: Use

0-j03 x = (0-ft)sgna3

sin x = sin(0 - fa) sgna3 cos x = cos(0 - fa)

tan 0 = |tan y |sin x = I tan y |sgn a3 sin(0 — 03) = tan y sin(0 — 03)

using Eq. (6.19). Thus

sin(0 - ft) - cot y tan 9 = 0

Multiply this by r cos 0, to find

r cos 0 [sin 0 cos 03 — cos 0 sin /33] — r sin 0 cot y =0

However, r cos 0 sin 0 = y , r cos 0 cos 0 = jc, r sin 0 = z. Thus

y cos fa — x sin 03 — z cot y = 0

This is the equation of a plane passing through the origin. It follows that the
intersection of the orbital plane with the celestial sphere is a great circle, so that
we may apply spherical trigonometry.

Theorem 2: ft = &>, the argument of pericenter.
Proof:

sin 0 = sin ̂  sin y

However, fa = "ft — f , so that

sin 0 = sin y sin(fa + /)
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At the ascending node 9 = 0, so that

sin(ft + /) = 0

To show that the sign is plus, use
dO

cos 0 — = sin y cos(ft + / )

Here sin y > 0, from the definition sin y = Ja^ ~ #3/^2-
Now at the ascending node, dO/df > 0 and 9 = 0, so that

cos(ft + /) > 0

Thus, cos(ft + /)=!. Since sin(ft + /) = 0, it follows that ft + / = 0, modulo
2;r, at the ascending node. However, CD + / = 0, modulo 2jr, at the ascending
node. Thus, ft = to, as was to be proved.

Theorem 3: y = /, the inclination.
Proof: Because sin# = sin y sin(ft + /)> we now have

sin 0 = sin y sin(&> + /)

From Fig. 2.5

sin 6 = sin / sin(&> + /)

Thus

sin y = sin /

and

y = I or y = n — I

By definition

COS X =

However,

so that o?3 and thus cos y are positive for direct orbits and negative for retrograde
orbits.

We see that y — I satisfies these requirements. The assumption y = n — I
gives cos y — —cos /, which would lead to 0^3 < 0 for a direct orbit and #3 > 0
for a retrograde orbit. Thus, y = /, as stated.

Theorem 4: ft = Q, the longitude of the ascending node.
Proof: In the proof of Theorem 1, we had

tan 9 = tan y sin(0 — ft)

which now becomes

tan# = tan / sin(0 — ft)
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At the ascending node 0 = 0, so that

sin(0 - ft) = 0

cos(0 - ft) = ±1

To show that -hi holds, differentiate the preceding equation to obtain

9 dO
secz#— = tan / cos(0 - ft)

so that
sec26> d<9/d0

= COS(0 - ft)
tan/

At the ascending node, the numerator and denominator are both plus for direct
orbits and both minus for retrograde orbits. Thus

cos(0 - ft) > 0

and thus
sin(0 - ft) = 0

cos(0 - ft) = 1

Thus, at the ascending node
0 = ft modulo 2n

Also, at the ascending node
(/) = Q modulo 2n

Thus, ft = £"2, as stated.

VI. Summary
The results of this chapter show that if (q, p) are the coordinates and momenta for

the Kepler problem, in either rectangular or spherical coordinates, we have found
new canonical variables (a, ft), corresponding to a new Hamiltonian K = 0. They
are

«i = -TT P\ = ~r
2a

o (6.20)

a3 = «2 cos / ft =
The Kepler problem is defined either by the equation

f (0 = -f
or by the Hamiltonian

H = \(PI +

where V(r) = — /x/r, /z = G(m\ -f- ^2).
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Its solution, given by

r = A(cos E — e) + B sin E
an

r = —(—A sin E + B cos E)
r

(6.21)

E — e sin E = n(t — r)

is then a canonical transformation from (q, p) to the new variables (a, ft).
In the Chapter 7 we shall consider the effects of adding a perturbing term to the

Hamiltonian. A perturbing term V\(q) added to the Hamiltonian will correspond
to a term —W\(q) added to the r equation. After adding such a perturbation,
we shall treat the a's and /3's, or the corresponding Kepler elements, as variables
related to the original q's andp's by the same equations [(6.20) and (6.21)] as in
the unperturbed problem. If we can find the a's and /Ts as functions of t, we have
simply to use Eqs. (6.20) and (6.21) to find the orbit.

Bibliography
1 Smart, W. M., Celestial Mechanics, Longmans, Green, and Co., London, 1953, pp.

143-148.
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Chapter 7

Hamilton-Jacobi Perturbation Theory

UPPOSE we have a problem characterized by a Hamiltonian

where HQ(q, p) leads to a separable problem and H\(q, p, t) is a perturbing term.
The separable problem leads to the usual scheme.
1) Solve the HJ equation

Then Ho(q, dS/dq) = const, since it does not depend explicitly on t; call it ct\.
Thus

as
—— = —OL\
dt

S = —ot\t + W(q, oil, oi2, 0^3)
3W

2) Find the g's as functions of t by inverting

= dW(q,a)

3W(q,ct)
P2 = ———————

dW(q,ct)

The ^'s are then

t) k -1 ,2,3

3) Find the /?'s from

) k -1 ,2,3

71
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4) Find the g's from

If H$(q, p) is the Kepler Hamiltonian, this whole procedure is taken care of
by Eqs. (6.21). So far, the a's and /Ts are canonical with respect to //o(g, p) as
Hamiltonian.

To solve the perturbed problem, we introduce the preceding a's and /Ts as new
variables; that is, we use the relations

qk = qk(a,P,t) Pk = Pk(a, P , t ) k = 1,2,3

as a time-dependent canonical mapping to introduce the new variables a, p into the
perturbed problem. If //o(#, p) is the Kepler Hamiltonian, this mapping is simply
Eqs. (6.21); the time dependence is a result of Kepler's equation E — e sin E =
n(t -f Pi). The a's and /Ts will no longer be constant but will depend on time.

It is then clear that the perturbed g's and p's will be the same functions of t
and the perturbed a's and /Ts, as the unperturbed q's and p's are of t and the
unperturbed a's and /Ts. It follows that

//o (perturbed g, perturbed/?) = u\ perturbed

To see the meaning of this more clearly, note that, if v is velocity and //o(#, p) the
Kepler Hamiltonian, the equation

1 2 //, /x M
ffo = 5l, -7 = -- « = - ——

is still exactly true for the perturbed variables.
For the perturbed problem, we have

H(q, p, t) = Ho(q, p) + #1(4, p, 0

dH(q,p,t) dW(q,a) dS(q,a,t)
Pk = - —— ~ ——— Pk = —— ~ ——— = —— - ———oqk oqk dqk

Thus, S(q, a, t) is a generating function of the form S(q, P, t) for introducing
new canonical variables. It follows that the a's and /Ts introduced in this way are
canonical with respect to

as new Hamiltonian. However,

S = -ct\t + W(q,a)

so that
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Here the g's, /?'s, and oc\ are all perturbed variables and

Ho(q,p) = a\

so that

K = H l ( q t p 9 t )

For the perturbed problem,

3ft 3ft
dK(q,p,t)

so that the a's and /Ts of the perturbed problem are canonical with respect to the
perturbing term H\(q, p, t) as Hamiltonian.

Our problem is now to solve this canonical system for the a's and /Ts as functions
of t. After we do so, the g's and p's that are solutions of

3H(q,p,t) dH0(q, p) dH\(q,p,t)

dH(q,p,t) dHo(q,p) 8H\(q,p,t)
pk = ———————— = ——————— — ———————

dqk dqk dqk

will be found from the relations

,7.,)
Here S(#, a, 0 has the same functional form in t, the g's, and the a's as it has
for the unperturbed problem. If the latter is the Kepler problem, Eqs. (7.1) are
equivalent to the Keplerian algorithm for the q's and p's in terms of t and the a's
and /Ts, i.e., to Eqs. (6.21).

Actually, we shall find that f}\ — — T never appears in H\(q, p, t) or in the
solution except in the combination I = n(t — T). It should also be remarked that
H\ (q , p, t) will not ordinarily contain t explicitly, but rather the true anomaly /; I
appears implicitly through the relation connecting / with E and the Kepler equa-
tion E — e sin E = t.

In Chapter 8 we shall get rid of f$\ as a variable. To understand why, we have
to anticipate later developments. A perturbation in orbital mechanics and celestial
mechanics ordinarily produces variations that are periodic in t or change mono-
tonically with t, usually linearly. These monotonic variations are called secular
variations, and any term in t2 is called a secular acceleration.

If, however, we use f}\ as a variable, we should find mixed terms of the form
t times periodic terms. Authors sometimes call them inconvenient and introduce
other variables to get rid of them. How can we do so if they are really there?
The answer is that they are not. The element fi\ = — r never appears except in
the combination nt — nr, and it so happens that nt introduces mixed terms that
exactly cancel those of nr. We shall prove this later in drag-free satellite theory
by showing that the variations in t = n(t — r) are purely linear plus periodic.
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To see the compatibility of mixed terms in r with no mixed terms in I, consider
the drag-free case. Here calculation will show that

where £0, k\ » and c are constants and P\(t) and P2(0 are periodic in t. It is clear
that nt is mixed because of ^/^(O* so that nr must be mixed.

For r itself

c[l + P2(0]
so that

r = f -

Thus, r is mixed because of the terms k\tP2(t),k\tP%(t), etc.
Sometimes t is expressed as

Here cr = — nr, which is mixed. If, instead of a, one defines a quantity a7, such
that -/•„,

Jo
then a' will be free of mixed terms. To show this, note that

and

a' = ̂  +Pi-c-cP2

which is constant plus periodic. Thus, a1 is linear secular plus periodic, containing
no mixed terms.

Bibliography
^arfinkel, B., Space Mathematics, Part I, Vol. 5, Lectures in Applied Mathematics,

American Mathematical Society, Providence, RI, 1966, pp. 67-68.
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Chapter 8

The Vinti Spheroidal Method for Satellite
Orbits and Ballistic Trajectories

I. Introduction

T HE Earth is approximately an oblate spheroid. The oblate spheroidal system
of coordinates is one of the 11 systems in which the motion of a particle in

Euclidean space may lead to a separable problem. In this chapter we introduce
this system and find a general form for the potential of the Earth that leads to
separability of the Hamilton-Jacobi equation. We next introduce this form for
the potential into Laplace's equation, solve it, and then expand this solution in
spherical harmonics. This solution can be fitted exactly to the zeroth and second
zonal harmonics, thereby accounting exactly for the oblateness. Moreover, it makes
the first harmonic vanish, as it should for the origin to be at the Earth's center of
mass. The fit of the fourth harmonic has the correct sign and about two-thirds of
the correct value. The third harmonic is not accounted for in this first approach but
has since been incorporated into the potential.1"4

II. The Coordinates and the Hamiltonian
Let the origin O be at the Earth's center of mass, the axis Oz along the polar axis,

and the axis Ox toward the vernal equinox. We then define the oblate spheroidal
coordinates by5

2 + 1)(1 - r]2)]^ei<j> (8.1)

c^r] (8.2)

Here e1^ = exp /0, r is the geocentric distance of the satellite, 9 its latitude or
declination, and </> its right ascension. The constant c is a parameter to be fitted.
As r —> oo, one shows easily that c£ -> r and r\ -> sin#.

The metric d s2 is given by

d s2 = h\ d?2 + h\ dr]2 + h] d02 (8.3)
where

h] = c\^ + r?2)(£2 + I)'1 (8.4a)

fc| = c2(£2 + *72)(1 - fV (8.4b)

/*2 = cV+l)(l-r?2) (8.4c)

The level surfaces of f are oblate spheroids, those of r\ are hyperboloids of one

75
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a = c 1 - r]2

b — c
77 = 77,, -1 < 77, < i

Plan View ( from top)
I Equatorial plane ( xy plane)

= 0 It? = 0
inside circle / outside circle

Fig. 8.1 The oblate spheroidal coordinates.

sheet, and those of 0 are meridian planes. (A section perpendicular to Ox is shown
in Fig. 8.1.) The derivations of Eqs. (8.1-8.4), the pertinent analytic geometry, and
coordinate transformation are described in Appendix A.

The points P\ and P2 are foci both of the ellipsoids £ = const and of the one-
sheet hyperboloids r] = const. The positive z axis satisfies 77 = +1, the negative z
axis rj = — I . The foci lie on a focal circle, of radius c in the equatorial plane. Points
in the equatorial plane satisfy £ = 0 inside the circle and rj = 0 outside the circle.

The kinetic energy per unit mass is

The generalized momenta are

(8.5)

(8.6a)

97

(8.6b)

(8.6c)
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THE VINTI SPHEROIDAL METHOD 77

If Vis the potential, the Lagrangian L = T — V, and the Hamiltonian

H(q, p, t) = VkPkqk -L = 2T-L = T + V (8.7)

Putting H = H(q, p, t), thus

H = I (A-2p| + /£2p* + *3~2/$ + V (8.8)
Now V is a function of r, 6, and X, where A. is the geographic longitude.

Since

0 = A. + <y*f (8.9)

where o^ is the Earth's speed of rotation, we have

V = V(£, 77,0-^0 (8.10)

The Earth's rotation will spoil separability unless we demand that V depend only
on£ and rj:

V = V($,ri) (8.11)

This means that we cannot account for tesseral and sectorial harmonics, but at
most for zonal harmonics. With such an axially symmetric potential, we obtain
from Eqs. (8.8), (8.11), and (8.4):

Because Eq. (8.12) is explicitly independent of time, we have

H = ai (8.13)

Here ot\ is the constant energy, with a\ < 0 for a bounded orbit, since V vanishes
at infinity. Also, 0 is not contained in Eq. (8.12), so that it is a cyclic coordinate.
Thus

Pt =<x3 (8.14)

a constant. From Eqs. (8.6c), (8.4c), and (8.1)

Since r cos 9 is the distance of the satellite from the z axis and 0 its angular velocity
about that axis, we identify p^ = #3 as the z component of angular momentum.
This is always conserved with axial symmetry.

III. The Hamilton-Jacob! Equation
Call the coordinates qk, k = 1, 2, 3. If we place

dW
Pk = —— (8.16)

in Eq. (8.12), we obtain the HJ equation. Then
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so that

W = a30 + a function of f and r] (8.18)

If we separate Eq. (8.12), we have

W = cx30 + Wi($) + W2(rj) (8.19)

Since we know that p^ = a^ in Eq. (8.12), we can write it and apply Eq. (8.16)
only to p% and p^ in Eq. (8.12). Then, with use of Eq. (8.19), we find

= 2c2(£2 + rj2)^ (8.20)

Here we have put H = ot\ in Eq. (8.12). Now

£2 + ??
2 = (£2 + l ) - ( l - r ?

2 ) (8.21)

so that Eq. (8.20) becomes

»?) = 0 (8.22)

Inspection of Eq. (8.22) shows that we obtain separability if and only if

This leads us to the problem: What forms must /(£) and g(rj) have to satisfy
Laplace's equation?

IV. Laplace's Equation
For axial symmetry V2 V = 0 becomes5

0 (8.24,

We require that V satisfy Eq. (8.23), with the requirement that V have no singular-
ities outside the planet. The solution is long, but the result is simple. It is that V
shall be a linear combination of the real and imaginary parts of

V = ($+irirl (8-25)
The reader can verify that Eq. (8.25) is a solution of Eq. (8.24). Then

v - WTX
which has the correct form to yield separability of the HJ equation. The next step
is to find how many of the zonal harmonics we can fit with Eq. (8.26).
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V. Expansion of Potential in Spherical Harmonics
Begin with

($ + in)2 = $2-n2 + 2i$ri (8-27)

From Appendix A

(x2 + y^/c2 =^+1-^- f V (8.28)

z
2/c2 = $y (8.29)

Thus

and

Then

r2/c2 = %2 + l-r]2 or $2-ri2 = (r2/c2) - I (8.30)

i- = r—-l + — rsintf (8.31)
C CL C

c ( 2i c c2 \ 2

te + irj)"1 = - 1 + — sin# - — (8.32)
r \ r r1)

In Eq. (8.32) put

h = -(ic/r) (8.33)

Then

(f + irj)-1 = -(1 - 2/z sin(9 + /*2)~^ (8.34)
r

c ™
Y L^i n

n=\

if |/z| < the smaller of |sin6> ± (sin26> - 1)1/2| or \h\ < the smaller of |sin# ±
icos9\. However, |sin# ± /cos^ | = 1. The condition for the validity of the
Legendre expansions is thus \h\ == c/r < 1. We shall see that c will turn out to be
small compared to r, so that the Legendre expansion is valid and

D
n(sin#) (8.36)

The real part of this is given by the terms n = 2k and the imaginary part by the
terms n = 2k + 1. Thus

c\2k

(8.37)

oo / \ 2k+\
/>2*+i(sin») (8.38)
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Since V = b0Re(% + ir])~l + b\ Im(£ + irj)~}, we find

(8.39)
This is to be compared with the zonal part Vz of the usual spherical harmonic
expansion of the potential [Eq. (15.37a)]:

/ /

oo / \2k 2k+l

Zeroth Harmonic

Second Harmonic

From these we obtain

First Harmonic

c2 = r]h

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

With the origin at the center of mass, we have J\ = 0 and thus b\ = 0. That is,
with this model, all the odd zonal harmonics drop out.

Even Harmonics in General

With b0c = —/A, this leads to
2k

/ 2 * = ( - D + -
\r

However, for this model, J2 = c2/r2, so that we find

(8.46)

(8-47)
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In particular

For the Earth, J2 = (1.08263) x 10~3 and re = 6378.137 km, so that c «
209.862 km, using the World Geodetic System 1984, WGS84 Earth gravity model.
The value of J4 has the correct sign but is only about two-thirds of the correct value.
The higher even harmonics of the model are much too small. They diminish rapidly
with increasing n, while the actual values diminish slowly with increasing n.

Just the same, the fit is remarkably good, since most of the departure from
spherical symmetry comes from the /2. Since b\ = 0 and b$ = —fJi/c, we find

V = fc°* = ~ * (8.49)

Placing

p = c£ (8.50)

which approaches r for large r, we find

V = _^_^ = ___^_ (8.5i)

VI. Return to the HJ Equation
In Eq. (8.22) put V = -^p(p2 + cV)"1 and £ = p/c. We find

\ dp / p2 + c2

a ? o o3 , o^ . .2^2= f c (852)

Because the left side depends only on p and the right side only on rj, each side is
equal to a constant k. Now for a bounded orbit we have ot\ < 0.

Also, ?]2 < 1, so that

A; < 0 (8.53)

Moreover,

Thus

A: < -a] (8.55)

We may put

k = -al (8.56)
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where «2 may be taken as positive without loss of generality. Then

On placing k = ~a\ in Eq. (8.52), we obtain

(8.58)

(8.59)
d??

where

(p2 + c2)(-of2 + 2/xp + 2alP
2) (8.60a)

af + (1 - 7?2)(cx2 + 2tf!cV) (8.60b)

Then, by Eq. (8.19),

W = <*30 + Wi(p) + W20?) (8.61)
where

W l ( p ) = ±(p2 + c 2 r 1F(p)dp (8.62a)= f
•^/o'

W2(i?) - ± (1 - ^y2)"1 G(77)5 dry (8.62b)
^o

It is convenient to let p' be the minimum p, viz. pi, reached by the satellite. The
motivation for this procedure is the same as in the Keplerian case.

VII. The Kinematic Equations
These are

3W 3Wl dW2 (8-63a)

dW dW{. 3W2 / 0 ^ o i _ x
- = ^ + -1 (8'63b)

(8.63c)

Calculate the a W/a^'s by Eqs. (8.62) and (8.60) and insert the results into Eqs.
(8.63), which become

, + £! = /?!+ C
2N^ (8.64a)

(8.64b)
(8.64c)
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Here
rp

R,=
J01

[p i 1 3W\
R2= ±F"dp =————- (8.65b)

Jpi &2 00(2

~ }-c2rlF-*dp = -T—-^ (8-65c)

- ± v2G-* dry

00(2

±(1 - r?rlG(rjr* ^ = —— -^ (8.66c)
o?3 dctf3

The next steps are to evaluate these six integrals for the R's and Ws and then to
invert Eqs. (8.64) to find p, 77, and 0 as functions of time. Evaluating the integrals
requires factoring the functions F(p) and G(rj)9 and this requires a discussion
of possible mean orbital elements. In turn this requires a discussion of initial
conditions.

VIII. Orbital Elements
The constant a\ is the energy per unit mass, with ct\ < 0 for a bounded orbit; #3

is the polar component of angular momentum; and o?2 is a constant closely related
to the total angular momentum. It is not exactly equal to it because the latter is
not conserved in the noncentral field that we are dealing with. If the subscript /
denotes an initial value and u is the speed,

a3 = rf cos2 0/0,- = Xiji - ytXi (8.67b)

using Eqs. (8.51) and (8.15), respectively.
For o?2, use Eqs. (8.52) and (8.54) and the fact that d W2/dr? = p^ = h\i], where

h\ is given by Eq. (8.4b). The result is

a\ = -2c2^! + (1 - ^2)~1 [(p2 + c2^2)2^2 + a]} (8.67c)

Thus, a knowledge of the initial coordinates and their initial derivatives (see
Appendix A for transformation from the xyz to pr]^ system) would provide an
estimate of the a's and the orbital elements 00, £o» and IQ. By using Keplerian
relations,

2
- — e0 — 1 + —— T~ cos/o = -^ (8.68)
2(X] jJi2 0,2
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If we then define a corresponding semi-latus rectum by

po=ao(l-*o) (8'69)

we have

(8.70)

The external values p\ and p2 of p will then be approximately equal to r\ and r2,
where

r i=oo ( l - eo ) r2 = a0(l + e0) (8.71)

If one can evaluate the integrals (8.65) and (8.66) in terms of OQ, e$, and z'o» °ne

can then find the /Ts by means of Eqs. (8.64) and the initial conditions.
Actually, a knowledge of OQ, e$, and /o does not lead directly to the factoring of

F(p) that is necessary to evaluate the integrals. At this point, we have to consider
the factoring, and this will lead us to another set of orbital elements introduced by
Ref. 6.

IX. Factoring the Quartics
If p\ and P2 are the extremal values of p actually reached, we need to factor

F(p) into

F(p) = -2cti(p - PI)(P2 ~ P)(P2 + Ap + B) (8.72)

where Eq. (8.60a) specifies F(p). Expressing Eq. (8.72) as quartic in p and com-
paring it with Eq. (8.60a), we obtain four equations by equating coefficients of
pk , k = 0, 1, 2, 3. These simultaneous equations express A, B, p\ + /02, and p\pi
in terms of OQ, CQ, /0. and c. For convenience, we also bring in /?o = a$(\ — e^).

These equations can be solved by successive approximations or by expansion
in powers of

*0 = c2/p% (8.73)

The solution is given in Ref. 2, in terms of

* = (l-«o2)*
(8.74)

y = cos /0

Solved for are A, B, p\ + p2» and p\p2. From these follow

fl = J (p i+p2) e = ̂ ^ p = a(l-e2) (8.74a)
2 P2 + P\

in terms of x and y. The a and the e thus introduced are part of another set of orbital
elements that is the set actually used, a set directly related to the factoring.

Factoring G(r]) is easier, because it is a quadratic in rj2. We have

G(rf) = -a] + (1 - ^2)(«2 + 2c*icV) (8.60b)

If we write it as G(rj) = — 2ot\c2(r% — r]2)^2, — ??2), the solution for ^0 and r?2
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involves the difference of two almost equal quantities. It is better to write it as

Gft) = (al - a3
2K(T2 - %2)(T2 - tf] (8.75)

Comparison of Eqs. (8.75) and (8.60b) shows that r)^2 are the roots of

(ai ~ al}^ + (2oi^2 ~ a32)>T2 ~ 2c*ic2 = 0 (8.76)
These are

(V2, ̂ 2) = IK2 - 2a,c2)(a2 - a2)-' (1 ± fii) (8.77a)

g = (1 + 8o<ic2)(a!2 - a2)(a| - 2a,c2)"2 (8.77b)

From these equations it follows that for a\ < 0
2 2< 5^3 < l (8>78)

<*2

(Note that the eight constants A , B, p\ +p2, PiPz, ±??o» ^2 are computed based
on the initial set of a's.)

Instead of OQ, e$, and /Q> it is more convenient to use a, e, and 770 in setting up
the theory. Reference 2 gives the connections in detail and permits one to derive
either set from the other. The /Ts are the same in either case.

We shall write

770 = sin/ (8.79)

as the definition of /. The constants A and B are given approximately by

A ~ —2kopo cos2 /o ^ —2kp cos2 /
(8.80)

B ^ kopQ sin /0 ~ &/? sin /

where

£o = c2/p2 = r]hlpl
(8.81)

k = c2/p2 = r2J2/p2

Thus, A and B are both of order J2, with A < 0 and B > 0.

X. The p Integrals
Refer back to Eqs. (8.65) and (8.72). From Eq. (8.72)

F(Pn = (-2*0-5 [(P - pi)(p2 - p)rl*p-1 ( i + - + 4) 2 <8-82)V P p2/
The parentheses in A and B distinguish the present problem from the Kepler prob-
lem. To handle it, we define b\ and b2 by

A = -2bi (8.83a)

B = b2 (8.83b)
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Then b\ > 0, and b\ and b\ (or A and B) are both of order J2. Let us also define

X~bl/b2 (8.84a)

h = 62/P (8.84b)

Then

/!2 (8.85)
P P P P

so that

( /4 /? \ ~2 OO

PB(A.) (8.86)

provided that the Legendre expansion is valid. From Eqs. (8.80), (8.81), and (8.83),
we find

b\ = kp cos2 /

(8.87)

Reference 2 used the conditions \h\ < 1 and |A.| < 1 to put limits on the inclina-
tion 7. These limits are not correct, however. If one uses the condition

\h\ < smaller of |A,± \/A.2 - l| (8.88)

one can prove that the Legendre expansion is valid for all inclinations, provided
that J2 < 0.17 (see Ref. 7). This restriction is easily satisfied for the Earth, for
which /2 = ( 1.08263) x 10~3.

Thus, we use

A /?

(8.90)
P " \P / \"2/

From Eqs. (8.82) and (8.86)
OQ

'" ' • - PiXto - P)r*Pn(» (8.91)

We now have to insert Eq. (8.91) into Eqs. (8.65) to work out the p integrals. To
get rid of the double signs in those integrals, we introduce uniformizing variables
E and i>, defined by

ad — e2}
p = a(\-e cos E) = ————- (8.92)

1 + e cos v

where E > 0 and i) > 0 for all t. Here E and v are analogous to the eccentric and
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true anomalies in Keplerian motion. Exactly as in that case,

±[(P ~ PO(P2 - P)H dp = dE = (l- e2f>(l + e cos v)~l dv (8.93)

Insert Eqs. (8.91) and (8.93) into Eqs. (8.65a) and (8.65b). The results are
oo / i \n

cv
n(X}

Jo
(l+ecosv)n~2dv (8.94)

dv (8.95)

In the limit J2 = 0, the right sides become a(E - e sin E) and (1 - e2)1/2 v/p,
in agreement with Chapter 6.

It is desirable to resolve each result into a secular part proportional to v and a
periodic part. To do so, first define

fm(v)= / (l + ecosu fdu (8.96)
Jo

Then fm(v) - vfm(2jt)/27t is an odd function of D, of period 2;r. However,
= 2/m(7T),sothat

/•u f r71^
/m(u)= / ( l+^cosi ; ) m du = - /

Jo x Jo
(8.97)

the periodic part of odd and of period 2n, so that its Fourier expansion contains
only terms in s'mjv. Also, it is a finite trigonometric polynomial, obtainable as
follows: 1) expand (1 -f e cos v)m by the binomial theorem, 2) reject the constant
term, and 3) integrate the remaining periodic terms. To obtain a useful form for
the secular term, use

I (z + jz2-lcosv)mdv = nPm(z) (8.98)
Jo

(see Ref. 8). In Eq. (8.98) place z = (I - e2)~l/2. Then

+ ecosv)mdv = n(\ - e2)* Pm\(l - e 2 ) ' ^ ] = nRmU\ - e2} (8.99)
7

.Jo
where

Rm(x) = xmPm(\/x) (0 < x < 1) (8.100)

a polynomial of degree [m/2] in x2. Then

/'Jo
+ecosv)mdv = vRm(Jl - e2) -\-cmj&mjv (8.101)
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Thus, R\ and R2 are given by

/?!=(- b\E + a(E -esinE) + vAi -f ̂  A I / sin jv (8.102)
7 = 1 J

= (-2«i A2/ sin 71; (8.103)

To find /?3, calculate F 1/2 dp for R2. From Eq. (8.65c), this has to be multiplied
by

On integration, the result is

where

m=0

(8.104)

(8.105)

(8.106)

summed over all those nonnegative values of j and n for which

2j + n = m

and where

Then

4-^ A3/ sin 71;
7=1

(8.107a)

(8.107b)

(8.108)

The secular coefficients A\, A2, and A3 and the periodic coefficients A \ j , A 2 j , and
A3 / of R\, /?2, and /?3 are listed in the following summary.

Summary: The p integrals R\, R2, and /?3, which can be computed from Eqs.
(8.102), (8.103), and (8.108) are expressed in terms of analytic coefficients. After
the factorization process of Sec. IX, the set of orbital elements a, e, sin 7, and p
and the constants A and B are known. The variables x,b\,b2, and A. can also be
evaluated, which in turn give the Legendre polynomials Pn(A) and the functions
Rn(x). The exact expressions correct through order J% for the secular coefficients
A I , A2, and A3 and the periodic coefficients A I ; , A 2 j , and A3/ are also listed
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as follows:

b\E + a(E — esin E) + vA\ + Y A I / s inyu

ri + / . ^ 2 / sin jv
7 = 1

13 + > AS/ smjv
7 = 1

oo / i \ n

n=G

.
A21 =

256'
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where

c2 =

A = — (A < 0, B > 0)

Dm = D2i = / > ( — ! ) ' n ( c / P ) (blip) P2n(ty (miseven)
n=0

„ = Da+i = j](-iy~"(c/p)2'-2"(i2//j)2"+1P2i.+ i(A.) (mis odd)

^W = y"!>,.../ "o^./ ' , M Eq. (13.71)

4 - 30A2 + 3)

XI. The 77 Integrals
Refer back to Eqs. (8.66) and (8.75). Put

r] = rjQ sin V (8.109)

where iff is to be positive for all t. Then ty is analogous to the argument of latitude,
since 770 = sin /. (770 and 772 are solutions of factorization.) We obtain

±G(77)"^d?7 = (a2-a3
2)~^oO - q2 sin2 i/0~^ d^ (8.110)

where

of order /2- We find

#1 = (a2-a2)~^^-2[F(^,^)-^(^^)] (8.H2)

N2 = (a2 - a2}'{ VoFW, q) (8.113)

where
t }

iA)~2 d^ (8.114)

,
sin2 1/^)2 diA (8.115)

/•
,q)= (1 -^2 si

Jo
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These functions are, respectively, the incomplete elliptic integrals of the first and
second kinds.

We next resolve N\ and A^ into secular plus periodic terms. To do so, note that

F(\jf + n,q) = F(i/r, q) + 2K(q) (8.116)

/>7r/2 i
K(q)= (1 -#2sin2;cr2d;t (8.117)

Jo
where K(q) is the complete elliptic integral of the first kind. One readily shows
that F(i/f, q) — (2/n)K(q)\lf is an odd function of ^, periodic in ty with period n.
Thus

9 oo
F(i/f, q) = — K(q)\lf + T^ Fqm sin 2m ̂  (8.118)

7t z—Jm=l

Differentiation of Eq. (8.118) gives
9 oo

The Fourier coefficients Fqm are given by

Fqm = —— I (1 — g2sin2 j t )~2 cos2m* d* (8.120)

Expand (1 — q1 sin2 jc)"1/2 by the binomial theorem

1̂ -̂  (8'121)
— z-^n!)z

Then

*u =—f^m ^~n_1

Express sin2n;c as a trigonometric polynomial. To do so, write sin* as (slx

— s~lx~)/(2i) and expand sin2n x by the binomial theorem as a sum from j = 0 to
7 = 2n. The term 7 = ft will give a constant term. Then group together the terms
7 = 0 to ft — 1 and the terms 7 = w + 1 to 2w to yield cosines.

The result is

Insertion of Eq. (8.123) into Eq. (8.122) gives
00

Through order J2 the coefficients are
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Thus

7T

Similarly, one finds

2 -2

( ^ \ ^ 4
1 -f -q2} sin2^-f —— sin4^ 4- • • • (8.125)

4 / 256

(8.126)
7T

where

/

7T/27

_

is the complete elliptic integral of the second kind.
Placing Eqs. (8.125) and (8.126) into Eqs. (8.112) and (8.113) then yields

n2V" + 64 sin4V" + ' " ] (8>127)

sin 4^ + -

(8.128)

so that the terms in i//" are exact. In A^ the periodic terms are correct through order
/^, while in N\ they are correct only through order J^ . This is all the accuracy
needed, however, because Wi is multiplied by c2 = r2J^ in the first kinematic
equation.

The Integral N$
From Eqs. (8.66c) and (8.75)

N, = (a\ - a2)"* f" ±(1 - ^-'(l - rj2/rj2)^ (l - ̂ p dry (8.131)
Jo

Insert the binomial expansion

intoEq. (8. 131) to find
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Here

" (l~r]
2rl(l-r1

2/r]
2)^r]

2mdr1 (8.133a)

= f ±(1 - ri2rl(l ~ V2/ri)-* drj
Jo

(8.133b)

As before, use r) = r]0 sin \fs, where ̂  > 0 for ail t. Then

- (8.134a)

so that

t*
L0 = rjo I (l - T?2, sin2 V) d^ (8.134b)

Here rjQ = sin /. Now put

tanx = |cos/|tan^ (8.135)

In the limiting Keplerian case, the new variable x is then the projection of the
argument of latitude i/f on the equator. With use of Eq. (8.135), we find

L0 = x l tan / | (8.136)

To evaluate Lm, write the geometric sum

_ Ln = _ 2 (8.137)

Then
m-l

2 l 2 m(1 - r]2rlr]2m = (1 - T/2)-1 - ^ (8'138)

n=0

Put this in Eq. (8.133a). Then

m-l

Lw = L0-J]L l n ( m > l ) (8.139)
n=0

where

L]n = r±(l -^0
2)~^2n^ (8.140)

Jo
With use of Eq. (8.134a) we find

(8.141)

and
r$

ln = r]2n+l si
Jo

(n > 1) (8.142)
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It takes some care to see how to enter Lm into Eq. (8.133). From Eq. (8.139) we
have for Lm:

m = 0:

m = 1 :

m > 2 :

LO -
m-l

— / v Lin

Entering these quantities into Eq. (8.133), we find

Now, from the binomial expansion

(^ _*,-2\-5 (2m)!

we find

Thus

(2m)!

I = (a2 -«2)"^ L0(l -

(8.143)

(8.144)

(8.145)

(8.146)

(2m)!

m=2

2n+1 I sin2n.xd;c (8.147)

Here we have used Eq. (8.141) for LIO and Eq. (8.142) for L\n.
To write down the secular part of the integrals in Eq. (8.147) use the constant

part of sin2n jc, viz.,

sm x =

as given by Eq. (8.123). The secular part of the integrals in Eq. (8.147) is then

-v^E
m=2

where

ra-l
-2m X~^

?2 Z^;
n=l

- -^ E
m=2

(2m)! (2n)!
22m(m!)2 Z^22n(n!)2 '0

2n 3.149)
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We shall use only the term in /| for the periodic part in Eq. (8.147). It is given by
placing m = 2 in Eq. (8.147); then n = 1. It comes from

4!

The periodic part of sin2 x is —(cos 2x)/2, so that our whole periodic contribution

4! _4 3_1 .
7" ̂ /9 VO

Putting everything together, we obtain

N3 = (a\ — a2

where

-T?-4 sin 2^ - — ??2-47?osin2V

-2m

The term in/ comes from (1— ̂ 2)~1/2Lo, andLo = x l tan/| =

(8.150)

(8.151)

3.152)

Summary for the 77 Integrals
The r] Integrals NI, W2, and N3 can be computed from Eqs. (8.127), (8.128),

and (8.151). After the factorization process of Sec. IX, the constants TJQ and 172 are
known. The given initial position and velocity vectors r and r at time tt can be
transformed to give the spheriodal state vector (p/, 77,-, 0,, />/, r ) / , 0,) as shown in
Appendix A. At time ti , the variables ̂ ,q, B\, 82, x > an(^ 7m can also be evaluated,
which in turn give the r\ integrals N\, A^2, and A^. These integrals of the kinematic
equations (8.64a), (8.64b), and (8.64c), which provide expressions correct through
order /|, are listed as follows:

s n

) sn

s n

s n

Xi;o(l - ^o2)4 (1 -

_3_
32
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where
rif\ „ / rin \

(at time f/)

(2m)! (2/Q! 2n

At this point, the Jacobi constants (ft, ft, ft) can be estimated from the HJ equa-
tions even though the r] integrals are computed at time ti. As indicated in Chapter
6, the HJ solution will yield a canonical transformation of the Cartesian g's and
/?'s (r andr) or the spheriodal coordinate g's and p's (p, r], 0, /), r/, 0) to the ex's
and fts, which are so closely related to the Keplerian elements. Resubstituting the
a's and /3's back into the kinematic equations, we can solve the perturbed problem
by finding the variable Keplerian elements as functions of the given time t. We can
write down the solutions at time t for the position vector r and the velocity r. The
first kinematic equation is, of course, a generalized form of the Kepler's equation
for the perturbed problem, and we shall deal with that in the following sections.

XII. The Mean Frequencies
We need to know the mean frequencies to check the secular parts that we shall

obtain for the anomalies v and E and for i/f, the argument of latitude.
The action variables are

/

fP2

ppdp = 2 pp dp
J P\

72 = > P,d^ = 4 Pr]dr] (8.153)

73 =

The mean frequencies are9

(8.154)
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THE VINTI SPHEROIDAL METHOD 97

To compute them, use

to a * n (8155)
^ 3jm dan 3an

Put

Jmn == "7
O0f.n

Then
Vl7l l + V2721 = 1

Vi7i2 + v2722 = 0 (8.157)

^2723 + 27TV3 =0

If

A = 711722-712721 (8.158)

the solution of Eq. (8.157) is

Vl = 722/A

v2 = -712/A (8.159)

27TV3 = — V i 7 i 2 — V27*22

From Eqs. (8.62) and (8.153)

[P2 2 2 -1 -71 = 2 / di(p + c ) F(p)2 dp
Pl (8.160)

/

??()
±(1 - r]2).

From Eqs. (8.60)

c2) (8.161)
a a 2

o 2-—— = 2C2Q?3
9^3

dO o <-> o
—— = 2c2(l - ,?V
9«i

9G 9—— =2a2(l-V) (8.162)
9o?2

3G
-— = -2a3
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98 J. P. VINTI

From

Jmn = ̂  (8.156)

and Eqs. (8.160)-(8.162), we find

7n
,pi

P2f

jn = -2a2 /
J PI

"jn = -2a2 ±F" dp = -2oi2R2(p2) (8.163)

jn=2c2
a,J ±(P

2 + c2rlF

The right sides come from Eqs. (8.65). For the others we obtain
/»770

721 - c J^ rj i 770

/**?()
j22 = 4a2 I ± G~2 d?7 = 4a2A^2(^0) (8.164)

«/o
r° 9 -i723 = -4o?3 / ±(1 - r/z) [G

by means of Eqs. (8.66).
To obtain the first three ymn's, we use Eqs. (8.102), (8.103), and (8.108), putting

E = v = 7t. To obtain the next three ymn's, we use Eqs. (8.127) and (8.128) for
NI and N2, putting V = n/2. Then in Eq. (8.151) for 7V3, we put V" = X = ™ jl.
The results are

+ hi +

712 = -

J2l =

723 = -

Insert Eqs. (8.165) into Eqs. (8.159) to find V] and v2. These mean frequencies
are given by

(8.166)
2-1)

These equations will show that E= i) = 2nvi and ^ = 2;rv2. Because the
variables on the right sides of Eqs. (8.166) are known, the mean frequencies can
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THE VINTI SPHEROIDAL METHOD 99

be computed. From Ref. 2, the mean frequencies can be approximated by

2;rvi = n 0 + O(J%)

2nv2 = n0 + [1 + 3J2(5cos/0 - 1)1 + # («/22)

where the Keplerian mean motion n0 is given by /z = WQ ̂  and aQ = —^i/(2a\).

XIII. Assembly of the Kinematic Equations
We gather together the results that express t + fa and fa as functions of the

eccentric anomaly E, the true anomaly v, the argument of latitude \js, constants
depending on the orbital elements a, e, T]Q = sin /, p = a(\ — e2), and c2 = r2J2.
For details see Ref. 2.

Arranged according to their order in 72, these constants are

/2:ai,a2, «3, A2, #1, 52, /?

J2:c2, A i , g 2 , A2], A 2 2 , fe i , fe | , A, 5

2

The equations are
72

2: AH, Ai2, A23,

An s inu + A12sin2t;]

-\- periodic terms of order J% (8. 167 a)
fa = — a2(— 2ofi)~2[i>A 2 + A2i sinu + A2 2sin2u + A23 sinSi; + A24sin4i;]

+ periodic terms of order J\ (8. 167b)

Here p — a(\ — e cos E) = a(\ — e2)/(l + e cos i>), rj = T]Q sin ̂ .

XIV. Solution of the Kinematic Equations
Before solving the kinematic equations (8.167), it is convenient to have several

relations connecting the uniformizing variables E and v. From Chapter 2, Sec. V,
we obtain

cos E — e
cos v =

sini> =

1 — e cos E

I — e cos E
The requirements that dv/dt > 0, dE/dt > 0 for all t lead to the result that dv/dE
> 0 for all t. Because of this result, the sin i; equation has no ambiguity in sign. For
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100 J. RVINTI

a given value of the eccentric anomaly E, the preceding relations determine the true
anomaly v completely. The three unknowns (E, v, ty) of Eqs. (8.167) essentially
reduce to two. We assume that the Jacobi constants f$\ and f}2 can be estimated from
the application of the initial conditions as discussed in the last paragraph of Sec. XL
Theoretically, we can solve the two equations of (8.167) for the two unknowns
( E , VO or (t>, iff), since all the other parameters in Eqs. (8.167) are known.

To solve Eqs. (8.167), place

E = ES + EP v = vx + vp $ = ̂ s + ^p (8.168)

Here the subscripts means "secular" and the subscript/? means "periodic." If p goes
through N\ cycles in time T\ and if 77 goes through NI cycles in time T2, we have9

=i) =ES =i)s = lim - — - = 2nvi (8.169a)

\[f = -(jfs = lim ——— = 2nv2 (8.169b)

Because we have already obtained exact expressions for v\ and v2, it is clear
that we can obtain the secular terms exactly for the assumed potential. We shall
also obtain the periodic terms through order J2

2.
By Eqs. (8.169) we can write

Es = vs =MS (8.170)

where Mx is the secular part of the mean anomaly. Then

We may obtain the secular solution of Eqs. (8.167) independently of Sec. XII
by dropping all the sines in these equations, placing E = v = Mx, ty = V^v, and
solving the resulting equations for Mx and i/fx. These resulting equations are

(—2a\)~^(a -f b\ -f A\)MX -f c2(a\ — of2) 2rjQB\\[fx = t + fi\ (8.172a)

—(x2(—2a\)~iA2Mx 4- ^2(^2 ~~ al) 2?7o^2^v = ft (8.172b)

giving

M, - (-larf*2^***1]'* ^^^/l (8.173a)

+ ft) + (a + fr + /o i^ M— - — - —— (8.173b)

Comparison with Eqs. (8.166) verifies thatMA. = 2nvi^s — 27rv2, as expected.
We can rewrite these equations as

Mv = 27rv![r + )3i -c2^1^^!^] (8.174a)

iA, = 2nv2[t + ^i + (a + &! + A1)a-1ftA~1] (8.174b)

If one traces through the constants, one finds that V* = Mx -f ft + O(J2), as
expected, with ^2 replacing &>.
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THE VINTI SPHEROIDAL METHOD 1 01

XV. The Periodic Terms
To solve the assembled equations (8.167), we put, successively,
Ep = EQ vp = VQ \l/p = V^o (Step 0)

Ep = EQ + Ei VP = VQ + VI ^ = ^0 + ^1 (Step 1)

Ep = EQ + E\ + E2 VP = VO + V\ + v2 \lrp = ^Q + fa + V"2 (Step 2)

In step 0, we retain in Eqs. (8. 167) only the periodic term of order /2°, viz., sin E. In
step 1, we retain all periodic terms of orders J® and J2, but none of higher order. In
step 2, we retain all periodic terms through order /|, but none higher. In carrying
out each step, however, we shall suppose that each quantity involved is calculated
to such an accuracy that the error is of order J| .

StepO
On placing E = Ms + £0, v — vx + i>o, and ty = fa + ^0 into Eqs. (8.167)

and retaining only the terms sin E of the periodic terms, we find

Ms + E0-e' sin(M, + EQ) = Ms (8.175a)

iAo = (-2«i )~~2 (<*l -al) ^o1 A2B2
lvQ (8.175b)

CiC
e1 = —— - <e (bi> 0) (8.175c)

a + b\
on subtracting Eqs. (8.172a) and (8.172b). Equation (8.175a) is Kepler's equation
for MS + EQ, with an effective eccentricity e'. Suppose it is to be solved by the
most approximate method, which will depend on the value of e1 . We then have
E = Mv + £"0 and can find v = vs + 1>0 by use of cos v = (cos E — e)/(\ - e cos E)
and sin v = (1 — ̂ 2)1/2sin£'/(l — ecos E). Substituting VQ into Eq. (8.1 75b) gives
V^o- At this point, we have EQ,VQ, and I/^Q. Note that here e is the orbital eccentricity
e and not e' ' .

Stepl
Knowing Mv, i/^, £"0, VQ, and 1/̂ 0 , we place £ = MX + EQ+E\, v = VX + VQ+V\,

and i/s = fys + 1/̂ 0 + ^1 into Eqs. (8.167), discarding only periodic terms of order
72

2. We find

M, + E0 + £] - e' sin (Mv + £0 + £1) = M, + M] (8.176a)

A21 sin(MiV

2

+ A22 sin(2M, + 2u0)] + v^""1 sin(2^v + 2^0) (8.176b)8

(fl

C2 _
(8.176c)
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102 J. RVINTI

on subtracting Eqs. (8.172a) and (8.172b). Equation (8.176a) is Kepler's equation
for My + EQ + E\, with the effective eccentricity e' defined in Eq. (8.175c). Using
Laguerre's method, Kepler's equation can be efficiently and accurately solved. We
have E — Ms + EQ -f E\ and can find v = vx + VQ + V\. Substituting v\ into Eq.
(8.176b) gives ty\ • At this point, we have E\ , v\, and i/f\ .

Step 2
Finally, knowing MiV, ^rv, £o, UQ, V'o, £1 , v\ , and T/O , we place £ = Ms + £"0 +

£1 + £2, f = viV + UQ -f v\ + i>2» and iA = ^v + V'o + V^i + V^2 into Eqs. (8.167),
discarding only periodic terms of order J% . We find

M, + EQ + £1 + £2 - ^' sin(M, + £0 + £1 + £2) = M, + MI + M2 (8.177a)

~ cos(M,

cos(2MA. + 2u0) + A23 sin(3Mv 4- 3v0) + A24 sin(4Mv

M'
(8.177b)

64

•[-M2 = -(a + biT1 1 -Aitij + AH sin(M, + v0) + 2A12sin(2Mv + 2v0)

C . _ , l / o ox- i T f _ . 1

~ 2 T

(8.177c)

on subtracting Eqs. (8.172a) and (8.172b). Equation (8.177a) is Kepler's equation
for Ms + EQ -f- E\ + EI, with the effective eccentricity e' defined in Eq. (8.175c).
Again, using Laguerre's method, Kepler's equation can be solved. One could solve
the Kepler equation (8.177a) for E2 directly by using

M2E2 = ——;————————————

However, Laguerre's method has been proven to converge for any value of eccen-
tricity. We then have E = My + EQ + E\ + E2 and can find v = vs + VQ + v \ -j- i;2.
Substituting u2 into Eq. (8.176b) gives T/r2. At this point, we have £2, u2, and ^2-

This completes the solution with exact secular terms and periodic terms cor-
rect through order J% for E, v, and iff and, thus, for the spheroidal coordinates
p = a(\ — e cos E) = a(\ — £2)/(l + e cos f), rj = rjQ sin ̂ .

(8.64c)

XVI. The Right Ascension
From Eq. (8.64c)
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In Eq. (8.64c) insert N3 from Eq. (8.151) and R3 from Eq. (8.108). The result is

0 = ft + <*3(<*2
2 -c4

3— / 4 1-
-"

(8.178)

Here T)Q = sin / for all 72. In the limit 72 = 0, this becomes
__i 0 _i

However, in the limit /2 = 0, we also have a3 = «2 cos /, so that this reduces to

ft = 0 -x sgn^3 (8.179)

which is a correct Keplerian equation if ft = £2. It is a useful exercise to check
that0 = 2;rv3.

XVII. Further Developments
See Ref. 10 for a treatment of zonal harmonic perturbations. This article uses the

Brouwer-von Zeipel method to handle the effects of 73 and J^ on the spheroidal
problem as developed in this chapter. For further development of the spheroidal
method itself, see Ref. 4. For a summary of the spheroidal method, correcting
all previous errata and showing how to avoid troubles with near-polar orbits, see
Ref. 11.

References 3 and 4 incorporate J3 into the separable potential. The history of
this topic is as follows. Shortly after the publication of Ref. 1, Brouwer and Pines12

discovered that the spheroidal potential of this chapter could be found by use of the
separable problem of two fixed centers.13 To see why this is so, imagine a particle
of half the mass of the Earth placed on the z axis at a distance c\ north of the
Earth's center of mass and another one of the same mass also placed on the z axis
but at a distance c\ south of the center of mass. If P is a field point at distances r\
and r2 from these two masses, the potential produced at P by these masses would
be

2 Vi r2,
where M is the mass of the Earth. If x, y, z are the coordinates of P, then

Now introduce spheroidal coordinates p, 77, 0, defined in this chapter, so that

z = prj
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104 J. RVINTI

Then
r2 = p2 + c2(l - ri1) + c\ - 2clPr]

r2 = p2 + c2(l - r]2) + c2 + 2cipri

If we now formally put c\ = ic, where / = (—I)1 /2 , then c2 -f c2 = 0 and

r2 = p2 - cV - 2icip?7 = (P - i

rf = P2 - cV + 2/Cipyy = (p

Thus,

n = p - icrj
r2 = p + JCJ7

and
GM/

2 \p-icrj p + icr] ) p2 + c2rj2 p2 + c2r)2

This, however, is the separable spheroidal potential.
Aksenov, Grebenikov, and Demin14 discovered that if the masses and distances

are all complex, with Mirj"1 and M^r^ conjugate, the potential

also leads to separability. It enabled them to fit not only \JL and Ji, but also /3, with
the origin still located at the center of mass. The author's endeavor to understand
this possibility in more physical terms led to Refs. 3 and 4.

References 3 and 4 illustrated by the methods of this chapter that J^ could be
incorporated into the separable potential. This now becomes

where

Here c is again about 210 km for the Earth, and 8 is about 7 km.
Unfortunately, there are a number of errors in Ref. 4. They do not change its

main conclusions but have to be avoided for applications. Reference 1 1 eliminates
all these errors, except for a final bracket sign for //3 on page 33 and omission of
the e in p — a(\ — e cos E) on page 34.
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Chapter 9

Delaunay Variables

C HAPTER 8 developed Hamilton-Jacobi perturbation theory with the a's and
0's as canonical variables and the perturbing Hamiltonian term H\ (q , p, t) as

Hamiltonian. The unsuitability of ft as a variable now leads us to introduce a new
set of canonical variables, called the Delaunay variables. In the case of a general
reference Hamiltonian //o(g, /?), they have to be introduced by means of certain
other variables called action and angle variables. For the present, we shall not deal
with them but bring in the Delaunay variables by a special method applicable only
to the Keplerian reference Hamiltonian.

We have

, ,
9ft 9ft da* 9a*

where we write F\ = —H\ and //i = H\(q, p, t). This is to follow Delaunay,
who reversed the sign of the Hamiltonian; all the literature follows this convention.
With FI as Hamiltonian governing the behavior of the o?'s and 0's, the or's appear
mathematically as coordinates and the 0's as momenta.

For the generating function that we need, see Ref. 1. With //0 as the Kepler
Ho(q, p ) , we introduce a generating function of the form S(q, P, t):

S = -orif + /x(-2ori)-50J + ^202 + ^3 $

where /x — G(m \ + m^). Note that the flk are used because of the new P in S. Here
the a's are the "old" coordinates and the ^'s the "old" momenta; the ct'k are the
"new" coordinates and the j$'k the "new" momenta. Then

dS , 3S
ft = —— <*k = —— * = 1,2,3P 3<xk

 k ctfii

and the new Hamiltonian will be

Thus

107
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108 J. RVINTI

With use of a\ = — /^/(2#), where a is the Keplerian perturbed variable for the
semi-major axis and n = yV#~3, the perturbed mean motion, we find

e ) ] c o s

In Delaunay's notation

L =

H = [p,a(l - e2)¥ cos / h =
The Delaunay Hamiltonian is

F = FI - a}

However, ct\ = —fji/(2a) and L2 = /x#, so that

a, = -(/x2/2L2)

and

Note that FI = —H\. The canonical equations in Delauney variables are then

—-— —- -—"d7 " ~dl d7 " ~aT
dG _ 3F_ dg _ _ 9 ^
dr ~~ dg dt ~ dG

d// _ dF_ dh dF
"dT " ~dh ~dt ~ ~a/7

the L, G, // now being "coordinates" and the €, g, /z "momenta."

Reference
'Garfinkel, B., Space Mathematics, Part I, Vol. 5, Lectures in Applied Mathematics,

American Mathematical Society, Providence, RI, 1996, p. 65.
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Chapter 10

The Lagrange Planetary Equations

L ATER on we shall use the Delaunay equations as a canonical system to de-
velop artificial satellite theory, but first it is desirable to use them to derive

equations for the variations of the Keplerian elements. These equations are known
as the Lagrange planetary equations (not to be confused with the Euler-Lagrange
equations of advanced dynamics) or as the V.O.R equations. The "V.O.P." means
variation of parameters after a method called "variation of constants" in books on
differential equations. It is not necessary to bring in this latter method, because the
variations of the Keplerian elements are an easy by-product of canonical theory
that we should have had to develop in any event.

First, let us define two Keplerian sets of variables. There is the "slow" set: a,
e, /, £2, co, and r or a = —nr, and the "fast" set: a, e, /, £2, co, and t = nt + a =
n(t — r). It is the presence of nt in t that makes the latter the fast set. Our earlier
remarks about fi\ = — r as a variable should have made it amply clear why we
shall consider only the fast set.

If V\ is the perturbing potential, then V\ = H\ = — F\, and the Hamiltonian in
Delaunay variables is

F = ( / x / 2 L ) + F{

corresponding to the differential equation

Here F\ = — V\ is called the disturbing function. It is clear that the Lagrange
planetary equations will apply only when the disturbing force is derivable from a
potential. Dissipative forces will be taken care of later by the Gaussian equations.

The Delaunay equations

• -— • - -—
G = ~dg ^ = ~~3G

a = ™ h = -^-dh dH
may be used to calculate a, e, /, £2, co, and t as functions of a, e, I , £2, co, and t.
Note that, even though t = n(t — r) and n = ^/JLa~3, the I and the a are to be

109
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110 J. P. VINTI

considered as independent variables in these calculations. We begin with

F = (^2/2L2) + Fi(a, e, /, fi, co, i)
a = L2/M co = g
l-e2 = G2/L2 S2 = h
cos / = H/G n = ~

I. Semi-Major Axis

2L . 2LdFla — — L = — ——
fji 31

so that

II. Eccentricity

1 - e2 = G2/L2

-ee G L I 3F} 1
1 - e1 G L G 3a) L 31

so that

l-e2/3Fl L31
e =

eL

However,

L = JJJti = na2 L/G = (1 - e2}

so that

1 -e J.\-\

III. Inclination

cos/ = H/G

. . _ / / // . _ 1 3Fi cos
/sin / — — — — - G — — — — — -—7-

G GL G d£2 G
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THE LAGRANGE PLANETARY EQUATIONS 111

However,

G = naV 1 - e2

so that

/ = —— • I cot / —— — esc / —— I
na2^(\—e1)\ d^ d£2 /

For the other three Keplerian elements, it is necessary to keep in mind which
variables are being kept fixed in a partial derivative. The subscript O.D. will mean
that other Delaunays are to be kept fixed, and the subscript O.K. will mean that
other Keplerians are to be kept fixed.

IV. Mean Anomaly
With other Delaunays fixed

3L dL\2Li ' 7 L3 dL

Since

L = ^/~jld = na2

1 T> 1 -^[L /L = fji (no) 2 = n

Thus

V "L /O.D.

However,

Of the Keplerian elements, only a and e depend on L. Thus

dL /O.D. V da /O.K. \9^/O.D. V $e /O.K

Here

3a_ \ = 2L =

3L/ O D M M na

l-e2 = G2/L2

r> \ /^O 1 2 1oe \ Cr I — e I
~£| " ' ~ L3
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Thus
/9FA 2 /9Fi\ l - e 2 / aF i \
I —— I = — I —— 1 + — — — I — — )
V dL /o.D. na \ °a /O.K. na e \ °e /O.K.

so that
Fi 1 — e2 3Fi

rca da na2e de
In the final Lagrange planetary equations we do not need the subscript, since it is
understood that the variables are the fast Keplerian set.

V. The Argument of Pericenter

SVO.D. \U^/O.D.
In FI(<Z, e, 7, ^2, ft>, I) only e and 7 depend on G:

1 -e2 = G2/L2 cos 7 = 77/G

Thus
/ r j j - i \ / i i Z7 \ / £ J \ / ^ J / 7 \ / ^ 7 ^

\ 9 G /O.D. V 9e /O.K.\ 9 G /O.D. V 9/ /O.K.V 9 0 /

_ f jll^ = £. = (! ~ e^

Also

Thus

/ 8 / \ // cos/
~Sm/ JO D ~ ~G2 ~ ~ n a 2 ( 1 _^

. _ (1 -e2)^ 3Fi cot/
~

_
na2e de na\\ - e

2)^ 9

VI. The Longitude of the Node

dH/OD

In F\(a, e, I, £2, to, t) only /depends on the Delaunay variable H. Thus
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THE LAGRANGE PLANETARY EQUATIONS 113

However,

cos/ = H/G

• ridl\ l l
_ ejr» / I ___ I — _ _ — _ ___________

Thus

csc/.

VII. Summary

. 1-gyafi 2 , 3FA
= - ~ 2(

f */ =

2
t = n — —

na da na2e 3e

These are the final Lagrange planetary equations for the variations of the elements
of the fast Keplerian set. The partial derivatives are the derivatives of the disturbing
function with respect to those elements. Note that t contains an additive term n,
the mean motion, which is nonvanishing even in the unperturbed case, which is
why this set is called the fast set.

Note that e appears in denominators for e,a), and t and that sin/ appears
in denominators for /, o>, and &. These appearances mean trouble for circular
orbits, e = 0, and for orbits in the xy plane, with sin / = 0. The solution of
these equations leads to e and sin / in the denominators of results for most of the
Keplerian elements. Actually, they do not produce singularities in the resulting
variations of the Cartesian coordinate system of components x,y,z,x, y, and z
but produce the necessary algebra to show this is heavy.

For this reason, other elements are often used that do not lead to such singular-
ities. One such set is the following1: "equinoctial" system — a, h, k, p, q, A,. This
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114 J. RVINTI

is good for all inclinations except 7 = 180.

a = a

h = e sin(&> + £2)

k — e cos(a> + £2)

p = tan — sin £2

q = tan — cos £2

X = £ + (L> + £2

The reader will recognize A, as the mean longitude. To handle absolutely all orbits,
one may define a "retrograde factor" r, defined by

r = 1 0 < 7 < 90°

r = -1 90° < 7 < 180°

Then

a = a

h = esin(co + r£2)

k = ecos(co

p = tanr — sin £2
2

q — tanr — cos £2

Reference
Computer Sciences Corporation, System Description and User's Guide for the GTDS

R&D Averaged Orbit Generator, prepared for NASA Goddard Space Right Center, Green-
belt, MD, 1978, pp. A1,A2.
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Chapter 11

The Planetary Disturbing Function

L ET us consider the orbit of a planet about the sun perturbed by other planets
whose orbits are known. The orbit to be solved for may be that of a minor

planet. The main perturbation will then come from Jupiter, with smaller effects
from Mars and Saturn. Such a minor planet would ordinarily be moving in the
asteroid belt between Mars and Jupiter.

The same general form of disturbing function arises in the case of an artificial
satellite of the Earth. In this latter case, the Earth takes the place of the sun, the
satellite the place of the minor planet whose orbit is being solved for, and the sun
and the moon the roles of the perturbing planets. The disturbing function is then
called the lunar-solar disturbing function.

Return now to the minor planet. Part of the disturbing function will arise from
the direct gravitational force of the known perturbing planets, called the direct
part, and another part will arise from the nongravitational forces due to the motion
of the perturbing planets, called the indirect part.

To carry out the derivation, we introduce two reference systems:
1) A globally inertial system—one in which the universe as a whole is at rest.

Operationally, it is one in which no apparent forces appear when we treat the
motion of a particle.

2) An inertially oriented system with origin at the center of mass of the sun,
z axis perpendicular to the plane of the ecliptic and x axis pointing toward the vernal
equinox. (In the case of an artificial satellite, the Earth replaces the sun, and the z
axis is along the axis of rotation, i.e., perpendicular to the plane of the equator.)

Let O be the center of mass of the first system and S that of the second system as
shown in Fig. 11.1. Also, let M be the mass of the sun, m the mass of the solved-for
planet, and m/ , / = 1 , . . . , N, the masses of the N perturbing planets. Let p denote
the position vector of the solved-for planet in the first system, ps that of the sun,
and PI that of a perturbing planet.

Also, let r be the position vector of m relative to the sun and r/ that of mi
relative to the sun. Then

r = p - ps rt= pi - ps

where r has Cartesian coordinates jc, y, z and/-/ has Cartesian coordinates *,, yt,
Zi, both in the second system. Here

A/ =r/ -r A/ = |A,-|

P = Ps +r
Pi = ps+n

115
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116 J. R VINTI

P.

O

Fig. 11.1 The inertia! coordinate systems.

For the sun
GMm T—v (jtviiMP* = —~r + L, —r,3 ^ r3

For the planet to be solved for

GMra (11.2)

Since r = p — pv, we may obtain r by canceling M in Eq. (11.1) and m in
Eq. (1 1.2) and taking the difference of the resulting two equations. The result is

Gnu M 1 _
(1L3)

In Eq. (1 1.3), A/ has been replaced by /•/ — r. To simplify the last two terms in
Eq. (11.3), introduce the function

and differentiate it with respect to x, the x coordinate of r in the system attached
to the sun. Then

However,

so that

Gm/ 9 A/

A, 2=(^-^) 2 - ( j - .

a A/

(11.5)
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THE PLANETARY DISTURBING FUNCTION 117

Then Eq. (11.5) becomes

Cm/ _,_——Xi (n.6a)

Similarly

" , Gmt
<»•«»

i=\ ^i i=\ 'i

" . Gnu .

Thus, if V^z is the gradient operator with components 3/3jc, 3/3}^, and 3/3z, we
find

Equation (11.3) becomes

f = - ———j-^-r + VxyzU (11.8)

The function U is called the disturbing function. Its first term, S/Gw//A/, is
called the direct term, because it is clearly produced by the direct gravitational
forces of the perturbing planets. Its second term, £,-G(w//r?)r/ -r , is called the
indirect term, because it is produced by the acceleration of the perturbing planets.
A simple way to verify this is to carry through both the inertial mass of the sun and
its gravitational mass, with a separate symbol for each. It will then be found that
the indirect term has a factor sun's gravitational mass/sun's inertial mass; thus, if
the sun's inertial mass were infinite, it would vanish.

Bibliography
1 Smart, W. M., Celestial Mechanics, Longmans, Green, and Co., London, 1953, pp.

8-10.
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Chapter 12

Gaussian Variational Equations
for the Jacobi Elements

T HE Lagrange planetary equations are applicable when the perturbation is
derivable from a potential. If it is given only as a force not so derivable (e.g.,

if it arises from drag), they are not applicable, and we need another approach. The
appropriate variational equations are known as Gaussian, after Gauss, the great
German mathematician.

When the perturbation is known only as a force, the motion of an orbiter is

r = -W0 + F (12.1)

where F is not the gradient of any potential. Here VQ would be —jJi/r in the
Keplerian case, but in general VQ may be any potential function that leads to a
solvable Hamilton-Jacobi equation when F = 0.

If potential VQ leads to a solvable HJ equation, the Hamiltonian is

HQ = T(q,p)+VQ(q) (12.2)

and we shall call the corresponding orbit the reference orbit. It is characterized by
Jacobi a's and /Ts, satisfying

where

dS(q,a,t) 8%, CM)
Pi = —— ~ ——— Pi = —— 5 ———

ds
— =0 (12.4)
ot

Equations (12.3) and (12.4) will also hold for the perturbed problem, because they
represent a canonical transformation from the g's and p's to the a's and fi's.

Our aim in this chapter is to find equations for the ci's and /Ts in terms of the
perturbing force F. Before we can proceed with the main derivation, we shall need
certain equations, connecting derivatives among the q's and p's, called the Jacobi
relations. There are four of these, but we shall need only two of them, viz.,1"3

(12.6)
\Pi/q,P

119
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120 J. RVINTI

In Eqs. (12.5) and (12.6) the subscripts (a, /3) mean that all the of's and /Ts are
held constant during the differentiation, except fik in Eq. (12.5) and ak in Eq. (12.6).
The subscripts (q, p) mean that all the g's and p's are held constant, except /?/ in
Eq. (12.5) and pt in Eq. (12.6).

Proof of Eq. (12.5): From Eq. (12.3) we have

V 9of* / og8 da.i dcfk 3aj 3qt\ 3ak ) aj

with use of the summation convention. Thus
32S /dq,\ 32S

docjdqt \3akJa/

Also, from Eq. (12.3)

(12.8)

and

Multiply Eq. (12.10) by dqj/dpk and sum on j to obtain

(12.11)

Because I and j are dummy indices, we may change I to j and j to m. Then

}

q.P
By Eq. (12.9) we can replace

8qm\

in Eq. (12.12) by S^k. Equation (12.12) becomes

d2.5)

which is Eq. (12.5) that we wished to prove.
Proof of Eq. (12.6): Multiply Eq. (12.10) by 3qj/3ak and sum on j to obtain

L (12.13)

Interchange the dummy indices j and £ in Eq. (12.13). Then
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VARIATIONAL EQUATIONS FOR THE JACOBI ELEMENTS 1 21

However, by Eq. (12.8)

S /3qt\ 32S
'Xj\3(xkJC(o 3oij3c(k

Insert this into Eq. (12.14) to obtain
/ f\ \ r \ r \ C ' / r \ \ / ^ O C1 \f dqt \ _ __^_^_(^i\ _ ( d dS\

However, dS/da^ = Ab s° that this becomes

which is the second Jacobi relation. This completes the proof of the Jacobi relations.
We now return to Eqs. (12.3). They can be inverted to give the a's and /Ts as

functions of the g's and p's. The g's and /?'s can then be expressed in terms of
the rectangular coordinates Xk and rectangular velocities x^. In this way, we can
express the a's and fi's as functions of the jc's and ;c's. (Parenthetically, let it be
remarked that we essentially did this in Chapters 6-8 for the Keplerian HQ when
we expressed the Keplerian elements in terms of the x's and jt's; the further step
of expressing the Keplerian a's and /Ts in terms of the jc's and i's is simple.)

Thus, we may write

a j =otj(x,x) (12.15)

Pj = fj(x,x)-t8jl (12.16)

With the summation convention,

«•
*k

Xk, ..,..

However, by Eq. (12.1)

r = -VVQ + F (12.1)

so that

xk = ——- + Fk (12.19)
3xk

On inserting Eq. (12.19) into Eqs. (12.17) and (12.18), we find

dj = ——xk - ———- + Fk—— (12.20)

3xk 3xk 3xk 3xk
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122 J. P. VINTI

or

a, =*y + Ft^i (12.22)
dxk

flj = Vj + Fk^ (12.23)
OXk

We have used here dfj/dxk = dpj/dxk and have denoted by O7 and ^y the terms
that do not involve F*.

If we were to turn off the force F at time t = to, we should have for t > fo

®j(t >t0) = 0 Vj(t > f0) = 0 (12.24)

since we would then be back to the unperturbed problem, where the or's and /Ts
are constants. Now

depending explicitly only on the jc's and x's and not explicitly on t. At the moment
fo when we turn off the perturbing force F, the acceleration r changes instanta-
neously, but the jc's and jc's do not. This means that <J>7- and ̂  do not change value
at time t0. Because they vanish for t > t0, however, they must also vanish at time
to. However, fo is any time. Thus

Oy = 0 Vj = 0 (12.25)

Insertion of Eq. (12.25) into Eqs. (12.22) and (12.23) yields

c*7. = Fk^- (12.26)
dJCjfe

^ = ̂ ^ (12-27)7 9^

Equations (12.26) and (12.27) express one possible form for the desired variational
equations, but not the most convenient one.

To express them in the most convenient form, we need a lemma, viz.,

(12.29)
xit a;/a./»

Proof of Lemma: Begin with

xk = xk(q) (12.30)

Xk = Xr^qr (12.31)
aqr

(It is best to avoid the summation convention in this proof.)
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VARIATIONAL EQUATIONS FOR THE JACOBI ELEMENTS 123

Thus

(—— J = —— (12.32)

The kinetic energy per unit mass is

r = ±E rjt£ (12.33)

so that
T \ 3xk dxk

***F (1234)
<li 9qj

by Eq. (12.32). Now /?;- also satisfies

P, - '-%& (.235,3qj

Let us seek a similar equation for xr. To do so, multiply Eq. (12.34) by (dqj/dxr}x
and sum on j. We obtain

^ ' - " " '
)«2i (12.37)

with use of Eq. (12.35). Then

(1238)

Now, because the g's are functions of the ;c's and the j's functions of the g's, we
have

_ v.
— ^r •" / IJ

Thus
(dxkdqj\E/fe^;J = ̂  (1239)

Inserting Eq. (12.39) into Eq. (12.38), we find

;,„ W) _(«2^) (,2.40,
V d*r Ja \ 9*r /„

where we have put

%,a) = G(JC,«) (12.41)
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124 J. R V I N T I

Also
^ = a^oo = ac^co

9ar 9;cr

Equations (12.40) and (12.42) have the same form as Eqs. (12.3), with xr re-
placing qr, xr replacing pr, and G(x, a) replacing S(q, a). In terms of the *'s and
;c's [from Eqs. (12.5) and (12.6)], the first Jacobi relation becomes

) (12-43)

and the second Jacobi relation becomes

i __ <12.44,

Now, in Eqs. (12.43) and (12.44), change k to j and / to k to obtain

The results constitute the lemma we set out to prove.
Now insert the lemma equations into Eqs. (12.26) and (12.27). The results are

j / o , , f l

In vector form, these become
/ dr \

(12.45)

(12.46)

These are the Gaussian variational equations for the Jacobi elements. In the
special case that the perturbing force F is derivable from a potential Vi

F = -Wi (12.47)

The Gaussian equations then become
dr
Wi

Purchased from American Institute of Aeronautics and Astronautics  

 



VARIATIONAL EQUATIONS FOR THE JACOBI ELEMENTS 1 25

However,
3Vi 3Vi 3Vi

dV} = — -dx + — -dy + — - dz = Wpdr
dx 3y dz

so that the equations become

• j
the same as we found in Chapter 7, where HI = V\ .

References
1 Smart, W. M., Celestial Mechanics, Longman, Green, and Co., London, 1953, pp. 140-

142.
2Tisserand, F., Mecanique Celeste, Gauthier-Villars, Paris, 1889, pp. 20-23.
3 Vinti, J. P., "Gauss Variational Equations for Osculating Elements of an Arbitrary Sep-

arable Reference Orbit," Celestial Mechanics 7, 1973, pp. 367-375.
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Chapter 13

C H;
' 0'

Gaussian Variational Equations for the
Keplerian Elements

I. Preliminaries
HAPTER 12 derived Gaussian variational equations for the Jacobi a's and
0's:

dr . dr
ak = F* —— pk = -F.—— (13.1)

where F is the perturbing force. The present chapter will be devoted to obtaining
Gaussian equations that tell how the Keplerian elements a, e, /, £2, co9 and I vary
with time because of such a perturbing force. It is convenient to begin with two
lemmas that will be needed in the derivations.

Lemma 1: If a vector r rotates around a fixed axis pointing along a unit vector
/, so that the angle (r, /) remains constant (Fig. 13.1), then if r\ is the angle of
rotation

3r
— = J x r (13.2)

The proof is simple. As r] increases by dr]

|dr = r s i n £ d £ (13.3)

The direction of dr as shown in Fig. 13.1 is along the tangent to the circle in the
plan view (Fig. 13.2). Since rotation of a right-handed screw through dr] would
produce screw translation along /, the direction of dr or of dr/ dr] is along J x r.

Now

|/ xr| = r s i n f (13.4)

so that by Eqs. (13.3) and (13.4)

= l / x r |

Because dr /dr] is along J xr and has the magnitude | J x r |, it follows that

127
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128 J. P. VINTI

An orbiter
trajectory

Fig. 13.1 An example of 77 = <p and J = k.

Lemma 2: If, in the osculating elliptic orbit shown in Fig. 13.3, r is the position
vector of the orbiter, r = \r |, / the true anomaly, 1A a unit vector pointing from
the force center toward pericenter, and 1B a unit vector perpendicular to 1A, so that
/ has to increase by 90° to rotate r from I A to IB, then

r = (13.5)

where s~lt — exp(—//).

O

Elevation Plan

Fig. 13.2 A vector r rotating around a fixed axis J.
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VARIATIONAL EQUATIONS FOR THE KEPLERIAN ELEMENTS 129

Fig. 13.3 An osculating elliptic orbit.

Proof:

r = lAr cos / + lBr sin / = Re[(/A + UB)re-if]
The perturbing force F may be expressed as

F=lrR+lTT+lwW (13.6)
Here lr is a unit vector along r; IT is a unit vector along the transverse direction in
the plane of the orbit; and lw is a unit vector along the angular momentum, i.e.,
perpendicular to the orbital plane. Then /r, IT, lw form a cyclic orthonormal triad
of vectors, satisfying

lr lTxlw=lr lwxlr=lT (13.7)

Equation for lw
Let IN be a unit vector pointing along the line of nodes toward the ascending

node. From Fig. 13.4 (the octant figure) we have
1N = i cos £2 + j sin £2

k x lw = 1N sin I

(13.8)

(13.9)
where i , j , k are unit vectors along the inertial axes.

Equation (13.9) follows from these facts: IN lies in both the orbital plane and
the equatorial plane, so that it is perpendicular to their respective normals lw and
k; the angle between these planes is /, so that the angle between k and lw is /. If
we form the vector product of k with Eq. (13.9), we obtain

kx -lw = kxlNsinI
From Eq. (13.8)

k x 1N = j cos £2 — i sin

(13.10)

(13.11)
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130 J. P. VINTI

Fig. 13.4 Octant figure.

On inserting Eq. (13.11) into Eq. (13.10) and using A: -lw = cos /, we find

lw = i sin£2 sin/ — j cos £2sin/ -f&cos/ (13.12)

Equations for lr,lT,lw

From Fig. 13.3, we have

/,. = lAcosf +lBsinf (13.13)

IT = I A cos(/ + 7T/2) 4- 1B sin(/ + jr/2)

= - /Asin/-h/scos/ (13.14)

'"' (13.15)

^ (13.16)

lAxlB=lrxlT=lw (13.17)

II. Equations for 0:1 and a
Use Eqs. (13.1) and (13.5). Then

(13.18)
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VARIATIONAL EQUATIONS FOR THE KEPLERIAN ELEMENTS 1 31

Consult Chapter 2 for

1A = i [cos £2 cos co — sin £2 cos / sin &>]

+ 7 [sin £2 cos a) + cos £1 cos / sin&>] -f A: sin/ sin&> (13.19a)

IB = —i [cos £2 sin &> + sin Q cos / sin &>]

+ j[— sin £"2 sin &> -f cos £2 cos 7 cos a;] -f- k sin / cos co (13.19b)

Recall that ft = Q, ft = &>, ft = — T, cos / = (a3/a2).
Thus, /^ and HB do not depend on ft , and therefore

cti=F~ = Re^F - (/A + tf *) J-Cr*-1'')] (13.20)
dpi L ^Pi J

By Eq. (13.16)

F - (I A + UB) = F • (lr + rtr^1'7 = (/? + iT)^ (13.21)

so that

(13.22)
"Pi PI

Now

r cos / = a(cos E — e)
r sin / = b sin E b = a\J\ — e2

(13.23)
F • (/A + «fl) = F • (fr + f/ r)e^ =(R + iT)slf

re~lf = a(cos E — e) — ib sin E

In Eqs. (13.23), only E depends on $\. However,

E — e sin E = n (t + $\ )

so that
dE dE na

(l-ecosE)——=n —— = — (13.24)
op\ a pi r

From Eqs. (13.23)

3 ., dE
—-(rs~ll) = (-asinE- ibcosE)——
°Pl opi

no,
= -—(a sin E + ib cos E) (13.25)

r
Use the anomaly connections

sin E Vl — e2 sin / cos E e + cos /
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so that

J. P. VINTI

3——
dft

- 2

[sin/ + i(e + cos/)]

-\ie-\-ie l*

Insert Eqs. (13.26) into (13.22) to find

rcaVl - <

(13.26)

-[>/? s in/+ 7(1 + ecos/)]

With use of p = a(l — e2), this becomes
na

Oil =

and the semi-major axis is

a = jit

-[eR sin/

a = — -

2a2

n\J\ — e2

(13.27)

(13.28)

(13.29)

Here

Now

III. Equations for 0.2 and e

a? = F*
dr

(13.30)

where the true anomaly / depends on E and e. However, e = e(oi\, o^), and
E = E(e, Pi, a). Thus, / depends only on oil, #2, and pi, so that it is independent
of ft. Thus, the argument iff of latitude has no dependence on ft through /. It
follows that changing ft only leads to d^ = dft, so that

Thus
9ft

<*2 =

dr

3r

(13.31)

(13.32)
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VARIATIONAL EQUATIONS FOR THE KEPLERIAN ELEMENTS 1 33

If r is changed by a change in \jf only, it gets rotated about an axis perpendicular
to the orbital plane. Here l\y is a unit vector along this axis, and (r,lw) remains
90° during such rotation. Thus, in Eq. (13.2), rj becomes ^, so that

^T = TT=lw*r (13.33)
9ft d\ls

Insertion of Eq. (13.33) into Eq. (13.30) yields

«2 = lw x r - F = lw • r x F (13.34)

Since F = lrR + 1T T + lw W, then

r xF = rTlw-rWlT (13.35)

lw-rxF = rT (13.36)

It follows that

a2 = rT (13.37)
Now to find e, use

2 &va2 = M + ha + 2 h(l - e2) (13.38)

2d?2 ^ 2 ee
«2 a l-e2

In Eq. (13.38), insert Eqs. (13.29) and (13.37), so that

2ee 2 2rT
-——- = ——-:===[Resinf + T(l + ecosf)]-——==^ (13.39)

Thus

ee = — — — — [ R e s m f -f 7(1 -fecos/) - rT] (13.40)

In Eq. (13.40), insert r = a(\ — e cos E} to find

ee = ———— [Resin f + 7(1 +ecosf)- T(l -ecosE)] (13.41)
na

so that

e = ————[R sin / + 7(cos E + cos /)] (13.42)
na

IV. Equations for 0:3 and /
Here

*3 = F—— (13.43)

Purchased from American Institute of Aeronautics and Astronautics  

 



134 J. RVINTI

Now ft = £2 and the longitude

0 = A + X (13.44)

where, by Sec. VII of Chapter 2,

tan x = cos / tan ̂  (13.45)

Here, according to Sec. Ill of this chapter, ^ depends only on a\, c*2, Pi, and ft.
Also

cos / =

Thus, x is independent of ft = Q. It follows that

w_ =
dfr

Then
_ a r _ = 8 r 8 * = 3r
3ft 909ft 90

Thus

<*3 = F . |̂  (13.47)
90

Here 9r/90 is the rate of change of r as r is rotated around the inertial z axis with
constant 6. That is, in Eq. (13.2), r\ becomes 0, and / is k, the unit vector along
the inertial axis Oz. Thus

^-=kxr (13.48)
o<p

so that

oj3 = A: x r • F

= A: • r x F = rk - (lr x F) (13.49)

With use of

(13.50)
- WIT

so that

d3 = rA: - (r/w - WIT) (13.51)

However,

k-lw=cosl (13.52)

and

/r = -/A sin f+lB cos / (13.53)
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by Sec. I of this chapter. Also, by Eq. (13.19)

k • I ̂  = sin / sin to

k • 1B — sin/ cos co

Thus

k • 1T — —sin / sin co sin / + sin / cos CD cos / (13.54)

Insertion of Eqs. (13.52) and (13.54) into Eq. (13.51) thus yields

d?3 = r[T cos / - W sin / cos (co + /)] (13.55)

To find /, use

cos/ = oii/oii (13.56)

-/sin/ = — - -^2 (13.57)

Insertion of d2 = rT and of Eqs. (13.55) and (13.56) into Eq. (13.57) yields

-/ sin / = (r/a2)[T cos I - W sin / cos(a) + f) - T cos /]

so that, with use of a^ = ^ JJLCI(\ — e2) = na2^/l — e2, we find

(13.58)

nd1^ 1 — e1

V. Equations for $3 = ft
Here

?> = -F.^ (13.59)

Because of the six Keplerian elements only / depends on #3, we may proceed
as follows. Use

, • ,cos/ = — —sin/ ——
Of 2 9^3

dai 31 dof3 a2 31
Then

* - " 5 7
Now dr/dl corresponds to a rotation about /^, the unit vector along the line of
nodes. In Eq. (13.2) r\ becomes /, and / is /#. Then

= ^ x r (13.62)
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and

^ = _ F > / ^ xr (13.63)
0(2

CSC/
= ——1N • r x F

Y CSC /
-IN • dr x F) (13.64)

0(2
reset

IN • (77W - W/r) (13.65)

with use of Eqs. (13.50). However, 1N • lw = 0, then

r csc /
j8, = ————— W(/yv/ r) (13.66)

0?2

Now

IN -lr= csciA (13.67)

and

/yv • /r = csc(V + 7T/2) = -sin ̂  (13.68)

from Fig. 13.4. Thus

rWcsc / sin i^
0(2

or
rW csc 7 sin

(13.69)

VI. Equations for /32 = ci;
We begin by proving two lemmas.

Lemma 1: With Keplerian elements a,e,I,£l,co, and £ as independent variables

Prao/:

r =a(l -ecosE) (13.71a)
3r v^ • zr9£
— = —a cos E + ae sin £ —
3e 3e
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However,
E - e sin E = £

so that
3E

(l-e cos E)— - sin E = 0
de

3E sinE
3e 1 — ecos E

Thus
dr aesin2E a(e — cos E)
— = ~acosE + -————- = -±————-f = -a cos/ (13.71b)
3e 1—ecosE l~ecosE

Then

« « o s / (13.710

This completes the proof of Lemma 1.

Lemma 2:
f a

Proof:

(13.72)
r

cos/ = -(cos£" — e)
r

With use of Lemma 1 we find
< - \ / r > / \ 2 /

— sin / — = I — I cos /(cos E — e) + I - 1 1 —sin E — — 1
3e \r J \r/\ 3e

However,
a= -smE

3e 1 — ecos£" r
so that

sin2/"J-sin/f- = - cosz/ - ———— - - = ( - sin / ~de \ r I r2- r \r
snce

Thus

which is Lemma 2.

sin/ = - ^/(l—e^) sin E
r

^ = (- + ̂ }^f d3.72)

Purchased from American Institute of Aeronautics and Astronautics  

 



138 J. P. VINTI

Now
r\r

P2 = -F . —— (13.72a)

where r = r(a, e, I,£2, co, t). Of the six Keplerian variables, only e and / depend
onof2.Thus

*\ =(»\ (1L\ + (dJL\ (*L\ (13.73)
/dr\
U7\dIJ

Here

2 de= _

3a2
(13.74)

de

«3 97 cos/
cos 7 = — — sin / —— = — ———

(13.75)a/ cot/

Insert Eqs. (13.74) and (13.75) into Eq. (13.73) to find

dr cot/ dr 2ct\ct2 3r

From Eqs. (13.76) and (13.72a)

1 • — (13.77)

or

P2 = Ni + N2 (13.78)

From Eq. (13.61)

^=^Lp.^L (13.61)

so that

(13.80)

We now have to calculate N2. For this we need (dr/de)z. Use

r = Re[(/A
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Because I A + HE depends only on a), £2, and /,

(13.81)

3 < -if^ -if3r • -«78/ -if(3r • a/— (rs J) = s J — —irs J — =s J[ — - ir —
de de de de de

By Eq. (13.16), (1A + HB^~if =lr + ih, so that

(,3.82,

ByEq. (13.71b)

— = — a cos /

Use this and Lemma 2 to find

? - ir^f- = -acos f-i(a + —^ ) sin/ (13.83)

Then

(13.84)
l-e2

= -lra cos / + 1T ( a + ^—-^ ) sin / (13.85)

With

this gives

F • — = a[-fl cos / + 7(1 + r/p) sin /] (13.86)a^
because p = a(\ — e2). Place this in Eq. (13.79) and use -2a\ = /x/a. We find

N2 = (a2/efji)[-R cos / + 7(1 + r/p) sin /] (13.87)

However,

0(2 \ftta(l — e2) Vl — e2

— = ^-^———- = -——— (13.88)

so that

yr^^r / r \ iN2 = ————— /? cos / - 71 ( 1 + - 1 sin / (13.89)
ena [_ V P/ J
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Then ___

/32 =d) = -ticosl - ———— Rcosf-T[ 1 + - ] sin/ (13.90)
^a L V P/ J

VII. Equations for /3t and i

^rrr-F- ——— (13.91)

Of the Keplerian variables, a, e, and £ depend on ct\. Thus

9r /6r\ 9a /3r\ 3^ /3r\ 3i
—— = I — I —— + I — I —— + I — I —— (13-92)9«i \da/Kdoti \3e/Kdce\ \dlJKdct\

_pl = —P. ( — \ +—F.t — \ +—F.i — \ (B.93)1 a«i \3aJK 3ofi \3eJK da\ \3lJK

From Sec. VI

—^?_/7. ( ^L ) =^ + ^2cos/ (13.94)

Thus

F • ( — j = -^—(co + & cos /)

Because

e2 = 1 +

then

^F. /3r\ a?
( — } =——\\dejK efji2

However,

Thus
a^ /ar\ Vi -^2 . rN , ioncx—— F- — =————— (a ) + £2cosl) (13.95)
3ai V ^ ^ / / ^ «

Thetermin3r/aa:

(13.96)

r = a(l~e } ^1 = - (13.97)
1+6 cos / 3a a
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Now / depends only on e and i and not on a. Thus

—(rs~if) = r-s~if (13.98)
da a

and thus

F - ( — | = -Re[F-(/ r + «7)] = -fl (13.99)
\3aJ K a a

Because

u 3a a 2a2

then

(13.101)
L \0£ a t / J

Then

^
3r 3f

= R— + Tr— (13.102)

For 3r/3l, use

r = a(l — e cos £) — — ae sin £—

£-esin£ = £ (1-ecosE)— = 1 — = - (13.103)

3r a2e ._ ^ aesin f
9-c r
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For d f / d l , use

However,

Then

e + cos /

*Ldi

uus n, — —

I UVJo LLi ——

1 + COS /

1 + cos E

a ll + e
rVl-e r(l

+ e cos /

—— (1 +cos
P

P
r(1+e)

P a1 i
+ e) r^

/)

7^ (13.104)

This proof could perhaps be shortened by using the expressions for an unperturbed
orbit, viz.,

r2/ = nab =

Then

dt

However, since we wish to be sure that the equation for df/d£ holds generally
for Keplerian variables, the first proof is perhaps more convincing. The expression
that we shall soon obtain for i is not n. [See Eq. (13.109).]

Next, insert Eqs. (13.103) and (13.104) into Eqs. (13.102) to obtain

Rae sin / Ta2

(13.105)
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For3€/dai,use
U 3n I dn

t = n(t + ft) —— = (t + ft)—— = - ——
oct\ oot\ n oa\

n =

_ _ i _|
2

a —

da

_ _
no

Then

Thus

(13.106)

o /? / nT7 \

= -—-== ^sin/ + —nWi - ^2 V r / (13.107)

Inserting Eqs. (13.95), (13.100), and (13.107) into Eq. (13.93), we find

2rR J\~-
[co + Q cos /) + —

Now to find €, use t = n(t +
£ = n(f + ft)

We need n

2 h — —
2

==(*/? sin/ + ̂ -
-e2 V r

(13.108)

+ (hl/n) (13.109)

3na

From Sec. II,

Thus

a =

n = — -

ni
na fl^e2

= —T— - Jl - e2(co + ti cos /) + ——-== (eR sin / + — )
fttf na\l 1 — e2 \ ^ /
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The ht/n cancels one of the terms in n^ , since p/r = I -\- e cos /. Thus
<yr n

t = n- — - - A/1 -e2(a) + ticosl) (13.110)
na

VIII. Summary

a =
nVl - e2 [*R sin / + T(l + e cos /)]

e =
na

[R sin / + T(cos E + cos /)]

. _

na2\/\ —

. _ rW csc/si

6) = —Q cos / —
ena

L\sinf\
P / J

O^. D

= n

Purchased from American Institute of Aeronautics and Astronautics  

 



Chapter 14

Potential Theory

I. Introduction

I N SOLVING for the orbit of an artificial satellite around a planet, it is necessary
to take into account the nonspherical figure of the planet. We shall first derive

an approximate formula (MacCullagh's) for its gravitational potential and then
derive the full expansion in spherical harmonics.

Let us consider the planet to be made up of particles, the zth one having mass
mi. Such a particle at Qi will have a colatitude 0,- and a longitude A,/, relative to
axes fixed in the planet, with origin at the center of mass. Also, consider a field
point P outside the planet, with colatitude 0 and longitude A, as shown in Fig. 14.1.
Then, for a source point i,

Xi -\-iji =

Zi = Y[ COS Oi

and for the field point

x + iy = r sinO slX

Z = r cos 0

Assume that r/ < r for every source point. There is a difficulty here, because a
field point close to a pole of an oblate planet may be nearer the center of mass than
a source point close to the surface in an equatorial plane. We shall not dwell on
this difficulty now.

If RI is the vector from a source point to the field point and r and r/ are the
position vectors of the field point and the source point, then

Ri=r-n

R2 = r2 -f rf — 2rr, cos V'V

where V/ is the angle (r/, r). Then

r ,
„ _I

r

145
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146 J. P. VINTI

Fig. 14.1 Field point P outside a planet with a nonspherical figure.

The potential V at the field point is given by

where

U = -£/tfr \ r
For a field point sufficiently far from the planet that

r r2

r l r2

for every source point, we may expand Eq. (14.1) by the binomial theorem
_ i _ _ 1. 3 2 _ 15

( + £) 2 - ~ 2£+%8 ~4$*

(14.1)

(14.2)

so that

/ rt r2\" rt lr2 3 r2
 2

I 1 — 2— COS Wi + -T I = 1 + — COS Wi — — -7T + - -T COS W/ +
\ r r2/ r 2̂ r1 2 rL

Then

rU = ̂ mi + -E/m r-r/ cos ̂  + —rS/ra/ (3r2 cos2 ^/ - r2) + O ( — |
r 2r2 v \r /

If we choose a new Z axis along OP, then

Z/ = r/ cos i/'v

E/m/r/ cos ̂  = S/mz-Z/ cos i/^/ = MZ = 0

(14.3)

(14.4)
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POTENTIAL THEORY 147

where M = S/m/ and Z = 0 with the origin at the center of mass. Placing
cos2 = 1 — sin2 in Eq. (14.3), we find

/ 1 \
(14.5)

where M is the total mass of the planet. However, r,- sin fa is the distance from Qi
to the OZ axis, so that

E r-m/r2sin2^ = / (14.6)

the moment of inertia about OP. Then

rU = M + ̂  (ZS/m/r? - 37) + - • - (14.7)

If the moments of inertia relative to the principal axes Of, 0??, Of are A, B, C,
then

A = S/m/ (77? + ??) 5 = S/m/ (?? + f 2) C = S,-m/ (£? + rj2) (14.8)

and

A + B + C = IS,-/?!,- (§? + 77? + f ?) = 2SI-m/r? (14.9)

Thus, from Eqs. (14.7) and (14.9),

rU = M + Ar(A + B + C - 37) + • • • (14.10)
2r2

and
GM G / 1\

V = ——— - ^(A + 5 + C - 3 / ) + 0 - (14.11)
r 2r3 \r4/

This is MacCullagh's formula, which is good for many problems such as the theory
of the precession and nutation of the Earth's axis, but not for the theory of satellite
orbits.

II. Laplace's Equation
From

one deduces readily that V2(l//?/) = 0 outside the planet, so that

V 2 V = 0 (14.12)

outside the planet. The spherical harmonic expansion of the potential that we wish
to derive is an orthogonal expansion in separated solutions of this equation in
spherical coordinates. With

(14.13)
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148 J. RVINTI

the Laplace equation V2V = 0 becomes

23V I 32V cotO dV I 32V

After some manipulation, one finds

Here 0 = X, the longitude, and 9 is the colatitude.
To separate this equation, put

V = /?(r)®(<9)$(0) (14.16)

Then

> = 0 (14.17)
r2 dr rzsmOdO r2 sin 0

(The primed values of R, 0, and 4> denote total derivatives.) Multiply this
by r2sin2 0/(R®$>) to obtain

The left side depends only on r and 9 and the right side only on 0, so that both
are constant. The constant is chosen positive asm2, since 4> would otherwise vary
like exp 0 and would not be a single- valued function of position. Moreover, it is
necessary that m =0, 1 , 2, 3, . . . . Thus

4> = linear combination of cos m0 and sinm0 (14.19)

Next, divide Eq. (14.18) by sin2 9 and transpose to obtain

—— —— — (0 rsin^) - -^- = --— (r2Rf) (14.20)
©sin<9d<9 v ' sin2<9 R dr

In Eq. (14.20), put 0 rsin^ = 0'sin20/sin0 and denote cos<9 by x and 0 by
j, where x and y are not to be confused with rectangular coordinates. Equation
(14.20) becomes

(14.21)
y dx \_ dx J 1 — XL R dr

where A is a constant. With

— =/

Eq. (14.21) becomes

= 0 (14.22)
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POTENTIAL THEORY 149

The solutions of Eq. (14.22) turn out to be finite for all 0 between — n and n only
if A is equal to an eigenvalue

A. = n(n + l) n = 0 ,1 ,2 ,3 , . . . (14.23)

Otherwise, y would become infinite at the poles (jc = ±1). We next try to give
some indication that this statement is true.

Rewrite Eq. (14.22) as

/- + *- T =0 (14.24)1 - x2 \ 1 — jc2/ 1 — ;c2

This equation has singularities at x = ±1. At x = +1, we put z = 1 - x and seek
a solution by series in the form

y = z«^akzk (14.25)
k=0

Then

d2y 2(1 - z) dy / A. m2 \
^jbss + Urs-rti^O''-0 <14-2<»

By Eq. (14.25)

dz
d2v

2(l-z)dy

z(2 - z) 2
m2y ^^

-"T^———To =——7~aoZ2(2 - z)2 4

The first term in the series for Eq. (14.26) is

.2
( aQ(x(u - 1) + floa - -^-flo ) za

Because apower series is unique and because the right side of Eq. (14.26) vanishes,
we obtain the so-called indicial equation for a:

m2

a — 1)4- aQa - —-a§ j= 0
4
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or

«o K - — ) = 0 (14.27)

Thus
, m

(14.28)

To obtain a solution finite at x = +1 (i.e., at z = 0), we choose a = m/2, since
m > 0.

We may handle the situation at the other pole (i.e., at x = — 1 ) by using z = 1 +;c .
It follows in the same way that a = m/2 near x = —1. To put the two results
together, we may then write

y = (l- x)m/2(l - x)m/2v(x) = (1 - x2)ml2v(x) (14.29)

Next insert Eq. (14.29) into Eq. (14.22) to obtain the differential equation for v(x).
The result is

(1 - x2)v" - 2(m 4- l)xi/ 4- (A - m - m2)v = 0 (14.30)

Since we have now taken care of indicial effects, we may now expand v(x) as

v = ^Tbkxk (14.31)
k=o

It is known that there exists a regular solution for v(x) over the whole interval
— 1 < x < 1. This follows from Fuchs's theorem.1'2 We shall show that for this
to be true the series must terminate. Now insert Eq. (14.31) into Eq. (14.30). The
result is

2b2 4- 6b3x - 2(m + \)b\x + (X - m - m2)(bo -f b\x)
oo

k[(k 4- 1)(* 4- 2)^+2 4- (A - m - m2 - 2mk - k - k2)bk] = 0
k=2

(14.32)

Because the coefficient of xk must vanish,

¥ = % <i4-33>bk D
where

N = k2 + jfe + 2mJk + m + m2 - X

= (* 4- 1)(^ 4- 2) 4- (2m - 2)k 4- m 4- m2 - X - 2 (14.34a)

D = (k 4- 1)(A: 4- 2) (14.34b)

Thus

(2m -2)* " * " * 2 - * - 2
(* + !)(* + 2) (*+!)(* + 2)
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POTENTIAL THEORY 151

The series (14.31) for v breaks up into two series, a series of even powers and a
series of odd powers.

III. The Eigenvalue Problem
We shall show next that both of these series diverge at x = ±1, unless the

constant A has certain characteristic values called eigenvalues. To do so, write

v(x) = u(x) + w(x) (14.36)

where

u(x) = 2_, b2jx2j = 22 aj*2J (14.37a)
7=0 7=0

00 00

w(x) = J^ b2j+\x2j = ̂  CjX2j (14.37b)
7=0 7=0

Even Series
Here k = 2j and Eq. (14.35) becomes

b2j+2 = (2m- 2)2j
b2j (2y + l)(2;+2) (2; + 1)(2; + 2)

Odd Series

= (2m - 2)(2j + 1) m + m 2 - A - 2
(2;+2)(2y+3) (2j + 2)(2y + 3)

After some manipulations, these equations become

1 + i^ + (14.39a)

(14.39b)6V J r
where

n _(4 + m>-5m-X)ji + (2-2mrf (

7+2)

^2 = (6 + OT "!m~A!)
/{.+ (5/ """ (14.40b)

The ratio test for convergence or divergence of these series fails, because the ratio
of successive terms approaches unity as ;' -^ oo.

There is a test due to Raabe, however, that works.3 "If, at an endpoint, the
successive terms of the series are of constant sign and if the ratio of the (; + l)th
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term to the /h can be expressed as 1 — q/j -f 0 ( j ) / j 2 , where q is independent of
k and 0(j) is bounded as j -^ oo, then the series converges if q > 1 and diverges
if q < 1 "

It is clear from Eqs. (14.40) that the 0's are bounded as j —> oo. Also, in either
case q = 1 — m < 1, because m > 0. Both series, the even and the odd, diverge
unless they terminate. This means the series (14.31) for v(x) diverges unless it
terminates. By Eqs. (14.33) and (14.34) the series for v can terminate at some
value k = kf if and only if

A = k2
f + (2m + l)kf + m(m + 1) (14.41)

This can be factored
), = (kf + m)(kf + m + 1) (14.42)

Put
n = J t / + m (14.43)

The eigenvalues of X are thus

A, = fi(n + l) n = 0, 1,2, 3, . . . (14.44)

The factoring is unique. To show this, suppose A = t(t -h 1), where t is an integer.
Then t(t + 1 ) — n(n + 1) = 0, a quadratic equation for t with solutions t — n or
€ = — /t — 1. However, € must be a positive integer, so that I = n.

Now consider the case m = 0; u(;c) becomes

(1 - x2)v" - 2xv' + n(n + l)u = 0 (14.45)

on putting m = 0 and A = n(n 4- 1) in Eq. (14.30). As we have seen, the solution
takes the form

v(x) = u(x) + tu(*) (14.46)

where u(x) is an even series and w(x) an odd series. Here u(x) begins with b$ and
w(x) with b\x. We may write

v(x) = boU(x) + ^i W(jc) (14.47)

Since u(^c) is to be finite at x = ±1, either £0 or b\ must vanish because, for
m — 0, n = kf and X = £/(/:/ H- 2). Here /:/ is either even or odd. If it is even,
there is no odd kf that can satisfy X = kf(kf -j- 2). That is, if the U(x) series termi-
nates, the W(x) series cannot terminate. Similarly, if the W(x) series terminates,
the U(x) series cannot terminate.

For m > 0, we have kf = n — m, by Eq. (14.43). If n — m is even, only the
even series terminates, so that b\ = 0 and v is an even polynomial in ;c, of degree
n — m. If n — m is odd, only the odd series terminates, so that bo = 0 and i; is an
odd polynomial in x of degree n — m.

Summary of the 0 Equation

(1 - x2)®" - 2x& + ( X - -^-j) © = 0

The solutions are finite at* = ±1 if and only if A = n(n + 1), n = 0, 1, 2, 3, . . . .

Purchased from American Institute of Aeronautics and Astronautics  

 



POTENTIAL THEORY 153

Then
&(x) = (1 - x2r/2PnmW = sinm OPnm(cos9) (14.48)

where Pnm(x) is a polynomial of degree n - m, containing only even powers or
only odd powers.

IV. The R(r) Equation
From Eq. (14.21)

- — (r2/0 = A = n(n + 1) (14.49)R dr
To solve this, place r = r^s1. Then

d2R dR
—— + — -n(n + l)R = Q (14.50)
dz2 dz

Here
R = spz (14.51)

is a solution where
p2 + p-n(n + \) = 0 (14.52)

so that
p = n or -n-1 (14.53)

and, therefore, snz and e~(n+1)z are solutions. That is, the solutions are (r/r0)n and
(r0/r)n+1.Thus

/? = c1rn+c2r-n-1 (14.54)

Outside a planet, the potential becomes zero at r = oo; so we may reject the rn.

V. The Assembled Solution
The total solution of Laplace's equation for V is thus a linear combination of

products of

r~n~{ sinm#Pnm(cosf9)cosm0

It can be written
oo n

V = ̂ r-"-1 £ [Cnm sinm0/>nm(cos0)cosm</>
n=0 m=0

(14.55)

Our next task is to find Pnm(cos 0), so that sinm OPnm(cos 0) will be the appro-
priate solution of the 0 equation. To do so, we approach the problem indirectly,
by first considering certain Legendre polynomials Pn(x). With x = cos 9, we shall
show that (1 - x2)m/2(dm/dxm)[Pn(x)] satisfies the 0 equation.
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154 J. P. VINTI

VI. Legendre Polynomials
Consider the function

/(/*, x) = (l- 2xh + h2)-^ (14.56)

where x is a complex number and h a complex variable. The function / has
singularities at those values of h that satisfy

h2 - 2xh + 1 = 0 (14.57)

hi = x +

h2 = x -

We define the Legendre polynomials by the expansion

f(h, *) = (!- 2xh + h2)-* = , h"pnW <14-58)
n=0

Here /(/z) is called the generating function for the Legendre polynomials Pn(x).
Note that by Eq. (14.58), Pn(l) = 1.

One could find the Pn(x) by expanding Eq. (14.56) by the binomial theorem and
collecting together the powers of h, but it would seem necessary that \h2 — 2xh \ < I
for the validity of the expansion. In due time we shall develop another method for
handling Eq. (14.56). By Eq. (14.57) the series that we find for f(h, x) will then
be valid for

\h\ = smaller of \x ± V*2 - 1 (14.59)

That is, it will be valid within any circle in the complex plane that does not include
the nearest singularity. Such a power series expansion is unique, so that it must
agree with that given by the binomial expansion.

From Eq. (14.58) one can develop various recursion formulas for the Pn(x) by
means of which one can prove that Pn(x) satisfies Eq. (14.45).

(1 - x2)v" - 2xvf + n(n + l)u = 0 (14.45)

is known as Legendre's equation. Proof that Pn(x) satisfies Legendre's equation
can be found in Refs. 3 and 4. [Certain other functions Qn(x) also satisfy Eq.
(14.45), but they are not regular at x = ±1.]

VII. The Results for Pn (x)
Lagrange's expansion theorem, for which the proof can be found in Refs. 5 and

6, states that if

y = x + ot(/>(y) (14.60)

then
_2° /y« A^-\

F(y) = F(x) + ]£ — — ——(4>»(X)F'(X)) (14.61)
n=\
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POTENTIAL THEORY 155

ot being "small." We shall apply this theorem to derive Rodrigue's formula,7 which
is

PnM = ̂ .^(x2-lT (14-62)

To do so, in Eq. (14.60) put F(x) = x,a = t/2, and 0(j) = y2 - 1. Then, by Eq.
(14.60)

y=x+ *-(y2 - 1) (14.63)

By Eq. (14.61)

Solve Eq. (14.63) for y:

x/1 - 2xt + t2) (14.65)

For small t, y & x, by Eq. (14.63), which tells us to choose the minus sign in Eq.
(14.65):

y = -(l-Ji-2xt + t2) (14.66)

— = (1 - 2xt + t2)-'2 (14.67)
dx

From Eq. (14.66)

By Eqs. (14.67) and (14.58)
o 00

_Z = ^TV/^jt) (14.68)
n=0

However, by Eq. (14.64)

— = Y* —— —— [(x2 - IT] (14.69)
dx ^ 2nn\ dxn

Comparison of Eqs. (14.68) and (14.69) yields Rodrigue's formula (14.62).
In Eq. (14.62), if one expands (x2 — l)n by the binomial theorem and differen-

tiates n times, one obtains a polynomial expansion for Pn(x). The calculation has
to be done for n even and for n odd, but one can put the results together as

— (14.70)

where [n/2] = n if n is even and (n — l)/2 if n is odd. The first few Pn's are

P2 = ±(3X
2 - 1)

P3 = I(5^:3 - 3*)

P4 = I(35^4
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156 J. RVINTI

VIII. The 0 Solution for m > 0
For m = 0, we have A. = n(n 4- 1) by Eq. (14.22)

(1 - x2)y" - 2xy' + \n(n + 1) - -̂ 1 y = 0 (14.71)
L i .x J

Here jc = cos 0 and y = 0.
Define

——/>„(*) (14.72)

P™(x) = (1 - *2)m/2Pn
(m)(;c) (14.73)

Consult Refs. 3 or 4 for a proof that P™(x) is a solution of the 0 equation (14.71).
Note that for m = 0, Pn

m(;c) reduces to Pn(x).
By Eq. (14.73) the quantity sinm OPnm(cos 0) of Eq. (14.55) is now Pn

m(cos 0),
so that the potential is expressible as

oo

V = ̂ r-"-1 ]T [CBm/>B
m(cos0)cosm^ + 5nmPn

m(cos0)sinm</)] (14.74)
n=Q m=Q

in place of Eq. (14.55). This may also be written as
oo

V = ^r-n-lYn(0,(t>) (14.75)
n=0

where
n

cos m<b + S™ sin mW (14J6)

m=0
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Chapter 15

The Gravitational Potential of a Planet

I. The Addition Theorem for Spherical Harmonics

T O MAKE the series in Eq. (14.75) of the preceding chapter more definite, we
need to obtain expressions for the coefficients Cnm and Snm. To do this, we

next develop an addition theorem for the Legendre polynomials and the associated
functions P™(x).

In Fig. 15.1 let OQ' and OQ be unit vectors pointing, respectively, to a source
point Q' and a field point Q. Let Q have colatitude 0' and longitude 0' and Q
have the values 0 and 0. Also, let (OQ, OQ') = i/f. The addition theorem states
that

Pn(cosVO = Pn(cos60Pn(cos<9')

+ 2 V ("~m)! Pw
m(cos 6>)C(cos 0') cos(w0 - ro0') (15.1)

^ (w+m)!

(See Refs. 1 and 2.)
To prove Eq. (15.1), first write the Laplace equation in spherical coordinates

Then

(15.3)
r

where M2 is the operator

Because r and V2 are both invariant to a rotation of the coordinate system, it follows
that M2 is also invariant. If we go from Ox yz to a rotated system, Ox'y'z!, where

x + iy = r sin OelX x' + iy' = r sin ̂ re^
^ = r cos 0 z1 = r cos ^r

then

M'2 = M2 (15.6)

157
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158 J. R VINTI

Fig. 15.1 Diagram of unit vectors OQ' and OQ.

That is,

i a / a
= -— — I sin#—

Now a separated solution of V2 V = 0, viz.,

V = R(r) 0 (<9)4>0/>) = R(r)Y(9, 0)

satisfies, by Eq. (15.2)

However, by Eq. (14.49)

By Eqs. (15.9) and (15.10) Y satisfies

M27n + n(n + l)Yn = 0
where the subscript n on Y means that it corresponds to the eigenvalue n.

Since M2 is invariant to a rotation, Yn also satisfies

l'2Yn+n(n + \)Yn = 0

By Eq. (14.77),

rn(6>, ^) = Pn
m(cos 9)[Cnm cos m^ + Snm si

m=0

which is the complete solution of Eq. (15.11) and thus of Eq. (15.12).

(15.7)

(15.8)

(15.9)

(15.10)

(15.11)

(15.12)

(15.13)
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THE GRAVITATIONAL POTENTIAL OF A PLANET 159

Fig. 15.2 Unit sphere containing points P and Pr.

Next draw a unit sphere with points P and P' on it as shown in Fig. 15.2. Because
0' - 0 = PZP', 9 = (OP, OZ), and i/f = (OP, OP'),

cos ^r = cos 0 cos 0' + sin 9 sin 0' cos(0' — 0) (15.14)

Here the angular coordinates 9 and 0 are relative to Ojcvz. Let us also use a rotated
system Ox'y'z', where Oz' is along OP' . Then, P has angular coordinates ty and
ft in Ox'y'z'. The angle 0 is the angle from Ox' to the line OP", where P" is the
foot of the perpendicular from P to the plane Ox' y' .

Now, Yn satisfies both Eqs. (15.11) and (15. 12). Because Pn(cos^)is a solution
of Eq. (15.12), it also satisfies Eq. (15.11), so that

(15.15)

By Eq. (15.14), cos ty is symmetric in 0 and 9' and in 0 and 0'. We can thus rewrite
Eq. (15.15) as

Pn(cos i/O = cn0Pn(cos0)Prt(cos0/) + ̂  P™(cos9)P™(cos9')
m=\

x [cnm cos w0 cos m0' + dnm sin m0 sin m0;] (15.16)

This equation must hold when P and P' are both coincident on Oz, in which case
T/T = 0 and 0 = 0' = 0. In this case, the Pn

m vanish, since they contain a factor
sinm0. Also

Pn(cos VO = P«(cos6>) = Pn(cos<9') = Pn(l) = 1
Thus

(15.17)
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160 J. RVINTI

Next, specialize only to 0 = 0'. Then T/A = 9 — 9' and

Pn[cos(<9 - 9')} = Prt(cos(9)Pn(cos6>/)

f)(cnm cos2 m0 + dnm sin2 ra0) (15.18)

Because the left side is independent of 0, so is the first term on the right side. This
means that [ ]i is independent of 0, and this can happen only if dnm — cnm, as may
be shown by differentiation. Placing cnQ = I and dnm = cnm in Eq. (15.16), we
find

n

Pn(cos VO = Pn(cos0)Pn(cos0') +^cnm P™ (cos60Pn
m(cos<9')cos(ra0 - w0')

m=l
(15.19)

To evaluate cnm, multiply this equation by P/(cos 9) cos p0 and integrate over the
unit sphere. On the left side, use for the surface element dS = sin \js di/r d/3 and on
the right dS = sin 0 d9 d0. The 0 integral on the right is

f2"I cos/?0cos(m0 — m0 )d0 = 7tSpm cosm0 (15.20)
JO

The right side becomes

R.S. = 7rcnpP^(cos0/)cos/?0' / (P/(cos<9))2sin<9d6> (15.21)
JQ

However,

(Ref. 3), so that the right side becomes

The left side becomes
/»7T /*7T

L.S. = / d)8 I P/(cos6»)cos/70Pn(cos^)sin^d^ (15.24)
JO JO

The coefficient cn/7 is given by equating L.S. to R.S.
To evaluate L.S., note that /'/(cos 9) cos p0 is a solution of Eq. (15.11) and thus

ofEq. (15.12), so that

P/ (cos 0) cos /?0 = /n0Pn(cos V^) + p™(cos Vr)[/«m cos m^ + gnm sin m^]
m^l

(15.25)
To evaluate /„<), note that if 9 = 9' and 0 = 0', then ^ = 0, so that Pn(cos V ) =
Pn(l) = 1 and />n

m(cos f) = 0 for m > 0. Thus

<t>' (15.26)
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THE GRAVITATIONAL POTENTIAL OF A PLANET 1 61

Also, note that the terms in cos mfi and sin mp do not contribute anything to the
integral in Eq. (15.24). Thus, Eq. (15.24) becomes

2 /x+ l
On equating Eq. (15.27) to Eq. (15.23), we find

_ 2(n - p)\

r>n
' / [Pn(cos^)]2s

Jo

P,f(cos<9')cos/7<// (15.27)

L.S. =
o

(15.28)

cnm = (15.29)(n + m)l
Insertion of Eq. (15.29) into Eq. (15.19) leads to Eq. (15.1), the desired addition
theorem for spherical harmonics.

II. The Standard Series
From Eq. (14.1), we have

V = ——E/ro, 1 -2- cos f t + -V (15.30)
r \ r r1)

By the generating function for Legendre polynomials,

( r- r?\" °° i r-\n

1 — 2— cos ̂ y + -~ ) = ̂  ( — 1 Pn(cos ^/) (15.31)

Thus

V = -G^miy(n\ Pn(cos^ (1532)

By the addition theorem of Sec. I,

Pn (cos i/O = Pn(cose)Pn(co*6i)

#-/w0/) (15.33)

Here, r/ , 0f-, and 0/ are the spherical coordinates of a source point, and r, 9, and 0
are those of the field point. Then

PB(cos0)PB(cos0/)

+ 2V ^^Jpn
m(cos0)JPn

m(cos0,-)cos(m0 - mfc) (15.34)
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162 J. RVINTI

We next resolve the potential into zonal harmonics (m = 0) and into tesseral
(m > 0, m ^ ri) and sectorial harmonics (m > 0, m = n). Thus

V = Vz + VTS (15.35)

Here the zonal part is given by

c* °°
Vz = —— ̂ r-n[E,-m,-rf Pn(cos^)PII(cosft)] (15.36a)

r n=0

and the tesseral-sectorial part by

VTS = -~ fSr-^-m^ £ ̂ ^lp-(COs^)Pn
m(cos^)cos(m0 - rofc)

r n=l m=l (n~^m)'

(15.36b)

Note that each term in V, for a given n, is a solution of Laplace's equation.
The zeros of the zonal harmonics divide the unit sphere into zones bounded by
parallels of latitude. The zeros of the sectorial harmonics divide the unit sphere
into lunes, bounded by meridians. The zeros of the tesseral harmonics divide the
unit sphere into curved rectangles (tesserae) bounded both by parallels of latitude
and by meridians. (For a graphical description, see Ref. 4.)

In the case of the Earth, the standard notation adopted here is the following. Let
re be the equatorial radius of the Earth and /z = GM, where M is the mass of the
Earth. Then

Let us now compare Eq. (15.37a) with Eq. (15.36a) to obtain expressions for
the Jn.

n = 0:

/z = GE/m/ = GM

#/) = — GS/m/r,- cos ft- = — JJLZ

where I is the z coordinate of the Earth's center of mass. Thus

(15.38)

Thus, /i vanishes if the origin is at the center of mass. This condition is ordinarily
imposed in the reduction of satellite observations to determine the coefficient of
potential. If one adopts standard values for station positions, there would of course
be small errors in the 7n's unless one determined a corresponding nonvanishing
J\. Ideally, in reducing such observations, one should solve for station positions
as well as Jn's while imposing the condition J\ = 0.
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THE GRAVITATIONAL POTENTIAL OF A PLANET 163

General n for the Zonals
Comparison of Eqs. (15.37a) and (15.36a) yields

Changing this from a sum to an integral makes this

Jn = ——— I rnPn(cosO)pdr (15.40)
Mr% ./Earth

where p is the density and dr the volume element.
n = 2:

1 9 1 / z2
Pn(cos6) = -(3cos26> - 1) = - 3— -

2 2\ r2

Insertion of this into Eq. (15.40) gives, with n = 2

1 [ 9 9h = -——T p(3z2-r2)dr (15.41)
2Mre ,/Earth

The integral is related to the moments of inertia

9 9 t 9 9 f 9 9(y +z )dr Iy = I p(z +x )dr Iz = / /o(^: + j ) d r

Indeed

h ~ -(/* + /y) = - / P(-^2 + y2 ~ 2z2)dr = — I p(3z2 - r2)dr (15.42)

Comparison of Eqs. (15.41) and (15.42) shows that

Next, let the moments of inertia about the three principal axes be A < B < C.
It is known for the Earth that the polar axis Oz lies very close to the principal
axis of greatest moment of inertia C. Now, if we rotate the x and y axes, so that
they coincide with the principal axes corresponding to A and B, the integrand in
Eqs. (15.40) and (15.41) does not change. This means that /2 is invariant to such
a rotation, so that in Eq. (15.43) we can replace Ix, I y , and Iz by A, B, and C,
respectively. Thus

C-±(A + B)J2 = —— — —— I (15.44)

Note that, if a planet were a flat disk of uniform density, the value of ]^ would be
only one- fourth, so that for small oblateness it is clear that Ji <^ 1/4. Actually,
for the Earth

h « 1082.63 x 10~6

h ~ -2.53 x 10~6 (15.45)

/4--1.61 x 10~6
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164 J. RVINTI

are World Geodetic System 1984 (WGS84) constants. Thus, /3 and 74 are of order
/^, and this behavior persists up to rather large values of n. What is the physical
implication of this fact? We can write Eq. (15.40) as

Jn = ~ I (-} Pn(cos6)pdT (15.46)
M J Earth VeJ

Because re > r > 0 and by Eq. (15.46), (r/re)n becomes very small for large
values of n, unless r « re. The slow diminution of Jn as n increases implies that
the higher coefficients arise mostly from matter near the surface, probably in the
Earth's crust. Furthermore, if the density there were constant, the integral in Eq.
(15.46) would vanish since, for n > 0,

r 2n /» n f> 1
/ d0 / Pn(cos 6) sin 9 dO = 2n / Pn(X) dA, = 0

JQ Jo J-\
Thus, there must be important density anomalies in the Earth's crust.

Tesseral-Sectorial Terms
On equating Eqs. (15.36b) and (15.37b), we find

y^(Cnm + iSnm) = |* ~ ™?| E^T? C(cos ftX m<^ (15.47)

n = 1, m = 1:

Mrtf(Cn

Now, with X = cos ẑ-

Thus

Mre(Cu + iSu) = E/m/r/ sin ft e1'̂ ' = S/m/fe + iy{) = M(Jc + /y)

where x and y are coordinates of the center of mass. Thus

Cn=x/re Sn=y/re (15.48)

With origin at the center of mass, C\\ and S\\ both vanish.
n = 2,m = l :Eq.( 15. 47) yields

f f
6

Now

) = 3(1 -

Thus

Mr2(C2i + /52i) = E/m/fa cosftXr,-

and therefore
imjZjXi jmjZiyi

£21 = — rr^ — ^21 = — 77-̂  — (15.49)Mr2
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THE GRAVITATIONAL POTENTIAL OF A PLANET 165

Both these coefficients vanish if the polar axis Oz is a principal axis. To show this,
let Ox', Oy' be the principal axes. If a is the angle from Ox to Ox'

x = x'cosa — /sin a y = jc'sina + /cos a (15.50)

By Eqs. (15.49) and Eqs. (15.50)

Mr2C2\ - E/m/z/O^'cosa - /sina)

/COSQ?)

However, relative to the principal axes, all the products of inertia vanish, including
E/m/z/*- and E, w/z//. Therefore, if Oz is a principal axis, €21 and £21 vanish.

For Earth, the pole of rotation wanders by a small amount, very roughly over a
circle of about 6-m radius, corresponding to an angle of about 0.2 arcsec between
the pole and the mean pole. The mean pole is close to the axis of greatest moment
of inertia, so that the wandering about the principal axis is small. It is, therefore,
customary to put C2\ = S2\ = 0 in calculating orbits or in reducing satellite
observations. For the moon, C2\ and £21 are larger.

n = 2,m = 2: Eq. (15.47) yields

o_ .. . _ o _ o , _ ?/20/ (15.51)

With the use of

cos 20 = cos2 0 — sin2 0 sin 20 = 2 cos 0 sin 0

we obtain

Mr2S22 = jEfro,-*/?/

If all the axes were principal axes, we should have S22 = 0. This is not the
case, however, because Ox passes through the Greenwich meridian and is not
a principal axis. To find C22 and £22 in terms of moments of inertia, rewrite
Eqs. (15.50) as

x + iy = (xf + iy')eia (15.53)

Then

(x + iy) = (xr + ry')V2a

x2-y2 = (x'2 - yt2) cos 2a - 2x'y' sin 2a

2xy = (x'2 - y'2) sin 2a + 2x'y' cos 2a

Thus

Mr*€22 = \[^imi(x'2 - y'2} cos2a - ZE/m/Jc^,- sin2a]

Mr2S22 = |[E/m/(42 - y'2} sin2a + 2E/m/^cos2a]
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Here

Ejm/*;?; = o
Because A = E/m/(jp + zj2) and 5 = S/m/(zJ2 + ^-2), we have

B-A = Ximi(x'i2-y'i2}
so that

Mr2(C22 + *S22) = ^(5 - A)(cos2a + i sin2a)

or
(5 - A) cos 2a (5 - A) sin 2a

From G and /z = GM, one can determine M and, thus, B — A, and a can be
calculated from €22 and £22- From </2> one can determine C — (B + A)/2. It turns
out that one can determine C[C — (B + A)/2]-1 from data on precession and
nutation of the polar axis; these data serve to determine A, B, and C.

III. Orthogonality of Spherical Harmonics
From Eqs. (15.37a) and (15.37b), the potential V can be expressed as

Snm sinm0] (15.54)
n=0 \ / m=0

To make this agree with Eqs. (15.37), we must put

Cno = —Jn

A term Pn
m (cos 9) cos mcp or Pn

m(cos#)sinm(/> is called a surface spherical har-
monic. Two such terms are distinct 1) if one has the cosine for 0 and the other the
sine; or 2) if both have cosines for 0 or sines for 0, mi ^ ra2; or 3) if both have
cosines for 0 or both sines for 0 and mi = m2, then n\ ^ n2.

Two such functions 1/̂ 1 and ^2 are said to be orthogonal over the unit sphere if

/

2n /»TT
d0 /

JQ
=0

Here, diS = sin$ d^ d0, the surface element on the unit sphere. The reader can
easily verify that

f "\s
and P

are orthogonal if either easel or 2 holds. A simple integration over 0 from 0 to 2n
shows this.
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THE GRAVITATIONAL POTENTIAL OF A PLANET 167

To show that any two distinct spherical harmonics are orthogonal, it remains
only to consider case 3. The functions are orthogonal if

/ Pn
w

1(cos0)Pn
l5(cos0)sin0d0=0 (m ^ n2) (15.55)

Jo
To prove Eq. (15.55), note that Pn

m(cos 0) is simply the 9nm of Sec. II. With 9 = y
and X = n(n -f 1), it satisfies Eq. (14.22), which can be written

d o f m2 1— [(1 - x2)/] + \n(n + 1) - -——- \y = Q (15.56)dx I \-x2]

Now, let yi = /^(cos 0), y2 = P^(cos 0) and recall that in Eq. (15.56), we have
x = cos$. The orthogonality condition (15.55) becomes

= 0 (15.57)

Proving Eq. (15.57) proves Eq. (15.55). To prove Eq. (15.57), write Eq. (15.56)
once for y\ with n — n\ and once for y2 with n = n2, as follows

(15.58a)— x

(15.58b)

Multiply Eq. (15.58a) by y2 and integrate over ;c from —1 to +1. Multiply
Eq. (15.58b) by y\ and integrate over x from -1 to +1. Take the difference of the
two results. The reader should do this as an exercise; note that the integrals on the
left must be evaluated by integrating by parts. The difference of the resulting right
sides is zero. We obtain

] tJ-i
(15.59)

Thus, if n\ ^ n2, we obtain Eq. (15.57) and the orthogonality is proved.
Suppose a function is developed in an infinite series of orthogonal polynomials

and the coefficients are /?o, b\, b2,.... If we try to approximate the series by a
finite sum of these functions, with coefficients CQ, c\, c2,..., the integrated square
of the error is a minimum if c* = &*, k — 0, 1, 2 , . . . . This is a well-known
theorem, and its meaning for the development of the potential is clear. Once a
certain number of spherical harmonic coefficients have been correctly determined
for the Earth's potential field, the fit of the potential cannot be improved, in the
least-square sense, by changing the coefficients.

For the case m = 0, the orthogonality of the spherical harmonics P™(cosO)
x cos w0 leads to the orthogonality of the Legendre polynomials Pn(x). That is

I Pn(x)Pk(x) dx=Q (n^k) (15.60)
J-\
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IV. The Normalized Coefficients and Harmonics
For large values of n, the coefficients of potential are small, and the correspond-

ing spherical harmonics have large values. Because it is inconvenient in a long
computation to do many multiplications of small numbers by large numbers, it has
become customary to normalize the tesseral-sectorial harmonics and sometimes
the zonal harmonics.

Denote quantities in the normalized system by superscript bars. Then
7 p — j p r Pm — C Pm ^ Pm — V Pm

J nl n — JnL n *-" nmL
 n ~~ ^nmL

 n ^nml n ~~ ^nmL
 n

For this purpose, the harmonics are customarily normalized to 4n. That is

;/7(cos0)]2sin0d0 = 4n (15.61)

or

I Pw
2sin<9d0 = 2

Jo (15.62)

o
In dealing with Eq. (15.61), we need the integral

_i 2n + l
It is easy to derive Eq. (15.63) by means of the generating function

00

(15.63)

(15.64)
«=o

Rewrite this as
oo

(15.65)

Multiply Eq. (15.65) by Eq. (15.64) and integrate from —1 to +1, using the or-
thogonality. The result is

[Pn(x)?dx= (l-2;c/z + /z2r1djc (15.66)
J~l

If the integral is evaluated on the right side, by putting u = 1 — 2xh -f h2, it can
be shown that

'1 — 2xh + h ) d;c = h~ [frv(l + h) — &v(l — /z)]
-i

Expansion by McLaurin's theorem reduces this to

+ T + T + - + ̂ TT + -) (15'67)
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Equating coefficients of h2n on both sides then yields

/ [Pk(x)]2dx =
J-i

as stated previously. We also need the integral

2 / x + l

169

(15.63)

(15.68)

For m > 0, this cannot be evaluated so easily. It is done in Ref. 3 by repeated
integration by parts.

With the use of Eqs. (15.61-15.63) and (15.68), we obtain for
Zonals:

(15.69)

Tesseral-Sectorials:

+ lXn-m)n*
(n + m)! • JP? Cnm Snm

Note that Eq. (15.69) does not follow from Eq. (15.70) by placing m = 0.

V. The Figure of the Earth
From the gravitational potential that we have deduced and from the apparent

forces acting on a particle of water in the open sea, we can deduce the figure of the
open sea, with disregard of tides, waves, and ocean currents. This figure is called
the geoid, i.e., the Figure of the Earth (Fig. 15.3).

Fig. 15.3 Figure of the Earth.

Purchased from American Institute of Aeronautics and Astronautics  

 



170 J. RVINTI

If we let Exyz be an Earth-fixed system and OXYZ a truly inertial system,
then a field point will have corresponding position vectors

r =xi + yj + zk
R = XI+YJ + ZK

The position vector of E relative to O will then be p, where

R=r +p
and

R=r + p = f + fs + fM + fD (15.71)
Here
/ = — VV = gravitational field of the Earth
fs = gravitational field of the sun
f M = gravitational field of the moon
fD = nongravitational force per unit mass

Now

r = xi + yj + zk + xi + yj + zk

Here

v — xi + yj + zk
is the velocity of a particle relative to the Earth. The other term in r can be found
from

i = (jj x i j = u x j k = u x k
where &> is the angular velocity of the Earth. Thus

xi + yj +zk = u x (xi + yj + zk)

so that

r = v + (jj x r

A second differentiation gives

r '=a + 2 a ; x v + u ; x ( a ; x r ) + a ;xr (15.72)

as can be readily verified. Here a is the acceleration of the particle relative to the
Earth.

Insert Eq. (15.72) into Eq. (15.71). The result is

a = f-ux(u>xr)-2uxv-uxr + fs + fM + fD-p (15.73)

InEq. (15.73), the sum

fs + fM + fD = fis (15-74)
goes by various names—the lunar-solar perturbation, the tidal force, or the gravity-
gradient force. It is small and would vanish for a particle at the center of the Earth.
The force — u x r is also small. The term — 2u x v is the Coriolis force, which
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would vanish for a particle at rest in the Earth system. The term —a; x (a; x r) is
the centrifugal force. The term fD is ordinarily a drag.

In defining the acceleration of gravity g only the first two terms in Eq. (15.73)
are taken into account. Measurements of g must primarily correct for drag and
Coriolis force. Thus, we define

g = / - u > x ( c j x r ) (15.75)

With disregard of any time change in cj, we have

(4) = o)ek (15.76)

where k is along the polar axis and coe is the sidereal angular velocity of the Earth,
approximately (366/365) times 2;r/86,400 radians per s.

It is easy to show that insertion of Eq. (15.76) into Eq. (15.75) yields

g = f + a>2
e(xi + y j ) (15.77)

or

Because / = — VV, we have

g = -Vfi (15.79)

where

ft = V - y (x2 + y2) (15.80)

is called the gravity potential.
The geoid is now defined as the level surface of £2 that includes mean sea level.

Mean sea level is defined as the surface of the sea with tides, waves, and ocean
currents averaged out. It must be a level surface of £2, or else water would flow to
make it so.

To find an equation for the geoid, we equate the gravity potential in Eq. (15.80)
to its value at the equator. We shall neglect terms of order J2 in V, so we may
write £2 as

r- / \ 7 -i 2

Here we take 0 to be the latitude, rather than the colatitude. The equation of the
geoid is thus

_ * \i _ (?L\2j (1 S{^0 _ l\\ _ ^Lr
2cos2# = £2 (15 82)

r \ r ) 2 \2 2 / 2 °

where

o = —— 1 - -h -re\ 2" 2
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To simplify Eq. (15.82) put

r = re(l + Q) (15.83)

The value of Q at the poles is called the flattening F. Thus

rp = re(\ - F) (15.84a)

F = ̂ — ̂  (15.84b)
re

Next, insert Eq. (15.83) into Eq. (15.82), neglecting 72, 2, Q2, and a>2r^Q/^.
The term &>2r2//z is roughly the ratio of the centrifugal force at the equator to the
gravitational force. It is easy to show that

Q = Fsin20 (15.85a)

where
Q 2 3

Here 3/2/2 = 0.00162 and o>2re
3/(2/z) = 0.00173, so that the flattening F =

1/298.5. This corresponds to re — rp & 22 km.

VI. Geoid as an Oblate Spheroid
We can now show that the Earth, as represented by the geoid, is approximately

an oblate spheroid. This is an ellipsoid of revolution obtained by rotating an ellipse
about its minor axis. To show this, note that by Eqs. (15.83) and (15.85a)

- = 1 -Fsin2<9 (15.86)
re

r2

— = 1 - 2F sin2 0 + 0(F2) (15.87)

v-2 I V2 I 72 72
* + +Z Z

Thus, approximately,

r2 4- v2 4- 72

= l-2F^ (15.88)

or

x2 + y2 (1 + 2F)z2

——o—— ~i~ ———o——

or

+ — — = 1 (15-89)

This is the equation of an ellipsoid of revolution. A section through the z axis is
an ellipse of semi-major axis re and semi-minor axis rp = re(\ -f 2F)~2. If e is

Purchased from American Institute of Aeronautics and Astronautics  

 



THE GRAVITATIONAL POTENTIAL OF A PLANET 173

the eccentricity of such a meridian ellipse, we find

1 - e1 = (1 + 2F)~l = 1 - 2F + O(F2)

For a flattening F = 1/298.5, the eccentricity is found to be about one-twelfth.
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Chapter 16

Elementary Theory of Satellite Orbits with
Use of the Mean Anomaly

I. A Few Numbers

F OR a drag-free close circular equatorial orbit, the period is P = 2n/n, where
n is the mean motion /x1/2r~3/2. Using the WGS84 constants, ̂  = 3.986005 x

105 km3/s2 and the equatorial radius re = 6378.137 km, we find P = 5069 s or
about 84 min. Since the acceleration of gravity is approximately ge = /i/r2, we
can also express P as

This is the period of a Schuler pendulum, of length re , in a gravitational field equal
to that at the Earth's surface; it occurs in the theory of inertial guidance.

The velocity in such an orbit is

Uciose = nre = (M//>)2 = 7.905 km/s

The escape velocity corresponds to zero energy, for which
1 2 M n
2^-^=°

so that

= 11.18km/s

II. The Disturbing Function
In Chapter 10, the time derivations of the Keplerian elements were given in

terms of the derivatives of the disturbing function, with respect to the six Keplerian
elements*?, e, /, £2, &>,and£ = n(t—r). Here, the disturbing function is F\ = — V\,
where V\ is the part of the potential beyond — /z/r in its expansion in spherical
harmonics. Since the oblateness term in J2 is by far the largest term beyond -^/r,
we shall deal only with it in a first look at the elementary solution for a drag-free
satellite orbit.

Thus

- I T j -^2(sin0)+--- (16.1)

175
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leading to

FI = ~V\ = --(-} /2^2(sin 6) (16.2)
r \r )

To obtain the first-order solution, we insert unperturbed values of the Keplerian
elements on the right side of the Lagrange variational equations and integrate each
one with respect to time. Because t — n(t — r), such a procedure is equivalent
to integrating with respect to £, the mean anomaly. With the mean anomaly as
an independent variable, we shall need to express the disturbing function F\ as a
Fourier series in t. Before we do so, however, it is desirable to express F\ as a
function of /, the true anomaly; so we write

P2(sin 0) = f sin2 0 - I (16.3)

sin 6 = sin / sin(&> + /) (16.4)

where 0 is the latitude, I is the inclination, and CD is the argument of perigee. Then

P2(sin 6) = | sin2 / sin2(a> + /) - 5

= | sin2 /[I - cos(2&> + 2/)] - ±

= £ - ! cos2 / - [| - I cos2 /] cos(2^ + 2/) (16.5)

Insertion of Eqs. (16.5) into Eq. (16.2) gives the result

1 3

Here, the Keplerian elements ca and 7 are evident. The elements a, e, and I are
hidden, coming from r and / through the relations

^r = a(l — ecos E) =
1 + e cos /

£ — e sin £ = i
cos E — e a

cos / = —————— = —(cos E — e)
I — e cos £ r

The element £2 does not appear in this FI that arises only from the second
harmonic, because the latter is axial ly symmetric.

Purchased from American Institute of Aeronautics and Astronautics  

 



ELEMENTARY THEORY WITH USE OF THE MEAN ANOMALY 177

It is convenient to rewrite Eq. (16.6) as

[O O ~ l / / 7 \ ^ 1

- - - cos2 ill-} cos(2co + 2f ) [ (16.7)
4 4 J V r / J

We could work entirely with /, the true anomaly, as an independent variable, rather
than with t. We should be able to treat orbits with e approaching 1, but we shall
defer such an approach to Chapter 17.

Using t as an independent variable provides a parallel to the first approach
to planetary theory and lunar theory. It will give practice in obtaining Fourier
expansions of the Keplerian elements, necessary in so much of celestial mechanics.
To obtain the Fourier series in t for F\, we must first build up to it by deriving
Fourier series—or elliptic expansions as they are called—for (a/r)3, (a/r)3 cos /,
and (a/r)3 sin/.

III. Elliptic Expansions1

cos E as a Fourier Series in i
We have

E -e sinE = 1 dl = (1 - e cosE)dE
Here, E is an odd function of €, so that E(-t) = -E(i) and

cosE = cos[-E(t)] = cos[£(-€)]
Thus, cos E is even in t.

Lemma: If any function of E is periodic in E with period 2n, it is also periodic
in I with period 2n.

To prove this, note that 1 — ecosE > 0 for e < 1, so that by di = (1 —
e cos E) dE, we see that i is monotonic in E. Hence, E is monotonic in i. Thus,
Kepler's equation makes either i or E a single-valued function of the other. Also,
let f ( E ) = g(l) be periodic in E with period 2jr. If A£ = 2jr, it follows that
A€ = 27T.Thus

g(t) = f ( E ) = f(E + 2n) = g(t + 2n)
This proves the lemma.

Thus, cos E is not only even in £, but also periodic in t with period 2n. It can
be expanded as a cosine series in I with period 2ir:

cos E = -^ + JT Ak cosH (16.8)

Integrate Eq. (16.8) from 0 to n to obtain

ecos E)dE = — e
Jo 2

— AO = / cos£(l — ecos E)dE = — e— (16.8a)
2 Jo
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so that

A0 = -e

Next, multiply Eq. (16.8) by cosni and integrate fromO to n, with n = 1, 2, 3,
From the orthogonality of the functions cos kt

f>n f>n

n I cos2 nt dt = I
Jo Jo

, . |~cos£ 1*
d(sm nt) = ——— sm nt

I n J0

cos2 nt dt = I cos E cos nt dt
Jo

so that
n cos£

i r
— I sir
n Jo

-f- — / sin nt sin E i

or

I _ i 1- cos n - cos n J

However

nt — E = n(E — e sin E) — E — (n — \)E — ne sin E

nt + E = n(E — e sin E) + E = (n + 1)E — we sin E

Thus

An = — I {cos[(/i — 1)E — ne sin E1] — cos[(/i + 1)E — ne sin E]} dE
nn JQ

The Bessel function Jn(x) is defined by

7tJn(x) = I cos(nO — xsin0)dO
Jo

so that
1

- Jn+i(ne)] (16.9)
n

There is a recurrence relation

so that Eq. (16.9) can also be expressed as
*j i fj i

An = -——-Jn(ne) = — — Jn(ne) (16.10)
n d(ne) n2 de

Use of Eqs. (16.8-16.10) yields for cos E:
00 i

^ " ' ^ ' ' ^ " (16.11)^ , ,
2 -̂f AI
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or
OO ^ i

(16.12)nft2 de«=
We also have

- = 1 -ecvsE = 1 + — -Y^-4 — [/n(nc)]cosn€ (16.13)
a 2 ^— f ft2 de

sin Zs as a Fourier Series in i
From € = E — e sin E, it follows that € is odd in E and E1 and sin E are odd

in 1. Since sin E is periodic in E with period 2n, it follows from the lemma in
Sec. Ill that sin E is periodic in I with period 2n. Thus, sin E can be expanded as
a Fourier sine series in I:

00

sin E = #£ sin kt

Multiply by sin nt dl and integrate from 0 to n . From the orthogonality, it follows
that

7T f" I f 7 1

— Bn= I sinE sinn£d£ = —— I sinEd(cosn£)
2 Jo n Jo

r sin£ r i r*
= —\ —— cosn£ + — /

L n Jo " ^o
1 /**

= — /
« Jo

cos n€ cos £ d£
« Jo

Thus
1 r*

5n = — / [cos(n£ + E) + cos(nl - E)] dE
nn JQ

As before

nt±E = (n±l)E- ne sin E

Thus
1 /^

5n = — / [ cos[(n + l)E - ne sin E] + cos[(n - l)E - ne sin E]\ dE

and
00 i

sinE = / — [Jn+\(ne) + Jn-\(ne)} sinn€ (16.14)
^—f nn=l

However,
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a well-known recursion formula for the Bessel function. Thus

so that

Then

Jn+i(ne)+ Jn-\(ne) = -Jn(ne)e

2 ~ Jn(
e nn=\

(16.15)

(16.16)

air as a Fourier Series in
Because

it follows that

so that

Thus

t = E — e sin E

1 E.— = 1 — e cos E = —
dE a

- - —
7 " d€~

-
r n=\

cos / as a Fourier Series in t
Because

a 1 + e cos /

1 1 - e2 a
cos / = — - -f

e e r
On applying Eq. (16.17), we find

cos/ = — 4- ——— 4- ————— y\Jn(ne)cosnl
e e n=\

or

cos / = — e 2(1-

(16.17)

(16.18)
n=l
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sin/as a Fourier Series in i
From

r l-e2

a 1 + e cos /

d (r\ ed-e1) . Af e(r/a)2 . Af

However,

so that

Thus

Then

r2/ =

±(L\ = -. sin/

sin / =7

Using Eq. (16.13) to evaluate [(d/d€)(r/a)], we find
____ OO /^ i

sin/ =

r ~2 cos/ and r~2 sin/ as a Fourier Series in i
The differential equation

M
' = -^

can be split into

where

Thus

= r cos / v = r sin /

cos/

(16.19)

sin / 3) n 1 d2 y
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where n = ^/n,a~3, the mean motion. Now, in terms of the eccentric anomaly

£ = a(cos E — e) y = b sin E = a\/\ — e2 sin E

Thus
d2£ d2 ^ d2y 1 d2 . ^
d^=ad^C°S£ d^=^Sm£

so that
cos / Id2 sin / b d2

—— = -^dT*cosE — = -^sin£

On inserting Eqs. (16.12) and (16.15) into these equations, we find

cos/ _ _2_v^_^ [7,0*0] cos /tf (16.20)

r i n / _ 2 V I ^ ? ^ _ f / _ (16_21)

Fourier Series for the Disturbing Function FI
In Eq. (16.7) for F\, we need Fourier series for (a/r)3, (a/r)3 cos2/, and

(a/r)3 sin 2/. We already have Fourier series for a number of functions and could
develop one for (a/r)3 by similar methods, but each coefficient would be an infinite
series of Bessel functions. Instead, we proceed as follows.

Write down a/r as a Fourier series in t and cube it. From Eq. (16.17) and
Table 16.1, we find

a/r = 1 + e cos t + e2 cos 2€ + O(e3)

Then
3 9

(a/r)3 = l + -e2 + 3e cos I + -e1 cos U + O(e3) (16.22)

Table 16.1 Table of Bessel Functions1

d_

^
P Jp(pe) —Jp(pe)

0 1 - 6- + 0(e4)

3 -- + 0(es)
16 16
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To find the series for (a/r)3 cos(2&> + 2/), we build it up in the following way. From
the series for («/r)2cos2/ and (<2/r)2sin2/, we find the series for ( a / r ) 2 e i f ,
then square this series to obtain the series for (a/r)4sl2f. Multiply the result by the
series for r/a to obtain (a/r)V2^. Multiply this result by sl2a) to find the series for
(a/r)V(2ft>+2/) and then take the real part (a/r)3 cos(2o> + 2/).

Next, verify that the intermediate results are

-( - J cos/ = - - —
2\rJ \2 16 / 16

-( - ) sin/ = ( - - —
2\r J \2 16

—
16

Square this last line to obtain

-(a/r)el = —e -, ( ^ ^ ^ , _ , ^

Multiply this by

e2 e2

to find

0 f I i"3 <> A '

On multiplying this by sl2(i} and taking the real part, we obtain

(air)
L

+ -e cos(2co + 3£) + — e2 cos(2w + 4€) + O(e3) (16.23)

Next insert Eq. (16.22) for (a/r)3 and Eq. (16.23) into Eq. (16.7) for F\. The result
is

[-T]+ - sin2 /1 - - cos(2o> + t) + | 1 - -̂ - | cos(2w + 2€)

7 17 9 , , x+ -^cos(2o; + 3£) + — 62 cos(2w + 4^)} + O(e*) (16.24)
2 2
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IV. Solution of the Lagrange Variational Equations
In solving the Lagrange variational equations, we begin by placing unperturbed

values of the Keplerian elements on the right sides of the equations. If a subscript
zero denotes an initial value, the unperturbed values of the first five of these
elements will be a0, ^o, A), &>o, and £V The unperturbed value for t will be n§(t —
TO), where

nQ = n*a<r* (16.25)

the initial mean motion. We shall call it simply €, where

£ = fl0f + £0 (16.26)

(16.26a)

Since the symbol i is thus preempted for the unperturbed value of the mean
anomaly, we use M for the perturbed mean anomaly. In integrating these variational
equations with respect to t , we use, from Eq. (16.26)

dt = dl/riQ (16.27)

V. Motion of Perigee, First Approximation
For this purpose we have to integrate the equation derived in Chapter 10:

da) ( l - * 2 ) i a f i cot/ 3Fl __.
— = ——— - —— —— — ——————— r —— (16.28)
dt na2e de na\\ - e

2)^ 97

From Eq. (16.24)

de

3 f 1
+ - sin2 7 { — cos(2<w + t) - 5e cos(2a) -f 2i)

H- - cos(2co + 3€) + lie cos(2<w + 4€) 1 + O(e2) (16.29)

When we enter 3 F\ /de into Eq. (16.28), we have to divide it by e, and this division
increases the error to 0(e). To this order of accuracy, we can disregard the (1 — e2)1/2

in Eq. (16.28) and use

(16.30,nale

Also

-- cos / sin / + - cos / sin 7 cos(2*; -f 2£) + O(e) (16.31)
37 a5 2 2
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We have omitted here terms of order e and e1, to correspond to the accuracy of
Eq. (16.30). Then

cot/ dFi ^J2[3 9 32 - - 2
37 M5 L2 2 2>1- cos / — - cos / cos(2&> + 21) \ + O(e)

(16.32)
Addition of Eqs. (16.30) and (16.32), with use of /x = n2a3, gives

dw nr}h\( 3 15 2 \ / 1 3 2 \
T- = " 2 -7 + -Tcos 7 ) + -7 + 7cos 7
df 02 [\ 4 4 / V 4 4 /

(3 \ 3 3
- cos t + 9 cos 21 I - - cos2 / cos(2o; + 2i) + - sin2 /
e ) 2 4

- 5 cos(2o> + 2f) + —

+ 17 cos(2w + 4^) + O(e) (16.33)

Place quantities on the right side of Eq. (16.33) equal to their unperturbed values
and integrate it with use of Eq. (16.27). The result is

3 15

— + -cos2/0 ) ( — sin£+ -sin2€ ) - - cos2

4 4 /Vo 2 / 4

3 o f 1 5
- sinz IQ{ - — sin(2a>0 + t) - - sin(2^0 + It)4 [ 2eQ 2

•1]31) + — sin(2^0 + 4€) } | + O(e) (16.34)
4

If the perturbation is turned off at time t, the values of the Keplerian elements
at that time are called the osculating elements. Thus, ao, ^o, /o> &>o, ^o, and £Q are
the osculating elements at t = 0. Equation (16.34) gives an approximate value
for the osculating element at time t . The integration constant k^ can be found by
placing co = COQ on the left and placing t = 0 and t — t§ on the right.

Note that in Eq. (16.34) only the term in t has a nonvanishing time average. We
find

& = ̂ 4^(5 cos2 /o- l) (16.35)
4a2

This is the secular rate of change of &>, and the term from which it arises is called
the secular variation; the other terms are short periodic. Note that co vanishes if
cos2 /o = 1/5; this corresponds to IQ = 63.4° or 1 16.6°, the "critical inclinations."

Long periodic terms of order J^ arise only when one carries the calculation
through order J2. They are terms like cos &> or cos 2co. To see what their period is
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like, we have to examine Eq. (16.35) numerically. Clearly, their period becomes
infinite at a critical inclination.

At the inclination 70 = 0, we find

For a close orbit, this becomes

(3n0)10~3

From the numbers in Sec. I, we see that for a close orbit n0 ~ 16 revolutions
per day, so that

co « 3«o/2 ^ (48)10~3 revolutions per day

or about 1/20 revolution per day. This means that, for an equatorial close orbit, the
long periodic terms will have periods of about 20 days. The short periodic terms
have periods of about 90 min.

Some of the preceding short periodic terms contain the eccentricity eG in de-
nominators. This occurrence has already been noted in Chapter 10 and the cure
for it mentioned, viz., use of the so-called "equinoctial elements."

VI. Motion of the Node, First Approximation
The appropriate variational equation is

dQ esc/ dFi
(16.36)

On inserting Eq. (16.31) for 9Fi/97, we find, on replacing the Keplerian elements
on the right by their unperturbed values,

•[-!•n0re 2 Q , CQS /o cos(2a;o + 2i) + O(eQ) (16.37)
2 J

To order eo, we can drop the (1 — efy1/2. Integration then yields

= Jkn + ~ cos IQ+-?- cos 70 sin(2^0 + 2i)\ + O(eQ) (16.38)
al I 2 4n0 J

Again, there is a secular term and a short periodic term. From the secular term,
we find

s70 (16.39)-
la*

For a polar orbit, the first-order secular motion of the node vanishes. For a direct
orbit, cos 70 > 0, and the node moves in a westerly direction. For a retrograde
orbit, cos 70 < 0, and the node moves in an easterly direction. The maximum
secular rate for the node occurs for an equatorial orbit, viz., just at the inclination
for which the node ceases to have a meaning.
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ELEMENTARY THEORY WITH USE OF THE MEAN ANOMALY 187

For a close-equatorial orbit, this becomes
_ 3 73 \

~ I ~no } 10~3 ^ (24)10~3 revolutions per day

or one revolution in about 6 weeks.

VII. The Semi-Major Axis
The Lagrange variational equation is

da 2 dF\
dt na dl

Using dt = di/n, we find
2

or

l (16.41)

From Eq. (16.24), the disturbing function F\ is constant plus short periodic, so
that 8a has no secular part in the first-order approximation.

VIII. The Inclination
The variational equation is

-- (16.42)

Here, 3^/9^ = 0, and from Eq. (16.24), we find

- le sin(2o> + U) - lie2 sin(2to + 41)] + O(e3) (16.43)

Place Eq. (16.43) in Eq. (16.42), use unperturbed quantities in the result, and
integrate with use of dt = dt/n. We find

sin 70 cos 70 —

5 2\ 7
- -eQ ] cos(2&>o + 2£) + —CQ cos(2ct>o + 3£)2 / 2

17 1+ —el cos(2co0 + 4t) \ + O(e3
Q) (16.44)

4 J
There are no secular terms, only a constant plus short periodic terms.
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IX. The Eccentricity
The variational equation is

de l-e2[3Fi 2 _ i 3F\
— = ——«— —— — (1 — e ) 2 ——dt naLe \_ dt dco

[3F* Fljir1'"

(16.45)
(di na~e \_ OL oa> j

Because
r 3Fi F^

+ const
J dt n

we have _ j_

From Eq. (16.43)

/
dF\ 3fjir2J2 o f / ^ A—— d£ = ——\— sin /o — CQ cos(2o>o + £) + I 1 — -^Q I
3a> 4a* [ V 2 /

Z 1Z 2 1 3\
3 ° 4 ° ° J2

3 r ^ [ 5
+ - sin2 /1 - - cos(2w + 1) + 1 - ^— | cos(2ft; + 2£)

1 17
+ -e cos(2(^ H- 3€) + —e2 cos(2&> + 4€) M + 0(^3)

2 2 ' '
Placing Eq. (16.47) in Eq. (16.46), we find

I /^ 0 \ — i J

There is a term 1 4- 3^Q/2 that may be absorbed into k'e, so that we obtain

( 1 - -e2 J- sin2 ^o - cos(2^0 + i) + 1 - -e cos(2w0 -f

-g0 cos

1 - ^ 2 ~ ^ - sin2

4- 3€) + ̂ ^ cos(2o>o + 4£) 1 J + 0(4) (16.49)

The variation of e is entirely short periodic in this first approximation.
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X. Variation of the Mean Motion
Because

I _ 3n = fji^a 2

8n = --^a~ha = -——8a (16.50)
2 2tf0

3 Sal
-- —2 < 3oJ

Now, by Eq.( 16.41)

a=ka + -^Fi (16.51)

where FI is given in Eq. (16.24). In Eq. (16.24), the contribution to a of the term
with 1 + 3^/2 as a factor can be absorbed into the constant ka in Eq. (16.51), so
that we may write

a = ka + J2Q (16.52)

where Q is the product of 2/(n^ao), /xr2/^), and that part of [ ]i in Eq. (16.24)
that does not contain 1 + 3^Q/2. The product of the first two of these factors is
2r2/fl0, so that

2r2 f / 1 3 \ / 9
Q = — e-\ ( - - + -cos2/o \\3eocost + -a0 4 4 2

- sin2 70 ( - j

-^o cos(2^0 + 3€) + — el cos(2a)0 + 41) (16.53)s(2a)0 + 41) J

Denote by go the value of Q for £ = £0. Then
(16.54)

so that
5a=a-a 0 = ^2(2-Go) (16.55)

Insert Eq. (16.55) into Eq. (16.50) to find

o

This is the varied mean motion. Because the time average of Q vanishes, we find,
for the average perturbed mean motion,

i T~ 1
(16.57)

XI. Variation of the Mean Anomaly
With M as the perturbed mean anomaly, the variational equation is

M = n_A^L_i^f!^L (16.58)
na da naLe de
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Then

d, (16.59)
de

To find /Q n dt, use Eqs. (16.53) and (16.56). Before doing so, however, note that
F\ from Eq. (16.24) has an error of order e^, so that F\ /e will have an error of order
e% and the last integral in Eq. (16.59) an error of order CQ. The first two integrals
in Eq. (16.59) should not be carried beyond an error of order CQ.

For evaluating /0 n dt, we can abbreviate <2 from Eq. (16.53) to

= - sin2 /o cos(2a>0 +tfo 4
(16.60)

From Eqs. (16.56) and (16.60)

f ndt = n0\l + J — Gol* - ?^r sin2 /Osin(2^0 + U) + const (16.61)
Jo L 2«o J 8 al

From Eq. (16.24)

na na 4 4

9 C* ft F ^r^ / F
—— / —— df = — e-^ no(-

na JQ 3a 2a% [_

de
- - + - cos2

3 f 1
- sin2 /| — cos(2a> + €) - 5e cos(2a>

+ - cos(2a) + 3€) + 17* cos(2w 4- 4£)} | +

(16.62)

\+O(e0)

(16.63)

(16.64)

- 3 cos2 70)(i
3r272 2 f 1
—=-=- sin /o — sm(2o>o
8«o L^o

(16.65)
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On adding the secular parts of Eqs. (16.61), (16.63), and (16.65), we find

Ms = not\l + -^Y-|l - - sin2 70 4 - sin2 70cos(2co042€) f 4 O(e0) (16.66)

The short periodic part is

2 n . 3 n
1 — 3 cos 7o) — sin i 4 -CQ 2

4 —V sin2 70 — sin(2w0 4 I) 4 8 sin(2a>0 4 2€)
8a0 L^o

_ _7_ _ 1Z • 1
3^o 2 \

The average rate of change of the mean anomaly is then

M = M, = no 1 + —e~r {1 - - sin2 70 4 - sin2 70 cos(2o>0 4 2£0)} 4 O(e0)L 2al } 2 2 \\
(16.68)

This is not the same as the average value of the mean motion h, which is
,.2f 9r2/2 . 2 1

= wo 1 4 - —^- sin 7o cos(2a>o 4 2£o)
L 4 a2 \

There is another form for M, when e is small, that can be obtained easily from
initial conditions. Because

sin #o = sin /o sin(<wo 4- /o)
it follows, when e is small, that

sin #o ^ sin 70 sin(ct>0 4 ^o) 4 O(eQ)
Then

sin2 6>0 = sin2 70 sin2(^0 4 €0) = 5 sin2 70 [1 - cos(2<w0 4 2£0)]
and

1 - 3 sin2 % = 1 - | sin2 70 4 f sin2 70 cos(2^0 4
so that

M = HQ 1 4 —^(1 - 3 sin #0) 4 O(eQ)
L 2al \

Use of Min place of HQ helps to improve the accuracy of first-order calculations.
A second-order solution is barely possible with the use of the preceding methods.
It can be carried far enough to show that it leads to long periodic terms of the first
order in /2 (see Ref. 2).

References
1 Smart, W. M., Celestial Mechanics, Longmans, Green, and Co., London, 1953.
2Kovalevsky, J., Introduction to Celestial Mechanics, Springer-Verlag, New York, 1963,

pp. 88-90.
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Chapter 17

Elementary Theory of Satellite Orbits
with Use of the True Anomaly

I. Introduction

C HAPTER 16 used the mean anomaly as an independent variable in treating
satellite orbits to give some rough idea of the treatment of a planetary orbit.

This method is valid only for small eccentricities. In this chapter, we shall use the
true anomaly / as an independent variable, and this procedure will enable us to
treat the case of eccentricities close to unity.

The Lagrange variational equations are the same, but we handle the disturbing
function F\ differently. Instead of expanding it in a Fourier series, we separate it
into a part Fs that is constant in the first approximation and a part Fp that is short
periodic. Then Fs gives rise to secular variations proportional to the time t and Fp
to short periodic variations.

Again, we consider only the oblateness term in Ji, which is

3 s i n # - l ) (17.1)
r « \ r /

Then
P J /.

Fldt = —
27T JQ

27T

i d£ (17.2)

where P is the period of the unperturbed orbit and t is the mean anomaly. In
calculation of the first-order perturbations, we begin with unperturbed quantities
on the right sides of the variational equations, so that among these quantities we
have the relations

(17.3)

P = 2n/n (17.4)

(17.5)

(17.6)

Equations (17.3) and (17.4) were used to obtain Eq. (17.2) as an integral over
L From Eqs. (17.3) and (17.6) we obtain

(17.7)
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194 J. P. VINTI

or

From Eqs. (17.1), (17.2), and (17.8), we find

47Tfl3

With use of the formulas for the unperturbed motion

a 1 + e cos /
7 ~ 1 -e2

we find

-(3sin2<9 -

(17.8)

(17.9)

sin 0 = sin / sin(&> -f /)

3 sin2 (9 - 1 = | sin2 /[I - cos(2o> + 2/)] - 1 (17.9a)

and

/Jo
e cos /) I - sin2 7 — 1

- - sin2 7 cos(2&> + 2/) d/

Because

cos / cos(2&> -j- 2/) = ^ cos(2&> -f /) •

the integrand Q becomes

Q — \ sin2 7 - 1 + (| sin2 7 - l)e cos / - \ sin2 7 cos(2&> + 2/)

(17.10)

- \e sin2 7 - \e sin2

Of the terms in 2, only (3 sin2 1/2) — 1 contributes to the integral, so that

(17.11)

To find Fp, first insert Eq. (17.9a) into Eq. (17.1) to obtain

F! = - ̂ T\ 2 ( - | - sin2 7 - - - - sin2 7 cos(2o> + 2/)
^ \ r / [ 4 2 4 J

and then subtract Eq. (17.11) from Eq. (17.12). The result is

(;)Ii^M)(-(;)S"H
- - sin2 / cos(2a) + I f ) (17.13)
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ELEMENTARY THEORY WITH USE OF THE TRUE ANOMALY 1 95

Thus

FI = Fs(a, e, /) + Fp(a, e, /, a), t)

II. Derivatives with Respect to e
To calculate short periodic parts of the derivatives of the Keplerian elements, we

shall need Keplerian formulas for d/3e(a/r) and df/de. In these differentiations,
all other Keplerian elements a, /, co, Q, and £ are to be kept fixed. These results
were derived in Chapter 13, and we simply quote them here.

os/ (17.14)
r e \r

III. The Semi-Major Axis a
The Lagrange variational equation is

^ss2LBFL=2LBFL

dt na 3t na 3i
because F} = Fs + Fp and Fv does not depend on t. With the use of unperturbed
quantities on the right side, we have d£ = n dt, so that

/'•&
Jt() 31

<n,7>
or

a - a, = ~-[Fp(t) - Fp(lQ}} (17.18)

where Fp(t) is given by Eq. (17.13). We see that FP(£Q) is given by putting zero
as a subscript on a, r, e, co, t, and / in Fp(l).

It is of some interest to derive this equation in another way. If a is the osculating
semi-major axis, we have as an exact equation

^v2-- = -— (17.19)

where v is the velocity. The perturbed energy is

W = -v2 -- - FI= const (17.20)
2 r

From Eqs. (17.19) and (17.20)

£- = -W -F}(1) (17.21)
2a
a
>^ TI7 77 / ft \ C\7 r)r)\
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196 J. RVINTI

On taking the difference of Eqs. (17.21) and (17.22), we find

or

Now, the term involving F\(to) — F\(t) has a factor /2- If we call it J^s, we
have

so that

This becomes

or

a — t

the same as Eq. (17.18).

IV. The Eccentricity e
The Lagrange variational equation contains derivatives of the disturbing function

F\ with respect to t and co. Since Fs does not depend on these Keplerian elements,
we may replace F\ by Fp, so that

(17.25)

Then
1 -*? / 1 n -P^\~\ /•* dFn \

-^d€) (17.26)

on using d€ = HQ dt.
From Eq. (17.13)

(17.27)

since / depends only on € and e, and not on co. To calculate the integral of this
with respect to €, we use Eq. (17.8) and insert the usual zeros as subscripts. We
obtain

/ (17.28)
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ELEMENTARY THEORY WITH USE OF THE TRUE ANOMALY 197

However

so that

op_ _ 1 + gp cos /
~ ~ l~* 2

because

Thus

sin a sin ft — \ sin(a + ft) -f ^ sin(a —

sin2 70(1 - el) sin(2«0

sin(2a)0

sin^/o(l-O ' -

/) + ~6

On inserting Eq. (17.29) into Eq. (17.26), we find

e0 cos(2<w0

(17.29)

(17.30)

V. The Inclination /
Since the disturbing function does not contain £2, the Lagrange variational equa-

tion for / is
d/ 1 rcot/ (17.31)

With use of df = d£/n0, we find

7- /o =
«o«oV(l-4)

cot/o / TT^ (17.32)

Purchased from American Institute of Aeronautics and Astronautics  

 



198 J. RVINTI

Next, insert Eq. (17.29) for the integral over £, placing /z — n^al and pQ =
a0(l - £j)), into Eq. (17.32). The result is

/ - /o = 3r^Sm2/Q I cos(2^0 + 2/) + e0 cos(2o;o + /) + § cos(2^0 + 3/) 1'
8/>o L 3 J/0

(17.33)

Note that, if the unperturbed orbit is equatorial or polar, the factor sin 2/0 vanishes,
so that the inclination of such an orbit does not get changed by the J2 perturbation.

VI. The Motion of the Node
Here

d& esc/ 3F\ (17.34)

Fl = F s ( a 9 e 9 I ) + F p ( a 9 e 9 I 9 a > 9 t )

There are both secular and short periodic variations.

The Secular Variation f t s

By Eq. (17.11)

2 ,'-
Thus

—— = _3^* —— ~ ' sin/cos/ (17.35)
8 / 2a3

Withuseof/z = n2a3 and p = a(\ -e2), we find from Eqs. (17.34) and (17.35),
on using zero subscripts,

;os/0 (17.36)
^PQ

Thus
in~»-2 /„

•(cos/0)f (17.37)

Again, we find the same results for the secular motion of the node as in Chapter
16: no motion for polar orbits, westward motion for direct orbits, eastward for
retrograde orbits, and a minimum rate for equatorial orbits. For a close equato-
rial orbit, the rate is 3tt0*/2/2, so that with J2 « 10~3 and n0 « 16 revolutions
per day, the rate is (24)10~3 revolutions per day, leading to a period of about six
weeks.
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ELEMENTARY THEORY WITH USE OF THE TRUE ANOMALY 199

The Short Periodic Motion tip

From Eq. (17.34)

*n,= CSC/° . . /"^d* d7.38)

From Eq. (17.13)

(17.39)

Then

/* ( — J [1 -x cos 70 — [1 - cos(2<^o + 2/)] d€ (17.40)

With use of

we find

Stop - -^-^ cos /o (€ - 4) - / (1 + *o cos /)[! - cos(2ct>0 + 2/)] d/ I

(17.41)

3r /2 3r «/2 f 1Sfy, = g
 2 cos /o(€ - /) + 2 cos 70 -eo sin / + - sin(2o>0 + 2/)

-i y
+ 2 s m o;o+ +-sm ^0 + J^

The term involving / — t is short periodic, since it can be expressed as a sine
Fourier series in t. The agreement of / and € at all multiples of 2n implies that
IQ = /o.1 Both 8QS and 8£2p vanish if the orbit is polar.

VII. The Motion of Perigee
The Lagrange variational equation is

da) = (l-ga)UF1 cot/ 3Fi
dr na2e 9e n a 2 j _ e 2 j 97
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By Eq. (17.34)

J. P. VINTI

cot/
na\\ -

By Eqs. (17.43) and (17.44)

= —£7 cos I

n a^e JQ

(17.44)

(17.45)

Here

F, = F, + Fp

£i(.-f->/)

- sin2 / cos(2co

Then

so that

3cos = —cos /o<$£2.y -f

Insert Eq. (17.37) into Eq. (17.47). The result is

3^2 2Sco., = —^-^-(5 cos /o —

(17.13)

(17.46)

(17.47)

(17.48)

agreeing with the value found in Chapter 16.
To calculate 8(op, we need d F p / d e . With use of Eqs. (17.13-17.15), we find

dFn ar2.
3e 2a3

( 3 \ 9 _
1 - - sin2 / 1 cos / + - sin2 / ( - ) cos / cos(2<w -f 2/)

3

•(7)'-
r l-e2 (17.49)
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From Eqs. (17.45) and (17.49)

r2J7(l-e
2Y ^g v 0/ fl

L J 3

ff r2 „ _i
x / 2 —(l-e 2) ~2df (17.50)

Jfo a

where Q = sum of terms in cos /, cos / cos(2&> + 2/), sin(2&> + 2/) inside the
bracket in Eq. (17.49). Then

9 - .2 fM2

v>vH- - sin2 / - cos / cos(2<w + 2/)

- 3 sin2 7 f - ] sin(2o; + 2/)( - + —^ | sin /Id/ (17.51)
\rj \r l-e2J J

/

f r2 /"-^ f /
Q—d/ = ( l -£?o) / 3(1+^ cos/)2 1

,o fl ^/o L V
- e0 cos /) I 1 — - sin 7 I cos /

+ - sin2 7(1 + e cos /)2 cos / cos(2o> + 2/)

- 3 sin2 7(1 + e cos /) sin(2<*> + 2/)(2 + e cos /) sin / d/ (17.52)

(17.53)
'/o

where P is the integral in Eq. (17.52). By Eqs. (17.50) and (17.53)

cos 70^ = -^rV ( ! - sin /0 (£ ~ £o) + " P (17'54)

To evaluate P, we need expressions as trigonometric polynomials of (1 +
e cos /)2 cos /, (1 + e cos /)2 cos / cos(2&> + 2/), and (1 + e cos /)(2 + e cos /)
x sin(2&> + 2/) sin /. From

cos(a ± ^) = cos of cos ft q= sin a sinjS
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we obtain

cos a cos ft = | cos(a — ft) + | cos(a + /$)

sin a sin ft = ^ cos(a — /?) — ̂  cos(o? -f- ft)
2 2

(1 + e cos /)2 = 1 + — + 2e cos / + — cos 2f

Then

( 3e2\ e2

1 -h —— 1 cos / -f e cos 2/ + — cos 3/

e e2

(1 + e cos /)2 cos / cos(2<w + 2f) = - cos 2o> + — cos(2w - 2f)
2 8

I 1̂  Cos 2a>2 8 ycos

— + —— I cos(2o; -

e2

(1 + e cos /)(2 + e cos /) sin(2a; + 2/) sin / = — cos 2co + — cos(2<w - /)

__„ ,_„ , .,, ;- — cos(2o;-

If N is the integrand of P, we then obtain
.2

= 3( 1 - -sin2/ ) U + ( 1 + —— )cos/ + ecos2/ + — cos3/

3 re2 / j y£2\
+ - sin2 / I — cos(2o) - /) + ( -- + —— J cos(2o> + /)

3e cos(2a> + 2/) H- ( - 4- —
\2 8

(17.55)
o J

Using

N d f (17.56)
Jfo
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and inserting the result into Eq. (17.54), we find

cos /0*Q = - l - sin2 I0t - /) + 1 - sin2

x
8 \ 2e0

- sin(2«0 + If) + I — + 4j? ) sin(2w° + 3/) + 7 si
2 \6eo 24 / 4

(17.57)
J J/o

From Eq. (17.42)

cos /o<$£2n = —e-̂ ~ cos2 /o(€ — /) + —e—z- cos2 /o —eo sin /
2/?o 2#) L

1 V
-f - sin(2cDo + 2/) -f — sin(2a>o + /) + ~r sin(2&>o + 3/) (17.58)2 2 6 Jy{)

Subtract Eq. (17.58) from Eq. (17.57). The result is

So)p = ̂ ^(1 - 5 cos2 IQ)(l - /)

+ 3r^

+ ( 1 - i sin2 IQ) 1 1 sin 2/ + ̂  sin 3/ 1 - ̂  sin2 70 sin(2w0 - /)\ 2 /12 12 J 16

sin2 /o -{ f - - - ~ o -
I \ 48 12^0 / 6

~l^
(17.59)

J/o

The term involving / — £ is short periodic, since it can be expressed as a sine
Fourier series in £.! The agreement of / and t at all multiples of 2n (IQ = /o) also
shows this, since it leads to/ = i.
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VIII. Variation of the Mean Anomaly
Call the perturbed mean anomaly M. By Chapter 10,

2 dFi I — e2 dFi
M = n-—-±-——-——-1 (17.60)

na da naLe de
By Eq. (17.45)

——-———— =a) + ti cos/ (17.61)
naLe de

By Eq. (17.12)

F! = -I I/ (17.62)
a3

where U does not depend on a. Thus

—— = --F! (17.63)
da a

By Eqs. (17.60), (17.61), and (17.63)

M = n + —-F\ — (1 — e2)i(6) + ^cos /) (17.64)
na2

By Eq. (17.18)

a = OQ + -y—[FiCO - FI(€O)] (17.65)

or
/ 2 \

a = a^l 1 + 9 9[Fi(£) — FI(£Q)] I (17.66)
V ^oflo /

where the term F\(t) — F\(£Q) is of order /2- Thus

or

•Fi(€0)]j (17.68)

By Eqs. (17.64) and (17.68), it follows that
3 3 i

M = n0 + ——oFi(^0)+ ——«Fi(€)- (l -eo)'(^ + ̂ cos/) (17.69)

Put

n' = n0 + ——^ FI(£O) (17.70)

a constant. Then
3 i

M =n' + ——rFi(£)- (1 -^^((u + filcos/) (17.71)
n0«o
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so that

8M = n't + —^ / Fl df - (1 - el) ~2 (Sco + 8tt cos /) (17.72)
WO«Q Jo

On integrating Eq. (17.72) for FI, we find

3
n$al J0

[3 1 3 1
- sin2 / - - - - sin2 / cos(2<w0 + 2/) dt (17.73)
4 2 4 J

The coefficient is 3nQr*J2/a%. placing & = d^/flo, d€ = (1 - ^2)
<*o/r = (1 -e^)"1 (l + ^o cos/), we find

fo
 2

- sin2 70 cos(2o)0 + 2/) d/ (17.74)

3
~ Io

3
2 sin2 /o { sii 'II

(17.75)

Then

SM = n't + (75) - (1 - e1)^ (Sco + Stt cos 7) (17.76)

From Eq. (17.47) and Eq. (17.57), we have

8S2 cos /) = — ̂ (1 - e2)^ \ ( 1 - - sin2 70 )
^Po L \ 2 /

• 7 I 0 j ••• ' "u i • ^- sm /o< —— sm(2o>o — /) + I —— H~ ~TT ) sm(2cwo •2 I 8 \ 2e0

3 . /_7_ 11
2 ° \6^0 2^
o

- sin(2a;o + 4/) + — sin(2o)0 + 5/)} I (17.77)
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206 J. P. VINTI

From Eqs. (17.74), (17.75), and (17.77), we obtain

M-tQ = n't + 2^(1 - *2)* \(\ - \ si
8p0 L\ 2

+ (3 sin2 /o - 2) sin 2f - — (l - - sin2 70 J sin 3/

— + ^r ) sio 2 /

sn 2
 0 eQ - - sn

- 3 si
3<?0

The terms in / and sin(2a>o + 2/) canceled out.
The secular part n't is of some interest. From Eq. (17.70)

n' = n<>\l
L

(17.78)
/o

(17.79)

From Eq. (17.1)
2

Fi(€0) = -^-f/2(3sin2<90 - 1) (17.80)
2r^

Thus

(17.81)

For the case of vanishing eccentricity, this becomes

l + (1 - 3sin2^0) (17.82)

in agreement with the value for M found in Chapter 16 for the case of small
eccentricity.

Reference
1 Smart, W. M., Celestial Mechanics, Longmans, Green, and Co., London, 1953, p. 38.
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Chapter 18

The Effects of Drag on Satellite Orbits

I. Introduction
\\T E SHALL consider the drag on a satellite orbiting around a spherical Earth.
V V The interaction of the oblateness and the drag is too difficult a problem for

an elementary treatment. We leave open the question as to what accuracy can be
obtained when the two effects are superposed: that of oblateness without drag and
that of drag without oblateness.

Because the drag is not derivable from a potential, we need to use the Gaussian
equations for the Keplerian elements. For convenience, we list them here.

a - ——— [ensni/ -f Mi -h ecus/ AlWi -e2

A/T^T2
<? - ———— [# sin / + 7 (cos E + cos /)]

na
rW cos(&> + f)

/ = ——— -

^ rW esc /sin(&> + /)
na2V 1 — e2

vr^?r / r\ i
co- -Qcos/ - ———— Rcosf- 7 1 + - sin/

^ L V P7 J

^ ^ _^ _ —— [^/?sin/ + T(1 +^?rns/)]
2a a\l\ - e1

a ^^ F* ———— 9/ • , A JN

vio- i ;

(18.2)

(18.3)

(18.4)

(18.5)

(18.6)

/1 O '1\(18.7)na
If va is the velocity of the satellite relative to the atmosphere, the usual expression

for the force of drag is

FD = -{ACDpvava (18.8)

where

Va = Vala (18-9)

Ia being a unit vector along va. Here A is the projected area of the satellite per-
pendicular to the flow, p is the atmospheric density, and CD is a dimensionless

207
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208 J. P. VINTI

constant of order of magnitude 2.2. For an accurate calculation, one should know
A as a function of time or of r , the position vector of the satellite's center of mass.
If the satellite is spherical, A is known and A can be estimated if the satellite is
oriented by a gravity -gradient method. If a nonspherical satellite is tumbling, A
could be known accurately only by simultaneous solution of the rotational and
orbital problems.

For a mean value of A, consider a convex satellite. "Convex" means that a
straight line intersects the satellite in only two points. If such a convex satellite
is tumbling at random, its mean projected area is one-fourth of the total surface
area.1 The factor 1/4 can be remembered by thinking of a sphere of radius by for
which the total and projected areas are, respectively, 4nb2 and Ttb2.

If we assume that the atmosphere rotates rigidly with the Earth, then
va=f-w (18.10)

where r is the position vector of the center of mass and where the rotational velocity
w is given by

w=coekxr (18.11)

Here A: is a unit vector along the Earth's polar axis and

o)e = 27T/86,164.2rad/s (18.12)

the sidereal speed of rotation of the Earth.
Now, R and T lie in the plane of the orbit, and W is perpendicular to it. If we

neglect the rotation of the atmosphere, va, and thus FD, would lie in the plane of
the orbit by Eqs. (18.8) and (18.10). Then W would vanish and so would / and &
by Eqs. (18.3) and (18.4). Thus

7 = ^2 = 0 (18.13)

if we neglect the rotation of the atmosphere. In such a case

va=f=v (18.14)

vava = vv = v2t (18.14a)

where t is a unit vector along the tangent to the orbit in the direction of motion.
Insertion of Eq. (18.14a) into Eq. (18.8) yields

(18.15)
m 2

(18.15a)
m

If we let 0 be the angle from r to t , then

(18.16)

(18.17)

where
(18.17a)

and where R and T are the components of the drag per unit mass along the radial
and transverse directions.
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THE EFFECTS OF DRAG ON SATELLITE ORBITS 209

II. Components of the Drag in Terms of the Anomalies E and /
To find cos 0 and sin 0, we first do some spade work. We have

r - r =rvcos(t> (18.18)

(18.19)

Here, v = \ f \ , JJL is the product of G and the mass of the Earth, p is the osculating
semi-latus rectum, and lw is a unit vector perpendicular to the plane of the orbit
along the angular momentum vector. The angular momentum per unit mass is

As in Chapter 2, let A = IA&, B = Isb, where a and b are, respectively, the
osculating semi-major axis and semi-minor axis; I A a unit vector pointing from
the Earth's center toward perigee; and IB a unit vector parallel to the semi-minor
axis, so that I A x IB = l w . I f e is the osculating eccentricity and E the eccentric
anomaly, then

r = A(cosE-e) + BsinE (18.20)

r = (na/r)(-AsinE + BcosE) (18.21)

as before. Then
nu

rv cos 0 = r • r = — [—A sin E + B cos E] • [A(cos E — e) + B sin E]r
na o o o= — [-a2 sin E(cos E -e) + az(l - e2) sin E cos E]
r

= na2esinE (18.22)

To find rv, use the equation for the osculating a,

!.»-£-£

r2t>2 = 2/xr — — r2 = 2/xa(l — e cos £") — /z<2(l — e cos

Then

r V = /xa(l - e cos £)(1 + e cos E)

r2v2 = n2a\l-e2cos2E)

so that

ru = na2(l - e2 cos2 E)2 (18.24)

Then from Eqs. (18.22) and (18.24)

cos0 = —— ̂ ^ —— r (18.25)
(l-e2cos2£)2

From Eq. (18.19)

rvsin(/) = \r xr\ = (up)* = na2(l - e2)^ (18.26)
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210 J. P. VINTI

From Eqs. (18.26) and (18.24)

21 — ezcos2 E

Equations (18.25) and (18.27) check sin2 0 + cos2 0 = 1.
To obtain cos0 and sin0 in terms of the true anomaly /, use the anomaly

connections

e + cosf Vl - e2 sin /
cos E = —————— sin E = ————————

1 -f e cos / 1+ e cos /

It can be shown that

cos 0 = ———— -—- ——— r (18.28)

Sin0 = —— , (18.29)

From Eqs. (18.16), (18.17), and (18.25-18.29), it follows that

R = foe sin E = ___ fDesinf
(1 - e1 cos2 £)2 (1 + e2 + 2e cos /)2

^2) /D(l+gcos/)
7 =

(1 - e2 cos2 £)2 (1 + e2 + 2e cos /)2

III. Equations for a and e in Terms of the True Anomaly
From Eq. (18.15)

(18.15)

On inserting Eq. (18.15) and the / forms of Eqs. (18.30) and (18.31) into Eq.
(18.1), we find

a = — -
kpv2 sin2/ + (l + e cos/)2

(18.32)

or

a = —^—(1 - e2)~2(1 + e2 + 2e cos /)* (18.33)
n

Similarly

e = ———(1 -^2)Mcos0sin/ + sin0(cos£ + cos/)] (18.34)
2na
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THE EFFECTS OF DRAG ON SATELLITE ORBITS 21 1

Inserting cos</> and sin0 from Eqs. (18.28) and (18.29) and using cos E = (e +
cos /)/(! + e cos /), we find

e = -^_(1 - e2)~2(e + cos /)(! + e2 + 2e cos /)~5 (18.35)

We can also show that

nae
- e

2)~2 sin /(! 4- e2 4- 2e cos /)"2 (18.36)

(18.37,
IV. Secular Behavior of a, e, a;, and £

If we use a spherical model for the atmosphere, p is a function only of r and,
thus, only of cos /. Also v2 depends only on r and, thus, only on cos /. It follows
from the preceding equations that a and e are functions of cos / only and that co
and t — n are products of sin / and a function of cos /.

Let ek be any of the Keplerian elements. If P is the period of the unperturbed
motion,

1 [p

*k = — / ek dt

On the right side of Eqs. (18.33-18.37), we may put

n no,2-
Then

n (18.38)= -^- f2^r J_^

where ^(/) = ek(r2/na2)(\ - e2)'1'2.
If e^ is a or ^, V(/) is an even function of /; if it is co or t — n, it is an odd

function. It follows from Eq. (18.38) that
^ = 0 l-n=0 (18.39)

Thus, 5) and i — n have no secular parts. If ek is a or e
1 f71

ek = ~
x Jo

(18.40)

By Eq. (18.33), a always diminishes. By Eq. (18.35), e diminishes when 1 +
e cos / > 0. If the orbit has initially a large eccentricity, p is appreciable only
when the orbiter is close to perigee. As it moves toward apogee, p diminishes, so
that the important changes in e occur when cos / ~ 1 . On the average, e < 0.
Qualitatively, this is easy to see. As the satellite comes in from the distant apogee,
it loses a good deal of energy going through the denser atmosphere near perigee,
so that it then lacks the energy to reach as distant an apogee the next time. The
orbit thus becomes more nearly circular.
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212 J. RVINTI

V. Equations for a and e in Terms of the Eccentric Anomaly
To find a in terms of E, first put cos E = (e + cos /)/(! -f e cos /) in Eq.

(18.33). Then

e1 + 2e cos /) = (1 -
1 — e cos E

From Eq. (18.24) and r = a(l — e cos E1), we next find

v = na(l+eC°SE}* (18.42)
\ 1 — e cos E )

Then

(1 + e2 + 2e cos /)* = —(1 - e2)* (18.43)

From Eqs. (18.33) and (18.43)

a = -^- (18.44)
n2a

To find e, use Eqs. (18.35) and (18.43)

e + e cos / = e + C°S ̂  ~ * = (1 - e2)- cos E (18.45)
1 — e cos E1 r

Then
kpva 7^ = ~———(1 — e)cosE (18.46)

r
or

^ (18.47)
r (l-ecos£)5

We can also show that

^ = -^(l-^-J^l- (18.48)
e I — e cos £

€ = n + kpve sin E + jfcpu (1 ~ g) Sm£ (18.49)
i£)

VI. An Equation for E
From Kepler's equation

E-esinE = l (18.50)

we obtain

(1 - e cos E)E - £ sin £ ='t (18.51)
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THE EFFECTS OF DRAG ON SATELLITE ORBITS 213

Now, insert Eqs. (18.46) and (18.49) into Eq. (18.51), and we obtain

r kpva
£j V1

a r

This becomes

- e2) cos EsinE + n + kpve sin E

L.J — 11 J /vylx I/ olll LLi \ t, ^^
a \_ e

, kpv .
= n + —— sin Ee

+ kpi

n\

(\ _ s> 1/7 C1T1 r'^1 C yt* olll 1_/

er
(18.52)

(18.53)

(18.54)

Thus

£ = sin

r \ ne )

VII. Equations for the Integration
If we treat the atmosphere as spherical, it is customary to represent the density

by the expression

p = poexp[-(r-r0)A] (18.56)

where po is the density at radius TO, which we take to be the radius at perigee. Here,
X is called the scale height. If we put r = a(l - e cos E), with r = r0 at perigee,
we obtain

r - r0 = ae(l - cos E) (18.57)

Then

(18.58)
L A J

where

c = ae/X (18.59)

The simplicity of this function has led various authors to use E as an independent
variable in doing the integration. Then

da a de e
— = — — = — (18.60)
d£ E d£ E J

If there were no drag, we should have

E = na/r (18.61)

by Eq. (18.55). Jupp2 has pointed out that E = na/r may be a poor approximation
for nearly circular orbits, where kpv/(ne) may approach unity. King-Hele3 has
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214 J. RVINTI

suggested that, for actual cases that arise, the resulting error is likely to be serious
only during the final day of the satellite's lifetime.

Having stated this warning, we now proceed with the usual treatment, using
E = na/r. From Eqs. (18.44), (18.60), and (18.61), we obtain

da kpv3 r kp(rv)3
 /10^(18.62)

With r = a(\ — e cos E) and rv = na2(l — e2 cos2 E)z , this becomes

da kpa2(\
At,- r~ 08-63)Q^ (1 — ecos E)^

Similarly, from Eqs. (18.47), (18.60), and (18.61), we obtain

(18.64)

In finding Aa and Ae for one revolution, it is customary to treat k, a, and e as
constant on the right sides of Eqs. (18.63) and (18.64). The results are

o

27T

Ae = -ka(l - e2) f p( * + gcosE V COs£ dE
Jo V 1 - € cos E )

(18.66)

For CD and €, the corresponding results are

Aw = 0 (18.67)

= ndt (18.68)IJo
The integrands in Eqs. (18.65) and (18.66) are even functions of E of period

2;r.Thus

/•*/>(!+I
Jo (1 —

= -2ka2l ^ ''ecos^i dE (18.69)
(1 — ecos.

r* / I 4- ecos E\*
&e =-2ka(l - e2) p{—————— I cos E dE (18.70)

Jo \ 1 - e cos E )
Before integrating these expressions, it is well to discuss the scale height X in

p = Po exp[—(r — ro) A]. It actually varies with altitude and may be defined by

A, = - p / — (18.71)
/ dr

At this point, we refer the reader to Refs. 4 and 5.
The exosphere is said to begin at the altitude at which the scale height equals

the mean free path. Above this altitude, the temperature is considered to have a
constant value, the exospheric temperature 7ex.
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THE EFFECTS OF DRAG ON SATELLITE ORBITS 215

Values of the density p may be found in the U.S. Standard Atmosphere.6 The
exospheric temperature is the key to entering the tables. It depends on altitude, time
of day, the phase of sunspot activity, and the season of the year. It also depends on
unusual solar activity. From reports on solar activity (i.e., of the 10.7 cm solar flux)
published regularly, there is a procedure given in the U.S. Standard Atmosphere
for correcting for such activity. Obviously, this is no good for predictions but can
be useful for analyzing orbital data already obtained.

After integrating Eqs. (18.63) and (18.64) analytically, we shall have

§ = ̂  = *<«,*> (18.72)

de A£
— = — = ̂ 2(a,e) (18.73)
ah 2n

One can then integrate Eqs. (18.72) and (18.73) numerically, with large steps, to
find a(E) and e(E).

To do the analytical integrations for one revolution, we return to Eqs. (18.69)
and (18.70). With

p = A)exp[-(r-ro)/A] (18.56)

we have

p(r) = poexp ——(1-cosE) =p0£"Vcos^ (18.58)
[ A J

c = ae/X (18.59)

Insert Eq. (18.58) into Eqs. (18.69) and (18.70). The results are

r* eccos£( 1 +/"Jo
d£ (18.74)

-ecos£)2

&e = -2ka(l -e2)pQ8~c f ecco*E(l± COs£d£ (18.75)
Jo \l -ecosE/

We shall evaluate only Aa to find the rate of change of the period, viz., P, where
P = 2n/n. From

n2a3 =

we have

47T2

-p2 = ^
(18.76)

.2 4^2 3P2 = —— a3

2P 3a . 3a
— = — P = — P
P a 2 a
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216 J. P. VINTI

With a — Aa/P, this becomes

P = -—— (18.77)

From Eqs. (18.74) and (18.77)

P = —3kapQs~c I —————————Y——d£ (18.78)

Now

F-jr^gr)2 (1 — ezCOSz E)2

= (l+2e cos E + e2 cos2 £)(! - e2 cos2 E)~^

= (l+2e cos £ + • • • ) (18.80)

Thus

f scco

^o
(18.81)

This integral can be evaluated in terms of Bessel functions of imaginary argument,
which are tabulated. The evaluation proceeds as follows.

From
1 fn

jn(x) = - cos(«0-;csin0)d</> (18.82)
^ Jo

and

In(x) = i~lJn(ix) (18.83)

we obtain

/o(c)
i r

—— .__ I POC^_ f/° C1T1•—• f L/VJo^ i C olll

^ Jo

/0(c)=-L( r^si^d0+ r
27T V JO Jo

Putting (/) = n/2 — E gives
/»7T / »— 7T/2 /«7r/2

Jo Jjr/2 J-7T/2

Putting cf> = E — n/2 gives
rn r3n/2

I £-cs in<^d0= / ecco*
Jo Jn/2

d£
^r/2

Thus
i r3n/2 } Cn \ fn

70(c)=— / 6:ccos£dE = — / scco*EdE = - ecco*EdE (18.84)
27T J_^/2 27T J_^ 7T J0
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THE EFFECTS OF DRAG ON SATELLITE ORBITS 217

Then
1 f71

n Jo
Lemma:

7^(c) = /i(c) (18.86)

Proof: Use the recurrence relations

= 2J'n(x) (18.87)

— Jn(x) (18.88)x
These give

400 =-/»(*)--/„+!(*) (18.89)
JC

However,

— (x~nJn) = -nx-n-lJn+x~nJ'n (18.90)

On inserting Eq. (18.89) into Eq. (18.90), we find

— (x-nJn) = -jr"JB+i (18.91)

or

— [y~nJnW] = -y~nJn+\(x) (18.92)

Now in Eq. (18.92), put y = f jc . Then

T — [(ix)~nMix)] = ~ i~nx~nJn+i(ix) (18.93)

Here

Jn(ix) = inln(x) (18.94)

from Eq. (18.83). Insert Eq. (18.94) into (18.93) to obtain

1 d
I Q.X

or

— — \ x in\x)\ = x /n_j-i(z) (18.95)
djc

If n = 0 and x = c, this becomes

7^(c) = /1(c) (18.86)

which is the lemma to be proved.
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Now insert Eqs. (18.84-18.86) into Eq. (18.81). The result is

P = -37tkap0s-c[l0(c) + 2eh(c) + O(e2)] (18.96)

where c = ae/X. This is the result from Eq. (18.81).
Observations of P for two or more satellites at different perigee heights, or of

one satellite at different dates, will suffice to determine p0 and X. The heights must
not be too different, or p0 and A will be too different at the various heights.7
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Chapter 19

The Brouwer-von Zeipel Method I

I. Introduction

I N THE Brouwer-von Zeipel method for calculating orbits of artificial satel-
lites, one uses the Delaunay form of the canonical equations and eliminates

the lower case variables from the Hamiltonian by means of successive canonical
transformations. (See Refs. 1 and 2.) From Chapter 9 the Delaunay variables are

L = (/z0)2 t = n(t — r) = mean anomaly

G = [na(l -e2)]-i =L(\ - e2)^ g = a) (19.1)

H = [fjia(l — e1)}^ cos I = G cos / h = £2

with the Hamiltonian
F = (/z2/2L2) + F! (19.2)

where FI = —V\ and V] is the Earth's potential beyond —fJi/r. The Delaunay
canonical equations are

dL Or o F] d£ Or LL u FI d FI

df ~ a£ ~ a£ dt ~ dL ~ L3 dL ~n dL
dG dF d F\ dg dF d F\
dt dg dg dt dG dG

d# _ aF _ dJF\_ d / z _ _ 3 F _ 3Fi
~dt~ ~ ~dh ~ ~dh ~dt ~ ~^H ~ ~~o~H

Here n is the mean motion.
To begin, take V\ through the second zonal harmonic only:

) (19.4)

as in Eq. (16.1). Here 0 is the latitude. In this first approach with zonal harmonics
only, h = £1 does not appear in FI , so that H = const. From Eq. (16.7)

-jn^'JW+Lj-J^'JW^-^'
(19.5)

where a depends only on L, cos / = H/G, and / depends on I and e or ultimately
on €, L, and G. Altogether, F is a function of L, G, H, I, and g, but not of h = £2.

219
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220 J. P. VINTI

II. Splitting FI into Two Parts
We may average FI over the osculating orbit to find a quantity F\ independent

of t and of short periodic parts. The remainder, however,
Fu = Fl-Fl (19.6)

will be short periodic. Here
1 f2n

F! = — / Fj dt (19.7)
2;r Jo

From Eqs. (17.2-17.11), we have

FI = ^e —3
€ 2 (-- + -cos2/) (19.8)

or

fl = ^e 2 — (— + - — J (19.9)

Rewriting Eq. (19.5) as

la* [

(19.10)
and subtracting Eq. (19.9) from Eq. (19.10), we obtain

+ r I--? ( - ) cos(2g + 2/) (19.11)
L _1 \ / I

Here L, G, H are the g's, and t, g, h are the p's. Remember that a = L2//x, that
t enters through r and /, and that h is missing.

The Delaunay equations become

9F,

(19.12)

dL 3Fi
~dt ~ ~U
dG 8Fi
~dt~^~dg

H = const

dt
d7
dg
~dt
dh
~dt 8H

III. Elimination of i
To solve Eq. (19.12), we make a canonical transformation to new, primed vari-

ables Lr, Gr, //x, €', g;, h' by means of a generating function of the form S(p, Q).
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THE BROUWER-VON ZEIPEL METHOD I 221

Here the p's are £, g, h\ the g's are L, G, //; the P's are t1 ', g', /*'; and the Q's are
L', G', Hf. For short, denote L, G, // by Lk (k = 1, 2, 3) and £, g, A by 4.

Then

(I9.IJ)
op* *

become

Lt=^|ii. {;=M (B.M)
If F* is the new Hamiltonian, the new variables will satisfy

dZ4 = 3F* d^ = 6F*
At a^ df 3L^ ( ' ^

The primed variables will not differ greatly from the unprimed variables, because
it is only the /2 perturbation that makes them change. Thus, S must start off with
the identity transformation function (see Chapter 5, Sec. II, case d, S = ^kQkPk)

So = VkL'klk = L't + G'g + H'h (19.16)

Inserted into Eqs. (19.14), this would give Lk = L'k and tk = i'k. We then write

S = S0 + SKI/, G7, //', €, g, -) + S2(L;, G r, //;, £, g, -) (19.17)

Here, it is understood that S\ contains a factor /2 and ^2 a factor J%. The variable
/z = £2 is not indicated in S\ and £2 because it is not present in the Hamiltonian.
Insertion of Eq. (19.17) into Eqs. (19.14) gives

G = G' + ̂ - + ̂  (19.18)

U Uf
n =• n.

€/ = € + ̂  + ?l

3Si_ d$2_

The old Hamiltonian
/y 2

-F i=f 0 (L) + Fi (19.20)

The new Hamiltonian F* will be equal to F, because the generating function 5 is
independent of t, but will have a different functional form in the new variables:

F* = F0*(Z4) + F,*(Li, 4) + F*(Z4,4) (19.21)
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Here, it is understood that F* is of order J2, and F£ is of order J%. The old
Hamiltonian is

F = F(L,G, / / ,£,£,-) (19.22)

The new Hamiltonian will be expressible as

F* = F*(L', G', //', -,#', -) (19.23)

if we choose an S so as to eliminate t' . Then

F(L, G, //, €, #, -) = F*(L', G', //, -, g', -) (19.24)

where H' has been replaced by //, according to Eq. (19.18).
With I' eliminated from F*, we have from Eq. (19.15) that V = 0 or

L' = const (19.25)

Next, insert Eqs. (19.18) and(19.19) into Eq. (19.24), makinguseofEqs. (19.20)
and (19.21). Then

The next step is the crucial one, a Taylor expansion of a function / about /0.
Let

/(*) =
Then

/(x) = / (xo)+|(A I~- - 1 A ° 9 2 (19.27)

where hi is the small increment of the element */ about XQ.
Apply Eq. (19.27) to Eq. (19.26), retaining terms only through order j£. The

result is

', G', H, g) (19.28)
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This is an expansion in the "mixed" variables L'k and tk, in the neighborhood of
L',G', Hf = //,£, andg.

The next step is to resolve Eq. (19.28) into separate equations for the orders of
y2(0, 1, 2). All this is to find S\ and S2 so as to eliminate i' from F*.

Zero order:

F0* = Fo(L') = ̂  (19.29)

First order:

^-^ + Fl(L',G',H,i,g)=F* (19.30)

Second order:

o 1 /3Sl\d2FQ 35! 3F, 3Sl 3Fl = 3Sl dF?
31 dL' 2\dl) dL'2 dl dLf 3g 3G' dG' dg 2( ' ' '8)

(19.31)
To handle the first order, we use F\ = FI + FU, where FI is given by Eq. (19.9)

and FU by Eq. (19.1 1). In doing so, however, we must replace L and G by L' and
Gr, according to Eq. (19.30). By Eq. (19.9)

» , - , 8 , - 0,3,

where
a' = L'2/n (19.33)

By Eq. (19.11)

(19.34)L L L/'" j \r / j

To find r', use
e'2 = 1 - (G /2/^ /2) (19.35)

to solve for E' in
E' — e' sin E' = I (19.36)

where t is unprimed because we are working in the neighborhood of L', G;, //,
I , g. Then

r' = a'(\ — ef cos E') (19.37)

To find /;, use
Z71/ /

(19.38a)

s. ,=: (19.38b)
1 - 7 7
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Now return to Eq. (19.30). We now have

The best way to find both F* and dS\/d£ is to choose Si, so that

dF0 9 Si
^- + F U = 0 (19.40)

F* = F! (19.41)

From Eqs. (19.32) and (19.41)

This gives F* explicitly independent of time, as desired, and also independent of
g, so that the term (dFf/dg)(dSi/dGr) drops out of Eq. (19.31), the second-order
equation.

To find Si, use F0(L') = /z2/2Z/2, so that

= --^3 (19.43)

By Eqs. (19.40) and (19.43)

§ = £*« (19-44)ot \JiL

By Eqs. (19.44), (19.33), and (19.34)

where

(19.49)

Integration of Eq. (19.45) yields

Si = f [A1 a, + B'a2] At + <t(L', G', #) (19.50)

The formulas connecting a7, r;, ^x, /7, and €(unprimed) are those of elliptic motion,
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so that

d£ = (r>')2(l - e/2n d/' (19.51)

or, d€ = (1 - *'2)4 /" f^ d/' - ^-£ (19.52)

d/' = (1 - e'2r' (!+*' cos /') d/' =

since L
Now

f(a'/r')cos(2g + 2f) df

/"(!+«' cos /')cos(2^ + 2

" 2/') + cos(2£

sin(2g + 2/') + sin(2g + /') + - sin(2g

(19.55)

Thus

~ I" sin(2g + /') + e1 sin(2g + /') + j sin(2^ + 3

(19.56)

Substituting Eqs. (19.46), (19.47), (19.54), and (19.56) into Eq. (19.50)

f)f f I \~\

— sin(2g + 2 f ) + e' sin(2g + /') + - sin(2g + 3/')

, «; / ng sm(2,g + / ) + — sin(2g + 3/ ) >
3 JJ

(19.57)
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Although dSi/di is purely short periodic, being proportional to FU, it happens
that S\ is not unless one chooses 4>(g) = —S\. Brouwer did not do this, so that
there are some long periodic impurities in some of his short periodic terms.1 There
is no overall error, however, because the later developed long periodic terms are
automatically adjusted to take this fact into account. We shall follow the same
procedure to avoid any extra labor.

IV. Short Periodic Terms of Order J2

From Eqs. (19.18) and (19.19) with order J2

- Gf = —— (19.58)

(19-59)

3Hf

From Eqs. (19.34), (19.44), and (19.58)

_I + !^V^!_^
2L'3

~~72J\~7I cos(2g-+2/') (19.60)

From Eqs. (19.57) and (19.58)

G -Gf =
2G/3 I I 2 2 G ' 2 ^

1 e
r

cos(2g + 2/') + e' cos(2g + /') + — cos(2g + 3/r) | | (19.61)

However,

1 L /4 1 d-e'2)
L/4

so that

n}] (19.62)
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From Eqs. (19.57) and (19.59)

+ e1 sin(2£ + /') + y sin(2# + 3/') (19.63)

To find €' - £ = 3Si /aL', we note that L' occurs in Si in Eq. (19.57) only through
e' and /'. In turn, f depends only on e', of the primed Keplerian variables. This
statement follows from /' = f'(e', E') and E' = E'(e', t). Thus

**- = °*^ (19.64)
aL' be' 3Lf

From 1 - e'2 = G'2/Lf2, we have

3ef G'2

aL' e'L'3

From Eq. (19.57),

(19.65)

- ~) { [cos(2g + 2/') + C- cos(2g + /') + '- cos(2g + 3

x ̂  sin(2g + /') + 1 sin(2g + 3/')}l (19.66)

Introduce the simplification

cos(2g + 2/') + €- cos(2g + /')+| cos(2g + 3/')

= (1 + e' cos /') cos(2s + 2/') (19.67)

Then

sin(2g + /') + 7 sin(2g + 3/')j j (19.68)1 s\ \ o ft.

From Eq. (17.15), applied to primed variables:

>JL.(<+ ' )
a^7 \r / 1 - e / z/sin/ ,,9.69,
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Then

' 2 - ' 2 '

g'2(l-e'2) ,
r/2 + '

Insert Eq. (19.70) into Eq. (19.68) to obtain

35, /i2re
2J2|Y 1 3 H2 \ /a'2(l - e'2) a'

3

(19.71)

Next use

sin /' cos(2£ + 2/') = ^ sin(2g + 3/') - i sin(2g + /') (19.72)

in Eq. (19.71) to get

3 H2\(a'\l-e'2) , a'

Then by Eqs. (19.64) and (19.65)

and
/2

3L' e'L'3 de'
2 ' 2 - ' 2 1

/3 3 W 2 \ f / a'2(l-e'2) a' \\.
(2 - 2 G^j | ( ——— 2^- - 27 + 2J S'
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We have next

where

x {sin(2g + 2/0 + e' sin(2g + /') + ̂  sin(2g + 3/')}l (19.57)

Here G'occurs explicitly and also implicitly through e'. Thus, if the explicit deriva-
tive is [ aS i /dG ' ] , we have

3Si 3e'

Since 1 - e'2 = G'2/L'2

w> = ~£« (19-76)

and

^ = [^]~^S (19'77)

By using Eq. (19.57)

f' — t + ef sin f ]

+ 2/) + e1 sin(2g + /') + j sin(2# + 3/OJj

(19.78)
In Eq. (19.78) the coefficients off'-t + e' sin f

(19.79)
Z,L7 |_ Z, Z, J

Therestofta^i/aG7]

3 o

x sin(2g + 2/') + e' sin(2g + /') + siJ si

- cos2 /' sin(2g + 2/') + e' sin(2g + /') + j sin(2g + 3/')Jl

(19.80)
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Thus

2|2 2

11
(19.81)

From Eqs. (19.73) and (19.76),

dSi de' l&rlh IY 1 3

By Eq. (19.77)

a^^ra^i a^^
* ^ ac' UG'J w dG' ^ }

This completes the evaluation of the first-order periodic terms.

V. Second-Order Terms, General
We now go back to Eq. (19.31). By Eq. (19.42), F* does not depend on g. Thus,

Eq. (19.31) becomes

dF0dS2 Id^ofBSA2 3F13S1 3FldSl -,„, r, „ ,,
dz7^ + 2dI^W +iI7^" + ̂ ^ = F 2 ( L 'G ' / / ' ^ )

(19.84)

where we have replaced g by g' on the right side of Eq. (19.84). Because g' — g =
0(/2) and F£ has a factor }%, the error from this substitution is of order J%.

Next, resolve

-f—;—- + — - — - E = W (19.85)

into two parts: 1)

N = — f N dl (19.86)
27T JQ
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and 2)
Np = the short periodic part of N

= N -N (19.87)

Then

^dJjl + Np+» = F; (19.88)

Brouwer's step here is to resolve Eq. (19.88) as follows.1

^ + ",=0 (19.8&0

F2* = N (19.89)

This is a reasonable resolution, since the new Hamiltonian F0* + F* + F2 will not
depend explicitly on the time.

Brouwer does not attempt to solve Eq. (19.88a) for S2, which would yield short
periodic terms of the second order. He evaluates Eq. (19.89) in a long derivation
(see Ref. 1), which permits evaluation of secular terms through the second order
and long periodic terms of the first order. The result is

,.6«4 /2 r o / r ' \ D / 1Q £/2 *J j-f
= »>reJ2\3_(L_} f 5 _18*L + 5«_, + -|^.

-^ , 1 ' s~-» , A I ' /-» \ s~* ,12-~4&J"132\G'J V ~G^~ G'4

6H2 9//4\ 15/L' \7 / 2//2

;/4 / 32\G'J \ G'2

'L'2 \f 16H2 15H415H4\ ^ ,1
-GM-J^^J' 4(L01 0Ll6V^7 \G'2 V V G'2

(19.90)

The calculation actually gives cos 2g, but we can replace g by gf with an error of
O(72

3). Here, the first group of terms, F2y, is the secular term, and the second, F2/7,
is a long periodic term.

Summary: By transforming from L, G, //, €, g, h to L7, G;, //', £;, g7, /*7, we
have eliminated short periodic terms and have gone from the Hamiltonian

Z7 Z7 I Z7 f/^ 17* 17* I Z7* I 17*r = ro + r\ to r = r0 + r\ + r2

where

F* r- • g "^ I ~ i— ————————. i — .— —i— — .
1 / • N T - . T . ^ . ' j l ,-» ' /^

= __
0 2L /2 ! 2Z/3G / 3V 2 2G / 2

and F2 is given by Eq. (19.90). This was a canonical transformation that changed
the Hamiltonian

F = F(L, G, //, £, g, -) to F* = F*(Z/G;, //x, -, ^, -)
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VI. A Second Canonical Transformation
We now make another canonical transformation from L', G', //', i' , g', h' to

L", G", H", t\ g", h" of such a kind that

F*(L', G', H', -, g', -) = F**(L", G", //", -, -, -)

To do so, let us introduce the new generating function

S* = S* 4- 5* = E*Li'4 4- 5*

= LV + G'V + 7/"/i' + 5*(L/r, Gx/, H", g' , -, -) (19.91)

where I1, gf, h' , are the old p's and L", G", //" are the new g's. Thus, from

351* 95*
*=a^ ft = a&

we have

% c* ^ c*
G' = —— = G" + ̂ - (19.92a)

„ 3S* , 3S7t" = —— =£' + — L

dL" 3L"

"3H" dH" 9H
Also

dt U"
dG/; 9F*

dfT = 9F^=o

dt dh"
A 0^ % 17** o 17**ci-o o r or
"dT ~ azT" ~ aZ7

aF** _ aF**
" d H " = a^~

= o

= 0 (19.93a)

(19.93b)
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so that

L" = L' = const

G" = const (19.94a)

H" = Hf = H = const
3/7**/>// _ «// _ ur

 f- to 9L,

g" = go - ̂ t (19.94V)

,,, ,„ 3F**

where Eqs. (19.94b) yield the secular terms. Then, L', G', #', £g, g£, AJ are the
constants of the motion to be determined by comparison with observations. The
partial derivatives of F** = F**(L", G"', //") are constant because L", G", H are
constant.

To find the new canonical transformation, write

F*(L', Gx, #7, -, ^, -) = F**(L", G/x, //, -, -, -)

as

K*(I >\ _L J7* I T ' r" J. 1 r/ \ _i_ F* / r ' /-" _i_ "ulF 0 ( L ) + F , ^ L , G +__ , f f J + F2 l^L,G + — — , .

( o c* \
L', G" + -£±,H,g'\ = F0** + Ff* + F** (19.95)

Expand this in a Taylor's series in the neighborhood of L7, G", //, g', rejecting all
terms of order higher than /22. We find

J7*/ T f\ -I. J7*/ f ; /^" J-J\ _L ___L __L J^ 77* f T ' S~*ff U\FQ (L ) -\- r j (L , Lr , /i J -+- ——— —— + r2V (Iv , O , /i J
9G 9j?

+ Z7* / 7" ' /°*" U ^v'\ J7** I 17** I Z7** /1O H/£\r2/7(^ , O , r/, g ) = r0 +1*1 + ^2 (19.96)

The resolution by orders of /2 is
Zero order:

r'** _ i7*/r /\ _ 2 /n r /2 H 0 07"\/ Q — /^Q ^i-/ ^ — jji i L,LJ \Ly.y i )

First order:

T = W, G", H) = + (19.98)

Second order:
8F; 3Sf
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The resolution of the second-order equation into secular and long periodic terms
is

F** = F2*y(L', G", //)
6

— I —— 1 t S - *"" -I- "" 1 I ^ f ~ 'w\ rr» 1 \ n»i G"4 / « \ ^"

6//2 9//4\ K / r / \ 7
X 1 - ——- -f ——

G / /2 G'
o 17* o c*

771T7 + W. G//> #> *') = 0 (19.101)3G" dg
By Eqs. (19.97), (19.98), and (19.100)

. .2 , .4«2 r4 / i o zj2
F** = M , V rej ( l , 3 ^

2L/2 2L /3G / /3 2 2 G / /2

*Jl\?>(L'\5( 18//2 5//4\ 3 / L 7 \ e

Ml^lr^) 5~7^" + 7^rf s 7^') 1 U L 3 2 \ G / V G G7^/ 8 \G /4(L'

x /" -—— ^^-l^^^V 2//2 7//4\"[
V Cr G / 32 \ Cr / \ Cr G /\ / \ / \ / -J

(19.102)

This is the new Hamiltonian. The new generating function is given by Eq. (19.101).
From Eq. (19.98)

15 //2 \
(19.103)

_
3G/X ~" 2L/3 \2G / /4 2 G / /6

or

£-!££('-£)
Insert Eq. (19.104) into Eq. (19.101) and use Eq. (19.90) to obtain F*p(L'', G/;,
//, g')- The result is

^4r272 / _ 5H*\ dSl = 3M
6r4y2

2/L /5 _ Z/7 \
73G / /4 V G / / 2 / 3g' ~ 64(L010 V^5 ^ / /7/

" ( L'2 L'4 \ / 16//2

" + " "2 °°S 816(L')4 \G"2 G"4\ G"2 G"4 \ G"2

(19.106)
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To integrate this partial differential equation, we simply change cos 2gf to (sin
2gf /2) and replace g' by g" , the resulting error being of order in J2 higher than what
we are keeping. There is, of course, a constant of integration, viz., ty(V ', G" , H).
By Eq. (19.92), however, this would give terms for €", g" , and h" that can be
absorbed into the £$ , g '̂ , and /z^; these will appear when we find the secular terms.
Thus

e , 15//4\ / 5H*\~l . „
'" 32(L')4 VG"2 G"VV - G"2 + G"4A G"V S1 *

(19.107)

From Eqs. (19.107) and (19.92), we can find the long periodic terms t' - t" , g' -
g", h' - A", and G' - G" . Note that they are of the first order in J2, even though
we had to go to a second-order calculation to find them. Also note that there is a
"resonance denominator" 1 — 5//2/G//2 = 1 - cos2 I". The value of / for which
this resonance denominator vanishes, 63.4° or its supplement, is called the "critical
inclination." The solution is not valid in the immediate neighborhood of / = 63.4°.

VII. Results to This Point
Let us collect the results. We have

H = H"
e-f 9 S l _^" aSl dsi _ p " ,l-l~w-1 -W~^-io

, dS\ „ dS: 35? „ , ., dSi dS*
* = *-*G=f-W-W=tr*+*L'G>H*-W-W

as, , 35j as* 35, 35*
h = h ~ W = h -^-^= / i°+ C 3 ( L 'G '^-3H-3^

(19.108)
Here, 5, is given by Eq. (19.57) and 5* by Eq. (19.107). Also

c2(L', G", //) = - = -—— (19.109)

' ' dt dH
Given L' (=L"), G", // (=//"), C £Q, ^o» we have here the complete schedule
for calculating L, G, //, £, g, /i as functions off , so that we can find x, y,z,x,y,z
at any timer.
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VIII. Secular Terms
Let us calculate the secular terms only through the first order in 72- Then

- -- _ _ _ _ _ _
0 " 2L'2 9L' ~ L'3 ~

F« = M4r,2/2 / 1 3_tf^\ ^ 9fT = _ Vr^/2/_l 3_//^\
1 2L'3G"3V 2 2G"2/ 3L' 2L/4G"3 \ 2 2G"2)

3n'r2J2 / 1 3 //2 \
~ ~2a'2G"3 V 2 + 2 G"5/

using L' = (Ma')1/2 = n'a'2 and ju. = n'2a'3. Thus

c,(Z/, G", //) = »'[l + ̂ ^1^(4 + |̂ )] (19.110)

With use of

L / 2 /G / / 2 = (1 - e"2)-1 /7r/ = a'(\ - e"2)

we have

C1(L', G-. //) = n'[l + |/2^(1 - ."2)i (-1 + |̂ )] + 0(J})

(19.111)

To show that this agrees with the secular part of i found in Eq. (17.81), we
proceed as follows. To find c\ in terms of initial values, we use

However,

£l = ^L —
no ~~ n' n0 (19.112)

ri = -

Then

(19.113)

To find Lo/L', we need L - L'. By Eq. (19.60)

L,...
2L'3

(19.114)
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Replace cos(2g + 2/0 by 1 - 2sin2(g + /'). Inserting this in Eq. (19.114), we
may drop the primes on the right side and still keep the error down to O(72

2). The
result is

2L3

Put H/G = cos /, L2/G2 = (1 - e2)"1. and sin<9 = sin/ sin(g + /). Equation
(19. 115) becomes

r i 3 ~i
• -(1 - 3 cos2 /)(! - e2)~i + ^-(1 - 3 sin2 0) + O(J2

2)

(19.116)

and

(l ~ 3cos2

(19.117)

To compare with Eq. (17.81), we need C\/HQ, and by Eq. (19.117) we need c\/nf

and H'/HQ. By Eqs. (19. 113) and (19. 117)

(1-3c^ rQ j

(19.118)

or

(19.119)

By Eq. (19.110),

(19-120)

On multiplication of Eqs. (19.119) and (19.120), we find that the second terms on
each right-hand side cancel, so that

This agrees with Eq. (17.81) because c\ in Eq. (19.121) is the same as n' in Eq.
(17.81).
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Next, we need

c2(L', G",//) = ̂ -=-^ (19.122)
at 3G

Here

(19.97)

(19.98)
ALi'" \ ZLr " ZLr""/

We find

(19.123)

so that

g" = g'^ + 1^A(5 COS2 /" _ 1)r (19.125)

This agrees with the result (17.48) for the secular change of g = co. If PI is the
long period, we find for a close orbit that

— & ———(5cos2/ - 1) (19.125a)PL P 4

^
P

where P is the short period. (Short periods are on the order of time of one satellite
passage around the Earth. Long periods are on the order of time of one complete
perigee passage around the Earth.)

For a close satellite of the Earth, with P « 1.5 h, this gives PL ~ 450 h for an
equatorial orbit, 1800 h for a polar orbit, and infinity at the critical inclination.

Finally

By Eq. (19.98), it follows that

C3 = ——^_Z£_|__ (19.126)

C3 = -3nr^2 cosl" (19.127)

so that
aw / r2 r

")t (19.128)
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THE BROUWER-VON ZEIPEL METHOD I 239

in agreement with Eq. (17.37). Of course, the present treatment has the advantage
that it permits the evaluation of the second-order secular terms.

IX. Algorithm
Given /x, re, J2, and the six mean orbital elements, viz., L' ', G" , H, i'^, g$, h'^

calculate the position and velocity vectors at time t .
1) Calculate a' = L'2/^, ri = nl/2(aT3/2> ci, c2, c3, and t as in Sec. VIII.

Then

t" = t» + Clt g" = gt + c2t h" = h% + c3t
2) Calculate

as* ds* ds* ds*
"ag7 aZ7 aG" "a#

The long periodic terms G' - G", t' - t" , g' - gn ', h' - h" are given by

G,,G,,+^ ,_ ,_>£ ,_,_•£ h,,h,_^_
Here, note that one puts g' — g" in the expressions for the derivatives of 5*. If one
did not do so, one would have to solve a transcendental equation for g' ', viz.,

where ty(g') is dS*/dG" expressed in terms of g' . To the accuracy at which we are
working, however, this is not necessary because substitution of g" for g' yields an
error of O(/|). We are calculating long periodic terms only through order J2.

3) Calculate e' = (1 - G'2/^/2)1/2- We then have L7, G;, H ', €', #', /z;, and 6r.
Then calculate

8^! 351! 8^1 3 Si dSi dSi
IF "a7 ~a/T aZ7 ao7 a¥

The short periodic terms L — Lf, G — G' ,t — tf , g — g' , and ft — /^ are given by

L _ L , = Mi ,_ f = _^i
3€ 3L'

,, ,,, 95i , 95iG-G' = — - « - g' = -— ̂3^ 3G'

j. i.' 95'h — h = — ——
3Hf

Note that we replace i and g on the right sides of these equations by t' and g'.
Otherwise, we should have to solve the pair of equations

/ _ / ' = _^L £ _ ^ = _^1
3Lf 8Lf

simultaneously for t and g. The error introduced by this substitution is of O(J%\
This is acceptable because we are calculating short periodic terms only through
order 72-
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4) We now have the full set of Delaunay variables at time t, viz., L, G, //, €, g, h.
The next procedure is to calculate

a = L2/^ e = (\- G2/L2)L2
b = (1 -e2)1* n =
E from E — e sin E = t
r from r = a(\ — e cos E)
I from I=cos~l(H/G)

Then
r = A(cos £ - e) + fl sin £

r = na/r(—A sin £ + B cos

where

A
a

" cos g cos h — sin g sin h cos / ~|
cos g sin h + sin g cos h cos /

sing sin/ J

" —sin g cos h — cos g sin h cos / "I
sin g sin h + cos g cos h cos /

cos g sin / J

The advantage of Brouwer's method over that of Chapter 17 is that it yields the
long periodic terms through order 72. It also yields secular terms through O(J2\
although we have only indicated how to find them and not actually written them
down.

References
^rouwer, D., "Solution of Problem of Artificial Satellite Theory Without Drag," Astro-

nomical Journal Vol. 64, No. 9, 1959, pp. 378-397.
2Brouwer, D., and Clemence, G., Methods of Celestial Mechanics, Academic Press, New

York, 1961, p. 562.
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Chapter 20

The Brouwer-von Zeipel Method II

I. Introduction

T HIS chapter will show how to incorporate the third and fourth zonal harmonics
into the Brouwer solution. Because J3 and /4 are both of order /22, they will

not affect the function S\, which we carry (following Ref. 1) only through order J^.
If one traces through the previous derivations, one sees that the Hamiltonian

contributions F3 and Jfy, which we can write as A3F and A4F, affect only F^,
F}* and s\-

II. The Effects of 73

We have

A3F = -A3V = --( - ] /3P3(sin0) (20.1)

We first split this into A3F and (A3F)^, where A3F is the average of A3F over
the osculating orbit and (A3F)^ is the short periodic part. This short periodic part
is of order 7^; we shall not have any use for it since the von Zeipel method is not
suitable for the calculation of second-order short periodic terms. It turns out that
A3 F has no secular part, only a long periodic part proportional to sin g.

Because

P3(sin 0) = | sin3 0 - \ sin 0 (20.2)

sin 9 = sin 7 sin(g + /) (20.3)

we can calculate P3 as a function of the true anomaly /. One shows readily that

sin 3x = 3 sin x — 4 sin3 x

so that

sin3 x = | sin x — | sin 3x

Then

P3(sin0) = - sin3 7 - sin(£ + /) - - sin(3# + 3jf) - ^ sin 7 sin(g + /)

= ( — sin3 7 - - sin 7 ) sin(g + /) - - sin3 7 sin(3g + 3/) (20.4)
V 8 2 / 8

241
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and

- sin(3g + 3/) (20.5)
r

and
__
A3F = — A3Fdt (20.6)

27T Jo

We do not need (A3F)^ = A3F — A3F. For the osculating orbit
2

so that

or

- ) A3Fd€ (20.6a)

K 1 c o \ /* 2?r / \ 2
_sin 3 / - - s in / ) / (-) sin(g + /)d/
o 2 / Jo \r /

- - sin31 f n (-} sin(3£ + 3/) d/l (20.7)
8 Jo W J

Now

(a/r)2 = (1 - e2)~2(l + e cos /)2 (20.8)

which gives a constant plus terms in cos / and cos 2/. When these are multiplied
by sin(3g + 3 A sines of 3g + f , 3g + 2/, 3g + 3/, 3g + 4/, and 3g + 5/ are
the results. The term in sin(3g -f 3/) does not contribute to the integral.

We now need

f n (-} sin(g + /) d/ = (1 - e2)-2 f * (1 + * cos /)2 sin(g + /) d/
Jo \r / Jo

/

In / e2 e2 \
1 -f — +2^ cos/ + —cos 2/ sinte + ,

\ ^ L /
•/)d/

(20.9)

Here, only the term in 2e cos / contributes to the integral. We have

cos / sin(g + /) = ± sin g + \ sin(g + 2/)
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THE BROUWER-VON ZEIPEL METHOD II 243

so that

I n (-} sin(£ + /)d/ = (1 - e2r22nesmg (20.10)
Jo W

Thus

15 3 \
— sin3/- -sin/ \esing (20.11)

This is purely long periodic, of order J2. It is to be added to F£ in Eq. (19.102).
Here, one must put L' in place of L, G" in place of G, and g' in place of g. From
Eq. (19.101), we obtain

(20 12)-f . . n / ' ~ Z J 5 X — — ' —— ' ~ ~ ' O / ' ——— J ~ \—— ' —— T ~~ 1 O / ~ \^+*\J • *.+* J

OLr" Og' l

The change A^ S*9 produced by ^3, satisfies

—l-—V" = ~A3F(Z/, G;/, //, g;) (20.13)

where

*,i.rJ, ' j _ — — l (20_14)

from Eq. (19.104). Making appropriate changes in Eq. (20.11), we also write

A^p = -^f^(l - e"2r*e"( — sin3 7r/ - - sinl" sing' (20.15)
a' \ 8 2 /

With use of a7 = Z/2/'/z, this becomes

A3F = —— g ^g^sin/^Cl - 5 cos2 7/;) sin g; (20.16)

From Eqs. (20.13), (20.14), and (20.16), we find

(20.17)
The "resonance denominator" 1-5 cos2 I" cancels out. It is remarkable that such
a cancellation occurs only for the third zonal harmonic. Equation (20.17) becomes

^-T££""-*'
Then

(20.19)
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Since J$ is of order 7^, it follows that AS 5* is of order J^. Since

o C*

G'-G" = — ̂ - (20.19a)
dg'

3h'

i ~t = ~3Z7

?'-8" = ~ (20.19b)

A ' -A" = -±:i-
dH'

it follows that
O A O*

= 0

dg'
(20.20a)

3L'

(20-20b)

In Eq. (20. 19), we may change g' to g" without affecting the order of the accuracy.
From Eqs. (20.18) and (20.20a)

(20.21)
^ v/2 ^

Next, from Eq. (20.20b)

(20.22)

In Eq. (20.19), the only quantity that depends on L' is e". From

e"2 = 1 - (G"2/L'2)
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we find
de» ^l-e"2

From Eqs. (20.19) and (20.23)

aA3S? I J 3 ure (I - e"2)83t = - —— = —- —- -————- sin /" cos g" (20.24)
dL' 2 h G" e"Lf * v '

Next, from Eqs. (20.19) and (20.20b)

83g = ——3-± = ——cosg"—-(6 Sm
r j (20.25)

From

1 - e"2 = G"2/L'2 cos2 I" = H2/G"2

we find

where

pr/ = G"2/A6 (20.26a)

Thus
re J3 ,,/V'cos2/" sin//;\

^ = ̂ 72^(^T^--^-) (2a27)

Finally

(20.29)
0/7 G

From

sin2 /"=l-(//2 /G"2)

we have

Thus

= - cot/" cos/' (20.30)

Note that, in the algorithm for the orbit, we must add 53G to G' - G", 53€ to £ - (.",
<53g to g' - g", and 83/1 to h' - h".
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III. The Effects of/4

The fourth zonal harmonic differs from the third by giving rise to secular terms
of order J% and to long periodic terms of order /4//2 = 0(/2), which have a
resonance denominator 1 — 5 cos21".

Here

A4F = -A4V = --( — ) /4P4(sin0) (20.31)
r \r )

We set up the problem as we did for J-$ and find

F2* = old F2* + A4F (20.32)

so that

A4F2* = A4F = A4F*y + A4F2; (20.33)

In this case, A4JF2s, is a secular correction to the Hamiltonian, and A4F2/7 is a long
periodic term.

The correction to the Hamiltonian will give the secular terms

A4€" = g 7 A 4 F i = A4c,

i - A4c2 (20.34)

= ~^i, = A4c3

We also obtain as before

where

/r* = ^ f [ e J f f 3 ( — + ——^ ) (20.36)

Then

A4(G' - G») = -^

(20.37)

3H
give the long periodic terms.
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We have

where

Then

IV. The Average A4F

3 / 35
P4(sin6>) = -I 1 - 10 sin2 9 + — sin4

8 \ 3

sin 0 = sin / sin(g + /)

sin2 0 = 1 sin21 [I - cos(2g + 2/)]

sin4 0 = | sin4 /[| — 2cos(2g + 2/) -f £ cos(4g -

(20.38)

Thus

P4(sin0) = - - — sin2 / + —— sin4 / + — sin2 / - — sin4 /
o o 6 4 | _ o l o j

x cos(2# — sin4 / cos(4g
64

(20.38a)

9 45 105
P4(sin 0) = — - — cos2 / + — - cos4 /

64 32 64

35 4,1
- -C08 /J ,

35
— I 1 - 2 cosz / + cos4 / | cos(4g + 4/)
o4

(20.38b)

Now, by Eq. (20.31)
4 / \ 5

= -^-(-) J4P4(Sin0)
a5 \r

or, since a = L2//x,

A4F = ——iS'-M ~ ) ^4(sin^)

From Eqs. (20.38c) and (20.38b)

P1 e j I u \ I ^ ^ 2 r i 1^5 4= -^/4(-) |---COS2 / + —— COS4/

5 5 3 5
- — + - cos2 / - — cos4 / I cos(2g + 2/)

16 2 16

35 1
— [1 - 2 cos2 / -f cos4 /] cos(4g + 4/)
64

(20.38c)

(20.39)
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Now use

with

Then
___ j p2n / r \ 2

' (20.40)
£ fix /r\2

= — — / - A4Fd/
2nG JQ \aj

From Eqs. (20.39) and (20.40)

Vr4/4_rj3 15 2 35 4
- -

-I+? c°s2 7 - 34 c°§4 7 ) f27r ( -6 3 6 J J0 V/

(20.41)

Now

= (1 - * V(l + « cos /) = (1 + e cos /)

<A3 L 6 f 3^2 / 3^3\ 3^2

7] =^(1 + -^ + ̂  + —— Jcos/ + ——

(20.42)

Multiplication of cos(4g + 4/) by (a/r)3 gives terms in cos(2g + kf\ where
/: = 1, 2, 3, 4, 5, 6, 7. Thus, the integral involving cos(2g + 4/) gives no contri-
bution to Eq. (20.41).

We also have
3 6 2 2nL6[5 3G2]

- (20'43)

f2n /a\3 L6 3e2 /"2lr

/ - cos(2^ + 2/) d/ = — — / cos 2/ cos(2g + 2/) d/
Jo \r / <j ^ Jo

= G^T7tco 8

irL6 P3 3 G2"
" ——I«>s2* (20.44)
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so that

3Ag
4/4[[3 15 H2 35 / / 4 lT5 3G2

8L3G7 [I 8 4 G2 8 G4 \[2 2 L2

5 l - ~" '" " ~ ~ ~ ' - ' (20.45)
6 1 G2

When we split A4JF into secular and long periodic terms, we must put a prime on
the L and the g and a double prime on the G. Then

^/4 [3 15H* 3 5 f f « i r 5 L " 3 I" I
8L,io I g T G"2 + T G^ J L2G^ 2 G^J ( }

We now use Eq. (20.35)

—-——— = A4F2* (20.35)0/^/7 Q / ^p

where
n.4r2./n / 1 ^ f/2 \

(20.36)1 2L / 3G / / 3V 2 2G

Then

"

From Eqs. (20.35), (20.14), and (20.47)

^^lh.L_^_
y3£//4 \ Qn24Lf

64L/10

Then

"2 + " 4 " 4 "2 "2 S *dg' 16L'4J2

(20.49)

so that
/2 ' 7 w 4 i r r / 4 r / 2 i / 5H2^~l

(20.50)
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Then the secular terms from /4 are

A4c2 = --WZ (20.51)

- ——

where

g" = g'^ + C2t (20.52)
i // i // i/z = h0 + cs£

The long periodic terms are given by

A4(G' - G") =

d/^ # (20.53)

4U -^ ) — 9G//

A4(/zr - /zr/) = -' a//
In the preceding formulas, gr is to be replaced by g" '. Also it is instructive to

add A45* to 5* for the main problem. For the main problem we had, from Eq.
(19.107),

_ n2rtJ2G" ( L'2 Z/4 \ / 16H2 15//4\/ _ ̂ V1 . „
l~ 32(L04 V^ / /2 G^VV G//2 + G"* )\ G"2) g

(20.54)

From Eq. (20.50)
/4

(20.55)

Addition gives

where
15//4N" / Q zj2 ^^4

-f (20.57)
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Put

then

H2/G"2 =

Q = (1 - 16c2 + 15c4)/2 + 5(1 - 8c2 + 7c4) (20.58)
h

Now

Thus

= (1 - c2)(l - 15c2)72 + 5(1 - c2)(l

, + 5(1 - 7c2

5c2 - 10c2

5c2 - 2c2

15c2 = 1 -

- 7c2 = 1 -

«„ < 2^• 5(1 - 5c2)—

Take

and insert this into Eq. (20.56). Then
// / rL /2 7 / 4

(20.59)

(20.60)

5-^

^

(20.61)

because H2/G"2 = cos2 7;/.
Thus, the resonance denominator 1 — 5 cos2 I" has a numerator /22 4- /4. This

statement is true for all the long periodic terms, which are obtained by differen-
tiation of 5* + A45*. A potential for which /4 = —7| would not give rise to a
critical inclination.

Reference
^rouwer, D., "Solution of Problem of Artificial Satellite Theory Without Drag," Astro-

nomical Journal, Vol. 64, No. 9, 1959, pp. 378-397.
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Chapter 21

Lagrange and Poisson Brackets

I. Introduction
A N IMPORTANT method for doing perturbation theory for canonical systems

x V is the method of Lie series. To develop it, we need to know more about
canonical transformations. In Chapter 5, we saw that

(Ekpk dqk - H dt) - (XkPk dQk - Kdt) = dF (21.1)

is a sufficient condition for the transformation (q, p) -> (Q, P) to be canonical.
It is not a necessary condition. If we insist, however, that we shall deal only with
canonical transformations that satisfy Eq. (21.1), we shall need a special name for
such a subspecies. We shall call it a "contact transformation." (See Refs. 1 and 2.)

If the transformation
= .Qn,Pi..-Pn,t)

"Qn,Pl..-Pn,t)

has a Jacobian that does not vanish anywhere in the domain of the <2's and P's
that we are considering, we can solve Eq. (21.2) freely, back and forth between the
q's and p's and Q's and P's. In that case, no matter what functional dependence
may be indicated for F in Eq. (21.1), we can express it as

(21.3)

With use of the summation convention, we find from Eq. (21.2)

ut*< ~~ oTT u*^ "T" ~^1TUf J T TT Uf
od j dry at

so that

Pi dqt = pi—^-dQj + pi—^-dPj + pt -^- dt (21.5)

The condition (21.1) becomes

Pi—^r - Pj} dQj + PI—- dPj + I pi— + K - H \ dt = dF (21.6a)

8F 8F dF
= ——dQj + — — d P j + —dt (21.6V)

Equate coefficients of dQj, dPj, and dt on both sides of Eq. (21.6b). Then for a

253
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contact transformation

-» + *-» <2..9>
Conversely, if Eqs. (21.7) and (21.8) hold for the mapping (21.2), then Eq. (21. 6a)
holds, and Eq. (21.1) is true, provided that the new Hamiltonian is given by
Eq. (21.9). Thus, Eqs. (21.7) and (21.8) are necessary and sufficient that the map-
ping (21.2) be a contact transformation, with H the Hamiltonian H(q, p, t),

i _ p i . (21.9a)
and dF(<2, P, t) the perfect differential of the contact transformation.

Now, from Eqs. (21.7) and (21.8), we can express each of the second derivatives
of F in two ways. First, 32F/dQsdQr is given by either of

Next, 32F/3Ps3Pr is given by either of
3

n rt \ n ^ n I t\ r* \ JTi <\ r* I \^L.LL)ors

Finally, 32F/3Ps3Qr is given by either of

(21.12)

Equations (21.10)-(21.12) are necessary and sufficient for the validity of Eqs.
(21.7) and (21.8) and, thus, for the validity of Eqs. (21,6a) and (21.1). However, Eq.
(21.1) defines a contact transformation. Thus, Eqs. (21.10)-(21.12) are necessary
and sufficient that the mapping (21.2) be a contact transformation.

II. Lagrange Brackets
Consider a set of qit pt, i = 1, . . . , n, and let u and v be any two parameters

on which they may depend. Define the Lagrange bracket [u, v] of u and v as

[UtV]a£\*JL»Jl-*JL*EL\ (21.13)
7^\-3u 3v dv 3u J

At once
[£/»#*] =0
[Pj,p>t] = 0 (21.14)

[<lj,Pk] =$jk
the Kronecker delta.
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LAGRANGE AND POISSON BRACKETS 255

Now, consider Eq. (21.10), which is equivalent to

qi dpi 3qi 9/

or

[fir, 6,1 = 0 (21.15a)
Consider Eq. (21.11), which is equivalent to

3Pr 3PS dPs dPr\ ~

or

[P r ,P v ]=0 (21.15b)

Finally, consider Eq. (21.12), which is equivalent to

dQr 3PS 3PS 3Qr\ ~ rs

or

[Qr,PS]=8rs (21.15C)

The Lagrange bracket relations (21.15) are necessary and sufficient for the va-
lidity of Eqs. (21.10)-(21.12) and, thus, for the validity of Eq. (21.1). The mapping
(21.2) is a contact transformation if and only if the Lagrange brackets of the Q's
and P's, relative to the q's and /?'s, satisfy Eqs. (21.15).

III. The Jacob! Relations
If qk = qk(Q, P, r), pk = pk(Q, P, 0 is a contact transformation, the Jacobi

relations are

(21.16b)3ps 3Pr

—~ = ——^~ (21.16c)

3Pr 3qs

IT = H7T (2L16d)
3 px 3 Qr

To prove these, first write with the summation convention,

dqt = —- dQs -f —- dPv + —- dt (21.17a)

dpi = -^- dQx + —— dPv + — d^ (21.17b)
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Then

= IQS, PA dQs + (Ps, PA dPs + d dt

by use of the definitions (21.13) and (21.14). From the Lagrange bracket conditions,
this becomes

dgr = —- dqi — —- dpi — G\ dt (21.18a)

However,

dQr = ——- dqs + ——- dps + ——- dt (21.18b)
3qs ' dps ' dt

Comparison of Eqs. (21.18a) and (21.18b) shows that
an an

(21.16a)
dqs dPr

)n~ %nn (2l.l6b)
3/7, 3Pr

This completes the proof of the first two Jacobi relations.
To prove the other two from Eqs. (21.17), form

dpi __a/7. = __f __ ncy,-h g^ _A . , ^^

= [Qs, QAAQ* + [Ps, QAdPs + G2dt

Thus

dPr = ———-d^/ H- —-dp/ + G2dr (21.18d)

However,

3Pr dPr dPrdPr = -r— dqs + —— dps + —- dt (21.18e)
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Comparison of Eqs. (21.18d) and (21.18e) yields

^ = ~^~ (21.16c)

(21.16d)

which are the other Jacobi relations. Note that the Jacobi relations of Chapter 12
are special cases of these, with Qk = fik and Pk=ak.

IV. Poisson Brackets
Let u and v be functions of g/, /?/, / = 1, . . . , n, and t. The Poisson bracket

(u, v) is defined by

(2U9)
dqtdpi

We first use the Jacobi relations to derive some relations pertinent to Lagrange and
Poisson brackets in connection with contact transformations.

Theorem: For a contact transformation

[Qr,Qs} = (Pr,PS) (21.20)

Proof: With use of the summation convention,

{Qr,QA=*!L*PL-*3L*PL (2i.2i)l*"*4j dQrdQs dQ,dQr

from the definition of a Lagrange bracket. However, for a contact transformation,
we have

-?* = ̂  (21.16d)
32r 3p«

and

^L = -^ (21.160
32, 3*

Insertion of Eqs. (21.16d) and (21.16c) into Eq. (21.21) yields

[e,,al = _£i^ + ££i!i=(Pr,ft) (21.22a)
a/?/ 3qt dpi dqt

Similarly

[Pr,P,] = (Qr,QS) (21.22V)

[Qr,PS]=(QS,Pr) = &r, (21.22c)

The Lagrange brackets conditions immediately become the Poisson brackets con-
ditions (Qr, Qs) = Q,(Pr, Ps) = 0,(&, PT) = Srs. These Poisson brackets
conditions are necessary and sufficient for the mapping (21.2) to be contact trans-
formation.
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V. Invariance of a Poisson Bracket to a Contact Transformation
Suppose we have two functions u(qi, /?,-, /), v(qi, pi,t), i = 1, . . . , n, and

transform them by means of a contact transformation. They will appear as some
other functions U and V of Q/, Piy i = 1, . . . , n. That is

, t ) (21.23a)

v(q,p,t) = V(Q,P,t) (21.23V)

The invariance theorem states that

(u,v) = (U,V) (21.24)

which can be written as

du_dv_ _ du_dv_ _ dU_dV_ _ 3U 3V
'dq'i'dp'i ~ ~dft~d<ii ~ ^Qi^Pi ~ 'dP^'dQi

with use of the summation convention. At any given time t, we have from Eqs.
(21.23)

(21.26a)

dv = - dQr + dPr (21.26V)
d(Jr drr

so that

du dU dQr dU dPr dv dV dQj dV dPj
dq^ dQr dq^ dPr 9<7V dq? d Q j dq? 9P/ dq?

' (21.27)
du dU dQr dU dPr dv dV dQj dV dPj

dPs ^Qr dps dPr dpx dps dQj dps dPj dps

Here, the derivatives of U and V are obtained from the functions indicated in Eqs.
(21.23). The derivatives of the <2's and P's come from the canonical mapping
(21.2), which can be inverted when its Jacobian does not vanish.

Now

dqs dps dps dqs

Insert Eqs. (21.27) into Eq. (21.28). Then

v dOi dv di
Qj BPs dPj

r\ j T f\ /-** c\ J T f\oU oUr ou 01

dQr dps
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LAGRANGE AND POISSON BRACKETS 259

Regroup terms to obtain

, N 3U 3V i3Qr3Qj
( u , v ) = —- — '

qs ?>Ps 3ps 3qs

r_ 3Pj_ _ 3Qr3Pj
3Qr3Pj\3qs 3ps 3ps 3qs 2

js 3ps ' a/7v 3qs

+

However,

W_dV_idPr_dPj_ _ 3PrdPj\
dPr dPj \ 3qs 3ps dp, 3qs /4

because the transformation is of the contact type. Thus
dU dV dU dV

"•"-iaiii-Jflaa-^1 ' ' <21'24)

as was to be proved.

VI. Other Relations for Poisson Brackets
We have, very easily,

( M , w ) = 0 (21.30)

(M,c) = 0 (21.31)

( u , v ) = -(v,u) (21.32)

where c is a constant. The reader should also verify that

(uv, w) = u(v, w) + v(u, w) (21.33)

For a Hamiltonian system with Hamiltonian H(q, p, t)

_ 3qj_3H__ 3qi_3H_ _ 3H _ .
dg/ 9/?7- 3/?y 3^y- 8/7,-

a/?,- a// a/?/ a// a//
(A-, //) = T^—— - ^—— = -—— = -Pi (21.35)3qj 3pj 3pj 3qj 3qt

Any function u(q, p,t) of such canonical variables satisfies
,_3u_. 3u 3u_ _ _aw_a^ _aw_a^ aw

%* + a^^ + ¥ = a^a^ " a^a^ + ¥
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Also
3 / 3v\ /3u \

——(11, v) = ( u, — ) + —, v) (21.37)
3qi \ 3qtJ \3qi )

t , —— j + ( — — , u ) (21.38)

Finally, we need Poisson's identity

(w, (v, u;)) + (u, (u;, 11)) + (w, (ii, u)) = 0 (21.39)

This is reminiscent of a similar cyclic rule for vectors,

A x (B x C) + B x (C x A) + C x (A x B) = 0

the "snake-biting-its-tail" relation.
To prove Poisson's identity, we first note that

so that

(w, (v, u;)) + (u, (u;, n)) = (u, (v, u;)) - (u, (M, u;)) (21.40)

Now

\^ {3v 3w 3v 3w\ ^ ^^ _ x(u, iy) = V I ———— - ———— 1 = Dvw (21.41a)
^ \6^/ 3/?/ dpi 3qi/

and

2n g

where

(21.42a)

The operators D^ and Du can be expressed as

(21.43a)

y!ft~ (21-43b)

where we denote
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LAGRANGE AND POISSON BRACKETS 261

by

and where the of's and /Ts are as follows.
Oi\ Oil . . . Oin &>n+\ • - • ®-1n

3v 3v 3v 3v 3v
3p\ 3p2 3pn 3q\ 3qn

Pi fa • . . fin fin+l - - • fan

3u 3u 3u 3u 3u

Now by Eqs. (21.41)

(t>, w) = Dvw (u, w) = Duw

Then
( u , ( v , w)) = DuDvw (21.44a)

(u, (u, w)) = DvDuw (21.44b)

Thus
(w, (u, u;)) - (v, (w, w)) = {DUDV - DvDu}w (21.45)

Apply Eq. (21.43) to Eq. (21.45). Then

a ^-^\ 3w ^-^\ a ^-—\ 3w— / &i — — / on — / PI—3xj ~^ 3xi T^Y 3xi ^~^f oXj

(21.46)

The second derivative terms vanish immediately, and we are left with

—— — -a/-^-—— ) (21.47)

This is simply a sum with coefficients of all the 3w/qk and all the 3w/pk, so that

x-^v / 3w 3w \
(w, (u, w)) - (v, (w, u;)) = ̂  ( Ak—— + Bk—— J (21.48)

where the A's and #'s do not depend on w. We may, therefore, determine the A's
and B's by giving special values to w.

To determine the #' s, let w = /?/. Then

_ _ df 3PJ 3v 3pi _ 8v

Similarly

(u,w) = (u,p,)=¥- (21.50)

Purchased from American Institute of Aeronautics and Astronautics  

 



262 J. P. VINTI

Now, insert w = pt in the right side of Eq. (21.48) and Eqs. (21.49) and (21.50)
on the left side. We find

Bi = (u, |1) - L %L) (21.51)
V dqij \ dqtj

However, from Eq. (21.32)

so that

B/ = (B,^)+ (£,,,) = £<„,,,) ^.52)

by Eq. (21.37).
To determine the A's, let u> = g,. Equation (21.48) becomes

A/ = ( M , ( U , # ) ) - O > , ( M , ? J ) )

but
3i> 9g/ 9i> 9^/ 3u(u, g,-) = ———— — ———— = — ——

= - ——

Thus

= — — — ( u , v ) (21.53)

Now, insert Eq. (21.52) for Bt and Eq. (21.53) for A/ into Eq. (21.48). The result
is

(w, (u, u;)) - (u, (w, u;)) = V (^^-(u, v) - ^^-(u, v ) } (21.54)

(u, (u, w)) — (t>, (w, w)) = —(w, (u, v))

Thus
(u, (v, w)) - (u, (w, u;)) + (u;, (M, u)) = 0

or
(u, (v, w)) + (u, (w, u)) + (w, (u, v)) = 0 (21.39)

which is Poisson's identity.

References
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Chapter 22

Lie Series

I. Introduction
rT1 HERE are series of nested Poisson brackets that can be used to form contact

JL transformations. Such series have been used by Hori1 and many others to
formulate methods of doing perturbation theory. In this chapter, we shall use other
methods to carry out the first section of Hori's paper1 because his first section is
hard to understand and because of his use of a pseudo-time r.

In Chapter 23, we shall follow Hori's methods1 but avoid his use of certain
artificial times /* and t. This avoidance of artificial times is facilitated by using
some of Brouwer's methods2 in doing perturbation theory for artificial satellites.

This method of Lie series has a decided advantage over the Brouwer-von Zeipel
method in that it does not use "mixed variables" to build up contact transformations.
It, therefore, proceeds in a purely recursive fashion, well adapted to the use of
machine algebra for the higher approximations.

We shall formulate only that much of perturbation theory that can be done by the
Lie series of Hori. For a comparison of the theories of Hori and others, see Ref. 3.

II. Hori's Section 1
Let £/ , Y]J be a set of 2N variables, and let /(£, ??) and S(£, /y) be arbitrary

functions of them. Let (/, S) be the Poisson bracket of / and S. We define the
operator Ds as follows:

D»f = f Dsf = (/, S) DnJ = Dn~\DJ) (22.1)
Define 2N variables */, v/ by

oo n

f ( x , y ) = ^-D?f(S,ri) (22.2)
n=0 H'

where e is a small parameter arising from the physics of the problem. In artificial
satellite theory, it might be /2- At this point, Hori uses a pseudo-time r to show that,
if £/ , T]J are canonical with respect to some Hamiltonian F(£, rj, e), then jc/ , y;
will also be canonical with respect to F(£, r], e).1 We shall also prove this, but it
will take many steps to avoid the r.

III. Theorems
With the definition (22.1), if S = S(£, rj), S* = S*(£, r]\ f = /(£, r?), and

8 = #(£» T?) and if a and ft are constants, we have some theorems.

263
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264 J. P. VINTI

Theorem 1 :

Proof:
(af + pg, S) = (a/, S) + (fig, S)

Thus
Ds(af + Pg) = aDJ + /3Dsg

Theorem 2:

Proof:

Since

this becomes
Ds(fg) = f ( g , S) + g(f, S) = fDsg + gDJ

Theorem 3:
Ds(f, g) = (/, Dsg) + (DJ, g) (22.3)

Proof: By Poisson's identity

(/, (*, S)) + (g, (S, /)) + (5, (/, g)) = 0

(f,D,g)-(g,D,f)-D,(f,g) = 0
This proves the theorem.

Theorem4:
DS.DS-DSDS. = D(S.S.) (22 A)

Proof: By Poisson's identity

(/, (S, 5*)) + (5, (5*, /)) + (S*, (/, S)) = 0
(/, (S, S*)) + ((/, S*), 5) - ((/, S), S*) = 0

£>(,,,.)/ + DsDs.f - DS,DS = 0
This proves the theorem.

Theorem 5:
n / \

""g (22.5)
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LIE SERIES 265

where
' x n\

(n — m)\m\
the binomial coefficient.

Proof:

= fD2
sg + 2D,fD,g

(22.6)

The theorem holds for n = 2. We now use mathematical induction. If it holds for
n, then application of Ds to Eq. (22.5) gives

= £ (n}[D?fDP-m+lg + D?+lfD»-mg\ (22.7)
m=0 \m/

Now, break up Eq. (22.7) into two parts. In the first, let m run from 0 to n. In the
second, put m = m' — 1 , and let m' run from 1 to n + 1 . Then split off the term
m = 0 from the first sum and m = n + 1 from the second sum. We obtain

(n~m)!m! (n + 1 - m)\(m - 1)!

where we have switched m' back to m in this second sum. However, Eq.
(22.8),

n\ _____n!_____1
(n-m)\m\ + (n + 1 - m)!(m - 1)! J

(/i +1)!
( t t -m)! (m- l ) ! [_m

Thus
"+1 (n+ m

}"fD" g (22.9)

If Theorem 5 holds for n, it holds for ft + 1. However, it holds for n = 2, so that
it holds for all n.

Theorem 6:
n /

X—^ /
s W ' 8) — 2^t \ m

m=0 v"

Here, the comma denotes a Poisson bracket.

f: By Theorem 3

Av(/, g) = (/, AvS) + (Dsf, g) (22.11)
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Another application of Ds with use of Theorem 3 gives

#?(/. g) = (/, £>*g} + 2(DV/, Avg) + (D2/, #) (22.12)

Thus, Eq. (22.10) holds for n = 2. The proof of Eq. (22.10) by mathematical
induction proceeds just like the proof of Theorem 5; therefore Theorem 6 holds.

We now define the operator exp sDs by
00 £«

n=0 H'

Theorem 7:

exp eDs(fg) = (exp eDsf)(enpeDsg) (22.14)

where

expeDs(fg) = JT ^j WS) (22.15)

Proof: Apply Theorem 5 to Eq. (22.15). Then
oo n n / \

expsDs(fg) = 2^ — 2_j ( ]D™fD"~mg (22.16)
n=Q ' m=Q ^ '

Also
00 £k 00 g;

k=0 ' y=0 ^ •

Here, Eq. (22.17) is a sum over the first lattice quadrant. To perform the summation,
draw all the lattice lines perpendicular to the 45°, sum over each of these lines
(k = Oton), and then sum over all the lines in the quadrant (n = Otooo). With
k + j = /i, we obtain

'* (22,8,

which is the same as Eq. (22.16). Thus, Eq. (22.16) equals Eq. (22.17), so that
Theorem 7 is proved.

Theorem 8: With ( , ) denoting a Poisson bracket,

expeD,(/, g) = (expsD,/, expsD,s) (22.19)

Here
oo £n

expsD,(f , *) = £ - D ? ( f , g) (22.20)
n=0 "'
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Apply Theorem 6 to Eq. (22.20). Then
oo n n

exp£Dv(/,g) = £ — ]T
n=Q H' m=0

but

(expeD,/, expeD,*) = ^ Tj^v/> 2^ ~D^ (22'22^
V ^ O ^ ' 7=0 ^ ' /

The proof proceeds just like the proof of Theorem 7 with the appropriate insertion
of commas; so we shall regard Theorem 8 as proved.

Applications to Canonical Transformation
Let the variables £/, Y)J, j = 1, . . . , N, be canonical with respect to some

Hamiltonian F(£, r]). Relative to the £'s and ry's, their Poisson brackets satisfy

(£,-, &) = 0 (^., ̂ ) = 0 «y, %) = 8jk (22.23)

These relations Eq. (22.23), of course, follow at once from the definition of a
Poisson bracket and do not depend on the canonicity of the £'s and ry's, with
respect to F(f , 77).

Now, suppose we introduce new variables Xj, j j , j = 1, . . . , N, by

oo n oo n

where S = S(£, ?;), independent of r. We shall show that these ;c's and v's will also
be canonical with respect to some Hamiltonian K, where K = F if F is explicitly
independent of t. The proof goes as follows.

From Eqs. (22.24)

Xj = expeDj£/ v;- = expeDsr]j (22.25)

The Poisson brackets of the jc's and /s are given by

(xhxk) = (expeD^y, expfiD,&)

= expeD f(fy,&) (22.26)

by Theorem 8. Since (£,-, ̂ ) = 0,

(jc,-,^) = 0 (22.27a)

Similarly

(»,yt) = 0 (22.27b)

and

( x j , y t ) = 8jk (22.27c)
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However, Eqs. (22.27) are the necessary and sufficient conditions that Eqs. (22.24)
should be a contact transformation. Because the £ 's and 77's are canonical, the result
is that the *'s and j's are also canonical.

We may write Eqs. (22.24) in the form of Hori's equations (5a) and (5b).! To
do so, note that Dj£/ = £/, D^rjj = rjj and that

(22.28)
dS

By Eqs. (22.24) and (22.28),
oo cn o o

r'^ (22.29a,
'J

n A °

» = » / -£>r ' | - (22'29b)

These are the same as Hori's equations (5a) and (5b). They are equivalent to
the series (22.24), which are the series of nested Poisson brackets previously
mentioned. Thus

Dj£=(£,S), Z)^ = ((f,S),S), D,3f = (((f , S), S), S), ...

Suppose now that we have a function of the jc's and j's that does not depend
explicitly on s. Call it f(x, y), where the comma does not indicate a Poisson
bracket.

Xj = expsDyf/ yj = expsDsrjj (22.30)

Theorem 9:
i) (22.31)

where /(£, r]) is the same function of the ^'s and ^'s that f(x, y) is of the ;t's and

: From Eqs. (22.30) and (22.31)

f ( x , y ) = g($,ri,e) (22.32)

where j^;- = §;- and j;- = rjj when £ = 0. From Eq. (22.32)

df dyk

(22.33b)
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We then insert Eq. (22.33) into the expression for the Poisson bracket of g and 5:

with the result

Regrouping terms, we obtain

df dfo\ •> i / r<\ J

By Eqs. (22.30),
00 n

so that
° c«~ Cw

"^ = Dt Y ———D«-'|, = D, Y -s S - - * s
\jG 1 f l l , i / i - x ;. n f t ;

M=l W=l /I=U

Thus

—— = Dsxk (22.37a)

Similarly

— = Dsyk (22.37b)

and from Eqs. (22.36) and (22.37)

The last step follows from Eqs. (22.32). Thus

T*=D-*- 0 = ̂ ' -• S = D?* (2239)

and
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because g = f for s = 0. However, by a McLaurin expansion
oo n / ftti Q\

g(£, n,s) = ]T — ( —| J (22.41)

By Eqs. (22.40) and (22.41)
oo ^rt

~^^D'/(M)

but g(£, r], s) = /(jt, y), so that

^ow!

or

/(*,)>) = exp eD,f(S,T)) (22.43)
Theorem 9 may also be expressed as

/(expeDy£, expsDjf?) = exp£Dy/(£, r]) (22.43a)

If /(£, 77) = S(£, 77), this becomes

f ( x , y ) = S(%,r)) (22.44)

which means that the generator is conserved under the mapping (22.29).

Compounding Transformations
Suppose we go from (x, y ) to (f, rj) by means of the transformation function

S(£, 77), i.e., by

xk = exp 8Ds^k yk = exp sDs r)k (22.45)

and then from (£, 77) to (/?, g) by means of the transformation function S*(p, q),
i.e., by

& = exp £D,*#t ^ = exp e/Vp* (22.46)

How then can we express the jc's and y's directly in terms of the g's and p's?
Equations (22.45) imply Eqs. (22.43), so that

oo k
^—"^ ^ If

Similarly Eqs. (22.46) imply
oo £m

g(l;9 Y]) = 2_^ —t^s*(q p)8(4> P) (22.48)
m=0

In Eq. (22.47) put

7) = *(£, ri) (22.49)
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Then by Eqs. (22.48) and (22.49)
00 sm

#«.„)/<*• »?) = E -t^.pA.fiKq, P) (22.50)
m=0

Now, insert Eqs. (22.50) into Eq. (22.47). We obtain
oo oo k+m

/(*• ?) = EE 22-51
k=Q m=0

The sum is over the first lattice quadrant. As in proving Theorem 7, put m -\- k =
ft, sum over m from 0 to n and then sum over n from 0 to oo. We obtain

oo n n ,

/<*• » = E ̂  E oT^^A~V(*' "> (22"52)

This is the desired compound transformation, the same as Hori's equation (7).1
For the special cases / = Xj or / = y/, and omitting (q, p) in 5* and S for

clarity, we obtain

(22.53)

or

(22.54)

From these equations, we can show that — S(£, 77) produces the inverse of the
transformation produced by £(£> ^)- To show this, put S*(q, p) = —S(q, p) in Eq.
(22.54). By Theorem 4

A* A- D,A* = £W)
Because (5, — 5) = 0, we have D^v*) = 0, so that

In Eq. (22.54)

by the binomial theorem, since Ds and D_iV commute. However, D_iV + D¥ = 0,
so that the sums from m = 0 to n in Eqs. (22.54) vanish. Thus, 5* = — S yields
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Xj = qj and >'7 = PJ . Changing the sign of S reverses the transformation, as was
to be proved.

We may now put the compound transformation x , y -* q, p of Eq. (22.52) into
another form.

Theorem 10: For Lie series mapping, if x, y -» £, rj and £ , rj — > q, p, then

/(*, )0 = f(9, P} + «(/, S + S*) + ((/, S + S*), S + 5*) + (/, (5, 5*))

+ -((/, (S, S*), S + S*), S + S*) + -((/, 2S + S*), (S, S*))
6 6
e3

+ -r((/' (5. •$""))> S + 25*> + ' • ' (22.55)6
Here S = S(£, 77) and 5* = 5*(^, p), but both are to be expressed in Eq. (22.55)

as functions of <gr and p, according to Eqs. (22.54).
Proof: From Eq. (22.52), we have for the terms
n = 0:

w = 1:

£(D° Dv + Ds.D°)f(q, p) = e(Ds + Ds.)f = e(f, S + 5*)

n = 2:
2 2

y (D,2 + 2DS. D, + D2 )/(9, p) = y J22/

Here, we have to do some noncommutative algebra. Put

Ds = a Ds* = ft

Then

Q2 = a2 4- 2£a + £2

Now

(a + ft)2 = ct(a + ft) + ft(a + ft) = a
2 + ayS + fta + ft2

Then

+ ^2 - a2 - a£ - fta - ft2

= fta -aft

by Theorem 4. Thus
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The n = 2 term becomes

y ((/, S + S*), S+S*) + j(f, (S, S*))

For n = 3, the binomial coefficients are 1, 3, 3, 1, so that this term is

^-(D? + 3D,.Z^ + 3£>2 Ds + D^f = L(ai + 3pai + 3p2a + pi)f = i.
6 6 6

Now

P(a
3= a

Then
<23 - (a + £)3 = 2^of2 + 2£2a - oc2p - ctp2 - apoe - Pap

= (Pa - ap)(2a + ft) + (a + 2£)(£a: - a/8)

Thus

2s = (A, + Ds.)3 + D(S^}(2DS + D,.) + (Dv + 2D90^c^*)
This gives for the n = 3 terms

s3 s3

-((/, (5, 5*), 5 + 5*), 5 + 5*) + -((/, 25 + 5*), (5, 5*))
o 6

This concludes the proof of Theorem 10.
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Chapter 23

Perturbations by Lie Series

I. Introduction
>e the method of Lie

problem defined by a time-independent HamiltonianI N THIS chapter, we shall use the method of Lie series to solve a perturbations

;) (23.1)
k=\

Here, F^ has a factor sk, s being a small parameter, and the Jt's and v's form a
canonical system

^• = —— ^i = _i^ j = l,...,N (23.2)
df 9vy df 3*7-

We shall follow Hori1 up to the point where he introduces artificial times. After
that, we shall use the methods of Brouwer2 to indicate the solution of the problem
of an artificial satellite, when only zonal harmonics are considered. The results will
go beyond that of Brouwer, but we shall show how they include Brouwer's results.

II. Lie Transformations
Since F(x, v) is time independent, it is constant. Suppose we transform to new

variables £ and rj by means of a Lie series with a generating function S(£, rj, e). We
obtain a new Hamiltonian F*(£, r?) with (£, r?) canonical with respect to it, so that

Then

F(*, v) = F*(£, 17) = const (23.4)

is an integral of the motion. We can write this as

(|, rj) (23.5)

where the subscript k means that the term contains ek as a factor.
A Lie series with S(f , 77, s) as a generating function has the form

00 £n£-
»=o n'

275
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Here

D?/ = / D] f = (/, S) Dn
sf = ET- '(/, 5) (23.7)

where the Poisson bracket • » (23.8)
It is convenient to define functions ft(£, 77, s) by means of

ft + S2 + £3 + • • • (23. 8a)

where each Sk has £* as a factor.
We next apply Eq. (23.6) to the left side of Eq. (23.5) and equate terms with

equal powers of s on either side. What happens to £nD"Ffc(£, 77)? If n = 0, we
obtain Fk. If n = 1, we obtain

sDsFk = s(Fk, S) = (F*, eS) = (F*, ft + S2 + ft + • • •) (23.9)

For general n

s " D ^ F k = £
n ( - - - ( ( ( F k , S ) , S ) , S ) - - - )

= (...(((F t,eS),eS),eS)-..) (23.10)

an n-fold nested Poisson bracket. However, this is

enDn
sFk = (• • .(((Ft, 5,+52+53 + - - •), S1+S2+S3 + - • •), 5, + 52 + ̂  + - • • ) • • • )

(23.10a)

also n fold. The left side of Eq. (23.5) becomes

> 5, + S2

+ £ ̂ (quadruple nest) + • • • = Sm f*(f , n,) (23. 1 1)

Thus, F£ is equal to the sum of all those terms on the left side of Eq. (23. 1 1)
for which the sum of k and the subscripts of the 5"s is equal to m. We obtain

F0 =

Fi + (F0, ,

F2 + (Fo,52) + (F,,50

(F0,S3) + (F,,S2) + (F2,

+ i((F,,5i),Si) + i(((F(

Fo
so = FJ»
+ I((F0, 50, 50 = F*

S I)+i((F0,S,),S2) + i((7

,, 50, 5050 = F3*

(23.12a)

(23.12b)

(23.12c)

7o, 52), 50

(23.12d)

If we insert Eq. (23.12b) into Eq. (23.12c) and Eqs. (23.12b) and (23.12c) into
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PERTURBATIONS BY LIE SERIES 277

Eq. (23.12d), we can express these equations in sequential form

£° Fo = F* (23.13a)

e1 Fi+(F0,Si)=F,* (23.13b)

(F1 + F1*,S,)=F2* (23.13c)

+ I(F2 + F2*, SO + i((F, - F,*, SO, 5,) = F* (23.13d)

These equations are canonically invariant, so that any particular set of canonical
variables can be used in them.

III. Application to Satellite Orbits
To apply the preceding to artificial satellites, we use Delaunay variables L, G, H,

t, g, h. According to Delaunay's choice, the Hamiltonian F is minus the energy;
L, G, H are the ;c's; and £, g, h are the y's in

—— = —— — = ——— k = l,...,N (23.14)
dt dyk dt dxk

We shall treat only zonal harmonics as perturbations. Then h = & is absent from
F.If

Fo = /x2/2L2 (23.15a)
2

FI = -^-f/2F2(sin<9) (23.15b)r3

we have

F = FO +.Fi + higher zonals (23.15c)

Here, F2 would appear only if we were to include higher zonal harmonics. Also,
s = J2. Since the higher zonals are of order J% up to rather high zonals, we should
have

F2 = &3£2/3 4- &4£2/4 + • • • (23.16)

Here, £3 and k$ are of order unity, and /3 and /4 come from expressions for the
third and fourth zonal harmonics in the potential. With the notation we have used,
the £'s are then L', G', Hf, and the r/'s are €', g', h'. Equations (23.14) are

— - — — --—

dG dF dg dF n^\n\-— = _.— _ = ___. (23.17)

d// _ 9F d^ dF
dt ~ dh dt ~ dH
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Since h does not appear when zonals only appear in F, we have
// = const (23.18)

After the Lie transformation (*, y) — > (£, rj), Eqs. (23.17) become

dZ/ 3F* dT 9F*

dG' 3F* dg' 3F*
IT = 17 1 = -!<F (23'19)

d//' 9F* d/zr 3F*
dr dh' dt dH'

We anticipate the fact that the Lie transformation will make the F£ and the
independent of h', so that we shall have H = H'.

IV. Elimination of the Mean Anomaly
Consider

FI +(F0, Si) = Ff (23.13b)

Split FI into two parts:
F! = FI + Flp (23.20)

where
1 f2"77 __ I 77 / T I s**f Jjl o1

 n'\ A O1 /'I'S 11 "\r j = —— I r\\L , Cr , rz , t , g ) Q£ (ZJ.ZlJ
27T Jo

and
F1/7 = F! - A (23.22)

By Eqs. (23.13b), (23.20), and (23.22)

f i+(F 0 , Si) = F* (23.23)

To eliminate €; from the new Hamiltonian, use Brouwer's procedure2:

F* = FI (23.24)

(F0, Si) = -Flp (23.25)

Here, FI and F\p are given in Chapter 19 on the Brouwer theory. In the present
case, they become

1 3 Hf*
2 2 G / 2

(23.27)

In contradistinction to Chapter 19, all quantities in Eq. (23.27) are primed.
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Also, in Eq. (23.25)

Then
/(\Fn\~l r

lp dt' (23.29)

We have not had to introduce an artificial time as Hori did.1
To find F2* and £2, we use Eq. (23.13c), omitting the F2 if we choose not to

include effects of zonal harmonics higher than the second. On resolving F\ as
before, we obtain

FT. = (Fo, S2) + I(F! + F*, S& + \(FV + F;, S,)p (23.30)
Here, the subscript s denotes an average over t' and the subscript p the quantity
minus this average value.

We eliminate £' from F2* by choosing

F; = ^(Fi + Ff,Si)s = -l- [ (F1 + F* iS1)d€ / (23.31)
2 47T JQ

For 5"2 we obtain
(Fo,S2) = -i(Fl + F*,Sl)p (23.32)

or

Then

52 = "K^) f(Fl+F?'S^dl' (2334)

To find F3* and 5s, we use Eq. (23.13d). If we omit F$, we have

F3' = (Fo,53) + M3 l+Af3p (23.35)
where

M3 = |(Fi + F,*, S2) + i(F2 + F2*, 5,) + i((Fi - F,', 50, 5,) (23.36)
Then

i r2"
M3, = — / M3 d£' (23.37a)

2^ Jo
M3p = M3 - A/3, (23.37b)

We choose
^3 = Ms, (23.38a)

(Fo, S3) = ̂  ̂ | = -M3p (23.38b)

(23-38c)
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We could go on and find all the F£ and Sk in the same way. Like F* , F2* , F3* , S\ ,
^2, and 53, they are all independent of t' and h' . Since F* = EF^*, we have

IT = W = ° L/ = const (2339)

H /•/' f) F*
—— = —— - =0 H' = const (23.40)

From the 5*, we find 5 from sS = E5fc, where £ = 72. From the Lie series
of Chapter 22, with the (x, y) as unprimed Delaunay variables and the (£, 77) as
primed Delaunay variables,

7) (23.41)

Let us work this out for H.

H = Hf + JT — D; H' (23.42)

Here

DSH' = (//', 5) = —- = 0 (23.43a)

Dn
sH' = 0 (n > 1) (23.43b)

Thus

H = H' (23.44)

Before going on to the next topic, let us compare results with Brouwer.2

V. Comparison with Brouwer 's Theory
We have already shown that the Lie and Brouwer methods yield the same results

through order Ji in the splitting off of short periodic terms. Next, we shall show
that they yield the same results through order J% for F^ and L — L' . The reader
may also wish to show that G — Gx, t — t' , g — g', and h — ti , computed by either
method, also agree to this order.

Use the subscripts L and B for Lie and Brouwer. From Chapter 19

SIB = -(^7) / F\P M = W, G', H', €, g) (23.45)

From this chapter

G'9H',t'9g') (23.46)

the same expression with t and g replaced by tf and g1 . Here ̂ (t, g) and i/s(£', gf)
are both of order Ji, differing by a quantity of order 7|.
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Comparison of F2* by Both Methods
Brouwer's

F2*B=W (23.47)

where
' ij c \ ij IT* £j c % J7 % c^ _ ^ w . O.J1 \ ari 001 ori 001 x^^ ,„ x

= 9^777 (l7 +17777 + ̂ 7T" (23'47a)
2 dL /z \ 31 / aU at oG' ag

Here, F0 = /x2/(2L/2),andFi and Si are functions of L7, G', H'', €, andg. Through
order /^, A^ will be unchanged if we replace I and g in FI , Si and W by t' and g1'.
Also, through order y2

2,

i r271 i r27r
N = — I Ndt = — \ N d£' (23.47b)

27T Jo 27T Jo

To find F2*L, use Eq. (23.31):

= 7- I
47T Jo

i + Fj", 50 d£' (23.48)

where

F* = F*(L7, G', //O (23.49)

given by Eq. (23.26), and

Fj = Fi(L' , G' , H' , t' , g') (23.50)

given by Eqs. (23.20), (23.26), and (23.27). By Eq. (23.49)

<™>-E!h££
By Eq. (23.50)

(F S} = ̂ ^ 3FL3SL_3FL3S}__aFL3SL
! > 9Lr a£r 3Gf 3gf 3lf 3Lf 3g' 3G;

Using F* = Fj - FIP, we find for half the sum of Eqs. (23.51) and (23.52)

l(F+F* o x _ 8 F l ^ l , 8F1( 1 + ! ' ! j " a^ 2
i aF a i a a \ a a
2 aG; a^ 2 ar aL; 2

By Eq. (23.28)

dF0 3 S\
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so that

dF0 32Sl

dL' dLf2 U' dLf dLW
dFlL = _dF,^
dGf dL1 dG'dt'

Insertion of Eqs. (23.54) and (23.55) into Eq. (23.53) gives

±(F! + F;, SO = N'+Q (23.56)

where N' is the same as TV in Eq. (23.47a), except that t is replaced by t' and g
by g'. Also

IdFp 82Si 3 Si IdFp 92Si 3 Si 1 3Ft 9 Si 1 3Fi 3 Si
Q~ 2 "dUdL'dl'lw + 2W dG'Wlw ~ 2~dF~dLf ~ 2~dg'"dG'

(23.57)

Using

^^L = -Flp (23.28)dL7 ar p

we find

dgf d
From Eqs. (23.57)-(23.59), we find

dL dt'2

Fo^SL

' f

idFp/ a2St 3Si a2S! asi a^as! a2Si asA
2dL / V3^ / 9^9^ / dG'dt' dg' dt'2 3Lf dg'di' 3Gf )

or
_ _

2dLf M'\dL' dt' dG' 8g' ) '

Now d S i / d l f is purely short periodic in £' ', and Si is the sum of a short periodic
ternrand a constant by Eq. (23.28). Thus

(23.62)
' 3gf

 i>

By Eqs. (23.48) and (23.56)

F* = N' + Q = TV; (23.63)

using Eq. (23.62). However,

F*E=N (23.47)

Purchased from American Institute of Aeronautics and Astronautics  

 



PERTURBATIONS BY LIE SERIES 283

Here, N -N = O(y2
3), so that

F* = F2*B (23.63a)

through order J|. Through this order, the Lie series and Brouwer's method yield
the same transformed Hamiltonian.

Comparison of L — L' by Both Methods
By the Lie method

oo

L-L ' = ~ D"L' (23.64)

Refer back to Eqs. (22.10) to see that

— D«L' = -(•" (((Fk, Si + S2 + - - •), Si + S2 + • • 0, Si + S2 + • • • ) " • )n\ n\
(23.65)

an rc-fold nest of Poisson brackets. Then

where the S\ and £2 are those of the Lie method. Now, write out the indicated
Poisson bracket in Eq. (23.66). Then

( L - L f ) = dSl 3S2 l \ 32Sl 8Sl
d£f dif 2[dL'dl' d£f 'dt' 3gf

32Sl 3Si 32Sl 3Sl 1 , ,x
+ a^az7+a^^J + 0^) (23'67)

Next, we must express L — L' by the Brouwer method in terms of the same
variables:

(23.68)
ot ot

If we write the Lie Si as

Si = ^(L1, Gr, Hf, I ' , g') (23.69)
the Brouwer

SlE = t(L'9G',Hr
tl,g) (23.70)

For short

Si= W,g') SiE = t(l,g) (23.71)

Then

SIB = W + t-t',g' + g- g') (23.72)
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Expand this in Taylor's series and use

Then

5iB = ^C£', &') ~~ —7——~ ~ —;——~ + 0(^2) (23.74)

To the same accuracy, this may be written

o _ o _ __1___1_ _ __l___1_ I /-\ / y3\ ^9^ 1 ̂ C\
3£f 3Lf 3gf 3Gf

Now, since 5iB = *fy(Jt, g),

35iB = a5iB3£_ a5iB3£_ (23.76)
O /? O /?/ O ̂  O (jf ^ O

By Eqs. (23.73) and (23.75)

3g_ = _a_^i_ 0/ j2\ (23.77)
^ /7 ^\ y^« t *\ n I \ L I ^ '

If we insert Eqs. (23.77) into Eq. (23.76) and use Eq. (23.75) for SIB, we find
through order J%

= ̂ 1 _ ̂ ^i _ ̂ ^ + 0(/23) (23.78)

In Eq. (23.68), we also need a52B/9^, which we have to compare with 3S2/3lf of
the Lie theory. First consider 52. By Eq. (23.33)

dF0 a52 _ 1

By Eqs. (23.56) and (23.33)

since 2 = 0 -
Now consider 52B- From Chapter 19

(23.80)
dL' a£ p

Through order j|, we can write this as

10̂  = -^;
If

52-52B (23.81)
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it follows from Eqs. (23.79) and (23.80a) that

d^aA^2 = _<2 (23.82)

By Eq. (23.61)

2 dL' 31' \3L' 3i' + aG7 a^) (23.61)

and the second-order term in Eq. (23.68) is
3Si as, asA

(23.83)
U' 23l'\3Lf 31' 3G' 3g

Thus

a s2R i a
31 23i'

1 a /as, as, as, as, \ . -
(23.85)

By Eqs. (23.78), (23.68), and (23.85), we find

~ "aF ~ ~dF*~dl' ~ 3g'3tf aG7

_l_ —— _|_ _ — ( ———— _j_ ———— ) _|_ O(j2]
3£f 23if\3Lf 31' 3G'3g'J v 2/

(L -L) B = — + — + - [aL/a€,-^7 + aG/a^/ 9£/

which is the same as Eq. (23.67) for (L — L')L. This is what we set out to prove.

VI. A Second Lie Transformation
For an artificial satellite, with zonal harmonics only in the potential, we now

have as Hamiltonian

F* = F0*(L') + FftZ/, G7, H') + F2*(L', G', H', g') + F3*(L', G', //;, g')

(23.87)

where L' = L and //' = H. The variable £; has been eliminated.
If we can find a Lie transformation that will make

F** = F**(L", G", //") (23.88)
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the problem will be solved. If so, we shall know the differences between the singly
and doubly primed variables, and L"', G", H" will be constants that will serve as
mean orbital elements. Also, we shall have

—— = ———~ ~ = ———~ —— = ———~ (23.89)

so that

-t
9L
a/7**

t (23.90)

„ _ 9F**
-*°~~8tf~ '

Then, £Q, g'^ h'^ will be the remaining mean elements to be determined by
observation.

With

we now perform a Lie series transformation from (£, rj) to (q, p). Because F* is
time independent, if we use a generating function S*(q, p, s) that is time indepen-
dent, we shall obtain

F* = EF;($, ̂  = SF;*(^, /?) = F;*(<?, ̂  = const (23.92)
Apply

to F**. Then
oo £n

^2 — VkD».F£(q, p) = £*F;*(<7, p) = F0** + F** + F** + F3** + - - -
n=Q H'

(23.94)
Now apply Eq. (23.93) to F*(£, rj) = F0*(L') = ^2/(2L/2). It yields

_2° c«
F0*(L;) = F0*(L") + J] — D£F0*(L") (23.95)

Here

DV*F*(L;/) = (F0*, 5*) = —^^ (23.96)

Because F* depends only on L7, Gr, //', and g', we need 5* to depend only on
L",G", ///r, and g". Thus

5* = S*(L", G/;, ///;, g/;) (23.97)
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Then

DS.F*(L") = 0
(23.98)

DJF0*(L") = 0 ( n > l )

As a result, all the terms in Eq. (23.94) involving F£ disappear, except F£ itself.
It is also convenient at this point to show that Hf = H". To do so, apply

Eq. (23.93) to H1'. Then
oo £H

H' = H" + ]T — D£ H" (23.99)
n=\

but

D5*H" = (#", 5*) = jjf^ = 0 (23.100a)

by Eq. (23.97). Then

D£#" = 0 ( / i > l ) (23.100b)

Thus, by Eqs. (23.99)-(23.100b)

H' = H" (23.101)

We may now rewrite Eq. (23.94) as
£2

F* + FJ" + F2* + F3* + - - • + SDS.F; + ^DV*F* + . . - + y D^F*
= F0** + F** + F** + F3** + • - • (23.102)

Then

F** = F0*(L/;) = M2/(2L / /2) (23.103)

By Eq. (23.26), F* depends only on Z/, G;, and H'. Thus

Fj** = F,*(L", G / r, ///r) (23.104)

independent of €", g", and /zr/.
Now choose 5*, .S1 ,̂ etc., so that

£5* = E^; (23.105)

where S£ has £fc as a factor. We then find

F* + F; + • - - + (F*, eS*) + (F2*, ^5*) + - - -

+ ^((F*, ^5*), £5*) = F** + F3** + • • • (23.106)

This becomes

F* + F3* + (F*, SJ-) + (F*, 5*) + (F*, Sf)

= F** + F3** + - - • (23.107)
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Thus

F2** = F2* + (Ft*, S*) (23.108)

F3** = F3* + (F!*, S*) + (F*, S?) + \((F*, S*), S*) (23.109)
or

F;* = F3* + (F*, 5*) + i((F2* + F**, S*), S?) (23.110)

Also

Fj** = F^L", G", H") (23.104)

Because we shall choose F** to be F**(L", G", //"), independent of €", g", and
h", it follows that L", G", #" will all be constant. Thus, F0** and F** will both be
constants of the motion.

InEq. (23.108), write

F* = F£ + F2*p (23.111)

where the subscript s means an average over g". That is

F*v = ^~ fn F2*(L", G", //", gx/) dg" (23.112)
^7T JQ

Then
F2P = F2*(L//' G//' ^/7' g") - F2s(L//' G//' #") (23.113)

and by Eq. (23.108)
(Fj*, 5*) + F2* + F*p = F2** (23.114)

To eliminate g" from the Hamiltonian, choose

F** = F*? (23.115)

Then
(F*, 5*) = -F2*p (23.116)

Because F* = F^L", G /r, //;/, g/;), this becomes

^P = -F2; (23.117)

so that

S* = -(^] I F* (L", G\ H", g")dg" (23.118)
\dG"/ J 7

Here, we have been following Brouwer's procedure, so that the results must agree
with Brouwer's for the first-order long periodic terms.

Next, consider Eq. (23.110). We can write it as

4- ^((F2* + F**, S*), Sf)p = F3** (23.119)

Purchased from American Institute of Aeronautics and Astronautics  

 



PERTURBATIONS BY LIE SERIES 289

Now choose

F;* = F*, + I((F* + F**, S*), S*)s (23.120)

Then

(F!*, 5*) = -F*p - I((F2* + F**, S*), S*), (23.121)

so that

c* — _
^2 -

If / is any of L, G, #, £, g, A, then
oo n

/' = /" + ][]—D£/" (23.123)

or

/ ~~" / = (/ » "i "r ^2 ~"~ ' ' ') ' 2^-' ' 1 ~ " 2/ ' "1 ' *^2^

+ !(((/", 5,* + 5D- % + S*), S* + S*) + • • • (23.124)
This gives

L' = L" H1 = H"
as we have already seen. Knowing the doubly primed Delaunay variables, we can
find the singly primed ones.

We can find the doubly primed variables by Eqs. (23.90), since we now have
F** = £F£**. Given the mean elements L', G;/, H, €£, g%, and AJ, we can work
back to L, G, //, €, g, and A at a given time t, then to the Keplerian elements, and
finally to the rectangular coordinates and velocities.
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Chapter 24

The General Three-Body Problem

I. Introduction

T HE general problem of the motion of three particles, moving in response to
their gravitational interactions, cannot be solved in closed form. However,

there are certain integrals of motion that can be written down, and there are certain
stationary solutions that we shall derive. If one of the particles has a mass that is
negligible compared with the other masses, a good deal more can be said about
the motion. This problem, the restricted three-body problem, will be treated in
Chapter 25.

II. Formulation of the General Three-Body Problem
Let the three particles with masses m\, ra2, and w3 have position vectors

r i > r 2> f*3 in an inertial system Oxyz as shown in Fig. 24.1. Their separation vectors
are

Pn=r2-ri (24. la)

Px=r3-r2 (24. Ib)

p 3 1 = n - r 3 (24.1c)

The equations of motion are
Gm2

Pi2
3i (24-2a)

P i
Gm\

r2 = ̂ p23 - — 5-^12 (24.2b)
Px Pn

Gm\ Gm2r3 = — 3-p31 - — 3-p23 (24.2c)
Pli Px

where G is the gravitational constant.

III. Momentum Integrals
Multiply Eqs. (24.2), respectively, by mi , w2, and w3, and add the results. We

find

m\f\ + m2r2 + ra3r'3 = 0 (24.3)

291
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23

Then

and

where

x —— y

Fig. 24.1 Formulation of the general three-body problem.

m\r\+

MR = m\r\ = c\t

M EE m\

(24.4)

(24.5)

(24.6)

and where R is the position vector of the center of mass of the three particles.
Equations (24.4) and (24.5), when expressed in terms of rectangular components,
yield six integrals.

IV. Angular Momentum
The total angular momentum is given by

L = E/r* x (mifi)
Then

— =— _ ,-/•/ x (m/r/)

From Eqs. (24.2) and (24.8), it follows that

G~ — = —3—(ri —r 2 ) x p12 + —3—(r2 — r3) x p23+ar pu p23

Then by Eqs. (24.9) and (24.1)
dL
— =0 L = const vector
dt

This vector equation yields three integrals.

(24.7)

(24.8)

(24.9)

(24.10)
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V. Energy
In Eqs. (24.2), form the scalar product of each r,- by m/r, and add the results.

The sum of the left sides becomes

L/tfi/r/•/••,- = — (24.11)

where the kinetic energy T is

T = -E//n/r? (24.1 la)

The sum R.S. of the right sides becomes

\
R.S. = G

L
. . .

~ ri -r2)-p12 + — 3— (r2 -r3)-p23 + — 3— (r3 -r
P?2 P23 Psi

(24.12)

However,

r i - r 2 = -p12 r2-r3 = -p23 ^3-^ i=-p 3 i (24.13)
so that by Eqs. (24.1)

(ri -r2)-p12 = -Pi2-Pi2 = -PuP\2 (24.14a)

(r2 - r3) • p23 = -p23 • p23 = -tote (24.14b)

(r3 -ri).p31 = -psi -Pai = -P3iP3i (24.14c)
Then

\mlm2 . m2m3 . m3mi . 1
R.S. = -G ——3—— Pi2pi2 + ——3—— P23P23 + ——3—— P31/>31

L Pl2 ^23 ^31 -I

(24.15)
& L Pl2 P23 P31 J

or

R.S. = -y- (24.16)

where the potential energy

y = -G\ *^—t + ^—5- + —^—- (24.17)
L Pl2 P23 P31 J

From Eqs. (24.11) and (24.16)
dr dV
— + —=0 (24.18)

so that the total energy
T + V = const (24.19)

This gives one more integral, so that we now have 10 integrals of the motion.
There is another integral1 obtained by "elimination of the node," but we shall not
consider it in this text.
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VI. Stationary Solutions
A stationary solution of Eqs. (24.2) is one in which each particle moves in a

circle about the center of the mass, each with the same angular velocity n. We shall
show that such solutions, which were discovered by Lagrange, do exist.

For such a solution, with origin at the center of mass,

ri = -n
2ri i = 1,2,3 (24.20)

With origin at the center of mass

m\ r\ + W2/*2 -f rn^r^ = 0 (24.21)

so that

m^ri — — m\r\ — ̂ 3^3 (24.22)

Equation (24.2a) becomes

/ -MOON(24.23)

m\ m^ m-\ m^ m^
= ''i -- - - - +^ -- + - (24-24)

G p\2

From Eqs. (24.23) and (24.22)
2 \
71 = ''i

P\2 Pl2 Pl P\2

Apply r i x to Eq. (24.24). The result is

--4-) =° (24-25)
i Pi2/

The assumed solution requires either that

T! xr 3 =0 (24.26a)

or

Pi2 = P3i (24.26b)

Next, apply a similar procedure to Eq. (24.2b). In place of Eq. (24.23), we find
an equation that can be obtained by the cyclic permutation 1 — ^ 2 , 2 — ̂ 3 , 3 - > l .
The result is

(24.27)
G

From Eq. (24.21)

m\ r\= —miri — m^r^ (24.28)

Insert Eq. (24.28) into Eq. (24.27). The result is

/i2r2 / m i m3 m2 \ /m3 m3 \
—— 7T- = r2l —— T~"l~ ~ — +r3 1"T" ~T (24.29)

G \ Pl2 P23 P\2 \P23 Pl2/
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Apply r2 x to Eq. (24.29). The result is

(24-30)
*2J Pi

Then, either

r 2 x r 3 = 0 (24.3 la)

or

P23=P12 (24.31b)

To summarize Eqs. (24.26) and (24.31): The following conclusions are both
necessary conditions for the stationary solution (24.20).

r i x r 3 = 0 or p12 = p31 (24.32a)

r2 x r3 = 0 or p23 = Pi2 (24.32b)

Now, for example, r i is the vector from the center of mass to particle 1 . If either
of the vector products r i x r 3 or r2 x r3 vanishes, but not the other, then two of
the particles lie on a straight line containing the center of mass, and the third lies
off this straight line. This result is impossible, as the center of mass of all three
particles is the center of mass, e.g., of w2 and a particle of mass m\ + w3 at the
center of mass of m\ and w3. Thus, both vector products must vanish or neither
can vanish.

If neither vanishes, we must accept the alternative conditions in Eqs. (24.32a)
and (24.32b), which lead to p\i = p3] = p23, i.e., to an equilateral triangle solution.
If both vanish, then all three particles are collinear.

VII. The Triangular Stationary Solution
If pl2 = p31 = p23 = P — const, there is a stationary solution for which

n2p3 = G(m\ + m2 + w3) (24.33)

To show this, apply Eqs. (24.2), with the origin at the center of mass, so that

m\r\ + w2r2 + w3r3 = 0 (24.34)

and put

Pn = Psi = P23 = P . (24.35)
Equations (24.2) become

-r3) (24.36a)
Cr

r2)-mi(r2-ri) (24.36b)
Cr

P3

— r's =m\(r\ -r3)-/n2(r3 -r2) (24.36c)
Cr
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since
pu=rj-ri (24.37)

Apply Eq. (24.34) to the right sides of Eqs. (24.36). We find
3

G*

&

P~G*

i - -(mi -

2 = -(/HI -

3 = -(mi -

f w 2 + w3)ri

F- w2 + ra3)r2

f m2 + w3)r3

(24.38a)

(24.38b)

(24.38c)

Thus,

f,. = -^r, i = 1,2,3 (24.39)
P3

where
M = mi + w2 + w3 (24.40)

or
r, = -n2rt (24.41)

which is the equation for a stationary solution, with

n2p3 = G(mi +m2 + m3) (24.42)

If one of the masses vanishes, Eq. (24.42) becomes the usual equation of the
two-body problem

n2a3 = G(mi + w2) (24.43)

corresponding to Kepler's third law.

VIII. The Collinear Stationary Solution
We saw from Eqs. (24.32) that the vanishing of both vector products r\ x r3

and r2 x r3 was one of the possible choices among necessary conditions for a
stationary solution. Let us now assume this vanishing. Then r i, r2, and r3 are all
parallel, with the result that the right sides of Eqs. (24.2) are all parallel to any of
these three vectors. It is appropriate to place

r2 = X2r2 (24.44)

but we need more for a stationary solution. Indeed, we need

-2 (24.45)

so that the three particles will stay on a line rotating with angular velocity n.
Let us now see if this is possible. For Eqs. (24.2), (24.44), and (24.45) to hold,

we need to replace r/ by —«2r/ in Eqs. (24.2). Do so and let i be a unit vector
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ap

-4—•
O ml C

Fig. 24.2 CoIIinear stationary solution.

pointing along the line of collineation. Call

rk-i=xk k = 1,2,3

Then Eqs. (24.2) become

2 __ Gm2 Gm3

2 _ Gm3

P323

+**

Pn

P31 P23

(24.46)

(24.47a)

(24.47b)

(24.47c)

Consider Fig. 24.2, where we choose the case where the center of mass C lies
between m\ and w2. Placing

x2 - x\ = a =

p) =

we find
Gm2

(24.48a)

(24.48b)

(24.48c)

(24.49a)

(24.49b)

It is not necessary to use Eq. (24.47c). We may use instead the equation for the
center of mass

(24.50)

(24.51)

Gm\

m\x\ -\-m2(a + x\) + m<$(a + ap + x\) = 0

Solve Eq. (24.50) for x\\ we have

(m\ +W2 + m^)x\ = —m2a — m^a(\ + p)
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With

M = mi + w2 + w3 (24.52)

= ~[m2 + m3(l + p)] (24.53)

then

x2 = a + xi = — [mi - mip] (24.54)
M

Insert Eq. (24.54) into Eq. (24.49b) and solve for n2:

n2=GM mi - in 3 /P ^^
a* m\ — m^p

If w3 = 0, this yields the usual two-body equation.
From Eqs. (24.53) and (24.55)

'[m2 + m3(l+p)] (24.56)

but by Eq. (24.49a)

2 Gm2* xi = —— — - (24.57)a2 az(l + pY
On equating Eqs. (24.56) and (24.57), we obtain an equation for p:

p ) ] = I B 2 + 3 (24.58)

which reduces to an identity if w3 = 0. Equation (24.58) reduces to a quintic
equation for p:

m3F(p) = 0 (24.59)

where

F(p) = (mi + m2)p5 + (3mi + 2m2)p4 + (3m i + m2)y03

- (m2 + 3m3)p2 - (2m2 + 3m3)p - (m2 + m3) (24.60)

Then, either /7i3 = 0 or

F(p) = 0 (24.61)

Here, F(p) has only one change of sign for positive p, so that by Descartes' rule
of signs there cannot be more than one positive root. There is one root, because
F(0) < 0 and F(oo) = +00. By renumbering the particles, we can find two other
collinear solutions in the stationary case.

Reference
1 Whittaker, E. T., A Treatise on Analytical Dynamics, 4th ed., Dover, New York, 1944,

p. 341.
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Chapter 25

The Restricted Three-Body Problem

I. Introduction

L ET one of the masses, M3, be very small compared with the other two, M\
and M2. This would be true if M\ and M2 are the masses of the sun and Jupiter

and M3 that of a Trojan asteroid or if M\ and M2 are the masses of the Earth and
the moon and M3 that of a lunar vehicle or an Earth-moon space station.

Label the masses, so that M\ > M2 and let

, O C 1 N-m (25.1)
MI + M2 MI + M2

Then m < 1/2. The masses M\ and M2 are called the primaries. In the bounded
case, each moves in an ellipse about the other or about their center of mass C. We
shall consider only the "circular restricted" problem where the primary orbits are
circles. Either moves in a circle about the other or about C.

Denote X , Y, Z as the rectangular coordinates of a rotating coordinate system
such that MI is at (Xi, 0, 0), M2 at (X2, 0, 0), and C at (0, 0, 0), with C being at rest
with respect to an inertial system (Fig. 25.1). The angular velocity in the circle is
the mean motion n, and the separation distance between M\ and M2 is M\ M2. Thus

w V = G(Mi + M2) a = X2 - Xi (25.2)

Let R be the position vector of M3, and let V and A be its velocity and accel-
eration relative to the rotating system. Then M3 A is the sum of two gravitational
forces, a Coriolis force, and a centrifugal force. Thus

M3A = - R l - R2 _ 2M^nk xV- M3n2k x(kxR) (25.3)
Rl R2

Here, R\, J?2, and R are the position vectors of M3 relative to MI , M2, and C, and
A: is a unit vector along CZ, so that the vector angular velocity n = nk.

ByEqs. (25.1)

GMi = G(Mi + M2)(l - m) GM2 = G(Ml + M2)m (25.4)

Let i and j be unit vectors along CX and C7, and denote a time derivative by a
prime. Then

R = Xi + Yj + Zk
V = X'i + Y'j + Z'k (25.5)

A = X"i + Y"j + Z"k

299
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M 2 ( X 2 , 0 , 0 )

, r , z)

Fig. 25.1 Restricted three-body problem.

(25.6)
R2 = (X-X2)i + Yj + Zk

k x V = k x (X'i + Y'j + Z'k) = -Y'i + X'j (25.7)

kx(kxR) = k(k-R)-R = -Xi - Yj (25.8)

Inserting Eqs. (25.5)-(25.7) into Eq. (25.3) and canceling the M-$, we find

Y" Y
Z

GM2
(X - X2)

Y
Z

-2n
-X
-Y
0

(25.9)

so that

" + 2nX'
Z"

(X - X2)

GMly GM2y

GM, GM2

(25.10)

With X2 — Xi = a, it is now convenient to use a as the unit of length and l/n
as the unit of time. This involves putting x = X/a, y = Y/a, z = Z/a, R\ =
api, R2 = ap2, and r = nt. The length and time units, which depend only on a
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and n, become arbitrary by this normalization. Also use Eqs. (25.4) and denote
d/dr by a superscript dot. Equations (25.10) become

x — 2y
x — Pi -(x -xi)- -~(x-:

P\
f l — m) m

(1 — m) m
-———^——Z — -rrZ

(25.11)

Next multiply Eqs. (25.11), respectively, by i, y, and z, and form the resulting
sum. The result is

(1-gQ

P?
[(x - x\)x + yy + zz]

m
- -^[(x - x2)x + yy + zz]

Pi
(25.12)

or

m
3 I

P2

If we write

we obtain

*2)* + yy + zz]

Pi =(x-x\)i + yj + zk
Pi = (x - x2) i + yj + zA:

Pi • Pi = (^ - ^i)^ + ̂ j + zz = pipi

P2- P2 = (x - x2)x + yy + zz =

[(;c — x\)x + ^j^ + zz] pi

j + zz]

(25.13)

(25.14a)

(25.14b)

Then

5S'
or

--I2dr dr
d /m

(25.15)

-[(i2 + y2 + z2)] - [(x + y2)] - — -- = -2C= const (25.16)
2 2 P\ P2

Here C is called the Jacobi constant, and Eq. (25.16) is called the Jacobi integral.
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Fig. 25.2 Inertial coordinate system in a rotating coordinate system, with t = 0.

It is instructive to derive the Jacobi integral (25.16) by a Hamiltonian method.
To do so, we first rewrite Eq. (25.16) in terms of the original variables. The form
is

dZ
R2

= -2Cn2a2

(25.17)
To do this derivation, we construct the Hamiltonian in the rotating system and

show that it does not depend explicitly on the time. Let £, rj, £ be an inertial system
of rectangular coordinates, with which CX7Z coincides at time t = 0 as shown in
Fig. 25.2. The preceding rotating system rotates about CZ with angular velocity
n. Then

Z = £ (25.18)
If the projection of R on the plane £ = 0 makes an angle 0 with C£, it makes an
angle 6 — nt with CX. As a complex number, this projection can be written as
f + it] in the inertial system or as X -M7 in the rotating system.

If

then

so that

X + iY =rei(e-nt}

(25.19a)

(25.19b)

(25.19c)

(25.20)
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With use of a prime for d/dt,

£ + in1 = (Xf + iY')eint + in(X + iY)elnt

£' - irf = (X' - iY')e-int - in(X - iY)s~int

£'2 + n'2 = X'2 + Y'2 -f n2(X2 + Y2) + 2n(XYf - YX') (25.21)

The kinetic energy per unit mass

T = ̂ '2 + r/2 + f /2) = ^(X/2 + Y'2 + Z/2) + y (X2 + F2) + /T(*r - YX')

(25.22)
Then

q = piX' + p2I" + p*Z' = X'2 + Y'2 + Z /2 + /i(X7' - YX') (25.23)

Lagrangian:

1 n2

L = T - v = ~(x'2 + y'2 + z/2) + —(x2 + Y2) + «(xr - rx') - v
Hamiltonian:

1 n2

H = Zpq-L = -(X'2 + F /2 + Z /2) - —(X2 + Y2)+V (25.24)

or

H = \[(P> + nY)2 + (P2 ~ nX? + pi] - y(X2 + Y2) + V

a constant because it does not depend explicitly on the time. However

GMl GM2^r~~^r
and the term containing the/?'s is simply (X/2 + Yf2 + Z/2)/2. Thus

1 , 2 + y,2 + z,2) _
2 2 R\ K2

which is the same as Eq. (25.17). This completes the Hamiltonian derivation of
the Jacobi integral.

It is also of interest to show that this Jacobi integral is equal to the energy minus
the product of the angular velocity and the z component of the angular momentum.
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By Eq. (25.22), the energy is

1 n2

W = -(X'2 4- Y12 + Z /2) + —(X2 4- Y2) + n(XY' - YX') 4- V (25.26)

We first show that the z component of angular momentum, viz.,

Lz = $rf - n$' = XY' - YX' 4- n(X2 4- Y2) (25.27)

To do so, use

r = V 4- <w x r = X'l + y'jf 4- Z'jfc + «A: x (Xi 4- 7; 4- Zk)

= V 4- /i(-Fi 4- Xj)

L = r x r = r x V 4 - /i(Xi + Yj 4- Zft) x (—Fi 4- Xy)

On taking the z component of each side, we obtain Eq. (25.27). Then

/!(£*/ - r;f') = n(XYf - YXf) 4- «2(X2 + F2) (25.27a)

On subtracting Eq. (25.27a) from Eq. (25.26), we obtain the Jacobi integral (25.25).

II. Zero-Velocity Curves
Examination of Eq. (25.16) suggests introducing the function

o 1 — m m
, z) = [

p\
(25.28)

By Eq. (25.14)

p2 = (X -

so that
dU

dU
3y

(1 — m) m
t V -v \ I ' \- v "\ i /^ /On »

P\ P2

= y
dU (1

— m) i

P\ y /
— m) m

3z p\ " pi

\y (25.29b)
^2

^z (25.29c)

Equations (25.11) then become

x -2y
y + 2x

z
=

r at/ n
3x
dU

du
(25.30)
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On multiplying Eq. (25.30), respectively, by x, y, z and adding the results, we
find Eq. (25.16) again. If we put

V2=x2 + y2 + z2 (25.31)

we obtain

1 dv2 dU
-—- — =0 (25.32)

so that

v2 = 2U - C (25.33)

the same as Eq. (25.16). For 2U = C, there corresponds a zero-velocity curve. By
Eq. (25.28), on such a curve, C can be large if p\ or pi is small or if x2 + y2 is
large. In such a case, real motion can take place only inside small ovals enclosing
each primary or outside the circle Jc2 + y2 = C.Aswe vary C, we find a pattern of
regions where motion is permitted or forbidden. Diagrams are given by Pollard1

and Brouwer and Clemence.2 They are used to develop the concept of double
points, where two of the curves touch each other. This concept in turn is used
to find the equilibrium points. Since there is a simpler method of finding the
equilibrium points, we shall not draw such diagrams but proceed in a different
way.

III. Equilibrium Points
Return to Eqs. (25.11). Suppose that the first and second derivatives of Jt, y, z

with respect to r all vanish initially. Equations (25.11) show that all the higher
derivatives of x, y, z vanish initially and, thus, vanish for all values of r by Taylor's
theorem. [Remember that p2 = (x— Jti)2 + y2 + z2 and p2 = (x— Jt2)2 + y2 + z2.]
Thus, if i:, y, z, x, y, z all vanish initially, then z = 0 for all t, and x and y remain
constant, so that the points of equilibrium satisfy

^ = ,_(I__^_-,= 0 (25.34b)

— = z = 0 (25.34c)

for all values of r.

The Triangular Points of Lagrange
For equilibrium points with y ̂  0, Eq. (25.34b) gives

1 - (-?—^l - ™ = o (25.35)
Pi Pi
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Fig. 25.3 Triangular equilibrium points (y 7^ 0, z = 0) with MI and A/2 as primary
masses, MS at equilibrium points, and MI > MI ~^> Mj.

From Eqs. (25.34a) and (25.35)
(1 -m) m

— x I l — ——~— —r t mx2 _
H~ a — "

but, by the property of the center of mass,
(1 — m)x\ + mx2 = 0

Also

(25.36)

(25.37)

so that
Xl=-m x2 = l-m (25.38)

Insert Eqs. (25.38) into Eq. (25.36). Then, m(l - m)(pf3 - p^) = 0, so that
Pi = P2- On inserting p\ = p2 into Eq. (25.35), we find

Pi = Pi = 1 (25.39)

Thus, there are equilibrium points (L4 and LS) at the vertices of an equilateral
triangle (as shown in Fig. 25.3), which are called the Lagrange triangular points.

The Collinear Equilibrium Points
In Eq. (25.34a), insert )> = z = 0, x\ = — m, and x^ — \—m. Then

p\ = (x + m)2 - I)2

and
m)

= 0 (25.40)
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Fig. 25.4 Collinear equilibrium points (y = z = 0) with Ml and M2 as primary masses,
M3 at equilibrium points, and MI > Af2 ^> M3.

This is the equation for equilibrium points (Li5 L+, and L_ that some authors
denote, respectively, as LI , L2, and LS) on the x axis joining the primaries (M\
and M2) as shown in Fig. 25.4. For the Earth-moon-space station system, the
equilibrium points are depicted in Fig. 25.5.

Case 1: x < —m
In this case

x + m < 0

x + m = —\x+m\

x + m — 1 < — 1

x + m — 1 = — \x + m
(25.41)

Earth: M,
Moon: M
Space Station: M (at equilibrium points)

elliptic
motion

Fig. 25.5 The triangular and collinear equilibrium points (Li, LI, £3, £4, and LS) for
the Earth-moon-space station system.
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By Eqs. (25.40) and (25.41)

f ( x ) = x + / m + m (25.42a)(x + m)2 (x+m-l)2

(25.42b)

the sign being positive by Eqs. (25.41).
Also

/(— oo) = —oo f(—m) = +00

Because f ' ( x ) > 0 for x < — m, it follows that the curve of f ( x ) vs x crosses the
x axis once and only once when x < —m. Call this zero L_. In Fig. 25.4, this is
the collinear equilibrium point to the left of the larger mass M\ .

Case 2: —m < x < 1 — m
Here

x + m > 0 x -\- m — 1 < 0
(25.43)

.x + m = |jt -f m| x + m — 1 = — \x + m — 1|

By Eqs. (25.40) and (25.43)

+ (25'44a)

(25.44b)
I)3

Here /'(x) > 0 by Eqs. (25.43).
Also

1 — m m
j(-m + e) = -m +e — — — + - —— —r ->• -oo as e -> 0

a2 (s — I)2

/(I -m-s)=l-m-s- — —— — + — -> +00 as £ -> 0
(1 — s)2 s2

In this interval between the primaries, f ( x ) starts out at — oo and goes to +00,
always increasing. There is one and only one equilibrium point between the pri-
maries; call it LI (intermediate).

Case 3: x > 1 — m
This is to the right of the smaller mass in Fig. 25.4. Here

x +m > 1 Jt + w — 1 > 0
(25.45)

x + m = \x + m\ x -\- m — I = \x + m — 11
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By Eqs. (25.40) and (25.45)

(x+my (x -\-m-
Also

(25.46b)

/(I - m - e) = 1 - m - e - ~ ™ - ™ -> -oo (25.47)
(1 £) £

as s -> 0, and /(oo) = +00, so that /(jc) goes from -oo at x = 1 — m to
+00 at +00, always increasing. There is one and only one equilibrium point for
x > 1 — m; call it L+.

Solution for L+
Put x — X2 + p = 1 - m + p, so that p = p2- Insert this into Eq. (25.46a) with

/(*) = 0. Then

1 - m + p - -^- - -2 = 0 (25.48)
(1 + p)2 p2

Divide by 1 - m and transpose:

! , 1 m 1
1 - m (1 + p)2 1 - m p2

Use

p (^ m \
T^ = (1 + T^>

m \ 1 m li _j_ ___ \n _ ____ _ ___ _
1 ̂  -i ... ]r /-i , _V> ~ 1 ... .0

(I + P)2

since m < 1/2 as defined in the first section of this chapter. Thus, p2 = p < I and

m 3p3(l +
— (25.49)

i — m ^i -f pru — P")

Now put

/ m \5
(25.50)

Purchased from American Institute of Aeronautics and Astronautics  

 



310 J. RVINTI

Then

p3(l + p + p2/3) = A3(l + p)2(l - p3) (25.51)

If MI is the sun, M2 the Earth, and MS an Earth-orbiting satellite, then p2 == p is
small. For small p, we have p ^ A, which suggests use of a series expansion

p = A(l + ciA 4- c2A2 + • - -) (25.52)

Insert Eq. (25.52) into Eq. (25.51) to find

1 + (1 + 3d)A. + (| + 4ci + 3c2 + 3c2)A2 = 1 + 2A + (1 + 2Cl)A2 (25.53)

Comparing coefficients, we find
A:

1 + 3ci = 2 or c\ = |

A2:

Thus

where m = M2/(Ml + M2) and X = (M2/(3M1))1/3 is given by Eq. (25.50). Thus,
for L+

x = 1 - m + X(l + |A. - |A2 + - - - ) (25.54)

Solution for Lt

Put ; t=.r2 — p = l— m — p, so that p = p2. Here p < 1. Insert this into
Eq. (25.44a) with /(*) = 0. Then

L + =0 (25.55)
(1 — p)2 p2

Proceed as previously described, solving for m/(l — m) in terms of p.

m 3p3(l — p 4- p2/3)
——— = _ \2/i _ 3\ (25.56)

Again

p « A = ^——^——J 3 (25.56a)

for small p. We could go through the same procedure of expanding in powers of
A; it is easier, however, to solve for p in terms of A by means of a trick, from that
for L+. In neither Eqs. (25.49) nor (25.56) does the p3 in 1 — p3 contribute to the
expansion if we stop at A3.
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For L+, we had

• rtl+pgm (25.57)
3(1 -m) (1+p)2

Now in Eq. (25.56), put p = -p', and put X = -X'. Then by Eqs. (25.56) and
(25.56a)

p'3(l + p' + p'2/3) 3 ,
— — ~

Equation (25.58) has the same form as Eq. (25.57), with p' replacing p and X'
replacing X. Thus, p' is the same function of A/ that p is of X, so that

-

or

(25.59)

This is the solution for Lt. With m = M2/(Ml + M2) and X = (M2/(3M1))1/3,

x = 1 - m - X(l + |A. - ±A2 + • • - ) (25.60)

Solution for L_
Put * = %i — p = —m — p, so that p\ = p. Here p < 1. Insert this into

Eq. (25.42a) with /(*) = 0. Then

= 0 (25.61)
' P2 d + P)2

Then
1 \ l-m

_
l-m\(l + p? l-m

m 1

m - j _2

l - m 1-(1+P)3

We may write this as

(p-p-2)(l+p)2 (p 3- l ) ( l+p) 2

'

(25.63)
l - m D
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where if
a = p - 1 (25.64)

N = Ua + 24a2 + 19a3 + 7a4 + a5 (25.65)

D = 7 + 26a + 37a2 + 25o?3 + 8a4 + a5 (25.66)

From Eq. (25.63)

m = ——-— (25.67)

so that
_m = 12 + 24a + 19o?2 + 7o?3 + a4

a ~ 1 + Uof + 13a2 + 6a3 + a4

By the elementary algorithm for division

-£ = T-|a2 + 0<a3> (25'69)

The first approximation to a solution for a is

a = a0 = -—m (25.70)

Insert this into the a2 term in Eq. (25.69). The next approximation is

m 12 23 / 7 \2 12 T 23 7

23 7

or
7m T 9^ .1

(25.71)

(25-72)

This is the solution for L_. With m = M^/(M{ + M2) and X = (M2/(3M1))1/3,

(25.73)

IV. Motion near the Equilibrium Points
Return to Eqs. (25.30)

x - 2y = Ux (25.30a)

y + 2x = Uy (25.30b)

z = UZ (25.30c)
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where the subscript of U denotes a partial derivative and

U(x, y, z) = l-[(x2 + v2)] + ——— + - (25.28)
2 p\ P2

Again, Eqs. (25.28) and (25.30) apply only the "circular restricted" problem where
the primary orbits are circles. From Eq. (25.28)

(25.74)
P P

By Eqs. (25.28) and (25.30c)

z + kz = 0 (25.75)

where

* = + (25.76)pi pi
If p\ and pi are the distances of an equilibrium point from the primaries, then

Uz is the first term in the expansion of Uz in a Taylor's series in the neighborhood
of the equilibrium point. Then k is a constant, and by Eq. (25.75)

z=bicos(k*T-6) (25.77)

9 being a constant. Equation (25.77) shows that motion of the orbiter perpendicular
to the plane of the primary motion is simple harmonic if the orbiter remains near
an equilibrium point. If the equilibrium point is a triangular one, then p\ — p2 = 1
and

k = l-m-m = l (25.78)

To the approximation considered, the z frequency is the same as that of the
primaries.

V. Motion in the Plane of the Primaries
In Eqs. (25.30a) and (25.30b) put

* = *o + A
y = yo + fc (25.79)

In the neighborhood of the point XQ , 3/0, the Taylor expansion of a function f ( x , y )
takes the form

f ( x , y) = /(xo, ?o) + Pifx(x<>, yo) + Pify(xv, ?o) + - - - (25.80)

where

- 9/ - Bf
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Then, in Eqs. (25.30a) and (25.30b), by Eqs. (25.79) and (25.80)

ft - 2£2 = (UX)Q
(25.81)

4- 2ft = (£/y)o
Because

£/ = I[(jc2 + 3,2)] + J-^ + ̂  (25.28)
2 pi p2

we find

Ux=x- —— ~ — (x - xi) - -r(* - *2)
P? 02

(1-m) m
^ = ? ~ —— 3 — 3> - -rJ

Pi P2
3

(1 — m) m 3(1 — m) 9 3m 9
£/« = !- - —— r^ - -3 + 5 (^ - ^i ) + -rfr - xtf = A

Pi P\ Pi P2

Uxy = Uyx = ———— 5 ——— (X ~ X\)y + -y(oc - JC2)y = B
Pi P2

(I — m) m 3(1 — m) 9 3m 9; 2 — y2 = CUyy —— 1 —— ~ —— ——? -T Z _/ -T P-

Pi P2
3 Pi P\

At the triangular points

2 2

L4 .' J = 2V-3 ^5 • J = ~2^^

A = \ (25.82a)

- 3V3,( l -2m)a tL 4 5 = —— :^(l-2m)atL5 (25.82b)
4 4

C = 9/4 (25.82c)

At the collinear points
_ 3(1 — m) 2 3m 2

/I :^ 1 /C ~r~ r \-^ -^ 1 / "T" <~ v-^- -^2/pf P!
p2 = (x + m)2 = (x — x\)2

P2 = (x+m- I)2 = (x -x2)2

A = l_k+*L=^L + ̂  = l,k + 3k = l+2k (25.82d)
Pi P2

B = 0 (25.82e)

(^ == 1 — ——^— — —T ^ 1 /c (^
Pi P!
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Since (Ux)0 = (Uy)o = 0 at equilibrium points, we find from Eqs. (25.81)

fa - 2 fa = A fa + Bfa

fa + 2 fa = Bfa + Cfa (25.83)

If the operator D = d/dr, then

(D2 - A)fa = (ID + B)fa (25.84)

(D2 - C)fa = ~(2D - B)fa (25.85)

Operate on Eq. (25.84) with 2D - B. Then

(2D - B)(D2 - A)fa = (4D2 - B2)fa

The operators commute, so that

(D2 - A)(2D - B)fa = (4D2 - B2)fa (25.86)

but by Eq. (25.85)

-(D2 - A)(D2 - C)fa = (4D2 - B2)fa (25.87)

Thus

[D4 + (4 - A - C)D2 + (AC - B2)]fa = 0 (25.88)

Now, operate on Eq. (25.85) with 2D + B to obtain

(2D + B)(D2 - C)fa = -(4D2 - B2)fa (25.89)

Thus

(D2 - C)(2D + B)h = -(W2 ~ B2)fa
Apply Eq. (25.84):

(D2 - C)(D2 - A)fa = -(4D2 - B2)fa

so that

[D4 + (4 - A - C)D2 + (AC - B2)]fa = 0 (25.90)

Thus, fa and fa both satisfy the same fourth-order differential equation

D4f + (4 - A - C)D2f + (AC - B2)f = 0 (25.91)

To solve, place

/=*"
Then

p4 + (4 - A - C)p2 + AC-B2=0 (25.92)

There are four roots, so that the solutions take the form
4

f = aiepir (25.93)
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If we put

q = p1 (25.94)

then

q2 + (4-A-C)q + AC-B2 = 0 (25.95)

Stability of Motion near the Triangular Points
For these points, we have

3 373 9
A = - B = ±— -(I - 2m) C = -

4 4 4
Thus

4- A-C = I

so that

27
AC - B2 = —m(\ - m) (25.96)

4

q2 + q + ̂ -m(\ - «) = 0 (25.97)
4

Then

0 = -± ± ^[1 - 27m(l - m)]5 (25.98)

If 21m(I — m) < 1, then # is real and < 0, and all values of 77 are pure imaginary.
This means that the solutions for f$\ and fa contain only sines and cosines, with
no increasing exponential functions. If

27m(1 - m) < 1 (25.99)

the orbit never goes to infinity, and the motion is stable—as far as we can tell from
the linearized equations. The motion near the triangular points has been proved to
be stable even with the nonlinearized equations.1

Instability of Motion near the Collinear Points
Lemma: At the collinear points

* K L^L + HL > i (25.99a)
Pi P\

Proof: Write down Eq. (25.34a) for an equilibrium point

x - (1 ~ m\x - *,) - ^(x - xt) = 0 (25.34a)
Pi Pi

and use x\ — —m, X2 = 1 — m. At any equilibrium point

x - (1 ~ m\x + m) - ^(x + m - 1) = 0 (25.100)
Pi P\
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We also have the identity

+ m-\)x = ————————pi + ————————p2 (25.101)
Pi P2

Insert Eq. (25.101) into Eq. (25.100). The result is

(1 — m)(x -f m) , ^ m(x-{-m — V) , 9N
-———-———-Pi ~ P i 2 } + ——————' P2 ~ P2 = 0 (25.102)

Pi P2

Equation (25.102) holds for all the equilibrium points. To prove Eq. (25.99a) for
all the collinear points, we have to treat each one.

AtL_
Here, x = — m — p\ and pi — p\ = 1. Thus

x + m = —p\

x + m — 1 = —pi — 1 = — p2

Insert into Eq. (25.102). Then

f _2, m(-p2), _2x n /ocma\
(Pi - Pi ) + ———— (P2 - P2 ) = ° (25.103)

or

(1 - «)(/>, - pf2) + m^ - />2-2) = 0 (25.104)

or

(1 - m)pi - -——^- +mp2--^=0 (25.105)
Pi P\

Because P2 = p\ + 1, this becomes

(1 — rri)p\ m mp\
(1 - m)pi - ———3—— + m + mpi - -^ - —^ = 0

Pi Pi P2
By definition

1-m m
^- —
Pi P2

Thus

(1 - m)p! + m + mpi - - - piJk = 0 (25.106)
P2

or

P l(^-l) = m(l-/)2-3) (25.107)

Since for L_, we have p% > 1, it follows that k > 1 for L_.
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At Lt
Here, x = —m 4- p\ and P2 + Pi = 1. Thus

x + m — pi

x + m — l=pi — l = -p2

Insert into Eq. (25.102). Then

(1 - m)(p! - pf2) - ™(P2 - P2~2) = 0 (25.108)

or
(1 - w)pi mpi m

Pi - rapi - ——— = —— - m + mpi - — r + — = 0
Pi P2 P2

or

( i - in)

because p2 = 1 — p\. However, the bracketed factor on the left is simply 1 — k.
Thus

/c) = m(l-p-3) (25.109)

Since for L/ we have p2 < 1, it follows that k > 1 for L/.

AtL+

Here, x = — m + pi and P2 — Pi = — 1. Thus

x + m = pi

x + m — \=p\ — \=p2

Insert into Eq. (25.102). Then

(1 - m)(pi - pf2) + m(p2 - P22) = 0

or

(1 -m)pi mpi m
Pi - mpi - ——— = —— - m + mpi - — =- + — - = 0

Pi P2 P2
or

PI
(25.110)

because p2 = p\ — 1. However, the bracketed factor on the left is simply I — k.
Thus
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Since for L+ we have p2 < 1, it follows that k > 1 for L+. This completes the
proof of the lemma

1 — m m

Pi P\
for all the collinear equilibrium points.

We have now to investigate the roots of

q2 + (4 - A - C}q + AC - B2 = 0 (25.95)

For the collinear equilibrium points, we found

A = l+2k B = 0 C = l-k
in Eqs. (25.82d)-(25.82f). Insertion of these values into Eq. (25.95) yields

q2 + (2 - k)q + (1 + 2Jk)(l - Jfe) = 0 (25.1 11)

so that

« = -^- ± [(2 - tf - 4(1 + 2*X1 - *)]'

The two roots q\ and ^2 satisfy

2q{ =k-2 + (9k2-8kyi (25.112)

2q2 = k-2- (9k2 - Zkyi (25.113)

Consider

9y^2 -$k = k2 + 8*2 - 8^
Because Jk > 1, 8^2 - 8& > 0, so that

9k2 - %k > k2 > 1

or

(9k2 -8*)5 > y e > 1 (25.1 13a)
By Eqs. (25.112) and (25.113a)

2^i > 1 - 2 + 1

Thus

^ i > 0 (25.1 13b)

For <72, use Eqs. (25.113) and (25.113a). Then

-(9^2 - 8*) 5 < -Jfc (25.113c)

By Eqs. (25.113) and (25.113c)

2<?2 < k - 2 - k < -2
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Thus

<?2 < -1 (25.113d)

Because q = p2, q\ > 0 gives rise to two real roots of opposite signs, and qi < 0
gives rise to two imaginary roots.

For the collinear points, the fourth-order equation for ft and ft leads to solutions
of the form

Pj = cnsXir + cj2s~X2T + cj3 cos(A,3r - cj4) (25.113e)

Even though the initial conditions may be such as not to bring the positive expo-
nential function eA l T into the solution, a small change in the initial conditions can
always bring it in. Thus, the motion is unstable near a collinear equilateral point
or libration point.

VI. Further Considerations About £4 and L$
We have found that the solutions for ft and ft are of the form spir, where /?/

satisfies

p2 = -\ ± ±[1 - 27m(l - m)]1/2 (25.114)

Case 1: 1 - 27m(l - m) <0

b2 = 27m(l - m) - 1 > 0 (25.115)

where we can take b > 0. The values of p\, /?2, P3, and p4 are given by

Pi,2 = {(~l + U>) = \(\+tf)*eie (25.116)

pi,2 = ±2--i(l+b2)-4eie/2 (25.117)

P!A = {(~l - '*) = l(l + tf^*1* (25.118)

P3A = ±2-i(l +^2)i^/2 (25.119)

From Eq. (25.116)

-(1 + £2)^ cos6> = — < 0 -(1 + Z?2)^ sin0 = - > 0

Thus, 90° < 6 < 180° and 45° < 0/2 < 90°, so that

cos ->0 (25.120)

By Eqs. (25.117) and (25.120)

> 0 Re(p2) < 0 (25.121)
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From Eq. (25.118)

-(1 + b2)^ cos0 = -- < 0 -(1 + b2y* sin0 = -- < 0

Thus, 180° < 0 < 270° and 90° < 0/2 < 135°, so that

cos -<0 (25.122)

By Eqs. (25.119) and (25.122)

Re(p3) < 0 Re(/?4) > 0 (25.123)

Two of the solutions have positive exponential factors, so that the motion is
unstable.

Case 2: 1 > 1 - 27m(l - m) > 0
By Eq. (25.114), all four values of p are pure imaginary, so that the solutions

are all cosines and the motion is stable. Now, consider Eq. (25.114) and put

27/(m) = 1 - 27m(l - m) (25.124)

Then

0 (25.125)

and

m~2) - 108
or

m < 0.03852^ 1/26 (25.126)
This is a necessary and sufficient condition for stability of motion near the triangular
points, at least in the linearized theory. It is satisfied when the primaries are the
sun and Jupiter, the sun and the Earth, and the Earth and the moon. Because
m = Mil(M\ + A/2), we have

sun-Jupiter m & 1/1000
sun-Earth m « 1/300,000
Earth-moon m « 1/80

Now let

1 - 27m(l - ro) = X2 > 0 (25.127)

By Eqs. (25.114) and (25.127), with A. < 1 for the preceding three combinations
of primaries,

/72 = _ I ± ^ < Q (25.128)
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Let pi and /?2 correspond to the + sign and 773 and /?4 to the — sign. Then

(25-129)

There are two frequencies vi and vi, given by

(25.130a)

(25.130b)

(25.130c)

(25.130d)

(25.131)

(25.132)

For the sun-Jupiter case, the motion near a triangular equilibrium point is exem-
plified by a Trojan planet. Here

m = 0.00095388 < 0.03852

A2 =5 1 - 27m(1 - m) = 0.974270

A = 0.987051

- A \ i
= 0.08046

= (— —— j

= ( ̂ -^

j.
2 = 0.996757

2
If n is the Jupiter mean motion, we have

i = nt (25.133)

Let TJ be Jupiter's actual period, T the actual period of the Trojan, and P its period
in r units. By Eq. (25.133),

P = — = —T (25.134)
j

so that

T = TJ/W
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Corresponding to 00 \ and o>2, we find

Because 7} = 11.862 tropical years, we find

TI = 147.4years (25.137)

T2 = 11.9 years (25.138)

These are the periods of the Trojan in the rotating (synodic) system.

VII. Further Considerations About the Collinear Points
The Exponents

Refer back to Eqs. (25.112) and (25.113). If the exponential factors are p\, p2, /?3,
and /?4, then since p2 = q, we find

-2 (*-2) , 1 ,2
2 2

+ -(9r - 8Jk)5 > 0

pi = ̂ Jl^ _ I(9^2 - 8*)* < 0 (25.140)
F3,4 2 2

where
1-m

P?
+ -T> 1

Pi and p2 being evaluated at the equilibrium points. The signs of p\ 2 and p\ 4 are
the signs of q\ in Eq. (25.1 13b) and p2 in Eq. (25.113d). Then

(25.141)
Pi = ~a P4 = -ib

where

a2 = \[(k - 2) + (9k2 - 8*) i] (25.142)

£2 = -|[(£ - 2) - (9£2 - 8*)5] (25.143)

and where a > 0 and b > 0.

Motion in the Primary Plane near a Collinear Equilibrium Point
For this case, A = 1 + 2k, B = 0, C = 1 - £, where

*-^+" (25.144)
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where p\ and p2 are the distances of the equilibrium point from the primaries. Here

x = XQ + of
(25.145)

y = /3

The linearized equations (25.83) take the form

&-2p = (l + 2k)a (25.146a)

P + 2a = (l-k)p (25.146b)

The solution for either a or ft is a linear combination of ear , s~aT , eibr , and s ~ibl ,
where a and b are given by Eqs. (25.142) and (25.143). A real solution is a linear
combination of saT , s~aT , cos br , and sin Z?r .

Suppose we consider only those orbits that are bounded and periodic. For such
orbits, OL and ft will be linear combinations of cos br and sin br , expressible as

<x = ki cos(Z?r + 00 (25. 147 a)

0 = *2 sin(£r + 02) (25.147b)

where the fc's and 0's are constants. It is understood that the initial conditions are
such as to yield zero coefficients for ear and s~ax .

The Orbit Is an Ellipse
We shall next show that an orbit that remains near a collinear equilibrium point

and that is periodic is an ellipse in the rotating system. To show this, we first insert
the expressions (25.147) into Eqs. (25.146), thereby obtaining

-kib2cos(br + 00 - 2k2bcos(br + 02)

= (1+ 2k)ki cos(br -f 0i) (25.148a)

-k2b2 sin(br + 02) - 2kib sin(bT + 00

02) (25.148b)

These equations hold for all values of r. Let us first put br = 0 and br = n/2
in Eq. (25.148a). The results are

- k\ b2 cos 0! - 2k2b cos 02 = (1 + 2k)k\ cos 0i (25. 149a)

kib2sm(f)i +2^sin02 = -(l+2k)ki sin0i (25.149b)

Doing the same in Eq. (25.148b) gives

(25.150a)

(25.150b)

Multiply Eq. (25.149b) by /, and add the result to Eq. (25.149a) to obtain

- kib2e~i(l)l - 2k2bs~i(l)2 = (1 + 2£)£i£~/0t (25.151a)

- k2b2si(h - 2&i^' = (1 - k)k281^ (25.151b)
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On multiplying Eq. (25.151a) by £/02 and Eq. (25.152b) by s~i(i>l, we find that if
i _ i i f f ^ e -i CO\q> = 02 — 0i (25.152)

-&1&V0 - 2k2b = (1 + 2k)k\e^ (25.153a)

-k2b2si(j) - 2kib = (1 - k)k2si(f> (25.153b)
or

[(1 + 2k)ki + kib2]^* = -2k2b (25.154a)

[(1 - k)k2 + k2b2]e^ = -2kib (25.154b)

All quantities in Eqs. (25.154) are manifestly real, except e1*. It follows that

sin0 = 0 (25.155a)

cos0 = ±l (25.155b)

We may choose either sign in Eq. (25.155b). If we choose plus, then 0 = 0,
and k2/k\ comes out minus. Because the signs of k\ and k2 in Eqs. (25.147) are
arbitrary, we may choose either sign, and then the sine and cosine in Eqs. (25.147)
have the same argument. Then

a = k\ cos(/?r + 0i) (25.156a)

ft = k2 sin(frt + 0i) (25.156b)

where k\ and k2 are opposite in sign. It follows that

^2 + ^2 = 1 (25.157)

so that the orbit in the rotating system is an ellipse, with principal axes along the
axes of the primary system.

The Amplitudes k\ and k2

We have to examine k2/k\ to find which axis, a or ft, is the major axis and to
find the eccentricity of the ellipse. From Eq. (25.154a), with 0 = 0

2 l+2k + b (25.158a)
2b
2b

(25.158b)
ki l-k + b2

If we equate Eqs. (25.158a) and (25.158b), we find

b4 + (k - 2)b2 + (1 + 2k)(l -k) = 0 (25.159)

with solutions

b2 = \[(2 - k) ± (9k2 - 8Jfe)5] (25.160)
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Because k > 1, we have 9k2 — 8& = 8&2 — 8& + k2 > k2. Using the minus sign
in Eq. (25.160) would yield b2 < 0, so that we must use the plus sign, and then

2b2 = 2-k + (9k2 - 8£)5

in agreement with Eq. (25.143). Thus

*2R =
2b

(25.161)

Because k > 1, this gives

2R >b + (3/b) (25.162)

The function

^(b) = b-{-(3/b) (25.163)

has the minimum value 2\/3, so that

R > x/3 (25.164)

Now \k2/k\ I is the ratio of the ft axis to the a axis, so that the ft axis is the major
axis. If e is the eccentricity

l-e2 = R~2 < 1/3

and e2 > 2/3, so that e > (2/3)1/2 « 0.816. Of course, 1 - e2 = R~2, and either
of Eqs. (25.158), along with Eq. (25.143), will yield the eccentricity as an explicit
function of

k = (\ - m)pf3 -f mp^

a rather complicated function. What is worthy of note is that e depends only on
m, p\, and pi, i.e., only on the primary masses and their separation, and not at all
on the initial conditions. The initial conditions must be such as to make the motion
bounded and periodic.

The Sense of Circulation
If we use polar coordinates r\ and 0 for the displacement of the orbiter from the

collinear equilibrium point, then

a = r] cos 0
(25.165)

ft — r] sin 0

Therefore,

tan<9 = ft /a
(25.166)

9 aft - ftu
>sec26> = p „

Purchased from American Institute of Aeronautics and Astronautics  

 



THE RESTRICTED THREE-BODY PROBLEM 327

If the motion is periodic, Eqs. (25.156) have to be satisfied. Then

a = kicos(br + 00 (25.156a)

ft = k2 sin(br + 00 (25.156b)

a = -kibsin(br + 00 (25.167a)

/3 = k2bcos(br + 00 (25.167b)

and

a/3 = bk\k2 cos2(br + 00

P<x = -bk\k2 sin2(/?r + 00

so that

ap- pa = bklk2 (25.168)

From Eqs. (25.166) and (25.168)

(25.169)
a

Here, k\ and k2 are opposite in sign and b > 0. Thus

0 < 0 (25.170)

The circulation of the orbiter around a collinear equilibrium point, when the motion
is bounded and periodic, is retrograde relative to the motion of the primaries around
their center of mass.
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Chapter 26

Staeckel Systems

I. Staeckel's Theorem

S EPARABLE systems occur often in the theory of orbits, and they have all
been of the Staeckel type, which we shall now consider.

For an orthogonal coordinate system with metric

(26.1)

the kinetic energy of a particle of unit mass is

The generalized momenta are
3T ,

pk = —— = A~lqk (26.3)

If the potential energy is
V =

the Hamiltonian is

and the Hamilton- Jacobi equation is

«i (26.5)

Staeckel's theorem states that, the A* being all positive, the ̂ /equation is separable
if and only if there exists a 3 x 3 matrix ($£/), where (fry depends only on q^, and
a column matrix (fy\, fa, f a ) , where fa depends only on qk, such that

3

k=i
3

329
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Proof of Necessity: Given a solution of Eq. (26.5), viz.,

W = Wi(qi, «i, a2, «3) + W2(g2, «i, a2, «3) + W3(03, «i, «2, «3) (26.8)

show that functions (t>kj(^k) and tyk(qk) exist, satisfying Eqs. (26.6) and (26.7).
In proving this statement, we shall let Eq. (26.8) be a complete integral of

Eq. (26.5). This is one depending on three arbitrary constants ot\, a2, and a3 with
determinant

det | a W 1 ̂  0 (26.9)\_3qk3ctj ]
To prove necessity, substitute Eq. (26.8) into Eq. (26.5). Then

-.ai (26.10)

Differentiate Eq. (26.10) successively with respect to a\, a2, and «3 to find

(26.11a)

(26,,W
dqkdct2

(26.110
^ 3^ 3qk3oti

This is a system of linear equations for the A#'s with determinant

^
by the hypothesis of the completeness of the integral, so that Eqs. (26.1 1) are all
independent.

The coefficient of each Ak in Eqs. (26.1 1) is a function only of qk. Thus, there
exist functions (/>kj(qk) satisfying Eq. (26.6). They are

, .3qk 3qkdofi

(26,31),
3Wk 32W

(26.13c)

Next, we have to show that functions V>(#fc) exist, satisfying Eq. (26.7). From
Eq. (26.5)

2
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because 9 W/dqk = SWk/dqk. Now, since we have shown that the functions fai (qk)
satisfy Eq. (26.6) with 8\k = 1, we have

(26.15)
k-\ k=\

Inserting Eq. (26.15) into Eq. (26.14), we find

(26.16)

so that Eq. (26.7) is satisfied, with

(26.17)
\3qk

This completes the proof of necessity.
To prove sufficiency, we have to begin with Eqs. (26.6) and (26.7) and show

that they lead to the separability of Eq. (26.5). To do so, first insert Eq. (26.7) into
Eq. (26.5):

1 . ^ , /^W \^ 3
oZXlT - + y%^(00 = ai (26.18)2 ftr v ̂  / ft?

Next, from Eq. (26.6)
3

0 (26.19a)

= 0 (26.19b)

Multiply Eq. (26.19a) by an arbitrary constant a2 and Eq. (26.19b) by an arbitrary
constant 0^3, add the results to Eq. (26.18) and use Eq. (26.15). We obtain

3 r 1 / Q TI7 \ 2

k
o2\a^

(26.19c)
or

\ 2 -i

I ~ l^l^lto) + «20*2toO + «30fe3to) - ^fcfe)} = °/ J
(26.19d)

Here, ̂  ^n^ the 0*/s depend only on ̂ . The //J equation is then satisfied if

W = W,(9i) + W2(ft) + W3(93) (26.20)
with

/9WA2

- — = 2{ai 0H(#0 + «20jk2fe) + «30M(^) - ^fe)} (26.21)

It is separable. This completes the proof of sufficiency.
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II. Staeckel Systems
We define a Staeckel system as a system described by Eq. (26.4) as its Hamilto-

nian and the auxiliary conditions (26.6) and (26.7). We may simplify this definition.
Let A be the row matrix (Ai, A2, A3) and 3> the square matrix [0*/ (#*)]• Then

by Eq. (26.6)

A <& = (!, 0,0) (26.22)

With the requirement that O"1 exists, we find

A = (l,0,0)0>-1 (26.23)

On writing this out, we find

(A l 5 A2, A3) = (itf, fcu1, ^3) (26-24)
or

Ak =(0-1)u (26.25)
Now, if <I> is a 3 x 3 square matrix and x is a column matrix of three elements,
then

3>x = y (26.25a)

is also a column matrix of three elements. Equation (26.25a) is a set of three linear
equations for the x's. Solution of Eq. (26.25 a) by Kramer's rule gives

xi = A-^Mn + y2M2i + y3M3i) (26.25b)

where A is the determinant of O and Mk\ is the cof actor of ®k\ in O. From
Eq. (26.25a), we can also write

x = 3>~ly (26.25c)

so that

x\ = <*>nlyi + ^2^2 + ^B^ (26.25d)
Comparison of Eqs. (26.25d) and (26.25b) shows that

(26.25e)

We may now redefine a Staeckel system as an orthogonal system with Hamil-
tonian

I 3
H = o I] A*^ ' 42> ^3)P,2 + V (26.26)L k=\

where there exist functions (/>kj(qk) and V^/tfe) sucn that

Afc = (4>-1)u (26.27)

(26.28)
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where

and

<D = [0*;-(

being the cofactor of fai in A.
We can now write the Hamiltonian (26.26) as

— a\

or

This is satisfied if

where a2 and a3 are arbitrary constants. This gives

(26.29)

(26.30)

(26.31)

(26.32)

or

(26.33)

(26.34)

but Eq. (26.34) leads to separability at once. Thus, in Eq. (26.26), with V given
by Eq. (26.28), the condition

Ak = (26.35)

where the elements of 3> are 0#/ (#*)» is necessary and sufficient that the HJ equation
(26.18) be separable. This condition (26.35) is called the Staeckel condition.

III. The Staeckel Integrals
From Eq. (26.32) we have

= 1,2,3 (26.36)
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For each value of k, Eq. (26.36) gives an integral of the motion. If we multiply
Eq. (26.32) by 4> on the left, we obtain

-«3.

leading to equations for the /?'s, viz.,

(26.37)

(26.38)

IV. An Example: The Kepler Problem
By Chapter 6, if 9 is the latitude, the Hamiltonian for the Kepler problem is

«2
(26.39)

To agree with the notation of this chapter, one has to replace the a2 and a3 of
Chapter 6 as follows:

If pr = p\, = p2, PQ = /?3, the equations of Chapter 6 become

Pi = r~2(-2a2 + 2/xr + 2«ir2)

= <*2 - a3 sec

If we compare Eqs. (26.41) with Eq. (26.38), we obtain

fa = -[i/r ^2 = 0 ^3

1 -r~2 0
0 1 -sec2*
0 0 1

Because A = det <l> = 1, we have

Thus

1 r~2 r~2sec2

0 1 sec2 6>
0 0 1

(26.40)

(26.4 la)

(26.41b)

(26.41c)

(26.42)

(26.43)

(26.44)

(26.45)
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If we solve Eqs. (26.41) for the a's, we find
1 9 1 9 sec2#

sec20 9 (26.46)

<*3 = -pi

On writing out Eq. (26.36), with use of Eqs. (26.42), we obtain

2 + \*i*P\ ~ 7*n

Comparison of Eqs. (26.46) and (26.47) yields

r-2 r~2 ~2sec2<9
(26.48)

_0 0 1
in agreement with Eq. (26.45).

0 1 sec2<
0 0 1

V. General Remarks About Separable Systems
References 1 and 2 illustrated that all the separable cases of particle motion in

Euclidean space are Staeckelian or reducible to Staeckelian by a point transforma-
tion. The qualification is easily explained. In oblique coordinates, the motion of a
projectile in a uniform field is not Staeckelian but is reducible to such by a point
transformation to rectangular coordinates.

The list of the 11 possible coordinate systems for separability of particle mo-
tion in Euclidean space is3: rectangular, spherical, cylindrical, parabolic, prolate
spheroidal, oblate spheroidal, parabolic cylindrical, conical, elliptic cylindrical,
paraboloidal, and ellipsoidal.

Systems may be classified as follows: 1) Staeckelian and Euclidean (Kepler
problem); 2) Staeckelian and non-Euclidean (spherical pendulum and particle in a
parabolic bowl); 3) Separable and non-Euclidean, but not Staeckelian (symmetric
top, with one point fixed, in a uniform field; the cross-product terms in the momenta
making it non-Staeckelian); 4) Euclidean, if properly scaled, but not separable
(three-body problem); and 5) non-Euclidean and nonseparable (asymmetric top)
(see Fig. 26.1).

VI. Motion According to x2 = F(x)
This section is a necessary preliminary to the next one on conditionally periodic

systems; for more details see Ref. 4.
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5

Separable: Shaded

Nonseparable: Otherwise

1 , 2 ; Staeckelian
1 , 4: Euclidean
3 , 5 : Non-Staeckelianand

Non-Euclidean

(26.49)

Fig. 26.1 A set-theoretical diagram.

Suppose a particle with coordinate x moves according to
jc2 = F(x)

If F(x) has a zero at x = a, it may be a simple zero, so that

F(x) = (a- xW(x) (26.50)
where T^(JC) has no factor a — x. (It happens to be convenient here to write a — x
rather than x —a.) It may also be a multiple zero, the curve y = F(x) being tangent
to the x axis at x = a. Then

= (a-jc)^(jc) (26.51)
where s > 1. For values of x close to a, we can see what is happening by taking
i/r to be a constant k2. Then

F(x) = k2(a - x)s

and by Eqs. (26.49) and (26.52)
x = k(a- x)s/2

(26.52)

(26.53)

where it is convenient to choose the plus sign, in order to consider motion from
x = a — rjto x = a. Thus

(26.54)dt = k-\a-x
The time At for passage from x = a — rj to x = a is

If u .= a — ;c, then

If 5- = 1, this becomes

Af = k~l I (a- x)~s/2 &
J a—rj

&t = k~l I u-"/2du
Jo

At =2(fc~V

(26.55)

(26.56)

(26.57)
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but it diverges for s > 1. Thus, any zero at x — a leads to accessibility of the
particle to x = a only in an infinite time, unless it is a simple zero, for which
s = 1. A simple zero can be reached in a finite time.

If we are dealing with Staeckel systems by Hamiltonian methods, we have to
deal with equations such as p\ = F(qk), where F depends only on the single
coordinate qk, and pk will always be proportional to qk. Near a zero of F(qk), we
shall have, approximately, that

q2
k=klF(qk) (26.58)

where k\ > 0. The preceding analysis showed that any zero of F(qk) must be a
simple zero if it can be reached in finite time. Furthermore, ifqk oscillates between
two values a and fc, it follows that the necessary form for F(qk) is

F(qk) = (qk ~ a)(b - qM(qk) (26.59)

where i/s (qk) has no zeros and

a<qk<b (26.60)

VII. Conditionally Periodic Staeckel Systems
The physical pendulum is a simple Staeckel system. It can have three types of

motion. It may move as in a clock, back and forth from an angle —Om to +#m; this
is libration. It may have enough energy to keep going in a circle; this is circulation.
Finally, it may have just enough energy to approach 9 = 180° in an infinite time;
this is asymptotic motion.

A bounded Staeckel system can, in general, have #'s that vary in all three ways.
If it has only circulational and librational coordinates, it is called conditionally
periodic.

Circulational Coordinates
A coordinate qk is circulational if all these conditions hold:
1) If it is an angle.
2) If p\ — F(qk), with pk > 0 for qk > 0 and pk < 0 for qk < 0.
3) If Fk is so bounded that there exist constants c\k and c2* satisfying CM >

F k ( k ) > c\k > 0.

Note that c\k > 0 rules out asymptotic motion and that the condition 4 may be
either periodicity or constancy. For an artificial satellite, for example, p% = const
if the potential V does not depend on </>, the right ascension.

From the preceding conditions

Pk > (cu)2 if qk > 0

Pk < -(cu)2 if qk < 0

In either case

t f c = r p~ldqk (26.61)
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in a single- valued differentiate (SVD) function of qk, with dvk/dqk existing and
positive for all q^. It is a monotonically increasing function of q^. Conversely, qk
is a SVD function of vk.

Librational Coordinates
A librational coordinate is one that fluctuates back and forth between values

dk and bk. From the previous section, this means that p\ = F(qk) has zeros
only at a*, and bk and that they are simple zeros. These facts lead to the following
specification: qk is librational if there exist constants ak,bk, c\k , c2£, anc* a function
Gk(qk) such that

C2k > Gk(qk) > cik > 0 for ak < qk < bk (26.61 a)

with G^ < #fc(0) < bk, where ̂ (0) is the initial value of qk as a function of time t
and where

pi = (qk - ak)(bk - qk)Gk(qk) (26.62)

It may be difficult to find Gk(qk)- Consider the Kepler problem with

pi = al ~ u\ sec2 e (26.63)

where 0 is the latitude. The inclination 7 is given by

cos / = a3/Qf2 (26.63a)

so that

pi = u\(\ - cos2 / sec2 0) = F(0) (26.64)

For direct orbits, F(Q) has zeros for 0 = ±7. To show that Eq. (26.64) can be
put into the form of Eq. (26.62), note that

= -2a| cos2 7 sec2 0 tan 9 (26.65)

For
dF(0) 9——— = =p2«2 tan 7 (26.66)

d0
Thus, for 7 =£ 0, the derivative does not vanish at the zeros of F(0), so that these

zeros are simple zeros. This completes the proof that Eq. (26.64) can be expressed
in the form of Eq. (26.62), which becomes

= (72 - 02)G(0) (26.67)

but it does not find the upper and lower limits on
By Eq. (26.63a)

a\ = a2, sec2 7 (26.68)

Then by Eqs. (26.64) and (26.68)

pi = c*2(sec2 7 - sec2 9) = af (tan2 7 - tan2 9) (26.69)
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By Eqs. (26.67) and (26.69) (26-?o)
an even function of 0. To investigate its behavior, we need consider only the range

0 < 9 < I < n/2 (26.70a)

Note that
G(0) = (a2tan27/72) (26.71)

At 0 = /, G(0) takes the form 0/0, but by U Hospital's rule

G(/) = af—— Sec2/ (26.72)

One suspects that G(0) and G(7) are the lower and upper limits of G(0). To verify
that G(0) is the lower limit, form

tan2 1- tan2 0 tan2 1 I202 tan2 1 tan2

72 02

Now, from Pierce's integral tables5

^£ = 1 + i. + ̂ - + ... (X
2< 7r2/4) (26.74)

so that for 0 < 0 < 7 < n/2

^ * ̂  (26-75)

Therefore, by Eqs. (26.70) and (26.75)

G(0) > ̂ ^ l (26.76)

and G(0) is the lower limit.
For the upper limit, write

tan2 7 - tan2 0 tan 7 + tan 0 tan 7 - tan 0
I2-02 ~ I + 0 7 -0

(26.77)

Compare (tan 7)/7 with the first factor on the right and sec2 7 with the second
factor.

tan 7 tan 7 + tan0 _ 0 tan I - I tanO _ 0 (tan I tanO\
~T~ ~~ 7T0 = 7(7 + 0) = (7 + 0)V~7~ ~ ~) -

(26.78)
for 0 < 0 < 7 < jr/2.

Now
sin 7 cos 0 — cos 7 sin 0

tan 7 - tan 0 = ———————————— (26.79)
cos 7 cos 0

2 tan 7 - tan 0 2 sin(7 - 0)/ = sec2 7 - —————— = sec2 7 - ————————— (26.80)J 7 -0 (7-0)cos7cos0
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For 0 < 8 < I < n/2
sin(7 - 6)-r^-<l

Thus
/ > sec2 / — sec / sec 9 > sec /(sec / — sec 6) > 0

so that
tan / — tan 9 ~
——————— < sec2 / (26.81)

/ — 9
From Eqs. (26.77), (26.78), and (26.81)

tan2 / - tan2 9 tan / 9
I2_02

Thus, G(7) is the upper limit of G(0).
We now define vk as before, viz.,

(26.82)

Pk dqk (26.83)

From Eq. (26.62)

/

qk
±[(qk - ak)(bk - qk)Gk(qk)]~* dqk (26.84)

-,«)
Because pk > 0 for qk > 0 and pk < 0 for qk < 0, the upper sign goes with
dqk > 0 and the lower with dqk < 0. To show also in this case that vk is a SVD
function of qk, introduce a uniformizing variable Ek, such that Ek > 0 for all qk and

2^ =ak + bk + (ak - bk)cosEk (26.85)

This gives maximum qk = Z?* for cos £"* = —! and minimum qk = ak for cos Ek — 1.
This definition of Ek covers all values of qk in the interval ak < qk < bk.

- ak) = (bk - ak)(l - cos Ek) (26.86)

- qk) = (bk - ak)(l + cos Ek) (26.87)

- ak)(bk - qk) = (bk - ak)2 sin2 Ek (26.88)

- ak)(bk - qk)]~* = 2(bk - ak)~l |sin Ek\~l (26.89)

From Eq. (26.85)

dqk = \(bk- ak) sin Ek dEk (26.90)

so that
sin Ek dEk±[(qk ~ "k)(bk - #)n % = ±

We saw that in Eq. (26.84) the upper sign goes with dqk > 0 and the lower with
dqk < 0. By Eq. (26.90), because dEk > 0 for all qk, it follows that sin Ek > 0
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for the upper sign and sin Ek < 0 for the lower sign. Thus, Eq. (26.91) becomes

±[(qk ~ ak)(bk - ft)]~* % = dEk (26.92)

Insertion of this into Eq. (26.84) gives

Vk= (26.93)

Because c2k > Gk(qk) > c\k > 0, it follows that vk is a SVD function of Ek,
monotonically increasing with Ek. This means Ek is a SVD function of vk. From
Eq. (26.85), ft is a SVD function of Ek. Thus, ft is a SVD function of vk.

Summary
In a conditionally periodic system, each coordinate is a single- valued differen-

tiable function of

vk EE l dqk (26.94)

VIII. Action and Angle Variables
Before we can go further with conditionally periodic systems, we need to intro-

duce a new set of canonical variables, called action and angle variables.
We first define a single cycle of qk as an increase of 2n if qk is circulational and

as a round-trip from ak to bk if ft is librational. A small circle on an integral sign
will denote an integral over one cycle.

The following quantities Jk are called action variables:

J k = ( f ) p k d q k £ = 1,2,3

By Eq. (26.38), we have for a Staeckel system

Pk =±

Thus

so that

= < ±[-

(26.95)

(26.96)

(26.97)

(26.98)

The 7jt's are functions of the a's. If we express the a's as functions of the /'s, then
the /// function W becomes expressible as

= W(q, J) (26.99)
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Let this be the generating function for a canonical transformation, where the g's
are the "old" coordinates and the /'s are the "new" momenta. If we denote the
"new" coordinates by wk (k = 1, 2, 3), then

,
Pk = 3 (26.100a)

Here, the w's are called angle variables, and the J's are the action variables.
They are canonical with respect to the Hamiltonian, which may now be expressed
as

Jf/ = ai(/i,/2,/3) (26.101)

and

0 (26.102a)

dcti(Ji,J2,J3) ,0*1 AOMwk = ——— — ——— (26.102b)
°Jk

By Eq. (26.102a), the J's are constants, so that by Eq. (26.102b)

wk = const = Vfc (26.103)

Thus

wk = vkt + 8k (26.104)

The new set of canonical variables has J's as constants and w/s as linear functions
of the time. Here

, , /0, irv-vvk = ——— — ——— (26.105)
oJk

is called the &th fundamental frequency. In a general Staeckel system, a given
coordinate qk may go through successive cycles in different times. It is one of the
main points of this chapter, however, to show that the mean frequency of each qk
of a conditionally periodic Staeckel system is equal to the fundamental frequency

IX. Keplerian Action Variables
The Keplerian example will help to clarify our ideas. For simplicity, use the a's

of Chapter 6. Then

pr = r-l(-otl + 2/zr + 2o?ir2)^ (26.106a)

pe = (ct\ - a] se°2 °) ^ (26.106b)

p* = a3 (26.106c)
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Then

= </ Pr dr = 2 1 2 r~\-oil + 2/zr + 2«ir2)* dr

= 2 / ——^—-——-————-f- dr (26.107a)
1 (~a2 + 2Mr "+" 2al r2) 2

where

ri = a( l -<?) r2 = a(l+e)
(26.107b)i

Write the denominator in Eq. (26.107a) as [-2«i(r - n)(r2 - r)]*. Then

7i =2(-2ai)"2 I ——i——?——————pi—Zdr (26.108)

i f 9 r2 r-1 dr p dr
= 2(-2aly* -«2 / ——————————r + 2/^ / ——————————r

[ Jri [(r-ri)(r2-r)]2 Jr, [(r - ri)(r2 - r)]5

2ai / ———————r[ (26.109)

If we place

Afdr = ——————— T"df (26.110)J V1+ecos/ (l + ^cos/)2

in the first integral, along with Eq. (26.107b), we obtain

- i , esinf , ae(l-e2)i\smf\
r dr = — ——— - df [(r - n)(r2 - r)]z = —— — ———— - ——

1 4- e cos / 1 + e cos /

and
r"1 dr 1 sin/ df

~~

since sin / = | sin /| as r increases from r\ to r2. Then

r"1 dr TT
[(r-n)(r2-r)]i a(l -

In the next two integrals in Eq. (26.109), use .

r = a(l — ecos E)

(26.111)

(26.112)
dr = aesin E dE
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Then

——r = 7 -̂7r dE = dE (26.113)

— r =a(l -ecosE)dE (26.114)

The second and third integrals in Eq. (26.109) become n and na, so that

/i = 2(-2ai)-2 I -af —— - —— r + 2//JT + 2ai7ta \ (26.115)
I 0(l-e2)2 J

Using a = —^/(2ot\) and 1 — e2 = — 2aia|//z2, we find

or
7i = -2na2 + 27r/z(-2ai)~^ (26.115a)

Next
/*^max r^max

0d0 = 2 Ped9=4 PedO (26.116)
^6>min 7o

since 0max = — ̂ min and p0 is even in 0. Here, ^max is given by

cos#max = |a3|/«2

^max = / for direct orbits

^max = n — I for retrograde orbits

Abbreviate #max to 0m and use

Pe = (a2-a^sec26>)^

so that
/•^ i

J2=4 (a\- a\ sec2 0) 5 d6> (26. 1 17)
JQ

where

(26.117a)
(26.117b)

/•0«i _x
NI= I (a|-a3

2sec26>) f d6> (26.117c)
Jo

f°m _i
AT2= / (a2 - a

2 sec2 0) 5sec26>d<9 (26.117d)
^o
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Now

[Bm cos 0 dO [em cos 0 dO
NI = / —————————T = / ————————————T

I / 9 O 9\ frv / 9 9 9 • 9 \1/0 (&2 COSZ a — Q?3 J 2 •'O ((^2 — (X^ — CX^Sin OJ2

(26.118)
0 • 2 \ -1

Jo V sin21J
since

cos 7 = — sin2 7 = 2
 2

 3 (26.118a)

Put
sin 9 cos 9 dO

u = -— du = ——— (26.118b)
sin 7 sin 7

and u — 1 when 9 = 9m. Thus

^ = (a2 - aff)"2 sin 7 f (1 - M2

./o
dw

(26.119)

but

byEq. (26.118a), so that

Nl=7t/2(x2 (26.120)

For A^2, put v = tan<9 in Eq. (25.117d). Then

N2= (a| ~ ^3 - alu2)~^ du (26.121)

Because
2 2 9 2z?^ •— ^2 — ̂ ^ sec (/

we have

cf>r"2 ft — /v2 //v2sec t7m — a2 /«3

a2 -a2

Of2

so that

um = lo^r1^! - oi^Y (26.122)
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From Eq. (26.121)

/N2 = (ex - c*3)-2 1 - — dv (26.123)

Next, put

/ 9 9 1 fVm ( V2

= (ex2 - c*3
2)-2 / 1 - —

JO \ Vm

v = vmri (26.124)

Then

= (ex2 - <*3
2)-^m I (1 -

Jo
N2

Jo

= 7r/2(a
2-<*3

2pi;m (26.125)

or
N2 = n/2\a3\ (26.126)

By Eqs. (26.117b), (26.119), and (26.126)

J2 = 4al^- - a2-^-} = 2n(<*2 - |a3|) (26.127)
~

Also

(26.128)

Adding Ji and 72> we find

Ji + J2 = 27T/Lt(-2ai)~2 - 2jr|a3| (26.129)

and

/I + /z + ^3 sgna3 = 27r/x(-2ai)~5 (26.130)

Thus

27T2/x2 /o* ian
^1 = ~/7 . r . r —————— ̂  (26.131)(J\ + y2 + ^3Sgna3)2

The fundamental frequencies are

= . . =
a/2

v3 = ———-^—-—— = V! sgna3 (26.134)
o J3

From Eq. (26.130)
3

_~ (—2o?i)2

(/i 4- /2 + /3 sgna3)~ = (26.135)
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and from Eqs. (26.132) and (26.135)

v, = ;r—(-2c*i)i

or

1 //xV
= —— ~~ I2nIJL \a )

(26.136)

the mean motion. Thus, 2nv\ = 2nv2 = 27t\v^\ = n.

X. Conditionally Periodic Staeckel Systems, Continued
We saw in Sec. VII that each

vk = I " p~l dqk (26.137)

is a SVD function of qk and conversely that each qk is a SVD function of vk. We
now proceed to prove the theorem that the mean frequency of each qk is equal
to the fundamental frequency vk. To do so, we must know how the vk's behave
as functions of the angle variables wk. Such knowledge will tell us how the qk's
behave as functions of the wk's.

We begin with

J k = ( f ) p k d q k £ = 1,2,3

, f ,<)*M^= Vjfe = const (26.137a)
k

The Jacobi fi's are given by

dct\

06.13.)

_
P3 =

where W is the separated solution for the HJ equation for the Staeckel system.
These equations can be inverted to give the q 's as functions of t . We shall not follow
that usual procedure here, but that possibility is mentioned only to show that #'s
can be expressed as functions of the tu's, because the w's are linear functions of t .

Let us put

pi+tSu = Bi (26.139)
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By Eqs. (26.138) and (26.139)

Bl _ «^tf» (26,40,
d&i

If we now introduce the J's and the u/s, we can write

£^034
£r 34 Bai

[It is of course to be understood that W(q, J) does not have the same functional
form in the q's and J's as does W(q, a) in the q's and a's.]

If we put

fl>«=|^ (26.142)
da,

then

[a)ki] = to (26.143)

is a square matrix. From Eqs. (26.141), (26.142), and (26.137a), we find

(26.144)
k=\

The differential of BI in terms of the du/s is
3

dBi = ]T dwka)ki (26.145)
*=i

or
3

dBi = ^[(dw)Ttt\i (26.145a)
k=\

where

(dw)T = (dwi, dw;2, du;3) (26.146)
is a row matrix, the transpose of the column matrix of dw\, dw2, and dw^.

We can now express dBi in another way. Because
3

W = ^Wk(qk) (26.147)
k=l

and

(26.48,
^ oqk

we have

k (26.149)
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From Eqs. (26. 140) and (26. 149)

^ (26,50)
The differential of /?,- in terms of the dq's is given by dropping the integral signs
inEq. (26.150), so that

d<lk (26.151)
k=l '

or

1^M^ = I^M^ (26,52)2 f^ dofi pk 2{-f 3cx;

with use of
dqk ,— =d^
P*

from Eq. (26.137).
Now, by Eq. (26.38)

3
p,2 = -2i/fk(qk) + 2 J] CD, -(^)a - (26.38)

7=1

so that

^=2^(00 (26.153)
Ddfj

By Eqs. (26.152) and (26.153),
3

[(d^)7^],- (26.154)

where
(dv)T = (dvi , di>2,

a row matrix. Comparison of Eqs. (26.145a) and (26.154) shows that

(dv)T3> = (dwftt (26.155)

Because O is a nonsingular matrix for a Staeckel system, O"1 exists, so that

(dvf = (dw)TQ$>-1 (26.156)

or
3

dvi = ^dwk(n®-l)ki (26.157)
k=\

Thus

^-=(fi<D-1)w (26.158)dwk
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Before we can draw any conclusions from Eq. (26.158), we need to show that
the domain Q of the g's for which all the p's are real corresponds exactly to w
space, which is the space of all real numbers. This means that if all the p's are
real, so are all the u/s and vice versa. To show this, note that

3

Pk = ~~ 2^>(#fc) + 2 2_\ ®ki(qk)&i (26.38)
1=1

and

W = Z / * Pk&lk (26.149)
k=i •*&<>

Then

Wj =

However, by Eq. (26.38)
0 3

-̂ - = 2 Y"^ 3>jw(#*)—- (26.159a)

Thus

Wj = > ] I — > ] Qkifak)^ dqk (26.159b)
^ [qk 1 ^A datVj = 2-<J ~^kL,®ki(qk)ifj~.

This shows that if all the p's are real, so are all the tu's. Also, from Eq. (26.159b)

^i (26.160)

Here the sum is real. Also, if all the u/s are real, so are all the du)j/dqk; then all
the p's are real. Thus, the domain Q corresponds exactly to the set of all possible
values for the M/S. From this fact and from Eq. (26.158), we have the result that
each Vk is a SVD function of the u/s. However, we just showed that each qk is a
SVD function of the corresponding vk. Thus, for a conditionally periodic Staeckel
system, each qk is a SVD function of the ID'S:

qk = f k ( w \ , wi, 1^3) (26.161)

with fk single valued and differentiate.

Periodic Properties of q^ — /*(H>I, w>29 ^3)
Because

3 ~qi

W = J^ I pi(q, J)dqt (26.162)

we have
3W(n n Jt^ fit Art (n J\

-dqt (26.163)
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The change of Wk with changes in the g's alone is given by

PiJldqi (26164)

Mathematically, we may let each coordinate q{ go through an integer number of
cycles. [Such an event may not be possible physically, but we are concerned here
only with the mathematical structure and behavior of the functions /# (w\ , W2 , w^ ).]
What happens to the w's? If each coordinate qi goes through m/ cycles, then by
Eq. (26.164)

= mk (26.165)

If each of the functions q^ = /&(wi, u>2, ^3) goes through m^ cycles, each Wk
increases by the integer m^.

This means that if, initially,
qk = fk(u>i, u>2, 103) (26.166)

then if each ̂  goes through an integer number m^ of cycles, the resulting g's will
be given by

^3 + ̂ 3) (26.167)

Now consider the inverse problem, where each tu* increases by m^. What hap-
pens to the ql If we begin with Eq. (26.166), the resulting #'s will be

qk" = fk(w\ +m\9W2 + mi, ̂  + ̂ 3) (26.168)
This is the same as Eq. (26.167), since the functions /* are single valued. In
Eq. (26.167), however, the librational #'s are unchanged from Eq. (26.166), and
each of the circulational g's has increased by 2nnik. That is, each of the circu-
lational g's has gone through m^ cycles, and each of the librational g's has gone
through an integer number rk of cycles. By Eqs. (26.165), Au^ for a librational
coordinate equals rfc, but, by the hypothesis of the inverse problem, Au;^ = mk, so
that Tk = mk. Thus, for either type of coordinate, if the corresponding Ait^ = m^,
that coordinate has gone through m^ cycles.

The Mean Frequencies
If, in a time interval 7\ the number of complete cycles passed through by any

coordinate is Nk, the corresponding mean frequency is defined by
nk= \im(Nk/T) (26.169)r-»oo

if the limit exists.
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We now wish to show that
dot}n* = y* = TT (26.170)
oJk

for any conditionally periodic Staeckel system. To do so, note that if v\ , v2, ^3 are
all commensurable, there exists a VQ and positive integers mi , ra2, W3 such that

k = 1,2,3 (26.171)

Here, we may choose VQ to be the greatest common divisor of the v's. From

wk = vkt + 8k (26.172)

and Eq. (26.171), we may write

wk = mkVQt + 8k (26.173)

In the time interval r = I/VQ, we have

mk (26.174)

By the result for the preceding inverse problem, each qk goes through exactly mk
cycles in this time, so that the motion is truly periodic, with period t = I/VQ. In
the time interval

r = /zr + £ (26.175)

where /z is an integer and s a positive proper fraction of the period I/VQ, the number
of complete cycles passed through by qk is ̂ mk. Then

mknk = hm —— = hm ———— = — = mkVQ = vk (26.176)r-»oo r M-^OO /XT + £ r
This completes the proof of the theorem for the commensurable case.

The incommensurable case is treated in Ref. 6. Physically, one cannot distin-
guish between a rational number and an irrational number, so that the preceding
result should hold in all cases of bounded Staeckel systems without asymptotic
coordinates. The main reason for giving the proof of the incommensurable case is
to verify the correctness of the mathematical formulation.
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Appendix A

Coordinate Systems and Coordinate
Transformations

F OR theories of satellite Orbits and ballistic trajectories, appropriate coordinates
are rectangular, spherical, and oblate spheroidal. In the appendices, the Earth-

centered inertial (ECI) coordinate system is the rectangular coordinate system un-
less otherwise specified. Special perturbations methods solve the equations of mo-
tion by numerical integration. Traditional methods of general perturbations seek the
solution of the equations of motion by series expansion and term-by-term analytic
integration of the disturbed acceleration. Brouwer's method, which is a traditional
general perturbations method, performs contact transformations on the Delaunay
variables. Vinti's method, which is not a traditional general perturbations method,
solves the Hamilton-Jacobi equation in the oblate spheroidal coordinate system.

If the position and velocity vectors of a satellite or a ballistic object can be
computed at any time, then the equations of motion for the object are essentially
solved. The algebraic approach is to determine six integration constants of motion.
The geometrical approach is to draw ?a figure of the desired coordinate systems
and then deduce the position and velocity vectors from it. This is simple for the
position vector. The velocity vector is obtained from the three-dimensional metric
as in theoretical physics.

To describe a coordinate system, the origin of the coordinate system must be
defined first. In trajectory mechanics, the center of mass must be defined with
respect to a coordinate system in which the trajectories are described. In other
words, the geometrical and physical principles must be clearly defined before a
theory can be developed. Vinti1 gives the general theory and physical principles
for inclusion of the third zonal harmonic J^ of a planet's gravitational potential
in an accurate reference orbit of an artificial satellite. Here, we provide a few
figures to supplement his geometrical interpretation of the coordinate systems and
coordinate transformations. This may help the reader to visualize the coordinate
systems and physical principles underlying the Vinti spheroidal method. Finally,
if the translation and rotation between two coordinate systems can be depicted in a
figure, then the figure can be a useful aid in deriving the coordinate transformation
between two coordinate systems.

I. Coordinate Systems
Spherical Coordinate System

The center of mass of the Earth is always at the origin of the ECI coordinate
system. If the Earth were a perfect sphere and the motion of an object unperturbed,

353
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Fig. A.I An ECI position vector expressed in terms of the spherical coordinates.

then the solution of the equations of motion would be Keplerian. In Fig. A.l,x,y,z
are the rectangular coordinates of the ECI coordinate system, and r, 0, 0 are those
of the spherical coordinate system. The equation of the sphere of radius r can be
expressed in the form

X2 V2 Z2

^ + ̂  + ̂  = 1 (A.l)
r2 r2 r2

and the ECI position vector can be expressed in terms of r, 0, 0 as

( x \ / r cos 0 cos 0 \
y I = I rcos0sin0 J (A.2)
z / \ rsin0 /

The metric (As)2, which is the square of the magnitude of the differential posi-
tion vector As, is given by

(As)2 = (Ar)2 + (r A0)2 + (r cos0A0)2 (A.3)
Dividing Eq. (A.3) by (Af)2 and taking to the limit Ar —>> 0, we find

(A.4)s2 = r2 + (r0)2 + (r cos 00)2

The three terms on the right side of Eq. (A.4) are the square of the components
of the velocity vector in the spherical coordinate system that are identical to the
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3D metric

Fig. A.2 An ECI differential position vector expressed in terms of the spherical
coordinates.

square of the components of the three-dimensional metric divided by (A£)2 as
shown in Fig. A.2. The kinetic energy and the momenta in the spherical coordinate
system can be derived, and the Kepler problem can be solved by the Hamilton-
Jacobi procedure as shown in Chapter 6. After the position and velocity vectors
at any time are solved in the spherical coordinate system, they are required to be
transformed back to the ECI coordinate system. Taking the derivative of Eq. (A.2)
with respect to time, the ECI velocity vector becomes

/ r cos 9 cos 0 — rO sin 0 cos 0 — r cos 0<j) sin 0 \
= I r cosO sin0 — rO sinO sin0 + r cos #0 cos 0 I (A.5)
\ fsinO + rOcosO /

Oblate Spheroidal Coordinate System
The oblate spheroidal coordinates p, r), 0 are depicted in Figs. A.3 and A.4.

The p coordinate describes the surface of an oblate spheroid, and p > 0 every-
where for real motion. The r] coordinate describes the surface of a hyperboloid of
one sheet, and 0 < ? ? < l f o r z > 0 and — 1 < rj < 0 for z < 0. (The sheet is
a surface of revolution, not a solid object.) The 0 coordinate is the plane through
the polar z axis. For clarity, we first use the 1959 Vinti potential models such that
the origin of the ECI coordinate system coincides with the origin of the oblate
spheroidal coordinate system. The equations of an oblate spheroid and a hyper-
boloid of one sheet can be expressed, respectively, in the form

x2 + v2 z2
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Oblate spheroidal coordinates = ( p , r], (j>)
' D cos ^ >

PI?

Equation of an oblate spheroid
of semi-axes a and b

+ c 2 ) ( l - r ] 2 )

p = PJ , 0 < p}

spheroid___

Fig. A.3 An ECI position vector expressed in terms of the oblate spheroidal coordi-
nates with respect to an oblate spheroid.

The ECI position vector can be expressed in terms of p, 77, 0 as

^
r = (A.8)

where c2 = r2/2 and r<, is the Earth equatorial radius. Now, for the 1966 Vinti
potential models, we have c2 = r2/2[l - /32/(4/23)]. The constant, c(« 210 km) as
shown in Fig. A.4, is the radius of a focal circle in the spheroidal equatorial plane
(see also Chapter 8, Sec. II). The portion of the equatorial plane inside the focal
circle is the surface p = 0, while the portion outside is the surface 77 = 0. Note that
for large r, p & r and rj & sin 0. The magnitudes of the spheroidal coordinates
p, r\, (/) are bounded by p > 0, 1 > r] > 1, 2n > 0 > 0 for real motion. We shall
revisit the focal circle later in the physical principles of this appendix.

The intersection of the two surfaces of revolution (an oblate spheroid surface and
a hyperboloid surface) is depicted in Fig. A.5. The foci belong to both the oblate
spheroid and hyperboloid. Note that the 1966 Vinti potential model requires the
origin of the oblate spheroidal coordinate system be shifted to a negative distance
8(^1 km) along the Earth axis of rotation (z axis); thus, z is replaced by z + 8
in Eqs. (A.6)-(A.8). For example, the 5 in Eq. (A.8) can be rearranged, and then
the third component becomes pr\ — 8. Physically, the origin of the ECI coordinate
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Oblate spheroidal coordinates = (p , r j ,

D =

Equation of a hyperboloid of one sheet
with semi-axes A and

Fig. A.4 An ECI position vector expressed in terms of the oblate spheroidal coordi-
nates with respect to a hyperboloid of one sheet.

Fig. A.5 An ECI position vector in the oblate spheroidal coordinates is a point on
the intersection of an oblate spheroid surface and a hyperboloid surface.
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system is approximately 7 km north of the origin of the oblate spheroidal coordinate
system.

The metric (As)2, which is the square of the magnitude of the differential posi-
tion vector As, is given by

(As)2 = (h\ A/?)2 + (/z2Ar?)2 + (A3A0)2 (A.9)

where the coefficients h\,hi, and h-$ can be derived from

as shown by Ref. 2. Dividing Eq. (A.9) by (Ar)2 and taking to the limit Af —> 0,
we find

J2 = (Ai/b)2 + (M)2 + (M)2 (A.H)
The three terms on the right side of Eq. (A.I 1) are the square of the components
of the velocity vector in the oblate spheroidal coordinate system, which are iden-
tical to the square of the components of the three-dimensional metric divided by
(Ar)2 as shown in Fig. A.6. Thus, the kinetic energy and the momenta in the oblate
spheroidal coordinate system can be derived, and the Kepler problem can be solved
by the Hamilton-Jacobi procedure as described in Chapter 8. After the position
and velocity vectors at any time are determined in the oblate spheroidal coordinate
system, they are required to be transformed back to the ECI coordinate system.
Taking the derivative of Eq. (A. 8) with respect to time, the ECI velocity vector
becomes

D cos0 — <pD
;y = Dsin0-0Dcos0 | (A. 12)
2

where

D = [pp(l - if) - rj^p2 + c2)]/D

Physical Principles
Vinti1 gives the general theory and physical principles for inclusion of the third

zonal harmonic /3 of a planet's gravitational potential in an accurate reference
orbit of an artificial satellite. Traditional methods of general perturbations seek to
develop a perturbed Keplerian orbit, and, therefore, the reference orbit is Keplerian.
Vinti's reference orbit is not Keplerian. Vinti3 indicates that his accurate reference
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TJ = i), + At]
' ^ hyperbola

Fig. A.6 An ECI differential position vector expressed in terms of the oblate
spheroidal coordinates.

orbit is a Newtonian approximation to the general relativistic orbit since the poten-
tial has a vanishing Laplacian. The Vinti spheroidal method, which is developed
from the Hamilton-Jacobian formulation of Newtonian mechanics, belongs to a
separate class of methods of general perturbations.

The physical significance of 8 or the translation of the origin of the spheroidal
coordinate system verifies the motion of Earth satellites in some "equatorial" and
polar orbits. The underlying physical principles should be of great interest in the
fields of orbital and celestial mechanics. However, for the general reader, this
translation of the origin may raise the disturbing question: Where is the mass
center after the translation? Here, we shall answer this question and re-emphasize
several basic concepts of coordinate systems for the Vinti spheroidal method.

Figure A.I results if we could discard the top half of the sphere in Fig. A.I.
The mass center is at the origin O of the spherical coordinate system. When the
oblate spheroidal coordinate system degenerates into the spherical coordinate sys-
tem, the foci coincide at the mass center. A satellite trajectory described by the
position vector r is Keplerian if the force acting on the satellite is due only to the
gravitational potential —^/r. Using this potential and putting c = 0 and 8 = 0, a
Vinti trajectory degenerates into a Keplerian trajectory.

Figure A. 8 results if we could discard the top half of the oblate spheroid in
Fig. A.3. The mass center is at the origin O of the ECI coordinate system and is
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Spherical coordinate system:

* Keplerian trajectory, if V = - p / r
* Mass center at origin of coordinate system O
* Foci coincide at mass center

ECI position vector

and 6 = 0

r cos 6 cos 0 ^
r cosfl sin0

r sinfl )

Earth equatorial plane

Fig. A.7 The basic concept and coordinate system of a Keplerian trajectory.

identical to that of the oblate spheroidal coordinate system. A satellite trajectory
described by the position vector r is a Vinti trajectory if the force acting on the
satellite is due only to the gravitational potential V = —/zp(p2 + c2rj2)~l. This
1959 Vinti potential model requires that c2 = r^/2 and 8 = 0. Physically, the foci
of the oblate spheroid are at a distance ± c km from the mass center, and there is no
translation of the oblate spheroidal coordinate system. The spheroidal equatorial
plane, which is perpendicular to the polar z axis, passes through the center of mass
at O and is a plane of symmetry of the 1959 Vinti potential V.

1959 Vinti potential model, even zonal harmonics only

Earth Centered Coordinate coordinates = (x, j>, z) origin at O
Oblate spheroidal coordinates = ( p , ?j , 0 ) origin at O

Vinti trajectory
Mass center at origin of ECI and OSC coordinate systems O
Foci at distance ± c from mass center

ECI position vector

c * 210 km and

Spheroidal equatorial plane
and Earth equatorial plane coinci

Uine

Fig. A.8 The basic concept and coordinate system of the 1959 Vinti trajectory.
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1966 Vinti potential model, even zonal harmonics plusJ3

* Earth Centered Coordinate coordinates = ( x , y, z) origin at 0
* Oblate spheroidal coordinates = ( p , 77, $ ) origin at 0'

* Vinti trajectory
* Mass center at origin of EC1 coordinate system O
* Foci at distance ± c from OSC origin at O'

c * 210 km, d * 7 km

ECI position vector
" £>cos</>

Fig. A.9 The basic concept and coordinate system of the 1966 Vinti trajectory.

Figure A.9 results if we again discard the top half of the oblate spheroid in
Fig. A.3. The mass center is still at the origin O of the ECI coordinate sys-
tem, while the origin of the oblate spheroidal coordinate system is translated
a negative distance to O' along the Earth rotational z axis. Vinti assumes that
the z axis is also the axis of symmetry; i.e., the small wobbling motion of the
polar z axis is neglected. A satellite trajectory described by the position vec-
tor r is a Vinti trajectory if the force acting on the satellite is due only to the
gravitational potential V = -fi(p + 8r])(p2 + c2rj2)~l. This 1966 Vinti poten-
tial model requires that c2 = r2J2[l - /32/(4/23)] and 8 = -reJ<$/(2J2). Phys-
ically, the foci of the oblate spheroid are at a distance ±c km from the origin
O' of the oblate spheroidal coordinate system. The inclusion of /3 reduces the
original c of the 1959 potential model by 2 parts in 1000, and c is still approx-
imately 210 km from the origin O' of the oblate spheroidal coordinate system.
The ECI coordinate system is inertial or fixed with respect to some stars at a ref-
erence date; i.e., the J2000 coordinate system for orbital mechanics and the FK5
coordinate system for celestial mechanics; they are identical and referenced to
exactly noon on Jan. 1, 2000. Naturally, the origin of the oblate spheroidal co-
ordinate system must be translated, and the distance 8 is approximately -7 km,
taken positive northward, from the origin O of the ECI coordinate system. The
spheroidal equatorial plane, which is perpendicular to the polar z axis, does not pass
through the center of mass at O and is not a plane of symmetry of the 1966 Vinti
potential V.

Figure A. 10 results if we could discard the portion of the oblate spheroid
above the spheroidal equatorial plane. The mass center, which is at the origin
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1966 Vinti potential model, even zonal harmonics plus -/3

* Kepler trajectory possible everywhere
* Vinti trajectory possible everywhere except those passing through the focal circle
* Foci at distance ± c from OSC origin at O1

c « 210 km, «*> « 7 km

Fig. A. 10 The focal circle or the forbidden zone of the Vinti spheroidal method.

O of the ECI coordinate system, is still the attraction center for any real mo-
tion. Any real trajectory or its extension must pass through the Earth equatorial
plane. The focal circle, whose radius is c, lies on the spheroidal equatorial plane.
Only when 8 vanishes, the focal circle lies on the equatorial planes of both the
ECI and oblate spheroidal coordinate systems. Very few real trajectories pass
through the focal circle, but for a rocket shooting straight up with an eccentric-
ity very close to unity, it may. Thus, this type of trajectory exists. If the exten-
sion of a real trajectory passes the focal circle or the forbidden zone of the Vinti
spheroidal method, then an analytic Vinti representation of this trajectory does not
exist.

Figure A. 11 depicts a satellite orbit and its two foci. These are not the same foci
as described previously in the oblate spheroidal coordinate system. The center of
mass is, of course, at the origin of the ECI coordinate system O, and it coincides
with the satellite orbit focus Fl. We did not specifically name the foci of the oblate
spheroidal coordinate system to avoid confusion with the trajectory foci (Fl and
F2) of the ECI coordinate system.

In Fig. A. 12, the ballistic object is an exo-atmospheric interceptor, which has
an apogee altitude of approximately 150 km above the surface of the Earth. The
hypothetical perigee of this ballistic object passes inside the Vinti focal circle or
the Vinti forbidden zone, and no analytic Vinti representation of this trajectory is
possible. In this case, a Keplerian or numerically integrated solution must be used.
This is a very special case because there is no analytic Vinti trajectory even though
the motion of the physical object is real. Since this type of trajectory is very short,
a Keplerian trajectory is used in the vinti6 computer routine to circumvent this
special case.
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ECI coordinate system origin at O

Satellite orbit foci, Fl and F2

O coincides with orbit focus Fl, O = F1

Z -———'—————-—— • Satellite

Fig. A. 11 The satellite orbit focus Fl at the origin of the ECI origin and mass center.

ballistic

ECI coordinate system origin at O

real ballistic trajectory focus at Fl

perigee passes through the Vinti forbidden zone,
Keplerian trajectory only

Earth
Fig. A.12 Real ballistic trajectory that passes the Vinti forbidden zone.
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II. Coordinate Transformations
The state vectors (position and velocity vectors) in the ECI and oblate spheroidal

coordinate (OSC) systems are defined as

x =

/x\
y
z
X

y
\z/

X =

/P\

If the ECI state vector x is given, then the OSC state vector can be obtained from

X =

[0.5d \
(z

(xy + xy)/D2

(A.13)

where

rr — xx + y y + zz

d = (r2 - c2) + S(2z + 8)

= —rjrf — (8rj — p)z

D = ^(P2 + c2)(l - ??2)

Note that for real motion, F > 0 and G > 0 with p > 0 and -1 < 'rj < 1. The
case of p = 0 implies that a trajectory or its extension passes inside or on the focal
circle.

If the OSC state vector X is given, then the ECI state vector* can be obtained
from

/x\
y
z
X

y

_

{ Dcos0
Dsin0
prj-8

Dcosc/) -0Dsin
t> sin cf> + (f)D cos

\z / \ prj + pfj

\

4>
</>

/

(A.14)

where

Z) = 2)]/D
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The input and output of a Kepler or Vinti algorithm are the ECI state vectors, X(IQ)
at the initial time /o and x(t) at the final time t. Equation (A. 13) is used to transform
the given ECI state vector Jt(f0) to the OSC form at time r0. The Vinti spheroidal
method solves the equations of motion in the OSC system, giving the OSC state
vector X(t) at time t. Equation (A. 14) is used to transform the OSC state vector
back to the ECI form x(t) at time t.

An ECI state vector x consisting of the position and velocity vectors can be
transformed to an arbitrary set of osculating orbital elements (a,e,I,£l,a), M).
This coordinate transformation involves only instantaneous conversion since time
is not changed. The osculating orbital elements (a, e, /, £2, a), M), which are the
classical orbital elements, are different from the mean orbital elements as used for
the input of the simplified general perturbations (SGP) algorithms. Given an initial
ECI state vector, an initialization procedure to convert from the initial ECI state
vector to the SGP mean elements is necessary. The output of an SGP algorithm is
in the ECI form, and, therefore, no conversion is needed at the final time.

For the sake of completeness, we provide a set of computer routines for the
conversion of osculating elements to SGP mean elements. These SGP routines,
which were downloaded via the Internet from a computer at the U.S. Air Force
Institute of Technology, have been slightly modified to achieve true double pre-
cision computation. The conversion routines are developed from the epoch point
conversion method of Walter.4 A more robust epoch point conversion method is
developed by Der and Danchick.5 Since the conversion is instantaneous, Izsak's
method, described by Uphoff, is also applicable.6 Differential correction methods
for the determination of mean orbital elements are expensive and unnecessary for
this purpose.
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Appendix B

Vinti Spheroidal Method Computational
Procedure and Trajectory Propagators

T HE algorithmic implementation of a theory and the code realization (or com-
puter routine) of the algorithm are different aspects of applying the theory to

produce useful numbers. Conceptually, the theory of the Vinti spheroidal method
for satellite orbits and ballistic trajectories can be reduced to three steps:

1) Transform the given ECI state vector x(tt) to the oblate spheroidal form at
time ti.

2) Solve the kinematical equations for the oblate spheroidal state vector X(tf)
at time tf.

3) Transform the oblate spheroidal state vector X(tf) back to the ECI state vector
x(tf) at timer/.
The six computer routines provided in this appendix were developed on the basis
of the preceding theory. However, the six algorithms differ in the second step.

An algorithm may be defined as a set of equations arranged in their order of
execution or a cookbook format. Vinti1 provided the algorithms for both his 1959
and 1966 potential models. With the exception of the vinti3 and vinti4 routines of
Bonavito2 and Lang,3 none of the other four computer routines follow the original
Vinti algorithms. A computer routine is written in lower case bold characters, i.e.,
vintiS. In Chapter 8, the equations used in the algorithm for the 1959 Vinti model
are described. The extension of the algorithm to the 1966 Vinti model requires
only a few more equations and additional terms, but the order of execution is
the same. The first three algorithms use classical orbital elements, while the last
three use universal variables. The less obvious difference between the algorithms
is the use of elliptic integrals; Vinti tried to avoid them, but Getchell3 showed their
advantages.

The implementation of an algorithm results in the computational procedure of a
computer routine. Even using the same algorithm, a computational procedure can
be different if the code developer chooses to implement a subset of equations in
the algorithm using his own favorite method or changes the order of execution of a
subset of equations to avoid a singularity. In this appendix, we shall describe only
the computational procedures in the vinti3 and vinti6 routines, which are based
primarily on Refs. 2, 4, works of Bonavito,2 Getchell,4 Monuki,5 and Der.6 The
critical equations are listed without proof, but the interested reader can find the
answers in this text, Bonavito,2 and Getchell.4 The computational procedures used
in vinti3 and vinti6 are depicted in Fig. B.I.

367
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rGiven:

1. Transform ECI to
spheroidal coordinates

2. Calculate the
Jacobi constants a's
a = <*(*( / ; ) )

3. Factorize the quartics

numerically
P l + p 2 , P l P 2 , A, B,

±r/0 , ±r?2 for vinti3
y p P 7 p A I , B l >

g , P P, S for vinti6

4. Initialize the
coefficients for the
R and N integrals
Ak>Alk'A2k for R'S
Bk for /V's forvintiS

A ^ . W j t for R's

Ck>c\k>c2k>Tk forAr's

At ti , also determine u
and x forvinti6

5. Calculate the
Jacobi constants /i's
At r/ , find the eccentric
anomaly Ei for vinti3 or
the universal variable x
for vinti6

6. Solve the Generalized
Kepler Equation
At ij , find the eccentric
anomaly E f for vinti3 or
the universal variable x
for vinti6

7. Transform
back to ECI
coordinates

(x.y.z.x.y, z)

Fig. B.I The Vinti computational procedures used in vinti3 and vinti6.

I. The Kepler Problem
Given the initial ECI state vector (position and velocity vectors) #(£/), the initial

time ti, and the final time tf, find the final ECI state vector #(//); units are
kilometers and seconds.

II. Given Constants
The following set of constants are used for calculating trajectories about the

planet Earth. However, if the four constants—geocentric gravitational constant
jU,, the equatorial radius r e j and the zonal gravitational harmonics /2 and J^—are
replaced by those of another solar system planet, then the Vinti routines compute
trajectories in the same way without any change in the algorithms. The Vinti
routines, which are applicable to orbital and celestial mechanics, remove all doubts
that Vinti's works are not just theory. This book provides not just a complete
theoretical treatment of these fields, but the computer source code to prove that
Vinti's theory is years ahead of its time.

H = 3.986005 x 105 km3/s2 (the gravitational constant in vinti3)
= 1.0 (the normalized gravitational constant in vinti6)

re = 6378.137 km (Earth equatorial radius in vinti3)
= 1.0 (normalized Earth equatorial radius in vinti6)

/2 = 1082.62999 x 10~6
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COMPUTATIONAL PROCEDURE AND TRAJECTORY PROPAGATORS 369

/3 = -2.53215 x 1(T6

/4 = -1. 61099 x 10-6

III. The vinti3 Computation Procedure
1) Transform the given ECI state vector *(r,) to the oblate spheroidal form at

time 11:

X(t,) =

/Pi\

Pi
rji

\< /> / /

( [0.5d

\ (xtyi+xiyt)/D2

where jc/, }>;, z / , i/, ^/, and z/ are the components of jc(f/), and

F =

G =

/",r, = xtXi + ytji +
2«2 + (pf + c2)(-a2 , + 2«,p2)

2) Compute the first half of the Jacobi constants (o?i , a3, a2) '

p2 + c2/?2)2^2 + a2]

3) Factor the quartics, F(p) and G()j):
c2a2 + (p2 + c2)(-a2 +

F(p) = -2a,(p - p,)(p2 - p)(p2 + Ap + B)

G(rj) = -a] + (1 - r!2)(al + 2nSi] + 2alC
2»?2)

0(7,) = (of - «3
2)»,4(i,-2 - r,0-2)(>r2 - ^2)

Comparing the two equations for F(p), we find p\ + p2» PiP2, A, and B, while
comparing the two equations for G(^), we find db^0 and ±??2. After factorization,
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the prime constants (<30, Po, £o» *o, • • •) and the mutual constants (a, p, e, / , . . . ) are
completely determined. The conversion of the eight constants from factorization
between Bonavito2 and Getchell4 (vinti3 and vinti5/vinti6) are listed as follows:

2
"(Pi + P2) = ~

X
A = -2Ai

S = So/ Si

P
P\P2 = -y

B = Bl

P = P

The constants on the left side are from Bonavito2 and on the right side are from
Getchell.4 Note that 2u\ = ^yy\ = /xyo and u\ — a| = ppo^o-

4) Initialize the coefficients of the six integrals (R\, R2, R?>, N\, N2,

b\E j sin 71;

7=1

7=1

'7;
J

For /?'s, we need the secular coefficients AI , A2, and A3 and the periodic coeffi-
cients A i; , A 27 , and A37 . Because /?i = —(A/2), the R integrals can be determined
if the eccentric anomaly E is known.

Nl = («3
2 - c^

N2 =

For N's, we need the variables ty, q, B\, 82, #3, x>Ym>vi,V2,
5) Compute the second half of the Jacob! constants (p\ , f a ,

fa = -a2R2(Pi) + oi
fa = fr + c
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using initial conditions and initialized coefficients. In the computer routine,

f>\ — —T (capt), time of perigee passage

/?2 = &> (somega), argument of perigee

ft = £2 (comega), longitude of the ascending node

It is critical that the eccentric anomaly £/ be determined exactly at t\. Here, £/ is
not the Kepler or two-body solution at r,.

6) Substitute the Jacobi constants (u\, o?2, #3, fi\, /^ ft) back into the kinemat-
ical equations and solve for pf, rjf, and </>f at the given final time tf.

We have three equations for three unknowns. The first kinematical equation is
the generalized Keplerian equation. The initial guess of the anomaly E = Ef is
critical to guarantee an accurately converged Keplerian solution.

7) Transform the oblate spheroidal state vector X(tf) back to the ECI state vector
x(tf) at timer/:

x(tf) =

ixf\

xf

/ D cos cj)f \
D sin 0/
p/rif-8

D cos <pf —<j)fD sin 0/
D sin </)f + (j)fD cos c/)f

\ /

where

D = [pfpf(\ - rff) - r,ffjf(P
2

f + c2)]/D

IV. The vinti6 Computation Procedure
1) Transform the given ECI state vector xfa) to the oblate spheroidal form at

time ti :

iPi\

Pi

[0.5-
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where jc/ , yt , z/ , ji:/ , j>/ , and z/ are the components of Jt(f/), and

d = (rf - c2) + *(2z/ + 8)

yt + Z/Z/

2) Compute the first half of the Jacobi constants (a\ , 0^3 , 0*2):

3) Factor the quartics F(p) and G(rj):

F(p) = ̂ [c2
Po(l - S0) + (

- P)(p2

G(rj) = PHI - Qnf]

Comparing the two equations for F(p)9 we find y\, py\, A\, and B\, while com-
paring the two equations for G(rj), we find Q\ , PI , P, and 5i .

4) Initialize the coefficients of the six integrals (R\, R2, RI, N\, N2, NI)

eU

+ (A3 — A\c2)W$ + (A4 — A2c2 + c4)^]

For /Ts, we need Ak and W*, where A0 = 1, AI found by factorization, etc., and
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= Vb = W is the true anomaly, Wi = (W + eV\)/p, V\ = sin W, etc.
6

Ni=(Di/a2)

a

For ATs, we need Ck,C\k, Cik, and T^, where

C0 = a2 Ci =

5Jk?r6/16]

TQ = U T\ — 1 — COS W

= [(A: - -2 - cos u sin*"1 = 2, . . . , 6

It is critical that the amplitude u of the elliptic integral and the universal variable
x are determined exactly at £/ . Note that this x is the Vinti solution at f/ .

5) Compute the second half of the Jacobi constants (f$\ , /J2, ft):

ft = 0/ +

using initial conditions and initialized coefficients. In the computer routine,

P\ = —T (capt), time of perigee passage
p2 = a) (somega), argument of perigee
ft = £2 (comega), longitude of the ascending node

6) Substitute the Jacobi constants (pt\ , ot2, 0^3 , p\ , ft , ft) back into the kinemat-
ical equations and solve for Pf,rjf, and 0/ at the given final time t/.

ft = -cc2R2(pf) + <x2N2(rif)

ft = 0/ +
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The first kinematical equation is the generalized Keplerian equation. The initial
guess of the universal variable (xhatO) is critical and is computed by the rou-
tine Keplerl, which guarantees an accurately converged Keplerian solution. Once
the oblate spheroidal coordinates are computed, the derivatives are calculated
from

giving the oblate spheroidal state vector X(tf) at the given final time tf. Here, the
quartics are computed from

F = c2al + (p2
f + c2)( - a2,

G = -a\ + (1

7) Transform the oblate spheroidal state vector X(tf) back to the ECI state vector
x(tf) at time tf.

x(tf) =
*/

D cos c/)f
D sin 0/

\

D cos 4>f — <}>fD sin <j)f
D sin (j>f + <j> t D cos (j)f

where

b = 2)]/n

V. Summary of the Vinti Trajectory Propagators
Six computer routines, which have been developed by different organizations

and individuals since the early 1960s, are listed as follows: 1) vintil: Wads worth
(Bell Laboratory, 1963), 2) vinti2: Izsak-Borchers (unknown location, no date),
3) vinti3: Bonavito (Goddard Space Flight Center and TRW, 1966), 4) vinti4: Lang
(MIT, 1968), 5) vintiS: Getchell (National Security Agency and TRW, 1970), and
6) vinti6: Der-Monuki (TRW, 1996).

Table B.I shows the regions of applicability and singularities (or limitations) of
our six computer routines. The incomplete source code of the vintil and vinti4
computer routines are included as an exercise for the interested readers. Because
there are published papers on Vinti's method by others in China, France, Japan,
and Russia, we may assume that Vinti computer routines in these countries exist,
but their capabilities are unknown.

The first three routines are formulated in terms of classical orbital elements for
circular and elliptic trajectories. The last three routines are formulated in terms of
universal variables, and theoretically they are applicable to all conic trajectories.
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Table B.I Regions of applicability and singularities of vintil to vinti6

Computer
Formulation routine Circle Ellipse Parabola Hyperbola Singularity

Classical
elements

Universal
variables

vintil
vintil
vinti3

vinti4
vintiS
vinti6

—
Yes
Yes

_
Yes
Yes

_
Yes
Yes

_
Yes
Yes

No
No
No

_
No
Yes

No
No
No

Yes
Yes
Yes

_
i « 0, e « 1

c £& 1

_
e « 1
None

However, vinti4 and vintiS have never been applied to parabolic trajectories; there-
fore, vinti6 was initiated to solve this problem. Note that a parabolic trajectory in
the oblate spheroidal coordinate system is rare. Except for vinti2, all the source
code was intended to be readable. Even though these routines are not optimized
for computational efficiency, they are more computationally efficient than other
types of analytic trajectory predictors.

The first five routines were coded before 1970, while the sixth routine was com-
pleted in 1997. The last routine not only applies to parabolic orbits but guarantees
the convergence of the generalized Kepler equation and avoids all possible sin-
gularities including the Vinti forbidden zone. Simulation results of these routines,
which are given in Appendix C, demonstrate that a Vinti trajectory is always more
accurate than the corresponding Kepler trajectory.

vintil
Wadsworth7 (1963) developed this routine to predict accurately the free-flight

motion of a rocket near the surface of the Earth. Part of the original source code
from Wadsworth is included. Developing a Vinti computer routine is not a simple
task. However, we present this as a challenging exercise for the interested reader
to complete this computer routine.

vinti2
This Izsak-Borchers8 routine was developed for the onboard targeting software

of a long-range rocket. Onboard computer memory was very limited 30 years
ago, and the source code was written to save memory. The reader can immedi-
ately find out that the source code is practically useless without a programmer's
cookbook. This computer routine is included to illustrate how a simple, elegant
theory can be developed into a sophisticated algorithm and then programmed to
be unreadable.

vinti3
Bonavito2 followed almost exactly the algorithm Vinti might have written for

his 1966 model. This routine has been used as a workhorse at TRW for drag-free
satellite trajectory propagation over long time spans.
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vinti4
Lang3 (1968) developed this routine under Vinti at the Massachusetts Institute

of Technology to begin the universal variable approach to the Vinti spheroidal
method. Lang's excellent thesis, which complements the short paper of Getchell,
presents the fundamental concepts, useful formulas, and the analytic method of
factorization. Note that a simple numerical method of factorization as used in both
vinti3 and vinti6 gives more accurate results. Part of the original source code from
Lang is included as an exercise.

vintiS
Getchell4 developed this routine to predict accurately the motion of satellites

using universal variables and the Vinti 1966 potential model. Vinti and many
others computed the Jacobi constants 0^2 before the factorization process or the
computation of the F and G quartics. However, Getchell reversed the order to
simplify the coordinate transformation at the initial time. Getchell also used elliptic
integrals to simplify the iterative solution of the generalized Kepler equation.

vinti6
Der6 and Monuki5 developed this routine to remove the remaining limitations

in the previous five computer routines. No new algorithms were invented, but old
tricks were applied. This routine guarantees a Vinti solution for circular, elliptic,
parabolic, and hyperbolic trajectories.

References
1 Vinti, J. P., Astronomical Journal, Vol. 74, 1969, pp. 25-34.
2Bonavito, N. L., NASA Technical Note, D-3562, 1966.
3Lang, T, "Vinti Unbounded Trajectories," master thesis, Dept. of Aeronautics and As-

tronautics, Massachusetts Institute of Technology, Cambridge, MA, 1966.
4Getchell, B. C, Journal of Spacecraft and Rockets, Vol. 7, No. 4, 1970.
5Monuki, A. T, Vinti Potential, Unpublished TRW Rept., 1979.
6Der, G. J., Vinti Trajectory Propagators, Unpublished Paper, 1996.
7Wadsworth, D.V., "Vinti Solution for Free-Flight Rocket Trajectories," AIAA Journal,

Vol. 1, June 1963, pp. 1351-1354.
8Borchers, R. V., "A Satellite Orbit Computation Program for Izsak's Second-Order

Solution of Vinti's Dynamical Problem," Goddard Space Flight Center Technical Note,
NASA TN D-1539, Feb. 1965.
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Appendix C

Examples

F OR satellite orbits and ballistic trajectories disturbed by the oblateness of the
Earth, it is well known that the Keplerian solution is the first-order approxi-

mation to the Vinti solution. It is less obvious that the Keplerian solution is also
the key to the Vinti solution. The keplerl routine provided by this text guarantees
an accurately converged Keplerian solution. The vinti6 routine, which takes ad-
vantage of the Keplerian solution, always computes an accurate Vinti solution for
any conic trajectory.

The primary purpose of this appendix is to provide numerical solutions of the
analytic vinti6 routine with which other analytic or numerical solutions can be
compared. Though only a small sample of our computer test cases is provided in
this appendix, they include circular, elliptic, parabolic, and hyperbolic trajectories
at various inclinations (0, 63.4, 90°). These example trajectories, except the first
one, exhibit singularities or difficulties for all other analytic method. The reader
can, of course, use the computer routines to solve easier problems by changing the
input conditions in the given input data files.

In the following examples, the initial time t[ is assumed to be zero without
loss of generality. In a Vinti routine, the initial and final time, t[ and tf, are both
arbitrary. The given initial state is xfa). The computed final states for the Keplerian,
Vinti, and numerical trajectories are, respectively, ##(//), xv(//)> and##(*/). The
numerical solution is computed by a seventh-order, 11 -iterations-per-step, classical
Runge-Kutta integrator (RK711) using a WGS84 Earth gravity model with only
the zonal harmonics /2, ^3, and J4. In other words, we are comparing the analytic
solutions against the numerical solutions with the Earth potential model. We shall
also introduce a Vinti numerical exact solution, so that the analytic Vinti solutions
can be evaluated against the Vinti potential model.

Again, the Vinti potential, V— — fji(p+8rj)(p2-\-c2rj2)~l, in the oblate spheroidal
coordinate system is well known, but the Vinti potential in the ECI coordinate sys-
tem is not. The ECI Vinti potential has little value if the analytic Vinti solutions
cannot be computed. If the equations of motion are numerically integrated in the
ECI coordinate system using a particular acceleration model, then the solution is
"almost" exact for that model. We may use the Vinti oblate spheroidal potential,
but the gravitational acceleration vector — V V must be expressed in the ECI form
for numerical integration. The complete expression of the ECI gravitational accel-
eration due to the Vinti potential will be given in a future paper. All we need is
the 3 x 3 Jacobian of the position components of the ECI and oblate spheroidal
coordinate systems. A numerical exact Vinti solution represents the best Vinti solu-
tion that any analytic Vinti solution can achieve. The neglected or truncated terms
in the formulation of an analytic Vinti solution are represented by the difference

377
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378 G. J. DER

between the analytic and numerical exact Vinti solutions. Simulation results show
that each component of the state vector of a vinti6 solution and the corresponding
numerical exact Vinti solution match to at least 12 significant digits in all of our test
cases. Therefore, we conclude that the neglected terms in Getchell's formulation
are insignificant.

In addition to presenting the 10 examples, we use four tables to compare the
accuracy of analytic trajectories against numerical reference trajectories. A ref-
erence trajectory is computed by the classical Runge-Kutta integrator (RK711)
using a WGS84 Earth gravity model with only the zonal harmonics, J^, /3, and
/4. The numerical exact Vinti solution is also given for completeness. A number
in the matrix represents the averaged number of significant digits matched with
the reference position vector components.

If the computer CPU time for a Kepler solution is defined as one time-unit, then
the Vinti and SGP solutions take, on the average, 5 and 10 time-units, respectively.
In a 143-Mhz Sun workstation with an ULTRA SPARC processor, one time-unit
is approximately 20 JJLS, while on a 200-Mhz Pentium-Pro personal computer, it is
10 IJLS. Although every computer routine is likely to have bugs just as every book
probably has typographical errors, our simulation results show that the keplerl
and vinti6 are extremely accurate and reliable. A Vinti solution, which is at least
a few orders of magnitude more accurate than a Kepler solution, is just a few
microseconds slower in real time.

I. Low-Earth Orbit
This simple example is provided so that the SGP4 routine can compute a solu-

tion without any problem. We shall use this low-Earth orbit to compare numerical
accuracy in Table C.I. The given initial and final times are r/ = 0, tf = 10,000 s,
where

osculating classical orbital elements at to = 0
semi-major axis = 6640.262815499317000 km
eccentricity = 9.496210216913872E-003
inclination = 72.853838974525400 deg
ascending node = 115.962302753882600 deg
argument of perigee = 57.735018723715720 deg
mean anomaly = 105.534231958634600 deg

*(*;) =

2328.96594 '
-5995.21600
1719.97894
2.91110113

-0.98164053
L -7.09049922.

-500.5832559961
-3075.2376202228
5822.4061243021

3.9383267135
-6.1032449766

L -2.8166618485

x y ( t f ) =

-485.5222682585 '
-3123.5190458862
5796.3841118105

3.9097618929
-6.0846992371

L -2.8777002798

x N ( t f ) =

-479.1990953029
-3132.5319528031
5790.4839771675

3.9111905123
-6.0775687486
-2.8918513134
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Table C.I Elliptic low-Earth orbit, 72° inclination3'b

Propagation
time, s

1
10
100
1,000
10,000

Kepler

9
6
5
2
1

SGP4

8
7
6
5
2

Analytic predictors
Vinti2

8
8
6
6
2

Vinti3

9
9
1
6
2

VintiS

11
9
1
6
2

Vinti6

11
9
7
6
2

Numerical
extra Vinti

RK711

13
11
8
6
2

The inaccurate solutions at 10,000 s are due to atmospheric drag.
A number in the matrix represents the averaged number of significant digits matched with the reference

position vector components.

II. High-Earth Orbit
When the eccentricity is zero, the SGP4 routine must be replaced by the less

accurate SGP routine to avoid the singularity. We shall also use this high-Earth
orbit to compare numerical accuracy in Table C.2. The given initial and final times
are tt = 0, tf = 10,000 s, where

osculating classical orbital elements at to = 0
semi-major axis = 7878.135704119925000 km
eccentricity = O.OOOOOOOOOOOOOOOE+000
inclination = 29.999999981223680 deg
ascending node = 137.217976698769400 deg
argument of perigee = O.OOOOOOOOOOOOOOOE+000 deg
mean anomaly = 35.999999974203660 deg

xv(tf) =

2328.96594
-5995.21600
1719.97894
2.91110113

-0.98164053
,-7.09049922 J

6712.0609670035
-3985.3574556181
-981.32635365161

2.7986992751
5.5685271109

. -3.4494924890 ,

6693.9937332156
-4053.6749275797
-907.2876049643

2.8690496198
5.5123917721

L -3.4609097997 J

xN(tf) =

6712.0572667907
-3985.361473247
-981.3375535940

2.7986983307
5.5685290662

L -3.4494902230 ,

III. Molniya Orbit
This example tests the critical inclination on a 12-h satellite orbit. The given

initial and final times are t[ = 0, tf = 86,400 s, where
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Table C.2 Circular high-Earth orbit, 0° inclination11

Propagation
time, s

1
10
100
1,000
10,000

Kepler

9
7
4
2
1

SGP

3
3
3
3
1

Analytic predictors
Vinti2

7
6
5
5
2

Vinti3

5
5
5
5
5

VintiS

11
10
8
6
5

Vinti6

11
10
8
6
5

Numerical
extra Vinti

RK711

11
10
8
6
5

aA number in the matrix represents the averaged number of significant digits matched with the
reference position vector components.

osculating classical orbital elements at fo = 0
semi-major axis = 26,628.136194743230000 km
eccentricity = 7.416966410816510E-001
inclination = 63.400000000279700 deg
ascending node = 119.999999995627700 deg
argument of perigee = 359.999998521220600 deg
mean anomaly = 144.008864736199700 deg

*(',-) =

19,850.34032 "
-40,076.98531

5,686.51314
0.9622473922

-0.3840200243
.-1.2806877932.

19,663.9353084
-40,094.4781151

5,795.9262619
0.9686039103

-0.4014772083
-1.2785482612 J

x N ( t f ) =

19,766.0536122 '
-40,042.8145765
5,798.16095975
0.96977866348

-0.39925120750
-1.27850448490.

19,663.9664163
-40,094.4541867

5,795.8734577
0.96860045712

-0.40146845120
L -1.2785505095 .

IV. Geosynchronous Orbit
This example tests both the zero eccentricity and inclination. Note that there is

no "equatorial" orbit in the Vinti solution, which implies that equatorial orbits do
not exist in real motion. The given initial and final times are tt = 0, tf = 86,400 s,
where

osculating classical orbital elements at r0 = 0
semi-major axis = 42,164.171587425180000 km
eccentricity = O.OOOOOOOOOOOOOOOE+000
inclination = O.OOOOOOOOOOOOOOOE+000 deg
ascending node = O.OOOOOOOOOOOOOOOE+000 deg
argument of perigee = O.OOOOOOOOOOOOOOOE+000 deg
mean anomaly = 250.000000003011600 deg
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-14,420.99601 '
-39,621.36091

0.
2.8892355501
-1.0515957400

0.

-13,727.98920329
-39,866.77387685
-0.0002772068
2.9071320167
-1.0010590414
-0.0000000003

**(*/) =

xN(tf) =

-13,737.29692824
-39,863.56782061

0.
2.9068975587

-1.0017396107
0.

-13,718.67926054'
-39,869.97849942
-0.000000086551

2.90736571383
-1.00038011634
-0.0000000007

V. Parabolic Orbit of 0° Inclination
If ECI input is parabolic, then there is no "parabolic" orbit in the spheroidal

coordinate system. The final orbit is highly eccentric. The given initial and final
times are ti = 0, tf = 21,600 s, where

osculating classical orbital elements at to = 0
semi-major axis = 1 .OOOOOOOOOOOOOOOE+030 km
eccentricity = 1.000000000000000
inclination = O.OOOOOOOOOOOOOOOE+000 deg
ascending node = O.OOOOOOOOOOOOOOOE+000 deg
argument of perigee = O.OOOOOOOOOOOOOOOE+000 deg
mean anomaly = O.OOOOOOOOOOOOOOOE+000 deg

x(t{) =

xv(tf) =

10,000. •
0.
0.
0.

8.9286113142
0.

-65,386.51048664
54,824.07404366
-0.0427413796
-2.8706415782
1.0414098075

-0.0000013464

XK(*f) =

-65,371.81216572
54,907.85450761

0.
-2.8712690908
1.0458500397

0.

x N ( t f ) =

-65,386.51377768
54,824.06154128
-0.04270679538
-2.87064153247
1.04140916778

-0.00000134538

VI. "Parabolic Orbit" of 0° Inclination in the Oblate Spheroidal System
The ECI input is slightly hyperbolic, so that it is "parabolic" in the Vinti oblate

spheroidal coordinate system (see Table C.3). That is, the total energy is zero or
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Table C.3 Parabolic orbit, 0° inclination

Propagation
time, s

1
100
10,000
86,400

(1 day)
864,000

(10 day)

Kepler

9
5
2
2

2

Analytic predictors
SGP Vinti2 Vinti3 VintiS Vinti6

— — — — 13
_ _ _ _ 9
— — — — 8
_ _ _ _ 7

— — — — 6

Numerical
extra Vinti

RK711

13
9
8
7

6

aA number in the matrix represents the aver;
reference position vector components.

•aged number of significant digits matched with the

ot\ = 0. The given initial and final times are f/ = 0, tf = 21, 600 s, where

osculating classical orbital elements at to = 0
semi-major axis = -2.269809983628260E+007 km
eccentricity = 1.000440565513066
inclination = O.OOOOOOOOOOOOOOOE+000 deg
ascending node = O.OOOOOOOOOOOOOOOE+000 deg
argument of perigee = O.OOOOOOOOOOOOOOOE+000 deg
mean anomaly = O.OOOOOOOOOOOOOOOE+000 deg

10,000.
0.
0.
0.

8.9295946696017
0.

"-65,393.97186689
54,878.43471233
-0.042750659016
-2.87180213163
1.044500848346

. -0.00000134746

-65,379.23990243
54,962.18246752

0.
-2.87242624638
1.04893952398

0.

-65,393.97516284
54,878.42221500
-0.042716099436
-2.87180208635
1.04450020887
-0.0000034645

VII. Hyperbolic Orbit of 0° Inclination
This hyperbolic trajectory is artificial, because the satellite has reached a dis-

tance far from the sphere of influence of the Earth. This example demonstrates the
robustness of the vinti6 routine. The given initial and final times are ti = 0, tf =
864,000 s (10 days), where
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osculating classical orbital elements at to = 0
semi-major axis = -81,018.008496107870000 km
eccentricity =1.123429348432829
inclination = O.OOOOOOOOOOOOOOOE+000 deg
ascending node = O.OOOOOOOOOOOOOOOE+000 deg
argument of perigee = O.OOOOOOOOOOOOOOOE+000 deg
mean anomaly = O.OOOOOOOOOOOOOOOE+000 deg

xv(t{) =

10,000.
0.
0.
0.

9.2
0. ,

-1,895,825.589375
1,013,534.429643
-0.9236691031
-2.0449291200
1.0447195567

-0.0000009786

XK(*f) =

-1,897,260.450641
1,017,055.109125

0.
-2.0469939635
1.0488310491

0.

x N ( t f ) =

-1,895,825.434780'
1,013,533.940893
-0.92295381665
-2.04492888725
1.04471899026

. -0.000000977894

VIII. Hyperbolic Orbit of 90° Inclination
The given initial and final times are ti = 0, tf = 864,000 s (10 days), where

osculating classical orbital elements at fo = 0
semi-major axis = -81,018.008496107870000 km
eccentricity =1.123429348432829
inclination = 90.00000000000000E+000 deg
ascending node = O.OOOOOOOOOOOOOOOE+000 deg
argument of perigee = O.OOOOOOOOOOOOOOOE+000 deg
mean anomaly = O.OOOOOOOOOOOOOOOE+000 deg

*(*«) =

10,000.
0.
0.
0.
0.

L 9.2

-1,897,260.45064
0.

1,017,055.10912
-2.0469939634

0.
1.0488310491 J

-1,895,222.00657
0.

1,014,670.41072
-2.0442992160

0.
1.0459513077

x N ( t f ) =

-1,895,221.78154
0.

1,014,670.05463
-2.0442989103

0.
1.0459508846
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Table C.4 Hyperbolic orbit, 90° inclinationa

Propagation
time, s

1
100
10,000
86,400

(1 day)
864,000

(1 day)

Kepler

9
5
3
2

0

Analytic predictors
SGP Vinti2 Vinti3 VintiS Vinti6

— — — — 13
_ _ _ _ 9
— — — — 6
— — — — 6

— — — — 6

Numerical
extra Vinti

RK711

13
9
6
6

6

aA number in the matrix represents the averaged number of significant digits matched with the
reference position vector components.

IX. Long-Range Ballistic Missile Trajectory
This example illustrates a long-range ballistic missile in a retrograde trajectory

(see Table C.4). The given initial and final times are ti = 0, tf = 1000 s, where

osculating classical orbital elements at to = 0
semi-major axis = 4687.953562723175000 km
eccentricity = 6.156073264729958E-001
inclination = 133.914685183962600 deg
ascending node = 18.107803794189210 deg
argument of perigee = 335.867839344461500 deg
mean anomaly = 107.185803129158600 deg

x v ( t f ) =

-3158.00000
-4647.00000
3568.00000

-5.74500000
-0.97200000

^-0.89500000 J

-6473.0551629885
-3206.1626988526
1071.7467222969
-0.523319895600
3.390916610237

-3.521575157896

-6473.6112958366
-3206.4212088435
1075.5765925537
-0.526409920884
3.389073897476

-3.515561063365 J

-6473.0557229332
-3206.1637491443
1071.7459270133
-0.523320813163
3.390915437503

, -3.521576882969

X. Exo-Atmospheric Interceptor Trajectory
This example illustrates an exo-atmospheric interceptor that has a perigee ra-

dius of 19 km, and, therefore, the extension of the trajectory passes the focal circle
or the Vinti forbidden zone. The eccentricity is approximately 0.994. By default,
vinti6 gives the Keplerian solution, but the numerical exact Vinti solution is given
below in Xy(t/). The given initial and final times are ti — 0, tf = 100 s, where
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osculating classical orbital elements at fo = 0
semi-major axis = 3251.548870391171000 km
eccentricity = 9.940795562606448E-001
inclination = 96.057156000898360 deg
ascending node = 106.928715972110900 deg
argument of perigee = 213.426009474111200 deg
mean anomaly = 166.006964173314400 deg

x v ( t f ) =

-1221.14362
5288.41648
3502.50807

0.0192755409
0.2545356003

. 0.8722443619 J

-1210.2762310557
5275.0431119839
3563.7555575245
0.197565823142

-0.520405921315
L 0.352124771187 .

-1210.2635448748
5275.0167907335
3563.8283386621

0.1977767393
-0.5209724863
0.3534817097 .

-1210.2754882091 "
5275.0427800469
3563.7548164270

0.19758054893989
-0.52041272393527

L 0.35210988750489 .
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Appendix D

How to Use the Vinti Routines

O N THE floppy, there are two folders: source and examples. The source
folder has all the source code, the input data files, and a subfolder named

others. The examples folder has the output data files that were generated for the
10 examples in Appendix C. These routines were originally developed on a UNIX
workstation and then ported to a personal computer (PC) with the WINDOWS 95
operating system. On the PC, we use the Microsoft Fortran PowerStation 4.0 to
compile, link, and run the program, and this is the preferred configuration.

In this book, we provide two extremely accurate and robust Kepler and Vinti
routines (keplerl.f and vinti6.f). These routines, which use universal variables to
simplify the conic trajectories, are also free of singularities.

I. The Source Folder
The computer routines that are illustrated in Fig. D.I are listed as follows.
1) Input data file: input.txt
2) Output data file: v_prop.log
3) Main program: propagate.for (which calls the following subroutines):

kepler.f
sgp.driver.f (which calls sgp.f, sgp4.f, sgpS.f,

sdp4.f, sdp8)
vinti2.f
vinti3.f
vintiS.f
vinti6.f (which calls keplerl.f)

Note that the input.txt file is created using the Notepad utility. The 10 input
data files are named accordingly. The routines kepler.f and keplerl.f are identical
except that keplerl.f returns with the universal variable needed by vinti6.f. The
remaining routines are utility codes for output purposes.

The subfolder others contains all the C routines and the two partially completed
Vinti Fortran routines (vintil.f and vinti4.f).

II. The Examples Folder
This folder contains all the output data files of the 10 examples. The v_prop.log

output files are renamed to:

387
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Main Program: propagate.for

Input: input.txt
[ State vector: x(t.)

Initial time: t.
V^Final time: tf j

—— +•

call kepler

call sgp_driver

call vinti2

call vintiS

call vintiS

call vinti6

Output: vjprop.log
S "*

—— ̂  State vector: x ( tf )

Fig. D.I An overview of the source code.

Exl_leo.log = output file of Example 1 for the low-Earth orbit satellite
Ex2_heo.log = output file of Example 2 for the high-Earth orbit satellite

of zero eccentricity
Ex3_mol.log = output file of Example 3 for the Molniya orbit satellite

of critical inclination
Ex4_geo.log = output file of Example 4 for the geosynchronous Earth

orbit satellite
Ex5_par0.log = output file of Example 5 for the parabolic orbit satellite

of zero inclination
Ex6_parOx.log = output file of Example 6 for the "Vinti" parabolic orbit

satellite of zero inclination
Ex7_hyp0.log = output file of Example 7 for the hyperbolic orbit satellite

of zero inclination
Ex8_hyp90.log = output file of Example 8 for the hyperbolic orbit satellite

of 90° inclination
Ex9_kwaj.log = output file of Example 9 for a ballistic missile trajectory
ExlO_intr.log = output file of Example 10 for an exo-atmospheric

interceptor trajectory at approximately 80 km altitude

III. The Users
We envision three types of users. A user may follow the relevant procedures to

retrieve the source code and example results from the floppy.

User Who Wants to Use All the Fortran Source Code on the Floppy
1) Create a new directory (UNIX) or folder (PC) and name it Vinti.
2) Copy or drag the examples and source folders into the Vinti folder and go

to the source folder.
3) Create a makefile (UNIX) or a workspace (PC, Microsoft Fortran) to compile

the code.
4) Compile and link all the source code.
5) Copy the appropriate input file (i.e., inputgeo.txt) to replace input.txt (input-

leo.txt is the inputtxt by default).
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6) Run the main program.
7) Compare the newly generated output data file v_prop.log with that in the

examples folder (i.e., ex4_geo.log).

User Who Wants to Replace His/Her kepler Fortran
Subroutine with keplerl or vinti6

1) Copy or drag the vinti6.f and keplerl.f of the source folder into the directory
or workspace that has the kepler subroutine. (Note that vinti6.f calls kepler l.f for
the Keplerian final state and universal variable at the given final time; keplerl.f is
the only external routine called by vinti6.f.)

2) Make sure the calling parameters match with those of keplerl.f or vinti6.f.
3) Replace the kepler subroutine by keplerl.f or vinti6.f; recompile and run

the program.

User Who Wants to Replace His/Her kepler C Subroutine
with keplerl or vinti6

The C routines were originally developed on a PC with the WINDOWS 95
operating system. On the PC, we use the Microsoft Visual-C++ PowerStation 4.0
to compile, link, and run.

1) Open the subdirectory or subfolder (PC) others source in the source folder.
2) Copy or drag keplerl.cpp or Vinti6.cpp into your directory or folder.
3) Make sure the calling parameters match with those of keplerl.cpp or

Vinti6.cpp.
4) Replace the kepler subroutine with keplerl.cpp or Vinti6.cpp; recompile

and run the program.

IV. Some Editing Problems
Some difficulties were encountered in using the Layhey Fortran compiler on

a PC. To circumvent such problems, the user may open the problem routine by
Microsoft Word and then immediately save the routine as text with line breaks.
The newly saved routine should work.

When a computer routine is copied into a directory of a UNIX workstation,
using a vi editor, the user may see a strange symbol "AM." This is also due to a
line break in a DOS routine, which is not recognized by the UNIX vi editor. The
user may delete this by using a vi editor command ":1, $s/AM//g." To type the
symbol "AM," the keys control and v are pressed simultaneously for A, and then
the keys control and m are pressed simultaneously for M.
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Action and angle variables, 341-342
Artificial satellite orbit around planet

eigenvalue problem, 151-153
Laplace's equation, 147-151
Legendre polynomials, 154

Brouwer-von Zeipel method
average, A4F, 247-251
effects of 73, 241-245
effects of 74, 246
elimination of I, 220-226
second canonical transformation, 232-235
second-order terms, general, 230-231
secular terms, 236-239
short periodic terms of order /2> 226-230
splitting FI over two parts, 220

Brouwer's theory, 280-285

Canonical generating functions, 44-41
Canonical transformations

canonical generating functions, 44-47
exact differentials condition, 41^4
extended point transformation, 47
Jacobi integral, 49-51
plane rectangular to plane polar coordinate

transformation, 47-49
Circulational coordinates, 337-338
Collinear equilibrium points, 306-307

amplitudes k\ and k2, 325-326
circulation sense, 326-327
ellipse orbit, 324-325
exponents, 323
motion in the primary plane, 323-324

Conditionally periodic Staeckel systems,
337-341,347-352

circulational coordinates, 337-338
librational coordinates, 338-341
mean frequencies, 351-352

Conic section solutions, 17-19

D'Alembert's principle, 32
Delaunay equations, 109
Delaunay variables, 107-108,219
Disturbing function, 175-177

planetary, 115-117
Drag on satellite orbits

components in terms of anomalies E and/,
209-210

equation for £,212-213
equations for a and e in terms of eccentric

anomaly, 212
equations for a and e in terms of the true

anomaly, 210-211

equations for integration, 213-218
secular behavior of a, e, co, and £,211

Earth figure, 169-172
Eccentric anomaly, 20-23, 26-27
Elliptic expansions, 177-183
Elliptic orbits, 19-20, 128-129
Equilibrium points, 305-313
Extended point transformation, 47

Fourier series, 177-183

Gauss' theorem, 10
Gaussian variational equations

Jacobi elements, 119-125
Keplerian elements, 127-144

Geoid, 172-173
Gravitational potential, planet

Earth figure, 169-172
geoid as oblate spheroid, 172-173
normalized coefficients and harmonics,

168-169
spherical harmonics addition theorem,

157-161
spherical harmonics orthogonality,

166-167
standard series, 161-166

Hamilton-Jacobi equation, 53-54, 119,
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Kepler problem, 55-67
integrals, 58-67

Vinti spheroidal method, 77-78, 81-82
Hamilton-Jacobi perturbation theory,
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Hamiltonian equations, 37-40
Hamilton's principle, 32-34
Holonomic systems, 34
Hori's method, 263, 268, 275
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Jacobi integral, 49-51, 303
Jacobi relations, 255-257

Kepler problem, 55-67
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Kepler's equation, 23-24
Kepler's third law, 23
Kinematic equations

Vinti spheroidal method, 82-83,
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Lagrange brackets, 254-255
Lagrange planetary equations

eccentricity, 110
inclination, 110-111
mean anomaly, 111-112
node longitude, 112-113
pericenter argument, 112
semi-major axis, 110

Lagrange triangular points, 305-306
Lagrange variational equations, 184
Lagrange's equations, 34-35, 37
Laplace vector, 15-17
Laplace's equation, 147-151

Vinti spheroidal method, 78
Librational coordinates, 338-341
Lie series

Hori's method, 263
Lie transformations, 275-277, 285-289

Mean anomaly satellite-orbit theory
disturbing function, 175-177
eccentricity, 188
elliptic expansions, 177-182
inclination, 187
mean-anomaly variation, 189-191
mean-motion variation, 189
node motion, first approximation, 186-187
perigee motion, first approximation,

184-186
semi-major axis, 187

Mean-anomaly variation, 189-191, 204-206
Mean-motion variation, 189

Newton's laws
gravitation, 7-8
gravitational flux, 10
gravitational potential, 8-9
motion, 7
true sphere, gravitational properties, 11

Nondissipative systems, 31

One-center problem, 13-15
Orbit in space

eccentric anomaly, 26-27
orbit generator algorithm, 28

Perturbations by Lie series
application to satellite orbits, 277-278
comparison with Brouwer's theory, 280-285
Lie transformations, 275-277, 285-289
mean anomaly elimination, 278-280

Planetary disturbing function, 115-117
Poisson brackets, 257, 259-262

invariance to contact transformation,
258-259

Potential expansion in spherical harmonics,
79-81

Separable systems, 335
Spherical harmonics

addition theorem, 157-161
orthogonality, 166-167

Staeckel integrals, 333-334

Staeckel systems, 332-333
conditionally periodic, 337-341, 347-352
Kepler problem example, 334-335

Staeckel's theorem, 329-331

Three-body problem, general
angular momentum, 292
energy, 293
formulation, 291
momentum integrals, 291-292
stationary solutions, 294-295

collinear, 296-298
triangular, 295-296

Three-body problem, restricted
considerations about L^ and L$, 320-323
equilibrium points, 305-312

collinear points, 306-309, 323-327
Lagrange triangular points, 305-306

motion in the primaries plane, 313-320
instability near the collinear points,

316-317
stability near the triangular points, 316

motion near the equilibrium points, 312-313
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