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This is the second volume of '_a course in celestial mechanics" and must be

regarded as an Imaediate continuation of the first volume. Thls volume

is concerned wlth the general theory of perturbatlve motion, the methods

of evaluatlon of the perturbations of planets and comets and prlnciples

on the theory of the motion of the Moon.

_,lis book may serve as s text-book for undergraduate and post-
l

! graduate students and being s sufficiently complete monograph on celestical
l

mechanics, it may be of interest to all scientists working in thls field.

Translation Editor's Note: The reader is advised to consult the foreign

text for greater legibility of the graphic material.
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PREFA¢_

Whereas the first volume of this course was entlrely devoted to the

two-body preblem and to the methods for determlnlng the orbltals, this

voluBe is maLnly given to the perturbation theory and its appllcatlon in

celestial mecharAcs.

In this book, it has been my aim to give beginners an orientation in

modern celestlal mechanics and to introduce th_ to the periodic literature.

Secondly, I hope that this book _dll be accepted as a comprehensive and _i

practical treatise on the solution of some of those problens which

?
usually meet astronomers. _.

I

The material of this book is mainly based on the general _ special ,_

] courses I gave in the University of Leningrad during the past six years.t
|

1 The book is divided into four sections. The first section is devoted to

the study of the general properties of motion of material points mutually

interacting according to Ne_rcon'slaw of _ravltatlonand, in particular,

to the most important pzoperties of perturbative motion. This section

may be considered as an introduction Co the ensuing sections, in which

the actual determinationof the perturbed coordinates is discussed.
l

i The second section is given to the determlnatlon of the perturbed!

I
coordinates vslng nethods based on the numer_ca.1Ictergratlon of dlf-

_i ferentla] quatlons. Here, as well as in volume I, ! aim to give an
1

. exhuastlve manual for carrying out these operations. In volume I, I did

I
i not deal with a detailed account of _e theory of numerical integration of

differential equations, I gave but a brief stmnary of this important
!

subject in an appendix to vo3utr,e I in o:der to fill as soon as posslble

one of the most important gaps in our literature. In vo].umeII, I developed

J

.t
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the subject to the necessary degree, and gave only pertinent examples. I

preferred not to bother the reader by referring continuously to the above

mentioned appendix and I found it better to expose all the theory of

integration of tl_ equations even at the cost of repeating a number of

pages. This allowed me to exclude the above mentioned appendix from the

new edition of volume I, which is being prepared at the present time.

After explaining in detail the methods of the numerical integration

of the equations and illustrating th_s by means of several examples on how

iI to use these methods, I considered in detail the application of the numerical!

integration methods to the study of the unperturbed motion. I then applied

these methods to the evaluatlon of perturbations, and here I could not

i forego the illustration of examples, but _he reader who studled in detail

the preceedlng two chapters will not f_nd a need for these examples.

The third and fourth sections of t_e book are concer_ed with the

i
analytic methods of evaluating perturbations. In these sections, ] do

i not attempt to give a comprehensive acco_mt of the methods to be applied,
I
I as they are already found in speclal monographs which I am not trying to

replace and thus restricted myself to the complete presentation of the _a!n

points of each of these important _ethods. Considerable space Is devot,_d

to the study of the motion of the Moon. This is not only one of the host

well-developed areas of _lesttal mechanics, but is also considered not

less important than the motion theory of planets. I do not need to

mention that the theory of the motion of the Moon _s used in star astronomy

in the study of multiple stars, We do not forget that the work by Hill is

considered to be one of the most important reference sources in celestial

mechanics during the past decade.
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Volume II is hence malnly devoted to the study of the methods of _

celestlal mechanics. More detalls on the results, namely the comparison

between theory and observatlun, will be given in volume Ill. There, more "'

special methods (periodic orbltsle, _4thods of Gulden and Brendel) and also

the theory of the _ctlon of stars will be given.

I tried to make the standard of presentation suitable f,,rthe self-

study of the subject and I avoided compllcated mathematical methods as much

as possible. I hope that lecturers will be able to choose from this book

various topics according to the standard and the degree of completeness
i

they reouire. |

I have carefully chosen notations for quantities, for which no

standard notations exist and T would like to point out that the introduction

of a complete set of not_*ions is not only difficult, but also not always

useful. For example, T used different notations in the motion theory of

planets and in the theory of motion of the Moon. This should not cause the

reader any trouble and should help him in readlvg the special literature.

I do not claim a complete and systematic bibliography and more details

on the available bibliography could be found by investigating the well

known literature.

Finally, I note that the chapters devoted to the determination of

orbltals obtained from the various observations, which I had planned to

include in volume II, were included in the new edition of volume I, thus

allowing the contents of the present volume to be more homogeneous.

M. Subbotin
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!i
PART ONE _ :

PRINCIPLES OF THE THEORY OF PERTURBAT!VE MOTION J

CHAPTER I

"" THE n-BODY PROBLEM .-_

i. The integrals of the n-body problem

Let us consider n material points of masses m° , mI , ... an_ I .

We deaote by _i ' _" and _/. the coordinates of point mi relative to
an

arbitrary system of axes. Let _iJ be the distance between poJnts mi

and mj , so that

a_,.:(k-_,)"-t('_,-',,Y+ ('-,-:"_.
#

The force of gravitation by which point mj acts on point mi is equal to

k2mimj -2 k2iJ , where is the coefficient of gravity (vol. I, SS 3 andS6).

The projections of _is force on the coordinate axes are

_t -- "1 ¥1/d_w Ill ' P_#

k '-',,/I/n I _, _,';'//I/n I ,_':/71 //I,
U tl q

The equations of motion of point mi are then given by

A :_

. I Io

":'tl. --= ):_ _,_1 Ill/N/ '1 ",m, .-_,., fit
I '!

d-:
m ----' _,_N,_ "J ""'

' dl: " ,,_ m/uj .=.._---,
I U

where terms witb I = J should be dropped in the summation. Fquatlon (I),

with i = 0, I, ..., n-i form a system of the 6n-order, the Integration of

which gives a complete solutlon of the n-body problem. These equations

may also be writtep as

azi, 011 d.,_, _J/I d ; 011

", ' ", ' '

once the force function

_J

"ORIOIN,_L, ORIG_NA_PAGE I_
•' OF POOR_UALIT_

OF _OCk ,, .-_
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is introduced.

Since we are dealing with a system on ,inlchno external force
p

acts, the general equations of mechanics allow us to derive for the

system 6 Integrals of motion of the centre of mass, and 3 integrals

of area. These integrale, can be easily obtained from equation (i). 2:

Substituting i in each of equations (i) where i = 0 to I = n-I to obtain '_

v .';I. (1, V r,'l, _I v 11; U, _ :
i

where the dots denote differentiations with respect to time.

Then

vj.nk . 71 vlllrl . _ vl;l._ If)
.

_Lm.:.," - _LI'" J.,., Vm?,,:- _:,t-_-:.:. v m.'. :/ _ "r., (,:)1

where c,<,,, _, , _ I °<%1 I'_. and A are arbitrary constants. Equations

(4) and (J) show that the _ntre of mass of the system moves with a

linear and uniform velocity. These rela_lons are called the integrals

of motion of the centre of mass.

In order to derive the Integrals of area, let us consider the

followlng relations, which can be easily obtained f_.om equations (1):

t _

"m, C,_,-- _,,,) .o
#

v l,'l (;i',l "- _,,'_,) "_--"11.
i

Integrating these equations and denoting by CI , C2 and C3 the new

arbitrary constants, we obtain the integrals of area

oF ?oo
I
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i

F

T

•_m,(,,,'_, ;,_,),--c,
I ..

E m_(;,_1_.,;_)*= C. t6) .-"
#

m,I_/;,_--"qi_,)---:C,.
I

ORIG]]VALPAGE18
OF POOR QUALIT_

The left-hand slde of equations (6) are the pro_ectlons on the coordinate

axes of the angular momentum of the system, wl_Ichequala the sum of angular

momenta of all the points. In this manner, equatlons (6) show that

the magnitude and direction of the angular momentum of the system are

conser_yed. The plane perpendicular to the angular momentum of the

system is given by the following equation "_

C,(" -_") I ('._{Y,..',")'t r;.,{'.-.:,,_:O, c7)

and called Laplace's invariable plane.

Each of the terms of the sums in the left hand side o_ equation (6)

can be interpreted a- the proJectlon of the areal velocity of a given

point m on the respective coordinate p]ane, multiplied by the mass

of the particle. In other words, the left hand side of each of these

equations Js the sum of the mass projections oF areal velocities of all

particles of the system ozzone of the coordinate planes. If the sum of

mass area! velocities is projected on an arbltrarily chosen plane, the

projection will evldently be equal to

"'I }

where_ is the angle between the noz_nal to thLs plane and the angular

momentum of the system. From here, it follows that the invariable

plane may be defined as th_lane for which the sum of mess projections

of the areal velocities of all the .pplntsof the system is _,axlmum.

1979012780-015
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The remaining integral of motion owes its existence to the situation ,,

that the force function, given by equation (3), does not depend expllclty

on time. To obtain this integral, we multiply equations (2) by _<._ •

and "respectively, and by adding the resulting equations, we obtain .

"r'1_1"{ "'") ttt '

The integration of tLls equatlon directly leads to the following _

integral of kinetic ener[sy

6

"J i4-'' ._--. -:

where h is a new constant. The quantity

,;.,7"--=-2.,,,.,+m+(+_' t. +,.{--'.,j

is actually the kinetic energy of thess_V__em_. The potential energy is

equal to - U. Then, ,the total energy is

M = T - U

and the integral (8), assuming H = h, expresses the law of conservation

of energy for the system under consideration.

We conclude that the general theorems of mechanics lead for the

n-body problem to ten integrals of motion, Various attempts to flnd

other integrals have not been successful. In the year 1887, Bruns

has shown that any _Irst integral, algebraic with respect to the
4

coordlnatesE_ _'_. and _iand their derivatives _) _{ and _,

should be a consequent cf the t_n integrals obtained above even for three +_

body problem. In the year 1889, Polncsre also found that for three _ ,

body problems there exists no other first integrals that could be

definitely expressed by single valued analytic functions. We shall not

stop on the proof of these theorems. Knowing that they exist_ we shall

1979012780-016
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not search for other inCagrals of motion, other than the above mentioned

ten. If other integrals of motionwere obtainable, they would be too

complicated to bn of practical use.

2. Reduction of the n-body problem to the intesration of a system of

order 6n-12 and two quadratures

The 6 integrals of motion of the centre of mass, the 3 integrals

of area and the integral of kinetic energy found in the previous section

reduce the order ofsystem (1) by ten units. We can reduce the order

of the system by one more unit when we make use of the time independence

of the gravitational forces. For this purpose, we have to exclude from

the equations of motion the increment dr. The system of equations

obtained in this manner is then integrated, while time is determined by

evaluation of a quadratare. The problem is then reduced to the

solutlcn of a system of the order 6n-ll and one quadrature.

We can again reduce the order of tde system by one more unit by

making use of the property of the forces that they de)end only on the

interpolnt distances. To do this, we introduce the generalized

coordinates in the following way. We draw a straight line passing through

one of the points of the system and fix its direction. We then draw a

plane through this llne passing by another point in the system. We

denote by _the azlmuthal angle of this plane with respect to an

arbitrary direction and let this angle be one of the general:_zed

coordinates. The motion of the whole system will be defined by the

coordinate _ and the coordinates which define the position of the

system relative to the plane. We then prove that the coordinate is

cyclic, i.e. that the Lagrange equations of the system involve only the

time derivat_ve_bu£ not the coordinate_ itself. We choose the z-axis

in the direction of the fixed stralghtllne and let the x-axls be In the

rotating plane. We denote by xk , Yk :,Ldzk the coordlnate_ of point

,E
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mk in ther@tating coordinate system. The components of velocity of

point m k will then be:

$

The kinetic energy of the system will be given by ,".

• 7"=- 2 _.1
4"

and w111 thus depend on q but not on (1D. Similarly, the Lagrangian

of the system

L " T + U , __O._G_ A

will not depend on _.' so that the Lagrange equatio Q _'

d (,,I.) ,)l. ,)dl , ,iv ,_:

win yield

,ll.
t'l)ll_l.

This equation allows us to exclude ¢ from the remaining equations

of motion. L_tegrating the system of equations obtained in this

manner, ,-_ will be able to _now the motion of the material points

relative to the rotating plane. From the last equatlon, we obtain

an expression for_ as a function of the other coordln_ _es of the

systen. Solv_1_g one quadrature, we obtain the value of th angle

which defines the position of the rotating pla re.

The above procedure for the exclusion of the angle y from the

equations of motion has been named "method of elimination of nodes"

Oy Jacobl in his study of the three-body problem.

The Intesratlon of the system (I) is finally reduced to the

_ntegrat_on of _ system of 6n-12 equations end two quadratures. We

,re not going tn do this reduction here since it is only necessary for

,L _ I
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i the complete solution of the n-body problem I. We shall only consider the -.

reduction of the order of the system by ( units, using integrals (4) and

,p,

(5), which is of practical importance.

i

3. Equations of relatlve motion

Let us return back to equatlons (I) wl,ich describe the motion of n

bodleb relative to an arbitrary system of fixed axes. Let us make use

of the integrals of motion, given by equations (4) and (5) to exclude

from equations (I) three arbitrary coordinates, say go) ?o and _ o

as well as their derivatives wlth respect to time. For this purpose,

" we Introduce the new coordinates 7! , Yl and zI so that

: : "::--" 4, (I I ", .,n I)"_ .. ' X;l I,, a,u, y,, ., ., : .. , . . . --

These are the coordinates of point mi relative to three axes passing by

=Yo =z =0,point mO parallel to thefixed axes. Noting that x° o

we rewrite equations (1) as follows

d-_ A'_"_' m "j "' -
tit: ,.__ I A:'

# _ t I]

=,(':mo --y, _-m, ai', _-.• . m. , a:' --'t #1-- I, d

X i Xj - A"

t)S t]

d-i, : " ._" _,_, x' _A':_m "
,it' .-., s ..%., k 't;: ' i X'" nt A'_ '

iDetails on thedlfferent methods of reduction of the order of the

• system of differential equations mentioned abo,_e can be fo,md in
the article: E.T. Whittaker, Prlnziplen der $torungstheorie und

allg_neine Theorie der Bahnkurven in dynamischen Problem, Enzyklopadie

.. der mathem. Wlesenschaften, Bd. Vl., 512-556, and also In the book
"Analytic dynamics" by the same author where a whole chapter is

devoted to the above problem. The reduction of the n-body problem

to a system of 16 n-12 equations has been done by T.L. Bennett
(Messenger of Math. (2), 644, 1901).

1979012780-019



#

-- 8 --

' Where _ denotes a summation over ] in which terms with ] = 0 and

J = i are dropped. Introducing the notatior, _o_ = rj , we obtain the

following equations for the motion of point mI relative to point m°

._. " _f _ X .Ks )d'x _,-(m,, i m') ' k'- _$'m I , 'a-' ', -" ', % 6'

d-y_ v "_" 3'I- Y, "l (9)
- ' " t _'_" III _._ /.;_

dl "J • - _" (111,, : 171.1I; _ " ,I I

Z k._,. (z Z Z)_;Zt -- k",Ill ', tll) I't NI / i : ,dr:' , _._ 3.. r'_

(i_- 1, -'.... . 11.

where

-_ "-(g L)' ' _', y)' i (:, ':_:,

f _'I' %'J : '_"

Introducing the notatlon

/ l _ "_" _'4_"iI " zj
• " ' "' "I _IO)I¢a _' \_' , ,

we rewrite equations (9) as follows

d.'x .r, 0 'C

: d,'" .-;' .{'"(m,, Ira,), r '_ o'.<

'. d 'y, v. ,)A),

_- (m,, r}' Oy_d_-' I '" l m ) "' = (I I)

d'.'z_ z_ OR,

tit-' I- I¢':(m..t- m) r;_ dz_ _:

Let us assume that the masses of all polnts except points m and m
o i

equal zero. I, thiscase RZ _ 0 and equations (!I) turn out to be

the well known Kepler problem of two interacting bodies (vol. I, Oh. II).

In Astronomy, the Kepler problem is usually referred to as the

nonperturbstive motion, and all deviatlous from %t are called _grturbatlve.

For this reason, the functions Ri will be referred to aJ perturbation

4
t

I
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functions. The derivatives of these functions with respect to the

coordinates of mi are equal to the components of the relative acceleration p

aqulred by the body mI from its interaction with the rest _ the particles

of the relative acceleration acquired by the body mI from its Interaction

with the rest of the particles of the system, except the central body m .
0

When we solve the (6n-6)-order system, given by equations (ii),

we have a complete information about the motion of all points of the

system relative to point m . After that, it Is easy to obtain theo

absolute motion of all bodies of the system. Actually, equations (5)

lead to

where
n

From the_e equations, we can find the values of _o' % and "_'o•

We can find four integrals of motion for the system (11) which corres-

pond to the integrals (6) and (8) of the absolute motion. The first

of equations (6) gives

_.:'m,l(_,,-Iy,)CI,_,)-- (':04- _,)(;,,,;Y,ll!-m.(_,,'.-:07_o)_c,
I

or, in other words

1979012780-021



I

! - I0 - ' ,
!

I We determine the values of _o _o and To from equatlons (12)i , • _

! Substituting here these values, we ohtaln the following integr._is of

equation (11) "(

,1_'£l,, (v,.:,--.:,y,) ! v m,z Zm,yi-- _2my, '£t',,i. "_'i

.44 %_'III, (iX " -_', Z,) : %S/lli.%"i E Ill Z %SIt# Z i V In.V (." '. ( I: ;) "

.'ll _ m (.v,y_ -- I' .'_") [- _' re,y, _' m,.r .... v m, xl ,¢mty ' <C'

where

;112 i 7't'1

C':.-" ,//C'..-t ;,_--- 'Y'-'_l

(::,=:,J,sc':.t-<,, - ".;

carrying out similar transformatloms on the integral of kinetic energy

given by equation (8), we obtain another integral for the equations of

relative motion.

Equations (Ii) are widely used in celestral mechanics, espec_ally

in the study of the motion of p]anets and comets. !n these cases, the

central body m is usually take_ to be the sun. W_th this choice, each
O

term of the perturbation function (I0) is proportional to the mass mj of

one of the planets. Therefore, the rlght-hand sides of equations (Ii)

are so small that their influence can be treated as a perturbation.

4. A second form fer the equations of relatlve motion.

The form of equations of re!ative motion obtained in the previous

section _.s not always convenient since these equations in_,'Ive a

particular perturbation function Ri for each body. Sometimes a

different form of eqt,atlons of relative motion Is used, which is '_

based on the following choice of re]atlve coordinates:

(I) Eraw three coordinate axes through the first point mo, parallel

to the fixed axes and define the position of point mI in this
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system by the coordinates xI , Yl and zI .

(2) Draw three other axes through the centre of gravity GI of points

m° and mI parallel to the previous axes and define the position

of point m2 relative to these axes by the coordinates x2 , Y2 and z2.

(3) Define the position of point m3 by the coordinates x3 , Y3 and z3

relative to a system of axes parallel to the previous ones and

having their origin at the centre of gravity of points mo , mI and

m2; and so on.

In this way, every subsequent point mi+ 1 is related to the centre of

gravity Gi of all previous points _"o ' ml ' "'" mi"

Let Xi , Yi and Z! be the coordinates of point Gi , so that

,'u,x_= m,,L+ m,,, t- • • 4-",=,,,

where

By definition

so that

m,,(_--,,., { m,(-'. ;,) : i",', ,(: -;, ,_, {!.1)

In order to express the old coordinates, _, 7 and _-_, in terms of

the new ones, x, y and z, we note that

M.V - 'fit ,X z_'- m,".,

or

Hence

(,I;--AI, ,)_t" hf,(_'t ,-..v, _)- .'Iti ,l_,- x,I,
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so that _,
L

Adding these equations term by term in successive order of index,

we obtain

h -- E_---=x,, ,!
Ill I .V! s '.

' m'xl 4- m ,x,_ i ! /I/, (16)_t-tt ._ _. "= x,.t i : ,I1_ /ffJ t

We now write the differential equations of motion In terms of "

the new variables. Differentiating equation (14) twice, and using

equations (2), we obtain

d_x JPI, _ dU dO dl/ 0/I I

All-| dr'-' : Ill, ,1:,i d:,,, di I tl_ l" I

On the other hand, the following reZatlons follow from equations (14)

till ,/I/ tit,, ,)l/ It/,, dU hi,, dll

dco dx I .,llt dx.. _ I1 dX.i ,11 ..dx,,.,

_)l] IlL] l# ,Ill III t Oil Ill I oil

0_i tl.t" ,t1, da .... l/ . d t:, .1/ __l.t"

dl] Oil hi, d/I "" hi, d!l

• ° • • " " " " ° • " ° ° ' • ........ , _'¢_.A

OU o/I

"¢ 1

• "'%

"1.i _ .

so that

Mt t dU h'll_ , Oil A! , Oil AI I dr/

Ill, ¢)_, I//, PA, ,4/I ,I.t'i i! 'tln ' dX,t t

i t ,Ill ,'I! 011_ t)O /l/,..t oil .It t i

,E=.i t)_ /1! Ox, .I/, d._ ' " .tt '0 # I , ,,I _ "_t'Itn I

Finally, we obtain the foll.owlng differential equations for the

relative motlon of the system
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d'-x ?,1] tl2y¢ dU d;/, ill]
I! _I.

'' d!+' 0_',' • P' dl'- dy' " ,It+ +Jz,' 1171

where

nl Al

% : ,II

Equations (16) allow us to express .he force function U In term+ of

the new variables. Equations (17) are successfully applied In the

study of the motion of sate111tes and systems of multiple stars. In

order to study the motion of the Moon, for example, it is convenient to

choose point m° to be the Earth, point mI the Moon and point m2 the Sun.

Denoting by x1 , Yl and zI the coordinates of the Moon relative to the

Earth, and by x2 , Y2 and z2 the coordinates of the Sun relatlve to

the centre of mass of the Moon and Earth, a_d putting

m,mo m.,(too:Fm+)
,el' I _ It,,, ++.

m_,+lm,' '" n+,o.l-m,-t..+/

we obtain the following equations of motion

d-'.r_ Oil d-'x., Oil
It I • _ ; II,,, " ..,,-..+-

' ell+ O.;fl '' ill _ Ox,

d'-'),I +111 tl-'k', #11
_I,1 • it+., ,

+if'- Oy I dl" Oy..,- (l 8)

+l"zI Oil d:z., Oil
+- ' o

th dl" :+: dzl; I"',.' dF 0,:.

where

t; l'"{m' m" I m,,m, t.m,,m,,)'. _u" .X,, ' ._,.
I

+: It has been already polnted out (vol, I, 5£ 7) that the notiou o_ the

sun relative t'ot1_ecentre of gravity of the_.-stet_earth-moon is

approximately elll.ptical. ?herefore, the coordinates x2 , Y2 and z2
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can approxlmately be found by solving ._two-body problem. This approxlmat- 2:

ion essentlally simplifies the _olucl......,fthe System [18_ .

We final!y show how to express _+i:.._._netJc energy In terms of the _.

pew" coordinates. We substitute xi +';" ,_for _ in equation (15) and
i

_bta_'n

%

{_,-.',_ ,):,-- , --,_,,).

Squaring boLh _,_idesof this ,,."_,.=on and of equation (15) yields

(:.,t,-:Jl;..,)::-/ ._/,_.(.v,.....,<,)-'
- (.,,x, .-,_, x, ,)"..

Eliminating here the product Xi_i_l, we get

I / jj,,i,i ! _**

• ' I | Im,_,_,-- ,1_ ._/.r' ,II, X'_ .

Summlng tbls equation from i _ I to i = n-i, we obtain

'_'_ Ill : " --

' "' _ ._1, ,_ , I ,, '
I I

ffim and X =_ ,or, since M° o o

Ill ;t "'- _" _l'a . }-'Jf'l I _ I"
I_ |

Adding this equation term by term to the corresponding equations for

the other coordinates, we find

"..,,m,(_,"i ',, _.:_'):-:'-:,_',l.qi ._-t-::9,.:_, ,(.\;;', _'ii, ' z, ,).

This relatio_ has been obtained owing to the linear relations between

the coordinates _?and _'a.d the coordinates x,y and z. llence, a

similar relation holds for the derivatives of these coordinates, such

that

! n
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We note that equations (17) have the same form as equations (2). _,

Therefore, we may obtain from equar.lons (17) the Ivtegrals of :real
5

p,

and klnetJc energy by replacJ.ngitbe masses mi by /Az_'in the corresponding
J

integrals obtained for the absolute motion.
i

The most general linear transformationR of coordinates, which

preserve the form of the integrals of motion in the three-body problem

are given by Hopfner (I).

5, Jacobi'._ formula ORIGINAL PAG,

OF POOR QU&L.,
The force f,mctlon for the n-body problem, given by eqtmtlon (3),

is a homogeneous function of coord.:nates. Jacob/ made use of tbls

property to show L.hatthe kfnetic energ',"integral ma3 )e obtained in a

very simple form.

Since U is a homogeneous function of _4.j_¢. and "_t" of the

(-I)th order, then

Therefore, multiplying both sides of equations (2)respectively by

_' St" and _," and adding, we find

r. .v.
0

Adding this equation to the kinetic energy !ntegral (8) ylelds

'-' "= U -t- " h,
Jp

or

q I

'! %. m,($,: ' " " _ II .'h,
dt _ 'l ; wh wll i h "' '

(i) Hopfner, fryer elne VerallgemeJnerung der relatlven kJnonlechen

Koordlnaten yon Jac'_oi, Astr. Nachr., 195, ]913, 257-262.

1979012780-027



or, finally

a" \" m,C:_-I :_ .1 ".'1 '? tp ', .)t7 (lf);
dr" .*.--, ""

The sum involved here

J ---'.:,,7,("._-i-,,: -i-:,)
II

is the polar moment of Inertia of ou_ system. It is well known that

J can be expressed in terms of the squares of the tnte_point distances

as well as the quantl y

4 .::_.v-; _'- I-Z:).

where M is the sum of all masses mi , and X, Y and Z are the coordinates

of the centre of mass of the system. Making use of the following identity

_2mlEm , :._-- (V m; _,)-' - _Vm, n,, (_ .}-"-:.,-- "'_;, ;,),
I I L q

where each combination of the symbols ! and j in the right-hand side

appears only once. Adding thi_ identity to two similar identities for

the variables "7 and _ , and noting that

hIX = .v m_ :,_, ,41Y- -: v_m, _,_, ,_fZ .--=:Z m_".,. (20_

we obtain

31J-- AtJ,, --: v m_m/.',-'11
t,i

Hence, using the integrals (5), eharae_crizlng tllemotion of the centre

of gravity of the system, we obtain

au = (=,t-t-=:):q-(;_,i-','L;"--!-(,,/-i ";-,)'_ '-:m,%a?.
a,j

Substituting this expression for J in equation (19) and denoting by b'

the new constant, we obtain
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d:k'
---=2 U-I-.lh', (21 _ ,,

dt 4

where

ORIGINAL : ',3_ "'.'.
t¢___Atl ,,_%_m,m,a_,. O_ POORqr:,;2 ,._.

ajJ

%

This formula is known as Jacobi's formula. A particular case of thls

formula was obtained by Lagrange (1772) for the three-body problem.

However, the general case was obtained by Jacobi Jn 1842.

The followJng results of equation (21) was obtained by Jacob:[ and

was probably the first application of the qualitative methods in celestqal

mechanics. Let us Ivtegrate equation (21) from 0 to t and obtain

a_
R' ( '?

dR

where R' stands for d--_ at t = O, and o< for the lower limit of theo

function U. Evidently c_ can be set equal zero. Another _ntegration

in the same limits yields.

!_' .N,, i-Rit-_ I'_ :.?h'_t _'

This inequality shows that the moti._n of the system is stable only

if h'< O. Actually, if h' _/ O, then o<.+ 2h'> 0 and the rlght-hand

side of this inequality indefinitely increases as t .-+_o . In this case,

at least one of the mutual distances _e d should tend to infinity.

In the two-body case, equation (21) becomes

,1.,',1.,_ ',).k:,,,,, m)(I. , at) , ,22)

where r is the distance between the two bodies and a is the semlmaJor

axis of the relativ_ orbital. _ a< 0, tbe relative motion proceeds,

through a hyperbola so that r-_ when t--_ .

k
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6. Laplace's invariable plane

It was shown in_ 1 that when n material points are entirely under

the action of their mutua] gravitation, there exists a plane which

conserves its dlrectlon in space. The plane Is determined by equation (7),

where the coefficients CI, C2 and C3 are g_ven by equations (6). However,

equations (6) are not of practical use since they require the knowledge of

the absolute motion of all points of the system. Also, the integrals

of area of the relative moticn, given in the form of equations (13)

are not useful since they involve the quantities, c"i_°_ I _j ......

which characterize the absolute motion of the centre of mass.

We shall see now that the direction of the invariable plane may be

found in terms of only the relative coordinates and velocities of the

points of the system. The reason for thls is very simple. Equations

(6) or (13) determine the values of the quantities C1 , C2 and C3. However,

It Is s,fflc!ent to the ratios C1 ; C2 ; C3 in order to define the position

of the invariable plane.

Let us introduce a new coordinate system having its origin at the

centre of mass of points mo , mI , ... mn_ 1 and the directions of its

axis in the space fixed. The coordlltates of point mi in tn_s system

are denoted by xi , Yl and zj , and the absoluue coordipmtcs of the

centre of mass by X, 7 and Z.. Using equations (5) and (17), we obtain

so that

We now express the old coordJnates In equatJens (1) In terms of the new

coordinates using the following relations
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We then obtain the following equations for the motion of po_T_t m. relativex

to the centre of mass of the Aystem

IIZ, .%: _': III _ Ill I
j U I

J :J I

nl IIn I. .-= _: m _ j ._;

Since these equations have the same form as equations (I), we can

immediatelywrite for them the integrals of area

Era,(>'z,- z;y,I - ,..'_"

m_(zI ,_,.--x, zJ= C.',

,.:m:(_,;.,- y,£,_.._c;.

The constants C_ , C_ and C_ fix the position of the Lal,lace'splane

passing through the arbitrary point X° o o, y and z such that its

equation Is

c_'(x- x,')-l--c;(y- )'_)-Ic.,(_.- z,,)=o,

Thus, to determine the position of Laplace's plane, it is s'-fflclent

to know the coordinates x± , Yl and zI and the components of velocity

Xl ' Yl and Zl'for all points of the system at any tlme.

In order to study the motion of the bodies In :he solar system, it is

more natural to choose the Laplace plane as a basis rather than use the
i

ecllptlcs of a given epoch (1750.0, 185G.0, or 1900.0). Nowever, the

application of the Laplace plane is met with eertaln dlfflcult_es. The
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position of this plane depends on th, masses of the planets which are ..

only approximately known. Consequently, it is only possible to

• ,P

approx__tely know the position of the Laplace plane. When new and more

exact deter_ination of the masses of planets are made one must cansequen;_y
/

change the basic plane. Another difficulty comes from the fact that the ,

sun and planets aze not material pcints. The angular momentum, defined

by the quantities C! C3" , C_ and " may be changed by the values of angular

momenta acquired by individual bed!,s of the system, for example during

tidal processes.

Relative to the ecliptic and equinox 1850.0 the position of the

l

invariable plane is given by the elements

As expected, this plane slightly differs from the plane of the orbital

of Jupiter and is situated between this planc and the orbltal plane of

Saturp.
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CHAPTER II

EQUATIONS OF MOTION EXPRESSED IN POLAR COORDYNATES

_. The equations of motion expressed in cylindrical coordinates

It is well known that rectangular coordinates are used side by

side wlth polar coordinates for the determinatlon of the positions of

material points. In the following, we express the equations of motion

in different polar coordinates. We start by the simplest case of a

stationary spherlcal _olar coordinate system.

Let us consider the motion of a material point P, which we shall

call-planet, relative to other point S, which we shall call-sun. We

choose the origin of the coordinate system at point S, and call the plane

xy the ecliptic. We denote by r and _ respectively, the radius vector

of point P and its pro3eetton in the plane xy, and by v the longitude of

this plane as measured from the x-_>is. In this case

•_""'- _',("_"; "', !.' ', ",![: t',
r: ,,_-_;. • '

[D order to express t_.e equations of motion of point P in terms of the

polar coordinates _ , v and.e, it is best to start with the Lagrange

equation

'If "7").. 01' _,,

Let us put ql = _ ' q2 = v and q3 = _' and note that the kinetic energy is

given in terms of these coordlnate_' by

l ., , f

7' .,mI'.-"I",',"":'__,

where m is the mass of point P. Let us denote by P, T and Z the components

of accleration of point P in the direction of the projection of the radius

k.
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vector in the plane xy, in the direction perpendicular to this projection ,

in the plane an.' on the z-axis. ICe thus obtain

Oj:mP, (_: . .m[,T, Q,----.mZ.

In this manner the equations of .._'°ti°n will be given by _ _"t"__b %

di f," d/ - f,T 11)

d"z

dl. --7..

When the force function is glven by mU, then the previous equations

may be written as

d d_,"_ , '/r
,:', I ?:

d_2 ,ql

Equations (I) have been used by several authors to study the motion of

the Moon. In this case, Instead of coordinate z, the following quantity

Is Introduced

I

's

which represents _he tangent of the MOON"S LATITUDE.

It the perturbatJon of motion of point P is taken into account, then

t./-.: /,', (3)
r

Here the first term corresponds to the attraction by the sun and the

second term to the perturbation .unction. ICenotice here that the

coefficient k2 must be replaced by k2(l + m) if mass m of planet P cannot

b_ neglected in comparison with the mass of the sun, which is assumed to

be equal to unity. Substituting equation (3) into equations (2), we obtain
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d,,I: ' OA'd_;. -- [' r_ O?dtl dt] "ikl [' ""

d ( do _-=.dt :;" -- _ OA'
dt } O. ('ll

d:2

at" -l k: z ,if?r _ clZ

These equations are app±ied in t_: calculation of the perturbation of

the planets and comets using the methods of numerical integration of

dlfferen_lal equations.

8. The Clepo-Laplace. equaclon,_s

Let us consider the case when the perturbatlcn function R in

equations (4) vanishes. In this case, the unperturbed motion takes

place in the invar.iable plane passing by S. Choosing this plane

as the xy-plane, we set Z = 0 and f = r. Then, the equations of

notion read

d-r ( '1" /-'iI!- _ r dt "!l''r :-11

d(r _du) ,, (l',,l! d!

The gen=.ral solution of these equation is given (vol. 1, Ch. II) by

the well- known formulae

v --",, i :-, /:'

tu 2 , I ,' '.?

all ,' )
r . -

I i cell,It'- t,,,) '

where a, e, v and t are arbitrary constants. The inspectien of theseo o

formulae indicates that it is easier to express r and t by functions of

v rather than express r and v by functions of t. It is therefore

advisable to choose the longitude v as the independent variable in
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equations (4) instead of the time t. Assuming that the perturbed motion

is slightly different from the u_perturbed, we expect that this replace-

meut will also simplify the solution in the case of perturbed motion.

w_en the radius vector r is ex@ressed by a function of v, it

satisfies a rather difficult equation, obtained by excluding t from'

equations (4'). On the other hand, the inverse quantity

I I
u- :- ....... , e co:;0'- - vo)Jr all---cO [1-;

satisfies a very simple equation, namely

d-'u 1

d,-' i "= a(]--c.)

Taking this _nto considerotJon, let us rearrange the equations of

motion given in the prev lous section, choosing

and t as the unkno,_a quantities and the longitude v as the independent

variable. Assuming

:,3dr, , .11,
at

so that

(It,

dl lid',

we easily replace the derivatives with respect to t by derivstives with

respect to v. Since

:d"f, d(.,;. I Ilu_ dl{_..d:.\
d,' dr..'I' dv\lh"dv/

,-_ _//u': dr, .tl dr]
d_u d/t du

=-_ II:u: d:. --I/u: "dr dv '
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the first of equations (I) becomes

ll-'u- dr" i 11 i 11 ,h' l,'d,

The second of these equations gives

I1.7t
d_, : u 7: I ,_

-i
Substltut_ng into the third of these equations z = su , and noting chat

d:(su ') ,I t.. "))dl"- -=Hit' =..... 110 _ 11112 do

,h':'i:" d"i. )d,,., d// ( ds rill)
._-/Fit:' [ U -- _ i It tt-' t/ s ,dr, dv dr,\

we obtain

(d':s),ll-ltt.ad_"lt'-u': tit)-' ! s 't" II tit) ,it, "="Z _ P.s,

where the second derivative with zespeet to u Is ellminated using

equation (4"). Applying eqtwtion (5) to exclude the derlvatives of H,

we finally obtain the equations of motion in the fDrm

dr," t u- = II tt ..... "l'n dv

';% I-._ !!" :u T do _ Z 16!:ltJ

tt till
do

Integrating these equations, we express the quantities u, s and H in

terms of functions of v. We still have to determine the time t. For

this purpose, we use the following equation

d/ , ,
It tl (7)do

lilt,
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It is easy to exclude the auxiliary function H from the above equations.

Actually, it _followsfrom equation (5) that

/1"-=: h'-'-t '_J Tu do,

where h is a constant of integration. Then equations (6) and (7) may

be replaced by
l

( ) ((/,.-{-2Jr. :',.,) a:.-t-u =u • .*-P--t. a,,/db _ " _

(h'-.t" 2 / 7"u au),dV.. (--Ps--Tdd;q-Z) (8)
I

d,;J; --" ' (_''-t_Jr. 'd,,) '

We finally rewrite the equations obtained for the case when the

force function 5 is present. In this case

P

It follows from the euqality _0_

that

II S:I lJ

Lt,, (Ill JS ' t'7 t},_ '

Hence, we condlue that

h' -_ 2 u Ou d." I- s _ su ou d_,_h, Os (9)
I

do U h: -[-2 tt Or, dr,
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These equations were first obtained by I_place, although the principal

idea of using the longitude as the independent variable was due to Clepo.

Clepo derived equation (9) for the particular case of s = 0. lie

applied them to study the perturbation produced by the Sun on the

_otlon of the moon assuming that tilemoon is moving in an ecliptic plane.

Equations (6) were widely used by Adams in his contributions to the

theory, of the_moon's motion.

9. Application of the Clepo-Laplace equations t9 the study of motion

in a resisting system.

Let us assume that a planet moving around the sun is subject to

a resistar_ce of magnitude cK mVr -2, where m is the mass of the planet,

V its velocity, r its distance from the sun and c_ is a small coefficient

constant. Let the direction of this resistance be al_ng the tangent to

the trajectory of the planet and opposite to the direction of its motion.

The motion of the planet is evidently in a plane. Choosing this plane to

be the xy plane, we rewirte equations (6) as follows

dr': U- " _ [J -- T/_I- t dt_du '

dl-I , do ( IO_
tl -dr Tu- , dt :_ ItuL

where

-i
r m u

Let us evaluate the components of acce]eratio_ caused by the

resistance of the medium Jn the direction of the radius vector and along

the perpendicular to the radius vector in the orbital plane. The cosines

of the angles between these directions and the positive direction of the

tangent to the orbit are respectively equal to

rV-I and rvV-I

where

/
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Then, the components of accelerationwill be

_ _r r _ -:. _zl/u ":
!. ' dl'

. p

and

--.. _r l) ..... a HII ',

Consequently

du
P= --_: (I i m)u:F_//', d.

f-.... 2/tu.4

Substltutlngthe3e expressions in equations (i0), we obtain

dH
du

and thus

d ll=--:h -'*v, !II)

where h is a constant of integration. Furthermore, the first of equations

(i0) gives

d;'li
.I u L': (l [-/t 0 II-=,h': '

I

_en the coefficient o<,is so small that terms of order _ are negligible,

we obtain

d_u
dr'; u..L"h {I , I/ t').

We have dropped the factor (I + m) in writing the above equations,

since this factorcan always be included in the coefficient k2.

The general Integral of the last eq,mtion takes the _orm

u_,t=/a '[l-t 2_,/)'t, _-_-cos(v '")l, (12)

where e and _ are arbitrary constants. We can compare the orbit

given by this equation with the elliptic orbit

u=. p." [l-t-,'.,os(,.- _,JI. (!:4

i
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which describes the motion of the planet in the absence of the reslstancc *

and
of the medium. Evidently, we can replace the constant elcments Po o .:

7To In equation (].3)by functions of v so that this equation becomes

identical to equation (12). This can be ac[lieved in the _ollowlng way:
/

Let the coordlnatee and their velocltles take the values u° , v° , u° ._

and v at time t • t . We then evaluate the elements o; the elliptic
O O

motion in terms of these values (vol. I, ch. IV). This would be the

motion of the planet if the resistance of the medium was absent_ the

moment t . Such a motion is called osculator "_.e. touching) relative
o

to the motion under consideration. The elements Po ' eo and

corresponding to this orbit are called osculating elements for moment t .o

Let us derive expressions for the osculating elements as functions

o_ v. We note that_ in the moment t the quantities
0

du
I/- r:_ . -_hz)'

dr'

should have the same v_lues for both the real and osculating motions.

For the osculatory (elllptic) motion we have

il =: I_|/Po,

whereas, for the motion in a zesls_ng medium, H will be given by

equation (11). _ence _Jp,, :(h--at,o)_ ,

k'-'h " .a,,-"(I --2¢h-'uv.). (I.1) .

du

Substftutln_ here the values of u an_ _ at v = v° , given by

equations (12) and (13), we obtain

_'_h ':[1 ,_,h' ,,,, , : cos("_--"OI-_:P,, I I -k,'oco'_(_'o- '%)1
_':h '"',h 8 _")1 -',.. -:'..i:, t,',,-- "/'. I ....eo";i,,(,.',.,,-=,,)l.I
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Ta_Ing equation (14) into account, and limiting ourselves to the first

powers of _, we obtain

e,,cos ('o "_.o}--:(! -- 2 • h ' t,J : co_ II,o..... )

rosi,,(_',- r.o)-- (1 --'_:_h 'l,.j_i,,fo. .,,)--'..':_/_-_.

Combining these equations, we finally obtain

rocos (r.o-- ,_}=-:_ -- 2a h - '_t,o-- :2ah- ' sin (i,,,- ,,,)
e,si,i (.'.o-- w)=:2:h- ' : cos(,,_-- ,-).

When c< = O, these relations become

Therefore, within accepted accuracy limits, the above relations may be

zeplaced by

to--: c- 2_h-' J:t'o4- s;, (t'o-- *)1
,fo= ,0 !-2_h- ', cos(t,o-- .,).

These formulae show that the peribeiion longitude 7f_of the osculating

orbit is a periodlc function of v and consequently of t . Theo o

element e will vary not only periodically but also secularly, owingo

to the presence of a term proportional to v .o

Increasing v° by _, the eccentricity e° is increased by

In other words, in the presence of a resisting medium acting according

to the above mentioned law, the eccentricity will decrease after each

-1
revolution of the planet by a quality equal to 4-rlc_h .

In the same way we can obtain from equation (1/') stating that

_,, _ 'h:(I--2,/: _l'),

I
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that after each revolution of the planet the parameter Po is changed _

by

_%#.... I .-._-_' h.

since
I

p.,--=ao {1 -e_,),

then, assuming that these elements are infinitesimal, we ebtain

Ap Aa _,, 3e
.--

,o. a,, I -- e_

..%a_ __-lr_ I i t'.
a., h I ,_"

Concluding, let us find the corresponding variation of the a_ :

daily motion deflned>by

;I

17_".- ,_'G0 :

We obtain

-- (lli)
If,, "2 a,) h I -- _": "

Thus, if a planet or comet moves in a medlu_ whose resistance is

linearly propoztlonal _e the velocity and _nversly proportional to

the square of the distance from the sun, then the eccentricity of the

osculating orbit decreases and the average daily motion increases.

The magnitudes of these changes are given in the first approximation

by equations (15)and (16).
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CBAPTER III

THE METHOD OF VARIATION OF ARBITRARY CONSTANTS

IO. The osculating elements

Let us denote by x, y and z the heliocentric elliptic coordinates

of a planet (or comet), P, having mass m. If the only force acting on

this planet is the gravitational force of the sun (whose mass is set

equal unlty), then the equations of motion, derived in _ 3, are given by

x i-_':i! -k,,,_xr :' :,o
YI k'(l-['m)Y r-_: 0 (I)

In order to simplify, we shall replace the term k2 (i + m) by k2. _le

to the fact tbmt the factor (i + m) is always accompanied by k2, it can

always be included when necessary.

If a force, mF, having components mFx, mFy and mFz, acts on the

planet in addSt_on to the sun's gravitational force, equation (I) should

t._.enbe replaced by the following equations of motion

[" i-",':._r""_ I"_
v i /,'L"r' t,, (2)
z : k:zr-' F

The motion determined by equations (i) is called the uperturbed or

Kepler motion, whilst the motion described by equations (2) is called

the perturbed motion. In the perturbation theory, one usually deals with

motion along an approximately ell@ptic orbit. This is why the unperturbed

motion is sometimes called the ellept_c motlon.

The complete s&lution of equatlon (I) is we]! kno%m. In order

to he precise we will limit ourselves to a motion along an ellipse.

We then express the solution in the following way:
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,zt _n(t-- to)4-,zt_ (:¢1
a

n _a "_ _ (-1)
E--e _in/:" -..t! (S)

r----:a(I --eco_ &) (6)

v V/l ie _" ,7,tg '2 :'= _ ¢ Ig '2

H .... U -{'- ,_ "

0;6;'Z6,_t'(C[_.:,C_ _L' _I::, tI_tlq,J tl }

I' l'(t'J'_!_ ,11_'2 '-Ili2.'C,l''.!_t) tJ I (_': .._-

/. t "_II' :. _1,1 l. }
%t "

%-t . -,.p.

These equations express the unknown coordinates x, y and z in functions

of tlme and six arbitrary constants a, e, Mo, _# .r_ and J.

A similar integration of the equations of perturbed me,ions,

eqs. (2), £n terms of known functions is not possible. Therefore, one

has to solve these equations in a different manner. Cme often makes use of

the fact that the perturbing acceler_.tion is in most cases considerably

less than the acceleration caused by the gravitation of the sun. One can

then study the perturbed motion using the method of successive

approximations. The unperturbed motion is taken as the first approxim-

ation, then, by adding corrections ("perturbations" or "inequalities")

to it, one gradually approaches the correct description of the real

motion. The application of thls method simplifies essentially the

appropriate choice of thefunctlon_, of time that determine the motion.

It usually happens that it is more useful to use instead of the unknown

functions x, y and z, other quantities that can determlne the position

of the _,lanet. In particular, the osculating elements of the orbit can

be used for thls purpose.

Equations (3) - (8) giving

x---/, (t, a, ,, .II_,,,,,. ,_,, i) I
.t'- /: It, a, ,', .11,,, ,,,, '2, i) C)_

: 1, (t, a. c, 11.. ,,,, t'.,i), I

• I
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represent an elliptical=motion when the quantities a, e, ..., i are _ :

considered to be constant numbers, floweret, these equations can

P

represent any arbitrary types of motion when the quantities :, e, ..., i

are considered to be properly chosen functions of tlme. The functions

a(t), e(t), ..., i(t) representing the perturbed motion in equation (9),

are called the instantaneous elements. The totality of these elements

determlne the instantaneous orbit of the planet P. Once the instantaneous

orbit is known, one can evaluate the coordinates of P for any subsequent

moment using the formulae that describe the elliptical motion.

We have only the conditions, given by equa=ions (9), to determine the

l

six functions a(t), e(t), ..., i(t). Thus, we require that these functions

satisfy another three supplementary conditions. It is required that not

only the coordinates but also their derivatives x, y and z should be

expressed in terms of the instantaneous elements by the expressions

obtained for the elleptlcal motion. These conditions can easily _be obtained

from equations (3)-(8) in the form of O_C_4k

/

tP

:' "_ (il)
/-

I._ f ! l - :" ( " l!|l:C_J, I-_ C'. :_ 'l'-_t_*,_

.P I ! 'V : P/" (- .,IH :l-,_t_'2 , t,,.):_J,)','_.'U._ll I ' ')

I/ / /" 2 : _'! CC, // ,IH I, "*

where

Equations (9) and (12) define the quantities a(t), e(t), ... in

functions o£ time. We call these functions tbe osculating elements and

the corresponding orbit, which continuously changes its direction and

-, form, the osculating orbit. The solution of equations (9) and (12)

relative to the elements is given I_ Sol. 1 Ch. IV. One sees here

i
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that these equations have one and only one solution.

We see that we can apply the equations of the unperturbed motions
r

to express the osculating elements for any moment t in terms of the values

m • e

of x, y, z, x, y, and z in this moment. Therefore, the osculating

elements can be interpreted as the elements of that unperturbed motion
%

which would replace the perturbed motion if the perturbing acceleration

vanished at this moment.

In the following, we recall_formulae which lead to the solution

of equations (9) and (12) relative to the elements. From the followlng

relations

J: _,//, sh, i sh, U .= yz z),

_./p _inic_:_U .,:z--zx (13)

k ,,/p cos i ----x.v - .v,"

we find the parameter p and the longitude of node-ZL, together with the

slope of the, 6rb_t" i. The ]_inetic energy integra_

;_' f-)_ t 2-_1- r .

g_ves us the semi-major axis a and allows us to F.'ind the eccentricity e"

from the following relation

p_ a(I --e'), (1,%)

We obtain the true anomaly v from equation (i0) and then find the

perihelion distance from the nodeCtJ using the relations

rsi,,(, t_,) _.cos,,ci (16)
rc, S(,,I =) xcu_U i Y sm'_

which can easily be obtained from equations (8). Finally, we find the

averagc anommly of the epoch M using equations (7), (5) and (3).
0
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Ii. Differential equations for the determination of the osculatin_ elements

In the previous section we have seen that, in order to study the ,-

motion of p_anet P, it is possible to use instead of coordinates x, y and

/

z, the six elements a, e, Mo,O3 ,-O-and i. This change of variables is
$

useful because the elements, which remain constant during the unper-

turbed motion, slowly vary during the perturbed motion, at least if the

perturbing acceleration is small as compared to the acceleration produced

by the sun. For this reason, the determination of elements a,e, ...

usIDg t|xe method of successive approximations is more convenient than the

determination of coordinates x, y and z.

Let us now derive the differential equations which determine

elements a, e, ..., i. For this purpose, we substitute in equations (2),

and rewrite them as

dx dy d," I
,;t ----A' dI :" y' ,,'I • z I

d _"= __ k:xr "- j .-_t" !I

z

dt
!
( (17dv '., I

at --k')'r _./'_ Id,_ . _.k.'zr-_ i /., '
dl : p

the expressions, given by Eqs. (9) and (12), that express x, y, z,

x, y and z in terms of the new unknowns a, e, No,_ ,_rLand i. However,

direct st,bstitution will lea,] us to e series of co_:plicated calculations and

we therefore choose an indirect method which leads us more easily to

our target.

Let us assmne that the following relation holds

r
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This relation can be deduced from equations (3)-(8), (10), (11) and (12).

Differentiating equatio_ (18) with respect to time gives

Oil" d; ,PI" dl
O'I" da "i" ' !
Oa dt "_" Ot ,it ,_ ,It J

oq' dx o'1'
• _ • • t u 119t

OX' d/ _tl

We now consider that an unperturbed motion results when the perturbing

accleratlon F vanishes at r,,omentt. We denote the corresponding coordinates

equation (I) describing this motion can be written, in anology to equations

(7), as

. d't d; .
dt _ :' dt ._.1,, dt "'

•, arl d:
dt ==--- k"_p , dt "- "- k'td' _' ,It =- -- k::', _,

where
i

For the moment t under conslderatlou, we have

.a -'-_, y= ,,, : .,

m_

and hence

We now return back to equation (18), which evidently takes part in

?he uvpeturbed motion. Differentiating this equation, we ottaln for

the case under consideration

i
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' , _U.,4;E' @
• 0'I"d_.., ;_Oq"di ,_q' _-

,,x ,u ,_x at "t • -i ,,l :--.U. "'_'@P '

p

Subtracting this equality, term by term from the equality given,by

Eq. (i_), we finally obtain

@1" Oq" -,
Oq" da .} , ..I oT di oq" F Jr" _ ' ... . , i.q- . !"----'0. (21)
#a tit ' Oi dt nt" dx Oy O:

and we thus arrive to the following important conclusion:

Any relation_ Eq. (18), between the elements_ coordinates and

components of velocity leads to a re]atlon of the type of Eq. (21)

between the derivatives of the elements and thecomponents of the perturbing

acceleration.

The transition from equation (18) to equation (21) will, in short_

he called the basic operation.

The longltudle of the node and the slope

Let us apply the basic operation to equations (13) and for

abbreviation the followlng notation is Introducad

:'_ p /o,P k; P

We then obtain

,?2 ,It _ ./.,I I ,,_dp ' _illit'o._ '_ c, P; / ",ill '2 ,.-- .vt:i, .-Tp sini,m,. ,It - dt ,, " " '

I _ dp d_ d" xt:'. :1"
_- .'i" P- _i. icostt ,,t SI,/',iIIU -{.C(): iCo',_ d/.. dt " '

. di ,_I:L. . yl.,_.I t ,,1# -- _,. t dt "# co.,tat

: TakJ.ngequations (8) into consideration, we find

,[

L_
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In order to simplify these expressions, let us introduce the

components of the perturbing acce]eratlon along the radius vector, in

the direction perpendicular to the radius vector in the plane of the

osculating orbit and along the normal to the plane of the orbit.

Denoting these components by S, T and W and "qssum|ng, as before,

,%
!

l
S.----.',', I l 7", I W :-- tL",!

;:.,;, ,. _._p _'_ 1,

we obtain

: -i /V_"U'_l:S;Xl_ ; Slllli C:;':*2CU'_I) ; /" ",IllUMIII

: 7"- t"_( sm#co._L' (_su,4."('o;i_-}- I"'!,

" ! t'_(--'_'"us'l'L"kc('suto,Uc,',_l {-/_cu._u_i,,i

W'=l:_ si, U41_i--F[co_.si,,i ; I'.c._i.

: The coefficients that multiply FI F'
x ' F'ya_d z in the expression of S'

-I -I -i
are evidently equal to ],r , yr and zr .

The corresponding coefficients in the expression of T' are obtained

from the previous ones by the replacement of u by u + 90° and, we

, therefore finally obtain

IU
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Jp
_pr 7"'

d/ ' J3) :
.d_ "_

sit| ! == r sin u WI
dt (24)
,.,"i

#t =r cos uW'. ('-'-5) ;
,&

ORIGINAL PAGF, I8
The semimajor axis and the eccentrfcit_ F POOR QUALITY

Applying the basic operation to the kinetic energy integral, given

by Eq. (14), we obtain

'/d

" _2.i-J.',t 2y_, 2,.I::..,t )

Taking equations (10), (11), (12) ar.d (22) into accountj we find that

da
_2a:e sitl uS' ]-2alpr-' I*. '26)dt

Substituting in et.qation (1.5) we obtain

,) ,de ,:,l di'
.m at (1 e.'p at-- dt

Taking into account equation (6) as well as the following equation

_r ' ::1.i •co'v. (_;)

which follows from the equation of tbe orbit, we obtain

,:@

at -'# '"' US" t'I' ice', " J_-CoSE) P. t2_)

The perihelion distance from the node

We now apply the basic operation to the second set of eqtmtions

and we obtain

Ii)"Idr) '_ , ,1!,: ,
.... ,' _ill t# d/ -t ( t,'.)It !d P C()-,L!) ,.'l '

Where (dv/dt) denotes the derivative corresponding to the dependence
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,. ?i
of v on time that enters only through the osculating elements(l). 4:

Substitutinghere expressions (8) for x and y, we obtain,

l_n,_erderto find (dv/dt), we turn to equation (!0).

Excluding the eccentricity e from this equation, w_ rcwrite it as

r Ctg v_ k e CO_ v,
L/p

or, by using equation (27), as

ct_ v 0

r t/p

We apply the basic operation to this equation and due to the fact the

r is defined by the factor

r¥ ._X ; --,

we obtain

; (,;v); ;).0
Using equation (23), we obtain

e "/do\ A'
(dl } "= p COSy --(r-_- p) _i,,. 7".\ /

Consequently

:

(I) It is necessary to note that, in contrast to the radius vector r,

the true anomaly v cannot be considered as a coordinate. In fact,

v not only depends on x, y and z but also on x, y and z.
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d,. 2¢ ._- 7" .d'2etlt = --P cos v (r t P) sm u --e cos tdt " (29} ,_

i

The mean anomaly of the epoch

Let us now apply the basic operation to equations (5) and (6). We

obtain

,.,.)I_ (J/.-'} __ /.de L.%.Cb_.,:t/ :"_l--, c,)._/.)\ at/ ._i,, ,_t

tda 1" de /de.) "_4""

. dM . dE

_ere, we denote by t-_-) and (--'_-_-_) the derivatives of the parts of

M snd E which depend on the variations of tl.eosculating elements.

dE
Eliminating (-_-_), we obtain

," [d _!'_ ,it r ,I,
ct_ V!

t _' r _J ' (2" ",111 l) ¢11l:f I c: . '

Substituting here the values of_derlvatives of the eccentricity and

semlmaJor axis, obtained above, we find

c [,I.U I t, '" P _c,)s:,, co_vco_l: Z) '_1---,':_ dt,I {_ cos - .]er_.) i Slnl, • .

In order to simplify the coefficient T', we use the following equations

r sin u- a)/I e_ si,I/:'.

, cos *,=. a (cos t:'- e). (3()_

Substituting equation (6) _n the second set of these equations, we

obtain

• cos o co._ E .. -a cos, E -- ae cos 1" ..---.r --a .q,)) /:'.

Elllminating sin E by means of equations (30), we obtain

F

C,)$ I) C()_ " l _111? _).
P

t
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Using these relations, we flnally obtain

I/I--e': r|_,at I - (p co_ v-- 2et) .S_ --It q-p) si,: :, 7".

We now apply our basic operatJ.on to equation (3). We find

d,4,,d,ilo dn : 0_%_'] _ at + (t-- to) ".dt " _:B!)

The complete differentiation of the same equation gives "cQg/_4_?_,°

dM dM, , dn
at ':', + (t-- ._,d: ; "'

Therefore

d,.. (a,,._
dr- \.j,/*".

Integrating this equation from to to tI we obtain

t

£(':"'_ /"
M{t)-- Mo/t,l.{ %] \ dt jdt ! , n dt.to

or, expressed as

i

,q(t) ,-.ll (,'1 _ [ n d:. _.
¢

wbere

I

• t',,/ll_

,,,.,,o - c,,,,,-.II )" ("'
tt

The osculating elententsMo(t ) and n(t) are functions of time. We

use he notation Mo(t o) to stress that the quantity Mo(t) correspo,tds

to the epoch of osculation t .
0

If we evaluate the positron of the planet for an arbitrary nomeac

t: we can flnd the corresponding mean anomaly M(t) using the equation

of elliptical _otlon

,_tt,_:, _to(t).b,,(t)(t. AO (,_l_

h_
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I% _ollows from equation (31) that the derivative of the osculating

element M is given by

d,,f,, a,
d, dt l--(t to)at'

where, on the basis of equation (4),

dn 3 k da 3 n aa

dt -_ - 2 a: J/ a _lt --- 2 a dl

or

dn
- ---- 3hoe si,, v S'-- 3napr ' T'.d/

We see that thederivative of the element M (t) includes terms
o

relative to time. Hence, this element varies rapidly regardless to the

degree of smallness of the S' and T' factors. This situation leads to

a great deal of difficulties in the evaluation of perturSations. It

obliges us to use equation (32) and nct equation (34) in order to

evaluate the mean m_omaly. The function M involved in this formula is
O

defined on the basis of equation (33) by the follow_ng relation

.dMo _ !/ ! -- t" (p cos v -- 2or) S' I 'I -- ,': (r i P) '.i,: u .... (3.5)dt -- e -- e

Equations (32) ar,d (35) are it,'practice commonly uued. To slmpl._y

their flna.1forms, we shall denote M simply by M as far as this does not
O O

cause any confusion, aud once and for all agree to use equation (32) to

evaluate the mean anomaly.

12. Comparison between the different formulae

In most practical cases, the slopes of the orbits, i, are very

small. In this case, some of tPe formulae derlved _n the previouc two

sections are preferably replaced by otht,r_. _I_

•
,ir ' "
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Instead of the perlbellon distance from the node, we introduce here

the perihelion longitude_T by the following equation.
.P

Then, equation (29) gives _#_'._ _ e-,_

r,:, 2e _z_z'.2d; ;_ ,.... t,'¢" _-I,',. f l,),Iz,_ I"

Using equation (24), we transform the first term on the rlght-hand side

of the previous equation into
.i

'_'rszHl: "_- L_" .- t _ul u !R z tV':$111 I '# '

This term can only decrease _f the value of i decreases, whereas the

corresponding term In formula (29) will still be large.

Furthermore,we introduce the mean longitude in the orbit by

= • ,I! 2+,,, _ 31.

which will simply be called the mean longitude. Ne denote the mean

longitude corresponding to the initial epoch to by _o ' so that

q_

_' _,, i nit--t)

Taking Into account equation (32), we obtain

t

_. - c_ I n,h', _3t,)
to

3
where

' ":"t ,41,(0,

H_ncc

dt tin i 'Z 11, )

dl :jl d,"

The quantity Q will also be called the averagc longitude of the epoch,

hoping that this will not lead to any misunderstanding.

I

1979012780-057



1
!

I

i
4 - 46 -

We now combine together all the differentlal equations which determine

the osculating elements:

d_

dt ==2a'eqnu_" { 2J:_r-'7"

de

dt --=la sin v .S'-{-p (cos u -[-cu_ ,I-')r'

.d'2
sin t d/ -.• sill U IP"

di
=--=• c-_. W' fZ7)d"

d_ i d'2
• ut =2esin''2 dt -pc°:"'V t _r t #),_mP T'

d _ i .1'2 :?r •dt _2._i.:., d: I I--e" _" t [-/_ C._..,.V
- ' I!il e_

-_ (r ! H_'":'7'!.

where .r_ | . W' 1--- ", 7 ' I -- W,
.,V ;' :l :" I_1 i"

f

and S , T and N denote the componcut_ of the perturbing acceleration.

Since the average longitude is given by equavlon (36) the following!

equation should be added to the previous ones

,/'t
' ' ' ' T' (,;,_1,{1;_£ bill " ,% .,.'.'l'r

dt

The [.nt_gratlonof this system o_ dlf_erentlal equations gives the values

of the osculating elements in moment t. The position of the planet in this

moment is obtained by tlm usual formulae. Starting with equation (36) and
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i
L -,'siaL" .) .... r. j

Ii r -: a (I --e' co._ 1:')

i• v v"l-ie/:.'.., [ (3!0I t_ ,2 1--- e tg 2

u---o-{-c--'.,: t

! one finds r and u. Then, using equations (8), one obtains x, y and z.

! 13. The La_range equations.
'i
i

In the previous o ction we dfd not :Impose any limitations on the

perturbing acceleration F. We now assume that the accleration is caused,

by a force for which a potential exists. In other words, we assmne that

there exists a function R luch that

dR d I_, o4' '
V --= /".

I:, dX ' v d. " " d."

For tn (i) of the pecturbatlon to the motion
example, equation Chapter I,

of one of the planets, caused by the presence of the ochers, is expressed w

by the perturbation function.

i Let us transform _he basic, equations (37) so that they include the

partial derivatives of the function R instead of the components of the

perturbing acceleration S, T and W. For an arbitrary element a, the

follo_'ing relations held
1

_/_' ,t.'_',,._. ,Ih' ,,_, .'A' ,'.

du ,1_ d,I i d.r ,t.: }" e_,: ,'_l

_)I/ "d,l • ,td'

where eqtmClons (22) expressed a::,
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: -I- I'( - ._mu _o," c,,_u:.:n'.2cu.,,ii-_-W _m _ sivv/

1
1" 5 I_:(_',li _i:l '_ Svlv I. (',J, L.' Cu.', Ii -;• Y

,'l _ ' '. ..i" j" ( ._Iiv ',li! _ c.- U C(_. " ('(Ja i) W CO_L' '411 .'

I',. 5.,l,,.,,.a ' :L, ..... ,,,i . W,',_t.

ORIGINAL PAGE IS

! OF POOR QUALITY

can be used to express F x, Fy and F z in terms of S, T and W. The

evaluation of the derlvativ_es of the coordinates with respect to the

elements, ,__ , ... , , ... , is straightforward. We first

find the derivatives of r and u, namely

tr i , 'z I

I1 "}" , tj I
!

¢_" *'_i I , I ('1)_ _" ' l!l ' ' ]

- )- ,a c,, ......... ,'" _' !. :7 _"J
I

,t. dr '_" _1"I ] t" _I
l

! We then differentiate equations (8) with respect to the elements. In

doing so, we should remember that each of the coordinates depends expliclty

on _, together with the relationship u = v + W --_. Similarly, whilst

differentiating wit_ respect toTr , we must take into account that u

depends expllclty on_ and to v, since v is a function of

,_f " /'_dl _ :-- _,

Therefore,

d 0 d

We finally obtain
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OR I l---.---e:nat g/da

d fi'
-_ha' I t' O,S v ._'-}-(r-}p; sint,7"j

de

naZ _/ I-- e: r .q. u Wed;

i
o/¢ '..'/,'rI/_'sm-",_T'-- nu= I,"1--,": ,soni • c.su tP'

ol_, a

- : na_(es,, v .V "i Or-' 7"_

'_R ..... OIC I kr|/ p T'.dr. d=

It remains to substitute the values of S' T' W', ant'! obtained by these

equations into equations (37). In equations (37) the following combinations

are present

I ,',?
I/I :-Te:'.s" ,_J,)a

OA' 41_'
k,l/p Z' tcl_ d;

...,,,. f--j (/I

I

,co.n _' I ,'I,' It:,) ,';_.V, '""'1
oa:l"l---r'.,,,,,',"'-' na_ti--e' '" "-,'

as well as the following combinations

! ,1/_'
,.'_ "..h "' '_ U , , s /

,1,1 ,'

Substituting these expressions into equations (37) and (38), we obtain

after some manlpulatlons
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da ": _,/_ ""
,.m

,.'I l;a t"-

: ,le l'l - e'- ,_/,' " t I ,' I ,'A'
d/ cm:r d," 1 _ I --:' l_a: d, ,,

• ,p •
di -- CO'I.'_ ' ')/_ . ,_)/,' (t,_' I

d/": ha': V I--¢- at: pa:V' I ,,: ,', ,': f
d_ coseci 0/,'

dl na _|/1-£_ dl (|I)

i

d_ t_ '2 O/_ |/l --e_ d_

dt na*F'l--¢" Ot"; - "• nJ ? t' Jt p

i

d." 2 01_ tg 2 dA) rl/l-'-e" l dl_)
= +

,It na(Pa na2V'] . e_ Oi !.{ I/l--e't,a.' de

dn 3 dR
ai := -- a, -o: "

ORIGINAL PAGL.

POORQUAta
Combining the first and second equations) we obtain

i at "" na \,_ "I- : ,

.I

i) which also follows from equations (23). Subsequently,we shall call

: equations (41), the Lagrange equations.!

[ It is important to note that, in evaluating, derivative _ involvedl 5o_
l
I at the end of equations (41), we ignored equation (4) and orly considered
I
) the explicit dependence of R on a. This is the method by which equations

(40) were derived, and based on these equations, the entire present

' deduction was developed.

In conclusion, we note that the Lagrange equations obtained here

have the following properties:

(I) Time enters the Lagrange equations only through the derivatives

of the perturbation function R.

(2) The elements of the orbit are divided into two groups, one consisting
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of a, e and i and the other of _'L,-ff and _ . The differential

equations, which determine the elements of one of these groups,

include the partial derivatives of R with respect to only the

elements of the other group.

(3) Let C_ and _ be two elements belonging _o different groups. If

do< _ R d_ _Z
• d-_-- contains-_, then dt will :ontain _--_ , where the

_R _R

coefficients of _-_ and _ will be equal in magnltvde but of

different signs. ()R/G_NAL PAG_ ,

14. Another derivation of the Lasrange Equations O_ POOR QUALIT_

The differential equations (41), or the more general equations (37),

are some of the corner-stones of celestial mechanics. Therefore, it is "

interesting to investigate all questions concerning these equations. We

have Just obtained an elementary and relatively simple derivation for the

Legendre equations. (I) Another interesting method for the deduction of

these equations was suggested by Lagrange, to whom we owe the developmentt
of the method of variation of arbitrary constants. In the following, we

give a brief outline of the derivation suggested by Lagrangc. We shall

not carry out all the calculations since we have already obtained the

final equations.

Following Lagrange, and in keeping with his notations, we consider the

following___e@_____uations

(1) A derivation of the Legendre equations, having a geometrical character,1 may be found in: S.L. Kazakov, The method of variation of arbitrary

constants, scientific Transactions of Moscow University (Sposob

variaceJ proizvolnyh postoJannyh, Ucenye Zapiski Moskovskogo Universiteta)

1905 and in: A.I. Krylov, Sur la variation des orbits elllptiques des

planets, Proceeding of the Academy of Science (Collection of Transactions)
1905 vol. IV. IzvestiJa Akademli nauk (Sobranle trudov) . It

is shown in the latter paper that one has the right to think that

Newton has obtained the above equations namely on the basis of these

a2 _uments. Newton, however, published only some theorems which have

no direct relation to equations (37).

&,
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- dx' , d_ "i X ---:0dx a° -- X' --- O,di--_x' gt q'Ox
,P

-- dr' 02 ), . (43) _dy dg. _ V'- O, --..I- -t- O,
d! dy' dl ' Oy

Let the number of these equations be 2h. This should equal the number

I of the conjugate variables x, x' y' . The quantities./_ X, X'yj _ *• j

Y, Y' y' We assume that we are• ••. are functions of t, x_ x', y, j •..

i able to integrate the following equations

dx 0'...I dx' , Ok:

-- p , '(}; tOx 0 5dl _ ), d/

dy O_ dy' .[ (gtd O, (4t)
(It -- dr" .0, ,4 (gy
- • a • , • . ° .

These equations are obtained from equations (43) by equating all the

supplementaryfunctions X, X', Y, Y' , •.• to zero. Let the general solution

of equations (44) be given by

'x'--.7,_l, a, h,. . , 1:), x' "r_(l, a, h, ., g} (I,}
• • • • • • • • .

which involves 2h arbitrary constants a, b, ..., g.

The expressions given by Eqs. (45) satisfy equations (43) only if

the quantities a, b, ..., g are treated as functions of t. Let us find

the differential equations that these functxons should satisfy• We

sabstltute the following equations

,.:t , _ (I _ ,'1 (I_. dl_

,it .'l ,'J ,,t ,", .,":

,;'.1' ,Pt. ,Lt' l,J ,P_' d"

_,'l (_l it,l _.t ,'" dl

, • , . , , ,
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Into equations (14), and taking equations (44) into consideration, we

obtaIn

OX da d¢ db P

,'a dt Oh dt !

dy da Ov db

¢'d dt [ db dl _" " - y' t) ".

............. (46)

Ox' da , dx' dh

da ,.t ";" db dt + " " }-X -0

Oy' da_l. dy'db I .-} YtM at 0,') at"''
, . . , . , . • , • . . , , .

PAOOF I8
 ooa

These are the required differential equations. Lagrange suggested that,

these equations could be written in a much s_rpler way. He introduce: the

so-called

t#_¢ ¢! V' _)I" d.t . t)_ _)._)" t)_, ' 01:'

[#' "1 ,)a ,:,', ,)1, ,),l ',',, ,)., ,'t, ,)a i . •

It is easy to see that

1,_,,1 [f,, t,I 1,:, t:l ') ell)
[a. /'l' It,. ,71 _). _.1_,)

AssumIng that

/, ..O_.l y()v , ,)_' , '

• • . , , • , 0 • . . , . . . . , • . .

we can replace the system (46) by

. da ,I ,'d ( )
Is' slat _ la' ,.'t ' ) I', ',),,,r "

dd.

, ,,t''J ':"' ' ' I,",J:l,:t , (t!),,.tiI/,.,'I,:l _ ,:,,.o

t;" {,,. I ,. ; ,)
,; t " _,( _ ' _ I ) 'J

)

!
t_

&,
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In order to obCaln the first equation, we multlply equations (46) in _

--_ #_X _b_ - - and add. The other
sequence by - _ _ _) .... __ __) -..

equations are obtained in a similar manner.

; In the Zight of the relations given by equations (47) and (48),
'I
I

:i equations (49) are simpler than equations (46). In particular, the

I third property of _he Lagrange brackets is responsible for the simplicity

of equations (49). When expressions (45) are substltuted in a Lagrange

bracket, the independent variable t is eliminated according to this

t property. In other words

To prove this, let us differentiate the bracket [a,b] term by term. We

obtain

Taking equation (44) into account, we find

#[a, bl- `) (')': ,sx,,:_: 0._", ,,'.' ,Jr ,:" ,)y 101 ()_) (} Ob ' OA' 0,') ' ().l,' 0_) i" )_).V' 06 "I • • • --b

J

#(-) #._" 0(,-) btP (.)£) ()t o' \

') {')') _)'_") 1 • (',J .{. • . .-()b\O.t" Oa ' ux" Oa ' Oy Oa Oy' )

Hence

# O... _.'_

,)t [a, b] ,_a(,)# O,'),)o O.

Equation (40) suggests that one can evaluate the Lagrange brackets at

the value t that makes calculations quite simple.

The present method will be particularly s_mple when we take constants
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a, b, ..., g to be the initial values xo , Yo ' "''' Xo ' Yo' "'"

corresponding to the value to the independent variable. We immediately

= due to the property Just shown.evaluate the Lagrange brackets at t to

We obtain

In the same way, we obtain

and so on. In this manner, equations (49) will have the following

form

o _ •

"Yo " ""

-7 = d-_,, -- R'y°•+ Fo :;

t
)

However, these equation_ are not used in celestial mcchanics because

, equatzons (45) become very complica:ed when the constants of integration

are chosen according to the above method.

Let us consider the determinant

i l,, , f) .

• ° . • ° • ° . . °

We construct the complementary determinant F', whose elements are the

a%gebraic complements to the corresponding elements of F, devided by the

value of the determinant F. This determinant is given by
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la. a_, (a, t,) .... , ('_, X)

/:,_' ¢b, a), (tT, _,).... , (b, _._
. • • , ° . , • . • • • ,

t_'. a), (q. 6), (;,, ,,_

The elements of the determinant F' are called Poisson brackets. Evidently

I:/" : I.

We can express equations (49) in terms of Poison brackets as follows

da

at !.(a. a)h',,.!-(a, b)h'b-t-. . . t (a, ,:)Rc--li

d_4(_, a)ALi.(6, b)/4.t-...-t--(o, _.*_A't odt
• • • • • e . e • • • • , , • • • • • • •

'&' [-I_', a)l,',.[.(A'. _)1,',! . t Or,_:)/e, udl
ORIGINAL , _GE "_

Og POORQ_ALITy

We now apply the method of variation of arbitrary constants to the

perturba_.ton of the motion of a planet that is given by equations (17).

We rewrite these equations as follows

dx , ,Ix' -- k : x , 0 4' 1d! x , ,It t ' I d L

I
,6' .v. dr' _' Y [ (5i)
all ,It I". d )' [

d: t ' t',_; It, ? 1.
t .,', _ t.':
i d/ /l t. Oz

!
l

Comparing these equations with equations r_3), we find here that

[

i
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and thus

d.,' '_ _/_ i_. ' ,'.',__'." _,I_

/tJj ....

_ 'J "Y _'' 'P" '": _"_ (52,
• . . • . . . , ,

when R = 0, we obtain from equations (51) a system corresponding to

equations (44) characterizing the uperturbed motion. In solving this

latter system, we choos_ as the integration constants, the usual elements

of the elliptic motion a, e, i,-fL,4_J and M . After long but relatively
O

simple manipulations, we obtain the corresponding Lagrange brackets,

which are

The corresponding poisson brackets are immediately obtained by solving

the system (49). Taking into consideratiov equations (52), we finally

obtain
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,:a '2 ,'A'
r

.11 #:d _' II.

,'t 1 _ ,t/:' |"1 - tl .'/,'
,;l /TJ /" _,mf l;j i* ,I.,

.,,'t.' ! ._/_'

,-'t m.: 1," I - t: ,'l

,"i c,. : .'I.' ! .,/¢%Ill I
Jt .'.a" | I ,: ,i.. z;. 1 ! t ' !'

"., rt., I .i,', I l ,,1,,
-- j

,It ;i_l I r,; I ""

,/if, I :" ,'.',' " "'
dl n. ' .' r : .;

In order to obta_z the Lagrange eauations in the form (41), it is

sufficient to replace the variables (a) and M by"_ and _-- using theo

relations

15. The perturbations of the elements

The lagrang equations, from which the osculating elements are

obtained, are extremely complicated equations. They can only be solved

using the method of successive approximation. In the following, we are

going to investigate the form in which this solution is obtained.

Let us suppose that there exist only two planets whose masses are

m and m'. We denote the elements of these planets respectively by a, e, ...

and a', e',... On the basis of the results obtained in the previous

section, we assume that the motion of these planets relative to the sun

is defined by the following twelve equations
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_t - _,,__- uO_ "4@. --,. .
d'.J ¢o.;_.ci ,_,,,- } (51_

dl na a l/ I --¢1 di "

• • . • . * ° • •

dJ' 2 die'
z.-:-

t;J II'a' O."

d'.J' cu<_'c i" dl?' _ 4')

tit n'a'-" ;/1 - ¢'a d ,"

In these equations (_ 3)

.t__-x_m"fl x,' } _,.;,"t zz'_ ,.,,
._ r; I

"' lz/i x_: ;-)'.¢ t, (,,I
_ _ . &_t,7 ._ - I"_ I

where x, 7, z, r and x w, y', z', rw denote the coordinates and radius

vectors of the planets and _the distance between _hem. It is easy te

see that R and Rw depend only on the mutual location of the orb:Lts, but

not on their location relative to the ecliptic• In fact, If the angle

between the radius vectors r and r' is denoted by H, then these functions

will be given by

( _ d r,), I/)I r ,'t,, II _. ,'_' :,.m A r.Id h" t'f A r ) '

They depend only on r, r' and H since

Afar: _ v'_ _rrJq ,sH.

The method of successive approximations applles when the masses m and

m _ are small. Thls method ylelds the unknown functJons in the form

I
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of a series of expansion in powers of masses m and m', such as

,: . ,:,a • _..a _ )

c, ." _,," I "' _ Ij ,:,,,,
• • • - • ..... I

Ot • 0 " ' °

r" _,_ I 4:d i ,,._e" . . j ("a, I
• . o .... , . . . ]

a' e' .. we denote the (constant) values ofHere• by a0 , e ° , ""• o ' o "

the osculating elements evaluated in the initial moment, by _ a, _ e,...

the functions of time that have m as a multiplying factor, and by

_a', _ e',.., the functions of time that have m' as a multiplier.

In general, we denote by , e, "''' n ' n ' "'"

of the n-th power in masses m _nd m'. The expressions La, _ne,...

_a' _-n th, e', ... are to be called perturbations of the n order.

Putting in equations (54) and (54')

m _ O. m' :-=O.

we obtain

G'_a,j, t*--'==t'O, . . , (J,*==ao,. . .

These values will then be substituted in the right hand side of the

same equations, i.e., equations (54) and (54'). Since R and R' are

• ,. a'functions of t and a, e, , , e', ..., then equations (54) and (54')

wLll have, after this substitution, the following form

do #

at -=m' l(t, a,,,•....... oo, . )
t_*a*eo.I. . ....

da'
= m I, it, oo, e. ..... a_, . )dt

eo**e,,,,io,,.oae
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Integrating these equations yJelds

# p

.. Co,. . )#t=.,-I. 0 --'--Qo_ re'r, • .
to

• • • • o . . . • . • • • • • . . . . • .

and, hence, determines the f_Lrst order perturbations.

'_o obtain the second-or,_er perturbations, we substitute into the

right-hand sides of equations (54) and (54') the values a + _a,o

a' + _1 a' which have been obtained for the elementseo + _1 e' "''' o "'"

a, e, ... , a', ... This substitution yields

aa , all. "

d! --re'/(l, Oo, . . . )-Fro doo .., 0_.I_ . I m" _i/. t., _'.._.
[Iti ° " . . .

After integration, we obtain

o=:% al _,,a
• o . . . • ,

These equations are accurate up to the second order in masses• Repeating

the sere procedure, we may obtain as many terms in the serles-expanslon

of the elements as we desire.

Let us now investigate the analytic form of the expansions given

by equations (56) and (56'). The coordinates of the ea_ the planets

are periodic functions of the corresponding mean M or l_'. Consequently,

,_ the perturbation functions R and R' are also periodic functions of M and

M'. Hence, tb-y can be expanded in a double Fourier series as follows

I_ _-Nto,¢/,_l' I .:i' _ /_p

I_' v ?"'_o_l.;! i ,'" It" /;'.,,

where J and jt take all the integral values from - O0 to + o_

j It is easy to see from equations (56) and (56') and from the

expressions of the coordinates in the ellipticmotion (_77-82),
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that the functions R and R' and consequently the coefficients N and N'

can be expanded in powers of the eccentrlsltles e and e' and the mutual'

slope of the orbits 3. (We have already pointed out that the functions "

R and R' depend only on the mutual slope of the orblts). Noting that

,41----n'-i-_--_, _1" "'l-F-" _.'. 0_":'_ L _
t,;_: ...

we finally obtain both the functions R and R' in the form

• • Wm# ._

EA¢• J'cosD, (5_

where

o =j(.t I-_)+j" (n't-i _'J4-c.

Substituting these expressions for R and R' into equations (54) and

(54'), we obtain similar summations in the rlght-hand slde of these

equatlons.

Equation (57) shows that, in order to evaluate the second order

perturbations, it is necessary to replace in the rlght-hand sides of

equations (54) and (54') all the elements a, e, ... by their i_itlal

elements and integrate the resulting trigonometric series. This yields

expressions for the first order perturbations in the form of turms

having one of the following two types:

Aoe_ ,.. j , _i.D,,
i t_ll i_Jjllt, "l-J o

..I .,Ino 1/" .'l'n'o # O, and

t A e" e'"J,' cos C,
0 _j O

if Jn° + J'no = 0.

Evaluating the second-, third-, ... order terms in the above way, we

obtain terms of the type

!

1979012780-074



_'.,,

I

I:

- 63 - !.

where

v=/.0+ J<
l

If _ffi0 , Such a term is then called a periodic perturbation in the case i

of p _/ 0, we will have a secular perturbation if Y = 0 and a mixed

perturbation if "_ ffiO. The sum |

is called the degree of perturbation. The higher this degree is, the

smaller is the perturbation of the order under consideration.

Particular attention should be paid to the small terms in the

denominator of equations (59). These terms are called the small

subgroup. There are responsible for increasing the value of the perturbat-

ions. If q is the sum of the orders k _ , k/_ , ... of all the small

sub-groups of the term given by equation (59), then the larger q is

the larger is the corresponding perturbation, as long as the other w

conditions are not altered.

Poincare called the _fference n-p for the n-th order perturbation

the rank and the difference n-½ p - ½q, the class. Once we know the

order, rank and class ofa given perturbation, we have an estimate of the

general character of this perturbation. For small intervals of time,

most important will be the lowest order perturbations, and in particular

the first order terms. On the other hand, for long intervals of time,

the value of a perturbation is mainly determined by its class. For very

long intervals of time, the contribution of the perturbation is best of

all Judged by its rank.

1979012780-075



.t

16. Long-perlodic perturbations .¢.__b_

Amongst the periodic perturbations, given by equation (_,rpartlcular

attention should be paid to those, for which the coefficients 9 involved

in the arguments of the trigonometric functions are small. The periods

360°
of these perturbations, which are equal to -- , can be considerably

P

longer than the periods of inversion of the planets under consideration.

These perturbations are called long-perlodlc perturbations.

Long-periodlc perturbations play an important role in the theory

of the motion of planets. It happens that the amplltudes of some of

these perturbations are very large even when their degrees are large.

Let us consider a perturbation of the first order. If the term

A _ eo J_ -.-

correspondsto a long-perlodlc perturbation, then the quantity Jn° + J'n'o

appearing in the denominator is small and the amplitude is much larger

than what is expected for a perturbation of such a degree.

The average longitude of the planet has a strong influence on the

long-perlodic perturbations. The _erage longitude is given by the

following relation (_13)

where t

? ,/'n dl,
to

dn :' ,_A'
d: tl z ,

To obtain ff , let us integrate twice each term on the rlght-hand side

of this equation. This yields

, :' .I
(In, I /,)

b ]i
i
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Thus, long-periodic perturbations contribute to the average longitude

by terms of the first-order in mass, i.e. of class zero, devided by

the squares of small quantities.

The detailed theory of sereis-expansion of perturbation functions

will be given in one of the followlng chapters. This theory shows that

the following relation holds ORIGL_AL PAG;',
.OF POOR _j, ,_ .....

" _' ' _ - J :J q 'even'integer

Thus, the long-periodic term can b,ve a considerable amplitude only when

then numbers j and j' have small absolute values.

In order to find the values of J and J', for which the perturbation

becomes long-periodic, it is most convenient to expand the ratio no/n°

in a continued fraction. For example, for Jupiter and Satu_1

ao = 299".12_ a. n_ = 120".,l,b t7.

when the initial moment is chosen to be January 1.0, 1900.

Accordingly,

no I
....=2_-
n'0 2

The appropriate fraction may be the following

2 $ 72

i' 2'

If we choose J = i and J' = -2, then

,_8.673b,inoFf"'o:".....

which approximately equals I/5 n or - ½ n' . Such r, divider cannot b?
o o

considered as small. On the contrary, when J = 2 and J' = -5, we

obtain

J no- { .i' n'_ 4".1_169,
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i I
which approximately equals 7--_ no or --30 n'o " The corresponding long-

periodic inequallty, whose period is approximately 900 years, has in the

longitude of Satum an amplitude of the order of 50'. Finally, if we

consider the next fraction, we obtain

jn..-l-fn'o-. 29 % --72 ._ =-':.1".9823.

The corresponding inequality, the degree of which is not less than /29-72/ =

43, is completely insensible.

A large inequality in the motion of Jupiter and Saturn, depending

on the subgroup 2n-2n', was discov--ed emplrlcally. Several unsuccessful

attempts to interpret this ineoaal_y led Euler and Lagrange to assume the

existance of an unknown type of gravitation in addition to the gravitation

influenced by the Sun. The correct intezpretatlon was given by Laplace

who evaluated all the first order inequalities for the motion of Jupiter

and Saturn up to the third degree.

Anno tation:

In practical studies of the motion of planets, one is rarely met

with more than one small subgroup. Actually, let the ratio of mean

durnal motions be expanded in a continuous fraction, so that

n,, l

Let the first appropriate fraction leading to a small subgroup be

P_. I
- _ ! "

% a,+...q_ 1 ,
_-I

The next incomplete quotient _ will be a large number. Thus, the next

appropriate fraction

q,)_.,, i'd, :. -!- ¢), ,
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will have a _ery large numerator and denominator. The perturbations

that correspond to this fraction, as well as to all subsequent appropriate

fractions, will be insensible.

17. Secular perturbations

It has been pointed out that the secular perturbations are obtained

from the terms of the perturbation functions, in which the arguments of

the trigonometric functions do not depend on time. The totality of these

terms are called the secular parts of the perturbation function.

Any term in the perturbation function depends on and only
f

through the mean anomalies M and M'. Hence, terms in equation (58) in

which J = J' = 0 do not depend on _and 6 _ . If R denotes the secularo

part of the perturbation function, then

:(L

Referring to the first ofequations (41), we note that the expression of

da does not involve constant terms. In other words, a does not have adt

secular perturbation of the first order. The last of equations (41)

indicates that the average duma1 motion will also not have a secular

perturbation of thefirst order. This result holds for the mutual

perturbations of any arbitrary number of planets. It leads to the

following fundamental theorem.

The semlmaJor axes of the orbits of pla_ets and their average durnal

motions do not have secular perturbations of the first order relative to

masses.

Laplace (177S) proved this theorem for terms of degree not higher

than the second. The general proof o_ this theorem was given by Lagrange

(1776). In the year 1809_ Poisson showed that there are no pure secular

terms in the perturbations of the semimaJor axes and among the second
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_ terms (1)order . In the year 1878, Splru C. Haretu was able to find

thlrd-order secular terms.

The other elements e, i,-/4, ... have secular perturbations.

For example, Leverrle found that for Jupiter

r :--_0.()4_ ?,.¢')(J_ . t_.(}Cl)It;t') I') T-- (.),0(J0(_,04t,7 /'-' -- 0.()(_()()Ot)t)()l,) 7'
i .= I IS Jl ".I I -- '_)I)'.gt)ti 7".:- 0".()I-I T-

.° . } .,. -it - , . . +' ' - ')'.')"-'()3,) .:)9 ;._,37" _)()_¢7' I ".2h8() T" 0' 03'It) i 7"

_. = 12 -I,)'14".3!) ! 7,70;_".!)')s 7" :_".,_,!);_;7"2-4)'017,_2 7".

where T denotes time in centuries (36525 days) counted starting from the

mean value Paris midday time on January 1.o, 1900

Secular perturbations have always been connected with the stability

of the solar system. However, it is necessary to point out that, even

if the convergence of the series (56) could not be proved for an

arbitrary time t, the presence of secular terms in varlous-order

perturbations would not be sufficient for concluding that the solar system

would be unstable. In fact, the expansion of periodic _unctions of time

in powers of the mass can involve an infinite number of secular terms.

For example, let us consider the function sin (mat), where m is the mass

of the perturbing planet and a is an arbitrary constant. Expanding this

function in powers of m yields

I
.t1_it:Ittt) /t:tP-- t/i_ul ,_ i

Thus, any method of integration of equations (54) and (54'), based on the

expansion of the solution in powers of the perturbing masses, will lead

to secular terms, even if the solution is expressed in terms of periodic

functions of time.

(1) This result is known as the Poisson theorem.

L
I
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OF pOu ,_
18. Poisson's method

When the secular perturbations of the angular elements /t,/7 and
p:

are large, it is sufficient to apply the method of integration suggested

in _ 15 because of the slow convergence of the successive approximations.

This situation is met with in the theory of lunar motion. There, the -.

secular perturbations produce variations in the perihelion and node

longitudes. _hese variations are given by (_)

: '-=.33.l ) ' "') " "_t,lli" .,_. 14(,,, 50U 1;_,/ ;}[".li,'l"- l)'.0.15- 7"-
')'1 7st'-' --: _o.J 7'_'_",J_._3-' - {, 't_2 ql 1".9.1 /' .' I,_ l': -! 0'.0077 7"

where T denotes time in centrueis of the average Paris astronomic time,

starting from January 1.0, 1900.

Poisson (1835) sv gested a special method for the integration of

these equations. This method is to include in the first approximation

the contribution of_tsecular perturbations of the angular elements to

the periodic inequalities. Denoting the average longitudes of the planets

by

• _ ' _, _' _' d,

where

!

,,.../",::, o'.-./.-',:.,.

we rewrite equations (54) _,' (54') in the following general form

(i) The mmerical coefficients in these equations are taken from the

table of Radon (see 117). Helsen's (GaJzen) tables yield

_l .%'lh', , i lhl_,d(l t_ / ;',.'II /'_ ,J' i,it,i,lXl Is

'2 ',*J / I. '_; ,,U',JtU,; 'Jl / • ,'21. /' i t:,_h' I,,'_ I"
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ii(
. a_ , . • . p_

d/ ...... ;a " f',') )" r,
d=: i

. r {--)I

dl --m 'l)(:q _,, g, r., .; : -gr,, .,-,. . I
i

d_

d/ -_-m"l'(: • ,,, i_, ..t..... ; :'@.:,', _',, . )

dj

,#---m'P(--F:,,_2,_.... ;_.'+,_',,.,.,,.)

• , • , , _ , , • . , , , , o • • , . , , •

Let

t r i .._.o-----6 -i- • ra't, _--=r:- ,. ;'Jmt, _ .-- t I _m't,

where=_ , _ and _ are arbitrary constants and 9 ,-/Tand _ are the

new unknown. Substituting these expressions in the previous ones, we

obtain

d_
- -'=--- m'_ -_ m' H (-'_"'i- F,'-F-',re'I,' O-F'_ml,: )d!

d.% m'i-J m' ,I, _., , -_ - re't, 0-_ _ re't, ) (60,j! _- : _ • . .

• , • • . • • • • . ° . , •

As we have done in _15, let us put

_).--U,, i-:,:) i g_'); . . .
,"h""" _,' 4: :-&,::
• ° ° . . • • • • . •

where _ denotes terms proportional to the n-tb power of massec m, m', ...

We substitute these expressions in equations (60) and expand the functions

in series in the followlng
way

H "("(:o , :, ' ";m',', '..)(, _-_m'l, -,) : i',m't .... ) I

_H #+)

t.,).(6,.14,--: ') " 0"-(''_)i.,;,,,)).. .) ,, ,.
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This means that we are going to take as the incremenCs of the arg,_.nents _._

only,:heperiodicter e, .... .- .or thesec.lar
p,

elements m't , m't anJ m't. We obtain in the first approximation

/

d_9

dl ltl"_ ! r,_'H¢:,, ! _, i "fin l, !'o i "*tnl . )

• • , . • . . . .

• . , ° . . ° ° . ° . . , • . . ° . .... ° .

Integrating these equations, and equating to zero the secular perturbations

of @,TTand _ yields three equations for the determination of the

quantities _ ,_ and _.

We note that the integration of equations (60) has been made in a

way as simple as the method of succesive approximation. The reason is _

that the elements /: , ./L and 77 appear in the expansion of the

perturbation function only in the arguments of the trigonometric

functions. Actua]ly, since the perturbation function is a periodic

function not only of _ and _ , but also of --Q_,K_-,77 and T/_ ,

then _ts .'_,_usion is given by

R-" _ZNcos(jA- I j'L' h_-; h'_'-!-k= k,./.

m

In the Poisson method, one is not very strict on the expansion

In powers of the masses, since in the arguments of the periodic perturbations

there will he terms like _ m't,_ m't, ... having masv m'as a multiplier.

In other words, part of the second-order terms will be taken into account

in the fir_2 approrimation.
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CHAPTER IV

THE _&NONICAL ELh-'MENTS

19. The canonical equations

Let us consider the motion of a system of n material points. We

denote their masses by mi and coordinates by xi , Yi and zi. We assume

that the interaction between the particles is described by the force

function U. The motion of the system will then be described by the

following equations

OU OU _U
m_x, ---. nl_ v - In z --: , :OX ' " cl},, _ ' ' OZ

_i -_(),I..... n--l)

There are several metbods to replace these 3n second-order different-

ial equations by 6n first-order equatlons. The following method is of

partic,_ar importance. Let us introduce the following notations

X''-- 171,X+, j+ - fTI y, a I II1_ "t , " a

The ":ine_ic ,.,ergvof th_ system will then be

T---- 1 Em,(x/ y_, .- :,,)._

-- "2 +"J ill " " ' _'

It is easy to see that equations (i) are equivalent to the following

equations

d.',: all +Ix' 011
:.. ; _ --

dt 0.'+.'' dt ,',.v
t

dy, 01t "'., 01t
=.+. • ...a- --

d/ dy'_ d_ d..

dzl dll de', O,,I
-+-.: . , -'='-'. +-

dr O_I. dt 0:

up Poo X,*':-qe zs

L
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whe re

H=--T--U,
p

is the total energy of the system, since the force function is equal to

the negative of the potentlal energy. These equations are known as the

canonical equations. ._,,e function H is called the Hamiltonlan of the

system.

Let us now consider the m_re general case, when the positions of

the points of the system are defined by the S parameters ql' q2' "'" qs'

which _ay be subject to a number of holonomic constraints. These

parameters are called the generalized coordinates. The value of S

defines the number of degrees of freedom of the system. In this case, the

equations of motion (I) are transformed into tile following Lagrange

equations

'I i '"t ,)l. _. _,' ] , _) ..

I

where

is the Lagrangian of the system. _]_

We note that when we express thfrectangular coordinates in terms

of the goneralized coordinates, the kinetic energy becomes

N

where Aik , Ak and A are functions of ql ' q2' "'" qs and t. The smmations

over all ef the indices are carried from l to S.

We can now show that equations (1) can be replaced by first-order equations

having a canonical form. We introduce vhe subsidiary unknowns

_L
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which will be called the generalized momenta. Since U does not depend

on the derivatives, then
1

#, = v,t_q= " A t4}

Equations (2) may then be replaced by

dp, dL Ol

d! dq, ia_ Oq,

To eliminate qi' we use equations (4)• We are able to solve these

equations relative to qk since the determinant formed by the coefficients

Aik cannot be equal to zero. Indeed, in the case we are interested In, the

halomomic constraints do not involve time. Therefore, in equations (3) _ffiO

and A=O. If the determinants formed by the coefficients Aik _ere equal to

zero, then there would be nonvanishlng values of qk' for which (1)

' q' d,

and consequently T = O. Evidently, this cannot take place.

Let us introduce the following quantity

It _ "' , I.,

which is a function of Pk ' qk and t, since qi c,_t.be expressed in terms

of p. according to the above arguments.

(I) To simplif; the formulae, we shall not indicate the limits, of

summation whenever all of the indices run through the same values

i, 2, ... s, as in the present case. It is also possible not to

indicate the summation indices if we introduce the "rule of dummy

indices": Summation is always carried out over the indices which are

repeated in the summand at least twice. For example

/' i1 k'n_t _1 b •.. i a 1'%_ GIt All _1 J! :h I I '

Such _ndices are called dummy since they disappear after summation.

1979012780-086



- 75 -

Varying Pk and qk will lead on the one hand to

tt- _ I ,VI . _, ,'II.., ,,l_ . r,_,, ,

and on the other hand to

"1 t. _,Vp_q, --;,L

=E,I ;.., . E ,'),;,q,--- E ',1" " 'i/" ;,qt "• ": t_tll:" q# E dtl,.

Using the second of equations (5), we obtain

_ dL
--=-'Dq/1

Comparing the two expressions of _ H, we obtain (3/_/(.;2-_;.,,'

dll _V. ,'ti
q -.- w - - . _4.. ".

dpj. I_1. t'q.

Taking into consideration the first of equations (5), we finally

obtain

,lq, ,_11 dl)_ ttll, (t,)
dl dp,. dl dq ..

If the Lagra=gtan L, and consequently the function H, do not
t

expllclty depend on time, then equations (6) wlll have the following first

integral

1/ tt_nst.

which is nothing else but the kinetic energy integral. In fact, this

equation can be rewritten as

q_ dq#

or

\, ,'1"
li; L JI _b
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In our case, T is a homogeneous function of the first order in qk' and

thus

,/.,'_ 7" '27
++ \,

Noting that L - T + U, we write the complete integral obtained above

as

]'-- I; ¢0!:SI.

This 18 nothing else but the law of conservation of energy.

The canonical equations have several remarkable properties. We

are interested in the most elementary properties of these equations

which can easily be deduced from the followlng theorem.

Theorem I

If the general solution of equations (6) is given b_ the follo_rlng

equalities

,,',.-. '.+,(t,'l, ,7:', . • • .';:+I. p. ",, +t, ";1,;.. , . . . ,, /

q l]
where _I I _t "" _$ are constants of integration, then equations (6)

are equivalent to the following equations

Oq: # &/ d/t

ttg +.--.J " 0 "_+ +_",, +':"J ++1 0 _[,

(i= I " ")s)

First, we show that eqt,_tions (8) can be easily inferred from equations

(6). Indeed, when equations (6) hold, the evident identity

,}q,.. _. ,,_._ 0#+, #q,, _, .,,+Op,,&/,.o %'_t' aq,.._ O \_ P+ .. -- ' (9)
Ol .+,,.i ,,_)], 0".,, ..,=.i Ol _..+ +It' :IT, .---* O';, Ol
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leads to

oq_ _) _,_ oq,. _ _ '_Woq_ _ Oll_)&.
d _'_ I),• _ p_ =: , (10)

dt _ d % d_, -.:..: d! --.-, Oq_ d "_, _ el[) d _i

which are equivalent to equations (8). Conversly, transforming equations

(8) into the form (I0) and using identity (9), we replace these equations

by

(Opt. +OHIdq" .,,{,'q_ _d//)d")'..-," ot o¢,)e_, --. _at ,,i,, a,.,
().

(i -: 1,£ .... _)

These equations can be regarded as a system of 25 llnear equations in which

expressions

(dp,. ,'H I, dq,.', --( -'wlI dI dq. I d/ dpj,/

play the role of the unknown quantities. The determinant of thls system

does not uqual zero, since equations (7) are solvable relative to

if" } _l ..... _£5 " Therefore, the expressions Just writLen must

vanish. Namely this is what equations (6) state.

Annotation

The canonical equations (6) wlll not be altered if we interchange the

positions of Pk and qk and at the same time replace t by -t. By means of

such interchanges, we can obtain from each property of the canonical

systems, a nee property. For example doing such permutations in theorem I, we

• ind tfia_t_equations are also equivalent to the following equatioz,s

t ) ,i ' I t ),' i'

(' --. ¢/,,
(ll _ " ,'" ') _ ()t _P"

_t ), i

20. The canonical transformations

Let us replace in the following canonical equations
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'#', dtl dp.. ,'tt

d; _'o_. J, ._q,

the variables qk and Pk by new variables, qk and Pk' as defined by

Q,c -'l'_l/.q,.. . ,q,,p_ ..... p,,

P, -_- '1",_l, q, ..... q,. Pz ..... p, ) ( i I

The canonical system wlll then be transformed Into a new system. The

following theorem speclflel _he condition for the resulting system to

als0 have a canonical form. The corresponding transformations will be

called canonlcal trnasformatlons.

Theorem II:

If the relation between the new and old variables is such, that the

expression

v :%.&,. __Z P, tiC,J_ d I.V t 12)

is a complete differential of some function W, then, after the transfromatlon,

1 equst:Lons (6) may be represented in the following way

t

i dO dA" W', ,)A

dt _ Oi_, dl OQ, (13_

where

Here, it is assumed that functions H and W have been expressed in terms

of the new variables Qk and Pk"

To prove this theorem, we note that equaticns (ii) and (7) allow us

to express the variables Qk and Pk' and consequently the function W, in

terms of _, ) [z ) ..... _ and t, In equation (12) we understand that

dW is the complete differential of the function W only with respect to

the variables Qk and Pk' where we consider that Pk and qk are expr&esed
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in terms of Qk and Pk' although the f_ctior, w may also depend on time t. -.-"

Therefore, It fo]!ows from equation (12), that

_,_ P* dq_ _. _%'1o dt,J_ d I,[" ._ _JLt/ ]---' dl _ _ dt dt Jl I

d,/_ O_J, d tV i I I II%" p, -- %_/' I

d "(, j

where

l,_'lp _f. W ' II, I _, ." ,/ ,_,1 2"

"ru Za,.Z.,:.,_,.. ,.,. ,,, ,:. ,.

Now, if W is expressed in te_s of _*, ,OY;I-J i_'})-'OIf_ a and t, then

J ,,l_" ' .'U'
i I/ I

Differentiating the first of equations (14) with respect to _t" and

the second with respect to t and subtracting them term by term, we

obtain

'J "%' ' ; " ,:q, ,' ,'W )
,It P -- "_ " I', - i / --

;" '1 _1'. 'W, ,* _.p, d'.'

_! Applying theorem I to +he left-hand side of this equation, and noting

that

Oil _ _1I "_(4. _ ,_11 _.q'_

" d_,, _ -,Jt ] --,...,l O_d_l OL t-_. jl,d_ t #7, '

we obtaln
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a 1": J,---o., . _% -=- , OPpo,_ _GE:,
,, .,-- ,1, o._. _ QUaLms.: f

where

o W
K- _H-_

O/

On the basis of theorem I, it follows from these equations that

d(3_ dh" dP_ O/X"

dt Ol_ ' ,It 00_ '

This is what we wanted to prove.

Annotation I

If the relation between qk ' Pk and Qk ' Pk are such, that

v qjp_. __ _.2,Okdp _ . dW',

then, after the transformation of equations (6), we obtain

dO, dK' dl '_ OK"

dt Ot", dt O0_

where

dW'
h"-= tl-

Or"

In order to prove this, it is sufflclen _ to vse the substitution indicated

at the end of the previous section.

Annotation II

The conditions of theorem II are often expressed in a slightly

different way. let us add equation

term by term to equation (12). Thls yields

where
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or

tJh
P_ dq_ ' J/_

Therefore, startlng with the arbitrary function

.";(:, '1_,. .,, i', .... P,),

and using equations (_), we obtain a canonical transformation.

In conclusion, we give some examples for the applications of

theorem II.

Example I

Let

,t, - _ ..'rp_,._)..,...t" p, _,:2_J,_i,I P.

q, ¢,_,, p. P, (i '2, .L. , 'A.

Sln:e

q,jlp: .... _r.j, _q,,,' /_ _,'!, • , _)_I"_ _lu P,_:I.h

then

It ( '
_,dp=--(_,dP, (flc,r;'V),d/', i , _,n,2P,,/_,', _t ,, (,J,'_I,,?P ),

Hence, the conditions of theorem II are fulfllled here. The canonical

system obtained as a result of this change of variables may be written

ir_nediately.

Example II

At the beginning of the pr_ ,lous section, we have seen that the

eq,,_tions of motion in rectangular coordinates (I) may be easily

represented in a canonical form. Theorem II allows us to show that the

canonical form of the equations is not violated by the transition from

the rectangular coordinates to any curvilinear coordinates. We have

already obtained this result in the previous section by another method.

1979012780-093



- 82 -

We leave it to the reader to prove this result using theorem II.

Example III

In practice, it oftenly happens that Pk are linear functions of Pk

and Qk are linear functions of qk" In this case, it is sufficient for the

transformation to be canonlcal, that

/"Ok: VP_'qL" ORIGINAL PAGe:
OF POOR QUAI,'_ Z.

Indeed, dQk will be related to dqk by the same relations that related

Qk to qk" Consequently, it follows from the previous equality that

v/,,.,.,_) . ._p,,'_. O.

21. Jacobi's method for solving canonical systems

Let us consider the canonical system

,./ /, ,

h/. t

Introducing the new variables Qk and Pk' related to the old ones by

'-',"(]], " L _,I_,_ ,;'J . .',.,

we obtain, on the basis of theorem II, that

L t',

where

,Jl_'
A" I/

System (15) will be resolved once we find a function W for which K = 0.

Actually, equations (17) yield

(_ -_ /,, _,,,

where _ and _W are constants of integration. On the other han,' we

obtain from condition (16) that
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where we suppome that W is expressed in terms of qk and Qk by means of

equations (ii). Replacing in W the quantities Qk by c_, we obtain the

W( ql q2 o_$ "function t, , ' "''' qs' ..., o_ I , ..., , that satisfies the

following relations

. /p , D

, '_4_ ,_j_ ,2' !l_)
}

These relations permit us to express Pk and qk in terms of t and the 2s

arbitrary constants_ and _# and thus give the general solution of

system (15).

We know the expression of the function H in terms of Pk and qk" Let

thls expression be H (t, ql ' q2' "''' qs' PI' P2' ..., ps). We may write

the equation K = 0 that defines W in the following way

k

' ' ' ' ,ll )
!

I

J

Thus, If we ,:onsiderW as a function of the S +i independent variables

t and ql' q2' "'" qs ' then thls function will satisfy a flrst-order

partial differential equation. Any solution of this euqatlon which

wlll involve S + i unknown arbitrary constants, wlll be called a

complete integral.

In the present case, the unknown function W enters equation (19) only

by its derivatives. The solution of thls equation will then involve S

arbitrary c_nstants, among which there Is _loadditive constants. The

complete integral is simply obtained by the introduction of the (S + l)-tb

addetlve constant and wlll have the form

'l_ _ % 0 - - , _- ' ' '._ '" {20)
i

X
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Thus, we arc lead to the following result, which has been represented

by the well-known Jacobi theorem.

Theorem III

In order to solve the canonical system (15), it is sufficient to

%

find a complete integral of the type (20) for equation (19). The general

solution of system (15) is obtained by finding qk and Pk from the following

equations

where _q2 _4_ ..... 2P5 are new arbitrary constants.

The Jacobi method consists in applying this theorem by integrating

the canonical systems. The constants_ and _ that appear as a result

of integrating the system by this method are called canonical constants

or canonical elements,.

It is easy to obtain the complete integral of equation (19) when the

function H does not depend on t. Indeed, substituting in this equation I

%1 _/ I_. ,21

we obtain for the new unknown function W' the following equation

, , , , , , , _o

Jtl' q,' q ' q,, ._?, t_,/

where_ is an arbitrary parameter. The solution of this equation involves

s-I arbitrary constants_i_ %J ....2%._ among which there are no

additive constants. Once this solutJon is iound, equation (21) can be

used to obtain a solution for equation (19) involving the s constants

CX_-IO°Cz) ..... )%-I. The general solution of the canonical system

(15) is then given by
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It is interesting to note that the simpliflcation of the integration

of system (15),achi=fved Ehf_ way, is a consequence of the existance of the

first integcal

11 Omit,

22. Application f the method of variationef arbitrary constants to the

canonical elementb

Let the following canonical system

d, L _)iI ,if' 011

,II _ el,' _hI

be solved by the Jacobi method. Wa have already seen that the solution

(l'._,

i._ obtained from equation (18), i.e.

9___maz P_.o_Ls
,",_.','_ ul_l_O011QU_

where W is the complete integral of the equation

,'t I 11 ;'q' ..... q' ,h,, ,'q, j

Suppose that ae _ve to solve a new canonical system

d,&, Olll A') _:.' ,)_l! - - ,'_)

dt (p_ ' ,It _'q,

wher,_ R is a function of t, ql' ''" qs' PI' ''" Ps' To apply the method
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of vsriatlon of arbitrary constants, we try to satisfy these equat!v__-

again by expressions (23) considering the quantities o_. and _- as

functions of tl_e and not as constants. For this purpose, we replace

the variables qk s_d Pk TM equations 115) by the new variables Ockand _K

defined by equations (23). Using equations 124), we get

Applying theorem II, we write the transformed equations in the form

since equation (25) in the present case yields

K = (//-/,') : .---- /,'.
dl

Hence, the application of the method of variation of arbitrary

constants to the canonical elements inmediately allows us to write the

differential equatlons for these el_ents in a simple form.

23. Canonical elements of elliptic motion

We shall now apply the Jacobl method to the solution of the two-

body problem. We denote by x, y and z the coordinates of the planet in the

heliocentric coordinate system, and by m its mass• In order to write the

equations of motion of the planet,

rill 01; Oil
r I' "

dA ' ' [1)' d,: '

wher_

/ F

in a canonical form_ it is sufficient to assume that

', 1 /,':ll ' ,'_
,'1 ,_ y.' : .-)

,.) t

'#
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Let u.-!nt'coducethe spherlcal coordlnstes

t rt'i)-';_i_ -fl, y rt'q)_ _ -l!lIJ, .' v _I'I"_

+ and agree to write k2 instead of k2(l+m). The Hami+.onlan will then be+

written as

tt 1 (r" i "r"> r: t'._.: .'_ ) k-r

In this case, the ltamtlton-Jacobt equation reads

0+:,l(,,w/: (,,w;l' r-: -_-r _.'_" "_ ---k'r '
; Ot '2 Or ,,? ] b', --O.

Thls equatlcn explicitly involves neither t nor 0. We substltu_.e

(_ee_2l).

tV- - "d! a:_J . W,.'

: into this equation. We obtain

j (d_V, V , /,,W, ,: .. .
k )dr d1,k l

It is sufficient for us to flnd a solution of this equation that

involves one arbitrary constant. Therefore, we assume

1 i+:
t
t
I which allows us to write the previous equation as

-1 -0,
i

i{! so tha+.the variables r and _ become separated. In other words we

assume that

tV, -.W , tt",

where W' is a function only of_ and W" only of r. These functions

can be found from the above-equatlons by means of quadratures. We thus
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We fix the lower limits of integration in ordez not to introduce unnecessary

arbitrary constants. We take_= 0 as a lover limlt for the first

integral and the smaller of the two roots of the expression inside the

square root as a lower limit for the second integral.

According to theorem Ill, the general solutlon of the equations

is given by

• _. 4,ttj

J'L0 " ,

In the present case, this solution will have the form

)_" I '_ I ; (2_, • ... r --_ i ) .' dr I".,
=
r.

_, . . t

)_-- =, (1_-_':.;,.¢".:.)-.,17 _ , • (.'_, ! 21-'r -.-_'_r } : dr. (.;(,1
¢1

These relations define the coordinates r, O and q as functions of t

and the six arbitrary constants otL , _ ,_ _, ,/3_ and _. The

,: latter constants are the canonical elements of the elllptlc motlon.

Let us now find the relation between the canonlcal elements and

the conventional ones. Equation (28) indicates that r should vary in

! the interval

¥. - - ¥ • CI,

where r° and rI are the roots oz the equation
--'- (L
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In the elllptlc motlon) the 11mlts of the radius vector are s(1-e) and

a(l+e). Therefore,

2u=r,, ' r,=-- -- , u:(! - ¢:) rnrt---'-- ,) .

Hence,

On the other hand, denoting by T the tlme at which the planet passes

by the perlhellon, we obtain from equation (2S)

,%- -- 7".

because r = r at the moment of passing by the perihelion.0

It follows from equation (29) that

or

t'()$ _ •

I

Noe.ing that the lower value of cos tip takes place when _ - -+i, whereI

i Is is the slope of the orbit, we obtain

When p = 0, the planet is at one of the nodes of its orbit. Therefore,

we can consider, on the bssls of equation (29), that

Now) we consider again equation (30). Instead of the latitude )

we inc:oduce the argument of the latitude u. Since

i

,I then, substituting the values obtained for o< ando_ , we obtain
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__. _ J°/, I I
u _3 _, (2.a,+:_k'r -_r--:) -_d,'.

f_

At the moment of passing by the perihelion, u = _O and r = ro, so that

0 .. dt

Thus,we obtainthe followingsystemof canonicalelements

• i
i (311

a_.-=# _,/pcosi; _: '- _ l_

• _".k_'p; _, -,'.--_. J

Ne shall evaluate the average longitude for the perturbed as well as

the tmperturbed motion by ( _4 12)
t

z- : !-�',dr.
u

On the other hand, we have for the unperturbed motion

"_.= ,_--t-nU-- "/)=._-!.nt,

Hence,

_ '"

or

t -° T

,:,"= _ '_:'. (32)

To conclude with, we express the elltpt_.c elements in terms of. the.

conventtom_l ones, We obtain
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24. Application of the canonical elements to the derivation of the

Lagranse Equations

The canonical elements have _)kadHautag_ over the conventional ones

in that the equations for their variation during the perturbed motion,

are vezy _imple ( _ 22). These equations are

=- (_'- l, '..',3). C34)al t)_1_' ,It 0%

However, the conventional elements are used in the actual calculation

of the positions of the planets. Therefore, it is useful to derive

equations for the derivatives of the elliptic elements. For this purpose,

we differentiate equations (33), and taking into account equations (34),

we obtain

I

da 2a: OA)

de :.-. a(I--e 2) 0/_ na_/) _e_ #I_

d,' kze a?t _e d?,

di ..... r,)_eci _( d/_ 0/?)dt kva(1- ('-') cos/ 0_._ -- o,'#)

a',2 #?

dt da:

d_ dA) dR

dt 0% 0%

dt d/t) JR 0/_' 3a 0/4

i
t

These equations enables us to express the derivatives of the perturbation

function with respect to the canonical elements in terms of it_ derivative
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wlth respect to the elliptic e_ements, it Is easy to see that " -_(_,,____. _

p

#P 0R
O_j O,

0e =. o/e : #____.o_
O_ d_ ' d.-. ' de ..

OR 2a'.01¢ a(I--c')_I? 3a aR

I
I Oh' _ c,,st c i #R

i ° :

d2; 0 _,/a{1 -- e'O Oi

" o,_'-__ v'o( I e.) ,l? _. ctgi aR
I 6a. bar Ot a ( I dl

i

I Thus we obtain the following equatlons, which we have already ob__ained
Z
l by another method in chapter III,

t
.'_ ) . _.,s)

d! ',a , )

dr \ I ".," t'_' e\ I e' i ',"

d/ .",1 t ,_. J ;- \ J "-- ,_" Ha :).

i
tg

di _'_)_'_"/ OA_ ') oA' ,Y_'
-- ( )tit n.:' X I e' ,)_ ha" _,/I --. c'-' Or, _'

dU c()sr(' / _)Id (3:;)

d/ nu _ \ i C' O_

i

d_ _ l_ ",. 01_ \/I e: _)1_)

d/ "- tm'-'_ I ---{ : Oi _" ;m'-'e #e
i

t_ ,) #A' _. e_,'l e:dc '2 OA'_. _ I 01_)
dt tm ()d lit2"-' ¢1 -- t '_ Oi ' I -t _ li_'''-" t'" ha" :)e
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! We remind the reader that in these formulae the quantity ka-3/2 is

denoted by n. We note that the last of the_e formulae can be understood

in two ways. On the one hand, if the average longitude of the planet _s

evaluated by the formula
q

= _-Fn(t to)----_-{-ka " ;t-- t_), (36) "

then R will depend on "a" explicity and through _ . Hence

• "---" "i-O_d,,_)a \oa J + o_, oa koa ) (t to),

where the derivative on the left-hand sides corresponds to the total

variation of "a", which (_) is the derivative evaluated when
% ms- w

is kept constant. On the other hand, if the average longitude is

evaluated by
t

_,--::c-!-j nat, 137)
l_

where n denotes a function of time defined by

!dn =_ __ 3 d_ {;_8)
dl O_Oz'

then, it is necessary to evaluate the derivatives of R with respect to

"a" in the last of formulae (35) fixing the value of _ , i.e. to take

instead of _R . In this way we avoid obtaining a term, that
_o_

i:tcreases with increasing time, on the rlght-hand slde of the last of

equations (35).

I
25. The canonical elements of Delaunay and Polncare

The canonical elements, defined by equations (31) suffer from a

shortcoming, closely related to what we have seen in the end of the

previous section. The element O_tenters the perturbation function explicity

and through n. Thus, we will have on the rlght-hand side of the following

equation

,i
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dt Oa,

a term proportional to time. The canonical form of the equations will

be lost if we try to bypass this shortcoming by the method suggested in

the previous section, i.e. replacing the element _ , given by equation

(36), by the element _ , given by equation (37).

Delaunay suggested the introduction of the elements

!

L =.=.kVa ..._..,(__2_l) -.
'1 J

l=-n(t-- T)-=ka qt.'-.q,).- le _(--2_,}"(t-_-/3,).

instead of the elements c_| and _ . Since the difference

,'hd=j -- ldl. _-_-- Ida,

is a complete differential of the function W ffi- t_tl , then on the

basis of theorem II (_ 20) we obtain again a canonical form after the

transfo_matlon. Introducing the following notation

_.,= tl, % == O, ','1,. h, "- , . ,s.I "-_- ,¢.rt

we obtain

dL 0I_v tH OH'

dl dl ' dt OL

dt _t_ dt 0(2 {39)

dl/ 01_' dh 0/_'

dl dtt ' dt 0tl

where

k' --/_'-- _,---/(' -F,2L.,.
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- Delaunay elements are expressed in terms of the elliptic elements by

p_

l.=-:k_/a, O: _'v'a(l--e'-'), It--:-. kl/a(I--e'.')cosi } (40)l-: n (t- --T ) , 14- 7:..._2, h =':.c2.

t

Hence, in this system, one of the elements is the mean anomaly _ ,

The elements L, G and H have the dimension of areal velocity, while the

other elements, _ , g and h, are angles.

It is possible to find other homogeneous canonical elements_ which

have some advantages over Delaunay elements. First of all, following

I

Poincare, we consider the following system of elements

L _'1',_ ; , _ l ' .-: rt t I
P_-_'l'a{1 --I 1--c')' ,,_, ..... t.

'.,_ 'kl/'a(I -c-_(I ,'(9_i); .,- .- --'2. I
I

where _ is the mean longitude. This system has the advantage that

at small eccentricities and slopes, the elements _ and _ are also

small.

We prove that, in the transition to the elements (41), the differential

equations (39) preserve the canonical form. We consider the expression

ldl. I gdO -!- hdll-- ).dL .... ,td,0t -- ,,,:a_,.,

which evidently equals

IdL"rgdQ't hdlt--(t4-g-'r-h) dL -_--(g i h)(dL d(2)-i-h(dO -d/l) O,

so that the conditions of theorem II are fulfilled.

In addition to system (41), Poinear_ also introduced the following

system
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v:

L =_'Va; )':"I"i-_" I
_,t -- I/_r', cos ,,,,; ,j, = I/2p, si,, _, {42}

"_:=- I/2F,: cos ,,., ; _..,:= I/2f,: sin ,..,, J

which is canonical in the light of the arguments given in _ 20

(example I). The elements _! and _ are of order o_ magnitude of the

eccentricity, while _ and _ are of the same order as the slope of

the orbit.

The characteristic property of th_canonical elements (40), (41) and

(42) i_ the choice of the mean anomaly or the mean longitude as one of

the variables. Levi-civlta and Hill were able to find other canonical

systems, in which one of the elements is the eccentrisity or the true

anomaly. De Sitter and Ardoyer de_eloped the general approach for

obtaining such systems of elements (1).

(i) T.Levi-Civita, Nuova sistema caninico di elementi ellitici, Annali

di Matematica, Set. III, 20 (1913), 153.

G.W. Hill, Motion of a system of material points under the action of
gravitation, Astron Journal, 27 (1913), 171.

I W. de Sitter, On canonical elements, KoninkliJk Academic van

I Wetenschappen te Amsterdam, 16 (1913), 279:

H. Andoyer, Sur l'anomalle excentrique et l'anomalie varie comme

elements canoniques du mouvement elliptique, d'apres M.M. Levi-
Civita et G.W. Hill, Bull. astr., 30, 1913.
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APPL_CATIONOFTHECANONICAL.VARmBLES_NTHe.STUDY
p_

OF PERTURBATIONS

26. The canonical form of the equations of relative motion

The transformation of the equations of motion of a system, for which

a force function exists, into a canonical form is carried out in _ 19. In

the present section, we consider the equations of relatlve motion• When

the motion of points mI (xI , YI' Zl)' "''' mn-i (Yn-I ' Yn-i ' Zn-l) are,|

related to point m° (Xo, Yo' Zo)' taken as the coordinate origin, tile

I equations of motion are ( _F 3)
I

..t ,It'-'-I k_(mo ! m,)r:,-_ ax 11)

(i I, '> n- , ).

where Ri denotes the perturbation function that corresponds to point mi.

'I To each point mi there corresponds a force function[

._ k_(too-l-m,)+t b'i: I,',,
"1 /*)

i Thus, equations (I) may be transformed Into the following for_s

! e.,-,on J,'t )
._--- ) --o [

I ,It O.t'; ,It ox Ii uy, rel, ,¢y; ,:,,',', _
• "": # ) _ I' dt O)' dl 4y,

Iaz,=ou, u.;___._.on,
dt Oz" dt dz,' )

i where

! u,= T-u,,

1979012780-109



; ., 7"

- 98 - ORIGINALPAGe;;:,

These equations are not canonical since the functlonY_l_O____ Q_@4f,_v 1

are different. Poincare/ called these equations semlcanonical.

It is useful to obtain the equations of relative motion in

canonical form. For this purpose, it is necessary to choose the

relative coordinates in a different way. A convenient choice of

relative coordinates is given in ._ 4. In these coordinates, the

equatlens of motion are given by

d"x, , ') I I

_' dl: -- Ox, ]

d:y, 01/ ]L

_" dt : d.v, [ ('21
I

d: z OI/ I
'' dI: (4"

#

where

.',(n'o-l-m, i ! hi, ,)

l y )1

These equations have the same structure as the equations of the absolute

motion in the presence of a force function. They can be transformed into

a canonical form in the usual way (ff19)• Assuming that

7" ') ,,eem# /
- !t ( _" .,. y," . -'-')

• 11 7"- II

• o ,
x I= :,,x, Yl l',.v,, -, l',:,,

we obtain
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!

,! ex or/ d< .._ __.°/t
; Jt = ox;' dt -- vx,

dy, 01t dy; Oil
dt := 0y:' ,It =-= Vy, ' {3)

.j ,t:, on u<__ _'_":
j dt d "" dl ,_z

1
t

If the masses mI , m2, ..., ran_I are small compared to So, then

' their mutual gravitation may be neglected. We may then take instead of
,!

U the function

Uo-=_" \_ morn,!
r

! r
t

where

Consequently, the equations of motion are devided into n-I separate

,i
systems. For example, equations (2) will have the form

(1 V , , , ".._,'" , /,'. _ ' , I7I, _

"l,. I;ll ] l,'l I ",

• . . °

: Hence, in the first approximation, we only have to solve a two-body

problem to obtain the courdlnates xi , Yi and zi as functions of time

and six constant orbital elements. We shall take as orbital elements

the second set of canonical elements of Poincar_ ( _ 25). We denote

the elements that correspond to point mi by

In section 25, it was convenient to avoid double indices. Here, we

shall adopt the notation

(
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m

TII. I :- Tl."l ! p "111," -:= wl _'_ "

I "

l -
Thus, we obtain in the first approximation

x /(t, L, _, _,.., ,i _,, _.. _, "*:,) "

y=:'?it, L. ......... }

: =.'_(t,L. ......... )

v and
as well as similar expressions for xi , Yi zi "

We apply the method of variation of arbitrary constants to obtain

the general solution of equations (3). We replace the variables

Xi Yi ' Zi' Xl ' Yl and zI by the variables Lj, _j, _ j and T j

using the equations Just written. We choose as a perturbation function

the quantity

R- t/--t:_,

since, in this case,

II..T--Uo--_.

We obtain the transformed equations in the following form

dL, _9/¢' d,. oh"

dt O_ dt " '

,"._ ::-.,_R" d,_ :.- __ ,_h" (4)
dl dr,, at &,

(i_ l, '_., . • ., n--l; j==], '_.,. .. 2n-- 2),

where ( _ 25)

'1 |

/" 1- _, - L/¢'.: h'q- \_ _",n:_ ". im,-F . 'n "
-'. \"."i m, I-. I,,., ) ,,,...:,,

since, in the present case, the quantity k2 for point mi should be replaced

by _"mu- , ,
///.'*'t/ll I " " ' "i Ill

"2
I
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• It _s useful to note that the replacement of R by R' is connected with

the choice of the mean longitude _as one of the varlables.

We flnally apply equations (4) to the motion of three bodies having

masses mo , mI and m2. In thls case,

' :!tm.-_ m_)'/" '' ' "LTFI

WhiTe

(II I' I').!_::.,mtm.-N U--U o- 4'::n.,m,(±,,, r, ) i '_'-'"',,'...,_.., r. .,,.."

Fquation (16) of Chapter Ilyields

' "' m,, i-ml .- Y'. ' mo..}..m I i- "_'+-ht,,-{-,;'tl/

' ) ( m_y, )-' ( m_:, _'.a_.._ m,.r, _-i- Y:-- + :_--. .--__x:, -- m,,-{ mI m_-{ ml my-!- t;h

t

In this way, we obtain

/_'- _:mo . 3..o r_ Aj.,'
m, --- ! k"m, m. (5)

27. The inte_rals of area

In _ 4, it was claimed that the form of equations (2) was similar

to the form of the equations of the absolute motion of n bodies, and for

this reason, both sets of equation should have similar integrals of area._

Thus, in the three-body problem (i = 1,2), equations (2) will have the

following integrals, which correspond to integrals (6) of _ i,

I", (Y,:, -- :t_',) ; _,:(y::: -- :,,v,)- _ C,

,..,(.,,_,,-.v,_:,)-_.,.,.,(.,:_,:L .v.',,:)c',,

. ,
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where

nh m,, m, imp,. i- m,)
| II : - ,

:" m,,-i-mz '- m. i_ m_ ! m:

We shall use the elliptic coordinates as an intermediate step to

express these integrals in terms of the canonical elements. In the case

of unperturbed motion, the areal.veloclties are expressed in terms of

the elliptic elements by

I :._- -x_ r_sm ,','o.,'...'

•.: x_v- v.i" -: C;co.,I.

where

ti-._.ra{.: e:).

These relations hold also for the perturbed motion because we are usivg

osculating elements. The relations between the elliptic and canonical

elements ( _ 25) yield

l,, / ;., r_,,. i- /. :

and thus

(i_ml. | 7:..Jl. ?z) _, ,

Consequently

f, • ,f _}

' t

tislnt,()_,2 - (),',iqi : ":_ ' I 1

We thus write the integrals of area in terms of the canonical elements

in the following way

1 I/ :"-_hS;..., ,/ Li :', I 2"," '" ": " "" 2 "'-- '_','_ . / L°-- ,,., --. p..:=C,

! " I/ *' L .... ' '2 p:':

bl(/-j "" '-f,l,,:) ! I,:(/.; Pet,,., "--r,.:) ----G.

1979012780-114



• I'

+ j

i

p

$

- 103 - 0,'_Drw,. PAG_
"".,L_(OTr,_rT-t,...,..

If we take the invariable plane as the xy pla_le, then CI = C2 = 0.

In this case, thtfirst two equalities yield
!

i _'I :'+ W+.:. :+I, 2 L.'. ++

I °= ++)
- vl+

t'.d +21 t:,, ..,,:.

In other word+, the llne of intersection of two relative osculating orbits

is parallel to the invariable plane: This property permits us to introduce

one node instead of two. This was the reason why Jacobi called this

property the elimination of nodes. It was shown in section 2 that

the elimination of nodes is a particular case of a more general property

of dynamic systems.

28. Expression of rectangular coordinates in terms of canonical elements

Before integrating equations (4), we have to express the perturbation

function R in terms of the canonical elements. The perturbation function

i8 easily expressed in terms of the rectangular coordinates. Thus

we start by expressing rectangular coordinates xl, Yi and zi in terms of

the elements Li, _ i' "'" of this point. We recall the formulae that
d

connect the canonical elements of Polncare with the elliptic elements

(_ 25). Introducing the angle of eccentricity _ , we write these

formulae in the following manner

/. 'L'x! t .z, .: _.V.:l

• + / ..+,.:- v.I

+

I

;,. - '.2/.Ct+", . '.1:1 ., , _+-'

• I .+ • t+

.+

i
I
I

,i
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The well-known relations between the rectangular and alllptlc coordinates

lead to

._ /'Cl)_ I! £Oq _/ __t- Sill II _lll L.DCOS I

y: " I t'b.¢, l/ Sitl _ rsin /t t'()_4__ £(_i

- •._in u .d. i,

where

is the argument of the latitude. These formulae can be represented in

the following way

[ i , IX" ,_" ¢"S'_ '2 ¢o'; /. -' Sltl:: d £0", (-;. __,'>'') ---

__ _,J¢OS_ / i I- I

v xl"°_:i ' I" '2 _ll_ ) --- _n" 'd ",ll, it "d'21 ' I'/)

I' ' IV cu',: "2c(>'_t _iTl': '2 ' _'_() -- 2'-')

z::X._lu_s_:;(, " ' -;2), ---)t Y.si,/c,,.,(/

if

X -rco_(v-..:l). _" r qll(P--,tll,

and M ='_ -T( denotes the average anomaly.

The result which we are trying to obtain can be expressed in the

form of the following theorem:

Theorem

.KaGh of the rectangular coordinates can be expanded in a series of

the type

wher____e_j_t_ _ a "_ __ud k are positive intesers or zeros, H is a

constant and A depends on L.
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We first show that the coordinates can be expanded in series of

positive integral powers of _j _ _ 7, and _._ , such that the

expansion coefficients depend on L and are periodic functions of _ .

I Indeed, the expressions of X and Y in equations (7) consist of sin _, ana

cos _ multiplied by the quantities

COb2_ . 5i;i_ L_soO

However, on the basis of expressions (6'),

;z-;', IL.i_i _ :_ ' 7._ -tLc-_,s .,., , Ap _.

Consequently,

i -t"-!- ,,= -= ,,2, , £t
,Ill"_ ,j

-- i :l .-7,f ) I'. '-) ( ! I " "l_
.tL, l- _/.. 2

C )_'_ '9

i 2 i
We see that sin2 _ and cos can be expanded in series of the required

i
type. Moreover, we have

Silli::-'_ _'

On the other hand,

It: 'd --

Hence

I/": ' ',_' i/ _.-_ ',d
--- '2,,__: ,! ',:

I ;:',t ',:' _: ,,

;l Comparing these expressions with the previous _nes, we see that the five

• quantities (9) are expandable in series of positive integral powers of
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_I ' _2 ' 71 and _2 " Let us now consider the quantities X and Y.

Since

rcusv a(c,,>l:'--e), r._i.u a_,"i --,'_ si./:'.

then

I X:__ec.sA4_F I_--|/! e: __ I -I/!-e: e'-"cus IE ! ,ll)a '2 _os (t: - ,t1) '2e'-

1 Y=-_-esinMj I ; l/I--e :' I--I'l -c-'. e" sin (l:q hl).a - ., st. {t:'--.Ill- '2,':

t
Each of the quantities

I i I I--e: I-'l/l_c_
'2 ' '2,': '

.... Ill--,Sit, , " (1", .lll'Ill

can be expanded in positive integral powers of e sin M and e cos M. This

is evident as far as the expansion of the first two quantities in powers

of e' is concerned. On the other hand, the Kepler equation

,i _! / ," ',:,!!5

leads to

1: -- .17 --e' ",iil .if _'l,.,, (2:" ---,'if) --. e _ o> ,I / Sill (7:'- ,I,_) li. I lt_

Assuming that

It' 1:" ,_1, Z 1 " e' .';lit ,ll, .', ,','I).S ,_!,

'_ this equation may be rewritten as

,l l(t:,,z,, ,::) tl.

where the left-hand side is a holomorphlc function of w, z, and z2 at the

point w = zI = z2 - 0. According to a well-known theorem on implicit

functions, if

'*'[ i O 2a;I w z. , z_ --0,
d tLs

i then thisequatlon has one and only one solution w = _0 (zI , z2) being

holomorphic in the veainity of point zI - O, z2 = 0. This property is

satisfied in the present case since
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Therefore, we obtain from equation (i0) the quantity w = E - M in the

form of a series expansion in positive integral powers of zI and z2.

We conclude that sin (E-M) and cos (E-M) are also expandable in similar

series.

Finally, the equalities

e'cos (E-F _ll)= e:cos 2/I!cos (_'--,If) e:._i,,'2,11sill(/:".-,If)

t, sm (2"i ,'4)--:-.e__'os'2,I!sillel."- /11)_-_.-"sin2/i.!_'os(I:'--.._,f)
e'-'_',)s2 J! .- (e _',)sJIF-- (e'_iw A/F

e_sl, '2J! ._.2(t" sin AI)(e ros .tl_

indicate that the expression

e: .... (h" t ,lf)sin "

has the required property. In this manner, the possibility of expansion

of X and Y in positive integral powers of e sin M and e cos M is proved.

Since M = __ 77 , then

• Sill _! -- e {',)s it sin A--e Sil_r. {'oS

lp COS /t_ e cos r, cos ;'. }-t' SIll r. _in

Thus, X and Y can be expanded in positive integral powers of e cos _"

and e sin77 , and the expansion coefficients will be functions of time.

The theorem will be completely proved when we prove the possibility

of expanding e cos77 and e sin _r in positive integral powers of _ i

and _I' Firat of all, if follows from equations (6_) that

From this equation, it follows that

I I

_" I-_" '_' 11_ "

Consequent ly,

, ,: ! li ,,,')1:.

i V'L
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On the other hand, the same formulae (6') yields

¢ COS rc ¢'Sill ,_ ¢

"' --"' lqT_ _,7

Hence

,",.s ..::---i/L I1- ,IL (_ "IL T,_)i:'

cshl r,--=---_l [I 117t-n7)1"IlL 4.

We have proved that each of the coordinates x, y and z can be

represented by a series of the type

'!_ E D'.'_,-;""_'i,"__,_,'I"(:,),.

where B is a function of L and (II"(_.) a periodic function of _ , the

period of which equals 2 77 . The function _(_)can be expanded in a

F_urier series

'I: (k) --- _,_'t('._.cos X',..i-D,Sill _'7,).

Since

then, this proves our theorem.

The series (8) obtained above converge for small values of _I '_? 2 '

_I and _2' A more exact determination of the region of convergence of

these series will not be given here.

29. Expression of the perturbation function in terms of the canonical

variables

The perturbation function R, which we are going to study now, is

equal to the difference U - U (see section 26). Consequently
O

J

n I _ l n lA' . _ Nl N_ % m, ,,_,Im, m,.... _,i' ' --- (II)
" O I

(_'I :_,
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I where _ .r_ly: -: z: OF _l_)g Q]J_u_"f_ '

: _%_j (x --xi)'-'i-(Y_ y_):-! (z,- z_p
I

If neither the quantity ri nor _ i] equals zero at any time, when

;-=0,., 'I,-t), I./ I 2, . , '" .').

then both of them, and consequently the perturbation function wlll be

holomorphlc functions In the vicinity of point _ j = O, rk,j = O.

Hence, the function R can be expanded in positive powe_.s of _j and %

In the veclnlty of this point. The expansion coefficients wlllobe f_nite

and continuous for all values of t. They wlll be periodic functions of/_i

having a period of 2 _. Hence, these coefficients may be expanded in

multiple Fourier series o_ the type.

v:C c,),{!k,,,)4-l_slI,('.'_ ', , _i'

where the summation is carried over the indices ki run over all the

positive as well as the negatlve integral values. Tbls result can be

stated In the following way:

Theorem I

If points m° , mI , ..., mn_ I move in such a wa/, that their mutual

separations _kl and radius vectors ri are never equal to zero, theni

|
the corresponding perturbation functions R can be expanded in a series

of the type

_2A!)_c_)s(!k,, i I/), l'

where H is a constant, the coefficients A depend only on Li and m is a

product of positive powers of L .[ and _i , i.e. m = I_' _i ..._"_I

The summation islet the in(flees _< i 'cA 2 ' "'" ' _ I '_ 2 ''"

and also over ki which all run over all possible positive and negative
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integral values. The series (12) couverges for sufficiently small values

of _i and _i "

We now investigate how the function R can be expressed in terms of

the variables S_" and £O_', related to _ and _ by

t

We prove the following theorem:

Theorem ZI

Under the same conditions, as those which hold in theorem I, the function

R can be expanded in the series

' R-- _vfl :,'['"" .;. .(O,.;(v(, / _' Vp,,j_ '•l/i, II.t)

which converges for sufficiently small values of _. Each of the quantities

2qi takes the values O, i, 2, ..., while the indices ki and Pi run over

all the integral values from -=,o to + _. For each term of this

i expansiou, the following condition holds

2qj -Ipi; '2qj pj(mod2). (I,,

where the coefficients A depend only on Li while the quantities H are

constants.

In order to prove this theorem, we transform each term of the series

(12) by introducing the new variables _ and OO instead of the variables

and _ by means of equations (13). We start by those terms for which the

product m = I. Evidently, these terms will not be changed, their form

will remain to be

A CosIE/¢, [ I!), Ii',J

Accordingly, they satisfy the conditions of the theorem.

We now consider the following expansion:
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wl,_._e q and p satisfy the conditions r_qui_:_d by the theorem. We show

t,r:_,t the
multiplication of these terms b " and _'(h produces a ;_

ou. _erms havirg the same type. For _i_i Jrpose, we consider

/

expre__:icn

%

It is better to c:nsider the -=en_ ,' : _ession

'" _".-" ' ,.. • t_ ),

which is evidently equal to

I

:-,,,_"...Z._',,'.' ":I'_%....,, _/,' 1,-'tl.

Let us consider the particular case in which h = 3. After the transformation,

the coefficients 2ql , 2q2 , 2q4, ... and 2Pl , P2 ' P4 ' ''" will not be

altered and tllerefore satisfy condition (15). The coefficient 2q3 will be

replaced by 2q3 + i while the coefficient P3 will be replaced by P3 - I.

Since, by condition,

:'q. ,o._(mod2). 2q_ .'.p.,,

tilen

:!,/, : I p.' 1_1,_),12)

2,/.,-t-I -I P.-1-1 . 2q, i I p._--1

In this way, starting with a term of t_pe (16), and progressing successively

to other terms of expansion (12) by means of multiplications by _and ? ,

we will only obtain terms satisfying condition (15).

30. Poincar_'s theorem on the rank

In the previous sections, we have studied the forms of the expansions

of the perturbation function R. Now, we consider again the integration of

equations (4), which may be rewriten in terms of the new coordinates as

follows
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&, 0/," ,/.'., o.'¢' _ "8_' _00_ :

Lit 0_.I ' ,It 01. F

d _1 Old" d 'V Od' I, (171
,

dt 0,), ' dt O:,j [
li I, '> ,t-- !' ) 1. ')') n-- 21,

%

where

/t )' /t)o ' It ),

k'm7,[("_°-i-m,)_ __(,.,,-)- ,., .I,,,.,)_ .I.I'
,) )! _ I " '

'" [ . ,:1. L, 2 (m.,--{- m, _,"L".

while the function R Is 4eflned by equation (5). On th_ h_ is of theorem

I of section 29, the perturbation function can be expanded in a series of

the type

/_'=. v A ')J,','(). (":/,,, > i IlL

m is a product of positive powers of _I I and _I"
where

We remind the reader that the coefficients A depend only on elements

Li and can have as a multiplying factor only one of the masses mi. This

can easily be seen from equations (11). Accordingly) in the first

approximation in which all mI = O, we may write

I., - I. ,'_ ". -_°, q, = q,' I

where the upper index zero denote_ constant values)

01¢. "_l 'tl')" e_ )

I _ ) l'. '1

and

/'L, ' T,"I ! rl.,_'. t.':, r: , \l ..I , ' L'/u
Hli) ,, lh L

We substitute the values (18) Into the right-hand slde of equations (17).

We obtain expressions of the following type:

Vl>'c.)_ (.,t i-I/ ), ,,

where ., v, n .

m
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In the second approximation, we obtain _i_ 1_ "*"
,OF.POOR QUALIT'/

1., l."--_-,,,l., ) --n/-: _','-!-?, _' ' ' _ ' , ('2(_
: :,, __.?.,-'.j, Ti,=-=)-" , , ,"_ "i , • . 'I _" 'q't9 ]

in which we denote by _ iLl, ..., _i_ i the sums of the type

Pot-:- v ll._in (vt ' h').

The secular elements B t are obtained as a result of the integration of
O

the three terms of series (19), in which v = 0.

It is easy to see that _ iLi does not involve any secular elements.

This result is equivalent to the Laplace-Legendre theorem, given in sect'_on

17, and which states that the semimaJor axes of the orbits are invariable.

Substituting expressions (20) into the right-hand side of equations

(17), we obtain the third approximation, and so on. In this way, we obtain,

after an arbitrary number of approximations,

where each of the quantities _Li, ...,_t" is represented by a

series having the form

V Atr'_.ll c(,s ( , t ! It ),
¢; o

in which m is a product of _,onegative powers of _, and _¢ , while the

o and has a multiplying factor of m;coefficient A depends only on Li

m m' m",m2 ... where , ... are integers satisfying the relation

I11' " (1, Ill" fl, . . . , Ill' lit" ! (4

We remind the reader that the sum m' + m" + ... is called the order of the

corresponding series while the expression m' + m" + ... - p is its rank.

Polncare/ proved the following theorem:

Theorem

If the mean motion of n planets is such that =he following relation

holds
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where ki are integers, then

(i) The rank of each term of the expansions of _ Li _ _k _ q' i' J

and _i is more than or equal to zero.

(2) The rank of each mixed term equals at least unity, and

(3) The expansion of _ Li does not involve zero-rank terms.

We have Just seen that this theorem is valid for first-order

terms. Indeed, the quantifis _iLi , _i _ i ' _ i_-_j and _i _J

do not involve mixed terms. They can involve secular terms only of the type

At, i.e. having a rank of more than or equal to zero. Finally, the

expression _iLi involves no secular terms. We shall now prove tha=

once the theorem is valid for all terms having order _ m, it will also be

valid for the (m + l)-order terms. We divide our proof into three parts.

First, we deduce the expressions required for the calculation of the (m + I) -

order term. We substitute equations (21), in which _Li, ..., _i

are understood as the aggregate ofterms having orders _ m, into the right-

hand side of equations (17). Beforehand, we write these equations in the

following way

dl.. . O/q _',, ,_,V _)A'_

d! Ot * ' d! ¢_L _tl.

d_p d4' d_j _4'

dt 019 dl _!,l

Integrating the three equations that do not involve R , we obtain
O

t I t

- Jc'/, dl, =" d! ,;_ all. (22)c;I Orp ' ,, O;t

The quantity R is of the first order relative to the masses mI , m2, ...

The substitution of expressions (21) into the right-hand side of these
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equations, the error of which is of the (m + i) order, will thus yield "

rlght-hand sides having an error of the (m + 2) - order. This allows us to

evaluatea:lofshe(m+l)-orderte_mslu_ LI,S__ and__a"
In order to evaluate the (m + i) - order terms in the expressions of the .:

mean longitudes _°, we fizst consider the expansion of _bR/_" _ . ..

Since

/e, =/,'o(L','-I-;./.,. L.'..'+ _L.;.... i=-
i

,. =l_.,(l.,, ., . . . t ;- _,_/.,, _,1.,-}- %_¢,,-/.,_L,+q,.

• _ where

and by _ is denoted the aggregate of _e third- and higher-order terms

relative to _ Li, then

' ' " "_ _ I.
¢' | " " ¢/c ,k

t

! Noting that

-- _l_ /
• O

we obtain, after integrating,

: !

/. /,,,, /.,,,. /.,.,,' "_ ")_• , (_' , '_1i --. 41. ,It 12$ _
o o o

: We want to be sure whether the substitution of expression (21)into the

rlght-band side of this equation is done within an error of the (m + 2)-

order relative to the masses. This is evidently correct as far as the

first and the last terms are concerned. The reason is that the

perturbation function R is a fJrst-order quantity. Only the second term

is required to be considered. First of all, we note that the partial

derivative _/_ L¢' is a sum of terms having at least the second
f

to the perturbations _L k. Each ef these perturbations
order relative
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is of the first order relative to the masses. We replace the quantities

Lk by their approximate values _ Lk which involve errors of the order

m+l. Identities of the type

,111 .-.4'/Y--,Illt--l;)-:.li'(A---,,I'),

ABC--A'B'C'--=- I/1(C-- :') • AC (/¢ I;) _1;:"(,; -1,.
• . • , * .... o • • . • , • . . . . •

show that this replacement produces the partial derivative _;_]_O'4"/vL

to within an error of the (m + 2)-order. Thence, if we replace the

perturbation involved in the right-hand side of equations (22) and

(23) by their approximate values, which are con'ect to within m-order

terms, we obtain all of the (m + l)-order terms in the left-hand side.

We now prove the theorem as far as it concerns quantities _ Li,

and _ We first note that the multiplication of two terms of
J S"

positive ranks yields a sum of posltlve-rank terms. Similarly the

multiplication of terms of negative rank yields terms of negative rank.

Hence, when we substitute expressions (21), which consist of terms of

negative rank, into the rlght-hand side of equations (22), %e obtain a

sum of terms of non-negat_veLq_nk in the expression of the integr *

Moreover, since each term of the perturbation function R is multiplied

by m I or m 2 , or ..., the ranks of all of these fezes will be greater

than or equal to unity.

In integrating the secular terms, their ranks are decreased by a

unlty as the following formula indicates

t

,%IPdt A t "'_!
,. I,_]'
@

Hence, expressions (22) consist of terms whose rank is not less than

zero. IA_e above-mentioned reduction of the rank takes place only for

purely secular terms. Hence, equations (22) cannot involve mixed

terms having zero-ranks.
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We still have to prove that the exp_ :sslon

t !

0

involves no terms of the zero rank. We substitute expression (21) into
/

that of the partial derivative _R/ _ . Expanding this partial
%

derivative in a series, we obtain

d&' *._ _,'_ D :'_, I':4 )
tPt. _ "

where D denotes those partical derivatives of _R/_ with respect too

the elements, in which the values of the elements are replaced by the

following initial values:

l.'_, n,I i _ "" _'",, _jt J/9

andRdenotesa produCtof ,,on-negativepowersofSL,, _ _,,',_ _j_4 _%"
On account of theorem I in section 29, each of the partial derivatives

% _I_ mayhee_andedina seriesofthetype

__,|:'.'_cos (E_z_t" II!,

where all of the indices ki may evidently be assumed not to equal zero.

Replacing the elements by their above-mentloned initial values, we obtain

/;,. vtt "!'1 cu.-,(,/-I t"'k

where

v v ,_,tnr

The quantity _ cannot be equal to zero since neither of the indices

ki equal zero. The partial derivatives D will thus consist entirely ofo

periodic terms. The rank of each of these terms is _/ i, because the

function R is a first-order quantity relative to the masses.

. Now, considering product R, it is easy to see that each zero-rank

term of this expression can only be a result of the multiplication of

zero-order terms relative tO _ _'>'_, _'_'and ". We are
I

assuming here that these latter quantities can only have secular terms of

i,

l
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zero rank. Hence, each zero-rank term in R must be secular. When we

multlply quantity D by product R, we will obtain, ,only :termg,_he * _._o

ranks of which are mor _.than or equal tc unity. The first-rank terms will

be either periodic or mixed secular. In both cases, the Integration

cannot reduce the rank as can be seen from the following well-known formula:

Att'co_ I,l , /l'} dl A t'_ln (',l-}-tt') }-p .. t" : cu.,,.,t } 11')_I ¢ r"
lit

The theorem is already proved as far as it concerns _ Li, _j and

_j. It remains for us to consider the expression_ given by equation

(23). This expression consists of three terms. Everything that is

applicable to equation (22) holds true for the last of these three terms.

This term can thus lead to terms having neither negative nor a zero

rank. We now consider the _econd term

/ ¢_

We have shown that the derivative _/_L_" consists of terms at least

of the second order relative to _ L. Since the quantity _ L is

equal to a sum of terms all of which have rank _ i, then the ravk of

each term of the partial derivative _/_ L _ ; will be _ 2. The

integration reduces the rank of each term by a unity, yet the ranks will

still be _ i as the theorem implies.

It now remains to consider the first term

t

i /',,,,¢" " , l# ,',

It follows from the above arguments that there are no zero-order terms in

the expression of the partial derivative _]_ First orde terms are

either periodic or mixed. In both cases the rank does not change after

the double integration. The mmaining terms will lead either to periodic or
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to mixed terms having ranks _/2, or to secular terms having z@go_I_s.

Hence, among the (m-l) order terms of the expression of the quantity
• p:

there will be no terms having negative ranks and no mixed terms of zero

rank.

; The theorem is thus completely proven. .

31. Poisson's theorem

#

Poincare's theorem, proved in the previous section, is a generalizat-

ion of the well-known Lap]ace-Lagrange theorem on the absence of secular

perturbations in semimajor axes. Poisson's theorem, mentioned in section

17, gives a generalization of the Laplace-Lagrange theorem in another

direction.

The semimajor axis ai of an orbit is related (section 25) to the

element Li by

where Mi is a factor, which depends on masses and is slightly different

from _ unity when the mass of the sun is chosen as the mass unit. Denoting

by _mai and_mL t the m-order perturbation of the elements a i and Li and
o

by a_ and Li the osculating elements for the moment t = O, we obtain

_' : _a,, • _:a,._. . . _-_t.. 'U.;'t".,I.,.: ",.1.. I . • .P,

where

,,, a' / . /

: ,: ' " l , '.'. ,: /

We have already proved that _iLi consists only of periodic terms.

Accordingly, secular terms will oe present in _2ai only if they are

present in _2Li . Hence, Poisson's theorem may be reformulated as

follows :

Pois,_on's theorem:

If the mean motions ni of a planet are such that the relation
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does not hold for any integral value of ki, then, no secular terms can "=

be present among the terms of _ Li that have a second order relative to _

the masses.

In order to prove this theorem, we consider equations (22), which

yield

d dA'

dt I'lL,' ,_, .
t

Putting

in the right-hand side of this equation, we obtain

J, \ _)i J _)t _)[ ',,L. Jt,dt )o _-- o ":

According to equations (22), the first order perturbations _I_ '

l_J and _i _j are equal to
[

=1 : "1,,, ,.,.",'-, - '(_''h"" "," / (,,,• _'",1 , .. . , _',,1_:'"
g ,,

We divide _ 1 _k according to equation (23) into two parts, such that

where

t I

j. ) j_,', :..... [ ')/_) "' _ ¢" ,It dt
' _,01., , dr, ',, ', .. , ,), ,,/,

"

The last term in equation (23) produces perturbations of orders trot lower

than the second and therefore, can be neglected in the present discussions.

i

In this way,
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It was shown in the preceding section that each of the second

derivatives involved in the previous expression can be expanded in a

series of the type

V =_kin i cannot be equal to zero otherwise the corresponding
where

term vanishes after differentiating with respect to /_ .. Secular terms
i

can appear in the expression of the quantity _2Li only when
constant

terms are present in the expansions (25). It is easy to see that the first

of the sums involved in equation (25) cannot produce a term. Indeed, each

term

_"---4 "2: c('., ! k >.,. • ,'h

of Series (12) in which R is expanded, gives the following part of this

sum

I . t

',,,,,,v., . _,,,'"' ( ,.,,.,,. ,. [ ,,/../.,
_ ..l"_

--cos,_ 1, ,'..-It,I-.l' ". A "': c,,_(x_O.; .. 1t) ; #..1 "2; '" ' ' " ' _ v ,q_' ,-ln(_=_.),,, _, /t)--

_i,"(}. L, _,-. It,1

These expressions equal a sum of periodic terms, none of which are

constant, Similarly, we can show that no term in the series expansion

of R can give a constant term in the second sum of equation (25), The

third term can contribute only with periodic and secular terms since
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,'I ,'p El I }' I ,/l
• I I.- L,

-_.4.".T;. .;. ¢o_(!t'.,, . III --,irl_ _,_. 11).:, ,_ln_," _'. ', 111 '.

",t_,, (___,, Itl 'i

and

c°_tvl_'"llj._tz_l_k,.-; I1_ I ,in. _ (v_p l-If)

!
({,_(v_'i , //') Cu.',(_]','." Ill - ,) Oj, iv/,, vii,, I ,

I

:" '2 ¢o_ (_ k; -t v _.,,. ! 21t

This completely proves Polsson's theorem, we note that the third sum

in equation (25) yields a mixed term of the second rank in the expression

of the second rank in _2Li.

Polncar_ generalized Polsson's theorem by proving that the expression

of _L cannot involve secular terms not only of the zero rank (section

I 29) but also of the first rank (1).

l

32. Polncare's theorem on the class

In section 30, we began to study the expressions of the perturbations

Li' _i' _ _J and &_j obtained as a result of applying the method

of successive approximations to equation (17). Each of these quantities is

obtained in the form of a series of terms having the following structure:

_L

, ¢o 0_ _ , I //

where

are factors introduced by the integration. If the coefficients A areo

of the m-order relative to the perturbing masses, then (section 15).

(i) M. Poincare, Lecon de Mechanique Celeste, t. i, Paris 1905, 294.
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i is called the class of the term under considerations relative to the

i corresponding divisor _'.

I
j Theorem

i If the mean motions n i is such that, for the arbitrary integer, k i

1 the following relation holds

I

I '1 : 11.

, then, the class df each term in the expansion of _ Li, _ _ and _j!
I

relative to any divisor is not less than ½. In the expansion of _i' the
"I

class of e-ch term is not less than zero.

In order to prove this theoren_, we first note that the theorem is

valid for all the first order perturatlons. In this case, m = 1 and

p + q <_ 1 for the expansions of _ iLl , _i and % 1 _ 1 ' and m = I0,

p = 0 and q _ 2 for the expansion of _ 1/_i"

Let us assume that the theorem is valid for all of _e perturbations

that have orders less than or equal to m. We then show that the theorem

will also be valld for all the (m + 1) - order perturbations. We make use

of equations (22) and (23) to calculate the (m 4 1) - order perturbations

in terms of the m-order ones. We first of all obtain

t'""' j'"" j'"'d' Jr, ;: dr, ':'v -'- _)! dI, ('.'),,• / _llt ,
_J

Each of the partial derivative of the function R; involved in this expression,

can be expanded in a series of the type:

in which we dencte by D the second, third, ... derivatives in which theo

elements are replaced by their initial values:

o _: , :* o, /. , llt _ ,j, ,:

t'
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it has allready been pointed out in section 30 that the quah_ _]oA_/ "l

be expanded in a series consisting entirely of periodic terms. For
T

these terms, m ffii, p = 0 and q ffi0 since they have not been obtained as a

result of an integration. In other words, the class of each term of the

expansion of DO equals to unity. The quantity R is a product of ,

positive integral powers of _ Li , _i' _ _J and _j evaluated up ,_

: to terms having masses of m-order inclusively. Since the product of each

two terms can yield only terms having classes less than the original two,
i

then the expansion of each of the derivatives

dl.' dA ,PA'
, .- _._,"_..

J 0_ 'd;-' £ _,_D" '''

will involve only terms having classes _ i.

In the integration, the class of a term relative to the mass does not

change. However, the value of one of the coefficients p or q may be increased

by one unit. Therefore, the classes of the terms of expansion (26)Jill b_½.

Hence, the theorem holds for _orm_ of the m + I order.

Now, we investigate the class of the (m + l)-order terms in the

expansion of the perturbation

i ! ' t

• t't t'"" I'""?,s.=, -- _(:_ dl " dA' dl -. dl - dt (7,"t). 0s.i. • 01. • 01.
O ,, U

The integranfls of the first two terms in the right-hand side may be

expanded in series of the type Just considered. Noting that the double

integration increases the sum p + q by two units, we conclude that these

two terms can only lead to terms having classes ,>i O. The partial

derivative Involvedinthethirdtermofequatlon(27),

consists of terms at least of the second order in _ Li. The product of

two or more qua_.tlties _ Li consists only of terms having classes _, i,

since the class of each term in _ Li is .,>i½ as shown above. The
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integration with increase the sum p + q by one unit, yet the terms of ":

the expansion w111 still have a class >/ %.

; The theorem is thus proven. We note that the double integration
i

! yields the least-class term in _ _i"

33. The least-class perturbations -.

Let us consider the structure of those terms, the class of which

rel_clve to some given divisor

is the leas_. We show that all of the terms of class ½ in the expression

of 6 L, _ _ and _ as well as terms of class zero in the expansion

of _ "_. are of the following form

_,I"L'O'.I_,,l,, -_ II), (')'_.))

where _ is an integer. We assume that this holds for perturbations

evaluated up to the m-order inclusively, and then show that the same

form can represent the least-class terms of the (m + i) - order. We

refer to equations (26) and see under which conditions can terms of class

½ be obtained in the right-hand side. First of all, it is necessary that

the term under consideration

,t/P¢os(,t { !!', (3o)

involved in the expression of the corresponding derivative _/_t ,

_ or _ Rj_0 , has a class equal to unity. Indeed, each of

these derivatives may be expended in a series of the type (27), where the

factor D consists of terms of class unity as we have already seen.o

Hence, the class of the term (30) cannot be less than unity.

Furthermore, it is necessary that the integration of the term (30)

decreases its class by ½. This can only take place in two cases; i) if

v = 0, then the integration increases by one unlt the exponent p, and

if "9:J3V$ , where _ is an integer, then the power q of the devisor _¢

+

i
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, • • t-_%4 _,

increases by one unit after integration, .. -;_.." ...

Hence, all terms of class ½ iu the expressions of the pertur,_ations _

6 Li, _ "_j and _j must have the form (29), We now show that

in order to obtain all the terms of class ½ in the expressions of _" Li, _.

g ?jand__j,iti_,ufflclenttoco._siderthosetermsofthe %

' perturbation function R. the arguments of which are'.multiplies of
i

We again consider expression (27), in which we have denoted:.by D
O

those psrL.al derivatives of the perturbation function R, in which the _lements

e_ ?_ o Ao+._...Li , _ , and are replaced by their initial values Li , i

o and _ J'° Do consists of termsnit, _.j In other words, the quantity

of the following type:

I,'oc,.,._(_t. i t&), (31)

where

Here, H is a constant while B is a function of Li _ o and _oo o ' .i j"

This term is obtained by the term

i,'cu_(S_'#._ { I0 (;_,'--'J

involved in the expansion of the function R and, subsequently, ;ubstituting

the above-mentioned initial values.

The factor R in the expansion (27) is a product of non-negative

powers of _ Li ' _ i ' _J and _j evaluated inclusively up to

the m-order terms relstive to the masses. In the frame of our assumptions,

the terms of factor R that have the least class (zero) will assume form (29)

since they are obtained as a product of the least class terms in the

expressions of _ Li , _ # ' i ' ' ''!

Hence, the least-class terms in the partial derivatixes _R/_,i,

R/_ e_ i and _ R/_ _ i _re obtained as the product of expressions
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(29) and (30). Their arguments will thus have the form j:_ _"_" _-_--

()_0 -° _) I-_- co.st.

J

We have already seen that In order to obtain terms having class ½

after integration, each such argument should be of the form

Consequently,

where 6' is an integer. Therefore

Accurdtngly, terms (32) of the function R which lead to least-class

perturbations, wlll have arguments of the form

lkl_.,_ H= :"i-H,

i.e. all multiplied by O. This is what has been required to prove.

I It remains for us to investigate the structure of the least-order

terms of the expansion of _i" The easiest manner by which these terms

are obtained is also required to be shown. We start by considering

formula (28). In the previous section, we have seen that the least-class

(zero) terms in the expression of _X i may be only obtained from the

first term of formula (28). In order to obtain these terms, we take

l l

/" dA__;.'A,.... _%'_C,A dl I J. dt,

or, considering equation (26).

, !

"i_ ;.).,": -- -_"C,AI ;,L, dl. (:L_,)

-i v
We again use expression (27) for considering the partial derivative

R/_ k" Similar arguments show tha_ the least possible class for
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terms of tbls type is unity. Hence, in crder to obtain terms of class

zero in the expression of _i' it is necessary Chat the double integration

increases the sum p + q by two units. This is only possible if the

arguments of these terms have the form _ _ _ T

Finally, we combine the differential equations which allow us to

obtain the least-class terms of % L, _, _7 and _ . We start by_ .

In order to evaluate the zero-class terms in _>, we use formula (33).

From this formula, it follows that

J: J J

Noting that _ nit _ _ oi + _Ai' we obtain
J,

=_--_'_ '--L
j: ---

Assuming that (of. section 30)

,:, =-C-_'n _L--I., \'_'C L L L --_._.j n •

where C is a constant, we obtain
O

4 " •

C: °"

This equation yields only zero-class terms if the L - L involved in thec

expression of the function _o is understood as the aggregate of terms

of class ½.

We have already seen that in order to obtain terms of class ½ in the

expressions of _ Li ,_ _j and _j , it is sufficient to keep only

terms o_ the function R, the arguments of which are of the type c_-@.

Let us denote the aggregate of such terms by _ . Using equations (26),

we obtain the following equations
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"7 l

j: -- :,

i; 7" _-

which define the terms of class ½. Th_ right-hand side of these equations

can be further simplified. We have seen that, in order to obtain terms of

class _, it is necessary to keep only the zero-rank terms of R in the

expressions (27)of the derivatives _ , ... However the zero-class terms

of R can be obtained only by replacing the quantity _'_i by its zero-class

terms, a.d putting

°_

that is to say

g r"=. : ....

Since such substitution is already done in Do, then denoting by
¢ . ° -

the results of this substitution into

q

we obtain

"_'t 5;- ,It ('"11,,, "'d" ,,1',,

Noting that

O'l-_'t---':14 0'1",,-_=O,
c;' 01.,

we formulate our conclusions in the form of the following theorem

Theorem:

In order to obtain the least-class per=urbations, it is necessary

to integrate the following equations:
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gL ,J(,l,..' ,l'.j a,. ,_(,I,-: ,'_)
-d-t- ---- 0,. ' dt :-: -- OL - (,:6)

fo,,') ""=-/°":).dt =- \ O+,l o' dt \ O:, /u

34. The Delaunay-Hill method for calculatln_ long-periodic perturbations

We assume that the maim motion ni of the system of material points

under consideration is such that the quantity

,,0= '£k] n,

is small. In this case, the perturbation of least class relative'to

the divisor v will he of particular interest, since the amplitudes ofo

these perturbations will be particularly large. The theorem, given in

the previous section, enables us to determine these perturbations

independently for the othet_. Putting again

and denoting by F the aggregate of the terms of the expansion of the

cuntion R, the arguments of which are multiples_ of @, we can conclude

that _ depends only on @, Li, =_-_jand _" J" Consequently

are functions only of 0. This situation enables us to obtain the solution

of the system (36) and (37), which defines the least class term, by means

of quadratures. The first of equations (36) yields

dL, oq'u Oq'_, ,
at :-' _,, = orj _i,

Introduc'ng the auxiliary function U by means of the relation

dU ml'o
r--+

dt 0'+ '
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we obtain from the previous equations

dL_ dU

ai t_,;af = °

Let U = 0 for t = O. Then, integrating the previous equation from t = 0

to t = t yields

1 -._ L/ 1. ¢,-_

Substituting these values of Li Into equation (34), we obtain

where A, B and C are constants. On the other hand, equations (36)

have the evident integral

defining the dependence of U on 0 in a closed form. This integral may

be represented in the following way

¢_-- '1"o= '-'BC--AU:

from which it follows by expressing U in terms of 0 that

At., • t_'= _ _--7. -zL---_-q'-." ¢;,:

Since

d', ,h ,":' dL ."l, .',

2: -- %"_ %"_" - \" v. "=- o._- ' dt m_ dL ,--, .:U Of.' '

or,

d5
- 'B 2A,'." -.=_ -i'l' ." A cdt

then we obtain the following relation between 0 and t:

• .

t -=-_ " .;'.i"' ---ACd . .-_i, --.3-d

We now consider the second of equations (36) which yields

d, c'_,
= "."-\'_ L --L ,-:

."= 7 ' _ _,_" ¢
__. -, (',I)
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Replacing the quantity U by its value given by equation (39) and Integrating,

we obtain element _ I as a function of @. Simllarls", integrating

(37) leads to expressions for the coordinates _-_j and _j
equations

in terms of functions of @. Equation (40) allows us to express the coordinates

h I , _j and _j _n terms of time t. Thls gives the complete solution

of the three-body problem under consideration.

In thls way, in order to obtain the perturbations of least class

relative to the argument @, It is necessary to pick all of the terms,

the arguments of which are multlplbs of @ , out of the pe_turbatlon

function R. Replacing thequantltles LI, _i and _i in the function

obtained in thls way, by their initial values we obtain the function o"

Equations (38) and (39) allow us to express the quantity LI In

terms of the argument @. Integrating in the same way equations (41)

and (37), we obtain _ I ' _ J and _j as functions of @.

Finally, equation (41) defines the dependence of the argument @ on

time t.

Delaunay was the first to note that it is possible to obtain all

periodic perturbation by integrating those equatlons of motion, In which

the perturbation function Is replaced by some of its separate terms. We

applied this method to construct the most complete analytical theory

of lunar motion _I'_.

Tlsserand considerably simplified the Delaunay method by relating

(i) C. Delauney, Theorie du mouvement de la Lune, Memoires de l'Academle

des Science de Paris, 2_88(1860), 29 (1867).
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it to the general theory of canonical transformation (1). On the other

hand, Hill significantly generalized this method by showing how the terms

of the perturbation function, the arguments of which were mUltfpleJ_

9f a given argument, could be taken into account (2).

The method obtained in this_y is known as the Delaunay - Hill

s3
Method. Finally,the work of Poincare ( ) helped in clarifying the ma_

mathematical points of this method.

(I) F. Tisserand, Traite de Mathematique Celeste, 3, Ch XI, 1894.

(2) G.W. Hill, On the Extension of Delaunay's Method in the Lunar

Theory to the General Problem of Planetary Motion, Transatlons

of the American Mathem. Soc. _, 1900, 205-242 = The collected
Mathem. Works, _, 1907.

(3) H. Poincare, Le methodes nouvelles de la Mecanique Celeste, _,
Ch. XIX, Paris 1893;

H. Poincare, Lecon de Mechanlque Celeste, _, Ch. XIII, Paris 1907.
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CHAPTERVI

SOME PARTICULAR CASES OF THE THREE

BODY PROBLEM

35. Introduction

In 1772, Lagrange was awarded a prize by the Paris Academy for his

well-known memoir "Essai sur le probl_me des trois corps (Oeuvres, _,

229-324)". Lagrange pointed out in the preface of this work, that this

included a method for the solution of the three-body problem, which was

very different from all previous Contributions. This method was shown

by Lagrange to consist in reducing the determination of the relative

coordinates of the three bodies, which requires the integration of a

twelve-order system, to the determination of the sides of the triangle

formed by the three bodies. This requires the integration of a 7-order

system consisting of two second-order equations and one third-order

equation. These equations involve two arbitrary constants introduced by

the kinetic energy integral and the integral of areas. Accordingly, the

mutual distances of the three bodies will depend on nine arbitrary

constants. When the mutual distances are known, the determination of

the relative coordinates which introduces another three arbitrary

constants is quitp simple.

Eliminating time from the_bove-mentioned 7-order system, we finally

reduce the solution of the problem to the integration of a 6-order

system.. The reductions, per_erme4 by Lagrange _s,assentially identical

to _hat indicated in section 2. However, the special form in which

Lagrange obtained the equations of motion enabled him to formulate

and solve the problem of finding all the three body types of motion when

their mutical distances always keep constant ratios. These types of motion

are called Lagrangean. We shall see that a Lagrangean motion will

J
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necessarily be coplanar.

If we have to proceed along the same path as Lagrange, when studying

the lagrangean motion, we then have to initially deduce the differential

equations that define the mutual distances of the three bodies. However,

as Lagrange himself pointed out (loc. cir., page _ 3J ), the particular

case under consideration can be resolved in a much simpler way if we,

beforehand, assume that the three bodies are moving in an invariable

plane. Indeed, restricting the problem by this subsidiary condition,

Laplace was able to derive a very s_ple deduction for the _qations

of the lagrangian motion (1).

Lagrange assumed that the solution of the_neral problem, i.e.

without restricting it to coplaner motions alone, is indispenslbly

connected to several difficulties. Andoyer and Caratheodory (2) proved

that this was not true. They developed a simple method for obtaining

the general solution of the problem suggested by Lagrange. We shall

give the details of this method in the next sections. This is very

interesting since it can very easily be extended to the n-body problem.

By this method, it is easy to show that the lagrangean motion of

n-bodies will also take place only in an invariable plane, except in some

almost trivial cases z when the motion proceeds along straight lines

(t) _Laplace,:Mechanlque ' ' "c_leste, gdc6_de partie, Livee X, Ch. Vl

(Oeuvres, _). Laplace'_ method is explained in: Charller, Die

Mechanik des Hinnnels,2, 89-102, 1907; A simple geometrical method
for obtaining the results of Laplace is given by C.D. CernyJ in
the paper: Geometrische Losung zweier spezieller Falle des

problems der drei _rper, Astr. Nachr. 171, 1906, 129-136.

/

(2) H. Andoyer, Sur l'6quilibre relatif de n corps, Bulletin Astr.,

23, 50-59, 1906.
C. Caratheodory, Uber die strenge Losungen des Dreikorproblems,

Sitzungs berichte der math. naturwiss. Abtellung der _ yerschen

Akademie der Wiss. zu Munchen, 1933, 257-276.
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passing through a common centre of gravity.

36. Equations of Lagrangean Motion. The Case of Moncollinear Motion

We shall construct the equation of relative motion of three bodies,

starting with the assumption that the ratios of the mutual distances of

these bodies remain constant. We denote by ml, m2 and m3 the masses

of points P1 ' P2 and P3 and by xi , Yi and zi the coordinates of point

Pi" We take the origin of the coordinate at the centre of gravity O,

and the xy plane as the p_ane of the tri-angle PIP2P3 .

The distance from the centre of gravity to the vertices PI' P2 and

P3 are proportional to the dimensions of be triangle. Hence we can

use in the case of a lagranglan motion, a rotating coordinate system

and put

•_t"-a_, y,_--b,p, z =0 (l)

(i = 1, 2, ;9,

where _= _(_ is a properly defined function of time, and ai and bi

are constants. We denote by _ , _ and _ the components of the angular

velocity of the system along the axes x, y and z. The components of the

velocity of a point, whose coordinates are x, y and z, are well-known

and equal to

_--)'r-r-zq, y--:p { xr, z--.,q_ yp.

Consequently, the components of acceleration are given by

d (_--yr t:q)-rly--:p t-zr) t q(z--._q ;'yp)d/
|

_/i (2-- "P ! .,r) -- p (z -- ._q . yp) + r (x yr-i ZCl,

d
(z--xq-{ yp) q(._ ),r.}.zq) i p(.v :p i ._'r).dt

'b,
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Substituting the values 41) of the coordinates under consideration

Into these expressions, and noting that the components of acceleration
pl

I of point PI caused by the attraction of the other two points, are

i equal to
J /

where Ai and Bi are constant factors depending on aI , a2, ..., b3, ml,

m2, m3 and the constart of gravitation, we obtain the following equation

of motion of the point

,1 I"" q' _ r:J:, I --b!.!r,-! (r PqJ;,l --,_', (_)

.,l_r:. i tr J pq_pl--b, I_--(P' t r')f-I _-/z,p ' _:_)

u J:q:,-} _q--pr)pl_b, 12p:,q_(p t.qr;;,I O. 14)

In the case of a collinear motion, in which the three points PI' P2

and P3 are always on one straight line, or in other words, when

_Jl G2 QI

b, b: b_ '

will not he considered in this section. Hence, equations (2), (3) and

(4) lead to the following relations

- (q: -F r:) -: ,l' ,_,-_; _rp f-(r pq)p----/J'p-: (2')

p (p'-'--}-r'-'j A"p- _; 2rp+ (r -F pq)p----fl"r,-" (3')

2qp--_-(q -- pr)p =. O; 2pp-F (P -_-qr)p = O, (4')

where A' B' A" and B', , are new constants thaugb they can be expressed

in terms Ai , Bi , ai and bi. The term-by-term substration of

equation (2') and (3') yields

from which it follows that

3 I

p ap- _ (5)

where _ and _ are constants. Substituting these values into equation
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(4), we obtain

from which it follows that

4- o. (7)

It is now easy to show that the motlcn proceeds in the invariable

plane. For this purpose, we show that we can obtain _ = K = 0 by

means of an appropriate choice of the axes Ox and Oy. If °f2+_ _ffi0,

then _< = _ = O, and hence the relation (5) yields

p _q _- O,

which proves that the plane PIP2P3 is invariable.

/We now investigate whether the sum °<z+ cannot be equal to zero.

If this can take place, we may then conclude from equation (7) that

= O. Since _ _ o , then the relations (6) yield _ = O. Once

_ = 0 and [ = O, it then follows from equations (4') that

I)=Co:l_.l, q tonal.

We add the vectors £ and _ which are directed along the x- and y-axes,

and take the direction _f the resulting vector as a new x-axis. In this

case, we get _ = 0 in the new coordinate system and, hence, equations

(2) yield Ai = 0. In other words, the projections of all of the forces

on the axis 0x vanish, so that all of the forces will be parallel to

the axis Oy. This is Impossible since we agreed to only consider the

case in..which the three bodies are not located along one straight line.

We take the plane 0xy of the fixed coordinate system as the invariable

plane in which the motion takes place and draw the perpendicular axis 0z

from the centre of gravity of the system. The motion of the points Pi

in the case under consideration will then consist of the rotation of

triangle PIP2P3 as a whole, around axis Oz with an angular velocity
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". and with the motion of each point Pi along the ray OPi. Hence, the

areal velocity of point P. wii_ differ only by a constant factor from the
1 P'

: quantity r 2 _D, so that the integral of area for the axis 02. will give

r,,'- _ cot st,

from which it follows that

i 2r,__ rp = o.

! In this way, equations (2) and (3) become __G_ _.-.,-,nnQU/'-2'"

., a, I:' -- r:PI " A,r,- , b I:' - r_;,]-:. #,,_ =',
which yield

A, A. A, ttt ll_ B4

uz a. a:, bj b.., b., " (_)

l

L

i These equations show that the resultant of all the forces that act on

; each of the points Pi passes through the centre of gravity of the system.

It is now already not difficult to determine the form of the triangle

PIP2P3 (figure i). Denoting, as previously, the sides of this triangle

by

P, P---_ ±,:, /',Pj - 3..
,/), t, 3:i,e, -

"__ i We obtai_ the following expres._tons for

f" .... the three accelerations that points P2 and

P3 produce on point PI'

--11,

I'j,t _"n,: ._,: 'i

Fi:. 1 pl/t k:trt,_l _

We determine the angle O_ , which _s formed between the geometrical

sum P1R of these axcelerations and the straight line PlP2 • For this

perpose, w_ project the accleration PIB on the axes PI _and P2

into the components
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where _ is the angle P2PIP 3. Then

' /,'.If P,I. m. __,, .. "_,

' lgl " P,,$1 _ t',A" l-/'_l."t ?tl:.._,: ' ; tr/._A:t "CO';.?='

On the other hand, denoting by _o and _ o the coordinat=s of the

centre of gravity of the system, we obtain

fll A ,'I1 _ C, , _', L -_ , , : ,][1 "i

J

On account of equations (8), the erraight line PIR passes through point

O. We therefore evidently obtain the following equation

m; -_'1, '_11i ',£1 "I; 2.. _i': '_1

?_l. ""12 " IIl. 3.L..j z 120h q,,, ql .\l ,":, ._. _ 0", '_'1

Taking into account that m2# D, m3 _- 0 and sin % _ 0, we obtain from

the previous equati,,n

"_1 1;

or

l If mI # 0, we can then prove the equality of the other two sides of the

triangle in an exactly similar way. We will then finally obtain

A_S - A,: " -%:_,

The case in which two of the masses

mI , m2 and m3 are infinitesimal will F
, %

o_ not be considered here, since it is 1/ ' _k

trivial. , ' "' \
/ •

It remains for uq to only .... /L" "
,j

consider the case in which one of the
_m
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masses, say mI, is infinitesimal. In this case, the previous approach

will be valid so far as it concerns the vertices P2 and P3" We can only
p,

conclude that the sides /k 12 and _13 are equal. It is however oasy

to see that the triangle PIP2P 3 will be equilateral.

Thus let mI = 0. We draw the coordinate axes as shown in figure 2, %

taking into account that the centre of gravity in this case is located

on the straight llne P2P3 . The coordinates of points P1 ' P2 and P3

will be equal to

Since the origin of the coordinates is at the centre of gravity, then

On the other hand, since the sides PIP2 and PIP3 are equal, then

k)q_ - Lr. : 0,.

Hence denoting by _/? each of the angles at the base of the triangle, we

easily find

"x fii I -i l ,'l,

bl (as -- 0.,)1t:'+ ." -- ¢, U,TJj It' "_"

It folows from equation (8) that

,I: H,

In the pre sent case,

°

A:= { I_:zn__%., t_ ._ /.:(,,, m !__ .,!

as it can be easily seen from 'figure 2. _ence

}'

I
{ -_,, 'COS '_ -'_ Aj, :
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Since

t we finally then obtain
i

I

cos.?_= _ , _ _t;c)'. %

Hence, when three material points move under the action of their mutual

attraction in such a way, that the distances between them keep constant

ratios, then if these points are not on a straight llne, they will

always form an equilateral triangle. The plane of this triangle will

keep an invariable position in space.

I_E us assume that the initial positions of two of the three points,

say P1 and P2' are fixed, similarly as the plane in whlch the motion is

taking place. In this case, in order to obtain a motion of the type under

consideration, we have to place the third polnt at the vertex of one of

the two equilateral triangles that can be formed at both sides of PIP2 ,

i.e. at one of pints L_ and L5 of

j figure 3, in which the points PI and

are denoted by m and m'
P2

o

I These points are called the triangular
r

points of ltbration (1).

Ls m /,,,_'l.:" I In concluslon_ we show that, in

in the case under consideration, the

• i_ motion of each of the points P! relative

_.3. to the common centre of inertia 0 proc-

eeds in such a way, as if each of these

points was attracted by an_mass equal to the masses of the two other points,

(i) These points are also called the equilateral points of libration.

Guilder called these points, as well as the points that we shall

Consider later, by the centres of libration.
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located at O. In other words, the motion proceeds according to the *

generalized laws of Kepler.
p:

We now turn to equations (23) of section 6 which define the motion

relative to the centre of gravity. Denoting by /_ the common value of

the presently equal distances A i, and _klng into account that

mix, _ mj ._2"!- m,.__ O.
• • ° • . . . . • •

we obtain the followlng eq._tlons of motion for the point PI:

; )
x : L'_(.'rq ! m. : u',,._-_ -,_' i
v_ ; /_:(::ls ! m_ . m,)y,A qP I

: ,_'(u L r:n: I m_l: A _U, J

where

-,:- . ::j.

in which cI is :onstant. These equations are identical in form to the

equations of motion of the two-body problem. This proves the validity of

our assumption.

37. The case of colllnear lagcanglan motion

We now consider the case In which the three bodies P1 ' P2 and P3

are always on one straight line. Taking thls llne as the x-axls, we

obtain the following expression for_e coordinates of point PI

x a l',(I), y, -_ O. ,: ,-- O.

so that the problem is reduced to the determination of the function _(t)

i and the constants aI , a2 and a3.
Since all of the forces are along the Ox, axls we can choose a

coordinate system which does not rotate around thls axis, l.e. we can
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; consider p = O. Taking into account that in the present case bi = 0 and

I BI = O, we obtain, from equations (3) arid (4) P

P

[
[ 2r i,-F r', = O. 2q i,-{-q P-=0. (9)

We assume that _i_ O. Multiplying these equations by _ and r__and

substractlng them term-by-term from one another, we obtain

rq--qr -:0.

Consequently,

r ;= Aq.

where A is a constant. Hence, taking the direction of the geometrical sum

of the vectors [ and R as the new Oz axis, we will obtain _ = 0. Thus,

we can always consider that the Oy and Oz axes are chosen in such a way

that _ = O.

Consequently, the motion of the straight llne PIP2P 3 in space will

consist of a rotation of this straight llne around the Oz axis with an

aogular velocity equal to _. Integrating the first of relation (9), we

obraln the integral of area

r;,"==c,,,nst. (10)

In the present case, equations (2) read

Al t

and hence yield

Ai : Az -_'11
'J! IJj @j

Assuming that
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and putting

:.' - d

we easily obtain

m -m _!-:z._: --_,n--r-m" : --,";j, • zy : ,v::
--_L. ....... c ' ."

O 6' _,'-

since

•",_ ..... ,t. n;.. (a 0:1 ,t r,'l t_l -- c:

'(, _t"-rn._c,':--u:_ .-_:lll (J.. ,- a (..
!

4. -i'mt(u_o., --k-'nl.(a_--a.l : !

Since the origin of the coordinates is at the centre of gravity of the

i system, then

i m:G I-_- _zU. - m_a_-_(4

If follows from equations (ii) that aI , a2 and a3 are proportional

to each other. Taking this into account, we obtain the following equation

for the determination of z:

This equation has at least one positive root since the left-hand side

has different signs at z = 0 and z = +oo . On the other hand,

according to a theorem by Descartes, equation (13) can have no more

than one positive root since its coefficients change sign only once.

Hence, whatever the values of the masses are, we only obtain one

positive value for z. Equations (ii) enable us to obtain the ratios

aI : a2 : a3 which correspond to this value of z.

The three different masses can be located on a straight lines by

three different manners. This leads to three collinear lagrangean motions.
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In astronomical applications, we denote the masses by m, m' and m' :

and assume that the mass m is very large (the mass of the sum), the
p-

mass m' is small (the mass of a planet) and the mass m" is very small

(the mass of a planetcaid, comet, Is_teo_t6, etc.). Putting into euqatlon

(13) _ = m, m2 = m' and m 3 = m", we obtain an equation, the positive

root of which is very small. Keeping the most important terms in this

equation, we obtain

(3m • m')z: (t.'( . m ')--- O,

from which it follows that

i

('m' .i-.m''_,
: ; \:G, +m'/'

In this manner, denoting the distance between the planet and the

sum by r, and the distance between the astrold and planet by r', we

obtain

!

'"' "i'm"
- ._". (14,

r'_=• b.ru4-m' i

In the case, when mI = m, m 2 = m' and m 3 = m', i.e. when the

planetoid is between the planet and the sum, we obtain

t

,ql fll i, , _ :1' 171

Finally, if the planet and planetoid are at different sides of the s_, s

that m I ffim', m 2 = m and m 3 = m', then equation (13) reads

I(:). I_,
where

/(:) t"l(:_-I2:';_--z:'--'2zI);
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Evidently, the positive root of this equation slightly differs from

unity. Hence we may approximate the value of this root by

1(1_ 7m' m'
z 1-- ---:.1 --

/'{l} 12m' ')' . "-i-.{_lll' I i_ ql

Consequently

r"-----r 1 -- 12m-{-2(;,m' I 3m" ' (161

where r" is the distance from the planetoid to the sun.

Each of the three positions in which the third mass could be

located on the straight line joining the other two masses m and m',

will be called a collinear point of libration. These positions are

denoted by LI , L2 and L3 in figure 3.

When the magnitudes of the masses satisfy the above condition, the

positions of the collinear points of librations will be defined by

formulae (14), (15) and (16). If the mass m" is negligibly small in

comparison with the two others, the,. the position of the five points of

libration will be given in the first approximation by

I

/'.vl ' ).1

I

. 1... r" r ; r i(t.im'

7 "n"
• L, r': r.-t

12m-!- ;.'_,m'

. L._ndL,, t'-. r' t.

The following table gives the positions of the first three libratlon

points for the different planets of the solar system. The table gives

the 7alues of the distances r" of the points of libration from the su_,

expressed in fractions of the radius vectors of the planets
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L1 L2 _L_

Mercury 0.9966 1.0034 I - 0.000.000.07 "

Venus 0.9907 1.0093 1 - 0.000.001.43

Earth 0.9899 1.0101 1 - 0.O00.001.78
%

Mars 0.9952 i._ _8 1 - 0.000.000.19

Jupiter 0.9332 1.0698 i - 0.000.557

Saturn 0.9550 1.0164 1 - 0.000.167

Uranus 0.9758 1.0216 1 - 0.000.026

Neptune 0.9743 1.0261 1 - 0.000.030

It is interesting to note that all of the planets have sattelltes

at distances much smaller than the distances to the libratlon points LI

and L 2. For example, the distance from the earth to the moon i_

approximately fQ_rtimes smaller than the distance to any of these

points.

After obtaining the value of z, and from equations (ii) the values

of the ratios aI : a2 : a3 , we can start to study the motion of point Pi"

For this purpose, we can apply equations (i0) and (i0'). In order to

obtain the function _ (t), we give one of the constants ai an arbitrary

nonvanishing value. We put, for example, aI = 0. Then, the above

mentioned equations yield.

rp _ C, _,'_;, -- r", _ ,1,,

where C is an arbitrary constant, while AI is defined by formulae (12).

We denote by u the angle between the straight llne PIP2P 3 and an arbitrarily

given direction in the plane xOy. Since [ is equal to du/dt, then the
i

equations of motion will have the final form

%,... -'--'"'.Y'F"_w'_"_ " ,,_'---,'-,,,........... ,, , • .... --

1979012780-160



f.,/ .,

_z_

_ POcw"

.,du _ d" :, /du\_
dr= C, f" ilt'- --_,dl ) f,'=_A,. "

/

from which it follows that

d;p .j, .
-dt; = C"_ -z-A,,, ,

d.e
Multiplying by 2 d--t--and integrating, we obtain

: ., .
dr/ -=h 2A,p --C'_p -',

where h is a new constant.

t
In order to obtain an equation for the orbit, we eliminate dt by

means of the integral of area. We obtain

_,, \a,I = t*-F (:=-- _ C

or

(ds_= ..h.f AiduI C'. s_'

where

C A,

[, C"

The integration of the latter term yields

D

P=-l iecoiI_ u,)'

where

e. VII_-hC:a, , P .---A, 'C_,

and co is a new arbitrary constant.
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Thus, the motion of any of the points Pi around the common centre

of gravity proceeds by a conic section which satisfies the law of areas. i,

In other words, this motion proceeds according to the laws of Kepler.
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CHAPTER VI_

THE.RESTRICTED PROBLEM _F THREE BODIES _, __
• •. •

Equations of Motion The J 0_38. The , acobl Integral O_ _O0_

The so-called restricted problem of three bodies is one of the

particular cases of the three body problem, which has been relatively

well studied, and which is of particular interest in astronomy. It

consists of the following: It is required to investigate the motion

of a body, P, having an infinitesimal mass, in the field of gravitation

of two bodies, S and J, having finite masses and moving in circular orbits

about their own centre of gravity.

Such a problem is met with in the study of the motion of a

planetoid or a comet under the action of the gravitation of the sun and

Juplte_ when Jupiter's orbit is approximated by a circle. The lunar

motion can also be considered as a particular case of the limited

problem in the first approximation. In this case, one has to neglect not

only the eccentricity cf the earth and the gravitation of the other

planets, but also the mass of the moon. That is, one has to neglect

the force of gravitation with which the moon acts on the earth and sun.

Let us denote by m and m' the masses of bodies S and J and assume

that m _/m'. We choose the common centre of mass 0 as the origin of

coordinates, the plane in which bodies S and J move as the xy plane

and the sralght-llne SOJ as the x-axls. In this coordinate system,

we denote the coordinates of points S and J by (-a, O, O> and (a2,0,0)

where al> 0 and a2> O. Further, we denote by n the constant angular

velocity with which the straight llne SOJ rotates around point O.

According Kepler's third law

X':(tn, ' m:: t:J(at . a I, (1)

1979012780-163



is2 OFpoO. ,.

where aI + a2 Is the semlmaJor axls of _e orbit along which one of the

bodies S and J moves under the action of the mutual g_av[tation. /

We choose the positive direction of the axis Oy so that n is

/

always positive. Let x, y and z be the coordinates of point P. Since

the coordinate system rotates with angular velocity n around the z axis, then

the components of the absolute velocity of thls point are

If we denote by m the mass of point P, the kinetic energy of thls
o

point is given by

": { _ ._'_ _i . '._,- ..
"' 1

Applying the Lagrange equations (_ 19), we obtain

O[/

'_ ? f; y -- :;A"

Jl/
,; r_.

where U is the force fun _on acting on point P divided by m . In the
O

present case, point P moves under the action of the gravitation of

points S and J. Therefore

[l._ h"fl_J-! 4'-'/t13
rI f,

Assuming that

,_ 1 (' '
" \ Yt Y: , {'_"

the equatlons of motion in the restricted problem of three bodlcs wlll

be given by
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Multiplying these equations by x, y and z, adding and integrating, we

obtain

where C is an arbitrary constant. This relation is known as the Jacobi

integral. The constant C will be called the Jacobl constant.

The Jacobl integral enables us to draw many important conclusions

on the character nf motion of point P. This will be now investigated.

39. The Surface of Zero-Velocity

Let us denote by v the velocity of point P relative to the moving

coordinate system. We then write the Jacobi integral, given by

equation (4), as follows

p_ r - ')(,. -_ (.'

Using this relation, we are able to determine the relative velocity v

in each point in the rotating space, for all motions characterized by a

given value of the Jacobi constant C. Inversely, if the constant C

and velocity v are given, then this relation defines the locus of

points of the rotating space, in which body P can exist.

We consider the totality of motion of point P, for which the

constant C has a given value. Evidently, these motion are possible

in the space region, in which 2 J_- -C _/0, otherwise the velocity v

of body P is imaginary. The surface
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defines the boundary between the regions in spa_e, in which the motions

corresponding to a given value of C are possible and the regions in

which these motions are impossible. This surface is called the surface

of zero-velocity, since v = 0 at each of its points.

In the following, we study the form of the surface of zero-

velocity for different values of C. We choose the unite of length and

time such that

._,'J' at-!- a. 1, #-= I

Using equation (i), we obtain

II _ __ Ill I -,' /71l .

Taking into account expression (2), we write equation (5) in the

following way

( ) ( )m I x: : y" : - ' m, _: !-Y_' - C, i,;)
I I r,

where

r, |"1_: i a,) _"! ._'-' ' :', r: L (._ :(.)" !-y2-_--z "'

The surface, represented by equation (6), evidently 1t_ tnside the

cylinder

Int,-; m._¢r: I yZ) (:

and asymptcttcally approaches the cylinder when z increases to

infinity.

The equation of the curve resulting from the intersection of

surface (6) with the plane xOy, is obtained by suDo+itutlng Z = O

in equation (6). This substitution yields

'2vtl_ 2nl.
(m, _-m_)(,' -y;) ' i " _" _71

| (x i u,): , y: _ (v ,: P: , y'
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Evidently, this curve is symmetric relative to the _"pOC_ _v/k_l_

Let us assume that C is a large number. In this ease, equation (7)

is satisfied by points of one of the following types:

i- Points, for which the quantity x2 + y2 is large. For such points,
!

! the second and third terms of equation (7) are small, so that this

equation reads

(-'-- -s

x'q y: , (8,
V,'71_ /TI:

where _co is a small positice quantity.

2- Points for which the radius vector

is small. For these points, the first and third terms of equation (7)

are small, so that this equation reads

( 2_"7t )_,I._ a_l z TY; ,.: ¢. _'1

where _, is a smaAl positive quantity

3- Points for which the distance to J, i.e.

r_ = _'(_-- j:). t'Y:,

is sufficiently small. For these points, equation (7) may be written as

Ix a..)-'--y:=- C I 2

Hence, for large values of C, curve (7) consists of three separate

closed pares, each having a form slightly differing from a circle.

The larger is mass mI as ¢o,lpared to m 2, the greater are the dimensions

of curve (9) as compared to those of curve (1O).

As C decreases the dimensions of curces (9) and (i0) increase, and

their forms become more and more stretched along the axls Ox. At some

2
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Figure 4

value C = CI, these curves touch each other. At smaller values of C

we have two separate ovals and one curve enclosing points _ and J

(figure 4). On the other hand, when C is decreased, the dimensions of

curve (8) decrease. At some values C = C2 and C = C3, this curve touches

the two internal curves, mentioned just above. Subsequently, these

curves are amalgamated.

At large values of C, the domain of the plane xOy, in which the

motion of body P is forbidden, consists of points external with

respect to curve (9) and (i0) and internal with respect to curve (8).

At smaller values of C, this region consists only of points lying

inside curves C" (figure 4) which decrease when C decreases and turn

into points at some value C - C4 and then completely disappear.

Thus, at sufficient values of C, body P will have the possibility of

moving over all plane xOy.

Figure 4 gives a schelmatic representation for the curves of these

curves for decreasing values of C, namely C' > C1 > C2 > C".
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Using similar arguments, we may find a represenvat_l_f_the form

of the curve that results by the intersection of surface (6) with

the plane xOz. The equation of this curve is obtained by the

substitution y = 0 in equation (6). This substitution yields

-' "';I , '._frlz
,m, • r1:._ _. : ; - C, _l]i

fl 12

where

|

r, I''x , ",J::-,', r -|(-_ _:)-!c:

When the value of C is very large, this equation can be simplified by

2
three different ways; either by making x very large, or by making any of

the quantities rI and r2 very small. Accordingly, cuzve (ii) consists

of three separate parts, respectively defined by the following equations

(m,.i m.).l: -C--_

2m=
rl :: _ -- E'

'2m_
ri C- L" "

This case is represented by curves C' in figure 5. On decreasing C,

we pass again by the critical values CI , C2 and C3 where different

parts of curve (ii) get into contact. Finally, when the value of the

!I", :J 'A_

\ i .: .,/,

'-iT ','" ." " :i.".' _ " ' ;'_' 1 ,,

// /,/
/,,...7.... .'-Z. ' I , , ---"/I I ,-..,, " . , \ ' ' I

_/, ....... o ,. .. -_. ../_if,' ,I ',_,
,i , ', I I .....
I # ,, , ,

.. rr'3"
Figure 5 Figure 6
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Jacobi consuant becomes sufficiently small, e.g. C = C", curve (Ii)

does not cut the Ox axis.

The intelsection of surface (6) with the plane yOz is defined by

• 2_. 2m.
(m, -; m:)) .... ' -4- - " :- C. (1:'

! I fl

where

• J .' j,; .:

The corresponding curves are represented in figure 6 for the different

values of £. The curves are obtained on the assumption that mass m I is

considerably larger than mass m2.

The comparison between the three cross sections of surface (6),

represented by figures 4, 5 and 6, enable us to have a clear picture

on the shape of this surface for Chedifferent values of the Jacobi

constant C.

After this qualitative study of the surface (6), we turn into

the study of specific points on this surface.

40. Specific Points on the Surfaces of Zero-Velocity

A specific point on the surface

I:lX, r, Z) II

is defined by the following equations

_" _9/-" dt:
-(). (). (_

They can be solved in combination with the equation of the surface. For

a surface of zero-veloclty, defined by an equation of the type

712 {: .(I, 11_)

where

t ) /,1,, _m_ F'
• "2_=-(m,.. m_l(._._ iY") ; r, r,

r,=V'(._ , a,_:.,_-)'.", i z', ', I I._ -,:.,: ; y: . J.'
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the specific points are given by

o_ "i m_x I , a_l ln:l_ -az) .ll-_ (rill nl,)x .-- .J....... _s
ceX " i

d'2 rill V m: y

! I

%

dU -r_ In_z m:_ ().

Solving equations (14), we fLnd the coordinates of the specific points.

Subsequently, we use equation (13) to find the corresponding values of

the .TacobL constant C.

It is easy to find the mechanical meaning of the specific points.

Comparing equations (14) with the equations of motion of body P,

equations (3), we flnd that at each of the specific points not only

but also

Thus, once body P arrives at a speclflc point and its correspor_ing

value of C, its velocity and acceleration vanish. The body then remains'

eternally at thls point, hence, the speclfJc points are the positions of

relative equilibrium of point P. In these points the body can remain at

rest relative to the moving coordinate system. When body P Is at a

specific point, the ratio of the distances between the three bodies

S, J and P remains unchanged. We thus conclude that the specific points

are nothing else but the llbratlon points, which we have studied in

the previous chapter.

Let us now find the co_rdlnates of the libratlon points and evaluate

the corresponding values of the Jacobi constant. The last of equations

(14) yields z = 0 so that the llbratlon points lay in the plane xOy.

i
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They may be identified with th(specific points of curve (7). We shall

make use of this situation in the practical evaluation of the coordinates

of the llbration points. We first observe that when z = O.

This is because the origin of coordinates is taken in the centre of mass,

and hence

-nlt_lI ;-II::0:_ O.

Equation (7) can then be written as

,n,(r: [ 2ri-')- I m.[r_ ; "2r.:-')--=C', (I J)

where

C'=-:C !-,.,a_ t ,. u'=_(:+ m,,,
,.,ins: ([6)

since, evidently,

l;l I HI I

in, : m2 m,-_- m,

Writing the equation of curve (15) in the form

/_x, y) (L

we obtain the following equations for the specific points of curve (7)

,_I _I
O. 0

dx ' 'LY

In the present case, these points may be represented by

cJr! ,]); " Or I O.t I ( rz)
tP' Or I , O/ _lf.. J

';'e ,t.;, ' ',Jr: dy (4, I

They may be satisfied in two ways; either to put

,V ,V
it, II

Or, ¢_f
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which yields

ORIGINAL D^_*,
, , OF POP.._ ".',/':" "

or to put

- "_ _- _- l, (I:

!
frem which it follows that y = 0. In the first case, we obtain two

libration points, L4 and L5 (figure 3), which form equilateral triangles

_. wi_h points S and J. Thus, points L4 and L5 are isolated points of

curve (15). In other words, they are double points of complex tangents.
l

The corresponding value C = C4 are easily obtained from equations

(15) and (16) as

IfJ, • /H

In the second case, in which the double points are subject to condition

(18) and lay on the axis Ox, one of the following conditions holds

l) r, : r z 1,
3) r:.--] r:,
3) r, r. l

depending on the situation of the double point relative to S and J. We

shall successively consider each of these cases.

The first case

Let rI + r2 = I. Then

r I : - ,X : L/_, _" r w

i 9r I ¢9/"
1, !,

(AA ,,

so that the first of equations (14) yields

it:, t r, r'A ; ;;r t;)
('2 ')

m, r r: _1 t'_,i t )-
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_a

If the ratio ml/m2 is small, we obtain the required positive root in the

form of a series-expansion. Actually, expanding the rlght-hand side of

equation (20) in a power series, we obtain
i

; nl I
: 3t.' {I r t: : ),

Pl; ' ' ,j a , •

Taking the cubic root of each side, apd _ntroducing the notation

F

!

we obtain

I i
I _ tll ! r r';•' ;_ _ . ,

Hence,

1 i
: ,, _-',)

From equation (15), we obtain the corresponding values of the Jacobi

constant ;

{', m, t:_i '_,--.:2.,.i-• . ). :.':,n:
l".t ' ','I. _.'Z_

;" m t(_ '. q.A_. '. ).

I If we want to obtain a more accurate value than that which the series
i

i (21) yields, we shall find it easier to numerically solve equation (20).

The second case

Let rI = i + r2. Then, rI = x + aI , r2 = x - a2 and

CJ/'l . _r
1, I.

the first of equations (17) then yields

hi., _. r i --rT--' t_(:_ , ;{r. t r:) 1'2'_')
m, r.. r, " (I ..... :)11 i r,);
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or ',)F pr:,c.' ..

{m,-_ m_)_-t-(3m , t-2m...Jr._ . (3m,-_-m.lr;_---n,.r_ "2mere --me =0. (23')

This equation is identical to equation (14) of _ 37 when m3 = 0 is
¢

substituted in the latter equation. Hence, it has one and only one

positive root. Let us expand this root into a power series. Expanding

the right-hand side of equation (23) in powers of r2, we obtain

•I r_-- ),<'=;_(i--ct-;_ .

Raising both sides to the power 113 e obtain

',:-.,..(I-. C i. r...'-I- " .),

Solvlng this equation, we obtain

, | 1r... _-;.. _'-- _' I- (24): " !I "

The corresponding value of the Jacobi constant is

m, m: (25)(:_ -m,_:_ ; !1','.'---5,,' t _'-n, i-re.
The third case

Let rI = r2 = i. Then, rI = - x - aI , r2 = - x + a2 and

|_11 ,_.P ,

--|0 --I.

In analogy with the previous case, we obtain

Ill.. t I ._ r t :
= - t. (1'

: 1711 I - /" ":

Since r 2 > 1, then r I _ 1. We assume that

/'l 1 ; -'

We obtain the following equation for the q_antity_

I]: "J)"(2,J ;;l ( ))

(I - _)'(, I"_ r t,_'-- :'_

oa'-
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Then,

%

Solving this equation by the method of successive approximations,

we obtain

7 v'--21 ,_,_,
=- 4 ,I (2;'_

The Jacobi constant will then be given by
L

)

C,=m,_Ji-;S_" F )I m_(5- 7 ") 4- m,m,a O

'_- ' -J " m| :- rl1..

i ., Ifs_

In other words, C,.,=: m, (3 _,_l,) _, _ ,, )
1 • - lb_I -i •
f

- If we assume that the sum of the masses mI and m2 equals unity and

[

i introduce the following notation
i

! m, == I--!_, m., = i*.
t

then all the quantities under consideration will be functions of the

variable ,_ only. It is sufficient for this variable to vary from 0

to ½ in order to cover all of the possible cases (1).

(I) The coordinates of the libratlon points as well as the corresponding

values of the Jacobi constants, CI(_) , C2(]_), ... are studied
in the following paper

M.Martin, On the libration points of the restricted problem of three

bodies, American journal of Mathematics, 53, 1931, 167-177.
Corrections and addenda to this paper are given in A.A. Markov,

I _rogress in Astronomical Sciences (Uspehi Astronomiceskih nauk)

_, _933, 75-77.

'i Tables of the abscissae of points L1 , L2 and L3 are given in the
following paper
J. Rosenthal, Table for the libration points of t] _ restricted

: problem of three bodies, Astr. Nachr. 244, 1931, 1969.
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- In figure 7, the curves that correbpond to the critical values of _.

the Jacobt constant are shown for the mse

pl

mj _- 10, ml : - |.

These critical values, as well as the bipolar coordinates of the

libration points are given in the following table

l.: I.:_l?n, Ij 4i7o, (..'. .I, .,ilU
I.i Ik. llJ'l, I)1t_'_I, f_'l ";,I ti, Mi

Lt H !.; I ll,_ll), lid O,l, C"t 32,U'.ll

For the case

"':_ I, ,"i.

The corresponding values are

/., L_ .():) liti r .lltlll'l 1 I'_l.ltTII

1. II "I _'i"_l ; t,'J17
/ I it, ,4t li "I , ' "1.'

L t_l_llll_l., " I t) ' I I ] I_'{S _tJ f I ,+ ' I J

Curves obtained for these values of the Jaccbi constants are shown

in Figure 8.

yl

l ,7 ., J ,--t -.. .
' i

I lilt. 7. l'.c. _.

Figure 7 Figure 8
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41. Periodic solutions of the restricted problem of three bodies

¢

In the previous chapter, we studied the Lagrange motions in which

bodies simultaneously move in elliptic orbits. These motions are

examples of periodic orbits in the three-body problem. In these motions,

the coordinates of alT. the three bodies are expressed by periodic functions

of time having equal periods.

Hill gave another example of periodic _rbits. He developed a method

for the independent determination of some inequalities in the motion of

the moon, caused by the gravitation _f the _un (Chapter XVIII). Later,

Poincar_ suggested a method for finding and studySn_ ghe'genera_ dlasges of

perlodic solutions of the three-body problem. Periodic solutions are

thus the first targets attained in the three body problem that have

never been solved analytically. With the start of the periodic solutions,

the study of other interesting types of solutions, such as the asymptotic

solution, became possible.

The study of periodic solutions is just in its initial stage. Even

in the simple case ofthe restricted problem, only a few groups of periodic

orbits have been more or less perfectly studied.

The most well-studled orbits are plane periodic orbits, passing

close to the llbration points L1 , L2, .... L_.j These are the orbits

that inclose planet J but not S, and the orbits that enclose the sun

only at such a distance_ Ll.=t the ratios of the period of revolutions

along them to the period of revolution of planet J are simple, such as

1:3, 2.3 and so on.

The orbits of the first type are useful in t_ _ investigation of the

motion of the so-called "Trojans". These are the small planets that

move nearly along the Jupiter trajectory. The elements of the

orbits of the known "Trojans" are shown in the next table. The elements
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L

are glven relative to the ecllptic and equlnox 1925.0. The average .'_

longitude of epoch _ is given for the moment 1925 January I0 T.U.

The elements of Jupiter in that table are the average elements for the

above mentioned moment. The elements of the small planets are the

osculating elements of different epochs, grouped around 1935.

,"__ ,J2021i 2'.k_"1'2"_ '277,_ I .{H.' _¶l _', I., 12J '27"_I-I'_B

3_,BA_hillL", ._2.)_,I _'_6"I0 M511 Ill J,'J') ?,I;_I'/_ ,_-_7_"I 3.L33.'L_

I,I/ l'att,,:l,,_ .51' II '2Li_/I.5 _',{,3 '2_'_'Jl I'_,_I ,_I',97t_ ?'.H_h'l

U24 11_'_I,H 3 I 17,_ ;9, ',_ ; _ IS,'2 ] _ '_,_I ,[II _,;,, l_,l,,,, l .If" .h'i'

,,.T_ N_._lur . ,'.'I I'-_ '._'_".'_5 ! I; _'h I .T21 .;._ l_,'_ 3"_'_t32 35UJ;')
,. ,) t *_ )iI _,_I l'_.,'n"_ ., .,2172 '2951'_.L _,a '_ B._ ' 3,_o,'2'_ _70.,.) I 117

_.lll "i_.,lllL'lll.,Oll . . ,',|,;'--'"_ ,;{)312, ._711 2l'_a.l 3.i_,',Ji 55'._'.I .;'2, _'_o

lll.l ()d_c,, .... .'. _l;_,_) .;_' l,_'_ i ., ,H2 .] I ' '2_l _II '_3.99_._ 31_,_'17I
11/2 \,,_.'._....... '.tl',) .".)1_)_,.' f___13 I [Jt '7' ; )lh 117 _')] I_ '2H"1:"3

The last column of this table indicates that the planets 588, 621, 659,

911 and Ii43 are close the libration point L4, while the others ore

around L5.

The theory of th_second-type orbits, which enclose Jupiter J at a

short distance, are closely related to the theory of satellites.

The orbits of the third type make it possible to construct a

theory for the motion of small planets, the average motion of which is

commeasurable with the motion of Jupiter. It is often more useful to use

these perio3ic orbits as a first approximation to the orbits of planets,

rather than to use the Kepler ellipses.

Polncare divided t_e periodic elements of the restricted problem of

three bodies into three grades. He related the orbits of bodies S and

J that lay in the xOy plane to the first and second grade, and those
?
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of the other planets to the third one. _he difference between pericdic '_,

elements of the first and second grade is the following. If the mass
r

of body J tends to zero, the periodic orbits will tend to Kepler ellipses.

The orbits of the first grade will be those, for which the eccentricities

of the limiting ellipses are zero. In other words, the orbits of the

first grade are slightly d_f_erent from circles when the value of_ u

is small. The second-grade orbits are near to elliptic orbits.

We shall not consider Jn detail the properties of periodiz orbits.

We shall only consider infinitesimal orbits around libration points in

the following section (1) .

Alongisde the analytical methods of finding periodic solutions,

the method of numerical integration of differential equations is applied by

the initiative of Darwin and Tile. The numerical integration of the

equations of motion has an advantage over the corresponding analytical

methods. The former method is simpler than the latter when one considers

a given concrete case. One is then able to obtain the numerical solution

using th...._ , _lementary methods of calculation. However, this solution

is only _s:['__ _o_ the interval of Lime at which the calculation were

made. This is the most serious drawback of numerical solutions.

Periodic solutions are evidently free from this deficiency. It is suf-

ficient to obtain an analytical solution for one perioa in order to

(i) Apart fzom the classical work:

H. Polncar4, Le methodes nouvelles de la Mechanique Celeste,

t. I, II, III, Paris 1892-1899,

the theory of periodic c_rbits is given in:

F.R. Moulten, Periudic Orbits, WashingtoLl, 1920.

A detailed bib]iography is g_ven in the article:

E.T. _ittaker, Prinziplen der Storungstheorie und allgemeine

Theorie der Bahnkurven in dynamlschen Problemen, Encyklopadie

der Math. Wissenschaften, Bd. VI, 2 (1921) 512-556.
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obtain a complete picture of the motion that corre$_Jn_s to the given -'.

initial conditions.

At present, analytical methods are applied for the study of only

periodic orbits in the case whea the mass of J is considerably smaller

than the mass of S. Oa the other hand, them merical methods are easily

used for the arbitrary ratios cf masses. Darwin u_ed this method for

the case when the mass of J equal to one-tenth that of S and he was

able to find a number of periodic elements. Elis StrOmgren, as well as

Tile, studied the case when th_masses of J and S were equal. Such

studies were started by Burrau in the year 1900. Since 1913, research

on this was continued by Elis Str6mgren, a scientist of the Copenhagen

observatory, these investlgations gave the possibility not only to

find a large number of periodic elements, but also to follow the

transition of some classes ofthese orbits into others and to observe

the disappearing process of some classes of periodic orbits when the

initial conditions are changed. These observation[ naturally led to a

consinerable s ,plification of the analytical solutions corresponding

t_ L_ _ocesses (I).

(i) The result_ of Darwin are given in his classical work:

G. Darwin, Periodic Orbits, Acts Math., 2_!I, 1897, 99-216.

Some additions are given in Math. Ann., 51, 1899. The results
obtained in the Copenhagen observatory are given in a series of

memoirs: Publikationer og mindre Middelelser tra Kobenhavns

Observatorium. The conclusion are given in Elis Stromgren's

Paper "Connaissance actuelle des orbltes dans le probleme

des trois corps", wl ich is published in No. IO0 (1936)

of this Journal. This papez contains the full bibliography

of the work of the Conenhsgen School and i_ also published in:

, Bull. astr., 2-e _erie, _, 1936,

i:
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42. Hotion near collinear libration points

Let (a,b,c) be an arbitrary point of the uniformly rotating space

Sxyz. We investigate whether it is possible that among the motions,

defined by

d'2

where

i r.,I /7.''--' Ir;. ! n: _- v') ".

there exists such a motion, that body P is always as close as possible

to point (a,b,c).

We can consider that the function &'L is holomorphic in the v:cinity

_. of point (a,b,c), except in the case when this point coincides w±th one

I of bodies S and J. Accordingly

i
v .-d-: " ;, h . t,. ,,-

! we expand the rlght-hand side of the equations of motion in powers of

i the small _uantities _ , _ and _ Keeping only the first powers

of these quantities, we obtain

e'a _ _ (/,_: r,d,l,.b-F • d(,h'C

_, 2r'_i '_'" i- d:" ,' '-_ (r'2
tl_ ; rid t/,'/ d,p,: db(.'C

dC d,_ dr" Obd( ' dC_-
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When _ , ? and S a£e sufficlently small, the motion takes place

in the vicinity of the points, the coordiaates ef which are given by

_;,, o__. o,,
--- ..... -- I),
dd ,),'p dh°

i.e., in the vicinities of the llbration points, since these equations are

identical with equations (14).

In this section, we consider the case of motions, proceeding infinitely

close to colllnear libratlon points. Hence, we put

where xk denotes the abscissa of the libration point LK (K = 1,2,3).

In order to find the second derivatives of function-O-, involved in

equations (30), we differentiate expression (29) and replace the

variables x, y and z by the above mentioned coordinates of the libration

point LK. We then obtain

where

Introducing the followlng notations

/,; ,,!
,I

/j f

we write equation (30) as follows

: 2n-,j (n .' I.i'

, 2m.,;"v i In 1_),, _ ,'] ,

,.IL'..
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The last of these equations is independent of the others. If in_nediately

gives

=--.c__lil_,,I_l-_-r.. cos_,ILt, (J2_

where CI and C2 are constants of integration. We search for the

solutions of the tlrst two equations in the form

-Oe , t, tle'.

Substituting these expressions in eqdations (31) yields the following

relations between the parameters G, H and

l_7--ln:-{-2,t,)]O--2n:ttt - 0 I

we denote by _i ' _ 2 ' _ 3 and _4

characteristicequezior

I_'-(.:-t -'.l,_ll_: _"'--'L_I-t- :,,',-_ _,

or

;d_l (4no.__A __2) i. /n:--A)In: I-2A_.)=-II (31)

and by ql ' q2 ' q3 and q4 tee corresponding values of the ratio H:G,

defined by equations (33). The following equations

',-" Qiq_c'" _ (_l.q.t"'t l ()n'/ ¢'_' _ t'_/,,l_t ''t. I (:_'-_)

where GI , G2 , G3 and G4 are arbitrary constants, together with

equation (34) define the general solution of system (31).

Evidently, the nature of the body P, that has an infinitesiamal

mass, depends on the type of roots of equation (34). One easil_sees that

th_ equation has two real and two imaginary roots for the libration
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points L1 , L2 and L3. Indeed, we shall show that the quantity

n --_|_ m, ! m.-- -- (!t,p
t: •

is negative for k = 1, 2, 3. Consequently, there will be two real rootv

of opposite signs for equation (34), being considered as a second-order

equation with respect to

For poin_ L1 , expression (36) is negative Because, in this case,

For points L2 and L3, equations (23) and (26) give

Eliminating m from equation (36), we obtain

', ..; ,.,, ] I . ,

Since, for point L2,

• I. r. I.

and, for point L3,

r,. 1, t: I.

expression (36) is evidently negative. Hence, two roots of the character-

istic equation are purely imaginary complex-conjugate quantities. The

other two roots are real and have opposite signs. Accordingly, the

!ibration points LI , L2 and L3 are positions of unstable relative

equilibrium. In other words, when body P is dlsp!aced from any of

these points by an arbitrary small distance with an arbitrary small

velocity, it may leave for ever the vicinity of this l_bration point,

Let us @enote the real roots of equation (34) by _3 and _4.

If we choose the initial conditions so that G3 ffiG4 = 0 , we obtain a

motion, in which body P will remain forever in the vicinity of the
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corresponding libration point. This is because the coordinates_,_
and_

relative to this point will be bounded for all values of t.

The existance of orbits, arbitrarily close to the libration

points LI , L2 and L3 is a necessary but not sufficient condition for

the existance of periodic orbits in the vicinity of these points. If

we limit ourselves to the accuracy, that the approximate integration of

equation (31) achieves, we easily obtain periodic orbits by the

choice of the initial values of coordinates, _o ' Noappropriate

and _o , and components of velocity, _ o ' _'o and _ o"

We first set _ and i equal to zero. In equation (32)
o O

we will have CI ffiC2 ffiO, i.e. the motion of body P is planer. We

then choose _ and _ using conditions G3 = 0 and G4 = 0.o o

Formulae (35) will subsequently yield

(izr" _ f].¢ .v ., .,• v_ (),,j,_'". f)Vl:_

where _i = 0 i, _2 =- _ i and_ is a real nomber. On the basis

of equation (33),

where

2,a.;

Expressing the exponential functions in terms of trigonometric functions,

we obtain

($ ' ' _ ' I I / _ f,

where

t I . I I , ! I f q .' I

solve these equations for cos _ t and sin ]_ t, then square theWe

resulting expressions and add. We obtain the following equation for the

4 traJectory

i
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_I_ , (:j , fj , ,• 'i) 'I { ; t

or

V . ," ,j I// - I1 -I I ',,h'

That is, the motion proceeds by an ellipse, the axes of which

coincide with the coordinate _xes. Denoting the semiaxes in directions

_ and Lkt respectively, by a and b, we obtain

O
q.

t2

It is easy to show that q _ 0 for all three libration points. Hence,

the eccentricity of the elliptic orbits obtained is equal to

%:- I.

Consequently, the form of these orbits does not depend on the initial

(to "_ _o ) of point P, which affects only the dimensions of theposition

orbits.

The values of q and e that correspond to three values of the ratio of

masses of S and J are given in the following table. The first two ratios

are relative to the work of stromgren and Darwin, discussed _n 41, the

third value takes place in the earth-sun system.

/_ / . /.)

ttl. : ttle ), ii ¢ '/ ( t'

I ',., ' '"' "";! '..)' _'" ', '.'.'1 "',',,
i

I'] i) "o.)'.r.) .i,',_._ ,b ,'_ .' ' 'l ,),,.i,) .)l)J , _l'_ ')

I ._.)"lq'O O',,O(')| I ')".., L,,,,I ,'.', ,'',I ."'" ,'.2

We have thus obtained three systems of infinitesimal periodic

orbits, each of _nich depends on two parameters. Naturolly, the existance

of these o:bits is in suff[cient to prove the existance of finite period±c
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orbits near the tibLation points L1 , L 2 and L3. However, it is possible

to show that such periodic orbits actually exlst (1) . P

In conclusion, we mention some words on the work by Hulden (Goulden)

and Moulton, in which they applied the theory developed here to explain the

%

antlaurora effect. They assumed that the libration point L2 for the earth

may be taken as the centre of an accumulation of meteors, occupying the

interplanet space. Indeed, meteors for which G3 = G4 = 0 always remain in

the vicinity of this point. Those, for which G3 and G4 are small, remain

for a long time near this llbratlon point. The light of the sun is

reflected by the cluster of such meteors, we thus observe the reflected

light as an antlaurora.

The distance of point L2 from the earth is equal to O.O101

astronomic units (_ 37), i.e. about 1.490.000 kms. If the above

mentioned assumption is correct, the antiaurora will have a parallax of

the order of 15'. Unfortunately, the mtiaurora is of such a diffused

effect, that there is no hope to check the validity of this assumption

by observing its parallax.

43. Motion Near TrlanBular Libration Points

We will n3w consider the motion of body P near the libration points

L2 and L2. We adopt that

- ] I', mz I',

2

where n = m I + m2 = i, and assume that

]
() IL- ,_.

The coordinates of bodies S and J are then equal to

(1) F.R. Mouiton, Periodic Orbits, Ch. V; and references cited theceln.
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Hence, the coordinates of point L4 are

a= '2 (!--2_,), h '2 ' c-_c_.

The coordinates of point L 5 are obtained from the coordinates of point L4

- by changing the sign of _ We can thus study the motion near points

L 4 and then obtain the correspondiDg result for point L5 by changing this

sign.

Differentiating the function _-, and replacing x, y and z by the

coordinates of point L4, obtained above, we obtain the equations of

motion (30) in the form

;iV'3 _i (39}
_ I '_:-= (1--2,,_. ! _j"' 4 1

The general integral of the last of these equations Is

B

(,¢_,_/ . Y:_lllr, ([[1)

where CI and C2 are arbitrary constants. This solution shows that the

projection of point P on the axis Oz performs periodic vibrations about

the projection of the llbratlon point on the same axis. The period of

this vibration =quals 2_ , i.e. coincides with the period of rotation

of the finite masses S and J around their centre of gravity. We should

always remember that this ,esult _s only valid for linear vibrations

about the position of relative equilibrium, i.e. for such a motion, for

which we neglect in equations (30) terms involving second and higher powers

of_ , _ and _ •
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We now solve the first two equations of system (39). We can write

these equations as follows

if we consider that

/' .% _I--2,,_, 7•I' 4 I

Substituting

• • 't

;---Ge , ",, --I/,' ,

:Intoequation (41), we obtain the follo_,ing equa, "ons for the unknown

eonstants

{,.'-"--I?) ti _2t.-t-._)ll U I

(2_.-- S) 0-{- 0:-- 7")// --O, i (42;

These equationq yield

27

)._: /,:4_.I:A(I -_)..(L _I._}

Denoting by _i ' _ 2 ' _ 3 and A 4 the roots of the latter equation,

we obtain the solution of system (41) in the form

_=--(_,e'"-i--d_e';-{-CLe'"I- " "(J _e " 1

•,_--_H,,"'-I-,'/,,.'"! n/.'. t u,,.'.', I <.I.i_

where GI , G2 , G3 and G4 may be considered as arbitrary constants.

The corresponding quantities HI, H2, H3 and H4 are obtained from equations

(42).

ihe nature of the motion, represented by formulae (44), essentially

depends on the type of roots of equation (43). These roots are given

by the fol2owing equations

I,l,-_)

I l i.l ',II, i
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: where .:

Increasing the value of j_ from 0 to ½, we find that M is positive in

the beginning, then vanishes at _ = _C o, where

and, subsequently, M. remains negative up to _= _. Hence, we conclude

that the values of _4_ are in the interval

0 . I' "- F.,

Equation (43) has different purely imaginary roots. Consequently, the

general solution (44) may be written as

,_ tt' . _, .; , It' ,_11,' ' It",,, ,' . /t '.ll_,/.

where
i

// I, Ii

and G', G", G'" and G"" are new arbitrary constants. The coefflclents

H', H", ... are expressed in terms of G', G", ... by relations similar to

those connecting GI , G2, ... with HI , H2, ...

It is thus clear that, ±n the ease under consideration, the l$bration

points are positions of stable relative equllibrlum of body P, whose

mass is infinitesimal. Actually, in order that the absolute values of_

and "_ remain less than an any given small quantity, it is necessary that

Whatever the initial co_dlt±ons are the projection of the motion

of body P on the plaRe _ may be considered as a superpositlon of

two elliptic motions, defined by

1979012780-191



- 180 -

and

_----O'_:os_t_.O" s,,)_t, _ !f'cos,_t !-It"sin _t (4(i)

_==Q'" cos_t-{-O .... sin_/, _:=lt'" coszt-_ ll .... si,% ¢.t7)

If we choose the initial conditions in such a way, that the constants

CI and C2 involved in formula (40) vanish, and that either G'" = G"" = 0

or G' - G" = O, we obtain periodic orbits hzving pe'iod equal to 2 77 /_

in the f_rst case and the 2 7f /_" in the second one. Each of these

periodic orbits depends on two arbitrary constants.

We have considered the case when o</q_/g4_ . If_>_o

then M < 0 and all of the roots _ , ... are complex numbers having'

nonvanishlng real parts. Hence, the general solution (44) becomes

=-.c" (O' cos _t-J- O" si, _t)-_ e" ((i'" cos _t {-O...._in_t)

= e 'r (tt' cos _t -t H" sin _t) -_ e :t (11'" cos TI - ': H"" _in T/),

where_'_2 ff and _ are nonvanlshing real numbers. In this case,

L4 and L 5 are positions of unstable relative equilibrium of body P.

The intermediate case of//_ =_o will be considered in the

following section.

44. A_22_llcationof Normal Coordinates

We have expanded the motion that proceeds infinitely close to the

libratlon points L4 and L5 into the elleptlc motions, described by

equations (46) and (46). These elli_tic motions proceed along orbits,

the axes of which are inclined to the coordinate axes. in order'

to simplify the study of these orbits, we transform the equations of

motion (41) into a form, similar to "_hat of theflrst two equations of

(41). Equation (41) may be rewritten as

! OF 1 a/"
--"q '20_ 'Jq-":=_' -' '2 O_j'

'I
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£

where '_

/"= R_'q- :_._bl+ T,a:.

These equations have the following Integral

I

%

Thus, the curves of zero velocity, given by the following equation

/C " 2.h' ,, . 1,' ( , ;.:

are conic sections, the centres of ;hlch are located at the _bration

point L4.

In order to transform equation (48) into the canonical form

4:(-i /;',;' '.,

it 13 necessary to rotat:e the coordinate axes by any angle @, defined

by

2s
q.; ')U --

l"

The new coordinates will be expressed in terms of the old ones by

: fj _ i
'.1 ;l'O, ' '1 "lllfl, "¢,1 - -_'_ltlfl l-vj(.'(h_q

where the coefficients A and B will be the roots of the secular equation,

given by

4' ,,, .",' I

I---:0
S 7" u,

f,

or, in an unfolaed form,

'I _

-':'('--:0 :0._ --3'"q .I "

Consequent ly,

;_ 3 _/1--;.31L(i--e_, B= 3 ;5 . =
A=,2 - 2 2 q-,2 V]---3:"(l--I,).

After the above transformations, equations (41) w5 I become

i
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• ! 01: :.=B_ll. / (.19)Yj,-{-2_,= '20Yj,

Adopting again that

we obtain

tk2- All:'-- 2kt." _0

2_#-'_ 0,'-'-L_)F ----o.

We thus obtain for _ , the previous values given by equations (45),

while the corresponding ratios F:G will be d_ferent.

For%1 = _ iand_2 =- _ _'wefind

t:== pt:'i AB_ F:,: pl"z,

where

p ;_r A _.,._,._.

Similarly, for _ 3 : _('i and %4 = - _'t , we obtain

/'I tl /", q'[ l,

where

b, . j /:

Thence, equations (46) _nd (47) are replaced by k
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' _I_i""'¢OS ,'1 1"_"....5111"iI, "tlt" _'"'qcos _l_h""q._ill _,l. ,',!_'

The first palr of formulae represent a motion along the elllpse, [

p:.;+ p'(E i E);
I

while the equation of the trajectory of the motion, represented by the

second pair of formulae, is given by I

It Is clear that the ratios of the sea_.axes of theae ellipses are p and q

respectively. Their eccentlrlcltles do not depend on E', E", ..., l.e.

7

on the inltlal conditions.

The followlng table includes the values that characterize the

motion near the )ibratlon points L4 and L5 .

I
:" I 'J A /.t _ T

I

0.0_ 30_ o' 0" _LO(_JO 3.t._,_ 1.0_00 I)._vO0_K)
O.OUl 29 5.1 | 0.0090 2!e.HO O.9_'li07 I).h,63,_
O.(X_8 2'J 17 57 O.Ol_U )82o O'.ql 19 0.2,_131
0.012 2'.) 41 I'J o.0269 2.9731 IU,,%I'_ 0.206IM
O.016 29 3,5 :_; 0 IL1,59 2.9_II O.9.1761 0 .117f_,l
O.i)2t) 29 29 19 0,U.148 2.9_52 O:)l_ 19 ()..961;
0.O2.t 2_ ?2 :)7 O.O,_,{? '?.9 Ih,{ ().H'qJ 18 l) I I { ?ll

0.()2_ 2:j 16 i) o,.6:LS 2..,_L-, 0 hT.:: I _.4'_JI;

I).032 .'29. 9 ;_1 I 0.1)71.I .q.92_1, U._3H UI 0 5 I:) u.'_

J

0.036 29 3 22 l 00802 _ .19_ t1.7_08,% O.I;ll 9;
I

In flgure 9, the elllptlc orbits for the case/Z L= 0.01 are shown

in a stzongly magnlfled form. The table shows that the smaller/X_ Is,

the more complete is the coincidence of the semlmaJor axes o" the elllpses

under consideration with the tangent of the ellipse, along which point J

rotates around S. p ._
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Let us now consider the case, when

_d, consequently,

i i
_i -- t, .... t. ==t, = -- --¢2'

=--28uJlO, A =0.085 78644, B_=2.91121356

Apart from the motion along the ellipse represented by equations (50)

or (51), which will now be considered identical, we shall have a

particular solution of the type

r

l

/!

I I' 1

involving the arbitrary constants K and t o. Accordingly, the motion

becomes unstable when_ becomes equal to _o"

45. Tlsseran's criterion

In conclusion of this chapter, we will consider one of the applications

of the Jacobi integral, which has beer suggested by Tisseran. It is well

known that the elements of a conet's orbit may be stron_L_ violated when

it pa_ses near a planet. Hence, it is often difficult to identify

comets only by their elements. Moreover, the appearance and even the

brightness of a comet strongly vary certainly, one can evaluate the

perturbation of one of the t_ comets under considerations fro_ the time

ir appears until the time the other comet appears. However, this

calculation is quite cu_Jersome. It is only wo_thwhile doing this

calculation if the chances for the auccessful identification _f a comet

is good.

The orbital elements of a comet changes strongly enough to violate the

orbit only if the comet approaches very closely a planet. For a planet
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_s heavy and as far from tbe sun as Jupiter, a comet passing at a

_istance of 0.3 _rL11 be affected by the Juplterts gravitation mere than

g
by the grsvltation of the sun (_72). The changes in the orbit, that

will occur in the short time in which the comet is in contact with Jupiter,

are stronger than the perturbations induced by other planets. As a first

approxlmatlon, the perturbation induced by other planets are neglected so

that the case under consideration may be regarded a8 a restricted three

body problem. In addition, the eccentricity of Jupiter is small and since

the interaction of Jupiter with the comet lasts only for a short time,

JuplterWs orbit would only sllghtly deviate from its circuit. Keeping

the notation of _ 38, we see that the coordinatee x, y and z of the

comet satisfy equation (4), i.e.

J

/
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This relatlon leads to the follo_ng necessary condition for the

identity of two comets: Two comets will appear to us Identlcal if and

onZy tf they have the same vaZue of the Jacob1 constant C.

In order to make use of this condition, it is necessary to evaluate

for each comet the relatlve coordinates x, y and z and components of

veloclty x, y and z. Then, equatlon (52) Slves the corresl_adlng

value of C for each comet.

In order to simplify the application of this criterion, we make

a transition into the fixed heliscentric toordinat e system _ _ in

which the S_ axis is pa,-.allel to the Oz axis. Evaluating the tt_e

starting from the moment when the axes Sx and O_ coincide, we obtain

f

y_ -- [_in .,'/" ' ii

From this it follows that

v: ._ ,,- ".;:J'CU- t,. ,, ',, ' t) ,l_

," .i'. " ,2 " " _: '0J :',' ,,'.D

In the new coordinate system, equation (52) becor,es

- ':,;'a,(.ct', ,t + ,,...,,,'It)4 ,.'.. ," ]

_bts formula can be used to calculate C when the comet is so far
I

from the perturblng planet, that the comet moves almost entirely under the

influence of the gravitation of the sun. In this situation, formula (53)

can be considerably simplified. Let us denote by a, e, i, ... the

elements of the comet in its motion around the sun. Taking the mass of

the sun as unlty_ we put mI - 1. Then, the integral of area and the
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tntesral of the kinetic energy of the t_o-body problem enables us co

write the folloein8 equations

• ° / t '' |

' \ t 'J I

where r = r 1 is _he radius vector of the comet. Hence, equation (53)

may be replaced by

_! , --I

t _'__' t,_;'c_'' _:,,i ",

where the average durnal motion of Jupiter n is replaced by u' in order

to be distinguished from the elements of the comet, Hore:ver, the fo_lowing

notations have been used

t:..-- ¢q
-2. I

;_ 2lt'_'l_-_U, (_ ¢,J_ n't _J. 't _m n' h --- n':b _J_ 2m.r

In the cases that are usually met with in practice, the coordtnates_

and _ are not large. Since a I and m2 are small quantities (of the order

of 0.001), and

1

t_"_ =O.()_.! ,'(| I_,.

then _ may be dropped.

We sce that, after the comet has passed out of Jupiter's sphere of

action, the expression

--! , /?-_

conserves its value. Thls equation represents TisseranVs crlterlon that

defines the necessary (but not sufficient) condition for the identification

of two comets.

Relatlon (54) becomes more accurate if on the one hand we take into

consideration the corrective term _, and o_ the other hand replace the
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average durnal motion of JuplteT_by the angular heliocentric velocity.

.a_iJ t,l '

t
,,°' /

Neglecting the square of the eccentricity of Jupiter, we obtain

J_, l I ,-

i_J_ I -

Hence, the more exact relation _tll be given by

The radlus-vector of Jupiter is best of all evaluated at the moment when

the comet approaches Jupiter.

As an illustration of the present theory, we shall consider the

approach of the Wolf comet to Jupiter in 1922 and which has been studied by

M. Kanlenskl (I) .

The osculating elements of this comet before entering in Jupiter's

sphere of action and after leaving it are

I'u.' _'hmJLx. I',.'.'D_-_J_-I,u
,11,, i'q ,_' ,*__' ' -'.:i 11 .',"' /

',1 II -I".", .'i 1', '_7
It r,l-'t,' ]:l;I) "l,',' 12 '|

'.' .'41.',,:,¢ ,," '3 '¢', 7' '.'.! ' '2 1

.'- 1,%'1 ._ '_ , 21 9 I / 192.3.C)t, . II i} t _p " i' , f I I111

L I ., (I,r, J / i,_ |It IH)I li

D (I I'J,_,, (i '*?,,h

The variations in the elements are strong because the minimal

distance between the comet and Jupiter reached the value _= 0.1247 on

(i) The numbers given here are taken from the work:

M. Kamlenskl, Recherches sur le mouvement de la comete periodique de

Wolf, Bulletin de l'Academie' Polonsise des Science et des Lettres,

Serie, A, 1925.
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Adopting that _ga' - 0,74624 and _ r' - 0.73604 and neglecting in

equation (55) the small quantity _ , we obtain for the two comets the

following values

C,, (), 1',2'...'I_,,_D.T,JI'_.'

We thus see how small the change in the quantltyCO is, even during

so large a variations of the elements.
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PART

THE NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS

AND ITS APPLICATION TO THE STUDY OF THE MOTION OF STARS

(_APTKR VIII

THE NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS

46. Introduction

All the problems of celestlal mechanics are reduced to the solutlon

of some differential equations. That is why celestial mechanics is

always inseparably llnked with the development of the methods for the

solution of differential equations.

The in_egr_tlon of differential equations in a closed form 18 only

posslble in the most simple cases, such as thetwo-body problem. In

general, the solutlon ca,mot_obtalned in terms of the well-known

functions. One then has to try other methods for the solution of dif-

ferential equations. Amongst these methods, the two most general and

effective methods are (i) the method of integration by series of

expansions and (2) the method of numerical integration. In this

chapter, we study _n detail the numerical integration of differential

equations.

The first successful appllcatlon of the numerical method was given
q

by Clero (1813 - 1765) in a study of the perturbation of Halley's comet.

His method was later developed by Dalamber, Euler and in particular

by Laplace. The final stage of this method was achieved by Gauss (1)

(i) C.E. Gauss, Exposition d'une nouvellemethode de calculer les

perturbations planetaires (Nachlass), Werke, _, 1900, 439-472
Gauss' formulae were published for the first time by Encke (J.E.Encke,

Uber mechanische Quadratur, .erliner Astr. Jahoclaich fur 1837, Berlin

1835, and published again in Gesauunelte mathematische und astronomische

Abhandlungen, Berlin 1888, 2160). The application of the so-called

"mechanics" of quadratures is not only out of date, but also may cause
a lot of misunderstanding.

i
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f -._.o_uggested the _o-called method of quadratures.

The method of quadratures wa_ developed for its use in the solution

of the partlcular problem of evaluating the perturbations of comets

and small planets. _is explains why the method of quadratures was

¢

not always accepted as a general method. It was considered as a

particular way of evaluating perturbations, i.e. calculating small

corrections to an already 1mown approximate solution.

In 1908_ the eighth satellite of Jupiter Nas discovered. The

motion of this satelllte could not be Interpretted by Kepler's law.

It was then necessary to investigate the general character of the

corresponding dynamical problem. Cewell suggested that "mechanical

quadratures" should be rejected. He proposed a new method for the

general integration of the differential equations involved. This method

was the origin of the method of quadratures. A great deal of attention

was paid to this method, especially after it had succeeded in pre-

di_tlng the return of Halley's comet in 1910 (1). When the work on the

motion of Halley's comet was over,_owell made an important conclusion on

the basis of his wide experience on the numerical Integration of dif-

ferential equations (2). This conclusion was that the Cowell's method

can be significantly improved. Although this conclusion was theoretically

evident, it remained unnoticed for a long time. When Cowell's method

(i) P.H. Cowell and A.D. Crommelln, The Orbit of Jupiter's Eighth

Satellite. Monthly Notes, 68, 577-581.
P.H. Cowell and A.D. SrommelJn, Essay on the return of Halley's

Comet, Pabllkatlon der _,tr. Gesellochaft, 23, 1910.

(2) Appendix to the Volume of Greenwich Observations for the 1909, 81.

1979012780-203



was improved, it became identical in form with the method of quadratures

,'hatGauss had suggested.

In the past decade, the method of vumerlcal integration of differential

equations has been widely applied in flelds other than celestlcal

mechanics. In _hls connection, Adams, Stormer, Rugge and others,

suggested some other methods. These methods are not as perfect as the

method of quadratures. Hence, they were not widely used in celestial

mechanlcs (1). However, we shall not only consider here the method of

quadr_tures, but also the other methods. This wlll give us an idea on

the advantages of the method of quadratures.

47. Evaluation of derivatives in terms of differences

We shall consider the values of each function that correspond to the

values of the independent variable t that form an arithmetic progression,

i.e.

• . . --.,.m, I,) m. l,, t,) _:', t., i 2m,

The values of a given function, say f(t), will be denoted by

:/(IA),

where

tj, = I,, -_ Zt,".

(i) These methods, which are o_ interest to engineers, are glve:_ in:

A.N. Kryllov, Lectures on approximate cal_ulatlons (Lekcll o

pribllzennyh vyclslenlJah) 3d. edition, 1935.
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The following ,_eheme shows the syst_ of - _ _

o_,eooa _rsaLr_.

-!

o

l Lj t_, 11,
i- _ ¢' _ j.',

"¢ -_A& i

l_ I " '

$ "_1,

I! 10-a /, f_ • , .

i_L " "I

2 l.': t. • • I • - •
f

._ .. 1 ...... i "
,, :

notations which we shall subsequently use for the differences. Accordingly

for arbitrary integral values of k. One of the values of the column

of the sums of the ist order may be chosen arbltra:ily. The other

values may be obtained using the following relation

I I

Similarly, assuming that one of the values of the second-order sums,

say f-2 is arbitrary we evaluate the other numbers in this columno

using the fol_owing equation

I

r I, I /,' (?l

g
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,uu mu_,g k - O, i, ... and k = -i, -z, a, ...

The scheme of differences indicated above is often completed by the

semlsums of two neighbouring quantities of the same column. For these

: semisums, the following notation is used

, I ' '_l_' ' (J, rl_,_, /_-- ,'G-_ ,'),/'4_ L

',l ''1' I ._|, ---"..._- 1_ ') l, _ I1_ I_'_ : :_ . -, ,,), . .

Let us now try to express derivatives in terms of differences. We

here use the stirling formula

l(t,+ :"')'x/,l ""-i I; • ."_(Z[" Ib ,,i"'_ '" 3!--- *'J ' - .1' _ t • • •

Differentiatingwith respect to z and putting z = O, we obtain

' "' k " '_ _ :""'_ - _/_ + s
I

, .'I' I ' I I
" ) = , • /,. / I

I

"'"{, l,' " I " I.:_11_
i

/,"" I ; I II)
""i,t;, ' _,/"' " 11_17 --

,,,,i,1,,t =. x I
VTt,,,/_,/; ,_l ;,

,/,l,,/
""t'"I,: r;--',,;,- •.• I

Similarly, Bessel's formula

I(I,. i-z,,_ 4 . d_,, _ - -- ",: ' 31 L._:

(')(: l l):{ z-l_,(:--21 .: '2 1
_p(: "-t I ) : (z-- I ) (:. - :!1•I_ /7 ,-I- •; ' 31 /""* ,
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_ enables us to express the derivat:.ves of the functJon f(t) in terms °_

of the differences given in the llne n - k + ½. We obtain

,,,\_tl_ -I'_,.. .,..I:_: l':,..I_'_. i'_,o_.

, /av \ I I 1, I
} ., ..,/;:,'.dr" "_IR_ t --- l •I'2 "' ' 21 '_

l (5)la'/l., ,,>,.

I": l .-, _ _
." _a,,,l_" .L,,_- ,, I_E'

The following formulae are used in the _ethod of the numerical integration

of equations, suggested by AJams and Stormer,

I :1 I/! , i_
"'('//),,t:,_I!'......,,/,_,, _1; ' I ..- _,I;..:'"" "

['a'/)__.I:..,/', I-II _' / _,I- •
U;)

(d:.l) -:/,_. '),I__...)u" (It, -' I 7I_ _'-I• •

[_'II II
.,' \,.,/ ---I... .;I; _-..,!- ,

They express the derivatives of f(t) in terms of the differences, located

in the ascending diagonal. These relations are obtained by the similar

interpolation of Newton's formula:

i , i i
,(' ;;p

Annotation

There are several other ways to denote the differences. The

quantity fin ' where it is an integer and n _ half _nteger (even or odd),

will be denoted by fi(n), or fi(n) or by fi (to 4 nw), or finally

by _i .n

1979012780-207



PJ

L

ORIGrNAL PAGE IS ¢
190 -

OF POOR QUALI'IW

48. Int_,_r_-Ion of First-Order Eq,.,ations. The Method o.-E)_!(_]i_._C_ul_ 1;5
=.

Let us consider the following differential equation

dx
-- l:(x,l} (,

dl

We want to calculate a table for the %alues of the function X(t), that

satisfies this equation as well as the initial condition

x(to) = x°

where t and x are given numbers. Let us assume that x(t ° + kw) = xk ,o o

and evaluate xI , x2 , x3 , ..... Our problem is to find the way to

follow in order to calculate the differences

._,. , x, -_ ' , (X'---O, I. 2, . 'J

Since

x_.,.-.x(tA-_-w)=---x _ , !! ill ,. '_' • dF,,!

then,

)5,. J :-= 1! \dl I, _"

Adopting that

,,,l"(._.l)--7(t).u'l'(._,., 4} /.

and taking equation (7) into consideration, we obtain

a, , !. % + "2 '#L ' '; \ i 2., \ "

This formula essentially solves our problem. However, this formula cannot

be easily applied(l:_ since we have to calculate the derivatives

(i) The method of integration of equation (7), that is based on the use
of formula (8) is called Euler's method. It is only applied in the

ease when one can keep in equation (8) only two or three terms, i.e.

when the interval w is very small, or when one does not require in

accurate solution.
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dl _ dl-' ',

We now express the derivatives involved here in terms of differences.

Using equation (6), we obtain

This formula represents Adams' method. Equations (5) leads to the

following formula

: 7U'_

which may be written as

"" ' I_ /t ' 7'.hi j" /'p. t','_

'J 197

since

1 I _ 1 j,I ' (/ /_ )--" (4.i-' I, :/ '_ I,

Th_s formula leads to the method of integration that may be called

Cowell's method, since a similar method of integrating second-order

equatlons has been suggested by Cowell.

Once xI , x2, ... , xk are calculated equation (9) immediately

gives Xk+I. On the other hand, Cowell's formula, given by equation

(i0), expresses the unknown difference Xk+ I - xk in terms of the

differences f2 , fl, ... which depend on fk+]' fk+2' "'" and

consequently on Xk+I , Xk+2, The difference f_+2' f2"'" ' k_ ' ... are

found, in the first approximation, by extrapolation. After the

evaluation of the corresponding values, xk+ I , Xk+2, ..., these differences
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are calculated L_ the usual way. If it is necessary, the quantities _

Xk+ I , Xk+2, ... are evaluated once more. Owing to the rapid decrease of

the coefficients in equation (i0), the above procedure converges so

rapidly, that the second approximation might be unnecessary, provided

that the interval w is not large.
%

In the cases, which we are met with in celestial mechanics, namely

in evaluating the perturbations of the element$_ of orbits, the right-

hand side of equation (7) slowly varies with the variati6n of _he variable

X. When the variable x slowly varies, the application of equation (10)

becomes particularly simple because the values of the function f and

all its diff-rences may be evaluated in advance for several intervals

using the approximate values of x.

Equations (9) and (10) can be used only when some of the initial

values of the unknown function, xI , x2, ..., are given so that the

evaluation of the differences fl , f2, ..., involved in these

formulae is possible. The values xI , x2, ... (and also X_l, x_2, ...)

are usually evaluated by the expansion of _e integral in a series, i.e.

I t 4- •

The coefficients of expansion can be found by the multiple differentiation

ffi . Sometimes,
of equation (7) and subsequently the substitution t to

the initial values xI , X.l , x2 , x_2 , ... are found by a successive

approximation (_ 57). An example of this approach will be given in _ 55.

It is also possible to find some of the initial values, say xI , x2 , x3...,

using Euler' s method.

49. The method of quadratures for the first-order equations:

The limitations of the method of differences, considered in the

previous section, is the accumulation of errors when x, , x2; ... are

m u _
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evaluated in terms of their differences _ . Indeed, in order to

evaluate x , we use the following equations
n

pl

A"I-- X.--_I X. --X- A, , ..... _ - ._ ._ ,

The term by term addition of these equations gives

, x -- % a_, 1 '. (11)
,|

If the error in evaluating each of the differences _ is within the

limits from - _ to + _" , then the maximal possible error in x
n

is -+n E • ft is well known that the probability that the error

in x achieves this maximal value i_ very small. However, we still
n

have to be very careful on the progressive decrease in accuracy of the

evaluation of x at large values of n.n

In the following, we show how the above-mentioned accumulation of

errors may be reduced. As an example, we will consider eatulon (i0), which

may be written as

A_+, -I_, , ' h_l'tl,

where Red stands for the correction that must be added to a given value

f in order to obtain the corresponding difference _ . For simplificyt,

we assume that the values f of the function are exact. Even in this

case, the correction Red will have a finite error occurring as a result

of the rounding off as well as the dropping of terms in equation (I0).

Hence, the accum_etlen of errors in evaluating x using equation (i0)
n

occurs due to two reasons. First, we use a limited number of laws in,

evaluatiug the function f, and second, we make errors in evaluating Red

when we round the numbers off and drop the small terms. The summation of

errors of the first type is not important because the accuracy of the

calculation of f can always be put under control. The summation of the

errors of Red is more harmful, since these errors cannot be easily controled.

1979012780-211



i !/ " ,

- 200-

It can be avoided by an approprtete change in method. !

Let us substitute expression (10) Into equation (ii). This ylelds -:

/ " . . ,I.')
A.-° _ }_',' -- I'_ l '"t"720--- " .

ip

]Fron equations (1) and (3), we obtain

I I( " ' 'It

However, it follows from equation (3) that

Therefore,

I
[

' ---I_ - J,
.j

Similarly

' I l I'"-A "-I,, I, ' -,',,, / ,

Using these equations, we can easlly be convinced that

n !

l --I /_ l _'=A -/o , %' '-:/, -/....,m=i /_ I . ,_w .-
i, u

Consequently, equation (12) can be written as follows

i ._ .-_I, , I /1 II . 191 /,., ,t " -- !.2 ' "l 7,ql/., '- fi(),t,_) ': '

,lj I i I1 I.I ,.
-}- x ,, -- j,, i,,)J, , -- 7.,U/,,:--_- (,0.t_()1, ' --

S4nce one term in the column of the first sums may be arbitrarily

chosen, then the quantity f-1 is usually defined from the followlng
0

condition

-, l , l! I':x° -I" !./'' i" 720 " (13)

i
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Then

, I , 11 .,

The calculation using this formula is free from the above-_nentioned

limitation of the accumulation of errors, The error in x depends onn

the rounding off and neglection of the terms in the correction,

Red --- 2/_ i' 7LO/o---.
4 I I

When the interval w is properly chosen, this error does not affect the

value fn " w F (xn , tn) and hence does not affect the subsequent

values of x.

The method of lntegration of equation (7), based on the application

of a formula of the type given by equation (14), is called the method of

quadratures since, if the right hand side of equation (7) does not

involve X, this formula is reduced to the formula of quadratures

(Sec. 56).

The method of differences, suggested by Adams and based on equation

(9), corresponds to the method of quadratures in which the following

formula is applied

-, 1 ' " /,i:.... (I5)
J

where the initial values of the column of sums are defined by

I f,_! ,f' ,

To distinguish between this method and the previous method suggested

by Gauss, we shall call it Adams' method of quadratures.

50. A second form for the method of quadratures of flrst-order equations

We shall consider the following problem. Let the integral of the

equation

i
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! be given by

A' 0 , ) ,

It is required to calculate a table for the values of this integral that

correspond to the following values of the argument

t_/. { bu,,

where k is an arbitrary integer.

We first show how we can calculate the unknown function X(t) for

the following values of the argument

, , ',),,, '' il)

" ' 2

Let us define the difference

1 " ' )I,:, ._-,,' j. ,): ,),.. {_'- ,,..

Expanding this quantity in a Taylor series, we obtain

Using equation (7) and applying formulae (4), we obtain

I I_ :;I)7
' -- : , J_' . . (I-) -",_:--'1_ t ,?i/ "J(, ) ')()Z()_()

This formula is more convenient than formula (i0). Tt involves only

differences, while for_,:la (i0) involves semisums of differences.

The initial values of the unknown function, e.g.

._ & . x to t.j , x I. , '2 ....

are obtained either by expanding x(t) in a series, or by means of the

method of successive approximations.
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Formula (14) leads to a method of integratlon similar to tilemethod
>

i_ used by Cowell, The version of the method of quadratures that corresponds

to this formula is obtained by summing equation (16) f._m k = O to

' k = n-l. This summation yields

i

_' +II

: i+
L !

i _ ,, ii

If f_ is defined by

_q/' , ,,/ _-,, - • 0

then, we obtain the following simple formula

_,') I ' i,x (t , t , ] . (Ii_.. " "! ' ._/l_ll

The method based on the application of formulae (16) and (17) cannot be

widely used because these formulae give the values x (tk + 2 ), whereas

we have to know the values X(tk) in order to evaluate the right-hand

' sides of these formulae. Therefore, when these formulae are applied

we can find the values x(tk) by integrating in average. Hence, the

+ application of formulae (16) and (17) is useful only when the differences

of X(tk) may be neglected.

In order to avoid this difficulty, we deduce from equation (17)

a formula that yields Xn = X(tn). For this purpose, we use the well-known

formula on the integration in average

:," " I ; ,,"; '+ ' 's '?'.+ Ill', " '

:i which is obtained from Bessel's formula, given in ,!5x47, by putting z = ½.

Adopting in this formula that

+i

iI

1979012780-215



- 204 -

aud nuLlng LhaL

I ,,, I ( )•, ,2 . . j

I ' 17

and, consequently,

_-b_-/_ I_.1", ._/41_/. t- .,

we obtain

p I ( * ' .L
',j I ,I '_-_

Hence, the evaluation of x will be carried out using a formula Indent!caln

with that given by equation (14). However, the initial term of the column

of sums will be given in the present case by

I I

Annotation I

The methods of integration of equation (7), constderod above, can

be applied without change to systems of equations of t.hetype.

_X /I, ('_.\, 3', . , '). //. , _. " ,"
d/ ,,'. ,i.'

In this case the integration will be carried out in parallel on three

separate sheets.

Annotation II

In the application of the above-mentloned formulae, it is useful

to use the following approximate equations
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_. 11 ,'lo I (',3 0 u, II ',4FI
._ I',! L,41.. I 17 , ol,,,JO.I "
_" ' t',7 3h_,',"O I I I,",; t,o,o1,0,_

, ',_,7 "l;," (P¢_ I _ I;,_, r T- |)' ('(lO, il

t

; 51. An example of integrating flrst-order eqauations

Let us calculate a table for the values of the integral of the

following equation

,1'. 1

d/ 2

which satisfies the initial condition t = O, X = I.
0 0

Choosing the interval w = o.l, we obtain

t_t) ().(),-)x¢. (')

In order to determine the first values o# the integral, we

differentiate the given equation and put t = O. We obtain

._ :qD ._I . ,_It = I), ALl_"" 2 ' " I ....

Consequently,

, li ll:i;12l'l...

This series-expansion enables us to find the values of x for t = ± O.1,

± 0.2. Furthermore the calculation will be carried by the following

scheme, in which the values of x obtained by the series-expanslon as

well as the corresponding values f, _ , ... are printed in bold
!

type. The semisums of the values f, f , ... are typed in the spaces

between the corresponding lines.

m
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i !

7 .
i ,*i L,

t I ',
I _, . _ , .t

i: -;

t ill flllilll , 'l , It " "t '
I II i t_ I ,I , '. "l

l I! t'1i7 -,'r, _, ,_]

i," , (+_ ,l ' {rllll, It,,P !' ' l ,'

i 't) | ,1_Ii _',', -.
! " r , _" i_,. ! .,7 .

t ,!

In table A, the initial values are given, and the first approximation

is obtained for X3 ffiX (0.3) and X4 = (0.4).

For the line t = O, we evaluate

and obtain Red = - 417 (expressed in units of the 6th digit, which

flalso applies to all quantities f, , ...). We substitute LThis value

in the correspondingcolumn, and find t_e principal term in the

column of sums

/, ._--<, I_ ,l ] _,11iII,

In order to find the next terms in the column of sums, we constr,CC

the semisums in the column of f and use the following relations

\

m
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t,

We then extrapolate the quantities required for evaluating x3 and x4.

Assuming that the forth difference is zero, we obtain

l .I" I ':--/. ; 7.1.,

Then, by successive addition, we obtain

/ 11!, / , 1_,
7

and so on, until we obtain f3land f7l. Finally, we evaluate Red using

equation (**), and obtain the values of x(t) which are subsequently tabled.

At this stage, the first approximation is complete.

In order to obtain the second approximation, we evaluate f3 and fl

using equation (*). We then repest the calculation of _ and x4 using the

new and more accurate values for the differences.

The final results are given in table B. In practice, the first

approximation is written in pencil while the second is inked in. In

Table B, the quantities obtained by extrapolation and those not cor-

rected by the second approximation are printed in italics

J

,' # ' /" t

I

1
_11 ' ' ; "_t_ _,1 I ,,,di ,, :' " I

,_,,I;b ,, I:1 II
i) .' ,ll_) 1, _ II,.lll:{jg h",l ' .ll .l!,l, t

II'i I '7 t) I+ll I i
A

° ' ' ' ' 1 '
I

0 ill "11P7'_ ',, ; t

t, I Illl '[/ Ip'l',l,,l,, , -_l,j'l ,,, ',,u /"it/ . i

II f,/ , ¢'' .' , i _ I

f'I& "a ,'f /

,',, /.,JSo/ ,+_Jl , ' + _/,', I ,' I
t
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• Red. Instead of ob:alning she direr. ,.cesrequired for the evaluation •

of Red by extrapolation it is _'etter * . extrapolate immediately tile R _1

,,aantity itself. Such an extra ,el- :_s shown in table C, where the

e_-zr_o]_ted values are prlnte_ _' ics,

!

!' _ V i

8

l
1

: j

I.J t

'!

|,'!
_,,

Ir,O '/;' I

The values of x5 and x6, given in table B, have been found by the

above mentioned extrapolation. The first value is exact and the second

value is incorrect by only one unit., However, the values f5 and f6

evaluated using these values for x5 and x6 are f.nal and do not require

re-evaluation.

In conclusion, we shall demonstrate how the same problem could be

solved using Adam's method (of differences). In this method, the

calculation is carried out using equation (9), which may be rewritten

as follows

I I, 5 ' , 3 ' '2,')I , I 1. .,Red- ._ ,,. ' 121_ ,_ _ I. ' ; 720I. t :,

A.,,, ---],, ! Red

Xni, X i A ;

m
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'7.
The results of the calculation are given in table D. The exact values,

from which we start the numerical integration, are printed in b,_id
p

type. The function f and its differences as well as the Red corrects.on

are calculated in six digits. _,=

Table D

t x _ / ./.i j.',, /:_ /L j,, I_'d

-- 0 2 1.0100-3 i-- 0.010 I00

-+-5 087

-01 I .Off2._J -0005013 - 74

-'- 5013 -i'- 74

0 0 I.l_O0O0 O.l._x)I)_)0 l) 0

, 4 5913 + 7'1 _-6

O.I I.IX}2.30 _ U.I_ISUIJ _ 74 -F 6

. 50_7 t 80 --6

4,'._ 1.01005 O.OIOIll) + 134 0 _ 26o2

t 127_) +5241 ! 80 7

O,I I.:275, O.tH53.11 +231 i- 7 i 2719

! t !_ +5,175 _- 87 _ 2g
0.1 I(llO_l , 0'_20_116 • 321 _ " -k '28,'_'_

t + 23t_8 i 57_ i ',o t I

4)5 1,0_49 ,I 002(;612 t 417 _- IO =,3069

I)6 I 0'.1417 O,.;2 d25 , .'_'3 +-'_;J20

,_615 + _,.'&,

4._I"

oA ! 17351

All the calculated values of x are quite accurate and the difference

in accuracy between Adams' method and the method of quadratures will be

considerable, only if t',e numerical integration is continued significautly

. lib
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further (or if larger intervals, w, are used) especially when function f

is _valuat_d with a single spare index, as it ha_ been done in the present

example.

52. Integration of Second-Order Equations. Evaluation of an Integral

AssiBned by Two Values •

We shall now consider methods for the integration of equations of

type

a._x
- t:(x,l,.

dt_

Each integral of a second-order equation can be assigned either by

its values in two points, e.g. by the values

x_, - x(to--:_,), r,-,x(I),

or by the values

C)p

xo=x(to), "*o " at ,,,,

that this integral and its derivative take at the initial point t .
o

In this section we shall only c consider the first ease. We

assume that the initial volues X_l and x° are given. We then have to

evaluate the subsequent values x 1 , x2, ... of the unknown function.

Alongisde the differences

' AA; t :.--XA _ '..a__ 1 ::--".r_ _ X A_I , --- Xk
: 'd

we introduce into consideration the second difference

== I __ I ==X_ ---_X A-_- ._ Act s 2 ;t x,-.t

Expanding Xk+ 1 = x (t k + w) and Xk_ 1 = x(t k - w) in powers of w, wE

obtain

.),'2u,._(de.r)I "- tt'_ ( d'x l I- • .t.,%'7:-=. d:- _ t! dr' /A '

J• ,
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:v'_'(x,:)--l(tL::"!:(x,') "• dll #

we obtain

.,. I ,,,:l',S-I ! /'a,f) ,"%_-:I' : 12 _ dt: ),+ .]t,l) \dr' ,-;- " "

Using equations (4), we express the derivatives in terms of differences.

We obtain

_ 2-10J'_ I t,O-I_O • - :.t,-'x_,lK}/_ ! " ' _1'"

which represents Cowell's method. Applying equations (6) yields the

principal formula of Stormer%method (similar to Adam's method, which

reads

/ • _ , _ .... ,4 ;.
i.: / ' l_' '.';_l '--: '

., _t,.;
.... /, .... :, , ,,,)
' .;ti ,-- l',J';b""- " "

The comparison between the last two formulae immediately indicates the

superiority of Cowell's method. If the values of fk are evaluated with

an error equal to ± _ , then the first, second, third, ... order

differences will have errors within the limits ± 2 _ , ± 4 _ , ± 8 _ , ...

In equation (20), 811 the coefficients are of the 1/12 order and hence

the errors in the hlgher-order differences will significantly modify the

value of _. Equation (19) is free from tbls defect because of the

rapid decrease of its coefficients.

Calculation using Cowell's method _s done in the following way.

The values of X_l and x° are given, and hence we can evaluate

2
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Neglecting for the mcment all the unknown terms in equation (19), we find _.

the approximate value

-_:--4.

This yields

x, _=xo-}--_!.
M

and fl we determine f2 andHaving cbtained the values f-1 ' fo ' o

subsequently use the more accurate value

_,-=I_!_.

to evaluate xI once again. We similarly evaluate x_2. We then flnd

f4 and use the more ac.urate expression
O

l l

_:",-4- 2/_- _4o/_

and so on until we obtain the final value of this quantity and

f consequently the value of xI. Thus obtaining a few values xI , x_, ...

2
i we evaluate by extrapolating the values of the unknown differences.

t k
If the interval w is not large, the extrapolation is done so well that

it is never necessary to improve the accuracy cf the resulting values

2

of _k"

2 by using the doubleInstead of finding Xk+ I In terms of _"k

summation

_+ '--'$_---' ; _' "_*a_ _" _,"._-,_' (21)
J

it is posslble_apply_,the following formula

t '_ " _ _' I "

which is more easily done using a calculating machine. However,
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avoiding the writing of differences does not save much time and it only

prevents the possibility of checking and controllng the calculations.

The double summation that explicitly appears in form_;lae (21) and

which is implicitly involved in formula (22) leads to a greater

accumulation of errors than the single smmmation obtained by applying

Cowell's method to first order equations. It is thus clear that the

replacement of Cowell's method by the corresponding method of quadratures

is very essential in the integration of second-order equations, especlally

when the calculations are prolonged.

S,-,ming equation (21) from k = 0 to k --n - 1 yields

n I ": :

; -' t, "*

Formula (19) gives

._, .-, ll" , ,, ,, ,=- % LI _
l,l _i

Since, accordlug to our system of notation,

m erl -I r'_ '

j --:-/_ --/ ,

m m I ¢n

l, ;-l' --l_

l , -/ ,

The addition of these equations give

E l_ 1,, L--J '

Taking thls into consideration, we write the first of equations (23) in

the following manner

.: : "': '211)'" ,. '

I "_ ' 1-, -- I ' I ' I 13
- : l'J/ ' ')b) '
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Wethen choosethe arbi_.rary initial _.ermin the columnof first sums

- in such a manner that the second llne of this equation vanlshei,

By assuming that

! l
.{I . (21i_r-| ._ I #" I -- fs i -I

! - = . .10 " " : _-4['_qJ - -;

i We finally obtain

• _ l . i _
r

i A _: I . • " I - s
l

We replace n by k + I and sum from k = 0 to k ffin-l. The second of

equations (23) may then be written as follows

7-- i * 1 o; !

" Z 4 ,',\' "' ' ;: , i ...._ _ %%"
0 ', 0

However,

?

Consequently,

/ _ ] I 41 ,
""" "., lz 1 _'.ttI/' ' t. t,() iSI) ,,

'. 1 .51 /I
', ; "_'--J<, .2/, : 2.1t)/, --l,().l_tl ,, " "

We assume that the initial term in the column of the second sums is

given by

' I 1" :;I l' : (25)/' i --- I " " I] x 12 21(J ,' t,(I-|_l) ,.

Then, the latter formula will be given by

, I #_ I I. "i 31 j, _,k9 l,,1., 1 ')'' 'J,U _. 6{it_11 , ---;1i,78_0(1 ,, -t • • (26)

In applying these formulae, it is worthwhile to take into consideration

that

p
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,p'

2wa I

;(_ 2'_,'.iOU 125;,7-_O.(,_)UC(._UO.
1

Formula (26), supplemented with equations (24) and (25), represents
%

the method of quadratures. This method is applied in the same way as

Cowell's method. First, starting from the given valuex Xo and Fk_½ =

x° - X_l, the adjacent values xI , x_2 , x2, ... are found using the

method of successive approximations. Then, the differences f2 f4' n' "'*n

required for the application ofequation (26) are found by extrapolations

and corrected if necessary in the second approximation.

In Cowell's method, the calculation is c_rried out using formulae

(21) and (22), which m_ _ be wrl_cen as

v.

y i,

, I

'¥,, _ I" .V _, I .

! The Red correction isthus subject to a double summation. However, in
t

the method of quadratures, the calculation is done using a formula of

the type

•_ --J,, , ih'd.

!

t
Thus, the errors made when evaluating Red are not increased by the

: summation.

i The method of quadratures that corresponds to Stormer's method

consists in the application of the following formula

, }
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In order to obtain the initial terms of the columns of sums, we puc

in this formula n = 0 and n = -i. We then obtain

! I , Iq

_-" := x° --12 /--I -- l.#.f._ t --2.10/: :-''
2

I 1 /, I'*_=x 4-- f -- _ /:
/.I 12. : 12 - 240 1"-" " ''

We obtain for the column of the first sums

/-', _./-: /-'.
-- ,_ l

St_er's formula is applied in the following form

x,,u /,,"-t- I , ._14-I . --2.10 / . I ,
2

The tabular interval w is chosen so small that the third difference may

be neglected.

Annotation

All the methods of numerical integration of the equation

d'.x
= /:(.r.l)Jl3

are applied without alteratlon to systems of the type

d: x d_'y " d::
r * _¢dr: -: P_x, y, z. I), ,It: ¢J, x, y, :, l), ,11' tt ( _''"_' " I1.

Naturally, the integration of equations coupled in a system is carried

in paralle.

53. A Second Case in the Evaluation of the Integral of a Second-Order

Equation Assigned by Two Values

The method of quadratures forthe second-order as well as for the

first-order equations can be represented in =wo ways depending on wtcther

we want to calculate the valw _ xn = x(t° + nw) or the values of the functions

in the middle of the intervals, i.e. x (to + (n + ½)w). The first case

was considered in the previous section. Here, we shall derive the

necessary formul_,_ for the second case. We assume that
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Taylor's formula gives

t, I _ X ___ U' W

_' ., + - -/ 7./

_,/,*'; . , [,1,.,: _._ ,,,,/ a,_,)+ (s.x_+-="'i _,..)+ _._,.j,,)+,+. 5 it<u,,., - Ü�,, ___ _,_r,]+ • ._ k--_i+-1+

Consequently

or, using equation (5),

/+ ' ]',, , ++ _ , -- ,q- 9._0 ,--. •.,+,I.:+ L r- , 2.1 +'+,) l . J,, ..

or, finally, using the following formula

t-I " . --J
!

]_ , ]++ ,,/_
2

which has already been applied in Sec. 48,

, I + 17 367

'+:", "=/,,,'- ]+",--t- " ]'+*+ : . 2.1 + -1'120 "+.+- ' -- 19+,.,36 , _t.. .

This formula gives a method of integration similar to Cowell's method

Samming this formula from k = 0 to k = n-;, we obtain

,;--a -.1 '-- 11, __. 17 /+ .." 2"t " lt)2l) . " " "

, 1 17 1,-I,, l-:.:.i],',-l!_.,o., -l-. •

Assuming that

I 1, 17 /j , (27)"-' "+_'0I21 ,, - l;J2+,+' ,_ '- " ' "0
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Then

. . --21I,, -_" ito20/,, -'. . •

Replacing in this equation n by k, and su_ing from k = 0 to k = n-l,

we obtain

("' ( 9 " ' ":_ , -_j-x ,,-._ =_ ;-'.,d,-.'. + l:,'_Jl-.._ " " "
t t7 , -i---]-_", -J-_tl , ---19261. , . •

1 ,I

Assuming that

/.., i_,_ ,'. ! SC ..... I_ ,: _!_ ,.I -- .k -- ' _'; l'*..'qt I ,.

we finally obl:atn

( ,.=!-'_ i ( _ i,' ;_
'1 _ / " _-. 21 " . l _2_1 .,

When the initial values x (to w w2 ) and x (t + -_--) that define0

the integral under consideration of equation (18) are given, then

formula (29) together with equations (27_ and (28) enable us to

w where n ffi2,successively obtain the values of x(t) for t = tn 2 '

3, 4, ...

It is advisable to have formula (28) written in a slightly different

form. Since

l= l// .) _. I ,
• , ,,- <"-t-/; I,, ,,s ,

I,
l ,Z, -,,l .....

then this formula may be replaced by

( )' ( ,)I__ x t,,-'" t-_i ' !'.i I,,--- , --
- i ,2,,41_IS !

l _" ]l
"" l'12ii ( I'''-' 1"] I,)!'" "

"l
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i" Similarly) we replace formula (27) by

', 'IP ,7I'4l"_--_'('+ - ]";".I . - I')20 ,, " " .,

In evaluating the right-hand side of formula (29)) one has to

know the values X(tn). The application of this formula is thus
%

complicated by the requirement of finding the values of X(tn) by means

of ir._erpolation into the middle of the intervals. We can obtain a

formula that immediately gives the values X(tn). We apply the formula

of the interpolation in the average) given in Sec. 50) to the function

w

x(t n - --E-), defined by formula (29). Assuming again that

/trl I1' )I -? {".,)== x "2'

we obtain

1 17
, /--21 / _ /___, , ,, ' I,)'.)() ., •

11 :J',.. .4" 1:)2_i .

Therefore

. ,, ,,I

,: ,)

where the initial values of the columns of sums are defined by formula

(27) and (28) or (27 his) and (28 bis).

54. Evaluation of the Integral_Assi_ned by the Initial point and

initial %'_e_

We have been considering the evaluation of the integral of the

euqation

d:._.
I"'A, '4

dl:

that is assigned by the two values of _rs independent variable, e.g.

w
and t = t - w and for t = t

giving values of x(t) for t ffito o o 2
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+ w
and t = to _ . We now consider another problem of partlcular interest

: to celestial mechanics which is the evaluation of the integral defined by

dx

the values x and _ in some point. We shall also consider here two

cases :

The first case

Let the unknow_ integral x(t) be assigned by the initial values

(dx) .... rl,. f3U;._'_I,,)-:: X,,, d! ' I.

We shall now see how the adjacent values xI , x2, ... can be obtained

Congidering equations (26), (24) and (25) which born the basis of the

method of quadratuges. We manipulate theconstants f-,l_and f-2o in such

a way that formula (26) gives a function that satisfies the initial

conditions (30:. It is clear that the quantity f-2 should be left inO

the same form as given by equation (25); the first condition of which

3
given by equations (30) would be satisfied. Now, denoting by It;_)_)...

the successive differences of the function x(t), we obtain on the

basis of equation (4) the following relation

:"' ( dt /_ A) "_". . ', _ : :; ") . I.I() _ I

Formula (26) yields

,. ' . 210 _ ")" " '

Consequently

,l,lr , I I,, II ./._.. I')I" ) C " ." ,,u.,,,uJ'+'_, .i /I

Noting that

, I
) . I , t ) - J ,: II,, (I,, I ', ', '
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and puting n = O, we finally obtain

_, . I ,I._1, II , I!'I,,J¢ . ==.,x,, - - .2/o _, ....7",J/' t _;ot_J' " ('
2

It is therefore sufficient to calculate the initial values of the

sum columns using formulae (31) and (25) to enable formula (25) give

the values of the integral that satisfy the initial conditions (30).

The second case

Consider now the case, when the integral is assigned by the

fcllowlng inltial conditions

( v)x x(olxx t. -- '2 2 / 1:_2)

It is required to calculate x n = x(t ° + nw). Let us start by applyi'ag

_he previous approach that has been applied to formula (29). For a

change, we will use another method which will as rapidly lead us to our aim.

Replacing equation (18) by the system

dx' dx
-- ----.x' _3,0•./t --t-'(x, t), .'t

We integrate the first of this equation by using formula (17). Since,

in our present notations,

,v F(x, t) _-. 1w/if),

we obtain

( u,).=/ .i. : 1 /, 17 /.,' --1920 ,,: ' '*'" ' " ' (:l)wx' t, -[- 2 ', -" 2.1 ,, .: ..

f-1where the first sums are defined by condition (16), namely

1 ,, -l-" 17 ,/-] -= u'X,',--2.1J _, 576q_1__ .-.. (35)

We now consider the second of equations (33). Adopting that

.,x' (t) -. h (t),
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.... 'q- 4 .+'--" ' _- 136).,i-_ = o760 ,_t .. " "

In order to evaluate the right-hand-slde expression, we have to know the

quantity

h= t,(to-t-,,u')=-t,.x"(t_-t",,u,).

W
because formula (34) yields the values _f x'(t) for points t +

n _ '

which lie in the middle of our intervals.

Hence, we recall the formula of integration in the average, (Sec. 50),

i) I i( i"_ "" ' ?,, ' -8 ', t28 _:

Substituting in thls formula

Ul

"'1 tl .)

( "i,.:,(-.) =:_ ,=h t--,i

and tak±ng into account that on the basis of equation (34)

= , + x (t.4 ,.119,, t- I, - (7.-I ?. + ,)"--=,w_ _ '-- 2 '_
' 17 .,

:=I + .--576ol.-t-.

and, consequently,

' [' I :' 517i0/_ -_-+,,+" = ,, +,.If,,-- ,, ....,j

we finally obtaln

,v\ =/_, t91 , !I /, 191 1_ ,_.=-+ .,,-t-,j) ,, -l.. +7_o .-t_o.l_o ," •

Substituting these values of h :nto formula (36) yields
n

1 17 3G7
= ' --2-ti,,,-' :" I , -- -- . . (a7)x I --_ 2 .. .. ' ly'20 t., 19353b . "

1979012780-234



t ,,..,

_, !r.

- 223 -

Pu'.tlng n = -i, we obtain the following formula

i .. 17
I 1-' ="X*3r"_.!/ ' Ie':'_1"-' _ " " "' (;_8)

.[

which deLermines the initial term of the coi,_n for the second sums.

i Formulae (37), (38) and (35) give the solution to the problem

under consideration. Formula (38'_ may be replaced by another formula,

which gives an expression for f-2 . This will be more convenient.o

Since,

!

I_., 1o I,l'

then equation (38) may be transformed into

._ X_-F, /-', 4-- /' 17 , 17 I, ,
-- "a - " :

Adding this equation to equation (35) multiplying each term by ½, we

obtain

or, finally,

_:' 1 T_ , .\
/ .\ -: .) .\ : .,Z/ '. ("" .' /

3',7
(._/' 2I' )--

_J',7(,,_()

There only remains to replace formula (37) by another formula

which gives the values of X(tn). However, this has been done in the

previous section.

Thus, in both cases, the values of the integral are _=valuated

using the followlng for_nula
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. l I _i- :_' ' -' '.t _--/,, '- 12/" - 2.tti / - 6,1.180/ -- • . , I,l:.'i_,

However, in the first case, the initial values of the column of sums are

calculated by using fomul_ (31) and (25), while in the second case,

they are obtained from formulae (35) and (39)
• %

I 55. An example of integratin$ second-order equations

Let us consider the equation

d_x 1 I

i dr" "2 '2

i
We want to calculate a table for the values of the integral, determined

by the condition

,'' (1.1i5) 1.001) '.l',)x( 0.03) -----x <-t

This can be solved using either the formulae given in Sec. 52, or those

of Sec. 53. In the first case we obtain a table for tile arguments

t = - 0.05, 0.15, .... In the second case, the arguments of the table will

have tPe values t = 0.0, 0.i, 0.2 ....

We choose the second way and accordingly we put

I1' l "_

t- :, _----- 0.05, t,, !., = i o.,i-,

I,, 0.1',, it, I:.l

( !')/-=0.005 I + '2_: x.
¢

: We shall apply the formulae of See. 53 in our calculations, namely

I I , I
Red 12 t'--".107_ t I !1,317', -- •

( 1 ( ")', "'f;'---xt_.t 2 -_ 4,- t L,I - l_-t-:' .. '2 L 2.1 1,, I ILl " " "

' (;t' ( ,: ) (,,,).:+.l,z, ./', ,_.j i /" +
-- d I _ i '

[ i.lil.l, _i._ l.,--A.--.t ..... i Ii --i .--.-i ....... _ .... i , ' I } . _.

jill b i_i_nuiJ_,_i._., ............ , , _,._ _, , --• q . • .
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We obtain the initial values x 2 , x 1 , x ° , x I , x 2 by successive

appro_'_nations and as a first approx_anation we take

I : A. X, [.l_,J It,.,
:

and evaluate the corresponding values of f. These dre given in table A.

Using the above formulae: we obtain

Table A

t ¢ : / / l' ] _,,'2 x

' 0/_2,'3_, 1-' , ,] , _- : (I..0J.',9
o

2

and by successive additions we fill the column of sums. In order to obtain

new more -ccurate values for x, we have to calculate the red correction.

With these values, we obtain the second approximation given in table B.

In this table, the values x_2 , x2 and x3.

Table B

l
t 1-: / I ] I l ' t" P,'d x

02 ' l.qt_Ol;+->2 0.¢_;_152 • 70 .+ 4?7 10lu0",

--o.007 5_ - /14

--0.1 I 0020:;1 0+,$"3._ '. 70 -+ +118 I 0,31.50

. - O.t_2 300 .-- ::,_

O.0 o..q:¢Jb$1 1_003b_) ; h, -: 116 I ,_1@)

+.' 4 o.OO2Y,,_, i .;/t

0 I +t I.l,1)'20._1 ilO0;)03_ _ ;'0 _-41_ 1.0,2._
i

O_ ', I.lYO'_6;] 0¢#F,I§3 _-25 l" 127 101005

, o012o'_ ._-I<#1

0.3 I.¢,'22J!2 i;005 I./2 , 70 ! 11,3 I,)227,,

-_ 0.01,_'/Ji2

114 I.OIOM4 .. 4,,:¢ I 01081
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are obtained b7 extrapolating the values of f-2 ' f2 and f3 (indicated "

as all other extrapolated values, in italics). Fi_lJ.y, x 4 is calculated
p,

by extrapolating the values of Red (cf. Sec. 51). f

Table C

I) O ll' "=lt.,l I -t, _t,,i . 41(. I i,"i_i

OO'O2','t' : ,,'_ '2
0 l I b°'9OhI UO,.11,."_ 7, I1:, 7 1i"7 .,c,

,'__}7,"3" II; 5 u

('2 I_w.r:II]_'2 *'t;'3 I.,! .' _- i'.'; 7 I Ol,,li,
til,l'/i."l ' . I[tl -.I ll;

63 !02.':;II II ",''11 ! &l , -1.,._ _ 7 l."2J 76

O.ul,_ (13.'1 i' • 27i, -f i '2I

t14 I q.lllT.II CIIO._L,20 _ t b7 -tI;_ 7 101081 ;-
•i| l i2;I I;."13 • .l_t'._] q£ ;{0

0 _ I C_7 "97 (/.(Yyg O,k'i I , 91 , 4tt'l 8 ' 1 I_; t .Itl

O.fx29(lO .f 441 , 3,H
06 1.t#13633 0.0#_',4J7 + .",;I, b , I._li 17

' 0 ty._j07.# 4o 't
07 1.1297(,6 , 7,_. . I.Ii{o _.J

In the third approximation, the extrapolation is carried further by

three intervals. The values of x5 and x6 are exactly obtalned, but there

is an error of two units in the fifth decimal place in the value obtained

for fx7"

If we wish to avoid successi'.-_approxlmations in evaluating x5, x6,

x7, ..., we can use_t6rmer's formula

l

.r---'I. :J"Red

:,-!-s: ....L'

The application of this formula in the case when the third difference

is negligible, is as simple as calculating by means of the conventional

formula

_, "F ('')

!

R_'l,!= . / ,i- 2'10 '/,," '
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The advantages of the two methods are made use of from time to tlme in

order to correc + the values obtained by formula (**) using the more exact

formula (***), If for example we tabulate the values of the integral of

equation (3) that satisfies conditions

• (--0.05):= l._xx)r',, '' x'(--O.O3)=---O.02.,Ol:,t;

for t = 0.0, 0.i, 0.2, ..., we evaluate the initial terms of the columns

of sums using formulae (35) and (39), which may be written as

" ) ' _ I -I , :'_ (,' , / ,,.p." f ,

/ : ._"t -- '. ._'.t -- / _ J )
\ 'L -_ _,," 3 :'-1 l 3,_!_ '

:- ] ,"I' 2/']
4 -- i,,: I

Finally, we note that the function

I
t.

calculated in this section, is identical to the function calculated in

Sec. 51. Th_ comparison between these two examples suggests that the

numerical integration of the second-order equation is not more dtfflcult,

even easier, th_n the numerical Integratlon of flrst-order equations.

56. The formulae of quadratures

: Applying the formula derived in Secs. 49 and 50, to _he integration

of the following equation

_r

dt

The solution of thls equation that satlsfles the initial condition

t = t , x = 0 Is given by the integral
0

!

._"-. I/"I/) _lt.

,i
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On the other hand, the particular value of this function at t = t is
n

given by formula (14). Hence,
p.

'4

" , I , , II .:,I:(t)dt /. 12/_ : 7201.--. •., (41) /

where

%

/(t)==,a110,

The first term of the column of sums is defined by

--12/o --721)/o • , .

Similarly, applying formulae (17) and (17 bis) to the calculation of

the integral of equation (40) that satisfies the initial condition

W

t --to 2 , x = 0, we obtain

e

I , 17;_ : ),.t / ', ,,4/_,_ f' (.I3)
' "" -, _'t)O , ) , "e, t, : Z

:e -"

• ! ',_

/ ,"I"1:'':" " I. _ I ' ' ,'_'

t

where, in this case, the initial term of the column of sums is givem, by

t l, I , i7.,i.I , - _ 1' , (f ,)_ - ,) _I*,1

We obtain another formulae of quadratures if in equations (43) and

(44), we.make the initial term of the column of sums subject to condition

(42). We then put n = 0 in equation (44) and s_tract it from equation

(43). In this way, we obtain
u

t" -I/'(1) dl /.. ) ,, ) -- t l ('It))
• : ,57(,0 ' ' ")

i. In order to obtain the formula of quadratures that solves a double

integral, we consider the second-order equation

(/ r
d,: l"(t). (47)

e_
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The solution of this equation, which satisfies the conditions x(t o) = 0 *,

and x'(to) = 0, is given by _-

q t
t, tm

On the other nand, thls solution is given by formula (26)• Therefore, we . ,.

find that

t_ t

d_ /:IO,/t /2'4-i / -- ,_I01__-. . .. _l_)#

where the initial terms of the column of sums is given Dy

/ ' ' '/' " '-I'_:'/,i • 1-- . ]_ v "J ' ',,',(I]0 60 ,I._0 t

I _" I I I,',-- :',I i, j I-I'D" -- 12/''l_I_) l_OI,'_()"' _ " " '

We now consider the solution of equation (47) that satisfies the
J

W W

conditions x (to - T ) ffi0 and x' (to 2 ) ffi0. Using

formulae (37) and (37 his), we obtain
P !

:q t-

,"_,),,',I;_ , -:_, , , ,,,,, ,,.. _ .
D

ce " . I

i'. t

'"¢. l "'.,lu/_-! " _:,I_
U

where we now obtain

Applying a similar approach, to the one used in obtaining formula (46)

from equatic,ns (50) and (51), we obtain

.. tl "' .: ,. I Z ' -
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where the columns of sums are determined by condition (49). O_ I_, I_A_

All the formulae, which have been obtained, may be unified i_t_he _U_ :/"

following manner

u, -- 720 ]_-- .',._Is, I ".

" ',0)

'_ z I ,, 17 ._ , .%7 t_
! /(Oat I-', _ ,., , , ,.-. , ,--" • •
to . _ '_'-I. : 57(i'.Jf_, = ._iJ t_1) .,- -I "

.!

I dt /(t)dt I.-"i" .,f.-- 2.10 j_ -_,0 18(II" ' "
flf'a"•

A .4

to_ "/:
I ' ' • I {il1

/ ,It / l,t),#.- / : -- 11I ,) It- I
IV= t T .- 7 .

1 1

4- Iz , /

where, if A = to, the initial terms of the column of sums are evaluated

by eqQations (42) or (49}, and if A = t they are evaluated by formulae@

(45) or (52). For other values of A these initial terms are evaluated

by the general formulae, that have been obtained in Sees. 49, 50 and 51.

It is interesting to note that equation (42) is equivalent to the first

of equations (49).

Annotation

_,following effect, which is met with in any interpolation

formulae , and in particular, in numerical integrations, is easily

shown on the simple equations (40) and (47): For any interval w there

exist some functions F(t), for which formulae (I) or (II) give results that

differ by an arbitrarily large amount from the actual results, even if

i all the terms on the right-hand side of these equations, that effect the
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result, will be taken into consideration. Indeed, let us consider the

following function _'xIt-~ to) _
:(j)--;._x: - ' '!

All the values of this f_,nction that correspond to t = t + nw are _
O

zero. Formulae (41) and (42) give for the integral

/ c (t)./:

values, which are also equal zero. However, the integral is evidently

not equal zero. It can he as large as possible when the initial value A

is proper1.y chosen. Hence, the integrals of functions F(t) and F(t) + _ (t)

will differ by an arbitrarily large amount while the numerical integration

will give the same value for the two functions. This example illustrates '_

that in numerical integration as well as in any other processes ir_mlving

interpolations, it is not sufficient to have a table for the values of

I the function, but it is also necessary to know its analytical character.

,! 57. Basis of the Successive Approximation Method

Let us take a first-order equation, e.g.

• _ --'=l'_',t)
d/

and Investigate the calculation procedure of Its integral, which satisfies

_ the initial condition to, Xo. The unkno_m integral evidently satisfies the

following integral equation

T

Inversely, the function that satisfies equation (54) also satisfies the

diffe_'ential equation given above as well as the required Initial condition.

Hence, obtaining the required par zular solution of the above-mentloned

differential equatior is equivalent to solving the _ntegral equation (54).

Let us take an arbitrary function __b (t) that satisfies the condition

_(to) = and then evaluate a new function _. (t) using the following formulaX O ,

6o

_ x°. Continuing this :_.The new function also satisfies the condition (to) =

procedure, we obtaln a set of functions

_(_). %,;), t_), ....

connected together by the following relation
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We shall prove that

For this purpose let us substract equation (55) from euqation (53),

term by term, and consider the difference

tl]dt

The theorem of finite increments gives

,/-(._ t; /"1!_, tP!--- . .K'._I x--:

where M denotes the upper limits of the partial derivatives Fx(Xl t)

in the required variation region x and t.

Consequently,

--2,,., ,1! t---lu . _ .,, .

We subordinate the interval t - t to the condition
0

,tl _t . - t.,l < q, (_"_')

where q is a proper fraction such that 0 _ q <1. Them

I _--'_i': 1 <" q A---"

ApplyJng this inequality for n = O, I, 2, ..., n-l, n, and multiplying

the resulting inequalltiea 'term:by term, we obtain

It is thus clear that when condition (56) holds, function _n(t) tends

to the unknown function x(t) when n tends to infinity. Therefore, if we

take an arbitrary function _ o(t) and apply formula (55) a sufficiently !

large number of times, we obtain x(t) with an arbltr_ y accuracy. The

required accuracy will be obtained more rapidly, with the smaller numbers

for q, i.e. the smaller the interval t - t is and wlth the better choice
0

) I
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for the initial approximation _ (t).o

In the example considered in Sec. 51, we could take _(t) to be

the constant value x . After two successive approximations, we wouldo

be able to find the correct values of x(t) for values of t near the

initial value t . When a few values for x(t) are obtained, it would
o

be better not to use the previous trail function but to constrctu by

extrapolation a talk of values for x(t}. It is then possible to.construct

a new function, using this table, which would be closer to the unknown

i function x (t). We then substitute this function into formula (55), and

proceed in the same way as we have done before in applying the method of

quadratures.

The application of successive approximations to the method of quadratures

for second-order equations can he justified in a similar way.

58. Different methods for the reduction of the number of successive

approximations

The methods of numerical integration of differential equations can

be divided into two groups. The methods of Adams and Sotrmer_and the

corresponding methods of quadratures belong to the first group, whi]e

Cowell's method and the conventional method of quadratures belong to the

second group.

The methods of the first group make use of the differences located

in the ascending diagonal. Each value of the unknown function is

thus evaluated using only its preceding values. These methods may be

called extrapolational. On thecontrary, the methods of the second group,

made use of the differences lying on the horizontal llne. The£efore, the

preceeding and the following values equivalently, participste in the

calculation of each of the values of the unkno%m function. That is why
v

these methods may be called interpolational.
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The interpolational methods lead to more accurate results, however, in

the calculations of this method, one has to make use of several successive

approximations. If the number of the required successive approximations is

not greater than two: this is then not considered as a weakness, because

successive approximations help in avoiding errors of calculations. However

calculations with a large number of successive approximations are not

valid. In the re!lowing, we shall consider the method for reducing the

_. number of approximations.

The first method

i The simplest and most convenient method to reduce the number of

apprcxlmation consists of decreasing the interval w. This interval may

/

be taken of such dimensions that the extrapolation of the values of the

unknown function becomes sufficiently accurate in order to obtain

the final values of the function f. In this case, the second approximation

will only change thedifferences and sums of the first approximation and

will be accepted as a final result.

The authoritlve astronomer Comri mentioned only this method in his

p_ecept for using numerical integrations in problems of celestial mechanisms (1)
J

and particularly warned against using large intervals during interpolations.

He wrote: "The computer should be warned against attempting to use too

large an interval, the result of which is that checking by difference,

: which is essential in these methods, becomes ineffective. A safe

; guide is that the sixth difference should not exceed two figures".

! Comri suggested the use of the following rule: "the interval should be

such, that the sixth difference should not be more than two significant

figures.

(i) Planetary Co-ordlnates for the years 1800-1940 referred to the

Equinox of 1950.0. London, 1933.
.J

1979012780-246



t
_. - 23,5 - ORIGINAL PACE YS :

The second method: OF POOR QUA_

If we express in the conventional formula for quadratures,

/ : I l .,1 ,,
' ' ' I.! '" "_,_ "_ ,,'-;-Y],'v,'" -

the equantities f , f2 , ... (the presence of which makes the successiven n

approximation i_despensible) in terms of quanti_ies_ located in the

ascending diagonal, we obtain the quadratic form of Stormer's method

namely

, I __l j l'o_-_

Formula (58) does not require successive Cpproximations. It_yields

however somewhat less accurate results than formula (57) (cf.Sec. 52).

in order to unify the conclusions obtained from thece two formula,

we pause midway in transition from equation (57) to equation (58). We

have

, t ! J

/,,_ .:' , t-li_ ,;1' ,,, ' tl

• , ......

Stopping, for example on the second of these expressions, we

obtain

where

/,,__,',.,':,,-,_-4.' '::.'.)-':_I.:_:_-." -- ' - 2.t0 rio .I_U

%' 1_ ....
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We i_ediately obtain the final result for x j since the erro_AO R _UA_

n r '

o

extrapolating the values f-" , fl , ... will not effect the value of
n n -

r_

x as an result of the smallness of their coefficients. Only the
n

correction _ will be alterted in the subsequent approximations. However,
/

this uorrection is very small and its evaluation is not difficult.

The method of Tiet!_en

TletJen (I) observed that the need for successl -'°approxJmatlons

results from the presence of the term 1/12 f in the right-side of
Tl

equation (58). All the other terms can be obtained by extrapolation __,_

and the resulting values are practically quite aecu- zte. Therefore, _

taking into account that

/.,-=w:l"(_',/.,L

,_,'_T,q_]AL,';":'_"_
TietJen replaced formula (57) by _:.'r'_ ,o

""_l:(x,,,t,,) .",,, (5")_"" 12

where

.. ! 1_; :_i , (Hn5.-/. 2-I,P uo.l_u/"

The final value of S can be Immediately obtained. The solution ofn

equation (59) yields the unknown value x aad in this way, only then

differences f2 fl .. will be altered during the successiven ' n j "

approximations. This m6thod wlll be of practical interest only if the

solution of equation (59) lot x Is sufficiently simple.n

(i) F. TietJen, Specielle Storungen in Bezug auf Polar coordinaten,

Berl. Astr. Jahrbuch fur 1877, M.F. Subbe_n, On the Numerical

Integration of Differential Equations (O clslennom integrirovaniJ

differenclal'nyh uravnenij) Proceedings of the Academy of Science of

USSR (IzvestlJa Academll Nauk SSSR), 1933, No. 7, pp. 895-902.
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The method of Nume_ov _k

The same procedure which was followed by Tietjen in developing the
• . p

method of quadratures was later on applied Ly Numerov t±) in order to

develop Cowell's method. Let us consider the principal formula ip
I

Cowell's method namely
%

! I 'I
• /' I -- If". i

, 3, ' I ,I,-' - .,;1 t,II I%_ ....

which can be used together with the following equation

to obtain successively the values xI , x2 , .... Let us introd.,ce the new

variable x by adopting that

I

Z?

i When t = tk , we shall have

x ---_,- 1,21. i,t,_)

"Denoting by _ , _ 2, ... the differences of x, we obtain as a

conseq,,ence of equation (62) the following relation

-'_-- if,,/i'
i

Ab--

(I) B. Numerov, Methode nouvelle de la determination des orbites

et le calcul des ephemerldes en tenant compte des perturbations,

Transactions of the Principal Russian AstrophysiCal Observatory

(Trudy GI. RossiJskoJ Astrofiz. Observatorri) vol. II, 1923.
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Thus, we obtain for the new variable

I 31

A/ -y'_ 240 /''i 00.180J'-- " " "

and, as for any ftmctlon,

The two equations are quite equivalent to equstion (60).

In order to calculate fk = w2F (Xk ' tk)' it is necessary to

know xk. Therefore, it is necessary to express the special coordinates

xk obtained in this method in terms of the conventional coordinates xk.

;

It is necessary for this purpose to solve equation (62), which may be written as

.r " "£-- 12 F(_,,, t,.) 16:_)

and which corresponds to equation (59) in the method of Tietjen. Let

us assume that the interval w is chosen in such a manner that the terms

;- lli'mi

210 J_'-r i,(i ISi) s" " - _'I,:
41'_'

t

I may be neglected. We then obtain a very simple formula for the

subsequent evaluation of the "special coordinate" x, namely

.t"1 ": --._.'_ t- I . _I,.,)

This formu__a is equivalent to equation (60), which may be wrlttelz as

The so-called method of Numerov or method of extrapolation (1) consists in

the application of this formula,

In the method of Numerov, one does not need to construct the

differences of the quantities fk" If these differences could be constructed,

it woulJ be easier to calculate using formula (61) than to make a

(i) This latter name is not convenient, for the word extrapolation

has a generally accepted wider meaning,
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transition into the "special coordJ.nates", and the accuracy would not then _-

be easily controled. The guarantee against errors may be obtained only

by the use of various special control calculations.

This modification of Cowell's method may be applied when the

following t:_oconditions hold: i) It is possible to guarantee beforehand

the inso_nsltivity of terms (64) during the whole process of integration.

(In Cowell's method and in the method of quadratures it can always be

seen which of the terms can be neglected and which cannot). 2) The

solution of equation (63) for xk is sufficiently simple. The drawbacks

of Cowe11's method become more severe in this case (Sec. 52).

If we proceed by dropping terms in formula (61) and finally

choosing a new varlable

I , ' ,I I'4
z - x--121- I _-t0 I:- t;1) l_(J ....

we then arrive to the folloving perfectly accurate equations

"$'",. --IL.

;'_,, _Z_ ":,c I ; Jx-.

In this case, Cowells method is improved to the maximum and we obtain,

as we easily see from equation (57),

/L- I_ "

i.e., in other words, the method of quadratures.

59. Laplace's Method of Quadratures and Related Methods of the Numerical

Integration of Equations

The methods of numerical integrations, considered in the previous

sections, can be modified in many different ways. Let us consider the

methods given in Sec. 43 for the integration of the followlng equation

t'_ _, /j. _h6)
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These methods are based ou the calculation of the difference

•_ , x, --x_ >.',/_ ,,)--x(t,.)

by means of the successive differences of the function

lit) :. : ( _, l)

Let us represent this difference in the following way

a.. t .t(t ,)-- xit(., -- tzg ----:.t:. . - , dr: '

or, using agaiv equation (6),

, I _ I // I,r I'.).f{• - : • - --) - 7_{)

-- i_.;().,, 3 t4) ;,'-_)/_' ' tt,,"

_lis formula leads to a method of integration, which is similar to

Cowell's method in thesense that it avoids the extrapolation in the

evaluatio,- ,f fk+l ' .... SummJng equation (67) from k --0 to k = n-I

yields

"L--xo- / '' , _ I) (/,,__1,.). I _j,_. -- , . --i 11:, _ - ,).-
-- Z

! , I')
--2.1(/,: .- / ,)-- 72,,_1..__ -/ .).

On applying this formula to the case, when the right-hand side of

equation (6) does not depend on x, we obtain

P_

I

Consequently

i. I , |
! l(t)_: " 1,,: 1, ' I.-: .... I. . /
;t' • '_ ' .)

I.

I I
"--12(.t_ , -.I' , )--,, (/" . ./-, --
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This formula is in many cases not convenient because it expresses the

integral not only in terms of the values of the functions, _ fl"O J P *''_

fn-i ' fn ' but also in terms of the values f-I ' f-2 ' '''' whlch

correspond to values of the argument lying outside the limits of

integration. This inconvenience can be avoided if we use the following

relations

/ ,'_ .:;'.:/ /.'I • I

I; _ /' - :_:'._' 'l_ i," '

"2.

I' -I' --II" I0," 2""'

Finally, we obtain the following formula of quadratures

/_/i,// , , , lR ' :_ J "/

1

12 {/ ]' J 31 _/ _ '"/:_'

721D(/ ' } !,,,,If_

whlch has been obtained by Laplace. This formula had been widely used

till the forties of the 19th century in the calculation of perturbations.

La_er on, it was replaced by Gauss method discussed in Sec. 56.

60. The coefficients of the Formulae of Numerlcal Inte6ratlon

7n conclusion, we point out anothe£ way of calculating the coefficients

of the formulae which are applied in the nmnerlcal integration of equations.

When the form of a formula of numerical integration is established, we

can apply this formula to a properly chosen specific case and obtain its

coefficients. For example, if we consider the following equation

...... -' -.- _- .... _ ...... "--...... _'-C.- ...................... ..,...,,. ,r
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and apply formula (10) to its solution x = et. Choosing t = O, thec

differences of the function _ = et will be given by
¢'

1 :.-: el II t It _. 1
'_ , -- • ek" (e" -- I)'li r

l,'u" d_ddk l, .4'1 e (&-l| "(c"_:. - - _e"-- nt-= - l)"

" l,(ll I| •
"_ i ' "" (e_' -- 1t;

•e • q • • o • • a . • . .

or, assuming that

w

L/ ¢'-' _e P

we wlll obtain the following expressions

,)I (lv lp
I -¢ /J

;_ . t*w U:

"d, f

Consequently, we will have for the function _ = we t

.,. 9

: ,r'.e , h

/* :" :, 'e" ch
1. t' '

• • • • , • •

where

,'h "' i i/ 1

Substituting these expresslons into formula (10), we flnally obtain the

following identity

t
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r

u 1 11 191
_," ! 770 t_):l8o _ • •

II _ ( _:
.1

Since

(', V' ' )
then this identity may be written in the following way

I II

°l/':l I' ') " :". " .' II . 1 • I It':

Thus, in order to obtain the coefficients of formula (10), it is

sufficient to expand the function on the left-hand side in power series.

Similarly, the coefficients of formulae (11), (19) and (26) can be found

using the following identities

c I 7 3,,,
] lJ" ll_ " "

, il Ilti il IIii I '_'11

u- ! I ll
'i ' :."_ :t ! : .,,

I. " '.. . !!I till lwll

u I : 17 ..' ,- - ,7:• IoI h
t,' "*' '1 ' I' ' - .... '

t-: t h

)

the proof of which is relatively simple.

L, " • ?
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APPLICATION OF THE NUMERICAL INTEGRATION OF POOR QUAL[_'_

TO T_ STUDY OF THE UNPERTURBED MOTION

61. Introduction

At the beginning of the previous chapter, we pointed out that the

numerical integration of differential equations has been considered as a

method for the calculation of perturbations. It has never been applied

to the calculation of unperturbed coordinates. The only exception is the

approach suggested by Krueger for the evaluation of a true anomaly (Sec. 62).

O_ly when numerical integration was applied to the study of perturbed

coordinates (and not perturbations) by the initiative of Cowell, the

possibility ef applying this method to the calculations of ul_perturbed

coordinates was frequently considered.

In this chapter, we shall consider the calculations, by numerical

integration, of the orbital coordinates r and v (or_ and ? ), and

the equivalent heliocentric co,ordinates x, y and z used in the calculations

of the ephemeride.

In the calculation of a more or less long ephemerlde, the method

coDsidered in this chapter is usually preferred than the calculation of the

coordinates of a star by the conventional methods, studied in the first

volume.

:! 62. The calculation of coordinates defining the position of a luminary in

; an orbit

{
It is easier to apply the following equations to the simultaneous

calculation of a true anomaly v and radius vector r

dt r a

P i.,}
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_A
In order to obtain a table for the values of r and v for the moments _.

t , t + w, t + 2w, ... , it is sufficient to calculate these
O O O

quantities for the moment t by conventional methods (Volume I,
O

Chapter I!!). ..

It may sometimes happen that the integration of the following equation

d l, Ub 'r,,;:;

dr" r '

which is easily obtained from equations (I) and 42), rather than

equation 41), is more useful.

(i)
Krueger suggested the following particularly convenient order of

calculation. First of all, the coordinates v and r are found by Kepler's

formulae for the first three moments. Then, a table of the approximate

values of r is constructed by extrapolation. This gives the possibility

of calculatlug the right-hand side of equation 41), which after

integration yields v. With these values of v, the values of r are

reevaluated. Repeatlng the integration, we obtain more accurate values for

v (cf Sec.57).

: If we have to only calculate the values of the radius vector, we

can apply Legandre's formula (Sec. 5).
%

J:r )/(I I t

t Integrating thls equation, we obtain a table for the values of r.

We then evaluate v from equation 41) by means of a simple quadrature.

Of course, we can evaluate v using equation (2) if we have already

obtained r. However, the calculation of the true anomaly by integrating

equation 41) leads to more accurate results and requires less amount of

(i) A. Krueger, Die Wiederkehr des Olbers'sehen Cometen 1887, Astr.

Nachr. 117, 1887.

(t
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work. Hence, it is generally recommended to follow this procedure.

In order to start integrating equation (3), it is possible to
#

calculate the values of r for two moments, for example t - w and t ,
o o

or t - _ and t + _ It is also possible to calculate r only foro 2 o 2 "

one moment, but it is then necessary to calculate for this moment the ".

derivatlve

dr t'e_i=,,, l'_m? .,i. ,,
-_--_--. (.I)

d; I_ | a

The method of calculation of r and v for a series of different

moments, which we have suggested above, is particularly useful when the

calculation of these values by conventional formulae, is complicated,

and in particular, for those orbits whose eccentricities slightly

differ from unity.

In order to calculate the rectangular orbital coordinates _and (

it is possible to use the following differential equations

dr: _- _' _'-z d',,= - k2,_r ",1'1"

, _.

It is, however, simpler to express the cooz_£nates _and 7 in terms of the

quantity 6" (Vol. I, Sec. 23), defined by

where

I
_' ,_tl -,1, rl O.,I

and subject to the condition that _'= 0 in the moment, when the luminary

passes by the perihelion. The coordinates _and _are evaluated by the

formulae (loc. cir.)'
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In conclusion, we point out that the numerical integration of equation (I)

or equation (3) may be applied for correcting or checking the c _culated
%

values of v or r. For example, taking as a first approximation the value

of vI given in table XV (Vol. I) with an accuracy of 0.00005, and

integrating equation (i), we obtain a value of v with a larger number of oi

decimal places (Sec. 57).

63. _ example of calculatln_ the orbital coordinates using the numerical

Inte_ratlon

Let the orbit of a comet be defined by the elements

• (J.'_,C, t,5 ,7 I:_q 'L7b.-,, S(JfL

It is required to calculate r and v for the moments t + kw, where
o

!.j _ _,5t.31 I qI(), I_, - "2".

and when time is evaluated starting from the moment the comet passes

by the perihelion.

This problem can be solved by several methods

i

Krueger's method:

First of all, we use the ccnventional formulae (Vol. I, Sec. 23)

to calculate the followin _alues of v and r

t to ..... t. 1(_) .OI;O00 r 1.37,'_ 7b

t., It}l .I),_251 I.-lf_'_:;:'

to- ! tt' 11_2.I'.'6',7 1.4:9 77.

In equation (I), the function

/ u'_"| Pr

,T
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can be represented by OF _'L_ _ J
¢

I--'2.111 215 • " [U.?,2.!532i I • ', .:

since the Gaussian constant, expressed in degrees,eqvals _..

]¢ :'-i 0 '.'}'_3 G075, I).{_' t)i(')(|'{7()I() 1o;
$

In the present case, w = 2 and

The calculation of the function f for the indicated values of r and

for the two extrapolated values (printed in italics) are shown in the

following table

TABLE A
)

t z l ;4_'_, ",,_ , " ,,.',' I lq[ i.

'' ,¢1

tt ! 4 , ,,7 -.- ll _",,I ',,, ,,1_,' I',, '',1_ 1

; ¼Jit

Since we Jntegrate equation (i) using the formula

l II
! I )f tJ • * t:', '_ '.'2/" l:t)

we immediately write in table B the aritPmetic averages of the values

of f, obtained in table A.
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TABLE B J_)]_ _)0R 9UA[,J '_

[I 2

t / 1 / j j /:: '. _,_.',1 ;_
t

[ .., ' J,'_b59 77 -- 5204 -- 27 I I I '_8 86 t 18
I 13e,I _. F,7

t._= _,_,y_391 - 4£?,7 ---'2,." 111 1O00uUI)2
1.03677 , 330

t,, !01082,'_ I_7 -- 27 :I,_3 lOl.Off631
1oi070 , 3l)I

t= 102123.1_ -.- 43(>1 --25 .¢&'_' 10L1269,,
¢_9916h , 27,_

t. 103 121.I Io26 4 ItS |03 12139
0937.10

t= li_!U784,: t ' _./4 I01.0_!,58

TABLE C

I

t l_-,',,,l,' r ;cJi_e_,.tlccs: r ' r : j
_ l

I

t., _ l,J!),' ' I I

J 74)I.)

t I I I _'_;7 --- 12 i _l,_ 4_,

• _o ;2

t, 07hO 2_1 I Iitl t. -- /-¢ t)6_02 'u 1) Ih? 71h' O',7bH7

3O))

f: /,_/_,; O/ 0_b63,]' 0 1117ht_ 0'13/':.tl

The initial value of the colunm of sums is deflned by tilecondition

I _ , II /,i--" " l_ Rt.d,% :I" 1'2/" 72_) "

which yields In the present case

.f,, ' 1()1 .(L_26t_,

The details of the calculation are given in tables B _nd C in the following

way.

i. Using the extrapolated value Red = + 335, we obtain v2 = 103°.12439.
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2. Using this value for v2, we calculate r2 by means QI_---AL

noting Chat in the present case p = 1.147088.

3, The obtained valucr 2 allows us to find the final value f2 = 6.97687.

This shows that the value f3 = 0.99766 used in the integration may

not be changed.

4. We find r3 by extrapolation and then evaluate f3"

5. We wrlte in table B the corresponding_mlue f5/2 = 0.95740.

Taking the extrapolsted correction Red = + 314, we calculate v$.

In conclusion, we note that the accepted accuracy in calculating z

does not provide us with a fifth decimal place number for the true maly.

For this purpose, it is necessary to find a value of r consisting of seveu

significant figures. However, such an accuracy is never expected to be

necessary.

The Second method

First of all, we integrate equation (5) using the following initial

values

t,, (;&5.11 (10, h, " I ')10 '_ ''_ '

Since _ varies very slowly, th2 interval w can be increased and

taken as w = 4d _ ?
, We can either calculate and , or find r and v

by using the following formulae

Ij _ l---ir =- q_l i"e_:), I_ 2 " I _._=:'

We can also evaluate r by using the first of these formulae and then

find v by integrating equation (i). This requires an eval_atlon of a

quadrature (Sec. 56), since the rlght-hand side of this equation will be

already known for all the moments under consideration.
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The third method '_"

Using the initial values

:. 4/P

& - ,,,_ _,1I _)l_, r 1.3._; 7,,3. ')'_1.', 3_J5 '.,2

4d.we integrate equation (3) taking w = The true anomaly may then be

found similarly to the previous method.

64. Calculation of the ephemeride by means of the numerical integration

of the equations of motion:

The rectangular coordinates of the luminary, x, y and zI required

for the calculation of the ephemeride may be obtained by the numerical

integration of the following equations

We start integrating either by calculating the coordinates

' I _, , .Vo. ", J: j , 'hi._I , 2 .__, ,

for momentS; t - w end t , or by calculating the qu-ntities
o o

defining the position 8nd velocity of the luminary in the moment tO"

W= _an apply _or this purpose the convenuional Kepler equations. For

example, if the motion proceeds by an alllpse of moderate eccentricity,

we may then apply the following formulae (Vol. i):
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;, ::p I¢.,_, /. .'i ,'.fl ,:;i /. , ,-
V ' i I

a/)(co-/:--:)-"l,O.>:!I/:] p

', ]J,l, £-"

, ]

l/a I

v--, _-_-( d/j ",'U!. ,'_i Cc_. /" _'

r l,"a + ,': -- ,, I:)

., *_!-.-(_._,tPz-,,n/:' _- /,_: co. /:', I
r_o I

where the eccentric anomaly E is defined by the condition

I:'--• _i,E .l,:.

The following equations may be applied to control the calculation

r:_/.r" .y_ ! :' -a(l , c_,-'_.

I

The unperturbed ephemeride is usually calculated for a short

time inter_al. The initial moment t is chosen in the middle of this
o

interval. Under these conditions, the nethod of quadratures has no

advantages ov_ Cowell's method since the number of integrals involved

in the integration is not large, Both methods can equally be recommended.

For the integration of equations (6), we have to calculate the

functions

It is easier_calculate this using a table which gives the values of

2 2
w2k2r-3 that correspond to different values of the arg1_ment t --x +

i

2 z2y + . Such a table is given in volume I. A more detailed table

has been given by Comrie (Comrie, Planetary Co-ordinates for the years

- 1800-1940, London 1933). On using this table, one should ta_'e fnto constdera-

tion that

3:

i

'" ' .... •

,t . , I

_j, , ',_'" ..... ' - ___'..,iqp.-,.,.--,,.,,,--. ..........,,;,..-..,,-'_ .... v_",-- ....... _ - ........... ,
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_le evaluation of the heliocentric ephcmeride of a planet by means of

this method has already been given in volume I.

We note that it ls me.re useful to calculate by means of formulae

(7) several position of the planet, rather than to calculate one or two

positions that are necessarily sufficient for solving system (6).

This wil! simplify the integration and will also render possible a

good control.

65. Other Methods for Calqulatin_ the Ephemeride bY Numerical Integration

Let us assume the coordinates, x° , Yo and Zo, and velocity components

X'o , yo'and Z'o ' of a luminary are known for some moment to. It was

shown in volume I that the coordinates x, y and z of this planet at

any particular time could be expressed in te1_s of the above mentioned

initial values by the following equations

" i k, () _'
)

_' i.:'j • I}v _,,,

., -i:., '.lj..

The functions F and G are given by the following serles-expanslons

I i '
_ I"- l --., q-'r ,J _l,I _r,
1

I: _ ,, o

where 0 = k It - to) , and r and r' are.given byo o

r,, _ _ _ .< :,:, r,<, "< 'i yr. a.<,

__t

" ......."" " - ' --''_"--'----" ' " :"_*" ............ * I ; "' ,

i
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_ne dashes here denote, the d_rivatives with respect to @ = "

k (t - t ), so that
O

p

1 dx I ,Yv I d: ! dr
)C_ _--- V" _ " Z' _ r: "-==

k at " " I_d/ " kdt" kdt"

The evaluation of the heliocentric coordinates x, y and z

required to obtain the ephemeride can be made by means of formulae (8).

The functions F and G can be easily calculated by means of the series (9)

for the near moments t. For further points, it is more convenient

to apply the numerical integration than to use the final expressions

of these functions, which has been given in volume I. By differentiating

equations (8) twice, and noting that

--k:xr _- I¢:yr- -- IC-:r _
dr-' ' dt2 ' 41z '

we obtain

dzF=.. --k'r _ I:, d:(i -- k'-r _ O. (10)dr" ,,'t-'

where

r'- r_F:-l- r','t): ' 2r " ["G.- , , ,r, (II)

The system of equatlons (i0), in which r is defined by equation (Ii),

is easily integrated by means of the methods described in the previous

chapter.

Equations (9) show that

("// I!:,, I, \,lt /, (|' (i,j:" '), / d; t, " ;

It is thus convenient to define the integral curve b_, the initial

position and the initial velocity.

,1_ ....... , .,, . ....... /i mtl II ........ i m ................ " _- _'

F
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There is ancthar method for calculating the rectangular helio-

centric coordinates. Tt consists in taking formulae

which express the condition that the three positions of a luminary are

located in one plane which passes through the centre of sun, and considering

that in these formulae (xI , YI' zi_ and (x2, Y2' z2) are the coordinates

of the luminary in the moments tI and t2, and (x, y, z) the unkno_m

coordinates corresponding to moment t. In this case, the quantities n1

and n2 are considered as functions of time that satisfy the_llowing

equatlons(1):

d"q =: _ k-_z.:r :' _Y-'t; --(."-z,.,r "' (::"
a7" d_-' "

where

,"-= ," n'_-}-r'n: -;- ?r, r..n,n (14',• ? - , •

The initial values of the functions nl(t) and n2(t) are suitably

taken as

,,, (t,)---I. ,:,(t.,)= o,
,_:(t,)=e. ..,(t_)---I.

The integration of systems (i0) or (13) is simpler than the direct

! integration of the equations of motions which have been considered in

,_ the previous section. Each of these systems involves only two equations

and_ot three. However, _his simplificotlon i_ considerably mullified

(I) Banachiewioz indicated the existance of these eqqations (T.

: Banachiewicz, Sur quelques points fundamcntaux de la theorie des
orbites, Acta astronomica, Ser., a, 3, 1933).

• • - - ---4,
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by the difficulty of equations (11) an_ (14) and by the indispensible

returv_ to equations (8) or (12) in order to obtain the unknown

coordinates.

The moments t I and t are suitably chosen not far from the2

middle of the epbemeride.

i _,,_ ...... _lll_albli/i_l_ilim_iiml m immhdP'll | I |11lillil ..... _ ................
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CHAPTER X

CALCULATION OF THE PERTURBATIONS IN THE ELEMENTS

66. general Considerations:

The differential equations that determine the osculating elements in the

general case of an arbitrary perturbing acceleration have already been "-

given in Sec. 12. For the timebeing, we shall abandon the orbits with

eccentricities near unity. We introduce, instead of the eccentricity,

= are sin e. Equations (37) and (38) of Sec. 12 will then giveangle

--=-r COSz/ _'
di

d! _---• sin u cosec i _V'

=a cos ._si,, o_'4-a cos '_,(cos v+cos h) T'dl

id.-.
_-=_pcu_ec,_co_vS'.i.co._ec?(r-t-p) sir. v'l_ +t_ ,_ rsitluW' (I)dt

dn 3 b 3 ,_ p T'
_lt--= V'a si,,,_.,,ii, vS'-V'a r

d_ :2 co.', _ r--p Ig cos v S' ! tg ''_(r-f--p)sin v7"+
dr .... , '2

#
_--tg ,) r sin u W'.

These equations form a system of coupled first-order equations. They

can be nu_erically integrated by any of the methods considered in Chapter

VI. In astronomical calculations, the method of quadratures, considered in

detail in Secs. 49-51, is usually applied. In the present case, the

application of the method of quadratures is partiuularly easy. Tn the

right-hand sides of equations (i), the coefficients of the perturbing

masses are very small. Therefore, thoy can b£ sufficiently accurately

.11

1979012780-269



ORIGINAL PAGE IS
- 258 - OF/'0OR QUAI2.'-_

! evaluated by means _f_ the approximate values of the unknown elements
!

ii ' e .
"I We denote by t the moment for which the values of the osculating
i o

I elements i , --P-o, _o ' _ , n , Go and _o are known, or ini o o

i other words, the epoch of osculation. Let us assume that

I 4-J -_4 U=Uu i .X'._',..

1 In this case, quantities _ i, _S_, .... will be defined by the

.1

i differential equationsd_l 'i

! ....... I
j as well as the initial conditloes _ I = O, _.R= o, ... for t = _ o
i

{ We choose a definite interval of integration, say w, and denote thew

I epoch of osculation t by t . We try to flnd the valueso o 2
-!

1 _ i,_J_ , ..., and, consequently, the osculating elements for the

moments

t, - t,,-i _'u,,

where k is an integer.

Since; oil one hand, we hove to evaluate the rlght-hand side of

equation (i') multlplJed by w in the course of integration of these

equations, and on the other hand, it is preferbale to obtain the quantities

i, A_,_ _ , ... we shall put

I
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_.i=---r cos u W

_,_=- r sin u c(,scc i W

_'?-----a cos ,_ _in vS--Fu cos ?(cos t,-Fcos h.'. 7"

_==---p ct.spc ,_ c.s i, S-i- cosec _(r+p) si. v l'-t-
i

+ tg .) rsi. uW

u,;m= -- 3kw .sin ? sin v S--31ew P T
V% l"c, '

Z--_---(2COS'_,r--p t_ "'_c,)_ t,)._S"' tg':,, -i ,_(r_-p)-;int, 7"-j-

i
_- tg o r si. u t{",

Taking the values of S', T' and W', obtained :inSee. ii, into consideration,

we obtain

S _--- uJ ii,,

arc 1" ";' :-: _,|/p :,re I" S.

to IV :: u, W (:_)
T=kl/parcl"T' kVpar¢ I" '

where k is the Gausslan constant expressed in seconds of are.

We shall now apply the method of quadratures, which has been

considered in detail in Sec. 50. We shaol use, in particular, equations

(17 bls) and (18) of that section. Taking for f each of the functions

6_ , _ _, ..., we obtain the following formulae

_2/1a ' II,L./J-- l'.'l _ 1; I

x.=l '- t-720 . 6o1_uI_ i •

1_,, ._-::. i I, 17 r" ?,ti7 (I)
-- _'1 - -':_71;0" I _.ll,Th_l) I I" •

" J ' 1 2

where.,xc._,den_tes_Se-dorrespondlngvalues of _ i,_3_. , ... for theu

moment t = t + nw.
o

The average longitude Is calculated by the following equation

(sec. 12).

t _ : / t,',//,
' j

-- l il ............... ' ............. _" i
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.'I
where its unperturbed value equals Go + no (t - To ). The perturbation "

of the average longitude will then be given by

::- -- -= - " I. tl-- ?l Oj dr.

"t,

Consequently, the calculation of _ is reduced to (:heevaluation of the

quantity

!

A').... jf ln -n.,Idt,

which satisfies the differentlal equation

d'-V >, dn

2i'-' -=ut (5_

as well as the initial conditions

d.V),
-_'), --- O, --- --=0

dl

for t = "Co

The rlght-hand side of equation (5) is defined by the second to last

•; of equations (I). In order to integrate this equation, we apply formulae

(37 his), (36) and (39) of Chapter Vl. This yields the the following

I

formulae

. 1 1 ,: al ,
, a --:1. !-12 1_ 240' _ ' t;t).lS() 1.--

! 1-_ 1 , 17 ]., ';(,7
: ' =---2.1 1 ' -[STt,J ' 1" , ! • • ,(t)•-, : _ :It,7 6_() :

1 /._,_ 17 :;67 (31' ' 21')--/J"= "} 2.t 57t, o ('')/: , I 1_ ) : !)67 t,80 ," v ....

where x denotes the quantlty_ for the moment t = t + nw. Aftern o

obtaining the value of _ , we calculate the perturbation of the

average longitude _ for the moment t using the following formula

L
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_._ :.-J-,,..(t - ,,,_+ ,_- ' _'_.. (7)'

Once we obtain the perturbed va]ues

%

of all the elements for this moent, we can calculate the position of

the luminary by the conventional formulae of the elliptic motion:

i:'-- e _in E _-: ). -- .-. I

r _Jrt v _ a cos ,._sill h" !
/

• cos v= o (co__'-- ,i,, +), J

where the semimajor axis is obtained by means of the following relation

.i i |_
2

in which

'i if n is expressed in seconds of arc, and

! I_ k_ 0.'t9 _ 7f_ll,

-_ if n is expressed in fractions of a second.

:: The calculation of the rectangular equatorial coordifiates, required

i
when the perturbed position of the luminary Is to be compared with the

I experimental value, is done by the following formulae:

t .,-=__,,,o_,l(A' i ") I|

:--,s,,,,"_,,,(C'-Iv),l

' where the GaussJan constants a, b and c as well as the quantities

A' ----,4-F'". _,r'-_,_ I "'. d' - -C-_.,,,

.. } 'II
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are defined by "

sin a sin A .-:-c,,s '.,.' ]

dnacosA:- -- cos i ::in _ [

sin ,_sin/_ --_.qn _2cos e Jl ( i I
Sill b COY _1 C(.).% i COS '2 ('()¢, r. %i11 J Sill : I

siu c sin C -- sill _ .',ine I %

Sill ,.''.-'{)S C =- _.On /' I'llg _-2 "_il| _. ' ¢.lfl 1 Cl_'; , ]

where _ denotes the slope of the ecliptic with respect to the equator.

If we thus disregard the simple integrations, we see that the

calculation of the perturbed values of the elements leads to the calculation

of the functions (2), which depend on the componqnts of the perturbing

acceleration, S_ _ and W as well as the coordinates r and v of the perturbing

body. We have already considered the calculation of the latter quantities,

which can be done by means of formulae (7) and (8). We still have to

find the most convenient method fcr the calculation of the quantities S,

T and W, which depend on the components of the perturbing acceleration.

67. Calculation of the components of the Rerturbiug acceleration

Let us consider the following _i£tary coordinate system.

We take the axis _ along the radius vecto_ o? uhe perturbed body in

the direction of increase of r, the axis _ along the perpendicular

to the radius vector in the orbital plane in the direction of increase

of the true anomaly, and the axis'_ along the normal to the orbital

plane so that the coordinate system becomes right-handed. We denote

by S, T, and W the components of the perturbed acceleration in the

directions _ 'T and _'. We can calculate these quantities using

different approaches. The most widely used approach is the following,

Let us denote by m1 and _¢ ' <_l and _'_ the mass and coordinates

of one of the perturbing planets. Since the coordinates of the perturbed
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planet are evidently equal to (r, O, 0), then the general expression
k

for the component of perturbing acceleration along any axls, namely .,

(set.3),

/?'_" i 7' ;)

yields in the present aase

_1 " ]"!/ll
_ ' ) ; j_ ~;, j

i

7" I "2"_

\ A sh'I

(- -)I1'_- l'_-ml .z __-I
,_'r_ I ; ,, /

where

a_--:lL -- r:_ ! _,','_-':_,

. and rI is the radius vector of the perturbing planet. Taking equation

(3) into consideration, and putting

' _1 I
k'_ - ,,,bm,_ ..... _ (12)

;_ , _ \3:, '"J
we obtain

. It') "//11 /
•%'1-: A', ",-

If we consider perturbations caused by other planets having masses

... end coordinates (_, _: _ ), ..., we can then calculatem 2 ,

by formulae, similar to equations (12) and (13), the corresponding

components (S2 , T2 , W2), ... and then adopt in equations (2) that

" _z-; _,.

7"- 7", .-T ,

_ _t', ' _' • .

" I I ' [
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We still _ve to show how

the coordinates of the perturbing /'_,._--_\C

_n be found. We can find in the

astronomical annual the ecliptic

hellocentric coord_ates, namely x__%_

the radius vector rI , longitude - =- _' ....

_1 and latitude bl, for _ch of

the large planets. These quantities Figure i0

a_e given_th high accuracy in Comrie's table for most of the interesting

cases.

Let us denote by LI and BI the longitude and latitude of the

perturbing pl_et relat_e to the orbital plane of the perturbed planet.

We shall consider that the longitude L_ is _iculated from the ascending

node _ of this orbit (Fig. i0).

In the spherical triangle foxed by the position of planet PI' the

po)e of the ecll. tic E, and the pole of the orbit O, the angles at the

apexes 0 and E are respectively equal to 90-L, and 90- _i -_" Hence,

in the evaluaticn of LI and BI_ we may apply the follo_ng relations

Denoting by u the argument of latitude of the perturbed planet, the

quantities LI - u and BI will be the spherical coordinates of the

perturbing planet that correspond to =he coordinate system_,?j _

Therefore

[ i [
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r!.. ---r I ,.,t,.s,,x _l,i (/._ !_) ,] ,,

Formulae (14) and (15) constitute the solution of the problem of

calculating the coordinates _j 12_ and _ in terms of the given

quantities rI , _ I and bI.

At an earlier date when calculating machines were not widely used,

the separation distance between the planets, I ' uas calculated not

by means of formula

3"---(-,--r)'-'--T,_-_-:,-','. r_ ?,_,.

but by means of the following equations

.%_cOL qj ¢0, 01 =-{,--r

A) ,'o,_q, <it, f,)2 = '_,,

•-%) ._i:, % --_ _,.

wher- .. _ < are auxiliary q-_ntities, unnecessary to calculate
t

further.

68. Another Method for Calculatin$ the Components of the Perturbin$

Acceleration

We shall here conJider the case, when we need :o calculate the

perturbations that occur after a few rotations of the luminary, provided

that these pertuLbatious 8re small. In this case, we can calculate in

another way the ceordlnates of the perturbing planet, which we shall call

Jupiter.

We shall assume that the motion of Jupiter and the motion of the

perturbed h_nlnary proceed in the invariable planes defined by t,.e

elements il, _i and i2, --57-2" We first consider the spherical

._ ...... _-j-_11m,,mm_,,_-,- ............ .- ............ _ _
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triangle _ Jt t N, (Fig. ll), formed by the ascending nodes-J_ andJ__,

of the orbit under consideration

relative to the ecliptic, and
/

P'/\_ / the ascending node N o¢ the orbit

!_./_t_,j\ of .Jupiter relative to the orbit

./,
of the perturbed body. In order

///7 to evaluate the angle J between
/,/

j__::__ the orbit and the arc_ -f_N and

/. - ..... _ | N e whl_h wlll be denoted/
# u

/ by N and NI, we shall apply the

the following formulae, which

_:gure ii can easily be obtained from the

study of the triangle unoer consideration:

i

Let us now consider a new coordinate system _' p _-_'l_ , which

differs from the previous system _. _l _ in that the axis _ is

directed towards the orbital point B, removed from the node by an

P ?'angle .._ g ; , aud the axi.q towaro a point, removed from the

node an angle _+ 90 ° . The coozdinates of Jupiter in the new

coordinate system can be calculated by means of the conventional

formulae (formulae (8) in Sec. lO), aqsumtng In these formulae that the

• I

1979012780-278



I

O]_IGINAL PAGE _ _
- 267 - OF POOR QUALFI_" !:

]ongitude of the node equals to

B.V A -

and the argument ef the latitude equals to

.VP, *- , t "- Nz - '-)1.

where 4 1 Is the longitude of Jupiter in the orbit. This yields

"., :-g i cos(}l -N.. --'--',}co._,A'-- _._--'._'.n(,. - ;',, ",)- ::n(,V-- '.)cc,_,I'
!

•,, r, [,'o_1;,- :_,'_-- '-h_ .... (.\ --:;-) -)". ,--A', -- '_',),-_;_ _N--)),'oa I'
B,

., ._ r, <in r,.)- .V, -- "-:),,') I.

In analogy with the Gaustan constants, we introduce the followlng

quantit.tes

Co. A' --:', .V--_)co" .I _ R,', _.'. ; C()_(.V- _)cl,'.j ) (17_

,1'-- A"-- .V,--'_). .... j ', :I '---N, () l

C- _'nJ. (" - --,_,l--L'

We then finally obtain

: r, ,A_,. (A 'l)

• )
% v_l;,,,z(/;'-_ _,, (I,g)

"'" r| (.) "'ll {( ' ' III

In order to obtain the required unknown coordinates _ _n_ _ we

rotate the coordinate s}stem around the axis _ . This yields

• :' _i. (:, - ':) ,,,,',),(, "' ] I',1"fl| " - "1 ' . '

We can now s_mplify the calculations performed by means of equations (1_),

by a_ appropriate choice of the arbitrary angle # . The most(19)
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simple formulae (1) are obtained in the following cases

L_
Since, in the second case, ar_le P = u depends on tileposition

of the perturbed luminary, constants A, A', ... will then also depend

on the coordinates of the perturbed l-_nlnary. The corresponding formulae

are suitably _pplied only when it is required to calculate the functions

(2), subject to integration, of only a few orbital points (cf. Sec. 69).

The application of formulae (18) and (19) rather than the convent-

_onal formulae (14) and (15) is useful only if the elements i, _ ,-

il '_ i are approximately consta1_t durlng a considerable interval of

time, and, moreover, when the longitudes _1 ' _ 2 ' "'" of the

perturbing planets in the orbit are known.

The influence of the small variations di, d J_. , ... on the

constants A, A', ... can evidently be evaluated by differentiation.

We shall not consider here the derivation of the corresponding formulae.

69. The tabulation of thecoefficJents

The calculation of the expressions given by equations (2) is reduced

to the evaluation of the quantities S, T and W, which have been considered

in detail in the previous two sections, as well as th_ ccefficients

(i) These formulae were given by Merton for the case = u:

G. Merton, The periodic comet Grigg (1902 II) = Skjellerup (1.922I)

(1902 to 1927), Memoirs of the R. Astr. Society; 64, Part II!, 1927.

The formulae that correspond to the case = are given in:
N.I. Idel'son, Le comete d'Enke en 1924-1934, Proceedings of the

Principle astronomical observatory in Polkov (IzvestiJa Glavnoj

astronomiceskoj observatopii v Pulkove) _oi. XV, I, 1935.
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obtained by mul.tiplytng these quantities. The calculation of these coeffi-

cients Is reduced to the evaluation of the following quantities

i _'o_:Szzl.. C_ - o, , (_1_.. -. c.:./- I

4_

t r ' I _'.'_1)/'" =_ r,,_ : C'* : lel,q,, f "

Ij_

I,,f e

whlch are functions of only _and M. Here, we have slngled out the

multipliers which depend on a, i and w, since their evaluation Is

simple enough.

The calculation w111 be significantly simplified by constructing

tables for these coefficients. In order to reduce the volume of these

tlble, we shall transform equations (1) by introducing a new independent

variable M, instead of the variable t, using the relation

/j
/.'

In this ca3e, it is possible to calculate the quantities (20) for a

few round values of M. Tnstead of tables of two arguments, M and

we shall then have a table of a single argument, _ . Such tables have

been constructed by CrommelJI_(I) for values of the argument e = sine

varying from 0.37 to 0.84 by inter_als of 0 01, i.e. corresponding to

the orbits of short-perio,Jic comets. The first table gives the

values of the a)efflcients, which slightly differ in form A, B, ...,

for M = 0°, 7.5°, 15°, 22.5°, ... with five figures. The second table

(i) A.C.D. Crommelin, Tables for facilitating the computation of the
perturbations of periodic comets by the planets, Memoirs of the

R. Astr. Society, 6__4,Part V, 1929.
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gives the logarithms of these coefficients w_th four figures for M = 0,

1 ° , 2° , ..., 25 ° , 26 °. The first table Is devoted to the calculation

of perturbations caused by Jupiter and Saturn, and the second to the

calculation of perturbations caused by the four internal planets, which

have an appreciable influence only when the planet passes near the

perihelion.

In some cases, it is more useful to choose the excentricity,

rather than the mean anomaly, as an independent variable. In these

cases, equations (1) will be transformed by means of the relation

d -_ ,J
:':': :'" a/

The points that correspond to equidistant values of E, are located on

the orbit more uniformly than the points that corresvond to equidistant

values of M. This is particularly perceptible for large values of the

eccentricity. Indeed, the series-expansion, conzIdered in Ch. XII,

indicates that

v L' 2e.!'_ 1! '

_' t:'..," ,'.:',k" _ .,

if we only keep the first pcwer of the eccentricity. Hence, equidist-

ant values of E give "more equidistant" values of v than do equidistant

values of M. This can be shown in a more convincing way by the following

.! table, which gives the values of the tbree anomalies for the case e = 0.85,

i.e. for a round value of the eccentricity of Enke's comet:

i t' ', .l_ I, h. '_,_ :_,o ]- ' i IV 1;".,_ l_b

*i / ()'J ._,: I1% l._ ." 2'. P q.'. ."_ .",'1 llh , l_o,p

,t 1¢ i,O O'l 1 "_ ', I I 9 7 '_ I ; ' ?, '_ ,'?', I:,'p'g
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We obtain the most ho_eneous distribution of the positions of the ¢

perturbed luminary in the orbit by choosing the true anomaly as the

independent variable by which we carry out the integration. This is

easily done by using the relation

(,d -. -,,.C';. r I d
,_' . a / ,:t

We note that the choice of the eccentricity or the true anomaly as

an independent variable considerably complicates the calculation of the

coordinates of the perturbing planet.

70. Comparison between the formulae

As a rule, the perturbations of the elements are calculated to

within O".OCO1 In the average daily motion and to within 0".001 for all

the other elements. In order to obtain such an accuracy, we take the

cvse of a small planet with an interval w = 40 d and perform the

calculation to five decimal places. In the rose of a comet, it is

advisable to change the interval w, depending on whether the comet is

near or far from the perturbing planet and also on its di, ante to the

perihelion.

One should pay attention that the elements of the perturbed planets

as well as the coordinates ew_luated by these elements should be related

to the same equator and equinox, as the coordinates of the perturbing

planet.

In order to avoid unnecessary interpolations, we have to "hoose

the moments t + kw such, that the coordinates of the perturbing planeto

are known for these moments.

Let us consider the osculating system of elements a, e, i.... for

_. the epoch _o • Choosing the _nterval w, we define the _nitial m)ment

t by the relationo
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tV

tO--- .)" _ =0

/.

ICe then calculate r, v, u, p for the moments t - 2w, t - w, t and
0 0 0

t + w using the given (I.e. unperturbed) elements by means of theo

formulae

_•sin/: -_II

rsin z,.---=aco., . �._;n/=_l_
rcos 1,-.-=a (cos/:'-- ,_in71

u _ t, qUw, /' _ u cos" _.

We then t_ke from the astronomical annual (or from ComrieWs tables) the

values of the coordinates (rI , _ i' bl)' (_2 ' £2 ' b2)' "'" of the

perturbing planets and calculate the corresponding orbital elements using

the following relations:

cl,."8,Co.',L_= 0,',(I,_ _) cosb,

CO>B, si,L,---",iui.,.:ub,-!-co_ico,b,,in(/,- _) ] (III

sin lJj == cosi._in b:- si_lic, J,b, :,in (/I ._ _,) ]

_. ._ -qcoslLcos(l.,--I,) ]
i '.-- rl c{)s LI, ._ITIt/.,- ul (Ill)
_, :, ,= r, ._i,,B,. ]

We evaluate the dlstance between the unpertu.bed body and the perturbing

planet under consideration by

--r_ -Fr_--2,h, (IV)

We calculate the components of the perturbing acceleration by using the

following relations :

t!,_"'ml r 7",- A'_",,, W,::A',:, !
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where the values of wk"m, are given in table IV at the end of this book. r

We then sum the components of acceleration caused by the action of

different planets, and obtain

,' / / f' ,,

E

We calculate the functions which are subject to integration by means of

the following formulae:

,_r ---pcu,,' " ,CO,:' '_

I :' '- ";'-'_' ';° _ "." , t'..'_l
;- - t_' r_in "__'

"1',1 ,'

f : ' I

"-: - ;'co,-,--e', c,,,,,,)SI
¢_'1 - "' 9

\

: i
a'Hl .)

J
b

"_,t ' _'''' ]e/ -- ",Ill ._ .,II1 I t ,_"

,: It r,',,_ t r," _, ,:,n
( " tg'l ,I

:,'.':v p 1" I//P" P/I, -- r

. l:,--; _'_ I.. :l/,.,. I.;1 I 7_.',.

We carry the integration of the first five elements using the following

formulae :

,, .-- ::!'1I_ 1 _ I ', ,1
I

12 I" , ,,:, ' ._1;' -,
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We construct for w 8 n a column of second sums, the initial value of r.

which is chosen as

P

d _

" ;I I --:_._!_ , • 1 ,:_, ;-21,')---
!

\ /

We carry out a first integration, which yields wnas well as a second

integration which yields £_ by using the following formula

.,t --'I , . I I I j, . .

In all these integrations, the unavailable differences are obtained by

extrapolation.

After integration, we obtain the perturbations of the elements

_ _ i,_, L_¢ , _TT, _ ,W_ n and A_ , for the four moments

mentioned above. Adding these perturbations to the initial osculating

elements, we obtain the perturbed elements for these moments. The per-

turSation of the semimaJor axis can be found by the following dlfferential

relations

)

- i fJ_ T
,, - .b_i'l, ! .P ;

' In crder to obtain more accurate v=lues for the quantities _ i,_._,...

we repeat all the above mentioned mlculations starting with the perturbed

elements and re-lntegrate For this purpose we use the same formulae,

with only one small modification. We calculate the average anomaly using

equations

; c . a l! ' ._. , ._t
I; , -,,

in which _o and n are the initial values of the elements 6 and a whicho

correspond to the epoch _ . This calculation repetion is continued
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until the process is established. When interval O i_ppropriately

chosen, the second approximation may be considered as final. One then

continues calculating the perturbations for the next moments t + 2w,o

t + 3w, ... (or t - 3w, t - 4w, ..., dependinz on the direction that
o o o

should be fol_owed starting from the initial epoch). If the perturbations

are large, and the final values of t|,edifferences of the functions _i,...

are significantly different from the primary values, we then should once

more repeat the perturbation calcula:ions for _he moments t - 2w,
o

t - w, t , and t +w.
o o o

The continuation of the calculation _s not difficult and since the

osculating elements vary slowly, extrapolation gives such accurate values

for the perturbations, that it is never necessary to repeat the calculation

of _i, _ , ..., provided that the interval w is appropriately chosen.

Calculations have to be done on several separate sheet_. The values of

r, v, ..., _ i, ..., w_n are obtained on the first sheet. The second

sheet is subsediary to the first one. There, we calculate the coordinates

perturbing planets, _dl 74_ _/ _ .... , ..., the correspondingof the

components cf acceleration SI , TI , ... and the quantities S, T and W.

The computations that correspond to a given momen_ should be written in

the same vertical column in both sheets. The integration of each of

the functions _i,_ ... has to be done in a separate sheet

according to the scheme indicated in chapter VIII.

71o Particular cases for calculation of perturbations of the elements

of small planets

I_o kinds of difficulties are encountered in the application of the

methods considered in the _rcvious sections to small planets.

i- If the slope of the orbit is very small, then the computation of

the quantity
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will be accompanied by a large decrease in accuracy, and leads to the

inaccurate definition of the longitude f the node.

2. If the eccentricity of the orbit is small, then a similar

difficulty occurs on calculating the longitude of the perihelion, which

requires the computation of

j " t' f j , !

' 7 r . I.'. _!

In the first case, the easiest way is to change the basic plane so that

the elements i,J_,7[ and 6 , related to the plane of the ecliptic,

.I t %

are transformed into elements _j-/_ 77 and E (instead of the

last two, one may take w' and Mo), related to the plane of the

equator.

In the cases when only an approximate calculations is required with

an _c=ura_y net exceeding the first powers of the mass, it is better to

introduce the auxiliary variables _ and R instead of i and _- as

defined by

_he perturbations of these elements are calculated by

which can easily be deduced from equation (2). The perturbaticns of i and_

can be found up to wlth_n quantities of the first order by mean_ f the

relations Ar .r,......_p ,,_t....h I

• , -:'l;','J ,....A;) • ¢_,-.-.'Aq.
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We ,lowconsider the second case, in which the eccentricity of the

f

orbit is small, fnstead of e and 7_ , we introduce the new variables
P

h ,'-I_z -:, I r,',,, - ('1)

Since,

dt dl d; d," dl

dl dr ¢,_,,r. ,': .;n ,; ; dr
d" dl ,.1 l;l dI

we then easily see according to equations (2) that

:h --pC,, '.% ,: ':' ')'z_,f { thT" • I):,.l,r,_,_:_I[',

where

) ," t'.

%"heintegration of these equations gives the perturbed values of h and

Equation (21) can then be used to calculate the corresponding va_aes of

e and

72. Some aspects on thecalculatlon of perturbations of the orbital elements

of comets

The calculation of the pert -bations of short-periodlc elements) for

which the eccentricity is not so large that the use of the eccentric

anomaly is impossible, is performed by means of the formulae given in

Sec. 70. However, for a comet whose eccentricity is near unity, these

formulae should be partially transformed in such a way, that instead of

elements _ , n and _ the perturbation of the elements e, q and _ are

obtained (the time of passing by the perihelion). We shall not consider

here these transformations. After cowell's and Crommelifi's work on

i
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Halley's comet, the perturbations of comets of this type are nor calculated :-

for the e?ements but for the rectangular coordinates by the methods which t

will be considered in the following chapter.

The comet may pass sc close ro one of the large planets, that the

gravitation of this planet becomes stronger than the gravitation of

the sun. In this case, it is advisable, as Laplace (Mechanique Celeste,

t.4, Livre IX, Chap. II) pointed out, to consider the planet as the

central body and the sun as the perturbing one. Let us denote by x, y and

z the heliocentric coordinates of the planet, and by mI its mass. We

write the differential equations for the comet's motion under the

influence of the sum's gravitation and planet:

,!l -: I¢'- l,"rZ, ....r' ,_ t'
I

, (:'.')
dU ro , A ; r"

d:z z :_h ." :,' I
.,. i k'- a':,.,( - I

r" _ A" I" I' ), !

and the equations of the unperturbed motion of the planet:

fJ¢2 3t" | "Jl"I ¢_ II

dr: k:(I-i-m,) :: l
I

d-'y, y,
a:: ,i':'(l -_-tn_l ,_ t ,.,_)

I"1' II * ''

d',_, ._ :' - O. [
dl: "1 k-"(I "/rll) tl_ II

If we take the centre of the planet as the origin of a coordinate system,

the axes o_ which are parallel to the axes of tke heliocentric system, and

denote the corresponding coordi_ates of the c_,aet by _ ,_ and _,

|

we obtain
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Using equations (22) and (23), we obtain

where

A- : r _ ' - ",'

When the sun is t,ken as the central body, the quantity R is the

acceleration it imports to the comet, and F is the perturbing accelerat-

ion caused by the ettraction of the planet. Equation (22) shows that

r:' ' A" _ ril

On the other hand, when the planet is taken as the central body, we

denote the acceleration it imparts to _he comet by R._ and the perturbing

accel,_ration caused by the sun b_ FI. Then, it follows from equations

(24' that

/_'l _"fn I 1 i
: __: F, -,_," ( x, x _:

r

The region 4n space, in which it "_ more useful to take the sun aa the

central body, is separate l from that, in which it is more useful to consider

the planet as the central body_ by points sat;slying the fe%1owing cqua,_ic-n

I: 1-,

/k b . _,
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re,r:, &, t- r' -_-2- -: _sr_y'T'; :,. _ - _: I ! --2xx' t-YV,_rar"'_--zz! ,
P

Putting /

x,_ : y,-,t-I tl. & •
" --'CG_O, . - it,

_rt r I

ve obtain

xx, -;-:.y_ 4,.zz, _ x, ,x, -i .) _ :',(y_ t- ,,) :-:._(z_ -i_._).-=
----r;(; i ucos',)

i r':=(x, i.[)=-t.(y,-_ .q); ; (:, I :):_---=r_{l_-2uc,)sO-_-_;).
t Substituting these equations into the previol,s ones, we obtain
,I t

m_-:_,_l-F_'_"cos',-!_u')- ItI-; '.'uo)_O-l-u'-')" l--_-(I-i :'ucosf_ : ul)_-

I'! -_
--2(I !-ucosfO{lF2ucosq-', u'-'), .

Expanding the rlght-hand side of this equatlon in povere of the small

quantity u, we obtain

i i
1 tit(,, ';

, .),,

rn, t_; | I , .:,,., ",'_ ' - ..,¢_, ,• _ :_C,_, _'

Keeping on__ythe f'lrst term of this expansion, we obtain
I

( ),
This is an approximate equation _or the plume under consideration in

the polar coordinate system. The surface (25) is evidently a surface

of rotation around the polar axis i.e. around the radius vector of Che

planet. This surface alightly differ from a sphere; the ratio of the

maxJanal to minimal value of_ is equa1 to

!'2_ ==1.15.
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The sphere, drawn from the centre of the planet with a radius equal to

is cs'_led the sphere of activity of the planet. The radii' of the spheres

of activity of some planets areglven in tha followlng table

Hercury ................ O.OO1 Jupiter ........... 0.322

Venus .................. 0.004 Saturn ............ 0.362

Earth .................. O. 006 Uranus ............ O. 339

Mars ................... 0.004 Neptune ........... 0.576

Inside the sphera of activity F:R ,/% FI:R I. Outside this sphere

F:R _ F1 : R1 so that it is more useful to consider the planet as the

central body.

It is interesting to evaluate the ratio F:R of the perturbing force

to the gravitational force of the sun for points located on the sphere

of activity. It is easy to see that for such points

For Jupiter, the limits within which this ratio varies are from

mI _0._ to _16_ = 0.43.

Me have to deal quite often with comets passing through the sphere

of Juplterts activity. This is explained by the fact that the aphellons

of most of the short-pertodlc comets are grouped near Juplter_s orbit.

In order to make a transformation from the heliocentric coordinate

system to the J_ve-centric coordinate system, in which Jupiter is taken as

a central body, it is necessary to find the Jove-centrlc coordinates at the

time to for which the distance _is reduced to 0.3. These will be

denoted by L,_=._--.q. _ v-- v,, _o z- z_

g

1979012780-293



r
- 282 -

vhlle their derivatives ell1 be given by "

_Q _-- _., _, -y Y,, .., "__ _.
p

Using the formulae obtained in Chapter IV of Volume I, we can obtain the

Jove-centrLc elelents of the comet. The perturbations of these elements

are co_uted by means of conventlonal formulae. The sun in almost

all cases can be considered as the only perturbing body. It is

interesting to note that the Jove-centrlc orbit of the comet is usually

a hyperbola of large eccentricity. The eccentric anomaly appearing in

the foruulae of Sec. 70 w111 then be imaginary (vol. I, Sec. 15).

Consequently, it is worthvile transforming these fornmlae, adopting

that

_- //I i

We shall not consider here these complicated transformations. We find

that, in the case under consideration vhen the comet is inside or even

near the planetts sphere of activity, it will be more convenient to

; calculate the perturbations in the coordJ_nates using Cowe11's method.

t This method will be considered in the next chapter. In order to use

this method, it is sufficient to find the coordinates of the comet x° ' Yo

and Zo and their derivatives Xo ' Yo and Zo at the time to by means

of the osculating elements (Sec. 74),

The computation of the perturbations of the Jove-centrlc coordinates

has been carried out by Kamienski (1) in his study on the motion of Wolfts

comet during its approach to Jupiter in 1922. In this case, the eccentricity

of the Jove-centrlc orbit varied from e = 6.457 to e = 6.480, and the
! !

(I) M. KamlenskL, Recherches sur le mouvement de la Comlte perlodlque

de Wolf (IX Partle), Publlca_ions of the Astr. Obs. of Warsaw

University, 2, 1926.
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semtmaJor axis from a = -0.022800 to a = - 0.022912.

When the comet under considerat$.on closely approaches Jupiter,

one has to take into account the perturbation caused by the compression

of JupJter. Such an epproach took place,for exampZe with Brook's comet

(1889V), when the least distance between Jupiter's surface and the
%

comet became apprexlmately 1.14 times Jupiter's radius (approximately

80.000 kin). In considerIng th.tscase, the Interval w used In _ntegratfon

has to be reduced to 0.25 hours in the vlclnlty of the t1_e of approach.

For details c_t the effects of the compression of Jupiter on a comet's

motlon, we refer the reader to the literature quoted hereln (1).

73. Approxlmate Calculatlon of Perturbations of Small Planets

The exact calculation of Lhe perturbed coordinates of a small planet

by a numerlcal Integration requires a large amount of work. This does not

depend o, whether we are calculatlng the _rturbatlons in the elements or

imed£ately calculating the purturbed coordinates (Secs. 74, 75). Thls

type of calculatlon is only carried out for planets, which are interest-

ing In some aspects. The analytical theory of motion of the type

developed by Leverrle and Newcome for large planets has been applled

to an even s_aller nmaber of small planets. It is not, however possible
f

Co calculate the perturbations of small planet.s for, after a few years

their actual motions w111 differ so much from their unperturbed motlons,

chat the planets w111 hardly be distinguished and would thus be

(1) G. Deutschland, Der Eintluss der Abplattung auf dle Attraction der
S_elskorper nach der Theorle der spezlellen Storungen, mlt
Anwendung auf den Kometen 1889 V (Brooks) bet selner Kuplternahe
un Jahare 1886 (Viss) Berlln 1909.

The results are partlally given In. Astr. Nachr., 181,
1909, 1-8.
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completely lost. It is thus extremely important to have on hand a simple

method which would allow us to calculate the perturbations of small planets

with an accuracy that would identify these planets. Several methods have

been suggested for this purpose And amongst them, the following two

approximate forms of an accurate method suggested by Starke (1), have been

widely practised.

We first of all point out that it is suff_eient to only take into

account the perturbations caused by Jupiter for the approximate

calculations of the perturbations necessary to identify these planet.

We shall limit ourselves to an accuracy within 0.OO01 for the

perturbations of n and up to within 0.OO01 in the perturbations of all

the other elements. We shall then be able perform all computations to

three decimal pl_ues. The interval w can always be taken equal to 80 d,

but when the planet is far from Jupiter (e.g., when the heliocentric

angular distance between them is greater than 60 °) the interval w may

be set equal to 160 d. It is useful to take all the constant factors

for the interval 80 d and complete the missing ones by interpolation

at w = 160 d. Under these conditions, we shall be able to make consid-

erable simplifications in the calculations of the formulae obtained in

Sec. 70. Instead of computing v and r using equations (1), we can find

their values by consulting the special tables given in Volume 1,

Chapter III. We can always substitute in equations (II) cos b I = i, and,

if the slope i zs small (i < 8°), put

i (1) G. Starke, Gcuaherte Storungsrechn_ig und Behverbesserung, Veroff
des Astr. Rechet,instituts, Nr. 44, 1921. Berlin; Tafeln zur genaherten

Speziellen Storungsrechnung, Veroff. des Astr. Rechentns_ituts, Nr.

48, 1930, Berlin.

t
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' cosB: -.--I, s;,/._, c,J_i sinb, -siai_in(l, --_), L, ::l,- _.

1

J Furthermore, we have to replace the coefficient wk _1_ in formulae (V)

by 80 k_, where k ° is the Gaussi_ constant expressed in degrees.

Fo_" Jupiter,
i
i

I !1_(,_0 _ m,)- 1.S77.
[

i

I
In calculating using formulae VII, we use

Thls yields _ n in units of 0°.0001. The increments of the other
!
J elements wlll be expressed in units of one-thousandth of a degree. We

I can generally neglect the differences in the calculations of
l

formulae (VIII) and (IV). The integration wlll then be reduced to a

I

sinple summation. Finally, we note that the perturbed value of n is

not required, since we calculate the average longitude using formula

) ,

where n denotes the unperturbed value of n. However,the quantityo

t_ _n = 80 _ n is necessary for the computation of the perturbation

of the semimaJor axis. Thls latter quantity may be calculated by formula

13.()3
A I_:a --. _() An,

/"/o

where n is expressed In seconds of the arc.
o

In 1930, Starke de_reloped another version of this method. It

requires the use of subsidiary tables, but once these tables are

avallable (1) the amount of work necessary wlll be considerably reduced.

(i) These tables are quoted in the previous foot note.

@.
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Here, the average anomaly M is taken as the independent variable. The

coefficients in formulae (VII), Sec. 70, are functions of . They are
p

tabulated by the argmsent _ for the values m- 0 °, 12 ° , 24 °, ... 348 °.

The computation of the components of acceleration is a!so slmpllfled by

special tables. We shall not consider here the construction of these

tables.

Finally, we remind the reader of the method of approximate computat-

ion of perturbations in the elements, suggested by Stromgren (1).

This method is similar to Storke's method mentioned above in that

both methods are designed for their use with calculating machines.

Str_mgren transformed the formulae in such a way, that they can be quickly

and easily used to f_nd the perturbed values of the directing cosines

Px ' Py ' Pz' Qx' Qy and Qz"

4

!
t
t

l

(1) B. Stromgren, Formelu sur genaherten Srorungsrechnung in Bahnelementen,

Publlkatlone og mindre Meddelelser ira Kobenhavens Observatorlum,

Nr. 65, 1929.
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CHAPTER XI •-.

CALCULATION OF THE PERTURBATIONS IN THE COORDINATES

74. Direct Calculation of the Perturbations in the Coordinates (Cowell's

Method).

We consider the motion of a luminary, the mass of which is denoted

by m and the helloceDtric coordinates by x, y and z. We denote by mI

and xl, Yl ' zi the masses and coordinates of the perturbing planets.

The euqations of relatlve motion, derived in Sec. 3, yield

dfi '_ : ]"y !I)

_,:.----_(I + m) 4-i', !
where

_ (x,-.-x,)

Here, the summation is over all the perturbing bodies and the quantities

2

r , r_• and A i are defined by

r"- ._ _!.y2 .,..., r_ x -_, --, , _Y" ! .'.,, ' _I )

.xi'- (._-,--x)'-'.}-(.v.--v): i-t:, :)'.

If it is required to compute the values of the coordinates x, y and

z for a relatively short interval of time for e.g. some dec_Jes, the

easiest way then is to integrate equations (1) numerlcally. Any of the

numerical integration of differential equations methods that have been

considered in chapter VIII, enables us to calculate the values of x, y

, and z with an arbitrarily high accuracy. The calculation by means of any of

of these methods is straightforward snd elementary. This is extremely
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important, especially when is doing substantial work, siDce it enables the

use of calculating machines. Another advantage of thls particular method

of computation of the perturbed coordinates, is its universal character.

The analytical metho4s of finding the perturbations are only valid if

perturbations are small. The methods of numerical calculation of

the perturbations in the elements, given in the previous chapter, are

only preferentially applied if the perturbations are not very large,

although they are generally valid for arbitrary perturbations. On _he

other hand, the question of the magnitude of perturbations is not raised

in the nL_merlcal integration of equations (i). Consequently, this method

is conveniently used for small planets, subject to small perturbations,

and for planets which approach Jupiter so closely that their perturbations

become particularly large. Similarly in this method, there is not

difference between comets which are far removed from planets and comets

entering the sphere of activity of a planet. Finally, the numerical

Int_gratlon method enables us to compute in a very simple way the positions

of such bodies like Jupiter's eighth satelite, whose magnitude of

perturbation is comparable to the value of the central force.

We have seen in Sec. 41 that the most complicated cases of motion

can be studied by means of methods of the numerical integration of

equations. These methods had been used by Darwin, Tile, Burrau and

Stormgren long before Cowell applied numerJcaJ integrations to solve

astronomical problems. Indeed the direct numerical integration of the

equations of motion had been applied before Cowell. Moreover, the

method which be first developed was inferior to the method of quadratures

suggested by Gauss and applied by Tile and the other previously mentioned

author_. This is the reason for our returning later on to this method.

+

1979012780-300



r

- 289 - i_

We however, owe Cowell the introduction of the method of dlrect nt_erlcal i_

integration of equations (i) into the fleld astronomy as a relatively
p

rapid and practlaal method of obtainlng the perturbed ephemerlde. For

: these reasons and for convenience sake, we call the method of calculating

the perturbations of the coordinates of a luminary by means of the numerical %

integration of equations (i) as Cowell's method.

We have already mentioned the advantages of Cowell's method, which

in many cases makes this method the most practlcal way of obtaining the

ephemerlde of a luminary, taking into account its perturbations. We

can also point out, that in this method the trigonometric calculations

are completely singled out. The only auxiliary table necessary for

-3
these computations is the table that gives the values r by values of

2
the argument r ,

One of the most serious difficulties of Cowell's method consists in

that all the intermediate calculations must be carried out to at least

the same number of significant figures_ the final result is required to

have (In practice, one should carry out the intermediate calculations

< with a large number of significant figures to guarantee against the

accumulation of errors). For example, if we have to connect two

appearance times of a comet separated by a large interval of time, if

we use Cowell's method we then must calculate the perturbed coordinates

\

to seven significant figures for this interval. If we apply the methods

developed lu the previous chapter, it will then be sufficient to calculate

the perturbations of the elements during this interval of time., rom three

to five significant figures.

If the luminary closely approaches the sun, which is the case _or

most of the comets near the perihelion, the value of the interval of

integration must then be significantly dec-eased. The amount of computation
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required by Cowell's method wlll then be more substantial than that

required, for example, for Euke's method (Set, 76).

We finally note that Cowell's method is at least convenient for

accurate calculation only In the case when the computatlonswill be

carried out by means of calculatlngmachlnes. (I)

75. A Compllatlon of theformulae used In Cowel!'.. method

We denote by w the interval which will be chosen for the integrations of equ.

{i)° We have already pointed oLt in Sec. 58 that thls interval should

never be chosen very large, otherwise there wlll be less chance to

control the computation accuracy by means of the differences. In

addition the calculations would become less practical.

It is advisable to start the computation by using a small value

fow w. If the fourth differences are then found not to affect the

calculated values of the coordinates, the interval magnitude may then

be doubled. For small planets, the interval may be set co equal 20-40-80

days, depending on the required accuracy. We have to take smaller

interval values, say 5-10 days, for comets close to the sun. If It

(I) The integrations of equations (i) can, of course, be carried out using

any method for the numerical integration of differential equations.

In particular, instead of applying the method of quadratures, we

can use Cowell's method (Sec. 52), supplemented by Numerov's

method for the reduction of successive approximations (Sec. 5B).

We then obtain Numerov's method or the method of extrapolation".
A detailed account of thls method, as well as an example of its

application are given in: Belletln of the Institute of Astronomy
(BJulleten Astronomlceskogo Instltuta) No. 12, 1926.

Probably, the method of _adratures (Secs. 52-54, 58) Is the best

method for integrating equations (i) from the point of vlew of

accuracy of the results and the simplicity of computation.
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is required to further reduce the interval, it is then advisable to

replace Cowell's method by Enke's method (Sec. 76).
P

We shall consider that the values of the osculating elements a,

e, i, -_ , w and M of a luminary at moment t are known. In order
o o

to find the solution of equations (I) which describes the metion of '

this lumlnary, we have to calculate the values of coordinates x , Yoo

and z aud their derivatives x' ' and z' at moment t . For this
0 0 ' YO 0 0

purpose we use the following formulae (Vol. I).

x aP (cos/:' e) i bO,_,.k' ]

Y a/'v(COS_t" ) -_- h¢,),sillE i (llZ -- al) ('COsE_e) ' b(,) aill/f

• k _ p)VJ( u ,q,,l"+bO,co,e) I

Y"-:: " - (--aP, smh'-.-bO costS) } 111)
tea I

z== k (-aP,_ink"i bO, cosk) [
,I/. ]

in which

O -_acosT, r-. Vx"-[-y" k-9 at)--ecosE),

where E is defined by

E--es:. If ,_[.

For checking the calculations, we use the following relation

ke flu si,, E .x.v' .{- yy' ) zz'.

The directing cosines of the orbital axes, Px ' Py ' "''' % ' may be

calculated by using the following formulae (Vol. I, Sec. 25):
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A,. co, U; A°:-.... cos/g," ..
/3, =: ._l_ !2 CoS a; II. --- CO_ /COS U CO ¢ --,,flisttle

CI sm '2 sin ¢; (': =-: co* i co" '2 ..m :-_-,m tcoo

P,.- A, co._,_-[-A, si,.,; O. -,1..c_ .... A,.,.,,,

P :--:/3, co.,,,_ {-/;:sit,.,; Qy, I_ o*> .,-- li, s:. ,.

[':',r- CICO'_u'-I- f--.'2_ill 0-,; (): -C:u" _t .... f....'l _llir,,

where _ denot_.s the slcpe of the ecliptic with respect to the

: equator. For checking, we app.1! the following relations

' ',: ' t_ t ,.'_ t_, . i I
'" ' ".r . ' '

(,;, ,' I,;; a • IJ/' ) _:

11,¢_) )' '-1',,, _': , ;/,r_ t ,'"
t ' , t

When the initial values x° , Yo' "''' z' are alrea_3 calculated,0

we start integrating equations (I). For this purpose, we first of

all calculate for each considered moment t = t + nw the values of the
n o

functions

/ t_,- d'x t/'"_'" .v I

tlt : r,_ jd:y ;,

14 " it" dr: "-'tv:k" " i Y I (Ill)t I

d '2 2 !/l" It': dl*" II'"h2 [7{ Z

1

,_:< x_, IX =. w_-_:mt "5._ --- xi I' l
' I,,,( ,,,, ) I

g
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where the particularly singled-out quantities

X'_---w-_-_m ' .... w:k _m t , 2"------ - w_-'m ',
/"i :1 r B . P

depend entirely on the coordinates and masses of the perturbing planets.

The irreplaceable hand-book used for these ealculation=__ are

Comrie's tables: "Planetary co-ordinates fo_ the years 1800-1940"

which we have mentioned several times before. The extension of these

"i

tables to the years 1940-1060 is expected to appear in the near future.

Besides the coordinates ofall the large planets (except Mercury and

Plutonus), these tables also give the corresponding values of Xi, yi and

gi. Moreover, several other atmiliary tables are g_ven there, and in

-3
particular the table by which the quantity r can be found from the

2
value of the argument r .

If Comrie's tables are not available, we can compute the

rectangular eoordiates of the perturbing planets by the values of the

corresponding ecliptic coordinates obtained from the year-book. For

this purpose, we use the following relations

Y, = r c,,,_ ,',,I_in ,',c(,s _ tg/,t sin :)'' 'I (3)
.r_-- r cosh,{.,,,,,/, .,,.:,_ -t-lg b,c<_,-), I

where ri , _ i and bi are themdius vector, the longitude and latitude

of the planet respectively.

The constants involved in the expressions f, g and h are given in

table IV at the end of this volume.

We apply the following formula during integration:

I i i I

It , t.'n'l / 1._ ' : I' ' ' ' _'' ! ' ';_1 .... 1 ',,,,• o.

I
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as well as two similar formulae defining the values of y and z which

correspond to the moment to + nw. The initial terms of _he columns of

sums are defined by the following formulae (Set. 541 :

/, , 1 I ; " i, l ,:, u,.x /,,r-ljj - / : I_--_. _ " 7'-),) , .',] 7 ,, '

I IX I_
-- _ 1 / __ 1 /, , /___

1" --x°-- 12 1'' ' 2.t0 ,. _9-,I _, I"S-,7 ,,

In order to avoid some of the successive approximatxons at the

very beginning of the computation (cf. Sec. 551, it is easy to determine,

using formulae (I), the values of the mperturbed coordinates for a few

moments t_2 , t_l, tI , t2 , t.,, ... near the initial moment t • One"> O Z

approximation w_!i then be sufficient to obtain the final (.perturbed) values

of the coordinates and the moment. For this purpose it is also possible

to use the following TayloT expansion.

x(t,,-! nu,)=x,, ,-x,,(t --t_ , : 1.,., :It.--t,,): .

When some of the initial values for the coordinates are corrected

and the final vslues of the quantities (VI) are obtained, we further

integrate quite easily by means of formulae (V)

Annotation I

When the Gaussian constants a, A, b, B, ... corresponding to the

initial osculating elements are known, then formulae (I) and (II)

are recommended to be replaced by

x r .sit,a .q,,I..l i t4 ]
y ." rsiH/,._m(it i.:_l 11 j

---- r_i,,c ,iu(C.!-u) I

x' r-' [.xr'.! bl _,nac.s(A _ u)l 1
y- r 'lyr' i bl/p.i,,hc,,.(t_' I u)] j! lll'l

:'=-:r '[-r' { kl p_i._c,)s((; i u)]. I
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where p - a cos 2 _ , quantities r, r' and u are calculated by means of

the followlng formulae

• --a(l--eco_l:). vl' =_ ke_ ....a._m/:,

,' �V--V,. i:"
tg7 = V _ t_ .-_., . ,,-i-.,,

and for checking, we use the following auxiliary equation

Jr"= xx 4,-yy' : ..':'.

Annotation II

: If the luminary, whose motion is under investigation, exists at

a sufficiently larged!stance from the sun, then the perturbations that

Mercury, Venus, ... prcduce in its motion, are either insensible or

quite mall. In such cases, it is sufficient to only consider the1!
secular parts of these perturbations. This can slmply be done by

correspondingly increasing the mass of the sun.

i
The factor i + m, involved in equations (i), will be replaced by

1
j unity, since the mass m of a wnall planet or comet may always be set

equal to zero. If we consider that the mass of the sun is unity, and

", take into consideration the masses of the perturbing planets, ther.I
-i

formulae (1If) will be replaced by

/ u,L_"-'.llxr "' . t" A"

'" :t,-/_:,l!yr t I Y _',rl')
h - . -- .v,'_" ,l'l'.r "': .!-/.,

where factor M has one of the following values

M = 1.00 000 14 (sum of masses of sun and MercuLy)

= i.O00 002 60 (sum of masses of sun, Mercury and Venus)

= 1.000 005 64 (sum of masses of sunr Mercury, Venus and Earth).

- 1.000 005 96 (sum of masse_ of sun, Mercury_ Venus, Earth add Mars).
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76. Emke's Method OF POOR QUAL_ ,.

Instead of finding _he perturbed coordinates of a luminary by means p

of the numerical integration of equation (1), it is possible to calculate

the differences

_._ x-- x, _l._ y-- 3,, ".._- z-- .:

between the perturbed coordinates (x, y, z) and the unperturbed (x, y, z).

Since the unperturbed coordinates satisfy the following equations:

d:x

dr- ------ _'' (1 q- m) x r '

d'-'y
--:--k'-(I !-m)y r-"all'-'

_---k-'(l-l-ml: r -'_.dr-'

then by subtracting these equations term-wlse from equations (I), we

obtain '

tit" ' ' -/;

dr" "- l _ -_- k: (1 -;- , -- /.

Thus, the calc,11atlon of the differences _, ? and _ , which are

nothing else but the perturbations of therectangulat- coordinates, is

reduced to the integration of equations (I).

Particular attention should be devoted to the evaluation of the

second terms in the rlght-hand ride of equ. (4), The direct computation

of the differences in the brackets is accompanied by a large accuracy

loss. It is more core_enient from the computational technique point of

view, to transfo_In these equations into the following form

t
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-" _1 r' I e.
r a r r "_ / ' I \ f •

It is thus clear that all three coordinates could be found if fhe
-3r

difference I - -- is obtained. Since3
r

,-_= (x-i-.)-"+ <)'I ',):4-('-_-")-_---
: r:-_-t2y ' ' j-: ,-; _).,-:-0_ _-(2y-i ,,I _ ' ,2- '- "

we can then:_rrlte that

r-'

r"

where

¢ ._'; _ : !- y-_--=- , --', ,, F :-F ". (5)-:= -"; ,, 77 " •

Ther ef ore,

r ._ :' , 3.5 3.5.7

r.' -{l-!-"q?- = 1 -3q-:- 1.2 q:- 1....q._,q_Jr-. . •

Following Enke, we adopt that

/ n75 .:35,--., 3152.1q' )
/=a(:- q _-q-- i • . ; (s)

\

This yields

r3
I- ql,

r I

Hence,

x x 1
..... (,ff._ -- t).

r J r" t

When the differences ar_ presented in this form, they can be computed

without any accuracy loss. The reevaluation of the following functions

ar'_ :v: ''f:_I:.-_ w: d'_ Q = u.,2 h'-.-
af-' ' dr': ' dl:
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required for the numerical integration of equations (4), will be

carried out by means of the followlng equations

p= x-t- -- .")

= y__. u,"_,:.(ely_ ,,) , (vii)
r_ f

" . t/f']_" J _t

//=--z-t--,,:;--(¢lz '4, Ij

where- quantities X, Y and Z are those defined by formulae (IV) of the

previous section.

Quantity f, involved here and defined by equation (6), may be determined

by using table III at the end of this volume. The value of f is given

in sixteen decimal places in Comrie's tables previously mentioned.

In the following, we enumerate the operations that have to be

carried out for the application of Comrte's method.

1- Starting with given values for the osculating elements, we

calculate the unperturbed equatorial coordinates using equations

ffi + hw, where h ffi -2, -1, O,(I) and (I') for a series of moments t h t o

1, 2, .... It is useful to choese the initial moment so that the epoch

w In the following,of osculation takes place in the moment t = to - T "

this will be assumed to be the case.

2- We use Comrie's tables to find the values of the rectangular

coordinates xi , Yl and zi of the perturbing planets and the corresponding

q,_antities Xi, yi and Zi for all the moments whose perturbations intend

to calculate.

3- In order to start integrating we compute the values of

quantities F_2, F_l, F° , F1 and F2 using formulae (IV) and (VII). In

the first approximation, we assume that

: :.:=,,=- ._ (I, .x'--"x, 3' :y, : -, q - O.
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We determine the initial terms of the column of sums by the following

formulae (cf. Sec. 54; in the present case we have _ = ? = _= 0

and = = 0 for the epoch of osculation t o - -_-- ):

y_, 1F_ __ I 1.;,

-' :_ _- (VIII)

o ;2.1/:--' -- (2 -t/" )-'t-3lit; - " " " '

we calculate the perturbations using the following formulae

" _F -'J I 1 !_ .!_ 1 1;, __;. . +Red, Red;.: h_,- 240 . ]-'1[71 . " " " (IX)

We then repeat the calculation of quantities Y_2 , F_I , F FI F2,0 ' ' ,oo

the values obtained for _ , 7 and _ . We repeat thisusing pro:edure

until we find that these quantities do not improve further.

4- When the above-mentloned calculations give the final values'

for the quantities (VIII), we start integrating conventionally using

formulae (IX) and substituting therein, the extrapolated values of the

differences or the Red correction (Sec. 55). We add the perturbations

of the coordinates obtained thlsway to the unperturbed coordinates

previously obtained (item I). This leads us to the required values of

the perturbed coordinates:
i

x:--x-l-:,, Y-3' ,t 'd, : ": I "

In conclusion, we note that the calculations made by Enke's method

are more useful than the calculatlons made by Cowell's method only in

the case when perturbations _ , C_ and _ are small. The values of

these perturbations can always be reduced by changing the epoch of

osculatiun of the elements for which we are calculating the unperturbed

coordinates. However, the calculation of the new osculating elements by

means of the obtained perturbed coordinates (Vol. I, Chap. IV) constitutes
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• oadditlonal work which significantly reduces the e's

! method. Therefore, this method is only applied if the perturbations are -

small and when it is necessary to evaluate them for small intervals
J /

of time. Under these conditions (e.g., for comets only observed once)

Enke's method is the best.

Sometimes, in the study of the motion of comets, the two methods,

Enke's and Cowell's, can be combined. When a comet is far from the

sun and is subject to considerable perturbations from the planets, it

is better to apply Cowell's method since this method is the most general

and the most independent from the magnitude of perturbations. On the

other hand, when the comet is near the perihelion, its perturbations

are generally small (because of the high speed of motion and the large

distance from planets of large masses), and the unperturbed coordinates

vary very rapidly. In this case Cowell s method is not useful because the

interval w should be strongly decreased. It is more useful then to

replace this method by Enke's method.

Annotation I

We can use TitJen's method for the reduction of the number of

successive approximations (See. 58) during the integration of equations

(4). Indeed, noting that on the basis of equations (VII).

where
¢

, llf'k" _

h= r" (7_
._ n

t we may write equation (IX) by which we compute _ in the following
' ' n'

'i way

i
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_,(, +7_h)---s' ' ,.-.-_ hqlx, (8_ "

P

where

S' ! : l , 1 /:l_x,, IF. --.,ioi,19:it,-" • •
%

Similarly,

" ,,, I -F 2/' ",, • i,)/"//._'.

( ;. ) i I<-jl:,,I , 1_-2h --__._"_p_12ttql:..

We immediately obtain the final values of the quantities Sx , Sy and Sz
n n n

1
owing to the smallness of the coefficients 24"--'0 , ... On the other

' hand, when we calculate quantity q by means of formula (4)

'l<:) < ) <! r: ,.-r- Y,, :j- "% 4. -.. :? , ,

and ½ _ inside the
, we can replace the quantities ½ _n ' ½ _n n

i.! brackets by their extrapolated values. Thls will introduce a slight

'-'i error because these quantities have small multipliers _ ' _2 and _ .f n n n

"i The quantities _n' "'" standing outside the brackets can be replaced by

, their values which may be obtained by formulae (8) and (9). This yields

t it a,'_,', "," 5'. - il,'q(, ,: . ...l',-r r:n),
! :-" ",'_,. ' ; i i,L ,,

i where

1 . 1 I

" : - ' 7i " "" " " - (.lil)

, ..... ( ....,:. -( ,
Therefore, we finally obtain for the calculation of q the following

formula

P

I
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_.s_,+_s._'-l.,, "c.%
9- -. -- ,:I)

] - _ /Jj'(,x,,-I-[_.Vn-{-"r*:.1

Thus calculating the coefficients ¢_ , _ and _ using formulae (7)

and (8) by means of _heextrapolated valaes, we can obtain q from

equations (!I). Then, formulae (8) and (9) yield new and more

n

In the caiculatlon ofq by means of formula (II), we usually

prefer to extrapolate the denominator rather than find the denominator

by extrapolating the values of _n _n and' n"

The above-mentioned application of Titjen's method to the

integration of equations (4) was first suggested by Oppol'cer and was

called Oppol'cer's method.

Annotation II

In the absence of Comrie's tables (1) the rectangular equatorial

coordinates of the perturbing planets may be calculated by formulae (3).

In this case however, it is more useful to calculate the perturbations

in the ecliptic coordinates. Forthe perturbing planets, these are

calculated by the following simple formulae

(I) We quote herein the convenient tables, published in:

H.Q. Rasmusen, Hilfstaflen fur die numerische Integration der

rechtwinkligen Koordinaten sines Himmelskorpers, Astr. Nachr.,

260, 1936, 325-376.

The following article includes a table which simplifies the
application of TitJen's method in the computation of the
coordinates by Cowell's method.

M. Th. Subbotin, Sur le calcul des coordinnees heliocentriques

des planets et des comets au moyen des quadratures,

Pot,lkovo Observatory Circular, No. 9, 1933, 15-25.

i
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"'_i--_,co,h,c_sI

Yl _r cosb ssin I

Z'i =--:r sinD.

J

: When the perturbations _ , _t _and of the ecliptic coordinates

are obtained, the perturbations of the equatorial coordinates are

calculated by the following evident relations

-.--.,, r, - r_ ¢¢)s._ ,h:e, ,, suli ! , toss,
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PART THREE

ANALI"I'ICALMETHODS FOR STUDYING PERTURBED MOTIONS

CHAPTER XII

THE SERIES EXPANSION OF THE COORDINATES

OF THE ELLIPTIC MOTION

77. Introduction

The equations governing perturbed motions are generally complicated.

The analytical integration of these equations is only possible when the

perturbing acceleratlons involved in these equations are explicit functions

of the independent variables. Usually, the independent variable in the

theory of perturbed motion is taken to be time (or, equlvalently, the

mean anomally of the perturbed luminary), or the eccentric anomaly of

the perturbed luminary, or finally, its true anomaly. The true anomaly

is often replaced by the true latltude. The perturbing accelerations

can be expressed in terms of the perturbation function in a straightforward

manner. The task of integrating analytically equations of motion can

thus be reduced to the task of expressing the perturbation function, by

a function of one of the above-mentloned variables. The first step which

has to be performed is to express the coordinates of the elllptic motion

by an e_pllclt function of time or, equivalently, the aTerage anomally.

This will constitute the topic of the present chapter.

The coordinates of the elliptic motion r and v, and the function

of coordinates, F (r, v), are periodic functions f(M) of the average

anomaly M with a period of 2 _ . Therefore, any such function F(r,v) =

f(M) can be expanded in a Fourier series
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I(zO I,.._-I-., cos ,_f,-i .',,.(;_/e._ t

-I-t,,.q_,If-_. _ ;ink,il.; . ., .I) "

Tais series converges for _ _aes of M since we are only consid-
%

e_ b',_continuous functions "t_'_-_ ,'_qhave continuous derivatives. It

is well k)_.,_.m tbat_ _.tJ s_c.; .'. ._,the expansion coefficients ak and

. . k2 "bk will decay so rap_d!y :.:_,c _,heproducts ak and bk k_ will tend to

zero for any arbitrary c'_,t,:t;,_tfactor O( . These coefficients are

given by

a. fl.l/_ CO-. l._ld.l:, ,9. J (.II) -,|u X' 11,1 ;I. , ,)_
e

Series (i) is often replaced by the corresponding Maclaurin series.

Indeed, let us put

z - = _" l! cx[) " '

where i = _ then

'2co_k,;! t'xl)iz'A! I exi,(--i;,'_1)

_i _in e3_ - exp i_.41.... exI) ( - i_,,l_)

Hence,

/(Af, 21 a,, , 21_._X_(" ,b,.)expik, ll ', '21X_(a*i_-_ ib_,exp(--ikM,.
I I

We introduce coefficients ak and bk for negative indices by adopting that

u _==a,, b__i, _= b_ ;

Series (i) will then assume the following f_nal form

i '
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where Oe .... ".
1

P" = '2 (#* _ ibk_" -';

The coefficients of the Maclaurin series (3) are give_ by the following

well-known formula

, f : ff."

where the integration is corried over the contour C that encloses the

point z = 0 In the plane of the complex variable z. Taking this contour

as a sphere of unlt radius wit_ centre at the point z = O, we obtain

2_

/'* 2=i.----/'[_'_lJeXl_(--i_;,I j d,41. (4)

This formula is aquiv=lent Co equation (2)

For these functions which we will consider later on, the integralg

(2) or (4) cannot generally be expressed in terms of elementary f_ctions.

They are conveniently expressed in terms of Bessel functions. Hence,

we shall start by studying come properties of thes_ func_.ions.

78. The Bessel Functions

Let us consider the following expression

Since

f'° :\9 -,'T \'_.'_ /.r !' 2'a,. "xP f _: ") "_"_i _"! I !_'-'
t'xl) ___,_ ,, " ....I ,, ,., ,

then by multiplying these absolutely convergent s_ries, we obtain i

We expand this ser_ _ in powers of z and put _.-_ _n.
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We then obtain

where n varies from -o0 to +o0 , and p from 0 _o +c_ if n_/- 0 and

from - n to + oO if n _ O. Consequently, the eA-pansion coefficients

are given b7

_(x) _ _!'_q-,o' :_

if n _ O, and

if n _ O. These expansion coefficients, Jn(X) are known as the Bessel

functions of indices n. The series (7) converges for all values of x,

and can be considered as a def4_ion of the Bessel function Jn(X).

Assuming in the latter equation n =-m, where m > 0, we obtain the

following relation

J_.,¢x).-:(- IF J (x_. (8)

which indicates that it is possible to consider only the Bessel functions

tl,athave positive indices. It aI_o follows from equation (7) that

._(-- x) (--l r _,(x_. m)

We can obtain other properties of the Bessel functions by means of

equation (6). Differentiating this equation with respect to z, we obtain

- ,--,,,i

Substituting here the expression (6) of the function _(z), and equating

the coefficients of zn-I in both sides, we obtain
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On the other hand, differentiating equation (6) _-_th respect to x, we

obtain

\ '_ \" J_'(-,1:'.I ,__: '_ J (x):': :

Equating the coefficients of zn in both sides of this equation yields

I

y (x)----2-[J ,(xl-J._,(x)l. (11)

This equation enables us to express any derivative of flaeBessel function

as a linear combination of these functions. For example,

_'(x). _, 1../,,,(x)--J,,'_,(x)l.

which may be reduced to

Jii(x);-.II[/ ..#x)._2_(:.),.J_.,(x)]._ {12)

We shall now show that the Bessel function Jn(X) satisfies a

linear second-order differential equation. We consider equation (10),

which yields

": 14 (x) ' ./(_)1(n - I)J. , (x_----, :,

(n _ 1)./,,=.=(x) - x IJ,,(-O! d,..(.,:)l.2

Adding these equations and for simplifying dropping the argument x, we

obtain

, , x I_ -_./..-i J. _l+_xJ..'nI% , ; J,,;.,l-'lJ,,.,-'J,,,,] - , : t

We replace the square brackets by the expressions given in equations

(i0), (11) and (12). We then obtain

$ r
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.I ix] I .I_(X} : (I X' i.I ('_) I). (13)
k

This differential equation enables us to study the Bessel functions

J (x) for both real and complex values of the indices n. It is usuallyn

considered as the basic equation in the general theory of Bessel

functions.

If we substitute into equation (6)

z--eM, i?, (1-t)

we then obtain

Assm, ing that both _and x are real, and equating tae real and imaginary

parts in the equation, we obtain

C,)",( _ "'_I ) / _,, _ )I '_ ("' '); _.-)J_)'_.} C()" ;%; 1

) i '* )_.,,m)._ ,,_ .,) ..J, ¢_)-::_ - ..'./ (x)._, ;. , . . .

where, we have taken equations (8) into consideration. The replacement

of _ by ¢+_ yield

// CO',,.).CO,_) .].(x) -- 2J=.Ix) c,)-,'..)? I .-_J,¢x) co,.I? -- . [

.,,incxco-,'.;) :- :2J,(.x)c,,s:_ -- :J_,(.Qco, 3? i • • ] (It,.)

In conclusion, we derive some simple integral representations

of the Bessel function. Applying formulae (9) to the coefficients of

the series (6), and taking into account equation (14), we obtain

2

,I,¢:) ex I) ( in,;,} d_,: j. (x) ,,,...

or)

/J'. (x) --:",2_' exl) (ix sin ?--in'?)d:. (17}
l)

"4
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Equating the real parts of this equation yields

2-

I /co,, _.?--x si. '?)d. (18)J(x) .-_2r. ""
0

(

i This formula is not useful for calculating the Bessel function J (x)

11 ,

1 for large values of the index n, beca_ge the integrand will have large
f
! maxima and minima values. Moreover, this formula does not stress the

I property that the Bessel function J (x) heL.ves llke xu for small values

1
! of n and x, while thls property Is very Important it,astronomy

i
applications. It is thus useful to rewrite equation (7) In the

fol lo_rlng manner

j. [x_= x"X _ (-" !_'x'-','
3..1 . . 12_;).:/..t _2n I ""_)-,.

i = >'" _ 1.3.5 . 12n--I).1.3.,; . . t2_t--I) ( !;.'._ "q

f 1.315... _2,--I_ %_ 2..1 . . . (2// ! 2.;) ,'2_t)!

For arbitrary integral values of n and /_, the following relation holds

- .° 1.3.5 _2n }). 1.3.5
sin- ? cue',' _ d? --=- • • -- . • (2_ -- I )

?...I . t_t_ _ "'_;_.

Therefore,

: x" _ I / 4,_,?(._.l).,x,,co._.,,pJ"(*) 1,3 5.. (2n-.l)_ _. _ --(:_,;)!- ,J_,

or, finally

t' i _
1 ._)

,i_='-",.,1 C¢_ )'I" i_:: .... ( '.v !) .. - _ i

Thi8 formula Isfree from the shortcomings of equation (18) a3 prevlo_sly

mentioned.

79. The Computation of Bessel Functions

In the problems we are going to consider, we have to compute for a
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given value of x, all the functlot 3 Jo(X), Jl(X), ... that differ from i

zero up to within the accepted number of decimals. We will now show

the simplest and most convenient method of doing this. We first not._

that formula (19) yields

X n

I,,(x) 1.3.5 . (2n ])

This incquaitty e_ables us to find the maximum value for nI for which

the flunction &(x) differs from zero within the accepted accuracy.

The first method

We can write equation (7) iu an unfolded form as follows

',( (i,"x',!: . 1 x ' I x
J,,(x)-----1 (l)_ 2 j {::3 '2 _,_,,. ,, _ (21_)

,(x/,, , (: }Lt.,,)= ! .) I I I,, ,1\., )4- t ',.- , '>'(n.: I)(/; ' 2) ) .... • . . (21)

These series are convenient for the purpose of the rapid calculation

of the Bessel functions when the values of x and n are not large.

'. It is sufficient to compute the values of only two functions, e.g.

Jo(X) and Jl(X), and then find the values of other functions by means

, of the successive application of formulae (I0). For example,

J__(x _ " .I, I._i .I,,(x,. 1.,xl .I. (.,t ---/, txl .X ' ' X " '

We should however point out, that owlng to the presence of fat.tore 9 ,x
4 6
x ' x , ..., we will have a progressive loss of accuracy, which will

be all the more significant for smaller values of x.

The second method

Let us introduce the ratio Pk of two ,eighbourlng Bessel functions,

defined by t'he relation

J,(x) l,,Jo(x), J.r.v_p.:J,(x)..... l,,(x)IJ,J. ,(_).

Dropping the argument x for simpllfyJng_ obtain
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J_ J, PIF: It (22'

!

Thus, our task is reduced to the computation of J (x) on one hand, ando

to the computation of Pl ' P2' "'" Pn on the other hand. The function

J (x) can be computed by means of the series (20), or, if the value of
o

x Js large, by formula (19). Let us now turn to the computation of

PI' P2 .... ' Pn" Formula (10) leads to

.r Jk ,1
or

: :!" I
I /'t _:)

P_

Substituting here for k = n - i, n - 2, ..., 1, we obtain

P,,, X

.' I 2n .!

_" P,, .V ' ; I:,..!)

J

I '2 'P: .
{ PJ ._

These formulae allow us to compute Pn-! ' Pn-2' ""'' Pl in a s/mple

5 manner wltbout any loss of accuracy, provided that Pn is known. However,

from the same equation (23), we obtain

._ P" ' ' ,v -- p_ '

so that Pn may be represented by the following continued fraction
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P" '2n I

x--2n : 2 I
x - 2n ' .1

x • • , ,75)

which converges more rapidly for larger values of n.

The third method

Adding equations (16) term by term, we obtain

' I'(;,)..-c,, !-c, co._'_:-c.,co,'.'? !-c.cu,:D i .
where

1:(.;)-. o,,_x co, ,;,-!: -::,Cvco_'_.)

co=d,,(x), c, 21,(r), c., "./:(x_, L _J_,_),
f, 2Ja(>,). C:, 2J6(_'.1, (,, - --2Z Iv), . .

Computing the function F( q ) for a series of equally spaced values

of _ , and applying the usuai formulae of the harmonic analyses, we

obtain Jo (x), Jl (x), ....

Let us for example assume that J7 (x), J8(x), ... is equa_ to zero.

We then introduce the following notation

t' / _1 , _ ,t ,. ' _,1_ , t'. /'i,."._| )

'_ t' 1 ,,': ', t _. 'b ,. ,'J .'Y

Then,

, ,I I_l_ l,, _ '. t,. lc., ' I_' .

_, '.:,, ,q' . (' 2, -- 1:,. /'---_.,

from which we obtain CO , C2, C4 and C6. Similarly, putting

•l' y,. y,, ,'t' .l,',-- )' , t-' y.. y,.

we obtain
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: .',c, ..3c' ----A' VC': _!c, '!c, _ 2,., _:A'

:',G-- lh', _l/._ B'; 6,_:-A'--:'_7

from which we obtain CI , C3 and C5.

For checking, we can apply any particular form of formulae (15)

and (16), e.g. any of the follow_ng equations

: J,,_x) ' 2J.(._) { '2J,,x) : .
1.-J,,(._)--'2J(.v) !'2J,(v) -...

-,t,,x :'J, I._)-- :2;.. (._,, . _'.i.(x_

Ten-flgure tables of the functions J (x) and Jl(X) were givefiby Bessel (I)o

for values of x varying from O.O0 to 3.20 by increments of O.01. Hansen (2)

gave six-figure tables for these functions for values of x varying from

0.0 to 20.0 by increments of O.i.

$0. The Expanslon of the Excentrlc anomaly and lts Functions bY Multiples

of the Average Anomaly

It follows from the Kepler equation

.': -- ,' -,J,/' .:/ (2_:,,

that for all values of the eceentridty satisfying the following

condition

tl..t'._|,

(I) F.W. Bessel, Untersuchung des Tells der planetarisehen Storungen,

welcher aus der Bewegung der _onne entsteht, Abhaadlungen des
Berliner Akademle 1824.

(2) P.A. Hansen, Ermittelung der abso]uten Storungen in Blupsen von

Bellcb_gor Exzentr_zitat und Nelgung, Sehriften der Sternwarte
Seeberg (Gotha), 1843.
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_ the eccentric anomaly E is a f_nite and continuous (as well as all its

! derivatives) function of the average anomaly g. When M is increased by .

i '2 7[ , the eccentric anomaly also Increases by 2 77 • Consequently, any

periodic function of E having a period of 2 7/ will also be a periodic

function of M having the same period. ".

I Let us consider thefunctlon cos mE, where m is an integer. This

! function is evidently a periodic and even function of M. We can thus

!
assume that

"} ¢o, m/: am !-a_" cu_.ll--, a., t',,, 2,U , (27):! L ' ' "

where, on the basis of equations (2),

In partioular, by excluding M by means of equation (26), we obtain for

! k=O

__'- / c,_-l':/:_l- ,'co,,'-,d.,:.

0,', ,:':/: J,'_: e / _'_;_,'"/. r,_-,'",:

_ m i, each of these integrals is equal to zero. Then,

If m = i_ it is easy to see that

i

J

If k > O, then partial integration yields

, '"Ill ,'._ i.'i¢1.
"a '" d ;! - ,

' b ,,'it

I /' l'. _l,',,..'.'N:" k • ..:,_ I! d,': dl'

t_; / '_, '_111 I',11 '_lll /7,1/: h"t'

0
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Substituting here for the value of g given by equation (26), we obtain

2,

2J.- " i
m a'_ _ . 2 / _1. ml:" .:I_ (//: --./,e" .=:t/:'_ J/:

,,/
L,

co'l_ i re)h" _t .,_.,'ldf:.
,,

Using equation (18), we finally obtain for k >

'C _.I-_ ,,_'d ./,,,.,(1,',',1.

Similarly, we can prove that the coefficients oF the series

J

'dr1::;'!:' b_ ,m :1 , b:" ..,.j 2,:_ _ . . (,,._;)

are given by

i
We note that coeff_clents of the two series, given by equations (27)

L

{, and (28) can slmu!t .aneous]y be obtained by considering the expansion

oF the function e_p (imE).

When m > l, the series (27) and (28) can evidently be represented

in the following form

l

,."I',

'HI' ,,

"aI_//:/: ,',v _ ' (.'e't
.,i

When m ffii, then the series (27) can be transformed by means of equat'Ion

[ (I]) into the following form

t
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Slmilarly, using equation (i0), we obtain O_ pO01_ Q_J)'\"

• iJl/ ' , ,,' .,_ p .,'+,_'e) .,I, _,.i: 13(1)
)

Subst._tuting these expansions into equation (26) and into the folle_rlng

formula
%

we obtain'

'2

/:" 'f! : -_*%_l,, "1' _':" _" l,',;! (31)

I _ 2 ,i,C'() c,)_ _,;/.t I ; ,, _" _" ;, (;),2)
!

We now derive an expansion for the square of the ra,IIus vector. Since

' r )_ i I , I ,),i' 'o, I :, ¢'; ..'" t, J, 1:" ', ....).r"- co,',,., •

and

We then obtain

t3-2,

This formula can be derived in a _impler way, if we note th_

; ' ,, ,'.

; and make use of the e.'rpanslongiven by eqtmt_.on (3C). Similarly, noting

i' that

f
(,
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4_..

we then obtain, using formula (31),

1111s equation enables us to find the expansion coefficients

=: _ /'.- ,'T,_CO., ' ,:_,q)
.% Aft.

We shall not derive _he complicated expresstous of the coefficients

El ) g2 ' "'" in terms of the Bessel functions. For practical purposes,

it is sufficient to expand each of these coefficients _n puwers of e.

These expan31ons will be given in Section 82. In the following we shall

confine ourselves to the evaluation of go only.

It follows from equation (35) that

].,U2

The integral of area

_,, , - _

r_ .--,_'VI ','J k"'(l ":),ul

can be represented in the new form:

d. (,_)=dM "7 i " l _" , (._)

])ec,Ruse

,)'/= k), I:t-m ,',- : t_ t,) i ,¢/.,.

Consequent ly

I ] /.
.) ;:,," (1 -_ }-_ dl, . 2fl--(") ,

v
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I I 1.3t, t. ---l'1'3" . .{2/t--I}e..,,,
_,_:" I ; Z,.. t 2.4 • ,.,...:.. .t2/:) +'" '

Evaluating this coefficient by the simple squaring of equation (34) and

comparing the results, we obtain

(l _ .' :' [ '2 _ /'r"l

Anne ta tion

In the expansions derived in this section, and in most of the aFplic-

ations in astronomy, Bessel functions are often encountered in one of the

two following forms

'>-J, _ke) -- 1 (l,c'.,;,_)''ll "" 2.(:..'<'l':"e:!) ......kql

2J/ (h'e_:=

1 q'e' k ,[ 1 k-_-2 k'-'c' , k-t-.t k'e'

We point out the following part._cular cases, which are useful to have in

a readily available form

_) t,2 t,i _.,

" J,(e) =l-- -!- -- .
c 8 ' 192 9216 " "

- J_{2c):--e 1--- ' -
c 3 -r-'2i :_;t) ' ' .

., 9,,:(9:..81et )
- J, ta., = I l- --

J, (t'1 1 -- -
,' " 3 3 I,'3 " "

'_ (;27,," ( 2.'_c:: ,;'.:.-,e' )
" ./, (5e) 1 - _ -- --c ,_Sl :.'I ' I_1tt "

" Slc.' (' 1 ',,": 81,', '_- j,,((;,) !. _ . .
1() ;" 112 " /

• • • . . , . . . ...... , ,

;le: .,e _ 7e"
.Jl (('_') _ l ' -s ' 1!*-' ','.:1_/c"

2J_(2e).,.(i 2e-' , c' e".___ )-- 3 "l" ,; "i1',) _ " "

!_: " 15e'-' IS9," \
2J_ (:_') = s (I-- Iti -f- ._o - )

/
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_J,(_e)=:.:_ (z-- .' - ,\ 3 ' 15 /

/ "?( :::,::,,,,., )zJ_, 5e) ---: - 8-I l - - :- -- .'_'t ' -It,'_ " "

_- 2J.'{be) : .IO "_1_ 7 -[ l iC _" " _]

81. The Transformation of a series in Multiplies of the Ecentric anomaly

into a series in multiples of the average anomaly

Let S be a periodic function of E having a pericd of 2 7f . We ;,_sume

tl: t this function is continuous and has continuous derivatives ro that it ,.

can be expanded in a Fourier series

I
% --- - (l, tit CO', _" '. _l,, Ct)') )/: t

As we have pointed out, S will also be a periodic function of H and

will have the same period of 27 . Hence it can also be e_anded into

the series

1

-)'- An'L, A)C()',,l! ,; /(_ C()', '2,)1. ) IQ ",_I,.li .- (._,,_

Our problem is to find the expansion (38) in the case when the coefficients

of the expansion (37) are known.

Substituting for cos mE and sin mE their axpresslon_ giv-n by

formulae (27) and (28), we obtain

A." U. ;__l IQlu

¢ , d . .

m by the values found in the previous section, w-Replacing a_ and b k

obtain
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1el_,:: %,I_mb IJ_.,,(he)-- J_,,, (_,ejI .
' "" J

Therefore, the trelns_orr_lation of the series (37) into the -cries (38)

is reduced to the computation of the following quantities

Jo(e_, J,(e), 4(e),.
. 4 (.ge), -4(2:), 4 (20,.

• • . . . . . • . • . . . o

This can be done algebr_:_cally up to within c given pover of e, or

numerically by means of th_ formulae given in Secs 7b and 79.

Cauchy had suggested another method for treating the problem under

consideration. The method is as follows. Let us intrJduce the

following notation

Y=-expi/f, / :_. exl)i/1l

We replace the expansions (37) and (38) by the corresponding Maclaurin

series

and

t ", t

S _ P,z. [40)

In order to calculate the coefficients Pk ' we consider formula (4) which

yields

'-I' / .';," ",,,:7 (:i)
!

On the basis of equation (26),
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z _---:exp(- il:.;l)-:exp( il¢ld., t.!'c_ml:'_
I

i+' ',I-:Y a'exP ,2--(Y-- Y-

dA'I e -I1.at: --I--2 fY+Y

.%

v

, Consequently

/ I+''II'+-,J2_.Pk= Sy kcxp -_-(y--y !-- "2fy ' v dE-:
iJ

i =/.-'_
! The latter equation is nothing else but the result of application

of the general formula (4) to the finding of the coefficients of expansion

of the function

' ' I I ;I" T=S 1--,, (y.! y-') cxp . (3.... Y

f

•n powers of y. We thus obtain Cauchy's first rule. In order to obtain

"I the coefficier,ts Pk of the series (40), it is necessary to expand the

[ function T] in whlch S is replaced by the series (37), in powers of y;t

!, the coefficients of yk will be equal to Pk"
+I
! On the other hand, since

t
dz =--iz,

_i d,4I
)

then equation (41) yields

'2r:.P,--=-- i /' Sz-., . t dz /. d.': "_", . d, ll dM ik -j S- I-M dM.

;+ 0
2_ d,

. +

=_,+-,/ ,-+,,,, /dAl d.,H -. --i," _ . ,,.dN-, • . + ,,it:"dr:'.
However,t

,i as as dy aS
dt_" = a.), dl=" " iy

+t d), '

+,
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Therefore, express/ng again z in terms of y , we obtain

"-'r

2_./_-,-/" Uy ,,'4,dl:', . ",;

where

I :. I: l

t' j 'I_, ,_' _' I ll I

This expression of Pk proves Cauchy's second rule. In order to obtain

the coefficients Pk of th_ series (40), it i_ necessary to expand the

k-I
function U in powers of y and take the coefficients of y .

The functions which we usually have to expand are almost in all

-i
cases very simply expressed in terms of the combinations y + y or

-I
y - y . The application of theabove-mentioned rules leads to the

use of the so-called Cauchy's numbers. These are the coefficients

N in the expansion
-P,j ,q

y. t .t
1'

where j and q are non-negatlve integers.

At the present time, all the ex-panslons npplled _n celestial

mechanics are available in readily available forms. Therefore, we shall

not consider here the properties of Cauchy's numbers (1) .

82. The expansion of some functions of the coordinates of the ell_ptic

motion

We have already found the expansions of the radius of vector in a

series, (32), in multiples of the average anomaly. In the following, we

|

(i) See F Tisserand, Traite de Mocanique Celeste, I, Paris, 1889,

234-237, and references cited therein.
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obtain a similar expan_lon for the true anomaly.

We first of all express the true anomaly in terms of the eccentricity
p

by using the following formula

It

t,_.) v'l i rlgi-- I e 2 " (_:_

Putting

I t,-=-.,, I _/1 'r':
,) ,) 1:''" " tl, t

- V I - -- ¢" *

we obtain

l_ ll' -- " l 'r ll,

or

expf2iw)-- I t._p(2i:l) - I
-.--- a I

uXV)[2,tt'} !- I eXp{2l't_! ' I "

Assuming that _ _- 1=' _4 1 ' we obtain

I .... _-, {I-I :,)e.xp(2h,, I--:.,'\pq--2iu}

v_p{2iw)- I . ,t . (t--:_9c,pl.ttl)' 1--:;_',:,_l_t._),., , _'xp (2iu}.

Taking the logarithm of both sides yields

I I
tt' "t . 1,1(1 " _ "..'k,_ '_l!;I) i!|{] "_v\'_i:'.:d}),

.j .tl

or

.. : • "i ' ':. ., .
n d

p . . f .

Applying this formula to equation (42) yields the foll_wing expansion

: ! _ i

wh_re
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P

Rewriting equation (42) in the form

t:' l v

1_ '2 tt '" ')

and applying again formula (43), we obtain

" ' '_ ," • • • (.15)

Substituting for E, sin E, sin 2E, ... in equation (44) the corresponding

expression$ given by equatinns (31) and (28), we obtain the important

expansions which defines the equation of the centre, namely

_,--,!I- - II, ,,in .II I /1. _,n:_),',I ! . . , t-t6)

where

2 " '2 _ ¢ 2 I l- :_t, ',
/ \ /

( ()e _= 2`) _'"' l'/ e\"
H.,. :' ,,_,/ " :_ ,: -t-:_ ,, -I-.

X •

(_ '2,,' I,) 'J ) '

1,,,_._ 10')7 (c')" 7,'):')7 'c)::_(} ') -- All IL 2 -1".

15 ,) -- • • • 16 - --_ 259. '2
, /
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In the following, we give the values of tt I , P2, ... in seconds of

arc where we use the logarithms instead of the numerical coefficients.

H, -- I.;.61.-,v,312,qr f:.712:_F,lJ_, i [-I.(.,:_11'2.1[,.,

- t - - ' ' I.,_..,_,',]c' " ','4 1.,.:_,_Is721[ -I ,.I;I 71:;_;1, [ " -.[:_;,l_l,"
t,t4 I',..;,l'l'allJts ]," - ' ' .... .:,,-= '.... - -.", .,',,,' ! I1.',;'.:' ,' -- I.., ,. -f- • .

, " )-I ', * _ I]1 II/_, l;.:,17.!.',,,_-,l: i;.,..., _,l,. ' !,.1", ' 'l.:,,il,"-t
/_ '-' " . I-,,_t,_]_o-..,.-, l" .,:;I t" [' :""-'I' ""

I! !,:".'':. ,.'. i '"' '." ,,' "':
ti : ,., -. .., ,, , i • ' * t

! ' .t/ ,., ,, ,, ., . .

li..j !-,,'t '_':' ,., ': ..

i6, i'-'": " ]"::
.... /I, ;.; '"t.!] _'_

For convenience, we write equation (22) whlch determines the radius

vector in the following unfolded form

.' 2 "T"

Then

• " ,; " '2
./

.r;, ..'1t,' ) - ? -

<) ()(],. 16 e' '._ I",g e
,_ '._ 7, '2 ' "

(),, ;; ., -- , . , /J ;- , ',t d )

lu
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Replacing the numerical coefficients by their logaritluns, we obtain _

i " )t_,--

O: [,._;'_s'J7_;qe [J...... ,s;]c' ; [<.7',Y,._'le...... 17.711;[,'" t • •
(h ['J.,71o._',:'],"_--['C,:,,(_.'-,[,. : i',f_tl:"..;[e-- [s",[,. I . .
Go "+.... ,',7",7 - [".,,_C,+_,,'Ic'. t'_."l'_.'s]t- + t--i ..,-- I," 'l ---I" '-!_'I,'"
ti_ -l'*.,l::.',;'ssl, " - l'u,,',, ;;,,le; l'_.:.;;.s.,l,' Is.":"'I ''' i • • .
o, --- '_-""'--'7...'-' ""l'" " I".7'"2:'-';'I" l""_"'; e'' l'_--'l;l,''" i
O; _['L;,',I',_._t,': ['_._-.,,17[,". l'_.77t,2],-,, : . .

6ho -[!G._I]e,"--ll,,.l,,;Ic,- '
I0 'v'"_h,---'.l'_._'_'-,l,""l .-,,le'

where we have to subtract lO from each logarithm given here.

It is useful to note that the expansion (46) may be obtained in

another way. Indeed, substltutin_ series L33) .nto formula (36) and

integrating, we obtain

_' :l _ I t': _'_; ,;n/',ll ['1'/_

In the serles-expanslon of the perturbatlo_ function, w¢ make use of

the expansion of the following functions

, ,, ,,

where p, n and m are integers such that p and m either take positive

values or are equal to zero. The calculation of _e expansion of such

functions up to a given power of e is simple enough. We have for

example

/

' r 1 i" r ,_ !,', _t: .I!) ; ::), 1
• ,- , ltl ( ....

%
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_placi_ -/--rand v-M by the series (47) and (46), we obtain the required 'a

result.

7
The eoefflcients of the e_anslons of_e functions (48) up to e

were given by Leverrier (I). Cuyley (2) gav_ the coefficients of

e_ansion of the f_ctions within the s_e accuracy.

()r _- I " " l:Zl'

where p = 0, i, ..., 7 and m = 0, i, ..o, 7, and also for thefunctlons

where n ffi-5, -4, ..., -i, I, ..., 4, and m = O, I, ... 5.

Some of the most commonly used expansions are given in tables I

and II at the end of th_s volume. These tables give the coefficients

of different powers of e in the power series for the coefficients

cn,m _n,m involved in the following expansionsk and _k

/ \r " I' (4'q_
, | ,,Ill'," .'," '" ,11,._,., .... ')1,

d : • . -|I| _ J_ ]

For exampoe, table II shows that

(r', 11 1:,7 ")a,/SiUt' ( 1 ,'i e l'J.! ,'_ " 'C: . c" .-- . . _zl},'J! ;

i ( , , , )'2 ,' -1.2 e .jl(' 1:e" . -.,,,'.!_I ;

- ,. ._1 • II / '

(i) U._.J. Leverrier, Reche,'_tes astronomiques, ._nnales de l'Observatoire
de Paris, l, 1885, 343-365.

(2) A. Cuyley, Tables of the Developments of Functions _n the Theory of

E11iptic Motion, Memoirs of the R. Astron. Society. 29, 1869, 191-306.

I
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In conclusion, we glve the following expansions, which can easily

be obtained from equations (47).

• i !
s, i

T ,,

, --- | t

/i I.",
• ,, /" ,J' ,.(,< ]'l ,

t ¢ I i _" ItL, ' id ! " f , £ I ....

{ '" i ' ill" '

Anno tation

The coefficients of the series (.46) and (46') have a very complex

structure. It is much easier to express the coeff[clents of the expansion

of the equation of the centre Jn multiples of thetrue anomaly. In order

to derive this expansion, we consider the following formulae

i ,L _,

These formulae lead to

Since

where

|
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then

, ) ; _ ,' J , ,
•* '(1 f ,,._') _' . , ' ,

Therefore,

%

.. - ,i ,_, , i { _ ,:', ' ' : ,

Replacing E by expression (45), we finally obtain

_; _' ,_,l ;)'

83. Hansen's Coefficients

Instead of separately considering the two expansions given by

equations (49), _t is possible to stuedy only the following Maclaurin

series

The coefficients ._,m of this series are sometimes called the

Hansen's coefficients since Hansen was the first to give general expressions

of these quantities in the form of series-expanslons in powers of _ .

An alternative and simpler derivation of Hansen's formulae was suggested

by Tisserand (I)•

The simplest way to obtain these coefficients is to apply Cauchy's

first rule. Let us express the function

t,

in terms of y. Since

(I) F. Tisserand, TraJte de Mechanlque Celeste, i, 1889, Ch. XV.

t
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r ] c _0', l. ] e' , I

then, according to Cauchy's first rule, the coefficient _,m will be

equal to the coefficient of yk in the expansion of the following

expression

" I! J I'2 (' ''y' ') ,'xp "" ,. I',' _,-- ' -- I ._ _':,p 1.)., v )• '2 (y Y-') "-" a, " " .
, /

It is easy to see that

T

-=¢I _")'(_-"_!_)(] " i:.i' '),
U

where, we denote as previously

1 , v'l.--e_ c

On the other hand, the relation

It, ' ..'I I "
q,"2 " /l--e' "

may be rewritten in the following way

x 1 1 , ': ,, -- I

-- • 3' l'xl I I _.

Therefore,

x-"yIl_iv ')(I--'i', :

Consequently,

T-:(I }-;_.-'/ "''y"(l--qy)" "_i'(l ,'j, ))"'" 'cx_) I _''' '11'2 (;' "- y- '

Using the binomial formula, we can easily calculate the expansion

coefficients of

1979012780-343
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and obtain them in the following form

where F(a,b,c,x) is the hypergeometric function. Since,

,' ', ]_ [ It'. ." _[ .,,_.,./., I/.'_; v

then the unknown coefficient of yk in the expansion of the function

T is equal to

This formula enables us to obtain the coefficients of the expansion

_n,m _n,m
_k and _K in powers of eccentricity,,

:t 84. On the Convergence of the Series-Expansions of the Coordinates of

the Elliytic Motion

In the previous sections we obtained the expansions of different

functions of the eccentric anomaly E in Fourier series, developed by

multiples of the average anomaly M. On the basis of Dirichlet's theorem,

these series ,'onverge for all values of M and _ only if e _I as in

L

; this case wlmre the expanded functions and their derivatives are

continuous. However, due to the complexity of the expanslon coefficients,

these coeff[cients are usually expanded in powers of e in which terms

higher than a given power are dropped. Accordingly, we are practically

dealing with power series, developed in positive powers of e, the

expansion coefficients of which are periodic functions of M with a

period of 2 _ . The radius of convergence of such a series is some

1979012780-344
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function (?4)of theaverage anomaly, Our task is to find the minimum o

this function, _ (M), when the variable M varies from 0 to 2value of

P

Let us consider an arbitrary function F(E) of the eccentric anomaly and

investigate its dependence on e and M, implied by the Kepler equation.
/

/:--¢ ,l'_ ' .;" I,]_ "

For a given M, this function is a holomorphic fur^+ion for all values of

e for which the derivative

d/:{!. _ .:,I/
1: I/.I

_'e' I -- e'q ,_', l:

is finite. Hence, the general singular points of all the functions F(E)

are given by the following equation

I e".... / (_, _ , '1

which is to be solved simultaneously with equation (51). The only

exception are those functions for wt,ich the product F(E) sin E is

either zero or infinity for values of the variables satisfying condition

(52). We shall not consider these function,q now. ',..e radius of couvergence

(M) of all the functions under considerations wili be equal to tbe

least of the roots e of equations (51) a._d (52).

Let us now study the funetio_ _ (M). We prlmarily note that

'?(= ' ,II! ',_(I11

Indeed, replacing E, M and e in equations (51) and (52) by 7T_ + E, "_" ± M

and -e does not violate these equations. Hence, the above-mentioned

change in the variable H will transform each singular point e Int_,the
O

singular point -e that has the same modulus. Consequently, the radiuso

of the circle of convergence wi]] not be changed.

It is somewhat more difficult to prove another property of the
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function _ (M), stating that the minimum value of this function is oqual

(_TL) Jto ¢ . Ac.ording to Poincare, we consider the _unction

!'(_.'}_-t'.M)(2imE).

where m Is an integer. The derivative of this function satisfies the

above mentioned conditions. The t..panslon of this function in a power

serle._ can be {]one easily usJ-.6 "-rmulae (27) and (7) wh-'ch y:ield

By adopting that

p(l:). ,I,(,W,t}

ard considering the sum

'F(41,t)= q,(,1.1,,,.}_ q,(.-.-I- ,4f,e). (53}

Evldeutly,

t ,.

q" _Af,e) '_,'l 2m z:_ _ {-- I) '_ )'_'-:'_-_:P I,,4 )
,..=a h "=_fl(_ i 2h---'2m)!lh¢ '

since all terms with even powers of z are m:zcelled. Let M = M1 be an

arbitrary given value of the average anomaly, not eoua] to _ He ,'" 2

d.,noteby eI a real number which satisfies the following condition

'_(,41,) • el 1 {5,',)

In this case, the series _ (MI , eI) is evidently divergent. We

shall no',7 prove that the sl_ (53) w:I!l also diverge for the values of

these variables. ;ndee:l,the particular points e of the ,=unctiono

(M, , e) cor}espond to the particular points - e of the function
.L 0

_ ("/1 + M1 , e), although -, e cannot be a particular point of (M1 , e)o
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_ since the sub_titutlon of e by -e in equations (51) and (52) replaces M

by ]] + M. Hen"e, the particular point of one of the terms of the

expression (53) will definitely be a singular point of the who!a sum

since _L # _ -+MI once MI _ _2 . Consequently, the series _(Ml,e I)

diverges, if condition (55) applies. Comparing the terms of this series

with thecorresponding terms in theseries

,,.(_ ) �<..)
Evidently, the absolL,te values of the compared terms will be equal.

At the same t_lme,the arguments of the terms of _r(M i , el) will be

different although the arguments of all terms of the series y

(_ _r
--_--, J el) are equal. Indeed the arguments of each term of the

latter series are equal to

-- _ (2h--2m-[-'))....,n__"'_)h-[r._,-!-_"

as one ca.,easily see from equation (54). Therefore once the series

' _]'(M] , el) diverge_=, the expansion of the function (56) also diverges.

It then follows that for at least one of the functions _ (+ T ' ieI)

"_ th_ series expansion in powers of the eccentricity dlverges, if it

d_-verges for _ (MI , el). In other words,

which w,'_sreq,,iradto prove.
.

Thus, "n order to find the minimum value of the function, it is

necessary to find the root e of the equations
O

I --eoco_/:._ =0

i J I
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that has the least absolute value. We then obtain

min_(,t/)_ ,to'.

These equations yield

t:'o- Ig if,, - : ,,

or, putting E = _o 2 '

_-ctl,:c t). (,_)

We shall only consider thecomplex roots of equation (56). The

real roots of this equation ylelds

1 I -->]

and are thus not intezesting to us. To each root _ of equation (56)

there will be a correz,pondJng conjugate root _'. This equation must

thus have at least two roots. Considering any pa_r of roots _ and_ _

of equation (56)and co:istruct the a_!iary functions

e ° e

These functions satisfy the following equations

du': ' ""_ . 0, d_"

Consequently,

• d'. d';

:' ,:t_: _" d, ( ': :) _""

or

tJ I , _;_ d,J ]
._ .? ( ': . L:)-

: dr; ' dll dd

We integrate this equation from 0 to i. Since at u = 0
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d_ d_'
d.. de

and at uffi I

d_ d[.' ,
du --" -- : "dnt -cos" --': cO_z ,' du

then on using equation (56), we obtain

!

(,',-- :') .]" _' _u _=O.

It follows that for each pair of complex conjugate roots 6 and6 x

L"-'--_? --0,

%,#%

and thus

.F.V ? : > U.

The latter equation holds true only for either real or imaginary values

of _ and _ . Thus, equation (56) has only pure and real, and pure and

imaginary roots. Since the_Irs _ case is not of interest to us, we shall

search for those imaginary roots having least absolute values. Substituting

into equation (56)

we obtain

It :, - ? ,11_ 0

which yields

_t

? , |.|9'16786tt12577,1.t . , ,

Since

t j i

rtlht'?{ ll)-= c',, • ,.it| :! .',ht, '

k,
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then the radius of convergence of the expansion in powers of the ..

eccentricity will be equal to

0.6h_71.;-il'}.il!_4 . .--.. \

This is the theoretical lSmit cf convergence of the obtained series.

Naturally, these series loose their practical value at a much earlier
#" I'-

stage.

Annotation

We have p_'oved that the expansions of the functions of the

coordinates of the elliptic motion in trigonometric series developed

by multlples of +he average anomaly are convergent for all values of M

and for all values of e satisfying the condition

11{}- • ...

On the- other hand we Imve just seen that _4;cn these expansions are developed

in powers of {:, than they converge only inside the interval

_l- t'- {I.q4,2/ ,

Thi_ chauge in tile radius of convergence is related to tile fact that

when the Bessel functions are expanded in powers of the eccentricity as

Ja'll't') _! . _121' ,' 21 l " " I

the accuracy of approxlmatJng them by the leadin_ terms of tlle expansions

decreases with increaslnE values of k. For example the ratio of the

second term of this expansion to the first tern; equals Jn absolute

va] ue to

i

and thus increases to i_fluiiy with increasing va]ues of k.

i
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85. The Calculation of the Longitude and Latitude of a +Planet

Let us denote by w the longitude of a planet in an orbit. This

longitude is expressed in terms of the previously used quantities by

the following rel_,tion
/

to-=,-. , v- "2 i _-; _ _ )-u. (.",7)

Let us denote 1,y _ = _ Q and b = PQ

_4' (Fig. 12) the a,-ilo_entri("longitude
P

apd latitude of the plauet P. The

0

rectangular spherical triangle PQ

Fi_. 12 yields

l<(! - U) c_,,,i tg at (,",,_

sJub ",in ism u. {5")

We ma_e use of equatiou (43) in order to deternine _ from equation (58).

Since in the present case,

' cu._, '. 1 q4'_,

then

": I i I i
"I l---_z=,Id I_;- .%111°I._', I_I ,.,lll+]/d -+ atcl' " " ' '2,_c1' . '

*t

;[ Taking equation (57) into account, we may write

t t w i ],',
l

' 1 where
|

_I 4' I

I i

arC !" l_: ,) _I. _U II_* l, _lu lu --
R

- arc2" ....

I ' r
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We shall call the d;Lfference R between the longitude and latitude

in the orbit the recuctlon to the ecliptic. For a constant orbital

slope i, this quantity may be tabulated by the argument u. A table

which gives the heliocentric latitude b by the argument u may be

similarly constructe_.

A,

r ill "
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CHAPTER XIII

Tl_ SERIES - EXPANSION OF THE PERTURBATION FI_CTION

86. Introduction. Expansions in _owers of the Mutual Slope

In order that the differential equations which define the perturbations

(See. 15) =an be integrated in a general and not in a particular form,

it is necessary to have an analytical expression for the perturbation

function

i_' - k;m'4;,,, L"=:k:mk', ,,. ,

wher e
I xx'-FY/ _:z

I xx'-FY/d-::
4'.._ _- .A- r: _l

in terms of the orbital elements a, e, ..., a', e', ... . In this Chapter,

we only consider the most important methods for obtaining these expres_ioEs,

which will indlspensibl_ have the form cf infinite series.

First of at1, we shall consider tlleseries expansion of the qua_tlty

_"==(r:-r-r-'" 2r¢ co_ll_ _, (2;

where H is the angle between the radius vectors r and r'. Th_s quantity

is known as the principal part of the pertuub_tion function. Its expansion

is the most difficul_ part of our problem. The expansions of the other

parts of equations (I) are relatively simple.

The expression of the radius vector in terms of time and orbital

elements has been studied in the previous chapter. We now consider how
]

to find the angle H. Referring to figure II, we find from the triangle

-/%- , -f_] and N the sides N and NI and the mgle J (we are keeping the

notations of Sec. 68) either by means of formulae (16) of Chapter XI, or

! I "
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by means of the following relations

.q. J ,m N = sin i' _i.('2'---_) 1
_m J cos N _-=cos i' si. i -. 4, _' co.', i O,s (_' -- _) !
,.,nJ ._mN,.-_._i,i .4::(U'--U) 1
.I. J ¢,,s N, -= -- co_ I' .qn i -_- ,,ill i' ¢o_ i¢(_s (e' -- Q), J

which are consequences of the main theorems of spherical trlgometry. We

can then represent the longitudes w and w' of planets P and P' in their

orbits in the following way

assuming that

- .-, A', -' -,2'I.V_

and denoting by W and 7' the longitudes whlcb are measured from the

intersection po!nt of the orbits. Consequently, referring to triangle

NPP', we obtain

c,._ t/-= co< tl' c_. LL"-!- .i. it;' .4. it " c_,../

or

co.t/=co_(tF"-- U;') -2:" _II, iV.In t[" (t}

where

d

:_"

We substitute this expression of cos H Into equation (2) and write _-i

in the following way

' | .1_: rr' s,. W st. iV' t =
lr:+.,':- '2,,'co_(W --W_l-"iI!;c,./- W'2

t T
rr cu.g( W)I

We only consider the: case _,n whLch the second t o_. :[n,_ide I:h,:,-u_vud brackets

is always less than a proper fraction. Since thls _ ,c:,,Is in absolute

I

i i w
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values less than "

4 =: rr'

(r ---r'): '

than this condition will be satisfied, as it is easy seen, for all the

large planets of the solar system. Indeed, the maximum value of angle J

betueen the planets in orbit (occurring for Mars and Mercury) equals

only 12°30 ', which gives O"_-- 0.0118. On the other hand, the

difference r - r' for each pair of planets will always be greater than

a given quantity which will be the greater, the greater the product rr'.

We shall not consider the cases when the above mentioned condlt_on is not m

me£.

We thus expand the secon4 factor in a series. Applying the binomial

formula and assuming

(i) A more general methcd of expansion of the perturbation function,

which holds for arbitrary slopes but is in turn much more difficult,

has been given by Tisserand: F. Tisserand, Tratte de Mechanique

Celeste, I, Ch. XXVIII; H.C. Plummer, An Introductory Treatise on

Dynamical Astronomy, 1918, Cambr_4e;

O. Backlund, Zur Entwicke!ung der Storungstunction, Memoirs of the

Academy of Science (Memuary Akademii Nauk) VII serie, t. 32,

1884.

A detailed bibliography is given in: H.v. Ze_pel, Entwicklung der

; Storungsfunktion, Encyklopedie der Mathem. Wessenschaften Bd.

VI, 2, 1912.

.=.. ?

| ! I
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!

-%, lr"• r'-"--2rr"c(_(_t"-- _[r;]:,

We finally obtain

These terms are sufficient for all of the large planets•

Let us denote by H and H _ the perihelion distances of the planets

P and P' from Point N at which their orbits intersect. In this case

W - II ! t,, 1,V' :11' t-t,',

where v and v' are true anomalies.

Formulae (5) defines the expansion of tb_ principal part of the

perturbation function in terms of the mutual slopes of the orbits. We

now consider the second parts of the functions (i). Since

x.r,' i yy , :Z' ---rr'(:c) _,t1.

the calcula ion of the-second part is then reduced to the computation

of expression

•. R rcosl/ rc_,.ll
r, _ , _'1 - tz

Using equation (4), we obtain

r [co,; ( W' -- tV) - o_-co_ ( W tV_ t- 2'co_ _ W' W)I [
r'R, = r'

r'R'_ lcos(W' Wl-_Tc.s(l.V' I.V)-!_-_cos(W' _ W)I.I

In order to obtain the expansion _ of the perturbation function, given by

equations (5) and (6), in a final form, it is necessary to express the
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I
coordinates of the planets, r, v, r' and v', in terms of the orbital

elements. For this purpose, it is r_ecessary to again reconsider the

i
! partlcular case in which the eccentrloitles of the orblts are equal to

zero, i.e. when the motion Of planets P and P' proceeds in a circle.

87. The Case of Circular Orbltsr
%

If £he eccentricities of the planets under consideration are equal

to zero, then

• --=_/, W == I., r' a', w' =-__',

where we denote by hand _ • the average 1ong_tude in the crblt. Putting

L _- _. - :, /." _' -- :',_

we obtain, instead of equation (5),

! a-.,_I--al /u-/v, .... (D

where

1/ -. g," .._--.It, • .'} ,2 ._jll L 3ill 1. [

II1-=.'-' a'" ._ ". 0 _ 4111; I. hill" /." '*' tgJ

IV==a, .', A,.; . 20 ."; sill _1..,11" / i
• • • • . . • • • • • • e • I

f

In tb._sway, the proble_, of further expansion is reduced to the

expansion of a trigonometric series of the following type

I n I

(aa') _ %, _ ,:" -*_z '! ' _'_,o_ _ . " h .

where n = I, 3, 5, 7, ... and S = L' - L. Moreover,

d]
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Choosing our notations such that a _ a', we can consider that

and write

(1--2=cog S-i a:)" I,N_b'_'cosiN, t',' -.a

since the function standing on the left-hand side can ev_demtly be

expanded _n a Fourier series. The coefficients _(i) are kno_ as the
n

Laplace coefficients.

Furthermore, putting

n- !

..-= : b (10

we obtain

eI i t '

(a.') " a,': .' ' ! N_ c+"• L .__a ,, cos i(k'---Lj. (!1t

We must note that

_I +e /)(T; i J+ (Jl
+ n ' C ,i C n "

Substituting serie C!l) in equaEion (7), we have to mtlltiply eoch of

these series (for n = 3, 5, 7, ...) by one of the following expressions

'2 si. L sill/.' _-- cos ,L'- 1.) cos(L' [ /.).

8 sin: L si.' 1.'.. '2--'2 cos 21.--'2 cos '2 l.' ; cos_:21+' t 2 L)-{
l.C,_i <2/+' --2/.).

:i'..I Sill" #...-,ina #-':. 9 {.0..-,(k' -- 1.) q cos (l.' t /. ) i
-p3 l'.s (:IL -f- L')--:I Lu., (3/+--/.'J-t
-t-ac._(IL-t L) :lcus(;ll.' Ii t

-i _.o,_:lL'_;lg}_c_,_(:lL' i 3L#
• • • • + . , • o + , .... , , ° , • ,

In other words, we have to calculate a product, of the type

cos v'q%_-,,'l I _ ,,lii+, c.si(L'--LI :,j+_.jc,_ cu,_li(l.' !.) F'I t

"I"_ _,_ ,"i+co,', liiI.'-I.I- "I.

ii , ,
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_le two sums on the right-hand side of this equation are equal, and _

they are found to be so when i in one of them i8 replacud by - t.

r

Therefore

'_'c_'cu_i(L'--Z.)-\' _':' -cos,,_., _., t'_,_:.I _(./.'- L)-F'l.

Using this rule, we can easily find

a'll.= , _.j-3 c°sli'l-lj(L'--I,)-- _%_-"',:U._lli- t l)l.'--(/-l)ld.

or, replacing i + i in the first sum by i,

We calculate III, IV, ... by the mine method exactly.

Substituting the resulting expression3 Into e,pmtion (7), and then

collecting together the similar terms, we finally obtain

1%_,_'..1_,,tlt.' .,'.io'A u 2---

V
_: a'lJ,:os[_ i)L'--0--I)LI-_a

-t-_"\' _' t:',,.o.,!(, _ .UL' _,--4) 1.1,._a
• , . • • .... , o , o • . . .

where the coefficients of these series are given by

" "'i :_ _ (c" _' '2 c, _a'&=c_,_-o:c,, _ ., i .)-

[ It.;c_ I I_qc.,-- . .

,,'/7 -----,c ,-- .! "t c,, t-i_ _ , i ";_, t- --
3;3

0'('.';_'-t-_, , c, 4c. )-k. •
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a'c,. :_c',"- I'.zii_"_c";".kc_"')-I :_r,__,i_'_:_'"' "' ' xc_'_+:_c_'_")'' - "'"

a'D,--= '" q,I .... i,. .lljl. l, ,16q .(_-2_'(c,, -t-c, • .
35

I,) ..
a'h.'_ ,, 12S c, --

Formula (I2) defines the expansion of the principal part of each

of the perturbation functions (].) for the case of circular o__hils. In

order to actually perfor_:L this e_ansion, we only need to be able to

calculate the coefficients C(i) , or equivalently tl_eLaplace c.oefficle._t._n

for tee values of o_ = a/a' under consideration. The way to do tllis

calzulation will be sho_m in one of th_ coming sections.

We now consider the second part, of RI and R2, of the perturbation

functions, namely

A'- - k_m' (._ ' A'lP, A" _. m' (A ' .-kvj)

Consulting formulae (6), we write

a/,. - _11 _')co_!,"--I.) _-_:'-,'o_(L' l-L) I

a'A':' a'_(l -- :_)(._(L' t,) i a-'_:co_IL'-_-L).I (l,W

Comparing these expressions with the expansion coefficients of series

(12) obtained here, we see that the influence of the second term of the

p=rturbati¢_ function R will be completely taken into accounu if we

_eplace

"" _1 ,i.. _, _ a I *II )

a,l , .; _ _ Jtl I

O_klk_'_" Oil;'"'

&
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Similarly, in order to obtain R', it is sufflcient to replace in
¢

expansion (12)

J .%, ,ipL'. ,:'..%,-s (I---:}

,(1_" _'/;,, - _

In this way, the problem of the expansion of the perturbation functiom

for the case of circular orbits is perfectly solved.

Annotation:

It is important to note that the _econd part of the perturbation

function consists entirely of per!odic terms. This can easily be seen

from expressions (13). The perturbation function does no= include

other secular terms except those which can be obtained from the sum of the

expansion (12) for i = 0.

88. Expansion of the perturbation fonctlon in powers cf tPe eccentricities.

Newco_'_s method

We have seen in Sec. 86 that the perturbation function R _s a function

cf r, r_, W = _ +v and W' = Fi_ + v', and it is thus possible to

write

,'\'/(r, r, U/, _" ).

In the previous section, we have put e = 0 and e' = 0. Consequemtly,

r, r', W and W' have been respectively transformed into a, a' and

/ II ,U, I.' I_' . ::,

where H and M' are the average anomalies of the plauets tinder considerat.ion.

In :_hecorresponding case, the fuuctions F.(a, a', i,,L') haw _.boen given

OF ,OOWq_'_'_'\'_

......... ,, ,,H ..... _ ..... - .............. I II I
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by formulae (12) and (13) in the form of unfolded expreesions. Q_I o

We shall now consider that the eccentrlzities e and e' have small

•,alues. We shall expand the expression f(r, r', W, W') in powers of e and

e'. In order to simplif, the application of Taylor's formula, it is

better to consider the perturbation function R a s a function of log r

and log r' and not of r and r'. Actually, the transltion from log a

to l_r will te performed by adding an increment, whereas the transition

from a to r is done by multiplying a by some correction factor.

Hence, we assume on one band

A' I:ll_: ,. I_ r. |(', _T"_,

and on the other hand

;_r lua ! ;,, Ilzr' Iv.a ,,'

W I. • 1, _t ' ,.-4' ,-J ,

where be denote by

/ ..-. I,- _' I' I" II'

the eqtmtion of tilecentre for the planets under consideration.

We have proved in Sec. 82 that ff and f can be expanded in powers

of e, in series having the form

. I :_. ][ ,, , :'- ', , ,,
'i " "' '; ' _ _ ,_ . _ I

i

.. t t ', 1e , ,,
l, = , ',1 , *a

' .," '___l, '.! c I _:' ':'_ : _k ! 1.'

Our task consists in expanding the expression

/,' ,"t ",,' ! f,. l':.J' ,,. / r, 1

in powecs of e and e'. For this purpose, we apply Taylor's formula,

n
e*

/
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which can be represented for the nase of expanding a function of several

variables in the following symbolic form

it, I %t.;..-i AU,v-i ..... I t'\l_ ;_ • At' .,'zi, r, . . . 1.
• (':1 I '_

%

To make this formula more compact, we introduce the fo]low_ng notations

o 0
i; IY

d(l_ a,' 0(1_ a'l

6' ¢!

l& OL' I_ aL ' '

In these notations, we shall have the following operator equation

A' := _, t) -]-/D, ]'DI) !" I;.' a, L, Lt.x I ,'.. , f,'l/ 1 IIg a, _.

Since the operator exp (_ D +3"D' + fD] + f'D_) is a product of the

fol]owLng two operator=

c,.plfl, i /l,,)a,)t,_._l,l[,l/ . I'DI). I,lS)

then the operator equation under c'ons!derat5on is tl,eproduct of

each of these operators and the functJon

I (I,.,,:, 1,4a', L, I.'_ lib)

Puttlng

'. ,'_1'(1 11_, " "_l'(l'--.IL'),

we can write the function (16), represented by formulae (]2) and (I_),

in the following _y

i'

v 1.'(:,."",,',

We ,nult[ply t_e arbitrary term
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_,f this series by th_ftrst of the two operators given by equation (15). Since

,0: cl , d J/,,I."| - li /hA"'- - l._a_',¢Ip

then '

,,., (_/A l:', A" hi ,'.b-r / /¢'.-., . I _ --L I,' -11 17

i

Let us now consider equations (14). Putting

whre k° , kl, ... are functions of D, s and M, and

t

!, t'Xl, iJ _1 ;/I

we write equation (14) as

(,,p : --. '_ ,_ t" I _' ,_'

.'D ' (ll,

/

' ' "_i-"-i" '-_!i_,,_- "_,, +' 8 ' 3 " "

Substituting these expressions into equation (18), -- r,btaln

' ' I1' P " !

',_ II,I_;'7 ,
!

_'. - :-li.:!A. II:- I- I1-'.:1L- I
, (14,

.... • • • • . • • |
A

,I',..II:,d'-l-II "" ,I'" : : • • • ; i," .,,-". I
• " • • • • , • - • .... • • • • • • I

.here _ FI:4,,= (D/s) is an n-order polynomla] in S and,D. These

symbolic polynomials will be called operatars. It Js eaey to see that



•. ._ , 4+ +,_"

* LP
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II_(I),--:,)--II" ,,,tlJ4 .s) P

n
Thus, the term of expansion (17) that contains the factor e wJll be

of the form +.

P'l n

#! I _!

where m = n, n-2, n-4, ..., -n , and

/,_,(.,.+'_..II_,//(+s._').

Multiplying expression (20) by thesecond of the operations (15),

i i

and denoting the correspond_ 6 polynomials by I_, we obtain for the
m4t

expansion term of function (20) having factor e in the following form

_. +,.' _ ,,, _ ..
q " 4 _ 4

F7 4_1
The result of acting first by_and then by o_,on the coefficient

(H (s,S) may be represented as the result of action of the composite

operator

It" ..'_. ,. ,1 11'(/J. _l!i... _/J, _ D

In short, assuming that

I1' " II1_ _ I t" (_,._ I-_ . ' + tq

and separating the real part in expression (21), we finally obtain the

, expansion of the perturbation function in the following form

' f,' vt'","l '' ',. +)_',,,_/. ,-_/ , ".',1! t/z :I). (Y'
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; where the indices n and n' vary from O to +_ , while the indices S, S',

m and m' vary from -_ to +_. The coefficients P depend on the

semimajor axes a and a' and on the mutual slope of the orbit J. Equations

(12) and (13) indicate that the sum S + S' is always an even integer.

Moreover, taking equation (14) into account, it is easy to see that

each oE the differences n - m and n' - m' is also equal to a non-negatlve

even integer.

Thus, the expansion of the perturbatlon function in powers of the

eccentricities is finally reduced to the calculation of the operatoms.

For the initial values of the indices n, m, n' and m' the calculation

of the operators is simple. With increasing values of these indices,

complexity of the calculation rapidly increases. In order to calculate

the operators in these case it is advisable to use the recurrence

relations existing between them (1).

We have seen in the previous section that in the case

when e = e' = O, the secular terms in the e',anslon

of the perturbation functions are entirely o_tained from the expanslon

of the principal term _-I. The application of the operators can only

give perlodlc terms, as we have already seen in our consideration of the

above-ment ioned method cf expansion in powers of eccentricities. _hLs

enables us to Eormulate the following theorem.

(I) The methods which have been suggested f _r the;calctilatton of the

operators are given in dcta.il in the monugraph:

B.A. Orlov, Expansion of the perturbation [u,_crions by Newcomb's

method, Transactions ot the Astronomical Observatory of tt,eUnivers.lty

of Leningrad (Razlozanie perturbacionnoJ Funkcii po metocud _'Jocoma,

Trudy AstronomiceskoJ obsefvator_i Leningr.,dskogo _mivers[teta)

6, 1936, 82- 125.
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Theorem:

The secular terms in the expansion of the perturbation functions are

obtained only in the expansion of the principal tekln.

In conclusion, we note that in order to carry out the expa_sJon

given by equation (22), it is necessary to not only know the coefficients

(I0) but also their derivatives with respect to _o_ o<. Indeed, since

o< = a/a' then

[j _i d ,tZ d d dc! • d

Hence, we L:auconslder D as the diF_ferentlatlon symbol with respect

to _g o< and write

d a (,,,
D' _..... (_' .!,",. )

" (dht ,)'

_mnotat ion

Foe an arbitrary homogeneous funct$o_ _(a,a'), the order of

wh_c_ is -1, Euler's theorem gives

,..,.. .,;.

or

Thus, for any such f,,nction, the following symbolic equaticm folds

1) : I)' I,

From this equal':l.o'r., it follows that

I1' ' II"(- l)--l,x'),

Hence, the calculation of all operators
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_o. The Final Form of the F_pansion of the Perturbation Function _-_

In the_previous secLlon, we have become aquainted with the methods

for obtaining an arbitrary number of terms for the expansion of the

perturbation functions in powers of the excentrlcities and mut_ ! ..

slope of the orbits. I4ehave shown that this expansio_ has the

following form

• f , 9 . J ,1__: v Ixc"e _ ; ' c,_ _ ¢.if :;'L' i. ,,,4I. b m',U'). (2:_

where h, h' and f run over the values o, 1,2, ... while indices s, s', m

and m' take tile values O, + 1, -+ 2, .... The slnn m + m' should always

be equal to an even integer. The differences h-/m/, h'-/m'/ and

2f-/s+s'/ may be only equal to the even integers O, 2, 4, ... The

coefficients K _epend on the indices h, h' s' m', s, , m and and are

functions of the semimajro axes of the orbits a and a'., The power of

each term of the expansion (23), i.e. the sum ]L+ h' - 2f, is

equal to or exceeds by an even integer the following quantity

Expansion (23) represents the perturbation function in the form of a

trigonometric series o_ four arguments. It is the _imp]est of all

representations of the perturbation r.unction as an expllclt function

of time.

In order to integrate in a simpler way the Lagrange euqations

which define the osculating elements (see. 13), It is recommended to slightly

modify expansion (23). Noting that

I$/= 1. -- II, 1_! /'-- I1',

?.

m_' M
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then this mpansion may be given the following forte

_'_-_ _EA'e_r'_"=t' c,,-_M. ' D'i.'-]-qll-] q'll'). _2.ts ._

Indices p, p', q and q' run all the integral values from -08 +_ ,

/

where the dtf_'erences

; h-- ql,. Is'-- q', 71-- P ]-B'-!-q: q'

;,

are non-negative even integers. We thus write

h . ,"J " J1.-t_ • IJ • ,I i q : ',l[ ' ,¢

From this inequality, it follows eh=t

i; : /I 2/ .: ;, _ p

It is easy to see that thed_fference between the left and right-hand

sides of this inequality is always equal to an even integer. Hence,

the power ofeach term of the expansion (24) is either equal to / p + p'/

or exceeds this quantity by an even integer.

We cannot directly apply the expansions (23) or (2&) to the

_ntegration of Lagrange equations. The reason is that these expressions

involve the elements _ ,/_ and J' %_i(:h define the mutual orientation

of the orbits, while the d_fferentlal equations involve the elements i,

-_",.._, i', ... . In order to obtain the perturbation function R in

the form of an expliclt function of these orbital elements, we use the

following relations

II:: =--'2 Al, ll':= ='--'2'--_

1. =- II , ,1I = : nl -{. ; -- _2 A', !.' n' l Jr" _' _ '2' -- N'.

Therefore, the argument of the expansion (24) may be replaced by

n(m "-_l- .o'(n',,-}-.'} l-q= ,-q':'--(n .,.¢)'.2

-- fp' + ¢'J ,2 -- i,o -t q) ,v-- _,o'-F q') A", '_

L
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D-+--j- _(N-¢-N')+ -_ _(N-- N'), 12s)

where

/

o .=a(nt+ ,) 4-p' _,'t-F, )-_-q_+q',.' - (p-f.q) 9 --(p' + ¢')Q'
,_=-p -.¢ _.p,_q,, _--p-¢ +/ +q,. ,..

When we are unfolding the cosine functions having arguments of the type

(25), we find that the factors of the expressions, which do not depend ".

on q ,/7* and _ , hgve one of the following forms

:,,,, I ?(A'_-A"]. ,:j,,, I: '"' '2 "' 7 "_(N A'I. (26)

where _" = sin ½ J. Using formulae (16), Sec. 68, to express these

quantities in ter_.sof the elenr,ents and using Eu!er's formulae, we

obtain from these equations

1 I i' / .t'_p I ,_, ,_,j_ I --

i : t

i ,, \" 1!2- '"

'J",_ .J t'_[t I:_' ,X' , t ] - ¢Ob ttJ', ,_ • t',,[t I ') I*}

!

i -" h , ',_. t .1_ 1" '.: _ -- I
I '2 ' " "

Raising these equations to the power /_ and malting a transition from theII
exponentional to trigonometric functions, we obtain the followlng

expressions for the quantities

I , I
: _(A , .V_, II :'_' -- :_,\ .V_ _,'

i '_ ' |

ia temps of the orbital elements. On the other hand, by applying the
|

same formulae (16), Sec. 68, w.,obtaln a_ter raising them to the
l

! second power and add±ng in pairsi
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Rlaslng these equations respectively to the powers f - ½_ and -6

and multiplying them term by term by the expressions obtained for the

quantities (28), we obtain the f_nal expressions for the quantities (26).

In this way, the perturbation function R will be given the following

form

( ;)*_ %_ae" e'h sin sin cos Do. (29J...a 2

where

&_=P(nt+,)+p'(,,'tq-V_q ,1: _ v':'.k_u.k,'u'.

i
!
t
j The coeff±clant A depends only on a and a'. It is easily seen that

the Zndiees p, p', ..., s' involved in the argument D must alwayso

satisfy the relation

PqP'i v f-q't s i ,'- (I,

Indeed, the perturbation funct_.on R does not ev .,ently fepend on the

initial point for calcu!atCng the longitude. YGt, if this initial point

is dlsplaeed by an angle_, then the argument D will be changed intoo

(p + p' 4- q + q' + s + s'), and slnee the functlon R does not

depend on _ , then this quantit7 should be set equal to zero. This

means that the trigonometric ser|.es (29) _s developed not by sSx

indices, but only by five Ind_ces.

The actual %_rk_ng up of e_panslon (29) Is an extremely tedlans
!

Job and it has never been actually applied. The theory of motion of

L L
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large planets, developed by Laverrler, which describes the most commonly
t

applied metbod of variation of the elements in the analytical calculation ,;,

of perturbavJons, is bascd on expans.[ons occupying an intermediate place

between formulae (2&) and (29).

Laverrler l'.Itroduced, !stead of the longitudes L and L' measured "

from the point of intersection of the orbits, the longitudes in the orbits

(using his notations):

, 1, 1,I tit-r-* " ' =, -- n'l h:.' I. ;

Assuming

;-'i ¢ -'.--

yields _¢'"

Similarly, uotir that tim longitudes of the perihelions are equal

to

i and assum2ng

we obtain

k

I
f

I Substituting expressions (31) and (33) irto the expansion (24), we

finally have the followlng expansion for the perturbst!on function

It' _,Ve_t'_':q CO,.lj,.._-j'l' i I,_ t-,b':':'--:.)g:'). (:_4)

This expansion constitutes the bas_s of all Laverrler's work.

It is easlly seen that the J, J', k, k' an4 2g are related by

the fcllowlng relation

J-_-/+ _ -I- k'-- _ - _,
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Thls _elatlon is a consequence of the independence of thu perturbation

function R on the initial point for calculating the longitudes.

The auantlt_-q _ and 6_, d_;,_,L=u by equations (30) and (iX),

differ from e and 7_ by the infinitesimal quantity _" - _ It

easy to show (though not tmdertaken here) that _.

i I'

tg2 tg,,sin(_'--U)l

tg ,, -- -}-t_- i "

Hence,

i 1' I' .

', ', ;- '_ _ t_" -,]-_,,, U)+ . ,. (35)

In order to make use of _e expansion (34), Leverrier was obliged

to introduce some special modification into the Lagrange equations

(See. 97).

90. The Initial Terms of the Expansion of the Perturbation Function

In order to carry out the expansion (24), it is necessary to

(J) of the ratio
express the c:oeffic_ents K in terms of thefilsct[ons c]¢

O< = a/a' that hve been introduced in Sec. 87, and then to compute

these functions for a given value of CK We shall consider the latter

proble_ in the aext cbapter. Here we shall consider the calcu]ation of

the coefficients K in an explicit form.

We s_all confgne ourselves to second-order terms with respect ,o

e, e' and 0" • The operations described in the previous sec_!on will
_t

then apply in a quite simple manner. It [s easily seen that these

operations will lead to the following expansion for the principal part

of the perturbation function
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a',% t:_ !I,.,I "Z 'r"' ;il o':C"._ _-t 81 (e... t..e,:){_4f_ t Dq-D"lc',"cos V+

+ .]-e'_ I (--2i--O) c','cos{ V 1_,_!, -t- -_

'r'-,.ile"%'_(_i__1 i l))c',"co_(V-{-l_1'_-{

I e_Eili:_fii_{_ ,. 31D--{ O_l (,"'¢.stV t 2,1l)-i (_

4

I- e'e" I " " _l _. -. ( tt-- 11 /)-- D lit t'_.!l, I/ ) •dllUm

I
:N'lh '1 _ 4 ;.t'li-_-.,I 1)" tJl _ c,,_ I 2111 iC'

T S -,.-

--_ "co, V ;-2L) i")

where, the following notation has been adopted

,)
V - t {L' -- ,'.), l) - •

bilge)

and the summation _s to be carried over the values i = O, z !, '_+2 ....

9'._ r.-,,.--5tdr_uof the perturbation function can be taken into

_ccouuc ._ _e.ah_of the methods giwm at the end of g,,,c.87, In

fact, the serles-expansion of this term ca_ be ±mmediately written

doi'n us._ng formula (36), Indeed., assuming that the eccentricities

e and e' are equ_l to zero, tl-esecond part of the pert:wl-atlon

funatlott

r¢osH

will be defined, according to the first of formulae (13), by the

following relatio_

a'l¢,.- all =,)c.;(L'-L) } a;'-'co,lL' _ L)
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ComDarlng this expression with that given by equation (12), we

see thst the former can be cor.sldered as a particular case of thv.J.atter,

:;fwe put in that latter expression

'lp i--I, ..,l ,)
(i --CI "--_, ¢, __2,

_(i) to zero.
and equate all tbe other quantities [;k

Applying in a sim41ar manner formula ,3o), to this particular

case, we obtain in te1_r,sof the ._econdpower of e, e' and O'.

! 1 l
, '"'I¢,It -__e:-- :2-c- -- :- ' o,,(/. --I.)-

%

:; . . I . .
'2 e ("r', L/.' il) 2- ¢ ¢o..,(1.' " il)

_¢'c,,s(_L' i.-- li') !
,;

) e:c,),_l.' :-L '2' ) . _--{-8- 8 e" t'(,,(/. .;1. 211)-'.

Le,"¢o.(2L' 2L--II . lit -.h'e'o/-,i"L' I1' 11)--_
I .:7

--,"-¢u,(L'-!-t--_211 1-_- -e.¢u,L'd.'--l. _11) :-

:-'c.-,L : L) ,

_ary, the seco-_ vf ,o].n-,l.a,_(13), :4hich yields

r Cu, !1

II'RI a' r: -., ,I _-)c,,,(i.' /1 • ::¢v,(l.' :-l.'

indicates that the second part of the perturbation function R' can be

obtained from exNression (12) by putting

I ( I Z I '1 l I)

Again using formula (24), we obtai_
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' i_a/,tl i l - I I x
+,

-4-'2eC,,.,_L' -21. • IIJ
'; !

;-_-e Co,(/.'-FL -'.'11) i 8,"cos(L' ;JL t-211) _

-+Vef'CUSl.2L'--2L i1' !-II)--:_ee'cu,(:>L+_ll,_ll). t

. ,,(i." i L--211') _.(e_cos{:_L'--L -211')-{-

4- :_ co_ (1.'- r L) i • •

This is the expa:nGon of the perturhat[o.-_function in the caae _fllen

terms of the thlrd-order with respezt to the eccentricities and slopes

can be 1,eg_!ected. This expansion has a!rcady been p_'evlously obtained

by Lagrange and Laplace te wlthlr the same accuracy.

In order to oP.tain the perturbation of t'.q_,c,,ordinqtes _f large.

planets with an accuracy corresponding to that of the recent observations,

it i_ ,ccessary to carry out the expansion of the perturbation funetlon

uo to terms of the 7-th order inclusively, lee Fossi[,ility of doipg

such expans__ons was sho_: _v Burckha,'dl-. His calculations were

corrected and _eveloped by Binet and de Pomteocou!ant, who gave

ezpa_.,3-onsthat ,ncluded a considerable part with sixth crder terms. The

complete expansloi: of ",h,e,.-.rturbat_cnf'..:nctionup to 6-order t_,rms

inclas[ve!y, _¢as f.,rstobtained in Pierce's _ork in 1849. F_nal,._

, f!)._n 1855, Lexerri=r" pubiisbe_ tneexpanston of the perturtation

funet_o_ up eo the 7-order terms ine.l.ustvcly. The accurate expressic.:_s

which he obtainec_ fo: all the ter_s up to th.i_ liar.it ;"d nr,,_ ,o_;ae tho.[r

(]) A,ma!es ,le l'Observatoire le Paris, t.l, 1855.

'i

l
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values, even at the present time. Boquet (I) included all the 8-th

order terms Into the expansion preser'_Lug Laverrler's method and
P

notations.

The most convenient way to obtain the expansion of the perturbation

function in the form given by equation (23) _s by Newcom_'s method (2),

based on the application of operators as defined in Sec. 88.

Annotation

Using the formulae obtained in th_ previous chapter, it is easy to

obtain the expansion of the second part of the perturbation Jn a general

foJ_ with coefficients expressed in terms of Besse] functions.

91. Numerical Method for the Expansion of the Perturbation Function

In the previous section.--,we studied the methods of the accurate

calculation of the pert,rbat!on fuuctiuns In the form of a series. Each'

term of such series is an ezplicit function of thecrbital o.leme_ts and

average anomalies M and M' of the planets unde_ ccnsideration. _lis

form of expansions giver the most general solution to the problem. It

allows us to obtain the perturb_tioes as explicit functions of the orbital

elements. The methods of obtaining such expansions, where all the

elements enter as ]etters (except the semlm_,jor _xes, which are g_ven

numerical valu,s in order co be able to __ompu+.ethe Laplace coefficients),

are known as the analytical methods of expanslen cf the perturbst_ol_

function.

(i) F. Boquet, Developpment de la fou(:i:ionperturbatr[ce, Annales

de l'Observatoire de Paris, t. 19, 188_,

(2) S. Newcomb, A Development of the perturbation function _c.,
Astronomical Papers, Vol. V, 1895.
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Tlze anal>tiea] methods of expansion give the perturbation fanctior_

in the form of a series i_zpowers of eccentricities. Tboy can be

applied practically for only small values of eccentricities (not exceeding

O.15 or 0,20). If this condition does not_pply, the_ the expansion can _n

practice be only obtained by means of numerical methods although Jt may

converge quite rapidly (ef. the annotation to Sec. 84). In this case, one

has to apply the numerical methods ofexpanslon in which the elements

enter from the very beginnlr:g u_i_g their nnmerical values.

If the,orbltnl elements of lhe planets ;ruder consider-tion are

given using their numerical values, the perturbation function may then

be represented by the ser2es

/_ _" ',A, ,'os(i.,! , i'.II't i-B, -.I.(z.ll • f.ll')', t.'i.," _ ,i ff

developed by multiples of the average anomalies M and M'. The coefficients

A and B of this series are expressed by the following well-kno,_ formulae

:=.,..'/ /i, o
; 4,

H.,.: .1_-: _'q" U'II ' J,II)d.lld.t;'
u

These coefficients can be obtained by means of the apFfcxlmate formulae

which replace each integla] b3 a sum of tleknlt,es of the i.=egr,:nd for

various values of the argument. These formulae_may be put together _n a

single formula in the to!lowing way.
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where Rk, k, is the value of thefunction R for M = k _ and N' = k'

_ra!uatir.g the _unctlon R for a sufflclenLly large numbee of specific

values of the average anomaly, we can compute the coefficients of the

expansion (37) to an arbitrarily hlgh accuracy.

Naturally, the expansion (37) with numerical coefficients cannot

be used in calculating the derivatives of the perturbation function with

respect to the elements. Hence, it is not possl_le to apply this expansion

to compute the perturbation of fheelements by means of Lagrange's formulae

(See. 15). However, this kind of expansion is quite useful for the

purpose ofthe direct computation of the perturbations of the coordinates

(Chapter XVI). %n this case, it .Issufficient to have the expanslo_3

of Z_ -I and _-3 if only first order perturbations are required.

For higher-order perturbations, it is necessary to also ha_e the

exDanslons of _.-5, A-7 .....

Hansen was the first to publish an application of the nuner:'cal

method of expansion of t._eperturbatiou func,tton, which he had been

applying to the study of the mutual perturbations of Jupiter and Saturn

(1831). He used as an argume:_t the d_fference M-M' between the average

anomalies and the average anomaly of Saturn M'. In order to obtein the

expansion co_.fficie:_ts._y,_eat_sof the h_rmonlc analysis for Mulae,

-I -_
he computed _ , _ -, ... for all the-combinatlone of the follcw_ng

values of the argumen_

l!--,tl'---=lll.J'. #, _, t),;..... ,_I

,If:=.22 S0". I", _.'-O,l..... 15

By this method he had to compute 32 x 16 --512 partlcular va]tles of the

abo,e mentioned f,,nctions.
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92. llansen's Me chod

The numezlcal method mentioned in the previous section enables us

to obtain the expansion of the perturbation function with an arbitrarily

hlgh accuracy by moans of simple and easily mechanized computat'lons.

The only inconvenience in these computations Is in their extensiveness. -.

In applying numerical methods, we do not make use of the properties

of the function to be expanded into a series. It is quite natural that

the following question crops up: can we reduce the calculation woLk by

t11eappropriate use of the properties which we Pmow on the analytical

structure of the expanded function?

Cauchy was the first to apply a semlanalyt_cal metLod for the

expansion of the perturbation function (1844). He carried out the

expansion analytlcally by one argument and numerically by the other.

Thls idea was further developed by Hansen (.L,.>7Jwho gave an expansion

method which had been widely applied. HII], in particular, applied thJs

method to the construct/on of the theory of motion of Jupi er a_d Saturn.

--3 -5
The problem consists in expanding tl'¢qtmntlties ]_--, _ " , A ,....

where

_::-:r" ! r '2 2rr'c,,_ll,

co, It ct,,,(v i ]l)_(,s(v'-{ ;1') i ,,m(v t ll),mdV'-]-ll'}L.._J.

[a a d..ubl_ t:igonometrlc se.ries. Considering a_ain a _ _', aad

putting O_ = a/a', _e write thls equstlm_ as

( 'U' _' : U " U IJ
/

On the other hand, the function cos H equa]z in an unfolded form, to

C,L'u'.,vCO_V' _ (,_:_L'o',v',i.v' i L',s-"'" v Co" v" t L',.',lnv..,|.v',
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¢:_ - co_ I! c_,, I1' t sm II .sin il'co_./

_'_.,-_ -- to._ 11_m I1' i- _l, I| cos IL' co_./

f-i _-= si, II CU_ I1' i- CO_II ,m II'c-_J

(.,, ,:. II .s,. I!'-1 Co_ II COSI1' co,J.

Introducing the auxiliary quantities k, K, kI and _I _'y means ef the

following relations

• -,ht{I ,'\1 x • il tiC,,, / ,

_'_O,_ll' K, "¢u,{I {

_'lco_*ll'--A',) - *co_llo)_./, I

we easily f%nd that

=cu_#l t'co_,._os(u'.: A'). ;'l_m_,_mU,' I AO

_ubstituting this expression i_o equation (38), and using the following

well-h_own formulae

r. ,.Z(l ¢_o_t:.l, r'_._,f[| -r CliSh),

revise, .O_, (_,_--- (). ,"_li,,l,'a' (C,)S !:" e'l,
, ¢ ¢

r._ttt (, _,d_o_ .Stilt;, r $[dU' N C(}_'; _llt,.,

we ohtai,, the following expression for ,"e square of_e separatlon

distance of two planets in terms of t_eir e_centrlc anom

"_ ' :l_--fc.slb.'--l')+ ,f.,ico_:'_., (ltl
I1'i

where

_. -- i:f'

l) I')u l)icll'_t:" . /); .',Ui/:." .} e':,oflh" I'ld_
l.',illt t'i,> ! ()ll(I,,i#';." , (jl._lll#:'

/COS/: //0 ' t#1 £11'411'' i ill. "dIll/:'''
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where the o_nstant coefficients have the following values
i.

I
O_- I 2-i ,, ,:'r" -2._ee'cu_A.

i_), 2(ta, c,)sK--e')

i,: --- 2 ra, _m K co_ .;

{j,, r ; ")¢ _{'1 alll /_'l L'(}_ "; "

(J, : 2,{'1','. A', cu_ : , ;._

_J 2,:',C,,.',A', Cu, r co, .

IL,.-2{,', -c'/'¢.)A',

11, 2l'Cu_A

I/ - 2_'-m A ¢u.,, :'

We note that if the quantities D, f ar,d F are lmo_m, ii: is then _asy

to comp,t'_ethe functions E' and M'. _q_en M' is increased by 2 , the

angle F also increases by 2 7/" as it is easily seen from the above

ecuations.

The detailed examination of formulae (42) indicates that when the

excentrlcltles e and e' are small, the differences E - E' and

consequently F-N' remain within s,fflciently close l[mlts whatever

the change _n M'.

In all practical eases, the last term of expression (41) _s very

small as compared to the sum of the first two terms. This sit_tlon

enables us to write, on the basis of the binomial formula, the fol]owJng

repidly convergln_ expansion

I /l

\ \, I' (lI)

where

I

Xo [/) f Op,_t: -t"_

The present problem should be reduced _o the expansion of tb _ quantltte_

, .... Each of these quantities can be represented by a
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Fourier series

._, = t --, _o_(l:" l'_ , '2_':'cos2,t:'--I:_ i., . . _4:,1

The coefficients of this sezies can easily be expressed in terms of

Laplace's coeffic.lents. 11_ fact, setting

D .--_t(I-i 'J:L / -'2'.i.:/',, (;_,_

we obt all,

a 4

-L" =-_t " Ii 5"'- 2 " cos(," -- /") ! " :="
R

_ I "1_ ' 'k'_t/_'¢osi(h --I"p.

consequently,

I
• =_'-_o "_; ' b"',, (I,')

i Replacing the argument of _be series (45) by the difference

t: t"-=/:" -,;1--(/'- -,I1').

: we will be able to transform tb!s series in the following way

; .%," T"j-' ")"'co_l:' ,Ill : 2_''c,,_'1/" ,11') ' .

: '."' ,lit (1:" AI') , 2,'",_,'_(t: ,II') t 14.';0I ol iJ _ ' * •

where

_ , Co=.'(l-- .I1)
('1'0

• "' ="'.l'=l(/". ,II'). I
=. "1 J

As we have already poP-.tedout we can calculate the quantities D, f and

F for any values of M', and subsequently compute the coefficients and

,: by means of formulae.(46), (47) and (49). C,,mputlng_.achof these

i coefficients for a series of equally-spaced values of g', awd applying
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the conventional methods of harmonic analysis, we can expand each of _:

the coefficients _ and _ in a serie_ of the type
P

I 4'" _ _ml l/

/

Substituting _uch a series for each of the coefflc_ents of expansions .

(48), and .[n_;ro_:ucing these latter expansions into formula (44) and

then unfolding the resulting, product of trigonometric functions, we

finally obtain series of t,e type

o

i _'_1,' :. CI,fAI _, (,'_L'. _ ,, ) 11, .', *,l -Ilif/l ---1' I I ,' I

l.X; ,.. ,,..,, /

where n = i, 3, 5, ..., while the indices i and i' are set equal to

i = O, + I, + 2, • , i' = 9, i,

The expansion (50) involves two variables, E and M', and hence

cannot be directly applied to the integration of the equations which

define the perturbations• Hanson expressed M' in terms of the eccentric

anomaly E, which be considered as an independent variable. Since,

.II n; 1.11 .... II n'l .11,,',then

where _= n'/n and C is some constant. Hence, using Kepler's eqration,

we obtain

.It' ,,t: :,c._J./:."' C'

Substituting this expression instead of H' in formula (50) an@ unfolding

the functions

_ll,(_t _111/ ). t'O_lltCMl|]: _
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involved in the trigonometric series by means of for_ula_ (15), _ec. 78,

we obtain an expansion of the type

(_)"- --''i' "' r'" c°'(il'--'"l:' ' --'''i' "' s'" .,,,,(it:." ,',Lt:')., (-,1)

In the theory described above on Jupiter and Saturn, Hill

transformed expansion (50) 1.nto an expansion of the type

,,,.-- ,I. # r,, CO'_(i.ll- _.11') _- _%_.I. I ._,, .,u(i.|f i',ll'), r _, , ' __ (._.)

which could easily becarried out by means of the methods indicated

in Sec. 81.

Annotation

In order to compute _ and_ by means of formulae (16)_ it is

recommended to introduce the auxilSsry angle _, defined by the

relation

]
Slfl_ D

and the condltJon 0_-_ 90°

The equatlo_

25

l h

bas the following two roots

., ,_
b,- t_. h._.¢t_-.;.

Taking the f_r_t of tlmse roots, we will have the following equalities

d ' 2

k
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CP#_TER XIV

THE lAPLACE COEFFICIENTS

93. Calculation of the Laplace Coefficients by Means of Series

In order to end the question on the expansion of the perturbation

functions into series, it remains for us to con_ider the methods of

calculating the quantities C(i). It follows from equation (i0) Sec.
n

87, that- the computation of these quantities is equivalent to the

computation of the quantities 5_ i), defined by the _l!owlng relation

" ])(I '2"J¢',,_.__-_) \' b"'-= _,), t?) (]J
' ---d st

and known as the Laplace coefficients. We shall prove that the Laplsce

coefficients can be computed by means of infinite series. We put

Tben

Consequently, equation (1) may be replaced by

(I _z) (l--at ) .) _ _''

Since

' . ., n(n-4 2) J*(,_. 2)(. , 1) 't
(I ._s ') '.--I : .)_z ; ,24 _:z , 2.l.h _ ""

then, we can easily obtain, by eouating the coefficients of ._iou the

right- and left-band sides, the following formula
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| /. sj(I,' ;_ .. (,t , :l '.'1 _ II n #s '_l _
7 "" J.I ('-'sJ t 2 Y_ _ ._

r_(, 7) in ;.hi ¢,'JI Vt .') ] ,"

il ":" -_ J I J
24 ,'._',_ .'J (', _ 4J " "

Taking i = 0, we obtain

Pl " /7 _. I,t

',, I )'t '"J i .' .'I • . i-It

It is clear t_zt these series converge for all positive values of

which satisfy the condition

However, the convergence of these series is_ery slow for all values

uf c_ even for the case in which n = ].

We make use of the conventional notation of the hypergeometric

function

,',!; _( I ] I t_,A' I
/"f l. 1_, ' i: l i _, i ,

1_' '(t' ]i

and also intr.duce the symbol

!_'..') -,"r" ',l ,s : 2; . f.. !_; (_, _l) I,

We then ;rrlt-_for_uuia (3) in the following way

t;
:!

J t "' ' _i' /'" (' "t ,'t ') Ilij _ if '

" (I, :l \" ' ,, I I. I . I: ,-'t .

it [s well kno_ that the hypergeometrlc function, defined by series (5),

satisfies Ehe following relation

#'(., t_. t., ,)._-tl ;., _/-(A, (.--L,', C;, ._x.).
Hence
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or, in an unfolded form= "t

, _{.,_._.b_ . . ._.- L2; .,l . ...r ,, ;,_.,

-- L• , -l "b. . . ' 2 ,3:_ '2'2 o, :------2.1 _20 _ il--'_:) I ; - p-_-

nln 21 (. 7) I'_ .I1 ] I/:
- " ' ] tI (2a • :L) [21 ; .i) I*:

where "

_d

P I ,'"

This se,'les converges whet,p _ 1, i.e. when the value of=K sat.isf:[es

the [ollow_ng cond i_n

I

The advantage o{ 8pplyitlg series (7) rather than suries (3) is more

apparent for larger values of _., Indeed, the ratios of the co"respondlng

[
coefficients it.these two series are

_, tn ' t t ': I II
II * _t ' I,'1 .1l I I'I .', *l

This ratio tends to zero when i tends tc _nf_rity.

IfC_ 0.707 ..., then ser_es (7) diverges, tlo_,evel", even _r, '-'s

case we can apply tillsseries for computing b (i) if i is sufficiently lacge.r

A3 a matter of fact, it is possible to shaw that in this case series _7)

Becomes an asymptotic series. The _pplication of the d_,ergent series (7)

for large vqlues of i will be ever:more practica] tier:the epplicat_e_ c.f

the convergent series (3).

t-t

Series k_) may be t,ansf_r__wd into a more pra,.tical,and at the

sane _._,_.,=as a convergent series by mcans of an _nalytical continuation.

Indeed, the branch of ,he function (7) under consideration has no singuisr

Doints except _ = 1 and o< = _ consequently the only s'ngular

points of the corresponding branch of the function

/ ,I', / I ' ! ' t2

i
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u_ll be the points p = -1 and p _, o_ . Hence, applying Tayxor's

formula _o the function F (p),

I:{_)" Ill.,) . d/a-+poP/"_P,,)-: ,P--P,,F t"'f_7,,) .

where ro is real and positive, we obtain a series which has a circle "

of convergence with radius 1 + Po"

We _ha].lnow give the ntlmerical coefficients of the series which

may be _oed for compatlng b_I0) and b(_ I) in the cases, when Po = O,

and I.
2

The first of tbese Laplace coeffl.ciente._s equal to

,.., I..|.. "+' , , I'111o, l _.,.) ' .ItJ]_'; .
hi ;' .1.¢, . . l(l " /:folD) '..It,'..+I 14 "x l.,".,_ /', Ipl, (,'_]

where, for the function FIO(,_), we have the following expansion
D

I
I

' /'__"" I ;'= .', :',_ I

:r I •

• Ill, X_llil, l t, l_ ,*'Jl lol; # tiq,'il2 l.,i

" ";;. .+, ;71, 1,0: ,.'+20,,', ' p + , iliq'l:_.;COip li

I,I
, ,'t.'21 l'"._l' Oct,,l:l Ol (p, , + + ,'(_l II i.%1 (p -- I)

\ +P
m _

Iti+tll l_Ip" I IiltSIP:O+.I (p . .) .--O"'Ol',.+'il._ l#'

+,i_+,lI;,,' ! I( ','' i '">Ji I I' J O'"+t'2,+d.'+'(l ' li'

t
,_1)"

•--,'+_.'qt<i.lhl +p - I1
• "ti'_'2i:l_' -O,..Iti'+ tp

I lil,ililtlio, _" ! O(ll)lt+/j _ P l liUl')llllOgi'l| (P If

II, lk_ _.llI, tl (p [i

I_'_ II<0 i"' ,Ill I '

lli'9'll' q!i'l |:_ I

For b_11) , equation (7) y'lelds

/,ll ,_,_17<1 all,
i -') ;'K,k J l' /"+i IDI, (h ,

/
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where one. of the fol]3_ng exp.astons ms7 be used for the fimctfon

FII(P) :
P

I

P"" qJ I Po '2 /', I

... n

"_ 1.0 gkJL) OhJ U 9"_)(X} 3.,'" + 0 "_' J71 .-,27

4,.tI?t)S;.+,L]p -- U.Ol9?O7tM,[ p /, ) t)(,17.'_6120IP I)',+

( '-t-lLtmlSO2Rt_Pg f-O.(_)l-168|t) p _ ) _ 0,_111.;-22(p l) '

--0.f_)02(i8.¢o' O(XX)I851 (p-- I"
, \ ? ) q)q_,l.; (_97(p ]D

/ ] 4
-}-;UXk05.1_.'__ 0.OO00,III [p -- _ . O(KhKH9.5a,(p - Ip

Q_\

-- 0-0(_| "_p °' 0.(_('_(,(}, (p.-')') 0{"(')0.'._5(_ -- ',"
'k - -

f

-t 0:L)0U0 Ip', (;(K),O_J2 p 2

- O0_)_) OI.I (p I ):

O._M)O 003 (p - IF

0 _K)L_"}qH91Ip I1"

The choice for the most convenient series ma.y be oLtained by consulting

the following table

*P O.IC) a_61 0,6 u.]t 0.78 0_? UKS

p- O t).Z% 0.3o .7.", I(N_ i.C_ '2,0 .:_M_

94. The recurrence relations between the laplace coefficients

We consider cq'Ja_on (2), wh.l.chmay be used for the detcrm_natlon of

the Laplace coefficients, This equat*'onmay be written as

I I i _--=(:_ z-")l : -" '"', ._._.j tl "

Differentlatlug this equation wlth respect to z, we obtain

s;n=(I-.'-")li-{-==--=(: i: )J'--: :-: i_ -" ,

Owing to equation (9), we may re_rr._tethls previous equation in the

following two forum
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! %_ h"'-'•r n_(i .... "g II _,--=_: ; :-')l%_ib ''''' ' tl"t

! _' b"' 2' N' ib_I .; ' (Ill2 nzql :")._,, .,." ... .

zt-1Equating :he coefficieuts of ". in both sides of equation (10) 5 we

obtain

I," ], :l , "j! ,'l )Iz I }/,' "
"" 2t II T -' '" .!l -n _ :! h' it.!)

This relation enables us to know an the coefficients b (t) if twJ of
n

them, say b (0) and b (1)n , we kmewn . SJmi]arly, equating the coefficicnts
i-1

of z or bcth sides of equation (!1), we obtain

I ll,_l,1 ,_llb" : ,... ) l#," . (I._).t . ,'

On the other hand, it follows from equation (9) that if n is replaced

by n + 2, then

II ' d" --,(:.i : '_1v t,"' " "' '' " -i.'2 -b, 2.

from which we easily obtain

• I, il-l'bi'l 'il :-h" {I.ti(I-;._)/J_{...-,zfb,,,, . ,,,- ,,.

Eliminating b(i-1) from t,quat:[ons (13) and (]4) we obtainn+2

' _lll it I il , ) ,/ tillnil I i)_,,_.--2_.b,,,,,-in ,,-2,1o..

S[m_1.arLy, eliminating h(t+7.)_n+2 from both equations, _e obtain

" "' -"""1",i " "ilV"nil I IJh i, _ ,: -:-(n --....

, Replacing here i by i + 1.an_ simultaneously solving the resultinE

', equations with the previous one, we obtain
f
I
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r.(l-_',{_...._- ,,,= (_tm,_},_',i' .": "" "" "
..... ,-.,---n I -1% (I_)

- ,h'" " In(I ="),--,,,z , .., _-(?i-I-n)b',:'-! {2i- n ' .

In thls way, If we obtaln coefficients b_i)r, calculate all the coefflc-
(1)

subsequently find all b_ i) etc. Comb=_*-.= thls resultlents "b 3 ,
alld

wlth the result obtained from equation (12), we conclude that It is

sufficient to d_reetly c_Iculate onZy two of tLe Laplace coe_ffelents,

example b(0) and b_1), and to f1_d the other coefflcients by apply!ng
for

the relations (12) and (15). Iastead of b_ 0) and b_ 1) , the computation

of which _rlll be considered in the fD]lowing section, we can take as the

quant,ttes the coefficients b_ 10) and h_ 11) which can easily be
initial

found by means of the formulae of the preceding section.

_e application of the recurrence relatLoa (12) is not convenient

for small values of _ since in this case it is accompanied by a

considerable loss of accuracy. The same may be said on the application

of formulae (15) for large values of _ . However, it Js necessary

to point out that at present, one is rarely in need of computlnb Laplace

coefficients for there are several published tables which glve C -

values of these coefficients. The best of these table lq by Broil

and Brouwer(I). Putting

(i) E.W. Bzown and D. Brouwer, Tables for the development of thc
dlsturblng functions wltb schedules for harmonic analysis, Cambridge,
1933.
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these authors computed ig_ m (for n = 1, 3, 5 with eight decimals and

= c_ _ -"for n = 7 with seven decimals) for the argument p :(1 - _" ),
p

varying from 0.00 to 2.50. They took i = O, 1, 2, ..., II.

95. The expression of the Laplace Coefficients in Terms of Definite _

Integrals

Applylng the well-known Euler's fo1_ula for the computatlone, o.t the

coefficients of the Fourier ._eries to _.xpression (I), we obtain

i,

This formula is uot useful forcomputlng the Lap, ace coefflcients w_th

L_rge values of i, because in thls cane thc function cos ix changes sign ,

many times. _oreover, for small values of _ the coefficient b(_) behavesn
II

l_.ke o<_ . This __mportant pToperty ._s Rot clear in formula (16). A more

eonvenlent formula cau easily be obtained from formula (16). The well

known relatlon

I I• I.;_ . . . (2i- I) c"'_P'txsm 't d._

ensbies us to gTite for any function f(t) which can be exuanded by the

following unlfcrtdy convergent series in the Interval -I < t _ ]

'(0 - y.I",

th- fo]lowlng relation

, f,(cosxlCo'_i't'd'r_I..L,',...121-- I_ "(cc_ _)-.l'._,l.t'.
| *
t# 0

whtch has been indicated by Jacobi. Applying this relatlon to the

integral (16), we obtain
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i,j. .t. i 2J.. I.-I 2i '2J'2 i' _ ',:' l , "2, Lu-..v) - .m" I Jx. ( 1" "- |.3.rJ.. • (:Ji---i) a

This IntegraZ can be computed using the formula of quadratures, shown

in Sec. _6, 1%is is almost the best method of calculatlng the Laplace

coefficients, especia!ly when high accuracy is required.

We can apply Landem's transfo1_atlon

i ,

t ','

whlch ylelds

,,Ill _ [ - _CO-, t
• - ,1_

J' I 1 '*" "2J co.-,x I i _ .: _cu., .t '
t

to equatl,n (17). We then easily obtain

b"' n_n [-2)... (n ; :'i--2) '2
" I.;_... t2i --i) n

• I __a I gl "--a:lil|_ 118)

In particular, we obtain for n - I

/,?,:: - =_ j s,n"'?d?
t

,c . I/I =: sin: '_,
u

t

or, as we can easily see,

I/ i -- Q:_iii::, 1191

whel_ ee

r

2

" ;" ----" /" <_' 120)I W I --ll 2 Sill:: '; = ') '
tl _ 2

where F( o4, , 2_) Is the complete elliptic integral of the first kind.

For i = I, equation (19) yields

1
I
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where

I: Z, .) _ . .

is the complete elliptic Lntegral of the second kind.

The exlstance of many detailed tables on the complete elllpt_c

integrals makes the application of formulae (20) and (21) particularly

simple, Hvwevez, the complete elliptic Integrals can be easily calculated

in a simple manner. For example, the complete elliptic integral of the

first kind can be eval,mted by means of Gauss' formula
r

I" :_' 2 ,11(1,1" ! 2:,

where M(a,b) ::is the arithmetic-geometric mean of a and b, .{.e, t_e

, quantity defined by the[ollowlng limiting transition

I
4:a ,j _u _J, !', - | ,:._

l l/,J_t,llJ _ .) (el /)1 I, ;'_

• , • . • •

1
,z,, :c('J,, t I,,, ,), t,,, Y ", , l.o ,

z|l({I,i'l ;i;11 d " Illll #n'
I;. R

96. Calculation of the Derivatives of the Laplace Coefficients.

Newcomb's Method

We have se_ In the previous chapter that In order to calculate

the perturbation function by a series expansion, we have to not only

know the Laplace coefflc_ents but also their derivatives with respect to
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These derivatives can be calculated by means of the serle._which results

from differentiating series (3) term by term. However, these serles

converge more slowly than series (3). Renter this method cannot be

of any practical valqe.

Differentiatingequation (9) term by term with respect to O( , we

obtain

n , ' , -"--
.,-!_2--(: ;-: ')Ill : :,'-_.-" ": '1 , 1%_ ,/.P'.,-- . 'd _ dz "

or

" :i ' %'_" ' '_'1_"'

Consequently,

Differentiatingthis relation and combining _t with formulae (12) and

(15), we easily find a series of recurrence relations which enables us

to define the derivative of any -rder. These formulae, which,have been

used by Leverrler(I), are however not very 9ractlcal.

On the other hand, as we have already pointed out in Set. 88, what

enters the expansion of the perturbation function Is not the Laplace

coefficients,but the quantities

" ' _2',)
t'(" ='j . /. t

pf

and their derivatives with respect to IgC_ , i.e.

(i) Annales de l'Ohservatoirede Paris, t. 2, 1856.
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J.

The most convenient and the most accurate method for the computation of "

quantities (23) and (24) is the metbod suggested by Newco,_)(1). It +'

consists in the d_velopment and the improvement of the method of computing •
L

Laplace coefflclents which had been prevlously smggested by Laplace. In

the following, we give a brief _,ccount of this m+,thod. -.

It follows from equat%,)n (6) that

(*') ): +!+- i. ,, I;+:t._`_? \" z F n

.
Newcomb introduced the following, more genera], function +."

,,+*

(::J) -,., ._+,,n .' . -'_,""" '

• F _--{-j,g-} i }/, i }Jt 1, ++", ('25)

so that

,JJl ci,O
{M _" tt "

%,Mnote that equation (5) yields

•d '_ " !.],a+l,C+l:x),.#._I:(a, B, C;x) • -, C' I-(A

from which it follows that

(I) S. Newccmb, De_elopmet_t of the PerturbatJ.ve Fuuctlon and its

Derivatives in sines and cosines of mult£ples of the eccentrlc
anomalies, and in powers ofthe mcentrlcltles, Astronomical

papers, 3, Nashlngton, 1891.

1979012780-397



- 386 - _)b.

, ,, Or,.
I)/'(A,/_, C;:'-)_ . '_:J "" F(A -]- I,// t- I C-t- !;:'). -v_,

Applying this formula, we vasily represent the derivative of the function

(25) with respect to log _ in the following f,rm:

I

T(n I)c' '

Applying to both sides of the latter equation the operation Dk, we

obtain the followlng relation

!

-_-(..{ _i-_-,Ij-- I)D' ""J c'_'_'_,-_" c,,-{ h* , (26) i_

(, 1,3,.r,..... i,j,k-,0,J,2.... ) i
i

which enables us to first obtain D Ci'j , then D2 Ci'j , and so on, ifn n

we know the quantities (25). In this way, the quantities (24) become

known.

In this way the problem under consideration Is reduced to the comput-

ation of the quantlt_es (25). We divide this problem _nto three parts and

solve them using tllelinear relations occurring between any three hyper-

geometKic functions F (A, B, C, x), the parameters of which differ by

inlegral values. For example, using series (5) it Is easy to obtain that

¢ ,¢ I_it.1,1_,_.',_ IU II_ A II_Jl',.I, tt {-I,_. { l;.v) ,
I,q ; Iltf. ,I t Ijx/ t I,/,' .' 2,1.' ;-?, tl -- (1. 127b

Formula (25) yields

C,-i i /.i. (' n n
\2 : I' 2 I I ' I I' I i 1'2',

' c_ l. " ''2' ' ''/-'' (" n I" 2" ' ':T /, . / . 1 :,:

,k,., Llll ! 2i l':'/ :Y)ln ! '.'t ' 21) {',l )(:'t _ "[/l(2_ ! J/--2) _'1"

I
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where
/.

i 'L ,)If I n . ' : ,_ _ ".# i ,o _11 ,_

=- .I II.i ij - I)

Therefore, substituting into equation (27)

n n

A: ._-.Fj,lJ--'Y t i t-J--I, c-'_-FJ, _-.',
we obtain

i( I. r .

(2i+:y-F,-2)c_"'- _(i-l-jl-i,")c',"!-l_,-,-l-_)=c,--.-o.(.'81 4

Putting
3

J, I
i

p_" " (2q)
C_ I t '

R

we can rewrlte this equation as

#/jl n. I
! 1. (Io)
""' !- <,:'p*.'|. I t

where

/,,j=(2il-y ,--::)_, u'; 12i-,i _)a• I I .
'.btl; _.) : 2j '.9(I"f 4) I 2j

Hence, if we know the quantity (29) for i = k, we can find its values

k,i
for i = k - i, k - 2, .,., .._,_.' In order to compute Pn " , we can use the

following continued fraction which imted:iately follows from t'hl.ssame

formula (30) :

/}

P.

I--

1 l--. '

wher_ for simplification it has been adopted that

I' I,_',/j, _.J_'I J r •
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C_mp,:tlng itl this manner quantities (29) for I = 1, 2, ..., k a_d .r.

knowlnR the value C°'j , we can easily use equation (29) to obtain the
n J

values of Cl'j for _ii of values of i under consideration. ""_
n

We shall now calculnte the quantity C°'] by first noting "_.hat
n

the q_nttty

is very practically computed by means of formulae (20) and (22_. Once

we know C_0'0)
c(0,2)

' -i , ... by means of the recurrence relations which :_

we ale going to deduce. -_

On the bas_s of formula (25), we obtain

"' ( _i I L-2 I J' 1,] ; 2',x:)
C =_MI" -: , n

¢t.,., _'(n : _])"1" 2/ ; L) (__ "I n I- ' '2.j-,' 2j- t 4 x'/: ! j -l, _ / . 3; _"
/

,, - -!-j-! !.-_-? - ] [ [.J _ 2;',_ .

where

I,
M _2'_ -'i (l,j-, ii-_

}Ter,ce, putting

f; n

a ,,--F-:, It.- TtJt-I' _: j!'2, .,,.,,_,,:

and, noting that

CIqA'II, C;xP--Ct"(AiI,It, C;.Q.I H.t/'(..1 ! I,ts : I,C , 1;._}: (),

we ob taitx

{2/ t.tlj_ .o,t ",t,o (_ it'

i,
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or OI&IOINALPAO,E T' "
01_POOR QtT,AT*"

l,%." t ! . I.h I j

11 I_/ t It'J,u o ,_
("i' ' : ,,,,l (,_'-))

1- =p,

_0,1 1,2This is the required relation, which enable: as to f:;nd C1 , C , ...

0,0 l,j
when tl,e quantities C 1 and Pl are already computed.

It remains for us to consider the computation of the quaDtitias in

terms of CO'j , we derive a new recnrremce relatien. FZom aquation (25),

we obtain

. >
('" J '%'(kn ' ._I _: tt n

, _,' , -- .{-/.' I -:/i I / l I.,: )"": n ) ," '': ' '

_'nt, '%'_, ., '_I 1-'_ - a:/' ,_ -; J' , I, . ,'
: ' , t I ! _,j .-'.';,_' _

where

7

!

Applying the following properties of the hyperger,metric functions, which

can be easily checked hj means of equations (5),

. . ' J , . .-I_;A ' 1 , 4 ', /; l f ,,r _4 ' ._,' .,., , -, • . . .',, , . .

n . .... I , .., . , ' , .

we obtain

I I

In • .'I)'3,' nln--I#: - ..)/), ]c .",') ,')_(., . ()

from _,,hie.h it follows that

(" .)l

nln--ln , 2/)2 l,--2n(p, ;p .;
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This formula completely solves the problem of computing the

,_O,j ,.0,j o._
quantities _3 ' _5 , ... by the values C] "_ which have already

._ been found.

Hence, in app]ylng the Newcomb's method, we have to carry out the J

following operations. '

(I) We compute the quantities _i,j for the _argest of the values ofPn

i = k and for all the required values of n and j by means of the

continued fraction given by equation (31).

i,j
(2) We find a]! the other values of Pn by mean_ the relation (30).

_0,0 = b_O)(3) We find the quantity C1 by means of equations (20) and (22).

(4) We compute all the values CI'J by using equation (32)..

O,j
, c5'J by means of equation (33).(5) We obtain C3 , ... .

4,j
(6) We calculate all the CJ values by means of equation (29).

n

(7) We finally use equation (26) to f_nd the quantities required for

expanding the perturbation function, namely,

_, d_ ((,,''
D 4 ("

(dl_ xj'

Annotation:

: The continued fraction (30) rapidly converges only for s_al!

values of _ . For this reasons, !lansen, suggested that this fraction

- should be replaced by
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where ORIGinAL _.'; "' '
OF.POOR QU:....

It _ _

2,1 It

1 I:t ",t? :." I ('2t ; ','/ , t:)t"t ) : _,)
-- "" . _:. t,, -- 2) _"

a. .l (t ,at: ; / i_ I tt I J I l)l_ t / :

and am+ 1 and bin+1 are obtained from a attd b by the replacement ofm m

j and n into J + 2 and n-2. This formula is a particular case of the

following expansion which has been obtained by Gauss :

/'(A.I; i,c. I;x) I
F( .i, B. C; _.) 1 '_lx

! -- =:x

where

J_-t-1 (" t- t -- a
a C- !¢ p,= ._"='C C _ i ' C'+l C _ '_

B+2 c-F 2--,4,_4-1 c 4-t- a _.......
":::C-I-'2 C+;_- ' " C_-_ (:-:-4

• • • , . , • • . , • o • ° , . ° . , . ° , . o ,
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CHAPTER XV

_A_NALYT!C_%L.METHODS FOR OBTALNINC THE PERTLT_BATIONS

OF THE ELEMENTS

97. Transformation of the Differential equations which define the Orbital

elements _..

The perturbation functions that correspond to the case, in which the

motion of two planets is being considered, are given by

. II,t

where Rol and Ro2 are defined by equation (I), Sec. 86.

Leverrier noted that

n_a_ - ._:(I i m). n'-'a'. _':(! ! m')

and, hence, expressed the perturbation functions as

m' /71
-- " , _1_

/_-= ! . mh:'i_'_°.'' /_ i.l.m, lZ-a 4',, o.

We already mentioned in $ec. 89 tBat Leverrier had applied the following

expansion of the pert,:rbation function (1)

_%_ A'fh_ ''_' 3:I C¢_',/)

_'l_i _,

where

(i) In this cnapter, we shall keep as much as possible LeverEier's

notations. We only note that he denotes _e quantities J, , , and

by , , , and respectively.
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where the dlfferenceQT"-_ depends only on i, i' and-IL-JZ- as can

be seen from formula (35) In Chapter XIIi, then

Therefore, the Lagrange equations (41) given in Sec. 13 may be written

in the following focm

da "_'m ,s,_'
Rd

dt I i m J',,

d: ., " ,t'.2..all l'/_J, I Ill' :. It,,', : i

/;,7' t n,, 1211.', .- Ig 1_, . 1'.2' Sill ]
dt 1 ! m ,_u 1 I m . ., "2 ,;t

th" fit" ¢I[_,. t m" "? 'l/J,,
.... . na cos "_ lg 2' ,J_.'t l pm nacl_'_ d.,, I-_.m

dr. m' d/4,,, i #U (.I)

,It I i-m nactg ,_e r lgz)-:6nig t

dU m' .0,'_, ,

d/ I-l-tn no %'C? ¢o5ec I di

i ( 4)\

....... , _ :.:.')di m' . dl_J.._ In" tll_,, , d
-" nu .',CO: I_ ' i

dt It.mnascc';c"sect0" l+m _-k c', _'

where, we denote as usual the angle of eccentricity by _. S!_ce the

expressions given by equation (2) do not explic£ely involve i andS,

we then have to elimluate the derivatives of R0,1 with respect to these

qu_ntltles by replac_tg them by derivatives with respect to _ , _

and 6" . Taking into acc unt equation (3), _e obtain
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oi¢ ,)/,.o-', /o/,, ,,,'\st=" _) I ,,/,' J oJ 0916__/_'£_.GBr.
.i - _' _i-v_,,, I o.,.) oi " '.,-s, co_;r_oi I OF_OOg_g_""

o,¢ aleo:" (o% . oA'\,,(-.'--:).t_Io:? J aJ I (5)e2:- _='e-'k\s_ -to. ) .,2 :_,"s,:o... ,,,;.

In order to calculate the derivatives of'_%_and J wlth respect to I andJZ

It _s sufficient to apply the differential formulae of spherical trigonometry

to the trlangle._LN-_Li (£1g. 11) formed by three nodes. This yields

the following set of equations

d./=- co.,('- gI(:i- c()._-' _')d{-,i./..ilz(;'--L")d(_' M)

$111Jd('_ - U) --C(}S./Mll(':--_Jd/" ;'_;111{='_ _)dl --_lllJ'L'usl;'--'a_l')d( -'- ---I

sinJd(:'--'a'l ..... si.('-- Ul,li-i cosd.'.n(:'- !-v),.'F q.lll/"Co_{_.' '_'),/I)2'-- M),

from which the required partial derivatives are easily obtained. For

examp le,

O(:'--':) _h, t':-- 'a) , o,:';./'.,,, (:--- ";) J ,,)
di "" _ q../ "_ ._.i ] -- It_-,f ._m t: -- - •

Substituting these partial derivatives into expressions (5), and then

substituting the resulting expressions into equations (4), we obtain

a set of integrab!e differential equations in the±r flnal folm.

LeverrLer introduced the auxiliary qusntltJes L,_ , PI' .... T and V

by means of the following relations

Jl '.)l;l' , (.)A', ,l' '_ .i ',': ,)A',
" '; :J " I ' ' l

,I' 1 : :, ,,,,, ,l: I I m ,,.
)

dP I -- .)l,'t (pl_ ,.'1 : j7 _)_'

,It I , Ill (),t d/ I I,'; (),

dP._ m 0/,' ,h' '( I ,'_. t,'a ,I ,_¢I

ll,: _ h' _ , tt) (_;
,it ! , lit ('.,, ' ." "! I , l/;(o,. '2 d.

,17" l m' na /,),','
- I

.... SvC ,_ ',0c -
dl '2 I t m : 2 (':

a'V m' .I [ 01,'_ , ,)_i',, )
- - tla S,'C" [b_ ' .
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This enables us to give to the final equations that define the

elements the following forms

da dL d:p d: A
dl dl ' Ill " dl"

d: dPl , "_ dP... ___ i d24/'- d, ;'lg;_ dt tg_- sini dt

de dP.a I dr.
dt --- dt .... ._tl4.;-cos ?dt

d' : 1;)
d- dP.. i sin i

"dr dt -t c tg _; dt

di _sit, (,_ _) dP,.._.cOs{___) (dT d t_dt _ d: dt-[ (

dT dV
.d',2 dP, 'qf .l-

sinz-dt--.cos(_--u) dt ': _in("-- "\ dt ' dt l"

Because the slopes of the planetary orbits i, i', ... are small,

Leverrler introduced instead cf i andJhthe following elements

P - -' lg i s;,I '2, q I_ i ¢o_ U.

The differential equations which define these elements can be written in

the fcllowlng way

. dV_ i didD dP_ /dT' 1

cost at Cus_ W i-Si'l :[ at ' dlJ t Pli_'_ d/

C',_ i dq Sia aP, ./,17" ,IV) i diat : at t-cos .k at -i ¢/ +qt_ :2- _"

The use of the elements p and q is convenient not only because their

perturbatlons,are small while the pelturbatlons of_D_may £nerease as much

as possible due to the presence of a small factor in the denominator

of the last of equations (7), but alse because these quantities cad In

partlcular, be easily expressed in terms of the perturbations of the

heliocentric latitudes (See. i00).
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98. The Perturbations of the Elements r'i

Let us denoLe by _, _,_l., _#£, ... the first order perturb- .,

atlons of the mean longltude _ and the elements a, e, .... Assuming' _

that the elements Involved in the right-hand side of equations (7) are constants

and that they properly define the integration constants we obtain ,_

. a I.. '.if,

"i c Pi i P,I_ " , I, :,11_i,:,'2

i (_)
4,c- P:--2_I_ _-o._, ./

I
¢,_lr. 1'. '-¢t_ .;_l,!;_lk _,

• . . . • . • • . • , • •

Substituting expressions (2) for R0,] into equation (6), and integrating,

we obtain

I. = 2re'a: "%_ ] " ,%'e',c'"_:; co._D
11-I"mla' ,.._j ! j'_,

3m',, _ i !'F ',9 -"' _,n D,A =-- (I :-,nla',..,_tj I I' ' '"'_"
• . • • • •

• • , • , . • •

where we denote by/_L the ratio of the mean motions n/n _. Introducing

these expansions into equations (9), we obta±n _he first-order perturbations

of the elements Jr_theform

';,a \_ Aco._/) ,:,, %_ I..i,, l, 1
I===_ _

• \_ I' t,,_,' _'_ !! co.x I_ c,,,." .m/) (10,

• • • • • • , , o • , • • • . j

where
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Combining in these series the terms for which J = J' --O, we obtain

the secular perturbations. The remaining terms give the periodic
P

inequalities. DenotJmg _hesecular part of each of the perturbations,

, l j, <q

• • • • , + , • + • . . . , • . o , • . • .

Let the secular term in the mean longitude be equal to

Then, the mean longitude will be calculated up to within the first

powers in mass by the formula

, :.! ,1+periodic tcvm

In thLs way, if we define the mean motion of the planets by means of

the longitudes obtained fr,),,_the ob£ervations in two epochs which are

divided by a long interval of t_me, as it usually occurs in practice,

we then do not obtain R but tbe quantity

/_+ f' / ( +

We calculate aI by means of the relat_ov

II:t_- l':1 I /'_1,

which is similar to equation

that relates the unperturbed mean motion to the semimaJor axis. Since

_1 (l'

,):
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2 _
then, disregarding errors in the order of m' , we obtain the following

equation ,-
P

/

Thus, defining nI from the results of these observations, we ,.

determlne n and a by means of equations (12) and (13). These quantities

should be substituted into eqdations (i0), which determine the first

order perturbations.

In the calculation of the second- and higher-order perturbations of

the mean longitude, we have to use the quantity defined by equation (ll).

In other words, n should be replaced by n + _ --nI. Hence, it _s

better to write from the very beglnning nI instead of n in all the

arguments of D than to take into consideration a considerable part of

the second-order perturbations Jn the fir.st approximation. In doing

this, we must be aware that the replacement of n by nI can only be done

fn the argument of D. As far as the coefficient of equat._ons (4) and

(6) are concerned, the quantity a will always have values given by

equation (13), while n will only be a notation for the q:.dntity

_' [ I . t+_._ l;, ,.

It is useful to point out that the mean motion of a planet which is

given by the tables of the elements Is nI. This means that the tabular

values of the mean motion includes the constant p._rtsof _he perturbations.

Conforralng with thls, the value of the semlmaJor axi_ that are given by the

tables and which are equal to aI in our notations should be replaced

during the computation of the perturbations by

•1 '11 ' -_'/ ,

't
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where
i ,
,, 8_|

Within the limits of the accuracy accepted, "

II.,a I"0_, i _a,).-h2a, I-.:I x_l*, .11 *_'IH29 ....
I/z

Hence, the corresponding correction to ig a I is equal to

0_ t

,

I. I

Carrying out the calculation of the first terms of formulae (I0), it is

easy to find that

I , , I ,ll:.'l ,_31,d ,z, ,tIm _ . ' , (I,I)
I _ ljj. t' ° /_'1

Similarly, we obtain for the other planet

I

It is assumed in the derivation of these formulae that the ratlo_ ='

al/a i is less than unity. For each planet, we should take the sum of all

those corrections, which correspond to all perturbing planets.

In order to illustrate the influence and character of the periodic

perturLations, we list the perturbations produced by Venus on the motion

of the sun, and calculated by Leverrier by means of equation (I0).
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I I i) (I ,i ; I ',,'J . ;I.'4'I -- O'qJl 0"0._
,!, -- :2 O U I) --ql.,l'il; --_.l:e: -. : O.(ll

.i .I il Ii l) 0.53 1.27 -- ! q,i_l
l --4 ql 0 i.I II..'.I --il I,'I -- -f ().Of

,',_--5 0 0 ,J --II.22 --(I II 4-O.Ol
') L' li I, (I (I. I,_ i)..5 ll.(ll

7 7 II _i (I () 1'_ --O II, + (I.l'l

,i,i fi il i) - ii O; li Ill ! li._,i

_) Ii il 0 i) I,'l --II I)7 f tl OI

2 1 li I ql Ip ,I; . 19 1.I

,I . _ it I iI G,I i I t)2
I ;i u 1 li ii ill . li.lt

_l -- I u 1 i) li JJ "t i) t,,,

II I iI ql I . I II! .I 1 illi

1 ti ii ') i) III • t) Ill [ ( t)'il Ol.l_

/ I -- II i* l) 12 t) i',' i ) I.,2 i I.. '
:1 '2 it U _i 12 ; I.: I 17 I ii

I ,; ii U II I I ,, i.' I I t_ _ ! lit

; .ri I -- il ,f _i i -_ i i'_ t II , --0 ',';I, -,_i li ii ,I l,l, ii !1 II_ IZ II'7/

7 t; II Ii qlii I , _lll, i ilh) --ill,

,q - I" ql II II il.l IIi ' I .. il Ill II ill

II - . N II It II II. I II li , l .. It II I" i Otll

Ii 0 Ill _-_ + I_ Ill -- II If7

I
•Vl -- I i 1 I, li ll| t |l I, '% [ ()'l_ (I .{t

!

" I I I il f i_ il I . II '1. t I I)_.!1, tllli,
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) .i il II IP ilj" ii / I' l i,l •

/ i i (j 0 l)l II al, - I (P

6 I (; _i 2 -. ,_1 () t,7

:; U 0 0.o] , .i ,I.,7
I

.5 -- I o ? --. I) Ol ] .-i) l*, .i)I J), l
I

I.I _ _ ,; iI t () !1 -1 0 ill . (p,,i,

I:1 --_1 I --2 ,) i 0 II, -I) tll _l, 1

13 -_ - I --I II _ I ti 71 0 07 iij '

|d, -- 8 D It It .... II 46 il iJ > -- I) 07
i

i

I,_ _ II --"1 1 .-- t I1.(1',

13 ,-_ ---I 2 - 2 -- II _ff --l, O0 0 i>0

I.l .- ,t -- _ I --'_ i I tit . iiii 7 It I)7

l,i -- ,½ -- 'l li '7 -- '7,.'1 li i,I l) O I

I.I --_ " --I I -. # ,i .ll

1.1 .-I'1 I 0 -.! -- 1.1_ ,' ,_i - U ,,I

We Imve only listed in this table the 44 argt_ents, for which at least

one term exceeds 0".05. Leverrier conputed all the terms exceeding

(1)
O".001 and his tnble included 123 argumeuts.

,! We note that in the c_:sewhen Earth ls one of the planets under

consideration,

t
i
I In this case, argument D becomes

I

i

i[ (i) The coefficients whose vslues were less than 0".001 were rerlaced
by dashe_,.

1979012780-413



- 4"."

[)r._:l_ i. i'_ .. "G'.' - Jll,"

.-,, Th_elturbations of the Elementv .. :cond Order with Re,3pect to

Masses) : "

W_ have been able to expre.=..__ , "-,ms of equations (i0) the first

order ._c.._r_;t._r,s for _J.az: _' Jell as for all planets P' P",$ o • •

under conside:,-.,u[o,l. We nov, • '...._erthe calculation of the second order

corrections. For this !,urpo.,:_,we have to replace the elements a, e, ..,

a' e' a", e", of all the planets in the expresslon (i) of the

perturbation functlon by

'i ' I I; , L 1 ',, t" ....

In :hJs w_Jy, equations (4) lead to the following equations for the

ca!culatiot of the perturbati_,ns of the ,¢econd order

d',jtz .?'n' I_J /_',,, , dq_' , . , I"' J i . . _1
n,J:I ,,,a _ i,j,, ,:l' ' I '

i I_ nJ o_,, l i ,%

Substituting here expressions (2) and (I0), and doing the _ecessary

multiplication of the series, we obtain on the right-hand side a

series developed in en._[nes and sines of arguments of the type

s',,-t-_",' i )"," t . • , , _',,,i x"_.-t • • •

or

(in t's'n" t /'n" i .)t t o,._I.

Consequently, the integrati,_n of equations of the type (16) _ntroduces
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divisors of the form jn + j'n' + j"n'_+ .... If these exists a group

of integers J, J', j_:, ..., th_ absolute value of each is not iatg_, for z
p_

4 I,',.I !
which the sum jn + j'n' + j LL + ... is small, then the corresponding

second-order pcrturbatit)n will be particularly large. The period of

this verturbatlon, which is equal to 360/(in + J'n' + .1"n"+ ...), will

be quite great.

As a re-'ult of the second approximation, we obtain for each element an

expression of the type

%'_/_c,)-,(m 1 ,/) i t %_ /r o,, ,/,t ;.+/).

The computation of the second-order perturbations of the elements is

quite tedious since it involves a large number of terms in equations of

the type (16). This difficulty beccntes more sigr,ificant When we carry out

the calculation of third-order corcections_ in the following chapter, we

shall see that i._ i:_much easier to calcul_,te second- and higher-order

perturbations iI,the coordinates.

When ieverrier studied the motion of Mercury, Venus, Earth and Mars,

he could confine himself to the calculation of a few second-order te_ns.

For other planets, and in particular for Jupiter and Saturn, one has to

take into consideration not only a large n_nber of second-order perturb-

ations, but also some third order perturbations, ieverrier's work on the

ca±culatlon of the_ercurbations of these planets has been continued by

Gaillot.

I00. The transformation of perturbations of the elements into perturbations of

coordinates. Consttuct_en of Tables.

After calculating the perturbations _lal .... , _i/_ of the ,elements

and the mean longitude, ,_ can deriwe general expressions for the coordineteJ

of the planet. We first consldec the longitude in the orbit w. It is equal

°,_
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for the upperturbed motion, to

where we denote by f, the equation of the centre (Sec. 82)

/ I.': ._,,.I! J-H ":' f ;! I- qI

Here,

II_ .'_" I "' I 1- - -- e"-; 11 __.¢.
t "' ; ,1"' !

The mean anomaly is equal to

,;1 , ,',; ,19

Hence, replacing in equation (17) "_ ,_H- and e by

i "l T, (" ',,t •

and confining ourselves to quantities of the first order with respect

to mass, we obtain in the first approximation the following expression

for the perturbation of the longitude

,,,w. ¢,' i fllI_co._(' - .':.) : 'Jll co_ '2(, -- :.j , I, ° ] %|I, --

- IIt_ "_'_-(' " ") I '.:1t, ('_,'.2;, ") t ] ;',": i
I " "'t

_'16 ' II':l/'sln(,--:.) : ",i,"(, _') . . .:,r. ('-".b

This formula is usually only app!icd to tl-einclusion of the short-

periodic perturbation o£ /_ and the periodic perturbations of-Tf and

e . The other perturb_tlons of these elements will he best of all

taken into account in the following way.

Formula (18) enables us to compute a table giving the equatlon of
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the centre .....f by ,_.=_r_._._=-:L:,:for _me _;_-_,_ _ values of e. For

example, commutation.=_,b- r_:,._.,_-h-,'-z:-ti_-_ +_ v=_-eN (_ _h_ mean

contiguous midday 0 January I_.'_',G>,we have

When we use this table, we make the argument (19) out of the values of

_, that have already been corrected for the long-periodic perturbations,

and the values of 7_ , in which the Eecnlar parts of the perturbations

have been included. Tn this way, only the periodJc perturbations of 77 and

the short-periodic perturbations of _ remain to the share of the

corrections _ and _'_', involved in formula (20). On the otnez

hand, the influence of the secular part of _.e, whic_ we have denoted
l

by [_ le_ , is expressed by the following relation

Ill I,//4 Jh'_,,,.11I _,,,:._1-] . I I..,,I
I ,,.e ,,,. " "1

Y|ds can _e taken into account quite separatcly by means of special tahles,

which give these quantities Jn terms of the argument M. For Earth

.,;,,'.l,4_ ._ ,.'I / _ _.','_:'"

where T _s ti_=egiven in centuries a_d measured from the above-mentioned

inlt_al moment. Hence the _fluence of the secular varturhatlons of

the eccentricity on the equation of the centre is taken into consideration

by the quantity

- _l'._)l 7'-_._ LU.
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In Newcomb's tables for the motio- of the earth (Astronomical

Papers, Vol. VI), the quotient obtained by dividing this quantity by

T + 0.0030 T2 is g_ven by the argument M. It is worthwhile noting .. ;,

that the term proportional to T 2 expresses the contrlbutlon, of the

second-order secular perturbations.

Thus, the quantity _i e appearing in equation (20) may be

understood as the aggregate of only the per_dlc terms.

The computation of the sum of the perloc'ic tex-ms involved in

equation (20) is simplified by constructing special tables, each of

which give the sum of theterms that depend on a glVeD argument _ +0

The most important terns w__ll be found by ;_hese tables. The

sum of the remaining terms cf equation (20) ran7 be obtained by means of

a table with two entrances corresponding to the arguments _k and _
!

Let us now consiaer the perturbations of the logaritb_ of the rsdius

vector. For the perturbed motion, this logarithm is given by (Sec. 82)

1'4r i.,a : ,|_ 4 ' ";! '-• , . ,,-.M F,I-,',_ ...... (21)

where Ao , A I , ... are functions of e. Consequently,

.. - . , - ' I ,_1_ r,qlt, r ?,,]_.a ',,11 ,int, -.-=.p • 'l ..I,12(, ) ' " i -:
! "l" Fi '%,_,,O =I ; 21 ,I,"_, r) " "I

J

I,IA.. ,t _, ,1.1. ] ;,_ ,. ( ")t,l, d,' '"" '$f .!e '"'"II . . i "-

Formula (21) enables us to construct a table, which gives the value3

of the logarithm of the radlus-vector for given values of e by the

argument

|] I .-.

1979012780-418



OLIG1NALPAG_ iS "_C
OF POOR QUALI_ __

- 407 -

For Earth, such a table has been constructed by Newcomb on the basis

of the folio#lag formulae

I_r O. II(iliii31i.")7 --li ll(i7 27 1 17 A,,,,1!
--O.i Oiiirtl ._8, _,,7,11
-- lift I(lllll '1 .l'i i'o,., ;l) i i
-- O.(lil(liXilJ(I L {(j-, 4A.a.

In constructing this table, we agree to include in M the long-perlodlc

part _,_I for which a special table may be constructed together

with the secular part cf _[ The influence of the secular part

of _, _ or Lgr can easily be taken into account by means of a special

table. ]f we take the sun as an example, we find that the slnn of the

terms of equation (22), which correspond to the secular part of _le,

ere equal to

l(' l", --"1 :,. (: l; ,/',,, :," 4',c .'::' ",,,.",:; d"

Nm_comb constructed a table, from which we f_nd the quotient resulting

fron the division of this quantity by T + 0.C030 T2, by the argument M.

The sum of the periodic terms, which remain in formula (22) after having

made all the simplifications, is partlnlly computed for each of the

perturbing planets by means of tables havln_ a single entrance. The

remaJnder can be taken from a table bavlng two entrances.

We shall finally coqg!der the determJ_atlon of the heliocentric

longitude _ and latitude b. We have seen in Sec. 85 that

1 ,TJ"i- /t), ")1:1b ",111I .'.Ill I,l', (.! _)l

where

A' -- I . I , 1 , t!..:'i
,Ii', I ' II-', 2 ,)lliTt,e I- ;lie L) * ,2,'-ill l'J - . I'!ll
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iI is the reduction to the ecllptlc, and ahereby u is devoted as the

I argument of latitude

u = w - .'2. {23)

, In this, wa_,taklng an arbitrarlly given value of i, we can construct

I two tables, which givc by the argument u, the values of R and b. Putting ,

as before,

' tgi tgi{ p Sill ld, q =:_ t I)', '_.

21 we obtain

,in b co_ i(q _z, u, p c,,, tel.

According to the generally accepted rules, we take within argu_ent

(25) the values of w which include all the perturbatlo_.s. Therefore,

when we compute _i b, we can consider that in the latter equatlon,

increments are only given to i, p and q. Whence,

i C,r,i .

i _,,b-- ,o..b(.int,'._lq C,)',l,'.;,;P)--lVb h,/. ';i/. _kh,}

_ The secular perturbations of _CLare taken _to account by including them

; In the argument (25). The influence of the secular perturbations of i

are are evaluated by means of the following formula

I".,_l wb,;_,lq,l.

which can be reduced for all the large planets to the following form

I,i, tJ] A _,,, u. I"

Thls formula can be replaced by a table having u as an argument. Yt Is

' hence necessary to Include by means of equation (26) the influence of

only the periodic perturbations of i, p and q. This can be done In

analogy to the prevlous cases.
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We can take into consideration the influence of the secular

perturbation of ! on the reduction to the ecliptic, given by equation (24),

in a very simple manner. The periodic perturbations of i do not

s_gniflcantly change R. In order to show this, we write do_n for Mars,

the expressions of these quantities

, J

These expressions constitute the basis of the corresponding tables given

by Newcomb.

Annotation

We have considered the.derlw_ion of the formulae, that define the

flrst-order terms in the perturbations of the coordinates. The second-

order terms can be obtained exacti_ in a similar way. However this

requires a great deal of tedious work.

The tabl_s constructed hy Leverrier give the perturbations of the

coordinates r, _ and 5 for Mars, Earth, Venus and Mercury. As regards

the other plane_s, for which second-order perturbatlons play an important

role, Leverrier has only given tables which enable us to find the

osculating elements for these planets at any moment. In order to find

their coordinates, we have to apply the conventional formulae of the

elliptic motlon.

!01. The computation of the secular terms by Gauss' method

The coefficients of the secular terms in the equations, which define

the pezturbations of the elements of a given planet, must be calcnlated

more accurately than the coefficients of the other terms _ecause the

influence of the _cul_r telnns increases with time. The method of

computation, developed in the previous sections, produces t|,e coefficients

'I
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of all perturbations with thesame accuracy. 'l_is accuracy is defined by

the greatest powers of eccentricities and mutual slopes of the orbits

which are kept in the expansion. Gauss suggested (1818) an alternative

method for calculating the flrst-order perturbations, which enables us

to find them independently from the other perturbations. This method

does not imply the expansion of the perturbation function Jn a series.

Hence, it can be equally applied for any eccentricity and for any

slope of the orbit.

In section 12, we obtained equations (37) which express the

derivatives of the elements In terms of the components of the perturbing

accelerations, l_leseformulae are of the components of the perturbing

accelerations. These formulse are of the fotun

J!

d (_7J

• • • • m

where

I I I
._, .S. '1", [, _, W.

I_,l"lJ l,' l p I; [,'p

and S, T and W are the components of the perturbing accelerations.

When the perturbing acceleration is caused by the grav2tation of a

single planet, P', the components S, T and W are equal to the

derivati_-es of the perturbation function in the direction of tile

radius vector and in the two directions perpendlculsr to the radius

vector. One of these perpendicular directions 2s taken in the orbital

-lane and the other in the nor,_al direct2on to this plane (Sec. ii).
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We have already pointed out in section 88 that the second part of _

the perturbation function does not produce secular Lerms. We can

therefore replace the perturbation ftmction _y its principal part

m' A- ' _.'_)

where _ is the distance between planets P and P' and m the m, ss of

planet P'. Using the series expansion of the perturbation function which

we have already studied, we can write each of equations (27) in the

following way

,Ii l"lil , \'.4 ,. c()s(J )l-i/')1' I o), (_')),It I'n l ) "-_ ""

where we denote by _di- the constant term of the expansion. Assuming

as before that the mean motions n and n' are inco_nensurabl&, we can

set the quantity jn + j'n' equal to zero only in the case in which

j = j' = 0. After integrating, we obtain

l,li [ ..... , , _il:(jll/l.3t-j',41 ' i 0).i--.io-;- d, t + _ Aj.j

I
/It i J l/I

.Thismeans that the computation of the first-order secular perturbations

is equivalent to the computation of the constant terms in e_anslons of

the type (29).

It follows from equation (29) that

,1, 4 r,:, . dt
4_ U

In other words, the unknown constant term is obtained by averaglng the

quantities (27) over the varlahles M and _". The variable M' which

appears in expressions (27) depends only on S1 , "I W1 Hence, we

shall first integrate with respect to }" and then _ith respect to M.

Putting
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and similarly defining T and W we finally obtain
o o'

.:- rco_ u IV,, d, ll
dl '2r..

tl

:" =i, } , ;11

:= .',ill t'So,l,tI._..,_
! dl '2r., _...

qJ l,

We shall first oF all consider the computation of integrals (30). On the

basis of the above-mentioned arguments concerning t,,ereplacement of the

perturbation function by its principal part given by equation (28), we

can consider integrals

S ,l.r!', ., 2 T d _;, W d,lt. (._.'1
i,

as components of some force of gravitation, which corresponds to the

p,,tential

nF /"d If

)E • 1

This potential has a quite simple mechanical interpretation• As a matter

of fact, let us imagine that the mass of planet P' is distributed over

the orbit of this plauet in such a way, that each element of mass dm'

which will be distributed over one of the linear elements of the orbit,

will be proportional to the time interval 6t during which the planet

passes this linear element. Accordingly,

dm' ,It

Ill' /_ '
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where we denote by P' thi:period of rotation of planet P'.

However

dt n' tit d,W'

P' "= .'i'"--- _r. '
/.

and, consequently
&

,.'i',t,W'._. /'a,a'2t:..l a .. _, '
o

This is nothing else but the potential of the elliptic ring produced

by distrlbu£ing the mass of planet P' along its orbit in the above-

mentioned way. In this manner, our problem is reduced to the ,ilculatlon

of the components of _he force of gravitation induced by a material

elliptic ring, the density of which isdeflned by Kepler's law. We

shall not do these calculations here. We only point out that the unknown

integrals (32) can easily be expressed _n terms of el]iptlc functions_

We have thus found the way to calculate the values of integrals

. (32) and consequently the quantities S , T and W ia any arbitraryo o o

point of space. We shall now consider the computation of the quantities

given by equations (31). The integrals _nvo!ved in these equations can

be calculated numerically. We calculate each of the integrands, for

i example r cos u Wo, for different values of M, and then take the mean

values of the given quantities. Let us, for example, consider the

expansion

rc_,_u _t',, a,. : ,gco,.il a.,c,_,2,;l i •
! Ih .I, .11 I 15 ',,tit 2,1/ ; . . . (:','t,

We ,spply to it the conventional methods of harmonic analysis. W_.

denote by _, , _ , ..., _k_] the values of the functlons (33)

that correspond to
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In th=s case,

,It _ _, l'i',, i J" • • • I , - -- .. %

The serie_ (33) converges so rapidly, that even for smal] values of k,

the secuiaz perturbations a:e obtained _Ith a high accuracy. It is easy

to show that the error obtained in calculating the eccentricities a,Jd

mutual slopes of the orbits will _.eof the order of k-i for the

secular perturbations of _ , _, e and -_r , and )f the order of k for

the secular perturbations of the mean longltude of the epoch.

Instead of tne variable M in the integrals (31), the eccentrlc

anomaly is often introduced by means of the following relation

,1:I (I ,c,,-.,'"dl ,

That _s to say, the averaging over M is replaced by the averaging over

E. As we have already pointed out _n Sec. 69, points correspond2ng to

equidistant values of E are distributed along the orbit more uniformly

than points (34) in the case in which the value of the eccentricity e

is significant. We should note, however, that the advantages of applying

E as an independent warlab]e are not above reproach. Considering the

uniform d2stribution of poJnts 81ong the orbits, the parts of the orbit

over which the planet rapidly passes and those over which it passes

slowly, hav_ equal weights. Hence, we should not conclude that the

replacement of M by the variable E will significantly reduce the value

of k,

An Interesting generalization of the restricted three body prohL-m

was given by Fatou (I) He considered the motion of the material point P

(I) P, l_aZou, Sur ]e mouvement d'un point materiel dans un champ de

gravltat_on f_xe, Acta Astronomlca, Ser a, Vol. 2, 1931, 4017462.

1979012780-426



- 415 -

having an infinitesimally small mass, in the field of gravitation of

the cent_:_.!body $ and somc material elliptic rings t,aving the _bove-

mentioned density distributions.

102. La_range's Differential Equations for the Determination of

Secular Perturhatlon8. ', :

When we 3tudy the motion of a planet during a relatively short

period of time, in the order of a few centuries, we can confine ourselves

to first-order secular perturbations. In this case_ the secular

perturbatlons are best of all calculated by means of Gauss' method.

This method enables us to obtaln the secular perturbations of the

eccentricities and of the slopes in a simple way with an arbitrarily

high aecuracs-. If we are interested in longer periods of time, we have

to apply the methods developed in sections 98 and 99. By these methods,

we are able to obtain the second-, third-, ... etc. order secular perturbat-

ions. Naturally, the amount of_trk required by these ca!cu]ations

J:apidly increases with increasing order of perturbations, r,Practically,

we can hardly calculate the perturbations of orders higher tP,an the

third. Finally, if it is necessary to describe the motion of a planet

during a considerably large interval of time, the decisive role will

then be played by zero-rank terms. These are the terms in which the

perturbing masses are raised to some power appesr as multiplying factors

(Sec. 15). Lagrange suggested an alternative method for calculating tbe

secular perturb_tlonm of the eccentricities and the mutual slopes of the

orbits. The main point of this method is that it can immediately

lead tc us to Just the zero-rank terms but will a relat[vel/" low

accuracy. In the following, we shall give a brief account of the method.

Lagrange investigated the possibility of _ntegratJng equatio_.s (4])
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of section 13 under the condition of neglecting all the periodic terms

*

in the perturbation funet_on_ appearing on the right-han4 side of thcsc
p_

equations. It is difficult to SBy_lithout special considerations, that

the integratiGn of these diminished equations could lead us to the

precise values of the perturbations, _hich _uld have been obtained in

the form of secular terms if the exact equations were integrated by the

method of successive appreximations. However, we stiJl believe t},at the

result of integrating these diminished eluations will satisfactorily

elucidate the character of motion of a planet during an extremely long

period of time. The re:_ults obtained will thus be of particular

interest for cosmological investigations.

ReDlacmg the perturbation function involved in the right hand

si_e of the Lagrange equations by its secular terms, we can confine

ourselves to the series expansion of this ftmctlon in which terms

involving higher second powers of the eccentricities and of the slopes

are neglected. Only under this limitation, can we exactly carry out

the integration of the Lagrange equations-

Let us now consider the expansion (36), Sec. 90. NotIDg that

the second part of the >crturbatlon [unction does not lead to secular

terms, _ obtain witbln the limits of accuracy, tLat the _;ec,liarpart

part of the perturbatlon function will be given by

" ,','z It I ,,_ 1
_' ('. --- ;( h' i e':)(lJ lJ')( 'a' i.? ' 'P ._

- " "' "_I'I e,"{I) i /* p(, c(," II1' II I,j

Since
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and, as formula (35) of section 89 indicates, the dlffemance _ - _

is a small quantity being of the second-order with respect to the slopes, d,

f7 _ • Qwe then may replace cos ( /7, ) by cos ' Tf - _T.) al:1_ys remaining

within the limits of accepted accuracy. On the other bend, and within

the same accuracy,

'2_: "_iil :d. I -_._.! -I--.Lu_i_._ f 'd, i_m/,-.(t.!'--_)

I I
'2 ._i.:., :'-'l,, : ,, - _in I q. f,,,, ('_:' !2)

I I
,, t:_" i ,, tR :' - f,'i., t_ I' ¢.'. _'".- '-,')

_ence, we ¢_'anwrite

1¢, /,,'If :I,,' ;V,!, r---t'"' tr:f-{

• -t,'..'t"_',':-,'" '"l "/' r/O,-(': =) (,t._)

where we denote by MC, I , NO, I and PO,I coefficients which only depeed

on a and a'. According to the formulae developed in sect._on 88 we

can consider _-t_=t t11esecoefficients are sym._etric functions of a and a'

According _o Lagrange, we replace the elements e, _ and i,,dl by

the following variables

/,' c"a.-, I ,",':', , (:;_,_

,, l, i,._a".. ,1 ". iLo, _'_.. 137)

We can then rewrite expressdor (35) in tl-efollowing manner

,' i

--, " • '(I,', ' ,l .'/' U.h II), _ , I• w , i

where the var:ables h' _, , p' and q' are defined by equat:.ons

similar to equations (36) and (37).

We now deduce t.e differential equat$o_s tha= define the he',.:

elements given by eq,,ations (36) and (37). Since

,. L ,
" _" I,"' I II "

,., d" ' ,.I ,.' .;"
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then, using eqaatlon (41) of section 13, and noting that

we easily obtain
/

Itv,

,s2 ¢i---: r i',,/,' _ h ,,i,'I ,,
i

1,I/%P

,V rtl I t_'l 1 I-_/i--D'--I-O:# /:_x:i,'l--D: I- Ot

#

dl_ 1 0t7 h t--._ ,liddl _ 1 - . h: - t:11"t
d"7_ ha-" \ l,'h i I V'1 -- h: /. o; .,} -" n_J_1, I I;: i: ,_.I

Differentiating expressions (38) with respect to h, _ and i

yields first-order powers of those small quantities, in terms of which

the expansion :Iscarried out. Hence, neglecting the terms involving

third powers, we obtain

:lh I 0,\' dl l ,j.t_,
(tl,

r,,:- ,J!' ,It -- ':J," .','#"

Erhenwe are interested in the secular perturbation produced by

the _nteractJon o_ the two ,._anets P and P', we have to replace the

quantity R in equation (40) by the expresslon given by equation (38).

We shall ,he,fevercoi_sider the general problem which involves an arbitrary

number of interacting elements and try tc f_nd the secular terms of

their elements. We denote by m° , mI, m2, .. the masses of planets

P, P', P", ..., and by ao , aI, ...; eo , el, ... their elements.

,",ppil.y:Lngequat Ion (40) to planet P l_() , we obtain

dh I ,',C ,,'! I " '
(_'I lIP- l ljl _/l !l." i 1 ,L

where, due to equation_ (38),
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•",' "%_I¢ _" h,,,, .;I \" _.,._,v Ih , ;- _u_

: h i ' i' -'1 e ,,. .'(P I" ,_.,I), --

In order to nvoid making exclusions during the summation, we consider

that

'.' ,',' / ' I)

Denot':_qg, in short,

•"" ' .... _ /' i". ,i
/: .' 'l d

the result ol substituting expression (42) in equation (41),

is rewritten in the followJmg way:

,1tl I
.-I / I.',_'ll,{l '', :1/, ! • • " II

_I')

1
dt J

where

: ,(. ('-, :-A (:,,())-: , 1) 2)- • 04)

and P is a syn_metric
Since eac]"of the coefficients N _,v _ ,v

functiom of a /_ and a_ , then the following relations hold

m n a" I_t,.,) mna (',,_q i
.... (::,)

In this way, the determination of the secular perturbat5onm of the

eccentricities eo ' el' e2, ... and perihelion l, :gitudes -/To, 7[ i'

77" 2' "'" Is reduced, within the accuracy accepted to the _ntegration

of equations (43).

We now consider the variables defi_ed by equation (37), which

determine the position of the orbits. We, first of all, find that
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i
]

_!P t_/c_d°' i ._l._cc'i"--'dt dt at

dq dU di
-- II_ ! ",ill I, i co- 12.,.,i..,¢:# - -
dl - dl dt

O&' _ta'._ it" I -!11 _ dlO
07 It_ i COS'2 <tp _,q

"_t'C' i._llll-- I ; ",t'C- _ _-rJz_
dt __IJ' t #4

Taking into account equations (AI) in section 13, we easily obtain

J I

dr, _ ',,'c-_ ,q,' p-,,:el,cc: _'4''/" 'PI"I J
,# tlll: _ !- c" 'Pq "2ha _/ I t" _ '_" o. ! i ,!tO I.

: l [|

dl nil _ i _ ¢1 ..l_ "2 lld ' _ i ( Or ,l. " i
t
i

In the present case, since the equantlty R is expressed by equation (42),

_lt _it i.
then _ = 0 and _----_.Isa second-order quantlty. }:ence, l

neglecting terms involving third order powers, we obtain i,

,lp I ,b_' dz7 _ 1 <lL' 117j ,
dl n.J..P,i ' ,11 _l_ ,ql

Substituting expression (42) into similar equations that define P_

and q_ , we finally obtaie the f<_ilowing system

I I, ] ' " (I..: , . [
I

; /' I". _l)/, I '. I'..q _1

We shall co_sider the solution of systems (43) and (48) tn the next

section. We here conf*_ne ourselves to oFtai_ the outstanding first

_,Itegrals of these systems that were f_rst discovered by i.aplace. I

2 2 i

We multJ.ply equations (13)by _"_ _, a_ h# and m_ n_, a_

respectively, add them ter_ by t_x_n, then si_ the results. This yields,

#
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or

where C is an arbitrary constant which may be defined by means of the ""

initial conditions of motion. Taking equation (36) Into account, we

finally obtain

_ t,, n.. a:,. e:'.-_- C. ( Iq_

Similarly, we obtain the following first integral of equations (48):

%'4 1,1 1!.(3" I":,. ,, I _:" (.,(Ij

At present, the oJLcentricities and the slopes of the orbits have

small values. Hence, constants C and C' are also small. Due to the

fact that all the terms which constitute the sums (49) and (50) are

positive, Laplace considered it possible to conclude that in the

future, e_ and i_ wlll always remain positive quantities. This

conclusion is only valid as far as it concerns planets, whos,, mass

constitute a large part of the sum of the planetary masses. If the

mass of a planet Is very small, its e_centricJty and slope can be suf-

ficiently large without violating equations (49) and (50).

Since

i
; n /'_1 im,a ,

then, neg]ecting second-order quantities relative to the masses,

we can replace equations (49) and (50) by
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103. Trigonometric Expresslous of the Secular Perturbations

We shall now consider the solution of equations (43). According

to the general theory for integrating systems of linear differential

equations with constant coefficients, we search for tl_eparticular

solutions in the form of

l. ' L '

h, _z,_l • :1. ; _o,_t .-; =). q.,I)

where S, _ and L_3 are constants. Substituting these expressions

into equations (43), we obtain the follow__ng system for determining

S and L

L _1_ . .._ , i,o I
(,I,,__s)l.'' ', ,i _ . ,,., -OJ

!A,.,/.'"' [. tA,.:- ,,I /.'" t-' • -k,l,,.,l.'" - _J
1521

, I. 'j' . .. ,[-,_ I, ,-. . -,
I

where m + I is the number of planets, and

O, _ III P,

i

' Equations (45) show that

A, A .

g
! Hence. the determinant of the previous systemi "
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A.--:i. ,to=, . , .A.m I
I

Au, , ,t,.,- ._.... 4, ,,, i
/)(_) : I (,5.))

• • , • ) •

IAM.,) ,t =..... 4_. ,,-" ._

is symmetric with respect to the maim diagonal. Let us denote by

So , Sl, ..., Sm the roots of the equation

IJ(._)' i), G:))

where Litm) are the values of the coefficients, which will be

obtained If we put S = S_. O,`eof these coefficients will remaia :.

arbitrary. Hence, we can put

_/++I _+ ,)I_s( l ) I

t.,_l

where CO , CI , ..., Cm are arbitrary constants, and q_ are

known numbers.

Since the parameter # invo!ved in each of equations (51) remains +'

arbitrary,the,,denotingby,_,, ,_, , ...,& ,,,,other=+1 +
arbitrary constant, we can write the general solution of system (43)

in the following way i,

( ,I, i
I _ ;,' 't,)_(" / ), +,

it

where we have put ]

L''
.$l" ( ', I

i q,

?best equations are known as the secular equations. The properties of

thdr solution depends strongly on the nature of the roots of equation (55).

Lagrange _onfined himself to the calculation of the roots of the
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secular equations using the values of constants that are obtained for the

i solar system. He found that these root_ were _eai and t:nequai. Laplace

i was able to prove by means of integral (49) that equation (55) could not

have any complex roots whatever the values of the constants were.

%

Indeed, _f there were any complex roots amongst the roots of equation

(55), then the correspond term of equation (56) would include an

exponential function. In th_scase the sum _+_2 would tend to

infinitywh_n t _ ±_ . This would violate relation (49).

Laplace tried to prove the absence of equal roots of the secular

equations by using similar argments. In doing this he made an error.

He considered that in the presence of equal roots, there should be

in the general integral (56), certain polynomials of t multiplying the

trigonometric functicns, which would certainly violate equation (46).

However, it was almost simultaneously pointed out by Weierstrass (1858)

and Somov (1859) that for equal roots, it was not at all necessary for

t to appear outside the signs of the trigonometric functions.

Uhen only two planets are considered, the absence of equal roots of th

the secular equations is establ_shed quite simply by means of direct

verification. The impossibility of the presence of equal roots was

shown by Seelinger in 1878 for the three body problem.

In order to obtain the limltLng values of _e eccentricity e_ ,
i

we square expressions (56) and add. This procedure yields.

,," <ll'"_ _.$#_' ,,,If" }, . .

, .. . '. ;; },
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We note that if one of the coefficients (57) in formulae (56), say

M_ , exceeds by an absolute value the sum of all of the other terms,

then the perihelions of planet pLO will have a translationaJ motion

with an average velocity Sj . Indeed, combining together equations

(56), we obtain

By condition,

• :,IL 1'

Hence, cos (ST>- Ss _- _f )wi]l never be zero, andthus

r.,,. s.t f _3. ' h 180 -i-'_,,(t),

where k ts an integer, and the last te_z satisfies the condition
O

--!H_ ,; (t) ! !}(J.

llencc, the perihelion of the planet under consideration will ne_er

be displaced by an angle more thin _0° from a poin_ moving with a

: uniform velocity S y .

Considering equations (48) which define p_ and q_ , sivce

they have the same for_x as equation (43), we can then immediately

write their general solutions in the follow__.ngway

_ _#,I •p,, = A, sm (_,t-t-"i,)
"_ LS!t)

q_,: EN,"" cos(L t "l,).
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where, we denote by _ , _ , ... , _ the roots of the secular

equation

O'(q :-: O. (60)

which has the same structure as equation (55), with the oply exception

that in the present case

(I V"171IJ
- ' " (G!)

'_.' a vmfl"

Annotation:

Since all the quantities Apw#R acd Aj4V involved in the

secular equations (55) and (60) are of the order of the planetary masses,

then the roots of these equations will be first-order quantities relative

_-othose masses. Hence, expanding expressions (56) and (59) in powers

of S_ t and _ t, we obtain zero-rank-terms.

104. Secular Perturbations of Large Planet_

The numerical values of the coefficiemts of formulae (56) and

(59) were for the first time obtained by Lagrange himself. His result v

are only of historical interest because Uranus could ot be involved in

these computations, and moreover, hypothetical values were taken for

the masses of Mercury, Veuus and Yars, obtained by means of multiplying

the valumes of these planets by some assumed density.

In 1839, Leverrier repeated these compt_tatlons with better values

for the constants and taking Uranus as an example. However, the

influence of Neptune, which was subsequently discovered by Leverrler

in 1846, was not yet taken iuto account. The most cot,lete results

obtained in this field are those obtained by Stockwell (!), who suggested

(1) J.N. Stockwell, Smithsonian Contributions to Knowledge, Vol. 18,

1870, WashingLon ]873.
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on the bases of aJscomputations the following values for the masses,

mean anual motions and semimaJor axes
., _

Table i

I

p k o,er'__.._- I :m n a II
i
I

_/_j_ s ...... 391J000 2 lOt,611 118 o7,:_;:._;2.; I• I
_att_ ....... 3B8 639 1 2',6')77 1It) i(',00OOOO

_k_.F5........ 2680637 g,_'}030.9023 i5236_.78

,_L,_. ...... 1017.879 1o92D(;.719 6.20279,_ !
_J_n ....... ' J 5oi.6 4?_gt; 127 9 ,_38,%2

._._f_ ....... 2.l 905 16424 50:l.I I,i I_'; 5v,l

_ _'l_'_'lli"_ ...... 18780 , _73.':93 3_i.03186

Furthermore, he used the values of the required elements for 1.0

January 1850 and used as a basis the _liptic and equinox of 1850.0.
b

These _al,tesare given in table 2.

Table 2

o 711tpCLll_J4... 0.203617b 7,5 7' 0'_0 7" o' 8"2 16' :13' :1"9
I l/l_ilU9 .... 001i,;8118 129 28 ,51.7 ;1 7,1 _11.1 73 70 179
2 l_;l:i,_'l;h..... 0.0h_7712 tED 21 .ll.ll 0 0 li.(I O 0 (l'l

3 )ilipj ...... 009;I 1.124 d;13 17 .17_ I 61 2 3 48 2.1 ;It;
4 3"upiteb .... 0.01822i88 !1 &l 53.1 I I_ ,ll) 3 _14,5.120.6
,5 gaL_rr/ .... o.0S59956 90 ,; 12.0 ? '_")22 .I 112 19 7,J',

ii Ulio,rlu_,..... 0.0tB21.19 17o d| l/.b 0 .h, 29.9 7,; 14 I I .i

7 _"el_LOe_...... 0.00917-10 50 16 ;;9.1 I .17 o 9 130 7 .15.;i

He obtained values for the parameters involved in equations (56) and

(59) and which are given in tables 3 and 4.

Tbe values obtained by Stockwell enables ,is to determine the limits,

within which the mean values of the eccentricities and slopes vary.

By the term, mean values, we mean a_ usual the values of the elements
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in which both the secular and the periodic _erturbations are taken into

consideration. These limits are given by the following table

p,L_.._r-., _fc=e.,___._c;.t_ S Lope
Mm. M J,{. hlln i4.,x.

_llr{u.P._......... 0.!-,i o.')'{2 .Iii' '_|I'
I/8_U._ ........... u O.O/l O .', l,,

/-_W_ .......... OOl_t - 0.1 l,J O 5,5,
_'l.t.oi1;q¢" .......... 0.(}25 0()t,l 0'I,I' t_29
_;(gu,',"_.......... o.o12 oox| o .,, l l

O._U_,.......... 0.ol2 o.uT_ u 51 I 7
l::L_e.. O.00G ,_.u15 0 31 o 47

In this table, the slope is measured relative to the invariable plane.

On the basis of the above-mentioned argntme_.ts,Stockwell defined this

plane by thefollowing values of the elements

i -= !_'33 ' 19".376, ,.2'----_106" 14' 6".00,

which are measured relative to the ecliptic and equinox of 1850.O.

For all the planets except Venus and Earth, one of the coeffJcients

M_ _ exceeds in _bsolute value the _m of the ab'olute values of the

other coefficients. Thus, the perihelions of all of these planets have

mean motions. It is _nteresting to _ote that the mean mot_o[_ of t'qe

perihelions of Jupiter and Umanus are equal and tP.elongitudes of these

perihelions differ by e._actly 180°. The perihelion of Jupiter vi_ratE.s

about its mean positlon w_thln the limQ:s ! 24° ]O', while the peri-

helion of Uranus vibrates within the limits + 47° 33'. Therefore, the

distance between tPe perihelions of these planets at their closest point

of approach is given by

180 °- o .' ,(...t 10 [- t7 33'): 10_ 17'.

Annotation

The solution of equatiom8 (55) and (60), the right head side of

1979012780-442
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which are expressed by determinants of the type (54), h_s always b_ .I

considered as a difficult problem. For this reason, Leverrier (1839)

used a special method for solving these equations. Later on, Jaccbl

(1845) suggested an alternative method also basod on th_ properties of

dete cm_._a_tsof the type (54). The best of such methods is that sugges':ed

by Krylov (I), which makes use of ,ae specific properties of the secular

equat'ons. We shall not con-,cie, these methods here, s/,_cethe con-

ventlal methods of unfoldJ :g determinants together with the Lobacevskij-

Greffe method for uumer_cal solution of equations leads to the required

solution in a sufficiently simple way.

105. Secular Perturbations of Small Planets

We consider the case in which planet P has an infinitesimal _,mss

st'oh tPmt the influence of tbis planet on the other planets P' P", _ • eo

p(m) can be neglected. In this case, the system of equ_fions (43)

is devided into two systems, one consist:ng of th_ equations obtained

by putting_= I, 2, ..., m x.:_Ichdo not involve quantities that

concern P, avd the othe_ consists of the fo!lo,,-ingtwo equations:

] which define the secular pertt,rbations of the small planet under

(I) A.N. Kry]ov, On the ntmmrlaal ._olution of the equations, by which

the frequencies of small vibrations of rmterial systems are defined.

Transactions of the Academy of Science of the USSR, 1931 (Ocis].ennom

resenil uraxrneniJa, kotorvm v tehniceskih voprosah opredeljaJutsa

castoty _aalyhkoleba_lja mater_ialr.yh nlst_em, Izvest [ja Akademli
nauk SSSR, 1931).
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investtgation. I_,en the ftrs_ system which defines the mutual perturbations

of the large planets is solved, we substitute the resulting expressions

_nto equations (56) and (61). This yields a system of two non-homogeneous

equations of the type

d#

--=/%_(0, t')- E a, cos(sJ-'-_,)at _

dl

d-_-'--h --_l' (0, tO+ E A, si,i (s_t-¢- _j),

where A_ are constant coefficlents. The solution of th_s system is

given by the following equations

h-----M sin (' L"(0, IL)+ _)-! " A__a -Eill, t_)-- a' si,, (s,t -t- 0,)
A (tit}

(,' 1_{ ," _' ...... cos (s,, --[-[3,},l==Mcos t- (O, I,) -j- ,q "---- ._:(O, F) -- s,

in which M and _ are arbitrary constant s. Similar results can be

obtained for the elements p and q.

The -.uestionon w_etLei" the sun _ (0, _) c_n be equal to o1_e,

s Co_ the quantitie_ S % or net, wni_h would simplify the simplification

(_)
of the variables of integration has been investigated by CharJier- .

The constants H and _ characterize the motion of the ._=alSpla_mt

better than the variable elements e and _ . For this reason, Hirayama

called t|,em the proper eccentricities and the proper perihelion longitudes.

Computing these qua_.tities for a large t_umber of ._mall planets,

Hirayama could separate _everal families of small planets. To each family,

he related the planets having close value': for t'h_. pr-per e]emc,,ts H and

and semimajor axes.

:' (I) C.L. CharlLeL-, Die Mechanik des Hin_.els, I, 424.

(2) K1yotsugu Hirayama_ Families of Astroids, Japanese Journal of

Astronomy and Ceophysic_, Vol. T, 1923; Vol. V, 1928.

• ' • ,r °
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ANALYTICAL METHODSFOR OBTAINING THE PERTURBATIONS

or THECOORDINATES

106. Equa':ions of the Perturbed Motion in Hansen's Coordinates

Let us consider a fixed heliocentric system of rectangular coordinates,

e.g. the ecliptic system of a given epoch, and denote by x, y and z the

coordinates of planet p,the motion of which is being investigated, and

by xr= y' and z' the coordinates of the perturbing planet P'. Let m

and m' be the masses of these planets, r and r' their radJus-vectors and

the distance between them. The equations of motion of planet P are

thus given by (See. 3).

xq.___(l +,,) .,--_ o_' I

r_ dx I
y OR

-. �Œ�,,.[
z--I--_"(l-tin) r- -: Oz ' }

where

(l _'-t-yY-t-z:-'_R == k:m' A"-- - r'" J (2)

is the perturbation function.

We introducc a new moving rectangular system of axes by means of

the follo_ing equatlons

x-.-=_ -t-a,y -t-a,z

y-- px-thy + [_.,z (s)
Z ='f,'_-[" 7, y _" T:z.

2qaeangular coefficients o_, _i' "'" _2 are functions of time.

They satisfy the following relations

1979012780-445
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from which it follows that

a:-:, _;- . .i" ! _=, ,i .:.3_...-:"iT,, 0 I

Using these relations, we obtain from equations (3) that

x- _X-;-,:Y-_IZ I

Y= _,X-l-;., _ T,Z _ (6)
I

. ,': _ _-7.Z

The nine angular coefficients are already connected hy means of

six relations. We imply that these coefficients satisfy another auxiliary

conditions, namely

x= -t-y_',-k z,, --=0 I

.,) -I-y:_,-I-:,% o I{ _7)
*_-I-y:. + 6,-- o, J

Because of these conditions, the derlvat_ves of the new moving coordlnatea

are expressed by means of the following formulae

Y--. ;_X-I-_,) -t-,_:z ts)

2=-tx-i-t,_,-i-_=z, I

exactly as _f this coordinate system was not moving. By virtue of

equations (6), one of equations (7) is a consequence of the other two.

I

_ .,_.,. , .,,,,,.,.,, ,v : ,,'_. "' " ...............................

"19790]2780-448
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Therefore, the nine angular coefficients O_ , _ i' "'" are related only

by eight equations. Accordingly, there is an infinite number of moving

coordinate systems which satisfy all the conditions that we have imposed

here.

Hanson called the rectangular coordinates (X, Y, Z), the derivatives

of which satisfy equations (8), the ideal coordinates. As we have already

seen, tkese coordinates are e_ressed in terms of the fixed coordinates

by means of formulae (3) together with the subsidiary conditions (4) and

(7).

The choice of the idea] coordLnate system is still not completely

defined. We remove this arbltrarinevs by implying, that these coordinates

should satlsfy condition

,x I ",,Y i- ;.-=0. (9)

This condition produces a coordL1ate system in which Z is always equal to

zero. I.nother words, the plane _ _iI always pass by the radius vector

of planet P. _e sb$11 call such a coor_.!nate sy'_i_T,a ilan_en coor_inate

system. IL is easy to see that the Hanson coordinate system is completely

defined by conditions (4), (7) and (9), if we disregard the t_ arbitrary

constants resul[Ing from the integration of equations (7).

Our problem now is to obtain the equations of motion in terms of

the Hansen coordinates. For this purpose we introduce a couple of

st,,-_id[dry,:onditior,s. We vu]tlply equations (3) by _ ,_ and _ and

add. This procedure gives

XJ ' Y,' _ll_ i :" I "_,} ]

, ra

Taking into account the relations which can be obtained frov_ eq_,at._.ons

(5) b_ means of differenttat.lon, we rewrite this equation as
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x;-l- l'__--yt,_, 4 _, +ri,I -

The expression found on the right-hand side of this equation disappears.

This can be proved by multiply_=g equatiov (7) respectively by _ , _ and_

and adding the result_g equations, term by term. In this way, we obtain

the first group of relations

,v; -I-Y? ---0

Another two groups can be obtained in a similar .way. Hence, eq,mtions

(6) will have for the Hannah coordinates the following form:

x=_xl _Y; y:=.,x-t-_,r; :==_x+_,r, (II)

Differentiating these equations twice, we obtain

x :=_X-I ,,_" aX-l-.

Hu]tiplylng these equations firstly by CW, O(i and 0< 2 secondly by

,_._ , and p2 and thi, dly by _ . _ 1 and Or'2 and add:Ing after

each multiplication, we finally obtain

=x-t =,)'-t-=.J= X (12)

-I-C;,'_-t-'.;_,-t-';:l;:)P. (i:i)

Substituting e_pressio, (11) Into thc first of equations (7) yields.

(,_,-I-=,A,-f-,..;;),.':-1-0_-t-,%;,,i- ;_...'_.;)v-_ o,

Illll ' "_
1

1979012780-448



ORiGiNAL PAGE T_

- 437 - OF POOR QUALITY

Taking equation (4) into consideration, we obtain

Comparing the last two equations, we obtain

t3_-t-,,_,+1k4=o, 4+_,,lk-t-<4,= o.

These equatioas yield

I'l J" ,:-ll --- 1' ' - .

However, since it follows from conditions (4) that

T 7, T"
: q p

we finally obtain

n' t _.

T "11 _3

We can in a similar way prove the following relations

l_y tokJng all these relations into account, we can replace equation (13)

by

]:

We shall now consider equations (i). MultiplyinE them firstly 53

0_, , O< 1 and c< 2 ,_secondly by _, P! mid _2 _,nd thirdly by ; ,

1 and Y2 ' and adding after each multlp]Ication, we obtain

considering equation_ (Z2) and (14)

X OA'
X-t-_'(! +m) ,' =_OX

'* (tsj
Y OR

dA'
a,k+O,_':- v. oz" (to)
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In fact, it follows from equations (6) that

0/_ Ol__ dR OR
-j-x--t- =, Oy + =.j•dz = OX
01¢ OA' OR 0I¢
-a_-i [_10y-t-_=a,: = -aY

OR t Ol,, _R O/_7--ox--_' -ay + "_"oZ-= az

and, moreover,

,: = x=+ y'-t- z== X_+ rJ.

Equation (16) and the last of equations (I0) yield

== =--h-Iy dQ I
"h OZ !

t (_7)

?, az l
where

dY ._ $, ,I.V
h : ,V el; ,ll (18)

sJ_ce_

'- _', _ I o..- [_i,,

then equations (15) and (17) perfectly define X, Y, _ 2 and _2" After

having done this, we can now obtain o¢ , _ ,_< and _ by _aans ofi i

equations (4). In this waT, we aze able to find all the quantities, w]llch

cuter expressions (ii) defining the coordinates of planet P.

107. Transformation to the _olar Coordinates in the Pla_e of Osculatln_

Orbits

Let us first prove ghat the coordinate plane of the Hanse,1 coocdlnate

system is the plane of the osculating orbits. For this purpose, it is

s-fflclent to prove that the product

z - _x+ _,.i,F _,z

t

i . o I

il;_p...V.,., .,,.-.,,,,.; ,...,.,_.,,,,... .................. .-,, ,,,-,,,.,-.--,,,-,,"_.,.'-,,,.-._._ -.............................................................................................................
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, is equal to zero. Using relations (9) and (Ii), this product can be _:

written in thefollowlng way _"r ,,

Z = --x't-- Y_,_--z_,'--=

_,'/_ . -,--- ,,, 4 r. -t-I_,_:).

Substituting expressions (Ii) Sr_tothe last of relations (7), we see

that this quantity is really equal to zero.

We now introduce the polar coordinates In the plane of osculating

orbits by putting

X-= rcosw, Y----rsi. m. (19)

since,

c)A'
" 01,_ 01_'r sinus-t- r cosm

dw --=--- OX d Y

#[; 0[_' -l 0,'_'
Or :_-t- dA" co._ m 0 Y si. w,

the,_,Instead of equations (].5),wP obtain

d(dw) dl_jd/ r'--dl = -du;
(2o)

: dl_--r\ d/) "_- - r'-' = dr"

Equation (18) yields

dw

h =. r' -dr ' (2 I)

from which _t follows that the f_rst of equation_ (_0) may be replaced

by

dh _-=_J/,,' (22)
dl d,t, "

• . .... ,'_,., ,.,_.--,_-.,,,_.'_m-_.ze._ .............. ", ....................:.,.,._,.,___lz _.=x_m__.; ,w_,...,,,..m,, .......... .,..--., ,, ,,.,,_.,,,_,
I_- . .,_,.,,.,,..,.,,w_- _ ............ ._ _ - -- ,
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108. The case of unperturbed motions.

If the perturbation function P.is equal to zero, then equations (20)
P

are reduced Into the wel!-knovm equations of the two-body problem_ It,this

case, their general solution will be given by

E--esi,,E=-:not-t-_to; lg I u i _'ot,' i E'2 eo _ 2

n:',,_o.-_x?_ q-n'.); pc a (i- e_) I' (";)
Po

w--=vq-/_, r ! {-c,_,'osl, p

which includes the four arbitrary, constants ao , e° , Mo and Xo Equation (7)

can in this case be considered separately from equations (20). They leod

to constant values for O_ 2 and _2" The remaining angular coefficients

required, o< , _ , C_l and _i can be defined by either equations (4)

or (5). It is clear that one of these coefficients will remaln arbitrary.

The final equations of motion of p!anmt P are

x "=_ar cos w -t- [_r sitl to [
y :: _,rcos w "t- [_,rsin to (2.t)

z =: ..:rco:; w -]- _,rsi. to, I

They Involve seven arbitrary constants, t is, howevez, masy to see

that two of Lhese constants, namely x and o_e of the coefficiemts o_ ,
o

O_ ] and _i which remains arbitrary, define o,e and the same

one thing, namely the position of the X axis in the XY plane. Hence,

the val,e of one of these two (.oefficients may be fixed.

•, Instead of the integration constants

__ _ 2 and _ 2 defining the po_itlon

of the orbital plane, we introduce

: - y)

-- another pair of more convenient para-

meters, namely tbo longitude of the

_R_ ascending node ---l_ 0 and the _lope i

(Fig. "1.3).

:.c

............. .,,._.....,...L.,...,. ............._,-,_/' u ........ ._..............................,.,_,._L ......................................................................
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The position of the X axis in the orLlta! pJane may be def.[ned by

the angle <_o between this axis and the ascending node of the XY plane
p.

relative to xy plane. Denotffng by _ and b the hel_o_ntr_e longitude

xQ and latitude QP of planet P, we obtain

x--=rcosbcosl 1
y---rcosbsinl (25) ..... .,,+.

_ r sitl b. 9,2_-

Referring to triangle _QP, we see that since ._P --XP - XJ_ --

&2 - _ , then

cos a cos (1-- Uo)"-:cos (w-- o,,) t
cos b sin (t-- %) - si. (w-- 04 cos i,, ,w (26)

si. b si. (.,-- %,)sin /o, I

from which it follows that

_(LqOtO,l C(J,{II' -- :,,)t'_V_ <20 SttlltlJ --- ;.,.} ,Ill t,!o('l_._ / .

C()_b.'+III / ItL',(w ;o)MII _,3.,{'MII(IH- - ; ICQ%I_.D+ICtj'Iu

Compar_.ng _quations (24) and (25), we obtain

a --C_)'< ;et'O';i2 o-I ";ill %,_iil _,,COS:o

i; -Sill 7,,¢()_o--t'i)< :_StII _.,C()%/.,

_, : co. _,,,_i,I'2o-- sm _°c._ U,,cos io (97)
[_l "= silt co,_ili L_o{-COS';,,CtJ_,,COS/o

a.: :--: -- _ill $._3111io

Equations (23), (24) and (27) establ_sh the complete solution

of the differential equations (i) for the case in whlc!_ R _"C. Thl:_

wolution Involves seven arbitrary constants, two of which are equJ.valent

to a single constant, The fact lles In that euquat_ons (26) deperd

only on

v ¢' _'
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i w -- "_o=" 4-7..-- _o,

i.e., on the difference x - O- %-hlch represents the distance betweeno o

the perrlhellon and the node. The presence of two constants instead

:i of one in the abo_.e form_lae is made use of in Hansen's method for the
i

calculation of perturbations.

1.09. The Laplace-Newcomb Method. The perturbation of the Radius Vector

i Laplace was the first to develop analytical methods for calculating th£I

perturbations of the semlmaJor axis. He developed methods which made it

|

; possible to calculate the perturbations of the radiu_ vector r, the

!" longitudes w in the osculating orbits and the sines of the longltudes

of the planets relative to the plane of the unperturbed orbits. Laplace

confined himself to thecaleulation of the perturbations of only the flr,t

order and involvln_ no moze than the third powers of the eccentricities and

the slopes.

In the _IghtJes of the 18st century, _lewcomb aimed to develop a

theory for the motion o_all the large plm_ets. _ne review3d Laplace's

method, which considered to be the most practical method. All the

tables comouted according to Newcomb are to-day the basis of all of the

annuals on astronomy. The construct_.n of these tables is via the

computation of the perturbations of the coordinates. The perturbatlonm

of Jupiter and Saturn are computed by Hansen's method, while the per-

turbations of the other planets are calculated by method_ developed by

Laplace. This shows that Laplace's methods still do _ot loose their

partieal value.

In the following, we give a brief description of Laplace's
I

methods taking into a_eo_mt the Lmprovements made by Newcom5 _n order

to simplify the Computation of the second- and higher-order perturbations.

h _j_J J ...... _ _"Jli 'JlJ 1_ _J _J JJ " " JJJl J JJlJ,

.,._ .._ .. ,, _,.r,,Jw,jlmW_lmp_zR,,w.-'F'_" .... ._ _ ..... -- ._,,,._ ....... ..... ,..............................
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Let us recousider equation (20). Putting

and, noting that

0/_ ,Jk'
• =-n

Or 0;, '

we can rew*ite these equations in the fo]lowlng manner

g:r__.r_('h'))'-' i /_'(I i m) dl" Ir d}=' d/ r O? ('2,1)
d:tz, dr d/z, Ol_ ['= -t-2r :-
dl _- dt d/ t/to"

Multiplying the first of these equations by 2 d___e_P = 2 drd t r dt

dw

and the second by 2 d--t , adding and integrating, we obtain

dr

(),w"-j-r _" =--o (C--{- J,dl4),
2k_

dt dt r "

In order to simplify we have put

( O[_ dp Ol,) dm )-0_, dt tOw d/ dt=-d'l?, k"-(l {-m)--:k_,

a,,_by C ve have demoted an arbitrary cons_ar_t. Adding this equation

term by term to the first of equations (29), we obtain

t d_(r '') _, 1'- 'J_

- ==2c-l-2 1 d'#- t- O_ (:JO)'2 dr-' r

We denote by r the radius vector of the unperturbed motion whicho

satisfies the following condition

! ,r, (,',,) _'_
...... 2C.

'2 dl '_ ro

Subtracting this equation Lerm by term from equation (30), we obtain

I a" /' OA' (:_1)--'- *2, l2 dl-' (r'.--r_) k==(r '--ru ')= d'f¢-t "Op

1979012780-455
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where the integral is defined by the condition that both the right- and

left-hand sides are equal to zero when R = 0.

Newcomb considered it more useful not to determine the perturbation

of the radius vector but of its loEarithm. Hence, putting Jn anology

witl, equation (28)

Po= Illrv

and introducing the followJng notation

dp_ p -- f'o,

we obtain

•'= exp(2_0+ 2_i,)= ,gexp(2_p)_

( :-, )=_o I+2_+i_ _ +' •• ,

from which it follows that

l
,_ _,' ','J '"-i "

, ' t,,' ',;"_" L ,, I ',',' ,

We substJtute these expressions into equation (3]). We keep in the

right-hand side only terms of the first order together w_th thc second

order terms whilest neglecting terms of the higher orders. We then

obtaln

d'(r';',i,) ' k'; _" "I_

d:= , r'I (r_';I,) "-,.i ,I'N _-,_)1'--

,C(r$,_,'-') _'?;_," (3"'
dl_ 2r. '

which wlll be the basic equation for calcula=ing the perturbations of

L

,_ the radias vector. In this way, our task im tanned into the integraticn

of _ differential equation of the folluw_.ng type

s
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_. _, _, (33)
al- _

k_2 r -3 and Q are unknown functions of t. indeed, ._n order towhere
I O

obtain the first-order perturbations, it is necessary to neglect on the

right-hand side of equation (32) t_e terms which involve and to

cal._ulate the perturbation function R using the unperturbed values of the

coordinates of the p]anets, This will lead us to the expression of the

quantity Q by a well defined function of time. Simil_r!7, by means

of the computation of the second-order perturbations, we find the value of

the rlght-hand side of equation (32) wltb_n any required .occura,-yin terms

of the already known first order perturbations, and so on.

It remains for us to con,,3iderthe _ntegrdtion of equation c33), which

is a lit.earnon-homogeneous second-order differentlsl equation. Instead

of applying the conventional fol-mof the variation method of arhitlary,

constants, we proceed in a different manner. We ,suppose that the two

]ineari!.y independent soiu_ions q'l.aud q2 of the corre._ponding hemoger.eous

equation

q-t _r,, :'q ---o, (3,t)

at'eknown, ro that

9 -3
Eliminating k_ re from the:,e equations, we obtail_

qJq': - "q:,h =: O,

from _vhich it follows that

ql$_ q.,i,=c_,n4.

i ' ''1 ....
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On _-he other hand, eliminating the same quantity from equations t"_
1

- by mean_ of each of equations (.33),we obta_-.. :'

qlq- qql --= Oql, q=q --qq= -= Qq'_,

"rF

Denoting tilearbitrary constants by _ and ='2'Chese equations become !

p

_llq -- "lqx ]_':"../ ,llt,_ ,II

q.,,1--q_..:- - A, J ./,_.um

±,

_Iulttplying the firs: equation by q2 and the second by -, ql and a_ding,

we obtair

q(q,q_.-q:q,)---:K,_,-t-/_:+-!q_,/v,,:_,"--,_,,I ,::(a,,'c _..

In order to obtain the required particular solutions ql and q2' we note

that the orbital coordinates

_-u(coslz'--e), v_: arus._._it t:"

satisfy condition (_,4_. Consequently, it is Fossible to wT_te

q, - cosk'-- e, q. .... si=lt:',

These solutions can be expressed in ti_form of explicit functions of

time as fcllc Cs

1 '_ s hit. (37)1 _Ic c¢_si, ll, q:---_ ,_ bill

where, using the results obtained in section 8E,

,, ........ L........... _ ..= / ._

,.. = ,i"_ '_'_'' _ _

1979012780-458



) t._
(

or ,poor QUALITY

co_--3e; cs= 1-- ;_ f' e'--- 7 "8 e_-j 1t,2 9216 e6q- "

_(3e. 3 -I_')c'-t-_')_;,71 I_e_-l- -'- • c_- t'_--q: 2 •_'',, " ' " "' 8 1'_ ' 51'_Ue_--" .

6 . 1:25 e' .1375 :
! e_ .- J-- • c_ 381 u216 c,.-+-c,=-3 15 e_- " " "' = -- " " '

27 . I(, h07 t'*.-- . '
C_80 e''_. . • ; C'7 = .16U50

I t_ff I I e_-l-- , _-= e- c'.l- e_--s I== I -- 8 ;,.,:_ e*-- ?J216 " " 2 6 • " "

! 4

s, "= 8 e: -- 128 e*-] -S1:20 .... 3 1.,

i_3 3195 '.2'7 .

%-- 3_.1 9216- .... _() ¢'--

16807 6
s1=-4{,usuC --...

The partiaular solutions, which we have chosen, satisfy the foliowJng

relation
!

;

[ q,_I=--¢_q,_ (I--• c(,'_1:) dh". dt =n,

i which ts t_plied by the Kepler equation.

We now apply formula (36) to the solution of equation (32), the

t right-hand side of which we denote b'.¢O. We obtain

r"_,- I: I l: q'l',_dl tl "/l 'd.'. (.iS;

where ql and q2 are defined by equations (37). T,hecuefflcient KI and

K2 will in this case be equal to zero bec,a,me the rlght-hand side should

be the same order rel_tive to the perturbing mass as the left-hand side.

When the expa.,sion of the perturbai_on function P,Ey mu!tip!es o[ the

mean anomalies is gnown, _he appllcat._on of equatlo_l (38) ro the

calculation of the first-as well as the second ordez pertur_at_.ons .is

#

. ..---r_-a_lq_m.--.a.-g_•-.,,'.......... '.......... '......................._ ..................ga_a-.am_w-,,=
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quite s_ple. In _valuatlng second-order perturbations, the last

two terms o_ equation (32) should be taken into account.

We note _hmt it is better to evaluate the secular perturbattons of the

radius vector separately, by means of the sec,,lar pPrturbations of the

elements which for example can be computed by Caus_-' nethod, and then

included in ro. In this way, _ will consist of o:_ly periodic terms.

This will simplify the calculation of the second order perturbations.

ii0. The Lm_lace-Newcomb Method• Computation of Longltudes. Computation

of Heliocentric Coordinate_

#.ccordlng to Nevcomb, we use the second of equations (20) to find

the perturbed longitudes. We obtain

dt _r C I otud; .

We put

tt, .:-- w,_ t" _,tt,,

and deno.veby w the longitude which corresponds to the evlivtlc motion.u

Since

dll'.
t., ":a"nco-, ",, (39j

4

and, consequer.t 1;,,

C a t! t'o_, _,.

t'he:_

d_Iv /"H/_'
dt .-r : dt t Ir : "ja:nco:,y.

, _ Om -- t ,,

",'singthe following expansion:

I .... )

t

4 •
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and confining ourselver, to second-order terms, we obtain j
!

d;,u, =- (i - '):p) [" OA' dl --- 2a:n cos _ (_,p--?'t':_ (40)
,it " ,! ou,

Frt_ this, we conclude that once we kno_# the perturbations of the

radius vector, we can obtain the perturbed longitudes by means of a

quadrature.

Particular attention must be paid to the !ong-period±c terms of

They yield for both _'and_/O, terms having coeff!clentsdVR.

involving _he squares of small Jivisors appearing as a result of thc

double integration.. Laplace suggested that the=e terms might be taken

into consideration by calculating the elliptic coordlnates r and wo o

in terms of the mean anomaly, which could be found by

d

] n_,/l . _ ,
L

where the ]ong-perlodie expressions

! d

Dad Leen added to n . We are nut going to consider here the developmento

of I'his approach (1).

After obtaining first-order perturbation._ of the ....:ius vector and

latitude oy means of equations (32) and (40), Newcomb calculated the

pertarbatlons of the elements i and .fLby usin_ convential formulae.

This enables us to perfo_m_ t_ fin=_l _teps in the calculation cf the

heliocentric coordinates by the method developed _n _ection !00. Having

calculated the fir_t-ordez perturbations for all the three coordinates,

(i) P.S. Lspalce, Traite de mechanlque celeste, ], 1799, 292.

qm't
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we can find tilesecond order perturbations in equations (32) and (40)

by means of the same formulae. Only the right hand sides are changed.

111. The __n.ltialform of Laplace's _ethod

We lmve already pointed out that Newcomb introduced some important

modifications in the Laplace me_hod whilst studying tbe motion of large

planets. However, the initial form of this method, as described by

Laplace in the volume I of '_4ecanique Celeste", is not without

interest. This method is even advantageou,_"when we confine ourselves to

first order perturbations. Laplace gave

• ro _ ;.r, u, . u,, ! :.t,'.

which allows us to write equation (30) and the first of equations (29)

in the following manner

_Iru_,r) I_[r_;,t |" dA'; .... '2 ,IA' t J,, _ C). {11_
dl: ' t_ J ,lr_ "

du'o d,;m d. ra. d.,;r .Ik_r,o,.r 01_
; --r, t I;1, _1')

"=r_,,It dt t -_t- ,,r -- t ,It: r: ,tr,

where we denote by G2 aPd E2, the sec,,nd- and higher or]er terms.

,2
Excl'adlng quantity I:I r° _ r/ r3o from these equatlons, Laplace

obtained on the bas_s of equatto_ (39) the following equation for

calculating the perturbations of the longitude:

d;.,,, ,I ( ,t;r Jrn% t "1" ' I Ill).'!l.O_ _ d/ 'tit 2r,,dl } :,r dtl--3 "d),'. "_v,,,,r,_

where _ denotes the aggregate of the seeotzd- and higher-order t_rms.

Equation (41) is equ_.valent to equation (32). It allows u._ to

obtain flrst-ordcr perturbations of the radius vector and svbseque_tly

_o find the second-order perturbations by _.eans of equatior: (43).

Equation (43) has the advantage over equation (40) thot It doe.. not

_R
: involve the derivative _ . Hence it does not require tl,ecale,,lations

V

.m ,, p j,,_ ---,ira ,qp
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needed for obtaining this derivative. However th_s equation becomes

less interesting when we wish to evaluate se,:ond-order perturbations.

In this ras_ we a1_o have to calculate Dot _I. _R
.... OLL_y_--_but the second

derivatives of R.

Laplace suggeste_ to _imp!ify the integration of equation (41)

in the following way. Eince (Sec. 82)

r=I I '?': ,_ ' k _ co,J/

') 7 Ico_ 2J! .-! ._e'-_ :2" I , •

then, equation (41) may be written as

,IA,
d'(r ,;.t) . .,_(_,,,;r) ' "d _ -]- r,, --

dl" - ,_ru

--,,(%,:,) • co,2Mi ..(:,)

where

;$ 15 ',

%' ,,'(X-_72, : ,'

_ne latter equation c_n easily be integrated by the method of successive

approximations.

If we denote by

,I¢0_()t . ;_) (;,',)

one of the terms oF the right-hand side of this last equation, then

the corresponding term in the expression of r _r will be0

A
•C()_(at T _ ), (1(,)

if %)# n, and

,,H l.........-......" " I .

._ .. rlmenql,m..s,mpm,.- I
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if _ = nI. We have already pointed out that in order to avoid secular

terms in _ r, we have co calculate r by means of terms which already
O ,.

include secdlar perturbations. In this case, the quantities A,

and _ involved in the terms (45) behave as variables consequently,

we shall have am expression of thetTpe

c.. let _-".t) ! CO_,-' .......
,_. ,- l ln, - ,-i': ,it I

, 2, ,1 f .! cos _I I I
--- _ll_ II ....

I("_ _,:13 dl I

in r _ r, instead of the terms (46).
O

In calculating the perturbations of the longitude, we will slmilarly

have, Instead of _.e integrals

'..I C_l_('4 p!,ll Ae

• • i.[

the following Integrals

'Acoslvt-t-_)dt=_ A sitl (vt r- _)t

._i,1',t I -- 1 dlA sin i_} 1 d" (,_ COSr"1).. I
I "" dt --" ..,:_ ,It'-' 1

._ cos_t{ 1 d(A C,lS i'_1 ! ,1:(,1 _i, _) , .I " dl _ tit"

• [" At dt A_i. lv/-_-_)dt - .,sin{_t'{ 3)-,i-

t sin,t 1'2 ,t(A sm _) 3 d _(A cos _)
I _'' dt ' _i dt' " " I

2 dlAco._ £_ 3 ,I:(A Sl. _) t" ' •
-_--CO_vl { - .,:. .It ,_ dr=

i ..... I .......... ,_lli ......... • " ] I_ -_i i i i i | l/

le - _" + ,.:........... '...................... "---" _ _'"_ ' .............. _...... _ "I" ..........................
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112. Calculation of the Coordinates of the _ectangular Coordinates

The conventional form of the equations of motion of the perturbed

planet P whose mass is:m, is the following

d2x _'_xr :' dPat:==-- + ax

d'.'_y -- _yr J-[- 01; (47}dP- :- dV

_-z • .j OR

2 = k2
where k] (i + m) and R is the perturbation function defined by

F-t 3

• (-_ .where the summation is over _11 the perturbing planets L..t us replace

the masses of the perturbing planets m', m", ... by

, i

p|' -_-. !tlTIo, 171' -'='=:ttllo,• . ,

where m' D"
o ' o ' "'" are constants and is a perameter varying fror:

0 to I. If we take the initial values of the cooz4[nates x, y, z, _',

yt zv x",, , ... at the moment t = t in that field, in which the _[ght-
o

hand s:{deof the equations of motion are finite, there then exists such

numbers as _ and?o , such that in t11efield

, I, ' ",,I ':, lJ ," ,' , 14,",I

functions x(t, /U_ ), y (t, _) and _ (t, /U ) will exi3t, which satlsfy

equations (47) a_td can be expanded in ser_es of the tyre

_(;,',) ,,,It)-! !, ,(./) _ ,,...(,) )

wbich converge inside the field (483. The terr,,:xo(t), Yo(t3", ... are

, responsible for the unperturbed motions. The terms
i
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represent tb- n-order perturbations.

%

The order to obtain equations for tbe_termlnation of first-order

equations, we substitute into equations (47) the following expressions

._=:x,-F;,,x l ;_...a'-_-.
y =yo" I ';,V-t-':.,v-i- •
z = :o-_-,:,z + _,,z+. .
r = ro-1-' +';,r +.

and then equate those terms having a first power with respect to_ .

We obtain

.vo'i- ;',x_. xo ,;_x . xo;,,r
_o_k_,_4. ./. =_-t-q- ,_ #, +. •.,

On the other hand,
ir

I

r--=[(x. F;,x-_ . . . F'l'(vo4 ;:y4-. • )=F(Co-F;,z_ . . . )=1_"=

= r,,.1 "_°-::_-Fy,',,y+_@,,,.zft....,
YO

from which we find that

;;,,r - /(x0,;lx ! y,.;,y.-l-zo;,,z)-

I

Therefore, we f_na]ly obtain

=- --7! g'x "F (xo;;,x -f- yog,y -J-ZoO,..) -_-dRat:' ,_ ox4

as well a,_ two similar equations for the _her two coordinates.

Similarly, by equatipg termslnvolving the f::ctor_ ", we obtain the

following equations:
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#_, ._ I_;,; x=-- (x,_, x-!-v _,v+z _ z) -t-X.--;,: + o - " I
,l_ay k_ :lk]Yo }

,It" -I- r:: ':_y --_q: ix;,,.':-i Y,,;',,Y + :_,,z)'l- y_ J (4!)}I_I' :_,: .
'"'_._" v I-'_' -" I

dt_ 'l;', " r,,

for the calculation of the n-order perturbations. Here, we denote

by Xn , Yn and Zn expre._slons involv__ng Xo, ..., _ Ix , ...,

_n-i x, _n-I y and _n-! z.

Using the serles-expanslon of the perturbatlon function, we can

successively obtain the first- and second- order perturbations by means

of equations (49).

Enke improved this method by suggesting the calculatio_l of the

perturbations of the radius vector by means of equations (41) [u

parallel with the calculation of the perturbations of the coordinates,

when _ r is found, then followlng equation:
n

,_ .... r ,; _-}-/,'.,,x,,:._ . y....)-}.,,,, ....

in which R denotes the aggregate of terms not higher than the (n-l)-th
n

order, enables us to compute the first terms _n the rlght-hand sld_

of eqt_tions (49). Subsequently, these equations are reduced to the

form (33), the integration of which is done quJte easl]y as we h;Ive

already seen.

The present method immediately gi_es the coordinateJ x, y and z

required for the calculatZon of these ephemeride. In spite of this, the

method was not widely recognized since perturbations in rectangular

coordinates are large and their conputation is tedious. Horeover, the
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perturbations of all the three coordlaates obtained _y this method are

equally large. On the other hand, other methods based on the application

of polar coordinates, thecalculation of relatively small perturbations of the
f

third coordinate is quite simple.

113. Hill' s Method.

We have Just seen that the calculatlon of tLe perturbatior, of ,any

order of the radius vector and the rectangular coordinates is reduced to

the integration of the following equations

_',_enthe first of these equations is solved, each of tlleother three

equations is integrated independently from the other two. According to

section 109 on the integration of _uch equations, we can write

tq:q.,. _q.,qt I rogr -" qz _ q, Q, dt - q, / q,(_, dt

Iq,il.., qzqt),;.t'., q: # q, _, at -- q, 1 ¢'' o, d/

In order to represent these equations in a more convenient form, we

_gree to fable by a dash the functions of t in which t is replaced by .

Putting

t N- q:ql qlq2,
l
i
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we obtain

p_

ro;,r .] N¢' ,It. [ (511

if we again _eplace _ after each integration by t. Taking once more ir

accordance to section 109

£
ql COs z':"-- t _ -- COS

_t

r
q: - : si. t: , .... si, v;¢1

we then obtain

N -- sl,, (_'-- A")- -c (s.]/:'-- sin h') :-= rr si,, (t; -- v)
_" CO__

qlq: -q:ql _='.

}Jill took as an indlependent variable, the true anomaly v. Since

r" do
dt _ - -':

ll'-'ll COS _$'

formulae (51) finally is reduced to the following form

,f.:r-= O.r,;si, (_---u)du )
n-'a' cos-"? [

I_o i :I -.;._=: _, r,, s,,, (v-- v),i.
_'U* £05 :t ',; LI I

(52)

,:v -- _° / O,r:'.si. _;-- ,,_d,, [• tl'..,(ij CO,,: '.:,, '

I
4:= r,, t t,) r,,si,, (;J v_dv.P,:.__COS:'_. - J

After integration, v should be rep]aced by v. System (52) involves

: one equation _re than what is required for the c_iculation of flae

! perturbations. For this reason, H_II replaced the second and thJrd

i equations by a single equation. Th_s was easily (lone by t'he iatroduet[onof polar coordinates. Putting
;

._' r CO_/ CO';_, .V " ,_._i,i/ C(,,_i3, : r ._i. _,
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we obtain

v
: t_/ .... ,

X p,

from which it follows that

dt : (dv ,L-), ,1: ._':_-y_ lit --Y ,it "

On th_,cther hand, it follows from equations (47) that

" / OA' ON\ .

,._ ___,,l.__j,o_.I t" - y'"_)""• d/ tit . Oy

The calculation of the constant h is done by considering the case
O

of unperturbed motions ia which

Hence, assuming

I _/kI i_1,'

H V _t

we finally obtain

d, [ "0(r'-- :') dt 1,,. ' , d'.

In this way, putting _ = % + E_ and noting that

h,_--(r:-. :-') _!t -' F ,, (:, :: }d,,,•i " _ J'

I "__(r I t,,,,r (z _ :,,)" 6
r,. : ,

i we obtain

JlJ I[ ,b . ¢),",/t 1'_V'/_ ¢,)s i _' : "'') ,,r 4 " . :,,)4: ,#
'::-- :. r-' ";'

Finally ending with a transition to the variable v, and obtaining

the following equations for thedetermirL_tion of the perturbatloas of the

coordinates r, _ and z:

! I I
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,:r-= I / O,r" .,i, (i,--,),h,_'-)I_. "

":" k_p.r"j _') i_ ._ill (i .... o)d,, {31)

--.t k-p r,;,-.:, r"--- :"

Hill particularly stressed the fact that these equations were

accurate and that th_ could be app]ied for the calculation of the

perturbations of any order.

Hill used the p_ane of the elliptic orbit of the planet under

m

tn_ t:hird-c_asideration as the _y pl_a_e. Thf_ y_elds an accuracy of '_

: order inclusively

.."==d: _,':i_.

Putting

7" r" (", v_ 'r _)''_' /" ":" ; _-) ,1/,'1
k i p /_i :J ,/t ' " ,'

y f " ? , I1'_'

l'_p (J°' Z _' 11,J" '

we obtain

.# -. J 7"_..)1_' .),1,'
,#

t /''' ) ' t"'
t

,) Hill introduced th3 foiiowlng auxiliary quantity

I "\ I"l),)tI

By means of this qaantlty we can reduce the eqtmt_on,,_obt_ined _bc,v:.Iv,

l]), _or_;I
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)( " :'r • _ X Y ,h, (i,- 4,"#_

,, I " I I
I

1 l' Y,Iv ,,r_., / .'2 d,' ' (.,5)I

. " |

IF,__--. ...It, v) ,Iv.
$

It is Lmportant to note that the appllcatioa of these formulae

require the computation of only three derivatives of theperturSatlqn

, function, namely

dA' OA' (;&'

Or ' O, ' O:

indeed, eouttion (331 shows that

OR
Q' -= O,

We sha]i mot go further than this derivation of eq'uati,u:_ (q') ang

(St) which . .._stitute the _.as_s of P_ll'a method. For deter_!& o- the

ODp_ic_ ion Of these equations to the computation cf _erturbat._o[:. we

r,_.f___.he reader to HZil's original work.(1), w:_ere the queries on the

application of the method to theComputarlon of first- and second-order

-" perturbations, are thoroughly exanine,l,

::e fin;J]2y poi,lt out that ;n Hill's method the perturbatign function

(i) G.%,J.Hill, A Method of Computing Absolute Ferturhat_oms.

Astr. Fachr. _3, i874, _09-=_,; = Works, ], 151-166;

G._. Hill, Jupiter #ertur;,atlon_ of ceres of the Vir_t Order and

- the Derivation of the Mead elements,,Astr. Journal, ]6, 189{;,

57-62 = Works 4, 111-122.

|

i
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1
' is expanded in a ser_es by multiples of the trt,e anomalies v and v',

v' being expressed in terms of v. The first operation is easily carried

out if the coefficients of expansion are to be found by means of numerical

methods, which consJderably _mp]ify the calculations when v's are chosen

as independent variables. (I) It is clear that the expressions of the
!

perturbations as functions of v, obtained this way, are less convenient

than the e.xpressions of the perturbations in terms of explicit functions of

tlme.

114. The Ma_n Ideas of Nansen's Method

The choice of the coordinates, in terms of which the perturbations

are calculated, 13 of significant value. We have already seen in the

_reviot,s sectior, that the ,)erturbattons are more easily calculated in

terms of polax coord'Lnates rather th=.nin terms of rectangular opes. One

naturally raises the ouesti.ol__;n :.::_erherit is po:_s[ble to fief another

system of variables in terms of which the calculation of the _ertuzbat_ons

would h,eave_ ,easier. This question was investigated by Hansen.

We have already 9ointed out in sectJon IIC that Lapla: ._=uggested

to include iong-periodlc Perturbations into the mean anomaly serving in

the calculatlors of the radius vectors ;,rdthe 1,,ngirude:z. Hanson

(I) in the case ,_fart,_!yticalexpansion of the perturbation f..cti¢,_,

the choice of v as an iy:dependent varlab!e !wads to more com,..,li<.-ten

results, than does the application of Leverrier snd Newcomb's m,_thod
developeJ in sections 86-:39. On theexpanslon in multiples of the

true anomaly, we quote H. Gylden, TraJte analytique des orbites

absolues des huit planetes principales, I, Stockholm !893;

G.R'. Hill, Development in Terms of t],eTrue Al_oma]v r,foJd

.'_egatlvePowers of the Distance between two Planets Movln2, Jn

the Same Plane, Works, 4, 398-z_07.
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developed this idea further and suggested to take the mean anomaly as one

of the variables in terms of which .he perturbations would be evaluated.

Let us first consider the motion in an orbital pl._ne, d-fined in the

absence of perturbations by equation (23). _A.ccordlngto Hansen we assume

that the perturbed values of the orb:tal coordi._ates r avd w are defined

by the slmi+.ar formulae:

I

I1' ;, . /,,, r !l I ' , I
I

.. -- -/' l:' /"
9 JP _ ?,, " , I

i

/I,_u 1': I ! F,), /.2,, a _1 " ; I
I

i tl,,lt---¢, _.o-.t:) p _I _t_.pj , I

where z and v are t_,e corresponding functions of t_.me t. "_Le equat:ons

which define ttle unknown fun_tlons z anl v are deduced by substituting

expresszons of w and r, given by form_,lae (56), into equations (20). We P:all

not give here the metho@ foz the deduction of the_e equati, ns.

For the unperturbed motlop z ffit. 7t _s hence natrua! to search

for z in the form

'.7',., : I-: 2

where _z is a suna]!quantity h._vi,g the samc order of magnitude as the

perturbing masses. When _ z and v are obtained, we can calculate ;he

coordinates w aud r that determi_.e the position ef the planet in the

XY plane. T,,_atremains after th_s -is to ._ho_ how the _os[tions of

the axe-_ SX a_d SY could be specified at an arbic, ary moment of time.

In conslderJ_g the perturbed motion, we have to replace in formulae

(27), the constant elementv ; .J_ ancl _:_o l:v t.'leiros_,z!atin_ ele_:_e_ts
_O _ 0 _ -

at the moment t unde_ consideration. This yields
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_..'.... 4, _ sin i, )_ -- co._o _il, i, :. -- co. i.

Hence, returning to eq,t;,tlons(17) and taking equations (19) _nto consid-

eration, we ebtaiv

ditlt=la 'ro,_l.'--;)_ZdQi
(_,7)

t;: t ,11"-: h t .,tn (. :I),IZ )

On the other hand, su._stituting into the following equation (Sec. I06):

d, ,/, ,/,
' d ! ,11 ,/"

the value3 of the angular (-Gefflc_.nts defined by equatioe_ (27) of

section i06, we obtain

,/ c,, I - ', ( "}

Consequently

•,'i': , ,'A'

"_llt I Jt ,*1 I ",HI (t.' :' 'L /

Integrating equations (57) and (38), we obtain i,_" and -_.. Since

we brave obtaine.l a s,'aperflucus Integrat_o,_ constent, then according

to Hansen we require, that the initial values of the elelnent- correspondimg

to the moment t = O satisfy" the 6ollowing condition

In t|,iscase, t;,oqu_mt[ty x rill be aothing else but the loo,.:_ud_o_o

of the perihelion.

It _s easy to fing the heliocentric coordinates_ and b when the

integration of the =quations that def_n_ the quantities _z, _ ' _' i

and O- is already carried out. For th_s purpose, we apply formulae
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_i,s/, :: ,i,ll,i,, (t,,-- _), I

which are similar to equations (26) corresponding to the unverturbed

mot ion.

Formulae (59) completely solves the proble_ of obtaJnlng the perturbe_

moE!on. They are only convenient when we are interested in the

calculation of a small number of separate positions for a planet.

Nevertheless, the deter_inatr_on of the perturbatic:;s by ;nalyt [cai

methods usually ends by constructing tables for the motion of the p]o1_et

under co,ls!deration which simplJfles as m-oh as possible the computation

of its coordinate_. In this case, it is better to avoid the uo_e of

{ tables having two entrpnces and for this reason, Hansen suggested to,

replace form..alaa (59) by other formulae four:d _,re convenient on

tabulating. Han._en proved the tranmformation these formulae to the

following form

,u_b._i:_ll--:2. II ¢u_t0_J_*(., :: J ¢ I
¢,hD,o.S(I---!:o Ii ,,,_I,- ::,.II _ ,,a0_

_liIb -,_l:. _Z_IIL" t.',}, _, !

wheree the first ter,.:son the right hand side could bo conveniently

tabulated by the azKur,en_ %/- j_ o w],ile the ._",,a!lquant[tles F , _ ,_/'

and s could be determined without a speciul effort. Vithout going lilt_-_

their proof, the flna] results are given by

,:,:-.J...._.,c,,_i , ,,,_,,_m_,,,_,;--':,J
¢

,(

.-:(.) stll (a, -- ::,,)--- P,'.s it/' -- t;,)
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"where /-, P and Q are defined by tie following differential equations:

_!1 ''

' ,#.

, J, I, , '' } I,:! , .

• _ # i i i a' I

If we confine ourselves to flrst-order perturbations, tben

i II, • _ I':1,, ._ !l

In this case, the application of formulae (60) require_ the construction

of only one tabsJe with two entrances giving the values of S. Due to

the smallne_s of this quantity, the construction of such a table Is

quite simple.

It is useful to note, that in the differential equations that we have

to s_Ive in the avplicutlon of Nansen's methcd, the perturbation function

appears only in the form of the partial derivatives

_en Hansen gave _he final account of his method (1), he closely related

his method to the expansion r- _he perturbation function(or more exactly,

the partial deriwtives which we have just mentioned) by mu!tiple_ of t!,e

eccentric anomalies, using the eccentric anomaly of the ferturl_,.dplanet

as an independent variable. This method howe_or, depends on neither

the choice of the Jndependenl: variable nor the way by _hlch the perturbation

(I) P.A. Nansen, Auselnandezsetzung einer zx;eck_sslgen Yethode zur
Berechn,;ng der absolu_en bcorungen der klelnen Flanete1_, Abh.

I-II-ITI, Leipzig 1857-1861.
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function is expanded.

Hansen's method has been widely _pplied to the calculatiol, of the

perturbations of small planets. This _s explained, on one hand, by

the practicality of this method _lich actually reduces the magnitude

of the per_ucbat[ons to a minimum, and on the other hand, by the fact tbat

Hasen ezplalned Lls method with the fullest of details.

115. The calculation of the Derivatives of Ferturbation Functions _h

Respect to the C¢ordinates

In the calcu]ation of perturbations in the coordirates, it _s

necessary to expand the part,a] derivatives

d_ _J_ #%? _P_
-- , t

dU, dr, ,_r dZ

,,f the perturbation function in series. We shall now indicate the

way by which this expansion could be performed. We have already found

that for each of the perturbinb planets

II rto_lt)
H - _za,' ._ r'- '

where

Differentiating this perturbation function with respect to v, we o_tain

P! I '

It i:; clear that

/ ,7/I

_h, ( t ,t
/

/

..,t---.lll_r,, 11_,,,-, I,-+-II _ .... (t,' Ill.ill(_". tl')c,_ ./I /','
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On the otht;r hand, the identity

,_ i ! : _ lJl _I /r: ,q' _ I :'

and the well-kr.own formulae

%

Or ,Jl._II_l' 01' "clxl'-'CO,
l),tlvo',; ' ,_,iiIr/

allows us to write

O /r". _. .r: . O /r _' " __ £r-' qill u ,

0',, %,3 U:co, ';. OM ._ P Or &

from which we can easily obtain

"g) ' "(:) '""'!du e=co_.; dA! pr 2 ..% r '2 -%_ (63)

Formulae (63), (64) and (65) lead us to the first of the derivatives (62).

We then consider the calculation of the derivative with respect to the

radius vector. EviJently,

'if# k;m'] r } r'co, H L'oslll.! dr : ',, '- r'"

Since

2rr' cos tt -'= r'-'"t r'-' --, 3;,

then

i r'Z I

OR . k..m, _ I 1 -r: _'r cu', il (66)dr 2,% 2 3,_ r :

The last of the derivatives (62) can be regarded as the component of the

T:rturbJng acceleration along the normal to the orbital plmne. Therefore,

as we have already seen in section 67,

/ 1 ! '.,., ek
' - .--r'..),iX I ._

/

D
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where we denote by 4 tilez-coordlnate of tileperturbing planet. Evldentiy,

I -m (l,' II'1.I.I,

Consequently

%

' '" (2"_'/. I¢I111" , I ' ,,knlc, II).,il.I ..,

It is thus sufficient for the calculation of the partial her;vat!yes

• --3
_62) to expand the q,_ntities _-i and _ in double trigonometric

series by multiples of the mean anoma]-ies. For all the other quantities

involved in formulae (64) - (67), we have already obtained in section 82

in a general form their expan_lon series.

We have developed a _erles expansion by multiples of the mean

anomalies. The same formulae can be used _fnen the seires expansion is

carried cut by multiples of the eccentric anomaly. We only ha'.;eto

substitute in equation (65)

,, ('r') ,,t: ,' (,- ,.O,lf_I _),ll #/:'A

? -I
We note that it is more useful to expand the quantity r~ /%

and not the quantity _-I in _*do_,bie series, since the former quantity

is the one involved :in the final equations.
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PART FOUR

THEORY OF L[W.AR MOTION

CHAPTER XVII

PRIYCIP/ES 3F THE THEORY OF LUNAR MOTION

LAPLACE' S THEORY

116. C.eneral Properties of the Lunar Motion

The position of the moon is always determined relative to the

centre of the earth which, in this case, is chosen as the central body.

The motion that the moon would bare in the absence of celestial bodies

other than earth is considered to be the basic mtperturbed motion. The

modifications that _hestm and the ether planet_ introduce in thi._:motion

are ca!led perturbations or inequalities.

The perturbations produced by the sun into the motion of the moon are

of particular interest. These perturbatio,ls are qu_te dlfferent in

character as compa_:ed to those we deal with in the study of the p._anet_'

motions. Th.-.perturbations produced bx,.all the planets, e_cept earth, onto

the lunar motion are small due to the smallness of the perturhlng masses as

compa._ed to the mass of the sun, although these planets are often much

neazer to the moon than to the sun. On the other hand, the sun is

considered as a perturbing bed 5 In the theory of lunar motion inspire

the fact that i=s mass is 331950 times larger titan the mass of the

earth, which ie ccnsiderec, as the central body. The reason for this choice

is that the sun is at a distance almos= 400 times larger than the distance

from the earth. Taking the mean Jis_ance_ ,._fthe moon and the _n from

the earth to be 384400 km. and I&9450000 l_m- respectJvely, we find that

the ratio of these distances is equal 'o i/3_9. It- L'en follows th_
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the acceleration induced by the sun to the mcon is on the average

:t._l '150 .,
2.2

times greater than the acceleration caused by earth to the moon.

IIowever, we usually study the motion of the moon relatlve to e_Ith, we are

thus luterested 2n the difference In accelerations caused by the su_ on

the motions of the mEon and the earth. It is easy to see that tilepert_rL-

ing acceleration, occurring thi_ay, is equal on the average tc

:_'_ " 177

of the acceleration induced by earth. Taking the eccentricities of

the terrestlal and lunar orbits into conslderat._on, ._tIs easy to show

that the previous ratio can at most reach the value 1/80. Hence, _,ecan

couclude that the perturbations produced by the sun en the mo$1on of the

moon is by two orders of magnLtudes larger than those we ordir2ri]y deal

with in the theory of planets.

rh.e:marness of the moon to the earth, on one hand, simplifies the

investigation of itmar motion by rendering the perturba+_lolns produced

by all of the other planets, quite small. On the of:herha_ 1, due to this

°' _ _srness, one has _o take into account the influence of the deviation

of che earth's structure from the spheclcal symmetry upon the lunar motion.

Taking these reasons into co_,slderatlon, we flud that uhe t,t:eoryof lunar

motlon Is naturally divided Into the fol!ow'.'ngitems

(.1) The inve_.tlgaclon of the motion of the tl,reematerial points T, L

and S, one of which S (Sun) moves along a Kepler ellipse around the

centr¢_ of gravity G of theother two polnt_ T (Earth) and L t_ a)

This is the bas2c probl_'Lr,of the theory of lung, motion.
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(2) The calculation of the perturbations, that the deviation of the

earth and moon's structure from a spherlcal symmetry, causes to the _

lunar motion.
[

(3) The calculation of the perturbations produced by t.hedirect attraction

of the planets.

(4) The calculation of the per,'urbations produced by the deviation of the

motion of tilesun S around point G according to Kepler's law._ i.e.

the perturbations which indirectly depend on the i._teractlon of the

other plsr_ets.

(5) The calculation of thesecond- and h._gher-order perturbatior.s occurrin_

due to the combined iefiuence of the factors indicated in items 2, 3

and 4.

(6) Th_ calculatlon of the contributions of all of the other factors

that can influenc- the lunar motion (e.g. sea tides, increase in the

moon's and the earth's masses due to the accumulation of =,eteorites).

Only the first of these items involves serious difflcu!.'[e, of

the firgz magnitude. The methods applied to this exan.ple are of

genet_l interest and the remaining five prohlem,_, which sometimes require

a great amount of work, can always be solved by applyin_ the method cf

successive approximations in it_ coaven_ional form. Tak_.ng this fnct

into consideratlcn, we sbo|l in _hefuture confine ourselves entirely to

the consideration of the basic problems, _hlch is sometimes called _e

solar theory of the Moon's n,ct_on (tl,eor[e so!_tire du mouvement de la

l,une)_

We note tba_ the sharp division of the theory of ]u_tarmoLion into

the items given above is not al:'_ys recormmenaed. For example, it Ir.ay

]_e useful to take Into account part of the perturbations ef_he sun while

_qolv_ng he basic probletl, such as thesecular motion of the perihelion and
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the secular decrease of the eccentric lty of the terrestrial orbit.

We co-clude these introductory remarks _y citin_ the mcst impotl.ant

perturbations produced by the sun onto the lunar :,:orion0 The unper-

turbed orbit of the moon may be tal_._.nto be an ellipse with an

eccntricJty equal to 0.05490, lying in a plane inclined to an ec!!ptic of

1850.0 by an angle of 5° 9' The perihelion of the moon's orbit ha °,

a translational motion. Tt ;_rform.s a full rotation it, _.8503 years on

the average. The influence of the sun consists, first of all, in adf|ing

periodic inequalities to the uniform motion of the perihelion of the

moon. The largest of these inequalities has an _,%plJ.tude of 8° 41'.

The eccentricity is slightly changed and oscillates around the above-

mentioned _ean value. On the other _':and,the llne of nodes moves backwards

making a full rotation in 18.Z995 },ears on tile average. .h_ most

significant of the periodic Inequmlitles, which added to tillsunifor,_

motion, w_ll _ave an amplitude of 1° 26'. The slope of the orb:it _,ill

i have a periodic inequality as a conseq,:ence of _,hich, it will vary within!

i the ]_.mJtsof _o 57' to 5° 20'.
!
|

, Now, considering the per_.odic i**equalities of tSe longitude, 5he

|

f,,ll,_w[ng formula gives an estimate of thee, st si._onificant quantities:!

We denote here by v the true longitude of the _:oon,by _ the mean

magnitude, _y M and M' the mean anomalies of the moon an@ the sun

respectJvely, _;hereM ismlculated from the i_ean p()__:itio_of the periLelion:

8nd finally, by D the difference between the mean ]ongitudes of the recur

and tbesun. The lerms whose argu]_en_'_ are M, 2M .... are called the

elliptic terms. Their sum define;, [he_quatlon of the centre. The term

haviag the argument 2D-._!Is called the erection. It L.=easy to see that
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the period of this perturbation is equal to 31.8 days. T,:e i.>:quality

produced by the term.,the arg=:ment of which is 2D, is called tP
-L

variation. The peric)d of the variation is evidently equal t- one half

of a synodic month, i.e. to 14.76 days. The variation does not change

the position of the moon in the syzygies or quadrant _, it prodtmes a

large displacement ef the moon in cbe octant-. The term having the

argument M' produces a perturbation, the period of which ie one year.

This perturbation is called the mnua] inequality. It is caused by the

e!lipticity of the terrestrial orbit, leading to some changes tn the

@iqtance to th_ sun and consequently in the magn.t_:_e of the perturbing

force. Finally. the temns of arg_'_menesD, 3D, ... are rezpo[_sible f_r

the parallactic inequalit;=_s. The emplitude cE each o_ these inequalit-

i¢_ is proportio, al to the ratio a/a' of the mean distan<es of the moo_ and

the sun. Since the parallax of the moon is easily obtained from Izhe

results of the oLservations, the comparison between the obse_ed __n@

theoreti.al values of the parallactic inee_a]ities makes it possible to

detel-mine the para,!iax of lhe sun. This is one of the most accurate

methods for the determination of the para]lax of the sun

The_-e are re:ms having sim[la_ argu_ments in tb_ _xpanslons of the

radi_.s vector and latitude of th= moo:_. The series-expancion ol the

pa_,'_llaxof the moon is easily deduccd from the se" [es-e.__pansionof

=he radius vector. It has th_ following form

PC :=-._;2-1" } I_"','o,,1¢ t 10"o_._2.4I t
-; 3-l" o,_2I_ - ,'II}-, _8" cc_,, '2.;_ t

whece thef_rst ]ine invo!¢es the mean value of the p:r_llas and the

e11iptic terms, white the second line invoive_ the most im,ortant

_erturbations. _ _ ___\
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At the present time, each of the above-mentionpd names derotes a

group ol terms which are similar to the corresponding principal term

givpn above, For ..xample, the following superposit_o, of terms

1_.,1777 -,,,(2/)--.l,/) !7t S7 ,,=_(..qJ-}-,ll_

! are c,ai1_dan erect!on. Tbe superposition of terms havin:_ a[guments
I

ZD, 4D ,_, ..., i.e.
!

I "'if_t,'2,-J ._,. 21) :-.I"7., .i. l/_ i
i " • • j

f

are called a variation. The annual inequality is the name of the group1

of terms that depend on the me_,n anomaly of _he sun, namely

: Finally, the para!_actlc inequality is g_ven by

: lJ;" +,.'_', '/) II .11 .1;i.;/I : {I I1! ,: ,,0

t

J 1!7. A ]Fief Historical Survey of the Development of the Lunar MotJ.otl

The modern lunar motion theory _egan after the 4Jsc(,_,eryof the

universal law of gravity. Newton proved that_thev_.riatlon, the motion

of tlleperih=lion, the motion cf the mode an(1the obse_ :d changes in

the slope and eccentricity can be interpreted within the framework of

i the unlversa] law of g:'av:lt:,..Newtou ,lidnot aim t'odevelop a complete

: theory w_ich could reproduce lunar motion. Nevertheless, _.e could

determine a n.mber o[ sc.parate inequalities with sufficiently high

accuracy. _e have the right to think that Newton obt,,iT,ed his results by [

means of a general method, namely the methods of variation of __lements, •

although he published his results Jn the fomn _r ¢ragnlt,ntarytheorems.

!

f :J
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the way to comstruct +. theory, c_p+bte of descr+bing all tbe part.+-

¢ular."ties of the :,t_+r"_ motion was tadtcated by Kepler. He wes able to

express thls prnble,_ in terms of a differential equation system and s',"rted

iu 1747 to solve thts system by uslpg the method of successive a_proximations.

Clero was first to suggest that _he f_r.ql:,pprox:,natton t_ be made on the

!,mar _c,tion should be the taking of an ellipse having a uniformly

rotating line of +tps �|�[ns=eado2 a -elxed ellipse as Kepler suggested.

D'A_lembert (1754 - 1756) developed a method similar to that of Clero's,

which was much more systematic. Wblle Clero's theory adopted trot, the

very beg.inn+rig r.umerical val,les for the parameters, D'Alem_ert gave the

first example of an aige_raic theory in wl.ich the par++meter._ ,,ere allowed

to have arbitrary values. The common factor in both Clero and

D'&lembert's works was the choice of the true longitude of t.he _4oon am

an tndependen, _ variable.

An alternative method, bmsed on the same ideas, was later deve.loped

by Laplace, who s_udled lunar motion for more than thlrty years. The

results ne cbtalned were Jnc.lt,c.ed In tl,e :.h.lr.dvol,me of hLs book

"'Mecanfque Celeste': r.ublished in 18.o2. A_art from working out a general

method for obtaining _iI thu porturbatlons produced by the attzmction of

the sun, Laplace could for the first t_ne det_.r_..t|.net:e |.:tequalities

produced by the nonsphericity of the earth and the attraction cf the

other plantt._. _h,, latter problem is concerned with one of l.',place's

most outstanding dlscoverles, r.sme]y, the i+,tecp_-etal'ion of the secular

acceleration of the moon's mean motion (See section 125). F..ewt,s also

able to p.ruve t.hau similar accelerations depending on the •acu]ar decrease

of the eccentticity of the terrestria! crlr:t to-k plmce into the motJon

of the perihelion and the node.

Laplace calcul_ted the lunar perturbations t,pto lhe .,;tend- and
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partically, third-order powers of those parameters, by which tt:e series

expvns[ons were developed. Later, In 1827, Damoiseau appiied Laplace's

method for obtaining tbe ntn_erical _al,es of II,e ineq,_-17_it_e._to a

much higher accuracy. In _1832,Placa repeated the same work algebral-

tally, but h4s results involved several errors. In 1846, de Pontecou]ant

publ_shed a new theory on lunar motion. In analogy w4_b the theorSe._

clted above, de Pontecoulant's theory was baaed on the appl_catton of the

polar coordinates. The only dJffe:-ence _as +.hat be :'_o_.eti.,leas the

independent variable. The corre._pon._In-.._ifferentlal equations (Set. 7)

v,ere gJven by Lal.]ace. Thesa:ne method was simultaneously developed by

Lubbock, w'no published his results iv 1834. 9owever, this antler on]y

conf|ned hlqlself to the calculation of the secov.d--order_proxlmatlons.

A new approach to tbe theory of lunar _¢L!o,l was Introduced Ic 1753

in E,Jler's book entitled: "Theorla ._ctus ]unae exl,._l',ensom_t_, ejus

; [,equal.ltates". The extensive "Additamentum"o _.ywh._ch he concluded

his boo_, actually ._ncl_d_d a ee'hoJ f,,rthe _ariatton of the el]4pt__c

elements. A further, yet very rougb development of Euler'_ _d..-__=

waq glven by the method of integration cf the perturbed motion equatto_is

suggested by De3_u1_ay b, I_.. _y this _ethod, Delaunay deve!oped a meat

perfec + analytical theory for solar Ineque]It._.es. After '.we,,l.y_zear_

of ,_)¢k,5e succeeded in obtaining general exCress!ons for all the

perturbat._ons :'nthe perturbing fore,*.sup to the _eventh order _nclus_vely.

Delaunay's theory was reconsidered by Radau and A,,d,,yer. The revised

cers[on of this theory serve_ as a ba._Is for the extensive tables on

lunar theory which have bee,t con:_tr,sctedby Radau.

The problem raised b'. Euler on the deter_inattor, of the osc_,lating

elements was further developed hy Polsson (1835_, Pu3seaux (!864_ and

Vll'ev (1919). .Ttshcu!d, l,_',_ver,be pointed out that the deter_:tnatton
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of the osculating elements is not very u_efvl for achieving the ,ta_:_

target of lunar theory, namely the construction of cables for the _oon'_

mot ;on.

_uler ._u_e.st,.d another important idea in th_ book, he published in

1772 under the title: "Theorta e_tutz_ lunac no-.'a _c_':,od,, pertractataa

una cure tabalis ast_ono_.icis, undo ad quudvls tempu_ loca ]unae e_pedile

con.p,:ar! possunt ''(1). This idea ,'.onstst_ _n expanding the unkno:m

functions of the lunar coordinates into a ser._es of the typ,_-"

A-i eB,. e"t¢1, ; . . • e'B,, t • :l_,.j :-,"i_l, , • • " PL: t

where ,, a_ld _' are the eccentrictties cf the lunar and sola_" orbits,

i the slope of the lur.ar orbJt _nd L, _lO' ..., C7, ... are periodic

functions. Euler obtained system.-,of differential euquatlons for the

consequent dete_i,.[ns_._onof t'hecofftctents.

Amongst the mu_erous _nterest!ng Impro,,ements introduced by Euler

in the lunar theory, w. record tho.appllcat_on of un_ferm!y-retatqng

rectangular coordinate systems. This idea c'idnot f_nd ol,yapplication

for a flong t_me, ._ncontrast to Ful_r's other ideas. Oulv at_ _ more'

than a hundred yevrs, in Iq77, did Hill show in his well '.<now_wor_ (2) the

advantage of combining this Idea w_th the a_ove-me,:tioneclme=ho,_ f-r Phe

,quccesstve calculation of Inequal!tie_ of different powers of eccentricities

(I) These exists a Russian translation fer the mc.,t i_,:porta_;l" sec_lons

of th_s hook, which has been made by Academician A.N. Kry)cv, and
con,plc.me_tedwith suve___! _nte_esttng comments and addenda.
This translation constitutes the matez_a3 of the l,ook: L,.cnard

Euler, New theory of lunar motion (Leonard E]ler, Nova|a

TeoriJa dvizenlja Luny) Leningrad ]934.

(2) C.W. Hill, Cn the Part of Lunar ?erlgee which is e Function of the

Mean Motion of the Sun and Moon, Acta Math., 8, ]886, _.-36 (Works,
I, 243-270); Researches on Lunar Theory, American _ournal o_ .Hath.,

I, 1877 (Wozks, I, 2_I-335).
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and slopes, which may be considered as tt.e start of mode_-n celestial

mechanics. The theory of lunvr motion developed by Hill tn _hl.__ork,

as well as in other subsequent wurks, was 1_ter developed by B:o_n (2)

to its fiual stage. At the preset r tire this theory is considered to be

the best theory sva$1able on 1,mar motfol_ sinp_.te that it Is mainly

based on Euler's very old ideas.

It is worthwhile menrlonlng that the develcp_e_t of Eu_er°s ide_

in the ahove-menti._ned direction was at *_hesame time started by Hill

and _mulranenuslv by Adams who studied the behaviour of separate ]urmr

tncqua] t! ie_.

A slightly different approach to the study of the moon's mot_on

was su:_gested by .qansen which consisted in __pplyJng his method for
i

the study ,,f pert,_rbed motions (Chapter XVI). The worl, cf this author

which continued during the _eriod from 1829 tc 18{_4 led to :be construct.',ol,

i "._fthe tel,'.esof lunar moth)n, whJ.ch were published _n 1857. Until

rpce_tly, t_.ese rabies have been considered as one of the n,ost acct_rate

tah!e._:a_a [table.

Tn this chapter, w_ shall give an account of the _heory developed by

Laplace. This theory gives us a rapid but s'-ffic/ently thorough

aqualn=ance with the mai_ features o_ the lunar motion. The method_

developed by Laplace are _i_o quite interesting by themselves for they

can be successf,tlly appl#.ed to other problems, such as the stedy of the

(2) W.E. Broom, Investigations on lunar theory, American Jourx_al of

Ma_h., 17, 1895, 318-358, The T_eory of the_tlon of the moon,

etc., Memolrs of the R. Astr. Society 53_,5_&&,57, r9 (1897-1908).
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(1) -
i _,ti,,,, in the systems of triplet stars.

118. Differential equations for the basic problem

Let us adopt the centre of the earth as the origin of a rectangular

e_.llptlc coordinate Eysten,. Denoting by v the 1ong_tude of the ,loon,

by S the tangent to its latitude And by u the projection of the radius

vector on the eclipti,: plat,,_,,,¢e o',tsin

! ¢}'_ f' ill
_" . Y

11 :J 1.

from which it follows that

%1 .',"
T

coneequently, we can _ritc the equations of motion in the follow__,n_

way (see section 8):

d'u [-u h .. ,11/ sll 'h ,lit '. h _m _llJ
_l, "J {Ill tt', ()1' I_f'

,(d'll I" tll'
L*'P" __I'

/ •

d.._ A..s=w_ '1: :,_t/ '_ "h II _ ) ._ h "
_I[,I ' d:i " (I, 4)l, ¢I/,

---_'l :('tJ , I" '"
D l#l', " '

tJI ,t ill'

I"" \ ] '; '" ,t, 4

where h is a constant of integration.

Denoting by T, L and m' the masses of the earth, moon and sun, and

(I) A detailed bibliograp',y o,'_ the theory of the motion of the
moon is given in the paper: E.W. Brown, 'l_eorie des Erdmondes,

Encyklopedie der Mathem. WJe:;senschaften, Bd VI, 2, 1915.
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by x', y', z' and r' the bellocentrlc coordinates and radius vector of

tb_ R.m. we obta!n the f_ll_4ng .Yn_Qo_,,._ for the _.... functio_

(Section 3) "

I' {i "_ ' _ _, ;-yv .z
/,' I-I'I ,_

F -\ '
\

where _ is the distance betw_ell the moon and the sun.

Fur__b,ermo_e, denoting by IIthe angle between r:_.era!ius vectors

r and r', we write

, _. _,r' I . " / , U /z

In order to obtain the expansion of tb. function U in powers of

the ratio r/z', we apply the following well-known fomlula

, n

I _. 1 I N_/'r I P,,_"c_'/h. I,_
-\ _p- , v "-'- _'it ,_1/ ,- .w, ' r

/

in which, we :lenote by

._ i 3 .;

i',,{.,'_I, ,"_(.r) ._, l'.(x) .,x_-- I'_(-_I_-'2a.-- '2"_'" . 'D °

the Legandre pol3_,omlals. Substituting this e_pansion into equatlon (4),

_nd dropping the term k2m'/r ' _-hicL.does not depend on the lunar

coordinates, and consequer.l.lydoes ,_ot affect the pactial derivatives

which we are interested in; we obtain

I' ,.,t _ I.) /.m' X,/ r "__
"- , -- _ ] P (,'u_it}. (b,I" F _ t"

This series converges rapldly since the ratio r,lr' is of the or,letof

1/400. In order to reduce thc size of these formu.l.ae,we choose the

units of time and mass it,sucl,a way, that

h'*" i, 7" I. I.

Couflnl.ng ourselves to only the necessary ter_ns, we finally obtain
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/! __ u

,, I ;-, .s" i m'r,_ 12 co_:H-- . / -: m' r, _ _' ,'0_ _/I-- '2 _" " " "

Denoting by u', v' and s' the coordinates of the _,n it. the adopted

coordinate system, we write

.i," , , 5' . , :'--
It l$ II'

Accordingly, neglecting the coordinate s',

_./l 1
!

:, IL

.... H

replac_._gSubstituting these e_pressicns into U, and then "- the powers

of cos (v - v') by the cosines of multiples of this arc, we finally

obtain

I/ ?71 I_

1'7l'11 ,I

i _ :'.:, .... (t, ,,; " J" '"' "Pl .("'

where we have dropped the te_w m'/r' which will vanish after different-

iation.

We note thst the quantity s' is very small becauae the uosition

of the orbit of the earth changes very sllgl,tiy and very slowly. Laplace

always pat s' --0 and considered that th._s would not cause any considerable

violation to the motion of the moon. Tn 1848, while Airy was ob._er_,ing

the latitude of the moon, he discovered a s_aali periodic deviation from

the theoretical values. Hsnsev proved that this de_ia=i,.,,_,:,uld be

vanely explained by the Inf]uer,ce of the term involving .=.'in the

eT.pansion (7). Indeed, this term produces _n the par_Lmeter s a percurb._ ion

equal to
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7,, I I} ",),, -('_17,ul,,

All of the farm's observable influence __nvolving s' is exhausted by

this perturbation. Taking th_. inlo r_onsi_eration, we shall al:7_ys

set the quantity 9' equal to zero _.n ot.r fol]uw_ng d_scussions.

We note that the first Kroup of terms, causiug pertur|.ations in

9

!he expansion (7), have the multiplying factor u '_. __f we denote by a'

the sea!major axis of the terrestrigl orbit, then, s_nce r' "s proport[ona!

to a', _.he group of temas under considerations will have the multiplying

factor

n :
J

I Ll';'

where n' is the u,ean action of the sun. }_ence, those temms_ _7?L',c,,'"ca,,se

the largest perturbatior,_ of the motion of the moon, depend ess,ntially

not on s' but on n'. Th_s latter quantity can b __ v:,ry _('curately

de_.erm[aed by combining different obsel-_atlo,_s of the sun, _eparated

by sufficiently large interval. = of tirze. On the other hand, the tar,as

4
of the second group that Include the multiplying factor u' will have[

the following factor after the eTpamsion in pc,_ers o r the ecce,ltric[ty e':

I , /IJ ) _J

The co_par]son between the theoretical values of the perturbations.

r '_4"8p edi .....d by these exprese_on_, with the values obtai,_-d b)" thed)serVa_llOnS

gives us the possibility of determining th_ p_ra.llax a' of the sun.

For this reason, the correspord__ng perturbat_ol, is ca31e(_ the Fara1!ac__Lc

inequality.
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The next term._, which we bave dropped in the expansion (7), have a

negligible influence on the moc,n'._motOr,n0 The=...........,....T,, j__,,_'-,A.....! '_,,...a-_'_-,-_

smallness of the amplitudes of the inequalities produced by these terms.

After io-tn__e general considerations, we start the Inregrati(n of equat-

[ons (i), (2) and (3), in which U Is replaced by expression (7). We

shall use the method of successive =approximations.

119. .The First Approximation

If the perturbations caused by the sun were _,b,;ent, or equivalently,

if tile mass m' of the sun could be set equal to zero, then equations (I)

and (2) world cbange __nto the following forms

,f u !

$[, n /, _ l ,': _ I
(_,

'_"% _ % : : (). I

Tile second equation gives

._ -__,11(z,- ()t, (

where _ and 0 are .integration constanLs. It is easy to see that the

general so3ution of the firsi: equation cau be _mrltten as

u (I_'
h-'(li ';:)

where e and]7" are new arbitrary constants.

We are dealing in the present ca_e wit'n a two.-hody problem. Hence,

we could beve obtained emp_rcssloDs (9) and (I0) stsrt:ing with the well-

known e]liptlcal m(.ti(m fo._-uulae. Let ]ook at figure 14, which illustrates

the heliocentric celestail sphere. Let x NL' be the ecliptic, 8nd NL the

lunar orbit. Denoting by i and 0 the slope and longitude of _he node of

the the lunar orbit, we obtain from the triangle N_LL'.
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t_I./.' ig L,%I.'',IllP.L
l
I

Compar._ng _,ith equat ioq (9), we f'tndthat L :

],_:ic_. ..-_

while the constant @ involved i_ equation (9_ is nothing else but the

longitude of tller.ode.

In erder t_ obtain the relation between the constants e and _Tith

the elliptica! elements, we rewrite equation (I0) in the followi_g manner

v_l l-s' h:(I ;-;'_,, =--
u co_ (l,--_)L._t- --OI t _m (u.- I,)sm I.---0_

l-!e
¢I _,"

.Vhetriangle Nq,L' then glares

,m NL' cos l.L _ ,." ;eL co_
tosA'l.'t,,:l/, i, _.I.,

Denoting by w the longitude in the orbit xN 4 h'L,we c.htain

J II

).

Consequenl.!y,

!

] \i'll""' ") "d'f" I ) I

On the other hand, we h.lve

,_ll --- ¢, )
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where we denote by s, e and _ the semi-major axis, "the eccentrlelt7o o

and the longitude o_ the perihelioa. Comparing these expressions,

we find

fr_n which it follows that

I- t"

The first two of these equatlors indicate that the quantittes _.and e'

.?

differ only by a quantit:/ llavlng the urder of magnitude of _ . The

last equation yle]ds

h" ,:ll ¢'- " . ) 411h

I when fourth order quant.[ties are _:eglected.

i It is useful to -cte that
t t

t....

" .._ I!

The motion of the perihelion and nod_ of the ]unar orbit proc_,eds

so rapidly that it Is not useful to adept expre::,;tons (9) and (I0_ as

i first approximations. The perihelion and ap.gee of the lunar orbit

interchange their positions eac_ four and . hail years. Therefore, if we

wish to investigate the, :0_ti_u of the ,,noonduring _ long interval of

: tim_, the fixed ellipse will he as bad an approximat__on to the real

orbit as tLe ,._rc_e is.

i These arguments ]ed Clero to take, as a first anpronimation, ar

invariable ellipse, rotating in its _,_ plane. Laplace de._e]oped this

idea by taking, as a _]_st nppr,_ximation, an orbit de_ned by
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where g and c ara constank-s slightly differing from unity. Since

, :ji

• j I,

then the longitude of the node and the peribelion wi]l be equa] to 0 + (!-g)v

and _ + (l-c) v respectiTe]y. With each rotation, they will be changed

b) (l-g) 360° and (l-c) 36C° respecti'_,ely.

_$aturaily, e_.p,:essions(i2) and (13) cannot exactly satisfy equations

(]2) and (13) if g and c are n,;t equal to uni|:yo Howew it will be

proved fur,'her on that when e×Dressions (12) and (13) are substituteu.

into eqlmtion (8), secogd-order quantities re!_tive to the small

quantities _ . e, !-g and I-__are obtained. Tlus, adopting expressTons

(12) aml (13) as a first appro_imatlon, we already take into consideration

some part of the perturb,_i:,_s.

Tn order to find tbe dependence of the coordinates on t!',nein the

orbit, defJr-,edby equallonn (12) _nd (13), we consider eq,_'atJor,(3) which

gives for the case m' = O.

j,' ,'; _]l'

Neglecting tl,e fourth p,,_le['sof ,:he:_,_a%!quantities e and _(, we

_¢rite expression (133 a.qfollow_

I ' i: u "l_ ! , , i I " ,L_ 1' .... ')',l . , ,, (4t, "1
I i 1 '

o£
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from whi,:h it fol+-'owstb-_t

t
dt i. t _e I _ ,=),, i,_' r.)..,+

I

, • ,,.,( ',1, '2 ) . .I , _,,.J.h:,' '2',) ,1_,,
.. .

or, aftee integration,

t t,,+1,t ----/"l I '.' ,z +, , J
]

th + ]+ ,-
-.ill 17.,' 2.'.) + -,ill ':,' ?',l

t,. I,'

Denoting by n the mean rout!on of the moon, related to the s6mi-r,ajor

axis by

t,-.+ I.

wa _rlte eq:lation (Ii) in the following manner

\

' ( I I l' " ] +l:,)h ,, ' I '2 ' " " " '

from which we obtain

t: h I ; r"+ ' ]'+{, .2 '2

The coefficient of v in the re_aZt3ns between t and v just obtained,

-1
must be eyactly eqLml to ,t . Therefor,a, taking equation (]5' into

consideration, and neglecting the third order term, we rewrite these

relations a:, follow_

where _- 1;_a. integration constant.

,de finally note that equation (14) may be _:rJtten .Inth.;foil.owlng

maaner
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If we £ubstttute for h its expression given by equation ,.±.).

120. Calculation of the coordinates of the sun

Since we adopt the longitude v of the moon as the independent

variable, we have to express the coordinates of tile Fun by expllclt

functions of v. The tr.otio_;t'f the sun relative to the centre of gravity

: of the system eartb-_.oon can be (,oz_sidered as an elllptlea] motion if we

i
neglect tlze influence ef the otl,er planets and only _t',,_y, as we are

I

I

', going to do r.ow, the solar inequalities of the motion of the moon. Oz;

th,_ contrary, the motion ,_f the sun relative to the centre of toe eazth

signif.icantly differs From a:_ elllptlca] motion. _owever, the correspon-

ding corr,rtion can easily be Introdt.ced, as it will be shownl at the end

of this section.

Hence, we sha!i assume that the sun mo_,es relat_;e to the earth

acccrdirg to llepie_"s ia,,s. Accordingly, we reprement tl;e motion oF the

sun by meats of the formulae d(.,:Ived in the preceding section.

Since for the sun s' = 0 and _ = C, then we. obtai;_ }.e fol lo_zing

equations of ,notion

'[IU U _ t _ : ¢ ,,,._ :' - t _ (,,"

.i

Here, we kept the coefficient c', dependl,,g on the secular motion of

the perihelion uf the terrestrlal orbit _n...d,. tI." a_'smnen=s. By this

method, we have taken a part of the plaDetary perLutbatCon_ into account

without _ntroducing uddltloual complications ['c the calculation. Since

c' dlffers vet',"slighglv from unit}, _;e ca,_ thee set in the coefficients

c' = i. Elimlnat[ng t f£om equations (16) and (]9), ,,c obtain
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pt' _ .--1_:--2,,e_,.(,.- =1 . . . ..

where

l#
P

Since this ratio is a small quantity in order of i/i0, and since

third-order terms are dropped from the left-band side of the last

equations we then neglect Jn the right-hanG side, the terms whJc[,

have the r,;u!tlplying factcrs /_.L4e2 and 2@ p2. For this reason we0

"'1

have replaced in the previ,,us equations the quantity _ec by_e.

Tie equations obtained above can be solved with respect to v'

by means of the sltccessive-approxJmatioms method. Writing_v instead

of _ v +_ 2, we obtain

Substituting this vs]se for v' into equations (18), we obtain, within

the taken accuracy,

u _ 'tl _' ,,,. _ - , -, I.', ,,' '-

s_nce,

¢ __1,((",,1'- ." ' . c t , '1 (_ .1' ,"')

¢ _*"(C",_:- r i e " ',¢ ,(_ "(,',,"- r I

where ,.' Is not nultlplled by Pn indefln_tely increaslnR quantity and,

therefore can be replaced by unity.
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Annotation I

We wlsh to blow, how accurately we can apprGximate the motion of the

sun relative to the centre of gravity C of the system earth-moon by an

elliptical motion. We denote by x I , y, and z, the coordinates of the

sun in _ coordinate system, the axes of _ich are parallel to the previous

axes, and the origin is In pelnt C. We chertobtain (cf. sec. 4).

I. I. L

x, -x' Y" _ I. "_" i'i )' f I I. "v' :, : " l'-_ l. :"

Therefore

( " l " )'r-_ .ql- /../. x . ,i r!i. _') ' :,I r!t. zI

( " /:( ")'( 'i )', '" , ! y t :, T t, L :_ x, r I- I. x' --
• /

or, deuoting by HI; the angle between the'actors _ 'um aud GL and putting

2 2 2 2

rl = x! + Yl + z] ,

• " 1'', I. rr,,',,,//, 1 "1 I L t

( )£ r ",,
._" ,_--'2 I-I I.'" "I/, I r l I.

Due co the formulae derive(] in Sec, 4, the equaulons of motion of the

stm relative ho G read

d'I i , _U= d:u I , pu= J_.i, _tUj

,!/. d.l dl cPYl dl. ' ,l: l'

where

l'il. lm#

m'(r I I.)

:,, ,,( 7,.,, . 7;.' ,.',,' ),..,,

1979012780-502



fr _

,Ai[GrNAL PAGE I_

Ob_ POOR QUALrTY
- 491 - -:

The fb.rst term will not contribute to the der_vatJves and can thus be

neglected. Using expansion (5), we obtain

In this way, we can even drop the second term of thts expansion which

will have an upper limit equal to

' I

Annotation II

We have applied the formulae, derived for the elliptical :ao__lon to

describe the motion of the sun. In urder to be qulte objective, _;e have

to stazt by t._e equations of mo_ion deduced in section 4 in order to

study _he :,._tlon of the moon. I__ other word_., instead of u_ng the

force function U, defined b_: eql,a_i.,n (&), we have to use the force

funcLJ _ 0.DL, given just above. Takir.g into considt, rar.ion factor

+ m1mo T �I,
= , whlcb is multiplied by zhe force Function In the_. m TL

o ]_

lunar theory, we see that function J has co be replaced 'v

/" / I' _ _1 I_. ,: 7' 1. I. ; / / t."
1/. , /. I / '1

L_f,a1_ding the last two terms in series, we obtain

: \ )

where

_/'I.; I" I

and th_ ter_, k2m'/r 1 , which doe.q not depend on the coord].nates cf the

moon has been neglected.
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We now compare thls exact expression for the force function, with

the expression given by equation (6). This e__pressien will not be very

accurate if we make use of the elllptlca] motion formulae for the

determination of the heliocentric coordl.,antes of the sun. Since the

difference bet_'een cos H and cos HI is not significant, then th_

transformation from ,quation (6) to equation (22) can be carried out

hy multiplying the terms of the former expansion by the following

correcting factors

,

T- --l._ J J.
I.

tl j i.I z r _ l.

1'_-1 /.' I"--71. _ I"

' _1 : I)' :/ t 11_
• , • • • . , • • . • • ,

which d_ffer slightly from unity.

].21. On the integration of the equations ,of perturbed motion in the second

and hi_her approximations

Let us substitute the expressions of the coordinates of the r_oon

and the sun, which we have found to be given by equations (12), (14) and

: (20) in the firs.'approximation, into equation.= (i) and (2) i_ which the

force function U is replaced by expL'esslon (7). In th_s manner, we

obtained the following equations for caiculatin_ _nore accurate va].ues

of the coordinates u and s:

% ,, ,

where the summatioi: on the right-hand side consists of a finite nun,bet

of ten-ms,aL,d where p i_ a constont not necessarily having iategral values.

Integrating equation (23) as well as a s_ilar equation for the coordinate

s, we obtain the values of u and s in the second approximation. Substituting

these values Into equations (]) and (2), we obtain equations for finding the
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third approximation, an8 so on. It is import ant to note that in each

i of these successive approximations, we have to deal entirely w±th euqatlons .

of the form (23).

| If one of the constants p is not equal to unity, then the general

solution of equation (23) w_ll be

-..,,I--:)"

where _i and C2 are arbitrary coiLstants.

If these existed a term of the type P cos (v + K) on t_e r_ghr.-hand

side of that equation, tben the corresponding term in the general solution

would be

I
I), 11,(,' A'). ' )f))

J

The presence of such a term in the expansions of u and s must be

prohlbJted, since the coordinates of the moon always remain finite, while

a term o._ the ty?.e (25) can adopt indefinitely large va!ue_. In order

to prevent terms of this ,_ype from appearing, it Js necessary to set

In each appro_in, ation, the constants C1 and 62 equal to zero in the _euerai

solution (24).

Fol_ula (24) shows that the coefficients P of the term for which

the constant p is close tu unity must be calculated w_th a much h.%gher

accuracy than actuali used .i.ncalculqtlng the other coeffic_euts.

Ehrldently, this is due to the preseuce of the sinaiI divisor l-p z which

will lead to a loss in accuracy on integrating these teems. Care should

also be paid to the computatlon of terms for which the coef: [c:[ents p

are near zero. These terms vary slowly when we c_]cu]ate coerd;nates

and s, but can lead to a considerable loss in uccuracy on calculating t u_Ing

equation (3). Indeed, a term of the type P cos (pv + K) involved in the

express_on dt/dv will give after integration
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P

If this term is iu_olved in theexpression, found in equation (3) behind

an integration sign, we then obtain after the second IntegLation a term "'

of the type /,

It is thus clear that the coefficients of these terms must be computed

with a much higher accuracy, especla]!y in the second case. Such terms

will be called critlcal.

122. Equations for the most periodical inecuallties

Let us first of all consider the inequalitles, caused by terms having

,3 -2
the multiplying factor u u . For this purpose, we put

/} _-_: :l : I .--r:l:,'ll {1 + .iC.,'2iV v _ ""_:l
%/I !_' I

in equatlons (I) and (2). We then obtain

u_u -,, -=h il i s:) :-i'1-_ 1l { III (_t')
d,v"

d's s 1' I1' ] 111', (27,
dr:

Ill ll',;
-- I1 ]-3 c,,s_(t, t,')]I--- 2._ tt _

;_m' u;d:_ .2l.v v')11 2h: l;' ,-h"" --

,_m' ( d:u ) ]" u '_lit--h: dr: [ u u_ sin2(v--v')dv

:_111" U ra

r- .... 2a+'u, " II -t cos2(v - +"_1

_ttl _ l+" d5

I1' .- :2h-'u' dv si. 2 (v,-- v')

Sin' 1 d-',,, t' u''_
II1' h'- _ ,.,," I ,__ ] u4 sit, 2(u--v')dv./ +
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We denote the values of u and s that correspond to the second approximation

i

_ by
}

u'---:uoi _'", s--'--s_-I_s,

where u and s are the quantities o'_ta[ned In the first approximation:
o o

So= 1sin(,_.- fJ)

, .iI_o,---a11-£_'-'='_:-F(eIe')cos(cu--,,)-
"I

__! _:cos(2_,u-- 2'0-I" I. (:_8)
._ • ° •

where the quantity a has been defined in section 119 as the semi-major

axis, related to the observed =,ean motion by the relation

,'a" I. (29)

By the influence of the perturbing action of the sun, the constallt part

u will be changed and will no longer be equal to the exoresslon involved

in equation (28) (of. qec. 95). Fo]]owlng Laplace, it is understood that

in the future, ._y_.bola would denote a number which would render the

constant part of u have the s_me expression as u in each approximation,
o

uamely

Th_s new constant a wl]l no 3omger be related to n by equation (79), and for

thls reason equation (15) will no longer hold true. Therefor,:, we ._ef'ne

the new quantity aI by

,( 1 i

in analogy with equation (15).
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_;e now calculate the quaatittes, denoted by I, II, .... and start

by calculat'_ng the expression

m' u'3 In aJ (a'u')-

2h': ." 2h" a : (utt)"

Since
%

17"-'a'.; - I - m',7. hi',

then, this expression will be equal to

tl'-'a.; (a'u'/

2at (1 -- '" "," . •r" _ _" .) (t1"11"_

Fur thermor e,

tl

(a.u,)._ 1_I 3 e'-' ' --c:'cos2rr'l_C ,'.',-r- .'7 I 3e' cosCc _.. r,'l : "2

3 "I" 3e(I I3 e-" ---;')co_(ct .... T')-i-3t_cun 2(cu-- '_)-i(au_ '--.-.1-- T -- .-
3

i- _- "l' ¢os21hq"--N-_-

We confine ourselves tc second order terms.

However, on the basis of the arguments of the prevleus section, :-.ealso

kzep the third-order terms _n the coefficients of the erlt[cal terms. I

Put tIng

n':a ,LI,

we fi,mlly obtain

m' u',' I'_ Ii "I e_ ] I :1 ._. I ;;2h: tt' 2a, "]-;_ -_'i" e' - ,'ell -,,-,'.-,. _g')¢os(co--_)..!

' I-_ 3e'(l i _:-t--['(Icos(c),t'--r,') _ .... (311

(h, the other hand, within the adopted accuracy,

co_2(v--.') c,,_(21,---'21wJ. cosI'?t'--2,w- , ! rl

w
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Therefore, as_umlng that

we obtain

t t I %

I,i. 7,;

. : .;u I
__ , t,_O_(,,it__.tp !-.') ¢ .... [,p

Adding this expression to equation (31) we o!.tain Z, In order _.o

obtain expression II, we put

, Jtl t
_' - cl .",111 _llt " ]

dlt J

;,. ,J , ,'. ',,t'.

This yields

l

I/ _._, :!c¢,-;t,"--,v _.;-- co,(,v-} (-v--,-.) i I •

It is sufflcJmnt 'sere to only keep the first of the two writte_ tet_s since

the term _ + c in the argumen_ of tSe _econd cosine differs signlfieantiy

from unity.

It remains for us to ol,tain the term iii and it Is s:/[ficlent here to

adopt that

,'"l 1 I
H 11

l l't ' ' ' I,l i t _

:: _:_'ll--'h'co_(cv :'l

>t,_.'(_ -- ,"') ",i.,u 2,teStll(/t,_p _.).

We then finally obtain

3"_ t co',,v :' i 2:, II11.- ' " 2,_ I , rco,(,v-- c. ', x)
'I

The f_zst telml in equation "26) can be reFresented in the follo_ing form
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' I I 12.1 - 3 .[.., ('2L:v :",)a_ ' ie': ! T -_ co'_ -
[

The calculation of the expres.qions I' !I' and III' is carried out

in the same manner. For lack of space, we shall not g'iv(- thJs calculation

here. After all the necessary substitutions, the final for_ of equaulons (26)

an._ (27) will be

d J11 I
"," ! ' ,':}-,1 ,' ' "e'" ,av-'-t-" "a,--Iq '-'t- :i- --:,_,

3',_ :_',: "
i" (2 ¢ '_,"'-')ec_ i(_v :1 'co_,v , (3'_'_

}_11 ' .5_1 I ,t

':. I, ,'t ')
'(,t'iL, '_1,1, : ) A _'_ '

.'l,' ] .'u ';';I

"_ ,ill ( !'.' (} ' '.

p _

:, I',i' i , ,, ,
</I " ',! _ ' t

',' 'l' ;J:' - ';1' fi' )

In order to estimate correctly the order of magnitude of the

coefficients on the right-hand side of tFese equations, it is necessary

to take into account, th,t _! is a quantity of the first order. Tnde_d,

for the unperturbed motion

'f, tl (I ' _ t "F,

\

1
a-d, 1" erefore, the quantity Jg_l _s of the c,rder of I'--_3 In this

manner, the coeffle.b'nts of the arigonometric functJons in equations (32)

and (33) are given with an accuraLy up to terms of the second order. _he

coefficients of the terms with critical arguments are found with an eve1,
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+ preatar ac_.uracy. Fouzth-order quay ".,+s are kept in the constant term %

ecuation (32) _ince _re shall need L ; for future discussions.

2.:. The ._econdApproximation

We shall now integrate lq,e." ,-u'sthat we have derived in tile

Fr_.'=_ou.__ection using the m_-hc, .ndefinit__coefficients. We f_rst
%

consider e,++,"_tiun "• ..33;, S._- ,

,J-',5,i

,.,'l.' ,+ , ¢I - ..';) ".,JIll,,t,.++_lj),

then, substituting S :-_ _ s into this equ_.tion, we may take
0

,,s.-A s_.(,l, .J.,1,!-I,),

where A is an arbitrary coefficient. Substituting this value Into the

equatioa under investigation and equating the coefficients of both of the.

cosines, we obtain two eque,tions for the determination of the coefficients

g and A, from which it follows that

g:--- l . ;_ t_'it I 2e-' I : :le,.)+jp...... I I ,)

3 It_7

"2 1 +(2 - 21, - t;_

In the latter equation, we may take

+_ I, tit !t,

hence %e will fina!]y obuain as a res,li_ of the second approximation

• 3
"' -8 t"l +"_(J°--+_'+'-t O) t++l}

'Attll : ,.)_: 1 ' _17
,:- t I I .:-, r ..e") i +3:,'

Cons._dering equatier (22), the susst[l+ul:ionof the value for

which we have Just found into this eqaation yields a tl.ird-order term.

We drop this term bec:luso tLe coefficient of v in 5ts argument d4if,_r._
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from unity 'by a large quantity. Since, _"

i 't',l, " I " , 2

,It: t '

I
-; It" e_)(l C'1¢0',t,_" -) - -'', , (J 1:;"lco'_' ', _;u} .

I

we can put

') r.t ')f)),_u t,',cos_J t /qc,.,(Jr .... c_., r) i B.,co-;(_.,, --_

: In this way, we obvain for the determination of the constants a and e,

introduced above, and for the coefficients Bo , B1 and E2 the fo]low_,ng

equations :

' ' " 1 '3

7 ,;; 2,,,(I ! ,.- t 4 -2
e 3,,_
. (1 Fe:) (l --- ,')-- .lo, el2 I r:' i 'Je'D-_:(J

:_i_ ,_ ,,

3t',' 5 ! 41_

"I"

Z,,',,[_. .I._,,.I F4_ (4_-'---I) .... -la,;'q"'(

We obtain from the f_rst equation

; a nj 2ul . '_"_'' ('3(,)

from which it car,be:seen ,:hatthe quantity a differs fro_ a_ by a second-
J

order quantity. The second equation enables us to obtain the value of c,

It is easy to see that

¢! .3 1 I" 4" I_(1 ..... e: } '--c'-'_ . • I;!TJ

The rcmatnlng equations yteld

I
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/St _--: , B I :-=

"l "_" I%

lz I / t

4-(, ',Bz---, (_-- I)-p _ i
i :,,_ "r" 7 .-7)',L

'I or, neglecting the third and higher-order quantities,
#

I_' I S_,e

t

Thus, as a rasult of the second apprcximatioi_, we obtain, up to

second-order terms, the following equmtions for the orbit

H ill lt ,7 . iw l'ktl li ) -- " {() .'1", * ill ,

{ I ; 'l

' 'l t'li "¢' t'l . (/, i-' -t ( ;+_,)

• -,t" :_1 lltl'--:',ll Ill r ]'lJ

The quantity a involved here can be expressed in terms of the mean motion

u of the moon by means of equatioms (36) and (30).

Annotation:

For _implicity and clarity we have confined ourselves to =he

calculation of u up to second order terms only. According the argur:ents

stated Ln section 121, we sh_.llin the fut,,reneed some of the third-order

terms, :_am__iytha arguments which have smell ¢oe_ficlents of v. The

computation of th_so t_rms is, in principle, not difficult. _ence, we

shall only give here LEe final res41t which has the following form

I
! ";: _Feco+,(cv - :) ".:cos(2,t.',- 2tJ) :a:l I :-c: ! i" "f '

15
i -- +l.tPC()_, (/ /I - (D , ._.)-:

{ I " 1i2 CO'_ I,l I ' ,%

I,] ,l
i iil i,r co,_,,, -- '-'., !- '_>_)I i7;t<'[:co,_(,v-- :_q_i- 2'0--

-- F t'_e" COS¢,"111' ":') _ (;3#,l_ls}

w,
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i24. The Relation Between tileLongitude and Tine in the Second Approximation

Let us consider the Integrat;on r,f equation (3), namely

1

• dt h ' u : l : 2h " u " ov
, ,h--' ' Oot

l

[ We must use for u expression (38 his) in order to obtain the srcond :

app_'oxlma'_ion. Using the value of h, given by equation (30), we obta:[n

"-= _]t _eco,(o,-=_ ',-_-,*co_(2cv-2r)+h 'u --%ldt

au -- I:¢os(2_:,'- 2_J)--21_:co_,v-- TiW co_(,,,-cv r)-

- _ ,,e- co,_ (,.,, -- 2c, _ _q: c,,_ (, ,. -- 2gv ! 2'0

(40)

_'e only keep the third-order te_ms, ir whose argument the coefficient

¢.f v _s -_:,i 7.

) II:J.suseful t_ note, that the unperlodic part of this expression

9 a3/2 =
must be cqual exm:tly to a-/_'_ 1 because It should be reduced to

al/2- in the case of the unperturbed motlor.. On the other hcnd, in the

derivation of equation (26), we m:,et the following equality

• . ,11/ _":!2h I u dv --- ',pth -,la '( .... ,' ):1',./! t_l' ,'II

Couseque.-tly,

l ' 2# : u ,!:, I _/, '' _,;a "_ ',lu '_ {' "':_') I, , )de' ;
¢

because

Ill ,(1 ' f! :tl (1

'1
0 I1

However,

¢
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a| , 0 ...

3 ,_ 9
(du'):' = ! -t _r e- -]-;_e'co__c'..,v-- =3 t v e" co_ (_c3,',.- _=') . . .

(au)- _ --.!q- e_.- _'-'- .lcco. (cv-- -) -! -f.co._('_'g,-- _q)[ 3e_c.,_ (2c. -- '2._)t

silt '2(v -- v') += sin t l, -- 2:,e sin () l. -- cv ir-) ! . . .

a

Noting that aI differs from a by a second-order quantity, and/Ix _ from

by a fourtP, order quant(ty, and keeping among tbe third- and fourth-order

only the terms which have very small coefficients ef v in their arguments,

"_e finally obtain

" u Of ,I .',;! +_h "OlJdv I .... "t:O, Iv . --- :,t'- CO, f_, -[ 2_t) _
¢

3

i- _- '*,-'co. (, ,, -- 2_:z,. '2',1 . (4tY)

Hultiplying this series by the expressions ";eobtained previously

-i -2
for I_ u , we finally obtain the following equation, which determines

trine as a functio_ of longitude:

dt a: I
-- I _e_'O-,Icv :;-i" :_-- "c"CO" (2(V '._7.1 ,

dv _ at

, I tll' -2- "/' co_ I_:t, _ '_'_).... !J:'CU_, ,'

lSl'ecos(lv--cv ' "-')+" "" I
......•I '" , c_,-,(, ',,,',.... .: ) ' . . . . (.tl)

It is of great importance to note that t_:eunperiodic part oz, ti_e

rtght-hand side of this equmtion is equal to

a: " [ 3 "
-I.... -a_ (I : _2-[ ,;lf-',- : 't,it _ "'" I"

where use Is made of equation (36) ard where terms higher than the second

power ofj/L arc _eglected. Ind_2ed, the multiplica_lon cf the terms in

series (40), the arguments of which do not involve _ , by the terms

5n series (40'), cannot cesu]t in umperJodlc expressions. The reason

is that the orgumr_:ts of all _he terms in series (40') involve _ V
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which cannot disappear as a result of the multiplication of the series.

_, On the other hand: the terms in ser_es (40), the argument_ of whizh involve

• p

have a multJplyiuK factor/_6, whereas all the terms in series (40')

except the third and fourth terms are multiplied by/_. We may
hence

write

,l:' _..i , 3

Let us first of all consider the unper!odic part of this expressio[,

and postpone the periodic term to section 126. Since the eccen=ricit_

e of the tezrestrial orbit varies with time, we denote by e the value
O

of e' at some ._iven epoch t = 0. Separating the constant and the variable

parts, we may write

-/_=--a,'\I ; T,,,.J , . ./ i-_-a_-',,,(,':e,-)+per;od&t_.

Integrating and retaining the fact that we have agreed to denote the

-i
coefficients of v by n , we obtain

l " 3
•a,: (I '. ,, ' 'e'j-t J.,, , ,-I'[ • •

I[, this manner, confining ourselves to seco.nd powers relative to

we obtain

3 ,_,/ (.,,.,.,, d,' -periodich (.12),, .ot-I :,, '7'." --e,;)..-[ er,ms.
q,

T' period.it inequal:[_.ies of e' on]y lead to per2odic termn. Hence, we

shall not consider these ._nequalitles here but only confine ourselves to

secular perturbations. As 8 consequence of these sec_Jlar perturbatlo_.sD

1979012780-516



- _05-

eccentricity e' is found to decrease at the present time. During rhe next ":

few centrueis, the rule by which e' decreases can be well approximated by

the following relation

where

el, - O.Oit, 7."Jt01, x :-:0.0(;0011 8D, :d :=0.000000 126,

and T is time measured in ]ullan centuries starting fro_, the central

border midday 0 January 1900. Substituting this value for e' into equation

=<_ • .(42) and multiplying the terms by and _ , we finally obtain the

following expressioo for the longitude of the moon

,'-:._I-i-:IoT" l-perio$c,Ze_.,,',S.

where

and n and n' are the annual mean motion of the moon and the sun. Since,

,_. Ill_itih,. ,': "

/l

:, O()7 1,'i )i ,;2_, .n

then

I_ ,;

Thus: the mean annual motion of tl,emoon increases each ceutury by ?_'._..

20". l'hecoefficient _ is coiled the secular acceleration of the mean

mctiou of the moon. At the ores_nt time, the most accurate value of

may he considered to be the followin_

o h I):!, U 0{)2,
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which has been gJven by Brown (See. II7). O_' POoR QUA_,/,z_ ""-_.c/
Amnota cion

z.

The second approxir_tion developed here enables us to establish the

presence of secular accelerations __n the mo_ion of the perihelion and the

node• As a matter of fact, equatlor. (38) _nd!eate:_ that the instantaneous

longitude of the perihelion is equal to

II--v--(¢t'--r.)-----= !-(l--r).,

where c is given by equatJon (37)• Henco, the instantaneous speed of the

motion o_ the perihelion is

dll :{ ( 1 3)9J,, .I !*' I - vZ ,'-' i '_'Ze,',- -i ,_ !',(, " - Q').

Integrating, we obtafn the ]ongltude of the perihelion at any arbitrary

moment

vI::-t-TI, , I-:-re: i _re ,, I -:,_/(e: ,,',bin,.

In this way, we will ohtaiu, a_ter expressing the iong_tude in terms of

; time, a term which is proportional to the square of Lim_, A nimilar

._ discussion can he. applied to equations (39) add (35) to show that the

longitude of the node is expressed by

3 ,,_(i {.:?,,. I, 3 ) :, fie':
4, _J-- T ' ., ", :, r',; -.- I' -:(,:'l d,,,

t
J
; Accordl_.g to Bro_l's calculati3ns, the secular Incre_,ents of the peri-

_ I_elion and the node's motions are respectively equal to

" -:_.'2 ' lt'JI , : I, :h, ' ()'02.

125. Secular acceleration ot the _,ei_nl_otion of the Ira,on

Let us discuss Jn detail the qua_[ i:,non the secular accelezatlon of

the mean motion of the moon. The volutlcn of this equatloD _s ol,eof the m

most interesting chaFters in the history of celestial mechanics.
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The secular perturbation was discovered by Halle}, in ]963. _[e

made an attempt to determine t_e mean motlo,: of the moon, i.e. the quantity

n, by combining the observations of the darkenlr.gs, taken in different

ages. He used the results of the observations made in AlmaReste and

%

o¢ those made by Arab astronomers as w-_!l as tl,eresults of more modern

observations. Having determined the long[tudes vI , v2 and v3 of the

moon in three different epoches t , t2 and t3 (tI _ t2 _ t3), Halley
1

was able to write the followimg relations:

/' :,:L;-: : i,, t,, ,':t '., l' ,.:, ,., ',I:

iii

where
J, , _a and _ are the sums of periodic terms. So]vivg

these

eq;m_ions, we can obtain the two following va._ues:

_, -- ;_ ", , [,_ I', :'-- [, ,,,_
II "I

I ---/ :,- l, '

which are expected to be equal within the adopted accuracy, floweret,

Halley proved that the second value was de[iu[teiy ]arger than the first

onz. This would suggest that the "meanmotion of the moon Increase<_ with

time.

Replacing equations (4&) by

,, .nt . . ; i ", It_=l, '> 3)
' ' ' I1[ ' "'

we are able to obtain from these equations, not only the values of _ _nd n,

but also the v,_lue_ of the acceleration O'. The first reliable nu_, ir_l

determination of _ was performed considerably later, because of the

difficulty in using tl,eanci=nt observations. In 1742, D,nthorne

obtained _" = i0". Tobias Mayer adopted the val-e O- = 6."7 in the

first edltlon of his tables on Tuner m,,tiorl(1752). In the second

edition (1770), he to_;atY,e value O--- 9."0. Finally, Landan (1757)

gave the value O" -_9".8_6.
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Even at the present time, the accurate determination of the value ":

of _F derived from the results of these observations is still regarded as

a difficult problem. Hansen treated this problem several tlmes and

obtained the fo]lowipg values successively: 11".93, 11".47, 12".18

and 12".56. The values O" = 8" obtained by Newcomb in 1909 and O-= !O".3

found by Fotheringham in 1915 may be considered as the best.

The theoretical interpretation of the secular accelera! ton of tile

moon was considered as one of the most intellectual problems of the

eighteenth century. Tremendeous cosmo]oglcal investigations were devoted

to this problem. The reason for this strong interest was the follo_'ng:

It,the presence of an acceleration in the mean motion of the moon, the

distance between earth and moon decreases. This means that _hat_:ver the

decrease in rate (approximately 3 cm per year) the moon would eventually

collapse on the earth.

After a series of un.._ucces._ffu!attempts to find the origiv, of the

secular acceleration of the moon, Lagrange became persuaded by tle idea

that this acceleration was not real and that it probab]y appeared as a

consequence of using wrong infc_ir,ation on darkenJngs o_:currLng in ancient

times. On the other hand, Laplace unsuccessfully tried to explain the

secular acceleratlor_ by introducing a hypothesis .,n the finite vel.cLty

of propagation of gravity. The correct solution was found by Largrange

in 1783. He was the first to raise the question on the influence of t_e

secular inequalities of the eccentricity and slop_ of one planet on the

longitude of another. Being convlr,ced that tP,Js influence was negligible

in the case of Jupiter and Saturn, he made a hasty conclusion that this

should be the same for the other cases. Later on: whilst studying

the theory of Jupiter's s:,t.,ll[tes,Laplace discovered tbet the secular

increments of the eccentrLcity of Jupiter's orb±t produced accelerations

1979012780-520



/!

i - 509- "
i

in the mean motion of these satellites. He hurriedly transferred this ::

idea to the lunar theory and in thisway, he finally uncuvered the secret

of the secular acceleration of the moon's motion in ]787. At the same

time, he discovered that the secular increment of theeccentricity of the

terrestrial orbit also produced a secular perturbation in the motion of _

the perihelion and tbe node. By this way he gave a new and brilliant

proof to the c1_.racter of the universal law of gravity. At the same

tim_:, he was _ble to give a new guarantee for the stability of the solar

system. The fact remains that the theory of secular perturbations proves

• i - _" 4
that the eccentTicity of terrestrial orbits var._es per]._oical!y. _h:s

induces the increment of the mean motiom of the _noon to also vary

periodically. At the p,eseut time, the eccentricity of the moon is

decreasing and hence its mean motion is accelerated. This situation

is expeci:ed to continue for about 2/'000 years, after which, the

eccentricity will start to ircre_se and consequently the mean ,notion of

the moon will start to decelerate.

Laplace pointed out in his nowfamfu,s "Actount on the system of

the World" thet it could be proved without any calculations, by using

simple geometrlca] cor,side_'ations, that the decrease in the e,.'centricity

of the terrestrial orbit would prcduce an accelera !on in the lunar

motion. He commented on this outcome b7 stating that one should wonder

why this s[mpl_ ]nterpretatiou always eszaped geometers only "if it

was not clear that the simplest ideas were almost always the last co reach

the heads of people".

For tbe investigation of the secular incrememts of the anoge- an_

the L_ode, Laplace introduced further approximations which took into

account the second-order pertur:_ations. He obtained results which were

quite different from those obtained by using the first apprcxlmatf_'_u_.
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The first approximation, however, led Laplace to tPe value _= 10".18

for the secular acceleration of the mean motion of the moon. This value
t

was in good agreement with the findings of the observations. Laplace was

deceived by tile corroboration of results between theory and observation.

He concluded without further investigation that the first approximation

could lead to a result of sufficient accuracy. As it was shown later o_,

this c ncluslon was incorrect.

The first attempt towards i_iproving the theoretical va]ue of

obtsined by Laplace was almost simultaneously made by P!ana and Damoiseau.

They obtained the values O- = i0".58 and O- = I0".72 respectively which

were essentially in agreement with Laplace's flndi_gs. }lowever, _n J853,

Adams showed that these authors had made a basic mistake. They fixed the

va!ae of e' .i_i-heintegration of the differential equation and replaced the

fixed value of e' in the resulting solution by its expressien as a function

of time. This procedure could be only made in the f:_rstapproximation.

In order to integrate correctly the differentia] equations in the second

3

-npprox_mation, A,J:.mssuggested that the coefficlent-_-_ in the

expression
1

% ,i i:!, It,---,'-'1)I.d/.

of the acceleration, given by equation (42), sho,L!dl>e replaced by

:_ ._i71 ,'.41_17
...... lIP

'2 II': III ltl I_I

This result was supported by Delaun_y (I), who deduced a general exoressJon

for the secular acceleration. Delatmay's method was esser.tlally in,pr.._t_d

by N,-wcom!" aad 3ro_1, who found that the accelerat tot w_uld be equal to

(1) Comptes rendus de l'Academte des Science de Paris, 6S (]869);
72 (1871).
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This result may be considered as f_nal, An error +_0".O2 Is obtained by

takiv.8 into account the effect of the inaccuracies in the deffinltlon of

all the quan_itie:_ on which O" depends.

Thus at the present time, there is a d'.sc_repaneybetween the tl:eoretlcal

value 6".0 fo__the acceleration and the value 8".0 obtained fro1,,the

analysis of the observations. The orlg_n o6 this discrepancy is not yet

clear. All attempts to ellmi_ai-e this dlfference by improving the

theoretical value o6 have not been succes_fu!, i_nemost widely accepted

suggestlon is that the difference b-tw¢.en the theoretical and the

ob,,_erv_dvalues _'_du: to t:_e _ece_e.s_!_n ef th_ earth,, ca,.,:,_dby tidal

fric,_ion. The shortening of the days required, to eliminate this effect

is teo small to have an observab]e effect on the motion of ether

luminaries at the present t_,e. Jeffreys however_ estimated theoretlcal]y

the influence of the t._dalfr._ction and found that it could acco,mt for

an acceleration of the order of 2" in the mean motion of the moon.

126. Periodic Inequalities of the Longitude

Let us oncn more considez equation (4]) ard this time concentrate our

attention on the periodic terms. T_l__r,ginto vc,."o_muequation (42), we obtain

the following relation

,J

1 11
; .1 '" ,II(2,_," _,_lj) --_ ,,_-lI_ /I ....

We _er,d.nd t'hereader that we have a_r_ed in section 120 to replace tre

quat_tityv_ v + _ --/_ in the arguments by _A_e. Hence, by pu?ting

-/_ _ "--/_ and cnooslng the starting point for counting the time
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o_ POORQU_mr: ="so that _ = O, we finally obtain

/;I t,--_' " ,'" I_1{_'/, ').)• .., ;I ILI' ) t

1 11
i I "'i]t ('2," _ ]r,) _, IL -I;l(i,p --2_i

16

where

Ill m,l "i- -:/:,

or "1 "_ , I_l i;l.

We solve this equation with respect to v. For thi_ purpose, we construct

the following successive approximations:

4':

; v.' • _J l!! (_ .' a

- - e'"" Itl {7, l.'l ..... I_('.'",'ll 7b)I " t '

11 If,
,, -I.(,'.'/- '.), ', ,,,llq, ,)l:t ..... [

-- )-(' -III {("411[ , - )

from which, takh,g into ,:onsiteration that _n = n' and _n = 2n - 2n',

we obts in

i;

t, .---i,l '2, ,l, (_nl- - :) ! -I ' .,I, _ ',1ll'-" '2.-)--

I II
," --,," ,i,, f:'(" ",,'it "!,'fli- ,1:,,•I ' -,mlO::nt - Urn) S '

I,%

"1 "I"I"' ",m 11:2n--- 7n - _'nbt--'_'_ '

This is the r._.n,._l express'ion for the longitude of the moon up to seem-,d.-

order ,terms inclusively. W.=now consider this exp,',_ss;on in detail. Let

1I _'M ::- n' lI,

It .-. i (I--e),lt,
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where M is the mean anomaly of the moen, counted from a l)rihelion of

longitude _]. TYc first two periodic terms of e.x_Jression(45) give

us the leading terms of the serles-expansion of the equation of the

centre (section 82), while the expression

tv nl ! _r..hzM-l-.-:f e"h,.'2,l! I • •

is nothing else but the longitude in the orbit. These two terms de=in_

tn_ . _e next ter=the elliptic inenualities of the motlen of _ mo,m

I .;t -,in (2/:nl-- _'j) I--.T --- "r_ ...,. ') (u,- '.,.'),

w_ler e

'-'-- "-t (t

gives the reduction to theeclip_ic (scc.tioa 85) calculated to within the

second powers cf th_ small quantities _and e. The term

II
It

,

360

has a period of 2(n .- n') ' which is equal =o haif 8 synodic mo_tb

(]I.765 day q) and gives the variation. The term

' ' P J i

giw._s the erection. T:,r,p_rlod oF this ineoua]ity equals to

,,I,II

- t

which 18 equal to one a:_tral day (27.3166 day.q), dlvided by

J

;! :"' ", I - 'f', - ..-

i.e. approxlmataly 32 days. Fins]ly, the last term in equation (AS) glvc_

the almual inequality.
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If we had kept one more tez_, _ame].y '_

ij'I

I:)() l.s)co,(u "')I 5 co, :) (, -- ,'))
._;;,_.

in the force function U while expanding equation (7) Jr..,section 722, we _7ould

have obtained one more inequality in the longitude. The main part of this r

inequality would have been

13 a "I'--L 15 a 7"--L
,,,,(.- l.') ._i,iI(.-n')t--_l-{.-- _-I' -a' 7' I l. ,4 I' a' 7'- t L

Such 4n equa_ion .iscalled a parallactic inequality As we have already

a
po";:_t:edout, this inequality enable8 us to determiDe the ratio ---_ from

the observation.

127. Exn.ressionof the Radius Vector _nd the Latitude as Functions of

Time

I_ ,vder to express the radius vector By _ _unction of +ime, i_ is

neless._.ryto substitute the expression of the_.)n_Itude,given _::,:qua,"o.t

(45), into eouation (38), Since

eco.(,. :) t. I,,,t _. i ece...,(,nt--:.)l
::-:'co,(,llt :) U ] ":c')_( '-)(rt--2_r)t'. • ..

we then obtain, w-:th:h_the,.adc)p__ed.accuracy,

)

a.- l ".l-'"icc'o.(c.t=) I,'"co_2(c.:--_/
I

-" -I : co. 2(/:,. - f,). I*"co., 12(n--n'lt-- e'q -I- (40)
15

: _-:,zco. 1('2.- '.).' cn)t :))'_ '_] i

S_ml]arly, noting that

")) ( .... I ,I ! ' ' ;,) ( [

i .,, ,. Ii , ) .,, ' "I
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Ve obtain, from equation (39)

/,
! -- ,L -:z:q'' b,. ' " _ I

,K *' , .... :",:I,

_,t_e:_ ancl which taly depend onIn further approximations, the quant _ : c. g,

will be g_ven by (1)

,t _ ] .t "*: ;;,I'- ,.,:.; ''_ ..... '• ' z'.l i_ !1 .,,i,

• _l- 1_"-- 3:21_ ; ,,_ :_' -- •

In conc!usioD, we derive an expression for the equatorial horizontal

parallax of the moon for the momemt t. Denoting this psral]_.x by P

and the equatorial radius of the earth by A, we find

/'_ / I \
! I/ ; k - ,

Then, within the adopted accuracy,

PC /,¢ Jl c_o.(cu ) co (2 :;1 2 ) {
I

,), 1 ,; }

t I_:ca I_(,, ")t )l+_lec_ I(" :. )t _; i
I

where

p( A,,'

is the parallax that cor;esponds to the mea_ distaDce be';ween t e earth

and the n'oon.

128. Further Development of Lap] ace's Theory

In the previous sections, we bare comp]_ted the calcui_t_ons fer the

second-order ine_ual_i_ties_b_ using_Laplace's method. By this same method

(!) The simplest way to calculate the eoafficLonts of these s;eries i,_

given by Hill's theory ¢cf: sevtlons ].40, 142).
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Lapla, ,,could obta[n all the th!rd-o_:der Inequalltles. The most extensive

application of th_s method was given hy Dar:o._seau(J)• , who had the aim of

f'/m.ding tae coeff]clents of the inequalities to within 0".i by u_ing

the method ,_f indefinlte coefficients.

Damoiseau put

where

where the indices _< , _', _ , _ and _ , on wl,i:h the coefficients

A, B and C iepend, run over all positive and negative int'egra] values. By

u , the vein: o_ u ;,_[ch corresponds to the el]_ptir motion ._s den, t_d
O .... *

In co,_trast to what we have pre_ented in section _2q, -_e _nc%qde in the

expression of u all terms up to the s_:_th ?r.lar inclusively.

Damoiqeau considered that [t wa:_ necessary te keep in the expressions

glven ab,_ve 85 coefficients of A, 37 coeff4cients of _ and 85 cocfCic]::nts

o_ ",.. Expzeseln_. the coordinate& v' an(] u o[ the s,m _n terms ef the

coe_fJ clents "_, he substituted these expressions into tho 4ifferential

eq,,_r._uns. He then obtained 209 equations for defiulng the co_f ......_nt.,

c. R. ;%. B and C by eauatin_ the eoefflc_ents of the t:,Ig,nomet_la functions.

(I) M.C.T. Damolseau, Memo_re sm la lheorie de la Lupe, Hemolres pre8

par divers saw,[.ts_ ?_=ris, 3-e :_er. I, 1827, 315-5q8;

Table_ de le, Lune, form,_ p_r la ._eule theorie de l'attraetlon et

suivant !a div_r.._m_ de la clrcomferenee en 360 degree, Paris
1828.
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lhe two equations that determine the coefficients c an_ g could be solved

_eparataly. Damoiseau solved, the_aainin_ equations by r-_p.!actng primazi!y

the symbols c, g,_, e, e', _ and ,-7.' by their corresponding values.

l'his sclution was ob[,_ined by means of the method of mLccessive approximat-

io:_s in a quite simple manner Inspite of the large number ,f equations. In

conclusion, Damoiseau soiree" equation (.48) relative to v and obtained the

express'on ,-.fthe longitude in terms ef an explicit function of tJm._.

We now compare the results obtained by Damois_lu with Hansen's

theoretical predictions, the development of which requires a tremendous

_mount of x,ork. This comparison can be illustrated by means :,f the

follow_ng table ;_hich gives the number of coefF:icients in the expansion c"

the longltud,-s and the limits within which the ckfferences bet wee-_.'the

values obtained by Damoiseau and the corres._on?.i_ig values obtained by

Hanson vary:

Limits of the d_ffercnces Nt_ber of

in rhevalues of coefficients coefficients

II ' +l (l I _i, ,

I_ .'I II, ill , '

tJ I,i (',,'i q

lili , ! I i

The eight largest differences are 3".33, 3".15, I".82, 1".64, ]".25,

i".22, 1".21 and 5".20. The._e diffe'fences naturally depend on the use of

diff._r_mt values for the constants. 'rhe pos_.ibillty of vhese being some

computational errors is not ex_lud_A.. Finally, we have to note, that

Hansen's calc':larions led to some values fnr the coefficients which

involved errors of about tens of seconds.

We have t.hus seen that Lap]ace'[ method enables ue to obtai_ the

numerical values for the perturbations of the lunar motion in a re]ativcly

simple ray. However, this method suffers from some essential drawbacks,
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which practically prevent us from aprlying this method to the construction

of a ccmplete lunar mot.l.onwhich can satisfy the more recem requirements

of accuracy. _ong thesa drawbacks are the following:

1- In order to obtain the value of the longitude within a given

accuracy, it is nece._sary to calculate u with a considerably high accuracy.

For example, in order to obtain second-order terms in the expansion of v,

we had to calculate a part cf the third-orcler terms in the expansion of u

(see section ]23). ]n calculating higher order terms of v, the situation

will be much worse.

2- The solut';on of the system of equations, by which the unkno%__

constants are obtained, rapidly becomes more difficult when the number of

the unknowns increases.

3- The addition of new terms is quite Gifficult. At the same time

as Damoiseau, who developed a numerical improvement to laplace's method

Plana ano Carlini impJ:oved this method by means of an analytical approach.

Plane reported his results in three large v,_lumes where be obtained all

the coefficients in theform of =_ power series of /_ , e, e' , _ and a/a'

up to the fifl:horder InClL,sively. In some particular cases, h_:developed

the expansion up to eight order te_.,:s. Inspite of this, he failed to

obtain the accura,:y obtained by Damoiseau in his numerical theory which

required considerab!v less effort. The reason for this secms to be

the slo_ convergence or- the series developed in powers of _. Laplace

recognised this situation andfrom the very beginnlng preferred to construct

the theory in a semi--numerical and a semi-algebraical m_nner. He

i_ed_atcly substituted _ by its numerJcal value and at the same time

_pt _he other parameters e. e', _ and a/a' in their s)_q,o__icfolnns.

We pointed out in section 119 that Laplace us,:._as a f_rst approximation,

an orbit obtained from the el.]iptic orbit by replacing v by cv in the
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expression ef the latitude, in_tead of this arbitrsry way ci obtaining the

intermediary orbit of the moor, gui]den in !885 suggested to keep, in the

first approximation, some of the perturbing terms of the differential

equations (1) and (2). :n this man:_er, it was pos._ible to obtain a more

accurate intermediary orbit than that obtained by Laplace, This idea was

(1)
further developed by Tisserand and Andoiyer .

HilJ (2) sugge._ted to separate the term proportional to the square of the

radius vector and that proportional to the square of the dJ._.'..ancefrom the

moon to the ecliptical plane in the e_ression of the perturbation function

which gave the perturbation caused by the sun. In other words, he suggested
"h

to put

I
i I ;, b:'- I4".

//

where R' denotes the remaining part of the p_rturbation function. The

first of the separated terms is proportional t.-,r, and hence responsible

for the rotation of the line ot apses. The second ter,n produca:_ the force,

which is responsible for the motion _,f the node. In the first approximation,

we neglect R' and express the other terms tn terms of u and s, so that

U u(! I _,) :,-J -,I,i ., (a I l,J:, u._ , :i"

Substituting this e_pression _nto equations (i) and (2), we obtain

• , dt

(].) F. Tisserand, Traite @,_,He,:-nique ceteste, 3, Ii8-]40,.

(2) _ __,..4.Hill, On Intern.edia]y _rbits in the Lunar Theory, Astr

Journal, 18,__1897, 81-87 (t_'ork_,_,';L907, 136-]49).
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whe r e

Xhe first ¢f these equation defines the unknown intermedlery orbit, it

can be integr:.ted 4_ a closed form by neons of the ellJ.ptical functJcns

if s --"O. Subsequently, the o_m.pletesolution of the system can be

easily p._rformed by means of success_4ve approximations, due to the

(l)
_mallness of s.

(I) The foliowLng works involve an applJcation of the intermediary

orbits :Lnth_ theory of ?unar motion:

A.M. Zdanov, The theory of _ntermediary orbits and its deve!opmmn_

for the purpose of _nvestJ.gal:_.tlgthe lunar motion (TeoriJa Promezutocnvh

orbi_ u prllozenie ee k __=sledovanlju dvizen_ja Luny) 18S2;

A.V. Krasnov, Theory of solar _nequalltie_ in the lunar motion
(Teorija solnecnyh neravenstv v dvizeaii Luny) Kazan' 1894;

A.W. Krassnow, Zur Theorie der inLermed:[aren Bahren des Mondes,

Astr. Machr. 146, ].898.
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CHAPTER XVIII

THEORY OF LL_IAR MOTTON. BASIS OF HILL'S _J_TEOD

29. Introduction

Hill and Adams deve]oped a method for obtaining the main Inequalit.__es

of the lunar motion w_th arbitrarily high accuracy in a simple manner. As

we have already pointed out _n section 117, this method is mainly based

on the old ideas developed by Euler. It enabled Brown to construct one

of the most complete theories of lunar mot_.en. The characteristic

features of Hill's work is that he makes use of the rectangular rather

than the polar eeord-_natas. _ill pointed out that wPen rectangular

coordinates are used, the differential equations of motion involve pure

algebraic functions, while if the longitudes and latitudes are used,

triyonometric functions will appear in these differential equations. In

addition, in the case of unperturbed elliptical motion, the rectangular

coordinates can easily be expressed in terms of exp].icit functions of

time (see _ection 85), while the corresponding expressions of the true

anomaly, given in sect:ton 82, and consequently those of the longitudes, are

incomparably more cor.lplicated. One has the right to believe that also in

the case of perturbed motion, the explicit expressions of the rectangular

eoord:I.nates wl]l be much simpler than the corresponding expressloDs of the

polar coordinates.

Compariz_g the integration method of the differenti._l equations o_F

_notJon in rectangular coordinates with the method of variation of elements

and with the method suggested bF Dalaunay, Hi].] agai,' showed the

advantage of the former method. In order to see tb_s, ]_.t us zssume [-1,at

we wish to calculate the perturbations to a very high degrr.- of accur._cy.

Then, we have to use tbe metho4 of indefinite coefficients in ord,_t"
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to obt'ain the scheme of the successive approximations. This method car.

equally be applied to differe,vtial equatf.ens of any order. However, when

the nt,.-.,ber,f _,n!-no,an.=and number of equations increase, the volume of

the required work w:[l! be considerably increased,

On the ba._isof all the above arguments, l!i!l was convinced that it

was more advantageous to integrate the d_ffcrent_al equaticms of lunar

motion by using rectangular coordinates. Once _he rectangulac coordinates

are obtained, the calculation of the corresponding polar coordinates becomes

quite simp3,e.

Euler, in the second _,emoir, _'_.dalready applied an ellipt_ca!

rectangular coordinate system, rotat'ing with a qeiocity ecual to the mean

velocity of the mocn. Hill msde use of _qsimilar system, though rotating

with a velocity equal tc the n,ean velocity of the sun. Adams and

subsequently Hill, systematically d_veioped Euler's idea c_n the separate

determination of i_equa3ities of different powers relative to the param-

eters. For example, l_il] ,rir:_tcalculated the part of the motion, of the

perihelion which did not depend on the eccent[ic!tv of t'._solar orbit.

Then, he calculated the part which _as proportional to the f_rsL p¢,wer

of the eccentricity, and so on. Hill applied this ides ever to the first

approximation. Instead of start ,g wi=h the elllptJcal or1_itwhich results

from t!.eassumption that the mass m' of the sun -Tsee,,ua7t.,?_ero,he

assumed that, iv.the first apaproxin'.atTon,the parallax of the sun can be

set equal to zero. This ossumption ]eads to an original version of the

three-body prob]er._,in wh4c_, one of the three bodies goes to .4_ufJnityand a_

the same ti_,econti_.-aesto i_fi._ence the motion of the other two.. By

this way, one obta|.ns a variational orbit which includes all the inequalJtJes

that depend on the angular distances of the moon and the s_n. Tb:"_;

or;;it can be used as a trial intermediary orbit.
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We should pay attention to one more feature of Hill's work. While -!

all the previous authors used the ratio of the meat: mot_on_ of the sun
i

_n_. [lie moo:l, i.e.

n'

as one of the parameters by which the expan=iens of the perturbatior,s

are developed, Hill preferred to expand the perturbations in powers of the

rat io

J

sin,:e, in this ease, the series converge more rapidly.

130. Equations of Motion

We take a rectangular heliocentric coordinate system, in which tl,e

xy-pl_ne coLncides with the plane of the ecliptic and which rotates about

t]'_z-ax'.swith a constant angular velocity n'. The equations of motion of

the moon in this coordinate system are given oy (of. section 38)

cl.'x 2,,'d_, _ aV I

!,_ c)V

dU _t [

I

where V is the force f_u,cti,_n, According to the result _. obtained in

section 4, the function V is given by the following expres,__4on

T+Lm'
---7- -L -7'+ T

where T, L an-]m' denote as previously ::ndicated, the _,,_sesof the earth,

moon and sun, r and v' are the heliocentric distances of the moon _._nl['he

sun, whereas_ is the distance between them. As we have a]ready see_ in

section 120 (annotation If), the _erles-expansion of the last two tr.rmsyields,
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where rI is the distance from the sun to the centre of gravity of the

cacti,and the moon, and HI is the angle between the radius vectors r

and rI.

1_0, weUsing the argumenus given in annotation I of section " . as.-.ume

that the motion of the sun relative to the centre of gravity of the earth-

m.oon system is strictly elliptical. Hence, denoting the semi-major axis

of the sun 'o_orbit by a', we obtain the fol].c.wJngrelation

where T + L + re'has been replsced by m'. CQusequently, aoting tkat

x2 = I,

V-./"'1" i I" ! n'" "_/d';I '' I Ir r, ,t :2 '

The terms wbich we did not write are multiplied by

_'"II/ (7)" 1
r ¢ I|

I

They t_nd __ozero, when a and m' increase to infinity in such a way that

the ratio

F

l::m'
/I s`.'.

remains f_n'te. It is 'b -u=. clear that, in order to obtain the inequalities

of the moon that do nct depend on t.b,.parallax of the sun, we must replace.

V in equation (I) by the function

V, _': T ! !" Ir" ln"_('_il :l:}r'c°'<'ll'-r''}"

........ -- .,_.
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of the 8un_ nor on the eccentricity of the molar orbit. If e' = O, then the

sun moves u_iform.ly with a velocity n' and we can therefore take I:be x-axi_

in such a way that it always pas_es by the sun.. In this case, we o_tain

x' =:: a' V' : O, z' -----O,

and, therefore,

xx' -]-.yy' -I zz'
r I = a', r =04 HI _ rl -:---x.

"In this case, the force function may be taken as

r

We finally introduce the parameter m by means of the following relation

n -- II

whece n' is the mean sidereal motion of the moon. We they _-rite the

,aucu_on V2 in the following final form

L

V.. = _: -T't- t.__ i ,,: (x_ -t- v") -F -_- m'-' 1,, -- ,')_ {:{x '-'-- :3. (t_• r '2

Furthermore, we put

V, %'.t'2

where, as we can easily see,

' 1 (°;)l:-m:(n n')' 3"' t_ jnco','tl,--3_:'I r: I-- r " 3)
- I

Equation (i) for the force function V = V I can be written as

a_X_2n, dV I _x [. OUl,It'- Jr _--("- n')",---r_ 'g.-'x.t- (,.:I

Id"y ,, d_ (n-- ,'p '_' "i-,j/Idl_ i :.n,It "= --r'

a': - (.--n')_J ": ou]dr' r3 m:: -t" dzl'
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where

k-'(T i L)
X------ ......

(. --.')_- .

Putting _7 = (n - n')t, we fJna2]y obtairJ the Following equations of

mot ion

d'-x _ 2m dy xx 0_
_1_ -d_"+ -rT'.-- 3m'x =-- Ox

,_"y dx -t- r_ o_ 0,)d-3 [- 2m d: = OV

d_: , xZ d
a:-' -r-7_ -t m:z : b_.'

which correspond to the case in which the Farallax of the _n is taken

to be eqnal to zero. If the eccentricity of thes_lar o-'bitis also zere,

then _Q. = 0. Since

2_ 2_
II ---- '1' -_ ......

27.37166 . ' 365.2.t220 • . .

where t is ex--esscd in seconds while _ is expressed Jn unJts, in

which the period o_ the moon's sidereal rotation is equal to 2

The moon is at syzygies wbert _ = O, 77 , 277 , ... and at

quadraturec when "_= "TT = .3__2 2 ....

131. The Hill Transformal ion

In order to simplify the ap_llcatJon of Lhe _,_thod of indefinite eoefflcJents

to equation (6), Hill introduced new variables. Putting

u:-._ ]-yi, s x--yi,

thee the first two ,,feqt_ti,,ns (6) may be replaced by

d':u , .,It xu 3 O_
d:" ] 2rm d': r_ -- _f m_(tl I S}--'2

xs 3 t)_ (7)
d'._ _ 2raids -I ...... m: (t! -i ._) = 9d:: d: r' '2 " ,m"
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Let us introduce the independent variable _" by means of the

following relation

t ,:iI /i
o_

N"

since

,i d_ d i

I.' II': t,'" d'. '

then, using the operator

,i
D

we reduce the rquations of motion into the c -_.-... ,..L.L_,., ,'.\g form

3 /:, ,'
D'-'.5-- '2ml)s -! -) m" (u ._1-- -- )_ / ,_u Ib)

/ 2 , #L'
D"Z -- lll"Z ',

I ) dl $ , I

2
,dhc,:'e r" := us 4- z .

In the following we need, apart from the previous equations, anot.her

relation analogous to the kinetic-encr_y integral. In order to deduce

tbis r_latLon we multiply equations (6) bv 2 dx 2 and 2 ----' dt ' dt dL

respectively, .addand J_tegrate the resul:!ng cquations. This ploce_ure

yle|ds

- : 3n;:'._'--m'-'.:' i ') d'M--C,
\d: : t/,77:) ,. ' -..

li

.,here i we have put

_jjL _ -. ('0_ D dl" ¢t_ _lv OU d.7_d:,Ol d: i 0" ,,': i O- d:

l

......................................................................." ' ' ' .... ,..... | ,,I ,_

I#, •

[ " ,..... •
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On the left--hand side of this equation is the square of he relativ._ "'

velocity of the moon, which w!.ll be denoted by V. Ir._ert_ng herE. cmr Tlew

v_r_abl=s we obtaini _ . j

Du'Psk(Dz_'+ r + 'n:l. !._1 _ m":: { -' d'-:- r. t'b
tJ

When.Yn = O, this relation gives a first integral, kno_m as *he Jac,,b_

[nt:egral (cE. section 38).

Equations (8) are not convenle:,r,for the application of the successive

_q

approximation method due to the prsence of terms itwolving r I;_

order to obbtain a _re convenient set of equations, we multiply equations

(8) by s, u and 2z axldadd. We then obtain

s D='u+ It D:s -_- '.': l)_: - 2m (. bs - _ l)l_) :

__:, 2, (,,t., a_ a_)
-- m: (.-{-s):-- '-'m:'z2 ...... " -_ i " I : •
'2 r _1, I_tl OZ

-!
Osing equation (9). we el-im_,ave the term that involves r and obtain tie

first of the following two equ_tion_

/ I., : _ /,.v i,'. -,/. ".';i.'.'lJ. ,1'.

_ • i I, ' .), ' qr

_ '} I
."l {12 , '._' ',lq - '_ ..' . ',

r
U

I1(,lI"_ - ". /U/) :!llI/t_.'l._) ,',': (/l "_:_ ", .

The, second equavion has bee. obtained _y multiplying equations (g)

re__pvctlv_ly by - s, + s and 0 and adding.

Cor_idering .ow the simple case in which th..motion ol the moon

i_ assumed to proceed iu an ecliptical plane and the eccent_clty of t}._

__c,iarorbit to be eaual to _ero; In thls ca._e,z = 0 an J_-- O, whic_

re_.uces eq_a,'_o,L,s(I0) aad (9) to ti,¢follcwin_:
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D: (us) -- Du l)s-- 2t, I iul)' -- . l)u) ', -l- m'-' (t: s)'-' ¢'.

:l I I11,' ,

I)(ul)s -- st?,t;I---'2'rod (:.,sl d-- 7 m-" (u'--.s"-) - 0 ]
3

Du' Ds -1- Tm'-' (u + s_: -!-'2, (,s)-'--, : : C. (12)

t It necessary to point out that equations (II) do not completely replace

the initial equations

- t 03)

DeS --2tnl)s I mZ(uq-:_)--zs(tls) " _---0,

which cm,_be c,bt_,ined c_..t_m eqt_a'_ion_ (8) by Futtimg z = 0 and Jh = 9.

When the solutioi_ of equatiun_ (3!). .is a]ready obtained, it is _t_l±,._ necessary

to substitute this solution into either equstion (12) or equation (I_)

and find the relat,or, betr-,een the constants x and C.

132. The va_:iational Curve

_he general soiut_on t,f e.p,ation.q (II,_ or the equiva].ent equations.

d-'x d" a }
d:'*--2m dz - f t.vr -- 3m:.v "- 0 I

t (1.It
. ._ d.v ,.

d'.v t. 2m dd -i-/')'r " - O, Jd: 2

' ,qwhich are obtained from equat,m:. (6) _",_:putting z = 0 and-/l--= 9,

includes four arbitrary constants. We shall try tc ll.-d the._ four

constants in such a way, tb_.t the corresponding trajector_ wi!] I,_

sym._etric re]atlve to the t,ao c._ordisate axes. Since the t14,je-_.,-,ryis

assamed to be free from singular ooints, we then reqrire that iz [r_te_'- mm

sects each of ,he coordlnace ax,'.s_._ right angles. Denoting by D. tPe

ab:mis_a of .the:pn'.at of i..qtersection with the z--axis, -_e then ootaln

d_

• , A, t' It, d" tD I_. i_,
{

J
F_

. = -,..
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where ,_ is at_arbitrary constant. Combining tbese with the following

equations

dy
---=0, - .... t _d=

which express the fact that the curve also intersects the y-axis at right

angles (at n,ometlt'C , w11ich can be e_c]uded from these equations). We ottain

four condil ions which should, generally speaking, be satisfied by tbe so]utSo:,

of system (14). This solution will depend on the two arbitrary constants

A a_ad _ . W_- can easily see t_t this sol,:tion is s_etric relativ- __o

the x-axis. In fact, ec.uation (!4) will not be altered if we r_place

+t by _ -_ , and at the same time rcplaae y b_ - y, keeping

the va]ue c;¢x u;na!tered. Similarly, we can verify the s>m_n_try of the sol-

utio,_ relativ_ to _he y-axis.

Iv.order to reduce L'_n_°,roiume of the deduction, we Fur _ = O,

w:-_ich_.'_equivalent to the time count from the moment of intezse=tiov, of

the :_--ax_. We choose the moment of xntersec_!on of the y_-axis as the

initial •T_:_ _nl _qua! ,_'o_ This _holce is defined 57 the rotation- 2 "

period l_nder con_ide,'ation. We search £or the Fmrticul_r solution of equat-

lops (14) "n t!-e form

or, by transforming to variabales ,,, s and _,

El i ' "=_"' 1) ,1.._. ,," "_ '1u 2 (A:,..,-{A,_,,), -j-._(A._,, _ .

u

Putting,

,4.,._,=:al_.,_,.[ a. ....._, _i_, ._l_._.--a , 1,
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we oht._in

I1"" - a _",,"_a.._ -_t,, i _ -: a ._?l , -

The problem is thus reduced to a search for coefficients a . ao, a..9, a/4,C " _

"_-4' .... 5tnce we have separ,_:ed the co._on factor a, we can for example

set _ = !, after which the value of a can be defined. In order to simplify0

the substitution of expressioen (16) into equations (1l), we Initially

evaluate the expressions .lnvolv_d in these equations. It i_ easy to see

that

\_ " ' ' V r"_,'
11S a2 _..a _1,_ £/ :l. :

*. t:

=:- a: %'_ _" a._. a_.k .. " "
_.., _.a

, k

where, i = k + b -_! runs all the values between -a._ to * _ Similarly,

Since,

Du- " -a_(2_' r I)a,_':"".. , 1)5 a%'t2i_._ l-l)a ._., . _',
A

F_nally,

V \_ 'h'_ a._ a..,. "*".D'-'( tt_ _:= a" _.a _ - ..,,"

Subu'.[tut[ng all of these expressions into equations (13) and equating t'.,_

£oe,eficients Df _'*, we oPtain the following relations:

._" - ,,. .,,. -?._,, ........... ...,_,...,,..., .... ._..,,..,,-- .... .,,,, ,_-. . _ ........... , .....I1.¢_
........................
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_,_ 4f:--j- (2k--t- 1)12k-- 2i_- I)-j- 4 (2_--i-i- lIra-l- )- a:.

9 X_ -}- :)= 0
+ ¥ m-"_, o.._(o_,:,. _ , =, ..,.

* t (17

4i E (2# -- i-t- 1 _- m) a2k a_...,;-

3 m._E ( -- a .,; ..,_ .,)---0.,.-_- az__a._.i .,, ._, _-.
I1

For i _ O, the second of these ecuations becomes an identity, while

the first equatic_ co,}Idbe replaced by

:,,_::.-,-'c.V (2k-F i)'-t--t (2k+ l)m + -_ -,

In the next. section, we shall see that the coefficients a2k, which

satisfy e_uazion (17), will not only exist, but will also be relatively

easy to oI,uai_, for at [east s,_mllvslue_ of the parameter m.

'l Since the correspon£1_g series (]6) or (17) are convergent, the

! existance o_ a particular solution, for equation (14) having the required

form, is thus proved _y the above arg,,nlents.

:" The curve which is defined by equations (14) is usuel!y called tl',e

variational curve. We shall now undertake to prove that this culn,e is

h_de(d related to the inequality of the moon'._ motion, which we have

cal]ed a va_iati-,. We first of all observe that also in this case

expressions (i_=) satisfy equations (14). _n which _" is replaced by _ -_

where _ is an arbitrar) constant. We denoto the true longitude oI tLe moon

at moment t by v. We represent the mean longitude of the moon at the

same momen_ in the form of nt + _ . We consider the fo]!owh_g -_:premsion:

' • CO._U' --nt -- -)_, sis, (u -- nt --Q.

We have

,, a qj- • "-

i , °
d

;L..-. ......

"'_- ._r - _ ,_
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Ii

,' , ,'

where n't + 6 * is the mean longitude of the sun, and

However, the x-axis is thomen to pass via the sun, then

I,

and, therefore,

:'! ' , k :) ill "- .}.

Feplacing _ :1.,i equation (15) by "_-_ , we finally obtain

' 'I It' 1,: _ .i (,.' J ) ,!I (" ' ', " ,) "(: "t

These two equations define the motion of the m:_on t_,_.,tcorresponds to the

particular solution of system (14) u_oer consideration. In order to obtain

the longitude of the moon from these equations, we c_,_make use of the followin_

equatio:_

l

.', ,'_f 1.:, --- ',I - I ; :' I ' _ .

We rapidly see that the eoeffic_eut:_ a2,< an-.'a 2k are 2_-order quantities

re!atJve to m. In particula,,

II /7: /.', . , (l If" I"'
Ib ;! ", ,)

'thus,Confin.lng ourselves to =llirJordez terms, we ottaJn'

i

r - " " " , . • .
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t' nl- I / r_:-i-m'-. . • ,qn2l_--,q i . . •x , /

_.L _hComparing thi_ expans.[on .... formulae (45) of section 727, we note

that the te1_s which have beeD kept "fn the force ftm_:tion, reprDduce

the variation. _his justifies the name which we have given fo ct'rve (]5).

133. 6alculation of the Coefficients

Let us now consider the solution of equations (17). First cf all, _e

Dote that these equations can be rewritten in a much simpler manner by

multiplyL:_g them by 2 and 3 respectively, adding, then constructing the

sum add the difference of the resulting equations. This proceudre

yields
I

-I qll_2 "_ ¢, d , . I I

I

%'l',_,: , ,_(.',' _ I)I .... ll- "I : '.-) I,i:', t ! .)IrIJ '_/:, Ja., a , I

.} 'l'n" a Aa : ll'lj
#

In order to obtain the terms that involve products So a2_ and

a° a_2i, it is necessary to take in the first sum of each of these equations,

the twr.us that correspond to the values k = 0 an4 k = i. These ter, are

Because of tbi_, we multiply the flret equation by

' ' ) '1/ _I'1

. . .... _ i ........ J ...... lJ ............... _ .... llJ, I ill n, ,i J ........ J . hi.. i_., JlJn ,

i
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and the second by _"

• ' [ - __ 'r' ' t' } 'All + ;

and add the resulting eqtmtion._. We obtain anaeoation which does not

contain a term involving the product a Puttir.go a-2i"

i;.'t --
I

P

I:) ,.. :, 1, I)--.I,H . m- i '"')_

(_) " !', .:( it- i) :,:. ,- v,- It

we finally obtain

\'ll:, "t" " l'l'" ':. '"'" 'L ,"1)
-"l

It is easy to see that thJs single equ_tio_ completely replaces

system (17). In fact_ equations (17) are equlva.lent to equatlon:, (19), and

each of the latter equ_etions is a consequence c.f the ether. For example, if

we replace k and i in the first of equations (19")by k - i and - i, we obt_.i,,

-,'-he second.

Equations (21) have the most convenient form for the det¢rmina! ion of

a2i _[nce

i', "1 ', I', i! ....i,

t. "1
while the quantities _,.9 J and (i) are second-order qu,nt:Ities reJative

to the parameter m, which we ha_e agreed to consiJer as a small quantity.

Let us now ,_ss..n|ethat the quantity a2k is of the I 2k I - order relative

to m. In this c_,se, the sur,1

%_,')a ,: _' ')

]g7go]2780-547
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where i > O, will consist of term_ having orders at least four un_:_

larger than the order of equlvaleut terms in equation (21). The sum

V 1'1'_ _ (:.")

in which i _ 0 will have exactly the same property. We are not going to

consider the value I = 0 either here or in equations (17).

Let us now consider the calculation of the coefficiei,ts a2k in the

first approximation. For this purpose, we ,,.Triteequations (21) for

different values of i keeping each t_-n.eonly the terms having the

least order. Taking ivto consideration the properties of the sums(22)

and (23) which we have just mentioned, we obtain

u - (--l)a_J,

_-, -(-,_)(J,a: :-u ,: _ : [ -%_l]u a

u. [A](_;.,q.,,-a2a } .,a_._ . [3. I]_;._' , ,. [._, 2] ,_, ,1 :

" "1 I

a, [lll.oa a:o, .,,,,_ ,s,u_): [1 liJ, a _ !
{ ,I, 21,_°a., ! I I ,_I,;,,l

a _ (--IIquau . a.._,.} ad,_ . o,,;_);[- I.-- I ,I tl_ i

• • , • • , . . . ..... • • . •

wb.erewe keep in these equations the coefficient a = i in order too

clearly show the scheme constrt,ction of the successive terms. The

solution of this syster,of recurrl.ug equations is not difficult, It ',

yields for the coefflc_er,t e2k , a qu_nti['y ha:,inK the order I 2k] .

In order to ohta_.nmore accurate values, we have to rep_._.["I'::.

calculation keeping not only £he terms that have tke least order b,._t

also the terms which have next to lea_t order• L the first a_?ro_Jm_tio,,,

_ . : /.%,,
II

i
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we obtain a2k with an error of the (_ 2kl + 4) -- order, and _in the

second approximation an error nf the i 2k 1 + 8 order, and so on.
'fhlS

illustrates th,_t _uc:,cssive approximations converge sufficiently rapidly

for small values of the parameter m.

fn order to show how simple these calculations are, we write the

equation which can be used to calculste the coeffiaient a_ within an

error of the !4th order. This equation is

a_--Ill (i : '.'a ..a k ::._ ,a,I j-_l)ca: i -',_ , , .'a.a ,) i

_efore calculating t_e quantities [i, kJ , [i] and (t), we

can simplify equations (20). Indeed, it is not difficult to see that

I

2/' ,',_'_1 ','_ I I

I
i

-- : 2( .

_' I_' fl I t m I •
1i._1-1 i,--_l I' ( It: -- I I .... ',', "t.

° ' "' I

$imi.Iat!y,

:l ;_i._ I i-2,_ . I !

-- III }

Iil t(--,I- '..,i:.'(It' 11--4m t m:
(k'.l'_

27 ,I I,a; .a h..-t.I1 _ Ill/,/
//1t -- //i

[#]" (--D__ ,_;: -'ll dill _- 11--" Im} ra:

These formulae are more convenient than equations (20).

Tet uS ce:_sider the case when Jt is required to calcu.!ace the

variatJo,lal curve for only one given value of m. In this case, it is

easier to immediately calculate the numericel va]ues of the coefficients.

Hill adopted that

for which case be obtained

?!

/, [,

At the start, he calculated all the necesr;ary val-e._: f'o'" the quantitles

,_ . , . ' ................................ i..... IIII III .... it ....
t
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[!,k] , [i7 and (i), by means of the above equ:tions for this value
L .J -J

of m. He then proceeded to compute the va]ues of the coefficients a2, a_2,...

by means of successive approximations. The computation of the first two

coefficients is done in the following way

ist approx., 2-order term + 0.00151 58491 71593 - 0.00869 58084 99634

2nd approx., 6-order term - O.O0000 01416 98831 + V.00000 00615 51932

3rd approx., IO-order term + 0.00000 0000D 0680] - 0.00000 00000 13838

= + 0.00151 5707L 79563 _ =.- 0.00869 57469 61540

Hill's fitlalresults were given in thefollowing form:

rco,_l' t_! .)_ ,jIl--i_,_dl,._ ,,It,',; >'.'_7¢o- _-'{- :)
: t_(l_t'q,_ _+1:2_ 1741,t.ilCo'-. 1(.:- :1

• (T,,,_,_,_u_C_,'LItI IallTl co- !ill J: '.';1

l!g.bt,+a) I+I',l+,_+ 13'_"'" C<'. t'.'{': ,';)1

r..ztlq+' ttl-.I alt-t+,._+,..'t :1311 1:1,'2::_ .'1.'_ -,'_)

; oqi,._t.jii t,,.'77+ ," .'1'_ ,n t,(. -,':)
lillqi(teh) (}+pl,'l l t, "'", _ -]II ,_,1" "+)

+{+l_'Jtlt,,'ll t'_P, t_,l t_!t_12 -,n l_,t. _}
! t,t_I_++J,+,H,,+,,+-I_+U+, "+,121: ,':Jl

Giving this result +n a supplement to the tcans!ation of Euier's book

"New Theory of Lunar Mo ,,n"cited abov._,Jn ._ection 117, Academ+cian

A.N+ K_y!ov observed that a _iO -]4 prt_du,es a c+_r_+ection to the

distance bet+¢een the centres of gr_v+ty of the earth and moon, approximately

equal to 4 microns. This unusua._ and practJca!iy usei,*.ssaccuracy,

shows the tremendous 0ower of Hil]'s mePhed, which enables us to obtain

this nccurncy i_hrough a relat+ve]y small amount o_ work.

i
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134. General Fxpresslons for the Coefficients _%G_ p_GB

The equations, deduced in the precious section, can be net on___y

used for obtaining the numerical values of the coeffzcients a2i , but

also for deriving genera] expressions f_r thase coefficients as functions

of m. Formulae (24)and (24').qhow that the factors _i,k], [iJ

and (i) are rational functions of m with denominators of the fol-m

Q

'.'(;I: I)-..Ir_ : .2. _2,,I

It is thus clear that each of the unkn(,_: coefficients can easily be

represented in the result of the successi:e approximations by a double

series In the form

(

where each of the quantities Mo, MI' ,.., NI, ... _.. a double term in

the farm

l,aving rati_na! e,)efF,icients. Th:ts series only converges for the values

of m which are smaller than the least, by a modulus of the roots of the

denor,'inator (2_), i.e. fol m _

Expanding each term of series (26) J_, powers of m, H[I! obtained
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The difficult problem of the convergemce of the power-series

obtained here was etudJe,_ by A.M, Ljapt'_l:ovin his e_ce!lent book "On

the series su_ge3ted by Hill forrepresentit_g the lunar motion"

(0 .rjadahpredlozennyh Hillom dlJa predstavler:ija dvizenlja Luny), in

which he proved tha_ these series converge for m _ + . ,_in(:e,for

the moon, ,_= 0.0808 _ 1.,. 1--_-, we can then consider that the

rl i¢.:app!Lcation of Pill's me_hod to this ca_e is Jt,st_f_ed. ' _ e×act

li,aits of convergence of Hill's ,_eriesare still .n_r_n_,_.

If we confine ourselves to second-order t,_rmsrelative to m,

then

¢

..... i,,._-_._ .,..,at...,....t.._tu.,....,._ ........ " ....... __"it;.;_ --.r,-_----.,.-.-- ......... . ........ i -. _-

...., , ,'_tl'_'l"_Jl ll_'_l'_Im'-'''_' ...,'_
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P

and, hence, equations (15) y:;eld

_ t l', Ii:

I "

_ .I [ I 1', m , l_! " 1'

Taking luto account tltat

el,, - i _'t;_ " ,('r, CI "' _" 'h P

' ,, 1 I_' " ' I I ' t'lJ I

we can easily reduce th_equation cf the var]alio;_,ilcurve, within tbe

accuracy required, into the form

I ' i.I t o 1 I : ''

" a .,, I m ,. t
t ' 1"

In this man_.-er,the variational curve has Lhe form.of a circle for m = O.

When m is increased, this curve will have a form slmi]a_ to._n e!]ipse

with a centre at the or_ig_n of the _oo,'dinates _d a semimajor axis

'_ rr2)equal to (l-m-)/(l -_- . We i_o_.__ tha_ It Follows from the last two

equations that

We flDaily cons;tier the calculation of the corrosion factor a given

by equatiom (16). For this purpose we take .any one of the non-

homogeneous equation_ relative to u and s. W,. ta_-e the First of

equstion. (]3), which :nay be written as

(:' t .'ml_ , ., .'. _.', , ,w.', , ,_,,,_I
'k

,._L ?

' ,.................... 7,>. -.--- , """' "_ , " _

,,,,ml,_,,,-mJlllw _- _,_

1979012780-553



i

ORIGIIVALPAG_, _ :*,,
- 542 -. 0_' POOR QUALITY _

or

•I _ (.'/: l,, : )m fJ/ lj , ,,:', ':,
4_1 " |

6

, - /7, ,! */ ,

bee=use

,t V • .| ,:. ,i :,

when _= i, this equation becomes

Since

_/" . ,'.J q.' - ':'j ,', /' _ /._ ,i ,,:}-':
r

Depoting by a the semi-major axis corresponding to the mean.q motion

n of the unperturbed moLion, the third law of Kepler gives

_. u3 _ (I , L)

Comparil,g this equate.on with the previou_ ones and u$ir.g the values of the

coefflcients a2k cbta._.ned above, we easil_ cbtair,

"7_ ] i"t,7 |ll I i ,H.:'i '/_ \

We tl,us conclude that the form of one variational curve is completely

defined by the value of m. In order to find the d_menslons ef this curv:,

_b
x ,

im_,-

] 9790] 2780-554
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characterized by the quantity a, we have also to know the veiue of .n,

I.a the fo].lo_ing, we shall al.qo need the relation (*) ket_,een the

qua_ttties x and a. This relation may be given, t_ wlt._.!_: terms of the

order of magnitude of m2 inclusively, by the ro]iowing equatien

,a ] '.' ": ; ,,:,: ,

- 135. Orbits infinitely Close to the Varfiat_onal Curve

In the previous ._ect!on, we studied in detail the variational curves

which appear as a particular solutlon of equat ions (14) having the iorm

(15). it is Intere-_ting to _now t_, what extent this solution !._

applicable from tbe poJ_t cf view _,f c!osenes._ to'the actt,al ],:nar orb_.t.

If m = 0, equatJons (]4" are reduce_ to the well _no_. equatiens o[

Z, the two-body problem. They describe an elliptical motion. Ou the ether

hand, equations (15) are reduced to

% G_O " _' J t_ "

i.e., lepresent a circular motion. Hence, for small valuem of m we

can regard the motion d_scribed by the variational curve as a motion

along a clrnular orbit, deformed by the attraction of the "Jm.. The

actual orbit of the moon loops more like an ellipse than a circle, hence.

we cann:4: confine ourselves to the study of solutior (i_) for equatio,lm

(14)• We have to consider more genera] soTuti,',,Isf-r these equatior._.

L;_ tail the general solution :or squations (14) which inv,'yes four

arbitrary const_mts, "_vaitiational orbit. Ne shall consider the cliff_cu!t

problem of dete_n,inin_" the va_iationa! orbit and start hy st_:dvln_ the

particuJar caJ_. of calculating orbits, ".ntiultel_ clo.,_eto a va_a_ional

orbit, i.e, ov•,its i:hat ,'.orrespon6 to the elliptical oroits cf th,, two-

bo_y problem, the eccentr.'ci_kes of which are sc sm_'i that th_:Lr _quarts

may be negJeat_d• We _rrlte equation,.; ([4"_ in _he fo_iow[n_ ma_:,:r
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d: _ d;' d/: _J'V _:_ ,C
--_'. 2m , '

wh__fe

1: ,r '. In: _.

We denote by x and y the coordinates of an arbitrary pclnt on the

variational curve (15), and by x + _x aud y + _ y the coordinates ef a

• corresponding point P' cn a close curve, By "cocrespondlng point':, we

J
i mean a puint related to the same moment "E[ • Considering that the

increments _ x and _ y ace infinitesimal quantit_.es, their squares

may be neglected.

Substituting the coordinates of points v and P' into equation': (,.7:

and substracting the fesuiting equations term by term, we o'ttain for

the @eterminatlen of the incren:ents _ ._.and _ y the followiI'._ equatiens:

.' d" ,It. I
!

,/ it ,l I ",m
",, • "7_ ,.,, ,,/. J

d': J 'IV

where ,'*Xq_k
\

t I ,pl. I

• . '.% ',k'

vi_. 15

]r:our ca,_e,z = 0 and JZ = 0 and hence equar_ou (9) leads tc th_

toll_wing form of the Jecobi integral

,, %,,,,_ t I' ! ,,
_" i , _ -r l.',J

\

_',Teconfine ourselves to the consideration of on!y those ad.iac._ntorb]t._,

fur which the cous_ant C has the saint'yah,? as _.beinitlal varlat_er.al

curve. We use the lacobi ._uu,:gra?_-nthe same manner au we >,_,,,:j_st used

equation (27). _,','ethus ohtai_

, 2"z'"......."'_-_- . "

] 979012780-556
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i,

d_ d; dv d,v
' ./ (,;a)l

d d d d

Denoting by _T and _ N, the tangential and normal displacement of point

._' relative _:o point P, and by I_, the angle formed by the tangent to the

variatior..".lc,.,rvewith the x-axis (see figure 15)_ we obtain :

_,, ',1 t _. • A' ':_ " I

.v ".1 I . 4 ".'_' '_ :

which enables us to obtain from equations (28) and (29) the equations

required fox £he determination of _N and _ T. We start by transforming

equation (29). First of all, we have

, i

and since

"r 1we .ep..a_.e _quatlon (30) by

d • -
' _ .,

r- i. .,

On the other hand, we oh:ain from equation (33)

then, because of equatlcn (;.;j,

or, usiug again equauion (32) and noting that

_ , , (,

t ,_ , , ,'L

...... . . • • •

p
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we finally obtain

J: ,LV

Once again we consider the Jacobi integral (29), which y_.eids

d_ 'J '..,.

However,

,/I ,'/(l_ ,'/ ..'r ,'I

,. ,, ,,. i" l_, _ ,l_ ,, c) / '

from which it fo1!ows nhat

I

/V ,).' ,,_,
-" _la -

We _-ite equation (34) in the fcllowing manner

./,,',l" ,.. ",. ,, ,),'
• '' I ..;'; I

Eliminating the pmrtial derivatives of the function F by means of equations

(36) and (38), we obtair.

I

' ' . I'l ,')P
.<. _ V ,,' /

Having transformed the Jacobi integral znd derived the auxiliary

relations, we consider equations (28). Multiplying these equations by

- sin _i m'_' + cos _ respectively and adding, _:e obtzln

,! ,, . ,I ,;t, I ..",.v ,/,' I.: III */ C,) '_ , .):H MII "_ d L'L*, '.,' I:

,O",l" .",," 0 .I'

--- ",111 "d tP.t, CO', . ,I._1 _ (J.V" / :

Using equations (L2", we transform the quantities found _nsid-, the cquere

brackets into

,:",v ¢. , J_,._ ._ _ ,I,, / ..., ',Y1:-J11 -.,-(-/: CO', ,1: --d '
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Similarly,

_xsi,i + .}_::0 ._,_- ,/,:,v , d,'_,;r.-- d--'_- _._ ¢0.', d: ' d:

D!fferentiating this equation, and using again equations (32), we obtain

a"-;,_, ,r'.v a+d;.r {d,_'f_.i¢ __d'+r.
d-V,xsi, ,_-4- d " cos + = _[_o_ _ ,; ,.d:'-' := d:-' d: d: I d:] ' d_:

This enables us to represent equation (40) in the following ma.nec

I 'r" '--2m aN+ +_,T-{ _ --l m =0. (41)

We aow have to transform.,the last term. First of all, we have

d,;F OF O2F . . o2F
= _ -- = -l- _T. 02)aN ON ON"o_v bA/OT

Differenti_,ting by "_ equation

OF I OF Oi"

we obtain

d OF d+ dF d OF sin+d OF,t: o.,v= --d: iJT"]- cos +d_ O_ -- ,t_ Ox-

I( 0' 1 ' 1dd¢OF V O_'F
= -d-. or -t -Ox-'t-ay'_ c°s_sin de-t")xJY(c°s d_--sin2_) '

or, notJng that it folTows from qquatie_. (35) that

.:/. = ( ,r'/-"I-'_) a_e (co_:+- ._i.,+),ONd'l \-- i}_ _) cos + sin q,4- dxOy

we finally obtain

d OF d+O/" . a*T
d:. 0_ = - 3- 07" + v,_,v,) r"

!

1

m-..._,'"_" " " _*",'_""'_"" '........ ,
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I.'s_g this relation to exclude the second der:[votJve of F from equation

(42), we obtain

0_,1" O"-/:,.N I ,,7"/d OF, d+ O/:x_ .
o.v=<,x: v _ta-.,_ ' ,_-,,r)

_=o,_."'_ v v ,_: t-d: \,t'.- ,_)-ta_-,_/.I

"_F

where _---ffis replaced by expression (36). Finally, using equacion (38),

we obtain

; ON-=ON ='N4 ,t::' _d: ; m - V "
• # *

flayingon .hand this final expression for the ia._t term of eqaation (41)

we can rewrite this equation in the following manr.er

or, using equation (29),

d"gN
,t;:_ O;,N =,=0, (43)

wher e

I-t=: \,1_ t- m/ -b n,:-- O/W" (44)

in order to calculate the functlon _, _,e ma!te use of the followir.g

formulae

Oil" O'P
ONi--- Sill"') 2Sill _ COS+ dip --1COS'.'+or/:

' O.t". ' Ox (/y ' Oyi '

d.._ v '(d:v a., ,t:.,-'!y.'_

iD comb_nat#on with equatior, (33).

After fludJng the increment _N from equation (43), we can obtain

i,,crement _ T by using equation {39).

llz
P
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This method of obtaining infinitely close so]ut_cns can be applied

to all equations having the form (27), in which the force function F

does not explicitly depend on time. As we have already seen, the problem will

be reduced to the solution of the principa] equation (43).

Io our particular case, the force function has the following form:

I 3
i: --, (x"--iY:) :-I-., ff.:.v",

where x and y are defJned by the ser_em (15). Since the coordinates x and y

either do no_ change or only change their signs when the variable

is changed into -_ or _ +77 , then the force function F Js an even

periodic function of _ , having a per_od equal to7f it is easy tc

see that the second partial derivative --_2F as well as the derivative
dt

will also have thi:_ property. Accordingly, the function _can _e

cxpanded into a series of the type

q- ' 2¢1 cos '- _-2¢'= cc_ I: }

The corresponding equation (43) is called Hill's equations.

It can be proved that the function _can be expanded in a series,

developed by posltive integral powers of the quantities m, m2_.

and m2 _-_ , from which it follows that the empansion of the coefficient

qk Jn powers of m starts from a term having the order 2k. We shall

n..t give here the proof of this property of the coefficients qk" rhe

expansion of these coefficients is ccnvenlently carried o:_t iF the

coordinates x and y are replaced _y tilevariables s and u. The result

of the expansion is the foilowin_(1):

(]) 'J.W. Hill, Literal Expans_u,. for the Motion of the Moon's Perigee,
A_als of Mathematics, 9, 1894, 31-41 (Works, iV, Ai-50).

%
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1 255
F _J m+ Fq;=_ I {-_m --.-zm'-'-_ 3L' m(-Flgm'_

333 I 1230 225 1576 037¢

• 2.3" m;-_- 2j=.3_ m" 1 27.3, re=Jr-

49 359 583 720 508 007
-_ 2").;P - mlO I 2'_.3';.5 nil ___

15 57 23 68 803
ql-_---o m-'-- 4m'a--llm_-- m:----mr'--- 2.3 2".3"-'

I 792 417 7 172 183 596 404 499
-- ---2-,o.33 m_ -- m _ .... m) --21.34.5 ',)9.::_+.5"-

264l 291 011 773m, o
-- 2,7.3_.5_ -- -_- .

]6 1397 m5 8807 mo 319 003q,==+) L -- 2-,%X -F '' -k
252 382507

--//Z _ _ •

t- 1121°'3"'5_669 (q=..... 2") m_;"" " ' "

In the following, we give the n,m)ertca!values of these coefficients for

m = 0.08084 89338 08212 used by Hill:

0 ------ l. 15,%-!39395 96583
--- 0.11 -I08 80374 93807 cos 2:

-t- 0.00076 6.t75(.)9510!} cos ,i:
--0.00001 834=5577790 cos 6'_

-I-0.00000 01088 (,)50()9cos 8_
-- 0.000()3 (X)0209,%71 cos I0_

-I 0.00000 0()()()012103 cos 12_
--(}.(}t)O00O00t)0 00211 cos I.l:.

However, the r,umerica! method enables us to obtain the coefficients of

this secies with the same aceuzacy bu_ more simply then the algebraic

method based on the above--mentionede_panslons in powers of m.

In conclusion, we note that equation (_£) devoted to the

deLorminatlon of _ T can be rewritYen to within the second powers of

m in the following ma':n#.r.

= , , )
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O__" ,t: -t--_- re-'sin '2z_,T-- 2(I l ,'n --_[ in' cos 2x)_N-----0. (-t3)

136. Some _-roperties of H111's Equation

In the previous section, we have reduced the problem of fi_,d.ing

orbit_ infinitely close to the variational or_it, to the solution of

Hill's equation

iI J,

in which the coefficient

'' ') ')" 2q_ ' . .H __q -7_qj cos_.-{- cos.l:- i 2q3c,)s6. _ .

is a periodic function of period _. We shall first of all co..sider

some properties of this eq:mti_n, which are particul_r cases of the

properties of all the linear dSffer_ntial equations with periodic

co :fficients.

Let ,asdenote by f( _ ) and _ ( [ ) two of ti_eparticular

solu[ions of equations (46), which satisfy _.hefollowing initial conditions

1(o)= /'(o)=o; I

Since these solutions from a fundanmntal system, then any -_rbit_.ary

solution, F( _ ), of equation (46) may be re9resented by

f(:) = A/(,)+ (-),

_here A and P.-_,reco,,rants. Equations (46) does not chang_ when _. is

replaced by _f +_ . Hence, the functions f ( _ +Tr ) and _ ( _ + 7F )

are also solutions oftbis equation. Consequently there exists such constant

numbers as _, _ , _ and _, thus
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_,(':-t-r,)----ff_-)+ ;,_(q. /

We prove that equation (46) has a solution which satisfies the following

cond it ion

f-'OI =)-- "P(':), (.t_)

where _ is a constant. This condition gives

AC,I-F_,0-t-B(]I+ _,)=, (A/ ' B,e),

where the argumenf: _ is dropped. The functions rt and In_ for_ a

fundamental system and hence it iollows from the previous condition

that

• ' BO--_I--'-O.A(=- ,)+ 1+:= o, A_-,

Since A and B cannot simultaneously be equal to zero, then

cr

Each of the tools of this equation gives a solution F( _ ) which

satisf._.esrelation (48). Yn this way, the determination ol the facto_

which _ill have a fundamental value in our .+uture dis,,,_ss_ons,is

reduced to the search for the svhstitution (47) that the fundamental

f, ¢ is subject to _lhen the argument _ _s __ncrcascd by e,per'od
system

of _T. If the functions f and _ satisfy the obove-menLL3ned !nit[al

co_dltions, then ee,uatlou (4q) m-_y be simplified. Indeed equatlon

% -

j m
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d:l d"_

dT''-/=0, ' i-_._ -U

gives

jd:':. +Y] =-O,

" iIntegrating and making use of the iniuial condit .ons, we obtain

1(:+'_'(_)--s. (:)J't-) = t.

Putting _ =_ Jn this equation and noting that when_ = O, equations

(47) give

1(_):= c,, '_(_)='r, 1'(,_)= [_,, _'C_)=_ ,

we obtain

_,;__{++:=__t.

In the case under consideration, equatJon (49) will Lhen h_,e the

following fox a

so that its root:; may be denoted by %) a+__d J/y. Hence

Y-i--l ==+_.
V

When _ = 0 and _ --- 7_ , equation (4_) yiei._s

::(,,)=--_FtO), ;-(-- ,,)= _ t-'(o),

from which it follows tbnt

__1_i = +"(,o-1-,'+(-_.-_)_, P(O) "

1979012780-565
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On uhe other hand, it is easy to see thar f( _7 ) is an even function of

, while is anodd T erefo  ,

F(,9,- A]_,,)+ _,_I=)
S(-- _.)= A/C=)-- B_@).

Moreover, since F(O) = A, then we fina]!y obtain

• *-t-_ = 2](=).

This form of equation (49) shows that, for small valt,c,sof the.para:ueter

.n,the roots "9 and "2-I are complex conjugate numbers having a modulus

equal to unity. Indeed, the.!a'ater equation yields

2
On the other hand, using the approximate va±u_s of q , ql ' q2' ..., given

at the end of tl,epreviou.q section and neglecting terms of the order of m ,

we obtain
7

d_._:
d:, -F(! + 2m)x- 0.

from which it follows that, in the fJrst _w,..a_,-,_r___x__-_,.tar_LU'flt

/(:) - c.,ll i-m)',

I f( _ ) i _ I Thos if we pucand hence _ . ,

----exp(ic=).

". th_n c would be a real nu,nber differing slightly from ur,_-'ty,a': leest

for .qmal!values cf m.

Considering t_e function eT.p(ic _ ). EvJdently,

i exp [ic (_ -t- ")1 _ "exp Uc-.),

i

.._.,--__ .......................,--w--'-............ _r-........._ .... "-............

1979012780-566
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i.e. th;:_ function satisfLes the same relation (48), sati_f_ied _.v F( "_ ).

llen=e, Jt _ollows that the ratio

does :Lot change when -fris added to the argt_nent.

Finally, noting that equation (46) does not change when _'_ is

replaced by-"T_, we may cone]ude that equation (46) has two solutions

of the form

,t, _). exp (ic-) _ ,I,(-- -.)exp (-- ic'O,

1, x
where _C_) _s a fur,ctlon of the period _T As it can be easily seen,

these solutions form a fuudamental system.

Introducing, as in the previous section, the folloT;ing independent

variable

_.= exp (/'.).

?

and putting qo = q and q-k = qk we can wr,te the function

4V

H =q,-i-.Oq,,co._'_--+- = _ q_cos2_"..- . °

in the foilowiug manner

T ,'

H °t_ ".'_"

Ih the fo]lowlng, we assume that the coeff£cients qk are such that the

series _ lqk I converges• Since the function _ _ has the same

perJnd _ , it can _hcu be expanded in a series of a sim[]ar form.

Hence, putLlpg

]9790]2780-567
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we obtain

x(;) = ,J,(-.)exp_ic-) -- %_b_":_'!" {51)

Thus, Hill's equations have a genera I. .:olutionof the form (51). If

this solution is found, for which it is necessacy to compute the

coefflcJents c and bi¢, the gen¢..ralsolution may be given in the form

(:,._"(_) -i C,x {-- :).

where C1 and C2 are arbitrary constants.

137. Appltcation of the method of _ndefinite coefficients

In order to find the constants c and hi:, we substitute e.Ypresslon

(51) Into equation (46), and, tal,'in?, into account equation (50), we

obtain

- _._%__(_ -_ "'):":_'I --._ Eq,l'_,""-_+'"+_.= O. t

2k+c
gqu_c_. ,:,',ec¢'efficient _" to zero, we obtain the fol]owing

system of equstlons:

_ ,

[qo--('-'k t ¢,1:]t_.-t _' a ,b,----O. (i._-k) (52)

This is an infinite system of l_ne_r equations with infinite number

of ur.k_,ownsbk. This did not prevent Hill in applying theorems only

proved for the case of ['initesystems of linear equatio,,__to t',is,_y_tem,

The cesults he obcaine4 werc strictly justified by Poincar2, who L

developed for thi: purpose., a theory of infinite determinants.

Let us cousider the simple ,_'asein which q].= q2 -- """ = O.

=, 4. := • iSince qo q and q-k qk ' _en equation (52) will in this case

have the following f_rm:

',I , ,, .. .....;'%-'_...........:.........--_--- ........................._ , ,...............

_ -_-_,w- _-- _ _ '...... ' _ '_ .... _. ---m-_-,_m_.m_f. ]

]9790]2780-568
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We are only interestec it. the sclutSons ot k".c .---,po_ (51), r:)-- whlrh all

+ho coefficients _ arc equal to zero. Hence, .J.__will have

c = --_n :':q, b,,--0 't.'_ k ._ n;

and consequently obt_,in t_o s_ch solutions

of equation (46) which in tl:epresent case reads

d 2A

d:" ; qlx = O.

We shall noz consider thegeneral case _n vb-ch t!'Lco-ff;c;:n:5

q! ' q2' ... are not equal *o zero. _'e sha]i c,-nfin: ourse'ves to the

case wber case _'heLa:i ol 'l,eqqcoef:"[i'en_:,;-,'_small. Ihe c>-re_pondil :

_,a]uesol .will not be eqd_] to - 2n _ q, whore n is an integel, bLt

; "_e slJgl,tiydiff,_ven f,'o:::_here quantities. Hence, we ma_ consit'e_

thug meiLhe:" of tl"_.expressions

q: -- ('.'h .'.- cF"

will be eq,,a]to ze._c. ,',.ccc._d'.ngi;", 4e "'_-":,• ._____.e eq,aa_io._s (52) as fc,1](.ws

• .___jq,_(:_Z,+_),_:.-o, (i+k)

cr, Jn the t;nio!ded for,n:

q2 bm _ qt• " +v'--t2_q-c)_ . v: -- _2_-+c),b, , -)._.+-

q' _,, q- =:0. I-,,.)
q__(2_+c) a ' • .

Tt is 'easYto see that the dc,tern!r,ant o:- Lh_, _,'-,t,,,_:-,..,1o_,;t,_

1979012780-569
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the class of .-orma] infinite determinants. These are the _]eterrr,inants

cf the type

I _a _ J
I l' I. ' I | ....

,i v j I _-_I,,, , O : .... I

.... O, , , a, , , I _-0,,, .... I
• . • . . , o • . , , • , ° • . . ° , • .

J case ut_dec consideration,

!

•'_ d O, a,.=-: _, . ,
" " q: --1.* , C)"

and hence

_ ,,%,' %', _ _
--. a_ --. q, _'q:-{2k-i r): I'i. I i I

where belt: of the se[i_s sa_nJing ¢,n the rigla[-hand sides are :cnvergee.t.

In the follr.wiu_, w.___.hal! oLlly con_tder the bounded syster: for t!:e

_e] .rio.-."_,fequa,_ions (53). This is the system of soiut_on. _ _:hic> satisfies

the follo_ing condition
,I

, ib,!A,

whece A is srm,e con__:ant. I-_ is well kno'_n th6t in the case of bo_,n4ed

_ysLer.ls of SOlUtions, an infinite system of linear eqt=_t._on:,f(:r wh;_",

the :let'_'r,,iL,Lantco:,posed by a_efficicnts i:; hormal: ¢.:iI_. havo the 9%:ne

properties as that of f_nite systet,a. In pt_:uicular, one may conclude

that wben the determinant comr,'_se.@by the coefficients vanisl'es, the

system (53) _,,i]]have a solution only in the case in which .all cf the

coeffic_.uts ,_re _qua._ to zero. We denote this determinant by A(c).

|

1979012780-570
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Thus, the pro1,!eu el: finding solutions of the type (53) of Pill's

equation can be divided into twe parle. Firstly, i_ is requlrad to find

the ,.-ootsof the fcllewing equation:

._(¢)--t); q;t)

and, secol_d!'], to selve equaticr.s (53) for tl:e _es,L!_-ing vaiue_ ._f c. We

start by the first part and try to find the solution of equation (54).

The exista,ce ot the roots of .:his equatien fe!lovs from. the arguments

given in the preceding seetJen, l-."einit!a3_]y _onsider the function

_ (z) of the comp!e_, variable z. Hy this function we mean the value

ef the determ'_.an_, the kth row of which

. ., a_ _ :. am._.t. I-_al_. a,._ s ....

con:_[s__s of terms respectively equal to

"' (55_
q: ..... q' .... I _ (_,• ''qt--(2k I-z):' q_--[2_'-[-:) _' 'q" .__zp, ....

where k = ..., -2, -l, O. + l, + 2, .... It follows from _he pce_;_ou;

arguments that such a determinant is nocr:,-.ifor all ,,alues of z, except

-" ' q Ll. _ -,',)

P.ence, the funct[ca _ (z) is hoio._.lorph±c for all the points z, ezcept

the points defined by equation (56). It is ea..:_t_; see t:,at _he.qe iatt-r

points are first-order poles of this fvnction. In fact, each of peints

(56) is v poi_ oF the __irst order for a]l tPa points of the hth row,

except for the single tern: that i,,:equ_] o unity, and i._ a regular

point for a]l of the otiler terms, kq_en we work out the ncrn.al 4ete1_,inaun,

x:e ,_.htaiua conve[-gent series, _r which each tc._u h._r une of ,.he k-th

row terr_.sas a multiplying feeler. It is ',',us,:,]earIbat the points (55)
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can only be l_les of an order not higher than the first for tt,e fm:ction

i _ (z). The_reform, _ (z) is a meromorphic f,mction. It is easy to

see that this function is an even funcnicn s,,ch,that

A (--z). _(z;. {67j

Indeed, if z is replaced by -z and if the columns are at the same time

reDlaced by the rows, then the determinant _ (z) will not be charged.

SiL_.i!arly,

_¢e i- ::)= a(:,, q58)

si.'ceif z iq replaced by z + 2, each coltm:nand each row _ii! change

p!ae.ewith the next colu_ and the next row. Accordingly, the function

(z) is a periodic fui:cti:,:_-,irk._ p_riod equal to 2.

It follows from equations ..154),(57) and (58) that all _o_.r:tsz =

-_C - 21:,w.-.erek i_ or:a:.bitrary integer, are nodes of the fur.ction _ (z).

We _oint out another property cf the funct_cnA .'_). 2".ttir:g= -" _ .t vi

and letting y tend te +_g_O , s]l terms (55) cf the _ row tend

to zero, except the term _ + ekk --]"

Cons quent!y,

I,m a(x .,,,.')--_I.

We .qim!!now prove thar this latter property completely .aef_.nesthe _unction

A (z). We conszder tl,e fo]_owing _leromorph'c F,lncti._ll

CO,, r.Z . Cos _1"

£0.', ,:Z -- CO_ r,/

_'hich has first-order _lode3 _t points (59) and first-orde_ poles at

points (56). This is an even funetior, having a period equa] tc 2. if

_,e put ;,.= x + yi and let y tend to _+oO , then this function tends
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to unity in analogy with function j_ (z). Henee._'_,__c_clJ_,'d_' that the

ratio of the functions ut,der eorsiderar-;.o_:, i.e.,

;s a regular function of period 2, which tends to unity _.-Theny tends

to 4_-OO . Howevez, this functi,,nmu_ __ be equal to a constant because

it remains finite for all the points of the complex z-plane. Nal :'ng

y _ ± ¢w_ , we obtain that F (z) :--i, and hence we finally obtain

co_ _3 COs _C
a(:)_.

_,zn z = 0, this equation yields

:;IT "-_" -,
I i

In t_is n,ar_ner._.eh-.v:, :ed,l,-edthe problem of solving equation (SL)

to the p:_ble_m of finding the determir,.ar..t _ (0), _l,._ct :':_ o "_'aia,.ive!y

ea'_7 7coblem.

Putting z = _.;.. or 7. --. 1, _r z = q, we obtain different forms fcr the

eqL.atio_: ,_;,at deter_,_h_es c. However these forms arp not as conve,ient nu

equation (50).

138. Ca!cul_tior of the D'_-';e_r,,it_ant_(0_

Introducing the following nolauion

1

• V_ - .Ik"'

we write the determinant _(0) as

.... ° . . • ° • . °

• .. I ,_ ,q,, ,L , ¢ ....
', (t,I ,

q_ I , :,_q, ....

_ q ":_ q_ l

• • . . . ...... . . . . ,
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At the end of the pre,,ious sectior, we pointed cut that the c:,efflcient

o. u_.. rel-ztive to m.
qj is a quantity ef the 2j _'0"_ This situation enables

us to ',',_rkout the determinant & (C) _nto a rapidly couv-,rgent _SO. _es.

We carcy out thls er.pansiof on the basis of the _ _ _ "o_l...wtag property of

_he determlr.ant (61) :

If A q_ q_ ... q_ is one of the terms of the expanslc,_ :f tb_

determinant (61), then the st:_ cf indice_

_'T ._-_ - • "'

is a].w_tys an even number.

in order to [.rove ;.his, ,.'ereplace the quantity qi in all the ter,._.s

ef empres';._on (61) by the quantity qjz _ and shcn" that the d_.te-rinan _.

2_ (0,,.) obtained thisway is zn even function of z. in_ee-J, the determinant

(2, - .".;.i_ ,c,_'ne,l from the determinant _ (O,z) if thc si_;_ of ail

the terms of the re_;s and of the columns are alternately chanRed, S_nce

the number of rnws _s equal to the nunrher cf colum.w.s it. all the fi.ni!e

d__,remqlnants, the limit of wh.ich is (51). then _'his chan_e in signs of the

terms _iii not cha:_ge the de_ecminant. It therefore irmaed:.ate!y fo]Iow,_

that the expansion cf tie deterr,_n,,n (61) w_]] consist of tec,ns, each

of wl'._chhas an order relative to m t,_a.,is divisible _}" _ D_cpp_r:_, :_e

i2--rrdo- _::,'ns,_e obt.ai:l

where the sum of indices ,_.r_.only o, 2 and 4. It is easy to see that

t ,
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In the latter eqtation, k cannot be equal to i, i-I and i _ !, H_nc._

.__ :- ---+ --at', L Pl x, j"

The coefficients A, B, C, D, ... zte easily expres.,:'edin terms of q.

For example

\' .. \" 1
A - - _ ,_ . . _ _ _

-- '_ I',_---+_-- I)_lI,

":-'_lt,qcq ; Ib_ 'q : k r'q--k.,_lj "-_luqlq 'i) ' - , ::' ,_. . , _q- I _:q tk--I

%' ] t 1 ,l _, l '

-_, ;q_ -_-,'..q ., k .Iq(t _.j T_. q,_ ,o.__&.)::

=--lq(I-- ¢:)ell':2"

Hill calculated 11 ..a_L the =erm-qof the ex,_ansion of ._ (0) having an
°

ordm reTative tc,m less t:'lan16. T'leresults which he ebtai-_d ere

3_0) _-:1 Iq "i l--qZ , 4 _'" ' _.)--q"

_/
• = ¢[g .-.q ] '2 9

: ;_:q(l--*r)" q :-_ ' ]--_" '_'(4-q-1 ql

A- ctg_q
,)

4,_q( I_ qD(l_ q-,)q[q.,

-q

_.ctg., 1( , ., '1 ).C,g_.q 25-_-l_6qtl--q-). ,--q' i i_q_ ?(4-- q-'} q _q'-'

I , '2 ,I !} _.I -I _ I-$-,'_ -_- (_:--Oij,-_(._-q,)_(4-_,y_--_ _q',¢'-.q

3= Ctg ,_- I '_

" I_clg_'l _ I "'- '_"_ :_2q(l - ,/') (.I -- _:) q I _._

,',q

= ctl:'2 I_. cl_ _.¢ I 2 '2_'It;q(i_q,_(4_q_}, -q q, ! l_q_-4 q_-i-

_7-- 3q:)_Ctg _1

D-- q . lq II -- q') {4 -- q") (tl --q,) q_ q'_¢_ _'

-q

II,q_l - q"lll q-){'_ ¢_) v!q_.
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Substituting into these equations t_e val,te:; of q, q[ , q2' "'"

that correspond to the adopted value of m (section 135), Hill obtained

The zero-ozder term 1.00000 00086 00000 0

The 4-order teL-m 0.00180 46110 93422 7

'ihe sum of 8-order terms 0.00080 01808 6310_ 9

%he sum of 12-order terms 0.900b0 09000 64&78 6

1.00180 47920 2._011 2

Judging by the la'_,of dec;:'ease of terms of the different orders, we may

conclude that the first thirteen decimals are correct.

Considering agai_ ..quaticn (_9), we find

r--- 1(1715_.,..,'_-'1, l_,I3.

where we expect that the erlor in 2%(0) Js tr_nsferre_ to c Increasing

it 2.8 times. The fact that _-e have found a real value for c i.. cf

great 7,_pot't.lnce. This [inding sugRests that the variational curv_ is a

stable solution of equations (]4). Indee#, by eonsu!tJng sections i3S :rod

i36, we find that the deviations _ N and _T frem the motion, represented

" by the variational curve, wiTi be such t-hat if the f.uitial devla_ion from

the ruction along the variational curve is sma_'', _he_ deviat ien will rer4ain

sma!_ during any further motion only if the value of c is real.

2

If we replace q , q! .... by their expressions in terms ot the

: parameter m (sec:ion _J_) w,_.then obtaln 2_ (0) as well as c it. terms of

, explicit functions of m. In the book, quoted at the end ef secEion 13_5,
J

, Hfi! obtained by means of the successive approximation.-' method

b
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3 , '201 23t,7 Ill 7.19
( - i ;.m---_m.-- ._Lm'--- 2:' '''- 2". m'

t I_'_.',9'11 332 ",:$2037
m 'i --fR;--

21.,"_ _It3-

1.3106 211 78') 5.6"3 332 !P16 _61
--- I/,I" -- I!1 ' "

2".3_ 2"'. P

1 547 _)I 93:', ._,75 567

'2-(._'..',- n:'°--

818 2'13 21 ! hJC 7fi7 31,7
mll _ . .

2:'.3".-,:

L39. Calculation of the Coefficients

Once the value of the f,mdamental constant c is obtained, the solution

of equations (52) relative to the coefficients bk is quite simple. In

oroer to obtain the numerical values of Ehese coefficients, it is recon_.ended

to replace the infinite system "59.), x._itten in the form

b, ,-,T_, q:_(,.,_._, cf'b'='O' (i: 1,) 4t;_J

by a finite system, obtained by neglecting ail the negligibly small

coefficients. We are assuming th_:t the unknowns bk are bounded, the
e

magnitude ef each term og this equation, will then depend on the absolute

_alue q (2t¢ -_ '""-. , _. oi: the denominator and on t_e absolute value

I w_,_.±rapidly decrease when these quantitiesk-i of the ._ndeT.of qL'..i' and .1,

._ncrease, Can:'equent!y, thJs proves that the unknown coefficients will

tapid].y tend to zero :_hen the quantity I k] is increased. T1,e easies! manner
J

t- .bLain the _eneral expression3 of bk is the fc;lle,_ing: We replace Lhe

zero row

_i ¢ , q, ,/

q :: , '/ .... _. , I. q_ "':' d': 2-' "

of the determinant _ (z), composed l,y the te_,s (35), by the Fc!io:._ing

indeflni_e quantiti_ s
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The detecminant D(z) obtained by this repiacemer,t will be convergent iF the

condition I xi I 4A, where A 5s independent of 5, it. _atiRfip4. Expand4,,g

D(z) by the elements of the _ero row, we find

D(zp: i .r ,B ,(z)-l- x,,l;,,t:) -I x,/¢,(z_-l-. .,

where B. (z) is a meromorphic function of z having the same pole_- (56) thatK

the function /__(z) has, with theexception of point._ z = i q. It .is

easy to see that

bA--- 1!_(ct.

Indee-_, if we replace the quantity xi in the determinant D(c) by

q'- (2k :- r)-'

where i _ kI and Licequantity xk by unity, we then obtein D(c) = 0

aince the _tLe_..Lnaa¢,r_will have two equal rows in the case of k _ O, and

will tend to _ (c) in the case k _ 0 atldhence D(c) will disappear.

However, this replacer.cn_ makes O(c) Jdent'[cal to tileleft-hand side

of the kth-- row of eq,stions (63). This proves our eonc!usiotl.

It is possible to show that the coefficiemt bk will hav_. a multiplying
!

2'_<I- I
factor of mI However, we shall not con_,J.derthis bore.

]40. The most important inequalities of the lunar motion

In order to eiucSdate t,trrelation betwo.en .Hill's and Laplace's

theories, we ca]cu!ac_ the ]c dlng terms i.nthe expan,_ions of the quantities

under consideretion 5n powers of m. Confiaing ourselves to an order of terms

.. ° . I r
not higher than tl,euh.,.r'_,i_ equ r_ons (_2), and taking into acccunt tLe values

of q'_,qi' q2' ,.. obtained in section !35, we find
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[q:_c:lt, i qLh, , :/,0 , O,

[q:- (c-l.'Flt,, ! q,b,:- o, [q: -(c--2F-lb, :-q,O,,:-<,, .--0
[q:--(C t .;)-jO, i q,b, o, [q: Ic--4):jb .- q,b , O. "

,,.'- :',_;I', 15 57m: - m l lm'+. • •
: m,-l- m°_ .... q'= --" "1

q:--¢== 16 t,l

qt_._(c_{._2? ---S--.Im _-3m:-_- .., qa--lc--21-:=.tm--Bm:--. •

q__(c-J. 4):_--2l--,_ma,-. ., q:--(c--4):------S _-Sm--6m I_. •.,

!

I

1

1 ,
Neg.lect-ing tile terr::,s having ap. order ,,f ._,:agnitude of m , we obtain from these

equations that

I F_ ' / I,' ;'? | "_,
bt - t,,m h,, /' , _ ,_ m ' 62 m }b,,, b,--=b . 0

The corresponding fonnula (51) gives the general solution of the equation

that defines _ :',;"n the following form

,:.V_. 15 . ¢... _. ,) ,.)--!urn'( .,. i C.:: : -I It,:' q-C:'. -t-

:.f 15 17,9, I_1 ,,. IT/:_ • . , es :_'.' ((3 ;--:+, l C..: , + . ,
t

where CI ano C2 ate arbitrary, constants. Putting

6'1 !-C: Aco,,,,, i(Ct-. C:) -- --.'l .,,i,t ,,,,

_,bere A and _ are new arbitrary constarts, we obtaSn

/ A-'?N-- _ 15 m cos[ic -t 2)_ I-'"1"t"c<,.,(c: + w)-F16

m s., m; co.,,I(c--2),---I-"1.

ft'order to siuplify the following deductions, we also neglect the ,°,eccnd-

order terms, Then, equation (45) becomes

d
t;l'_ 211 } m)LV,d"

The previous expression for _ h gt_,ea

b
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,;,'¢- Acos(c:-i-'"): I;Am cos[(c- '2;"_-i"],

,_T: 2A,m(c_ ' o,)--lSAms;.[(¢--2)_ I-..]-]-II.-I

,.qhereB iq a new constant, _ince C = 1 + m and C-F = - (l-m) within the

,_egre_ of accuracy desired. On theether hand, we have seen in sevtlo:_

134 that the eq--ation of tileva_°iatlonal curve is given by

x:-aco._: 1 m:- | m_..,irs"_, .}.,a_l_z: I ! m-" } .Im'-'CO,f':,

?

to within terms of the order of m". Hence eq:mtion (33), that defines'

the angle between nhe __a:_.geutlo t_.ev-_riationa! curve and the x-axis,

yields

¢}

within an error of the order of m_. Cou,_equently,

_,x:---gT :url":--/.A'cos:, g.y,,__,7"co.,,:-- gN sin'r.

Substituting here the values o? _ N and _ T just found, and equating

the resulting _× and _ y to the coordiaates ef the points of the

variational curve, we obtain

i .,! .._. l!co._ --./;,.I__--if':._-l I .1',ll," '_u','.-

._,lll')._co..l(c-'.'_:.i"lco.,-c.,I_! oJ_o,_-

I.
- :n-,.[(_-tq_-F_)_,,,....'2.in(,"-.,),,in._l
4 I

(Ol)

v=,,,m,.]./;co.,: _ a:,..(i _ :_ '). .| _,'O'tt _ _I[I :'-
/

-A[l"_mco,[(c .-2)', i-,,]_'n-._.co',(¢-I _'qp'.-
iS

m ,m ](c -- '21- I u,]co,- 2,i,l(c, : Icon: I!
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L_oXZraL q,Jantities ofThe coefficients _ and B sbo,ld be rega.-der._as i_LfinJ_=_" -

the firet order. Hence, it is possible _o put

aco._:--tl_m_ a ,'t)s (:-}-_to), a ",i,, :-i- Bc,)s _ a .',,n(':.-}- _,-o),

where _ is an infinitesimal constant equivalent to B. Since the

origin of codnting _ is unkno;.m, we can drop _ _o. This _i!! change the

previous values of x an,ly by only second-o_der quantities relative to A

STo .

We shall first consider tbe c_,:_eof m = 0. Tn t'.'Tiscase i-heFnrt.lrb-

ation caused by the sun is absent. The differential, eqdations (14_

defining the variational orbit -arezeduced to the equa, [.:,:_._of the two-

body p,:oblem. Hence, when _,= O, equat.4on (64) must describe an

eliiDiticdi motion in whxch e_ly first powers of the .*.ccer,_tricityare

i_c!_,,.=,-d.Uowerver, vhen _ :--0, these equations yield

3 I

Aco',.... L ' A_o_(2- ; ,,)X =: It VO', ". -- .)

y--=a,lnt . ._ ,_sin_ _ . A_m(_ i , L
,.o

Rotating the coordinate axis by an ank!e of w, _he new coordinates

X' .II.C()'; _ --.y sift uJ, 1," .I, ",ill u) , .V COS u;

will be eqaal tc

3 Ir

x'- .... '2 A Fa,'o':l:-_ '_l ;,.,_A,',,,2(: ,-,-_

_" a._tll(t i _1 } .|, A_i,'2(-. : t_).

compar':rg the_geexpressions w:I_:h Lhe formula,: ()f neetl_)n f19 that define the

coordinates in the elliptical .,orion, (:ame_y

; a(,'o,/:'--r)-- _ --'2 c .-c(_.ll- F '2 cos * ,

•r,:- o_ I_e_.i._,_---.:e .i.,11 ' c
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and confining ourselv(s to first po_mrs of ube eccentricity..,,_ ,)brain

i; '4 "_ i;£, = : "' 'f

Let us now consider again the motion cf the moon _inthe general ease

when m # O. Dcnotl.a_ a_ previcusly the _adius _,ectorand tim ](=r,_,it__,de

of the nloon by "c_nd v, and the longitude "f the sun by v' = _.'t+ _'_

and by putting B = 0 and A = ae, we obtain

• I 3 '

a .I /

|5 [, _):- me,'o_ c - _lco_--,'c,,.', : t _)c'_s_-l-8

{_ 15 -- 2) -- 2e' sin (c, -_- ,_) sin,- tocsin I(c :q-_l ._i,,T4
(b.;)

" si,,(,,-,/,---:._m:-F,_m (, _- :' )a \ 4 cos'-' ". ,_in: ....
la

-- 8 me cos {(c -- 2) - -]--,,,] sin _ -- e cos (c_ "b_) sin, --

_ 15tocsin t,.c--2)-+,_] cas_-k';e sin (c:-} ._lcos*.4

Squaring these equ..tiors and add_ng, we c,bt_iv after evid,-u__

manipul._.t ;_,)n:_

r'J_ a' { 1 --2ecosl,_, t-u,)--2,n-' ,'os2x-- 15.l
me_oa[(c- : _"i-"'] .;

)

from which, "caking into account that (Se_., 134)

( I m'_+ ).a=a\1.-- 6 " ' "

_e obtain

! 15 }
r ,-. ,, : -- 6 m"-- ec,,._(,:-4 ") 8 mec,)s[(¢-- ?): + _]-- m_cos2, . 0;_?

Oividlng each of eqaations (63) term by te_,r ty eh¢. cbtainnd ,..lee of r,

We 01",; a ;In
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I,
)

,I COS(U-- d)---- cos' [ I "- ' t _ sin|'] "}"4

zs -_ (c,+.)}4-_sin [(e--21,+-1 sin,

s,_(.- ._-- si., j t+ ? -'cos', 1--

--COS_ 4-tocsin [(c -- 2) _ -{- .] -- _z sin (_ + .)) ,

from wb .._:it follows that

II
sJ|l(I, -- u' -- ,) -- M' sin 2: -- _- me sin 1(¢-- 2) • -_- r.] -}. 2esin (c_ -}- ,,.).8

or, wlthln the same accuracy, l.e., to wlthln small quantities of the

' second order relative to m and of first order relative to e,

:.)t" ,,,) I, 2): '"1 ' IIm:_i""" ((,Z:I, -- i," -- - ._m I(': i I tutti. [,c -- [- " F, -'"

E_-Ident?7, the periodic terms In the expansions (66) an0 (67) represent the

" elliptical inequalities of the moon. Heuce, the argument of these terms _s

uo_hlng else but the mean anomaly. Keeping the notations of section 126,

the mean anomaly is equal to nt -/7 . Consequently,

_-'=-'t'. =.t--II. ORIGINALPAGE'IB
OF POOR Qu_

Differentiating this equat.lon gives Lhe moL'_on of the pezihelton:

- (*)d_ "" .--c (.--,:')--=- . i-- 1.i.m .

Substituting here the value of c obtained in section .15d, _ obtain for

that part of the perihelions motlon, Chat does not depend on the eccentrlcJtles

of the moon and the sun, the following equation

1 dll 3 177n dt ==2_ m'--_- m,",-_- 11;59 &52(t5 . 3073531n, C2' m(-F-2,, -m.-}-2".3 +
r. ,1( '

2,$8767 ..)3 T 12001004 _7_ 4823236 Y.06653 m)-L.+ :_'".:_' _ + " :z,,,.3_- _"+- :_:,.a, • ' •

('.-7
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This aeries converses so slowly, that it ':s recomended to use the num_ricaZ

aethod $1ven in section 138 for the actual calculation o_ the perihellon's

motion. By this sethod, Bill fouaa

I all
•= 0.0085125730 0,I_II.

a,#

On comparing the results obtained here with those obtained by the methods

developed by Laplace, de Pontecoulant and others, it is Interestlng to note

that

•' p 3

r.--_--_,-= i--_' C--------#C=(!n__+m}C.

Expressing the motion of the perihelion in terms of _, we obtain

I _I 3 2_-5 , . 4071 265493 12_263|
. 41":+ 32 2" #+ 2,.3 #+''"

The coefficients of these series are conoiderably larger than the

correspon4in 8 coefficients of the series developed by powers of m.

Accordingly, it is mere useful to use parameter m in the lunar their 7

than parameter ,_. However, in the case when a particularly high deg_,._e

of accuracy is desired, it is also not recommended to use the expansion In

powers of m. It is simpler and more direct to apply the numerical method

as we have already pointed out in qection 138.

Let _s again coas_der equations (66) and (67). Since the mean

longitudes of the moon and the sun are nt + 6 and n'c + _t respectlve/y,

then

, F+=.--.nt+,, ,-=(,-,,')t-p,

_here _ - _" - _ and E is the augular dlstance between _he znean

position of the moon and the sun. Putting

_! -- fl'
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where

n_/I"

we represent equations (67) and (66) in the follovins way

-_nt i ; .... ')*sin(_--c) a II"" 8 m: sin 12(n -- a') t- - 2_JJ-:

15
+ 4 me,_inl(:Z.--_" ca)t- _:4-i.,,I

- '-',,- ,,,),- +.-.lI"

We compare these expressions with those obtained In Laplaee's theory

particutarly wlth formula (45) obtained in section 127. We find that Hill's

theory leads to the principal terms of the equation of the centre, th_

variation and the erection. The advantage of this theory over taplscets

consists, flrsc of all, in that Hill's theory allows us Co calculate these

Inequalalt±es as well as the motion of the perlhelton in a relaclvely

simple way and wlCh the de,fred a;biCrari]y high degree of accuracy for

the parameterJ_ .

I&L. inequallties dependS& on the eccenCrlcJty of the lunar orblc

_e hays sCudled in detail the method developed by Hill Co calculate

the inequalities tlmt depend on the first power of the eccentricity of the

lunar orbit. We shall now consider the inequalities that have hisher

powers of eccentricity as multiplying factors. This probtem is equivalent

Co calculating the general solution of equations (14) or (]3). We first

consider the solution, orbits infin_tely close to the variational curve,

which has been found in sections 135-139. It follows from equations (31)

that

m
m
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I i(_._v*.-.;,u ,,'-")_N-- -- _x,_in_,-!-_,_co-..;,-.,

I e__r = _.xcos _ + _ sin.'.,-=: ._ (;J- 4 _" e"*).

if we again put u = • + yi and • - • - T1. Ca the other hand, equations

(33) yleld

Vr, :: i Du. Ye-'_ =- los,

froa which tc follows that

In order to s/zplify the forthcoming deductions, we rewcite the general

expression of _ N, given by equation (51), In the followlng mmr.er

_,.V

where

:, vx'_i(- -- x,),

and _/ Is an arbitrary constant.

Equation (39), whlcl,can given the fnrm

--2 _#,
: V _, d, -_ n!

Or _,

I)c )_d _ -..t.m _N,iv #=
,!

enables us to concluoc that _ T has the same form as _N although It

is necessary to take into constaeration that V is not an even function of

Considering equation (68), we see that _ u and _s are even functions

of _ , expandable in the following series
F
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that have constant coefficlent_. Indeed, the s_ _ u + _ s = 2 _ x

should have a real quantity, while the difference _u - _ s should be

an imaKinary one. In this way, taking equation (16) into conslderatJon, we

cdn re_resent the solution of equations (13), that differs 811ghtly from

the variational curve, In the following manner

,_" %'V21 ,'._f, Fr ,,." -! %_%°A r=k: _"
u ...... :**_-" "t . s =---. ..... __.__ _j , (69)

_p *p

where k runs over all the integral values £rom -so to + as , while p

_akes only the three values -1, 0 and +1. In particular, if p - 0 then

t

A2k = a2k. ,'

Since the general solution differs from the variational curve by

finite quantities, we can then consider that the solution _ust g_ven is

obtained by the leading terms of a more general expansion, representing

the general _olutlon of equatiors (13). Following Brown, we search for

the genera] solution in the form of the same series (69) but under the

condition that p runs over all the integral values from -_ to + _ .

In doing this, we assume that the coefficients A2k+p c are quantities

of the order _ P I ze.lative to s,_ue small parameter e. It is inter-

esttng to note, that Brown obtained expressions (69) for u and s by usin_

de Pontecoulant' s theory.

In order to show that there exists a solution of the type (_9) for

the system (13), it is necessary to be convinced in the possibility of

finding such coefficients A2k+p c , for which the series (69) formally

aatis[les condlt_ons (13). We s.bstltute series (69) into equations

(ii), which follow from equations (13). Since, on one hand,
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t '

' and on the other hand,

Dq:-t ,.r,)_ I:'l. I _ pf)= "_ I.,,.

then the equations rem_tlng from the substitution and the equation of

coefficients of equal powers of "_ , do not change if we put _ -_

the series (69). It is only necessary to remember that, in the final

re,ult, the quantities _2k+l+pc are to be replaced by

In this way, instead of substituting in equation (11) the series given by

equations (69), we substitute series

-'_ i I .;,r VV :| o"* | I trr
u . a _-'_A..._ir,. , s =-:a -- :_ . ,,."

_p _P

We shall not repeat here the calculatlons carried out in section 137 but

directly give the result of this substitution, which leads us to the

following equati, ns.

These equations correspond to eauatlons (21). Starting with the above

values of c and a2k, we can find the solutlon of these equations by means

of the successors approximations method. In thls way, the part of the +

motion of the perihelion, that depends on the eccentricity of the lunar

orbit, can be obtained. However, we are not going to go through the

details of these calculations since they princlpally involve nothing new.
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142. .Inequalities dependS& on the s.]ope of the lunar orbit

We have always ass,_ed tlmt the moon moves in an ecl!ptlcal plane

and for thls reason we have substituted z = 0 into the equations of motion,

derived in section i30, We shall now investigate the variations introduced

to the lunar motion on discarding this assuJmptlon and taking into account

the slope of the lunar ozblt.

_eglectlng as before =he eccentricity of the solar orbit and consequently

putting .._ = O, we obe_A___,from equations (8) and (10) the following eq,mtlons:

+ 9m=(,_-._)_--.3._'":"J- u,t (71p
3

D(uD_sDu)--2mlq:;._)-_.._ m-(u _-I t}

D=..- -- m'-."---...', ' ---O. (72)

One of the arbitrary constants involved in tbe general solution of

aquatlon (72) should be chosen such, that when this constant disappears the

t
t coordinate z also disappears. Denoting this constant by _ , we assume chat

I 7, has _ as a multiplying factor, where _ is a small q_mti_y of the

order of the slope of the lunar orbit.

If we neglect quautlties of the order of magnitude of _ @ , then

equations (71) will not depend on z and will give the solutions that we_

have already studied in detail in the previous section. Substltutlrg the

values of u and s, obtalned this way, into equation (72), we are able to

find z with an error having an order of magnitude of _a . Substituting

this value of z into equation (TL) we obtain the terms in the expansions of

s and u that have the same order of magnitude as _ _ and so on. By means

of this alternate application of equations (71) and (72), we can obtain

terms having an arb!trarl]y high order of magnitude relatlve to

i
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in the expressions of all three coordinates u, s and z. Evidently, i_

and s will involve even powers of _ while z trlll involve odd powers.

We shall now consider in greater detail the calculatlon of the first-

order terms of the coordinate z, assuming tlmt the eccentricity of the lunar

orbit can be set equal to zero. The co_respondin8 solution of equations

(71) is the variational curve

U ax'a:L; "_'' s-: a_e ,_:z

_e substitute these values of u and s into equation (72). Since

.... m:-t.xr_ m _.;_u _ _s:)

is an even function of _, and does not change when _ is replaced' .

by _-I, then

m:-I-xr-_"--'2_,v_ST/,':", (73)
A

where H_k = _ . It is easy to see that ._ is a quantity of the same
12k}

order of magnitude as m , from which it follows that equation

(72) can be reduced to the form

l):: -- z '3_ ,_/_::_=: 0 (74)

or

d:'-'"["(2/1Io-_4,1I,co_'2: I 'lM-.co._.l:-l-• • • ): =-0,

i.e. becomes identical to Hill's equatlon, studied in detail in 2ectlons

136-139.

Thus, the general solution of equation (74) is

• r " ','J

:" C,:t. Z _".,;*I C,:''i"v :_,, , (7_)
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where C, and C2 are a_bitrary con_tant_ while the c O_ _00_ __ haracteristic expov.ent s

g and -g are the roots of the equaticn

•-"_ - .t,(O)._i,_'-'=_/2.If,, (71,)._,n-- '2 : 2 '

in which the deternLtnant _ (0) has been obtaine_ from the determinant .,

(0) by means of replacing q2 by 2H° and qk by _k" Yinally, the

coefficients _._ are de£ined by the equations
,K

_e,qR'-:2k):-- 2_:,_t,-,_,-..u, (77)

vhi_h correspona to equations (52).

At the end of section 134, we have seen that the foil.owing relations

hold '_

,e-_ !+ 3m-_-3m_

to @ithi_g terms of the order of magnitude of m3. Consequently, _'

m_-_.,r _=,i _ 2,'n-i- '_ m:., _:_m'cos 2_-_....

Therefore, within the degree of mcuracy desired,

2 m_, 2,if, "-_.2M ,-:--_ m_,

while all the other coefflcients Mk are equal to .'ero. Since the

coefficients _ ± 2 , _ -+3, ... are not less titana third ot'der,

then equations (77) yield

[ 5m, ] 3 3l+2,n {-e - g; [_0+2 m_ ,+,2 m-'_,,-

I
]:zm_--(g[ 2? _,+3m, p,=O
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We can approx/mately obtain the value of g from the_ equations. Indeed

the first equation shows that the following relation holds

_--=1 ' 2.11-I- 5') m s . l_ ,
• a. ° • P

to an error of the order of not less than m3, from which it follows

that

g=1 4.=+ 4 m'-t-. •

Substitutingthis value for g into the second of equations (78), we

that the coefficient .._i only involves a first order terms, so thatsee

P,= S

Therefore, it ic of no consequence to keep terms of the second order in the ,'

expression of _ . Hence we can take _ = O. Thus, to an error

3
of the order of magnitude of m , equation (75) y_eld_

and making use of the a_bltrary nature of _ , we can put

1 I x.p(__i¢l).Ci "=_,j exp(i,,), Cz--": 2

The first term in formula (?_) evidently co_re3pond_ to the unperturbed

motion. The se<'oondterm is called the evection of the latitutde.

Denoting by i the slope of the lunar orbit, and by_Q. the longitude of the

ascending r,ode, and using the arguments in section 119, we write

z = _rsi. (_,-- = _,

whe_.e _= tg i. Sit, ce,

? - _/(]--Ira'.co.,'..)-). i, lit • . _ ,'_I,q:_,ll'..)" t'. •
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then, neglecting terms of order of magnitude of = , we obtsln

Let us take the derivatlves wlth respect to t on both sldes of the last

equat fort. Then

dU
gll," n ) - . ,!/:

from which it follows that

dl --ll I-- ! : ,. .

St._ce, in Laplace's theory, we have put

d! =.n(! - -g).

then

g
g" ia_m.

Eqtatfon (76) enables us to obtafn thevalue of g and c:onsequently that oE

g, with an arbltrary degree of a_curacy. The leading terms In the expansion

of g in powers of m a_e

3 177 1659 a5 2C5 3073531 mr4.
lr-=l-F4 m:_ ;_2 m_ _ " '2: m,-k. 2" m:, ,- '213":_t'"

258 767 293 i 200l 00.t 273 .; 823 235 506 653 m" ..
' ' 2'" • :_:' 2_' T3_ '

If a very hlgh degree of a_.curacy Is required, the_ it Is r_comr.ended not to

expand the coefficients g an_ _ in powers of m, but to directly calculate

their value_ numerically. In this ca_e, It Is better to obtain the

expansion of the function (73) by calculating separate values for r.

Using the abovevmentioned exT_-_slon of the function r/a cos v and r/a sir v,
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Eill obtained the following speclflc values for the function - A_'_)

I:) I l'_.ll:l l,'i,.,] 11',i4'7

ilj I 1",; _ll I,t,l,)'li _'l_711,

} , I i. I"]l,l*,lt.13!.l,

I,II t I,,1_171,_l'li_7 "2lil'l't7

. , I. 14'°7_ ti71J't ,i".,Ti, i

'Vl I 14*,,7 Jl'<d,.,il,7"l*

USing the conventional formulae of ha_--monie analysis, we obtaln from the

previou_ value

,u- 1-., '--1.17Sill .l-Jl'..' 7711,h

• lit; ...... t;,12l _lT,'Si,ll<u._ s

,-(tt)i,_l_'., |5,',,4 ;I,(117,.,,. I-

t-O.O, iuli() 911 !{' 7,i_*t'l,.-i_._ ti-.

--t (I.l)(i,I lilll(l/.lt_|tjl4]l ill._ _)"

• lF.Ot)ll(til l:lltN.., p(l'-_7.-,(ll'_l, lilt

, {t.(h'iiflll ()'i ',Jl) I:l'*tllg <u._ I'.?_

• II Oli(Itl() il_lttf)ll li, t()l 7 I',l'. I.i-

Adam "l'(_ was the flr_t to obtain the %alue of the quantity g, that

characterises the translational mo_fon of the node of the lunar _rbit _

but means of this method.

(i) J.C. Adams, On the Motion of the Moon's node in the u_se when the

Orbits of the Sun arid }_icn are supposed to have no eccentrliltles

etc., Monthly Notices K.A.S., 38, 1877, _3-49. Coll. Works, 181-188.
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' I
I
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' '1 ,_ 8ti!II I I 5 • I -- --
-i I I 'd II { :ii -- I','8 il _ Ir,..illj
t

tl "5 4tt

'i II I - I 0 J II 0 i I -" _ + 192 Ildlll

- I I ,I ii lu I, t I ,I D I

,, -- 7 -- j t 192 921t_

i ' ,i 25 24.5
I 0 0 i I i _ I_I '_lllJ

i i ,

.I
F

1979012780-595



D;. - _ 11"t r,-:j

584 _',,.:_:.a.-_-,a._ •
.:" i'(:_'_ QU_: !

Table I- (eontlnued)

I
I

n m t ....
I

; E_ '¢'P t '_ t'* ; t4 ¢ o" t :• t I , I I

I 1 '
3 0 ! 0 i 2 : 2 4 ._2 8 "t 128 " y):_)!

t

5 i 21 14 25 14 .:9,1
2 , o o " _ + J ' .,2 " I .i - o.1. _,_

! I I 9 _1 i ;'_9! - 0 + I -" J _- 2.1 0 8- 12.'i t o1_0

i I I 3 45 :,67

T 1 tJ 0 2 : 3 i-- 16 O b + 128 ,_d2tl
l

l I ! 9 _l

-_ g I1 II -- g + b -- "-iI_ - 0 4 _ U| -- _,1_)

: 3 0 (, 0 I 3 I 45 11_9 ;,
, 2 + 16 o _ _ 128 + 1024 7I

I :4_6;4 3597 ' :
7 85 319 69 1

--2 2 . _ ! " 2 : 48 I.I10 ! 3 H 4....t,40 2:),0

i t47 I ,i 5 131 88'i! 9921

--I 2 _ ,_ 4 ;'-16 "- 36 '_2 -- It) , + 1280 5120

!t 11;7 ,$03 27 20P9 14270 '2 t" I -- 4 + 18 _ 7..)0 i 2 .4 ' ,42'.1 "t,.1.p"

7 71 ,%1 3 75 5751 8,_2'i
f I 2 4 1 - 2 _ 24' - 720 -t 2 16 t- 1280 -- ,5120

. .5 II 179 19 lu,_l 24:4
: 2 2 -, I 2 ' 8 !--720 t ! -- 8 I t,4O 512

I

I¢. ¢I I. t s /'" _' ( ! , * t"
i
! I -

--2 I t 2 ,I I I .. I 0 27 ] .. 405 . 51o3
3 I 4 1.5. i 8 128 5120

I I

- I I t 3 11 ] :o ,t , 17 385 .r,2lll'2 - 6 32 -- _ ') t IS --128 1 hi20I t

_ + 3 2' j 9 225 3'_,90 I q' I -- , + 8 -- 4..$ t, ' 8 "" 128 -t"51:_

" +1 I + 2 "- 3 t..i6 +llg, " 0 r IS -" '_ blot)

" -2 I 0 .i 2 ! 3 I ; ! 75 ;,II
3 "-t_ 15 , 0 _, 12' |',24

!

m

1979012780-596



-'_" C

- 585-
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Table I- (continued)
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l' Table III

The Enke function and its logarithm (section 96)

! IIL#

I

q 11 _. U Q_.(I V' U l
i ,, i

: e

3lOl, J 0.17112 0.11112 I U_NIIll< 1)11

i " 7.J 7,5 ll),t l_,lUO-I "_q ' "I0,7.S o117!',I_I 0.-II,'I_I Oi,Ol
,. ¢l,.i T I 7h I "I I@.)

Ou_l? I ?":'4 A01.51 I U4a4'", 0L17'.t.',O 0 1_,'2
71 71, _, II IOtl

l) (luJ 2.UT77 3 0.'2"7 I 0.4/ _I..7 U..l?_lIJ 0 (_J{$
i 71 7u _ I01 IliJ

ql.lai:-I 2 tGO.i ,i i r'i,Cl ! 0 4;'2"I_P 1941114.'i t).t,OI

78 lb IO. rio

- t l._ I_ 2:*,'_1 3 o ;7'1 o I1172 U.4_2_,,1 0.005
1ol I10

0 O0i ",_.0.'j,'>t;7J 0 01:,6 71 t,4706,<_ 0.48,:t,ll 0 L:Ol;
" 7,1 7il 1-1 I lu

t o. 16i:,,ll 0..11'¢178 I I OI7

0'I_1 2.,It,"3 72 3i1_13111 Itl/ I I0
:lOhl I O.h_i_l V.iltT_i/$ ill _18

II llli_l 29111 72 7_ Jill ill
_" II i'l.#t '/_WI .'l.ll] _'p 0 lt]711 O.I,_1_'i_J 0 I_tl9

" 72 70 IOh I i I ',]

Ol)lil 2't'_i"_"7l t ;I.l)Ti_t O ll,l_llt tI.I,_|U ulilll
3(I,'_41 71 O.IlL_I7 ll_ O.ii_'i21 III O,ql

. Ulill 7'il_'k; 11 30926 79 ill, 4'._aIt_ tl,,It_:.l'J III :,

Olil2 '2,iI .'.S71 7q " It_i ill 0012
il.lll;I 2 ,I ,'_I 3.11_',5 (I.,1o,;120 0.491t I tl (tl;I

71 _u 1'-'5 IIJ
00l I i lt'i<_I iI IUI,i "i ll.lbTl ,_ I1.t;12,_dl 0 Ill "1

i 1i) ,Sl I,._ 117=" I_Ol$ 'iI>,91.1,.7i) 3.11i. _il t).ltllirl IIIfi O.4tl.ltk'l 112 t1.01_
i' O.oolli 2 I'" I I :I 1717 O.4hl_Jl U..I'Jll_i 0 i)Ibi,,i Ill ll_t 113
_' ,_.17 2 "i l I li '.U 4 0. I',' It_ U .19.9.1 00l 7

i,,j _iI IO'i _1 _ 105 I !3
i, lid H '.'%it"_ I?J I_? II l"il'°rl li4 U4_Jiu'_I1J tlUII,I
{7 ,out9 2?,01oi 3 I I'.II II I;J'_'ll O.'ltll;I _,1 ¢i.Ol'l

69 _1'3 lU'_ II,I

' lPli_O ? _,'_,1 ,I IS7. I 0 I i I,fl O.'l'l'i,12 oi,OlU
i: l'_'i _ I, '4 114

tio,/I .?._1'¢t ,i l0 ;,6 194_I,%? qi.;,tiUll) UU21
IU I I I;I

I,',i :1.172'i i'Ll 0,4S37 i I.I_llll,"l'll 0 I1">_

;' tl.u-.' 7elll t,.', _il 0.4:R7.', 104 tiril,,}71 II,S tOilJ3
Oil, t 7 _;Ibl _,7 ;I.18.'.1 144 IO,I 114

t. o u21 ,Zi,i?._, ;I I:tO7 O.I,%17_ u.,_,,l'_lt l; 07 I
_7 Ill I0,1 IIC_

tl Is_,'_ ',. 2,t J, ItrJ I 0.4,_c_,t t)._l_03 O.I'2,_)

107 l,"_ 103 5' 1153._171_ O.I l'll_ 0 llllt u.nzol

_; II.tl_.l_.i '. Slii7 Ill .121£1 &_l I0,1 ii.D07,13 115 Ill, i/
" Oi2T 2 "_ ",{6 _ 0 llA_3102 II', "

ii O.l,,I .t Iql.,J 3 .'?245 0,4.17hi U.St_18 O ,i2n
',el t; ill7 I Ill

i II 0.9 2 7'K,. 3 21.12 0 ,t I tirol UJllr._,t t,.lt2U

: _ ,', i'll lU2 '16 t

: tPIk'lO _l ;l_'*; ', 3211') II 4 I_51' 0 _lll1,0 I oiU t41
; . I

4
$

)

1979012780-603



..,,jj

- 592- pOORQuay' :
Table IV

_ Different constants used in computing _he perturbations
Value logarithm
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