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TABLE OF CONTENTS
Celestial mechanics is the branch of astronomy that deals with the motions of celestial objects. Historically, celestial mechanics applies
principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.

1: NUMERICAL METHODS
This chapter is not intended as a comprehensive course in numerical methods. Rather it deals, and only in a rather basic way, with the
very common problems of numerical integration and the solution of simple (and not so simple!) equations. Specialist astronomers today
can generate most of the planetary tables for themselves; but those who are not so specialized still have a need to look up data in tables.

1.1: INTRODUCTION TO NUMERICAL METHODS
1.2: NUMERICAL INTEGRATION
1.3: QUADRATIC EQUATIONS
1.4: THE SOLUTION OF F(X) = 0
1.5: THE SOLUTION OF POLYNOMIAL EQUATIONS
1.6: FAILURE OF THE NEWTON-RAPHSON METHOD
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1.10: 1.10- BESSELIAN INTERPOLATION
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INTERPOLATION
1.12: FITTING A LEAST SQUARES STRAIGHT LINE TO A SET OF OBSERVATIONAL POINTS
1.13: FITTING A LEAST SQUARES POLYNOMIAL TO A SET OF OBSERVATIONAL POINTS
1.14: LEGENDRE POLYNOMIALS
1.15: GAUSSIAN QUADRATURE - THE ALGORITHM
1.16: GAUSSIAN QUADRATURE - DERIVATION
1.17: FREQUENTLY-NEEDED NUMERICAL PROCEDURES

2: CONIC SECTIONS
A particle moving under the influence of an inverse square force moves in an orbit that is a conic section; that is to say an ellipse, a
parabola or a hyperbola. We shall prove this from dynamical principles in a later chapter. In this chapter we review the geometry of the
conic sections. We start off, however, with a brief review (eight equation-packed pages) of the geometry of the straight line.

2.1: THE STRAIGHT LINE
2.2: THE ELLIPSE
2.3: THE PARABOLA
2.4: THE HYPERBOLA
2.5: CONIC SECTIONS
2.6: THE GENERAL CONIC SECTION
2.7: FITTING A CONIC SECTION THROUGH FIVE POINTS
2.8: FITTING A CONIC SECTION THROUGH N POINTS

3: PLANE AND SPHERICAL TRIGONOMETRY
3.1: INTRODUCTION
3.2: PLANE TRIANGLES
3.3: CYLINDRICAL AND SPHERICAL COORDINATES
3.4: VELOCITY AND ACCELERATION COMPONENTS
3.5: SPHERICAL TRIANGLES
3.6: ROTATION OF AXES, TWO DIMENSIONS
3.7: ROTATION OF AXES, THREE DIMENSIONS. EULERIAN ANGLES
3.8: TRIGONOMETRICAL FORMULAS

4: COORDINATE GEOMETRY IN THREE DIMENSIONS
4.1: INTRODUCTION
4.2: PLANES AND STRAIGHT LINES
4.3: THE ELLIPSOID
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4.4: THE PARABOLOID
4.5: THE HYPERBOLOID
4.6: THE CYLINDER
4.7: THE CONE
4.8: THE GENERAL SECOND DEGREE EQUATION IN THREE DIMENSIONS
4.9: MATRICES

5: GRAVITATIONAL FIELD AND POTENTIAL
This chapter deals with the calculation of gravitational fields and potentials in the vicinity of various shapes and sizes of massive bodies.
The reader who has studied electrostatics will recognize that this is all just a repeat of what he or she already knows.

5.1: INTRODUCTION
5.2: GRAVITATIONAL FIELD
5.3: NEWTON'S LAW OF GRAVITATION
5.4: THE GRAVITATIONAL FIELDS OF VARIOUS BODIES

5.4.1: FIELD OF A POINT MASS
5.4.2: FIELD ON THE AXIS OF A RING
5.4.3: PLANE DISCS
5.4.4: INFINITE PLANE LAMINAS
5.4.5: HOLLOW HEMISPHERE
5.4.6: RODS
5.4.7: SOLID CYLINDER
5.4.8: HOLLOW SPHERICAL SHELL
5.4.9: SOLID SPHERE
5.4.10: BUBBLE INSIDE A UNIFORM SOLID SPHERE
5.5: GAUSS'S THEOREM
5.6: CALCULATING SURFACE INTEGRALS
5.7: POTENTIAL
5.8: THE GRAVITATIONAL POTENTIALS NEAR VARIOUS BODIES

5.8.1: POTENTIAL NEAR A POINT MASS
5.8.2: POTENTIAL ON THE AXIS OF A RING
5.8.3: PLANE DISCS
5.8.4: INFINITE PLANE LAMINA
5.8.5: HOLLOW HEMISPHERE
5.8.6: RODS
5.8.7: SOLID CYLINDER
5.8.8: HOLLOW SPHERICAL SHELL
5.8.9: SOLID SPHERE
5.9: WORK REQUIRED TO ASSEMBLE A UNIFORM SPHERE
5.10: NABLA, GRADIENT AND DIVERGENCE
5.11: LEGENDRE POLYNOMIALS
5.12: GRAVITATIONAL POTENTIAL OF ANY MASSIVE BODY
5.13: PRESSURE AT THE CENTRE OF A UNIFORM SPHERE

6: THE CELESTIAL SPHERE
If you look up in the sky, it appears as if you are at the centre of a vast crystal sphere with the stars fixed on its surface. This sphere is
the celestial sphere. It has no particular radius; we record positions of the stars merely by specifying angles. We see only half of the
sphere; the remaining half is hidden below the horizon. In this section we describe the several coordinate systems that are used to
describe the positions of stars and other bodies on the celestial sphere.

6.1: INTRODUCTION TO THE CELESTIAL SPHERE
6.2: ALTAZIMUTH COORDINATES
6.3: EQUATORIAL COORDINATES
6.4: CONVERSION BETWEEN EQUATORIAL AND ALTAZIMUTH COORDINATES
6.5: ECLIPTIC COORDINATES
6.6: THE MEAN SUN
6.7: PRECESSION
6.8: NUTATION
6.9: THE LENGTH OF THE YEAR
6.10: PROBLEMS
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6.11: SOLUTIONS

7: TIME
In this chapter we briefly discuss the several time scales that are in use in astronomy, such as Universal Time, Mean Solar Time,
Ephemeris Time, Terrestrial Dynamical Time, and the several types of second, hour, day and year that are or have been in use.  Some of
the items in this chapter will be given only in short note form or single sentence definitions, particularly where they have already been
discussed. Others will require a bit more discussion.

8: PLANETARY MOTIONS
In this chapter, I do not attempt to calculate planetary ephemerides, which will come in a later chapter. Rather, I discuss in an idealistic
and qualitative manner how it is that a planet sometimes moves in one direction and sometimes in another. That the treatment in this
chapter is both idealistic and qualitative by no means implies that it will be devoid of Equations or of quantitative results, or that the
matter discussed in this chapter will have no real practical or observational value.

8.1: INTRODUCTION TO PLANETARY MOTIONS
8.2: OPPOSITION, CONJUNCTION AND QUADRATURE
8.3: SIDEREAL AND SYNODIC PERIODS
8.4: DIRECT AND RETROGRADE MOTION, AND STATIONARY POINTS

9: THE TWO BODY PROBLEM IN TWO DIMENSIONS
In this chapter we show how Kepler’s laws can be derived from Newton’s laws of motion and gravitation, and conservation of angular
momentum, and we derive formulas for the energy and angular momentum in an orbit. We show also how to calculate the position of a
planet in its orbit as a function of time. The discussion here is limited to two dimensions. The corresponding problem in three
dimensions, and how to calculate an ephemeris of a planet or comet in the sky, is discussed elsewhere.

9.1: KEPLER'S LAWS
9.2: KEPLER'S SECOND LAW FROM CONSERVATION OF ANGULAR MOMENTUM
9.3: SOME FUNCTIONS OF THE MASSES
9.4: KEPLER'S FIRST AND THIRD LAWS FROM NEWTON'S LAW OF GRAVITATION
9.5: POSITION IN AN ELLIPTIC ORBIT
9.6: POSITION IN A PARABOLIC ORBIT
9.7: POSITION IN A HYPERBOLIC ORBIT
9.8: ORBITAL ELEMENTS AND VELOCITY VECTOR
9.9: OSCULATING ELEMENTS
9.10: MEAN DISTANCE IN AN ELLIPTIC ORBIT

10: COMPUTATION OF AN EPHEMERIS
10.1: INTRODUCTION TO AN EPHEMERIS
10.2: ELEMENTS OF AN ELLIPTIC ORBIT
10.3: SOME ADDITIONAL ANGLES
10.4: ELEMENTS OF A CIRCULAR OR NEAR-CIRCULAR ORBIT
10.5: ELEMENTS OF A PARABOLIC ORBIT
10.6: ELEMENTS OF A HYPERBOLIC ORBIT
10.7: CALCULATING THE POSITION OF A COMET OR ASTEROID
10.8: QUADRANT PROBLEMS
10.9: COMPUTING AN EPHEMERIS
10.10: ORBITAL ELEMENTS AND VELOCITY VECTOR
10.11: HAMILTONIAN FORMULATION OF THE EQUATIONS OF MOTION

11: PHOTOGRAPHIC ASTROMETRY
Astrometry is the art and science of measuring positions of celestial objects, and indeed the first step in determining the orbit of a new
asteroid or comet is to obtain a set of good astrometric positions. For much of the twentieth century, most astrometric positions were
determined photographically.

11.1: INTRODUCTION TO PHOTOGRAPHIC ASTROMETRY
11.2: STANDARD COORDINATES AND PLATE CONSTANTS
11.3: REFINEMENTS AND CORRECTIONS
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11.3.1: PARALLAXES OF THE COMPARISON STARS
11.3.2: PROPER MOTIONS OF THE COMPARISON STARS
11.3.3: REFRACTION
11.3.4: ABERRATION OF LIGHT
11.3.5: OPTICAL DISTORTION
11.3.6: ERRORS, MISTAKES AND BLUNDERS

12: CCD ASTROMETRY

13: CALCULATION OF ORBITAL ELEMENTS
13.1: INTRODUCTION TO CALCULATING ORBITAL ELEMENTS
13.2: TRIANGLES
13.3: SECTORS
13.4: KEPLER'S SECOND LAW
13.5: COORDINATES
13.6: EXAMPLE
13.7: GEOCENTRIC AND HELIOCENTRIC DISTANCES - FIRST ATTEMPT
13.8: IMPROVED TRIANGLE RATIOS
13.9: ITERATING
13.10: HIGHER-ORDER APPROXIMATION
13.11: LIGHT-TIME CORRECTION
13.12: SECTOR-TRIANGLE RATIO
13.13: RESUMING THE NUMERICAL EXAMPLE
13.14: SUMMARY SO FAR
13.15: CALCULATING THE ELEMENTSS
13.16: TOPOCENTRIC-GEOCENTRIC CORRECTION
13.17: CONCLUDING REMARKS

14: GENERAL PERTURBATION THEORY
14.1: INTRODUCTION TO GENERAL PERTURBATION THEORY
14.2: CONTACT TRANSFORMATIONS AND GENERAL PERTURBATION THEORY
14.3: THE POISSON BRACKETS FOR THE ORBITAL ELEMENTS
14.4: LAGRANGE'S PLANETARY EQUATIONS
14.5: MOTION AROUND AN OBLATE SYMMETRIC TOP

15: SPECIAL PERTURBATIONS
15.1: INTRODUCTION
15.2: ORBITAL ELEMENTS AND THE POSITION AND VELOCITY VECTOR
15.3: THE EQUATIONS OF MOTION

16: EQUIVALENT POTENTIAL AND THE RESTRICTED THREE-BODY
PROBLEM

16.1: INTRODUCTION
16.2: MOTION UNDER A CENTRAL FORCE
16.3: INVERSE SQUARE ATTRACTIVE FORCE
16.4: HOOKE'S LAW
16.5: INVERSE FOURTH POWER FORCE
16.6: THE COLLINEAR LAGRANGIAN POINTS
16.7: THE EQUILATERAL LAGRANGIAN POINTS

17: VISUAL BINARY STARS
A visual binary is a gravitationally bound system that can be resolved into two stars. These stars are estimated, via Kepler's 3rd law, to
have periods ranging from a number of years to thousands of years. A visual binary consists of two stars, usually of a different
brightness.

17.1: INTRODUCTION TO VISUAL BINARY STARS
17.2: DETERMINATION OF THE APPARENT ORBIT
17.3: THE ELEMENTS OF THE TRUE ORBIT
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CHAPTER OVERVIEW
1: NUMERICAL METHODS
This chapter is not intended as a comprehensive course in numerical methods. Rather it deals, and
only in a rather basic way, with the very common problems of numerical integration and the solution
of simple (and not so simple!) equations. Specialist astronomers today can generate most of the
planetary tables for themselves; but those who are not so specialized still have a need to look up data
in tables.

1.1: INTRODUCTION TO NUMERICAL METHODS
1.2: NUMERICAL INTEGRATION
There are many occasions when one may wish to integrate an expression numerically rather than
analytically. Sometimes one cannot find an analytical expression for an integral, or, if one can, it is
so complicated that it is just as quick to integrate numerically as it is to tabulate the analytical expression. Or one may have a table of
numbers to integrate rather than an analytical equation.

1.3: QUADRATIC EQUATIONS
1.4: THE SOLUTION OF F(X) = 0
1.5: THE SOLUTION OF POLYNOMIAL EQUATIONS
The Newton-Raphson method is very suitable for the solution of polynomial equations.

1.6: FAILURE OF THE NEWTON-RAPHSON METHOD
In nearly all cases encountered in practice Newton-Raphson method is very rapid and does not require a particularly good first guess.
Nevertheless for completeness it should be pointed out that there are rare occasions when the method either fails or converges rather
slowly.

1.7: SIMULTANEOUS LINEAR EQUATIONS, N = N
1.8: SIMULTANEOUS LINEAR EQUATIONS, N > N
1.9: NONLINEAR SIMULTANEOUS EQUATIONS
1.10: 1.10- BESSELIAN INTERPOLATION
1.11: FITTING A POLYNOMIAL TO A SET OF POINTS - LAGRANGE POLYNOMIALS AND LAGRANGE
INTERPOLATION
1.12: FITTING A LEAST SQUARES STRAIGHT LINE TO A SET OF OBSERVATIONAL POINTS
1.13: FITTING A LEAST SQUARES POLYNOMIAL TO A SET OF OBSERVATIONAL POINTS
1.14: LEGENDRE POLYNOMIALS
1.15: GAUSSIAN QUADRATURE - THE ALGORITHM
1.16: GAUSSIAN QUADRATURE - DERIVATION
1.17: FREQUENTLY-NEEDED NUMERICAL PROCEDURES
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1.1: Introduction to Numerical Methods
I believe that, when I was a young student, I had some vague naive belief that every Equation had as its solution an explicit
algebraic formula, and every function to be integrated had a similar explicit analytical function for the answer. It came as quite
an eye-opener to me when I began to realize that this was far from the case. There are many mathematical operations for
which there is no explicit formula, and yet more for which numerical solutions are either easier, or quicker or more convenient
than algebraic solutions. I also remember being impressed as a student with the seemingly endless number of "special
functions" whose properties were listed in textbooks and which I feared I would have to memorize and master. Of course, we
now have computers, and over the years I have come to realize that it is often easier to generate numerical solutions to
problems rather than try to express them in terms of obscure special functions with which few people are honestly familiar.
Now, far from believing that every problem has an explicit algebraic solution, I suspect that algebraic solutions to problems
may be a minority, and numerical solutions to many problems are the norm.

This chapter is not intended as a comprehensive course in numerical methods. Rather it deals, and only in a rather basic way,
with the very common problems of numerical integration and the solution of simple (and not so simple!) Equations. Specialist
astronomers today can generate most of the planetary tables for themselves; but those who are not so specialized still have a
need to look up data in tables such as The Astronomical Almanac, and I have therefore added a brief section on interpolation,
which I hope may be useful. While any of these topics could be greatly expanded, this section should be useful for many
everyday computational purposes.

I do not deal in this introductory chapter with the huge subject of differential Equations. These need a book in themselves.
Nevertheless, there is an example I remember from student days that has stuck in my mind ever since. In those days,
calculations were done by hand-operated mechanical calculators, one of which I still fondly possess, and speed and efficiency,
as well as accuracy, were a prime concern - as indeed they still are today in an era of electronic computers of astonishing
speed. The problem was this: Given the differential Equation

with initial conditions  when , tabulate  as a function of . It happens that the differential Equation can readily be
solved analytically:

Yet it is far quicker and easier to tabulate  as a function of  using numerical techniques directly from the original differential
Equation  than from its analytical solution .

Contributors and Attributions
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1.2: Numerical Integration
There are many occasions when one may wish to integrate an expression numerically rather than analytically. Sometimes one
cannot find an analytical expression for an integral, or, if one can, it is so complicated that it is just as quick to integrate
numerically as it is to tabulate the analytical expression. Or one may have a table of numbers to integrate rather than an
analytical Equation. Many computers and programmable calculators have internal routines for integration, which one can call
upon (at risk) without having any idea how they work. It is assumed that the reader of this chapter, however, wants to be able
to carry out a numerical integration without calling upon an existing routine that has been written by somebody else.

There are many different methods of numerical integration, but the one known as Simpson's Rule is easy to program, rapid to
perform and usually very accurate. (Thomas Simpson, 1710 - 1761, was an English mathematician, author of A New Treatise
on Fluxions.)

Suppose we have a function  that we wish to integrate between two limits. We calculate the value of the function at the
two limits and halfway between, so we now know three points on the curve. We then fit a parabola to these three points and
find the area under that.

In the figure ,  is the function we wish to integrate between the limits  and . In other words, we wish to
calculate the area under the curve. ,  and  are the values of

 Simpson's Rule gives us the area under the parabola (dashed curve) that passes through three points on the curve
. This is approximately equal to the area under .

the function at  and , and  is the parabola passing through the points , 
 and .

If the parabola is to pass through these three points, we must have

We can solve these Equations to find the values of ,  and . These are

y(x)

I.1 y(x) −δxx2 +δxx2

y1 y2 y3

FIGURE I.1
y = y(x) y = y(x)

− ,  x2 δx x2 +x2 δx y = a+bx+cx2 ( −δx, )x2 y1

( , )x2 y2 ( +δx, )x2 y3

= a+b( −δx) +c( −δxy1 x2 x2 )2 (1.2.1)

= a+bx+cy2 x2 (1.2.2)

= a+b( +δx) +c( +δxy3 x2 x2 )2 (1.2.3)

a b c
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Now the area under the parabola (which is taken to be approximately the area under ) is

On substituting the values of ,  and , we obtain for the area under the parabola

and this is the formula known as Simpson's Rule.

For an example, let us evaluate .

We shall evaluate the function at the lower and upper limits and halfway between. Thus

The interval between consecutive values of  is .

Hence Simpson's Rule gives for the area

which, to three significant figures, is . Graphs of  and  are shown in figure . The values of ,  and 
, obtained from the formulas above, are

a = − +y2
( − )x2 y3 y1

2δx

( −2 + )x2
2 y3 y2 y1

2(δx)2
(1.2.4)

b = −
−y3 y1

2δx

( −2 + )x2 y3 y2 y1

(δx)2
(1.2.5)

c =
−2 +y3 y2 y1

2(δx)2
(1.2.6)

y(x)

(a+bx+c )dx = 2 [a+b +c + c(δx ] δx∫
+δxx2

−δxx2

x2 x2 x2
2

1

3
)2 (1.2.7)

a b c

( +4 + )δx
1

3
y1 y2 y3 (1.2.8)
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The result we have just obtained is quite spectacular, and we are not always so lucky. Not all functions can be approximated so
well by a parabola. But of course the interval  was ridiculously coarse. In practice we subdivide the interval into
numerous very small intervals. For example, consider the integral

Let us subdivide the interval  to  into ten intervals of width  each. We shall evaluate the function at the end points
and the nine points between, thus:

The integral from  to  is  being the interval . The integral from  to  is 
. And so on, until we reach the integral from  to . When we add all of these up, we obtain

for the integral from  to ,

which comes to .

We see that the calculation is rather quick, and it is easily programmable (try it!). But how good is the answer? Is it good to
three significant figures? Four? Five?

Since it is fairly easy to program the procedure for a computer, my practice is to subdivide the interval successively into , 
,  subintervals, and see whether the result converges. In the present example, with  subintervals, I found the

following results:

This shows that, even with a course division into ten intervals, a fairly good result is obtained, but you do have to work for
more significant figures. I was using a mainframe computer when I did the calculation with  intervals, and the answer
was displayed on my screen in what I would estimate was about one fifth of a second.

There are two more lessons to be learned from this example. One is that sometimes a change of variable will make things very
much faster. For example, if one makes one of the (fairly obvious?) trial substitutions ,  or ,
the integral becomes

δx = π/4

2x sinx dx.∫
π/4

0
cos

3

2

0 π/4 π/40

x

0

π/40

2π/40

3π/40

4π/40

5π/40
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7π/40

8π/40

9π/40

10π/40

x sinxdxcos
3

2

= 0.000 000 000y1
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= 0.145 091 486y3

= 0.196 339 002y4

= 0.224 863 430y5

= 0.227 544 930y6

= 0.204 585 473y7

= 0.159 828 877y8

= 0.100 969 971y9

= 0.040 183 066y10

= 0.000 000 000y11

0 2π/40 ( +4 + )δx,  δx1
3
y1 y2 y3 π/40 3π/40 4π/40

( +4 + )δx1
3
y3 y4 y5 8π/40 10π/40

0 π/4

( +4 +2 +4 +2 +. . . . . . +4 + ) δx
1

3
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Not only is it very much faster to calculate any of these integrands than the original trigonometric expression, but I found the
answer  by Simpson's rule on the third of these with only  intervals rather than , the answer
appearing on the screen apparently instantaneously. (The first two required a few more intervals.)

To gain about one fifth of a second may appear to be of small moment, but in truth the computation went faster by a factor of
several hundred. One sometimes hears of very large computations involving massive amounts of data requiring overnight
computer runs of eight hours or so. If the programming speed and efficiency could be increased by a factor of a few hundred,
as in this example, the entire computation could be completed in less than a minute.

The other lesson to be learned is that the integral does, after all, have an explicit algebraic form. You should try to find it, not
only for integration practice, but to convince yourself that there are indeed occasions when a numerical solution can be found

faster than an analytic one! The answer, by the way, is 

You might now like to perform the following integration numerically, either by hand calculator or by computer.

At first glance, this may look like just another routine exercise, but you will very soon find a small difficulty and wonder what
to do about it. The difficulty is that, at the upper limit of integration, the integrand becomes infinite. This sort of difficulty,
which is not infrequent, can often be overcome by means of a change of variable. For example, let , and the
integral becomes

and the difficulty has gone. The reader should try to integrate this numerically by Simpson's rule, though it may also be noted
that it has an exact analytic answer, namely .

Here is another example. It can be shown that the period of oscillation of a simple pendulum of length  swinging through 
on either side of the vertical is

As in the previous example, the integrand becomes infinite at the upper limit. I leave it to the reader to find a suitable change
of variable such that the integrand is finite at both limits, and then to integrate it numerically. (If you give up, see Section
1.13.) Unlike the last example, this one has no simple analytic solution in terms of elementary functions. It can be written in
terms of special functions (elliptic integrals) but they have to be evaluated numerically in any case, so that is of little help. I
make the answer

For another example, consider

This integral occurs in the theory of blackbody radiation. To help you to visualize the integrand, it and its first derivative are
zero at  and  and it reaches a maximum value of  at . The difficulty this time is the
infinite upper limit. But, as in the previous two examples, we can overcome the difficulty by making a change of variable. For
example, if we let , the integral becomes

(2 −1 dy, dy or dy.∫
1

1/ 2√
y2 )3/2 ∫

1

0

y3
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− −−−−−−

√ ∫
1

0

y4
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l 90∘
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∞
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The integrand is zero at both limits and is easily calculable between, and the value of the integral can now be calculated by
Simpson's rule in a straightforward way. It also has an exact analytic solution, namely , though it is hard to say whether
it is easier to arrive at this by analysis or by numerical integration.

Here’s another:

The immediate difficulty is the infinite upper limit, but that is easily dealt with by making a change of variable: .
The integral then becomes

in which . The upper limit is now finite, and the integrand is easy to compute - except, perhaps, at the upper limit.
However, after some initial hesitation the reader will probably agree that the integrand is zero at the upper limit. The integrand
looks like this:

It reaches a maximum of  at . Simpson’s rule easily gave me an answer of . The
integral has an analytic solution (try it) of .

There are, of course, methods of numerical integration other than Simpson’s rule. I describe one here without proof. I call it
“seven-point integration”. It may seem complicated, but once you have successfully programmed it for a computer, you can
forget the details, and it is often even faster and more accurate than Simpson’s rule. You evaluate the function at  points,
where  is an integer, so that there are  intervals. If, for example, , you evaluate the function at  points, including
the lower and upper limits of integration. The integral is then:

where  is the size of the interval, and

and

, where c = cotθ = 1/x.∫
π/2

0

( +1)dθc3 c2

−1ec

/15π4

∫
∞

0

dxx2

( +9)( +4x2 x2 )2

x = tanθ

∫
π/2

θ=0

t(t+1)dθ

(t+9)(t+4)2

t = θtan2

0.029 5917 θ = .789 96271∘ 0.015 708
π/200

6n+1
n 6n n = 4 25

f(x)dx = 0.3 ×( +2 +5 +6 )δx,∫
b

a

Σ1 Σ2 Σ3 Σ4 (1.2.9)

δx

= + + + + + + + + + ,Σ1 f1 f3 f5 f9 f11 f15 f17 f21 f23 f25 (1.2.10)

= + + ,Σ2 f7 f13 f19 (1.2.11)

= + + + + + + +Σ3 f2 f6 f8 f12 f14 f18 f20 f24 (1.2.12)

= + + + .Σ4 f4 f10 f16 f22 (1.2.13)
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Here, of course,  and . You can try this on the functions we have already integrated by Simpson’s rule,
and see whether it is faster.

Let us try one last integration before moving to the next section. Let us try

This can easily (!) be integrated analytically, and you might like to show that it is

However, our purpose in this section is to learn some skills of numerical integration. Using Simpson’s rule, I obtained the
above answer to seven decimal places with  intervals. With seven-point integration, however, I used only  intervals to
achieve the same precision, a reduction of . Either way, the calculation on a fast computer was almost instantaneous.
However, had it been a really lengthy integration, the greater efficiency of the seven point integration might have saved hours.
It is also worth noting that  is faster to compute than . Also, if we make the substitution y = 2x, the integral
becomes

This reduces the number of multiplications to be done from  to  – i.e. a further reduction of one third. But we have still
not done the best we could do. Let us look at the function , in figure I.2b:

We see that beyond , our efforts have been largely wasted. We don’t need such fine intervals of integration. I find that I
can obtain the same level of precision − i.e. an answer of  − using 48 intervals from  to  and  intervals
from  to . Thus, by various means we have reduced the number of times that the function had to be evaluated from our
original  to , as well as reducing the number of multiplications each time by a third, a reduction of computing time by 

. This last example shows that it often advantageous to use fine intervals of integration only when the function is rapidly
changing (i.e. has a large slope), and to revert to coarser intervals where the function is changing only slowly.

The Gaussian quadrature method of numerical integration is described in Sections 1.15 and 1.16.
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1.3: Quadratic Equations
Any reader of this book will know that the solutions to the quadratic Equation

are

and will have no difficulty in finding that the solutions to

are

We are now going to look, largely for fun, at two alternative iterative numerical methods of solving a quadratic Equation. One
of them will turn out not to be very good, but the second will turn out to be sufficiently good to merit our serious attention.

In the first method, we re-write the quadratic Equation in the form

We guess a value for one of the solutions, put the guess in the right hand side, and hence calculate a new value for . We
continue iterating like this until the solution converges.

For example, let us guess that a solution to the Equation  is . Successive iterations produce
the values

We did eventually arrive at the correct answer, but it was very slow indeed even though our first guess was so close to the
correct answer that we would not have been likely to make such a good first guess accidentally.

Let us try to obtain the second solution, and we shall try a first guess of 1.10, which again is such a good first guess that we
would not be likely to arrive at it accidentally. Successive iterations result in

and we are getting further and further from the correct answer!

Let us try a better first guess of 1.05. This time, successive iterations result in

a +bx +c = 0x
2 (1.3.1)

x =
−b ± −4acb2

− −−−−−−
√

2a
(1.3.2)

2.9 −4.7x +1.7 = 0x
2

x = 1.0758 or 0.5449.

x =
−(a +c)x2

b

x

2.9 −4.7x +1.7 = 0x
2

x = 0.55

0.54835

0.54723

0.54648

0.54597

0.54562

0.54539

0.54524

0.54513

0.54506

0.54501

0.54498

0.54496

0.54495

0.54494

0.54493

0.54493

0.54494

0.54492

1.10830

1.11960

1.13515

1.04197

1.03160

1.01834
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Again, we are getting further and further from the solution.

No more need be said to convince the reader that this is not a good method, so let us try something a little different.

We start with

Add  to each side:

or

Solve for :

This is just the original Equation written in a slightly rearranged form. Now let us make a guess for , and iterate as before.
This time, however, instead of making a guess so good that we are unlikely to have stumbled upon it, let us make a very stupid
first guess, for example . Successive iterations then proceed as follows.

and the solution converged rapidly in spite of the exceptional stupidity of our first guess. The reader should now try another
very stupid first guess to try to arrive at the second solution. I tried , which is very stupid indeed, but I found
convergence to the solution  after just a few iterations.

Even although we already know how to solve a quadratic Equation, there is something intriguing about this. What was the
motivation for adding  to each side of the Equation, and why did the resulting minor rearrangement lead to rapid
convergence from a stupid first guess, whereas a simple direct iteration either converged extremely slowly from an impossibly
good first guess or did not converge at all?

Contributors and Attributions
Jeremy Tatum (University of Victoria, Canada)

a +bx = −cx
2 (1.3.3)

ax
2

2a +bx = a −cx
2

x
2 (1.3.4)

(2ax +b)x = a −cx
2 (1.3.5)

x

x =
a −cx

2

2ax +b
(1.3.6)

x
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1.4: The Solution of f(x) = 0
The title of this section is intended to be eye-catching. Some Equations are easy to solve; others seem to be more difficult. In
this section, we are going to try to solve any Equation at all of the form  (which covers just about everything!) and
we shall in most cases succeed with ease.

Figure I.3 shows a graph of the Equation . We have to find the value (or perhaps values) of  such that .

We guess that the answer might be , for example. We calculate . It won't be zero, because our guess is wrong. The
figure shows our guess , the correct value , and . The tangent of the angle  is the derivative , but we cannot
calculate the derivative there because we do not yet know . However, we can calculate , which is close. In any case 

, or , is approximately equal to , so that

will be much closer to the true value than our original guess was. We use the new value as our next guess, and keep on
iterating until

is less than whatever precision we desire. The method is usually extraordinarily fast, even for a wildly inaccurate first guess.
The method is known as Newton-Raphson iteration. There are some cases where the method will not converge, and stress is
often placed on these exceptional cases in mathematical courses, giving the impression that the Newton-Raphson process is of
limited applicability. These exceptional cases are, however, often artificially concocted in order to illustrate the exceptions (we
do indeed cite some below), and in practice Newton-Raphson is usually the method of choice.

I shall often drop the clumsy subscript , and shall write the Newton-Raphson scheme as

meaning "start with some value of , calculate the right hand side, and use the result as a new value of ". It may be objected
that this is a misuse of the  symbol, and that the above is not really an "Equation", since  cannot equal  minus something.
However, when the correct solution for  has been found, it will satisfy , and the above is indeed a perfectly good
Equation and a valid use of the  symbol.

Solve the Equation 

f(x) = 0

y = f(x) x f(x) = 0

xg f( )xg

xg x f( )xg θ (x)f ′

x ( )f ′ xg

tanθ ( )f ′ xg f( )/( −x)xg xg

x ≈ −xg

f( )xg

( )f ′ xg

(1.4.1)

∣

∣
∣

−xxg

xg

∣

∣
∣

FIGURE I.3

g

x = x −f(x)/ (x),f ′ (1.4.2)

x x

= x x

x f(x) = 0

=

Example 1.4.1

1/x = lnx
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We have 

And ,

from which  becomes, after some simplification,

so that the Newton-Raphson iteration is

There remains the question as to what should be the first guess. We know (or should know!) that  and 
, so the answer must be somewhere between  and . If we try , successive iterations are

This converged quickly from a fairly good first guess of . Very often the Newton-Raphson iteration will converge,
even rapidly, from a very stupid first guess, but in this particular example there are limits to stupidity, and the reader
might like to prove that, in order to achieve convergence, the first guess must be in the range

Solve the unlikely Equation 

We have  and ,

and after some simplification the Newton-Raphson iteration becomes

Graphs of  and  will provide a first guess, but in lieu of that and without having much idea of what the answer
might be, we could try a fairly stupid . Subsequent iterations produce

Solve the Equation  (A new way of finding square roots!)

After a little simplification, the Newton-Raphson process becomes

f = 1/x −lnx = 0

= −(1 +x)/f ′ x2

x −f/f ′

,
x[2 +x(1 −lnx)]

1 +x

x = .
x[2 +x(1 −lnx)]

1 +x

ln1 = 0

ln2 = 0.6931 1 2 x = 1.5

1.735 081 403

1.762 915 391

1.763 222 798

1.763 222 834

1.763 222 835

1.5

0 < x < 4.319 136 566

Example 1.4.2

sinx = lnx

f = sinx −lnx = cos x −1/xf ′

x = x [1 + ] .
lnx −sinx

x cos x −1

sinx lnx

x = 1

2.830 487 722

2.267 902 211

2.219 744 452

2.219 107 263

2.219 107 149

2.219 107 149

Example 1.4.3

= ax2

f = −a, = 2x.x2 f ′

x = .
+ax2

2x
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For example, what is the square root of 10? Guess 3. Subsequent iterations are

Solve the Equation  (A new way of solving quadratic Equations!)

Newton-Raphson:

which becomes, after simplification,

This is just the iteration given in the previous section, on the solution of quadratic Equations, and it shows why the
previous method converged so rapidly and also how I really arrived at the Equation (which was via the Newton-Raphson
process, and not by arbitrarily adding  to both sides!)
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= 2ax +b.f ′
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1.5: The Solution of Polynomial Equations
The Newton-Raphson method is very suitable for the solution of polynomial Equations, for example for the solution of a
quintic Equation:

Before illustrating the method, it should be pointed out that, even though it may look inelegant in print, in order to evaluate a
polynomial expression numerically it is far easier and quicker to nest the parentheses and write the polynomial in the form

Working from the inside out, we see that the process is a multiplication followed by an addition, repeated over and over. This
is very easy whether the calculation is done by computer, by calculator, or in one's head.

For example, evaluate the following expression in your head, for :

You couldn't? But now evaluate the following expression in your head for  and see how (relatively) easy it is:

As an example of how efficient the nested parentheses are in a computer program, here is a FORTRAN program for
evaluating a fifth degree polynomial. It is assumed that the value of x has been defined in a FORTRAN variable called X,
and that the six coefficients  have been stored in a vector as .

The calculation is finished!

We return now to the solution of

We have

Now

and after simplification,

which is now ready for numerical iteration.

For example, let us solve

A reasonable first guess could be obtained by drawing a graph of this function to see where it crosses the -axis, but, truth to
tell, the Newton-Raphson process usually works so well that one need spend little time on a first guess; just use the first
number that comes into your head, for example, . Subsequent iterations then go

+ x + + + + = 0.a0 a1 a2x2 a3x3 a4x4 a5x5 (1.5.1)

+x( +x( +x( +x( +x )))).a0 a1 a2 a3 a4 a5 (1.5.2)

x = 4

2 −7x +2 −8 −2 +3 .x2 x3 x4 x5

x = 4

2 +x(−7 +x(2 +x(−8 +x(−2 +3x)))).

Fortran

, , . . .a0 a1 a5 A(1),  A(2), . . .  A(6)

Y = 0.

DO1I = 1, 5

1 Y = (Y + A(7 −I) X)∗

Y = Y +A(1)

f(x) = + x + + + + = 0.a0 a1 a2x2 a3x3 a4x4 a5x5 (1.5.3)

(x) = +2 x +3 +4 +5 .f ′ a1 a2 a3x2 a4x3 a5x4 (1.5.4)

x = x −f/ ,f ′ (1.5.5)

x = ,
− + ( +x(2 +x(3 +4 x)))a0 x2 a2 a3 a4 a5

+x(2 +x(3 +x(4 +5 x)))a1 a2 a3 a4 a5
(1.5.6)

205 +111x +4 −31 −10 +3 = 0x2 x3 x4 x5 (1.5.7)

x

x = 0
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A question that remains is: How many solutions are there? The general answer is that an nth degree polynomial Equation has n
solutions. This statement needs to be qualified a little. For example, the solutions need not be real. The solutions may be
imaginary, as they are, for example, in the Equation

or complex, as they are, for example, in the Equation

If the solutions are real they may not be distinct. For example, the Equation

has two solutions at , and the reader may be forgiven for thinking that this somewhat stretches the meaning of "two
solutions". However, if one includes complex roots and repeated real roots, it is then always true that an th degree
polynomial has  solutions. The five solutions of the quintic Equation we solved above, for example, are

Can one tell in advance how many real roots a polynomial Equation has? The most certain way to tell is to plot a graph of the
polynomial function and see how many times it crosses the -axis. However, it is possible to a limited extent to determine in
advance how many real roots there are. The following "rules" may help. Some will be fairly obvious; others require proof.

The number of real roots of a polynomial of odd degree is odd. Thus a quintic Equation can have one, three or five real roots.
Not all of these roots need be distinct, however, so this is of limited help. Nevertheless a polynomial of odd degree always has
at least one real root. The number of real roots of an Equation of even degree is even - but the roots need not all be distinct,
and the number of real roots could be zero.

An upper limit to the number of real roots can be determined by examining the signs of the coefficients. For example, consider
again the Equation

The signs of the coefficients, written in order starting with , are

Run your eye along this list, and count the number of times there is a change of sign. The sign changes twice. This tells us that
there are not more than two positive real roots. (If one of the coefficients in a polynomial Equation is zero, i.e. if one of the
terms is "missing", this does not count as a change of sign.)

Now change the signs of all coefficients of odd powers of :

This time there are three changes of sign. This tells us that there are not more than three negative real roots.

In other words, the number of changes of sign in  gives us an upper limit to the number of positive real roots, and the
number of changes of sign in  gives us an upper limit to the number of negative real roots.

1.846 847

−1.983 713

−1.967 392

−1.967 111

−1.967 110

1 + = 0x2 (1.5.8)

1 +x + = 0.x2 (1.5.9)

1 −2x + = 0x2 (1.5.10)

x = 1

n

n

4.947 845

2.340 216

−1.967 110

−0.993 808

−0.993 808

+

−

1.418 597i

1.418 597i

x

205 +111x +4 −31 −10 +3 = 0.x2 x3 x4 x5 (1.5.11)

a0

+++−−+

x

+−++−−
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One last "rule" is that complex roots occur in conjugate pairs. In our particular example, these rules tell us that there are not
more than two positive real roots, and not more than three negative real roots. Since the degree of the polynomial is odd, there
is at least one real root, though we cannot tell whether it is positive or negative.

In fact the particular Equation, as we have seen, has two positive real roots, one negative real root, and two conjugate complex
roots.
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1.6: Failure of the Newton-Raphson Method
This section is written reluctantly, for fear it may give the impression that the Newton-Raphson method frequently fails and is
of limited usefulness. This is not the case; in nearly all cases encountered in practice it is very rapid and does not require a
particularly good first guess. Nevertheless for completeness it should be pointed out that there are rare occasions when the
method either fails or converges rather slowly.

One example is the quintic Equation that we have just encountered:

When we chose  as our first guess, we reached a solution fairly quickly. If we had chosen , we would not have
been so lucky, for the first iteration would have taken us to − , a very long way from any of the real solutions. Repeated
iteration will eventually take us to the correct solution, but only after many iterations. This is not a typical situation, and
usually almost any guess will do.

Another example of an Equation that gives some difficulty is

an Equation that occurs in the theory of single-slit diffraction.

We have

and

The Newton-Raphson process takes the form

The solution is , but in order to achieve this the first guess must be between  and . This again is unusual,
and in most cases almost any reasonable first guess results in rapid convergence.

The Equation

is an obvious candidate for difficulties. The four identical solutions are , but at  not only is  zero, but so is 
. As the solution  is approached, convergence becomes very slow, but eventually the computer or calculator will

record an error message as it attempts to divide by the nearly zero .

I mention just one last example very briefly. When discussing orbits, we shall encounter an Equation known as Kepler's
Equation. The Newton-Raphson process almost always solves Kepler's Equation with spectacular speed, even with a very poor
first guess. However, there are some very rare occasions. almost never encountered in practice, where the method fails. We
shall discuss this Equation in Chapter 9.
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205 +111x +4 −31 −10 +5 = 0x2 x3 x4 x5 (1.6.1)

x = 0 x = 1

281

x = tanx, (1.6.2)

f(x) = x −tanx = 0 (1.6.3)

(x) = 1 − x = − x.f ′ sec2 tan2 (1.6.4)

x = x + .
x −tanx

xtan2
(1.6.5)

x = 4.493 409 4.3 4.7

1 −4x +6 −4 + = 0x2 x3 x4 (1.6.6)

x = 1 x = 1 f(x)

(x)f ′ x = 1

(x)f ′
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1.7: Simultaneous Linear Equations, N = n
Consider the Equations

There are two well-known methods of solving these Equations. One of these is called Cramer's Rule. Let  be the determinant
of the coefficients. Let  be the determinant obtained by substituting the column vector of the constants 
for the th column in . Then the solutions are

This is an interesting theorem in the theory of determinants. It should be made clear, however, that, when it comes to the
practical numerical solution of a set of linear Equations that may be encountered in practice, this is probably the most
laborious and longest method ever devised in the history of mathematics.

The second well-known method is to write the Equations in matrix form:

Here  is the matrix of the coefficients,  is the column vector of unknowns, and  is the column vector of the constants. The
solutions are then given by

where  is the inverse or reciprocal of . Thus the problem reduces to inverting a matrix. Now inverting a matrix is
notoriously labour-intensive, and, while the method is not quite so long as Cramer's Rule, it is still far too long for practical
purposes.

How, then, should a system of linear Equations be solved?

Consider the Equations

Few would have any hesitation in multiplying the first Equation by 3, the second Equation by 7, and subtracting. This is what
we were all taught in our younger days, but few realize that this remains, in spite of knowledge of determinants and matrices,
the fastest and most efficient method of solving simultaneous linear Equations. Let us see how it works with a system of
several Equations in several unknowns.

Consider the Equations

We first eliminate  from the Equations, leaving four Equations in four unknowns. Then we eliminate , leaving three
Equations in three unknowns. Then , and then , finally leaving a single Equation in one unknown. The following table
shows how it is done.

+ + + + =a11x1 a12x2 a13x3 a14x4 a15x5 b1 (1.7.1)

+ + + + =a21x1 a22x2 a23x3 a24x4 a25x5 b2 (1.7.2)

+ + + + =a31x1 a32x2 a33x3 a34x4 a35x5 b3 (1.7.3)

+ + + + =a41x1 a42x2 a43x3 a44x4 a45x5 b4 (1.7.4)

+ + + + =a51x1 a52x2 a53x3 a54x4 a55x5 b5 (1.7.5)

D

Di ,   ,   ,   ,  b1 b2 b3 b4 b5

i D

= /Dxi Di (1.7.6)

Ax = b (1.7.7)

A x b

x = b,A
−1 (1.7.8)

A
−1

A

7x −2y = 24 (1.7.8)

3x +9y = 30 (1.7.9)

9 −9 +8 −6 +4 = −9x1 x2 x3 x4 x5 (1.7.10)

5 − +6 + +5 = 58x1 x2 x3 x4 x5 (1.7.11)

2 +4 −5 −6 +7 = −1x1 x2 x3 x4 x5 (1.7.12)

2 +3 −8 −5 −2 = −49x1 x2 x3 x4 x5 (1.7.13)

8 −5 +7 + +5 = 42x1 x2 x3 x4 x5 (1.7.14)

x1 x2

x3 x4
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In columns 2 to 5 are listed the coefficients of , , ,  and , and in column 6 are the constant terms on the right hand
side of the Equations. Thus columns 2 to 6 of the first five rows are just the original Equations. Column 7 is the sum of the
numbers in columns 2 to 6, and this is a most important column. The boldface numbers in column 1 are merely labels.

Lines 6 to 9 show the elimination of . Line 6 shows the elimination of  from lines 1 and 2 by multiplying line 2 by 9 and
line 1 by 5 and subtracting. The operation performed is recorded in column 1. In line 7,  is eliminated from Equations 1 and
3 and so on.

The purpose of  ? This column is of great importance. Whatever operation is performed on the previous columns is also
performed on , and  must remain the sum of the previous columns. If it does not, then an arithmetic mistake has been
made, and it is immediately detected. There is nothing more disheartening to discover at the very end of a calculation that a
mistake has been made and that one has no idea where the mistake occurred. Searching for mistakes takes far longer than the
original calculation. The -column enables one to detect and correct a mistake as soon as it has been made.

We eventually reach line 15, which is

from which

 can now easily be found from either or both of lines 13 and 14,  can be found from any or all of lines 10, 11 and 12, and
so on. When the calculation is complete, the answers should be checked by substitution in the original Equations (or in the
sum of the five Equations). For the record, the solutions are  and .

Of course, if you have only two simultaneous Equations to solve, it is easy to write down explicit algebraic expressions for the
solutions, and that may be the fastest and most efficient way of doing it. Thus, if

and

the solutions are

x1 x2 x3 x4 x5

x1 x1

x1

1

2

3

4

5

6 = 9 ×2 −5 ×1

7 = 2 ×1 −9 ×3

8 = 3 −4

9 = 4 ×3 −5

10 = 3 ×6 +2 ×7

11 = 6 −36 ×8

12 = 7 ×6 −12 ×9

13 = 47 ×10 +82 ×11

14 = 211 ×11 +47 ×12

15 = 5199 ×14 −14252 ×13

x1

9

5

2

2

8

x2

−9

−1

4

3

−5

36

−54

1

21

x3

8

6

−5

−8

7

14

61

3

−27

164

−94

422

x4

−6

1

−6

−5

1

39

42

−1

−25

201

75

573

15 597

42 756

x5

4

5

7

−2

5

25

−55

9

23

−35

−299

−101

−26 163

−67 836

20 195 712

b

−9

58

−1

−49

42

567

−9

48

−46

1 683

−1 161

4 521

−16 101

−32 484

60 587 136

∑

−3

74

1

−59

58

681

−15

60

−54

2 013

−1 479

5 415

−26 667

−57 654

80 782 848

(1.7.15)

Σ

Σ Σ

Σ

20 195 712 = 60 587 136,x5 (1.7.16)

= 3.x5 (1.7.17)

x4 x3

= 2,   = 7,   = 6,   = 4x1 x2 x3 x4 = 3x5

x + y =a11 a12 b1 (1.7.9)

x + y = ,a21 a22 b2 (1.7.10)
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and

where
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x = c( − )b1a22 b2a12 (1.7.11)

y = c( − ),b2a11 b1a21 (1.7.12)

c = 1/( − ).a11a22 a12a21 (1.7.18)
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1.8: Simultaneous Linear Equations, N > n
Consider the following Equations

Here we have five Equations in only three unknowns, and there is no solution that will satisfy all five Equations exactly. We
refer to these Equations as the Equations of condition. The problem is to find the set of values of ,  and  that, while not
satisfying any one of the Equations exactly, will come closest to satisfying all of them with as small an error as possible. The
problem was well stated by Carl Friedrich Gauss in his famous Theoria Motus. In 1801 Gauss was faced with the problem of
calculating the orbit of the newly discovered minor planet Ceres. The problem was to calculate the six elements of the
planetary orbit, and he was faced with solving more than six Equations for six unknowns. In the course of this, he invented the
method of least squares. It is hardly possible to describe the nature of the problem more clearly than did Gauss himself:

"...as all our observations, on account of the imperfection of the instruments and the senses, are only approximations to the
truth, an orbit based only on the six absolutely necessary data may still be liable to considerable errors. In order to diminish
these as much as possible, and thus to reach the greatest precision attainable, no other method will be given except to
accumulate the greatest number of the most perfect observations, and to adjust the elements, not so as to satisfy this or that set
of observations with absolute exactness, but so as to agree with all in the best possible manner."

If we can find some set of values of ,  and  that satisfy our five Equations fairly closely, but without necessarily
satisfying any one of them exactly, we shall find that, when these values are substituted into the left hand sides of the
Equations, the right hand sides will not be exactly zero, but will be a small number known as the residual, .

Thus:

Gauss proposed a "best" set of values such that, when substituted in the Equations, gives rise to a set of residuals such that the
sum of the squares of the residuals is least. (It would in principle be possible to find a set of solutions that minimized the sum
of the absolute values of the residuals, rather than their squares. It turns out that the analysis and the calculation involved is a
good deal more difficult than minimizing the sum of the squares, with no very obvious advantage.) Let  be the sum of the
squares of the residuals for a given set of values of ,  and . If any one of the x-values is changed,  will change - unless

 is a minimum, in which case the derivative of  with respect to each variable is zero. The three Equations

express the conditions that the sum of the squares of the residuals is least with respect to each of the variables, and these three
Equations are called the normal Equations. If the reader will write out the value of  in full in terms of the variables , 
and , he or she will find, by differentiation of  with respect to ,  and  in turn, that the three normal Equations are

+ + + = 0a11x1 a12x2 a13x3 b1 (1.8.1)

+ + + = 0a21x1 a22x2 a23x3 b2 (1.8.2)

+ + + = 0a31x1 a32x2 a33x3 b3 (1.8.3)

+ + + = 0a41x1 a42x2 a43x3 b4 (1.8.4)

+ + + = 0a51x1 a52x2 a53x3 b5 (1.8.5)

x1 x2 x3

x1 x2 x3

R

+ + + =a11x1 a12x2 a13x3 b1 R1 (1.8.6)

+ + + =a21x1 a22x2 a23x3 b2 R2 (1.8.7)

+ + + =a31x1 a32x2 a33x3 b3 R3 (1.8.8)

+ + + =a41x1 a42x2 a43x3 b4 R4 (1.8.9)

+ + + =a51x1 a52x2 a53x3 b5 R5 (1.8.10)

S

x1 x2 x3 S

S S

= 0, = 0, = 0
∂S

∂x1

∂S

∂x2

∂S

∂x3
(1.8.11)

S x1 x2

x3 S x1 x3 x3

+ + + = 0A11x1 A12x2 A13x3 B1 (1.8.12)

+ + + = 0A12x1 A22x2 A23x3 B2 (1.8.13)
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where

and where each sum is from  to .

These three normal Equations, when solved for the three unknowns ,  and , will give the three values that will result in
the lowest sum of the squares of the residuals of the original five Equations of condition.

Let us look at a numerical example, in which we show the running checks that are made in order to detect mistakes as they are
made. Suppose the Equations of condition to be solved are

The column of numbers to the right of the Equations is the sum of the coefficients (including the constant term). Let us call
these numbers , , , , .

The three numbers below the Equations are 

Set up the normal Equations:

The column of numbers to the right of the normal Equations is the sum of the coefficients (including the constant term). These
numbers are equal to the row of numbers below the Equations of condition, and serve as a check that we have correctly set up
the normal Equations. The solutions to the normal Equations are

and these are the numbers that satisfy the Equations of condition such that the sum of the squares of the residuals is a
minimum.

I am going to suggest here that you write a computer program, in the language of your choice, for finding the least squares
solutions for  Equations in  unknowns. You are going to need such a program over and over again in the future – not least
when you come to Section 1.12 of this chapter!.
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+ + + = 0A13x1 A23x2 A33x3 B3 (1.8.14)

=∑ , =∑ , =∑ , =∑ ,A11 a
2
i1 A12 ai1ai2 A13 ai1ai3 B1 ai1bi (1.8.15)

=∑ , =∑ , =∑ ,A22 a
2
i2 A23 ai2ai3 B2 ai2bi (1.8.16)

=∑ , =∑ ,A33 a
2
i3 B3 ai3bi (1.8.17)

i = 1 i = 5

x1 x2 x3

7 −6 +8 −15 = 0 −6x1 x2 x3

3 +5 −2 −27 = 0 −21x1 x2 x3

2 −2 +7 −20 = 0 −13x1 x2 x3

4 +2 −5 −2 = 0 −1x1 x2 x3

9 −8 +7 −5 = 0 3x1 x2 x3

−108 −69 −71

s1 s2 s3 s4 s5

∑ , ∑ , ∑ai1si ai2si ai3si

159 −95 +107 −279 = 0 −108x1 x2 x3

−95 +133 −138 +31 = 0 −69x1 x2 x3

107 −138 +191 −231 = 0 −71x1 x2 x3

= 2.474 = 5.397 = 3.723x1 x2 x3

N n
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1.9: Nonlinear Simultaneous Equations
We consider two simultaneous Equations of the form

in which the Equations are not linear.

As an example, let us solve the Equations

in which  and  are constants whose values are assumed given in any particular case.

This may seem like an artificially contrived pair of Equations, but in fact a pair of Equations like this does appear in orbital
theory.

We suggest here two methods of solving the Equations.

In the first, we note that in fact  can be eliminated from the two Equations to yield a single Equation in :

where

and

This can be solved by the usual Newton-Raphson method, which is repeated application of . The derivative of 
 with respect to  is

where

and

In spite of what might appear at first glance to be some quite complicated Equations, it will be found that the Newton-Raphson
process, , is quite straightforward to program, although, for computational purposes,  and  are better
written as

and

Let us look at a particular example, say with  and . We must of course, make a first guess. In the orbital
application, described in Chapter 13, we suggest a first guess. In the present case, with  and , one way would be

f(x,  y) = 0, (1.9.1)

g(x,  y) = 0 (1.9.2)

=x2 a

b −cos y
(1.9.3)

− = ,x3 x2 a(y −siny cos y)

ysin3
(1.9.4)

a b

x y

F (y) = a − −2SR − = 0,R3 R2 S2 (1.9.5)

R = 1/(b −cos y) (1.9.5a)

S = (y −siny cos y)/ y.sin3 (1.9.5b)

y = y −F /F ′

F y

= 3a −2R −2( R +S ) −2SF ′ R2R′ R′ S ′ R′ S ′ (1.9.6)

= −R′ siny

(b −cos y)2
(1.9.6a)

=S ′
siny(1 −cos 2y) −3 cos y(y − sin2y)1

2

ysin4
(1.9.6b)

y = y −F /F ′ F F ′

F = − +R(−2S +R(−1 +aR)),S2 (1.9.7a)

= 3a −2(R +S)( + )F ′ R2R′ R′ S ′ (1.9.7b)

a = 36 b = 4

a = 36 b = 4
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to plot graphs of Equations  and  and see where they intersect. We have done this in Figure 1.4, from which we see
that y must be close to .

Equations  and  with  and .

With a first guess of , convergence to  is reached in two iterations, and either of the two original
Equations then gives .

We were lucky in this case in that we found we were able to eliminate one of the variables and so reduce the problem to a
single Equation on one unknown. However, there will be occasions where elimination of one of the unknowns may be
considerably more difficult or, in the case of two simultaneous transcendental Equations, impossible by algebraic means. The
following iterative method, an extension of the Newton-Raphson technique, can nearly always be used. We describe it for two
Equations in two unknowns, but it can easily be extended to  Equations in  unknowns.

The Equations to be solved are

As with the solution of a single Equation, it is first necessary to guess at the solutions. This might be done in some cases by
graphical methods. However, very often, as is common with the Newton-Raphson method, convergence is rapid even when the
first guess is very wrong.

Suppose the initial guesses are , , where ,  are the correct solutions, and  and  are the errors of our guess.
From a first-order Taylor expansion (or from common sense, if the Taylor expansion is forgotten),

Here  and  are the partial derivatives and of course . The same considerations apply to the second Equation,
so we arrive at the two linear Equations in the errors , :

These can be solved for  and :

These values of  and  are then subtracted from the first guess to obtain a better guess. The process is repeated until the
changes in  and  are as small as desired for the particular application. It is easy to set up a computer program for solving any

1.9.3 1.9.4

0.6

FIGURE 1.4

1.9.3 1.9.4 a = 36 b = 4

y = 0.6 y = 0.60292

x = 3.3666

n n

f(x,  y) = 0 (1.9.8)

g(x,  y) = 0. (1.9.9)

x +h y +k x y h k

f(x +h, y +k) ≈ f(x, y) +h +k .fx fy (1.9.10)

fx fy f(x,  y) = 0

h k

h + k = f ,fx fy (1.9.11)

h + k = g.gx gy (1.9.12)

h k

h = ,
f − ggy fy

=fxgy fygx

(1.9.13)

k = .
g − ffx gx

−fxgy fygx

(1.9.14)

h k

x y
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two Equations; all that will change from one pair of Equations to another are the definitions of the functions  and  and their
partial derivatives.

In the case of our example, we have

In the particular case where  and , we can start with a first guess (from the graph - Figure I.4) of  and
hence . Convergence to one part in a million is reached in three iterations, the solutions being , 

.

A simple application of these considerations arises if you have to solve a polynomial Equation , where there are no
real roots, and all solutions for  are complex. You then merely write  and substitute this in the polynomial
Equation. Then equate the real and imaginary parts separately, to obtain two Equations of the form

and solve them for x and y. For example, find the roots of the Equation

It will soon be found that we have to solve

It will have been observed that, in order to obtain the last Equation, we have divided through by , which is permissible, since
we know  to be complex. We also note that  now occurs only as , so it will simplify things if we let , and then
solve the Equations

It is then easy to solve either of these for  as a function of  and hence to graph the two functions (figure ):

f g

f = −x2 a

b −cos y
(1.9.15)

g = − −x3 x2 a(y −siny cos y)

ysin3
(1.9.16)

= 2xfx (1.9.17)

=fy

a siny

(b −cos y)2
(1.9.18)

= x(3x −2)gx (1.9.19)

=gy

a[3(y −siny cos y) cos y −2 y]sin3

ysin4
(1.9.20)

a = 36 b = 4 y = 0.6

x = 3.3 x = 3.3666

y = 0.60292

f(z) = 0

z z = x + iy

R(x,  y) = 0 (1.9.21)

I(x,  y) = 0 (1.9.22)

−5z +6 = 0.z4 (1.9.23)

R(x,  y) = −6 + −5x +6 = 0x4 x2y2 y4 (1.9.24)

I(x,  y) = 4 −4x −5 = 0x3 y2 (1.9.25)

y

z y y2 = Yy2

f(x, Y ) = −6 Y + −5x +6 = 0x4 x2 Y 2 (1.9.26)

g(x, Y ) = 4 −4xY −5 = 0x3 (1.9.27)

Y x I.5
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This enables us to make a first guess for the solutions, namely

and

We can then refine the solutions by the extended Newton-Raphson technique to obtain

so the four solutions to the original Equation are
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FIGURE I.5

x = −1.2, Y = 2.4

x = +1.2, Y = 0.25818

x = −1.15697, Y = 2.41899

x = +1.15697, Y = 0.25818

z = −1.15697 ±1.55531i

z = 1.15697 ±0.50812i
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1.10: 1.10- Besselian Interpolation
In the days before the widespread use of high-speed computers, extensive use was commonly made of printed tables of the
common mathematical functions. For example, a table of the Bessel function  would indicate

If one wanted the Bessel function for , one would have to interpolate between the tabulated values.

Today it would be easier simply to calculate the Bessel function for any particular desired value of the argument , and there is
less need today for printed tables or to know how to interpolate. Indeed, most computing systems today have internal routines
that will enable one to calculate the commoner functions such as Bessel functions even if one has only a hazy notion of what a
Bessel function is.

The need has not entirely passed, however. For example, in orbital calculations, we often need the geocentric coordinates of
the Sun. These are not trivial for the nonspecialist to compute, and it may be easier to look them up in The Astronomical
Almanac, where it is tabulated for every day of the year, such as, for example, July 14 and July 15. But, if one needs  for July
14.395, how does one interpolate?

In an ideal world, a tabulated function would be tabulated at sufficiently fine intervals so that linear interpolation between two
tabulated values would be adequate to return the function to the same number of significant figures as the tabulated points. The
world is not perfect, however, and to achieve such perfection, the tabulation interval would have to change as the function
changed more or less rapidly. We need to know, therefore, how to do nonlinear interpolation.

Suppose a function  is tabulated at  and , the interval  being . If one wishes to find the value of 
at , linear interpolation gives

where  and . Here it is assumed that is a fraction between  and ; if  is outside this range (that is
negative, or greater than ) we are extrapolating, not interpolating, and that is always a dangerous thing to do.

Let us now look at the situation where linear interpolation is not good enough. Suppose that a function  is tabulated for
four points  of the argument , the corresponding values of the function being . We wish to
evaluate  for , where  is the interval  or  or . The situation is illustrated in figure 

.

A possible approach would be to fit a polynomial to the four adjacent points:

We write down this Equation for the four adjacent tabulated points and solve for the coefficients, and hence we can evaluate
the function for any value of  that we like in the interval between  and . Unfortunately, this might well involve more
computational effort than evaluating the original function itself.

(x)J0

(1.7) = 0.397 984 859J0

(1.8) = 0.339 986 411J0

x = 1.762

x

y

y(x) x = x1 x = x2 −x2 x1 δx y

x+θδx

y( +θΔx) = +θ( − ) = θ +(1 −θ) ,x1 y1 y2 y1 y2 y1 (1.10.1)

= y( )y1 x1 = y( )y2 x2 0 1 θ

1

y(x)
,   ,   ,  x1 x2 x3 x4 x ,   ,   ,  y1 y2 y3 y4

y x = +θδxx2 δx −x2 x1 −x3 x2 −x4 x3

I.6A

y = a+bx+c +d .x2 x3 (1.10.1)
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The problem has been solved in a convenient fashion in terms of finite difference calculus, the logical development of which
would involve an additional substantial chapter beyond the intended scope of this book. I therefore just provide the method
only, without proof.

The essence of the method is to set up a table of differences as illustrated below. The first two columns are  and . The
entries in the remaining columns are the differences between the two entries in the column immediately to the left. Thus, for
example, , , etc.

Let us suppose that we want to find  for a value of  that is a fraction  of the way from  to . Bessel's interpolation
formula is then

Here the  are the Besselian interpolation coefficients, and the successive terms in parentheses in the expansion are the sums
of the numbers in the boxes in the table.

The Besselian coefficients are

and

The notation  means the coefficient of x m in the binomial expansion of .

Explicitly,

x y

= −δ4.5 y5 y4 = −δ2
4 δ4.5 δ3.5

y x θ x4 x5

y(x) = ( + ) + + ( + ) + + ( + )+. . .
1

2
y4 y5 B1δ4.5 B2 δ2

4 δ2
5 B3δ

3
4.5 B4 δ4

4 δ4
5 (1.10.3)

Bn

(θ) = ( ) if n is even,Bn

1

2

θ+ n−11
2

n
(1.10.4)

(θ) = ( ) if n is odd.Bn

θ− 1
2

n

θ+ n−1
2

3
2

n−1
(1.10.5)

( )
m

n
(1 +x)n

= θ−B1
1

2
(1.10.6)

= θ(θ−1)/2! = θ(θ−1)/4B2
1

2
(1.10.7)

= (θ− )θ(θ−1)/3! = θ(0.5 +θ(−1.5 +θ))/6B3
1

2
(1.10.8)

= (θ+1)θ(θ−1)(θ−2)/4! = θ(2 +θ(−1 +θ(−2 +θ)))/48B4
1

2
(1.10.9)

= (θ− )(θ+1)θ(θ−1)(θ−2)/5! = θ(−1 +θ(2.5 + (−2.5 +θ)))/120B5
1

2
θ2 (1.10.10)
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The reader should convince him- or herself that the interpolation formula taken as far as  is merely linear interpolation.
Addition of successively higher terms effectively fits a curve to more and more points around the desired value and more and
more accurately reflects the actual change of  with .

The above table is taken from The Astronomical Almanac for 1997, and it shows the -coordinate of the Sun for eight
consecutive days in July. The first three difference columns are tabulated, and it is clear that further difference columns are
unwarranted.

If we want to find the value of , for example, for July 4.746, we have  and the first three Bessel coefficients are

The reader can verify the following calculations for  from the sum of the first 2, 3 and 4 terms of the Besselian interpolation
series formula. The sum of the first two terms is the result of linear interpolation.

Sum of the first 2 terms, 
Sum of the first 3 terms, 
Sum of the first 4 terms, 

Provided the table is not tabulated at inappropriately coarse intervals, one need rarely go past the third Bessel coefficient. In
that case an alternative and equivalent interpolation formula (for , which avoids having to construct a difference
table, is

Readers should check that this gives the same answer, at the same time noting that the nested parentheses make the calculation
very rapid and they are easy to program on either a calculator or a computer.

From the following table, construct a difference table up to fourth differences. Calculate the first four Bessel coefficients
for . Hence calculate the value of  for .

B1

y x

y

y θ = 0.746

B1

B2

B3

=

=

=

+0.246

−0.047 371

−0.007 768 844

y

y = 0.909 580 299
y = 0.909 604 723
y = 0.909 604 715

t = +θΔt)t4

y( +θΔt)t4 = − θ[(2 −θ(3 −θ)) +(1 −θ) ]1
6

y3 y6

+ [(2 +θ(−1 +θ(−2 +θ))) +θ(2 +θ(1 −θ)) ].1
2

y4 y5

(1.10.2)

Exercise : Bessel Coefficients1.10.1

θ = 0.73 y x = 0.273

x

0.0

0.1

0.2

0.3

0.4

0.5

y

+0.381300

+0.285603

+0.190092

+0.096327

+0.008268

−0.067725

(1.10.3)
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Answers

Note: the table was calculated from a formula, and the interpolated answer is correct to nine significant figures.

From the following table of , use linear interpolation and Besselian interpolation to estimate  to three
significant figures.

Answers

By linear interpolation, 
By Besselian interpolation, 

The correct value is 0.777. You should be impressed – but there is more on interpolation to come, in Section 1.11.
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= +0.23B1

−−0.049275B2

= −7.5555 ×B3 10−3

= +9.021841875 ×B4 10−3

y = 0.121289738

Exercise : Linear Interpolation vs. Besselian Interpolation1.10.2
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1.11: Fitting a Polynomial to a Set of Points - Lagrange Polynomials and
Lagrange Interpolation
Given a set of  points on a graph, there any many possible polynomials of sufficiently high degree that go through all  of
the points. There is, however, just one polynomial of degree less than  that will go through them all. Most readers will find
no difficulty in determining the polynomial. For example, consider the three points (1 , 1), (2 , 2) , (3 , 2). To find the
polynomial  that goes through them, we simply substitute the three points in turn and hence set up the
three simultaneous Equations

and solve them for the coefficients. Thus ,  and . In a similar manner we can fit a polynomial of
degree  to go exactly through  points. If there are more than  points, we may wish to fit a least squares polynomial of
degree  to go close to the points, and we show how to do this in sections 1.12 and 1.13. For the purpose of this section
(1.11), however, we are interested in fitting a polynomial of degree  exactly through  points, and we are going to show
how to do this by means of Lagrange polynomials as an alternative to the method described above.

While the smallest-degree polynomial that goes through  points is usually of degree , it could be less than this. For
example, we might have four points, all of which fit exactly on a parabola (degree two). However, in general one would expect
the polynomial to be of degree , and, if this is not the case, all that will happen is that we shall find that the coefficients
of the highest powers of  are zero.

That was straightforward. However, what we are going to do in this section is to fit a polynomial to a set of points by using
some functions called Lagrange polynomials. These are functions that are described by Max Fairbairn as “cunningly
engineered” to aid with this task.

Let us suppose that we have a set of  points:

and we wish to fit a polynomial of degree  to them.

I assert that the function

is the required polynomial, where the  functions , ,  are  Lagrange polynomials, which are polynomials of
degree  defined by

Written more explicitly, the first three Lagrange polynomials are

and

and

n n

n

y = + x +a0 a1 a2x2

1

2

2

=

=

=

+ +a0 a1 a2

+2 +4a0 a1 a2

+3 +9a0 a1 a2

(1.11.1)

= −1a0 = 2.5a1 = −0.5a3

n −1 n n

n −1
n −1 n

n n −1

n −1
x

n

( , ), ( , ), ( , ), . . .  . . . ( , ), . . .  . . . ( , ),x1 y1 x1 y1 x2 y2 xi yi xn yn (1.11.1)

n −1

y = (x)∑
i=1

n

yiLi (1.11.2)

n (x)Li i = 1, n, n

n −1

(x) =Li ∏
j=1, j≠i

n x −xj

−xi xj

(1.11.3)

(x) = ,L1
(x − )(x − )(x − ). . .  . . . (x − )x2 x3 x4 xn

( − )( − )( − ). . .  . . . ( − )x1 x2 x1 x3 x1 x4 x1 xn

(1.11.4)

(x) =L2
(x − )(x − )(x − ). . .  . . . (x − )x1 x3 x4 xn

( − )( − )( − ). . .  . . . ( − )x2 x1 x2 x3 x2 x4 x2 xn

(1.11.5)
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At first encounter, this will appear meaningless, but with a simple numerical example it will become clear what it means and
also that it has indeed been cunningly engineered for the task.

Consider the same points as before, namely (1 , 1), (2 , 2) , (3 , 2). The three Lagrange polynomials are

Equation  for the polynomial of degree  that goes through the three points is, then,

that is

which agrees with what we got before.

One way or another, if we have found the polynomial that goes through the  points, we can then use the polynomial to
interpolate between nontabulated points. Thus we can either determine the coefficients in  by
solving  simultaneous Equations, or we can use Equation  directly for our interpolation (without the need to calculate
the coefficients , , etc.), in which case the technique is known as Lagrangian interpolation. If the tabulated function for
which we need an interpolated value is a polynomial of degree less than , the interpolated value will be exact. Otherwise it
will be approximate. An advantage of this over Besselian interpolation is that it is not necessary that the function to be
interpolated be tabulated at equal intervals in . Most mathematical functions and astronomical tables, however, are tabulated
at equal intervals, and in that case either method can be used.

Let us recall the example that we had in Section 1.10 on Besselian interpolation, in which we were asked to estimate the value
of  from the table

The four Lagrangian polynomials, evaluated at , are

(x) =L3
(x − )(x − )(x − ). . .  . . . (x − )x1 x2 x4 xn

( − )( − )( − ). . .  . . . ( − )x3 x1 x3 x2 x3 x4 x3 xn

(1.11.6)

(x) = = ( −5x +6),L1
(x −2)(x −3)

(1 −2)(1 −3)

1

2
x

2 (1.11.7)

(x) = = − +4x −3,L2
(x −1)(x −3)

(2 −1)(2 −3)
x

2 (1.11.8)

(x) = = ( −3x +2).L3
(x −1)(x −2)

(3 −1)(3 −2)

1

2
x

2 (1.11.9)

1.11.2 n −1

y = 1 × ( −5x +6) +2 ×(− +4x −3) +2 × ( −3x +2);
1

2
x

2
x

2 1

2
x

2 (1.11.10)

y = − + x −1,
1

2
x

2 5

2
(1.11.11)
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y = + + . . .a0 a1x2 a2x2

n 1.11.2
a0 a1

n

x
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sinx
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/2 = 0.866033
–

√

1.0

(1.11.2)

x = 51

(51) = = −0.0455,L1
(51 −30)(51 −60)(51 −90)

(0 −30)(0 −60)(0 −90)
(1.11.3)

(51) = = +0.3315,L2
(51 −0)(51 −60)(51 −90)

(30 −0)(30 −60)(30 −90)
(1.11.4)

(51) = = +0.7735,L3
(51 −0)(51 −30)(51 −90)

(60 −0)(60 −30)(60 −90)
(1.11.5)

(51) = = −0.0595.L4
(51 −0)(51 −30)(51 −60)

(90 −0)(90 −30)(90 −60)
(1.11.6)
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Equation  then gives us

.

This is the same as we obtained with Besselian interpolation, and compares well with the correct value of . I point out
again, however, that the Lagrangian method can be used if the function is not tabulated at equal intervals, whereas the
Besselian method requires tabulation at equal intervals.
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1.12: Fitting a Least Squares Straight Line to a Set of Observational Points
Very often we have a set of observational points  to , that seem to fall roughly but not quite on a straight line,
and we wish to draw the “best” straight line that passes as close as possible to all the points. Even the smallest of scientific
hand calculators these days have programs for doing this – but it is well to understand precisely what it is that is being
calculated.

Very often the values of  are known “exactly” (or at least to a high degree of precision) but there are appreciable errors in the
values of . In figure  I show a set of points and a plausible straight line that passes close to the points.

Also drawn are the vertical distances from each point from the straight line; these distances are the residuals of each point.

It is usual to choose as the “best” straight line that line such that the sum of the squares of these residuals is least. You may
well ask whether it might make at least equal sense to choose as the “best” straight line that line such that the sum of the
absolute values of the residuals is least. That certainly does make good sense, and in some circumstances it may even be the
appropriate line to choose. However, the “least squares” straight line is rather easier to calculate and is readily amenable to
statistical analysis. Note also that using the vertical distances between the points and the straight line is appropriate only if the
values of  are known to much higher precision than the values of . In practice, this is often the case – but it is not always
so, in which case this would not be the appropriate “best” line to choose.

The line so described – i.e. the line such that the sum of the squares of the vertical residuals is least is often called loosely the
“least squares straight line”. Technically, it is the least squares linear regression of  upon . It might be under some
circumstances that it is the values of  that are known with great precision, whereas there may be appreciable errors in the .
In that case we want to minimize the sum of the squares of the horizontal residuals, and we then calculate the least squares
linear regression of  upon . Yet again, we may have a situation in which the errors in  and  are comparable (not
necessarily exactly equal). In that case we may want to minimize the sum of the squares of the perpendicular residuals of the
points from the line. But then there is a difficulty of drawing the - and -axes to equal scales, which would be problematic if,
for example,  were a time and  a distance.

To start with, however, we shall assume that the errors in  are negligible and we want to calculate the least squares regression
of  upon . We shall also make the assumption that all points have equal weight. If they do not, this is easily dealt with in an
obvious manner; thus, if a point has twice the weight of other points, just count that point twice.

So, let us suppose that we have  points, ,  to , and we wish to fit a straight line that goes as close as possible
to all the points. Let the line be . The residual  of the th point is

We have  simultaneous linear Equations of this sort for the two unknowns  and , and, for the least squares regression of
 upon  we have to find the values of  and  such that the sum of the squares of the residuals is least. We already know

how to do this from Section 1.8, so the problem is solved. (Just make sure that you understand that, in Section 1.8 we were
using  for the unknowns and  for the coefficients; here we are doing the opposite!)

Now for an Exercise. Suppose our points are as follows:

( , ),  i = 1xi yi N

xi

yi I.6B

FIGURE I.6B
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i.) Draw these points on a sheet of graph paper and, using your eye and a ruler, draw what you think is the best straight line
passing close to these points.

ii.) Write a computer program for calculating the least squares regression of  upon . You’ve got to do this sooner or later, so
you might as well do it now. In fact you should already (after you read Section 1.8) have written a program for solving 
Equations in  unknowns, so you just incorporate that program into this.

iii.) Now calculate the least squares regression of  upon . I make it . Draw this on your graph paper and
see how close your eye-and-ruler estimate was!

iv.) How are you going to calculate the least squares regression of  upon ? Easy! Just use the same program, but read the -
values for  and the -values for ! No need to write a second program! I make it . Draw that on your
graph paper and see how it compares with the regression of  upon .

The two regression lines intersect at the centroid of the points, which in this case is at (3.00, 2.55). If the errors in  and  are
comparable, a reasonable best line might be one that passes through the centroid, and whose slope is the mean (arithmetic?
geometric?) of the regressions of  upon  and  upon . However, in Section 1.12 I shall give a reference to where this
question is treated more thoroughly.

If the regressions of  upon  and  upon  are respectively  and , the quantity  is called
the correlation coefficient r between the variates x and y. If the points are exactly on a straight line, the correlation coefficient
is 1. The correlation coefficient is often used to show how well, or how badly, two variates are correlated, and it is often
averred that they are highly correlated if  is close to 1 and only weakly correlated if  is close to zero. I am not intending to
get bogged down in formal statistics in this chapter, but a word of warning here is in order. If you have just two points, they
are necessarily on a straight line, and the correlation coefficient is necessarily 1 – but there is no evidence whatever that the
variates are in any way correlated. The correlation coefficient by itself does not tell how closely correlated two variates are.
The significance of the correlation coefficient depends on the number of points, and the significance is something that can be
calculated numerically by precise statistical tests.
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1.13: Fitting a Least Squares Polynomial to a Set of Observational Points
I shall start by assuming that the values of x are known to a high degree of precision, and all the errors are in the values of .
In other words, I shall calculate a least squares polynomial regression of  upon . In fact I shall show how to calculate a least
squares quadratic regression of  upon , a quadratic polynomial representing, of course, a parabola. What we want to do is to
calculate the coefficients  such that the sum of the squares of the residual is least, the residual of the th point being

You have  simultaneous linear Equations of this sort for the three unknowns  and . You already know how to find
the least squares solution for these, and indeed, after having read Section 1.8, you already have a program for solving the
Equations. (Remember that here the unknowns are  and  – not ! You just have to adjust your notation a bit.) Thus
there is no difficulty in finding the least squares quadratic regression of  upon , and indeed the extension to polynomials of
higher degree will now be obvious.

As an Exercise, here are some points that I recently had in a real application:

Draw these on a sheet of graph paper and draw by hand a nice smooth curve passing as close as possible to the point. Now
calculate the least squares parabola (quadratic regression of  upon ) and see how close you were. I make it 

. It is shown in Figure .

I now leave you to work out how to fit a least squares cubic (or indeed any polynomial) regression of  upon  to a set of data
points. For the above data, I make the cubic fit to be

This is shown in Figure , and, on the scale of this drawing it cannot be distinguished (within the range covered by  in the
figure) from the quartic Equation that would go exactly through all five points.

The cubic curve is a “better” fit than either the quadratic curve or a straight line in the sense that, the higher the degree of
polynomial, the closer the fit and the less the residuals. But higher degree polynomials have more “wiggles”, and you have to
ask yourself whether a high-degree polynomial with lots of “wiggles” is really a realistic fit, and maybe you should be
satisfied with a quadratic fit. Above all, it is important to understand that it is very dangerous to use the curve that you have
calculated to extrapolate beyond the range of  for which you have data – and this is especially true of higher-degree
polynomials.

y

y x

y x

,   ,  a0 a1 a2 i
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(1.13.1)
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What happens if the errors in  are not negligible, and the errors in  and  are comparable in size? In that case you want to
plot a graph of  against  on a scale such that the unit for  is equal to the standard deviation of the -residuals from the
chosen polynomial and the unit for  is equal to the standard deviation of the -residuals from the chosen polynomial. For a
detailed and thorough account of how to do this, I refer you to a paper by D. York in Canadian Journal of Physics, 44, 1079
(1966).
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1.14: Legendre Polynomials
Consider the expression

in which  and  are both less than or equal to one. Expressions similar to this occur quite often in theoretical physics - for
example in calculating the gravitational or electrostatic potentials of bodies of arbitrary shape. See, for example, Chapter 5,
Sections 5.11 and 5.12.

Expand the expression  by the binomial theorem as a series of powers of . This is straightforward, though not
particularly easy, and you might expect to spend several minutes in obtaining the coefficients of the first few powers of . You
will find that the coefficient of  is a polynomial expression in  of degree . Indeed the expansion takes the form

The coefficients of the successive power of  are the Legendre polynomials; the coefficient of , which is , is the
Legendre polynomial of order , and it is a polynomial in  including terms as high as . We introduce these polynomials in
this section because we shall need them in Section 1.15 on the derivation of Gaussian Quadrature.

If you have conscientiously tried to expand expression , you will have found that

though you probably gave up with exhaustion after that and didn’t take it any further. If you look carefully at how you derived
the first few polynomials, you may have discovered for yourself that you can obtain the next polynomial as a function of two
earlier polynomials. You may even have discovered for yourself the following recursion relation:

This enables us very rapidly to obtain higher order Legendre polynomials, whether numerically or in algebraic form. For
example, put  and show that Equation 1.12.4 results in . You will then want to calculate , and then 

, and more and more and more. Another way to generate them is form the Equation

Here are the first eleven Legendre polynomials:

The polynomials with argument  are given in Section 5.11 of Chapter 5.

(1 −2rx+ ,r2)−1/2 (1.14.1)

|x| |r|

1.14.1 r

r

rl x l

(1 −2rx+ = (x) + (x)r+ (x) + (x) . . .r2)−1/2 P0 P1 P2 r2 P3 r3 (1.14.2)

r rl (x)Pl

l x xl

1.14.1

(x) = 1, (x) = x, (x) = (3 −1),P0 P1 P2
1

2
x2 (1.14.3)

= .Pl+1

(2l+1)x − lPl Pl−1

l+1
(1.14.4)

l = 1 = (3 −1)P2
1
2

x2 P3

P4

= ( −1 .Pl+1
1

l!2l
dl

dxl
x2 )l (1.14.5)

= 1P0

= xP1

= (3 −1)P2
1
2

x2

= (5 −3x)P3
1
2

x3

= (35 −30 +3)P4
1
8

x4 x2

= (63 −70 +15x)P5
1

16
x5 x3

= (231 −315 +105 −5)P6
1

16
x6 x4 x2

= (429 −693 +315 −35x)P7
1

16
x7 x5 x3

= (6435 −12012 +6930 −1260 +35P8
1

128
x8 x6 x4 x2

= (12155 −25740 +18018 −4620 +315x)P9
1

128
x9 x7 x5 x3

= (46189 −109395 +90090 −30030 +3465 −63)P10
1

256
x10 x8 x6 x4 x2
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In what follows in the next section, we shall also want to know the roots of the Equations  for . Inspection of the
forms of these polynomials will quickly show that all odd polynomials have a root of zero, and all nonzero roots occur in
positive/negative pairs. Having read Sections 1.4 and 1.5, we shall have no difficulty in finding the roots of these Equations.
The roots  are in the following table, which also lists certain coefficients , that will be explained in Section 1.15.

Roots of 

= 0Pl l > 1

xl,i cl,i

= 0Pl

l

2

3

4

5

6

7

8

9

10

11

xl,i

±0.577 350 269 190

±0.774 596 669 241

0.000 000 000 000

±0.861 136 311 594

±0.339 981 043 585

±0.906 179 845 939

±0.538 469 310 106

0.000 000 000 000

±0.932 469 514 203

±0.661 209 386 466

±0.238 619 186 083

±0.949 107 912 343

±0.741 531 185 599

±0.405 845 151 377

0.000 000 000 000

±0.960 289 856 498

±0.796 666 477 414

±0.525 532 409 916

±0.183 434 642 496

±0.968 160 239 508

±0.836 031 107 327

±0.613 371 432 701

±0.324 253 423 404

0.000 000 000 000

±0.973 906 528 517

±0.865 063 366 689

±0.679 409 568 299

±0.433 395 394 129

±0.148 874 338 982

±0.978 228 658 146

±0.887 062 599 768

±0 730 152 005 574

cl,i

1.000 000 000 00

0.555 555 555 56

0.888 888 888 89

0.347 854 845 14

0.652 145 154 86

0.236 926 885 06

0.478 628 670 50

0.568 888 888 89

0.171 324 492 38

0.360 761 573 05

0.467 913 934 57

0.129 484 966 17

0.279 705 391 49

0.381 830 050 50

0.417 959 183 68

0.101 228 536 29

0.222 381 034 45

0.313 706 645 88

0.362 683 783 38

0.081 274 388 36

0.180 648 160 69

0.260 610 696 40

0.312 347 077 04

0.330 239 355 00

0.066 671 343 99

0.149 451 349 64

0.219 086 362 24

0.269 266 719 47

0.295 524 224 66

0.055 668 567 12

0.125 580 369 46
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12

13

14

15

16

17

±0.730 152 005 574

±0.519 096 129 207

±0.269 543 155 952

0.000 000 000 000

±0.981 560 634 247

±0.904 117 256 370

±0.769 902 674 194

±0.587 317 954 287

±0.367 831 498 998

±0.125 233 408 511

±0.984 183 054 719

±0.917 598 399 223

±0.801 578 090 733

±0.642 349 339 440

±0.448 492 751 036

±0.230 458 315 955

0.000 000 000 000

±0.986 283 808 697

±0.928 434 883 664

±0.827 201 315 070

±0.687 292 904 812

±0.515 248 636 358

±0.319 112 368 928

±0.108 054 948 707

±0.987 992 518 020

±0.937 273 392 401

±0.848 206 583 410

±0.724 417 731 360

±0.570 972 172 609

±0.394 151 347 078

±0.201 194 093 997

0.000 000 000 000

±0.989 400 934 992

±0.944 575 023 073

±0.865 631 202 388

±0.755 404 408 355

±0.617 876 244 403

±0.458 016 777 657

±0.281 603 550 779

±0.095 012 509 838

±0.990 575 475 315

±0.950 675 521 769

0.186 290 210 93

0.233 193 764 59

0.262 804 544 51

0.272 925 086 78

0.047 175 336 39

0.106 939 325 99

0.160 078 328 54

0.203 167 426 72

0.233 492 536 54

0.249 147 045 81

0.040 484 004 77

0.092 121 499 84

0.138 873 510 22

0.178 145 980 76

0.207 816 047 54

0.226 283 180 26

0.232 551 553 23

0.035 119 460 33

0.080 158 087 16

0.121 518 570 69

0.157 203 167 16

0.185 538 397 48

0.205 198 463 72

0.215 263 853 46

0.030 753 242 00

0.070 366 047 49

0.107 159 220 47

0.139 570 677 93

0.166 269 205 82

0.186 161 000 02

0.198 431 485 33

0.202 578 241 92

0.027 152 459 41

0.062 253 523 94

0.095 158 511 68

0.124 628 971 26

0.149 595 988 82

0.169 156 519 39

0.182 603 415 04

0.189 450 610 46

0.024 148 302 87

0.055 459 529 38

(1.14.1)
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For interest, I draw graphs of the Legendre polynomials in figures  and .

Figure . Legendre polynomials for even 

Figure . Legendre polynomials for odd 

For further interest, it should be easy to verify, by substitution, that the Legendre polynomials are solutions of the differential
Equation

The Legendre polynomials are solutions of this and related Equations that appear in the study of the vibrations of a solid
sphere (spherical harmonics) and in the solution of the Schrödinger Equation for hydrogen-like atoms, and they play a large
role in quantum mechanics.
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±0.880 239 153 727

±0.781 514 003 897

±0.657 671 159 217

±0.512 690 537 086

±0.351 231 763 454

±0.178 484 181 496

0.000 000 000 000

0.085 036 148 32

0.111 883 847 19

0.135 136 368 47

0.154 045 761 08

0.168 004 102 16

0.176 562 705 37

0.179 446 470 35
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1.15: Gaussian Quadrature - the Algorithm
Gaussian quadrature is an alternative method of numerical integration which is often much faster and more spectacular than
Simpson’s rule. Gaussian quadrature allows you to carry out the integration

But what happens if your limits of integration are not ? What if you want to integrate

That is no problem at all – you just make a change of variable. Thus, let

and the new limits are then .

At the risk of being pedagogically unsound I’ll describe first, without any theoretical development, just what you do, with an
example – as long as you promise to look at the derivation afterwards, in Section 1.16.

For our example, let’s try to evaluate

Let us make the change of variable given by Equation  (with , ), and we now have to evaluate

For a 5-point Gaussian quadrature, you evaluate the integrand at five values of , where these five values of  are the solutions
of  given in Section 1.14,  being the Legendre polynomial. That is, we evaluate the integrand at 

 and .

I now assert, without derivation (until later), that

where the coefficients  (all positive) are listed with the roots of the Legendre polynomials in Section 1.14.

Let’s try it.

and the expression  comes to , and might presumably have come even closer to 1 had we given ,
and , to more significant figures.

You should now write a computer program for Gaussian quadrature – you will have to store the  and  of course. You
have presumably already written a program for Simpson’s rule.

f(x)dx.∫
1

−1
(1.15.1)

±1

F (t)dt?∫
b

a

(1.15.2)

x = , t = [(b−a)x+a+b],
2t−a−b

b−a

1

2
(1.15.3)

x = ±1

I = sinθdθ.∫
π/2

0
(1.15.4)

1.15.3 t = θ a = 0,  b = π/2

I = sin (x+1)dx.∫
1

−1

π

4

π

4
(1.15.5)

x x

(x) = 0P5 P5

x = ±0.906 469 514 203,   ±0.538 469 310 106 0

I =  f( ),∑
i=1

5

c5,i x5,i (1.15.6)

cl,i

x5,i

+0.906 179 845 939

+0.538 469 310 106

0.000 000 000 000

−0.538 469 310 006

−0.906 179 845 939

f( )x5,i

0.783 266 908 39

0.734 361 739 69

0.555 360 367 27

0.278 501 544 60

0.057 820 630 35

c5,i

0.236 926 885 06

0.478 628 670 50

0.568 888 888 89

0.478 628 670 50

0.236 926 885 06

(1.15.1)
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In a text on integration, the author invited the reader to evaluate the following integrals by Gaussian quadrature:

All of these can be integrated analytically, so I am going to invite the reader to evaluate them first analytically, and then
numerically by Simpson’s rule and again by Gaussian quadrature, and to see at how many points the integrand has to be
evaluated by each method to achieve nine or ten figure precision. I tried, and the results are as follows. The first column is the
answer, the second column is the number of points required by Simpson’s rule, and the third column is the number of points
required by Gaussian quadrature.

Let us now have a look at four of the integrals that we met in Section 1.2.

1. . This was straightforward. It has an analytic solution of . I needed to evaluate

the integral at 89 points in order to get this answer to nine significant figures using Simpson’s rule. To use Gaussian
quadrature, we note that integrand contains only even powers of  and so it is symmetric about , and therefore the
integral is equal to , which makes it immediately convenient for Gaussian quadrature! I give below the answers

I obtained for 3- to 7-point Gaussian quadrature.

2. . This had the difficulty that the integrand is infinite at the upper limit. We got round this by means of the

substitution , and the integral becomes . This has an analytic solution of 
. I needed 59 points to get this answer to ten significant figures using Simpson’s rule. To use

Gaussian quadrature we can let , so that the integral becomes ,  which seems to be immediately

suitable for Gaussian quadrature. Before we proceed, we recall that the integrand becomes infinite at the upper limit, and it
still does so after our change of variable. We note, however, that with Gaussian quadrature, we do not evaluate the integrand at
the upper limit, so that this would appear to be a great advantage of the method over Simpson’s method. Alas! – this turns out
not to be the case. If, for example, we use a 17-point quadrature, the largest value of  for which we evaluate the integrand is
equal to the largest solution of , which is . We just cannot ignore the fact that the integrand shoots up to
infinity beyond this, so we have left behind a large part of the integral. Indeed, with a 17-point Gaussian quadrature, I obtained
an answer of , which is a long way from the correct answer of .

(a)

(b)

(c)

(d)

lnxdx∫ 1.5
1 x2

dx∫ 1
0
x2x−x

dx∫ 0.35
0

2
−4x2

sinxdx∫ π/4
0

x2

(e)

(f)

(g)

(h)

sin2xdx∫ π/4
0 e3x

dx∫ 1.6
1

2x
−4x2

dx∫ 3.5
3

x

−4x2√

xdx∫ π/4
0

cos2

(1.15.2)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

0.192 259 358

0.160 602 794

−0.176 820 020

0.088 755 284 4

2.588 628 633

−0.733 969 175

0.636 213 346

0.642 699 082

33

99

19

111

453

143

31

59

4

5

4

5

7

8

5

5

(1.15.3)

∫
1

0
dxx4

2(1+ )x2√
= 0.108 709 465

ln(1+ )−218√ 2√

16

x x = 0
1
2
∫ 1

−1
dxx4

2(1+ )x2√

Correct answer

3

4

5

6

7

0.108 667 036

0.108 711 215

0.108 709 441

0.108 709 463

0.108 709 465

0.108 709 465

(1.15.4)

∫ 2
0

dyy2

2−y√

y = 2 θsin2 θdθ128
−−−

√ ∫ π/2
0 sin5

/15 = .60339778668192
− −−−

√

y = 1 +x ,∫ 1
−1

(1+x dy)
2

1−x√

x

(x) = 0P17 0.9906

5.75 6.03
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Therefore we have to make a change of variable, as we did for Simpson’s method, so that the upper limit is finite. We chose 
 which changed the integral to . To make this suitable for Gaussian quadrature, we must now

make the further substitution (see Equation ) , . If we wish to impress, we can make the two

substitutions in one step, thus: Let , . The integral becomes 

, and there are no further difficulties. With a 9-point integration, I obtained the answer, correct to
ten significant figures, . Simpson’s rule required 59 points.

3. . This integral occurs in the theory of a simple pendulum swinging through . As far as I can tell it has no
simple analytical solution unless we have recourse to unfamiliar elliptic integrals, which we would have to evaluate
numerically in any case. The integral has the difficulty that the integrand is infinite at the upper limit. We get round this by
means of a substitution. Thus let . (Did you not think of this?) The integral becomes  I

needed 13 points by Simpson’s rule to get the answer to ten significant figures, . In order to make the limits ,
suitable for Gaussian quadrature, we can make the second substitution (as in example 2), . If we wish truly to
impress our friends, we can make the two substitutions in one step, thus: Let . (No one will ever
guess how we thought of that!) The integral becomes  which is now ready for Gaussian quadrature. I

obtained the answer  in a 10-point Gaussian quadrature, which is only a little faster than the 13 points required
by Simpson’s rule.

4.  This integral occurs in the theory of blackbody radiation. It has the difficulty of an infinite upper limit. We

get round this by means of a substitution. Thus let . The integral becomes , where . It has
an analytic solution of . I needed 261 points by Simpson’s rule to get the answer to ten significant
figures. To prepare it for Gaussian quadrature, we can let , as we did in example 2, so that the integral becomes

,where  where . Using 16- point Gaussian quadrature, I got 6.48. Thus we would need to
extend our table of constants for the Gaussian method to much higher order in order to use the method successfully. Doubtless
the Gaussian method would then be faster than the Simpson method – but we do not need an extensive (and difficult-to-
calculate) set of constants for the latter. A further small point: You may have noticed that it is not immediately obvious that the
integrand is zero at the end points, and that some work is needed to prove it. But with the Gaussian method you don’t evaluate
the integrand at the end points, so that is one less thing to worry about!

Thus we have found that in most cases the Gaussian method is far faster than the Simpson method. In some cases it is only
marginally faster. In yet others it probably would be faster than Simpson’s rule, but higher-order constants are needed to apply
it. Whether we use Simpson’s rule or Gaussian quadrature, we have to carry out the integration with successively higher orders
until going to higher orders results in no further change to the number of significant figures desired.
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y = 2 θsin2 θdθ128
−−−

√ ∫ π/2
0 sin5

1.15.3 x = 4θ/π−1 θ = (x+1)π

4

y = 2 (1 +x)sin2 π

4
x = −14

π sin−1 y

2

−−
√

π (1 +x)dx8
–

√ ∫ 1
−1 sin5 π

4

6.033 977 866

dθ∫ π/2
0

sec θ
− −−−

√ 90∘

sinϕ = sin θ2
–

√ 1
2

.2
–

√ ∫
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0
dϕ

1− ϕ1
2

sin2√

2.622 057 554 ±1
ϕ = (x+1)π

4

sin (1 +x) = sin θπ

4
2
–

√ 1
2

,π

2
∫ 1

−1
dx

2− (x+1)sin2 π

4
√

2.622 057 554

.∫ ∞
0

dy

( −1)y5 e1/y

y = tanθ dθ∫
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0
( +1)c3 c2

−1ec
c = cotθ
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4
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1.16: Gaussian Quadrature - Derivation
In order to understand why Gaussian quadrature works so well, we first need to understand some properties of polynomials in
general, and of Legendre polynomials in particular. We also need to remind ourselves of the use of Lagrange polynomials for
approximating an arbitrary function.

First, a statement concerning polynomials in general: Let  be a polynomial of degree , and let  be a polynomial of degree
less than . Then, if we divide  by , we obtain a quotient  and a remainder , each of which is a polynomial of degree
less than .

That is to say:

What this means is best understood by looking at an example, with . For example,

let

and

If we carry out the division  by the ordinary process of long division, we obtain

For example, if , this becomes

The theorem given by Equation  is true for any polynomial  of degree . In particular, it is true if  is the Legendre
polynomial of degree .

__________________________________

Next an important property of the Legendre polynomials, namely, if  and  are Legendre polynomials of degree  and 
respectively, then

This property is called the orthogonal property of the Legendre polynomials.

I give here a proof. Although it is straightforward, it may look formidable at first, so, on first reading, you might want to skip
the proof and go on the next part (after the next short horizontal dividing line).

From the symmetry of the Legendre polynomials (see figure ), the following are obvious:

and

In fact we can go further, and, as we shall show,

P n S

2n S P Q R

n

= Q+ .
S

P

R

P
(1.16.1)

n = 3

P = 5 −2 +3x+7x3 x2 (1.16.2)

S = 9 +4 −5 +6 +2x−3.x5 x4 x3 x2 (1.16.3)

S÷P

= 1.8 +1.52x−1.472 − .
9 +4 −5 +6 +2x−3x5 x4 x3 x2

5 −2 +3x+7x3 x2
x2 14.104 +4.224x−7.304x2

5 −2 +3x+7x3 x2
(1.16.4)

x = 3

= 19.288 − .
2433

133

132.304

133
(1.16.1)

1.16.1 P l P

l

Pn Pm n m

dx = 0 unless m = n.∫
1

−1

PnPm (1.16.5)

I.7

dx ≠ 0 if m = n∫
1

−1
PnPm (1.16.2)

= 0 if one (but not both) of m or n is odd.∫
1

−1

PnPm (1.16.3)
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Thus  satisfies the differential Equation (see Equation 1.14.7)

which can also be written

Multiply by :

which can also be written

In a similar manner, we have

Subtract one from the other:

Integrate from  to :

The left hand side is zero because  is zero at both limits.

Therefore, unless ,

___________________________________

I now assert that, if  is the Legendre polynomial of degree , and if  is any polynomial of degree less than , then

I shall first prove this, and then give an example, to see what it means.

To start the proof, we recall the recursion relation (see Equation 1.14.4 – though here I am substituting  for ) for the
Legendre polynomials:

The proof will be by induction.

Let  be any polynomial of degree less than l. Multiply the above relation by  and integrate from  to :

dx = 0 unless m = n,  whether m and n are even or odd.∫
1

−1

PnPm (1.16.4)

Pm

(1 − ) −2x +m(m+1) = 0,x2 d2Pm

dx2

dPm

dx
Pm (1.16.6)

[(1 − ) ]+m(m+1) = 0.
d

dx
x2 dPm

dx
Pm (1.16.7)

Pn

[(1 − ) ]+m(m+1) = 0,Pn

d

dx
x2 dPm

dx
PmPn (1.16.8)

[(1 − ) ]−(1 − ) +m(m+1) = 0.
d

dx
x2 Pn

dPm

dx
x2 dPn

dx

dPm

dx
PmPn (1.16.9)

[(1 − ) ]−(1 − ) +n(n+1) = 0.
d

dx
x2 Pm

dPn

dx
x2 dPn

dx

dPm

dx
PmPn (1.16.10)

[(1 − )( − )]+[m(m+1) −n(n+1)] = 0.
d

dx
x2 Pn

dPm

dx
Pm

dPn

dx
PmPn (1.16.11)

−1 +1

= [n(n+1) −m(m+1)] dx.[(1 − )( − )]x2 Pn

dPm

dx
Pm

dPn

dx

1

−1

∫
1

−1

PmPn (1.16.12)

1 −x2

m = n

dx = 0. Q.E.D.∫
1

−1

PmPn (1.16.13)

Pl l Q l

Qdx = 0.∫
1

−1

Pl (1.16.14)

l−1 l

l = (2l−1)x −(l−1) .Pl Pl−1 Pl−2 (1.16.15)

Q Qdx −1 +1

l Qdx = (2l−1) x Qdx−(l−1) Qdx.∫
1

−1

Pl ∫
1

−1

Pl−1 ∫
1

−1

Pl−2 (1.16.16)
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If the right hand side is zero, then the left hand side is also zero.

A correspondent has suggested to me a much simpler proof. He points out that you could in principle expand  in Equation 
 as a sum of Legendre polynomials for which the highest degree is . Then, by virtue of Equation , every

term is zero.

For example, let , so that

and

and let

It is then straightforward (and only slightly tedious) to show that

and that

But

and therefore

We have shown that

for , and therefore it is true for all positive integral .

You can use this property for a parlour trick. For example, you can say: “Think of any polynomial. Don’t tell me what it is –
just tell me its degree. Then multiply it by (here give a Legendre polynomial of degree more than this). Now integrate it from 

 to . The answer is zero, right?” (Applause.)

Thus: Think of any polynomial. . Now multiply it by . OK, that’s .
Now integrate it from  to . The answer is zero.

__________________________________________

Now, let  be any polynomial of degree less than . Let us divide it by the Legendre polynomial of degree , , to obtain the
quotient  and a remainder , both of degree less than . Then I assert that

This follows trivially from Equations  and . Thus

Q

1.16.14 l−1 1.16.13

l = 4

= = (3 −1)Pl−2 P2
1

2
x2 (1.16.17)

x = x = (5 −3 ),Pl−1 P3
1

2
x4 x2 (1.16.18)

Q = 2( + + x+ ).a3x
3 a2x

2 a1 a0 (1.16.19)

Qdx =( − )∫
1

−1

Pl−2
6

5

2

3
a2 (1.16.20)

x Qdx =( − ) .∫
1

−1

Pl−1
10

7

6

5
a2 (1.16.21)

7( − ) −3( − ) = 0,
10

7

6

5
a2

6

5

2

3
a2 (1.16.22)

Qdx = 0.∫
1

−1

P4 (1.16.23)

l Qdx = (2l−1) x Qdx−(l−1) Qdx = 0∫
1

−1
Pl ∫

1

−1
Pl−1 ∫

1

−1
Pl−2 (1.16.24)

l = 4 l

−1 +1

3 −5x+7x2 5 −3xx3 15 −25 −2 +15 −21xx5 x4 x3 x2

−1 +1

S 2l l Pl

Q R l

Sdx = Rdx.∫
1

−1

∫
1

−1

(1.16.25)

1.16.1 1.16.14

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8095?pdf


Jeremy Tatum 9/17/2020 1.16.4 CC-BY-NC https://phys.libretexts.org/@go/page/8095

Example: Let . The integral of this from  to  is . If we divide  by 
, we obtain a quotient of  and a remainder of . The integral of the latter

from  to  is also .

______________________________________

I have just described some properties of Legendre polynomials. Before getting on to the rationale behind Gaussian quadrature,
let us remind ourselves from Section 1.11 about Lagrange polynomials. We recall from that section that, if we have a set of n
points, the following function:

(in which the  functions , , are Lagrange polynomials of degree  is the polynomial of degree  that
passes exactly through the  points. Also, if we have some function  which we evaluate at  points, then the polynomial

is a jolly good approximation to  and indeed may be used to interpolate between nontabulated points, even if the function
is tabulated at irregular intervals. In particular, if  is a polynomial of degree , then the expression  is an exact
representation of .

________________________________

We are now ready to start talking about quadrature. We wish to approximate  by an -term finite series

where . To this end, we can approximate  by the right hand side of Equation , so that

Recall that the Lagrange polynomials in this expression are of degree .

The required coefficients for Equation  are therefore

Note that at this stage the values of the  have not yet been chosen; they are merely restricted to the interval [−1 , 1].

__________________________________

Now let’s consider , where  is a polynomial of degree less than , such as, for example, the polynomial of
Equation . We can write

Here, as before,  is a polynomial of degree , and  and  are of degree less than .

If we now choose the  to be the roots of the Legendre polynomials, then

Sdx = (Q +R)dx = Rdx.∫
1

−1

∫
1

−1

Pl ∫
1

−1

(1.16.26)

S = 6 −12 +4 +7 −5x+7x5 x4 x3 x2 −1 +1 13.86 S

(5 −3x)1
2

x3 2.4 −4.8x+3.04x2 −0.2 −0.44x+7x2

−1 +1 13.86

y = (x)∑
i=1

n

yiLi (1.16.27)

n (x)Li i = 1,n n−1) n−1

n f(x) n

y = f( ) (x)∑
i=1

n

xi Li (1.16.28)

f(x)

f(x) n−1 1.16.28

f(x)

f(x)dx∫ 1

−1
n

f(x)dx ≈ f( ),∫
1

−1

∑
i=1

n

ci xi (1.16.29)

−1 < < 1xi f(x) 1.16.28

f(x)dx ≈ f( ) (x)dx = f( ) (x)dx.∫
1

−1

∫
1

−1

∑
i=1

n

xi Li xi ∫
1

−1

∑
i=1

n

Li (1.16.30)

n−1

1.16.29

= (x)dx.ci ∫
1

−1

Li (1.16.31)

xi

S(x)dx∫ 1

−1
S 2n

1.16.3

S(x)dx = S( ) (x)dx = (x)[Q( )P ( ) +R( )]dx.∫
1

−1

∫
1

−1

∑
i=1

n

xi Li ∫
1

−1

∑
i=1

n

Li xi xi xi (1.16.32)

P n Q R n

xi

S(x)dx = (x)R( )dx.∫
1

−1

∫
1

−1

∑
i=1

n

Li xi (1.16.33)
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Note that the integrand on the right hand side of Equation  is an exact representation of . But we have already
shown (Equation ) that , and therefore

It follows that the Gaussian quadrature method, if we choose the roots of the Legendre polynomials for the  abscissas, will
yield exact results for any polynomial of degree less than , and will yield a good approximation to the integral if  is a
polynomial representation of a general function  obtained by fitting a polynomial to several points on the function.
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1.16.33 R(x)

1.16.26 S(x)dx = R(x)dx∫ 1

−1
∫ 1

−1

S(x)dx = R(x)dx = R( ) = S( ).∫
1

−1

∫
1

−1

∑
i=1

n

ci xi ∑
i=1

n

ci xi (1.16.34)
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1.17: Frequently-needed Numerical Procedures
Many years ago I gradually became aware that there were certain mathematical Equations and procedures that I found myself
using over and over again. I therefore set aside some time to write short computer programs for dealing with each of them, so
that whenever in the future I needed, for example, to evaluate a determinant, I had a program already written to do it. I show
here a partial list of the programs I have for instant use by myself whenever needed. I would suggest that the reader might
consider compiling for him- or herself a similar collection of small programs. I have found over the years that they have saved
me an immense amount of time and effort. Most programs are very short and required only a few minutes to write (although
this depends, of course, on how much programming experience one has), though a few required a bit more effort. Some
programs are so short – consisting of a few lines only - that they might be thought to be too trivial to be worth writing. These
include, for example, programs for solving a quadratic Equation or for solving two simultaneous linear Equations. Yet I have
perhaps used these particularly simple ones more than any others, and they have been of use out of all proportion to the almost
negligible effort required to write them. Here, then, is a partial list, and I do suggest that the reader will be repaid enormously
over the years if he takes a short time to write similar programs. Of course many or even most of them are readily available in
prepackaged programs. But there are enormous advantages in writing your own programs. Quite apart from the extra
programming practice that they provide, you know exactly what your own programs do, you can tailor them exactly to your
own requirements, you know their strengths and their weaknesses or limitations, and you don’t have to struggle for hours over
an instruction manual trying to understand how to use them, only to find in the end that they don’t do exactly what you want.

Solve quadratic Equation
Solve cubic Equation
Solve quintic Equation
Solve  by Newton-Raphson
Solve  by Newton-Raphson
Tabulate 
Tabulate 
Fit least-squares straight line to data
Fit least-squares cubic Equation to data
Solve two simultaneous linear Equations
Solve three simultaneous linear Equations
Solve four simultaneous linear Equations
Solve  simultaneous linear Equations in two, three or four unknowns by least squares
Multiply column vector by square matrix
Invert matrix
Diagonalize matrix
Find eigenvectors and eigenvalues of matrix
Test matrix for orthogonality
Evaluate determinant
Convert between rectangular and polar coordinates
Convert between rectangular and spherical coordinates
Convert between direction cosines and Euler angles
Fit a conic section to five points
Numerical integration by Simpson’s rule
Gaussian quadrature
Given any three elements of a plane triangle, calculate the remaining elements
Given any three elements of a spherical triangle, calculate the remaining elements

In addition to these common procedures, there are many others that I have written and have readily to hand that are of more
specialized use tailored to my own particular interests, such as

Solve Kepler’s Equation
Convert between wavelength and wavenumber

f(x) = 0

f(x, y) = 0 ,  g(x, y) = 0

y = f(x)

y = f(x, a)

N(> 4)
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Calculate -coupling line strengths
Convert between relativity factors such as 

Likewise, you will be able to think of many formulas special to your own interests that you use over and over again, and it
would be worth your while to write short little programs for them.
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CHAPTER OVERVIEW
2: CONIC SECTIONS
A particle moving under the influence of an inverse square force moves in an orbit that is a conic
section; that is to say an ellipse, a parabola or a hyperbola. We shall prove this from dynamical
principles in a later chapter. In this chapter we review the geometry of the conic sections. We start
off, however, with a brief review (eight equation-packed pages) of the geometry of the straight line.

2.1: THE STRAIGHT LINE
We start off, however, with a brief review (eight equation-packed pages) of the geometry of the
straight line.

2.2: THE ELLIPSE
ellipse is the locus of a point that moves such that the sum of its distances from two fixed points
called the foci is constant. An ellipse can be drawn by sticking two pins in a sheet of paper, tying a length of string to the pins,
stretching the string taut with a pencil, and drawing the figure that results. During this process, the sum of the two distances from
pencil to one pin and from pencil to the other pin remains constant and equal to the length of the string.

2.3: THE PARABOLA
We define a parabola as the locus of a point that moves such that its distance from a fixed straight line called the directrix is equal to
its distance from a fixed point called the focus.

2.4: THE HYPERBOLA
A hyperbola is the locus of a point that moves such that the difference between its distances from two fixed points called the foci is
constant.

2.5: CONIC SECTIONS
A plane section of a cone is either an ellipse, a parabola or a hyperbola, depending on whether the angle that the plane makes with the
base of the cone is less than, equal to or greater than the angle that the generator of the cone makes with its base. However, given the
definitions of the ellipse, parabola and hyperbola that we have given, proof is required that they are in fact conic sections.

2.6: THE GENERAL CONIC SECTION
2.7: FITTING A CONIC SECTION THROUGH FIVE POINTS
2.8: FITTING A CONIC SECTION THROUGH N POINTS
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2.1: The Straight Line
It might be thought that there is rather a limited amount that could be written about the geometry of a straight line. We can
manage a few Equations here, however, (there are 35 in this section on the Straight Line) and we shall return for more on the
subject in Chapter 4.

Most readers will be familiar with the Equation for a straight line:

The slope (or gradient) of the line, which is the tangent of the angle that it makes with the -axis, is , and the intercept on the
-axis is . There are various other forms that may be of use, such as

which can also be written

The four forms are illustrated in figure .

A straight line can also be written in the form

If , the line passes through the origin. If , no information is lost, and some arithmetic and algebra are saved, if we
divide Equation  by  and re-write it in the form

y = mx +c (2.2.1)

x m

y c

+ = 1
x

x0

y

y0
(2.2.2)

=
y −y1

x −x1

−y2 y1

−x2 x1
(2.2.3)

x

x1

x2

y

y1

y2

1

1

1

= 0 (2.2.4)

x cos θ +y sinθ = p (2.2.5)

II.1

FIGURE II.1

Ax +By +C = 0. (2.2.6)

C = 0 C ≠ 0
2.2.6 C

ax +by = 1. (2.2.7)
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Let  be a point on the line and let  be a point in the plane not necessarily on the line. It is of interest to find
the perpendicular distance between  and the line. Let  be the square of the distance between  and . Then

We can express this in terms of the single variable  by substitution for  from Equation . Differentiation of  with
respect to  will then show that  is least for

The corresponding value for , found from Equations  and , is

The point  described by Equations  and  is the closest point to  on the line. The perpendicular distance of 
from the line is  or

This is positive if  is on the same side of the line as the origin, and negative if it is on the opposite side. If the perpendicular
distances of two points from the line, as calculated from Equation , are of opposite signs, they are on opposite sides of
the line. If , or indeed if the numerator of Equation  is zero, the point  is, of course, on the line.

Let  and  be three points in the plane. What is the area of the triangle ? One way to
answer this is suggested by figure .

We see that

area of triangle  = area of trapezium  (see comment*)
+ area of trapezium  
− area of trapezium .

* Since writing this section I have become aware of a difference in U.S./British usages of the word "trapezium". Apparently in British usage,
"trapezium" means a quadrilateral with two parallel sides. In U.S. usage, a trapezium means a quadrilateral with no parallel sides, while a
quadrilateral with two parallel sides is a "trapezoid". As with many words, either British or U.S. usages may be heard in Canada. In the above

P (x, y) ( , )P0 x0 y0

P0 S P0 P

S = (x − +(y −x0)2 y0)2 (2.2.8)

x y 2.2.7 S

x S

x =
a +b(b −a )x0 y0

+a2 b2
(2.2.9)

y 2.2.7 2.2.9

y = .
b +a(a −b )y0 x0

+a2 b2
(2.2.10)

P 2.2.9 2.2.10 P0 P
p = √S

p = .
1 −a −bx0 y0

+a2 b2
− −−−−−

√
(2.2.11)

P0

2.2.11
p = 0 2.2.11 ( , )P0 x0 y0

A( , ),  B( , )x1 y1 x2 y2 C( , )x3 y3 ABC
II.2

FIGURE II.2

ABC A′ACC′

C′CBB′

A′ABB′

= ( − )( + ) + ( − )( + ) − ( − )( + )
1

2
x3 x1 y3 y1

1

2
x2 x3 y2 y3

1

2
x2 x1 y2 y1 (2.1.1)

= [ ( − ) + ( − ) + ( − )]
1

2
x1 y2 y3 x2 y3 y1 x3 y1 y2 (2.1.2)

= 1
2

x1

y1

1

x2

y2

1

x3

y3

1

(2.2.12)
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derivation, I intended the British usage. What is to be learned from this is that we must always take care to make ourselves clearly understood when
using such ambiguous words, and not to assume that the reader will interpret them the way we intend.

The reader might like to work through an alternative method, using results that we have obtained earlier. The same result will
be obtained. In case the algebra proves a little tedious, it may be found easier to work through a numerical example, such as:
calculate the area of the triangle , where , ,  are the points (2,3), (7,4), (5,6) respectively. In the second method, we
note that the area of a triangle is . Thus, if we can find the length of the side BC, and the perpendicular
distance of  from , we can do it. The first is easy:

To find the second, we can easily write down the Equation to the line  from Equation , and then re-write it in the form 
. Then Equation  enables us to find the perpendicular distance of  from , and the rest is easy.

If the determinant in Equation  is zero, the area of the triangle is zero. This means that the three points are collinear.

The angle between two lines

and

is easily found by recalling that the angles that they make with the -axis are  and  together with the
elementary trigonometry formula . It is then clear that the tangent of the
angle between the two lines is

The two lines are at right angles to each other if

The line that bisects the angle between the lines is the locus of points that are equidistant from the two lines. For example,
consider the two lines

Making use of Equation , we see that a point  is equidistant from these two lines if

The significance of the  will become apparent shortly. The + and − choices result, respectively, in

and

The two continuous lines in figure  are the lines  and . There are two bisectors, represented by Equations 
 and , shown as dotted lines in the figure, and they are at right angles to each other. The choice of the + sign in

Equation  (which in this case results in Equation , the bisector in figure  with the positive slope) gives the
bisector of the sector that contains the origin.

An Equation of the form

ABC A B C

×base ×height1
2

A BC

(BC = ( − +( − .)2 x3 x2)2 y3 y2)2 (2.2.13)

BC 2.2.3
2.2.7 2.2.11 A BC

2.2.12

y = x +m1 c1 (2.2.14)

y = x +m2 c2 (2.2.15)

x  tan−1 m1  tan−1 m2

tan(A −B) = (tanA −tanB)/(1 +tanA tanB)

.
−m2 m1

1 +m1m2
(2.2.16)

= −1m1m2 (2.2.17)

−2x +5y = 1 (2.2.18)

30x −10y = 1 (2.2.19)

2.2.11 (x, y)

= ± .
1 +2x −5y

29
−−

√

1 −30x +10y

1000
− −−−

√
(2.2.20)

±

−8.568x +8.079y = 1 (2.2.21)

2.656x +2.817y = 1. (2.2.22)

II.3 2.2.18 2.2.19
2.2.21 2.2.22

2.2.20 2.2.21 II.3

a +2hxy +b = 0x2 y2 (2.2.23)
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can be factored into two linear factors with no constant term, and it therefore represents two lines intersecting at the origin. It
is left as an exercise to determine the angles that the two lines make with each other and with the  axis, and to show that the
lines

are the bisectors of  and are perpendicular to each other.

Given the Equations to three straight lines, can we find the area of the triangle bounded by them? To find a general algebraic
expression might be a bit tedious, though the reader might like to try it, but a numerical example is straightforward. For
example, consider the lines

By solving the Equations in pairs, it is soon found that they intersect at the points (−0.15789, 2.36842), (1.4, 1.2) and
(1.92857, 2.78571). Application of Equation  then gives the area as 1.544. The triangle is drawn in figure . Measure
any side and the corresponding height with a ruler and see if the area is indeed about 1.54.

But now consider the three lines

x

+( )xy − = 0x2 a −b

h
y2 (2.2.24)

2.2.23

FIGURE II.3

x −5y +12 = 0, (2.2.25)

3x +4y −9 = 0, (2.2.26)

3x −y −3 = 0. (2.2.27)

2.2.12 II.4

x −5y +12 = 0, (2.2.28)

3x +4y −9 = 0, (2.2.29)

3x +23y −54 = 0. (2.2.30)
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By solving the Equations in pairs, it will be found that all three lines intersect at the same point (please do this), and the area of
the triangle is, of course, zero. Any one of these Equations is, in fact, a linear combination of the other two. You should draw
these three lines accurately on graph paper (or by computer). In general, if three lines are

they will be concurrent at a single point if

Thus the determinant in Equation  provides a test of whether three points are collinear, and the determinant in Equation 
 provides a test of whether three lines are concurrent.

Finally - at least for the present chapter - there may be rare occasion to write the Equation of a straight line in polar
coordinates. It should be evident from figure  that the Equations

describe a straight line passing at a distance  from the pole and making an angle  with the initial line. If , the polar
Equation is merely .

Contributors and Attributions
Jeremy Tatum (University of Victoria, Canada)

FIGURE II.4

x + y + = 0A1 B1 C1 (2.2.31)

x + y + = 0A2 B2 C2 (2.2.32)

x + y + = 0A3 B3 C3 (2.2.33)

A1

A2

A3

B1

B2

B3

C1

C2

C3

= 0. (2.2.34)

2.2.12
2.2.34

II.5

r = p csc(θ −α) or r = p csc(α −θ) (2.2.35)

p α p = 0
θ = α

FIGURE II.5
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2.2: The Ellipse
An ellipse is a figure that can be drawn by sticking two pins in a sheet of paper, tying a length of string to the pins, stretching
the string taut with a pencil, and drawing the figure that results. During this process, the sum of the two distances from pencil to
one pin and from pencil to the other pin remains constant and equal to the length of the string. This method of drawing an
ellipse provides us with a formal definition, which we shall adopt in this chapter, of an ellipse, namely:

An ellipse is the locus of a point that moves such that the sum of its distances from two fixed points called the foci is constant
(see figure II.6).

We shall call the sum of these two distances (i.e the length of the string) . The ratio of the distance between the foci to length
of the string is called the eccentricity  of the ellipse, so that the distance between the foci is , and  is a number between 0
and 1.

The longest axis of the ellipse is its major axis, and a little bit of thought will show that its length is equal to the length of the
string; that is, . The shortest axis is the minor axis, and its length is usually denoted by . The eccentricity is related to the
ratio  in a manner that we shall shortly discuss.

The ratio

is called the ellipticity if the ellipse. It is merely an alternative measure of the noncircularity. It is related to the eccentricity, and
we shall obtain that relation shortly, too. Until then, Figure  shows pictorially the relation between the two.

We shall use our definition of an ellipse to obtain its Equation in rectangular coordinates. We shall place the two foci on the -
axis at coordinates (− , 0) and ( , 0) (see figure II.8).

FIGURE II.6
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The definition requires that . That is:

and this is the Equation to the ellipse. The reader should be able, after a little bit of slightly awkward algebra, to show that this
can be written more conveniently as

By putting , it is seen that the ellipse intersects the -axis at  and therefore that  is equal to the semi
minor axis . Thus we have the familiar Equation to the ellipse

as well as the important relation between ,  and :

The reader can also now derive the relation between ellipticity  and eccentricity :

This can also be written

or

This shows, incidentally, that the graph of  versus , which we have drawn in figure , is part of a circle of radius 1 centred
at .

In figures  I have drawn ellipses of eccentricities 0.1 to 0.9 in steps of 0.1, and in figure  I have drawn ellipses of
ellipticities 0.1 to 0.9 in steps of 0.1. You may find that ellipticity gives you a better idea than eccentricity of the noncircularity
of an ellipse. For an exercise, you should draw in the positions of the foci of each of these ellipses, and decide whether
eccentricity or ellipticity gives you a better idea of the "ex-centricity" of the foci. Note that the eccentricities of the orbits of
Mars and Mercury are, respectively, about 0.1 and 0.2 (these are the most eccentric of the planetary orbits except for comet-like
Pluto), and it is difficult for the eye to see that they depart at all from circles - although, when the foci are drawn, it is obvious
that the foci are "ex-centric".

FIGURE II.8

+ = 2aPF1 PF2

+ = 2a,[(x +ae + ])2 y2
1

2 [(x −ae + ])2 y2
1

2 (2.3.1)

+ = 1.
x2

a2

y2

(1 − )a2 e2
(2.3.2)

x = 0 y ±a 1 −e2
− −−−−

√ a 1 −e2
− −−−−

√

b

+ = 1
x2

a2

y2

b2
(2.3.3)

a b e

= (1 − )b2 a2 e2 (2.3.4)

η e

η = 1 − .(1 − )e2
− −−−−−

√ (2.3.5)

=e2 η(2 −η)
− −−−−−−

√ (2.3.6)

+(η −1 = 1.e2 )2 (2.3.7)

η e II.7
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: The number inside each ellipse is its eccentricity.

: The figure inside or below each ellipse is its ellipticity.

In the theory of planetary orbits, the Sun will be at one focus. Let us suppose it to be at  (see figure ). In that case the
distance  is the perihelion distance , and is equal to

The distance  is the aphelion distance Q (pronounced ap-helion by some and affelion by others − and both have defensible
positions), and it is equal to

A line parallel to the minor axis and passing through a focus is called a latus rectum (plural: latera recta). The length of a semi
latus rectum is commonly denoted by (sometimes by ). Its length is obtained by putting  in the Equation to the ellipse,
and it will be readily found that

FIGURE II.9

FIGURE II.10

F2 II.8
 BF2 q

q = a(1 −e). (2.3.8)

 AF2

Q = a(1 +e). (2.3.9)

l p x = ae

l = a(1 − ).e2 (2.3.10)
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The length of the semi latus rectum is an important quantity in orbit theory. It will be found, for example, that the energy of a
planet is closely related to the semi major axis  of its orbit, while its angular momentum is closely related to the semi latus
rectum.

The circle whose diameter is the major axis of the ellipse is called the eccentric circle or, preferably, the auxiliary circle (figure 
). Its Equation is

In orbit theory the angle  (denoted by  by some authors) is called the true anomaly of a planet in its orbit. The angle  is
called the eccentric anomaly, and it is important to find a relation between them.

We first note that, if the eccentric anomaly is , the abscissas of  and of  are each . The ordinate of  is .
By putting  in the Equation to the ellipse, we immediately find that the ordinate of  is . Several deductions
follow. One is that any point whose abscissa and ordinate are of the form

is on an ellipse of semi major axis  and semi minor axis . These two Equations can be regarded as parametric Equations to
the ellipse. They can be used to describe an ellipse just as readily as

and indeed this Equation is the -eliminant of the parametric Equations.

The ratio  for any line perpendicular to the major axis is . Consequently the area of the ellipse is  times the
area of the auxiliary circle; and since the area of the auxiliary circle is , it follows that the area of the ellipse is .

In figure , the distance  is called the radius vector (plural radii vectores), and from the theorem of Pythagoras its length is
given by

On substituting  for  and  for , we soon find that

It then follows immediately that the desired relation between  and  is

From trigonometric identities, this can also be written

a

II.11

+ = .x2 y2 a2 (2.3.11)

FIGURE II.11

v f E

E P′ P a cos E P′ a sinE

x = a cos E P b sinE

x = a cos E, y = b sinE (2.3.12)

a b

+ = 1
x2

a2

y2

b2
(2.3.13)

E

PM/ MP′ b/a b/a

πa2 πab

II.11 r

= E + (cos E −e .r2 b2 sin2 a2 )2 (2.3.14)

1 − Ecos2 Esin2 (1 − )a2 e2 b2

r = a(1 −e cos E) (2.3.15)

v E

cos v = .
cos E −e

1 −e cos E
(2.3.16)
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or

or

The inverse formulas may also be useful:

There are a number of miscellaneous geometric properties of an ellipse, some, but not necessarily all, of which may prove to be
of use in orbital calculations. We describe some of them in what follows.

Tangents to an Ellipse
Find where the straight line  intersects the ellipse

The answer to this question is to be found by substituting  for  in the Equation to the ellipse. After some
rearrangement, a quadratic Equation in  results:

If this Equation has two real roots, the roots are the -coordinates of the two points where the line intersects the ellipse. If it has
no real roots, the line misses the ellipse. If it has two coincident real roots, the line is tangent to the ellipse. The condition for
this is found by setting the discriminant of the quadratic Equation to zero, from which it is found that

Thus a straight line of the form

is tangent to the ellipse.

Figure  shows several such lines, for  and slopes (  of  to  in steps of 

sinv =
sinE1 −e2

− −−−−
√

1 −e cos E
(2.3.17a)

tanv =
sinE1 −e2− −−−−

√

cos E −e
(2.3.17b)

tan v = tan E.
1

2

1 +e

1 −e

− −−−−
√

1

2
(2.3.17c)

cos E =
e +cos v

1 +e cos v
(2.3.17d)

sinE =
sinv 1 −e2

− −−−−
√

e +cos v
(2.3.17e)

tanE =
sinv 1 −e2

− −−−−
√

e +cos v
(2.3.17f)

tan E = tan v.
1

2

1 −e

1 +e

− −−−−
√

1

2
(2.3.17g)

y = mx +c

+ = 1.
x2

a2

y2

b2
(2.3.18)

mx +c y

x

( + ) +2 cmx + ( − ) = 0.a2m2 b2 x2 a2 a2 c2 b2 (2.3.19)

x

= + .c2 a2m2 b2 (2.3.20)

y = mx ± +a2m2 b2− −−−−−−−
√ (2.3.21)
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Director Circle
The Equation we have just derived for a tangent to the ellipse can be rearranged to read

Now the product of the slopes of two lines that are at right angles to each other is  (Equation 2.2.17). Therefore, if we
replace  in the above Equation by  we shall obtain another tangent to the ellipse, at right angles to the first one. The
Equation to this second tangent becomes (after multiplication throughout by  )

If we eliminate  from these two Equations, we shall obtain an Equation in  and  that describes the point where the two
perpendicular tangents meet; that is, the Equation that will describe a curve that is the locus of the point of intersection of two
perpendicular tangents. It turns out that this curve is a circle of radius , and it is called the director circle.

It is easier than it might first appear to eliminate  from the Equations. We merely have to add the Equations  and 
:

For real , this can only be if

which is the required locus of the director circle of radius . It is illustrated in figure .

We shall now derive an Equation to the line that is tangent to the ellipse at the point .

Let  and  be two points on the ellipse.

The line joining these two points is

FIGURE II.12

( − )+2mx + − = 0.m2 a2 x2 b2 y2 (2.3.22)

−1
m −1/m

m

( − )−2mx + − = 0.m2 b2 y2 a2 x2 (2.3.23)

m x y

+a2 b2− −−−−−
√

m 2.3.22
2.3.23

( + − − )+ + − − = 0.m2 a2 b2 x2 y2 a2 b2 x2 y2 (2.3.24)

m

+ = + ,x2 y2 a2 b2 (2.3.25)

+a2 b2
− −−−−−

√ II.13

( ,   )x1 y1

( ,   ) = (a cos , b sin )x1 y1 E1 E1 ( ,   ) = (a cos , b sin )x2 y2 E2 E2

= = = − .
y −b sinE1

x −a cos E1

b(sin −sin )E2 E1

a(cos −cos )E2 E1

2b cos ( + ) sin ( − )1
2

E2 E1
1
2

E2 E1

−2a sin ( + ) sin ( − )1
2

E2 E1
1
2

E2 E1

b cos ( + )1
2

E2 E1

a sin ( + )1
2

E2 E1

(2.3.26)
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Now let  approach , eventually coinciding with it. The resulting Equation

in which we no longer distinguish between  and , is the Equation of the straight line that is tangent to the ellipse at 
. This can be written

or, in terms of ,

which is the tangent to the ellipse at .

An interesting property of a tangent to an ellipse, the proof of which I leave to the reader, is that  and  make equal
angles with the tangent at . If the inside of the ellipse were a reflecting mirror and a point source of light were to be placed at 

, it would be imaged at . (Have a look at figure  or .) This has had an interesting medical application. A patient has
a kidney stone. The patient is asked to lie in an elliptical bath, with the kidney stone at . A small explosion is detonated at 

; the explosive sound wave emanating from  is focused as an implosion at  and the kidney stone at  is shattered.
Don't try this at home.

Directrices
The two lines  are called the directrices (singular directrix) of the ellipse (figure ).

FIGURE II.13
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The ellipse has the property that, for any point  on the ellipse, the ratio of the distance  to a focus to the distance  to a
directrix is constant and is equal to the eccentricity of the ellipse. Indeed, this property is sometimes used as the definition of an
ellipse, and all the Equations and properties that we have so far derived can be deduced from such a definition. We, however,
adopted a different definition, and the focus-directrix property must be derived. This is straightforward, for, (recalling that the
abcissa of  is ) we see from figure  that the square of the desired ratio is

On substitution of

for , the above expression is seen to reduce to .

Another interesting property of the focus and directrix, although a property probably with not much application to orbit theory,
is that if the tangent to an ellipse at a point  intersects the directrix at , then  and  subtend a right angle at the focus. (See
figure ).

Thus the tangent at  is

and it is straightforward to show that it intersects the directrix  at the point

The coordinates of the focus  are . The slope of the line  is  and the slope of the line  is

It is easy to show that the product of these two slopes is , and hence that  and  are at right angles.

Conjugate Diameters
The left hand of figure  shows a circle and two perpendicular diameters. The right hand figure shows what the circle
would look like when viewed at some oblique angle. The circle has become an ellipse, and the diameters are no longer
perpendicular. The diameters are called conjugate diameters of the ellipse. One is conjugate to the other, and the other is
conjugate to the one. They have the property - or the definition - that each bisects all chords parallel to the other, because this
property of bisection, which is obviously held by the perpendicular diameters of the circle, is unaltered in projection.

P PF2 PN

F2 ae II.14
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It is easy to draw two conjugate diameters of an ellipse of eccentricity  either by making use of this last-mentioned property or
by noting that that the product of the slopes of two conjugate diameters is . The proof of this is left for the enjoyment of
the reader.

A Ladder Problem.

No book on elementary applied mathematics is complete without a ladder problem. A ladder of length  leans against a
smooth vertical wall and a smooth horizontal floor. A particular rung is at a distance  from the top of the ladder and  from the
bottom of the ladder. Show that, when the ladder slips, the rung describes an ellipse. (This result will suggest another way of
drawing an ellipse.) See figure .

If you have not done this problem after one minute, here is a hint. Let the angle that the ladder makes with the floor at any time
be . That is the end of the hint.

The reader may be aware that some of the geometrical properties that we have discussed in the last few paragraphs are more of
recreational interest and may not have much direct application in the theory of orbits. In the next subsection we return to
properties and Equations that are very relevant to orbital theory - perhaps the most important of all for the orbit computer to
understand.

Polar Equation to the Ellipse
We shall obtain the Equation in polar coordinates to an ellipse whose focus is the pole of the polar coordinates and whose major
axis is the initial line  of the polar coordinates. In figure  we have indicated the angle  of polar coordinates, and
it may occur to the reader that we have previously used the symbol  for this angle and called it the true anomaly. Indeed at
present,  and  are identical, but a little later we shall distinguish between them.
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From our definition of the ellipse, , and so

From the cosine formula for a plane triangle,

On equating these expressions we soon obtain

The left hand side is equal to the semi latus rectum , and so we arrive at the polar Equation to the ellipse, focus as pole, major
axis as initial line:

If the major axis is inclined at an angle  to the initial line (figure  ), the Equation becomes

The distinction between  and  is now evident.  is the angle of polar coordinates,  is the angle between the major axis and
the initial line (  will be referred to in orbital theory as the "argument of perihelion"), and , the true anomaly, is the angle
between the radius vector and the initial line.
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2.3: The Parabola
We define a parabola as the locus of a point that moves such that its distance from a fixed straight line called the directrix is
equal to its distance from a fixed point called the focus. Unlike the ellipse, a parabola has only one focus and one directrix.
However, comparison of this definition with the focus - directrix property of the ellipse (which can also be used to define the
ellipse) shows that the parabola can be regarded as a limiting form of an ellipse with eccentricity equal to unity.

We shall find the Equation to a parabola whose directrix is the line  and whose focus is the point . Figure 
shows the parabola.  is the focus and  is the origin of the coordinate system. The vertex of the parabola is at the origin. In
an orbital context, for example, the orbit of a comet moving around the Sun in parabolic orbit, the Sun would be at the focus 

, and the distance between vertex and focus would be the perihelion distance, for which the symbol  is traditionally used in
orbit theory.

From figure , it is evident that the definition of the parabola  requires that

from which

which is the Equation to the parabola.

Sketch the following parabolas:

a. 
b. 
c. 
d. 

The line parallel to the -axis and passing through the focus is the latus rectum. Substitution of  into  shows
that the latus rectum intersects the parabola at the two points , and that the length  of the semi latus rectum is .

The Equations

are the parametric Equations to the parabola, for  results from the elimination of  between them. In other words, if 
is any variable, then any point that satisfies these two Equations lies on the parabola.
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Most readers will know that if a particle is moving with constant speed in one direction and constant acceleration at right
angles to that direction, as with a ball projected in a uniform gravitational field or an electron moving in a uniform electric
field, the path is a parabola. In the constant speed direction the distance is proportional to the time, and in the constant
acceleration direction, the distance is proportional to the square of the time, and hence the path is a parabola.

Tangents to a Parabola.
Where does the straight line  intersect the parabola ? The answer is found by substituting  for 
to obtain, after rearrangement,

The line is tangent if the discriminant is zero, which leads to

Thus a straight line of the form

is tangent to the parabola. Figure  illustrates this for several lines, the slopes of each differing by  from the next.

We shall now derive an Equation to the line that is tangent to the parabola at the point .

Let  be a point on the parabola, and
Let  be another point on the parabola.

The line joining these two points is

Now let  approach , eventually coinciding with it. Putting  in the last Equation results, after simplification, in

being the Equation to the tangent at .

Multiply by :

and it is seen that the Equation to the tangent at  is

y = mx +c = 4qxy2 mx +c y

+2(mc −2q)x + = 0.m2x2 c2 (2.3.4)

c = q/m. (2.3.5)

y = mx +q/m (2.3.6)
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There are a number of interesting geometric properties, some of which are given here. For example, if a tangent to the parabola
at a point  meets the directrix at , then, just as for the ellipse,  and  subtend a right angle at the focus (figure ). The
proof is similar to that given for the ellipse, and is left for the reader.

The reader will recall that perpendicular tangents to an ellipse meet on the director circle. The analogous theorem vis-à-vis the
parabola is that perpendicular tangents meet on the directrix. This is also illustrated in figure . The theorem is not
specially important in orbit theory, and the proof is also left to the reader.

Let  be the normal to the parabola at point , meeting the axis at  (figure ). We shall call the length  the
subnormal. A curious property is that the length of  is always equal to , the length of the semi latus rectum (which in
figure  is of length 2 − i.e. the ordinate where ), irrespective of the position of . This proof again is left to the
reader.

The following two geometrical properties, while not having immediate applications to orbit theory, certainly have applications
to astronomy.

y = 2q( +x).y1 x1 (2.3.10)
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The tangent at  makes an angle  with the -axis, and  makes an angle  with the -axis (figure ). We shall show
that  and deduce an interesting consequence.

The Equation to the tangent (see Equation ) is , which shows that

The coordinates of  and  are, respectively,  and , and so, from the triangle , we find.

Let , then  and , which shows that .

This also shows that triangle  is isosceles, with the angles at  and  each being . This can also be shown as follows.

From the Equation , we see that  is the point , so that .

From triangle , we see that

Therefore

Either way, since the triangle  is isosceles, it follows that  and  make the same angle  to the tangent. If the
parabola is a cross section of a telescopic mirror, any ray of light coming in parallel to the axis will be focussed at , so that a
paraboloidal mirror, used on-axis, does not suffer from spherical aberration. (This property holds, of course, only for light
parallel to the axis of the paraboloid, so that a paraboloidal mirror, without some sort of correction, gives good images over
only a narrow field of view.)

Now consider what happens when you stir a cup of tea. The surface takes up a shape that looks as though it might resemble the
parabola  - see figure :

Suppose the liquid is circulating at angular speed . A tea leaf floating on the surface is in equilibrium (in the rotating
reference frame) under three forces: its weight , the centrifugal force  and the normal reaction . The normal to the

FIGURE II.25
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surface makes an angle  with the vertical (and the tangent makes an angle  with the horizontal) given by

But the slope of the parabola  is , so that the surface is indeed a parabola with semi latus rectum 
.

This phenomenon has been used in Canada to make a successful large telescope (diameter  ) in which the mirror is a
spinning disc of mercury that takes up a perfectly paraboloidal shape. Another example is the spin casting method that has
been successfully used for the production of large, solid glass paraboloidal telescope mirrors. In this process, the furnace is
rotated about a vertical axis while the molten glass cools and eventually solidifies into the required paraboloidal effect.

The 6.5 metre diameter mirrors for the twin Magellan telescopes at Las Campañas, Chile, have a focal ratio . They
were made by the technique of spin casting at The University of Arizona's Mirror Laboratory. At what speed would the
furnace have had to be rotated in order to achieve the desired focal ratio? (Answer .) Notice that  is
quite a deep paraboloid. If this mirror had been made by traditional grinding from a solid disc, what volume of material
would have had to be removed to make the desired paraboloid? (Answer - a whopping 5.4 cubic metres, or about 12 tons!)

Polar Equation to the Parabola
As with the ellipse, we choose the focus as pole and the axis of the parabola as initial line. We shall orient the parabola so that
the vertex is toward the right, as in figure .

We recall the focus-directrix property, . Also, from the definition of the directrix, , so that 
, the length of the semi latus rectum. It is therefore immediately evident from figure  that 

, so that the polar Equation to the parabola is

This is the same as the polar Equation to the ellipse (Equation 2.3.36), with  for the parabola. I have given different
derivations for the ellipse and for the parabola; the reader might like to interchange the two approaches and develop Equation
2.3.36 in the same manner as we have developed Equation .

When we discuss the hyperbola, I shall ask you to show that its polar Equation is also the same as 2.3.36. In other words,
Equation 2.3.36 is the Equation to a conic section, and it represents an ellipse, parabola or hyperbola according to whether 

.
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2.4: The Hyperbola
A hyperbola is the locus of a point that moves such that the difference between its distances from two fixed points called the
foci is constant. We shall call the difference between these two distances  and the distance between the foci , where  is
the eccentricity of the hyperbola, and is a number greater than 1. See figure .

For example, in a Young's double-slit interference experiment, the th bright fringe is located at a point on the screen such
that the path difference for the rays from the two slits is  wavelengths. As the screen is moved forward or backwards, this
relation continues to hold for the th bright fringe, whose locus between the slits and the screen is therefore a hyperbola. The
"Decca" system of radar navigation, first used at the D-Day landings in the Second World War and decommissioned only as
late as 2000 on account of being rendered obsolete by the "GPS" (Global Positioning Satellite) system, depended on this
property of the hyperbola. (Since writing this, part of the Decca system has been re-commissioned as a back-up in case of
problems with GPS.) Two radar transmitters some distance apart would simultaneously transmit radar pulses. A ship would
receive the two signals separated by a short time interval, depending on the difference between the distances from the ship to
the two transmitters. This placed the ship on a particular hyperbola. The ship would also listen in to another pair of
transmitters, and this would place the ship on a second hyperbola. This then placed the ship at one of the four points where the
two hyperbolas intersected. It would usually be obvious which of the four points was the correct one, but any ambiguity could
be resolved by the signals from a third pair of transmitters.

In figure , the coordinates of  and  are, respectively,  and .

The condition  requires that

and this is the Equation to the hyperbola. After some arrangement, this can be written

which is a more familiar form for the Equation to the hyperbola. Let us define a length  by

The Equation then becomes

which is the most familiar form for the Equation to a hyperbola.
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When a meteor streaks across the sky, it can be tracked by radar. The radar instrumentation can determine the range
(distance) of the meteoroid as a function of time. Show that, if the meteoroid is moving at constant speed (a questionable
assumption, because it must be decelerating, but perhaps we can assume the decrease in speed is negligible during the
course of the observation), and if the range  is plotted against the time, the graph will be a hyperbola. Show also that, if 

 is plotted against , the graph will be a parabola of the form

where .

Radar observation of a meteor yields the following range-time data:

Assume that the velocity of the meteor is constant.

Determine i. The time of closest approach (to 0.01 )
ii. The distance of closest approach (to 0.1 )
iii. The speed (to 1.0 )

If you wish, just use the three asterisked data to determine ,  and . If you are more energetic, use all the data, and
determine ,  and  by least squares, and the probable errors of ,  and .

The distance between the two vertices of the hyperbola is its transverse axis, and the length of the semi transverse axis is  −
but what is the geometric meaning of the length ? This is discussed below in the next subsection (on the conjugate hyperbola)
and again in a later section on the impact parameter.

The lines perpendicular to the -axis and passing through the foci are the two latera recta. Since the foci are at , the
points where the latera recta intersect the hyperbola can be found by putting  into the Equation to the hyperbola, and it
is then found that the length  of a semi latus rectum is

The Equation

is the Equation to the conjugate hyperbola.

r

r2 t

= a +bt +c,r2 t2 (2.4.1)

a = ,  b = −2 ,  c = + ,  V = speed of the meteoroid,   = time of closest approach,  V 2 V 2t0 V 2t2
0 r2
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The conjugate hyperbola is drawn dashed in figure , and it is seen that the geometric meaning of  is that it is the length
of the semi transverse axis of the conjugate hyperbola. It is a simple matter to show that the eccentricity of the conjugate
hyperbola is .

The lines

are the asymptotes of the hyperbola.

Equation  can also be written

Thus

is the hyperbola, the asymptotes, or the conjugate hyperbola, if ,  or  respectively. The asymptotes are drawn as
dotted lines in figure .

The semi angle ψ between the asymptotes is given by

If the eccentricity of a hyperbola is , show that the eccentricity of its conjugate is .

No one will be surprised to note that this implies that, if the eccentricities of a hyperbola and its conjugate are equal, then
each is equal to .

The Directrices
The lines  are the directrices, and, as with the ellipse (and with a similar proof), the hyperbola has the property that
the ratio of the distance  to a focus to the distance  to the directrix is constant and is equal to the eccentricity of the
hyperbola. This ratio (i.e. the eccentricity) is less than one for the ellipse, equal to one for the parabola, and greater than one
for the hyperbola. It is not a property that will be of great importance for our purposes, but is worth mentioning because it is a
property that is sometimes used to define a hyperbola. I leave it to the reader to draw the directrices in their correct positions in
figure .

Parametric Equations to the Hyperbola.
The reader will recall that the point  is on the ellipse  and that this is evident because
this Equation is the -eliminant of  and . The angle  has a geometric interpretation as the eccentric
anomaly. Likewise, recalling the relation , it will be evident that  can also be
obtained as the −eliminant of the Equations
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These two Equations are therefore the parametric Equations to the hyperbola, and any point satisfying these two Equations lies
on the hyperbola. The variable  is not an angle, and has no geometric interpretation analogous to the eccentric anomaly of an
ellipse. The Equations

can also be used as parametric Equations to the hyperbola, on account of the trigonometric identity . In
that case, the angle  does have a geometric interpretation (albeit not a particularly interesting one) in relation to the auxiliary
circle, which is the circle of radius a centred at the origin. The meaning of the angle should be evident from figure , in
which  is the eccentric angle corresponding to the point .

Impact Parameter
A particle travelling very fast under the action of an inverse square attractive force (such as an interstellar meteoroid or comet
- if there are such things - passing by the Sun, or an electron in the vicinity of a positively charged atomic nucleus) will move
in a hyperbolic path. We prove this in a later chapter, as well as discussing the necessary speed. We may imagine the particle
initially approaching from a great distance along the asymptote at the bottom right hand corner of figure . As it
approaches the focus, it no longer moves along the asymptote but along an arm of the hyperbola.

The distance , which is the distance by which the particle would have missed  in the absence of an attractive force, is
commonly called the impact parameter. Likewise, if the force had been a repulsive force (for example, suppose the moving
particle were a positively charged particle and there were a centre of repulsion at ,  would be the impact parameter.
Clearly,  and  are equal in length. The symbol that is often used in scattering theory, whether in celestial mechanics
or in particle physics, is  - but is this  the same  that goes into the Equation to the hyperbola and which is equal to the semi
major axis of the conjugate hyperbola?

ϕ

x = a sec E, y = b tanE (2.5.12)

1 + E = Etan2 sec2

E

II.29
E P

FIGURE II.29

II.30

FIGURE II.30

 K2 F2 F2

F1 F1K1

F1K1 F2K2

b b b

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6795?pdf


Jeremy Tatum 9/17/2020 2.4.5 CC-BY-NC https://phys.libretexts.org/@go/page/6795

, and therefore . This, in conjunction with  and , will soon show that
the impact parameter is indeed the same  that we are familiar with, and that  is therefore a very suitable symbol to use for
impact parameter.

Tangents to the Hyperbola
Using the same arguments as for the ellipse, the reader should easily find that lines of the form

are tangent to the hyperbola. This is illustrated in figure  for a hyperbola with , with tangents drawn with slopes 
 to  in steps of . (The asymptotes have .) (Sorry, but there are no figures  or  - computer

problems!)

Likewise, from similar arguments used for the ellipse, the tangent to the hyperbola at the point  is found to be

Director Circle
As for the ellipse, and with a similar derivation, the locus of the points of intersection of perpendicular tangents is a circle,
called the director circle, which is of radius . This is not of particular importance for our purposes, but the reader
who is interested might like to prove this by the same method as was done for the director circle of the ellipse, and might like
to try drawing the circle and some tangents. If , that is to say if  and the angle between the asymptotes is greater
than , the director circle is not real and it is of course not possible to draw perpendicular tangents.

Rectangular Hyperbola
If the angle between the asymptotes is , the hyperbola is called a rectangular hyperbola. For such a hyperbola, , the
eccentricity is , the director circle is a point, namely the origin, and perpendicular tangents can be drawn only from the
asymptotes.

The Equation to a rectangular hyperbola is

and the asymptotes are at  to the  axis.

Let  be a set of axes at  to the  axis. (That is to say, they are the asymptotes of the rectangular hyperbola.) Then
the Equation to the rectangular hyperbola referred to its asymptotes as coordinate axes is found by the substitutions

into . This results in the Equation

for the Equation to the rectangular hyperbola referred to its asymptotes as coordinate axes. The geometric interpretation of  is
shown in figure , which is drawn for , and we have called the coordinate axes  and . The length of the semi

= aeOF2 = ae sinψK2F2 tanψ = b/a = ( −1)b2 a2 e2

b b

y = mx ± −a2m2 b2− −−−−−−−
√ (2.5.13)

II.33 b = a/2
30∘ 150∘ 5∘ ψ = 26∘34′ II.31 II.32

FIGURE II.31

(x, y)

− = 1.
xx1

a2

yy1

b2
(2.5.14)

√( − )a2 b2

b > a ψ > 45∘

90∘

90∘ b = a

√2

− =x2 y2 a2 (2.5.15)

45∘ x

O ,  Ox′ y′ 45∘ x

( ) =( )( )
x

y

cos 45∘

−sin45∘

sin45∘

cos 45∘

x′

y′
(2.5.16)

− =x2 y2 a2

= = , where c = a/ ,x′y′ 1

2
a2 c2 2

–
√ (2.5.17)
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transverse axis is .

The simple Equation  is a rectangular hyperbola and indeed it is this Equation that is shown in figure .

It is left to the reader to show that the parametric Equations to the rectangular hyperbola  (we have dropped the
primes) are , that lines of the form  are tangent to  (figure II.35, drawn with
slopes from  to  in steps of  ), and that the tangent at  is .

Equation of a Hyperbola Referred to its Asymptotes as Axes of Coordinates
We have shown that the Equation to a rectangular hyperbola referred to its asymptotes as axes of coordinates is 

. In fact the Equation  is the Equation to any hyperbola (centred at ), not necessarily
rectangular, when referred to its asymptotes as axes of coordinates, where  In the figure below I have drawn a
hyperbola and a point on the hyperbola whose coordinates with respect to the horizontal and vertical axes are , and
whose coordinates with respect to the asymptotes are . I have shown the distances  and  with blue dashed lines, and
the distances  and  with red dashed lines. The semiangle between the asymptotes is .

The Equation to the hyperbola referred to the horizontal and vertical axes is

From the drawing, we see that

c 2
–√

FIGURE II.32

y = 1/x II.32

xy = c2

x = ct,  y = c/t y = mx ±2c −m− −−
√ xy = c2

90∘ 180∘ 5∘ ( , )x1 y1 y + x = 2cx1 y1

FIGURE II.33

= =x′y′ 1
2

a2 c2 =x′y′ c2 (0,  0)

= ( + )c2 1
4

a2 b2

(x,  y)
( , )x′ y′ x y

x′ y′ ψ

− = 1.
x2

a2

y2

b2
(2.5.18)

x = ( + ) cos ψ, y = ( − ) sinψ.x′ y′ y′ x′ (2.5.19a,b)
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If we substitute these into Equation , and also make use of the relation  (Equation ), we arrive at the
Equation to the hyperbola referred to the asymptotes as axes of coordinates:

Polar Equation to the Hyperbola
We found the polar Equations to the ellipse and the parabola in different ways. Now go back and look at both methods and use
either (or both) to show that the polar Equation to the hyperbola (focus as pole) is

This is the polar Equation to any conic section - which one being determined solely by the value of . You should also ask
yourself what is represented by the Equation

Try sketching it for different values of .
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2.5: Conic Sections
We have so far defined an ellipse, a parabola and a hyperbola without any reference to a cone. Many readers will know that a
plane section of a cone is either an ellipse, a parabola or a hyperbola, depending on whether the angle that the plane makes
with the base of the cone is less than, equal to or greater than the angle that the generator of the cone makes with its base.
However, given the definitions of the ellipse, parabola and hyperbola that we have given, proof is required that they are in fact
conic sections. It might also be mentioned at this point that a plane section of a circular cylinder is also an ellipse. Also, of
course, if the plane is parallel with the base of the cone, or perpendicular to the axis of the cylinder, the ellipse reduces to a
circle.

A simple and remarkable proof can be given in the classical Euclidean "Given. Required. Construction. Proof. Q.E.D." style.

Given: A cone and a plane such that the angle that the plane makes with the base of the cone is less than the angle that the
generator of the cone makes with its base, and the plane cuts the cone in a closed curve . Figure .

Required: To prove that  is an ellipse.

Construction: Construct a sphere above the plane, which touches the cone internally in the circle  and the plane at the
point . Construct also a sphere below the plane, which touches the cone internally in the circle  and the plane at the
point .

Join a point  on the curve  to  and to .
Draw the generator that passes through the point  and which intersects  at  and  at .

Proof:  (Tangents to a sphere from an external point.)

 (Tangents to a sphere from an external point.)

and  is independent of the position of , since it is the distance between the circles  and  measured along a
generator.

FIGURE II.36

Proof

K II.36

K

C1

F1 C2

F2

P K F1 F2

P C1 Q1 C2 Q2

=PF1 PQ1

=PF2 PQ2

∴ + = + =PF1 PF2 PQ1 PQ2 Q1Q2

Q1Q2 P C1 C2

∴  K is an ellipse and   and   are its foci.F1 F2 (Q.E.D.)
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A similar argument will show that a plane section of a cylinder is also an ellipse.

The reader can also devise drawings that will show that a plane section of a cone parallel to a generator is a parabola, and that
a plane steeper than a generator cuts the cone in a hyperbola. The drawings are easiest to do with paper, pencil, compass and
ruler, and will require some ingenuity. While I have seen the above proof for an ellipse in several books, I have not seen the
corresponding proofs for a parabola and a hyperbola, but they can indeed be done, and the reader should find it an interesting
challenge. If the reader can use a computer to make the drawings and can do better than my poor effort with figure , s/he
is pretty good with a computer, which is a sign of a misspent youth.
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2.6: The General Conic Section
The Equation

represents an ellipse whose major axis is along the  axis and whose centre is at the origin of coordinates. But what if its
centre is not at the origin, and if the major axis is at some skew angle to the  axis? What will be the Equation that represents
such an ellipse? Figure .

If the centre is translated from the origin to the point , the Equation that represents the ellipse will be found by replacing 
 by  and  by . If the major axis is inclined at an angle θ to the  axis, the Equation that represents the ellipse will

be found by replacing  by  and  by . In any case, if the ellipse is translated or rotated or
both,  and  will each be replaced by linear expressions in  and , and the resulting Equation will have at most terms in 

 and a constant. The same is true of a parabola or a hyperbola. Thus, any of these three curves will be
represented by an Equation of the form

(The coefficients  and  are not the semi major and semi minor axes.) The apparently random notation for the coefficients
arises because these figures are plane sections of three-dimensional surfaces (the ellipsoid, paraboloid and hyperboloid) which
are described by terms involving the coordinate  as well as  and . The customary notation for these three-dimensional
surfaces is very systematic, but when the terms in  are removed for the two- dimensional case, the apparently random
notation  remains. In any case, the above Equation can be divided through by the constant term without loss
of generality, so that the Equation to an ellipse, parabola or hyperbola can be written, if preferred, as

Is the converse true? That is, does an Equation of this form always necessarily represent an ellipse, parabola or hyperbola?

Not quite. For example,

represents two straight lines (it can be factored into two linear terms - try it), while

is satisfied only by a single point. (Find it.)

However, a plane section of a cone can be two lines or a single point, so perhaps we can now ask whether the general second
degree Equation must always represent a conic section. The answer is: close, but not quite.

For example,

+ = 1
x2

a2

y2

b2
(2.7.1)

x

x

II.37

FIGURE II.37

(p, q)
x x −p y y −q x

x x cos θ +y sinθ y −x sinθ +y cos θ

x y x y

,   ,  xy,  x,  yx2 y2

a +2hxy +b +2gx +2fy +c = 0.x2 y2 (2.7.2)

a b

z x y

z

a,  b,  c,  f ,  g,  h

a +2hxy +b +2gx +2fy +1 = 0.x2 y2 (2.7.3)

6 +xy − −17x −y +12 = 0x2 y2 (2.7.4)

2 −4xy +4 −4x +4 = 0x2 y2 (2.7.5)
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represents two parallel straight lines, while

cannot be satisfied by any real .

However, a plane can intersect a cylinder in two parallel straight lines, or a single straight line, or not at all. Therefore, if we
stretch the definition of a cone somewhat to include a cylinder as a special limiting case, then we can say that the general
second degree Equation in  and  does indeed always represent a conic section.

Is there any means by which one can tell by a glance at a particular second degree Equation, for example

what type of conic section is represented? The answer is yes, and this one happens to be a hyperbola. The discrimination is
made by examining the properties of the determinant

I have devised a table after the design of the dichotomous tables commonly used by taxonomists in biology, in which the user
is confronted by a couplet (or sometimes triplet) of alternatives, and is then directed to the next part of the table. I shall spare
the reader the derivation of the table; instead, I shall describe its use.

In the table, I have used the symbol  to mean the cofactor of  in the determinant,  the cofactor of ,  the cofactor of ,
etc. Explicitly, these are

and

The first column labels the choices that the user is asked to make. At the beginning, there are two choices to make,  and 
The second column says what these choices are, and the fourth column says where to go next. Thus, if the determinant is zero,
go to ; otherwise, go to . If there is an asterisk in column , you are finished. Column  says what sort of a conic section you
have arrived at, and column  gives an example.

No matter what type the conic section is, the coordinates of its centre are  and the angle  that its major or
transverse axis makes with the x axis is given by

4 +12xy +9 +14x +21y +6 = 0x2 y2 (2.7.6)

+ +3x +4y +15 = 0x2 y2 (2.7.7)

(x, y)

x y

8 +10xy −3 −2x −4y −2 = 0,x2 y2 (2.7.8)

Δ =

a

h

g

h

b

f

g

f

c

(2.7.9)

ā a h̄ h ḡ g

= bc − ,ā f 2 (2.7.10)

= ca − ,b̄ g2 (2.7.11)

= ab − ,c̄ h2 (2.7.12)

= gh −af ,f̄ (2.7.13)

= hf −bgḡ (2.7.14)

= fg −ch.h̄ (2.7.15)

1 1′

2 5 4 3
5

( / ,   / )ḡ c̄ f̄ c̄ θ

tan2θ = .
2h

a −b
(2.7.16)
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Thus if  is first replaced with  and  with , and then the new  is replaced with  and the
new  with , the Equation will take the familiar form of a conic section with its major or transverse axis
coincident with the  axis and its centre at the origin. Any of its properties, such as the eccentricity, can then be deduced from
the familiar Equations. You should try this with Equation .

Key to the Conic Sections

When faced with a general second degree Equation in  and , I often find it convenient right at the start to calculate the
values of the cofactors from Equations 2.7.10 − 2.7.15.

Here is an exercise that you might like to try. Show that the ellipse  is contained
within the rectangle whose sides are

In other words, these four lines are the vertical and horizontal tangents to the ellipse.

This is probably not of much use in celestial mechanics, but it will probably be useful in studying Lissajous ellipses, or the
Stokes parameters of polarized light. It is also useful in programming a computer to draw, for example, the ellipse 

. To do this, you will probably want to start at some value of  and calculate the
two corresponding values of , and then move to another value of . But at which value of  should you start? Equation 

 will tell you.

But what do Equations  and  mean if the conic section Equation  is not
an ellipse? They are still useful if the conic section is a hyperbola. Equations  and  are still vertical and horizontal
tangents - but in this case the hyperbola is entirely outside the limits imposed by these tangents. If the axes of the hyperbola
are horizontal and vertical, one or other of Equations  and  will fail.

x x + /ḡ c̄ y y + /f̄ c̄ x x cos θ −y sinθ

y x sinθ +y cos θ

x

2.7.8

x y

a +2hxy +b +2gx +2fy +1 = 0x2 y2

x =
±ḡ −ḡ2 āc̄

− −−−−−√

c̄
(2.7.18)

y =
±f̄ −f̄

2
b̄ c̄

− −−−−−−
√

c̄
(2.7.19)

14 −4xy +11 −44x −58y +71 = 0x2 y2 x

y x x

2.7.18

2.7.18 2.7.19 a +2hxy +b +2gx +2fy +1 = 0x2 y2

2.7.18 2.7.19

2.7.18 2.7.19
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If the conic section is a parabola, Equations  and  are not useful, because . There is only one horizontal
tangent and only one vertical tangent. They are given by

and

If the axis of the parabola is horizontal or vertical, one or other of Equations  and  will fail.

If the second degree Equation represents one or two straight lines, or a point, or nothing, I imagine that all of Equations 
−  will fail - unless perhaps the Equation represents horizontal or vertical lines. I haven’t looked into this; perhaps the
reader would like to do so.

Here is a problem that you might like to try. The Equation  represents a hyperbola.
What are the Equations to its axes, to its asymptotes, and to its conjugate hyperbola? Or, more generally, if 

 represents a hyperbola, what are the Equations to its axes, to its asymptotes, and to
its conjugate hyperbola?

Before starting, one point worth noting is that the original hyperbola, its asymptotes, and the conjugate hyperbola) have the
same centre, which means that  and  are the same for each, and they have the same axes, which means that , , and  are
the same for each. They differ only in the constant term.

If you do the first problem, , there will be a fair amount of numerical work to do.
When I did it I didn’t use either pencil and paper or a hand calculator. Rather I sat in front of a computer doing the numerical
calculations with a Fortran statement for every stage of the calculation. I don’t think I could have done it otherwise without
making lots of mistakes. The very first thing I did was to work out the cofactors  and store them in the
computer, and also the coordinates of the centre  of the hyperbola, which are given by .

Whether you do the particular numerical problem, or the more general algebraic one, I suggest that you proceed as follows.
First, refer the hyperbola to a set of coordinates  whose origin coincides with the axes of the hyperbola. This is done by
replacing  with  and  with . This will result in an Equation of the form . The
coefficients of the quadratic terms will be unchanged, the linear terms will have vanished, and the constant term will have
changed. At this stage I got, for the numerical example, .

Now refer the hyperbola to a set of coordinates  whose axes are parallel to the axes of the hyperbola. This is achieved by
replacing  with  and  with , where . There will be a small
problem here, because this gives two values of  differing by , and you’ll want to decide which one you want. In any case,
the result will be an Equation of the form , in which  and  are of opposite sign. Furthermore, if
you happen to understand the meaning of the noise “The trace of a matrix is invariant under an orthogonal transformation”,
you’ll be able to check for arithmetic mistakes by noting that . If this is not so, you have made a mistake.
Also, the constant term should be unaltered by the rotation (note the single prime on the ). At this stage, I got 

. (All of this was done with Fortran statements on the computer - no actual calculation or
writing done by me - and the numbers were stored in the computer to many significant figures).

In any case this Equation can be written in the familiar form , which in this case I made to be 

. We are now on familiar ground. The axes of the hyperbola are  and , the asymptotes

are  and the conjugate hyperbola is .

Now, starting from  for the asymptotes, or from  for the conjugate hyperbola, we reverse

the process. We go to the single-primed coordinates by replacing  with  and  with − ,
and then to the original coordinates by replacing  with  and  with .

2.7.18 2.7.19 c = 0

x =
ā

2ḡ
(2.7.20)

y =
b̄

2f̄
(2.7.21)

2.7.20 2.7.21

2.7.18
2.7.21
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This is what I find:

Original hyperbola: 

Conjugate hyperbola: 
where 

Asymptotes: 
where  can be written in any of the following equivalent forms:

[The last of these three forms can be derived very quickly by recalling that a condition for a general second degree Equation in
 and  to represent two straight lines is that the determinant  should be zero. A glance at this determinant will show that

this implies that  ]

Axes of hyperbolas: 
where 

Example:

Original hyperbola: 

Conjugate hyperbola: 

Asymptotes: 
which can also be written 

Axes of hyperbolas: .

These are shown in the figure below - the original hyperbola in black, the conjugate in blue.

The centre is at (0.26531, −0.22449).

The slopes of the two asymptotes are 4 and . From Equation 2.2.16 we find that the tangent of the angle between the
asymptotes is , so that , and the angle between the asymptote and the major axis of the original
hyperbola is , or . This is equal (see Equations 2.5.3 and 2.5.10) to , so the eccentricity of the
original hyperbola is . From Section 2.2, shortly Equation 2,5,6, we soon find that the eccentricity of the conjugate
hyperbola is .

a +2hxy +b +2gx +2fy +c = 0x2 y2

a +2hxy +b +2gx +2fy + = 0,x2 y2 cconj

= −(2g +2f +c )/ = −(2g +2f +c).cconj ḡ f̄ c̄ c̄ x0 y0

a +2hxy +b +2gx +2fy + = 0,x2 y2 casymp

casymp

= +(a +2h +b )/ = a +2h +b = −(g +f )/ .casymp ḡ2 ḡf̄ f̄
2

c̄2 x2
0 x0y0 y2

0 ḡ f̄ c̄ (2.6.1)

x y Δ
g +f +c = 0.ḡ f̄ c̄

(y −x tanθ − + tanθ)(y +x cot θ − − cot θ) = 0,y0 x0 y0 x0

tan2θ = 2h/(a −b).

8 +10xy −3 −2x −4y −2 = 0x2 y2

8 +10xy −3 −2x −4y + = 0x2 y2 80
49

8 +10xy −3 −2x −4y − = 0,x2 y2 9
49

(4x −y − )(2x +3y + ) = 09
7

1
7

(y −0.3866x +0.3275)(y +2.5866x −0.4613)

− 2
3

tan2ψ = 14
5

2ψ = .370∘

.854∘ tanψ = 1.419 −1e2
− −−−−

√
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An interesting question occurs to me. We have found that, if  is a hyperbola, then
the Equations to the conjugate hyperbola and the asymptotes are of a similar form, namely 

 and , and we found expressions
for  and . But what if  is not a hyperbola? What if it is an ellipse? What
do the other Equations represent, given that an ellipse has neither a conjugate nor asymptotes?

For example,  is an ellipse. What are 
 and ? I used the key on page 47,

and it told me that the first of these Equations is satisfied by no real points, which I suppose is the Equation’s way of telling me
that there is no such thing as the conjugate to an ellipse. The second Equation was supposed to be the “asymptotes”, but the
key shows me that the Equation is satisfied by just one real point, namely (2 , 3), which coincides with the centre of the
original ellipse. I didn’t expect that. Should I have done so?
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2.7: Fitting a Conic Section Through Five Points

Figure  shows the five points . Problem: Draw a conic section through the
five points.

The first thing to notice is that, since a conic section is of the form

(remember that there is no loss of generality by taking the constant term to be 1), five points are necessary and sufficient to
define a conic section uniquely. One and only one conic section can be drawn through these five points. We merely have to
determine the five coefficients. The most direct (but not the fastest or most efficient) way to do this is to substitute each of the
(x , y) pairs into the Equation in turn, thus obtaining five linear Equations in the five coefficients.

There is a better way.

We write down the Equations for the straight lines  and . Let us call these Equations 
and  respectively (figure ).

Then  is the Equation that represents the two straight lines  and , and  is the Equation that represents the
two straight lines  and . The Equation , where  is an arbitrary constant, is a second degree Equation
that represents any conic section that passes through the points , ,  and . By inserting the coordinates of  in this
Equation, we can find the value of  that forces the Equation to go through all five points. This model of unclarity will
become clear on following an actual calculation for the five points of the present example.

FIGURE II.38

II.38 A(1, 8),  B(4, 9),  C(5, 2),  D(7, 6),  E(8, 4)

a +2hxy +b +2gx +2fy +1 = 0x2 y2 (2.8.1)

AB,  CD,  AC BD α = 0,  β = 0,  γ = 0

δ = 0 II.39

αβ = 0 AB CD γδ = 0

AC BD αβ +λγδ = 0 λ

A B C D E

λ
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The four straight lines are

The two pair of lines are

and the family of conic sections that passes through  and  is

Now substitute ,  to force the conic section to pass through the point . This results in the value

The Equation to the conic section passing through all five points is therefore

We can, if desired, divide this Equation by  (since all coefficients are even), or by  (to make the constant term equal to 
) but, to make the analysis that is to follow easier, I choose to leave the Equation in the above form, so that the constants , 

and  remain integers.

The constants have the values

and the cofactors have the values

Let us consult the dichotomous table. The value of the determinant is 
; try all three sums to check for arithmetic mistakes). It comes to 

, so we proceed to option . , so we proceed to option .  and  have opposite signs, so we
proceed to .  does not equal , nor is  equal to zero. Therefore we have an ellipse. It is drawn in figure .

FIGURE II.39

α = 0 : x −3y +23 = 0

β = 0 : 2x −y −8 = 0

γ = 0 : 3x +2y −19 = 0

δ = 0 : x +y −13 = 0

αβ = 0 : 2 −7xy +3 +38x +y −184 = 0x2 y2

γδ = 0 : 3 +5xy +2 −58x −45y +247 = 0x2 y2

A, B, C D

αβ +λγδ = 0 :

(2 +3λ) −(7 −5λ)xy +(3 +2λ) +(38 −58λ)x +(1 −45λ)y −184 +247λ = 0.x2 y2

x = 8 y = 4 E

λ = .76
13

508 +578xy +382 −7828x −6814y +32760 = 0x2 y2

2 32760

1 f g

h

a = 508, b = 382, c = 32760, f = −3407, g = −3914, h = 289

= 906 671, = 1 322 684, = 110 535ā b̄ c̄

= 599 610, = 510 525, = 3 867 358f̄ ḡ h̄

Δ = a +h +g (or h +b +f ,  or g +f +cā h̄ ḡ h̄ b̄ f̄ ḡ f̄ c̄

Δ = −419 939 520 5 > 0c̄ 6 a Δ

7 a b h II.40
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The centre of the ellipse is at , and its major axis is inclined at an angle  to the -axis. If we now
substitute  for  and  for , and then substitute  for the new value of  and 

 for the new value of , the Equation will assume its the familiar form for an ellipse referred
to its axes as coordinate axes and its centre as origin.
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FIGURE II.40

(4.619,  5.425)  128∘ 51′ x

x +4.619 x y +5.425 y x cos +y sin128∘51′ 128∘51′ x

−x sin +y cos128∘51′ 128∘51′ y
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2.8: Fitting a Conic Section Through n Points
What is the best ellipse passing near to the following  points?

This is answered by substituting each point  in turn in the Equation

thus obtaining 16 Equations in the coefficients , , , , . (The constant term can be taken to be unity.) These are the
Equations of condition. The five normal Equations can then be set up and solved to give those values for the coefficients that
will result in the sum of the squares of the residuals being least, and it is in that sense that the "best" ellipse results. The details
of the method are given in the chapter on numerical methods. The actual solution for the points given above is left as an
exercise for the energetic.

It might be thought that we are now well on the way to doing some real orbital theory. After all, suppose that we have several
positions of a planet in orbit around the Sun, or several positions of the secondary component of a visual binary star with
respect to its primary component; we can now fit an ellipse through these positions. However, in a real orbital situation we
have some additional information as well as an additional constraint. The additional information is that, for each position, we
also have a time. The constraint is that the orbit that we deduce must obey Kepler's second law of planetary motion - namely,
that the radius vector sweeps out equal areas in equal times. We shall have to await Part II before we get around actually to
computing orbits.
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(17, 17) (14, 22) ( 5, 29) ( 3, 43)

(x, y)

a +2hxy +b +2gx +2fy +1 = 0,x2 y2 (2.9.1)
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CHAPTER OVERVIEW
3: PLANE AND SPHERICAL TRIGONOMETRY

3.1: INTRODUCTION
It is assumed in this chapter that readers are familiar with the usual elementary formulas
encountered in introductory trigonometry. We start the chapter with a brief review of the solution
of a plane triangle. While most of this will be familiar to readers, it is suggested that it be not
skipped over entirely, because the examples in it contain some cautionary notes concerning hidden
pitfalls.

3.2: PLANE TRIANGLES
This section is to serve as a brief reminder of how to solve a plane triangle. While there may be a
temptation to pass rapidly over this section, it does contain a warning that will become even more
pertinent in the section on spherical triangles.

3.3: CYLINDRICAL AND SPHERICAL COORDINATES
3.4: VELOCITY AND ACCELERATION COMPONENTS
3.5: SPHERICAL TRIANGLES
We are fortunate in that we have four formulas at our disposal for the solution of a spherical triangle, and, as with plane triangles, the
art of solving a spherical triangle entails understanding which formula is appropriate under given circumstances. Each formula
contains four elements (sides and angles), three of which, in a given problem, are assumed to be known, and the fourth is to be
determined.

3.6: ROTATION OF AXES, TWO DIMENSIONS
3.7: ROTATION OF AXES, THREE DIMENSIONS. EULERIAN ANGLES
3.8: TRIGONOMETRICAL FORMULAS
A reference a set of commonly-used trigonometric formulas i sprovide. Anyone who is regularly engaged in problems in celestial
mechanics or related disciplines will be familiar with most of them.
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3.1: Introduction
It is assumed in this chapter that readers are familiar with the usual elementary formulas encountered in introductory
trigonometry. We start the chapter with a brief review of the solution of a plane triangle. While most of this will be familiar to
readers, it is suggested that it be not skipped over entirely, because the examples in it contain some cautionary notes
concerning hidden pitfalls.

This is followed by a quick review of spherical coordinates and direction cosines in three-dimensional geometry. The formulas
for the velocity and acceleration components in two dimensional polar coordinates and three-dimensional spherical
coordinates are developed in section 3.4.

Section 3.5 deals with the trigonometric formulas for solving spherical triangles. This is a fairly long section, and it will be
essential reading for those who are contemplating making a start on celestial mechanics.

Sections 3.6 and 3.7 deal with the rotation of axes in two and three dimensions, including Eulerian angles and the rotation
matrix of direction cosines.

Finally, in section 3.8, a number of commonly encountered trigonometric formulas are gathered for reference.
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3.2: Plane Triangles
This section is to serve as a brief reminder of how to solve a plane triangle. While there may be a temptation to pass rapidly
over this section, it does contain a warning that will become even more pertinent in the section on spherical triangles.

Conventionally, a plane triangle is described by its three angles , ,  and three sides , , , with a being opposite to , 
opposite to , and  opposite to . See figure .

It is assumed that the reader is familiar with the sine and cosine formulas for the solution of the triangle:

and

and understands that the art of solving a triangle involves recognition as to which formula is appropriate under which
circumstances. Two quick examples - each with a warning - will suffice.

Example: A plane triangle has sides  inches,  inches and angle . Find the angle .

See figure 

We use the sine formula, to obtain

The pitfall is that there are two values of  between  and  that satisfy , namely  and 
. Figure  shows that, given the original data, either of these is a valid solution.

A B C a b c A b

B c C III.1

FIGURE III.1

= =
a

sinA

b

sinB

c

sinC
(3.2.1)

= + −2bc cos A,a
2

b
2

c
2 (3.2.2)

a = 7 b = 4 B = 28∘
A

FIGURE III.2

III.2

sinA = = 0.8215757 sin 28∘

4

A = .655∘14′

A 0∘ 180∘ sinA = 0.821575   .655∘ 14′

  .4124∘ 45′ III.3
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The lesson to be learned from this is that all inverse trigonometric functions  have two solutions between
 and . The function  is particularly troublesome since, for positive arguments, it has two solutions between  and

. The reader must always be on guard for "quadrant problems" (i.e. determining which quadrant the desired solution
belongs to) and is warned that, unless particular care is taken in programming calculators or computers, quadrant problems are
among the most frequent problems in trigonometry, and especially in spherical astronomy.

Example: Find  in the triangle illustrated in figure .

Application of the cosine rule results in

Solution of the quadratic Equation yields

This illustrates that the problem of "two solutions" is not confined to angles alone. Figure  is drawn to scale for one of the
solutions; the reader should draw the second solution to see how it is that two solutions are possible.

The reader is now invited to try the following "guaranteed all different" problems by hand calculator. Some may have two real
solutions. Some may have none. The reader should draw the triangles accurately, especially those that have two solutions or no
solutions. It is important to develop a clear geometric understanding of trigonometric problems, and not merely to rely on the
automatic calculations of a machine. Developing these critical skills now will pay dividends in the more complex real
problems encountered in celestial mechanics and orbital computation.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

FIGURE III.3

( , , )sin−1 cos−1 tan−1

0∘ 360∘ sin−1 0∘

180∘

x III.4

FIGURE III.4

25 = +64 −16x cosx2 32∘

x = 4.133 or 9.435

III.4

PROBLEMS

a = 6  b = 4  c = 7 C =?

a = 5  b = 3  C =  c =?43∘

a = 7  b = 9  C =  B =?110∘

a = 4  b = 5  A =  c =?29∘

a = 5  b = 7  A =  B =?37∘

a = 8  b = 5  A =  C =?54∘

A =  B =  a/c =? b/c =?64∘ 37∘

a = 3  b = 8  c = 4 C =?
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9. 

The reader is now further invited to write a computer program (in whatever language is most familiar) for solving each of the
above problems for arbitrary values of the data. Lengths should be read in input and printed in output to four significant
figures. Angles should be read in input and printed in output in degrees, minutes and tenths of a minute (e.g. ).
Output should show two solutions if there are two, and should print "NO Solution" if there are none. This exercise will
familiarize the reader with the manipulation of angles, especially inverse trigonometric functions in whatever computing
language is used, and will be rewarded in future more advanced applications.

Solutions to problems.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. No real solution
9. No real solution

The area of a plane triangle is , and it is easy to see from this that

By making use  and , we can express this entirely in terms of the lengths
of the sides:

where  is the semi-perimeter .
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a = 4  b = 11  A =  c =?26∘

  .947∘ 12′

C = .086∘25′

c = 3.473

B = .140∘00′

c = 7.555 or 1.191

B = .6 or  .457∘24′ 122∘35′

C = .6 or  .695∘37′ 23∘37′

a/c = 0.9165 b/c = 0.6131

×base ×height1
2

Area = bc sinA = ca sinB = ab sinC
1

2

1

2

1

2
(3.2.3)

A = 1 − Asin2 cos2 cos A = ( + − )/(2bc)b
2

c
2

a
2

Area = s(s −a)(s −b)(s −c),
− −−−−−−−−−−−−−−−−

√ (3.2.4)

s (a +b +c)1
2
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3.3: Cylindrical and Spherical Coordinates
It is assumed that the reader is at least somewhat familiar with cylindrical coordinates  and spherical coordinates 

 in three dimensions, and I offer only a brief summary here. Figure  illustrates the following relations between
them and the rectangular coordinates .

The inverse relations between spherical and rectangular coordinates are

The coordinates ,  and  are called, respectively, the "radial", "polar" or "meridional", and "azimuthal" coordinates
respectively.

Note that  is essentially positive (the symbol √ denotes the positive or absolute value of the square root). The angle  is
necessarily between  and  and therefore there is no quadrant ambiguity in the evaluation of . The angle , however,
can be between  and . Therefore, in order to determine  uniquely, both of the above formulas for  must be evaluated,
or the signs of  and  must be inspected. It does not suffice to calculate  from  alone. The reader, however,
should be aware that some computer languages and some hand calculator functions will inspect the signs of  and  for you
and will return  in its correct quadrant. For example, in , the function  (or  in
double precision) will return  uniquely in its correct quadrant (though perhaps as a negative angle, in which case  should
be added to the outputted angle) provided the arguments  and  are inputted with their correct signs. This can save an
immense amount of trouble in programming, and the reader should become familiar with this function.

Direction Cosines

(ρ, ϕ, z)
(r, θ, ϕ) III.5

(x, y, z)

x

y

z

= ρ cos ϕ = r sinθ cos ϕ

= ρ sinϕ = r sinθ sinϕ

= r cos θ

(3.3.1)

(3.3.2)

(3.3.3)

FIGURE III.5

r = + +x2 y2 z2
− −−−−−−−−−

√ (3.3.4)

θ = cos−1 z

+ +x2 y2 z2
− −−−−−−−−−

√
(3.3.5)

ϕ = =cos−1 x

+x2 y2
− −−−−−

√
sin−1 y

+x2 y2
− −−−−−

√
(3.3.6)

r θ ϕ

r θ

0∘ 180∘ θ ϕ

0∘ 360∘ ϕ ϕ

x y ϕ ϕ = (y/x)tan−1

x y

ϕ FORTRAN ATAN2(X,Y) DATAN2(X,Y)
ϕ 360∘

X Y
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The direction to a point in three dimensional space relative to the origin can be described, as we have seen, by the two angles 
and . Another way of describing the direction to a point, or the orientation of a vector, is to give the angles  that the
vector makes with the -, - and -axes, respectively (see figure ). The angle  is the same as the angle .

More commonly one quotes the cosines of these three angles. These are called the direction cosines, and are often denoted by 
. It should not take long for the reader to be convinced that the relation between the direction cosines and the angles 

and  are

These are not independent, and are related by

A set of numbers that are multiples of the direction cosines - i.e. are proportional to them - are called direction ratios.

Latitude and Longitude
The figure of the Earth is not perfectly spherical, for it is slightly flattened at the poles. For the present, however, our aim is to
become familiar with spherical coordinates and with the geometry of the sphere, so we shall suppose the Earth to be spherical.
In that case, the position of any town on Earth can be expressed by two coordinates, the latitude , measured north or south of
the equator, and the longitude , measured eastwards or westwards from the meridian through Greenwich. These symbols, 
for latitude and  for longitude, are unfortunate, but are often used in this context. In terms of the symbols ,  for spherical
coordinates that we have used hitherto, the east longitude would correspond to  and the latitude to .

A plane that intersects a sphere does so in a circle. If that plane passes through the centre of the sphere (so that the centre of
the circle is also the centre of the sphere), the circle is called a great circle. All the meridians (the circles of fixed longitude
that pass through the north and south poles) including the one that passes through Greenwich, are great circles, and so is the
equator. Planes that do not pass through the centre of the sphere (such as parallels of latitude) are small circles. The radius of a
parallel of latitude is equal to the radius of the sphere times the cosine of the latitude.

We have used the example of latitude and longitude on a spherical Earth in order to illustrate the concepts of great and small
circles. Although it is not essential to pursue it in the present context, we mention in passing that the true figure of the Earth at
mean sea level is a geoid - which merely means the shape of the Earth. To a good approximation, the geoid is an oblate
spheroid (i.e. an ellipse rotated about its minor axis) with semi major axis  and semi minor axis 

. The ratio  is called the geometric ellipticity of the Earth and it has the value . The mean

θ

ϕ α,  β,  γ
x y z III.5 γ θ

FIGURE III.6

(l, m, n) θ

ϕ

l = cos α = sinθ cos ϕ (3.3.7)

m = cos β = sinθ sinϕ (3.3.8)

n = cos γ = cos θ (3.3.9)

+ + = 1.l2 m2 n2 (3.3.10)

ϕ

λ ϕ

λ θ ϕ

ϕ −θ90∘

a = 6378.140 km
c = 6356.755 km (a −c)/a 1/298.3
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radius of the Earth, in the sense of the radius of a sphere having the same volume as the actual geoid, is a 
.

It is necessary in precise geodesy to distinguish between the geographic or geodetic latitude  of a point on the Earth's surface
and its geocentric latitude . Their definitions evident from figure . In this figure, the ellipticity of the Earth is greatly
exaggerated; in reality it would scarcely be discernible. The angle  is the angle between a plumb-bob and the equator. This
differs from  partly because the gravitational field of a spheroid is not the same as that of an equal point mass at the centre,
and partly because the plumb bob is pulled away from the Earth's rotation axis by centrifugal force.

The relationship between  and  is

Contributors and Attributions
Jeremy Tatum (University of Victoria, Canada)

= 6371.00 kmca2
−−−

√3

ϕ

ϕ′ III.7
ϕ

ϕ′

FIGURE III.7

ϕ ϕ′

ϕ − = . 74 sin2ϕ − .16 sin4ϕ.ϕ′ 692′ 1′ (3.3.4)
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3.4: Velocity and Acceleration Components

Two-dimensional polar coordinates
Sometimes the symbols  and  are used for two-dimensional polar coordinates, but in this section I use  for consistency with the 

 of three-dimensional spherical coordinates. In what follows I am setting vectors in . If you make a print-out, you should
be aware that some printers apparently do not print Greek letter symbols in boldface, even though they appear in boldface on screen. You
should be on the look-out for this. Symbols with ^ above them are intended as unit vectors, so you will know that they should be in boldface
even if your printer does not recognize this. If in doubt, look at what appears on the screen.

Figure  shows a point  moving along a curve such that its polar coordinates are changing at rates  and . The drawing also shows
fixed unit vectors  and  parallel to the - and -axes, as well as unit vectors  and  in the radial and transverse directions. We shall find
expressions for the rate at which the unit radial and transverse vectors are changing with time. (Being unit vectors, their magnitudes do not
change, but their directions do.)

We have

and

In a similar manner, by differentiating Equation . with respect to time and then making use of Equation , we find

Equations  and  give the rate of change of the radial and transverse unit vectors. It is worthwhile to think carefully about what
these two Equations mean.

The position vector of the point  can be represented by the expression . The velocity of  is found by differentiating this with
respect to time:

The radial and transverse components of velocity are therefore  and  respectively. The acceleration is found by differentiation of
Equation , and we have to differentiate the products of two and of three quantities that vary with time:

The radial and transverse components of acceleration are therefore  and  respectively.

Three-Dimensional Spherical Coordinates

r θ (ρ,ϕ)

(r, θ,ϕ) boldface

FIGURE III.8

III.8 P ρ̇ ϕ̇

x̂ ŷ x y ρ̂ ϕ̂

= cosϕ +sinϕρ̂ x̂ ŷ (3.4.1)

= −sinϕ +cosϕ .ϕ̂ x̂ ŷ (3.4.2)

∴ = −sinϕ +cosϕ = (−sinϕ +cosϕ )ρ̇ ϕ̇x̂ ϕ̇ŷ ϕ̇ x̂ ŷ (3.4.3)

∴ =ρ̂ ϕ̇ϕ̂ (3.4.4)

3.4.2 3.4.1

= −ϕ̂
˙

ϕ̇ρ̂ (3.4.5)

3.4.4 3.4.5

P ρ = ρρ̂ P

v = = +ρ = +ρ .ρ̇ ρ̇ρ̂ ρ̂̇ ρ̇ρ̂ ϕ̇ϕ̂ (3.4.6)

ϕ̇ ρϕ̇

3.4.6

a = v̇ =

=

=

+ + +ρ +ρρ̈ρ̂ ρ̇ ρ̂̇ ρ̇ϕ̇ϕ̂ ϕ̈ϕ̂ ϕ̇ϕ̂
˙

+ + +ρ −ρρ̈ρ̂ ρ̇ϕ̇ϕ̂ ρ̇ϕ̇ϕ̂ ϕ̈ϕ̂ ϕ̇
2
ρ̂

( −ρ ) +(ρ +2 ) .ρ̈ ϕ̇
2

ρ̂ ϕ̈ ρ̇ϕ̇ ϕ̂

(3.4.7)

( −ρ )ρ̈ ϕ̇
2

(ρ +2 )ϕ̈ ρ̇ϕ̇
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In figure ,  is a point moving along a curve such that its spherical coordinates are changing at rates . We want to find out how
fast the unit vectors , ,  in the radial, meridional and azimuthal directions are changing.

We have

We see, by comparing this with Equations  and  that

By similar arguments we find that

and

These are the rates of change of the unit radial, meridional and azimuthal vectors. The position vector of the point  can be represented by
the expression . The velocity of  is found by differentiating this with respect to time:

The radial, meridional and azimuthal components of velocity are therefore  and  respectively.

The acceleration is found by differentiation of Equation .

It might not be out of place here for a quick hint about differentiation. Most readers will know how to differentiate a product of two
functions. If you want to differentiate a product of several functions, for example four functions,  and , the procedure is

.

In the last term of Equation , all four quantities vary with time, and we are about to differentiate the product.

On gathering together the coefficients of , we find that the components of acceleration are:

Radial: 

Meridional: 
Azimuthal: 

III.9 P , ,ṙ θ̇ ϕ̇

r̂ θ̂ ϕ̂

FIGURE III.9

= sinθcosϕ +sinθ sinϕ +cosθr̂ x̂ ŷ ẑ (3.4.8)

= cosθcosϕ +cosθ sinϕ −sinθθ̂ x̂ ŷ ẑ (3.4.9)

= −sinϕ +cosϕϕ̂ x̂ ŷ (3.4.10)

∴ = (cosθ cosϕ−sinθ sinϕ ) +(cosθ sinϕ+sinθcosϕ ) −sinθ .r̂ θ̇ ϕ̇ x̂ θ̇ ϕ̇ ŷ θ̇ ẑ (3.4.11)

3.4.9 3.4.10

= +sinθṙ̂ θ̇ θ̂ ϕ̇ϕ̂ (3.4.12)

= cosθ −θ̂
˙

ϕ̇ϕ̂ θ̇ r̂ (3.4.13)

= −sinθ −cosθϕ̂
˙

ϕ̇r̂ ϕ̇θ̂ (3.4.14)

P

r = r r̂ P

v =

=

= +r  = +r( +sinθ )ṙ ṙ r̂ ṙ̂ ṙ r̂ θ̇ θ̂ ϕ̇ϕ̂

+r  +r sinθṙ r̂ θ̇ θ̂ ϕ̇ϕ̂
(3.4.15)

,  rṙ θ̇ r sinθϕ̇

3.4.15

a,  b,  c d

(abcd = bcd+a cd+ab d+abc)′ a′ b′ c′ d′

3.4.15

a = = + ( +sinθ ) + +r +r (cosθ − ) + sinθ +r cosθ +r sinθ +r sinv̇ r̈ r̂ ṙ θ̇ θ̂ ϕ̇ϕ̂ ṙ θ̇ θ̂ θ̈ θ̂ θ̇ ϕ̇ϕ̂ θ̇ r̂ ṙ ϕ̇ϕ̂ θ̇ ϕ̇ϕ̂ ϕ̈ϕ̂

θ (−sinθ −cosθ )ϕ̇ ϕ̇r̂ ϕ̇θ̂

(3.4.16)

, ,r̂ θ̂ ϕ̂

−r −r θr̈ θ̇
2

sin2 ϕ̇
2

r +2 −r sinθcosθθ̈ ṙ θ̇ ϕ̇
2

2 sinθ+2r cosθ+r sinθṙϕ̇ θ̇ ϕ̇ ϕ̈

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6801?pdf


Jeremy Tatum 9/17/2020 3.4.3 CC-BY-NC https://phys.libretexts.org/@go/page/6801

Contributor
Jeremy Tatum (University of Victoria, Canada)

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6801?pdf
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/16/2020 3.5.1 CC-BY-NC https://phys.libretexts.org/@go/page/6802

3.5: Spherical Triangles
As with plane triangles, we denote the three angles by  and the sides opposite to them by . We are fortunate in
that we have four formulas at our disposal for the solution of a spherical triangle, and, as with plane triangles, the art of solving
a spherical triangle entails understanding which formula is appropriate under given circumstances. Each formula contains four
elements (sides and angles), three of which, in a given problem, are assumed to be known, and the fourth is to be determined.

Three important points are to be noted before we write down the formulas.

1. The formulas are valid only for triangles in which the three sides are arcs of great circles. They will not do, for example,
for a triangle in which one side is a parallel of latitude.

2. The sides of a spherical triangle, as well as the angles, are all expressed in angular measure (degrees and minutes) and not
in linear measure (metres or kilometres). A side of  means that the side is an arc of a great circle subtending an angle of 

 at the centre of the sphere.
3. The sum of the three angles of a spherical triangle add up to more than .

In this section are now given the four formulas without proof, the derivations being given in a later section. The four formulas
may be referred to as the sine formula, the cosine formula, the polar cosine formula, and the cotangent formula. Beneath each
formula is shown a spherical triangle in which the four elements contained in the formula are highlighted.

The sine formula:

The cosine formula:

The polar cosine formula:

A,  B,  C a,  b,  c

50∘

50∘

180∘

= (= )
sina

sinA

sinb

sinB

sinc

sinC
(3.5.1)

FIGURE III.10

cosa = cos b cos c+sinb sinc cosA (3.5.2)

FIGURE III.11

cosA = −cosB cosC +sinB sinC cosa (3.5.3)
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The cotangent formula:

The cotangent formula is a particularly useful and frequently needed formula, and it is unfortunate that it is not only difficult to
commit to memory but, even with the formula written out in front of one, it is often difficult to decide which is , which is 
and so on. However, it should be noted from the drawing that the four elements, side-angle-side-angle, lie adjacent to each
other in the triangle, and they may be referred to as outer side ( ), inner angle ( ), inner side ( ) and outer angle ( )
respectively. Many people find that the formula is much easier to use when written in the form

The reader will shortly be offered a goodly number of examples in the use of these formulas. However, during the course of
using the formulas, it will be found that there is frequent need to solve deceptively simple trigonometric Equations of the type

After perhaps a brief pause, one of several methods may present themselves to the reader - but not all methods are equally
satisfactory. I am going to suggest four possible ways of solving this Equation. The first method is one that may occur very
quickly to the reader as being perhaps rather obvious - but there is a cautionary tale attached to it. While the method may seem
very obvious, a difficulty does arise, and the reader would be advised to prefer one of the less obvious methods. There are,
incidentally, two solutions to the Equation between  and . They are  and .

Method i
The obvious method is to isolate  :

Although the constants in the problem were given to four significant figures, do not be tempted to round off intermediate
calculations to four. It is a common fault to round off intermediate calculations prematurely. The rounding-off can be done at
the end.

Square both sides, and write the left hand side, , as . We now have a quadratic Equation in  :

FIGURE III.12

cos b cosA = sinb cot c−sinA cotC (3.5.4)

FIGURE III.13

b A

OS IA IS OA

cos(IS) cos(IA) = sin(IS) cot(OS) −sin(IA) cot(OA) (3.5.5)

4.737 sinθ+3.286 cosθ = 5.296 (3.5.6)

0∘ 360∘ .631∘58′ .578∘31′

cosθ

cosθ = 1.611 686 −1.441 570  sinθ. (3.5.1)

θcos2 1 − θsin2 sinθ

3.078 125 θ−4.646 717 sinθ+1.597 532 = 0.sin2 (3.5.2)
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The two solutions for  are  and  and the four values of  that satisfy these values of  are 
 and .

Only two of these angles are solutions of the original Equation. The fatal move was to square both sides of the original
Equation, so that we have found solutions not only to

but also to the different Equation

This generation of extra solutions always occurs whenever we square an Equation. For this reason, method (i), however
tempting, should be avoided, particularly when programming a computer to carry out a computation automatically and
uncritically.

If in doubt whether you have obtained a correct solution, substitute your solution in the original Equation. You should always
do this with any Equation of any sort, anyway.

Method ii
This method makes use of the identities

where .

When applied to the original Equation, this results in the quadratic Equation in :

with solutions

The only values of  between  and  that satisfy these are the two correct solutions  and .

It is left as an exercise to show, using this method algebraically, that the solutions to the Equation

are given by

This shows that there are no real solutions if , one real solution if , and two real solutions if 
.

Method iii
We divide the original Equation

by the "hypotenuse" of  and ; that is, by .

Thus

Now let  and  (which we can, since these numbers now satisfy ) so that
.

We have

sinθ 0.529 579 0.908 014 θ sinθ
.6,     .4,     .531∘58′ 148∘ 01′ 78∘ 31′ .5101∘28′

cosθ = 1.611 686 −1.441 570 sinθ (3.5.3)

−cosθ = 1.611 686 −1.441 570  sinθ. (3.5.4)

sinθ = , cosθ = ,
2t

1 + t2

1 − t2

1 + t2
(3.5.5)

t = tan θ1
2

t

8.582 −9.474t+2.010 = 0t2 (3.5.6)

t = 0.286528 and t = 0.817410 (3.5.7)

θ 0∘ 360∘   .631∘ 58′   .578∘ 31′

a sinθ+b cosθ = c (3.5.8)

tan θ = .
1

2

a± + −a2 b2 c2
− −−−−−−−−−

√

b+c
(3.5.9)

+ <a2 b2 c2 + =a2 b2 c2

+ >a2 b2 c2

4.737 sinθ+3.286 cosθ = 5.296 (3.5.10)

4.737 3.286 = 5.765151( + )4.7372 3.2862
− −−−−−−−−−−−−−

√

0.821 661  sinθ+0.569 976 cosθ = 0.918 623 (3.5.11)

0.821 661 = cosα 0.569976 = sinα α α = 1sin2 cos2

α =   .9134∘ 44′
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or

from which

Therefore

Method iv
Methods ii and iii give explicit solutions, so there is perhaps no need to use numerical methods. Nevertheless, the reader might
like to solve, by Newton-Raphson iteration, the Equation

for which

Using the values of  and  from the example above and using the Newton-Raphson algorithm, we find with a first guess of
 the following iterations, working in radians:

The reader should verify this calculation, and, using a different first guess, show that NewtonRaphson iteration quickly leads
to .

Having now cleared that small hurdle, the reader is invited to solve the spherical triangle problems below. Although these
twelve problems look like pointless repetitive work, they are in fact all different. Some have two solutions between  and 

 ; others have just one. After solving each problem, the reader should sketch each triangle - especially those that have two
solutions - in order to see how the two-fold ambiguities arise. The reader should also write a computer program that will solve
all twelve types of problem at the bidding of the user. Answers should be given in degrees, minutes and tenths of a minute, and
should be correct to that precision. For example, the answer to one of the problems is . An answer of  or 

 should be regarded as wrong. In celestial mechanics, there is no place for answers that are "nearly right". An answer
is either right or it is wrong. (This does not mean, of course, that an angle can be measured with no error at all; but the answer
to a calculation given to a tenth of an arcminute should be correct to a tenth of an arcminute.)

All angles and sides in degrees

cosα sinθ+sinα cosθ = 0.918 623 (3.5.12)

sin(θ+α) = 0.918623 (3.5.13)

θ+α =   .54 or    .4666∘ 43′ 113∘ 16′ (3.5.14)

θ =   .6 or    .531∘ 58′ 78∘ 31′ (3.5.15)

f(θ) = a sinθ+b cosθ−c = 0, (3.5.16)

(θ) = a cosθ−b sinθ.f ′ (3.5.17)

a,  b c

45∘

0.785 398

0.417 841

0.541 499

0.557 797

0.558 104

0.558 104 = .631∘58′

(3.5.18)

  .578∘ 31′

0∘

360∘

  .347∘ 37′   .247∘ 37′

  .447∘ 37′

Exercise 1
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Solutions

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Derivation of the formulas
Before moving on to further problems and applications of the formulas, it is time to derive the four formulas which, until now,
have just been given without proof. We start with the cosine formula. There is no loss of generality in choosing rectangular
axes such that the point  of the spherical triangle  is on the -axis and the point  and hence the side  are in the -
plane. The sphere is assumed to be of unit radius.

If  and  are unit vectors directed along the −, − and −axes respectively, inspection of the figure will show that the
position vectors of the points  and  with respect to the centre of the sphere are

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

a = 64

a = 39

a = 16

a = 21

a = 67

a = 49

A = 24

A = 79

A = 62

A = 59

A = 47

A = 79

b = 33

b = 48

b = 37

b = 43

b = 54

b = 59

B = 72

B = 84

B = 49

B = 32

B = 57

B = 62

c = 37

C = 74

C = 42

A = 29

A = 39

A = 14

c = 19

c = 12

a = 44

a = 62

a = 22

C = 48

C =?

c =?

B =?

c =?

B =?

C =?

a =?

C =?

b =?

c =?

C =?

c =?

(3.5.19)

.228∘18′

.449∘32′

.0117∘31′

.7 or  .330∘46′ 47∘37′

.833∘34′

.1 or  .93∘18′ 162∘03′

.27∘38′

.620∘46′

.536∘25′

.776∘27′

.7 or  .280∘55′ 169∘05′

.628∘54′

A ABC z B c zx

FIGURE III.14

i,  j k x y z

B C
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and

respectively.

The scalar product of these vectors (each of magnitude unity) is just the cosine of the angle between them, namely , from
which we obtain immediately

To obtain the sine formula, we isolate  from this Equation, square both sides, and write  for . Thus,

and when we have carried out these operations we obtain

In the numerator, write  for  and  for , and divide both sides by . This results in

At this stage the reader may feel that we are becoming bogged down in heavier and heavier algebra and getting nowhere. But,
after a careful look at Equation , it may be noted with some delight that the next line is:

Therefore

The derivation of the polar cosine formula may also bring a small moment of delight. In figure ,  is a spherical
triangle.  is also a spherical triangle, called the polar triangle to . It is formed in the following way. The side 
is an arc of a great circle  from ; that is,  is part of the equator of which  is pole. Likewise  is  from  and 

 is  from . In the drawing, the side  of the small triangle has been extended to meet the sides  and  of the
large triangle. It will be evident from the drawing that the angle  of the large

= i sinc+k cos cr1 (3.5.7)

= i sinb cosA+ j sinb sinA+k cos br2 (3.5.8)

cosa

cosa = cos b cos c+sinb sinc cosA. (3.5.9)

cosA 1 − Asin2 Acos2

(sinb sinc cosA = (cosa−cos b cos c ,)2 )2 (3.5.10)

A = .sin2 b c− a− b c+2 cosa cos b cos csin2 sin2 cos2 cos2 cos2

b csin2 sin2
(3.5.11)

1 − bcos2 bsin2 1 − ccos2 csin2 asin2

= .
Asin2

asin2

1 − a− b− c+2 cosa cos b cos ccos2 cos2 cos2

a b csin2 sin2 sin2
(3.5.12)

3.5.12

= = .
sinA

sina

sinB

sinb

sinC

sinc
(3.5.13)

III.15 A′B′C′

ABC A′B′C′ BC
90∘ A′ BC A′ CA 90∘ B′

AB 90∘ C′ B′C′ AB CA
A
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triangle is equal to . Further, from the way in which the triangle  was formed,  and  are each
equal to . From these relations, we see that

or

Therefore

In a similar manner,

Now, suppose  is any relation between the sides and angles of the triangle . We may replace
 by  by , and so on, and this will result in a relation between  and  ; that is, it will

result in a relation between the sides and angles of the triangle .

For example, the Equation

is valid for the triangle . By making these substitutions, we find the following formula valid for triangle :

which is the polar cosine formula.

The reader will doubtless like to try starting from the sine and cotangent formulas for the triangle  and deduce
corresponding polar formulas for the triangle , though this, unfortunately, may give rise to some anticlimactic
disappointment.

I know of no particularly interesting derivation of the cotangent formula, and I leave it to the reader to work through the rather
pedestrian algebra. Start from

FIGURE III.15

x+ +ya′ ABC x+a′ +ya′

90∘

A+A = [(x+ ) +y] + [x+( +y)]a′ a′ (3.5.20)

2A = +x+y = +A−180∘ 180∘ a′ (3.5.21)

A = −180∘ a′ (3.5.22)

B = −  and C = −180∘ b′ 180∘ c′ (3.5.23)

f( , , , , , ) = 0A′ B′ C ′ a′ b′ c′ A′B′C′

a′ −A,  180∘ b′ −B180∘ A,  B,  C,  a,  b c

ABC

cos = cos cos +sin sin cosa′ b′ c′ b′ c′ A′ (3.5.14)

A′B′C′ ABC

−cosA = cosB cosC −sinB sinC cosa, (3.5.15)

A′B′C′

ABC

cosa = cos b cos c+sinb sinc cosA (3.5.24)
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and

Eliminate  (but retain ) from these Equations, and write  for . Finally substitute  for ,
and, after some tidying up, the cotangent formula should result.

At this stage, we have had some practice in solving the four spherical triangle formulas, and we have derived them. In this
section we encounter examples in which the problem is not merely to solve a triangle, but to gain some experience in setting
up a problem and deciding which triangle has to be solved.

The coordinates of the Dominion Astrophysical Observatory, near Victoria, British Columbia, are

Latitude  Longitude 

and the coordinates of the David Dunlap Observatory, near Toronto, Ontario, are

Latitude  Longitude 

How far is Toronto from Victoria, and what is the azimuth of Toronto relative to Victoria?

The triangle to be drawn and solved is the triangle , where  is the Earth's north pole,  is Victoria, and  is
Toronto. On figure  are marked the colatitudes of the two cities and the difference between their longitudes.

The great circle distance  between the two observatories is easily given by the cosine formula:

From this, we find  or  radians. The radius of the Earth is , so the distance between the
observatories is  or  miles.

Now that we have found , we can find the azimuth, which is the angle , from the sine formula:

and hence

But we should now remember that  has two values between  and , namely  and .

cos c = cosa cos b+sina sinb cosC. (3.5.25)

cos c sinc 1 − bsin2 bcos2 sin c sinA

sinC
sina

Example 1

.3N48∘31′ .0W123∘25′

.8N43∘51′ .3W79∘25′

PVT P V T
III.16

ω

cosω = cos .7 cos .2 +sin .7 sin .2 cos .741∘28′ 46∘08′ 41∘28′ 46∘08′ 43∘59′ (3.5.26)

ω = .730∘22′ 0.53021 6371 km
3378 km 2099

ω V

sinV = = 0.990 275
sin .2  sin .746∘08′ 43∘59′

sin .730∘22′
(3.5.27)

V = .382∘00′ (3.5.28)

0.990 275sin−1 0∘ 180∘ .382∘00′ .797∘59′
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Usually it is obvious from inspection of a drawing which of the two values of  is the required one. Unfortunately, in
this case, both values are close to , and it may not be immediately obvious which of the two values we require.
However, it will be noticed that Toronto has a more southerly latitude than Victoria, and this should easily resolve the
ambiguity.

We could, of course, have found the azimuth  by using the cotangent formula, without having to calculate  first. Thus

There is only one solution for  between  and , and it is the correct one, namely . A good drawing will
show the reader why the correct solution was the acute rather than the obtuse angle (in our drawing the angle was made to
be close to  in order not to bias the reader one way or the other), but in any case all readers, especially those who were
trapped into choosing the obtuse angle, should take careful note of the difficulties that can be caused by the ambiguity of
the function . Indeed it is the strong advice of the author never to use the sine formula, in spite of the ease of
memorizing it. The cotangent formula is more difficult to commit to memory, but it is far more useful and not so prone to
quadrant mistakes.

Consider two points,  and , at latitude , longitude , and latitude , longitude . Where are the poles
of the great circle passing through these two points? We shall present two methods of doing the problem. First, by solving
spherical triangles. And second, kindly suggested to me by Achintya Pal, using the methods of algebraic coordinate
geometry.

Let us call the colatitude and longitude of the first point  and of the second point  We shall consider the
question answered if we can find the coordinates  of the poles  and  of the great circle passing through the
two points. In figure ,  is the north pole of the Earth,  and  are the two points in question, and  is one of the
two poles of the great circle joining  and . The figure also shows the triangle . We’ll suppose that the origin for
longitudes (“Greenwich”) is behind the plane of the paper. The east longitudes of ,  and  are, respectively, 

; and their colatitudes are .

from which

sin−1

90∘

V ω

cos .7 cos .7 = sin .7 cot .2 −sin .7 cotV41∘28′ 43∘59′ 41∘28′ 46∘08′ 43∘59′ (3.5.29)

V 0∘ 180∘ .382∘00′

90∘

sin−1

Example 2
A B N20∘ E25∘ N72∘ E44∘

( , )θ1 ϕ1 ( , )θ2 ϕ2

( , )θ0 ϕ0 Q Q′

III.17 P A B Q
A B PQA

Q A B
, ,ϕ0 ϕ1 ϕ2 , ,θ0 θ1 θ2

0 = cos cos +sin sin cos( − ),θ0 θ1 θ0 θ1 ϕ1 ϕ0 (3.5.16)

tan = − .θ0
1

tan cos( − )θ1 ϕ1 ϕ0
(3.5.17)
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Similarly from triangle  we would obtain

These are two Equations in  and , so the problem is in principle solved. Equate the righthand sides of the two
Equations, expand the terms  and , gather the terms in  and , eventually to obtain

If we substitute the angles given in the original problem, we obtain

from which

Note that we get two values for  differing by , as expected.

We then use either of the Equations for  to obtain  (It is good practice to use both of them as a check on the
arithmetic.) The north polar distance, or colatitude, must be between  and , so there is no ambiguity of quadrant.

With , we obtain , i.e. latitude .
and with , we obtain , i.e. latitude .

and these are the coordinates of the two poles of the great circle passing through  and . The reader is strongly urged
actually to carry out these computations numerically in order to be quite sure that the quadrants are correct and
unambiguous. Indeed, dealing with the quadrant problem may be regarded as the most important part of the exercise.

We arrived at Equation  and  by solving two spherical triangles by the methods of spherical trigonometry.
The second method, suggested, as mentioned above, by Achintya Pal, uses the methods of algebraic coordinate geometry
in three dimensions to arrive at the same Equations. We refer coordinates to axes .  is the centre of the Earth, taken
to be of unit radius.  is the -axis. The  and  axes are not drawn in figure , but the -axis may be taken to
be directed somewhere to the rear of the drawing (away from the reader), and the -axis somewhere in the front of the
drawing, both being, of course, in the plane of the equator.

Let us write the Equation to the plane containing  and  in the form

FIGURE III.17

PQB

tan = − .θ0
1

tan cos( − )θ2 ϕ2 ϕ0
(3.5.18)

θ0 ϕ0

cos( − )ϕ1 ϕ0 cos( − )ϕ2 ϕ0 sinϕ0 cosϕ0

tan = .ϕ0
tan cos −tan cosθ1 ϕ1 θ2 ϕ2

tan sin −tan sinθ2 ϕ2 θ1 ϕ1
(3.5.19)

tan = = −2.412 091 0ϕ0
tan cos −tan cos70∘ 25∘ 18∘ 44∘

tan sin −tan sin18∘ 44∘ 70∘ 25∘ (3.5.30)

= .1 or .1ϕ0 112∘31′ 292∘31′ (3.5.31)

ϕ0 180∘

tanθ0 θ0

0∘ 180∘

= .1ϕ0 112∘31′ = .1θ0 96∘47′ .1 S6∘47′

= .1ϕ0 292∘31′ = .9θ0 83∘12′ .1 N6∘47′

A B

3.5.17 3.5.18

Oxyz O
OP z Ox Oy III.17 x

y

A B
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Here  are the direction cosines of the normal to the plane , and are given by

The  coordinates of the point  are

On substitution of Equations  and  into Equation  we obtain:

After some very modest algebraic manipulation (e.g., start by dividing by ) we very soon arrive again at
Equation , and in a similar manner at Equation .

As a bonus we note that any point having spherical coordinates  lying on the great circle whole pole is at 
satisfies the Equation

This Equation may be regarded as the  Equation to the great circle , and it answers the problem converse to the
one originally posed: What is the Equation to the great circle whose pole is at ) ?

Here is a challenging exercise and an important one in meteor astronomy. Two shower meteors are seen, diverging from a
common radiant. One starts at right ascension 6 hours, declination +65 degrees, and finishes at right ascension 1 hour,
declination +75 degrees. The second starts at right ascension 5 h, declination +35 degrees, and finishes at right ascension
3 hours, declination +15 degrees. Where is the radiant?

The assiduous student will make a good drawing of the celestial sphere, illustrating the situation as accurately as possible.
The calculation will require some imaginative manipulation of spherical triangles. After arriving at what you believe to be
the correct answer, look at your drawing to see whether it is reasonable. The next step might be to develop a general
trigonometrical expression for the answer in terms of the original data, or to program the calculation for a computer, so
that it is henceforth available for any similar calculation. Or one can go yet further, and write a computer program that
will give a least-squares solution for the radiant for many more than two meteors in the shower. I find for the answer to
the above problem that the radiant is at right ascension 7.26 hours and declination +43.8 degrees.

Uniqueness of Solutions
The reader who has by now worked through a variety of problems in the solution of a triangle will have noticed that, given
three elements of a triangle, sometimes there is a unique solution, whereas sometimes there are two possible triangles that
satisfy the original data. Yet again, it may sometimes be found that there is no possible solution, meaning that there is no
possible triangle that satisfies the given data, which must therefore be presumed incorrect. I am very much indebted to Alan
Johnstone for lengthy discussions on this problem, and indeed for pointing out that some of the “solutions” given in an earlier
version of these notes were in fact invalid (and have now been corrected). I believe the following criteria determine how many
valid solutions there are for a given triplet of data, for plane triangles and for spherical triangles.

We may be given three elements of a triangle,

Thus

i. Three sides: 
ii. Two sides and the included angle: 

iii. Two sides and a nonincluded angle: 
iv. Two angles and a common side: 
v. Two angles and another side: 

vi. Three angles: 

lx+my+nz = 0 (3.5.20)

(l,m,n) AB

l = sin cos m = sin sin n = cosθ0 ϕ0 θ0 ϕ0 θ0 (3.5.21a,b,c)

(x, y, z) A

x = sin cos y = sin sin x = cosθ1 ϕ1 θ1 ϕ1 θ1 (3.5.22a,b,c)

3.5.21a,b,c 3.5.22a,b,c 3.5.20

sin cos sin cos +sin sin sin sin +cos cos = 0θ0 ϕ0 θ1 ϕ1 θ0 ϕ0 θ1 ϕ1 θ0 θ1 (3.5.23)

sin cosθ1 θ0

3.5.17 3.5.18

(θ,ϕ) ( , )θ0 ϕ0

cotθ = −tan cos(ϕ−ϕ)θ0 (3.5.24)

(θ,ϕ) AB
( ,θ0 ϕ0

Example 3

a, b, c,
b, c,A.
a, b,A.

a,B,C.
A,B, a.

A,B,C.
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Question:

Which of these give a unique solution, and which admit of two solutions? And which are impossible triangles? I believe the
answers are as follows:

i. Let 

For a valid triangle,  and  must all be positive. If so, there is a unique solution.

ii. There is a unique solution.

iii. If  there is a unique solution.

If , there is a unique solution if . Otherwise there is no valid triangle.

If  there are zero, one or two solutions, according as to whether

.

iv. There is a unique solution.

v. There is a unique solution.

vi. There is a unique solution except that only the relative lengths of the sides are determined.

i. Let 

For a valid triangle,  and  must all be positive. If so, there is a unique solution.)

ii. There is a unique solution.

iii. If , there is no real solution.

If , then , and  and  are equal but indeterminate.

Otherwise:

If  there is a unique solution.

If , there is a unique solution if . Otherwise there is no real solution.

If  there are one or two solutions, according as to whether

iv. There is a unique solution.

v. If , there is no real solution.

If , then , and  and  are equal but indeterminate.

Otherwise:

If  there is a unique solution.

If , there is a unique solution if . Otherwise there is no real solution.

If  there are one or two solutions, according as to whether
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Plane Triangles

d = a+b−c, e = b+c−a, f = c+a−b

d,  e f

a > b

a = b A < 90∘

a < b

sinA > , sinA =  or  sinA <a

b

a

b

a

b

Spherical Triangles

d = a+b−c, e = b+c−a, f = c+a−b

d,  e f

sinA > sin a

sin b

A = a = b = 90∘ B = 90∘ c C

a > b

a = b a < 90∘

a < b

sinA =  or  sinA < .
sina

sinb

sina

sinb
(3.5.32)

sinA = sinA

sinB

A = B = a = 90∘ b = 90∘ c C

A > B

A = B a < 90∘

A < B

sina =  or  sina < .
sinA

sinB

sinA

sinB
(3.5.33)
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3.6: Rotation of Axes, Two Dimensions
In this section we consider the following problem. Consider two sets of orthogonal axes, , and , such that one
set makes an angle  with respect to the other. See figure (a) below.  point  can be described either by its coordinates 
with respect to one "basis set" , or by its coordinates with respect to the other basis set . The question is, what
is the relation between the coordinates  and the coordinates ? See figure .

We see that ,

Also 

These two relations can be written in matrix form as

There are several ways of obtaining the converse relations; that is, Equations for  and  in terms of  and . One way would
be to design drawings similar to (b) and (c) that show the converse relations clearly, and the reader is encouraged to do this.
Another way is merely to solve the above two Equations (which can be regarded as two simultaneous Equations in  and )
for  and . Less tedious is to interchange the primed and unprimed symbols and change the sign of . Perhaps the quickest of
all is to recognize that the determinant of the matrix

is unity and therefore the matrix is an orthogonal matrix. One important property of an orthogonal matrix M is that its
reciprocal M  is equal to its transpose  (formed by transposing the rows and columns). Therefore the converse relation
that we seek is

The reader might like to try all four methods to ensure that they all arrive at the same result.
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Ox, Oy O , Ox′ y′

θ A P (x, y)

Ox, Oy O , Ox′ y′

(x, y) ( , )x′ y′ III.18

OA = x,  AP = y,  ON = ,  PN = ,  OM = x cos θ,  MN = y sinθx′ y′

∴ = x cos θ +y sinθ.x′ (3.6.1)

MA = NB = x sinθ, PB = y cos θ,

∴ = −x sinθ +y cos θ.y′ (3.6.2)

( ) =( )( ) .
x′

y′

cos θ

−sinθ

sinθ

cos θ

x

y
(3.6.3)

FIGURE III.18

x y x′ y′

x y

x y θ

( )
cos θ

−sinθ

sinθ

cos θ
(3.6.1)

−1
M
~

( ) = ( ) =( )( ) .
x

y
( )

cos θ

−sinθ

sinθ

cos θ

−1
x′

y′

cos θ

sinθ

−sinθ

cos θ

x′

y′
(3.6.4)
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3.7: Rotation of Axes, Three Dimensions. Eulerian Angles
We now consider two sets of orthogonal axes  and  in three-dimensional space and inclined to
each other. A point in space can be described by its coordinates  with respect to one basis set or  with
respect to the other. What is the relation between the coordinates  and the coordinates ?

We first need to describe exactly how the primed axes are inclined with respect to the unprimed axes. In the figure below are
shown the axes  and . Also shown are the axes  and ; the axis  is directed behind the plane of the paper
and is not drawn. The orientation of the primed axes with respect to the unprimed axes is described by three angles  and 

, known as the Eulerian angles, and they are shown in figure .

The precise definitions of the three angles can be understood by three consecutive rotations, illustrated in figures .

First, a rotation through  counterclockwise around the  axis to form a set of intermediate axes , as shown
in figure . The  and  axes are identical. Part (b) shows the rotation as seen when looking directly down the  (or

 ) axis.

The relation between the  and  coordinates is

Next, a rotation through  counterclockwise around the  axis to form a set of axes . The  and 
axes are identical (Figure ). Part (b) of the figure shows the rotation as seen when looking directly towards the origin
along the  (or  ) axis.

Ox,  Oy,  Oz O ,  O ,  Ox′ y′ z′

(x, y, z) ( , , )x′ y′ z′

(x, y, z) ( , , )x′ y′ z′

Ox,  Oy Oz Ox′ Oz′ Oy′

θ,  ϕ

ψ III.19

III.20,21,22

FIGURE III.19

ϕ Oz O ,  O ,  Ox1 y1 z1

III.20 Oz Oz1 Oz

Oz1

FIGURE III.20

(x, y, z) ( ,   ,   )x1 y1 z1

( ) =( )( ) .
x1

y1

cos ϕ

−sinϕ

sinϕ

cos ϕ

x

y
(3.7.1)

θ Ox1 O ,  O ,  Ox2 y2 z2 Ox1 Ox2

III.21

Ox1 Ox2
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The relation between the  and  coordinates is

Lastly, a rotation through  counterclockwise around the  axis to form the set of axes  (figure ). The 
 and  axes are identical. Part (b) of the figure shows the rotation as seen when looking directly down the  (or )

axis.

The relation between the  and  coordinates is

Thus we have for the relations between  and 

On multiplication of these matrices, we obtain

The inverse of this may be found, as in the two-dimensional case, either by solving these three Equations for ,  and  (which
would be rather tedious); or by interchanging the primed and unprimed quantities and reversing the order and signs of all
operations (replace  with ,  with , and  with ) which is less tedious; or by recognizing that the determinant of the
matrix is unity and therefore its reciprocal is its transpose, which is hardly tedious at all. The reader should verify that the
determinant of the matrix is unity by multiplying it out and making use of trigonometric identities. The reason that the
determinant must be unity, however, and that the rotation matrix must be orthogonal, is that rotation of axes cannot change the
magnitude of a vector.

Each element of the matrix is the cosine of the angle between an axis in one basis set and an axis in the other basis set. For
example, the second element in the first row is the cosine of the angles between  and . The first element of the third row

FIGURE III.21

( , , )x1 y1 z1 ( , , )x2 y2 z2

( ) =( )( ) .
y2

z2

cos θ

−sinθ

sinθ

cos θ

y1

z1

(3.7.2)

ψ Oz2 O , O , Ox′ y′ z′ III.22

Oz2 Oz′ Oz2 Oz′

FIGURE III.22

( , , )x2 y2 z2 ( , , )x′ y′ z′

( ) = .x′ y′ z′
⎛

⎝
⎜

cos ψ

−sinψ

0

sinψ

cos ψ

0

1

0

0

⎞

⎠
⎟
⎛

⎝
⎜

x2

y2

z2

⎞

⎠
⎟ (3.7.3)

( , , )x′ y′ z′ (x, y, z)

= .
⎛

⎝
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x′

y′

z′

⎞

⎠
⎟

⎛

⎝
⎜

cos ψ

−sinψ

0

sinψ

cos ψ

0

0

0

1

⎞

⎠
⎟
⎛

⎝
⎜

1

0

0

0

cos θ

−sinθ

0

sinθ

cos θ

⎞

⎠
⎟
⎛

⎝
⎜

cos ϕ

−sinϕ

0

sinϕ

cos ϕ

0

0

0

1

⎞

⎠
⎟
⎛
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y
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⎞

⎠
⎟ (3.7.4)

= .
⎛

⎝
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x′

y′

z′

⎞

⎠
⎟

⎛

⎝
⎜

cos ψ cos ϕ −cos θ sinϕ sinψ

−sinψ cos ϕ −cos θ sinϕ cos ψ

sinθ sinϕ

cos ψ sinϕ +cos θ cos ϕ sinψ

−sinψ sinϕ +cos θ cos ϕ cos ψ

−sinθ cos ϕ

sinψ sinθ

cos ψ sinθ

cos θ

⎞

⎠
⎟
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⎝
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x

y
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⎞

⎠
⎟ (3.7.5)
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is the cosine of the angles between  and . The matrix can be referred to as the matrix of direction cosines between the
axes of one basis set and the axes of the other basis set, and the relations between the coordinates can be written

You will note the similarity of the forms of the direction cosines to the cosine formula for the solution of a spherical triangle,
and indeed the direction cosines can all be derived by drawing and solving the relevant spherical triangles. You might (or
might not!)enjoy trying to do this.

The matrix  of the direction cosines is orthogonal, and the properties of an orthogonal matrix are as follows. The reader
should verify this using the formulas for the direction cosines in terms of the Eulerian angles. The properties also apply, of
course, although more trivially, to the rotation matrix in two dimensions.

a. det  and (det  implies that the two basis sets are of opposite chirality or "handedness"; that is, if one basis
set is right-handed, the other is left-handed.)

b. The sum of the squares of the elements in any row or any column is unity. This merely means that the magnitudes of unit
orthogonal vectors are indeed unity.

c. The sum of the products of corresponding elements in any two rows or any two columns is zero. This is merely a reflection
of the fact that the scalar o dot product of any two unit orthogonal vectors is zero.

d. Every element is equal to its own cofactor. This a reflection of the fact that the vector or cross product of any two unit
orthogonal vectors in cyclic order is equal to the third.

e. , or the reciprocal of an orthogonal matrix is equal to its transpose.

The first four properties above can be (and should be) used in a numerical case to verify that the matrix is indeed orthogonal,
and they can be used for detecting and for correcting mistakes.

For example, the following matrix is supposed to be orthogonal, but there are, in fact, two mistakes in it. Using properties (b)
and (c) above, locate and correct the mistakes. (It will become clear when you do this why verification of property (b) alone is
not sufficient.) When you have corrected the matrix, see if you can find the Eulerian angles ,  and  without ambiguity of
quadrant. As a hint, start at the bottom right hand side of the matrix and note, from the way in which the Eulerian angles are
set up, that  must be between  and , so that there is no ambiguity of quadrant. The other two angles, however, can lie
between  and  and must be determined by examining the signs of their sines and cosines. When you have calculated the
Eulerian angles, a further useful exercise would be to prepare a drawing showing the orientation of the primed axes with
respect to the unprimed axes.

Note, as a matter of good computational practice, that the numbers are written in groups of three separated by half spaces after
the decimal point, all numbers, positive and negative, are signed, and leading zeroes are not omitted.
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0∘ 360∘

⎛

⎝
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+0.851 650 739 6

+0.397 131 261 9

−0.342 020 143 3

⎞

⎠
⎟ (3.7.1)

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8114?pdf
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/17/2020 3.8.1 CC-BY-NC https://phys.libretexts.org/@go/page/8115

3.8: Trigonometrical Formulas
I gather here merely for reference a set of commonly-used trigonometric formulas. It is a matter of personal preference
whether to commit them to memory. It is probably fair to remark that anyone who is regularly engaged in problems in celestial
mechanics or related disciplines will be familiar with most of them, at least from frequent use, whether or not any conscious
effort was made to memorize them. At the very least, the reader should be aware of their existence, even if he or she has to
look to recall the exact formula.

where

= tanA
sinA

cosA
(3.8.1)

A+ A = 1sin2 cos2 (3.8.2)

1 + A = Acot2 csc2 (3.8.3)

1 + A = Atan2 sec2 (3.8.4)

secA cscA = tanA+cotA (3.8.5)

A A = A+ Asec2 csc2 sec2 csc2 (3.8.6)

sin(A±B) = sinA cosB±cosA sinB (3.8.7)

cos(A±B) = cosA cosB∓sinA sinB (3.8.8)

tan(A±B) =
tanA±tanB

1 ∓tanA tanB
(3.8.9)

sin2A = 2 sinA cosA (3.8.10)

cos 2A = A− A = 2 A−1 = 1 −2 Acos2 sin2 cos2 sin2 (3.8.11)

tan2A =
2 tanA

1 − Atan2
(3.8.12)

sin A =
1

2

1 −cosA

2

− −−−−−−−
√ (3.8.13)

cos A =
1

2

1 +cosA

2

− −−−−−−−
√ (3.8.14)

tan A = = = = cscA−cotA
1

2

1 −cosA

1 +cosA

− −−−−−−−
√

1 −cosA

sinA

sinA

A+cosA
(3.8.15)

sinA+sinB = 2 sin S cos D,
1

2

1

2
(3.8.16)

S = A+B and D = A−B (3.8.17)

sinA−sinB = 2 cos S sin D
1

2

1

2
(3.8.18)

cosA+cosB = 2 cos S cos D
1

2

1

2
(3.8.19)

cosA−cosB = −2 sin S sin D
1

2

1

2
(3.8.20)

sinA sinB = (cosD−cosS)
1

2
(3.8.21)

cosA cosB = (cosD+cosS)
1

2
(3.8.22)
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where

 (de Moivre's theorem - the only one you need know. All others can be deduced from it.)

sinA cosB = (sinS+sinD)
1

2
(3.8.23)

sinA = = ,
T

1 +T 2
− −−−−−

√

2T

1 + t2
(3.8.24)

T = tanA and t = tan A
1

2
(3.8.25)

cosA = =
1

1 +T 2
− −−−−−

√

1 − t
2

1 + t2
(3.8.26)

tanA = T =
2t

1 − t2
(3.8.27)

s = sinA, c = cosA (3.8.28)

cosA = c

cos 2A = 2 −1c
2

cos 3A = 4 −3cc
3

cos 4A = 8 −8 +1c4 c2

cos 5A = 16 −20 +5cc
5

c
3

cos 6A = 32 −48 +18 −1c6 c4 c2

cos 7A = 64 −112 +56 −7cc
7

c
5

c
3

cos 8A = 128 −256 +160 −32 +1c8 c6 c4 c2

sinA = s

sin2A = 2cs

sin3A = 3s−4s3

sin4A = 4c(s−2 )s3

sin5A = 5s−20 +16s
3

s
5

sin6A = 2c(3s−16 +16 )s3 s5

sin7A = 7s−56 +112 −64s
3

s
5

s
7

sin8A = 8c(s−10 +24 −16 )s3 s5 s7

(3.8.29)

A = (cos 2A+1)cos2 1
2

A = (cos 3A+3 cosA)cos3 1
4

A = (cos 4A+4 cos 2A+3)cos4 1
8

A = (cos 5A+5 cos 3A+10 cosA)cos5 1
16

A = (cos 6A+6 cos 4A+15 cos 2A+10)cos6 1
32

A = (cos 7A+7 cos 5A+21 cos 3A+35 cosA)cos7 1
64

A = (cos 8A+8 cos 6A+28 cos 4A+56 cos 2A+35)cos8 1
128

(3.8.30)

A = (1 −cos 2A)sin2 1
2

A = (3 sinA−sin3A)sin3 1
4

A = (cos 4A−4 cos 2A+3)sin4 1
8

A = (sin5A−5 sin3A+10 sinA)sin5 1
16

A = (10 −15 cos 2A+6 cos 4A−cos 6A)sin6 1
32

A = (35 sinA−21 sin3A+7 sin5A−sin7A)sin7 1
64

A = (cos 8A−8 cos 6A+28 cos 4A−56 cos 2A+35)sin8 1
128

(3.8.31)

sinA = A− + −. . .
A3

3!

A5

5!
(3.8.32)

cosA = 1 − + −. . .
A2

2!

A4

4!
(3.8.33)

θ θdθ = ,∫ π/2
0

sinm cosn
(m−1)!!(n−1)!!X

(m+n)!!
where X = π/2 if m and n are both even, and 

X = 1 otherwise.
(3.8.34)

=e
niθ

e
inθ
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Plane triangles:

Spherical triangles
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= =
a

sinA

b

sinB

c

sinC
(3.8.35)

= + −2bc cosAa
2

b
2

c
2 (3.8.36)

a cosB+b cosA = c (3.8.37)

s = (a+b+c)
1

2
(3.8.38)

sin A =
1

2

(s−b)(s−c)

s(s−a)

− −−−−−−−−−−

√ (3.8.39)

cos A =
1

2

s(s−a)

bc

− −−−−−−
√ (3.8.40)

tan A =
1

2

(s−b)(s−c)

s(s−a)

− −−−−−−−−−−

√ (3.8.41)

= =
sina

sinA

sinb

sinB

sinc

sinC
(3.8.42)

cosa = cos b cos c+sinb sinc cosA (3.8.43)

cosA = −cosB cosC +sinB sinC cosa (3.8.44)

cos(IS) cos(IA) = sin(IS) cot(OS) −sin(IA) cot(OA) (3.8.45)
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4.1: Introduction
Various geometrical figures in three-dimensional space can be described relative to a set of mutually orthogonal axes O , O ,
O , and a point can be represented by a set of rectangular coordinates . The point can also be represented by
cylindrical coordinates  or spherical coordinates , which were described in Chapter 3. In this chapter, we are
concerned mostly with . The rectangular axes are usually chosen so that when you look down the -axis towards the 

-plane, the -axis is  counterclockwise from the -axis. Such a set is called a right-handed set. A left-handed set is
possible, and may be useful under some circumstances, but, unless stated otherwise, it is assumed that the axes chosen in this
chapter are right-handed.

An Equation connecting ,  and , such as

or

describes a two-dimensional surface in three-dimensional space. A line (which need be neither straight nor two-dimensional)
can be described as the intersection of two surfaces, and hence a line or curve in three-dimensional coordinate geometry is
described by two Equations, such as

and

In two-dimensional geometry, a single Equation describes some sort of a plane curve. For example,

describes a parabola. But a plane curve can also be described in parametric form by two Equations. Thus, a parabola can also
be described by

and

Similarly, in three-dimensional geometry, a line or curve can be described by three Equations in parametric form. For example,
the three Equations

describe a curve in three-space. Think of the parameter  as time, and see if you can imagine what sort of a curve this is.

We shall be concerned in this chapter mainly with six types of surface: the plane, the ellipsoid, the paraboloid, the hyperboloid,
the cylinder and the cone.
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x y

z (x, y, z)

(ρ, ϕ, z) (r, θ, ϕ)

(x, y, z) z

xy y 90∘ x

x y z

f(x, y, z) = 0 (4.1.1)

z = z(x, y) (4.1.2)

f(x, y, z) = 0 (4.1.3)

g(x, y, z) = 0. (4.1.4)

= 4qxy2 (4.1.5)

x = qt2 (4.1.6)

y = 2qt (4.1.7)

x = a cos t (4.1.8)

y = a sin t (4.1.9)

z = ct (4.1.10)

t
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4.2: Planes and Straight Lines
The geometry of the plane and the straight line is, of course, rather simple, so that we can dispose of them in this brief
introductory section in a mere 57 Equations.

The Equation

represents a plane. If  ≠ 0 it is often convenient, and saves algebra and computation with no loss of information, to divide the
Equation through by  and re-write it in the form

The coefficients need not by any means all be positive. If , the plane passes through the origin of coordinates, and it
may be convenient to divide the Equation  by  and hence to rewrite it in the form

The plane represented by Equation  intersects the -, - and -planes in the straight lines

and it intersects the -, - and -axes at

The geometry can be seen in figure 

Another way of writing the Equation to the plane would be

In this form, ,  and  are the intercepts on the -, - and -axes.

Distance of a point from the plane

We now consider this problem. Let  be some point in space. What is the perpendicular distance from  to the
plane ?

Ax +By +Cz +D = 0 (4.2.1)

D

D

ax +by +cz = 1. (4.2.2)

D = 0
4.2.1 C

ax +by +z = 0. (4.2.3)

4.2.2 yz zx xy

by +cz = 1 (4.2.4)

cz +ax = 1 (4.2.5)

ax +by = 1 (4.2.6)

x y z

x = = 1/ax0 (4.2.7)

y = = 1/by0 (4.2.8)

z = = 1/cz0 (4.2.9)

IV.1

FIGURE IV.1

+ + = 1.
x

x0

y

y0

z

z0
(4.2.10)

x0 y0 z0 x y z

 ( , , )P1 x1 y1 z1 P1

ax +by +cz = + + = 1x
x0

y

y0

z
z0
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[The algebra in the following paragraphs may seem a little heavy. If all you are interested in is the distance of the plane from
the origin, simply substitute , and the algebra will be considerably eased.]

Let  be a point on the plane. The distance  between  and  is given by

But since  is on the plane, we can write  in terms of  and  alone, by substituting for  from Equation :

This distance (from  to ) is least for a point on the plane such that  and  are both zero. These two conditions result

in

These, combined with Equation , result in

These are the coordinates of the point  in the plane that is nearest to . The perpendicular distance between  and  is

This is positive if  is on the same side of the plane as the origin, and negative if it is on the opposite side. If the
perpendicular distances of two points from the plane, as calculated from Equation 4.4.18, are of opposite signs, they are on
opposite sides of the plane. If , or indeed if the numerator of Equation 4.4.18 is zero, the point  is, of
course, in the plane.

It is worthwhile to repeat these results for the case where the point  coincides with the origin . In that case we find that the
coordinates of the point  on the plane that is nearest to the origin are

and the perpendicular distance from the origin to the plane (i.e. from  to ) is

Further,  is normal to the plane, and the direction cosines (see Chapter 3, especially section 3.3) of , i.e. of the normal to
the plane, are

The coefficients , ,  are direction ratios of the normal to the plane; that is to say, they are numbers that are proportional to
the direction cosines.

Example: Consider the plane

= = = 0x1 y1 z1

P(x, y, z) s P1 P

= (x − +(y − +(z −s2 x1)2 y1)2 z1)2 (4.2.11)

(x, y, z) s2 x y z 4.2.2

= (x − +(y − +s2 x1)2 y1)2 ( − )
1 −ax −by

c
z1

2

(4.2.12)

P P1
∂s2

∂x

∂s2

∂y

( + )x = a + −ac −abya2 c2 c2x1 z1 (4.2.13)

( + )y = b + −bc −abxb2 c2 c2y1 z1 (4.2.14)

4.2.2

x =
( + ) +a(1 −b −c )b2 c2 x1 y1 z1

+ +a2 b2 c2
(4.2.15)

y =
( + ) +b(1 −c −a )c2 a2 y1 z1 x1

+ +a2 b2 c2
(4.2.16)

z =
( + ) +c(1 −a −b )a2 b2 z1 x1 y1

+ +a2 b2 c2
(4.2.17)

P P1 P P1

p =
1 −a −b −cx1 y1 z1

+ +a2 b2 c2
− −−−−−−−−−

√
(4.2.18)

P1

p = 0 ( , , )P1 x1 y1 z1

P1 O
P

x = , y = , z = ,
a

+ +a2 b2 c2

b

+ +a2 b2 c2

c

+ +a2 b2 c2
(4.2.19a,b,c)

O P

p =
1

+ +a2 b2 c2
− −−−−−−−−−

√
(4.2.20)

OP OP

, ,
a

+ +a2 b2 c2
− −−−−−−−−−

√

b

+ +a2 b2 c2
− −−−−−−−−−

√

c

+ +a2 b2 c2
− −−−−−−−−−

√
(4.2.21)

a b c

0.5x +0.25y +0.20z = 1 (4.2.22)
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The plane intersects the -, - and -axes at  and . The point on the plane that is closest to the origin
is . The perpendicular distance of the origin from the plane is . The direction cosines of the
normal to the plane are .

An Equation for the plane containing three specified points can be found as follows. Let , ,  be the
three specified points, and let  be any point in the plane that contains these three points. Each of these points must satisfy
an Equation of the form 4.2.1. That is,

In these Equations, we are treating , , ,  as unknowns, and the , , , , ... as coefficients. We have four linear
Equations in four unknowns, and no constant term. From the theory of Equations, these are consistent only if each is a linear
combination of the other three. This is satisfied only if the determinant of the coefficients is zero:

and this is the Equation to the required plane containing the three points. The reader will notice the similarity of this Equation
to Equation 2.2.4 for a line passing between two points in two-dimensional geometry. The reader might like to repeat the
argument, but requiring instead the four points to satisfy an Equation of the form 4.2.2. There will then be four linear
Equations in three unknowns. Otherwise the argument is the same.

We now move on to the question of finding the area of a triangle whose vertices are given. It is straightforward to do this with
a numerical example, and the reader is now encouraged to write a computer program, in whatever language is most familiar, to
carry out the following tasks. Read as data the - -  coordinates of three points . Calculate the lengths of the sides , 
, , a being opposite to , etc. Calculate the three angles at the vertices of the triangle, in degrees and minutes, and check for

correctness by verifying that their sum is . If an angle is obtuse, make sure that the computer displays its value as a
positive angle between  and . Finally, calculate the area of the triangle.

The data for several triangles could be written into a data file, which your program reads, and then writes the answers into an
output file. Alternatively, you can type the coordinates of the vertices of one triangle and ask the computer to read the data
from the monitor screen, and then to write the answers on the screen followed by a message such as "Do you want to try
another triangle (1) or quit (2)?". Your program should also be arranged so that it writes an appropriate message if the three
points happen to be collinear.

It should be easy to calculate the sides. The angles can then be calculated from Equation 3.2.2 and the area from each of the
four Equations 3.2.3 and 3.2.4. They should all yield the correct answer, of course, but the redundant calculations serve as an
important check on the correctness of your programming, as also does your check that the three angles add to . Where
there are two of more ways of performing a calculation, a careful calculator will do all of them as a check against mistakes,
whether the calculation is done by hand or by computer.

Example. If the coordinates of the vertices are

the sides are

and the angles are

x y z (2, 0, 0),  0, 4, 0) (0, 0, 5)
(1.4184, 0.7092, 0.5674) 1.6843

(0.8422, 0.4211, 0.3369)

( , )x1 y1 ( , )x2 y2 ( , )x3 y3

(x, y)

xA +yB +zC +D = 0 (4.2.24)

A + B + C +D = 0x1 y1 z1 (4.2.25)

A + B + C +D = 0x2 y2 z2 (4.2.26)

A + B + C +D = 0x3 y3 z3 (4.2.27)

A B C D x y z x1 y1

x

x1

x2

x3

y

y1

y2

y3

z

z1

z2

z3

1

1

1

1

= 0
(4.2.28)

x y z A, B, C a

b c A
180∘

90∘ 180∘

180∘

A(7, 4, 3), B(11, 6, 2), C(9, 2, 4) (4.2.1)

a = 4.899, b = 3.000, c = 4.583, (4.2.2)

A = , B = , C = ,65∘55′ 36∘42′ 77∘23′ (4.2.3)
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which add up to . The area is .

Example. If the coordinates of the vertices are

the area of the triangle is zero and the points are collinear.

The foregoing showed that it was not difficult to calculate numerically the area of the triangle from the coordinates of its
vertices. Is it easy to find a simple explicit algebraic formula for the area in terms of ,  and ?
On referring to figure , we can proceed as follows.

The vectors  and  can be written

where  are unit vectors parallel to the -, - and - axes.

The cross product of  and  gives the (vector) area of the parallelogram of which they form two sides. The area  of the
triangle is half of this, so that

The magnitude of this vector can be found in the usual way, to obtain

180∘ 6.708

A(6, 4, 9), B(2, 6, 17), C(8, 3, 5) (4.2.4)

( , , )x1 y1 z1 ( , , )x2 y2 z2 ( , , )x3 y3 z3

IV.2

FIGURE IV.2

r2 r3

= ( − )i +( − )j +( − )kr2 x2 x1 y2 y1 z2 z1 (4.2.29)

= ( − )i +( − )j +( − )kr3 x3 x1 y3 y1 z3 z1 (4.2.30)

i, j, k x y z

r2 r3 A

2A = ×r2 r3 (4.2.5)

= [( − )( − ) −( − )( − )]iy2 y1 z3 z1 y3 y1 z2 z1 (4.2.6)

+[( − )( − ) −( − )( − )]jz2 z1 x3 x1 z3 z1 x2 x1 (4.2.7)

+[( − )( − ) −( − )( − )]kx2 x1 y3 y1 x3 x1 y2 y1 (4.2.31)

4 = [( ( − ) + ( − ) + ( − )A2 y1 z2 z3 y2 z3 z1 y3 z1 z2 ]2 (4.2.8)

+[( ( − ) + ( − ) + ( − )z1 x2 x3 z2 x3 x1 z3 x1 x2 ]2 (4.2.9)

+[( ( − ) + ( − ) + ( − ) .x1 y2 y3 x2 y3 y1 x3 y1 y2 ]2 (4.2.32)
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The reader can verify that, if , this reduces to Equation 2.2.12 for the area of a triangle the -plane. Equation
4.1.32 can also be written

This gives the area explicitly in terms of the coordinates of the vertices. If it is zero, the points are collinear.

The volume of a tetrahedron is . By combining Equation  for the area of a triangle with Equation 
 for the perpendicular distance of a point from a plane, we can determine that the volume of the tetrahedron whose

vertices are

is

If this determinant is zero, the four points are coplanar.

In three-dimensional coordinate geometry, a straight line is described by two Equations, being the intersection of two planes:

If ,the normals to the two planes have the same direction ratios, so the planes are parallel and do not
intersect. Otherwise the normals to the two planes have different direction ratios , and, since the line of
intersection of the planes is at right angles to both normals, the direction ratios of the line are found from the cross product of
vectors normal to the planes. The direction ratios of the line of intersection are therefore

The line crosses the -, - and - planes at

An example of computing a straight line from the intersection of two planes occurs in meteor astronomy. We can assume a flat
Earth, which is tantamount to supposing that the height of a meteor is negligible compared with the radius of Earth, and the
height of an observer above sea level is negligible compared with the height of the meteor. Since the heights of meteors are
typically a few tens of km, both of these approximations are reasonable, at least for noninstrumental eyewitness accounts.

We suppose that, relative to an arbitrary origin  on the surface of Earth, a witness  is  and  of the
origin. He sees a fireball start at an angle  from his zenith and at an azimuth  counterclockwise from his
east, and it finishes at , . (See figure .)

Show that the plane containing the witness and the meteor is

A second witness,  and  of , estimates the zenith distance and azimuth of two points on the meteor
track to be ,  and , 

= =z1 z2 z3 xy
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∣
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∣
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(4.2.33)

×base ×height1
6

4.2.33

4.2.14

( , , ),  ( , , ),  ( , , ),  ( , , )x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 (4.2.10)
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∣
∣
∣
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∣

∣

∣
∣
∣
∣

(4.2.34)

x + y + z = 1a1 b1 c1 (4.2.35)

x + y + z = 1a2 b2 c2 (4.2.36)

/ = / = /a1 a2 b1 b2 c1 c2

( , , ),  ( , , )a1 b1 c1 a2 b2 c2

( − ,   − ,   − )b1c2 b2c1 c1a2 c2a1 a1b2 a2b1 (4.2.37)

yz zx xy

y = z =
−c2 c1

−b1c2 b2c1

−b1 b2

−b1c2 b2c1
(4.2.38)

z = x =
−a2 a1

−c1a2 c2a1

−c1 c2

−c1a2 c2a1
(4.2.39)

x = y =
−b2 b1

−a1b2 a2b1

−a1 a2

−a1b2 a2b1
(4.2.40)

O A 15 km east 5 km north
θ = .525∘ ϕ = .554∘

θ = .736∘ ϕ = .716∘ IV.3

0.0363x +0.0911y −0.0454z = 1 (4.2.41)

30 km east 15 km north O
θ = .629∘ ϕ = .9202∘ θ = .633∘ ϕ = .9242∘

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6806?pdf


Jeremy Tatum 9/12/2020 4.2.6 CC-BY-NC https://phys.libretexts.org/@go/page/6806

Show that the plane containing this second witness and the meteor is

These two Equations describe the path of the fireball through the air. Show that, if the meteoroid carries on moving in a
straight line, it will strike the ground as a meteorite  and  of the origin .

As we have just discussed, two nonparallel planes intersect in a straight line. Usually, three nonparallel planes intersect at a
single unique point; for, if  is a line formed from the intersection of planes  and ,  will usually intersect the plane  at
a point.

Example: The planes

intersect at .

It will be recalled from the theory of linear Equations that three Equations

have a unique solution only if

and, in the geometrical interpretation, this is the condition that three planes meet in a single point. Consider, however, the three
planes

The direction ratios of the three lines found by combining the planes in pairs (see Equation ) are

It will be observed that each is a multiple of either of the others, and the direction cosines of each of the three lines are
identical apart from sign: .

The three lines are, in fact, parallel, and the three planes enclose a prism. A condition for this is that

But consider now the planes

0.0257x +0.0153y +0.0168z = 1 (4.2.42)

42.4 km east 6.0 km south O

FIGURE IV.3

L P1 P2 L P3

2x +3y +4z −9 = 0 (4.2.43)

x +y −8z +6 = 0 (4.2.44)

5x +6y −12z +1 = 0 (4.2.45)

(1, 1, 1)

x + y + z + = 0A1 B1 C1 D1 (4.2.46)

x + y + z + = 0A2 B2 C2 D2 (4.2.47)

x + y + z + = 0A3 B3 C3 D3 (4.2.48)

Δ = ≠ 0

∣

∣

∣
∣

A1

A2

A3

B1

B2

B2

C1

C2

C3

∣

∣

∣
∣ (4.2.49)

2x +3y +4z −9 = 0 (4.2.50)

x +y −8z +6 = 0 (4.2.51)

5x +6y −20z +12 = 0 (4.2.52)

4.2.37

(−28, 20, −1) (−84, 60, −3) (28, −20, 1) (4.2.11)

(∓0.813, ±0.581, ∓0.029)

Δ = 0. (4.2.53)
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Not only does , but also

The three lines obtained by combining Equations 4.2.54,55,56 in pairs are in fact identical, and the three planes meet in a
single line. Each of Equations 4.2.54,55,56 is a linear combination of the other two.

In summary, three nonparallel planes meet in a single line if . They meet in a single point if . They enclose
a prism if .

Contributors and Attributions 
Jeremy Tatum (University of Victoria, Canada)

2x +3y +4z −9 = 0 (4.2.54)

x +y −8z +6 = 0 (4.2.55)

5x +6y −20z +9 = 0 (4.2.56)

Δ = 0

= = 0Δ′

∣

∣

∣
∣

A1

A2

A3

B1

B2

B3

D1

D2

D3

∣

∣

∣
∣ (4.2.57)

Δ ≠ 0 Δ = = 0Δ′

Δ = 0, ≠ 0Δ′
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4.3: The Ellipsoid
Consider the Equation

with , in the -plane. The length of the semi major axis is  and the length of the semi minor axis is . If this figure is
rotated through  about its minor ( -) axis, the three- dimensional figure so obtained is called an oblate spheroid. The
figure of the Earth is not exactly spherical; it approximates to a very slightly oblate spheroid, the ellipticity  being
only . (The actual figure of the Earth, mean sea level, is often referred to as the geoid.)

The Equation to the oblate spheroid referred to above is

If the ellipse  is rotated through  about its major ( -) axis, the figure so obtained is called a prolate spheroid. A
rugby football (or, to a lesser extent, a North American football, which is a bit too pointed) is a good approximation to a
prolate spheroid.

The Equation to the prolate spheroid just described is

Either type of spheroid can be referred to as an "ellipsoid of revolution".

The figure described by the Equation

is a tri-axial ellipsoid. Unless stated otherwise, I shall adopt the convention , and choose the coordinate axes such
that the major, intermediate and minor axes are along the -, - and -axes respectively. A tri-axial ellipsoid is not an ellipsoid
of revolution; it cannot be obtained by rotating an ellipse about an axis.

The special case :

is, of course, a sphere.

Figure  shows the cross-section of a tri-axial ellipse in the - plane (a), the -plane (b) and (twice - (c), (d)) the -
plane. If you imagine your eye wandering in the -plane from the -axis (a) to the -axis (c), you will be convinced that there
is a direction in the -plane from which the

+ = 1,
x2

a2

z2

c2
(4.3.1)

a > c xz a c

360∘ z

(c −a)/a

0.00335

+ + = 1.
x2

a2

y2

a2

z2

c2
(4.3.2)

4.3.1 360∘ x

+ + = 1.
x2

a2

y2

c2

z2

c2
(4.3.3)

+ + = 1
x2

a2

y2

b2

z2

c2
(4.3.4)

a > b > c

x y z

a = b = c

+ + =x2 y2 z2 a2 (4.3.5)
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cross-section of the ellipse is a circle. There are actually two such directions, symmetrically situated on either side of the -
axis, but there are no such directions in either the - or the -planes from which the cross-section of the ellipsoid appears as
a circle. Expressed otherwise, there are two planes that intersect the ellipsoid in a circle. This fact is of some importance in the
description of the propagation of light in a bi-axial crystal, in which one of the wavefronts is a tri-axial ellipsoid.

Let us refer the ellipsoid  to a set of axes  such that the angles  and  are each , and the - and -axes
are identical. The Equation of the ellipsoid referred to the new axes is (by making use of the usual formulas for the rotation of
axes)

The cross-section of the ellipsoid in the -plane (i.e. normal to the -axis) is found by putting :

This is a circle if the coefficients of  and  are equal. Thus it is a circle if

Thus, a plane whose normal is in the -plane (i.e. between the major and minor axis) and inclined at an angle  to the minor (
-) axis, cuts the tri-axial ellipsoid in a circle. As viewed from either of these directions, the cross-section of the ellipsoid is a

circle of radius .

As an asteroid tumbles over and over, its brightness varies, for several reasons, such as its changing phase angle, the
directional reflective properties of its regolith, and, of course, the cross-sectional area presented to the observer. The number of
factors that affect the light-curve of a rotating asteroid is, in fact, so large that it is doubtful if it is possible, from the light-
curve alone, to deduce with much credibility or accuracy the true shape of the asteroid. However, it is obviously of some
interest for a start in any such investigation to be able to calculate the cross-sectional area of the ellipsoid  as seen from
some direction .

Let us erect a set of coordinate axes  such that  is in the direction , first by a rotation through  about  to
form intermediate axes , followed by a rotation through  about . The  coordinates are related to the 

 coordinates by

FIGURE IV.4
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If we substitute for  in Equation  from Equation , we obtain the Equation to the ellipsoid referred to the 
 coordinate systems. And if we put , we see the elliptical crosssection of the ellipsoid in the plane normal to 

. This will be of the form

where

This is an ellipse whose axes are inclined at an angle  from  given by

By replacing  and  by  and , where

we shall be able to describe the ellipse in a coordinate system  whose axes are along the axes of the ellipse, and the
Equation will be of the form

and the area of the cross-section is .

For example, suppose the semi axes of the ellipsoid are , and we look at it from the direction , 
. Following Equations 4.4.9,10,11,12, we obtain for the Equation of the elliptical cross-section referred to the system 

From Equation 4.4.13 we find . Equation 4.4.14 then transforms Equation 4.4.16 to

or

The area is

It is suggested here that the reader could write a computer program in the language of his or her choice for calculating the
cross-sectional area of an ellipsoid as seen from any direction. As an example, I reproduce below a Fortran program for an
ellipse with . It is by no means the fastest and most efficient Fortran program that could be written, but is
sufficiently straightforward that anyone familiar with Fortran and probably many who are not should be able to follow the
steps.

A=3.
B=2.
C=1.

x,  y,  z 4.3.4 4.3.9

Ox′y′z′ = 0z′

Oz′

A +2H +B = 1,x′2 x′y′ y′2 (4.3.10)

A = θ( + )+cos2 ϕcos2

a2

ϕsin2

b2

θsin2

c2
(4.3.11)

2H = 2 θ sinϕ cos ϕ( − ) ,cos2 1

b2

1

a2
(4.3.12)

B = + .
ϕsin2

a2

ϕcos2

b2
(4.3.13)

ψ Ox′

tan2ψ = .
2H

A −B
(4.3.14)

x′ y′ x′′ y′′

( ) =( )( )
x′

y′

cos ψ

sinψ

−sinψ

cos ψ

x′′

y′′
(4.3.15)

Ox′′y′′

+ = 1
x′′2

a′′2

y′′2

b′′2
(4.3.16)

πa′′b′′

a = 3,  b = 2,  y = 1 θ = 60∘

ϕ = 45∘

Ox′y′z′

0.79513 +0.069 +0.180 = 1.8̇x′2 4̇x′y′ 5̇y′2 (4.3.17)

ψ =  .223383∘

0.797094 +0.178600 = 1x′′2 y′′2 (4.3.18)

+ = 1.
x′′2

(1.1201)2

y′′2

(2.3662)2
(4.3.19)

π ×1.1201 ×2.3662 = 8.362. (4.3.1)

(a, b, c) = (3, 2, 1)
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A2=A*A
B2=B*B
C2=C*C
READ(5,*)TH,PH
TH=TH/57.29578
PH=PH/57.29578
STH=SIN(TH)
CTH=COS(TH)
SPH=SIN(PH)
CPH=COS(PH)
STH2=STH*STH
CTH2=CTH*CTH
SPH2=SPH*SPH
CPH2=CPH*CPH
AA=CTH2*(CPH2/A2+SPH2/B2)+STH2/C2
TWOHH=2.*CTH*STH*CPH*(1./B2−1./A2)
BB=SPH2/A2+CPH2/B2
PS=.5*ATAN2(TWOHH,AA−BB)
SPS=SIN(PS)
CPS=COS(PS)
AAA=CPS*(AA*CPS+TWOHH*SPS)+BB*SPS*SPS
BBB=SPS*(AA*SPS−TWOHH*CPS)+BB*CPS*CPS
SEMAX1=1./SQRT(AAA)
SEMAX2=1./SQRT(BBB)
AREA=3.1415927*SEMAX1*SEMAX2
WRITE(6,1)AREA
1 FORMAT(' Area = ',F7.3)
STOP
END
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4.4: The Paraboloid
The Equation  is a parabola in the -plane. The distance between vertex and focus is , and the length of the
semi latus rectum . The Equation can also be written

Here  and  are distances such that  when , and the length of the semi latus rectum is .

If this parabola is rotated through  about the -axis, the figure swept out is a paraboloid of revolution, or circular
paraboloid. Many telescope mirrors are of this shape. The Equation to the circular paraboloid is

The cross-section at  is a circle of radius .

The Equation

in which we shall choose the - and -axes such that , is an elliptic paraboloid and, if , is not formed by rotation of
a parabola. At , the cross section is an ellipse of semi major and minor axes equal to  and  respectively. The section in
the plane  is a parabola of semi latus rectum . The section in the plane  is a parabola of semi latus rectum 

. The elliptic paraboloid lies entirely above the -plane.

The Equation

is a hyperbolic paraboloid, and its shape is not quite so easily visualized. Unlike the elliptic paraboloid, it extends above and
below the plane. It is a saddle-shaped surface, with the saddle point at the origin. The section in the plane  is the "nose
down" parabola  extending above the xy-plane. The section in the plane  is the "nose up" parabola 

 extending below the -plane. The section in the plane  is the hyperbola

The section with the plane  is the conjugate hyperbola

The section with the plane  is the asymptotes

The surface for , ,  is drawn in figure .
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a = 3 b = 2 h = 1 IV.4
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4.5: The Hyperboloid
The Equation

is a hyperbola, and  is the semi transverse axis. (As described in Chapter 2,  is the semi transverse axis of the conjugate
hyperbola.)

If this figure is rotated about the -axis through , the surface swept out is a circular hyperboloid (or hyperboloid of
revolution) of one sheet. Its Equation is

Imagine two horizontal rings, one underneath the other. The upper one is fixed. The lower one is suspended from the upper
one by a large number of vertical strings attached to points equally spaced around the circumference of each ring. Now twist
the lower one through a few degrees about a vertical axis, so that the strings are no longer quite vertical, and the lower ring
rises slightly. These strings are generators of a circular hyperboloid of one sheet.

If the figure is rotated about the -axis through , the surface swept out is a circular hyperboloid (or hyperboloid of
revolution) of two sheets. Its Equation is

The Equations

and

represent hyperbolas of one and two sheets respectively, but are not hyperbolas of revolution, since their cross sections in the
planes  constant and  constant  respectively are ellipses rather than circles. The reader should imagine what the
cross- sections of all four hyperboloids are like in the planes  and .
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4.6: The Cylinder
In three-dimensional solid geometry the Equation

represents a cylinder of elliptical cross-section, whose axis coincides with the -axis. The Equation to a cylinder with an axis
in another position and with another orientation can be obtained by the usual processes of translation and rotation of axes (see
Section 3.7).
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4.7: The Cone
The Equation

represents a circular cone whose vertex in at the origin and whose axis coincides with the -axis. The semi-vertical angle  of
the cone is given by

In this context, the word "vertical" has nothing to do with "upright"; it merely means "of or at the vertex". A little knowledge
of Latin is useful even today!

The Equation

is a cone with elliptical cross-section.

If the vertex of the cone remains at the origin, but the axis is in some arbitrary direction (described, for example, by the
direction cosines, or by spherical angles  and  ) the Equation can be derived by a rotation of coordinate axes. This will
introduce terms in ,  and , but it will not produce any terms in ,  or , nor will it introduce a constant. Therefore the
Equation to such a cone will have only second degree terms in it. The Equation will be of the form

With one proviso, the converse is usually true, namely that Equation  represents a cone with vertex at the origin. The one
proviso is that if

Equation  will factorize into two linear expressions, and will represent two planes, which intersect in a line that contains
the origin - and this could be regarded as a special case of a cone, with zero vertical angle. If, however, the two linear factors
are identical, the two planes are coincident.

The Equation to a cone of semi vertical angle  whose vertex is at the origin and whose axis has direction cosines 
can be found as follows. The Equation

represents a plane that is perpendicular to the axis of the cone and is at a distance  from the origin (i.e. from the vertex of the
cone). Let   be a point in the plane and also on the surface of the cone, at a distance r from the origin. The semi
vertical angle of the cone is then given by

But

and, from Equation ,

Thus

+ =x2 y2 a2z2 (4.7.1)

z α

α = a.tan−1 (4.7.2)

+ =
x2

a2

y2

b2
z2 (4.7.3)

θ ϕ

yz zx xy x y z

a +b +c +2fyz +2gzx +2hxy = 0x2 y2 z2 (4.7.4)
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∣
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4.7.4

α (l, m, n)

lx +my +nz +h = 0 (4.7.6)

h

P (x, y, z)

cos α = h/r. (4.7.7)

= + +r2 x2 y2 z2 (4.7.8)

4.7.6

= (lx +my +nzh2 )2 (4.7.9)

( + + ) α = (lx +my +nzx2 y2 z2 cos2 )2 (4.7.10)
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is the required Equation to the cone.

It might be thought that the Equation to an inclined cone is unlikely to find much application in astronomy. Here is an
application.

A fireball (i.e. a bright meteor, potentially capable of depositing a meteorite) moves down through the atmosphere with speed 
 along a straight line trajectory with direction cosines  referred to some coordinate system whose -plane is on the

surface of Earth (assumed flat). If  is the speed of sound, and , the meteoroid will generate a conical shock front of
semi vertical angle  given by

At a time  before impact, the coordinates of the vertex will be , and the Equation to the conical shock front
will then be

Part of this shock front (at time  before impact) has already reached ground level, and it intersects the ground in a conic
section given by putting  in Equation :

and witnesses on the ground on any point on this conic section will hear the shock front at the same time. Further details on
this can be found in Tatum, J.B., Meteoritics and Planetary Science, 34, 571 (1999) and Tatum, J.B., Parker, L. C. and Stumpf,
L. L., Planetary and Space Science 48, 921 (2000).
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V (l, m, n) xy

v V > v

α

sinα = v/V . (4.7.11)

t (lV t, mV t, nV t)

[(x + lV t +(y +mV t +(z +nV t ] α = [l(x + lV t) +m(y +mV t) +n(z +nV t))2 )2 )2 cos2 ]2 (4.7.12)

t

z = 0 4.7.12

( α − ) +( α − ) −2lmxy −2V t α(lx +my) − α = 0cos2 l2 x2 cos2 m2 y2 sin2 V 2t2 sin2 (4.7.13)
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4.8: The General Second Degree Equation in Three Dimensions
The general second degree Equation in three dimensions is

This may represent a plane or pair of planes (which, if not parallel, define a straight line), or an ellipsoid, paraboloid,
hyperboloid, cylinder or cone. The Equation could, if convenient, be divided through by  (or any of the other constants), and
there are in reality only nine independent constants. Therefore nine points in space are sufficient to determine the second
degree surface on this they lie.

If  is zero, the surface contains the origin. If ,  and  are all zero, and the surface is an ellipsoid, hyperbolic paraboloid or a
hyperboloid, the origin is at the centre of the figure. If the figure is an elliptic paraboloid, the origin is at the vertex. If , , 
and  are all zero, the surface is a cone with the proviso mentioned in section 4.7. If , , , , ,  are all zero, the surface is
a plane.

Let us consider a particular example:

What sort of a surface is this?

We need to do two things. First we need to rotate the coordinate axes so that they are parallel to the figure axes. The Equation
referred to the figure axes will have no terms in ,  or . Then we need to translate the axes so that the origin is at the
centre of the figure (or at the vertex, if it is an elliptical paraboloid).

Mathematically, we need to find the eigenvectors of the matrix

Some readers will readily know how to do this. Others may not, and may not even be quite certain what an eigenvector is.
Section 4.9 may be of interest to either group of readers. In any case, the eigenvectors are found to be

with corresponding eigenvalues .

The elements of the eigenvectors are the direction cosines of the present coordinate axis with respect to the figure axes. To
express the Equation to the surface relative to coordinate axes that are parallel to the figure axes, we replace

This will make the terms in ,  and  vanish; this should be checked numerically, particularly as it is easy to rotate the
axes in the wrong sense. When the substitutions are made, the Equation is found to be

Notice that there are now no terms in ,  or .

Now we need to translate the origin of coordinates to the centre of the figure (or to the vertex if it is an elliptic paraboloid). It
will readily be seen that this can be done by substituting

a +b +cz+2fyz+2gzx+2hxy+2ux+2vy+2wz+d = 0x2 y2 (4.8.1)

d

d u v w

u v w

d a b c f g h

3 −4 +6 +8yz−2zx+4xy+14x−10y−4z+5 = 0x2 y2 z2 (4.8.2)
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7.422 7590,  5.953 0969,  3.530 3380

x by  x+ y+ zl11 l12 l13 (4.8.2)

y by  x+ y+ zl21 l22 l23 (4.8.3)

z by  x+ y+ zl31 l32 l33 (4.8.4)

yz zx xy

7.422 7590 −5.9530969 +3.530 3380 −7.9430994x−11.2067840y−11.1047998z+5 = 0.x2 y2 z2 (4.8.4)

yz zx xy

x−α for x (4.8.5)
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where

.

The Equation then becomes

or

The surface is a hyperboloid of one sheet, elliptical in any  constant cross-section.

The surfaces described by second-degree Equations in three dimensions - ellipsoids, paraboloids, hyperboloids, cones and
cylinders - are generally called quadric surfaces. The surface described by the Equation

is not one of the quadric surfaces. If the square root is isolated and squared, the resulting Equation will contain terms of degree
four. The surface is a fairly familiar one, and the reader should try to imagine what it is. Failing that, if your computer skills
are up to it, you might try to draw the surface in three-dimensional space. The only hint I give is to suggest that you put 
in Equation  to see what the section is in the -  plane.
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y−β for y (4.8.6)

z−γ for z (4.8.7)

α = (coefficient of x)/(twice the coefficient of  ) = −0.535 050 336x2 (4.8.8)

β = (coefficient of y)/(twice the coefficient of  ) = +0.941 256 643y2 (4.8.9)

γ = (coefficient of z)/(twice the coefficient of  ) = −1.572 767 224z2 (4.8.10)

7.422 7590 −5.953 0969 +3.530 3380 −0.583 3816 = 0x2 y2 z2 (4.8.11)
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4.9: Matrices
This book has assumed a knowledge of matrices, which may or may not be justified. In this section, we do not attempt a
thorough treatment of the subject, which must be sought elsewhere, but the remarks may be of use both to novices and to the
more experienced.

However you may have the opportunity of learning about the manipulation of matrices, it is suggested that you should aim to
understand and know how to carry out at least the following operations on matrices whose elements are real numbers:

Multiply a vector by a matrix
Multiply a matrix by a matrix
Calculate the determinant of a square matrix
Invert a square matrix
Diagonalize a symmetric matrix
Test a matrix for orthogonality

Numerous other aspects of matrix manipulation are possible, and the subject expands greatly if we allow the elements to be
complex numbers. These six, however, are particularly useful for many applications. It might be mentioned, however, that
solving simultaneous linear Equations by Kramers' Rule or by inverting a matrix are very inefficient ways of solving such
Equations, and that is not the main purpose of acquiring the above skills.

Most, or doubtless all, of the above operations are available in many modern mathematical computer packages. This is not
what I mean, however, by "understand and know how to carry out". The student should carry out at least once by hand
calculator, step by step, each of the above operations, and, at each step, try to understand not only the algebraic and arithmetic
steps, but also try to visualize the geometric interpretation, particularly when rotating axes and calculating eigenvectors. After
doing a hand calculation, you should then write a series of short computer programs (rather than one vast, all-encompassing
matrix package) for each operation, so that when, in future, you need to do any of these things, you can instantly obtain the
answer without having to go through tedious calculations. For example, in the previous section, when I needed the
eigenvectors of the matrix, I was able to generate them with a single word "EIGEN" on a computer; a considerable amount of
arithmetic was actually performed by the computer.

On the question of testing a matrix for orthogonality, the usual application in mechanical and geometrical problems is to test a
matrix of direction cosines. The tests can not only detect mistakes, but it can locate them and even suggest what the correct
element should be. Tests for orthogonality are as follows. The student should try to think of the geometric interpretation of
each.

The sum of the squares of the elements in any row or any column is unity. (This test does not guard against mistakes in
signs of the elements.)

The sum of the products of corresponding elements in any two rows or in any two columns is zero.

Every element is equal to plus or minus its cofactor.

The determinant of the matrix is plus or minus one.

A minus sign in the last two tests indicates that the two sets of axes differ in chirality (handedness). This usually does not
matter, and can easily be dealt with by reversing the signs of the elements of one eigenvector and of its corresponding
eigenvalue.
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CHAPTER OVERVIEW
5: GRAVITATIONAL FIELD AND POTENTIAL
This chapter deals with the calculation of gravitational fields and potentials in the vicinity of various
shapes and sizes of massive bodies. The reader who has studied electrostatics will recognize that this
is all just a repeat of what he or she already knows.

5.1: INTRODUCTION
5.2: GRAVITATIONAL FIELD
The region around a gravitating body (by which I merely mean a mass, which will attract other
masses in its vicinity) is a gravitational field. Although I have used the words “around” and “in its
vicinity”, the field in fact extents to infinity. All massive bodies (and by “massive” I mean any
body having the property of mass, however little) are surrounded by a gravitational field, and all of
us are immersed in a gravitational field.

5.3: NEWTON'S LAW OF GRAVITATION
Newton noted that the ratio of the centripetal acceleration of the Moon in its orbit around the Earth to the acceleration of an apple
falling to the surface of the Earth was inversely as the squares of the distances of Moon and apple from the centre of the Earth.
Together with other lines of evidence, this led Newton to propose his universal law of gravitation:

5.4: THE GRAVITATIONAL FIELDS OF VARIOUS BODIES

5.4.1: FIELD OF A POINT MASS
5.4.2: FIELD ON THE AXIS OF A RING
5.4.3: PLANE DISCS
5.4.4: INFINITE PLANE LAMINAS
5.4.5: HOLLOW HEMISPHERE
5.4.6: RODS
5.4.7: SOLID CYLINDER
5.4.8: HOLLOW SPHERICAL SHELL
5.4.9: SOLID SPHERE
5.4.10: BUBBLE INSIDE A UNIFORM SOLID SPHERE
5.5: GAUSS'S THEOREM
The total normal outward gravitational flux through a closed surface is equal to  times the total mass enclosed by the surface.

5.6: CALCULATING SURFACE INTEGRALS
While the concept of a surface integral sounds easy enough, how do we actually calculate one in practice?

5.7: POTENTIAL
We have defined only the potential difference between two points. If we wish to define the potential at a point, it is necessary
arbitrarily to define the potential at a particular point to be zero. We might, for example define the potential at floor level to be zero, in
which case the potential at a height h above the floor is gh ; equally we may elect to define the potential at the level of the laboratory
bench top to be zero, where the potential at a height z above the bench top is gz.

5.8: THE GRAVITATIONAL POTENTIALS NEAR VARIOUS BODIES

5.8.1: POTENTIAL NEAR A POINT MASS
We shall define the potential to be zero at infinity. If we are in the vicinity of a point mass, we shall always have to do work in moving
a test particle away from the mass. We shan’t reach zero potential until we are an infinite distance away. It follows that the potential at
any finite distance from a point mass is negative. The potential at a point is the work required to move unit mass from infinity to the
point; i.e., it is negative.

5.8.2: POTENTIAL ON THE AXIS OF A RING
5.8.3: PLANE DISCS
5.8.4: INFINITE PLANE LAMINA
5.8.5: HOLLOW HEMISPHERE
5.8.6: RODS
5.8.7: SOLID CYLINDER
5.8.8: HOLLOW SPHERICAL SHELL
5.8.9: SOLID SPHERE
5.9: WORK REQUIRED TO ASSEMBLE A UNIFORM SPHERE

−4πG
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5.10: NABLA, GRADIENT AND DIVERGENCE
We are going to meet, in this section, the symbol ∇ . In North America it is generally pronounced “del”, although in the United
Kingdom and elsewhere one sometimes hears the alternative pronunciation “nabla”, called after an ancient Assyrian harp-like
instrument of approximately that shape.

5.11: LEGENDRE POLYNOMIALS
In this section we cover just enough about Legendre polynomials to be useful in the following section.

5.12: GRAVITATIONAL POTENTIAL OF ANY MASSIVE BODY
5.13: PRESSURE AT THE CENTRE OF A UNIFORM SPHERE
What is the pressure at the centre of a sphere of radius a and of uniform density ρ?
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5.1: Introduction
This chapter deals with the calculation of gravitational fields and potentials in the vicinity of various shapes and sizes of
massive bodies. The reader who has studied electrostatics will recognize that this is all just a repeat of what he or she already
knows. After all, the force of repulsion between two electric charges  and  a distance  apart in vacuo is

where  is the permittivity of free space, and the attractive force between two masses  and  a distance  apart is

where  is the gravitational constant, or, phrased another way, the repulsive force is

Thus all the Equations for the fields and potentials in gravitational problems are the same as the corresponding Equations in
electrostatics problems, provided that the charges are replaced by masses and  is replaced by .

I can, however, think of two differences. In the electrostatics case, we have the possibility of both positive and negative
charges. As far as I know, only positive masses exist. This means, among other things, that we do not have “gravitational
dipoles” and all the phenomena associated with polarization that we have in electrostatics.

The second difference is this. If a particle of mass  and charge  is placed in an electric field , it will experience a force 
, and it will accelerate at a rate and in a direction given by . If the same particle is placed in a gravitational field , it

will experience a force  and an acceleration , irrespective of its mass or of its charge. All masses and all
charges in the same gravitational field accelerate at the same rate. This is not so in the case of an electric field.

I have some sympathy for the idea of introducing a “rationalized” gravitational constant , given by , in which
case the gravitational formulas would look even more like the  (rationalized ) electrostatics formulas, with 
appearing in problems with spherical symmetry,  in problems with cylindrical symmetry, and no  in problems involving
uniform fields. This is unlikely to happen, so I do not pursue the idea further here.
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5.2: Gravitational Field
The region around a gravitating body (by which I merely mean a mass, which will attract other masses in its vicinity) is a
gravitational field. Although I have used the words “around” and “in its vicinity”, the field in fact extents to infinity. All
massive bodies (and by “massive” I mean any body having the property of mass, however little) are surrounded by a
gravitational field, and all of us are immersed in a gravitational field.

If a test particle of mass  is placed in a gravitational field, it will experience a force (and, if released and subjected to no
additional forces, it will accelerate). This enables us to define quantitatively what we mean by the strength of a gravitational
field, which is merely the force experienced by unit mass placed in the field. I shall use the symbol  for the gravitational field,
so that the force  on a mass  situated in a gravitational field  is

It can be expressed in newtons per kilogram, . If you work out the dimensions of , you will see that it has dimensions 
, so that it can be expressed equivalently in . Indeed, as pointed out in section 5.1, the mass  (or indeed any

other mass) will accelerate at a rate  in the field, and the strength of a gravitational field is simply equal to the rate at which
bodies placed in it will accelerate.

Very often, instead of using the expression “strength of the gravitational field” I shall use just “the gravitational field” or
perhaps the “field strength” or even just the “field”. Strictly speaking, the “gravitational field” means the region of space
surrounding a gravitating mass rather than the field strength, but I hope that, when I am not speaking strictly, the context will
make it clear.
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5.3: Newton's Law of Gravitation
Newton noted that the ratio of the centripetal acceleration of the Moon in its orbit around the Earth to the acceleration of an
apple falling to the surface of the Earth was inversely as the squares of the distances of Moon and apple from the centre of the
Earth. Together with other lines of evidence, this led Newton to propose his universal law of gravitation:

Every particle in the Universe attracts every other particle with a force that is proportional to the product of their masses and
inversely proportional to the square of the distance between them. In symbols:

Here,  is the Universal Gravitational Constant. The word “universal” implies an assumption that its value is the same
anywhere in the Universe, and the word “constant” implies that it does not vary with time. We shall here accept and adopt
these assumptions, while noting that it is a legitimate cosmological question to consider what implications there may be if
either of them is not so.

Of all the fundamental physical constants,  is among those whose numerical value has been determined with least precision.
Its currently accepted value is . It is worth noting that, while the product  for the Sun is known
with very great precision, the mass of the Sun is not known to any higher degree of precision than that of the gravitational
constant.

Exercise. Determine the dimensions (in terms of ,  and ) of the gravitational constant. Assume that the period of
pulsation of a variable star depends on its mass, its average radius and on the value of the gravitational constant, and show that
the period of pulsation must be inversely proportional to the square root of its average density.

The gravitational field is often held to be the weakest of the four forces of nature, but to aver this is to compare incomparables.
While it is true that the electrostatic force between two electrons is far, far greater than the gravitational force between them, it
is equally true that the gravitational force between Sun and Earth is far, far greater than the electrostatic force between them.
This example shows that it makes no sense merely to state that electrical forces are stronger than gravitational forces. Thus any
statement about the relative strengths of the four forces of nature has to be phrased with care and precision.
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5.4: The Gravitational Fields of Various Bodies
In this section we calculate the fields near various shapes and sizes of bodies, much as one does in an introductory electricity
course. Some of this will not have much direct application to celestial mechanics, but it will serve as good introductory
practice in calculating fields and, later, potentials.

5.4.1: Field of a Point Mass

5.4.2: Field on the Axis of a Ring

5.4.3: Plane discs

5.4.4: Infinite Plane Laminas

5.4.5: Hollow Hemisphere

5.4.6: Rods

5.4.7: Solid Cylinder

5.4.8: Hollow Spherical Shell

5.4.9: Solid Sphere

5.4.10: Bubble Inside a Uniform Solid Sphere

Topic hierarchy
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5.4.1: Field of a Point Mass
Equation 5.3.1, together with the definition of field strength as the force experienced by unit mass, means that the field at a
distance  from a point mass  is

In vector form, this can be written as

Here  is a dimensionless unit vector in the radial direction.

It can also be written as

Here  is a vector of magnitude  − hence the  in the denominator.
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5.4.2: Field on the Axis of a Ring
Before starting, one can obtain a qualitative idea of how the field on the axis of a ring varies with distance from the centre of
the ring. Thus, the field at the centre of the ring will be zero, by symmetry. It will also be zero at an infinite distance along the
axis. At other places it will not be zero; in other words, the field will first increase, then decrease, as we move along the axis.
There will be some distance along the axis at which the field is greatest. We’ll want to know where this is, and what is its
maximum value.

Figure V.1 shows a ring of mass , radius . The problem is to calculate the strength of the gravitational field at . We start
by considering a small element of the ring of mass . The contribution of this element to the field is

directed from  towards . This can be resolved into a component along the axis (directed to the centre of the ring) and a
component at right angles to this. When the contributions to all elements around the circumference of the ring are added, the
latter component will, by symmetry, be zero. The component along the axis of the ring is

On adding up the contributions of all elements around the circumference of the ring, we find, for the gravitational field at 

directed towards the centre of the ring. This has the property, as expected, of being zero at the centre of the ring and at an
infinite distance along the axis. If we express  in units of , and  in units of , this becomes

This is illustrated in figure V.2.

Excercise: Show that the field reaches its greatest value of  where . Show that the
field has half this maximum value where  and .

FIGURE V.1
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5.4.3: Plane discs

Consider a disc of surface density (mass per unit area) , radius , and a point  on its axis at a distance  from the disc. The
contribution to the field from an elemental annulus, radii , , mass  is (from Equation 5.4.1)

To find the field from the entire disc, just integrate from  to , and, if the disc is of uniform surface density,  will be
outside the integral sign. It will be easier to integrate with respect to  (from  to ), where . You should get

or, with ,

Now  is the solid angle  subtended by the disc at . (Convince yourself of this – don’t just take my word for
it.) Therefore

This expression is also the same for a uniform plane lamina of any shape, for the downward component of the gravitational
field. For, consider figure .

The downward component of the field due to the element  is . Thus, if you integrate over the whole
lamina, you arrive at .

Returning to Equation , we can write the Equation in terms of  rather than . If we express  in units of  and 
in units of , the Equation becomes

FIGURE V.2A
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This is illustrated in figure .

The field is greatest immediately above the disc. On the opposite side of the disc, the field changes direction. In the plane of
the disc, at the centre of the disc, the field is zero. For more on this, see Subsection 5.4.7.

If you are calculating the field on the axis of a disc that is not of uniform surface density, but whose surface density varies as 
, you will have to calculate

and

You could try, for example, some of the following forms for :

If you are interested in galaxies, you might want to try modelling a galaxy as a central spherical bulge of density  and radius 
, plus a disc of surface density  and radius , and from there you can work your way up to more sophisticated models.

In this section we have calculated the field on the axis of a disc. As soon as you move off axis, it becomes much more difficult.

Exercise. Starting from Equations 5.4.1 and , show that at vary large distances along the axis, the fields for a ring and
for a disc each become . All you have to do is to expand the expressions binomially in . The field at a large
distance r from any finite object will approach .
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5.4.4: Infinite Plane Laminas
For the gravitational field due to a uniform infinite plane lamina, all one has to do is to put  in Equation 5.4.7 or 

 in Equation 5.4.9 to find that the gravitational field is

This is, as might be expected, independent of distance from the infinite plane. The lines of gravitational field are uniform and
parallel all the way from the surface of the lamina to infinity.

Suppose that the surface density of the infinite plane is not uniform, but varies with distance in the plane from some point in
the plane as , we have to calculate

Try it, for example, with  being one of the following:
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5.4.5: Hollow Hemisphere
Exercise. Find the field at the centre of the base of a hollow hemispherical shell of mass  and radius .
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5.4.6: Rods

Consider the rod shown in figure , of mass per unit length . The field at  due to the element  is . But 
, ,  so the field at  is  This is directed from  to the element .

The -component of the field due to the whole rod is

The -component of the field due to the whole rod is

The total field is the orthogonal sum of these, which, after use of some trigonometric identities (do it!), becomes

at an angle  - i.e. bisecting the angle .

If the rod is of infinite length, we put  and , and we obtain for the field at 

FIGURE V.5
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Consider an arc  of a circle of radius , mass per unit length , subtending an angle  at the centre  of the circle.

Exercise: Show that the field at  is . This is the same as the field due to the rod  subtending the
same angle. If  is a semicircle, the field at  would be , the same as for an infinite rod.

An interesting result following from this is as follows.

Three massive rods form a triangle.  is the incentre of the triangle (i.e. it is equidistant from all three sides.) The field at  is
the same as that which would be obtained if the mass were distributed around the incircle. I.e., it is zero. The same result
would hold for any quadrilateral that can be inscribed with a circle – such as a cyclic quadrilateral.
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5.4.7: Solid Cylinder
We do this not because it has any particular relevance to celestial mechanics, but because it is easy to do. We imagine a solid
cylinder, density , radius , length . We seek to calculate the field at a point  on the axis, at a distance  from one end of
the cylinder (figure ).

The field at  from an elemental disc of thickness  a distance z below P is (from Equation 5.4.9)

Here  is the solid angle subtended at  by the disc, which is . Thus the field at  from the entire cylinder

is

or

or

It might also be of interest to express  in terms of the height  of the point  above the mid-point of the cylinder.
Instead of Equation , we then have

If the point  is inside the cylinder,at a distance  below the upper end of the cylinder, the limits of integration in Equation 
 are  and , and the distance  is . In terms of  the gravitational field at  is then

ρ a l P h

V.8
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In the graph below I have assumed, by way of example, that  and  are both 1, and I have plotted  in units of 
(counting  as positive when it is directed downwards) from  to . The portion inside the cylinder 

, represented by Equation , is almost, but not quite, linear. The field at the centre of the cylinder is, of
course, zero.

Below, I draw the same graph, but for a thin disc, with  and . We see how it is that the field reaches a maximum
immediately above or below the disc, but is zero at the centre of the disc.
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5.4.8: Hollow Spherical Shell
We imagine a hollow spherical shell of radius , surface density , and a point  at a distance  from the centre of the sphere.
Consider an elemental zone of thickness . The mass of this element is . (In case you doubt this, or you didn’t know,
“the area of a zone on the surface of a sphere is equal to the corresponding area projected on to the circumscribing cylinder”.)

The field due to this zone, in the direction  is

Let’s express this all in terms of a single variable, . We are going to have to express  and  in terms of .

We have

from which

Therefore the field at  due to the zone is .

If  is an external point, in order to find the field due to the entire spherical shell, we integrate from  to . This
results in

However, if  is an internal point, in order to find the field due to the entire spherical shell, we integrate from  to 
, which results in .

Thus we have the important result that the field at an external point due to a hollow
spherical shell is exactly the same as if all the mass were concentrated at a point at
the centre of the sphere, whereas the field inside the sphere is zero.

Caution. The field inside the sphere is zero only if there are no other masses present. The hollow sphere will not shield you
from the gravitational field of any other masses that might be present. Thus in figure V.10, the field at  is the sum of the field
due to the hollow sphere (which is indeed zero) and the field of the mass , which is not zero. Anti-grav is a useful device in
science fiction, but does not occur in science fact.
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5.4.9: Solid Sphere
A solid sphere is just lots of hollow spheres nested together. Therefore, the field at an external point is just the same as if all
the mass were concentrated at the centre, and the field at an internal point  is the same is if all the mass interior to , namely 

, were concentrated at the centre, the mass exterior to  not contributing at all to the field at . This is true not only for a
sphere of uniform density, but of any sphere in which the density depends only of the distance from the centre – i.e., any
spherically symmetric distribution of matter.

If the sphere is uniform, we have , so the field inside is

Thus, inside a uniform solid sphere, the field increases linearly from zero at the centre to  at the surface, and thereafter
it falls off as .

If a uniform hollow sphere has a narrow hole bored through it, and a small particle of mass  is allowed to drop through the
hole, the particle will experience a force towards the centre of , and will consequently oscillate with period 
given by
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5.4.10: Bubble Inside a Uniform Solid Sphere

 is a point inside the bubble. The field at  is equal to the field due to the entire sphere minus the field due to the missing
mass of the bubble. That is, it is

That is, the field at  is uniform (i.e. is independent of the position of ) and is parallel to the line joining the centres of the
two spheres.
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5.5: Gauss's Theorem
Much of the above may have been good integration practice, but we shall now see that many of the results are immediately
obvious from Gauss’s Theorem – itself a trivially obvious law. (Or shall we say that, like many things, it is trivially obvious in
hindsight, though it needed Carl Friedrich Gauss to point it out!)

First let us define gravitational flux  as an extensive quantity, being the product of gravitational field and area:

If  and  are not parallel, the flux is a scalar quantity, being the scalar or dot product of  and :

If the gravitational field is threading through a large finite area, we have to calculate  for each element of area of the
surface, the magnitude and direction of  possibly varying from point to point over the surface, and then we have to integrate
this all over the surface. In other words, we have to calculate a surface integral. We’ll give some examples as we proceed, but
first let’s move toward Gauss’s theorem.

In figure , I have drawn a mass  and several of the gravitational field lines converging on it. I have also drawn a sphere
of radius  around the mass. At a distance  from the mass, the field is . The surface area of the sphere is .
Therefore the total inward flux, the product of these two terms, is , and is independent of the size of the sphere. (It is
independent of the size of the sphere because the field falls off inversely as the square of the distance. Thus Gauss’s theorem is
a theorem that applies to inverse square fields.) Nothing changes if the mass is not at the centre of the sphere. Nor does it
change if (figure ) the surface is not a sphere. If there were several masses inside the surface, each would contribute 
times its mass to the total normal inwards flux. Thus the total normal inward flux through any closed surface is equal to 
times the total mass enclosed by the surface. Or, expressed another way:

The total normal outward gravitational flux through a closed surface is equal to  times the total mass enclosed by the
surface.

This is Gauss’s theorem.
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Mathematically, the flux through the surface is expressed by the surface integral . If there is a continuous
distribution of matter inside the surface, of density  which varies from point to point and is a function of the coordinates, the
total mass inside the surface is expressed by . Thus Gauss’s theorem is expressed mathematically by

You should check the dimensions of this Equation.

In figure  I have drawn gaussian spherical surfaces of radius  outside and inside hollow and solid spheres. In  and ,
the outward flux through the surface is just  times the enclosed mass ; the surface area of the gaussian surface is 

. This the outward field at the gaussian surface (i.e. at a distance  from the centre of the sphere is . In , no
mass is inside the gaussian surface, and therefore the field is zero. In , the mass inside the gaussian surface is , and so the
outward field is .

In figure  I draw (part of an) infinite rod of mass  per unit length, and a cylindircal gaussian surface of radius  and
length  around it.

∫ ∫ g ⋅ dA

ρ

∫ ∫ ∫ ρdV

∫ ∫ g ⋅ dA = −4πG∫ ∫ ∫ ρdV . (5.5.1)
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The surface area of the curved surface of the cylinder is , and the mass enclosed within it is . Thus the outward field at
the surface of the gaussian cylinder (i.e. at a distance  from the rod) is , in agreement with
Equation 5.4.18.

In figure  I have drawn (part of) an infinite plane lamina of surface density , and a cylindrical gaussian surface or cross-
sectional area  and height .

The mass enclosed by the cylinder is  and the area of the two ends of the cylinder is . The outward field at the ends of
the cylinder (i.e. at a distance  from the plane lamina) is therefore , in agreement with
Equation 5.4.13.
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5.6: Calculating Surface Integrals
While the concept of a surface integral sounds easy enough, how do we actually calculate one in practice? In this section I do
two examples.

In Figure  I show a small mass , and I have surrounded it with a cylinder or radius  and height . The problem
is to calculate the surface integral  through the entire surface of the cylinder. Of course we already know, from
Gauss’s theorem, that the answer is , but we would like to see a surface integral actually carried out.

I have drawn a small element of the surface. Its area  is  times , where  is the usual azimuthal angle of
cylindrical coordinates. That is, . The magnitude  of the field there is , and the angle between 
and  is . The outward flux through the small element is

(This is negative – i.e. it is actually an inward flux – because .) When integrated around the
elemental strip , this is  To find the flux over the total curved surface, let’s integrate this from  to 
and double it, or, easier, from  to  and double it, where . We’ll need to express  and  in terms of 

 (that’s easy:-  and ),and the integral becomes

Let us now find the flux through one of the flat ends of the cylinder.

Example 5.6.1
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This time, ,  and the angle between  and  is . The outwards flux through the small
element is  and when integrated around the annulus this becomes . We now have to
integrate this from  to , or, better, from  to . We have  and , and the integral
becomes

There are two ends, so the total flux through the entire cylinder is twice this plus Equation  to give

as expected from Gauss’s theorem.

In figure  I have drawn (part of) an infinite rod whose mass per unit length is . I have drawn around it a sphere of
radius . The problem will be to determine the total normal flux through the sphere. From Gauss’s theorem, we know that
the answer must be .

FIGURE V.20
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The vector  representing the element of area is directed away from the centre of the sphere, and the vector  is directed
towards the nearest point of the rod. The angle between them is . The magnitude of  in spherical coordinates is

, and the magnitude of  is (see Equation 5.4.15)  The dot product  is

To find the total flux, this must be integrated from  to  and from  to . The result, as expected, is .
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5.7: Potential
If work is required to move a mass from point  to point , there is said to be a gravitational potential difference between 
and , with  being at the higher potential. The work required to move unit mass from  to  is called the potential
difference between  and . In SI units it is expressed in .

We have defined only the potential difference between two points. If we wish to define the potential at a point, it is necessary
arbitrarily to define the potential at a particular point to be zero. We might, for example define the potential at floor level to be
zero, in which case the potential at a height  above the floor is ; equally we may elect to define the potential at the level of
the laboratory bench top to be zero, in which case the potential at a height  above the bench top is . Because the value of
the potential at a point depends on where we define the zero of potential, one often sees that the potential at some point is
equal to some mathematical expression plus an arbitrary constant. The value of the constant will be determined once we have
decided where we wish to define zero potential.

In celestial mechanics it is usual to assign zero potential to all points at an infinite distance from any bodies of interest.

Suppose we decide to define the potential at point  to be zero, and that the potential at  is then  . If we move a
point mass  from  to , we shall have to do an amount of work equal to . The potential energy of the mass  when
it is at  is then . In these notes, I shall usually use the symbol  for the potential at a point, and the symbol  for the
potential energy of a mass at a point.

In moving a point mass from  to , it does not matter what route is taken. All that matters is the potential difference between
 and . Forces that have the property that the work required to move from one point to another is route-independent are

called conservative forces; gravitational forces are conservative. The potential at a point is a scalar quantity; it has no
particular direction associated with it.

If it requires work to move a body from point  to point  (i.e. if there is a potential difference between  and , and  is at
a higher potential than ), this implies that there must be a gravitational field directed from  to .

Figure  shows two points,  and , a distance  apart, in a region of space where the gravitational field is  directed in
the negative  direction. We’ll suppose that the potential difference between  and  is . By definition, the work required
to move unit mass from  to  is . Also by definition, the force on unit mass is , so that the work done on unit mass is 

. Thus we have

The minus sign indicates that, while the potential increases from left to right, the gravitational field is directed to the left. In
words, the gravitational field is minus the potential gradient.

This was a one-dimensional example. In a later section, when we discuss the vector operator , we shall write Equation 
in its three-dimensional form

While  itself is a scalar quantity, having no directional properties, its gradient is, of course, a vector.
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5.8: The Gravitational Potentials Near Various Bodies
Because potential is a scalar rather than a vector, potentials are usually easier to calculate than field strengths. Indeed, in order
to calculate the gravitational field, it is sometimes easier first to calculate the potential and then to calculate the gradient of the
potential.

5.8.1: Potential Near a Point Mass
We shall define the potential to be zero at infinity. If we are in the vicinity of a point mass, we shall always have to do
work in moving a test particle away from the mass. We shan’t reach zero potential until we are an infinite distance away.
It follows that the potential at any finite distance from a point mass is negative. The potential at a point is the work
required to move unit mass from infinity to the point; i.e., it is negative.

5.8.2: Potential on the Axis of a Ring

5.8.3: Plane Discs

5.8.4: Infinite Plane Lamina

5.8.5: Hollow Hemisphere

5.8.6: Rods

5.8.7: Solid Cylinder

5.8.8: Hollow Spherical Shell

5.8.9: Solid Sphere
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5.8.1: Potential Near a Point Mass
We shall define the potential to be zero at infinity. If we are in the vicinity of a point mass, we shall always have to do work in
moving a test particle away from the mass. We shan’t reach zero potential until we are an infinite distance away. It follows that
the potential at any finite distance from a point mass is negative. The potential at a point is the work required to move unit
mass from infinity to the point; i.e., it is negative.

The magnitude of the field at a distance  from a point mass  (figure ) is , and the force on a mass m placed
there would be . The work required to move  from  to  is . The work required to move it
from  to infinity is

The work required to move unit mass from  to , which is the potential at  is

The mutual potential energy of two point masses a distance r apart, which is the work required to bring them to a distance 
from an infinite initial separation, is

I here summarize a number of similar-looking formulas, although there is, of course, not the slightest possibility of confusing
them. Here goes:

Force between two masses:

Field near a point mass:

which can be written in vector form as:

or as:

Mutual potential energy of two masses:

Potential near a point mass:

FIGURE V.23
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(5.8.1.1)

∞ r r

ψ = − .
GM

r
(5.8.1)

r

V = − .
GMm

r
(5.8.2)

F = . N
GMm

r2
(5.8.3)

g = ,  or
GM

r2
N kg−1  m s−2 (5.8.4)

g = −  or
GM

r2
r̂ N kg−1  m s−2 (5.8.5)

g = − r.  or
GM

r3
N kg−1  m s−2 (5.8.6)

V = − . J
GMm

r
(5.8.7)

ψ = − .
GM

r
J kg−1 (5.8.8)
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I hope that’s crystal clear.
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5.8.2: Potential on the Axis of a Ring
We can refer to figure . The potential at  from the element  is . This is the same for all such elements

around the circumference of the ring, and the total potential is just the scalar sum of the contributions from all the elements.
Therefore the total potential on the axis of the ring is:

The -component of the field (its only component) is  of this, which results in  This is the same as

Equation 5.4.1 except for sign. When we derived Equation 5.4.1 we were concerned only with the magnitude of the field. Here
 gives the -component of the field, and the minus sign correctly indicates that the field is directed in the negative -

direction. Indeed, since potential, being a scalar quantity, is easier to work out than field, the easiest way to calculate a field is
first to calculate the potential and then differentiate it. On the other hand, sometimes it is easy to calculate a field from Gauss’s
theorem, and then calculate the potential by integration. It is nice to have so many easy ways of doing physics!
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5.8.3: Plane Discs
Refer to figure . The potential at  from the elemental disc is

The potential from the whole disc is therefore

The integral is trivial after a brilliant substitution such as  or , and we arrive at

This increases to zero as . We can also write this as

and, if you expand this binomially, you see that for large  it becomes, as expected, .
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2πGσrδr
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(5.8.10)

ψ = −2πGσ .∫
a

0

rdr

( + )r2 z2 1/2
(5.8.11)

X = +r2 z2 r = z tanθ

ψ = −2πGσ ( −z) .+z2 a2− −−−−−
√ (5.8.12)

z → ∞

ψ = − ⋅[z −z] ,
2πGm

πa2
(1 + )

a2

z2

1/2

(5.8.13)
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5.8.4: Infinite Plane Lamina
The field above an infinite uniform plane lamina of surface density  is . Let  be a point at a distance a from the
lamina and  be a point at a distance  from the lamina (with ), the potential difference between  and  is

If we elect to call the potential zero at the surface of the lamina, then, at a distance  from the lamina, the potential will be 
.
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5.8.5: Hollow Hemisphere
Any element of mass,  on the surface of a hemisphere of radius  is at a distance  from the centre of the hemisphere, and
therefore the potential due to this element is merely . Since potential is a scalar quantity, the potential of the entire
hemisphere is just .

Contributor
Jeremy Tatum (University of Victoria, Canada)

δM a a

−GδM/a

−GM/a

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8149?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Celestial_Mechanics_(Tatum)/05%3A_Gravitational_Field_and_Potential/5.08%3A_The_Gravitational_Potentials_Near_Various_Bodies/5.8.05%3A_Hollow_Hemisphere
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/17/2020 5.8.6.1 CC-BY-NC https://phys.libretexts.org/@go/page/8150

5.8.6: Rods
Refer to figure . The potential at  due to the element  is . The total potential at  is therefore

Refer now to figure , in which  and .

where . (You may want to refer here to the formulas on pp. 37 and 38 of Chapter 2.)

Hence

If  and  are very large compared with , they are nearly equal, so let’s put  and write Equation 5.8.17 as

Maclaurin expand the logarithms, and you will see that, at large distances from the rod, the potential is, expected, .

Let us return to the near vicinity of the rod and to Equation . We see that if we move around the rod in such a manner that we
keep  constant and equal to , say − that is to say if we move around the rod in an ellipse (see our definition of an ellipse in
Chapter 2, Section 2.3) − the potential is constant. In other words the equipotentials are confocal ellipses, with the foci at the ends of
the rod. Equation  can be written

For a given potential , the equipotential is an ellipse of major axis

where  is the length of the rod. This knowledge is useful if you are exploring space and you encounter an alien spacecraft or an
asteroid in the form of a uniform rod of length .
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2
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ψ = −Gλ ln[ ].
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5.8.7: Solid Cylinder
Refer to figure . The potential from the elemental disc is

and therefore the potential from the entire cylinder is

I leave it to the reader to carry out this integration and obtain a final expression. One way to deal with the first integral might
be to try . This may lead to . From there, you could try something like 

, and

so on.
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5.8.8: Hollow Spherical Shell
Outside the sphere, the field and the potential are just as if all the mass were concentrated at a point in the centre. The
potential, then, outside the sphere, is just . Inside the sphere, the field is zero and therefore the potential is uniform
and is equal to the potential at the surface, which is . The reader should draw a graph of the potential as a function of
distance from centre of the sphere. There is a discontinuity in the slope of the potential (and hence in the field) at the surface.

Contributor
Jeremy Tatum (University of Victoria, Canada)

−GM/r

−GM/a

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8152?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Celestial_Mechanics_(Tatum)/05%3A_Gravitational_Field_and_Potential/5.08%3A_The_Gravitational_Potentials_Near_Various_Bodies/5.8.08%3A_Hollow_Spherical_Shell
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/17/2020 5.8.9.1 CC-BY-NC https://phys.libretexts.org/@go/page/8153

5.8.9: Solid Sphere

The potential outside a solid sphere is just the same as if all the mass were concentrated at a point in the centre. This is so,
even if the density is not uniform, and long as it is spherically distributed. We are going to find the potential at a point  inside
a uniform sphere of radius , mass , density , at a distance  from the centre ( ). We can do this in two parts. First,
there is the potential from that part of the sphere “below” . This is , where  is the mass within radius .
Now we need to deal with the material “above” . Consider a spherical shell of radii , . Its mass is 

. The potential from this shell is . This is to be integrated from  to 

, and we must then add the contribution from the material “below” . The final result is

Figure  shows the potential both inside and outside a uniform solid sphere. The potential is in units of , and
distance is in units of , the radius of the sphere.
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5.9: Work Required to Assemble a Uniform Sphere
Let us imagine a uniform solid sphere of mass , density  and radius . In this section we ask ourselves, how much work
was done in order to assemble together all the atoms that make up the sphere if the atoms were initially all separated from each
other by an infinite distance? Well, since massive bodies (such as atoms) attract each other by gravitational forces, they will
naturally eventually congregate together, so in fact you would have to do work in dis-assembling the sphere and removing all
the atoms to an infinite separation. To bring the atoms together from an infinite separation, the amount of work that you do is
negative.

Let us suppose that we are part way through the process of building our sphere and that, at present, it is of radius  and of mass
. The potential at its surface is

The amount of work required to add a layer of thickness  and mass  to this is

The work done in assembling the entire sphere is the integral of this from  to , which is
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5.10: Nabla, Gradient and Divergence
We are going to meet, in this section, the symbol . In North America it is generally pronounced “del”, although in the United
Kingdom and elsewhere one sometimes hears the alternative pronunciation “nabla”, called after an ancient Assyrian harp-like
instrument of approximately that shape.

In section 5.7, particularly Equation 5.7.1, we introduced the idea that the gravitational field  is minus the gradient of the
potential, and we wrote . This Equation refers to an essentially one-dimensional situation. In real life, the
gravitational potential is a three dimensional scalar function , which varies from point to point, and its gradient is

which is a vector field whose magnitude and direction vary from point to point. The gravitational field, then, is given by

Here, ,  and  are the unit vectors in the -, - and -directions.

The operator  is , so that Equation 5.10.2 can be written

I suppose one could write a long book about , but I am going to try to restrict myself in this section to some bare essentials.

Let us suppose that we have some vector field, which we might as well suppose to be a gravitational field, so I’ll call it . (If
you don’t want to be restricted to a gravitational field, just call the field  as some sort of undefined or general vector field.)
We can calculate the quantity

When this is multiplied out, we obtain a scalar field called the divergence of :

Is this of any use?

Here’s an example of a possible useful application. Let us imagine that we have some field  which varies in magnitude and
direction through some volume of space. Each of the components, , ,  can be written as functions of the coordinates.
Now suppose that we want to calculate the surface integral of g through the closed boundary of the volume of space in
question. Can you just imagine what a headache that might be? For example, suppose that , and I were

to ask you to calculate the surface integral over the surface of the ellipsoid  It would be hard to know
where to begin.

Well, there is a theorem, which I am not going to derive here, but which can be found in many books on mathematical physics,
and is not particularly difficult, which says:

The surface integral of a vector field over a closed surface is equal to the volume integral of its divergence.

In symbols:

If we know ,  and  as functions of the coordinates, then it is often very simple and straightforward to calculate the
divergence of , which is a scalar function, and it is then often equally straightforward to calculate the volume integral. The
example I gave in the previous paragraph is trivially simple (it is a rather artificial example, designed to be ridiculously
simple) and you will readily find that  is everywhere zero, and so the surface integral over the ellipsoid is zero.

∇

g

g = −dψ/dx

ψ(x, y, z)

gradψ = i + j +k ,
∂ψ

∂x

∂ψ

∂y

∂ψ

∂x
(5.10.1)

g = −gradψ. (5.10.2)

i j k x y z

∇ i + j +k
∂

∂x
∂
∂y

∂
∂x

g = −∇ψ. (5.10.3)

∇

g

A

∇ ⋅ g =(i + j +k ) ⋅ (i + j +k ) .
∂

∂x

∂

∂x

∂

∂x
gx gy gz (5.10.4)

g

∇ ⋅ g = divg = + + .
∂gx
∂x

∂gy

∂y

∂gz
∂z

(5.10.5)
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g = i −xyj −xzkx2

+ + = 1.x2

a2

y2

b2

z2
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∫ ∫ g ⋅ dA = ∫ ∫ ∫ divgdV . (5.10.6)
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If we combine this very general theorem with Gauss’s theorem (which applies to an inverse square field), which is that the
surface integral of the field over a closed volume is equal to  times the enclosed mass (Equation 5.5.1) we understand
immediately that the divergence of  at any point is related to the density at that point and indeed that

This may help to give a bit more physical meaning to the divergence. At a point in space where the local density is zero, div ,
of course, is also zero.

Now Equation  tells us that , so that we also have

If you write out the expressions for  and for  in full and calculate the dot product, you will find that , which is

also written , is . Thus we obtain

This is Poisson’s Equation. At any point in space where the local density is zero, it becomes

which is Laplace’s Equation. Thus, no matter how complicated the distribution of mass, the potential as a function of the
coordinates must satisfy these Equations.

We leave this topic here. Further details are to be found in books on mathematical physics; our aim here was just to obtain
some feeling for the physical meaning. I add just a few small comments. One is, yes, it is certainly possible to operate on a
vector field with the operator . Thus, if  is a vector field,  is called the  of . The  of a gravitational
field is zero, and so there is no need for much discussion of it in a chapter on gravitational fields. If, however, you have
occasion to study fluid dynamics or electromagnetism, you will need to become very familiar with it. I particularly draw your
attention to a theorem that says

The line integral of a vector field around a closed plane circuit is equal to the surface integral of its curl.

This will enable you easily to calculate two-dimensional line integrals in a similar manner to that in which the divergence
theorem enables you to calculate threedimensional surface integrals.

Another comment is that very often calculations are done in spherical rather than rectangular coordinates. The formulas for 
, div,  and  are then rather more complicated than their simple forms in rectangular coordinates.

Finally, there are dozens and dozens of formulas relating to nabla in the books, such as “  div minus nabla-
squared”. While they should certainly never be memorized, they are certainly worth becoming familiar with, even if we do not
need them immediately here.
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−4πG

g

div g = ∇ ⋅ g = −4πGρ. (5.10.7)

g

5.10.2 g = −∇ψ

∇ ⋅ (−∇ψ) = −∇ ⋅ (∇ψ) = −4πGρ. (5.10.8)

∇ ∇ψ ∇ ⋅ (∇ψ)

ψ∇2 + +
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ψ = 0∇2 (5.10.10)
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5.11: Legendre Polynomials
In this section we cover just enough about Legendre polynomials to be useful in the following section. Before starting, I want you to expand
the following expression, by the binomial theorem, for , up to  :

Please do go ahead and do it. Well, you probably won’t, so I’d better do it myself:

I’ll start with

and therefore

The coefficients of the powers of  are the Legendre polynomials , so that

The Legendre polynomials with argument  can be written as series of terms in powers of  by substitution of  for  in Equations
1.12.5 in Section 1.12 of Chapter 1. Note that  in Section 1 is not the same as  in the present section. Alternatively they can be written as
series of cosines of multiples of  as follows.

For example,  can be written either as given by Equation , or as given by Equation 1, namely

The former may look neater, and the latter may look “awkward” because of all the powers. However, the latter is far faster to compute,
particularly when written as nested parentheses:
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1
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1
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1
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(cos θ)P6 5.11.7

= (231 −315 +105 −5),  where c = cos θ.P6
1

16
c

6
c

4
c

2 (5.11.8)

= (−5 +C(105 +C(−315 +231C)))/16,  where C = θ.P6 cos2 (5.11.9)

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8156?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Celestial_Mechanics_(Tatum)/05%3A_Gravitational_Field_and_Potential/5.11%3A_Legendre_Polynomials
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/17/2020 5.12.1 CC-BY-NC https://phys.libretexts.org/@go/page/8157

5.12: Gravitational Potential of any Massive Body
You might just want to look at Chapter 2 of Classical Mechanics (Moments of Inertia) before proceeding further with this
chapter.

In figure  I draw a massive body whose centre of mass is , and an external point  at a distance  from . I draw a
set of  axes, such that  is on the -axis, the coordinates of  being . I indicate an element  of mass, distant 
from  and  from . I’ll suppose that the density at  is  and the volume of the mass element is , so that .

The potential at  is

But ,

so

The integral is to be taken over the entire body, so that , where  is the mass of the body. Also 
, which is zero, since  is the centre of mass. The third term is

Now

where ,  and  are the second moments of inertia with respect to the axes , ,  respectively. But  is
invariant with respect to rotation of axes, so it is also equal to , where  are the principal moments
of inertia.

Lastly,  is equal to , the moment of inertia with respect to the axis .

Thus, if  is sufficiently larger than  so that we can neglect terms of order  and higher, we obtain

VIII.26 C P R C

Cxyz P z P (0, 0, z) δm r

C l P δm ρ δτ δm = ρδτ

FIGURE V.26
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= + −2Rr cos 2θl2 R2 r2

ψ = −G[ ∫ ρdτ+ ∫ ρr cosθdτ+ ∫ ρ (cosθ)dτ+ ∫ ρ (cosθ)dτ. . . ] .
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∫ ρdτ = M M

∫ ρr cosθdτ = ∫ zdm C

∫ ρ (3 θ−1)dτ = ∫ ρ (2 −3 θ)dτ.
1

2R3
r2 cos2 1

2R3
r2 sin2 (5.12.3)

∫ 2ρ dτ = ∫ 2 dm = ∫ [( + ) +( + ) +( + )] dm = A+B+Cr2 r2 y2 z2 z2 x2 x2 y2 (5.12.1)
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In the special case of an oblate symmetric top, in which , and the line  makes an angle  with the principal
axis, we have

so that

Now consider a uniform oblate spheroid of polar and equatorial diameters  and  respectively. It is easy to show that

Confirm Equation .

It is slightly less easy to show (Exercise: Show it.) that

For a symmetric top, the integrals of the odd polynomials of Equation  are zero, and the potential is generally written in
the form

Here  is the angle between  and the principal axis. For a uniform oblate spheroid, . This result will be useful
in a later chapter when we discuss precession.
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5.13: Pressure at the Centre of a Uniform Sphere
What is the pressure at the centre of a sphere of radius  and of uniform density ?

(Preliminary thought: Show by dimensional analysis that it must be something times .)

Consider a portion of the sphere between radii  and  and cross-sectional area . Its volume is  and its mass is 
. (Were the density not uniform throughout the sphere, we would here have to write . ) Its weight is ,

where . We suppose that the pressure at radius  is  and the pressure at radius  is . (
 is negative.) Equating the downward forces to the upward force, we have

That is:

Integrate from the centre to the surface:

Thus:
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CHAPTER OVERVIEW
6: THE CELESTIAL SPHERE
If you look up in the sky, it appears as if you are at the centre of a vast crystal sphere with the stars
fixed on its surface. This sphere is the celestial sphere. It has no particular radius; we record
positions of the stars merely by specifying angles. We see only half of the sphere; the remaining half
is hidden below the horizon. In this section we describe the several coordinate systems that are used
to describe the positions of stars and other bodies on the celestial sphere.

6.1: INTRODUCTION TO THE CELESTIAL SPHERE
If you look up in the sky, it appears as if you are at the centre of a vast crystal sphere with the stars
fixed on its surface. This sphere is the celestial sphere. It has no particular radius; we record
positions of the stars merely by specifying angles. We see only half of the sphere; the remaining
half is hidden below the horizon. In this section we describe the several coordinate systems that are used to describe the positions of
stars and other bodies on the celestial sphere.

6.2: ALTAZIMUTH COORDINATES
In the altazimuth system of coordinates, the position of a star is uniquely specified by its azimuth and either its altitude or its zenith
distance. Of course the altitude and azimuth of a star are changing continuously all the time, and they are also different for all
observers at different geographical locations.

6.3: EQUATORIAL COORDINATES
The equatorial coordinate system is  used to specify the positions of celestial objects. It may be implemented in spherical or
rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's
equator onto the celestial sphere (forming the celestial equator), a primary direction towards the vernal equinox, and a right-handed
convention.

6.4: CONVERSION BETWEEN EQUATORIAL AND ALTAZIMUTH COORDINATES
Whereabouts in the sky will a given star be at a certain time? This as a typical problem involving conversion between equatorial and
altazimuth coordinates. We have to solve a spherical triangle. That is no problem – we already know how to do that. The problem is:
which triangle?

6.5: ECLIPTIC COORDINATES
Because most planets (except Mercury) and many small Solar System bodies have orbits with slight inclinations to the ecliptic, using
the ecliptic coordinate system as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth,
its primary direction is towards the vernal (northward) equinox, and it has a right-hand convention. It may be implemented in
spherical or rectangular coordinates.

6.6: THE MEAN SUN
The bright yellow (or white) ball of fire that appears in the sky and which you could see with your eyes if ever you were foolish
enough to look directly at it is the Apparent Sun. It is moving eastward along the ecliptic, and its right ascension is increasing all the
time. The hour angle of the Apparent Sun might have been called the local apparent solar time, except that we like to start our days at
midnight rather than at midday.

6.7: PRECESSION
From the point of view of classical mechanics, Earth is an oblate symmetric top. That is to say, it has an axis of symmetry and two of
its principal moments of inertia are equal and are less than the moment of inertia about the axis of symmetry. The phenomena of
precession of such a body are well understood and are studied in courses of classical mechanics. It is necessary, however, to be clear
in one’s mind about the distinction between torque-free precession and torque-induced precession.

6.8: NUTATION
Earth’s axis of rotation nutates because it is subject to varying torques from Sun and Moon – the former varying because of the
eccentricity of Earth’s orbit, and the latter because of both the eccentricity and inclination of the Moon’s orbit. This means that the
equinox  does not move at uniform speed along the ecliptic, and the obliquity of the ecliptic varies quasi-periodically. These two
effects are known as the nutation in longitude and the nutation in the obliquity.
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6.9: THE LENGTH OF THE YEAR
The calendar that we use in everyday life is the Gregorian Calendar, in which there are 365 days in most years, but 366 days in years
that are divisible by 4 unless they are also divisible by 100 other than those that are also divisible by 400.  The Anomalistic Year is the
interval between consecutive passages of the Earth through perihelion and is a little longer than the sidereal year.

6.10: PROBLEMS
6.11: SOLUTIONS
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6.1: Introduction to the Celestial Sphere
If you look up in the sky, it appears as if you are at the centre of a vast crystal sphere with the stars fixed on its surface. This
sphere is the celestial sphere. It has no particular radius; we record positions of the stars merely by specifying angles. We see
only half of the sphere; the remaining half is hidden below the horizon. In this section we describe the several coordinate
systems that are used to describe the positions of stars and other bodies on the celestial sphere, and how to convert between
one system and another. In particular, we describe altazimuth, equatorial and ecliptic coordinates and the relations between
them. The relation between ecliptic and equatorial coordinates varies with time owing to the precession of the equinoxes and
nutation, which are also described in this chapter.
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6.2: Altazimuth Coordinates
In figure  we see the celestial sphere with the observer  at its centre. The point immediately overhead, , is the zenith.
The point directly underneath, , is the nadir. The points marked  are the north, east and south points of the horizon.
The west point of the horizon is behind the plane of the paper (or of your computer screen) and is not drawn. The great circle 

 is, of course, the horizon.

Any great circle passing through  and  is called a vertical circle. The vertical circle passing through  and , the south and
north points of the horizon, is the meridian. The vertical circle passing through the east and west points of the horizon (which I
have not drawn) is the prime vertical.  is the position of a star on the celestial sphere, and I have drawn the vertical circle 

 passing through the star. The angle  is the altitude of the star (also referred to in some contexts as its “elevation”).
The complement of its altitude, the angle , is the zenith distance (also called, not unreasonably, the “zenith angle”).

A small circle of constant altitude – i.e. a small circle parallel to the horizon – has the curious name of an almucantar, and I
have drawn the almucantar through the star . An almucantar can also be called a parallel of altitude.

The angle  that I have denoted by  on figure  is called the azimuth (or “bearing”) of the star. As drawn on the
figure, it is measured eastwards from the north point of the horizon. This is perhaps the most common convention for
observers in the northern hemisphere. However, for stars that are west of the meridian, it may often be convenient to express
azimuth as measured westwards from the north point. I don’t know what the custom is of astronomers who live in the southern
hemisphere, but it would not surprise me if often they express azimuth as measured from the south point of their horizon. In
any case, it is important not to assume that there is some universal convention that will be understood by everybody, and it is
essential when quoting the azimuth of a star to add a phrase such as “measured from the north point eastwards”. If you merely
write “an azimuth of 32 degrees”, it is almost certain that you will be either misunderstood or not understood at all.

In the altazimuth system of coordinates, the position of a star is uniquely specified by its azimuth and either its altitude or its
zenith distance.

Of course the altitude and azimuth of a star are changing continuously all the time, and they are also different for all observers
at different geographical locations.
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6.3: Equatorial Coordinates
If you live in the northern hemisphere and if you face north, you will observe that the entire celestial sphere is rotating slowly
counterclockwise about a point in the sky close to the star Polaris (  Ursae Minoris). The point  about which the sky appears
to rotate is the North Celestial Pole. If you live in the southern hemisphere and if you face south you will see the entire sky
rotating clockwise about a point , the South Celestial Pole. There is no bright star near the south celestial pole; the star 
Octantis is close to the south celestial pole, but it is only just visible to the unaided eye provided you are dark adapted and if
you have a clear sky free of light pollution. The great circle that is  from either pole is the celestial equator, and it is the
projection of Earth’s equator on to the celestial sphere.

In figure  I have drawn the celestial sphere from the opposite side from the drawing of figure , so that, this time, you
can see the west point of the horizon, but not the east point. The celestial equator is the great circle .

You might possibly have noticed that, in section 2, I had not properly defined the north point of the horizon other than by
saying that it was the point marked  in figure VI.1. We see now that the north and south points of the horizon are the points
where the vertical circle that passes through the celestial poles (i.e. the meridian) meets the horizon.

The altitude  of the north celestial pole is equal to the geographical north latitude of the observer. Thus for an observer at
Earth’s north pole, the north celestial pole is at the zenith, and for an observer at Earth’s equator, the north celestial pole is on
the horizon.

You will see that a star such as  transits across the meridian twice. Lower meridian transit occurs at the point , when the
star is north of the observer and is directly below the north celestial pole. For the star  of figure , lower meridian transit
is also below the horizon, and it cannot be seen. The star reaches its highest point in the sky (i.e. it culminates) at upper
meridian transit.

The first quantitative astronomical observation I ever did was to see how long the celestial sphere takes to rotate through .
This is best done by timing the interval between two consecutive upper meridian transits of a star. It will be found that this
interval is  of mean solar time, although of course it requires more than a casual observation to determine the
interval to that precision. The rotation of the celestial sphere is, of course, a reflection of the rotation of Earth on its axis. In
other words, this interval is the sidereal (i.e. relative to the stars) rotation period of Earth.

We are now in a position to describe the position of a star on the celestial sphere in equatorial coordinates. The angle  in
figure  is called the declination of the star. It is usually expressed in degrees, arcminutes and arcseconds, from  to 
for stars on or north of the equator, and from  to  for stars on or south of the equator. When quoting the declination of a
star, the sign of the declination must always be given.

When the star  in figure  is at lower meridian transit, it is below the horizon and is not visible. However, if the
declination of a star is greater than , the star will not reach the horizon and it will never set. Such stars are called
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circumpolar stars.

The second coordinate is the angle  in figure . It is measured westward from the meridian. It will immediately be
noticed that, while the declination of a star does not change through the night, its hour angle continuously increases, and also
the hour angle of a star at any given time depends on the geographical longitude of the observer. While hour angle could be
expressed in either radians or degrees, it is customary to express the hour angle in hours, minutes and seconds of time. Thus
hour angle goes from  to . When a star has an hour angle of, for example, , it means that it is three sidereal hours since
it transited (upper transit) the meridian. Conversion factors are

(The reader may have noticed that I have just used the term “sidereal hours”. For the moment, just read this as “hours” – but a
little later on we shall say what we mean by “sidereal” hours, and you may then want to come back and re-read this.)

While it is useful to know the hour angle of a star at a particular time for a particular observer, we still need a coordinate that is
fixed on the celestial sphere. To do this, we refer to a point on the celestial equator, which I shall define more precisely later
on, denoted on figure  by the symbol . This is the astrological symbol for the sign Aries, and it was originally in the
constellation Aries, although at the present time it is in the constellation Pisces. In spite of its present location, it is still called
the First Point of Aries. The angle measured eastward from  to the point  is called the right ascension of the star , and is
denoted by the symbol . This does not change (at least not very much – but we shall deal with small refinements later) during
the night or from night to night. Thus we can describe the position of a star on the celestial sphere by the two coordinates , its
declination, and , its right ascension, and since its right ascension does not change (at least not very much), we can list the
right ascensions as well as the declinations of the stars in our catalogues. The right ascension of the First Point of Aries is, of
course, .

I have hinted in the last paragraph that the right ascension of a star, although it doesn’t change “very much” during a night,
does change quite perceptibly over a year. We shall have to return to this point later. I have not as yet precisely defined where
the point  is or how it is defined, but we shall later learn that it is not quite fixed on the equator, but it moves slightly in a
manner that I shall have to describe in due course. Thus the entire system of equatorial coordinates, and the right ascensions
and declinations of the stars, depends on where this mysterious First Point of Aries is. For that reason, it is always necessary to
state the epoch to which right ascensions and declinations are referred. For much of the twentieth century, equatorial
coordinates were referred to the epoch  (strictly it was , but I shall have to postpone explaining the meaning of
the prefix ). At present catalogues and atlases refer right ascensions and declinations to the epoch , where again I
shall have to defer an explanation of the prefix . While there is evidently some further explanation yet to come, suffice it to
say at this point that, when giving the right ascension and declination of any object, it is essential that the epoch also be given.
The First Point of Aries moves very, very slowly westward relative to the stars, so that the right ascensions of all the stars are
increasing at a rate of about  per day. This does not amount to much for day-to-day purposes, but it does emphasize why
it is always necessary to state the epoch to which right ascensions and declinations of stars are quoted. It also means that, if
you were able to observe two consecutive upper transits of  across the meridian, the interval would be  shorter than
the sidereal rotation period of Earth. It would be, in fact, . This interval between two consecutive upper
meridian transits of the First Point of Aries, is called a sidereal day. (It might be thought that, since the word “sidereal” implies
“relative to the stars”, this is not a particularly good term. I would have sympathy with this view, and would prefer to call the
interval an “equinoctial day”. However, the term sidereal day is so firmly entrenched that I shall use that term in these notes.)
A sidereal day is divided into 24 sidereal hours, which are shorter than mean solar hours by a factor of 0.99726957. We shall
discuss the motion of  in more detail in a later section. At this stage no great harm is done by considering  in the first
approximation to be fixed relative to the stars.

Now some more words. Small circles parallel to the celestial equator (such as the small circle  in figure ) are
parallels of declination. Great circles that pass through the north and south celestial poles (for example the great circle 
of figure ) and which are fixed on and rotate with the celestial sphere are called by a variety of names. Some call them
declination circles, because you measure declination up and down these circles. Others call them hour circles, because the
hour angle or right ascension is constant along them. For those who find it confusing that a given circle can be called either a
declination circle or an hour circle, you can get around this difficulty by calling them colures. The colure that passes through
the First Point of Aries and the diametrically opposite point on the celestial sphere, and which therefore has right ascensions 

H VI.2

0h 24h 3h

= = = = = .1h 15∘ 1m 15′ 1s 15′′ 1∘ 4m 1′ 4s (6.3.1)

VI.2 Υ

Υ B X

α

δ

α

0h

Υ

1950.0 B1950.0

B J2000.0

J

.0080s

Υ .0080s

    .09123h 56m 04s

Υ Υ

XTT′ VI.2

PXBQ

VI.2

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6821?pdf


Jeremy Tatum 9/13/2020 6.3.3 CC-BY-NC https://phys.libretexts.org/@go/page/6821

 and , is the equinoctial colure. The colure that is  from this (or, rather, 6 hours from this) and which has right
ascensions  and , is the solstitial colure.

The time that has elapsed, in sidereal hours, since the First Point of Aries transited (upper transit) the meridian, that is to say
the hour angle of the first point of Aries, or the angle from  to  in figure , is called the Local Sidereal Time. It is
evident from figure  that the Local Sidereal Time is also equal to . But  is the right ascension of the star 
and  is its hour angle. Therefore the local sidereal time (the hour angle of the First Point of Aries) is equal to the right
ascension of any star plus its hour angle.

The sidereal time at the longitude of Greenwich (  longitude) is tabulated daily in the Astronomical Almanac and the local
sidereal time at your location is equal to the local sidereal time at Greenwich minus your geographical longitude. Most
observatories have two clocks running in the dome at all times. One gives Universal Time, while the other, which runs a little
faster, gives the local sidereal time. But you always have a sidereal clock available, for a glance at figure  will tell you
that the local sidereal time is equal to the right ascension of stars at upper meridian transit.
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6.4: Conversion Between Equatorial and Altazimuth Coordinates
Whereabouts in the sky will a given star be at a certain time? This as a typical problem involving conversion between
equatorial and altazimuth coordinates. We have to solve a spherical triangle. That is no problem – we already know how to do
that. The problem is: which triangle?

The first problem, however, arises from the phrase “at a certain time”. In particular, if we want to know where a star is, for
example, at 2002 November 24, at 10:00 p.m. Pacific Standard Time as seen from Victoria, whose longitude is ,
we need to know the local sidereal time at that instant.

The calculation might go something like this.

From the Astronomical Almanac we find that the local sidereal times at Greenwich at   on November 25 and 26, 2002,
are

November 25: 
November 26: 

We want the local sidereal time at November 
= November 

By interpolation we find that the local sidereal time at Greenwich at that instant is .

The longitude of Victoria is , and therefore the local sidereal time at Victoria is .

We have overcome the first obstacle, and we now know the local sidereal time (LST).

We’ll ask ourselves now what are the altitude and azimuth of a star whose right ascension and declination are  and . We also
need the latitude of the observer (= altitude of the north celestial pole), which I’ll call . The hour angle  of the star is 
− .

The triangle that we have to solve is the triangle . Here ,  and  are, respectively, the north celestial pole, the zenith
and the star. That is, we solve the triangle formed by the star and the poles of the two coordinate systems of interest. I draw the
celestial sphere in figure  as seen from the west. I have marked in the hour angle , the codeclination  − , the
altitude  of the pole, the zenith distance  and the azimuth  measured from the north point westwards.

In triangle , we know ,  and , so we immediately find the zenith distance  by application of the cosine formula
(Equation 3.5.2) and the azimuth  from the cotangent formula (Equation 3.5.5).

Problem. Show that the hour angle  of a star of declination  when it sets for an observer at latitude  is given by 
. This will enable you now to find the Local Sidereal Time of starset, since 

, and then you can convert to your zone solar time.

Show also that the azimuth  of starset, westward from the north point, is given by .
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6.5: Ecliptic Coordinates
In figures  and  we were concerned mainly with the daily rotation of the celestial sphere. In figure  we shall be
concerned mainly with the annual motion of the Sun relative to the stars on the celestial sphere. In contrast to figures  and
3, I have drawn the celestial equator, not the observer’s horizon, horizontally, and the north celestial pole, not the observer’s
zenith, is at the top of the diagram. It is found that, for an observer on Earth, the Sun moves eastward relative to the stars
during the course of the year, its right ascension continuously increasing; this apparent motion of the Sun relative to the stars
is, of course, a consequence of the Earth revolving around the Sun.

Relative to the stars, it is found that, during the course of a year, the Sun moves eastward along a great circle that is inclined to
the equator at an angle of about . This great circle is called the ecliptic, and it is the projection of the plane of Earth’s
orbit on the celestial sphere. The angle between the ecliptic and the equator is called the Obliquity of the Ecliptic. The ecliptic
crosses the equator at two points. The Sun reaches one of these points on about March 22 each year on its way north at which
time the Sun’s declination changes from negative to positive. This point, the ascending node of the Sun’s path on the equator,
is the First Point of Aries, which we introduced in Section 6.3. As mentioned there, and for reasons that will be explained in
section 6.7, it is actually in the constellation Pisces rather than Aries. Nevertheless it is still known as the First Point of Aries
and is denoted by the astrological symbol  for Aries. It is the point from which right ascensions are measured. The instant of
time when the Sun crosses the equator from north to south at the First Point of Aries is the March Equinox. Days and nights
are of equal length all over the world on that date (“equinox” = “equal night”), and that date marks the first day of Spring in
the northern hemisphere. For that reason it is also called the “vernal equinox” (Latin verna = “spring”) – but that is hardly fair
to southern hemisphere astronomers, for it marks the beginning of the southern autumn.

About three months later, on or near June 21, the Sun reaches the point  at the June Solstice (called by those who live in the
Northern hemisphere, the summer solstice). The declination of the Sun is then at its highest point,  degrees. At that
instant the rate of change of the Sun’s declination is zero, which explains the origin of the word “solstice”, which implies that
the Sun is momentarily standing still. The Sun is then in the constellation Gemini. After a further three months, the Sun has
descended back to the equator on its way south, at the September equinox (the “autumnal equinox” for northerners) on or near
September 23, when the Sun is in the constellation Virgo. And after a further three months the Sun reaches its most southerly
declination at the December solstice (“winter solstice” to northerners) on or near December 21, when the Sun is in the
constellation Sagittarius.

Also drawn in figure  is the North Pole of the Ecliptic, , which is in Draco. The South Pole of the Ecliptic is in Dorado.

The ecliptic and its pole K form the basis of the ecliptic coordinate system, illustrated in figure . The ecliptic longitude 
and the ecliptic latitude  of a star  are shown in figure , which should be self explanatory. In order to convert between
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equatorial and ecliptic coordinates, the triangle to solve is triangle . The arc  is  and the angle  is 
. What are the arc , the arc  and the angle ?

[Answers:   
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6.6: The Mean Sun
The bright yellow (or white) ball of fire that appears in the sky and which you could see with your eyes if ever you were
foolish enough to look directly at it is the Apparent Sun. It is moving eastward along the ecliptic, and its right ascension is
increasing all the time. Consequently consecutive upper transits across the meridian take about four minutes longer than
consecutive transits of a star or of the First Point of Aries. The hour angle of the Apparent Sun might have been called the
local apparent solar time, except that we like to start our days at midnight rather than at midday. Therefore the Local Apparent
Solar Time is the hour angle of the Apparent Sun plus twelve hours. It is “local”, because the hour angle of the apparent Sun
depends continuously on the longitude of the observer. It is the time indicated by a sundial. In order to convert it to a standard
zone time, we must know, among other things, our longitude.

The Apparent Sun has some drawbacks as an accurate timekeeper, particularly because its right ascension does not increase at
a uniform rate throughout the year. The motion of the Apparent Sun, is, of course, just a reflection of Earth’s annual orbital
motion around the Sun. The Earth moves rather faster at perihelion (on or near January 4) than at aphelion (on or near July 4);
consequently the Apparent Sun moves faster along the ecliptic in January than in July. Even if this were not so, however, and
the Sun were to move at a uniform rate along the ecliptic, its right ascension would not increase at a uniform rate. This is
because right ascension is measured along the celestial equator rather than along the ecliptic. If the Sun were moving
uniformly along the ecliptic, its right ascension would be increasing faster at the solstices (where its motion is momentarily
parallel to the equator) than at the equinoxes, (where is motion is inclined at  to the ecliptic). So there are these two
reasons why the right ascension of the apparent Sun does not increase uniformly throughout the year.

To get over these two difficulties we have to invent two imaginary suns. One of them accompanies the apparent (i.e. the real!)
Sun in its journey around the ecliptic. The two start together at perihelion. This Dynamic Sun moves at a constant rate, so that
the Apparent Sun (which moves faster in January when Earth is at perihelion) moves ahead of the imaginary sun. By the time
Earth reaches aphelion in July, however, the Apparent Sun is slowing down, and the Dynamic Sun manages to catch up with
the Apparent Sun. After that, the Dynamic Sun surges ahead, leaving the Apparent Sun behind. But the Apparent Sun starts to
gain speed again, and catches up again with the Dynamic Sun at perihelion in January. The Apparent Sun and the Dynamic
Sun coincide twice per year, at perihelion and at aphelion.

Now we imagine a second imaginary sun – a rather important one, known as the Mean Sun. The Mean Sun moves at a
constant rate along the equator, its right ascension moving uniformly all through the year. It coincides with the Dynamic Sun
at . At this time, the right ascension of the Dynamic Sun is increasing rather slowly, because it is moving along the ecliptic,
at an angle to the equator. Its right ascension increases most rapidly at the solstices, and by the time of the first solstice it has
caught up with the Mean Sun. After that, it moves ahead of the Mean Sun for a while, but it soon slows down as its motion
begins to make an ever steeper angle to the equator, and Dynamic Sun and the Mean Sun coincide again at the second equinox.
Indeed these two suns coincide four times a year – at each of the equinoxes and solstices.

Local Mean Solar Time is the hour angle of the Mean Sun plus twelve hours, and the difference Local Apparent Solar Time
minus Local Mean Solar Time is called the Equation of Time. The Equation of time is the sum of two periodic functions. One
is the Equation of the centre, which is the difference in right ascensions of the Apparent Sun and the Dynamic Sun, and it has a
period of one year. The second is the reduction to the equator, which has a period of half a year. The value of the Equation of
time varies through the year, and it can amount to a little more than 16 minutes in early November. Local Mean Solar Time,
while uniform (or as uniform as the rotation of the Earth) still depends on the longitude of the observer. For that reason, all the
inhabitants of a zone on Earth roughly between longitudes  East and West agree to use a standard the Local Mean Solar
Time at Greenwich, also called Greenwich Mean Time, GMT, or Universal Time, UT. Similar zones about 15 degrees wide
have been established around the world, within each of which the time differs by an integral; number of hours from Greenwich
Mean Time.

We shall discuss in Chapter 7 small distinctions between various versions of Universal Time as well as Ephemeris Time and
Terrestrial Dynamical Time.
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6.7: Precession
The First Point of Aries is the point where the ecliptic crosses the equator at the point occupied by the Sun at the March
equinox. It is the point from which right ascensions are measured. We have hitherto treated it as if it were fixed relative to the
stars, although we have hinted from time to time that this is not exactly so. Indeed we have said that it is essential, when
stating the right ascension and declination of a star, to state the date of the equinox to which it refers.

In figure , I have drawn the ecliptic horizontally, and the celestial equator inclined at an angle of . You can see the
north pole of the ecliptic, , and the north celestial pole . The great circle  (not drawn) is the equinoctial colure, and the
right ascension of  is . The right ascension and declination of  are , , which is a point between the stars  and 
 Draconis.

Neither the north celestial pole  nor the “First Point of Aries”  are fixed, however. The north celestial pole  describes a
small circle of radius  around , and the equinox regresses westwards along the ecliptic in a period of 25,800 years. This
motion, called the precession of the equinoxes (or just “precession” for short) is not quite uniform, but is nearly so and will be
treated as such in this section. The complete cycle of 25,800 years corresponds to a westward regression of  along the
ecliptic of  per year or  per day. The component of that motion along the celestial equator is  

 per day. That is why the length of the mean sidereal day (which is defined as the interval
between two consecutive upper meridian transits of the first point of Aries) is  shorter than the sidereal rotation period
of Earth.

The precession of  around  means that the entire system of equatorial coordinates (right ascension and declination) moves
continuously, and the right ascensions and declinations of all the stars are continuously changing. No matter where  is in its
journey around , however, the equatorial coordinates of  and of  are always ,  and , . However, equatorial
coordinates of the stars must always be referred to the equinox and equator of a stated epoch.

During much of the twentieth century, the epoch referred to by many catalogues and atlases was . That is the
beginning of the Besselian Year of 1950, at the instant (shortly before midnight on the night of 1949 Dec 31 / 1950 Jan 1)
when the right ascension of the Mean Sun was . Most catalogues since 1984 have referred right ascensions and
declinations to the mean equinox and equator of . That is the beginning of the Julian Year 2000, at the instant when
Greenwich Mean Time (UT) indicated midnight. For example, in the older catalogues, the right ascension and declination of
Arcturus would be given as

whereas in more recent catalogues they are given as
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Thus it can be seen that for precise work the difference is not at all negligible, and to state the equatorial coordinates of an
object without also stating the epoch of the equinox and equator to which the coordinates are referred is not generally useful.
Of course, when setting the circles of a telescope for the night’s observations, what one needs are the right ascension and
declination referred to the equinox and equator of date – i.e. for the date in question. It is therefore essential for a practical
observer to know how to correct for precession.

Apply the cosine formula (Equation 3.5.2) to triangle  to obtain

Since  is regressing down the ecliptic, the ecliptic longitude  of the star  is increasing. If it is increasing at a rate  
 per year), the rate of change of its declination can be obtained by differentiation of Equation  with respect to

time, bearing in mind that  and  are constant:

But  is obtained from the sine formula (Equation 3.5.1):

Hence we obtain for the rate of change of declination of a star due to precession:

To obtain the rate of change of right ascension, we can write Equation  as

and then differentiate with respect to time:

which I am going to write as

We can get  from Equation , and of course we have  from Equation , but we still need to find an
expression for  in terms of equatorial coordinates. We can do this from the cotangent formula (Equation 3.5.4), in which
the inner angle is  and the inner side is :

On substitution of Equations ,  and  into Equation  we obtain, after a very small amount of algebra, for
the rate of change of right ascension of a star due to precession:
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With  per year and , Equations  and  become

and

or

These formulae should be adequate for all but very precise calculations.

Problem: Use Equations  and  to verify the data about Arcturus – and please let me know if it isn’t right!

At the time of Hipparcos (who discovered the phenomenon of precession as long ago as the second century B.C.), the spring
equinox was in the constellation Aries – indeed at its eastern boundary. Hence it was called the First Point of Aries. Over the
centuries, precession has carried the equinox westward right across the constellation Aries, and because of this, together with
the way in which the constellation boundaries were formally fixed in 1928, the equinox is now near the western boundary of
Pisces and is only a few degrees from Aquarius. It is still called, however, by its traditional name of the First Point of Aries.
Incidentally, the ecliptic actually passes through the constellation Ophiuchus, which is not one of the traditional twelve “Signs
of the Zodiac”, and it is sometimes said that this is a result of precession over the centuries. This is not the case. Precession
does not alter the plane of the ecliptic, and the ecliptic continues to pass through the same constellations regardless of where
the equinox is along it. The inclusion of Ophiuchus is merely a result of the way in which the constellation boundaries were
formally fixed in 1928.

The Physical Cause of the Precession
The daily motion of the stars around the north celestial pole is, of course, a reflection of Earth’s rotation on its axis; and the
annual motion of the Sun along the ecliptic, which is inclined at  to the celestial equator, is a reflection of the annual
orbital motion of Earth around the Sun, the plane of Earth’s rotational equator being inclined at  to the plane of its orbit –
i.e. to the ecliptic. Although this obliquity of  is approximately constant, the direction of Earth’s rotational axis is not
fixed, but it precesses around the normal to the ecliptic plane with a period of 25,800 years.

From the point of view of classical mechanics, Earth is an oblate symmetric top. That is to say, it has an axis of symmetry and
two of its principal moments of inertia are equal and are less than the moment of inertia about the axis of symmetry. The
phenomena of precession of such a body are well understood and are studied in courses of classical mechanics. It is necessary,
however, to be clear in one’s mind about the distinction between torque-free precession and torque-induced precession.

The phenomenon of torque-free precession is the precession that occurs when a symmetric top is spinning about an axis that
does not coincide with its symmetry axis and it is spinning freely with no external torques acting upon it. In such
circumstances, the angular momentum vector is fixed in magnitude and direction. The symmetry axis precesses about the fixed
angular momentum vector while the instantaneous axis of rotation precesses about the symmetry axis. The rotation of Earth
does indeed exhibit this type of behaviour, but this is not the precession that we are talking about in connection with the
precession of the equinoxes. The instantaneous axis of rotation of Earth is only a very few metres away from its symmetry axis
and the period of the torque-free precession is about 432 days. This gives rise to a phenomenon known as variation of latitude,
and it results in the latitudes of locations of Earth’s surface varying quasi-periodically with an amplitude of less than a fifth of
an arcsecond. The precession of the equinoxes that we have been discussing in this section is something entirely different.

The figure of Earth is approximately an oblate spheroid. If we call the equatorial radius  and the polar radius , the geometric
ellipticity  is about . If we call the corresponding principal moments of inertia  and , the dynamical
ellipticity  is about . Earth’s equator is inclined to the ecliptic, and, because of the equatorial bulge, the
spinning Earth is subject to torques from both the Sun and the Moon (whose orbit is inclined to the ecliptic by about 5
degrees). The magnitude of the torque is proportional to the diameter of Earth times the gravitational field gradient ,
and the direction of the torque vector is perpendicular to the angular momentum vector.

= (cosη+sinα tanδ sinη).α̇ λ̇ (6.7.9)
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Look up the masses of Sun and Moon, and their mean distances from Earth. Show that  for the Moon is about twice
that for the Sun. Thus the torque on Earth exerted by the Moon is about twice the torque exerted by the Sun.

Now if a symmetric top is spinning about its axis of symmetry with angular momentum  and if it is subject to an external
torque , its angular momentum will change (not in magnitude, but in direction), and  will precess with an angular velocity 

 given by

Equation  does not give the direction of  uniquely – that depends on the initial conditions. Figure  illustrates the
situation.

The equatorial bulge is much exaggerated. The figure is drawn in a reference frame that is revolving around the Sun with the
Earth, so there is no net gravitational force on Earth (the gravitational attraction of the Sun is counteracted by the centrifugal
force). In this frame, there is a little force  acting towards the Sun on the sunward-facing bulge, and an equal force acting
away from the Sun on the opposite side. This amounts to a torque of magnitude , where  is the obliquity of the
ecliptic and  is the diameter of Earth. Thus if we equate the magnitudes of both sides of Equation , we obtain for the
angular speed of the precession

which is independent of . This, then is the cause of the precession of the equinoxes, except that, for the purpose of figure 
, I referred only to the Sun. You have yourself calculated that the influence of the Moon is about twice that of the Sun,

and the combined effect of the Moon and the Sun is called the luni-solar precession. There is a small additional precession
resulting from the influence of the other planets in the solar system.
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6.8: Nutation
Those who have studied the gyrations of a spinning top will recall that, in addition to precessing, a top may nutate, or nod up
and down (Latin nutare, to nod), the amplitude and type of nutation depending on the initial conditions. Earth’s axis does
indeed nutate, but not from the same cause. Those who have studied tops will understand that damping more or less rapidly
damps out the amplitude of the nutation, and, since Earth is a nonrigid, flexible body, this type of nutation has long ago
damped out.

Rotation (green) precession (blue), and nutation (red) in obliquity of a planet. (CC BY-SA 3.0; User Herbye).

Earth’s axis of rotation nutates because it is subject to varying torques from Sun and Moon – the former varying because of the
eccentricity of Earth’s orbit, and the latter because of both the eccentricity and inclination of the Moon’s orbit. This means that
the equinox  does not move at uniform speed along the ecliptic, and the obliquity of the ecliptic varies quasi-periodically.
These two effects are known as the nutation in longitude and the nutation in the obliquity. While several effects involving both
the Sun and the Moon are involved, the most important term in the general expressions for both nutation in longitude and
nutation in obliquity involve the longitude of the nodes of the Moon’s orbit, which are known to regress with a period of 18.6
years. Thus both nutations, in the first approximation, have a period of 18.6 years. The nutation in longitude has an amplitude
of , and the nutation in the obliquity has an amplitude of . In addition, planetary perturbations cause a secular (i.e.
not periodic) decrease in the obliquity of about  per year.

A further point that should be mentioned is that the plane of the ecliptic is not quite invariable. What is invariable in the
absence of external torques on the solar system is the direction of the angular momentum vector of the solar system; the plane
perpendicular to this is called the invariable plane of the solar system.

This section and the previous section have described briefly in a rather qualitative way the motion of the equinox along the
ecliptic with a period of 25,800 years (i.e. precession) – a motion that is not quite uniform on account of the nutations in
longitude and the obliquity. This brief account may suffice for most purposes of the observational astronomer and for the aim
of this chapter, which is a general overview of the celestial sphere. A more thorough and detailed treatment of precession and
nutation will have to wait for a special chapter devoted to the subject.
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6.9: The Length of the Year
The time taken for Earth to revolve around the Sun with respect to the stars, which is the same thing as the time taken for the
Apparent Sun to move around the ecliptic with respect to the stars, is a Sidereal Year, which is , where the “d”
denotes a mean solar day. The length of the seasons, however, is determined by the motion of the Apparent Sun relative to .
Because  is moving westward along the ecliptic, the time that the Apparent Sun takes to move around the ecliptic relative to 

, which is called the Tropical Year, is a little less than the sidereal year. We have seen, however that the motion of  along
the ecliptic is not quite uniform, and we have to average out the effects of nutation. Thus the Mean Tropical Year is the average
time for the ecliptic longitude of the Apparent Sun to increase by , which is .

The calendar that we use in everyday life is the Gregorian Calendar, in which there are 365 days in most years, but 366 days
in years that are divisible by 4 unless they are also divisible by 100 other than those that are also divisible by 400. Thus leap
years (those that have 366 days) include 1996, 2000, 2004, but not 2005 or 1900. (2000 was a leap year because, although it is
divisible by 100, it is also divisible by 400.) The average length of the Gregorian Year is 365.2425, which is close enough to
the Mean Tropical Year for present-day purposes, but which is of concern to calendar reformers and will be of some concern to
our remote descendants.

The Anomalistic Year is the interval between consecutive passages of the Earth through perihelion. The perihelion of Earth’s
orbit is slowly advancing in the same direction as the Earth’s motion, so the anomalistic year is a little longer than the sidereal
year, and is equal to .

Figure  illustrates a way of thinking about the relation between the sidereal and tropical years. We are looking down on
the ecliptic from the direction of the north ecliptic pole. We see the Sun moving counterclockwise at angular speed  and
moving clockwise at angular speed . The angular speed of the Sun relative to 

is . But period  and angular speed  are related by .

Therefore:

Thus  and . Hence . Using the same argument,
see if you can calculate how long it takes for the perihelion of Earth’s orbit to advance by  – bearing in mind that the
perihelion is advancing, not regressing.

One more point worth noting is that, during a sidereal year, the Sun has upper transited across the meridian 365.25636 times,
whereas a fixed star has transited 366.25636 times. Expressed another way, while Earth turns on its axis 365.25636 times
relative to the Sun, relative to the stars it has made one extra turn during its revolution around the Sun. Thus

Thus the length of the sidereal day is .
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6.10: Problems
In Section 3.5 of Chapter 5, I suggested that it might be a good ides to write a computer program, which would last you for
life, that would solve any problem involving plane or spherical triangles. If you did that, the following problems will be easy.
If you didn’t, you are now about to suffer.

6.10.1
The equatorial coordinates ( ) of Antares and Deneb are, respectively

Antares  
Deneb  

Calculate the positions of the poles of the great circle joining these two stars.

I put one star in the northern hemisphere, and the other in the south, and I put the stars in the third and fourth quadrants of right
ascension, just to be awkward.

6.10.2
The parallax of Antares is , and the parallax of Deneb is . How far apart are the stars (a) in parsecs? (b) in 

? (c) in light-years? The speed of light is , the radius of Earth’s orbit is , and a
tropical year is  mean solar days.

6.10.3
A meteor starts at 
and finishes at 

A second meteor, from the same shower (i.e. from the same meteoroid stream) starts at

and finishes at .

Calculate the position of the radiant (i.e. the position on the sky where the two paths, projected backwards, intersect).

Again you’ll notice that I chose the coordinates to be as awkward as I could.
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6.11: Solutions

6.11.1
I think the first thing that I would do, would be to convert the coordinates to degrees and decimals (or maybe even radians and
decimals, though I do it below in degrees and decimals):

Antares: 
Deneb 

We already did a similar problem in Chapter 3, Section 3.5, Example 2, so I shan’t do it again. I make the answer:

One pole: 
The other pole: 

6.11.2

I have drawn the North Celestial Pole , and the colures from  to Antares ( ) and to Deneb ( ), together with their north
polar distances in degrees. I have also marked the difference between their right ascensions, in degrees. We can immediately
calculate, from the cosine rule for spherical triangles, Equation 3.5.2, the angular distance  between the two stars in the sky. I
make it .

Now that we know the angle between the stars, we can use a plane triangle to calculate the distance between them:

I have marked Antares ( ), Deneb ( ) and us ( ), and the distances from us to the two stars, in parsecs. (That’s the reciprocal
of their parallaxes in arcsec.) I have also marked the angles, in degrees, between Antares and Deneb. We can now use the
cosine rule for planes triangles, Equation 3.2.2, to find the distance . I make it 1011 parsecs.

A parsec is the distance at which an astronomical unit (approximately the radius of Earth’s orbit) would subtend an angle of
one arcsecond. This also means, if you come to think of it, that the number of astronomical units in a parsec is equal to the
number of arcseconds in a radian, which is . The distance between the stars is therefore

 astronomical units. Multiply this by , to get the distance in km. I make the distance 
.

This would take light  seconds to travel, or 3298 years, so the distance between the stars is 3298 light-years.

6.11.3
Let’s see if we can develop a formula for a general case. We’ll have the first meteor start at  and finish at 

. The second meteor starts at  and finishes at . We have to find the coordinates  of the

α = 247.375 δ = −26.433

α = 309.400 δ = +45.283

α = .3 δ = +11h47m 56∘11′

α = .3 δ = +23h47m 123∘49′

N N A D

ω

ω = .190 7991∘

A D O

AD

360 ×3600 ÷(2π) = 2.062648 ×105

1011 ×2.062648 ×105 1.495 98 ×108

3.120 ×  km1016

1.040596 ×108

( ,   )α11 δ11

( ,   )α12 δ12 ( ,   )α21 δ21 ( ,  α22 δ22 (α,  δ

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/11591?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Celestial_Mechanics_(Tatum)/06%3A_The_Celestial_Sphere/6.11%3A_Solutions


9/17/2020 6.11.2 CC-BY-NC https://phys.libretexts.org/@go/page/11591

point from which the two meteors diverge.

This is not a particularly easy problem – but is one that is obviously useful for meteor observers. I’ll just outline some
suggestions here, and leave the reader to work out the details. I’ll draw below one of the meteors, and the radiant, and the
North Celestial Pole:

Use the cotangent rule (Equation 3.5.5) on the righthand triangle to get an expression for :

Equate these two expression for  (i.e. eliminate  between the two Equations). This will give you a single Equation
containing the two unknowns,  and , everything else in the Equation being a known quantity. (This will be obvious if you
are actually doing a numerical example.)

Now do the same thing for the second meteor, and you will get a second Equation in α and δ. In principle you are now home
free, though there may be a bit of heavy algebra and trigonometry to go through before you finally get there.

I make the answer as follows:

where

and

Then

or

cot θ

sin cos( − ) = cos tan +sin( − ) cot θ.δ11 α12 α11 δ11 δ12 α12 α11 (6.11.1)

cot θ θ

α δ

tanα = ,
cos tan −cos tan + sin − sinα22 δ22 α12 δ12 a1 α12 a2 α22

sin tan −sin tan + cos − cosα12 δ12 α22 δ22 a1 α12 a2 α22
(6.11.2)

= −a1
tanδ11

sin( − )α11 α12

tanδ12

tan( − )α11 α12

(6.11.3)

= −a2
tanδ21

sin( − )α21 α22

tanδ22

tan( − )α21 α22

(6.11.4)

tanδ = cos(α − ) tan +sin(α − )[csc( − ) tan −cot( − ) tan ]α12 δ12 α12 α11 α12 δ11 α11 α12 δ12 (6.11.5)
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Either of these two Equations for  should give the same result. In the computer program I use for this calculation, I get it
to calculate  from both Equations, just as a check for mistakes.

This may look complicated, but all terms are just calculable numbers for any particular case. If the equinoctial colure gets in
the way (as it did – deliberately – in the numerical example I gave), I suggest just add 24 hours to all right ascensions.

For the numerical example I gave, I make the coordinates of the radiant to be:
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tanδ = cos(α − ) tan +sin(α − )[csc( − ) tan −cot( − ) tan ].α22 δ22 α22 α21 α22 δ21 α21 α22 δ22 (6.11.6)

tanδ

tanδ

α = .3 δ = − .22h01m 00∘37′ (6.11.7)
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7: Time
In this chapter we briefly discuss the several time scales that are in use in astronomy, such as Universal Time, Mean Solar
Time, Ephemeris Time, Terrestrial Dynamical Time, and the several types of second, hour, day and year that are or have been
in use. For some topics it will be assumed that the reader has read the relevant portions of Chapter 6 in order to have a fuller
understanding. Some of the items in this chapter will be given only in short note form or single sentence definitions,
particularly where they have already been discussed in Chapter 6. Others will require a bit more discussion.

The Local Apparent Solar Time at a particular geographical longitude is the hour angle of the Apparent Sun plus 12 hours. It is
the time indicated by a sundial. Because the right ascension of the Apparent Sun does not increase uniformly during the year,
local apparent solar time does not proceed at a uniform rate. (What is meant by “time proceeding at a uniform rate” is
something that can be pondered about. One might indeed ponder for a long time.)

The Local Mean Solar Time at a particular longitude is the hour angle of the Mean Sun plus 12 hours. Although, like local
apparent solar time, it is local to a particular longitude, it does, at least in some sense, flow uniformly, inasmuch as the right
ascension of the Mean Sun increases uniformly. If the reader is wondering whether the sentence “mean solar time flows
uniformly because the right ascension of the Mean Sun increases uniformly” is circular logic, and that either part of the
sentence follows from the definition of the other, he or she is not alone. Indeed, defining exactly what is meant by “uniformly
flowing time” is not easy; I am not sure if anyone has ever fully successfully managed it.

The Equation of Time is the difference between Local Apparent Solar Time and Local Mean Solar Time. Whether it is 
−  or  −  varies from author to author. Thus, whenever you use the phrase in your own writing, be careful
to define which sense you intend.

Greenwich Mean Time is the Local Mean Time at the longitude of Greenwich. In a general sense it is the same thing as
Universal Time. However, there are some slight refinements of Universal Time of which we should be aware, and which will
be discussed later.

Zone Time. Since Local Mean Solar Time is essentially local – i.e. it varies from longitude to longitude − it has been decided,
for civil timekeeping purposes, to divide the world into a number of longitude zones approximately 15 degrees (one hour)
wide, in which everyone agrees to keep the same time, namely the local mean solar time for a particular longitude within the
zone. Here, where I write in Victoria, British Columbia, Canada, within our zone we use Pacific Standard Time during the
winter months. This is eight hours behind Greenwich Mean Time. Many jurisdictions advance their zone time by one hour
during the summer months; thus in the summer here in Victoria, we use Pacific Daylight-saving Time, which is just seven
hours behind Greenwich Mean Time. It needs to be remembered that, to change from the Standard time for a given zone to
Daylight-saving time, clocks are advanced by one hour in spring, and that “spring” occurs six months apart in the northern and
southern hemispheres! The standard zone time for Sydney, Australia, is 18 hours ahead of the standard time for Victoria,
Canada. But in December, it is summer in Australia and winter in Victoria; Sydney is then on Daylight-saving Time while
Victoria is on Pacific Standard Time – a difference of 19 hours. In June, Victoria is on Daylight-saving Time while Australia is
on Standard Time, a difference of 17 hours. These complications have to be understood by those who are planning
international telephone calls!

Local Sidereal Time is the hour angle of the First Point of Aries, and is equal to the hour angle plus right ascension of any star.

A Mean Solar Day is the interval between two consecutive upper meridian transits of the Mean Sun.

A Mean Sidereal Day is the interval between two consecutive upper meridian transits of the mean equinox. It is equal to 
 of mean solar time. The rotation period of Earth relative to the fixed stars is  of mean solar

time. Transits of  are slightly closer together because of the westward precessional motion of  along the ecliptic.

A Sidereal Year is the period of revolution of Earth around the Sun relative to the fixed stars, and it is , where “ ”
denotes “mean solar days”.

A Mean Tropical Year is the mean time required for the Apparent Sun to increase its ecliptic longitude by . It is the
interval that determines the seasons and is equal to . It is less that a sidereal year because of the westward motion
of  along the ecliptic.
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An Anomalistic Year is the interval between two consecutive passages of Earth through perihelion. It is equal to .
It is longer that the sidereal year because of the forward motion of perihelion.

In days gone by, when life was simpler, a second was merely the fraction  of a mean solar day. As time-keeping
became more and more precise, it became evident not only that time could be measured more precisely in the laboratory with
atomic clocks than the rotation of Earth could be measured, but that Earth itself was not a perfect timekeeper, because it does
not rotate uniformly when measured with an atomic clock. This is presumably because of unpredictable changes within the
body of Earth which change its rotational inertia. This again raises the question of what is meant by “uniformly flowing time”.
Whatever is meant by it, atomic time is presumed to be a better representation of it than an irregularly rotating Earth.

At present, the  (Système International) definition of the second is the interval of  periods of the radiation
corresponding to the transition between the hyperfine levels  and  of the ground level  of the caesium
isotope . While it can easily be argued that this definition of the second is superior in numerous respects to the definition
based on the rotation of Earth, it must be noticed that this definition is useful (albeit very useful) only for determining intervals
of time – i.e. how many seconds have elapsed between event A and event B. By itself, the definition does nothing to determine
the instant of time of a single event. It tells us nothing about how far Earth has rotated on its axis (time of day) or how far it
has moved in its orbit around the Sun (time of year). There is still a need for a time scale for determining the instant of time of
astronomical events and to use as a “uniformly-flowing” time as argument in celestial mechanical calculations and the
provision of ephemerides.

International Atomic Time (TAI – from the initial letters of the French name, Temps Atomique International) does enable us to
define an instant of the time of occurrence of an event, since it is defined by the “ticking” of a caesium atomic clock beating
out SI seconds of atomic time, which started at the beginning of the day 1958 January 01. That is, it has a unit of time and a
starting point. Many seconds have elapsed since that epoch, however, so you can compare it with the “time of day” or with
Greenwich Mean Time, by subtracting 86400 seconds whenever the number of seconds exceeds this number. That is,  is
the number of seconds that have elapsed since the initial epoch, “modulo 86400”. This will not agree exactly with Greenwich
Mean Time (i.e. the hour angle of the Mean Sun at Greenwich plus 12 hours) unless Earth rotates uniformly when compared
with an atomic clock. It does not, quite, so one may ask which clock is “at fault”, or which clock is “running uniformly”. Most
of us will probably agree that it is the atomic clock that is running uniformly and that the difference between  and 
is caused by irregularities in the rate of rotation of Earth relative to . Thus we may be tempted, for many purposes, to
prefer to measure time interval with an atomic clock than to use the rotation of Earth as our time keeper. This is valid indeed, if
all we want to do is to measure the interval of time between two events – but it still does not tell us where the Sun (whether
Mean or Apparent) is in the sky, and we still need a time scale, whether it is uniform or not, that tells us the hour angle of the
Sun.

The required time scale is Universal Time, which is the hour angle of the Mean Sun at Greenwich plus 12 hours, and is, for
most purposes, the same as Greenwich Mean Time. However, for very precise work, there are several subtly-different varieties
of Universal Time. In principle, we could determine  by measuring the hour angle of the Mean Sun – if only we could see
the Mean Sun and record exactly when it crosses the meridian. In practice,  is determined by recording the transit times of
stars, and calculating the Universal Time from the observed Local Sidereal Time. If you do this, you get what is known as 

. However, small corrections are necessary to account for variation of latitude(see section 6.7) and polar motion (slippage
of Earth’s crust with respect to the body of the planet), and when these corrections are made, we arrive at . These
corrections are not sufficient, however, to keep Universal Time always in exact agreement with , and whenever 
differs from  by as much as 0.9 seconds, a leap second is added to (or in principle, if not in practice, subtracted from) 

 to arrive at Coordinated Universal Time , which thus never differs from  by as much as a second. Leap
seconds are typically added at the end of a year, or sometimes in mid-year. The time signals broadcast by radio and over the
Internet are , and announcements are made whenever a leap second is inserted. Whenever a leap second is inserted, the
minute during which it is inserted has 61 seconds, and an announcement is made. Normally the instant of time at which
astronomical events are observed (such as lunar occultations) should be recorded and reported in . Of course, if the
observation is not made with a precision of better than a second (e.g. the commencement of a lunar eclipse), one should not
pretend that one can distinguish between the various versions of , and the time recorded should be “ ”. To say “ ”
under such circumstances is to pretend to a greater precision than was actually achieved – rather like quoting a measurement to
too many significant figures.
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While Universal Time tells us the “time of day” – i.e. how far Earth has rotated on its axis – it is not the argument of time
needed in the theoretical calculation of orbital ephemerides. For much of the twentieth century, the time scale used for
theoretical ephemeris calculations was Ephemeris Time, . ( I believe a movie was made about Ephemeris Time. At least the
title of the movie was ET, so I presume that’s what it was about, though I haven’t actually seen it.) Ephemeris time was based
not on the (irregularly rotating) Earth, but in principle on the motion of Earth in its orbit around the Sun, which was presumed
to be “uniform”. (In practice,  was calculated from observations of occultations of stars by the Moon, the motion of the
Moon in its orbit being supposed to be calculated using a uniformly-flowing Ephemeris Time.) Just as  has a unit of time
(the  second) and an initial epoch (1958 January 01), so ET had a unit of time (the mean tropical year) and an initial epoch
(1900 January ).

While  was much more satisfactory as the “uniformly-flowing” argument of time necessary for ephemeris or other celestial
mechanical calculations, it eventually had to be admitted that intervals of atomic time could be determined much more
precisely than on any other time scale, and consequently ephemeris time ( ) was replaced in 1984 by Terrestrial Dynamical
Time ( ) as the independent argument of supposedly uniformly-flowing time for ephemeris calculations. Unlike , the
unit of time is not the mean tropical year but it is the  second of time based on the hyperfine transition of caesium as defined
earlier in the chapter. And the starting point for  is defined such that at the instant 1977 January  
was the same instant as 1977 January . Since  is ,  is equal to  plus . This
was re-named simply Terrestrial Time ( ) in 1991. Like ,  was ahead of  by  at 1997 January  

, the difference being that the unit of time interval in  was defined in 1991 as the  second at mean sea level. (At
mean sea level? What has that got to do with it?! Not very much, to be sure, but, for precise timekeeping, it is important
because, according to general relativity, the rate of passage of time depends on the gravitational potential.)

In summary, the time signals that are broadcast on short-wave radio or on the Internet are . When you make an
observation and record the instant of occurrence of an astronomical phenomenon, you must report the observation in UTC,
without converting it to some other scale. The only proviso is that, if your observation is less precise than a second, you should
not pretend to greater precision that is warranted by your observation (i.e. you should not pretend that your timing was
sufficiently precise that you could distinguish between the various varieties of ), and it then becomes appropriate to report
your observation merely as “ ”.

If you are calculating and publishing an ephemeris, the argument of time that you should use in your calculations and which
should be published in the ephemeris is . This also applies if you are calculating orbital elements, except that the
computer (by which I mean the human being who is doing the calculation or programming a machine to do it) must be aware
and cognizant of the fact that the observations that are presented to him or her are given in , and corrections must be
made accordingly.

How great is the difference between  and ? This is given by two quantities, known as  and , given by

and

from which it follows that

The values of these corrections are published in The Astronomical Ephemeris. They cannot be predicted exactly for a given
future year, and their exact values are known only a few years after publication. The Astronomical Ephemeris gives a table of 

 since 1620, and a prediction of its value for the current year. In 2000, it was about 63 seconds and increasing at about
three-quarters of a second per year.

For most purposes the difference between the  used by observers and the  used by computers is of little import.
After all, from the practical point of view the right ascension and declination of a planet do not change by very much in 63
seconds. An exception may be in the case of a fast-moving near-Earth asteroid. For example, if an asteroid is moving at the
very fast rate of 10000 arcseconds per hour, in 63 seconds it will have moved three arcminutes. In principle, an asteroid
observer who is “lying in wait” to “ambush” a new asteroid as it “swims into his view” would have to take into account the
difference between the  of the published ephemeris and the  of his clock. In practice, the uncertainties in the
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elements of a newly-discovered fast-moving asteroid present the observer with more challenges than the challenge of , so
that, even in the case of fast-moving asteroids, it is seldom that the  is the most important difficulty.
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CHAPTER OVERVIEW
8: PLANETARY MOTIONS
In this chapter, I do not attempt to calculate planetary ephemerides, which will come in a later
chapter. Rather, I discuss in an idealistic and qualitative manner how it is that a planet sometimes
moves in one direction and sometimes in another. That the treatment in this chapter is both idealistic
and qualitative by no means implies that it will be devoid of Equations or of quantitative results, or
that the matter discussed in this chapter will have no real practical or observational value.

8.1: INTRODUCTION TO PLANETARY MOTIONS
The word “planet” means “wanderer” (πλάνητες αστέρες − wandering stars); in contrast to the
“fixed stars”, the planets wander around on the celestial sphere, sometimes moving from east to
west and sometimes from west to east – and of course there are “stationary points” at the instant
when their motions change from one direction to the other.

8.2: OPPOSITION, CONJUNCTION AND QUADRATURE
8.3: SIDEREAL AND SYNODIC PERIODS
8.4: DIRECT AND RETROGRADE MOTION, AND STATIONARY POINTS
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8.1: Introduction to Planetary Motions
The word “planet” means “wanderer” (πλάνητες αστέρες − wandering stars); in contrast to the “fixed stars”, the planets
wander around on the celestial sphere, sometimes moving from east to west and sometimes from west to east – and of course
there are “stationary points” at the instants when their motions change from one direction to the other.

In this chapter, I do not attempt to calculate planetary ephemerides, which will come in a later chapter. Rather, I discuss in an
idealistic and qualitative manner how it is that a planet sometimes moves in one direction and sometimes in another. That the
treatment in this chapter is both idealistic and qualitative by no means implies that it will be devoid of Equations or of
quantitative results, or that the matter discussed in this chapter will have no real practical or observational value.

I shall assume in this chapter that planets move around the Sun in coplanar circular orbits. Pluto apart, the inclinations of the
orbits of the planets are small (Mercury is 7 degrees , Venus 3 degrees and the remainder are smaller), and if you were to draw
the most eccentric orbit (Mercury’s) to scale, without marking in the position of the Sun, your eye could probably not
distinguish the orbit from a circle. Thus these ideal orbits, while not suitable for computing precise ephemerides, are not
unrealistic for a general description of the apparent motions of the planets.

I shall assume that the angular speed of Earth in its motion around the Sun, relative to the stars, is  radians
per mean solar day, or  arcseconds per mean solar hour. In this chapter I shall use the symbol  for this angular
speed, though in many contexts it is also given the symbol , and is called the gaussian constant.

It may be noted that the definition of the astronomical unit ( ) of distance is the radius of the orbit of a particle of negligible
mass that moves around the Sun in a circular orbit at angular speed  radians per mean solar day. In other
words, the formal definition of the astronomical unit makes no mention of planet Earth. However, to a good approximation,
Earth does move around the Sun in a near-circular orbit of about that radius and about that speed, and that is the assumption
that will be made in this chapter. [In 2012, the International Astronomical Union redefined the astronomical unit as 149 597
870 700 m exactly, and they recommended the symbol au rather than AU. This makes no substantial difference to the content
of this chapter.]

I shall also make the assumption that other planets move around the Sun in coplanar circular orbits at angular speeds that are
proportional to  and hence at linear speeds that are proportional to , where  is the radius of their orbits. This is, as
we shall describe in Chapter 9, Kepler’s third law of planetary motion.
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8.2: Opposition, Conjunction and Quadrature
Planets that are closer to the Sun than Earth (i.e. whose orbital radii are less than 1 AU), that is to say the planets Mercury and
Venus, are inferior planets. (Any asteroids that may be found in such orbits are therefore inferior asteroids, and, technically,
any spacecraft that are in solar orbits within that of the orbit of Earth could also be called inferior spacecraft, although it is
doubtful whether this nomenclature would ever win general acceptance.) Other planets (i.e. Mars and beyond) are superior
planets.

In figure  I draw the orbits of Earth and of an inferior planet.

The symbol  denotes the Sun and  denotes Earth. At \(\text{IC}|), the planet is at inferior conjunction with the Sun. At ,
it is at superior conjunction with the Sun. At  it is at greatest western elongation from the Sun. At  it is at greatest
eastern elongation. It should be evident that the sine of the greatest elongation is equal to the radius of the planet’s orbit in 

. Thus the radius of Venus’s (almost circular) orbit is 0.7233 , and therefore its greatest elongation from the Sun is
about . Mercury’s orbit is relatively eccentric ( ), so that its distance from the Sun varies from 0.3075  at
perihelion to 0.4667 at aphelion. Consequently greatest elongations can be from  to , depending on where in its orbit
they occur.

In figure  I draw the orbits of Earth and of a superior planet.
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At , the planet is in conjunction with the Sun. At  it is in opposition to the Sun. The opposition point is very familiar to
observers of asteroids. Its right ascension differs from that of the Sun by 12 hours, and it transits across the meridian at
midnight local solar time. The points  and  are eastern quadrature and western quadrature.
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8.3: Sidereal and Synodic Periods

Figure  shows the orbits of Earth ( ) and an inferior planet ( ). Earth is moving around the Sun at angular speed 
and period  sidereal year. The planet is moving around the Sun at a faster angular speed  and shorter period 

, which is called the sidereal period of the planet (i.e. the period relative to the fixed stars). The angular speed of
the planet with respect to Earth is . The interval between two consecutive inferior conjunctions of the planet is
called its synodic period, , and is equal to . Thus, since the relation between angular speed and period is 

, we see that

The reader can draw the situation for a superior planet, and will see that in that case . The synodic period of the
planet is the interval between two consecutive oppositions, and we arrive at

Of all the major planets, Mars has the longest synodic period, namely 780 days, so that it comes to opposition and is easy to
observe at intervals of a little more than two years. Mercury has the shortest synodic period, namely 116 days. The synodic
periods of all superior planets are greater than one sidereal year. The synodic periods of inferior planets may be less than
(Mercury) or greater that (Venus) one sidereal year.

An inferior planet in a circular orbit has a synodic period of one sidereal year. What is the radius of its orbit?
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Exercise 8.3.1
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8.4: Direct and Retrograde Motion, and Stationary Points
As seen from the north ecliptic pole, the major planets move counterclockwise around the Sun. Such motion is called direct or
prograde motion. A body moving clockwise (such as some comets) is said to be moving retrograde.

In figure  I have drawn Earth moving around the Sun at angular speed  and a superior planet (which I have indicated
at opposition and at conjunction) moving with slower angular speed .

In figure . I have drawn the same situation but referred to what I call a synodic reference frame. That is, a reference
frame that is co-rotating with Earth, such that the Earth-Sun line is stationary. In the synodic frame, the planet is moving
clockwise at angular speed .

Let  and  be the radii or Earth’s and the planet’s orbit respectively. In that case, the angular speed of the planet in the

sidereal frame is, by Kepler’s third law,  counterclockwise, and therefore, in the synodic frame, it is 

 clockwise. From this point, I am going to express angular speeds in units of  and distances in
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astronomical units ( ). In these units, then, the angular speed of the planet around the Sun in the synodic frame is 
 clockwise, and its linear speed in its orbit (of radius ) is .

Now suppose the planet is at opposition, so that its distance from Earth is . The angular speed of the planet as seen from

Earth is therefore  clockwise. For superior planets and asteroids ( ), this goes from  to  as  goes from 
to . Now in the synodic frame, the celestial sphere with the fixed stars upon it is revolving around Earth at angular speed .
Therefore, at opposition, the angular speed of the planet against the background of stars (also known as the apparent proper
motion, for which I shall use the symbol ) of the planet is the above expression minus , which, after simplification, becomes

in the direction of decreasing ecliptic longitude or decreasing right ascension – i.e. towards the west. That is to say, at
opposition, the planet appears from Earth to be moving in the retrograde direction. The reader is reminded that, in Equation 

,  is the proper motion to the west, in units of  arcseconds per mean solar hour, and  is the radius of the
planet’s orbit in . A graph of  versus  is shown in figure .

Equation  enables us to calculate  given . The more interesting problem is to calculate  given . Thus, you are
searching for asteroids near the opposition point one night, and a new planet swims into your ken. (That’s from a poem by
Keats, by the way.) You see that it is moving retrograde with respect to the stars by so many arcseconds per hour. Assuming
that it is moving in a circular orbit, what is the radius of its orbit? The quick answer, of course, is to look at figure , but
you can also keep your hand at high-school algebra in by inverting Equation  to obtain

Similar considerations for an inferior planet will show that, at inferior conjunction, the angular speed of the planet towards the

west is , which is the same as the formula for a superior planet at opposition. As  goes from  to , this goes from 
 to . In the synodic frame, the stars are moving westward at angular speed , so, relative to the background stars, an

inferior planet at inferior conjunction has a retrograde (westward) proper motion given by the same formula as for a superior
planet at superior conjunction, namely Equation . A graph of  versus  for an inferior planet drops from  at  to 

 arcsec per hour at . Just to keep your algebra skills polished, you can show from Equation  that when , 
.

Thus a superior planet at opposition moves westward (it “retrogrades”) relative to the stars, and an inferior planet at inferior
conjunction also moves westward (it “retrogrades”) relative to the stars.

It will, however, be obvious that a superior planet at conjunction, or an inferior planet at superior conjunction, will move
eastward (“direct” or “prograde”) relative to the stars. Therefore at some point in its orbit a planet will be stationary relative to
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the stars at the moment when its proper motion changes from direct to retrograde. As seen from Earth, a planet moves
generally eastward relative to the stars, except for a short time near opposition (for a superior planet) or inferior conjunction
(for an inferior planet) when it briefly retrogrades towards the west. It is small wonder that the ancient astronomers, believing
that the Earth was at the centre of the solar system, believed in their system of deferents and epicycles. We would believe the
same today if we hadn’t read differently in books and on this web site.

Two small words of caution. It is sometimes believed by the unwary that the stationary points in the orbit of an inferior planet
occur when the planet is at greatest elongation from the Sun. This is not the case, and indeed there is a small exercise on this
point in the penultimate paragraph of this chapter. The second small point to notice is that, for precise work, it is necessary to
distinguish between when a planet is stationary (i.e. it is at the moment of changing direction) in right ascension, and when it
is stationary in ecliptic longitude. In our simple model of coplanar orbits, we need not make this fine distinction.

In what follows, we are going to calculate (for our concentric circular coplanar model) the angular distance of a superior planet
from the opposition point when it is stationary, and the angular distance (“elongation”) from the Sun when an inferior planet is
stationary. We’ll start with a superior planet.

Figure  shows the Earth  moving in its orbit of radius  with speed , and a superior planet or asteroid  moving
in its orbit of radius  with speed . The angle  is the angular distance of the planet from the opposition point. The
angle  is known as the phase angle. There is no apparent motion of the planet against the starry background (i.e. the planet is
at its stationary point) when the components of the two velocity vectors perpendicular to the line  are equal. That is, the
planet is at a stationary point when , or

But from triangle  we have

On elimination of  from Equations  and , we find that the planet is at a stationary point when its angular distance
from the opposition point is given by

On inversion of this Equation (do it!), we find that the heliocentric distance of a planet which reaches it stationary point at an
angular distance  from the opposition point is

where .

The relation between  and  is shown in figure . The least possible angular distance of the stationary point from
opposition for a superior planet moving in a circular orbit is .
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Figure , in which the Sun is at the origin, shows the orbits of Earth, Mars and Jupiter, and it divides the area in which
asteroids moving in circular orbits will have direct or retrograde proper motions.

If the reader carries out the same analysis for inferior planets, he or she will find that Equations  to  apply equally
well, except that, in the case of inferior planets (and inferior asteroids, such as the Aten group, of which more are likely to be
discovered in the coming years) the angle  is the angular distance or elongation of the planet from the Sun rather than from
the opposition point, and  is the greatest value this may have for the stationary point of an inferior planet in a circular
orbit. The Equation corresponding to  becomes, for in inferior planet, . The elongation of the
stationary point is, unsurprisingly, less than the greatest elongation. Also, for an inferior planet, it is to be noted that, for a
given elongation (other than greatest elongation) two phase angles are possible and two geocentric distances are possible. At
the stationary point, the obtuse phase angle and the lesser of the two geocentric distances are the correct ones.

Of course in general, we are not likely to be observing an asteroid exactly at the opposition point or exactly at a stationary
point. We now tackle the slightly more difficult problem: What is the proper motion of an asteroid whose circular orbital
radius is  when it is observed at an angular distance  from the opposition point (or from the Sun)? Or, conversely, if we
observe an asteroid at an angular distance  from the opposition point, and we see that it has a proper motion , what is the
radius of its (assumed circular) orbit?

In figure 9b we see, in a sidereal reference frame, the orbits of Earth, , and a superior planet (or asteroid), , the radii of their
orbits being  and . The heliocentric and geocentric distances of the planet are  and . The angular distance of the
planet from the opposition point is  and the phase angle is . Earth is moving with angular speed 1 (in units of ) and the
planet is moving (according to Kepler’s third law) with angular speed .
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In figure 9c we see the same situation in a synodic reference frame, in which Earth is stationary and the planet is moving
clockwise at an angular speed  (in units of ).

In the synodic frame, the linear speed of the planet (whose angular speed is  and whose heliocentric distance is ) is

The transverse component of this velocity as seen from Earth is

so that its angular velocity as seen from Earth is

retrograde.

In the synodic frame, the stars are moving retrograde at angular speed . Therefore the planet is moving direct relative to the
background stars at angular speed

and this is the required proper motion. In this Equation, geometry shows that

and

Thus  can be calculated, given  and .
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The more interesting and practical problem, however, is that you have observed an asteroid at an angular distance  from the
opposition point, and it is moving at an angular speed  relative to the starry background. (We’ll count  as positive if the
proper motion is direct – i.e. if the asteroid is moving eastward relative to the stars. The sign of  does not matter.) You are
going to have to invert Equation . I am not sure if this can easily be done algebraically, so your challenge is to write a
computer program that will return a numerically given  and  as input data. It can be done, but I shall not pretend that it is
easy.

When you have done this, here are three examples for you:

1. Proper motion = 40 arcsec per hour westward; i.e.  arcsec per hour. . Find the heliocentric distance  in 
.

2. . Find .

3. . Find .

I have written my own Fortran program to invert Equation , using Newton-Raphson iteration, and here are the answers it
gives me.

1. 
2. 
3. Error message!

My computer failed to do example number 3! In other words, given a proper motion of  and an opposition distance
of , it could not tell me the heliocentric distance!

In figure  I have plotted proper motion versus  for several heliocentric distances, and in figure  I have drawn
proper motion versus heliocentric distance for several . You will find that you can easily find approximate solutions to the
first two of these problems from either figure, but you cannot solve the third problem from either figure. In other words, given
certain combinations of  and , it simply is not possible to determine . There is a large range of value of  and  that result
in the same proper motion.

If you carry out the same analysis for inferior planets, you will find that the Equations that correspond to Equations 8,4,10-12
are as follows:

This is the same as Equation .

This is the same as Equation , except that, for an inferior planet,  is the elongation from the Sun and there are two
solutions for , one acute and the other obtuse. As Galileo announced: Cynthiae figuras aemulatur mater amorum.

The Equation that corresponds to Equation  is
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In figure  I have plotted the proper motion versus elongation from the Sun for several inferior heliocentric distances.
You will observe that, for a given elongation and proper motion, there are two possible solutions for , and there is nothing
you can do about it from a single observation of  and . For  (conjunction with the Sun), the proper motion is positive
at superior conjunction and negative at inferior conjunction.

FIGURE VIII.10

FIGURE VIII.11

VIII.12
a

ε p ε = 0

FIGURE VIII.12

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6836?pdf


Jeremy Tatum 9/16/2020 8.4.8 CC-BY-NC https://phys.libretexts.org/@go/page/6836

As an exercise, you might like to convince yourself – either from the Equations or just from the geometry of the situation −
that the proper motion relative to the stars of any inferior planet in a circular orbit at greatest elongation is independent of the
radius of the orbit. What is this proper motion in arcsec per hour?

Summary. The graphs and Equations in this section will enable an estimate to be made of the radius of the orbit of an asteroid
to be estimated from a single night’s observation of its proper motion and angular distance from the opposition point (superior
asteroid) or from the Sun (inferior asteroid). The assumptions made are that Earth and asteroid are in coplanar circular orbits.
While this is not the case for many asteroids, it is a reasonable approximation for most of the asteroids at least in the main belt.
However, there are some combinations of  and  for which a solution cannot be obtained, and, for inferior asteroids, there are
always two possible solutions.
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CHAPTER OVERVIEW
9: THE TWO BODY PROBLEM IN TWO DIMENSIONS
In this chapter we show how Kepler’s laws can be derived from Newton’s laws of motion and
gravitation, and conservation of angular momentum, and we derive formulas for the energy and
angular momentum in an orbit. We show also how to calculate the position of a planet in its orbit as
a function of time. The discussion here is limited to two dimensions. The corresponding problem in
three dimensions, and how to calculate an ephemeris of a planet or comet in the sky, is discussed
elsewhere.

9.1: KEPLER'S LAWS
Kepler’s law of planetary motion are as follows: 1. Every planet moves around the Sun in an orbit
that is an ellipse with the Sun at a focus. 2. The radius vector from Sun to planet sweeps out equal
areas in equal time. 3. The squares of the periods of the planets are proportional to the cubes of their semi major axes.

9.2: KEPLER'S SECOND LAW FROM CONSERVATION OF ANGULAR MOMENTUM
Kepler's second law. that argued a line joining a planet and the Sun sweeps out equal areas during equal intervals of time, can be
derived from conservation of angular momentum.

9.3: SOME FUNCTIONS OF THE MASSES
9.4: KEPLER'S FIRST AND THIRD LAWS FROM NEWTON'S LAW OF GRAVITATION
9.5: POSITION IN AN ELLIPTIC ORBIT
9.6: POSITION IN A PARABOLIC ORBIT
When a “long-period” comet comes in from the Oort belt, it typically comes in on a highly eccentric orbit, of which we can observe
only a very short arc. Consequently, it is often impossible to determine the period or semi major axis with any degree of reliability or
to distinguish the orbit from a parabola. There is therefore frequent occasion to have to understand the dynamics of a parabolic orbit.

9.7: POSITION IN A HYPERBOLIC ORBIT
If an interstellar comet were to encounter the solar system from interstellar space, it would pursue a hyperbolic orbit around the Sun.
To date, no such comet with an original hyperbolic orbit has been found, although there is no particular reason why we might not find
one some night. However, a comet with a near-parabolic orbit from the Oort belt may approach Jupiter on its way in to the inner solar
system, and its orbit may be perturbed into a hyperbolic orbit.

9.8: ORBITAL ELEMENTS AND VELOCITY VECTOR
In two dimensions, an orbit can be completely specified by four orbital elements. Three of them give the size, shape and orientation of
the orbit. They are, respectively, a , e and ω . The fourth element is needed to give information about where the planet is in its orbit at
a particular time. Usually this is T , the time of perihelion passage.

9.9: OSCULATING ELEMENTS
In practice, an orbit is subject to perturbations, and the planet does not move indefinitely in the orbit that is calculated from the
position and velocity vectors at a particular time. The orbit that is calculated from the position and velocity vectors at a particular
instant of time is called the osculating orbit, and the corresponding orbital elements are the osculating elements.

9.10: MEAN DISTANCE IN AN ELLIPTIC ORBIT
It is sometimes said that “ a ” in an elliptic orbit is the “mean distance” of a planet from the Sun. In fact a is the semi major axis of the
orbit. Whether and it what sense it might also be the “mean distance” is worth a moment of thought.
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9.1: Kepler's Laws
Kepler’s law of planetary motion (the first two announced in 1609, the third in 1619) are as follows:

1. Every planet moves around the Sun in an orbit that is an ellipse with the Sun at a focus.
2. The radius vector from Sun to planet sweeps out equal areas in equal times.
3. The squares of the periods of the planets are proportional to the cubes of their semi major axes.

The first law is a consequence of the inverse square law of gravitation. An inverse square law of attraction will actually result
in a path that is a conic section – that is, an ellipse, a parabola or a hyperbola, although only an ellipse, of course, is a closed
orbit. An inverse square law of repulsion (for example, -particles being deflected by gold nuclei in the famous Geiger-
Marsden experiment) will result in a hyperbolic path. An attractive force that is directly proportional to the first power of the
distance also results in an elliptical path (a Lissajous ellipse) - for example a mass whirled at the end of a Hooke’s law elastic
spring - but in that case the centre of attraction is at the centre of the ellipse, rather than at a focus.

We shall derive, in Section 9.5, Kepler’s first and third laws from an assumed inverse square law of attraction. The problem
facing Newton was the opposite: Starting from Kepler’s laws, what is the law of attraction governing the motions of the
planets? To start with, he had to invent the differential and integral calculus. This is a far cry from the popular notion that he
“discovered” gravity by seeing an apple fall from a tree.

The second law is a consequence of conservation of angular momentum, and would be valid for any law of attraction (or
repulsion) as long as the force was entirely radial with no transverse component. We derive it in Section 9.3.

Although a full treatment of the first and third laws awaits Section 9.5, the third law is trivially easy to derive in the case of a
circular orbit. For example, if we suppose that a planet of mass  is in a circular orbit of radius  around a Sun of mass , 

 being supposed to be so much larger than  that the Sun can be regarded as stationary, we can just equate the product of
mass and centripetal acceleration of the planet, , to the gravitational force between planet and Sun,  ; and,
with the period being given by , we immediately obtain the third law:

The reader might like to show that, if the mass of the Sun is not so high that the Sun’s motion can be neglected, and that planet
and Sun move in circular orbits around their mutual centre of mass, the period is

Here  is the distance between Sun and planet.

Express the period in terms of , the radius of the planet’s circular orbit around the centre of mass.

Contributor
Jeremy Tatum (University of Victoria, Canada)
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9.2: Kepler's Second Law from Conservation of Angular Momentum

In figure , a particle of mass  is moving in some sort of trajectory in which the only force on it is directed towards or
away from the point . At some time, its polar coordinates are . At a time  later these coordinates have increased by 
and .

Using the formula one half base times height for the area of a triangle, we see that the area swept out by the radius vector is
approximately

On dividing both sides by  and taking the limit as , we see that the rate at which the radius vector sweeps out area is

But the angular momentum is ,  and since this is constant, the areal speed is also constant. The areal speed, in fact, is half
the angular momentum per unit mass.
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9.3: Some Functions of the Masses
In section 9.5 I am going to consider the motion of two masses,  and  around their mutual centre of mass under the
influence of their gravitational attraction. I shall probably want to make use of several functions of the masses, which I shall
define here, as follows:

Total mass of the system:

"Reduced mass"

"Mass function":

No particular name:

Mass ratio:

Mass fraction:

The first four are of dimension M; the last two are dimensionless. When , ,  and .
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9.4: Kepler's First and Third Laws from Newton's Law of Gravitation
In figure  I illustrate two masses (they needn’t be point masses – as long as they are spherically symmetric, they act
gravitationally as if they were point masses) revolving about their common centre of mass .

At some time they are a distance  apart, where

The Equations of motion of  in polar coordinates (with  as pole) are

Radial:

Transverse:

Elimination of  between these Equations will in principle give us the Equation, in polar coordinates, of the path.

A slightly easier approach is to write down expressions for the angular momentum and the energy. The angular momentum per
unit mass of  with respect to  is

The speed of  is  and the speed of  is  times this. Some effort will be required of the reader to
determine that the total energy  of the system is

[It is possible that you may have found this line quite difficult. The reason for the difficulty is that we are not making the
approximation of a planet of negligible mass moving around a stationary Sun, but we are allowing both bodies to have
comparable masses and the move around their common centre of mass. You might first like to try the simpler problem of a
planet of negligible mass moving around a stationary Sun. In that case  and  and ,  and 

.]

It is easy to eliminate the time between Equations  and . Thus you can write

and then use Equation  to eliminate . You should eventually obtain

This is the differential Equation, in polar coordinates, for the path of . All that is now required is to integrate it to obtain 
as a function of .

At first, integration looks hopelessly difficult, but it proceeds by making one tentative substitution after another to see if we
can’t make it look a little easier. For example, we have (if we multiply out the square bracket)  in the denominator three
times in the Equation. Let’s at least try the substitution . That will surely make it look a little easier. You will have to
use
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and after a little algebra you should obtain

This may at first sight not look like much of an improvement, but the right hand side is just a lot of constants, and, since it is
positive, let’s call the right hand side . (In case you doubt that the right hand side is positive, the left hand side certainly is!)
Also, make the obvious substitution

and the Equation becomes almost trivial:

from which we proceed to

At this stage you can choose either the  or the  and you can choose to make the next substitution  or 
; you'll get the same result in the end. I'll choose the plus sign and I’ll let , and I get 

and hence

where  is the arbitrary constant of integration. Now you have to go back and remember what  was, what  was and what 
was and what  was. Thus  and so on. Your aim is to get it in
the form  function of θ, and, if you persist, you should eventually get

You’ll immediately recognize this from Equation 2.3.37 or 2.4.16 or 2.5.18:

as being the polar Equation to a conic section (ellipse, parabola or hyperbola). Equation  is the Equation of the path of
the mass  about the centre of mass of the two bodies. The eccentricity is

or, if you now recall what are meant by  and ,

(Check the dimensions of this!)

The eccentricity is less than 1, equal to 1, or greater than 1 (i.e. the path is an ellipse, a parabola or a hyperbola) according to
whether the total energy E is negative, zero or positive.

= = − ,
dr2
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dr2

dw

dw

dθ

1

w2

dw
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(9.4.2)

+ = + .( )
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The semi latus rectum of the path of  relative to the centre of mass is of length

or

(Check the dimensions of this!)

We can also write Equations  or  as

At this point it is useful to recall what we mean by  and by .  is the mass function, given by Equation 9.4.3:

Let us suppose that the total energy is negative, so that the orbits are elliptical. The two masses are revolving in similar elliptic
orbits around the centre of masses; the semi latus rectum of the orbit of  is , and the semi latus rectum of the orbit of  is 

, where

Relative to  the mass  is revolving in a larger but still similar ellipse with semi latus rectum  given by

I am now going to define  as the angular momentum per unit mass of  relative to . In other words, we are working in a
frame in which  is stationary and  is moving around  in an elliptic orbit of semi latus rectum . Now angular momentum
per unit mass is proportional to the areal speed, and therefore it is proportional to the square of the semi latus rectum. Thus we
have

Combining Equations , , ,  and 9.4.1 we obtain

where  is the total mass of the system.

Once again:

The angular momentum per unit mass of  relative to the centre of mass is ,  where  is the semi latus rectum of the
orbit of  relative to the centre of mass, and it is  relative to , where  is the semi latus rectum of the orbit of 
relative to .

If you were to start this analysis with the assumption that , and that  remains stationary, and that the centre of
mass coincides with , you would find that either Equation  or  reduces to

The period of the elliptic orbit is area  areal speed. The area of an ellipse is , and the areal speed is half
the angular momentum per unit mass (see section 9.3) . Therefore the period is 

 or
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which is Kepler’s third law.

We might also, while we are at it, express the eccentricity (Equation) in terms of  rather than , using Equation . We
obtain:

If we now substitute for  from Equation , and invert Equation , we obtain, for the energy of the system

or for the energy or the system per unit mass of :

Here  is the mass of the system – i.e. .  in Equation  is the total energy of the system, which includes the
kinetic energy of both masses as well as the mutual potential energy of the two, while  in Equation  is merely .
That is, it is, as stated, the energy of the system per unit mass of .

Equations  and  apply to any conic section. For the different types of conic section they can be written:

For an ellipse:

For a parabola:

For a hyperbola:

We see that the energy of an elliptic orbit is determined by the semi major axis, whereas the angular momentum is determined
by the semi major axis and by the eccentricity. For a given semi major axis, the angular momentum is greatest when the orbit
is circular.

Still referring the orbit of  with respect to , we can find the speed  of  by noting that

and, by making use of the b-parts of Equations 9.5.27-29, we find the following relations between speed of  in an orbit
versus distance from :

Ellipse:
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= ,P 2 4π2

GM
a3 (9.5.23)

h h2 9.5.20

e = .(1 + )
2Eh2

Mm(M +m)G2

1/2

(9.5.24)

h2 9.5.21 9.5.24

E = ,
Gm(M +m)( −1)e2

2l
(9.5.25)

m

E = .
GM ( −1)e2

2l
(9.5.26)

M M +m E 9.5.25
E 9.5.26 E/m

m

9.5.21 9.5.26

h = E = −GMa(1 − ),e2
− −−−−−−−−−−

√
GM

2a
(9.5.27a,b)

h = E = 02GMq,
− −−−−−√ (9.5.28a,b)

h = E = +GMa( −1),e2
− −−−−−−−−−−

√
GM

2a
(9.5.29a,b)

m M V m

E = −
1

2
V 2 GM

r
(9.5.30)

m

M

= GM( − ) .V 2 2

r

1

a
(9.5.31)

= .V 2 2GM

r
(9.5.32)

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6844?pdf


Jeremy Tatum 9/16/2020 9.4.5 CC-BY-NC https://phys.libretexts.org/@go/page/6844

Circle:

Exercise: Show that in an elliptic orbit, the speeds at perihelion and aphelion are, respectively,  and 

 and that the ratio of perihelion to aphelion speed is, therefore, .

It might be noted at this point, from the definition of the astronomical unit (Chapter 8, section 8.1), that if distances are
expressed in astronomical units, periods and time intervals in sidereal years,  (where  is the mass of the Sun) has the
value . The mass of a comet or asteroid is much smaller than the mass of the Sun, so that . Thus, using
these units, and to this approximation, Equation  becomes merely .

I am much indebted to Dr Bob Rimmer, for the following delightful construction. Dr Rimmer found it in the recent book
Feynman’s Lost Lecture, The Motion of the Planets Around the Sun, by D.L. and J.R. Goodstein, and Feynman in his turn
ascribed it to a passage (Section IV, Lemma XV) in the Principia of Sir Isaac Newton. It has no doubt changed slightly
with each telling, and I present it here as follows.

 is a circle of radius  (Figure ).  is the centre of the circle, and  is a point inside the circle such that the
distance , where . Join  and  to a point  on the circle.  is the perpendicular bisector of ,
meeting  at .

The reader is invited to show that, as the point  moves round the circle, the point  describes an ellipse of eccentricity ,
with  and  as foci, and that  is tangent to the ellipse.

Hint: It is very easy – no math required! Draw the line , and let the lengths of  and  be  and  respectively. It
will then become very obvious that  is always equal to , and hence  describes an ellipse. By looking at an
isosceles triangle, it will also be clear that the angles  and  are equal, thus satisfying the focus-to-focus
reflection property of an ellipse, so that  is tangent to the ellipse.

But there is better to come. You are asked to find the length  in terms of ,  and , or ,  and .

An easy way to do it is as follows. Let , so that . From the right-angled triangle  we see that 
. Apply the cosine rule to triangle  to find another expression for , and eliminate  from your

two Equations. You should quickly arrive at
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And, since , this becomes

Now the speed at a point  on an elliptic orbit, in which a planet of negligible mass is in orbit around a star of mass  is
given by

Thus we arrive at the result that the length of  (or of ) is proportional to the speed of a planet  moving around
the Sun  in an elliptic orbit, and of course the direction , being tangent to the ellipse, is the direction of motion of
the planet. Figure  shows the ellipse.

It is left to the reader to investigate what happens it  is outside, or on, the circle

Contributor
Jeremy Tatum (University of Victoria, Canada)

= 2a−rr′

p = a × = × .(1 −e)2
− −−−−−

√
2a−r

r

− −−−−−
√ a3/2 (1 −e)2

− −−−−−
√ −

2

r

1

a

− −−−−−
√ (9.5.36)

P M

V = .GM ( − )
2

r

1

a

− −−−−−−−−−−−

√ (9.5.37)

QF′ MF′ P
F MP′

IX.4

F′

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6844?pdf
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/17/2020 9.5.1 CC-BY-NC https://phys.libretexts.org/@go/page/6845

9.5: Position in an Elliptic Orbit
The reader might like to refer back to Section 2.3, especially the part that deals with the polar Equation to an ellipse, to be
reminded of the meanings of the angles ,  and , which, in an astronomical context, are called, respectively, the argument of
latitude, the argument of perihelion and the true anomaly. In this section I shall choose the initial line of polar coordinates to
coincide with the major axis of the ellipse, so that  is zero and . The Equation to the ellipse is then

I’ll suppose that a planet is at perihelion at time , and the aim of this section will be to find  as a function of . The semi
major axis of the ellipse is , related to the semi latus rectum by

and the period is given by

Here the planet, of mass  is supposed to be in orbit around the Sun of mass , and the origin, or pole, of the polar
coordinates described by Equation  is the Sun, rather than the centre of mass of the system. As usual, .

The radius vector from Sun to planet does not move at constant speed (indeed Kepler’s second law states how it moves), but
we can say that, over a complete orbit, it moves at an average angular speed of . The angle  is called the mean
anomaly of the planet at a time  after perihelion passage. It is generally denoted by the letter , which is already
overworked in this chapter for various masses and functions of the masses. For mean anomaly, I’ll try this font: . Thus

The first step in our effort to find  as a function of  is to calculate the eccentric anomaly  from the mean anomaly. This was
defined in figure  of Chapter 2, and it is reproduced below as figure .

In time , the area swept out by the radius vector is the area , and, because the radius vector sweeps out equal areas

in equal times, this area is equal to the fraction  of the area of the ellipse. In other words, this area is . Now
look at the area . Every ordinate of that area is equal to  times the corresponding ordinate of , and therefore the

area of  is . The area  is also equal to the sector  minus the triangle . The area of the sector 
 is , and the area of the triangle  is .
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Multiply both sides by , and recall Equation , and we arrive at the required relation between the mean anomaly 
and the eccentric anomaly :

This is Kepler’s Equation.

The first step, then, is to calculate the mean anomaly  from Equation , and then calculate the eccentric anomaly 
from Equation . This is a transcendental Equation, so I’ll say a word or two about solving it in a moment, but let’s press
on for the time being. We now have to calculate the true anomaly  from the eccentric anomaly. This is done from the
geometry of the ellipse, with no dynamics, and the relation is given in Chapter 2, Equations 2.3.16 and 2.3.17c, which are
reproduced here:

From trigonometric identities, this can also be written

or

or

If we can just solve Equation  (Kepler’s Equation), we shall have done what we want – namely, find the true anomaly as
a function of the time.

The solution of Kepler’s Equation is in fact very easy. We write it as

from which

and then, by the usual Newton-Raphson process:

FIGURE IX.6

2/a2 9.6.4 M

E

M= E −e sinE. (9.6.5)

M 9.6.4 E

9.6.5
v

cos v = .
cos E −e

1 −e cos E
(2.3.16)

sinv = ,
sinE1 −e2

− −−−−
√

1 −e cos E
(2.3.17a)

tanv =
sinE1 −e2

− −−−−
√

cos E −e
(2.3.17b)

tan v = tan E.
1

2

1 +e

1 −e

− −−−−
√

1

2
(2.3.17c)

9.6.5

f(E) = E −e sinE −M (9.6.6)

(E) = 1 −e cos E,f ′ (9.6.7)

E = .
M−e(E cos E −sinE)

1 −e cos E
(9.6.8)
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The computation is then extraordinarily rapid (especially if you store cos E and don’t calculate it twice!).

Suppose  and that . Calculate . Since the eccentricity is very large, one might expect the
convergence to be slow, and also  is likely to be very different from , so it is not easy to make a first guess for .
You might as well try  for a first guess for . You should find that it converges to ten significant figures in a mere
four iterations. Even if you make a mindlessly stupid first guess of , it converges to ten significant figures in only
nine iterations.

There are a few exceptional occasions, hardly ever encountered in practice, and only for eccentricities greater than about 
, when the Newton-Raphson method will not converge when you make your first guess for  equal to . Charles

and Tatum (Celestial Mechanics and Dynamical Astronomy 69, 357 (1998)) have shown that the Newton-Raphson
method will always converge if you make your first guess . Nevertheless, the situations where Newton-Raphson
will not converge with a first guess of  are unlikely to be encountered except in almost parabolic orbits, and
usually a first guess of  is faster than a first guess of . Τhe chaotic behaviour of Kepler’s Equation on these
exceptional occasions is discussed in the above paper and also by Stumpf (Cel. Mechs. and Dyn. Astron. 74, 95 (1999))
and references therein.

Show that a good first guess for  is

where

Write a computer program in the language of your choice for solving Kepler’s Equation. The program should accept 
and  as input, and return  as output. The Newton-Raphson iteration should be terminated when 
is less than some small fraction to be determined by you.

An asteroid is moving in an elliptic orbit of semi major axis  and eccentricity 0.6. It is at perihelion at time = 0.
Calculate its distance from the Sun and its true anomaly one sidereal year later. You may take the mass of the asteroid and
the mass of Earth to be negligible compared with the mass of the Sun. In that case, Equation  is merely

where  is the mass of the Sun, and, if  is expressed in sidereal years and  in , this becomes just . Thus
you can immediately calculate the period in years and hence, from Equation  you can find the mean anomaly. From
there, you have to solve Kepler’s Equation to get the eccentric anomaly, and the true anomaly from Equation 2.3.16 or 17.
Just make sure that you get the quadrant right.

Write a computer program that will give you the true anomaly and heliocentric distance as a function of time since
perihelion passage for an asteroid whose elliptic orbit is characterized by , . Run the program for the asteroid of the
previous exercise for every day for a complete period.

Example 9.5.1

e = 0.95 M = 245∘ E

E M E

245∘ E

E = 0∘

0.99 E M

E = π

E =M

E =M E = π

Exercise 9.5.1

E

E =M+x(1 − ),
1

2
x2 (9.6.9)

x = .
e sinM

1 −e cosM
(9.6.10)

Exercise 9.5.2

e

M E |( − )/Enew Eold Eold

Exercise 9.5.1

3AU

9.6.3

= ,P 2 4π2

GM
a3 (9.5.2)

M P a AU =P 2 a3

9.6.4

Exercise 9.5.1
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You are now making some real progress towards ephemeris computation!
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9.6: Position in a Parabolic Orbit
When a “long-period” comet comes in from the Oort belt, it typically comes in on a highly eccentric orbit, of which we can
observe only a very short arc. Consequently, it is often impossible to determine the period or semi major axis with any degree
of reliability or to distinguish the orbit from a parabola. There is therefore frequent occasion to have to understand the
dynamics of a parabolic orbit.

We have no mean or eccentric anomalies. We must try to get  directly as a function of  without going through these
intermediaries.

The angular momentum per unit mass is given by Equation 9.5.28a:

where  is the true anomaly and  is the perihelion distance.

But the Equation to the parabola (see Equation 2.4.16) is

or (see section 3.8 of Chapter 3), by making use of the identity

the Equation to the parabola can be written

Thus, by substitution of Equation  into  and integrating, we obtain

Upon integration (drop me an email if you get stuck!) this becomes

This Equation, when solved for  (which, remember, is ), gives us  as a function of . As explained at the end of
section 9.5, if  is in astronomical units and  is in sidereal years, and if the mass of the comet is negligible compared
with the mass of the Sun, this becomes

or

There is a choice of methods available for solving Equation , so it might be that the only difficulty is to decide which
of the several methods you want to use! The constant  is sometimes called the “parabolic mean anomaly”.

Method 1: Just solve it by Newton-Raphson iteration. Thus  and , so that the Newton-
Raphson  becomes

v t

h = = ,r2 v̇ 2GMq
− −−−−√ (9.7.1)

v q

r = ,
2q

1 +cosv
(9.7.2)

cosv= , where u = tan v,
1 −u2

1 +u2

1

2
(9.7.3a,b)

r = q v.sec2 1

2
(9.7.4)

9.7.4 9.7.1

( v)dv= dt.q2 ∫
v

0
sec4 1

2
2GMq
− −−−−

√ ∫
t

T

(9.7.5)

u+ = (t−T ).
1

3
u3

GM
1
2

− −−−−
√

q3/2
(9.7.6)

u tan v1
2

v t

q t−T

u+ =
1

3
u3 π (t−T )2

–
√

q3/2
(9.7.7)

3u+ −C = 0, where C = .u3 π (t−T )18
−−

√

q3/2
(9.7.8a,b)

9.7.8a,b
C1

3

f = 3u+ −C = 0u3 = 3(1 + )f ′ u2

u = u−f/f ′

u = ,
2 +Cu3

3(1 + )u2
(9.7.9)
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which should converge quickly. For economy, calculate  only once per iteration.

Method 2:

Let

Then Equation 9.7.8a becomes

Thus, as soon as  is found, ,  and  can be calculated from Equations 9.7.11, 10a, and 3a or b, and the problem is finished –
as soon as  is found!

So, how do we find c? We have to solve Equation 9.7.10b.

Method 2a:

Equation 9.7.10b can be written as a quadratic Equation:

Just be careful that you choose the correct root; you should end with  having the same sign as .

Method 2b:

Let

and calculate . But by a trigonometric identity,

so that, by comparison with Equation 9.7.10b, we see that

Again, just make sure that you choose the right quadrant in calculating  from Equation , so as to be sure that you end
with  having the same sign as .

Method 3.

I am told that Equation 9.7.8 has the exact analytic solution

where

I haven’t verified this for myself, so you might like to have a go.

Example: Solve the Equation  by all four methods. (Methods 1, 2a, 2b and 3.)

Example: A comet is moving in an elliptic orbit with perihelion distance . Calculate the true anomaly and heliocentric
distance 20 days after perihelion passage. (A sidereal year is 365.25636 days.)

Exercise: Write a computer program that will return the true anomaly as a function of time, given the perihelion distance of a
parabolic orbit. Test it with your answer for the previous example.

Contributor
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u2

u = x−1/x and C = c−1/c. (9.7.10a,b)

x = .c1/3 (9.7.11)

c x u v

c

−Cc−1 = 0.c2 (9.7.12)

v t−T

C = 2 cot 2ϕ (9.7.13)

ϕ

2 cot 2ϕ = cotϕ−1/ cotϕ (9.7.14)

c = cotϕ. (9.7.15)

ϕ 9.7.13
v t−T

u = −2 ,
1

2
w

1
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1
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3u+ = 1.6u3

0.9 AU

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/8183?pdf
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


Jeremy Tatum 9/17/2020 9.7.1 CC-BY-NC https://phys.libretexts.org/@go/page/8184

9.7: Position in a Hyperbolic Orbit
If an interstellar object were to encounter the solar system from interstellar space, it would pursue a hyperbolic orbit around
the Sun. The first known such object with an original hyperbolic orbit was detected in 2017, and was given the name
Oumuamua. However, a comet with a near-parabolic orbit from the Oort belt may approach Jupiter on its way in to the inner
solar system, and its orbit may be perturbed into a hyperbolic orbit. This will result in its ultimate loss from the solar system.
Several examples of such cometary orbits are known. There is evidence, from radar studies of meteors, of meteoroidal dust
encountering Earth at speeds that are hyperbolic with respect to the Sun, although whether these are on orbits that are
originally hyperbolic (and are therefore from interstellar space) or whether they are of solar system origin and have been
perturbed by Jupiter into hyperbolic orbits is not known.

I must admit to not having actually carried out a calculation for a hyperbolic orbit, but I think we can just proceed in a manner
similar to an ellipse or a parabola. Thus we can start with the angular momentum per unit mass:

where

and

If we use astronomical units for distance and mass, we obtain

Here I am using astronomical units of distance and mass and have therefore substituted  for .

I’m going to write this as

where  Now we have to integrate this.

Method 1
Guided by the elliptical case, but bearing in mind that we are now dealing with a hyperbola, I’m going to try the substitution

If you try this, I think you’ll end up with

This is just the analogy of Kepler’s Equation.

The procedure, then, would be to calculate  from Equation . Then calculate  from Equation . This could be done,
for example, by a Newton-Raphson iteration in quite the same way as was done for Kepler’s Equation in the elliptic case, the
iteration now taking the form

Then v is found from Equation , and the heliocentric distance is found from the polar Equation to a hyperbola:

h = = ,r2 v̇ GMl
− −−−

√ (9.8.1)

r =
l

1 +e cosv
(9.8.2)

l = a( −1).e2 (9.8.3)

= dt.∫
v

0

dv

(1 +e cosv)2

2π

( −1a3/2 e2 )3/2
∫

t

T

(9.8.4)

4π2 GM

= =∫
v

0

dv

(1 +e cosv)2

2π(t−T )

( −1a3/2 e2 )3/2

Q

( −1e2 )3/2
(9.8.5)

Q = .
2π(t−T )

a3/2

cosv=
e−coshE

e coshE−1
(9.8.6)

e sinhE−E = Q. (9.8.7)

Q 9.8.5 E 9.8.7

E = .
Q+e(E coshE−sinhE)

e coshE−1
(9.8.8)
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Method 2
Method 1 should work all right, but it has the disadvantage that you may not be as familiar with sinh and cosh as you are with
sin and cos, or there may not be a sinh or cosh button your calculator. I believe there are  and  functions in 

, and there may well be in other computing languages. Try it and see. But maybe we’d like to try to avoid
hyperbolic functions, so let’s try the brilliant substitution

You may have noticed, when you were learning calculus, that often the professor would make a brilliant substitution, and you
could see that it worked, but you could never understand what made the professor think of the substitution. I don’t want to tell
you what made me think of this substitution, because, when I do, you’ll see that it isn’t really very brilliant at all. I
remembered that

and then I let , so

and I just substituted this into Equation  and I got Equation . Now if you put the expression  for  into
Equation , you eventually, after a few lines, get something that you can integrate. Please do work through it. In the end,
on integration of Equation , you should get

You already know from Chapter 1 how to solve the Equation , so there is no difficulty in solving Equation  for 
. Newton-Raphson iteration results in

and this should converge in the usual rapid fashion.

So the procedure in method 2 is to calculate  from Equation , then calculate  from Equation , and finally  from
Equation  – all very straightforward.

Set yourself a problem to make sure that you can carry through the calculation. Then write a computer program that will
generate  and  as a function of .

Contributor
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a( −1)e2
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(9.8.9)
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FORTRAN
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(9.8.10)
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1
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eE eE (9.8.11)
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9.8: Orbital Elements and Velocity Vector
In two dimensions, an orbit can be completely specified by four orbital elements. Three of them give the size, shape and
orientation of the orbit. They are, respectively, ,  and . We are familiar with the semi major axis  and the eccentricity .
The angle , the argument of perihelion, was illustrated in figure , which is reproduced here as figure . It is the angle
that the major axis makes with the initial line of the polar coordinates. Figure  reminds us of the relation between the
argument of perihelion , the argument of latitude  and the true anomaly . We remind ourselves here of the Equation to a
conic section

where the semi latus rectum  is  for an ellipse, and  for a hyperbola. For a hyperbola, the parameter a is
usually called the semi transverse axis. For a parabola, the size is generally described by the perihelion distance , and .

The fourth element is needed to give information about where the planet is in its orbit at a particular time. Usually this is ,
the time of perihelion passage. In the case of a circular orbit this cannot be used. One could instead give the time when ,
or the value of  at some specified time.

Refer now to figure IX.8.

We’ll suppose that at some time  we know the coordinates  or  of the planet, and also the velocity – that is to say
the speed and direction, or the - and - or the radial and transverse components of the velocity. That is, we know four
quantities. The subsequent path of the planet is then determined. In other words, given the four quantities (two components of
the position vector and two components of the velocity vector), we should be able to determine the four elements , ,  and 

. Let us try.

The semi major axis is easy. It’s determined from Equation :

a e ω a e

ω II.19 IX.7

II.19

ω θ v

r = = ,
l

1 +e cosv

l

1 +e cos(θ−ω)
(9.9.1)

l a(1 − )e2 a( −1)e2

q l = 2q

T

θ = 0

θ

t (x,  y) (r,  θ)

x y

a e ω

T

9.5.31

= GM( − ) .V 2 2

r

1

a
(9.5.31)
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If distances are expressed in  and if the speed is expressed in units of , , so that the semi
major axis in  is given by

In other words, if we know the speed and the heliocentric distance, the semi major axis is known. If  turns out to be infinite -
in other words, if  - the orbit is a parabola; and if  is negative, it is a hyperbola. For an ellipse, of course, the period
in sidereal years is given by .

From the geometry of figure , the transverse component of  is , which is known, the magnitude and
direction of  being presumed known. Therefore the angular momentum per unit mass is  times this, and, for an elliptic
orbit, this is related to  and  by Equation :

Again, if distances are expressed in  and  in units of , , and so

Thus  is determined.

The Equation to an ellipse is

so, provided the usual care is take in choosing the quadrant,  is now known.

From there we proceed:

and  is found. The procedure for a parabola or a hyperbola is similar.

At time , a comet is at ,  and it has a velocity with components ,  times 
. Find the orbital elements , ,  and . (In case you are wondering, a particle of negligible mass

moving around the Sun in an unperturbed circular orbit of radius one astronomical unit, moves with a speed of 
. This follows from the definition of the astronomical unit of length.)

Solution

Note in what follows that, although I am quoting numbers to only a few significant figures, the calculation at all times
carries all ten figures that my hand calculator allows. You will not get exactly the same results unless you do likewise. Do
not prematurely round off. I am using astronomical units of distance, sidereal years for time and speed in units of 

.

Be sure to get the quadrants right!

And now we are faced with a dilemma.  or . Which is it? This is a typical “quadrant problem”,
and it cannot be ignored. The two possible solutions give  or , and we have to decide which is
correct.

AU 29.7846917 km s−1 GM = 1

AU

a = .
r

2 −rV 2
(9.9.2)

a

= 2/rV 2 a

=P 2 a3

IX.8 V V sin(ψ−θ)

V r

a e 9.5.27a

h = .GMa(1 − )e2
− −−−−−−−−−−

√ (9.5.27a)

rV sin(ψ−θ) = .GMa(1 − )e2
− −−−−−−−−−−

√ (9.9.3)

AU V 29.7846917 km s−1 GM = 1

rV sin(ψ−θ) = .a(1 − )e2
− −−−−−−

√ (9.9.4)

e

r = ,
a(1 − )e2

1 +e cos(θ−ω)
(9.9.5)

ω

v= θ−ω, cosE = , M= E−e sinE = (t−T ),
e+cosv

1 +e cosv

2π

P
(9.8.1)
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r = 6.708,  θ = ,  V = 0.4472,  ψ =63∘26′ 116∘34′ (9.8.2)

P = 32.5 cos(θ−ω) = −0.21439a = 10.19 AU– ––––––––––––– e = 0.6593– –––––––––– (9.8.3)
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The two solutions are drawn in Figure . The continuous curve is the ellipse for  and the dashed curve is
the curve for . I have also drawn in the velocity vector at , and it is clear from the drawing that the
continuous curve with  is the correct ellipse. We now have

Is there a way of deducing this from the Equations rather than going to the trouble of drawing the ellipses? I offer the
following. I am going to find the slope (gradient) of each ellipse at the point . The correct ellipse is the one for which 

, i.e. . The Equation to the ellipse is

from which

The expression for  in polar coordinates is

and of course

From these, I obtain, in our numerical example,

for , and for ,

so clearly the latter is correct.

From this point we go:

and again we are presented with a dilemma, for this gives  or , and we have to decide which one is
correct. From the geometrical meaning of  and , we can understand that they are equal when each of them is either 
or . Since ,  must also be less than , so the correct choice is . From there,
we have

and the elements are now completely determined.

IX.9 ω =  321∘ 03′

ω =  165∘ 49′ (r,  θ)

ω =  321∘ 03′

ω =  321∘ 03′

– ––––––––––– (9.8.4)

P

ψ =  116∘ 34′ dy/dx = −2

r = = ,
1

1 +e cos(θ−ω)

a(1 − )e2

1 +e cos(θ−ω)
(9.9.6)

= .
dr

dθ

le sin(θ−ω)

[(1 +e cos(θ−ω)]2
(9.9.7)

(= tanψ)dx
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dx
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tanθ +rdr

dθ

−r tanθdr
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(9.9.8)

r = .+x2 y2
− −−−−−

√ (9.9.9)

ω =   ,  ψ =165∘ 49′ 190∘ ω =   ,  ψ =321∘ 03′ 165∘49′

v=   , cosE = 0.51817,102∘ 23′ (9.8.5)

E =  58∘ 47′  301∘ 13′

v E 0∘

180∘ v< 180∘ E 180∘ E =   = 1.0261 rad58∘ 47′

M=   = 0.46218 rad,26∘ 29′ T = −2.392sidreal years,
– –––––––––––––––––––––––
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Write a computer program, in the language of your choice, in which the input data are , and the output is 
 and . You will probably want to keep it simple at first, and deal only with ellipses. Therefore, if the program

calculates that  is not positive, exit the program then. I’m not sure how you will solve the quadrant problems. That will
be up to your ingenuity. Don’t forget that many languages have an  function. Later, you will want to expand
the program and deal with any set of , with a resulting orbit that may be any of the conic sections. Particularly
annoying cases may be those in which the planet is heading straight for the Sun, with no transverse component of
velocity, so that it is moving in a straight line, or a circular orbit, in which case  is undefined.

Notice that the problem we have dealt with in this section is the opposite of the problem we dealt with in Sections 9.6, 9.7 and
9.8. In the latter, we were given the elements, and we calculated the position of the planet as a function of time. That is, we
calculated an ephemeris. In the present section, we are given the position and velocity at some time and are asked to calculate
the elements. Both problems are of comparable difficulty. Perhaps the latter is slightly easier than the former, since we don’t
have to solve Kepler’s Equation. This might give the impression that calculating the orbital elements of a planet is of
comparable difficulty to, or even slightly easier than, calculating an ephemeris from the elements. This is, in practice, very far
from the case, and in fact calculating the elements from the observations is very much more difficult than generating an
ephemeris. In this section, we have calculated the elements, given the position and velocity vectors. In real life, when a new
planet swims into our ken, we have no idea of the distance or of the speed or the direction of motion. All we have is a set of
positions against the starry background, and the most difficult part of the problem of determining the elements is to determine
the distance.

The next chapter will deal with generating an ephemeris (right ascension and declination as a function of time) from the orbital
elements in the real three-dimensional situation. Calculating the elements from the observations will come much later.
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9.9: Osculating Elements
We have seen that, if we know the position and velocity vectors at a particular instant of time, we can calculate the orbital
elements of a planet with respect to the Sun. If the Sun and one planet (or asteroid or comet) are the only two bodies involved,
and if the Sun is spherically symmetric and if we can ignore the refinements of general relativity, the planet will pursue that
orbit indefinitely. In practice, however, the orbit is subject to perturbations. In the case of most planets moving around the
Sun, the perturbations are caused mostly by the gravitational attractions of the other planets. For Mercury, the refinements of
general relativity are important. The asphericity of the Sun is unimportant, although for satellites in orbit around aspherical
planets, the asphericity of the planet becomes important. In any case, for one reason or another, in practice, an orbit is subject
to perturbations, and the planet does not move indefinitely in the orbit that is calculated from the position and velocity vectors
at a particular time. The orbit that is calculated from the position and velocity vectors at a particular instant of time is called
the osculating orbit, and the corresponding orbital elements are the osculating elements. The instant of time at which the
position and velocity vectors are specified is the epoch of osculation. The osculating orbit touches (“kisses”) the real,
perturbed orbit at the epoch of osculation. The verb “to osculate”, from the Latin osculare, means “to kiss”.

For the time being, then, we shall be satisfied with calculating an osculating orbit, and with generating an ephemeris from the
osculating elements. In computing practice, for asteroid work, people compute elements for an epoch of osculation that is
announced by and changed by the Minor Planet Center of the International Astronomical Union every 200 days.
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9.10: Mean Distance in an Elliptic Orbit
It is sometimes said that “ ” in an elliptic orbit is the “mean distance” of a planet from the Sun. In fact  is the semi major axis
of the orbit. Whether and it what sense it might also be the “mean distance” is worth a moment of thought.

It was the late Professor C. E. M Joad whose familiar answer to the weighty questions of the day was “It all depends what you
mean by...” And the “mean distance” depends on whether you mean the distance averaged over the true anomaly  or over the
time. The mean distance averaged over the true anomaly is , where . If you are looking for some
nice substitution to help you to integrate this, Equation 2.13.6 does very nicely, and you soon find the unexpected result that
the mean distance, averaged over the mean anomaly, is , the semi minor axis.

On the other hand, the mean distance averaged over the time is . This one is slightly more tricky, but, following
the hint for evaluating , you could try expressing  and  in terms of the eccentric anomaly. It will take you a
moment or so, but you should eventually find that the mean distance averaged over the time is .

It is often pointed out that, because of Kepler’s second law, a planet spends more time far from the Sun that it does near to the
Sun, which is why we have longer summers than winters in the northern hemisphere. An easy exercise would be to ask you
what fraction of its orbital period does a planet spend on the sunny side of a latus rectum. A slightly more difficult exercise
would be to ask: What fraction of its orbital period does a planet spend closer to the Sun than its mean (time-averaged)
distance? You’d first have to ask, what is the true anomaly when ? Then you need to calculate the fraction of
the area of the orbit. Area in polar coordinates is . I haven’t tried this, but, if it proves difficult, I’d try and write  and

 in terms of the eccentric anomaly  and see if that helped.
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10.1: Introduction to an Ephemeris
The entire enterprise of determining the orbits of planets, asteroids and comets is quite a large one, involving several stages.
New asteroids and comets have to be searched for and discovered. Known bodies have to be found, which may be relatively
easy if they have been frequently observed, or rather more difficult if they have not been observed for several years. Once
located, images have to be obtained, and these have to be measured and the measurements converted to usable data, namely
right ascension and declination. From the available observations, the orbit of the body has to be determined; in particular we
have to determine the orbital elements, a set of parameters that describe the orbit. For a new body, one determines preliminary
elements from the initial few observations that have been obtained. As more observations are accumulated, so will the
calculated preliminary elements. After all observations (at least for a single opposition) have been obtained and no further
observations are expected at that opposition, a definitive orbit can be computed. Whether one uses the preliminary orbit or the
definitive orbit, one then has to compute an ephemeris (plural: ephemerides); that is to say a day-to-day prediction of its
position (right ascension and declination) in the sky. Calculating an ephemeris from the orbital elements is the subject of this
chapter. Determining the orbital elements from the observations is a rather more difficult calculation, and will be the subject of
a later chapter.
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10.2: Elements of an Elliptic Orbit
Six numbers are necessary and sufficient to describe an elliptic orbit in three dimensions. These include the four ( , ,  and 

) that we described in section 9.9 for the two dimensional case. Two additional angles, which will be given the symbols  and
, will be needed to complete the description of the orbit in 3-space.

The six elements of an elliptic orbit, then, are as follows.

 the semi major axis, usually expressed in astronomical units ( ).
 the eccentricity
 the inclination
 the longitude of the ascending node
 the argument of perihelion
 the time of perihelion passage

The three angles, ,  and  must always be referred to the equinox and equator of a stated epoch. For example, at present
they are usually referred to the mean equinox and equator of . The meanings of the three angles are explained in figure

 and the following paragraphs.

In figure  I have drawn a celestial sphere centred on the Sun. The two great circles are intended to represent the plane of
Earth’s orbit (i.e. the ecliptic) and the plane of a planet’s orbit – (i.e. not the orbit itself, but its projection on to the celestial
sphere.) The point  is the projection of the perihelion point of the orbit on to the celestial sphere, and the point  is the
projection of the planet on to the celestial sphere at some time. The two points where the plane of the ecliptic and the plane of
the planet’s orbit intersect are called the nodes, and the point marked is the ascending node. The descending node, , not shown
in the figure, is on the far side of the sphere. The symbol is the First point of Aries (now in the constellation Pisces), where the
ecliptic crosses the equator. As seen from the Sun, Earth is at on  or near September 22. (For the benefit of personal
computer users, I found the symbols , and  in Bookshelf Symbol 3.) 

The inclination i is the angle between the plane of the object’s orbit and the plane of the ecliptic (i.e. of Earth’s orbit). It lies in
the range o o 0 ≤ i < 180 . An inclination greater than 90o implies that the orbit is retrograde – i.e. that it is moving around the
Sun in a direction opposite to that of Earth’s motion.

The angle Ω, measured eastward from  to , is the ecliptic longitude of the ascending node. (The word
“ecliptic” is usually omitted as understood.) It goes from  to .
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10.3: Some Additional Angles
The sum of the two angles Ω and ω is often given the symbol ϖ (a form of the Greek letter pi), and is called (not entirely
accurately) the longitude of perihelion. It is the sum of two angles measured in different planes.

The angle , measured from perihelion to the planet, is the true anomaly of the planet at some time. We imagine, in addition to
the true planet, a “mean” planet, which moves at constant angular speed , so that the angle from perihelion to the mean

planet at time  is , which is called the mean anomaly at time . The words “true” and “mean” preceding the
word “anomaly” refer to the “true” planet and the “mean” planet.

The angle , measured from FIND SYMBOL, is the argument of latitude of the planet at time .

The angle  measured in two planes, is the true longitude of the planet. This is a rather
curious term, since, being measured in two planes, it is not really the true longitude at all. The word “true” refers to the “true”
planet rather than to the longitude.

Likewise the angle  is the mean longitude (i.e. the “longitude” of the “mean” planet.).
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10.4: Elements of a Circular or Near-circular Orbit
For a near-circular orbit (such as the orbits of most of the major planets), the position of perihelion and the time of perihelion
passage are ill-defined, and for a perfectly circular orbit they cannot be defined at all. For a near-circular orbit, the argument of
perihelion  (or sometimes the “longitude of perihelion”, ) is retained as an element, because there is really no other way of
expressing the position of perihelion, though of course the more circular the orbit the less the precision to which  can be
determined. However, rather than specify the time of perihelion passage , we usually specify some instant of time called the
epoch, which I denote by , and then we specify either the mean anomaly at the epoch, , or the mean longitude at the
epoch, , or the true longitude at the epoch, . For the meanings of mean anomaly, mean longitude and true longitude, refer
to section 3, especially for the meanings of “mean” and “true” in this context. Of the three, only  makes no reference
whatever to perihelion.

Note that you should not confuse the epoch for which you specify the mean anomaly or mean longitude or true longitude with
the equinox and equator to which the angular elements ,  and  are referred. These may be the same, but they need not be
(and usually are not). Thus it is often convenient to refer ,  and  to the standard epoch , but to give the mean
longitude for an epoch during the current year.
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10.5: Elements of a Parabolic Orbit
The eccentricity, of course, is unity, so only five elements are necessary. In place of the semi major axis, one usually specifies
the parabola by the perihelion distance . Presumably no orbit is ever exactly parabolic, which implies an eccentricity of
exactly one. However, many long-distance comets move in large and eccentric orbits, and we see them over such a short arc
near to perihelion that it is not possible to calculate accurate elliptic orbits, and we usually then fit a parabolic orbit to the
observations.
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10.6: Elements of a Hyperbolic Orbit
In place of the semi major axis, we have the semi transverse axis, symbol . This amounts to just a name change, although
some authors treat  for a hyperbola as a negative number, because some of the formulas, for example for the speed in an
orbit, , are then identical for an ellipse and for a hyperbola.

Although there is no fundamental reason why the solar system should not sometime receive a cometary visitor from interstellar
space, as yet we know of no comet with an original hyperbolic orbit around the Sun. Some comets, initially in elliptic orbits,
are perturbed into hyperbolic orbits by a close passage past Jupiter, and are then lost from the solar system. Such orbits are
necessarily highly perturbed and one cannot in general compute a reliable ephemeris by treating it as a simple two-body
problem; the instantaneous osculating elements will not predict a reliable ephemeris far in advance.
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10.7: Calculating the Position of a Comet or Asteroid
We suppose that we are given the orbital elements of an asteroid or comet. Our task is to be able to predict, from these, the
right ascension and declination of the object in the sky at some specified future (or past) date. If we can do it for one date, we
can do it for many dates - e.g. every day for a year if need be. In other words, we will have constructed an ephemeris.
Nowadays, of course, we can obtain ephemeris-generating programs and ephemerides with a few deft clicks on the Web,
without knowing so much as the difference between a sine and a cosine; but that way of doing it is not the purpose of this
section.

For example, according to the Minor Planet Center, the osculating elements for the minor planet (1) Ceres for the epoch of
osculation  May  are as follows:

,  and  are referred to the equinox and equator of .

Calculate the right ascension and declination (referred to ) at 2002 July .

We have already learned how to achieve much of our aim from Chapter 9. Thus, from the elements , ,  and  for an
elliptic orbit (or the corresponding elements for a parabolic or hyperbolic orbit) we can already compute the true anomaly 
and the heliocentric distance r as a function of time. These are the heliocentric polar coordinates of the body (henceforth
“asteroid”). In order to find the right ascension and declination (i.e. geocentric coordinates with the celestial equator as -
plane) all we have to do is to find the coordinates relative to the ecliptic, rotate the coordinate system from ecliptic to
equatorial, and shift the origin of coordinates from Sun to Earth,. We just have to do some straightforward geometry, and no
further dynamics.

Let’s start by doing what we already know how to do from Chapter 9, namely, we’ll calculate the true anomaly and the
heliocentric distance.

Mean anomaly at the epoch ( ) is .
Mean anomaly at time . which is 70 days later) is given by

The quantity  is called the mean motion (actually the average orbital angular speed of the planet), usually given the
symbol . We can calculate  in sidereal years from , and, given that a sidereal year is  and that 
radians is 360 degrees, we can calculate the mean motion in its usual units of degrees per day. We find that 
degrees per day. In fact the Minor Planet Center, as well as giving the orbital elements, also lists, for our convenience, the
mean motion, and they give  degrees per day. The small discrepancy between the  given by the Minor
Planet Center and the value that we have calculated from the published value of a presumably arises because the published
values of the elements have been rounded off for publication, and the Minor Planet Center presumably carries all digits in its
calculations. I would recommend using the value of  published by the Minor Planet Center, and I do so here. By July 15,
then, Equation 10.7.1 tells us that the mean anomaly is . (I’m carrying six decimal places, even though 
is given only to five, just to be sure that I’m not accumulating rounding-off errors in the intermediate calculations. I’ll round
off properly when I reach the final result.)

We now have to find the eccentric anomaly from Kepler’s Equation . Easy. (See chapter 9 if you’ve
forgotten how.) We find  and, from Equations 2.3.16 and 17, we obtain the true anomaly 

. The polar Equation to an ellipse is ,  so we find that the heliocentric distance is 
. (The Minor Planet Centre gives , to four significant figures, as .) So much we could already do

from Chapter 9. Note also that , known as the argument of latitude and often given the symbol , is .

We are going to have to make use of three heliocentric coordinate systems and one geocentric coordinate system.

= 2002t0 6.0 TT

a = 2.766 412 2 AU Ω = .486 3280∘

e = 0.079 115 8 ω = .984 4073∘

i = .583 47 = .275 0010∘ M0 189∘

i Ω ω J2000.0

J2000.0 15.0 TT

a e ω T

v

xy

= May 6.0t0 = .275 00M0 189∘

t (= July 15

M − = (t − ).M0
2π

P
t0 (10.7.1)

2π/P

n P =P 2 a3  .25636365d 2π

n = 0.214 205

n = 0.214 204 57 n

n

M = .269342204∘ M0

M = E −e sinE

E =  .5322784202∘

v =  .8540289200∘ r = .
a(1− )e2

1+e cos v

r = 2.968 5716 au r 2.969 au

ω +v θ  .838 429274∘
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1. Heliocentric plane-of-orbit.  with the ?x axis directed towards perihelion. The polar coordinates in the plane of
the orbit are the heliocentric distance r and the true anomaly v. The z-component of the asteroid is necessarily zero, and 

 and .

2. Heliocentric ecliptic.  with the  axis directed towards the First Point of Aries, where Earth, as seen from
the Sun, will be situated on or near September 22. The spherical coordinates in this system are the heliocentric distance
r, the ecliptic longitude , and the ecliptic latitude , such that ,  and .

INSERT FIGURE HERE

3. Heliocentric equatorial coordinates.  with the  axis directed towards the First Point of Aries and therefore
coincident with the X axis . The angle between the Z axis and the ζ axis is ε, the obliquity of the ecliptic. This is also the
angle between the XY-plane (plane of the ecliptic, or of Earth’s orbit) and the ξη-plane (plane of Earth’s equator). See
figure X.4.

4. Geocentric equatorial coordinates.  with the  axis directed towards the First Point of Aries. The spherical
coordinates in this system are the geocentric distance , the right ascension  and the declination , such that 

,  and .

In figure X.2, the arc  is the heliocentric ecliptic longitude  of the asteroid, and so  is . The arc  is the
heliocentric ecliptic latitude . By two applications of Equation 3.5.5 we find

and

These reduce to

and

In our particular example, we obtain (if we are careful to watch the quadrants),

Now, we’ll take the X-axis for the heliocentric ecliptic coordinates through  and the -axis  east of this. Then, by the
usual formulas for converting between spherical and rectangular coordinates, that is, ,  and

, we obtain

(Check: . )

Show, by elimination of  and , or otherwise, that:

This will provide a more convenient way of calculating the coordinates. Verify that these give the same numerical result
as before. Here are some suggestions for doing it “otherwise”

Refer to Figure , in which  is the pole of the ecliptic, and  is the asteroid. The radius of the celestial sphere can be
taken as equal to , the heliocentric distance of the asteroid. The rectangular heliocentric ecliptic coordinates are

⊙xyz

x = r cos v y = r sinv

⊙XY Z ⊙X

λ β X = r cos β cos λ Y = r cos β sinλ Z = r sinβ

FIGURE X.2

⊙ξηζ ⊙ξ

⊕xyz ⊕x

Δ α δ

x = Δ cos δ cos α y = Δ cos δ sinα z = Δ sinδ

ΥN λ NN λ −Ω NX

β

cos(λ −Ω) cos i = sin(λ −Ω) cot(ω +v) −sin i cot 90∘ (10.7.2)

cos(λ −Ω) cos = sin(λ −Ω) cot β −sin cot i.90∘ 90∘ (10.7.3)

tan(λ −Ω) = cos i tan(ω +v) (10.7.4)

tanβ = sin(λ −Ω) tan i. (10.7.5)

λ −Ω = .921 7550, λ = .408 0750, β = − .545 3234274∘ 355∘ 10∘

Υ Y 90∘

X = r cos β cos λ Y = r cos β sinλ

Z = r sinβ

X = +2.909 0661, Y = −0.233 6453, Z = −0.543 2880 au.

+ + =X2 Y 2 Z2 r2

Exercise 10.7.1

λ β

X = r(cos Ω cos θ −sinΩ sinθ cos i) (10.7.6)

Y = r(sinΩ cos θ +cos Ω sinθ cos i) (10.7.8)

Z = r sinθ sin i. (10.7.9)

X.3 K X

r
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10.9: Computing an Ephemeris
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CHAPTER OVERVIEW
11: PHOTOGRAPHIC ASTROMETRY
Astrometry is the art and science of measuring positions of celestial objects, and indeed the first step
in determining the orbit of a new asteroid or comet is to obtain a set of good astrometric positions.
For much of the twentieth century, most astrometric positions were determined photographically.

11.1: INTRODUCTION TO PHOTOGRAPHIC ASTROMETRY
Why, then, would you ever want to read a chapter on photographic astrometry? Well, perhaps you
won’t. After all, to convert your observations to right ascension and declination today, a single key
on your computer keyboard will do it all. But this is because someone, somewhere, and usually a
very anonymous person, has written for you a highly efficient computer program that carries out
all the necessary calculations. Thus you can probably safely bypass this chapter.

11.2: STANDARD COORDINATES AND PLATE CONSTANTS
11.3: REFINEMENTS AND CORRECTIONS

11.3.1: PARALLAXES OF THE COMPARISON STARS
11.3.2: PROPER MOTIONS OF THE COMPARISON STARS
11.3.3: REFRACTION
11.3.4: ABERRATION OF LIGHT
11.3.5: OPTICAL DISTORTION
11.3.6: ERRORS, MISTAKES AND BLUNDERS
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11.1: Introduction to Photographic Astrometry
Astrometry is the art and science of measuring positions of celestial objects, and indeed the first step in determining the orbit
of a new asteroid or comet is to obtain a set of good astrometric positions. For much of the twentieth century, most astrometric
positions were determined photographically, although transit circle measurements were (and still are in some applications)
important. A photographic plate or film would be baked for several hours in an oven in an atmosphere of dry hydrogen and
nitrogen. This “hypersensitization” was known to increase the sensitivity of the emulsion in long exposures. The film would
then be exposed through a telescope to an area of the sky containing the asteroid. An hour or so later, a second photograph
would be exposed, the asteroid presumably having moved slightly between the exposures. Exposure times would be from
several minutes to an hour or even more, and the telescope had to be carefully guided throughout the long exposure. After
exposure, the film had to be developed in a chemical solution in a dark-room, then “fixed” in another solution, washed under
running water, and hung up to dry. After these procedures, which took some hours, preparation for measurement could start.
The first thing to do would be to identify the asteroid. (In Mrs Beecham’s words, “First catch your hare”.) To do this, the two
photographs would be viewed rapidly one after the other with a blink comparator (in which case the asteroid would move to
and fro) or viewed simultaneously with a stereocomparator (in which case the asteroid would appear to be suspended in air
above the film). Next, a number of comparison stars would have to be identified. This would be done by consulting a star
catalogue and laboriously plotting the positions of the stars on a sheet of paper and comparing the pattern with what was seen
on the photographs.

Each photograph would then be placed in a “measuring engine”, or two-coordinate measuring microscope, and the - and -
coordinates of the stars and the asteroid would be measured. Tedious calculations would be performed to convert the
measurements to right ascension and declination. The results of this process, which would typically take several hours, would
then be sent by mail to the Minor Planet Center of the International Astronomical Union in Cambridge, Massachusetts.

Starting in the early 1990s, photographic astrometry started to be superseded by  (charge coupled device) astrometry, and
today almost no astrometry is done photographically, the  having taken over more or less completely. Everyone knows
that the quantum efficiency of a  is far superior to that of a photographic emulsion, so that one can now image much
fainter asteroids and with much shorter exposures. But that is only the beginning of the story – the  and other modern
technologies have completely changed the way in which astrometry is carried out. For example, vast catalogues containing the
positions of hundreds of millions of faint stars are stored in computer files, and the computer can automatically compare the
positions of the stars in its catalogue with the star images on the ; thus the hitherto laborious process of identifying the
comparison stars is carried out automatically and almost instantaneously. Further, there is no measurement to be done – each
stellar image is already sitting on a particular pixel (or group of pixels), and all that has to be done is to read which pixels
contain the stellar images. The positional measurements are all inherently completed as soon as the  is exposed. The
positional measurements (of dozens of stars rather than a mere half-dozen) can then be automatically transferred into a
computer program that carries out the necessary trigonometrical calculations to convert them to right ascension and
declination, and the results can then be automatically sent by electronic mail to the Minor Planet Center. The entire process,
which formerly took many hours, can now be done in less than a minute, to much higher precision than formerly, and for much
fainter objects.

Why, then, would you ever want to read a chapter on photographic astrometry? Well, perhaps you won’t. After all, to convert
your observations to right ascension and declination today, a single key on your computer keyboard will do it all. But this is
because someone, somewhere, and usually a very anonymous person, has written for you a highly efficient computer program
that carries out all the necessary calculations, so that you can do useful astrometry even if you don’t know the difference
between a sine and a cosine. Thus you can probably safely bypass this chapter.

However, for those who wish to plod through it, this chapter describes how to convert the positional measurements on a
photographic film (or on a CCD) to right ascension and declination – a process that is carried out by modern computer
software, even if you are unaware of it. Much of this chapter is based on an article by the author published in the Journal of
the Royal Astronomical Society of Canada , 97 (1982), and you may want to consult that in the hope that I might have made
it clear in either one place or the other.
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11.2: Standard Coordinates and Plate Constants
We shall suppose that the optic axis of the telescope, whose effective focal length is , is pointing to a point  on the celestial
sphere, whose right ascension and declination are . The stars, as every astrophysicist knows, are scattered around on
the surface of the celestial sphere, which is of arbitrary radius, and I shall take the radius to be equal to , the focal length of
the telescope. In figure , I have drawn the tangent plane to the sky at , which is what will be recorded on the
photograph. In the tangent plane (which is similar to the plane of the photographic plate or film) I have drawn two orthogonal
axes:  to the east and  to the north. I have drawn a star, , whose coordinates are , on the surface of the celestial
sphere, and its projection, , on the tangent plane, where its coordinates are . Every star is similarly mapped on to the
tangent plane by a similar projection. The coordinates  are called the standard coordinates of the star, and our first task is
to find a relation between the equatorial coordinates  on the surface of the celestial sphere and the standard coordinates 

 on the tangent plane or the photograph.

In figure , I have re-drawn figure , and, in addition to the star  and its projection , I have also drawn the north
Celestial Pole  and its projection . The point  is on the  axis. The spherical triangle  maps onto the plane triangle 

. On the spherical triangle , the side  and the side .

The angle  in the spherical triangle  is equal to the angle  in the plane triangle , and I shall call that
angle . I shall call the arc  in the spherical triangle . In figure  I draw the tangent plane, showing the  and η-axes
and the projections,  and  of the pole  and the star , as well as the plane triangle .
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The  and  coordinates of  are . And by staring at figures  and  for a while, you can see
that . Thus the standard coordinate of the image  of the star on the photograph, in units of the focal length of
the telescope, are . It remains now to find expressions for  and  in terms of the
right ascensions and declinations of  and of . I draw now, in figure , the spherical triangle .

It is easy, from the usual formulas for spherical triangles, to obtain expressions for  and for  :

and

from which one can (eventually) calculate the standard coordinates  of the star. It is also possible to calculate explicit
expressions for  and for . Thus, by further applications of the spherical triangle formulas, we have

Multiplication of Equation  by  gives  except that  appears on the right hand side. This, however,
can be eliminated by use of Equation , and one obtains, after some algebra:

In a similar way, you can multiply Equation  by , and again eliminate  and eventually arrive at

These give the standard coordinates of a star or asteroid at  in units of the focal length .

FIGURE XI.3
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cosε = sinδ sinD+cosδ cosD cos(α−A) (11.2.1)
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(11.2.2)

(ξ, η)

tanε sinγ tanε cosγ

tanε = .
cosD

sinD cosγ+cot(α−A) sinγ
(11.2.3)

11.2.3 sinγ tanε sinγ tanγ

11.2.2

ξ = tanε sinγ = .
sin(α−A)

sinD tanδ+cosD cos(α−A)
(11.2.4)

11.2.3 cosγ tanγ

η = tanε cosγ = .
tanδ−tanD cos(α−A)

tanD tanδ+cos(α−A)
(11.2.5)
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Now it would seem that all we have to do is to measure the standard coordinates  of an object, and we can immediately
determine its right ascension and declination by inverting Equations  and :

and

Indeed in principle that is what we have to do – but in practice we are still some way from achieving our aim.

One small difficulty is that we do not know the effective focal length  (which depends on the temperature) precisely. A more
serious problem is that we do not know the exact position of the plate centre, nor do we know that the directions of travel of
our two-coordinate measuring engine are parallel to the directions of right ascension and declination.

The best we can do is to start our measurements from some point near the plate centre and measure (in mm rather than in units
of ) the horizontal and vertical distances  of the comparison stars and the asteroid from our arbitrary origin. These 

 coordinates are called, naturally, the measured coordinates.

The measured coordinates will usually be expressed in millimetres (or perhaps in pixels if a CCD is being used), and the linear
distance  between any two comparison star images is found by the theorem of Pythagoras. The angular distance  between
any two stars is given by solution of a spherical triangle as

The focal length  is then , and this can be calculated for several pairs of stars and averaged. From that point the standard
coordinates can then be expressed in units of .

The measured coordinates  are displaced from the standard coordinates  by an unknown translation and an
unknown rotation (figure ) , but the relation between them, if unknown, is at least linear (but see subsection ) and
thus of the form:

The constants  are the plate constants. They are determined by measuring the standard coordinates for a minimum of three
comparison stars whose right ascensions and declinations are known and for which the standard coordinates can therefore be
calculated. Three sets of Equations  and 10 can then be set up and solved for the plate constants. In practice more than
three comparison stars should be chosen, and a least squares solution determined. For how to do this, see either section 8 of
chapter 1, or the article cited in section 1 of this chapter. In the photographic days, just a few (perhaps half a dozen)
comparison stars were used. Today, when there are catalogues containing hundreds of millions of stars, and 
measurement and automatic computation are so much faster, several dozen comparison stars may be used, and any poor
measurements (or poor catalogue positions) can quickly be identified and rejected.

Having determined the plate constants, Equations  and 10 can be used to calculate the standard coordinates of the
asteroid, and hence its right ascension and declination can be calculated from Equations  and 7.

(ξ, η)

11.2.4 11.2.5

tan(α−A) =
ξ

cosD−η sinD
(11.2.6)

tanδ = .
(η cosD+sinD) sin(α−A)

ξ
(11.2.7)

F

F (x, y)

(x, y)

s ω

cosω = sin sin +cos cos cos( − )δ1 δ2 δ1 δ2 α1 α2 (11.2.8)

F s/ω

F

(x, y) (ξ, η)

XI.4 11.3.5

ξ−x = ax+by+c, (11.2.9)

η−y = dx+ey+f . (11.2.10)

a– f
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It should be noted that the position of the asteroid that you have measured – and should report to the Minor Planet Center, is
the topocentric position (i.e. as measured from your position on the surface of Earth) rather than the geocentric position (as
seen from the centre of Earth). The Minor Planet Center expects to receive from the observer the topocentric position; the
MPC will know how to make the correction to the centre of Earth.
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11.3: Refinements and Corrections

For precise work there are a number of refinements that should be considered, some of which should be implemented, and
some which probably need not be. Things that come to mind include parallax and proper motion of the comparison stars,
refraction, aberration, optical distortion, mistakes – which include such things as poor measurements, blends, poor or
erroneous catalogue positions or any of a number of mistakes caused by human or instrumental frailty. If you write your own
reduction programs, you will know which of these refinements you have included and which you have left out. If you use a
“pre-packaged” program, you may not always know whether a given correction has been included.

Let us now look at some of these refinements.
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11.3.1: Parallaxes of the Comparison Stars
Unless you are unlucky enough to choose as one of your comparison stars Proxima Centauri (whose parallax is much less than
an arcsecond), the parallaxes of the comparison stars are not normally something that the asteroid astrometrist has to worry
about.
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11.3.2: Proper Motions of the Comparison Stars
Corrections for the proper motions of the comparison stars should certainly be made if possible.

Until a quarter of a century or so ago, a typical stellar catalogue used by asteroid observers was the Smithsonian Astrophysical
Stellar Catalog containing the positions and proper motions of about a quarter of a million stars down to about magnitude 9.
This catalogue gives the position (right ascension and declination referred to the equinox and equator of ) of each star
at the time of the original epoch when the photograph on which the catalogue was based, and also the position of each star
corrected for proper motion to the epoch 1950.0, as well as the proper motion of each star. Thus for the star  the
position (referred to the equinox and equator of ) at the original epoch is given as

and the proper motion is given as

The epoch of the original source is not immediately readable from the catalogue, but can be deduced from information therein.
In any case the catalogue gives the position (referred to the equinox and equator of ) corrected for proper motion to
the epoch 1950.0:

Now, suppose that you had taken a photograph in 1980. At that time we were still referring positions to the equinox and
equator of  (today we use ), but you would have to correct the position for proper motion to 1980; that is, you
need to apply the proper motion for the 30 years since 1950. The position, then, in 1980, referred to the equinox and equator of

) was

and this is the position of the star that should be used in determining the plate constants.

One problem with this was that the proper motions were not equally reliable for all the stars (although the catalogue does list
the formal standard errors in the proper motions), and there are a few stars in which the proper motion is even given with the
wrong sign! In such cases, correcting for proper motion obviously does more harm than good. However, the stars with the
“worst” proper motions are generally also those with the smallest proper motions; it can probably be assumed that the stars
with significant proper motions also have proper motions that are well determined.

The situation changed in the 1990s with the widespread introduction of CCDs and the publication of the Guide Star Catalog
containing positions of about half a billion stars down to about magnitude 21. With modern instrumentation one would never
normally consider using comparison stars anything like as bright as magnitude 9 (the faint limit of the  Catalog). You
now have the opportunity of choosing many more comparison stars, and faint ones, whose positions can be much more
precisely measured than bright stars. Also, the Guide Star Catalog gives positions referred to the equinox and equator of 

, which is the present-day norm for reporting astrometric positions. A difficulty is, however, that the  positions
were obtained at only one epoch, so that proper motions are not available for the  stars, and hence proper motions cannot
be applied. The standard response to this drawback is that, since faint stars (magnitude 16 and fainter) can be used, proper
motions are negligible. Further, the epoch at which the  positions were obtained is recent, so again the proper motion
correction is negligible. One always had certain qualms about accepting this assurance, since the apparent magnitude of a star
depends not only on its distance but also on its absolute luminosity. Stars are known to have an enormous range in luminosity,
and it is probable that stars of low luminosity stars are the commonest stars in the Galaxy, and consequently many of the
apparently faint stars in the  may also be intrinsically faint stars that are nearby and may have appreciable proper
motions. Furthermore, as time marches inexorably on, the epoch of the  becomes less and less “recent” and one cannot go
on indefinitely declaring that proper motion corrections are negligible.

Today, however, the catalogue favoured for astrometric observations of asteroids is the  Catalog. (USNO = United
States Naval Observatory.) This has positions and proper motions for more than a billion objects, so there is no longer any
excuse for not applying proper motion corrections to the comparison stars.
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11.3.3: Refraction
Refraction of starlight as it passes through Earth’s atmosphere displaces the position of the star towards the zenith. The amount
of the refraction is not large close to the zenith, but it amounts to about half a degree near the horizon. Earth’s atmosphere is
but a thin skin compared with the radius of Earth, and, provided that the star is not close to the horizon, we may treat the
atmosphere as a plane-parallel atmosphere. The situation is illustrated in figure .

The angle  is the true zenith distance – i.e. the zenith distance it would have in the absence of an atmosphere. The angle  is
the apparent zenith distance. By application of Snell’s law, we have , and if we let , this becomes

Divide both sides by  and make the approximations (correct to first order in ) , , and we obtain

The refractive index at ground level varies a little with temperature and pressure, but it averages about . (You
didn’t know that refractive index was expressed in arcseconds, did you?)

We have made some approximations in deriving Equation , but it must be borne in mind that, as far as astrometry is
concerned, what is important is the differential refraction between the bottom and top of the detector (photographic film or 

), and Equation  should be more than adequate – unless one is observing very close to the horizon. The only time
when one is likely to be observing close to the horizon would be for a bright comet, for which it is very difficult to make
precise measurements anyway. The differential refraction between top and bottom obviously amounts to

where  is the range of zenith distance covered by the detector. In the table below I show the differential refraction between
top and bottom of a detector (such as a photographic film) with a 5-degree field, and for a detector (such as a ) with a 20-
arcminute field, for four zenith distances. Obviously, the correction for differential refraction should be made for the 5-degree
photographic field. It might be argued that, for the relatively small field of a 20-arcminute , the correction for differential
refraction is unimportant. However, the precision expected for modern  astrometry is rather higher than the precision that
was expected during the photographic era, and certainly, for large zenith distances, if one hopes for sub-arcsecond astrometry,
a correction for differential refraction is desirable. Bear in mind, too, that CCDs are becoming larger as technology advances,
and that the larger the CCD, the more important will be the refraction correction.
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The most straightforward way of correcting for differential refraction is to calculate the true zenith distance  and azimuth 
of each comparison star by the usual methods of spherical astronomy:

and

Here  is the observer’s latitude, and  is the hour angle of the star, to be found from its right ascension and the local sidereal
time. Having found , then calculate the apparent zenith distance  from Equation  (refraction does not, of course,
change the azimuth), and then invert Equations  and  to obtain the apparent hour angle  (and hence apparent
right ascension ) and apparent declination  of the star. Do this for all the comparison stars. (By hand, this might sound long
and tedious, but of course when a computer is programmed to do it, it is all automatic and instantaneous.)

and

You can then carry out the measurements and from them calculate the apparent right ascension and declination of the asteroid.
From these, calculate the apparent zenith distance. Correct this to obtain the true zenith distance, and finally calculate the true
right ascension and declination of the asteroid – again all of this is done instantaneously once you have correctly programmed
the computer.

Another aspect of refraction that might be considered is that blue (early-type) stars are refracted more than red (late-type) stars.
In principle, therefore, one should use only comparison stars that are of the same colour as the asteroid. In practice, I imagine
that few astrometrists always do this. If, by ill-fortune, one of the comparison stars is very red or very blue, this may result in a
large residual for that star, and the star can be detected and rejected, as described in subsection . Yet another aspect is
that, because of dispersion, the light from the star – especially if it is low down near the horizon − will be drawn out into a
short spectrum, with the red end closer to the horizon than the blue end, and there is then a problem of how to measure the
position of the star. The answer is probably to leave asteroids that are close to the horizon to observers who are at a more
favourable latitude. As mentioned above, the only time you are likely to observe very low down would be for a long-period
comet, on which you cannot set extremely precisely in any case.
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11.3.4: Aberration of Light
By “aberration” I am not referring to optical aberrations produced by lenses and mirrors, such as coma and astigmatism and
similar optical aberrations, but rather to the aberration of light resulting from the vector difference between the velocity of
light and the velocity of Earth. (In these notes, the word “velocity” is used to mean “velocity” and the word “speed” is used to
mean “speed”. The word “velocity” is not to be used merely as a longer and more impressive word for “speed”.)

The effect of aberration is to displace a star towards the Apex of the Earth’s Way, which is the point on the celestial sphere
towards which Earth is moving. The apex is where the ecliptic intersects the observer’s meridian at 6 hours local apparent
solar time. The amount of the aberrational displacement varies with position on the sky, being greatest for stars  from the
apex. It is then of magnitude , where  and  are the speeds of Earth and light respectively. This amounts to 20.5
arcseconds. (You didn’t know that the speed of Earth could be expressed in arcseconds, did you?) But what matters in
astrometry is the differential aberration between one edge of the detector (photographic film or ) and the other. Evidently
this is going to be a much smaller effect than differential refraction.

Let us examine the effect of aberration in figures  and .

Part (a) of the figure shows a stationary reference frame. By “stationary” I mean a frame in which Earth, , is moving towards
the apex at speed . Light from a star is approaching Earth at speed  from a direction that makes an angle ,
which I shall call the true apical distance, with the direction to the apex.

Part (b) shows the same situation referred to a frame in which Earth is stationary; that is the frame (b) is moving towards the
apex with speed  relative to the frame (a). Referred to this frame, the speed of light is , and it is coming from a direction ,
which I shall call the apparent apical distance.

I refer to the difference  as the aberrational displacement.

For brevity I shall refer to the direction to the apex as the “ -direction” and the upwards direction in the figures as the “ -
direction”.

Referred to frame (a), the -component of the velocity of light is , and referred to frame (b), the -component of the
velocity of light is . These are related by the Lorentz transformation between velocity components:

Referred to frame (b), the y-component of the velocity of light is , and referred to frame (b), the -component of the
velocity of light is . These are related by the Lorentz transformation between velocity components:

in which, if need be, a  can be cancelled from each side of the Equation. In Equation ,  is the Lorentz factor 
.

Equations 11.3.8 and 9 are not independent; indeed one may be regarded as just another way of writing the other. One easy
way to show this, for example, is to show that . In any case, either of them gives  as a function of 
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and .

Figure  shows  as a function of  for  and .

For Earth in orbit around the Sun,  and , which corresponds to an angle of . Thus the
aberrational displacement is very small. If we write , Equation  takes the form to first order in :

from which, after a very little algebra, we find

or, since 

Thus we see that the aberrational displacement is zero at the apex and at the antapex, and it reaches is greatest value, ,
ninety degrees from the apex.

As with refraction, however, it is the differential aberration that counts, and if the diameter of the detector field is , the
difference  in the aberrational displacement across the field is

Notice that the differential aberration is greatest at the apex and antapex, and is zero ninety degrees from the apex. It might be
noted that the opposition point, where perhaps the majority of asteroid observations are made, is ninety degrees from the apex.

The following table, similar to the one shown for differential refraction, shows the differential aberration across five-degree
and 20-arcminute fields for various apical distances.
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It might be concluded that the effect of differential aberration is so small as to be scarcely worth worrying about in most
circumstances. However, the expectations for the precision of asteroid astrometry are now rather stringent and are likely to
become more exacting as time progresses, and for precise work the correction should be made. One of the problems with pre-
packaged astrometry programs is that the user does not always know what corrections are included in the package. The surest
way is to do it oneself.

In figure ,  is the north celestial pole,  is the apex of the Earth’s way, and  is a star of true equatorial coordinates 
. The apical distance  is . The angle θ is α(X) − α(A), the angle  is , and  is the distance from pole to apex.

It is assumed that the observer knows how to calculate ω and ψ by the usual formulas of spherical astronomy, and hence that
all angles in figure  are known.

From the cotangent formula, we have

If  is increased by , the corresponding increase in  is given by

Here , where  and  are, respectively, the true and apparent right ascensions of the star, and  is 
, which is . It is easy to err in sign at this point, so I re-write Equation  more explicitly:

Here  is the aberrational displacement of  towards  given by Equation . On substitution of Equation  into
Equation , this becomes, then,
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This enables us to calculate the apparent right ascension of the star.

The declination is obtained from an application of the cosine formula:

from which

Here again, as in the usual convention of calculus,  represents an increase in  and  is the corresponding increase in . But
aberration results in a decrease of apical distance, so that .

Equation 11.3.19 enables us to calculate the apparent declination of the star.

From the measurements of the positions of the comparison stars and the asteroid, we can now calculate the apparent right
ascension and declination of the asteroid, and, by inversion of Equations  and 11.3.19, we can determine the true right
ascension and declination of the asteroid.
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11.3.5: Optical Distortion
I refer here to pincushion or barrel distortion introduced by the optical system. This results in a displacement of the stellar
images towards or away from the plate centre. Unlike differential refraction or aberration of light, the stellar displacements are
symmetric with respect to inversion through the plate centre. This is also true of the optical aberration known as coma. A
comatic stellar image results in a displacement of the centre of the stellar image away from the plate centre. Thus we can deal
with distortion and coma in a similar manner.

This can be best dealt with by assuming a quadratic relation for the difference between true and measured coordinates:

There are six plate constants in each coordinate, and therefore a minimum of six comparison stars are necessary to solve for
them. If more that six are used (which is highly desirable) a least squares solution can be obtained for the plate constants. One
then follows the same procedure as in the linear case.
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11.3.6: Errors, Mistakes and Blunders
I was once told that the distinction between errors, mistakes and blunders was roughly as follows. Errors are the inevitable
small variations caused by imprecision of measurement, or, in the case of computation, the small random errors produced by
rounding off (which, incidentally, should not be done before the final “answer” is arrived at). Mistakes are things such as
writing a 3 instead of 4, or 56 instead of 65, or writing 944 instead of 994 (this is a common one), or reading a poorly-
handwritten 6 as a 0 or a 4, or writing a plus sign instead of a minus (this sort of mistake can be quite large!), or thinking that
six times eight is 42. A blunder is a complete misconception of the entire problem!

Even with the greatest care, errors and mistakes can occur during measurement and reduction of an astrometric plate. The
important thing is to find them and either correct or reject them. A stellar image can be contaminated by blending with another
star or with a blemish on the plate. A star can be misidentified. There may be a mistake in the catalogued position, or the
proper motion may be poor. A measurement can be poor simply because of fatigue or carelessness.

If only the minimum number of comparison stars are used (i.e. three for a linear plate solution, six for a quadratic plate
solution), there is no way of detecting errors and mistakes other than carefully repeating the entire measurement and
calculation. Error and mistake detection requires an overdetermination of the solution, by using more than the minimum
number of comparison stars.

What has to be done is as follows. Once the plate constants have been determined, the right ascension and declination of each
of the comparison stars must be calculated, and compared with the right ascension and declination given in the catalogue. The
difference (  is determined for each star, and the standard deviation of the residuals is calculated. Any star with a
residual of more that two or three standard deviations should be rejected. The exact criterion for rejection will depend on how
many stars we used. Statistical tests will determine the probability that a given residual is a random or gaussian deviation from
zero. A full and proper statistical test is slightly laborious (although a computer can make short work of it), and many
measurers may decide to reject any star whose residual is more than 2.5 standard deviations from zero, even if this is not
strictly the correct statistical way of doing it.
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12: CCD Astrometry
It is now many years since  (charge-coupled device) astrometry replaced the photographic plate for astrometry. In
practice all astrometry these days is performed with  and associated technology, the one possible exception being the
measurement of photographs of meteors, which are still commonly recorded on photographic film – although it is probable
that the  or similar technology will soon replace photographic films even for the measurement of meteors. This chapter,
therefore, ought to have been a high priority chapter in the series. It has, unfortunately been delayed while my attention has
been occupied with other matters, and in the meantime I have allowed modern methods in astrometry to slip by me and I am
not at all qualified to write an authoritative or detailed account of this important subject. However, from time to time
correspondents have urged me to fill the gap in this series of topics in celestial mechanics. I shall respond not with an
authoritative account of the detailed observing and reduction techniques, but rather with a few general remarks. These remarks
will include a comparison of the new methods of  astrometry with the older photographic methods. While such a
comparison may be of interest to some, the younger generation may be bewildered by it, for, to the modern  astrometrist,
the  is not "new" technology at all; it is not only well established but it is the only technology they have ever known.
Many have never handled photographic materials, and indeed photographic emulsions to them are part of the early history of
astronomy. Nevertheless some comparison with the old and the new may be of interest.

When  first came into use in astrometry, it was early evident that useful images could be obtained on a  far faster
than on a photographic emulsion, that far fainter stars could be reached, and higher precision was obtainable. Initial misgivings
were that the devices were small and covered only a small area of sky, so that only a few comparison stars were available.
Available star catalogues contained positions of only a few hundred thousand stars. As time passed, catalogues were produced
that contained many more stars, but there were still misgivings because the newer catalogues, while containing many more
stars than the earlier traditional ones, were single-epoch catalogues lacking proper motion data. Against this objection it would
be argued that the many faint stars in the newer catalogues were so distant that their proper motions were negligible. This was
something of an act of faith, because it is by no means improbable that our Galaxy contains a large number of intrinsically
faint stars that are relatively close to us and which may therefore have appreciable proper motions. A further misgiving was
that  were relatively insensitive to the blue end of the spectrum – the opposite situation from photographic emulsions,
which were typically more sensitive to blue light than to red.

These early perceived drawbacks are now a thing of the past. Modern catalogues suitable for astrometry are available "on
line", and contain billions of star positions, and even the initial lack of proper motions is being rapidly remedied.

Let us recall what was involved in obtaining usable astrometric positions of, for example, asteroids, in the photographic era,
and compare the situation with the methods in common use today.

In what follows I describe the several steps involved in obtaining and measuring an astrometric position of an asteroid. Under
each step I outline what was done (a) in the photographic days and (b) with modern  methods.

1. (a) First you had to obtain a photograph of the asteroid. (As Mrs Beeton would have written: "First catch your hare".) To do
this would require an exposure of many minutes, or even an hour or even more. During this long exposure time, it was
difficult – and tiring – to ensure that the telescope was tracking the stars accurately over such a long time. You could not
just allow the telescope to be driven, unattended, by its sidereal drive, but the observer had to stay at the eyepiece for the
whole duration of the exposure, constantly vigilant against any small departures from perfect tracking. Of course you
would need a second photograph – because the asteroid could only be identified by its motion against the background of
the fixed stars. Typically one would wait about an hour before taking the second photograph.

During a long time exposure, an asteroid would often appear as a short streak, while the stars were (almost) point-like. For
faint asteroids, for which an orbit and ephemeris were at least approximately known, a useful (though not particularly easy)
technique would be to move the telescope not at the sidereal rate but to follow the predicted motion of the asteroid. That
way, the asteroid image would build up, and would appear on the photograph as a point. Thus images of faint asteroid
could be obtained. The stars images, of course, then appeared as streaks, and this then made it difficult to measure the
streaked stellar images during subsequent analysis of the photograph.

(b) Today, a CCD still has to be exposed, but exposures are typically just a very few minutes, and the interval between the
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first and second exposures are again typically measured in minutes. Indeed, because of the speed at which exposures are
obtained and the small interval needed between exposures, it is almost universal practice to make at least three exposures in
rapid succession, rather than just two with an hour between each.

The corresponding technique for faint asteroids is to take a series (perhaps a dozen or more) of short exposures of the
required field, keeping the telescope at sidereal rate. The several images can then be stacked electronically, either
(according to choice) so that the stellar images are all stacked upon one another and the asteroid appears as a (barely
visible) row of dots, or the several images can be offset before they are stacked, in such a manner that the several asteroid
images are stacked upon each other to form an easily-visible pointlike image, and the stars appear as a row of dots. The
asteroid position can then be easily measured relative to one of the pointlike stellar images, which remain perfectly usable
for astrometric measurement (unlike the streaked stellar images in the photographic method).

2. (a) The photograph had to be developed. This not only meant "messing around" in the darkroom, but one had to wait for
hours (after a long night of observing) while the film was first washed and then dried before one could start measurement.

(b) It is true that a  image doesn't have to be "developed" in the same sense that a photographic film had to be – but
the  observer doesn't quite get off scot-free here. There is a certain amount of "image-processing" that has to be done,
and this requires a not inconsiderable amount of experience and know-how. A beginner doing this for the first time may
well find it difficult, bewildering and time-consuming. But, once the process has been learned, it becomes very quick and
automatic – whereas the process of developing, fixing, washing and drying a photographic plate never gets any easier or
faster.

3. (a) Any asteroids on the photograph have to be found. This was done using either a blink comparator or a
stereocomparator. In the former the two photographs could be viewed – either through a microscope or projected on to a
screen – one after the other in rapid succession. An asteroid would have moved its position relative to the stars between the
two exposures, and its presence on the two photographs could be detected because the image of the asteroid would hop to
and fro as first one photograph and then the other was viewed. In a stereocomparator, the two photographs would be
viewed simultaneously through a stereo binocular microscope. An asteroid that had moved relative to the stars between the
two exposures would appear to the eyes, because of a stereoscopic effect to stand up above the plane of the stellar images.
These methods were exceedingly effective, but nevertheless a thorough search of a pair of photographs with either of these
instruments was time-consuming and tiring.

(b) The blink technique is also used in  astrometry. As mentioned above, it is usual to obtain three images rather than
two. The three images can be displayed, one after another in rapid succession, on a computer screen, and any asteroid
image will be seen hopping across the screen and back over and over again. In a variation of this technique the three
images are obtained through three coloured filters, perhaps red, green and blue. The three images are then stacked on top of
each other on the screen, so that the star images appear white. A moving asteroid appears on the screen as three coloured
dots (or short dashes) and can be seen very quickly. In yet another technique possible with  images, two exposures of
a star field can be superimposed on the screen, one positive and the other negative. Thus one image is subtracted from the
other, and the computer screen appears blank – except for an asteroid that has moved between exposures. The asteroid
appears as two adjacent spots on the screen – one white and one black. Although any of these three techniques is far
quicker and less tiring for the measurer than "blinking" or "stereoing" a pair of photographic films, they are by no means
the last word in locating asteroid images on  exposures, for computer software is available that can detect any object
that has moved between two exposures, and can indicate any such objects to the operator.

One problem with  images is that the occasionally faulty pixel on a  array can look like as asteroid image on the
screen, and also it is common for several pixels to be hit by a cosmic ray particle during the exposure, and this also
produces a blemish on the image which looks a bit like an asteroid. However any operator who has measured a few
asteroid positions very soon gets to recognize the characteristic appearance of either a bad pixel or a cosmic ray hit, and to
distinguish either of these on sight from a real asteroid image. Computer software that is also used to scan pairs of images
to detect moving objects can also be programmed to recognize these blemishes, so that in practice they are no real problem
to an experienced operator.

4. (a) When we have located an asteroid image on a photographic plate or film, we are not yet ready to start the actual
measurement. We have to identify enough comparison stars on the photograph, and look up and write down their right
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ascensions, declinations and proper motions by comparison of the photographs with star charts and catalogues. This was
always a laborious, tiring and time-consuming part of the procedure, and could occupy a couple of hours or so after a long
night of observing and as the evening of the next night rapidly approached.

(b) In the  age, this formerly tiresome procedure is over in seconds. All that need be done is to click on the image as
many stars as one would like to use as comparison stars. Not just half-a-dozen as in the photographic era, but two or three
dozen if you like. The astrometric software in use has access to an enormous catalogue of billions of stars, and
instantaneously reads their positions from the catalogue and marks each "clicked" star with a circle for the operator to see.
The operator has no need to write down or even to see the positional data of his comparison stars.

5. (a) When we have, after a couple of hours or so, managed to identify the asteroid and the comparison stars on a film or
plate, we are at last ready to start the measurement. The film is carefully positioned on the stage of a measuring microscope
or "measuring engine" as it was called in the old days. Several settings of a microscope crosshair , in both the x- and the
ydirections, were made on the asteroid and the comparison stars. After each setting, a reading of the position was made on
a vernier scale that was part of the measuring engine and was duly recorded with pencil and paper. After the asteroid and
all the stars had been measured, the film had to be reversed in the measuring engine, and all measurements repeated, in
order to allow for systematic measuring errors. The process was very laborious and took several hours for every
photograph. In the latter days shortly before  astrometry took over, we introduced some quite effective labour-saving
devices. We directed a laser beam at a corner reflector attached to the movable microscope stage. The reflected laser beam
was interfered with the incident beam to form a system of standing light waves. As the microscope stage moved, a
phototransistor counted the number of half-waves, and hence it recorded the position of the microscope stage to a
precision, in principle, of half a wavelength. As each setting was made, the position of the microscope stage was sent
automatically to the computer that was to be used subsequently to perform the necessary calculations. Apart from greatly
increasing the precision of the measurements, the measurer did not have to read a vernier scale, nor even did he have to
write down the position. While this device greatly increased the efficiency of the operation, nevertheless several hours were
still needed to measure each photograph.

(b) So how does one measure the positions of the asteroid and the very numerous comparison stars on a ? How
tedious is the measurement? The astonishing answer is that there is no measurement to be made! The measuring process is
bypassed entirely! The reason is that the image of every star sits already on a certain pixel, and all that has to be done is for
the computer to read which row and which column that pixel is on. As soon as the exposure is made, the position is already
determined! In fact, the situation is even better than that. As described, the positional precision of the measurement is
determined by the pixel size. If the pixel measures one arc second by one arcsecond at the focal plane of the telescope, then
the precision of the measurement, as we have described it, will be no better than one arcsecond. But this is not the case at
all. In practice, a stellar image is spread out over several pixels in two dimensions, each of several pixels holding a certain
number of photons. (Not literally photons, of course, but electron-hole pairs, each of which has been generated by a single
photon.) The software reads the number of photons in each of the pixels over which the stellar image is distributed, it fits a
statistical distribution function (such as a two-dimensional gaussian function) to the image, and calculates the "centre of
gravity" of the image to a position of typically about a tenth of a pixel. And so, as soon as the exposure is made, we have
the position of the asteroid and of dozens of comparison stars already determined for us to a tenth of an arcsecond or better.
Furthermore, the right ascensions and declinations of the comparison stars used are automatically read from an on-line star
catalogue, and the calculations to determine the right ascension of the asteroid (or, more probably, of several asteroids
recorded on the ) are instantaneously computed.

Since all of these calculations can be done instantly by any of several available computer packages, they can be done by
anyone with little mathematical training. This has obvious advantages, though the availability of "do-it-yourself" computer
packages to the untrained or the unwary may also have some drawbacks. For example, does a given astrometric computer
package include such corrections as differential refraction and aberration, proper motion, and so on? Perhaps some do, and
some don't. How can one tell – or how can a nonmathematically-trained user determine what corrections are included in the
package? For the experienced professional scientist, this may not be a problem, but there are pitfalls to be wary of when a
prepackaged program is in the hands of an untrained user, who just wants the "answer" as quickly as possible, without
necessarily wanting to know how that answer is obtained.
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13.1: Introduction to Calculating Orbital Elements
We have seen in Chapter 10 how to calculate an ephemeris from the orbital elements. This chapter deals with the rather more
difficult problem of determining the orbital elements from the observations.

We saw in Chapter 2 how to fit an ellipse (or other conic section) to five points in a plane. In the case of a planetary orbit, we
need also to know the orientation of the plane, which will require two further bits of information. Thus we should be able to
determine the shape, size and orientation of the ellipse from seven pieces of information.

This, however, is not quite the same problem facing us in the determination of a planetary orbit. Most importantly, we do not
know all of the coordinates of the planet at the time of any of the observations. We know two of the coordinates – namely the
right ascension and declination – but we have no idea at all of the distance. All that an observation gives us is the direction to
the planet in the sky at a given instant of time. Finding the geocentric distance at the time of a given observation is indeed one
of the more difficult tasks; once we have managed to do that, we have broken the back of the problem.

However, although we do not know the geocentric (or heliocentric) distances, we do have some additional information to help
us. For one thing, we know where one of the foci of the conic section is. The Sun occupies one of them – though we don’t
immediately know which one. Also, we know the instant of time of each observation, and we know that the radius vector
sweeps out equal areas in equal times. This important keplerian law is of great value in computing an orbit.

To determine an orbit, we have to determine a set of six orbital elements. These are, as previously described,  and
 for a sensibly elliptic orbit; for an orbit of low eccentricity one generally substitutes an angle such as , the mean anomaly

at the epoch, for . Thus we can calculate the orbit from six pieces of information. We saw in Chapter 10 how to do this if we
know the three heliocentric spatial coordinates and the three heliocentric velocity components – but this again is not quite the
problem facing us, because we certainly do not know any of these data for a newly-discovered planet.

If, however, we have three suitably-spaced observations, in which we have measured three directions ( ) at three instants of
time, then we have six data, from which it may be possible to calculate the six orbital elements. It should be mentioned,
however, that three observations are necessary to obtain a credible solution, but they may not always be sufficient. Should all
three observations, for example, be on the ecliptic, or near to a stationary point, or if the planet is moving almost directly
towards us for a while and consequently hardly appears to move in the sky, it may not be possible to obtain a credible solution.
Or again, observations always have some error associated with them, and small observational errors may under some
circumstances translate into a wide range of possible solutions, or it may not even be possible to fit a single set of elements to
the slightly erroneous observations.

In recent years, the computation of the orbits of near-Earth asteroids has been a matter of interest for the public press, who are
likely to pounce on any suggestion that the observations might have been “erroneous” and the orbit “wrong” – as if they were
unaware that all scientific measurement always have error associated with them. There is a failure to distinguish errors from
mistakes.

When a new minor planet or asteroid is discovered, as soon as the requisite minimum number of observations have been made
that enable an approximate orbit to be computed, the elements and an ephemeris are distributed to observers. The purpose of
this preliminary orbit is not to tell us whether planet Earth is about to be destroyed by a cataclysmic collision with a near-Earth
asteroid, but is simply to supply observers with a good enough ephemeris that will enable them to find the asteroid and hence
to supply additional observations. Everyone who is actively involved in the process of observing asteroids or computing their
orbits either knows or ought to know this, just as he also knows or ought to know that, as additional observations come in, the
orbit will be revised and differential corrections will be made to the elements. Further, the computed orbit is generally an
osculating orbit, and the elements are osculating elements for a particular epoch of osculation. In order to allow for planetary
perturbations, the epoch of osculation is changed every 200 days, and new osculating elements are calculated. All of this is
routine and is to be expected. And yet there has been an unfortunate tendency in recent years for not only the press but also for
a number of persons who would speak for the scientific community, but who may not themselves be experienced in orbital
computations, to attribute the various necessary revisions to an orbit to “mistakes” or “incompetence” by experienced orbit
computers.

When all the observations for a particular apparition have been amassed, and no more are expected for that apparition, a
definitive orbit for that apparition is calculated from all available observations. Even then, there will be small variations in the

a,  e,  i,  Ω, ω

T M0

T

α,  δ

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6868?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Celestial_Mechanics_(Tatum)/13%3A_Calculation_of_Orbital_Elements/13.01%3A_Introduction_to_Calculating_Orbital_Elements


Jeremy Tatum 9/17/2020 13.1.2 CC-BY-NC https://phys.libretexts.org/@go/page/6868

elements obtained by different computers. This is because, among other things, each observation has to be critically assessed
and weighted. Some observations may be photographic; the majority these days will be higher-precision  observations,
which will receive a higher weight. Observations will have been made with a variety of telescopes with very different focal
lengths, and there will be variations in the experience of the observers involved. Some observations will have been made in a
great hurry in the night immediately following a new discovery. Such observations are valuable for computing the preliminary
orbit, but may merit less weight in the definitive orbit. There is no unique way for dealing with such problems, and if two
computers come up with slightly different answers as a result of weighting the observations differently it does not mean than
one of them is “right” and that the other has made a “mistake”. All of this should be very obvious, though some words that
have been spoken or written in recent years suggest that it bears repeating.

There are a number of small problems involving the original raw observations. One is that the instant of time of an observation
is recorded and reported by an observer in Universal Time. This is the correct thing for an observer to do, and is what is
expected of him or her. The computer, however, uses as the argument for the orbital calculation the best representation of a
uniformly-flowing dynamical time, which at present is TT, or Terrestrial Time (see chapter 7). The difference for the current
year is never known exactly, but has to be estimated. Another difficulty is that observations are not made from the centre of
Earth, but from some point on the surface of Earth – a point that is moving as Earth rotates. Thus a small parallactic correction
has to be made to the observations – but we do not know how large this correction is until we know the distance of the planet.
Or again, the computer needs to know the position of the planet when the sunlight reflected from it left the planet, not when
the light eventually arrived at Earth twenty or so minutes later – but we do not know how large the light travel-time correction
is until we know the distance of the planet.

There is evidently a good deal involved in computing orbits, and this could be a very long chapter indeed, and never written to
perfection to cover all contingencies. In order to get started, however, I shall initially restrict the scope of this chapter to the
basic problem of computing elliptical elements from three observations. If and when the spirit moves me I may at a later date
expand the chapter to include parabolic and hyperbolic orbits, although the latter pose special problems. Computing hyperbolic
elements is in principle no more difficult than computing elliptic orbits; in practice, however, any solar system orbits that are
sensibly hyperbolic have been subject to relatively large planetary perturbations, and so the problem in practice is not at all a
simple one. Carrying out differential corrections to a preliminary orbit is also something that will have to be left to a later date.

In the sections that follow, I am much indebted to Carlos Montenegro of Argentina who went line-by-line with me through the
numerical calculations, resulting in a number of corrections to the original text. Any remaining mistakes (I hope there are few,
if any) are my own responsibility.
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13.2: Triangles
I shall start with a geometric theorem involving triangles, which will be useful as we progress towards our aim of computing
orbital elements.

Figure  shows three coplanar vectors. It is clearly possible to express  as a linear combination of the other two. That
is to say, it should be possible to find coefficients such that

The notation I am going to use is as follows:

The area of the triangle formed by joining the tips of  and  is .
The area of the triangle formed by joining the tips of  and  is .
The area of the triangle formed by joining the tips of  and  is .

To find the coefficients in Equation , multiply both sides by :

The two vector products are parallel vectors (they are each perpendicular to the plane of the paper), of magnitudes  and 
 respectively. (  is the area of the parallelogram of which the vectors  and  form two sides.)

Similarly by multiplying both sides of Equation  by  it will be found that

Hence we find that
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13.3: Sectors
Figure XIII.2 shows a portion of an elliptic (or other conic section) orbit, and it shows the radii vectores of the planet’s
position at instants of time  and .

The notation I am going to use is as follows:

The area of the sector formed by joining the tips of  and  around the orbit is .
The area of the sector formed by joining the tips of  and  around the orbit is .
The area of the sector formed by joining the tips of  and  around the orbit is .

The time interval  is .
The time interval  is .
The time interval  is .

Provided the arc is fairly small, then to a good approximation (in other words we can approximate the sectors by triangles), we
have

That is,

where

and

The coefficients  and  are the sector ratios, and the coefficients  and  are the triangle ratios.

By Kepler’s second law, the sector areas are proportional to the time intervals.

That is

and

Thus the coefficients in Equation  are known. Our aim is to use this approximate Equation to find approximate values
for the heliocentric distances at the instants of the three observations, and then to refine them in order to satisfy the exact

,  t1 t2 t3
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Equation 13.2.5. We shall embark upon our attempt to do this in Section 13.6, but we should first look at the following three
sections.
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13.4: Kepler's Second Law
In section 13.3 we made use of Kepler’s second law, namely that the radius vector sweeps out equal areas in equal times.
Explicitly,

We are treating this as a two-body problem and therefore ignoring planetary perturbations. It is nevertheless worth reminding
ourselves – from section 9.5 of chapter 9, especially Equations 9.5.17, 9.4.3, 9.5.19, 9.5.20 and 9.5.21, of the precise meanings
of the symbols in Equation . The symbol  is the angular momentum per unit mass of the orbiting body, and  is the
semi latus rectum of the orbit. If we are referring to the centre of mass of the two-body system as origin, then  and  are the
angular momentum per unit mass of the orbiting body and the semi latus rectum relative to the centre of mass of the system,
and  is the mass function  of the system,  and  being the masses of Sun and planet respectively. In
chapter 9 we used the symbol  for the mass function. If we are referring to the centre of the Sun as origin, then  and  are
the angular momentum per unit mass of the planet and the semi latus rectum of the planet’s orbit relative to that origin, and 
is the sum of the masses of Sun and planet, for which we used the symbol  in chapter 9. In any case, for all but perhaps the
most massive asteroids, we are probably safe in regarding the mass of the orbiting body as being negligible compared with the
mass of the Sun. In that case there is no distinction between the centre of the Sun and the centre of mass of the two-body
system, and the  in Equation  is then merely the mass of the Sun. (Note that I have not said that the barycentre of the
entire solar system coincides with the centre of the Sun. The mass of Jupiter, for example, is nearly one thousandth of the mass
of the Sun, and that is by no means negligible.)

The symbol , of course, stands for the universal gravitational constant. Its numerical value is not known to any very high
precision, and consequently the mass of the Sun is not known to any higher precision than  is. Approximate values for them
are  and . The product , is known to considerable precision; it is 

.

Definition: Until June 2012 the astronomical unit of distance (au) was defined as the radius of a circular orbit in which a body
of negligible mass will, in the absence of planetary perturbations, move around the Sun at an angular speed of exactly 

 radians per mean solar day, or , or  degrees per mean solar
day. This angular speed is sometimes called the gaussian constant and is given the symbol . With this definition, the value of
the astronomical unit is approximately .

However, in June 2012 the International Astronomical Union re-defined the astronomical unit as  metres
exactly. This means that a body of negligible mass moving around the Sun in a circular orbit will, in the absence of planetary
perturbations, move at an angular speed of approximately  radians per mean solar day, This angular speed is
the gaussian constant  - but, with the new definition of the au, it is no longer regarded as one of the fundamental
astronomical constants. The  also recommended that the official abbreviation for the astronomical unit should be au.

If we equate the centripetal acceleration of the hypothetical body moving in a circular orbit of radius  at angular speed 
to the gravitational force on it per unit mass, we see that , so that

where  is the length of the astronomical unit and  is the gaussian constant.
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13.5: Coordinates
We need to make use of several coordinate systems, and I reproduce here the descriptions of them from section 10.7 of chapter
10. You may wish to refer back to that chapter as a further reminder.

1. Heliocentric plane-of-orbit.  with the  axis directed towards perihelion. The polar coordinates in the plane of the
orbit are the heliocentric distance  and the true anomaly . The -component of the asteroid is necessarily zero, and 

 and .

2. Heliocentric ecliptic.  with the  axis directed towards the First Point of Aries , where Earth, as seen from the
Sun, will be situated on or near September 22. The spherical coordinates in this system are the heliocentric distance , the
ecliptic longitude , and the ecliptic latitude , such that ,  and .

3. Heliocentric equatorial coordinates.  with the  axis directed towards the First Point of Aries and therefore
coincident with the  axis . The angle between the  axis and the  axis is , the obliquity of the ecliptic. This is also
the angle between the -plane (plane of the ecliptic, or of Earth’s orbit) and the -plane (plane of Earth’s equator). See
figure .

4. Geocentric equatorial coordinates.  with the  axis directed towards the First Point of Aries. The spherical
coordinates in this system are the geocentric distance , the right ascension  and the declination , such that 

,  and .

A summary of the relations between them is as follows

Here,  are the direction cosines of the planet’s geocentric radius vector. They offer an alternative way to  for
expressing the direction to the planet as seen from Earth. They are not independent but are related by

The symbols  and  are the geocentric equatorial coordinates of the Sun.
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13.6: Example
As we proceed with the theory, we shall try an actual numerical example as we go. We shall suppose that the following three
observations are available:

We shall suppose that the times given are , and that the observations were made by an observer at the centre of Earth. In
practice, an observer will report his or her observations in Universal Time, and from the surface of Earth. We shall deal with
these two refinements at a later time.

The “observations” given above are actually from an ephemeris for the minor planet 2 Pallas published by the Minor Planet
Center of the International Astronomical Union. They will not be expected to reproduce exactly the elements also published by
the MPC, because the ephemeris positions are rounded off to  and , and of course the MPC elements are computed
from all available observations, not just three. But we should be able to compute elements close to the correct ones.
Observations are usually given to a precision of about  arcsec. For the purposes of the illustrative calculation let us start the
calculation with the right ascensions and declinations given above to six decimal places as exact.
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13.7: Geocentric and Heliocentric Distances - First Attempt
Let us write down the three heliocentric equatorial components of Equation 13.2.1:

Now write  for , etc., from Equations 13.5.1,2,3 and rearrange to take the solar coordinates to the right hand side:

As a very first, crude, approximation, we can let  and , for we know  and  (in our numerical example, 
, ), so we can solve Equations 13.7.4,5,6 for the three geocentric distances. However, we shall eventually need

to find the correct values of  and .

When we have solved these Equations for the geocentric distances, we can then find the heliocentric distances from Equations
13.5.1,2 and 3. For example,

and of course

In our numerical example, we have

As a check on the arithmetic, the reader can - and should - verify that

This does not verify the signs of the direction cosines, for which care should be taken.

From The Astronomical Almanac for 2002, we find that

(For a fraction of a day, which will usually be the case, these coordinates can be obtained by nonlinear interpolation – see
chapter 1, section 1.10.)

Equations 13.7.4,5,6 become
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I give below the solutions to these Equations, which are our first crude approximations to the geocentric distances in ,
together with the corresponding heliocentric distances. I also give, for comparison, the correct values, from the published 

 ephemeris

This must justifiably give cause for some satisfaction, because we now have some idea of the geocentric distances of the
planet at the instants of the three observations, though it is a little early to open the champagne bottles. We still have a little
way to go, for we must refine our values of  and . Our first guesses,  and , are not quite good enough.

The key to finding the geocentric and heliocentric distances is to be able to determine the triangle ratios , 
 and the triangle/sector ratios . The sector ratios are found easily from Kepler’s second law. We have made

our first very crude attempt to find the geocentric and heliocentric distances by assuming that the triangle ratios are equal to
the sector ratios. It is now time to improve on that assumption, and to obtain better triangle ratios. After what may seem like a
considerable amount of work, we shall obtain approximate formulas, Equations 13.8.35a,b, for improved triangle ratios. The
reader who does not wish to burden himself with the details of the derivation of these Equations may proceed directly to them,
near the end of Section 13.7
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13.8: Improved Triangle Ratios
The Equation of motion of the orbiting body is

If we recall Equation 13.4.2, this can be written

If we now agree to express  in units of  (i.e. in Astronomical Units of length (au)) and time in units of  
 mean solar days), this becomes merely

In these units,  has the value .

Now write the - and - components of this Equation, where  are heliocentric coordinates in the plane of the orbit (see
sections 13.5 or 10.7).

and

where

The areal speed is  or, in these units,  where l is the semi latus rectum of the orbit in 

Let the planet be at  at time . Then at time  it will be at , where

and similarly for y.

Now, starting from Equation  we obtain

and

(The comment in the paragraph preceding Equation 3.4.16 may be of help here, in case this is heavy-going.)

Now  and  are related by Equation , so that we can write Equation  with no time derivatives of  higher than
the first, and indeed it is not difficult, because Equation  is just . We obtain

and
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1

2!
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ẋṙ
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In a similar fashion, because of the relation , all higher time derivatives of  can be written with no derivatives of 
higher than the first, and a similar argument holds for .

Thus we can write Equation  as

and similarly for :

where

and

Now we are going to look at the triangle and sector areas. From figure  we can see that

Also, angular momentum per unit mass is  and Kepler’s second law tells us that areal speed is half the angular
momentum per unit mass and that it is constant and equal to  (in the units that we are using), so that

All four of these vectors are parallel and perpendicular to the plane of the orbit, to that their magnitudes are just equal to their 
-components. From the usual formulas for the components of a vector product we have, then,

and

Now, start from the second observation  at instant . We shall try to predict the third observation, using Equations
13.8.11-14, in which  is  and  is , which we are calling (see section 13.3) . I shall make the subscripts for 

 and  the same as the subscripts for . Thus the  and  that connect observations 2 and 3 will have subscript 1, just as we
are using the notation  for .

Thus we have

and

where

and

13.8.4 x x

y

13.8.7

x +δx = F x +Gẋ (13.8.11)

y

y +δy = F y +G ,ẏ (13.8.12)

F = 1 − (δt + (δt + ( − + ) (δt +. . .
1

2r3
)2 ṙ

2r4
)3 1

24

1

r6

12ṙ2

r5

3r̈

r4
)4 (13.8.13)

G = δt − (δt + (δt +. . .
1

6r3
)3 ṙ

4r4
)4 (13.8.14)

XIII.1

= × ,   = × ,   = × .A1
1

2
r2 r3 A2

1

2
r1 r3 A3

1

2
r1 r2 (13.8.15a,b,c)
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1
2

l√
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1
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1

2
r2 ṙ2

1
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z
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1
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1
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= ( − ) = ( − ) = ( − ).
1

2
l√

1

2
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( , )x2 y2 t2

x +δx x3 δt −t3 t2 τ1

F G τ F G

τ1 −t3 t2

= +x2 F1x2 G1ẋ2 (13.8.19)

= + ,y3 F1y2 G1 ẏ2 (13.8.20)

= 1 − + + ( − + ) +. . .F1
1
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2

τ2
1

ṙ2
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τ3
1

1
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1
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2
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Similarly, the first observation is given by

and

where, by substitution of  for ,

and

From Equations 13.8.17,18,19,20,23,24, we soon find that

Now we do not yet know  or , but we can take the expansions of  and  as far as . We then obtain, correct to  :

and

Thus the triangle ratio  is

which, to order , is

or, with ,

Similarly,

Further, with  and ,

= +x1 F3x2 G3ẋ2 (13.8.23)

= + ,y1 F3y2 G3 ẏ2 (13.8.24)

−τ3 δt

= 1 − − + ( − + ) +. . .F3
1

2r3
2

τ2
3

ṙ2

2r4
2

τ3
3

1

24

1

r6
2

12ṙ2
2

r5
2

3r̈2

r4
2

τ4
3 (13.8.25)

= − + + +. . . .G3 τ3
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6r3
2

τ3
3

ṙ2

4r4
2

τ4
3 (13.8.26)
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1

2
G1 l√ A2

1

2
F3G1 F1G3 l√ A3

1

2
G3 l√ (13.8.27a,b,c)
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l√ τ1
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These will serve as better approximations for the triangle ratios. Be aware, however, that Equations 13.8.35a,b are only
approximations, and do not give the exact values for  and .
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13.9: Iterating
We can now use Equations 13.8.35a,b and get a better estimate of the triangle ratios. The numerical data are

 mean solar days and  mean solar days, but recall that we are expressing time intervals in
units of , which is  mean solar days, and therefore

Equations 13.8.35 then result in

.

Now we can go back to Equation 13.7.4 and start again with our new values for the triangle ratios – und so weiter − until we
obtain new values for  and . I show below in the first two columns the first crude estimates (already given
above), in the 16 second two columns the results of the first iteration, and, in the last two columns, the values given in the
published  ephemeris.

We see that we have made a substantial improvement, but we are not there yet. We can now calculate new values of  and 
from Equations 13.8.35a,b to get

.

We could (if we so wished) now go back to Equations 13.7.4,5,6, and iterate again. However, this will result in only small
changes to , ,  and , and we have to bear in mind that Equations 13.8.35a,b are only approximations (to order  ).
Therefore, even if successive iterations converge, they will still not give precise correct answers for  and .

To anticipate, eventually we shall arrive at some exact Equations (Equations 13.12.25 and 13.12.26) that will allow us to solve
the problem. But these Equations will not be easy to solve. They have to be solved by iteration using a reasonably good first
guess. It is our present aim to obtain a reasonably good first guess for , ,  and , in order to prepare for the solution of
the exact Equations 13.12.25 and 13.12.26. Our current values of  and , while not exact, will enable us to solve Equations
13.12.25 and 13.12.26 exactly, so we should now, rather than going back again to Equations 13.7.4,5,6, proceed straight to
Sections 13.11, 13.12 and 13.13.

Nevertheless, in the following section, we provide (in Equations 13.10.9 and 13.10.10), after considerable effort, higher-order
expansions for  and . These may be useful, but for reasons explained in the previous paragraph, it may be easier to skip
Section 13.10 entirely.
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13.10: Higher-order Approximation
The reason that we made the approximation to order  was that, in evaluating the expressions for , ,  and , we did
not know the radial velocity . Perhaps we can now evaluate it.

Exercise. Show that the radial velocity of a particle in orbit around the Sun, when it is at a distance  from the Sun, is

Show that the radial velocity is greatest at the ends of a latus rectum.

Here  is the astronomical unit, a is the semi major axis of the elliptic orbit or the semi transverse axis of the hyperbolic orbit,
 is the perihelion distance of the parabolic orbit, and  is the orbital eccentricity. The  sign is for pre-perihelion, and the 

sign is for post-perihelion.

Unfortunately, while this is a nice exercise in orbit theory, we do not know the eccentricity, so these formulas at present are of
no use to us.

However, we can calculate the heliocentric distances at the times of the first and third observations by exactly the same
method as we used for the second observation. Here are the results for our numerical example, after one iteration. The units, of
course, are . Also indicated are the instants of the observations, taking  and expressing the other instants in units of 

 (see section 13.8).

We can fit a quadratic expression to this, of the form:

With our choice of time origin ,  is obviously just equal to , so we have just two constants,  and  to solve for.
We can then calculate the radial velocity at the time of the second observation from

We can calculate ,  and  in the same manner as before, up to  rather than just . The algebra is slightly long and
tedious, but straightforward. Likewise, the results look long and unwieldy, but there is no difficulty in programming them for a
computer, and the actual calculation is, with a modern computer, virtually instantaneous. The results of the algebra that I give
below are taken from the book Determination of Orbits by A.D. Dubyago (which has been the basis of much of this chapter). I
haven’t checked the algebra myself, but the conscientious reader will probably want to do so himself or herself.

τ3 F1 G1 F3 G3

ṙ2

r

Ellipse : = ∓ ,ṙ
GM

a0

− −−−

√ ( )
−(a −ra2e2 )2

ar2

1/2

(13.10.1)

Parabola : = ∓ ,ṙ
GM(r −q)

a0

− −−−−−−−−−

√ (13.10.2)

Hyperbola : = ∓ .ṙ
GM

a0

− −−−

√ ( )
(a +r −)2 a2e2
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1/2
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And from these,

and

This might result in slightly better values for  and . I have not calculated this for our numerical example here, for reasons
given in Section 13.9. We can move on to the next section, using our current vales of  and , namely
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13.11: Light-time Correction
Before going further, however, our current estimates of the geocentric distances are now sufficiently good that we should make
the light-time corrections. The observed positions of the planet were not the positions that they occupied at the instants when
they were observed. It actually occupied these observed positions at times ,  and . Here,  is
the speed of light, which, as everyone knows, is 10065.320 astronomical units per . The calculation up to this point can
now be repeated with these new times. This may seem tedious, but of course with a computer, all one needs is a single
statement telling the computer to go to the beginning of the program and to do it again. I am not going to do it with our
particular numerical example, since the “observations” that we are using are in fact predicted positions from a Minor Planet
Center ephemeris.
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13.12: Sector-Triangle Ratio
We recall that it is easy to determine the ratio of adjacent sectors swept out by the radius vector. By Kepler’s second law, it is
just the ratio of the two time intervals. What we really need, however, are the triangle ratios, which are related to the
heliocentric distance by Equation 13.2.1. Oh, wouldn’t it just be so nice if someone were to tell us the ratio of a sector area to
the corresponding triangle area! We shall try in this section to do just that.

from which it follows that

We also recall that subscript 1 for areas refers to observations 2 and 3; subscript 2 to observations 3 and 1; and subscript 3 to
observations 1 and 2. Let us see, then, whether we can determine  from the first and second observations.

Readers who wish to avoid the heavy algebra may proceed direct to Equations 13.12.25 and 13.12.26, which will enable the
calculation of the sector-triangle ratios.

Let  and  be the polar coordinates (i.e. heliocentric distance and true anomaly) in the plane of the orbit of the
planet at the instant of the first two observations. In concert with our convention for subscripts involving two observations, let

We have . From Equation 13.4.1, which is Kepler’s second law, we have, in the units that we are using, in which 
 and therefore . Also, from the -component of Equation 13.8.15c, we have 

.

Therefore

In a similar manner, we have

I would like to eliminate  from here.

I now want to recall some geometrical properties of an ellipse and a property of an elliptic orbit. By glancing at figure , or
by multiplying Equations 2.3.15 and 2.3.16, we immediately see that , and hence by making use of a
trigonometric identity we find

and in a similar manner it is easy to show that

Here  is the eccentric anomaly.

Notation :  Triangle ratios : = / , = / .a1 A1 A2 a3 A3 A2 (13.12.1a,b)

Sector ratios : = / , = / .b1 B1 B2 b3 B3 B2 (13.12.2a,b)

Sector-triangle ratios : = , , = ,R1
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Also, the mean anomaly at time  is defined as  and is also equal (via Kepler’s Equation) to . The
period of the orbit is related to the semi major axis of its orbit by Kepler’s third law: . (This material is covered
on Chapter 10.) Hence we have (in the units that we are using, in which ):

where  is the instant of perihelion passage.

Now introduce

From Equation 13.12.7 I can write

and from Equation 13.12.8 I can write

I now make use of the sum of the sum-and-difference formulas from page 38 of chapter 3, namely 
 and  to obtain

and

On adding these, we obtain

I leave it to the reader to derive in a similar manner (also making use of the formula for the semi latus rectum 

and

We can eliminate  from Equations 13.12.18 and 13.12.20:

Also, if we write Equation 13.12.9 for the first and second observations and take the difference, and then use the formula on
page 35 of chapter 3 for the difference between two sines, we obtain

Eliminate  from Equations 13.12.18 and 13.12.22:

Also, eliminate  from Equations 13.12.6 and 13.12.19:

t (t −T )2π

P
E −e sinE

=P 2 4π2

GM
a3

GM = 1

E −e sinE = ,
t −T

a3/2
(13.12.9)
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2 = − ,f3 v2 v1 (13.12.10)

2 = + ,F3 v2 v1 (13.12.11)
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We have now eliminated  and , and we are left with Equations 13.12.21, 23 and 24, the first two of which I now
repeat for easy reference:

In these Equations we already know an approximate value for  (we’ll see how when we resume our numerical example); the
unknowns in these Equations are ,  and , and it is  that we are trying to find. Therefore we need to eliminate  and 

. We can easily obtain  from Equation 13.12.24, and, on substitution in Equations 13.12.21 and 23 we obtain, after some
algebra:

and

where

and

Similar Equations for  and  can be obtained by cyclic permutation of the subscripts. Equations 13.12.25 and 26 are two
simultaneous Equations in  and . Their solution is given as an example in section 1.9 of chapter 1, so we can now assume
that we can calculate the sector-triangle ratios.

We can then calculate better triangle ratios from Equations 13.12.4 and return to Equations 13.7.4, 5 and 6 to get better
geocentric distances. From Equations 13.7.8 and 9 calculate the heliocentric distances. Make the light-time corrections. (I am
not doing this in our numerical example because our original positions were not actual observations, but rather were ephemeris
positions.) Then go straight to this section (13.12) again, until you get to here again. Repeat until the geocentric distances do
not change.
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= .R3
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− −−−
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+ −2 cos cos = 2ar1 r2 r1r2
− −−−

√ f3 g3 sin2 g3 (13.12.21)

2 −sin2 + sin cos = .g3 g3
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− −−−

√
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3
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3 R2

3
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=M3
τ3
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13.13: Resuming the Numerical Example
Let us start with our previous iteration

- or rather with the more precise values that will at this stage presumably be stored in our computer.

These are the values that we had reached when we last left the numerical example.

I promised to say how we know . We defined  as , and this is the angle between the vectors  and . Thus

The heliocentric coordinates can be obtained from Equations 13.5.1, 2 and 3. For example,

and of course

We know how to find the components  of the heliocentric radius vector (see Equations 13.7.8 and 9), and so we can
now find . I obtain

This means that the true anomaly is advancing at about  in five days. It is interesting to see whether we are on the right
track. According to the , Pallas has a period of 4.62 years, which means that, on average, it will move through  in
five days. But Pallas has a rather eccentric orbit (according to the ). The semi major axis of the orbit must be 

 (which agrees with the ), and therefore its aphelion distance  is about . Thus Pallas
must be close to aphelion in July 2002. By conservation of angular momentum, its angular motion at aphelion must be less
than its mean motion by a factor of  so the increase in the true anomaly in five days should be about  or 

. Thus we do seem to be on the right track.

We can now calculate  and  from Equations 13.12.27 and 28:

and so we have the following Equations 13.12.25 and 26 for the sector-triangle ratios:

and 

Since we discussed how to solve these Equations in section 1.9 of chapter 1, I merely give the solutions here. The one useful
hint worth giving is that you can make the first guess for the iteration for  equal to , which we know (

, and .

We can proceed similarly with  and .

Here is a summary:

= 2.65825 = 3.41952Δ1 r1

= 2.61558 = 3.41673Δ2 r2

= 2.54579 = 3.41082Δ3 r3

f3 2f3 −v2 v1 r1 r2

cos 2 = .f3
+ +ξ1ξ2 η1η2 ζ1ζ2

r1r2
(13.13.1)

= − ,ξ1 l1 Δ1 x01 (13.13.2)

= .r1 + +ξ2
1 η2

1 ζ2
1

− −−−−−−−−−
√ (13.13.3)
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Our new triangle ratios will be

and 

We can now go back to Equations 13.7.4,5 and 6, and calculate the geocentric and heliocentric distances anew. Skip sections
13.8, 13.9 and 13.10, and calculate new sector- triangle ratios and hence new triangle ratios, and repeat until convergence is
obtained. After three iterations, I obtained convergence to six significant figures and after seven iterations I obtained
convergence to 11 significant figures. The results to six significant figures are as follows:

This is not to be expected to agree exactly with the published  values, which are based on all available Pallas
observations, whereas we arbitrarily chose three approximate ephemeris positions, but, based on these three positions, we have
now broken the back of the problem and have found the geocentric and heliocentric distances.
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1

2

3

cos f

0.999 928 7

0.999 839 9
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M 2
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13.14: Summary So Far
1. Gather together the three observations .
2. Convert  from  to . (See Chapter 7.)
3. Calculate or look up and interpolate the solar coordinates.
4. Calculate the geocentric direction cosines of the planet. (Equations 13.5.1-3)
5. Calculate the first approximation to the geocentric distances, using , . (Equations 13.7.4-6)
6. Calculate the heliocentric distances. (Equations 13.7.7-8)
7. Improve  and . (Equations 13.8.32-34) Do steps 6 and 7 again.
8. Optional. Calculate  (Equation 13.10.4) and improve  and  again (Equations 13.10.9-10) and again repeat steps 6 and
7.
9. Make the light travel time corrections for the planet, and go back to step 3! Repeat 6 and 7 but of course with your best
current  and . 
10. Calculate  and the three values of  and . (Equations 13.13.1, 13.12.27-28) and solve Equations 13.12.25-
26 for the sector-triangle ratios. The method of solution of these Equations is given in chapter 1, section 1.9.
11. Calculate new triangle ratios (Equations 13.12.4a,b) – and start all over again!

By this stage we know the geocentric and heliocentric distances, and it is fairly straightforward from this point, at least in the
sense that there are no further iterations, and we can just proceed from step to step without having to repeat it all over again.
The main problem in computing the angular elements is likely to be in making sure that the angles you obtain ( when you
calculate inverse trigonometric functions such as arcsin, arccos, arctan) are in the correct quadrant. If your calculator or
computer has an  facility, make good use of it!
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13.15: Calculating the Elementss
We can now immediately calculate the semi latus rectum from Equation 13.12.6a (recalling that , so that
everything except  in the Equation is already known.) In fact we have three opportunities for calculating the semi latus rectum
by using each of Equations 13.12.6a,b,c, and this serves as a check on the arithmetic. For our numerical example, I obtain

identically (at least to eleven significant figures) for each of the three permutations.

Now, on referring to Equation 2.3.37, we recall that the polar Equation to an ellipse is

We therefore have, for the first and third observations,

and, admitting that ,

We observe that, in Equations  and , the only quantities we do not already know are  and  – so we are just
about to find our first orbital element, the eccentricity!

A hint for solving Equations  and 3: Expand . Take  to the left hand side, and Equation 
will become

After this, it is easy to solve Equations  and  for  and for . The other true anomalies are given by 
 and . A check on the arithmetic may (and should) be performed by carrying out the same

calculation for the first and second observations and for the second and third observations. For all three, I obtained

We have our first orbital element!

(The  value for the eccentricity for this epoch is  – but this is based on all available observations, and we cannot
expect to get the  value from just three hypothetical “observations”.)

The true anomalies at the times of the three observations are

After that, the semi major axis is easy from Equation 2.3.10, , for the semi latus rectum of an ellipse. We find

The period in sidereal years is given by , and is therefore  sidereal years. This is not one of the six
independent elements, since it is always related to the semi major axis by Kepler’s third law, so it doesn’t merit the extra
dignity of being underlined. However, it is certainly worth converting it to mean solar days by multiplying by . We
find that  days.

The next element to yield will be the time of perihelion passage. We find the eccentric anomalies for each of the three
observations from any of Equations 2.3.16, 17a, 17b or 17c. For example:

Then the time of perihelion passage will come from Equations 9.6.4 and 9.6.5:

2 = −f3 v2 v1

l

l = 2.61779

r = .
l

1 +e cos v
(13.15.1)

e cos = l/ −1v1 r1 (13.15.2)

= +2v3 v1 f2

e cos( +2 ) = l/ −1.v1 f2 r3 (13.15.3)
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(13.15.4)
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= +2v2 v1 f3 = +2v3 v1 f2

e = 0.23875– –––––––––––
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= .99814 = .68221 = .05377v1 191∘ v2 192∘ v3 194∘

l = a(1 − )e2
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With  I make this 

The next step is to calculate the s and s. These are defined in Equation 10.9.40. They are the direction cosines relating the
heliocentric plane-of-orbit basis set to the heliocentric equatorial basis set.

Exercise. Apply Equation 10.9.50 to the first and third observations to show that

and

From Equations 10.9.51 and 52, find similar Equations for , , , .

The numerical work can and should be checked by calculating these direction cosines also from the first and second, and from
the second and third, observations. Check also that . I get

(Remember that my computer is carrying all significant figures to double precision, though I print out here only a limited
number of significant figures. You will not get exactly my numbers unless you, too, carry all significant figures and do not
prematurely round off.)

The direction cosines are related to the Eulerian angles, of course, by Equations 10.9.41- 46 (how could you possibly forget?!).
All (!) you have to do, then, is to solve these six Equations for the Eulerian angles. (You need six Equations to remove
quadrant ambiguity from the angles. Remember the  function on your computer – it’s an enormous help with
quadrants.)

Exercise. Show that (or verify at any rate) that:

and

You can now solve this for the argument of perihelion . Don’t yet try to solve it for the inclination. (Why not?!) Using 
 for the obliquity of the ecliptic of date (calculated from page  of the 2002 Astronomical Almanac), I get

Exercise. Show that (or verify at any rate) that:

and

From these, I find:

One more to go!

Exercise. Show that (or verify at any rate) that:

You can now solve this with Equation  or  (or both, as a check on the arithmetic) for the inclination. I get

T = t − (E −e sinE) +nP .
P

2π
(13.15.6)

n = 1 T = + .1319t1 756d

– ––––––––––––––––––
P Q

=Px

sin − sinξ1r3 v3 ξ3r1 v1

sin2r1r3 f2
(13.15.7)

=Qx

cos v− cosξ3r1 ξ1r3 v3

sin2r1r2 f2
(13.15.8)
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= −0.48044 = +0.86568 = −0.14059Px Py Pz

= −0.87392 = −0.45907 = +0.15978Qx Qy Qz

ATAN2

sinω sin i = cos ε − sinεPz Py (13.15.9)

cos ω sin i = cos ε − sinε.Qz Qy (13.15.10)

ω

ε = .438 96023∘ B18

ω = .81849304∘
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sinΩ = ( cos ω − sinω) sec εPy Qy (13.15.11)

cos Ω = cos ω − sinω.Px Qx (13.15.12)

Ω = .64776172∘

– ––––––––––––––

cos i = −( sinω + cos ω) csc Ω.Px Qx (13.15.13)
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Here they are, all together:

Have we made any mistakes? Well, presumably after you read chapter 10 you wrote a program to generate an ephemeris. So
now, use these elements to see whether they will reproduce the original observations! Incidentally, to construct an ephemeris,
there is no need actually to use the elements – you can use the s and s instead.

Contributors and Attributions
Jeremy Tatum (University of Victoria, Canada)

i = .2087235∘
– ––––––––––––

a = 2.77602 AU

e = 0.23875

T = + .1319t1 756d

i = .2087235∘

Ω = .64776172∘

ω = .81849304∘

(13.15.1)

P Q

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/15599?pdf
http://astrowww.phys.uvic.ca/faculty/tatum/jbt.html


9/17/2020 13.16.1 CC-BY-NC https://phys.libretexts.org/@go/page/15607

13.16: Topocentric-Geocentric Correction
In section 13.1 I indicated two small (but not negligible) corrections that needed to be made, namely the  correction (which
can be made at the very start of the calculation) and the light-time correction, which can be made as soon as the geocentric
distances have been determined – after which it is necessary to recalculate the geocentric distances from the beginning! I did
not actually make these corrections in our numerical example, but I indicated how to do them.

There is another small correction that needs to be made. The diameter of Earth subtends an angle of  at , so the
observed position of an asteroid depends appreciably on where it is observed from on Earth’s surface. Observations are, of
course, reported as topocentric – i.e. from the place ( ) where the observer was situated. They must be corrected by the
computer to geocentric positions – but of course that can’t be done until the distances are known. As soon as the distances are
known, the light-time and the topocentric-geocentric corrections can be made. Then, of course, one has to return to the
beginning and recompute the distances – possibly more than once until convergence is reached. This section shows how to
make the topocentric-geocentric correction.

We have used the notation  for geocentric coordinates, and I shall use  for topocentric coordinates. In figure 
 I show Earth from a point in the equatorial plane, and from above the north pole. The radius of Earth is , and the

radius of a small circle of latitude  (where the observer is situated) is . The - and  axes are directed towards the
first point of Aries, .

It should be evident from the figure that the corrections are given by

and

Any observer who submits observations to the Minor Planet Center is assigned an Observatory Code, a three-digit number.
This code not only identifies the observer, but, associated with the Observatory Code, the Minor Planet Center keeps a record
of the quantities  and  in . These quantities, in the notation employed by the , are referred to as 
and  respectively. They are unique to each observing site.
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13.17: Concluding Remarks
Anyone who has done the considerable work of following this chapter in detail is now capable of determining the elements of
an elliptic orbit from three observations, if the orbit is an ellipse and if indeed elliptical elements can be obtained from the
observations (which is not always the case). No one arriving at this stage would possibly think of himself or herself as an
expert in orbit calculations. There is much, much more to be learned, and much of it will come with experience, and be self-
taught or picked up from others. There are questions about how to handle more than the requisite three observations, how to
correct the elements differentially as new observations become available, how to apply planetary perturbations, how to handle
parabolic or hyperbolic orbits. Some of this material may (or may not!) be discussed in future chapters. However, often the
most difficult thing is getting started, and calculating one’s very first orbit from the minimum data. It is hoped that this chapter
has helped the reader to attain this.
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14.1: Introduction to General Perturbation Theory
A particle in orbit around a point mass – or a spherically symmetric mass distribution – is moving in a gravitational potential
of the form − . In this potential it moves in a keplerian ellipse (or hyperbola if its kinetic energy is large enough) that
can be described by the six orbital elements , or any equivalent set of six parameters.

If the potential is a little different from , say , the orbit will be perturbed, and  is described as a
perturbation. As a result it will no longer move in a perfect keplerian ellipse. Perturbations may be periodic or secular. For
example, the elements such as  or  may vary in a periodic fashion, while there may be secular changes (i.e. changes that
are not periodic but constantly increase or decrease in the same direction) in elements such as  and . (That is, the line of
nodes and the line of apsides may monotonically precess; they may advance or regress.)

In some situations it may be possible to express the perturbation in terms of a simple algebraic formula. An example would be
a particle in orbit around a slightly oblate planet, where it is possible to express the potential algebraically. The aim of this
chapter will be to try to find general expressions for the rates of change of the orbital elements in terms of the perturbing
function, and we shall use the orbit around an oblate planet as an example.

In other situations it is not easily possible to express the perturbation in terms of a simple algebraic function. For example, a
planet in orbit around the Sun is subject not only to the gravitational field of the Sun, but to the perturbations caused by all the
other planets in the solar system. These special perturbations have to be treated numerically, and the techniques for doing so
will be described in chapter 15.
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14.2: Contact Transformations and General Perturbation Theory
(Before reading this section, it may be well to re-read section 10.11 of Chapter 10.)

Suppose that we have a simple problem in which we know the hamiltonian  and that the Hamilton-Jacobi Equation has
been solved:

Now suppose we have a similar problem, but that the hamiltonian, instead of being just  is , and 
.

Let us make a contact transformation from  to , where  and . In the orbital context,
following Section 10.11, we identify  with  and  with , which are functions (given in Section 10.11) of the orbital
elements and which can serve in place of the orbital elements. The parameters are constants with respect to the unperturbed
problem, but are variables with respect to the perturbing function. They are given, as functions of time, by the solution of
Hamilton’s Equations of motion, which retain their form under a contact transformation.

Perturbation theory will show , then, how the  and  will vary with a given perturbation. The conventional elements 
 are functions of , and our aim is to find how the conventional elements vary with time under the

perturbation .

We can do that as follows. Let  be an orbital element, given by

Then

By Equations 14.2.2a,b, this becomes

But

That is

This can be written, in shorthand:

H0

( , , t)+ = 0.H0 q1
∂S

∂q1

∂S

∂t
(14.2.1)

H0 H = −RH0

K = H + ∂S

∂t

( ,   )pi qi ( ,   )Pi Qi =Q̇i
∂K

∂Pi
= −Ṗ i

∂K

∂Qi

Qi αi Pi −βi

=  and  = − .α̇i

∂R

∂βi

β̇i

∂R

∂αi

(14.2.2a,b)

αi βi

a,  e,  i,  Ω,  ω,  T ,  αi βi

R

Ai

= ( , ).Ai Ai αi βi (14.2.3)

= + .Ȧi ∑
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α̇j ∑
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= and = .
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Here the symbol  is called the Poisson bracket of  with respect to , . (In the language of the
typographer, the symbols (), [] and {} are, respectively, parentheses, brackets and braces; you may refer to Poisson braces if
you wish, but the usual term, in spite of the symbols, is Poisson bracket.)

Note the property 
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14.3: The Poisson Brackets for the Orbital Elements
A worked example is in order. From Equations 14.2.7 and 14.2.8, we see that the Poisson brackets are defined by

The  are the orbital elements.

For our example, we shall calculate  and we write out the sum in full:

Refer now to Equations 10.11.27 and 29, and we find

Finally, referring to Equations 10.11.20 and 21, we obtain

Proceeding in a similar manner for the others, we obtain

In addition, we have, of course,

All other pairs are zero.
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{Ω, i} = 0 +0 +0 −0 + −0.
1

α3 1 − /α2
2 α2

3

− −−−−−−−
√

(14.3.4)
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(14.3.7)
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{i, Ω} = −{Ω, i}, {T , a} = −{a, T }, {T , e} = −{e, T } and {ω, i} = −{i, ω}. (14.3.10)
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14.4: Lagrange's Planetary Equations
We now go to Equation 14.2.8 to obtain Lagrange’s Planetary Equations, which will enable us to calculate the rates of change
of the orbital elements if we know the form of the perturbing function:
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14.5: Motion Around an Oblate Symmetric Top
In Section 5.12, we developed an expression (Equation 5.12.6) for the gravitational potential of an oblate symmetric top (e.g.
an oblate spheroid). With a slight change of notation to conform to the present context, we obtain for the perturbing function

This is the negative of the additional potential energy of a mass  at a point whose cylindrical coordinates are  in the
vicinity of a symmetric top (which I’ll henceforth call an oblate spheroid) whose principal second moments of inertia are 
(polar) and  (equatorial). This is correct to order , where  is the equatorial radius of the spheroid.

Let us imagine a particle of mass  in orbit around an oblate spheroid – e.g. an artificial satellite in orbit around Earth.
Suppose the orbit is inclined at an angle  to the equator, and the argument of perigee is . At some instant, when the
cylindrical coordinates of the satellite are , its true anomaly is .

Show that .

Having done that, we see that the perturbing function can be written

Here,  and  vary with time, or what amounts to the same thing, with the mean anomaly . With a (nontrivial) effort, this
can be expanded as a series, including a constant (time independent) term plus periodic terms of the form , , 

, etc. If the spirit moves me, I may post the details at a later date, but for the present I give the result that, if the
expansion is taken as far as  (i.e. we are assuming that the orbit of the satellite is not strongly eccentric), the constant (time-
independent) part of the perturbing function is

Now look at Lagrange’s Equations, and you see that the secular parts of  and  are all zero. That is, although there may be
periodic variations (which we have not examined) in these elements, to this order of approximation ( ) there is no secular
change in these elements.

On the other hand, application of Equation 14.4.5 gives for the secular rate of change of the longitude of the nodes

The reader will no doubt be relieved to note that this expression does not contain , the mass of the orbiting satellite;  is the
mass of the Earth. The reader may also note the minus sign, indicating that the nodes regress. To obtain the factor (1 + 2e^2 ),
readers will have to do a little bit of work, and to expand, by the binomial theorem, whatever expression in  they get, as far as

.

Let  be the equatorial radius of Earth. Multiply top and bottom of Equation  by , and the Equation becomes

Here  is the mass of Earth (not of the orbiting satellite),  is the semi major axis of the satellite’s orbit, and  is the
equatorial radius of Earth.

[If we assume Earth is an oblate spheroid of uniform density, then, according to example 1.iii of Section 2.20 of Chapter 2 of
our notes on Classical Mechanics, . . In that case, Equation  becomes 
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z/r = sin i sin(ω +v)

R = (1 −3 i (ω +v)) .
Gm(C −A)

2r3
sin2 sin2 (14.5.2)

r v M

cos M cos 2M

cos 3M

e
2

R = (1 + )(1 − i).
Gm(C −A)

2a3

3

2
e

2 3

2
sin2 (14.5.3)
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. But the density of Earth is not uniform, so we’ll leave Equation  as it is.]

For a nearly circular orbit, Equation  becomes just

This tells us that the line of nodes of a satellite in orbit around an oblate planet (i.e ) regresses. From the rate of
regression of the line of nodes, we can deduce the difference,  between the principal moments of inertia, though we
cannot deduce either moment separately. (If we could determine the moment of inertia from the rate of regression of the nodes
– which we cannot – how well can we determine the density distribution inside Earth? See Problem 14 in Chapter A of our
Classical Mechanics notes to determine the answer to this. It will be found that knowledge of the moment of inertia places
only weak constraints on the core size and density.)

Numerically it is known for Earth that the quantity  is about , or about 10.1 degrees per day. Thus

the rate of regression of the nodes of a satellite in orbit around Earth in a near-circular orbit is about

We can refer to Equations 14.4.4 and 14.5.3 to determine the rate of motion of the line of apsides, . After some algebra, and
neglect of terms of order  and higher, we find

or, if we multiply top and bottom by ,

Thus we find that the line of apsides advances if the inclination of the orbit to the equator is less than  and it regresses if the
inclination is greater than this.

In this section, I have demanded a fair amount of work from the reader – in particular for the expansion of Equation 14.5.2.
While the work requires some patience and persistence, it is straightforward, and the resolute reader will be able to work out
the expansion in terms of the mean anomaly and the time, and hence, by making use of Lagrange’s planetary Equations, will
be able to predict the periodic variations in ,  and . For the time being, I am not going to do this, since no new principles
are involved, the aim of the chapter being to give the reader a start on how to start to calculate the changes in the orbital
elements if one can express the perturbing function analytically.

For the effect of the perturbation of a planetary orbit by the presence of other planets, we have to solve the problem
numerically by the techniques of special perturbations, which, I hope, some time in the future, may be the subject of an
additional chapter.
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CHAPTER OVERVIEW
15: SPECIAL PERTURBATIONS

[This chapter is under development and it may be a rather long time before it is complete. It is the intention that it may deal with special
perturbations, differential corrections, and the computation of a definitive orbit. However, it will probably proceed rather slowly and
whenever the spirit moves me.]

15.1: INTRODUCTION
15.2: ORBITAL ELEMENTS AND THE POSITION AND VELOCITY VECTOR
15.3: THE EQUATIONS OF MOTION
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15.1: Introduction
Chapter 14 dealt with the subject of general perturbations. That is, if the perturbation R can be expressed as an explicit
algebraic function, the rates of change of the orbital elements with time can be calculated by explicit algebraic expressions
known as Lagrange’s Planetary Equations. By way of example we derived Lagrange’s Equations for the case of a satellite in
orbit around an oblate planet, in which the departure of the gravitational potential from that of a spherically symmetric planet
could be expressed in simple algebraic form.

Lagrange’s Equations are important and interesting from a theoretical point of view. However, in the practical matter of
calculating the perturbations of the orbit of an asteroid or a comet resulting from the gravitational field of the other planets in
the solar system, that is not how it is done. The perturbing forces are functions of time which must be computed numerically
rather than from a simple formula. Such perturbations are generally referred to as special perturbations. While long-
established computer programs, such as RADAU15, may be available to carry out the necessary rather long computations
without the user having to understand the details, it is the intention in this chapter to indicate in principle how such a program
may be developed from scratch.

Jupiter is by far the greatest perturber, but for high-precision work it may be necessary to include perturbations from the other
major planets, Mercury to Neptune. Pluto may also be considered. However, it is now known that Pluto is a good deal less
massive than it was once estimated to be, so it is a nice question as to whether or not to include Pluto. Besides, Pluto is
probably not the most massive of the transneptunian objects - Eris is believed to be a little larger and hence possibly more
massive. The main belt object Ceres may be more important than either of these. The total mass of the remaining asteroids is
usually considered negligible in this context.

It will be evident that any computer program intended to compute special perturbations will have to include, as subroutines,
programs for calculating, day-by-day, the positions and distances of each of the perturbing planets to be included in the
computation. Computer programs are available to provide these. In what follows, it will be assumed that the reader has access
to such a program (I do!) or is otherwise able to compute the planetary positions, and we move on from there to see how we
calculate the planetary perturbations.
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15.2: Orbital elements and the position and velocity vector
The six elements used to describe the orbit of an asteroid are the familiar

a, e, i, Ω, ω,T

Because of the precession and nutation of Earth, the angular elements must, of course, be referred to a particular equinox and
equator, usually chosen to be that of the standard epoch J2000.0, which means 12h 00m TT on 2000 January 01. (The “J”
stands for “Julian Year”.)

The element T is the instant of perihelion passage. If the orbit is nearly circular, the instant of perihelion passage is ill-defined,
and if the orbit is exactly circular, it is not defined at all. In such cases, instead of T, we may give either the mean anomaly M
or the mean longitude L  at a specified epoch (see Chapter 10). This epoch need not be (and usually is not) the same as the
standard epoch referred to in the previous paragraph.

Suppose that, at some instant of time (to be known, for reasons to be explained later, as the epoch of osculation), the
heliocentric ecliptic coordinates of an asteroid or comet in an elliptic orbit are (X, Y, Z) and the components of the velocity
vector are ( ). We have shown in Chapter 10, Section 10.10) how to calculate, from these, the six elements a, e, i, Ω,
ω, T of the orbit at that instant. Conversely, given the orbital elements, we could reverse the calculation and calculate the
components of the position and velocity vectors. Thus an orbit may equally well be described by the six numbers

That is to say the components, at some specified instant of time, of the position and velocity vector in heliocentric ecliptic
coordinates.

We could equally well give the components, at some instant of time, of the position and velocity vectors in heliocentric
equatorial coordinates:

We saw in Section 10.9 that yet another set of six numbers,

P , Q , P  Q , P , Q

will also suffice to describe an orbit.

It is assumed here that the reader is familiar with all four of these alternative sets of elements, and can convert between them.
Indeed, before reading on, it may be a useful exercise to prepare a computer program that will convert instantly between them.
This may not be a trivial task, but I strongly recommend doing so before reading further. The facility to convert instantly
between one set and another is an enormous help. To convert between ecliptic and equatorial coordinates, you will need, of
course, the obliquity of the ecliptic at that instant - it varies, of course, with time.) The reader will have noticed the frequent
occurrence of the phrase “at that instant” in the previous paragraphs. If the asteroid were not subject to perturbations from the
other planets, it would retain its orbital elements forever. However, because of the planetary perturbations, the elements a, e i,,
Ω,ω,T computed from  or from  at a particular instant of time are valid only for that instant.
The elements will change with time. Therefore in quoting the elements of an asteroidal orbit, it is entirely necessary to state
clearly and without ambiguity the instant of time to which these elements are referred. The unperturbed orbit, and the real
perturbed orbit, will coincide in position and velocity at that instant. The real and unperturbed orbits will “kiss” or osculate at
that instant, which is therefore known as the epoch of osculation.

The elements a, e, i, Ω, ω, T calculated for a particular epoch of osculation may suffice for the computation of an ephemeris
for weeks to come. But after months the observed position of the object will start to deviate from its calculated ephemeris
position. It is then necessary to calculate a new set of elements for a later epoch of osculation. Depending on circumstances,
orbital elements may be recalculated every year, or every 200 days or every 40 days or every 10 days, or at some other
convenient interval. It will be the purpose in what follows to do the following. Given that at some instant (i.e. at some epoch of
osculation) the elements are a, e, i, Ω, ω, T (or the position and velocity vectors are , how do we calculate the
elements at some subsequent epoch, taking into account planetary perturbations?
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As pointed out at the end of Section 15.1, we shall need to know the positions and distances of the major planets as a function
of time. We suppose that we have subroutines in our program that we can call upon to calculate these data at any date. As
mentioned above, the Equations of motion can be written in equatorial or ecliptic coordinates, though it is more likely that, for
the positions of the major planets, we shall have available their positions in equatorial coordinates.
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15.3: The equations of motion
First let us consider the motion of an asteroid under the gravitational influence of the Sun alone, ignoring perturbations from
the other planets. We take the mass of the Sun to be M and the mass of the asteroid to be m. The force on the asteroid − and, of
course, by Newton’s third law, the force on the Sun − is , where r is the distance between the two bodies. The two bodies
are, of course, in motion around their common centre of mass, which, in the case of an asteroid, is very close to the centre of
the Sun.

The acceleration of the asteroid towards the centre of mass is , and the acceleration of the Sun towards the centre of mass

is . If we refer the motion to the Sun as origin, we see that the acceleration of the asteroid towards the Sun is . In
vector form we may write this as

where r is a vector directed from the Sun towards the asteroid, with heliocentric rectangular components (x, y, z). These
heliocentric coordinates could be either ecliptic coordinates, for which we have hitherto used the symbols (X, Y, Z); or they
could be equatorial coordinates, for which we have hitherto used the symbols (ξ, η, ζ). The symbols (x, y, z) will be understood
here to refer to either, at our convenience. It is more likely that we shall have available the equatorial rather than the ecliptic
coordinates. The direction cosines of r are , and consequently the rectangular components of Equation 15.3.1 are

These are the Equations of motion of the asteroid with respect to the Sun as origin. The quantities 
 are, of course, functions of time. The solution of these Equations describe the elliptical (or

other conic section) orbits of the asteroid and all the other properties that we have discussed in previous chapters.

If we are using ecliptic coordinates (X, Y, Z), the X-axis is directed towards the First Point of Aries, the Y-axis is directed along
the direction of increasing ecliptic longitude, and the Z-axis is directed towards the north pole of the ecliptic.

If we are using equatorial coordinates (ξ, η, ζ), the ξ-axis is directed towards the First Point of Aries, the η-axis is directed
along the direction of 6 hours right ascension, and the ζ-axis is directed towards the north celestial pole. The Earth will be on
the X- or ξaxis in September (not March).

Now let us introduce a third body, a perturbing planet, such as, perhaps, Jupiter. We’ll suppose that its mass is m , that its
distance from the Sun is r  and its distance from the asteroid is ρ  (see figure XV.I, in which S is the Sun, A is the asteroid, and
P is the perturbing planet). This is now a three-body problem and a general solution in terms of algebraic functions is not
possible, and it has to be solved by numerical computation.
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In addition to the accelerations of the asteroid towards the Sun and the Sun towards the asteroid described on page 3, used in
developing Equations 15.3.1-4, we now have also to consider the accelerations of the asteroid and the Sun towards the
perturbing planet, as indicated in figure XV.II.

The x-components of these are  and , and so the additional acceleration of A, relative to the Sun, in the

X-direction is , and this has now to be added to the right hand side of Equation 15.3.2:

Neither G nor M are known to great precision, but the product GM is known to very great precision. Indeed in computational

practice we make use of the Gaussian constant , where a  is the astronomical unit of length. This constant has

dimension T  and is equal to the angular velocity of a particle of negligible mass in circular orbit of radius 1 au around the
Sun, which is 0.017 202 098 95 radians per mean solar day. Therefore in computational practice, Equation 15.3.5 is generally
written as

×
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in which the units of mass, length and time are, respectively, solar mass, astronomical unit, and mean solar day. Recall that m
is the mass of the asteroid whose orbit we are computing, and m  is the mass of the perturbing planet, and that the origin of
coordinates is the centre of the Sun. Similar Equations apply to the y- and z-components:

If we add the perturbations from all the major planets from Mercury (M) to Neptune (N), these Equations become, of course,

and similar Equations in y and z.

In the case of an asteroid or a comet, it may be permissible to neglect m in this Equation (i.e. set m = 0), but not, of course, m .
We shall do that here, so the Equation of motion in x becomes

with similar Equations in y and z.

The x, x , ρ , r , etc., are numerical data, which have to be supplied by independent computations (subroutines) for all the
planets. As stated at the end of the previous Section, we suppose that we have subroutines in our program that we can call
upon to calculate these data at any date. We also pointed out that the Equations of motion are valid for either ecliptic or
equatorial coordinates, although the coordinates of the planets are more likely to be available is equatorial rather than ecliptic
coordinates. They are all functions of time, so that, in effect, we have to develop numerical methods for integrating Equations
of the form, where f(t) is not an algebraic expression, but rather a table of numerical values.

That is to say

We suppose that we know x& at the epoch of osculation. Then we can find  at any subsequent date by any standard technique
of numerical integration, such as Simpson’s or Weddle’s Rules, or Gaussian quadrature, or by a Runge-Kutta process. Thus we
now have a table of  as a function of time:

That is to say

We integrate a second time, until we arrive at both x and  at some subsequent epoch of osculation (perhaps 200, or 40, days
into the future). Repeat with the y and z components, so we eventually have a new set of  for a later epoch, and
hence also of a, e, i, Ω, ω, T.
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CHAPTER OVERVIEW
16: EQUIVALENT POTENTIAL AND THE RESTRICTED THREE-BODY
PROBLEM

16.1: INTRODUCTION
The collinear lagrangian points any points on the line passing through the two masses where a
third body of negligible mass could orbit around C  with the same period as the other two masses;
i.e. it would remain on the line joining the two main masses? The collinear points were discussed
by Euler before Lagrange, but Lagrange took the problem further and discovered an additional two
points not collinear with the masses, and the five points today are generally all known as the
lagrangian points.

16.2: MOTION UNDER A CENTRAL FORCE
There is no general analytical solution in terms of simple algebraic functions for the problem of
three gravitating bodies of comparable masses. Except in a few very specific cases the problem has to be solved numerically.
However in the restricted three-body problem, we imagine that there are two bodies of comparable masses revolving around their
common center of mass, and a third body of negligible mass moves in the field of the other two.

16.3: INVERSE SQUARE ATTRACTIVE FORCE
16.4: HOOKE'S LAW
16.5: INVERSE FOURTH POWER FORCE
16.6: THE COLLINEAR LAGRANGIAN POINTS
16.7: THE EQUILATERAL LAGRANGIAN POINTS
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16.1: Introduction
We are going to consider the following problem. Two masses,  and  are revolving around their mutual centre of mass 
in circular orbits, at a constant distance  apart.

The orbital period is given by

and the angular orbital speed is given by

I establish the following notation.

Mass ratio:

Mass fraction:

They are related by

and

We note the following distances:

We ask ourselves the following question: Are there any points on the line passing through the two masses where a third body
of negligible mass could orbit around  with the same period as the other two masses; i.e. it would remain on the line joining
the two main masses?

In fact there are three such points, and they are known as the collinear lagrangian points. (The collinear points were discussed
by Euler before Lagrange, but Lagrange took the problem further and discovered an additional two points not collinear with
the masses, and the five points today are generally all known as the lagrangian points. We shall discuss the additional points in
Section 16.2.) I have marked the three points in figure  with the letters ,  and .

There are evidently  ways in which I could choose the subscripts. Often today, the inner lagrangian point is labelled
 and the outer points are labelled  and . This seems to me to lack logic, and I choose to label the inner point ,
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and the outer points associated with  and  are then  and  respectively. Incidentally, I am not making any
assumption about which of the two main bodies is the more massive.

Let us deal first with . Let us suppose that the distance from  to  is .

A particle of mass  at  is subject (in a co-rotating reference frame) to three forces, namely the gravitational attractions
from the two main bodies, and the centrifugal force acting away from . If this body is to be in equilibrium, we must have

On making use of Equations 16.1.2 and 16.1.4, we find that this Equation becomes

After manipulation, this becomes

where

and

Although Equation  is a quintic Equation, it has just one real root for positive .

The positions of  and  can be found by exactly similar arguments – you just have to take care with the directions and
distances of the two gravitational forces.

For , the coefficients are the same as for , except

and

For  the coefficients are

(Reminder: When computing any of these polynomials, write them in terms of nested parentheses. See Chapter 1, Section 1.5.)

It is also of interest to see the equivalent potential (gravitational plus centrifugal). The expression for gravitational potential
energy is, as usual, , where  is the distance from the mass . The expression for the centrifugal potential energy is
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, where  is the distance from the centre of mass. The negative of the derivative of this expression is  which is
the usual expression for the centrifugal force. When we apply these principles to the system of two masses under
consideration, we obtain the following expression for the equivalent potential (which, in this section, I’ll just call  rather than

).

On making use of Equations  and , we find that this Equation becomes

where

Setting the derivatives of this expression to zero gives, of course, the positions of the lagrangian points, for these are
equilibrium points where the derivative of the potential is zero. Figure  shows the potential for a mass ratio . Note
that, in the line joining the two masses, the equivalent potential at the lagrangian points is a maximum, and therefore these
points, while equilibrium points, are unstable. We shall see in Section 16.6 that the points are actually saddle points. While
several spacecraft are in orbit or are planned to be in orbit around the collinear lagrangian points (e.g.  at the interior
lagrangian point, and  at ), continued small expenditure of fuel is presumably needed to keep them there.

It will be of interest to see how the positions of the lagrangian points vary with mass fraction. Indeed mass can be transferred
from one member of a binary star system to the other during the evolution of a binary star system. We shall discuss a little later
how this can happen. For the time being, without worrying about the exact mechanism, we’ll just vary the mass fraction and
see how the positions of the lagrangian points vary as we do so. However, if mass is transferred from one member of a binary
star system to the other,

and if there are no external torques on the system, the angular momentum  of the system will be conserved, and, to ensure
this, the separation  of the two stars changes with mass fraction.

Show that, for a given orbital angular momentum  of the system, the separation  of the components varies with mass
fraction according to
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Solution

Here  is the total mass of the system. In figure  I have used this Equation, plus Equations 
and , to compute the distances of , , and the three lagrangian points from  as a function of mass fraction.
The unit of distance in figure  is , which is the separation of the two masses when the two masses
are equal. Each of these distances has a minimum value for a particular mass fraction. These minimum distances, and the
mass fractions for which they occur, are as follows:

How can mass transfer actually occur in a binary star system? Well, stars are not points – they are large spherical bodies.
When the hydrogen is exhausted in the core by thermonuclear reactions, a star expands hugely (“leaves the main
sequence”) and when it expands so much that the outer layers of its atmosphere reach the inner lagrangian point, matter
from the large star spills over into the other star. The more massive of the two stars in a binary system generally evolves
faster; it is the first to leave the main sequence and to expand so that its atmosphere reaches the inner lagrangian points.
One can imagine the more massive star gradually filling up its potential well of figure , until it overflows and drips
over the potential hill of the inner point, and then falls into the potential well of its companion.

One way of interpreting figure  is to imagine that  starts with a large mass fraction close to 1, and therefore near
the top of figure . Now imagine that this star loses mass to its companion, so that the mass fraction decreases. We
start moving down the  line of figure . We see the inner point  coming closer and closer. If the surface of the
star meets  while  is still approaching (i.e. if the mass fraction is still greater than 0.446273), then further mass
transfer will make  approach ever faster, and mass transfer will therefore be rapid. When the mass fraction is less than
0.5, the star that was originally the more massive star is by now less massive than its companion. When the mass fraction
has been reduced below 0.446273, further mass transfer will push  away, and therefore further mass transfer will be
slow.

In the calculations of Example , I assumed that the stars can be treated gravitationally as if they are point sources – and
so they can be, however large they are, as long as they are spherically symmetric. By the onset of mass transfer, the mass-
losing star is quite distorted and is far from spherical. However, this distortion affects mostly the outer atmosphere of the star,
and, provided that the greater bulk of the star is contained within a roughly spherically-symmetric volume, the point source
approximation should continue to be good. The other assumption I made was that orbital angular momentum is conserved.
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There are two reasons why this might not be so – but for both of them there is likely to be very little loss of orbital angular
momentum. One possibility is that mass might be lost from the system – through one or other or both of the external collinear
lagrangian points. However, figure  shows that the potentials of these points are appreciably higher than the internal
point; therefore mass transfer takes place well before mass loss. Another reason why orbital angular momentum might be
conserved is as follows. When matter from the mass-losing star is transferred through the inner point to the mass-gaining star,
or flows over the inner potential hill, it does not move in a straight line directly towards the second star. This entire analysis
has been referred to a corotating reference frame, and when matter moves from  towards , it is subject to a Coriolis
force (see section 4.9 of Classical Mechanics), which sends it around  in an accretion disc. During this process the total
angular momentum of the system is conserved (provided no mass is lost from the system) but this must now be shared
between the orbital angular momentum of the two stars and the angular momentum of the accretion disc. However, as long as
the latter is a relatively small contribution to the total angular momentum, conservation of orbital angular momentum remains
a realistic approximation.
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16.2: Motion Under a Central Force
There is no general analytical solution in terms of simple algebraic functions for the problem of three gravitating bodies of
comparable masses. Except in a few very specific cases the problem has to be solved numerically. However in the restricted three-
body problem, we imagine that there are two bodies of comparable masses revolving around their common centre of mass , and a
third body of negligible mass moves in the field of the other two. We considered this problem partially in Section 16.1, except that we
restricted our interest yet further in confining our attention to the line joining to two principal masses. In this section we shall widen
our attention. One question that we asked in section 16.1 was: Are there any points where a third body of negligible mass could orbit
around  with the same period as the other two masses? We found three such points, the collinear lagrangian points, on the line
joining the two principal masses. In this section we shall discover two additional points, the fourth and fifth lagrangian points. They
are not collinear with  and , but are such that the three masses are at the corners of an equilateral triangle.

We shall work in a co-rotating reference frame in which there are two deep hyperbolic potential wells of the form  and 
 from the gravitational field of the two principal masses sunk into the nose-up paraboloidal potential of the form ,

whose negative derivative is the centrifugal force per unit mass. Here  is the usual cylindrical coordinate, and 
.

In figure  we see a coordinate system which is rotating about the -axis, in such a manner that the two principal masses remain
on the x-axis, and the origin of coordinates is the centre of mass . The mass ratio , so the coordinates of the two masses
are as shown in the figure. The constant distance between the two masses is .  is a point whose coordinates are 
and  being dimensionless. The gravitational-plus-centrifugal effective potential  at  is

Let  (dimensionless). Then

I shall write this for short:

Here  and  are functions with obvious meaning from comparison with Equation .

We are going to need the first and second derivatives, so I list them here, in which, for example,  is short for .
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It is a little difficult to draw , but we can look at the plane  and there look at . Figure  is a contour plot
of the surface, for , plotted by Mathematica by Mr Max Fairbairn of Sydney, Australia. We have already seen, in figure ,
a section along the -axis.

Figure  shows a three-dimensional drawing of the equivalent potential surface in the plane, also plotted by Mathematica by
Mr Fairbairn. Figure  is a model of the surface, seen from more or less above. This was constructed of wood by Mr David
Smith of the University of Victoria, Canada, and photographed by Mr David Balam, also of the University of Victoria. The mass ratio
is .

= −(q +1 [3q −q +3 − ] −1,Wxx )2 (1 +x(q +1)) 2A5 A3 (q −x(q +1)) 2B5 B3 (16.2.7)

= −(q +1 [3q(q +1 −q +3(q +1 − ] −1,Wyy )2 )2y2A5 A3 )2y2B5 B3 (16.2.8)

= −(q +1 [3q(q +1 −q +3(q +1 − ],Wzz )2 )2z2A5 A3 )2z2B5 B3 (16.2.9)

= = −3(q +1 yz(q + ),Wyz Wzy )4 A5 B5 (16.2.10)

= = −3(q +1 z[q (1 +x(q +1)) −(q −x(q +1)) ],Wzx Wxz )3 A5 B5 (16.12.11)

= = −3(q +1 y[q (1 +x(q +1)) −(q −x(q +1)) ].Wxy Wyz )3 A5 B5 (16.2.12)

W (x, y, z) z = 0 W (x, y) XVI.8
q = 5 XVI.5
x

FIGURE XVI.8

XVI.9a
XVI.9b

q = 5

FIGURE XVI.9A

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6890?pdf


Jeremy Tatum 9/17/2020 16.2.3 CC-BY-NC https://phys.libretexts.org/@go/page/6890

We can imagine the path taken by a small particle in the field of the two principal masses by imagining a small ball rolling or sliding
on the equivalent potential surface. It might roll into one of the two deep hyperbolic potential wells representing the gravitational
attraction of the two masses. Or it might roll down the sides of the big paraboloid – i.e. it might be flung outwards by the effect of
centrifugal force. We must remember, however, that the surface represents the equivalent potential referred to a co-rotating frame, and
that, whenever the particle moves relative to this frame, it experiences a Coriolis force at right angles to its velocity.

The three collinear lagrangian points are actually saddle points. Along the x-axis (figure XVI.5, they are maxima, but when the
potential is plotted parallel to the y-axis, they are minima. However, in this section, we shall be particularly interested in the

equilateral points, whose coordinates (verify this) are . . You may verify from Equations 16.2.4 and 5,

(though you may need some patience to do so) that the first derivatives are zero there. Even more patience and determination would
be needed to determine from the second derivatives that the equivalent potential is a maximum there – though you may prefer to look
at figures  and  rather than wade through that algebra. I have done the algebra and I can tell you that the first derivatives at the
equilateral points are indeed zero and the second derivatives are as follows.

Because , the potential at the equilateral points goes through a minimum as we cross the plane; in the plane, however,  is
a maximum, and it has the value there of

In the matter of notation, the equilateral points are often called the fourth and fifth lagrangian points, denoted by  and . The
question arises, then, which is  and which is ? Most authors label the equilateral point that leads the less massive of the two
principal masses by   and the one that trails by . This would be unambiguous if we were to restrict our interest, for
example, to Trojan asteroids of planets in orbit around the Sun, or Calypso which leads Tethys in orbit around Saturn and Telesto
which follows Tethys. There would be ambiguity, however, if the two principal bodies had equal masses, or if the two principal bodies
were the members of a close binary pair of stars in which mass transfer led to the more massive star becoming the less massive one. In
such special cases, we would have to be careful to make our meaning clear. For the present, however, I shall assume that the two
principal bodies have unequal masses, and the equilateral point that precedes the less massive body is .

In figure  we are looking in the -plane. I have marked a point , with coordinates ; these are expressed in units of 
, the constant separation of the two principal masses. The origin of coordinates is the centre of mass , and the coordinates (in units

of ) of the two masses are shown. The angular momentum vector ω is directed along the direction of increasing .

Now imagine a particle of mass  at . It will be subject to a force given by the negative of the gradient of the potential energy,
which is  times the potential. Thus in the -direction, . In addition to this force, however, whenever it is in motion
relative to the co-rotating frame it is subject to a Coriolis force . Thus the -component of the Equation of motion is 

. Dividing through by  we find for the Equation of motion in the -direction
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Similarly in the other two directions, we have

and

These, then, are the differential Equations that will track the motion of a particle moving in the vicinity of the two principal orbiting
masses. For large excursions, they are best solved numerically. However, solutions close to the equilateral points lend themselves to a
simple analytical solution, which we shall attempt here. Let us start, then, by referring positions to coordinates with origin at an
equatorial lagrangian point. The coordinates of the point  with respect to the lagrangian point are , where 

. Note also that , etc. We are going to need the derivatives of the potential near to the
lagrangian points, and, by Taylor’s theorem (or just common sense!) these are given by

We have already worked out the derivatives at the lagrangian points (the first derivatives are zero), so now we can put these
expressions into Equations 16.2.13,14 and 15, to obtain

and

The last of these Equations tells us that displacements in the -direction are periodic with period equal to the period of the two
principal orbiting bodies. The motion is bounded and stable perpendicular to the plane. An orbit inclined to the plane of the orbits
containing  and  is stable.

For ξ and η, let us seek periodic solutions of the form

FIGURE XVI.10
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ẏ (16.2.13)

= − −2ωÿ
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so that

where  is real and therefore  is positive.

Substitution of these in Equations 16.2.19-21 gives

and

A trivial solution is ; that is, the particle is stationary at the lagrangian point. While this is indeed a possible solution, it is
unstable, since the potential is a maximum there. Nontrivial solutions are found by setting the determinant of the coefficients equal to
zero. Thus

This is a quadratic Equation in , and for real  we must have , or , or . That is, 

 or . We also require  to be not only real but positive. The solutions of
Equation  are

For any mass ratio  that is less than  or greater than  both of these solutions are positive. Thus stable
elliptical orbits (in the co-rotating frame) around the equilateral lagrangian points are possible if the mass ratio of the two principal
masses is greater than about 25, but not otherwise.

If we consider the Sun-Jupiter system, for which , we have that

The period of the motion around the lagrangian point is then

This description of the motion applies to asteroids moving closely around the equilateral lagrangian points, and the approximation
made in the analysis appeared in the Taylor expansion for the potential given by Equations 16.2.16-18. For more distant excursions
one might try analytical solutions by expanding the Taylor series to higher-order terms (and of course working out the higher-order
derivatives) or it might be easier to integrate Equations 16.2.19 and 20 numerically. Many people have had an enormous amount of
fun with this. The orbits do not follow the equipotential contours exactly, of course, but in general shape they are not very different in
appearance from the contours. Thus, for larger excursions from the lagrangian points the orbits become stretched out with a narrow
tail curving towards ; such orbits bear a fanciful resemblance to a tadpole shape and are often referred to as tadpole orbits. For yet
further excursions, an asteroid may start near  and roll downhill, veering around the back of the more massive body, through the 
point and then upwards towards ; then it slips back again, goes again through  and then up to  again – and so on. This is a so-
called horseshoe orbit.

The drawings below show the equipotential contours for a number of mass ratios. These drawings were prepared using Octave by Dr
Mandayam Anandaram of Bangalore University, and are dedicated by him to the late Max Fairbairn of Sydney, Australia, who
prepared figures  and  for me shortly before his untimely death. Anand and Max were my first graduate students at the
University of Victoria, Canada, many years ago. These drawings show the gradual evolution from tadpole-shaped contours to
horseshoe-shaped contours. The mass-ratio  is the critical ratio below which stable orbits around the equilateral
points  and  are not possible. The massratios  and  are the ratios for the Earth-Moon and Sun-Jupiter systems
respectively. The reader will notice that, in places where the contours are closely-spaced, in particular close to the deep potential well
of the larger mass, Moiré fringes appear. These fringes appear where the contour separation is comparable to the pixel size, and the
reader will recognize them as Moiré fringes and, we think, will not be misled by them.
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Dr Anandaram has also prepared a number of fascinating drawings in which sample orbits are superimposed, in a second colour, on
the equipotential contours. These include tadpole orbits in the vicinity of the equilateral points; “triangular” orbits of the Hilda
asteroids, which are in 2 : 3 resonance with Jupiter; the almost “square” orbit of Thule, which is in 3 : 4 resonance with Jupiter; and
half of a complete 9940 year libration period of Pluto, which is in 3 : 2 resonance with Neptune. It is proposed to publish these in a
separate paper dedicated to Max, the reference to which will in due course be given in these notes.
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CHAPTER OVERVIEW
17: VISUAL BINARY STARS
A visual binary is a gravitationally bound system that can be resolved into two stars. These stars are
estimated, via Kepler's 3rd law, to have periods ranging from a number of years to thousands of
years. A visual binary consists of two stars, usually of a different brightness.

17.1: INTRODUCTION TO VISUAL BINARY STARS
17.2: DETERMINATION OF THE APPARENT ORBIT
17.3: THE ELEMENTS OF THE TRUE ORBIT
17.4: DETERMINATION OF THE ELEMENTS OF THE TRUE ORBIT
17.5: CONSTRUCTION OF AN EPHEMERIS
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17.1: Introduction to Visual Binary Stars
Many stars in the sky are seen through a telescope to be two stars apparently close together. By the use of a filar micrometer it
is possible to measure the position of one star (the fainter of the two, for example) with respect to the other. The position is
usually expressed as the angular distance  (in arcseconds) between the stars and the position angle  of the fainter star with
respect to the brighter. (The separation can be determined in kilometres rather than merely in arcseconds if the distance from
Earth to the pair is known.) The position angle is measured counterclockwise from the direction to north. See figure .

These coordinates  of one star with respect to the other can, of course, easily be converted to  coordinates. In any
case, after the passage of many years (sometimes longer that the lifetime of an astronomer) one ends up with a table of
coordinates as a function of time. Because the orbital period is typically of the order of many years, and the available
observations are correspondingly spread out over a long period of time, it needs to be pointed out that all position angles,
which are measured with respect to the equator of date, need to be adjusted so as to refer to a standard equator, such as that of 

. I don’t wish to interrupt the flow of thought here by discussing this point (important though it is) in detail; suffice it
to say that

where  is the epoch of the observation in years, and the position angles are expressed in arcseconds.

If one star appears to move in a straight line with respect to the other, it is probable that the two stars are not physically
connected but they just happen to lie almost in the same line of sight. Such a pair is called an optical pair or an optical double.

However, if one star appears to describe an ellipse relative to the other, then the two stars are physically connected and are
moving around their common centre of mass.

The angular separation between the two stars is usually very small, of the order of arcseconds or less, and is not easy to
measure. Much more difficult to measure would be the distances of the two stars individually from their mutual centre of
mass. Close pairs are usually measured visually with a filar micrometer, and it is then almost invariably the case that what is
measured is the position of the secondary with respect to the primary. Wider pairs, however, can be measured from
photographs, or, today, from  images. In that case, not only are the measurements more precise, but it is possible to
measure the position of each component with respect to background calibration stars, and hence to measure the position of
each component with respect to the centre of mass of the system. This enables us to determine the mass ratio of the two
components. Pairs that are sufficiently wide apart for photographic measurements, however, come with their own set of
problems. If their angular separation is large, this could mean either that the real, linear separation in kilometres is large, or
else that the stars are not very far from the Sun. In the former case, we may have to wait rather a long time (perhaps more than
an average human lifetime) for the two stars to describe a complete orbit. In the latter case, we may have to take account of
complications such as proper motion or annual parallax.

The brighter of the two stars is the primary, and the fainter is the secondary. This will nearly always mean (though not
necessarily so) that the primary star is also the more massive of the pair, but this cannot be assumed without further evidence.
If the two stars are of equal brightness, it is arbitrary which one is designated the primary. If the two stars are of equal
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brightness, it can sometimes happen that, when they become very close to each other, they merge and cannot be distinguished
until their separation is sufficiently great for them to be resolved again. It may then not be obvious which of the two had been
designated the “primary”.

The orbit of the secondary around the primary is, of course, a keplerian ellipse. But what one sees is the projection of this orbit
on the “plane of the sky”. (The “plane of the sky” is the phrase almost universally used by observational astronomers, and
there is no substantial objection to it; formally it means the tangent plane to the celestial sphere at the position of the primary
component.) The projection of the true orbit on the plane of the sky is the apparent orbit, and both are ellipses. The centre of
the true ellipse maps on to the centre of the apparent ellipse, but the foci of the true ellipse do not map on to the foci of the
apparent ellipse. The primary star is at a focus of the true ellipse, but it is not at a focus of the apparent ellipse. The radius
vector in the true orbit sweeps out equal areas in equal times, according to Kepler’s second law. In projection to the plane of
the sky, all areas are reduced by the same factor . Consequently the radius vector in the apparent orbit also sweeps out
equal areas in equal times, even though the primary star is not at a focus of the apparent ellipse.

Having secured the necessary observations over a long period of time, the astronomer faces two tasks. First the apparent orbit
has to be determined; then the true orbit has to be determined.
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17.2: Determination of the Apparent Orbit
The apparent orbit may be said to be determined if we can determine the size of the apparent ellipse (i.e. its semi major axis),
its shape (i.e. its eccentricity), its orientation (i.e. the position angle of its major axis) and the two coordinates of the centre of
the ellipse with respect to the primary star. Thus there are five parameters to determine.

The general Equation to a conic section (see Section 2.7 of Chapter 2) is of the form

so that we can equally say that the apparent orbit has been determined if we have determined the five coefficients 
. Sections 2.8 and 2.9 described how to determine these coefficients if the positions of five or more points were

given, and section 2.7 dealt with how to determine the semi major axis, the eccentricity, the orientation and the centre given 
 and .

We may conclude, therefore, that in order to determine the apparent ellipse all that need be done is to obtain five or more
observations of  or of , and then just apply the methods of section 2.8 and 2.9 to fit the apparent ellipse. Of course,
although five is the minimum number of observations that are essential, in practice we need many, many more (see section
2.9), and in order to get a good ellipse we really need to wait until observations have been obtained to cover a whole period.
But merely to fit the best ellipse to a set of  points is not by any means making the best use of the data. The reason is that
an observation consists not only of  or of , but also the time, t. In fact the separation and position angle are quite
difficult to measure and will have quite considerable errors, while the time of each observation is known with great precision.
We have so far completely ignored the one measurement that we know for certain!

We need to make sure that the apparent ellipse that we obtain obeys Kepler’s second law. Indeed it is more important to ensure
this than blindly to fit a least-squares ellipse to n points.

If I were doing this, I would probably plot two separate graphs – one of  (or perhaps ) against time, and one of  against
time. One thing that this would immediately achieve would be to identify any obviously bad measurements, which we could
then reject. I would draw a smooth curve for each graph. Then, for equal time intervals I would determine from the graphs the
values of ρ and dθ/dt and I would then calculate . According to Kepler’s second law, this should be constant and
independent of time. I would then adjust my preliminary attempt at the apparent orbit until Kepler’s second law was obeyed
and  was constant. A good question now, is, which should be adjusted,  or  ? There may be no hard and fast
invariable answer to this, but, generally speaking, the measurement of the separation is more uncertain than the measurement
of the position angle, so that it would usually be best to adjust .

If we are eventually satisfied that we have the best apparent ellipse that satisfies as best as possible not only the positions of
the points, but also their times, and that the apparent ellipse satisfies Kepler’s law of areas, our next task will be to determine
the elements of the true ellipse.
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17.3: The Elements of the True Orbit
Unless we are dealing with photographic measurements in which we have been able to measure the positions of both
components with respect to their mutual centre of mass, I shall assume that we are determining the orbit of the secondary
component with respect to the primary as origin and focus.

In figure , which has tested my artistic talents and computer skills to the full, the blue plane is intended to represent the
plane of the sky, as seen from “above” – i.e. from outside the celestial sphere. Embedded in the plane of the sky is the apparent
orbit of the secondary with respect to the primary as origin and focus. The dashed arrow shows the colure (definition of
“colure” – Section 6.4 of Chapter 6) through the primary, and points to the north celestial pole. The primary star is not
necessarily at a focus of the apparent ellipse, as discussed in the previous section. As drawn, the position angle of the star is
increasing with time – though of course in a real case it is equally likely to be increasing or decreasing with time.

The black ellipse is the true orbit, and of course the primary is at a focus of it. If it does not appear so in figure , this is
because the true orbit is being seen in projection.

The elements of the true orbit to be determined (if possible) are

 the semi major axis;
 the eccentricity;
 the inclination of the plane of the orbit to the plane of the sky;
 the position angle of the ascending node;
 the argument of periastron;
 the epoch of periastron passage.

All of these will be familiar to those who have read Chapter 10, section 10.2. Some comments are necessary in the context of
the orbit of a visual binary star.

Ideally, the semi major axis would be expressed in kilometres or in astronomical units of distance – but this is not possible
unless the distance from Earth to the binary star is known. If the distance is not known (as will often be the case), the semi
major axis is customarily expressed in arcseconds.

It is sometimes said that, from measurements of separation and position angle alone, and with no further information, and in
particular with no spectroscopic measurements of radial velocity, it is not possible to determine the sign of the inclination of
the true orbit of a visual binary star. This may be a valid view, but, as the late Professor Joad might have said, it all depends on
what you mean by “inclination”. As with the orbits of planets around the Sun, as described in Chapter 10, Section 10.2, we
take the point of view here that the inclination of the orbital plane to the plane of the sky is an angle that lies between  and 

 inclusive; that is to say, the inclination is positive, and the question of its sign does not arise. After all an inclination of,
say, “ ” is no different from an inclination of . Thus we cannot be ignorant of the “sign” of the inclination. What
we do not know, however, is which node is the ascending node and which is the descending node.
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The  that is usually recorded in the analysis of the orbit of a visual binary unsupported by spectroscopic radial velocities is
the node for which the position angle is less than  – and it is not known whether this is the ascending or descending node.

If the inclination of the orbital plane is less than , the position angle of the secondary will increase with time, and the orbit
is described as direct or prograde. If the position angle decreases with time, the orbit is retrograde.

The orbital inclination of a spectroscopic binary cannot be determined from spectroscopic observations alone. The inclination
of a visual binary can be determined, although, as discussed above, it is not known which node is ascending and which is
descending. If the binary is both a visual binary and a spectroscopic binary, not only can the inclination be determined, but the
ambiguity in the nodes is removed. In addition, it may be possible to determine the masses of the stars; this aspect will be dealt
with in the chapter on spectroscopic binary stars.

Binary stars that are simultaneously visual and spectroscopic binaries are rare, and they are a copious source of valuable
information when they are found. Visual binary stars, unless they are relatively close to Earth, have a large true separation, and
consequently their orbital speeds are usually too small to be measured spectroscopically. Spectroscopic binary stars, on the
other hand, move fast in their orbits, and this is because they are close together – usually too close to be detected as visual
binaries. Binaries that are both visual and spectroscopic are usually necessarily relatively close to Earth.

The element , the argument of periastron, is measured from the ascending node (or the first node, if, as is usually the case,
the type of node is unknown) from  to  in the direction of motion of the secondary component.
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17.4: Determination of the Elements of the True Orbit
I am assuming at this stage that we have used all the observations plus Kepler’s second law and have determined the apparent
orbit well, and can write it in the form

[The coefficients  and  here, and  in Equation 17.4.3, do not, of course, mean the semi major axis , the semi minor axis 
and eeccentricity  of the true ellipse. It is thought that the reader will be unlikely confused by this, but I have nevertheless
used slightly different fonts for them.]

The origin of coordinates here is the primary star, which, although it is at the focus of the true ellipse, is not at the focus of the
apparent ellipse. The -axis points west (to the right) and the -axis points north (upwards), and position angle  (measured
counterclockwise from north) is given by . Our task is now to find the elements of the true orbit.

During the analysis we are going to be obliged, on more than one occasion, to determine the coordinates of the points where a
straight line  intersects the ellipse, so it will be worth while to prepare for that now and write a quick program for
doing it instantly. The x-coordinates of these points are given by solution of 

 and the y-coordinates are given by
solution of the Equation  where 
and . If  is positive the larger solution for  corresponds to the larger solution for ; If  is negative the larger
solution for  corresponds to the smaller solution for .

If the line passes through , so that , these Equations reduce to

and

In figure  I draw the true ellipse in the plane of the orbit.  is the primary star at a focus of the true ellipse.  is the
centre of the ellipse. I have drawn also the auxiliary circle, the major axis (with periastron  at one end and apastron  at the
other end), the latus rectum  through  and the semi minor axis . The ratio  is the eccentricity  of the true
ellipse, and the ratio of minor axis to major axis is . This is also the ratio of any ordinate on the auxiliary circle to the
corresponding ordinate on the ellipse. Thus I have extended the latus rectum and the semi minor axis by the reciprocal of this
factor to meet the auxiliary circle in ,  and .

a +2hxy+b +2gx+2fy+c = 0.x2 y2 (17.4.1)
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Now, in figure , we are going to look at the same thing as seen projected on the plane of the sky.

The true ellipse has become the apparent ellipse, and the auxiliary circle has become the auxiliary ellipse. At the start of the
analysis, we know only the apparent ellipse, which is given by Equation 17.4.1, and the position of the focus , which is at the
origin of coordinates, (0 , 0).  is not at a focus of the apparent ellipse, but  is at the centre of the apparent ellipse.

From section 2.7, we can find the coordinates (  of the centre . These are , where the bar denotes the
cofactor in the determinant of coefficients. Thus the slope of the line , which is a portion of the true major axis, is . We
can now write the Equation of the true major axis in the form  hence, by use of Equations 17.4.4 and 5, we can
determine the coordinates of periastron P and apastron A. We can now find the distances  and ; and the ratio ,
which has not changed in projection, is the eccentricity  of the true ellipse.

Thus e has been determined.

Our next step is going to be to find the slope of the projected latus rectum  and the projected semi minor axis , which
is, of course, parallel to the latus rectum. If the Equation to the projected latus rectum is , we can find the -
coordinates of  and  by use of Equation 17.4.4. But if  is a latus rectum, it is of course bisected by the major axis and
therefore the length  and  are equal. That is to say that the two solutions of Equation 17.4.4 are equal in magnitude and
opposite in sign, which in turn implies that the coefficient of  is zero. Thus the slope of the latus rectum (and of the minor
axis) is .

(It is remarked in passing that the projected major and minor axes are conjugate diameters of the apparent ellipse, with slopes 
 and  respectively.)

Now that we have determined the slope of the projected latus rectum, we can easily calculate the coordinates of  and  by
solution of Equations 17.4.4 and 17.4.5. Further,  has the same slope and passes through , whose coordinates we know,
so it is easy to write the Equation to the projected minor axis in the form  (  is  ), and then solve
Equations 17.4.2 and 17.4.3 to find the coordinates of .

Now we want to extend  to . For  this is done and simply by replacing  and  by 
and , where  is the factor . For , it is done by replacing  and  by  and 
respectively.

We now have five points,  and , whose coordinates are known and which are on the auxiliary ellipse. This is
enough for us to determine the Equation to the auxiliary ellipse in the form of Equation . A quick method of doing this
is described in section 2.8 of Chapter 2.

The slopes of the major and minor axis of the auxiliary ellipse (written in the form of Equation 17.4.1) are given by

This Equation has two solutions for , differing by , the tangents of these being the slopes of the major and minor axes of
the auxiliary ellipse. Now that we know these slopes, we can write the Equation to these axes in the form  (  is 
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) and so we can determine where the axes cut the auxiliary ellipse and hence we can determine the lengths of the both
axes of the auxiliary ellipse.

This has been hard work so far, but we are just about to make real progress. The major axis of the auxiliary ellipse is the only
diameter of the auxiliary circle that has not been foreshortened by projection, and therefore it is equal to the diameter of the
auxiliary circle, and hence the major axis of the auxiliary ellipse is also equal to the major axis of the true ellipse.

Thus a has been determined.

The ratio of the lengths of the minor to major axes of the auxiliary ellipse is equal to the amount by which the auxiliary circle
has been flattened by projection. That is, the ratio of the lengths of the axes is equal to . Since the lengths of the axes are
essentially positive, we obtain only , not  itself. However, by our definition of , it lies between  and  and is
less than or greater than  according to whether the position angle of the secondary component is increasing or decreasing
with time. For example, if   is  or , to be distinguished by the sense of motion of the secondary
component.

The line of nodes passes through  and is parallel to the major axis of the auxiliary ellipse. This indeed is the reason why the
major axis of the auxiliary ellipse was unchanged from its original diameter of the auxiliary circle. We therefore already know
the slope of the line of nodes and hence we know the position angle of the first node.

Thus Ω has been determined.

In figure  I have added the line of nodes, parallel to the (not drawn) major axis of the auxiliary ellipse. I have used the
symbols  and  for the first and second nodes, but we do not know (and cannot know without further information) which
of these is ascending and which is descending.
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17.5: Construction of an Ephemeris
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CHAPTER OVERVIEW
18: SPECTROSCOPIC BINARY STARS
There are many binary stars whose angular separation is so small that we cannot distinguish the two
components even with a large telescope – but we can detect the fact that there are two stars from
their spectra. In favorable circumstances, two distinct spectra can be seen. It might be that the
spectral types of the two components are very different – perhaps a hot A-type star and a cool K-type
star, and it is easy to recognize that there must be two stars there.

18.1: INTRODUCTION TO SPECTROSCOPIC BINARY STARS
18.2: THE VELOCITY CURVE FROM THE ELEMENTS
18.3: PRELIMINARY ELEMENTS FROM THE VELOCITY CURVE
18.4: MASSES
18.5: REFINEMENT OF THE ORBITAL ELEMENTS
18.6: FINDING THE PERIOD
18.7: MEASURING THE RADIAL VELOCITY
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18.1: Introduction to Spectroscopic Binary Stars
The orbital elements of a binary star system are described in Chapter 17, and are a, e , i, Ω, ω and T. However, on thinking
about the meaning of the element W, the position angle of the ascending node, the reader will probably agree that we cannot
tell the position angle of either node from radial velocity measurements of an unresolved binary star. We have no difficulty,
however, in determining which component is receding from the observer and which is approaching, and therefore we can
determine which node is ascending and which is descending, and the sign of the inclination. Thus we can determine some
things for a spectroscopic binary that we cannot determine for a visual binary, and vice versâ. If a binary star is both
spectroscopic and visual (by which I mean that we can see the two components separately, and we can detect the periodic
changes in radial velocity from the spectra of each), then we can determine almost anything we wish about the orbits without
ambiguity. But such systems are rare – and valuable. Usually (unless the system is very close to us) the linear separation
between the pairs of a visual binary is very large (that’s why we can see them separately) and so the speeds of the stars in their
orbits are too slow for us to measure the changes in radial velocity. Typically, orbital periods of visual binary stars are of the
order of years – perhaps many years. Stars whose binarity is detected spectroscopically are necessarily moving fast (typically
their orbital periods are of the order of days), which means they are close together – too close to be detected as visual binaries.

Of course, in addition to the periodic variations in radial velocity, which give rise to periodic Doppler shifts in the spectra, the
system as a whole may have a radial velocity towards or away from the Sun. The radial velocity of the system – or its centre of
mass – relative to the Sun is called, naturally, the systemic velocity, and is one of the things we should be able to determine
from spectroscopic observations. I shall be using the symbol V  for the systemic velocity, though I have seen some authors use
the symbol g and even refer to it as the “gamma velocity”. [By the way have you noticed the annoying tendency of the semi-
educated these days to use technical words that they don’t know the meaning of? An annoying example is that people often
talk of “systemic discrimination”, presumably because they think that the word “systemic” sounds scientific, when they really
mean “systematic discrimination”.] We must also bear in mind that the actual observations of the star are made not from the
Sun, but from Earth, and therefore corrections must be made to the observed radial velocity for the motion of Earth around the
Sun as well as for the rotation of Earth around its axis.
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18.2: The Velocity Curve from the Elements
In this section, we calculate the velocity curve (i.e. how the radial velocity varies with time) to be expected from a star with
given orbital elements. Of course, the practical situation is quite the opposite: we observe the velocity curve, and from it, we
wish to determine the elements. We’ll deal with that later.

I’m going to use the convenient phrase “plane of the sky” to mean a plane tangent to the celestial sphere, or normal to the line
of sight from observer to the centre of mass of the system. The centre of mass C of the system, then, is stationary in the plane
of the sky. The plane of the orbits of the two stars around their centre of mass is inclined at an angle i to the plane of the sky. I
am going to follow the adventures of star 1 about the centre of mass C. And I am going to assume that Chapter 9 is all fresh in
your mind!

The semi major axis of the orbit of star 1 about C is a , and the semi latus rectum . The angular momentum
per unit mass of star 1 about C is , where v is the true anomaly and . The orbital period
P is given by . The mean motion n is 2p/P, and hence n  a  = GM. Therefore the angular momentum per unit
mass is

In figure XVIII.1 we see the star 1 (labelled S) in orbit around C, and at some time the argument of latitude of S is θ, and its
distance from C is r . Its distance above the plane of the sky is z, and r  sin β. The inclination of the plane of the orbit to the
plane of the sky is i, and, in order to find an expression for β in terms of the argument of latitude and the inclination, I’m just
going to draw, in figure VIII.2, these angles on the surface of a sphere. The sphere is centred at C, and is of arbitrary radius.

We see from this triangle that sin β = sin i sin θ. Also, the argument of latitude θ = ω + v, (ω = argument of periastron, v = true
anomaly), and so

At this moment, the radial velocity V of star 1 relative to the Sun is given by

where V  is the radial velocity of the centre of mass C, or the systemic velocity. Differentiation of Equation 18.2.1 with respect
to time gives

1 = (1 − )l1 a1 e
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I would like to express this entirely in terms of the true anomaly v instead of v and r . The Equation to the ellipse is

where l  is the semi latus rectum, and so

which helps a bit. Thus we have

We can also make use of Equation 18.2.1, and, with some help from Equation 18.2.5, we obtain

or

Now esin v sin(ω + v) + e cosvcos(ω + v) = e cosω,so we are left with

The quantity , which has the dimensions of speed, is generally given the symbol K , so that

and so the radial velocity (including the systemic velocity) as a function of the true anomaly and the elements is given by

You can see that  varies between K (1 e cos ω) and -K (1 - e cos ω), and that K  is the semi-amplitude of the radial velocity
curve.

Equation 18.2.12 gives the radial velocity as a function of the true anomaly. But we really want the radial velocity as a
function of the time. This is easy, or at least straightforward, because we already know how to calculate the true anomaly as a
function of time. I give here the relevant Equations. I have retained their original numbering, so that you can locate them in the
earlier chapters.

From trigonometric identities, this can also be written

or

= sin[ sin(ω +v) + cos(ω +v)].ż ṙ1 r1 v̇ (18.2.4)
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or

I show in figures XIII.3 and XIII.4 two examples of velocity curves. Figure XIII.3 is computed for e = 0.5, ω = 0 . Figure
XIII.4 is computed for e = 0.75, ω = 90 .

In order to draw these two figures, it will correctly be guessed that I have written a computer program that will calculate
Equations 9.6.4, 9.6.5, 2.3.16 and 18.2.12 in order, for the chosen values of e and ω. This is perfectly straightforward except
that Equation 9.6.5, Kepler’s Equation, requires some iteration. The solution of Kepler’s Equation was discussed in Section
9.6. If I were seriously going to be interested in computing the orbits of spectroscopic binary stars I would at this stage use this
program to generate and print out 360 radial velocity curves for 36 values of ω going from 0  to 350  and ten value of e going
from 0.0 to 0.9. Then, when I had a real radial velocity curve of a real spectroscopic binary star to analyse, I would be able to
compare it with my set of theoretical curves and hence be able to get a least a rough first approximation to the eccentricity and
argument of periastron.

I have drawn figures XVIII.3 and 4 for a systemic velocity V  of zero. A real star will not have a zero systemic velocity and
indeed one of the aims must be to determine the systemic velocity.

Thus in figure XVIII.5 I have drawn a radial velocity curve (I’m not saying what the values of ω and e are), but this time I
have not assumed a zero systemic radial velocity. It will be noticed that the observed star spends much longer moving towards
us than away from us. If we draw a horizontal line Radial Velocity = V  across the figure, this line must be drawn such that the
area between it and the radial velocity curve above it is equal to the area between it and the radial velocity curve below it. How
to position this line? That is a good question. If nothing else, you can count squares on graph paper. That at least will give you
a first rough idea of what the systemic velocity is.
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If you have a double-lined binary, you will have two radial velocity curves. They are not quite mirror images of each other; the
semiamplitude of each component is inversely proportional to its mass. But the systemic velocity is then easy, because the two
curves cross when the radial velocity of each is equal to the radial velocity of the system.
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18.3: Preliminary Elements from the Velocity Curve
We have seen in the previous section how to calculate the velocity curve given the elements. The more practical problem is the
inverse: In this section, we assume that we have obtained a velocity curve observationally, and we want to determine the
elements. The assumption that we have obtained a precise radial velocity curve is, of course, rather a large one; but, for the
present, let us assume that this has been done and we are trying to determine what we can about the orbit. We limit ourselves
in this section to determining from the curve only very rough first estimates of the elements. This will also serve the purpose
of establishing what information is obtainable in principle from the velocity curve. A later section will deal with refining our
estimates and obtaining precise values.

The assumption that we have already obtained the radial velocity curve implies that we already know the period P of the orbit.

The radial velocity curve is given by Equation 18.2.12:

Here v = v(t, T, e). Thus, from the radial velocity curve, we should be able to determine V , K , e, ω and T. We shall remind
ourselves a little later of the meaning of K , but in the meantime we can note that the radial velocity varies between a
maximum of V  = V  + K  (e cos ω + 1) and a minimum of V  = V  + K  (e cos ω - 1). The difference between these two is
2K . Thus K  is the semiamplitude of the radial velocity curve, regardless of the shape of the curve and the values of ω and e,
and so (again assuming that we have a well-determined radial velocity curve) K  can be readily determined.

The systemic velocity V  is such that the area under the radial velocity curve above it is equal to the area above the radial
velocity curve below it. Thus at least a rough preliminary estimate can be made of V , regardless of the shape of the curve and
of the values of ω and e.

The shape of the radial velocity curve (as distinct from its amplitude and phase) is determined by ω and e. As suggested in the
previous section, we can prepare a set of, say, 360 theoretical curves covering 36 values of ω from 0 to 350  and 10 values of e
from 0.0 to 0.9. (By making use of symmetries, one need cover ω only from 0 to 90 , but computers are so fast today that one
might as well go from 0 to 350 ) By comparing the observed curve with these theoretical curves, we get a first estimate of ω
and e. We could then I suppose, take advantage of today’s fast computers and prepare a set of velocity curves with much finer
intervals around one’s first estimate. This would not, of course, allow us to calculate definitive precise values of ω and e, but it
would give us a pretty good first guess.

I have already pointed out that

and

From these we see that

This allows us to determine ecosω without reference to the slightly uncertain V , and we will want to see that our estimates of
e and ω from the shape of the curve are consistent with Equation 18.3.3.

The velocity curve also allows us to determine T, the time of periastron passage. For example, the sample theoretical velocity
curves I have drawn in figures XIII.3, 4 and 5 all start at periastron at the left hand limit of each curve.

Note that we have been able to determine K , which is , and we can determine e and n, which is 2π/P. This means that

we can determine a sin i, but that is as far as we can go without additional information; we cannot separate a  from i.
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18.4: Masses
In Section 18.3 we saw that we could obtain approximate values of P, V , K , e, ω and T. But, apart from its being the semi-
amplitude of the velocity curve, we have forgotten the meaning of K . We remind ourselves. It was defined just after Equation
18.2.10 as

Here n is the mean motion 2π/P. Thus, since we know P (hence n), e and K , we can determine a  sin i – but we cannot
determine a  or i separately.

Now the mean motion n is given just before Equation 18.2.1 as

where

(A reminder: The subscript 1 refers, for a single-lined binary, to the star whose spectrum we can observe, and the subscript 2
refers to the star that we cannot observe.) All of this put together amounts to

Thus we can determine the mass function . We cannot determine the separate masses, or their ratio or sum, or the

inclination.

In recent years, it has become possible to measure very small radial velocities of the order of a few metres per second, and a
number of single-lined binary stars have been detected with very small values of K ; that is to say, very small radial velocity
amplitudes. These could, of course, refer to stars with small orbital inclinations, so that the plane of the orbit is almost
perpendicular to the line of sight. It has been held, however, (on grounds that are not entirely clear to me) that many of these
single-lined binary stars with small radial velocity variations are actually single stars with a planet (or planets) in orbit around
them. The mass of the star that we can observe (m ) is very much larger than the mass of the planet, which we cannot observe
(m ). To emphasize this, I shall use the symbol M instead of m  for the star, and m instead of m  for the planet. The mass
function that can be determined is, then

If m (the mass of the unseen body – the supposed planet) is very much smaller than the star (of mass M) whose radial velocity
curve has been determined, then the mass function (which we can determine) is just

And if, further, we have a reasonable idea of the mass M of the star (we know its spectral type and luminosity class from its
spectrum, and we can suppose that it obeys the well-established relation between mass and luminosity of main-sequence stars),
then we can determine m  sin  i and hence, of course m sini. It is generally recognized that we cannot determine i for a
spectroscopic binary star, and so it is conceded that the mass of the unseen body (the supposed planet) is uncertain by the
unknown factor sin i.

However, the entire argument, it seems to me, is fundamentally and rather blatantly unsound, since, in order to arrive at m sin i
and to hence to claim that m is of typically planetary rather than stellar mass, the assumption that m is small and i isn’t has
already been made in approximating the mass function by . Unless there is additional evidence of a different kind, the
observation of a velocity curve of small amplitude is not sufficient to indicate the presence of an unseen companion of
planetary mass. Equally well (without additional evidence) the unseen companion could be of stellar mass and the orbital
inclination could be small.
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If the system is a double-lined spectroscopic binary system, we can determine the mass function for each component. That is,

we can determine  and . The reader should now convince him- or herself that, since we now know these two

mass functions, we can determine the mass ratio and we can also determine m  sin  i and m  sin  i separately. But we cannot
determine m , m  or i.
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18.5: Refinement of the Orbital Elements
By finding the best fit of the observational values of radial velocity to a set of theoretical radial velocity curves, we have by
now determined, if only graphically, a preliminary estimate of the orbital elements. We now have to refine these estimates in
order to obtain the best set of elements that we can from the data.

Let us remind ourselves of the theoretical Equation (Equation 18.2.12) that we developed for the radial velocity:

Here

and

Also v is a function of the time and the elements T and e, through Equations 9.6.4, 9.6.5 and 2.3.16 cited in Section 18.2. Thus
Equation 18.5.1 expresses the radial velocity as a function of the time (hence true anomaly) and of the orbital elements V , K ,
ω, e, n and T:

For each observation (i.e for each time t), we can use our preliminary elements to calculate what the radial velocity should be
at that time, and compare it with the observed radial velocity at that time. Our aim is going to be to adjust the orbital elements
so that the sum of the squares of the differences V  - V  is least.

If we were to change each of the elements of Equation 18.4.4 by a little, the corresponding change in V would be, to first order,

When the differentiations have been performed, this becomes

In this Equation, δV is V  - V . There will be one such Equation for each observation, and hence, if there are N ( > 6)
observations there will be N Equations of condition. From these, six normal Equations will be formed in the manner described
in Section 1.8 and solved for the increments in the orbital elements. These are then subtracted from the preliminary elements to
form an improved set of elements, and the process can be repeated until there is no significant change.

This process can be highly automated by computer, but in practice the calculation is best overseen by an experienced human
orbit computer. While a computer may produce a formal solution, there are a number of situations that may result in a solution
that is unrealistic or even quite wrong. Much depends on the distribution of the observations, and on whether the observational
errors are normally distributed. Also, if the system has been observed for a long time over many orbital periods, the period
may be known to great precision, and the investigator may prefer to keep P (hence n) as a fixed, known constant during the
calculation. Or again, if the period is short, the investigator may wish (perhaps on the basis of additional knowledge) to
suppose that the two stars are close together and that the orbits of the components are circular, and hence fix e = 0 throughout
the calculation. I am always a little uneasy about making an assumption that some element has some desired value; it seems to
me that, once one starts this, one might as well assume values for all of the elements. This would have the advantage that one
need not make any observations or do any calculations and can just assume all the results according to personal taste. Whether
an assumption that P or e can be held as fixed and known, or whether one should let the computer do the entire calculation
without any intervention, is something that requires the experience of someone who has been calculating orbits for years.
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18.6: Finding the Period
The first five sections of this chapter have dealt with calculating the relations between the orbital elements and the radial
velocity curve, and that really completes what is necessary in a book whose primary focus is on celestial mechanics. In
practice, the celestial mechanics part is the least of the difficulties. The Equations may look forbidding at first sight, but at
least the Equations are unambiguous and clear cut. There are lots of problems of one sort of another that in practice occupy
much more of the investigator’s time than merely the computation of the orbit, which nowadays is done in the blink of an eye.
I mention a few of these only briefly in the remaining sections, partly because they are not particularly concerned with
celestial mechanics, and partly because my personal practical experience with them is limited.

If you were able to measure the radial velocity every five minutes throughout a complete period, there would be no difficulty
in obtaining a nice velocity curve. In practice, however, you measure a radial velocity “every so often” – with perhaps many
orbital periods between consecutive observations. Finding the period, then, is obviously a bit of a problem. (That there is an
initial difficulty in finding the period is ultimately compensated for in that, once a preliminary value for the period is found, it
can often be calculated to great precision, if the star has been observed over many decades.)

If you have a large number of observations spread out over a long time, it may be possible to identify several observations in
which the radial velocity is a maximum, and you might then assume that the least time between consecutive maxima is an
integral number of orbital periods. Of course you don’t know what this integral number is, but you might be able to do a little
better. For example, you might find that there are 100 days between two consecutive maxima, so that there are an integral
number of periods in 100 days. You might also find that two other maxima are separated by 110 days. You now know that
there are an integral number of periods in 10 days – which is a great improvement.

A difficulty arises if you observe the star at regular and equal intervals. While there is an obvious answer to this – i.e. don’t do
it – it may not in practice be so easy to avoid. For example: if you always observe the star when it is highest in the sky, on the
meridian, then you are always observing it at an integral number of sidereal days. You then get a stroboscopic effect. Thus, if
you have a piece of machinery that is cycling many times per second, you can illuminate it stroboscopically with a light that
flashes periodically, and you can then see the machinery moving apparently much more slowly than it really is. The same thing
happens if you observe a spectroscopic binary star at precisely regular intervals – it will appear to have a much longer period
that is really the case.

It is easier to understand the effect if we work in terms of frequency (reciprocal of the period) rather than period. Thus let n ( =
1/P) be the orbital frequency of the star and let n' ( = 1/T') be the frequency of observation (the frequency of the stroboscope
flash, to recall the analogy). Then the apparent orbital frequency ν' of the star is given by

where m is an integer. Returning to periods, this means that you can be deceived into deducing a spurious period P' given by

You don’t have to make an observation every single sidereal day to experience this stroboscopic effect. If your stroboscope is
defective and it misses a few flashes, the machinery will still appear to slow down. Likewise, if you miss a few observations,
you may still get a spurious period.

Once you have overcome these difficulties and have determined the period, in order to construct a radial velocity curve you
will have to subtract an integral number of periods from the time of each observation in order to bring all observations on to a
single velocity curve covering just one period.

| −ν| = mnν
′ (18.6.1)

= ± .
1
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(18.6.2)

https://libretexts.org/
https://phys.libretexts.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://phys.libretexts.org/@go/page/6908?pdf
https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Celestial_Mechanics_(Tatum)/18%3A_Spectroscopic_Binary_Stars/18.06%3A_Finding_the_Period


Jeremy Tatum 9/17/2020 18.7.1 CC-BY-NC https://phys.libretexts.org/@go/page/8260

18.7: Measuring the Radial Velocity
In a text primarily concerned with celestial mechanics, I shan’t attempt to do justice to the practical details of measuring a
spectrum, but one or two points are worth mentioning, if only to draw the reader’s attention to them.

To measure the radial velocity, you obtain a spectrum of the star and you measure the wavelength of a number of spectrum
lines (i.e. your measure their positions along the length of the spectrum) and you compare the wavelengths with the
wavelengths of a comparison laboratory spectrum, such as an arc or a discharge tube, adjacent to the stellar spectrum. If the
spectra are obtained on a photographic plate, the measurement is done with a measuring microscope. If they are obtained on a
CCD, there is really no “measurement” in the traditional sense to be done – a computer will read the pixels on which the lines
fall. If the stellar lines are displaced by Δλ from their laboratory values λ, then the radial velocity v is given simply by

Note that this formula, in which c is the speed of light, is valid only if v << c. This is certainly the case in the present context,
though it is not correct for measuring the radial velocities of distant galaxies. (The z in the galaxy context is the measured Δλ/
λ, and knowledge of both relativity and cosmology is necessary to translate that correctly into radial velocity.)

The accurate measurement of wavelengths in stellar spectra has its own set of difficulties. For example, the spectrum lines of
early type stars are broad and diffuse as a result of the high temperatures and quadratic Stark broadening of the lines, as well as
the rapid rotation of early type stars. The lines of late-type stars are numerous, closely crowded together and blended. Thus
there are difficulties at both ends of the spectral sequence.

One very nice technique for measuring radial velocities involves making use of the entire spectrum rather than the laborious
process of measuring the wavelengths of individual lines. Suppose that you are, for example observing a G-type star. You will
prepare an opaque mask on which are inscribed, in their correct positions, transparent lines corresponding to the lines expected
of a G-type star. During observation, the spectrum of the star is allowed to fall on this mask. Some light gets through the
transparent inscribed lines on the mask, and this light is detected by a photoelectric cell behind the mask. The mask is moved
parallel to the spectrum until the dark absorption lines in the stellar spectrum fall on the transparent inscribed lines on the
mask, and at this moment the amount of light passing through the mask and reaching the photoelectric cell reaches a sharp
minimum. Not only does this technique make use of the whole spectrum, but the radial velocity is obtained immediately, in
situ, at the telescope.

I end by briefly mentioning two little problems that are well known to observers, known as the rotation effect and the blending
effect.

If the orbital inclination is close to 90 , the system, as well as being a spectroscopic binary, might also be an eclipsing binary.
In this case, we can in principle get a great deal of information about the system – but there is a danger that the information
might not be correct. For example, suppose that the system is a single-lined binary, and that the bright star (the one whose
spectrum can be seen) is a rapid rotator and is being partially eclipsed by the secondary. In that case we can see only part of the
surface of the primary star – perhaps that part of the star that is (by rotation) moving towards us. This will give us a wrong
measurement of the radial velocity.

Or again, suppose that we have a double-lined binary. For much of the orbital period, the lines from one star may be well
separated from those of the other. However, there comes a time when the two sets of lines approach each other and become
partially blended. I show in figure XVIII.6 two partially blended gaussian profiles. You will see that the minima of the blended
profile, shown as a dashed curve, occur closer together than the true minima of the individual lines. If you measure the minima
of the blended profile, this will obviously give the wrong radial velocity and will result in a distortion of the velocity curve and
corresponding errors in the orbital elements. Many years ago I made some calculations on the amount of the blending effect
for gaussian and lorentzian profiles for various separations and relative intensities. These calculations were published in
Monthly Notices of the Royal Astronomical Society, 141, 43 (1968).
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