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A TRIBUTE TO VICTOR G. SZEBEHELY 

Victor G. Szebehely 
1921--1997 

It is with a heavy heart that I write these words. On September 13, 1997, 
my friend, colleague, and mentor, Professor Victor G. Szebehely, died at 
his home in Austin. I have to confess that it has been very hard for me to 
carry on with this book without him. He was the guiding spirit of the 
work. 

Victor and I had much in common. We were both refugees from 
Europe-he from Hungary and I from Austria-fleeing the twin scourges 
of Nazism and Communism. We both became Americans and we both 
worked on technical projects related to the national security. We both 
came to love The University of Texas. Finally, we both developed a strong 
interest in space exploration, and Victor made important contributions to 
the success of our journeys to the Moon. 

Where Victor was unique was in his deep understanding of celestial 
mechanics and his ability to apply this knowledge to the solution of prac- 
tical problems. Victor did not hesitate to tackle the toughest scientific 
problem in his field which is the subject of the final chapter in this work: 
The problem of three bodies. He had the intellectual courage to take on 
the hardest challenges and the intellectual horsepower to make critical 
contributions of lasting value. 

I would be remiss if I did not mention Victor’s personal qualities. In 
addition to being a man of intellect, Victor was also a man of good will 
who was honored and respected by all who knew him. Perhaps most im- 
portant for his friends was his impish sense of humor. We both had our 

V 



vi ATRIBUTE TO VICTOR SZEBEHELY 

offices on the fourth floor of Woolrich Hall, the aerospace building on 
our campus. I was on one end of the floor and he was on the other. One 
morning I was complaining to him about something that had gone wrong 
with our research finding in the Congress. Suddenly, he proposed that we 
resurrect the Austro-Hungarian Empire on the fourth floor and raise the 
Imperial banner “with appropriate salutes” every morning. “Maybe,,’ he 
said, “that will solve your problem!” I laughed and promptly forgot what 
was upsetting me. 

Victor Szebehely was a great man whose influence was widespread. I 
was one of the people who came into his orbit and I am proud to have 
been his student. I mourn him and I miss him. Rest in peace, my friend, 
and go with God. 

September I99 7 HANS MARK 
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PREFACE 

This volume is the second edition of Adventures in Celestial Mechanics 
published by Victor G .  Szebehely in 1989 at the University of Texas 
Press. The subject of this edition is the same as the previous one which 
was to quote the earlier introduction “to study the motion of natural and 
artificial bodies in space.” The work is still intended as a textbook for a 
first course in orbital mechanics and spacecraft dynamics and we have at- 
tempted to produce a second edition that maintains the spirit of the first. 
This was also stated succinctly in the introduction of the first edition: 
“fundamental ideas will be emphasized and will not be cluttered up with 
details that are available in the immense literature of this field.” 

Having described the similarities between this book and the previous 
one, we should say a word about the changes. The principal difference be- 
tween the two editions is that we have added some material that strength- 
ens the treatment of the “artificial bodies in space.” A chapter on rocket 
propulsion has been added that describes what must be done to get things 
into space. We have included a chapter on elementary spacecraft dynam- 
ics so that we discuss not only trajectory maneuvers but also how space- 
craft are stabilized and oriented. Finally, we have included a chapter on 
the exploration of the solar system in which the “natural” and “artificial” 
bodies are treated together. This area is one of the genuine triumphs of 
modern science and engineering, and it constitutes the most important 
modern application of celestial mechanics. Therefore we felt that it was 
necessary to address it even in an elementary course. 

ix 
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In addition to these major changes, there are minor ones as well. In 
several instances (e.g., Lambert’s theorem and gravity-assist trajectories) 
we have included details that were not present in the first volume. We 
have also somewhat expanded the discussion of the three-body problem 
to include chaotic motion in nonlinear systems. 

For the most part, therefore, the second edition is similar to the first. 
Each of the chapters contains some numerical examples so that students 
will become familiar with how various calculations are performed. Prob- 
lems are also included at the end of each chapter. Finally, appropriate ref- 
erences are mentioned at the end of each chapter and also in the appen- 
dix. 

Many people helped us to write this book. We are grateful to these col- 
leagues in particular: Professor Roger Broucke for his help in developing 
the derivation of Lambert’s theorem, Professors Wallace Fowler and Bob 
E. Schutz for their help in writing and revising Chapter 9 (Elements of 
Spacecraft Dynamics), and Professor Raynor L. Duncombe for carefully 
reading and commenting on the manuscript. We owe a very special debt 
of gratitude to Ms. Maureen A. Salkin who did a superb job typing the 
entire manuscript. In addition, Ms. Salkin made important editorial sug- 
gestions that significantly improved the quality of the work. Finally, we 
would like to thank all of the students who were in our classes during the 
years that we have taught this course at The University of Texas at Austin. 
These young people provided us with continuing stimulation and inspira- 
tion which made it a great pleasure for both of us to work on this project. 

VICTOR G. SZEBEHELY 
HANS MARK 

Austin, Texas 
August 1997 



CHAPTER 1 

ON THE SHOULDERS OF GIANTS: 
AN HISTORICAL REVIEW 

People have looked at the stars since the dawn of history. The obvious 
“permanence” of the heavens and the regularity of the motions executed 
by the Sun, the Moon, and the planets soon led people to look for expla- 
nations. Each of the major civilizations produced a “cosmology” that was 
based on more or less crude observations and was melded with the myths 
of the civilization. These “theories” of the cosmos were important in that 
they were early attempts to understand how the universe works. While 
many of these had philosophical and perhaps literary value, they lacked 
what is essential in a modern scientific theory: predictive value. None of 
these theories were able to make really accurate predictions of phenome- 
na such as eclipses or were able to explain why the observed regularities 
in the planetary motions exist. 

During the fourth and third centuries before the birth of Christ, there 
was a great flowering of civilization in Greece. Philosophical schools 
were established by a number of people, and one of the major topics of 
interest was cosmology. Many theories were set forth, including at least 
one that put the Sun at the center of the solar system. Aristarchus of 
Samos (ca. 270 B.C.) developed some clever techniques for measuring 
both the sizes and the distances to the Moon and to the Sun. Although 
this methods were crude, and in the case of the Sun somewhat flawed, 
he did conclude from his observations that the Sun must be much larger 
than Earth. It was from this “measurement” that Aristarchus was the 
first to conclude that the Sun, rather than Earth, should be placed at the 
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center of the solar system. At about the same time, Eratosthenes of 
Alexandria (ca. 276 B.C.) actually measured the radius of Earth by 
comparing the length of the shadow cast by similar vertically placed 
rods, one in Syene and the other at Alexandria, at high noon on the first 
day of summer. The value he calculated was within 20% of the ones 
obtained by modern measurements. 

However, by far the most influential natural philosopher of the period 
was Aristotle (384-322 B.c.). He taught that the only way to understand 
the world was by the application of pure reason. This approach led him to 
two conclusions that were to impede progress for more than 18 centuries. 
Aristotle argued that it was common sense to conclude that Earth is fixed 
in space and located at the center of the universe. Furthermore, he said 
that the gods lived in heaven, and thus all motion in the heavens had to be 
“perfect,” by which he meant uniform and circular. Unlike Aristarchus, 
most philosophers of the day did not attach much value to detailed obser- 
vations and measurements. Thus, Aristotle’s views prevailed because of 
his enormous influence; he was, after all, the teacher of Alexander the 
Great. 

The cosmology of Aristotle was developed in a systematic way by 
Claudius Ptolemaeus (ca. A.D. 140). Ptolemaeus was a Greek who lived in 
Alexandria, where he produced a monumental treatise called the Al- 
magest that included a detailed section on cosmology. He placed Earth at 
the center of the universe and said that the stars were fixed on a large 
sphere that rotated around the central Earth once every day. Since the 
Sun, the Moon, and the planets all moved relative to the stars, they were 
said to be attached to different spheres, all rotating in uniform motion 
around Earth. To explain the complex (and sometimes even retrograde) 
motion of some of the planets, smaller spheres were attached to the larger 
ones, and the planet was then located on the surface of the small sphere. 
This sphere also would rotate with uniform angular velocity, thus pre- 
serving the Aristotelian doctrine of uniform circular motion for this com- 
plex system of spheres upon spheres. Using what were called cycles and 
epicycles, this model turned out to be remarkably accurate given the state 
of astronomical instruments in the second century A.D. While the model 
of cycles and epicycles had descriptive value, it did not explain why the 
stars and planets moved the way they do. 

It took more than a thousand years to change this stage of affairs. In 
the thirteenth century, Roger Bacon, an English cleric, was the first to 
propose that hard knowledge (theories, if you will) must be based on ob- 
servation and that these observations must be rigorously controlled and 
objective; that is, they must be repeatable by any observer. What we now 
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call the “modern” science slowly evolved from Bacon’s ideas. In a very 
real sense, Bacon was the one who set the stage for the great scientific 
achievements of the renaissance period. 

It can be argued that the very first important and genuine application 
of the modern scientific method was the complete and detailed under- 
standing of how the solar system works. All of the hallmarks of how mod- 
ern science is done are there: the introduction of a new hypothesis, per- 
haps even for the wrong reason; the development of a reliable body of 
measurements; the rejection of the existing theory by showing that the 
measurements support the new hypothesis; and, finally, the demonstra- 
tion that the new theory can explain things that could not be understood 
previously. The first tentative steps were taken by Nicolaus Copernicus 
(1473-1543) (Mikolaj Kopernik in Polish), who introduced the hypothe- 
sis of a solar system with the Sun, rather than Earth, at the center. In the 
first instance, he did this for a practical reason, since it was an attempt to 
simplify the calculations necessary to maintain an accurate calendar. Us- 
ing the older, geocentric model of the solar system developed by 
Claudius Ptolemaeus (Ptolemy), calendar calculations had become very 
complicated as better measurements became available. Copernicus 
nursed the hope that, by placing the Sun at the center of the solar system, 
he could reduce the number of parameters necessary to make good pre- 
dictions of the celestial phenomena and events that determined the calen- 
dar. In this effort, Copernicus was only partially successful. However, 
what is important is that a “truth” dawned on him during the process of 
his work, which was that the Sun really is located at the center of the solar 
system. As a conservative clerical lawyer, Copernicus was shocked by his 
own hypothesis, and he never published anything that contained the ab- 
solute assertion that the Sun was at the center of the solar system during 
his lifetime. His major work, “De Revolutionibus Orbium Coelestium” 
was published only after his death. We thus have the accidental stumbling 
on a major “truth” that occurs so often in the modern scientific process. 

A second feature of scientific discovery is accurate and reliable exper- 
imentation. Tycho Brahe (1 546-1 60 1) was the most important exponent 
of this process of understanding the solar system. Tycho was a Danish 
aristocrat who received a cosmopolitan and international education. He 
took up observational astronomy as a hobby and, because of his great 
wealth, was able to build what was, for his time, the finest astronomical 
observatory in the world. It was called the Uranienborg (castle of the sky) 
and was located on the Island of Hven near Copenhagen. Tycho, for the 
first time, made accurate measurements of the positions of the Sun, the 
Moon, the planets, and the stars. What is more important is that he made 
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these observations systematically over more than 20 years. He was there- 
fore the first to produce accurate ephemeris tables, and as we shall see, 
these eventually turned out to be of decisive importance. Three years be- 
fore his death, Tycho was forced to leave Denmark. The Emperor Rudolf 
I1 then invited Tycho to become the Astronomer to the Imperial Court in 
Prague. It was there that he met Johannes Kepler, which led finally to the 
great breakthrough. 

Galileo Galilei (1 564-1 642) also made a most important “experimen- 
tal,” or observational, discovery by being the first person to turn the new- 
ly invented telescope toward the sky. By observing that the four large 
moons of Jupiter execute more or less circular orbits around the planet, 
he had discovered a small system that demonstrated clearly how the larg- 
er solar system works. It was this observational discovery that provided a 
convincing argument that the Copernican hypothesis regarding the posi- 
tion of the Sun at the center of the solar system was correct. The contribu- 
tions of both Tycho and Galileo were critical: Galileo’s was qualitative, 
but it gave others the courage to go ahead. Galileo was also an enthusias- 
tic and articulate controversialist and he was able to engage the educated 
public in the cosmological debate. It is interesting that the great work of 
Copernicus, “De Revolutionibus Orbium Coelestium” was put on the In- 
dex by the Vatican in 161 6 (70 years after publication), only after Galileo 
began his propaganda campaign for the Copernican system. Finally, it 
was Tycho Brahe who provided the trustworthy numbers. 

As important as these contributions were, the real intellectual break- 
through came from Johannes Kepler ( 157 1 - 1630). Kepler was the son of 
a German noncommissioned officer. His talents in mathematics were rec- 
ognized very early in his life, and he was educated by the local clerical 
authorities. Eventually, he was appointed Professor of Mathematics at the 
University of Graz in Austria, where he began his astronomical studies. 
He believed in the heliocentric hypothesis, and he made several attempts 
to develop a mathematical model of the solar system based on placing the 
Sun at the center. All of these models failed to fit the observations, and 
so, in 1599, he decided that he would go to work for the man who had the 
best observations, Tycho Brahe. Tycho had been exiled from his native 
Denmark in 1598 and had moved to Prague. Kepler applied for the post 
as Tycho’s assistant at the Imperial Court and his application was accept- 
ed. Unfortunately, Tycho died shortly after Kepler arrived in Prague, and 
Kepler was forced to fight a lengthy legal battle to get access to Tycho’s 
ephemeris tables. Eventually, he succeeded and this is when his great 
work began. 

Perhaps the single most difficult thing that must be done in the process 
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of scientific discovery is to abandon that which was previously taken to 
be the “truth.” Habits of thinking are hard to break, but this is exactly 
what Kepler did when he abandoned the old Greek idea enshrined by 
Aristotle that all heavenly bodies must execute perfect motion, meaning 
that their motion must be in circular orbits moving at uniform speed. In 
doing his calculations, Kepler could not explain Tycho Brahe’s observa- 
tions of the motion of Mars with the assumption that Mars was moving in 
a uniform circular orbit around the Sun. It was at this point that Kepler 
made his great breakthrough. He chose to abandon Aristotle and to be- 
lieve the observations of Tycho Brahe and turned the question around: 
Given the observations of Tycho, what kind of orbit does Mars execute? It 
was in answering this question that Kepler discovered his quantitative 
laws of planetary motion. A good argument can be made that Kepler’s 
step was actually the most difficult one in the entire process, because he 
had to do two things that involved great intellectual risks. First, he had to 
abandon the centuries-old idea of uniform circular motion and, second, he 
had to believe Tycho’s observations to derive his laws. It was the complete 
rejection of the old and the leap of faith in the new measurements that 
made Kepler’s achievement the most remarkable one in the entire story. 

Kepler’s laws of planetary motion may be stated as follows: 

1. Planets move around the Sun in elliptic orbits with the Sun located 
at one focus of the ellipse. 

2. As the planet moves in its orbit around the Sun, equal areas as mea- 
sured fiom the focus are swept out in equal times. (This law implies 
that the planet moves more rapidly when it is close to the Sun com- 
pared to when it is farther away.) 

3.  The square of the period of the orbit is proportional to the cube of 
the semimajor axis of the elliptic orbit. 

The final chapter in this history came when Isaac Newton realized that 
Kepler’s laws were the consequences of more basic principles, the law of 
universal gravitation and the so-called second law of motion, which re- 
lates the acceleration of an object with the force that is applied to move it. 
These two principles were sufficient to explain Kepler’s laws and much 
else as well. If Kepler was the one who broke with the past, it was New- 
ton who looked to the future. As Newton put it, “If I have been able to see 
a little farther, it is because I stood on the shoulders of giants.” 

Isaac Newton was born at Woolsthorpe in Lincolnshire on Christmas 
Day in 1642. He died almost 85 years later in 1727. He received his B.A. 
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degree in Cambridge in 1665. In 1669, when his professor Isaac Barrow 
resigned, he requested that Newton be given his professorship. Newton’s 
complete dedication to his work resulted in headaches, sleepless nights, 
irregular eating habits, and finally a nervous fatigue at 50 years of age. 
He mentions these problems in his notes on the computations of the mo- 
tion of the Moon. 

In 1687, before switching to administrative activities as the Warden 
and, in 1699, as the Master of the Mint, his book, entitled Philosophiae 
Naturalis Principia Mathernatica, was published by the Royal Society of 
London. It is interesting to see how dynamical problems can become 
complicated at Newton’s insistence that they be solved using geometry 
instead of calculus. This makes the Principia a hard book to read and 
leads to the question of why Newton, one of the inventors of calculus, did 
not use calculus in his book. Newton had used calculus to formulate and 
solve some of the problems presented in the Principia but, being afraid of 
criticism, described his work using geometry. 

Newton’s conflicts with Leibnitz concerning the discovery of calculus 
are well represented in the literature, and this may be another reason why 
geometry dominates the Principia. Their controversy regarding the deter- 
ministic nature of dynamics and celestial mechanics is less known. Today, 
Newtonian mechanics is sometimes erroneously associated with com- 
plete predictability in dynamics, which was Leibnitz’s dogma and was not 
accepted by Newton. At this point, Laplace’s demon enters the picture: 
knowing all initial conditions and all laws of nature and predicting the fu- 
ture. Laplace takes the side of Leibnitz. (See the list of bibliography at the 
end of this chapter.) 

In 1665, because of plague, Newton left Cambridge and went back to 
his birthplace, where he could work undisturbed. The unverified apple in- 
cident, which could have happened here, describes the importance of 
connecting seemingly unrelated phenomena; in this case, falling stones 
(or apples) on the one hand and planetary motion on the other. In fact, 
Newton describes the idea leading to artificial satellites with the follow- 
ing thought experiment: If stones are thrown from the top of a mountain 
with small horizontal velocities, they will hit the ground, but as the veloc- 
ity is increased, circular and elliptic orbits are obtained around Earth. It 
was here, amid conditions of creativity, concentration, and peace, that 
Newton arrived at the general theory of gravitation. 

Newton became the president of the Royal Society at the age of 60 and 
was knighted by Queen Anne in 1705. He died in 1727 and is buried at 
Westminster Abbey in London. 

Since, in this book, we wish to concentrate on dynamics and celestial 
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mechanics, for a description of Newton’s many other significant scientif- 
ic contributions (e.g., his Opticks, published in 1704), the reader is re- 
ferred to the literature. 

Since Newton’s laws of dynamics and his law of gravitation will be de- 
scribed here, a few general historical comments might be appropriate. 

Newton’s three laws of motion, forming the basis of dynamics, are as 
follows: 

1. Every body perseveres in its state of rest or uniform straight-line 
motion unless it is compelled by some impressed force to change 
that state. 

2. The change of motion is proportional to the motive force impressed 
and takes place in the same direction as the force. 

3. Action is always contrary and equal to reaction. 

There are many variations of these laws, some by Newton himself, 
who made changes and corrections. Also, differences exist in the litera- 
ture as the laws were translated from the original Latin text. Once again, 
the soundest language, mathematics, comes to our aid. Using the concept 
of linear momentum (which Newton called motion), we can express the 
first and second laws by the equation 

Note that Newton did not mention acceleration when giving his laws 
of motion. For a constant value of the mass, the above equation should 
read: m(dvldt) = F. Our textbooks use the concept of acceleration and 
give Newton’s law as ma = F. This is of less generality than Newton’s 
original formulation, which is applicable to variable mass and, therefore, 
for rocket propulsion. 

Newton’s law of gravitation, as discussed in his Principia, was men- 
tioned before. The gravitational force acting between two bodies of mass 
m and M is proportional to the product of the masses and inversely pro- 
portional to the square of the distance between them. In vector form 

GmM mM 
F = -  r=G--F 

iri3 rz 
where i is the unit vector pointing in the direction r and G is the gravita- 
tional constant that determines the “strength” of the gravitational field. 
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Probably nothing describes Newton better than one of his own state- 
ments: “I seem to have been only like a boy playing on the seashore and 
diverting myself now and then finding a smoother pebble or a prettier 
shell than ordinary, while the great ocean of truth lay all undiscovered be- 
fore me.” 

It is a common error to believe that the behavior of the solar system 
and the rules of orbital mechanics were completely understood as a result 
of the work of Isaac Newton. He took a giant step, but many critical ques- 
tions remained unanswered. Newton solved what we call the “problem of 
two bodies,” which means that he developed the means to predict the mo- 
tion of two bodies interacting through the gravitational field. For a sys- 
tem of more than two bodies, Newton’s equations cannot be solved. For- 
tunately, the solar system is dominated by the Sun, which accounts for 
more than 99.8% of its entire mass. Thus, to a very good approximation, 
the motion of each planet can be calculated as ifonly the Sun and that 
planet counted. Thus, Newton was able to deduce his laws. With the ad- 
vent of more accurate astronomical measurements in the eighteenth cen- 
tury, discrepancies appeared that could only be explained by taking into 
account the effects of the other planets in the solar system. 

Following Newton’s work, several brilliant astronomers and mathe- 
maticians used Newton’s laws and methods to attack a number of impor- 
tant problems. The first of these was Edmund Halley (1656-1742), who 
observed and calculated the orbit of the comet named after him using 
Newton’s laws of motion. Studying several cometary orbits, he estab- 
lished the facts that, contrary to planetary orbits, some comets had large 
angles of inclination and that some had periodic orbits. Halley’s contribu- 
tions were numerous and important to celestial mechanics, but his insis- 
tence on and support of the publication of Newton’s Principia probably 
represent his greatest influence on today’s celestial mechanics. 

The Swiss-born mathematician Leonhard Euler (1 707-1783) was a 
student of Johann Bernoulli. In 1727 Euler went to St. Petersburg in Rus- 
sia for 14 years and was associated there with the Imperial Academy. 
From there, at the invitation of Frederick the Great, he went to Berlin, 
where he remained for 25 years. He returned to St. Petersburg at the invi- 
tation of the czarina, Catherine the Great, in 1766. 

Euler’s work on the motion of the Moon was of considerable interest to 
Catherine the Great as his lunar tables and his second lunar theory, pub- 
lished in 1772 under the title Theoria Motuum Lunae in the Communica- 
tions of Petropolis, helped the navigation of ships in the Russian Navy. 
Before it appeared in its published form, his lunar theory was used by the 
Astronomer Royal, Nevi1 Maskelyne, in the British Nautical Almanac as 
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the basis for the lunar ephemeris. These tables were first published in 
1767 and were used by the British Navy for navigation. (These were 
probably the first, but certainly not the last, uses of celestial mechanics 
by the military.) 

Newton’s most important successors, who truly extended his methods, 
were two Frenchmen whose lives spanned the last years of the eighteenth 
century and the first years of the nineteenth: Joseph Louis Lagrange 
( I  736-1 81 3) and Pierre Simon de Laplace (1  749-1 827). Lagrange was 
born in Turin, Italy, where he was appointed professor of geometry at the 
artillery academy at the age of 19. In 1766, he went to Berlin, filling 
Euler’s vacated position at the invitation of Frederick the Great, where he 
spent 20 years. The next invitation came from Louis XVI to Paris, where 
he became professor at the Ecole Polytechnique in 1797. His apartment 
in Paris was in the Louvre; he was buried in the Pantheon. 

Lagrange’s announcement concerning the triangular libration points in 
the Sun-Jupiter system and his prediction of the possible existence of as- 
teroids in these regions date from 1772. Observational astronomers did 
not verifj the existence of these bodies for another 134 years. In this case, 
theory was certainly ahead of observation. His work on the solar system 
using the method of variation of parameters ( 1  782) is one of the funda- 
mental contributions in celestial mechanics. 

Lagrange’s celebrated Micanique Analytique was published in 1788. 
Laplace was born in Beaumont-en- Auge and became professor at the 

Ecole Militaire in Paris at the age of 18. One of his major contributions 
concerned the stability of the solar system ( 1773, 1784), for which he de- 
veloped the methods of perturbation theory to solve the many-body prob- 
lem. After a lengthy series of calculations, he concluded that the solar 
system was indeed stable and that Newton’s famous “clockwork uni- 
verse” really existed. As things turned out, Laplace was wrong, and the 
problem of “stability” is still unsolved. Laplace also introduced the con- 
cept of the potential function and what is known today as Laplace’s equa- 
tion (1785). His lunar theory, published in 1802, followed Euler’s. The 
five volumes of his Mecanique Cdeste were published between 1799 and 
1825. 

Although the perturbation methods introduced by Laplace did not 
yield an answer to the stability question, they were extremely useful in 
making more accurate calculations of the behavior of planets, comets, 
and asteroids. The most spectacular application of perturbation theory 
was the discovery of the eighth planet, Neptune, because of the small per- 
turbations the planet causes in the motion of the planet Uranus. John 
Couch Adams and U. J. J. Leverrier performed these calculations in 1845 
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and predicted the position of Neptune. In the next year, J. F. Encke and H. 
L. d’Arrest found Neptune essentially where it was supposed to be. In the 
early years of this century, Percival Lowell and William H. Pickering tried 
to do the same thing by looking at small perturbations in the orbit of Nep- 
tune. The theoretical work done by LoweU and Pickering between 19 10 
and 19 17 was detailed and extensive. Lowell died in 19 17, but Pickering 
continued to work on the problem. Eventually, another search for a trans- 
Neptune planet was initiated, and in 1930, the young astronomer Clyde 
W. Tombaugh discovered Pluto. The “predictions” of Lowell and Picker- 
ing could not have had anything to do with the discovery of Pluto since 
the planet turned out to be much too small to affect Neptune in the way 
Lowell and Pickering had calculated. In any event, these remarkable 
achievements effectively completed the inventory of planets in our solar 
system. They were stimulated by the development of perturbation theory. 

The most important contributor to celestial mechanics in the final 
years of the nineteenth century and the early years of the twentieth was 
another Frenchman, Henri Poincare (1 854-1 91 2). He was one of the most 
prolific writers in the field of mathematics and celestial mechanics, con- 
tributing more than 30 books and 500 memoirs. The three volumes of his 
Mkthodes Nouvelles de la Micanique Ckleste appeared in 1892, 1893, 
and 1899 and have been recently translated into English by NASA. This 
was followed by his Lkcons de Micanique Cileste in 1905-1910. Con- 
centrating on the problem of three bodies, Poincare established the con- 
cept of nonintegrable dynamical systems. His theorem seriously affected 
the results of workers who intended to show the stability of the solar sys- 
tem by representing the orbital elements of the planets in Fourier series. 
Since these series, in general, are conditionally convergent or divergent 
according to Poincark’s theorem, the “solutions” do not show stability. 
Thus Laplace’s conclusion of a century earlier was shown to be wrong. 
PoincarC’s work also provided the first instance of what is now called “de- 
terministic chaos.” The problem of three bodies is described by a com- 
plete set of deterministic equations. Yet, the behavior of the three-body 
system may become “chaotic,” which in this case means unpredictable, 
under certain conditions. It may very well be that this will turn out to be 
Poincare’s lasting legacy. 

In recent years, a most significant development has furthered the sci- 
ence and engineering of orbital operations and that is the advent of artifi- 
cial satellites and spacecraft. The demands of space navigation have 
clearly been a major factor in the recent progress of celestial mechanics. 
This effort has been greatly enhanced by the advent of high-performance 
digital computers, which make the approximation methods mentioned 
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earlier less necessary. The truly fabulous accuracy of spacecraft naviga- 
tion would not be possible without high-speed digital computers. For ex- 
ample, to put the Pioneer I 1  spacecraft into the correct trajectory around 
Jupiter so that it would fly past Saturn some years later required a naviga- 
tional accuracy of better than one part in 10 million. 

Finally, there are some very important scientific questions that are still 
open. Is the solar system ultimately stable? This question has not been an- 
swered in a rigorous mathematical sense. Once again, numerical methods 
are critical to research this question. Related to the question of stability is 
that of chaotic motion. Can the “Earth crossing” asteroids be explained 
using the principles of chaos theory? Thus, orbital and celestial mechan- 
ics, even though it is the oldest field in “modern science,” still presents 
problems that are at the very frontier of knowledge. 

What is clear is that celestial mechanics is a living field and more re- 
search is certain to reveal important and even startling new results. 

The reader interested in historical details will enjoy some of the books 
listed in the Appendix: Andrade (1 954); Bate, Mueller, and White (I97 1); 
Beer and Strand (1975); Koestler (1959); and Lerner (1973). In addition, 
Men OfMathematics, by E. T. Bell, Simon & Schuster, New York (1937); 
The Great Ideas Today, edited by R. M. Hutchins and M. J. Adler, Ency- 
clopaedia Britannica, Inc. (1973); From Galileo to Newton. by A. R. Hall, 
Dover, New York (1981); and The Space Station, by H. Mark, Duke Uni- 
versity Press, Durham, North Carolina (1 987), are recommended. Re- 
garding nondeterministic dynamics and uncertainties in celestial mechan- 
ics, see J. Lighthill’s “The Recently Recognized Failure of Predictability 
in Newtonian Dynamics,” Proceedings of the Royal Sociey, Vol. A407, 
pp. 35-50, 1986, and I. Prigogine’s (1980) book listed in the Appendix. 

For additional fascinating details of the early history, see “Copernicus 
and Tycho,” by 0. Gingerich, Scientijk American, Vol. 229, No. 6, pp. 
86-1 01, 1973. For Newton’s contributions to cosmology, see The First 
Three Minutes, by S .  Weinberg, Bantam Books, New York (1977). 

CHRONOLOGICAL LIST OF MAJOR CONTRIBUTORS 
TO CELESTIAL MECHANICS 

Aristotle, 384-322 B.C. 1. Newton 1642-1727 
C. Ptolemaeus 100-178 G. W. Leibnitz 1646-1 7 I6 
N. Copernicus 1473-1 543 E. Halley 1 656- 1 742 
T. Brahe 1546-1 60 1 L. Euler 1707-1 783 
G .  Galilei 1564-1642 A. C. Clairaut 17 13-1765 
J. Kepler 1571-1 630 J. D’Alembert 1 7 17-1 783 
R. Descartes 1596-1650 J. H. Lambert 1728-1 777 
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W. F. Herschel 
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C. E. Delauney 
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D. Airy 
S. Newcomb 
T. N. Thiele 
G. W. Hill 
F. F. Tisserand 
H. Bruns 
G. H. Darwin 
J. H. PoincarC 
C. V. L. Charlier 
P. Painleve 
E. W. Brown 
C. Burrau 

1736-1 8 13 
1738-1822 
1 747-1 826 
1749-1 827 
1752-1 833 
1777-1 855 
178 1-1 840 
1791-1865 
1792- 1843 
1792-1 87 1 
1795- 1874 
1804-1 85 1 
1805-1 865 
181 1-1877 
18 16-1 872 
18 19-1 892 
1835-1 98 I 
1835-1909 
1 838-1 9 10 
1838-1914 
1845- 1896 
1848-1 91 9 
1845-1 9 12 
1854-1 9 12 
1862-1934 
1863-1933 
1866-1 938 
1867-1944 

P. H. Cowell 
W. De Sitter 
F. R. Moulton 
T. Levi-Civita 
K. F. Sundman 
E. T. Whittaker 
H. C. Plummer 
W. Hohmann 
G. A. Shook 
G. D. Birkhoff 
W. M. Smart 
G. E. Lemaitre 
C. L. Siege1 
Y. Hagihara 
N. D. Moiseev 
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CHAPTER 2 

CIRCULAR ORBITS 

In the preceding chapter, in equations (1.1) and (1.2), we defined the laws 
of motion first developed by Isaac Newton and his universal law of grav- 
itation. It is the combining of these two laws that permits us to calculate 
the orbit of one body moving around another one under the influence of 
the gravitational interaction between the two bodies. A particularly sim- 
ple case to treat is that of circular orbits. We shall assume for the moment 
that circular orbits are both possible and stable in the gravitational field 
defined by equation (1.2). This proposition will be proven in subsequent 
chapters. 

The law of gravitation as shown in equation (1.2) is given as 

GMm 
F G z - 7  F 

where F G  is the force of gravity between the masses M and m. The unit 
vector? points in the direction of the line joining the masses, and r is the 
distance between the masses m and M. The situation is illustrated in Fig- 
ure 2.1. For the time being, we shall assume that the masses m and A4 are 
point masses. We shall show shortly that for spherically symmetric ob- 
jects the gravitational field external to the object acts as if the mass were 
concentrated at the geometric center of the object. The constant G is 
called the gravitational constant, and it determines the strength of the 
gravitational field. In Figure 2.1, we have assumed that the mass A4 is lo- 

13 



14 CIRCULAR ORBITS 

Y 

FIGURE 2.1 

cated at the origin 0 of the coordinate system and that it is fixed in space. 
(We shall soon show that this is equivalent to saying that M is very much 
larger than m.) Note that the first FG points toward the origin, where mass 
M is located. This happens because the gravitational force is always at- 
tractive. Note that the convention of polar coordinate systems requires 
that the unit vector F always points away from the origin. This accounts 
for the negative sign on the right side of equation (2. l), because FG and F 
always point in opposite directions. 

Figure 2.2 shows the circular orbit that we have assumed is possible in 
this case. 

We assume that the radius of the circular orbit is R and that the vector 

FIGURE 2.2 
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v is the velocity of the mass m as it moves around the mass m in the cir- 
cular orbit. There are two forces acting on the mass m: the gravitational 
force, which points toward the mass M, and the centrifugal force experi- 
enced by an object traveling in a circular orbit. If the masses M and m 
were connected by a string, then the tension in the string would replace 
the gravitational force and would also be balanced by the centrifugal 
force. 

The centrifugal force can now be calculated using equation (1.1) of the 
previous chapter: 

dv 
F, = m- 

dt 

We now need to evaluate the rate of change of the velocity (dvldt) that ap- 
pears in equation (2.2). To do that, we shall look at what happens to the 
orbital velocity vector. Since the gravitational force defined in equation 
(2.1) on the mass m is constant and since the radius of the circle, R, does 
not change as the mass m moves in its orbit, the magnitude of the vector 
v, Iv(, must also be constant. The rate of change of the velocity vector is 
therefore determined only by the change in direction as n? moves around 
the orbit, as shown in Figure 2.3. If we consider only small angles, 68, we 
can look at the way the vector v behaves by looking at Figure 2.2. The 
vector Av is the change in direction of the velocity vector v. Note that this 
vector, bv, always 
nate system. Thus, 

points toward the mass M at the origin of the coordi- 

dv do 
dt dt 

F, = m - = -rnlv(- i. 

the orlgln, 0. 

(2.3) 

FIGURE 2.3 
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where the differential change in velocity is given by 

The angular velocity o of the mass m is defined as d0ldt so that the cen- 
trifugal force can be rewritten as 

and simply writing u for IvJ and recognizing that for a circular orbit of ra- 
dius R the velocity v is 

we have, for the centrifugal force, 

mu2 
F , = - 7  i 

Equating (2.7) to (2,1), we have 

Mm mu2 
R2 R 

F,=F, G-=- 

(2.7) 

Equation (2.8) allows determination of the orbital speed u (which is the 
magnitude) of the velocity vector v as 

Note that the mass m appears on both sides of equation (2.8) so that the 
orbital speed is a fhnction only of the radius of the circle and the magni- 
tude of the mass M. Equation (2.9) can be rewritten in terms of the angu- 
lar velocity defined in equation (2.6): 

Ro-F (2.10) 

and so we have 

R3w2 = GM (2.1 1) 
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The angular velocity can be related to the period of the orbit, that is, the 
time it takes to execute one orbit, by returning to the definition of the an- 
gular velocity, 

d0 
o=- or o d t = d 0  

dt 
(2.12) 

and integrating around one orbit, 

we obtain 

w T =  2 n  (2.13) 

where T is defined as the orbital period. Substituting equation (2.13) into 
(2.1 1) yields 

(2.14) 

This statement is the third law of planetary motion as stated by Kepler 
(see Chapter 1) for the special case of circular orbits. It is obvious that the 
second law is also fblfilled for circular orbits since the orbital speed u is 
constant so that equal areas are swept out in equal time. In subsequent 
chapters, we shall show that these statements are valid for elliptic orbits 
as well. 

Equation (2.11) is a very good approximation to the exact relation 
when we consider the motion of a satellite around Earth in a circular or- 
bit. The approximate result assumes that the mass of the satellite can be 
neglected when compared to the mass of the central body. The derivation 
of the exact relation for circular motion utilizes Figure 2.4. 

The satellite and Earth are moving around the center of mass of the 
Earth-satellite system, Since the mass of Earth is always many orders of 
magnitude larger than the mass of the satellite, the center of mass of the 
system is at the center of Earth for all practical purposes. As another in- 
teresting example, consider a binary star or a binary asteroid where two 
stars or two asteroids with comparable masses are revolving around each 
other. The distances from the center of mass are r ,  and r2; the masses are 
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ME 

FIGURE 2.4 Motion of a satellite around the center of mass of the system. 

rn, and m2. In our original problem, mi  = ME and m2 = m9 The forces act- 
ing on the satellite are balanced if 

MEmS m,w2r2 = G-- 
r2 

(2.15) 

where r = rl + r2 since that is the total distance between the two interact- 
ing bodies. 

The corresponding equation for Earth is 

(2.16) 

In the first equation ms and in the second equation ME are canceled. 
Since the center of mass is fixed in the system, we have 

msr2 = MErl (2.17) 

Adding the two previous equations (2.16) and (2.17), we have 

MEmS (rl + r2)02 = G- P 

Equation (2.18) may be written as 

(2.18) 

w2rJ = G(ME + ms) (2.19) 


